
Chapter 9
Casimir Frictional Drag Force
in Low-Dimensional Systems

Coulomb drag is a frictional coupling between electric currents flowing in spatially
separated conducting layers. It is caused by interlayer electron–electron interactions.
The frictional drag between quantum wells makes it possible to directly probe the
inter-particle interaction. Inter-particle interactions form the cornerstone of many-
body physics. Usually it is considered using time-dependent perturbation theory. In
the lowest order of this theory, the friction force is determined by the Kubo formula,
which gives the friction to linear order in relative drift velocity of the electrons in
the different layers. In this section, we calculate the frictional drag force in low-
dimensional systems at arbitrary relative sliding velocity using the theory of Casimir
friction.

We study the frictional drag force in low-dimensional systems (2D electron and
2D liquid systems) mediated by a fluctuating electromagnetic field, which originates
from the Brownian motion of the ions in the liquid. The analysis is focused on the
(2D system–2D system), (2D system–semi-infinite liquid), and (2D system–infinite
liquid) configurations. We show that for the 2D electron systems, the friction drag
depends linearly on the relative velocity of the free carries in the different media, but
for 2D liquid systems, the frictional drag depends nonlinear on the relative velocity.
For 2D systems, the frictional drag force induced by liquid flowmay be several orders
of magnitude larger than the frictional drag induced by an electronic current.

9.1 Introduction

The presence of the fluctuating electromagnetic field leads to a coupling between
bodies even when they are isolated from each other by a vacuum gap or a dielectric
layer. In the non-retarded limit (short separation between the bodies), this fluctuating
electromagnetic field is reduced to the fluctuating Coulomb field, which determines
the electron–electron (e–e) and electron–hole (e–h) interaction,which plays a leading
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Fig. 9.1 Scheme of experiment for observation of the drag effect

role in a wide range of condensed matter phenomena such as the fractional quan-
tum Hall effect, high-temperature superconductivity, Wigner crystallization, exciton
condensates and the Mott transition. In addition, the e–e interaction is central to
problems involving quantum coherence since it is a leading mechanism of electron
dephasing.

Many-body effects are particularly important in low-dimensional systems. This
leads to many intriguing phenomena, such as Luttinger liquid behavior in quantum
wires, and the fractional quantum Hall effect and Wigner crystallization in 2D elec-
tron gases in a magnetic field. As technology improves and semiconductor devices
shrink further in size, interaction effects become even more pronounced and it may
become possible to probe these effects in novel experiments.

Despite its importance, the direct measurement of the e–e interaction through
transport experiments is difficult. This is a consequence of the e–e interaction’s
momentum conserving nature. However, the e–e interaction can be tested using
frictional drag. The frictional drag effect consists in driving an electric current in
one metallic layer and registration of the effect of the frictional drag of the electrons
in a second (parallel) metallic layer (Fig. 9.1). Such experiments were predicted
by Pogrebinskii [255] and Price [256] and were performed for 2D quantum wells
[112–114]. In these experiments, two quantum wells are separated by a dielectric
layer thick enough to prevent electrons from tunneling across it while still allowing
interlayer interaction between them. A current of density J2 = n2ev is driven through
layer 2 (where n2 is the carrier concentration per unit area in the second layer), see
Fig. 9.1. Due to the proximity of the layers, the interlayer interactions will induce a
current in layer 1 due to a friction stress σ = γv acting on the electrons in layer 1
from layer 2. If layer 1 is an open circuit, an electric field E1 will develop in the layer
whose influence cancels the frictional stress σ between the layers. Thus the frictional
stress σ = γv must equal the induced stress n1eE1 so that

γ = n1eE1/v = n2n1e
2E1/J2 = n1n2e

2ρ12, (9.1)
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Fig. 9.2 Two ways of studying of Casimir friction. Left A metallic block sliding relative to the
metallic substrate with the velocity v. An electronic frictional stress will act on the block (and on the
substrate). Right The shear stress σ can be measured if instead of sliding the upper block, a voltage
U2 is applied to the block resulting in a drift motion of the conduction electrons (velocity v).
The resulting frictional stress σ on the substrate electrons will generate a voltage difference U1
(proportional to σ), as indicated in the figure. Both approaches are equivalent if in the upper block
is possible to neglect scattering of the free carries by lattice defects

where the transresistivity ρ12 = E1/J2 is defined as the ratio of the induced electric
field in the first layer to the driving current density in the second layer. The transre-
sistivity is often interpreted in terms of a drag rate, which, in analogy with the Drude
model, is defined by τ−1

D = ρ12n2e2/m∗ = γ/n1m∗. These experiments spurred by
a large body of theoretical work both on electron–hole systems and on electron–
electron systems. Most of this work focused on interlayer Coulomb interaction, the
most obvious coupling mechanism and the one considered in the original theoretical
papers [255], though the contributions due to an exchange of phonons between the
layers have also been considered [113]. The most widely used approach to study the
drag effect is based on the Boltzmann equation [114, 257–259] and the Kubo for-
malism [260, 261]. In [114], a theory of the drag effect was developed based on the
semi-classical theory of the fluctuating electromagnetic field. The retardation effects
are automatically included in this approach.

The close connection of Casimir friction with frictional drag effect is illustrated
in Fig. 9.2. At present, both these phenomena attract considerable attention in con-
nection with the possibility of using them in the micro-and nano-electromechanical
systems (MEMS and NEMS), and biological objects, in which local dynamic effects
are intensively studied.

9.2 Fluctuating Electromagnetic Field

We consider two parallel 2D electron layers separated by a distance d. We introduce
two reference systemsK andK ′, with coordinate axes xyz and x′y′z′. The xy- and x′y′-
planes coincide with layer 1, with the x- and x′-axes pointing in the same direction,
and the z- and z′-axes pointing toward layer 2. The layers 1 and 2 are located at z = 0
and z = d, respectively. In the K system both layers are at rest. Assume now that in
layer 2, the conduction electrons move with the drift velocity v, corresponding to the
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current density j2 = n2ev,while no current flows in layer 1. TheK ′ reference system
moves with velocity v along to the x-axis relative to frame K . In the K ′ frame there
is no current density in layer 2, while the surrounding dielectric moves with velocity
−vx̂. FollowingLifshitz [42], to calculate the fluctuatingfieldwe shall use the general
theory due to Rytov, which is described in his books [5–7] (see also Sect. 3.1). This
method is based on the introduction of a ‘random’ field in the Maxwell equations
(just as, for example, one introduces a ‘random’ force in the theory of Brownian
motion of a particle). In the K-system for z < d, for a monochromatic field (time
factor exp(−iωt)) in a dielectric, nonmagnetic medium, these equations are:

∇ × E = i
ω

c
B, (9.2)

∇ × H = −i
ω

c
D + 4π

c
(j1 + j1f )δ(z), (9.3)

where, following Rytov, we divided the total current density j1tot in layer 1 into two
parts, j1tot = j1 + j1f , the fluctuating current density j1f associated with thermal and
quantum fluctuations, and the current density j1 induced by the electric field E:

j1α(r) =
∫

d2r′ σ1αβ(r − r′)Eβ(r′), (9.4)

where r is the 2D vector in the xy-plane, and σ1αβ(r−r′) is the conductivity tensor in
layer 1.D,H and B are the electric displacement field, themagnetic and themagnetic
induction fields, respectively. For nonmagnetic medium B = H and D = εE, where
ε is the dielectric constant of the surrounded media. According to the fluctuation-
dissipation theorem [184], the correlation function of the fluctuating current density
jf , determining the average value of the product of component of jf at two different
point in space, is given by (3.59). In this equation the dielectric tensor εαβ can
be expressed through the conductivity tensor σαβ according to the relation εαβ =
1 + 4πiσαβ/ω. As a result we get

〈
jfα(r,ω)j∗f β(r′,ω′)

〉 = 〈
jfα(r,ω)j∗f β(r′,ω)

〉
ω δ(ω − ω′), (9.5)

〈
jfα(r,ω)j∗f β(r′,ω)

〉
ω

= �ω

π

(
1

2
+ n(ω)

)
Re σαβ(r − r′,ω), (9.6)

where Re σαβ(r−r′) is the real part of the conductivity. We write the current density
in the form of a Fourier integral

j(r) =
∫

d2q j(q)eiq·r, (9.7)

where q is a 2D vector in the xy-plane. For the Fourier components jf (q), the corre-
lation function corresponding to the spatial correlation (9.6) is
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〈
jfα(q,ω)j∗f β(q′,ω)

〉
ω

= �ω

4π3

(
1

2
+ n(ω)

)
Re σαβ(q,ω)δ(q − q′), (9.8)

where

σαβ(q,ω) =
∫

d2r σαβ(r,ω)e−iq·r.

For the layers with assumed isotropy in the xy-plane, the conductivity tensor can be
written in the form

σαβ(q,ω) = qαqβ

q2
σl(q,ω) +

(
δαβ − qαqβ

q2

)
σt(q,ω), (9.9)

where σt(q,ω) and σl(q,ω) are the transverse and longitudinal conductivity of the
layer.

After decomposition of the components of the electromagnetic field into Fourier
integrals, the general solution of the Maxwell equations for z < d can be written in
the form

E =
{
veikzz + we−ikzz, 0 < z < d,

u1e−ikzz, z < 0,
(9.10)

B =−i
c

ω

⎧⎪⎪⎨
⎪⎪⎩

([
q × v

] + kz
[
ẑ × v

])
eikzz +

([
q × w

] − kz
[
ẑ × w

])
e−ikzz, 0 < z < d,([

q × u1
] − kz

[
ẑ × u1

])
e−ikzz, z < 0,

(9.11)

where v, w and u1 satisfy the transversality conditions

v · q + kzvz = 0, w · q − kzwz = 0, u1·q − kzu1z = 0, (9.12)

where

kz =
√(ω

c

)2
ε − q2 (9.13)

and ẑ is a unit vector along the z-axis. We now decompose the electromagnetic field
into s- and p-polarized waves. For the p-polarized waves, the electric field E is in
the plane determined by the vectors q̂ = q/q and ẑ, and perpendicular to this plane,
along the vector n = ẑ× q̂, for s-polarized waves. The boundary conditions at z = 0
for s- and p-polarized waves are given by

En(z = +0) = En(z = −0), (9.14)

dEn

dz
|z=+0 − dEn

dz
|z=−0 = −4πiω

c2
(
σ1t(q,ω)En + jf 1n

)
, (9.15)

Eq(z = +0) = Eq(z = −0), (9.16)
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dEq

dz
|z=+0 − dEq

dz
|z=−0 = −4πik2z

εω

(
σ1l(q,ω)Eq + jf 1q

)
, (9.17)

whereEq = q̂ · E,En = n · E and so on. From (9.15) and (9.17), we get the following
equations:

vq + R1pwq = −2πkz jf 1q
εωε1p

, (9.18)

vn + R1swn = −2πωjf 1n
kzc2ε1s

, (9.19)

where vq = q̂ · v and so on, the reflection amplitudes for the layer

R1s(p) = ε1s(p) − 1

ε1s(p)
,

and the dielectric functions of the layer

ε1s = 2πωσ1t

kzc2
+ 1, ε1p = 2πkzσ1l

ωε
+ 1.

The Maxwell equations in the K ′-system for z > 0 have the same form as (9.2)
and (9.3) with j → j2 and jf → jf 2. To first order in v/c the relations between D, E
and B, H are [191]

D = εE − (ε − 1)
v

c
x̂ × B, (9.20)

H = B − (ε − 1)
v

c
x̂ × E. (9.21)

Under a Lorentz transformation, we have to linear order in v/c: ω′ = ω − qxv and
q′ = q−x̂ωv/c2. Note also that kz is invariant under the Lorentz transformation, i.e.
kz = k′

z. It can be shown that the last terms in (9.20) and (9.21) give rise only to a
coupling between s- and p-polarized waves. However, as in Sect. 7.3 it can be shown
that this coupling gives a correction ∼(v/c)2 to the frictional drag force between the
layers, so this term can be omitted. The solution of the Maxwell equations in the K ′
reference frame can be written as

E′=
{
v′eikzz + w′e−ikzz, 0 < z < d

u2eikzz, z > d
(9.22)

From the boundary conditions for the s- and p-polarized waves we get the equations

w′
q′ + R2p(q′,ω′)e2ikzdv′

q′ = −2πkz jf 2q′(q′,ω′)eikzd

εω′ε2p(q′,ω′)
, (9.23)

w′
n′ + R2s(q′,ω′)e2ikzdv′

n′ = −2πω′jf 2n′(q′,ω′)eikzd

pc2ε2s(q′,ω′)
. (9.24)
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The relations between the fields in the K and K ′ reference frames are determined
by the Lorentz transformation. As shown in Sect. 7.3, such a Lorentz transformation
gives the terms of the order v/c, which couples the s- and p-polarized waves but
this results in a contribution to the frictional drag of the order (v/c)2. Thus, we can
take this transformation in zero order in v/c so that v′

q′(ω′) = vq(ω), v′
n′(ω′) =(

ω′/ω
)
vn (ω) and similar equations for w. After the transformation, the solution of

the system of the equations (9.18), (9.19), (9.23) and (9.24) takes the form

vq = 2πkz
�pε

[
jf 2q′(q′,ω′)eikzdR1p (q,ω)

ε2p(q′,ω′)ω′ − jf 1q (q,ω)

ε1p (q,ω) ω

]
, (9.25)

wq = 2πkz
�pε

[
jf 1q (q,ω) e2ikzdR2p(q′,ω′)

ε1p (q,ω) ω
− jf 2q′(q′,ω′)eikzd

ε2p(q′,ω′)ω′

]
, (9.26)

vn = 2πω

�skzc2

[
jf 2n′(q′,ω′)eikzdR1s (q,ω)

ε2s (q′,ω′)
− jf 1n (q,ω)

ε1s (q,ω)

]
, (9.27)

wn = 2πω

�skzc2

[
jf 1n(q,ω)e2ikzdR2s(q′,ω′)

ε1s(q′,ω)
− jf 2n′(q′,ω′)eikzd

ε2s(q′,ω′)

]
, (9.28)

vz = −qvq
kz

, wz = qwq

kz
, (9.29)

where we have introduced the notation

�p = 1 − e2ikzdR2p(q′,ω′)R1p(q,ω),

�s = 1 − e2ikzdR2s(q′,ω′)R1s(q,ω).

9.3 Casimir Frictional Drag Force Between Two
QuantumWells

The frictional drag stress σ, which acts on the conduction electrons in layer 1 can
be obtained from the xz-component of the Maxwell stress tensor σij, evaluated at
z = ±0

σ = 1

8π

∫ +∞

−∞
dω

{[
ε
〈
EzE

∗
x

〉 + 〈
BzB

∗
x

〉 + c.c
]
z=+0 − [...]z=−0

}
. (9.30)

Here the 〈...〉 denotes statistical averaging over the fluctuating current densities. The
averaging is carrying out with the aid of (9.5). Note that the components of the
fluctuating current density jf 1 and jf 2 refer to different layers, and are statistically
independent, so that the average of their product is zero. Expanding the electric field
and the magnetic induction in the Fourier series, we obtain
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σ = 1

8π

∫
dωd2q

{[
ε
〈
Ez (q,ω)E∗

x (q,ω)
〉 + 〈

Bz (q,ω)B∗
x (q,ω)

〉 +
+ c.c

]
z=+0 − [. . .]z=−0

}
. (9.31)

For a given value of q, it is convenient to express the component Ex and Bx in terms
of the components along the vectors q̂ and n

Ex = (qx/q)Eq − (qy/q)En, (9.32)

Bx = (qx/q)Bq − (qy/q)Bn. (9.33)

After substitution of expressions (9.32) and (9.33) into (9.31) and taking into
account that the term that is proportional to qy is equal to zero, we obtain

σ = 1

8π

∫
dωd2q

(2π)2
qx
q

{[
ε
〈
Ez (q,ω)E∗

q (q,ω)
〉 + 〈

Bz (q,ω)B∗
q (q,ω)

〉 +
+c.c

]
z=+0 − [...]z=−0

}
, (9.34)

where

Ez(z = +0) = (vz + wz) = (q/kz)(wq − vq) = (qk∗
z / | kz |2)(wq − vq), (9.35)

Ez(z = −0) = u1z = (q/kz)uq = (q/kz)(wq + vq), (9.36)

Eq(z = +0) = Eq(z = −0) = vq + wq, (9.37)

Bz(z = +0) = (qc/ω)(vn + wn) = Bz(z = −0) = (qc/ω)u1n, (9.38)

Bq(z = +0) = (kzc/ω)(wn − vn), (9.39)

Bq(z = −0) = (kzc/ω)u1n, (9.40)

After substituting these expressions into (9.34), we get

σ = 1

16π3

∫ +∞

0
dω

∫
d2qqx

(
ε

| kz |2
[
(kz + k∗

z )
(〈 | wq |2 〉 − 〈 | vq |2 〉−

−〈 | vq + wq |2 〉) + (kz − k∗
z )

〈(
vqw

∗
q − vqw

∗
q

)〉] +

+
( c

ω

)2 [
(kz + k∗

z )
(〈 | wn |2 〉 − 〈 | vn |2 〉 − 〈 | vn + wn |2 〉)−

−(kz − k∗
z )

〈(
vnw

∗
n − vnw

∗
n

)〉])
, (9.41)

where we integrate only over positive values of ω, which gives an extra factor of two.
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Substituting (9.25) and (9.29) into (9.41) and taking into account that kz = k∗
z for

q < ω/c and kz = −k∗
z for q > ω/c, we obtain

σ = �

8π3

∫ ∞

0
dω

∫
q<( ω

c )
√

ε
d2qqx ×

×
[
T1p(ω)T2p(ω − qxv)

(
n(ω − qxv) − n(ω)

)
| 1 − e2ikzdR1p(ω)R2p(ω − qxv) |2 −

−T1p(ω)
( | 1 − R2p(ω − qxv) |2 + | 1 − e2ikzdR2p

(
ω − qxv

) |2 )(
n(ω

) + 1/2)
)

| 1 − e2ikzdR1p(ω)R2p(ω − qxv) |2
]

+

+ �

2π3

∫ ∞

0
dω

∫
q>( ω

c )
√

ε
d2qqxe

−2|kz |d×

× ImR1p(ω)ImR2p(ω − qxv)

| 1 − e−2|kz |dR1p(ω)R2p(ω − qxv) |2
(
n(ω − qxv) − n(ω)

) +

+ [
p → s

]
, (9.42)

Tip(ω) = 1− | Rip |2 − | 1 − Rip |2= 4πReσil(ω)kz
ωε|εil|2 ,

Tis(ω) = 1− | Ris |2 − | 1 − Ris |2= 4πReσit(ω)ω

kzc2|εit |2 .

The first integral in (9.42) is the contribution to the frictional drag force from propa-
gating electromagnetic waves. The second term in (9.42) is derived from the evanes-
cent field.

When the separation between quantum wells d � λT , the contribution to friction
from propagating waves can be neglected. In this case, the first integral in (9.42)
can be neglected, and the second integral is reduced to (7.30), where Ri(ω) is the
reflection amplitude for layer i. In the random phase approximation, the equations
for reflection amplitude are given in Appendix M. For d < vF�/kBT , the reflection
amplitude for the p-polarized electromagnetic waves is given by [13, 117]

Rp = 1 + i�εω

2kFe2
, (9.43)

where ε is the dielectric constant for surrounded dielectric, kF = √
2πns is the Fermi

wavevector and ns is the electron concentration 2D electron layer. After substituting
(9.43) in (10.13) we obtain the contribution to the drag resistivity due to the p-
polarized waves

ρD = γ

(ne)2
= h

e2
πζ(3)

32

(
kBT

εF

)2 1

(kFd)2

1

(kTFd)2
, (9.44)

where qTF = 2a−1
0 /ε is the single-layer Tomas-Fermi screening wavevector, a0 =

�
2/m∗e2, and εF is the Fermi energy. Equation (9.44) is a factor of two larger than the

result obtained by Gramila et al. using an approach based on the Boltzmann equation
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[113], and approximately a factor of two smaller that the result obtained by Persson
and Zhang using a simple model of the van der Waals friction [117].

Figure9.3 shows the friction coefficient γ as a function of distance d between
two quantum wells at T = 3K, and with ns = 1.5 × 1015 m−2, m∗ = 0.067me,
vF = 1.6 × 107 cm s−1, and, for the electron mean free path, l = vFτ = 1.21 ×
105 Å. We have also assumed ε = 10, which corresponds to the condition of the
experiment [112, 113]. In this case, the s-wave contribution is negligibly small in
comparison with the p-wave contribution. For d = 175Å, we find γ = 3.3 × 10−9

kg·s−1m−2, which corresponds to a drag rate τ−1
D = 3.3 × 107 s−1, which is close

to the experimental value (τ−1
D )exp = 1.5 × 107 s−1 [112, 113].

Figure9.4 shows the friction coefficient for 2D-quantum wells with high electron
density ns = 1019 m−2, T = 273K, τ = 4× 10−14 s, and ε = 1, where the result for
other ε can be obtained using the scaling τDp ∼ ε2 and τDs is independent of ε.
In Figs. 9.3 and 9.4, the p- and s-wave contributions are shown separately. The

log d (Angstrom)
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g

γ 
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g 
s 

  m
  )
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Fig. 9.3 The frictional drag coefficient for two quantumwells atT = 3K as a function of separation
d. The s- and p-wave contributions are shown separately. The calculations were performed with
surface electron density ns = 1.5 × 1015 m−2, damping constant η = 1.3 × 1010 s−1, effective
electron mass m∗ = 0.067me, and dielectric constant ε = 10, which corresponds to the condition
of the experiment [112, 113]. (The base of the logarithm is 10.)

Fig. 9.4 The same as
Fig. 9.3 but now for at
T = 273 K,
ns = 1.05 × 1019 m−2,
η = 2.5 × 1013 s−1,
m∗ = me, and ε = 1. (The
base of the logarithm is 10)
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Fig. 9.5 The frictional drag coefficient for two quantum wells at T = 3 K as a function of electron
concentration ns. The full curve was obtained by interpolation between the curves (dashed lines)
obtained within the non-local optic dielectric approach, with the dielectric functions correspond-
ing to a degenerate electron gas (ns > nF ∼ 1014 m−2), and to the non-degenerate electron gas
(ns < nF ). The electron density parameter ns0 = 1.5×1015 m−2, damping constant η = 1.3×1010

s−1, effective electron mass m∗ = 0.067me, separation d = 175Å and the dielectric constant
ε = 10. (The base of the logarithm is 10)

calculations show that p-waves give a larger contribution for friction both for low-
density and high-density 2D quantum wells.

Figure9.5 shows the dependence of the friction coefficient on the electron den-
sity for the same parameters as in Fig. 9.3. In this case, the boundary between
degenerate and non-degenerate electron density is determined by the Fermi density
nF = 3kBTm∗/2π�

2 = 1.09×1014 m−2 . From the calculations, we find themaximum
of the frictional drag force for the electron density nmax ≈ 1× 1015 m−2; this means
that the experiment [112, 113] was performed the near optimum conditions.

The friction force per unit charge in the layer is determined by E = σ‖/nse, where
ns is the 2D-electron concentration in the layer. For v � vF , where vF is the Fermi
velocity, the friction force depends linearly on the velocity v. For d = 175Å at
T = 3K, and with ns = 1.5× 1015 m−2, the electron effective mass m∗ = 0.067me,
vF = 1.6 × 107 cm/s, the electron mean free path l = vFτ = 1.21 × 105 Å, and
ε = 10 (which corresponds to the condition of the experiment [113]) we get E =
6.5 × 10−6vV/m, where the velocity v is in m/s. For a current 200nA in a 2D layer
with the widthw = 20µm, the drift of electrons (drift velocity v = 60m/s) creates a
frictional drag force per unit charge in the adjacent quantumwell E = 4×10−4 V/m.
Note that for the electron systems, the frictional drag force decreases when the
electron concentration increases. For a example, for a 2D quantum wells with high
electron density (ns = 1019 m−2, T = 273K, τ = 4 × 10−14 s, ε = 10, m∗ = me) at
d = 175Å we get E = 1.2 × 10−9vV/m.
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9.4 Casimir Frictional Drag Induced by Liquid Flow
in Low-Dimensional Systems

In [262, 263], it was observed that the flow of a liquid over bundles of single-walled
carbon nanotubes (SWNT) induces a voltage in the sample along the direction of the
flow. Although several mechanisms were proposed to explain this effect [262–266,
268], only one of these mechanisms is related to a fluctuating electromagnetic field
created by chaotic Brownian motion of ions in liquid flow. The free carriers in a low-
dimensional system will experience frictional drag force due to this electromagnetic
field in direction of liquid flow. The intriguing idea of using frictional drag as a
non-contact means to detect motion in surrounding liquid was considered in [269].

9.4.1 Casimir Frictional Drag Between Two 2D Systems
Induced by Liquid Flow

Consider a fluid with the ions in a narrow channel with thickness dc. For d � q−1
D �

dc, where qD = √
4πN0Q2/εckBT is the Debye screening wave number (N0 is the

concentration of ions, and εc is the dielectric constant of the liquid in the channel, and
Q is the ion charge), the channel can be considered to be 2D. The Fourier transform
of the diffusion equation for the ions (of type a) in the channel can be written in the
form

iω

Da
σa
q = q2

(
σa
q + NaQ2dc

kBT
ϕq

)
, (9.45)

where σa
q and φq are the Fourier components of the surface charge density and the

electric potential, respectively, and Da is the diffusion coefficient of the ions in the
liquid in the channel. From (9.45), we get

σa
q = −NaQ2dc

kBT
q2

ϕq

q2 − iω/Da
. (9.46)

The surface current density resulting from the diffusion and drift of the ions of type
a, is determined by the formula

jaiq = −iqD
(
σa
q + NaQ

2dckBTϕq
) =

= −iω
NaQ2dc
kBT

1

q2 − iω/Da
Eq, (9.47)
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where Eq = −iqϕq is the Fourier component of the electric field. Furthermore, there
is a surface current density connected with the polarization of the liquid, which is
determined by the formula

jpq = −iωpq = −iωdc
ε − 1

4π
Eq, (9.48)

where pq and εc are the surface polarization and dielectric permeability of liquid in
the channel, respectively. Thus the total current density jq = σ(ω, q)Eq, where the
conductivity of the 2D-liquid is determined by the formula

σ(ω, q) = − iωdc
4π

(
−1 + εc

(
1 +

∑
a

q2D
q2 − iω/Da

))
. (9.49)

For the (2D electron)–(2D liquid) configuration (with the same parameters as in
Sect. 9.3 for electron system (with high electron density)) at d = 175Å, and with
εc = 80, N0 = 1024 m−3, D = 10−9 m2/s, dc = 100Å we get E = 4.6× 10−8vV/m,
which is one order of magnitude larger than for the (2D electron)–(2D electron)
configuration (with high electron density). Figure9.6 shows the dependence of the
effective electric field in the channel on the velocity of the liquid flow in the adjacent
channel, with the same liquid, for the (2D liquid)–(2D liquid) configuration.

Compared on the (2D-electron)–(2D-electron) and (2D-electron)–(2D-liquid)
configurations, for the (2D-liquid)–(2D-liquid) configuration the effective electric
field is many orders of magnitude larger, and depends nonlinearly on the liquid flow
velocity v.
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Fig. 9.6 The effective electric field in a 2D channel with liquid as a function of the flow velocity
in a second 2D channel for identical liquids in both channels. The temperature T = 300K, the ion
concentration in the liquid N0 = 1024 m−3, the thickness of the channels dc = 100Å, the diffusion
coefficients of ions D = 10−9 m2/s and the dielectric constant of the liquid εc = 80. The dielectric
constant of the dielectric in the gap between channel is ε = 10, and the separation between the
channels d = 175Å
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9.4.2 Casimir Frictional Drag in a 2D System Induced
by Liquid Flow in a Semi-infinite Chamber

Let us consider a 2D electron system, isolated from a semi-infinite liquid flow by
a dielectric layer with the thickness d. For the 2D electron system, the reflection
amplitude is given in Appendix M. To find the reflection amplitude for the interface
between the dielectric and the liquid, we will assume that the liquid fills the half-
space z ≥ 0, and that the half-plane with z < 0 is filled by a dielectric with the
dielectric constant ε. Let us study the reflection of an electromagnetic wave from
the surface of the liquid in the nonretarded limit, which formally corresponds to the
limit c → ∞. In the region z < 0 the potential can be written in the form

ϕq = (
e−qz − Reqz

)
eiq·x−iωt, (9.50)

where q is the magnitude of the component of the wave vector parallel to surface.
We will assume that the liquid consists of ions of two types a and b. The equation of
continuity for the ions

− iωni + ∇ · Ji = 0, (9.51)

where i = a, b, ni = Ni − N0, where Ni and N0 are the concentration of ions in the
presence and absence of the electric field, respectively. To linear order in the electric
field

Ji = −N0μiQi∇ϕ − Di∇ni, (9.52)

where Di is the diffusion coefficient, μi is the mobility and Qi is the charge for ions
of type i. The diffusion coefficient and the mobility are related to each other by
the Einstein relation: Di = kBTμi. We consider the case of different ion mobilities
differing considerably. In this case, in the calculation of dielectric response it is
possible to disregard the diffusion of the less mobile ions. Omitting the index i for
the more mobile ions, after substitution of (9.52) in (9.50), we obtain

iωn + D�

(
n + N0Q

kBT
ϕ

)
= 0. (9.53)

This equation must be supplemented with the Poisson’s equation

∇2ϕ = −4πQn

ε0
, (9.54)

where ε0 is the dielectric permeability of the liquid. The general solution of equations
(9.53) and (9.54) can be written in the form

ϕ = (
C1e

−λz + C2e
−qz

)
eiq·x, (9.55)
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where λ =
√
q2 + q2D − iω/D and qD = √

4πN0Q2/ε0kBT . At the interface (z = 0),
the electric potential and the normal component of the electric displacement field
must be continuous, and the normal component of the flow density must vanish.
From these boundary conditions, we obtain

C1 + C2 = 1 − R, (9.56)

− ε0(λC1 + qC2) + εq(1 + R) = 0, (9.57)

iωλC1 + Dq2DqC2 = 0. (9.58)

From (9.56) to (9.58) we get

Rlp = ε − 1

ε + 1
, (9.59)

where

ε = ε0λ
(
Dq2D − iω

)
ε
(
Dq2Dq − iωλ

) . (9.60)

For v � vF , the frictional drag force acting on the electrons in the 2D system,
due to the interaction with the ions in the liquid, increases linearly with the fluid
velocity v. In particular, for N0 = 1024 m−3, T = 273K, ε0 = 80, D = 10−9 m2/s,
for a high electron density (ns = 1019 m−2) in the 2D electron system, E = 1.4 ×
10−6vV/m. This effective electric field is three orders of magnitude larger than that
obtained for two 2D electron systems with high electron concentration, and of the
same order of magnitude as friction between two 2D-electron systems with a low
electron concentration.

Let us replace now the 2D electron structurewith the 2D channel with polar liquid.
Figure9.7 shows the dependence of the effective electric field in the 2D-channel on
the velocity of the liquid flow in the semi-infinite chamber, for identical liquid in
the channel and in the chamber. We have used the same parameters as above for the
liquid, with the separation between the channel and chamber d = 1nm. The effective
electric field in the channel initially increases with the fluid flow velocity, reaches
a maximum, and then decreases. The position of the maximum decreases when the
density of ions decreases. The frictional drag force induced by the liquid flow in
the narrow channel is nine orders of magnitude larger than the frictional drag force
induced in a 2D electron system.
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Fig. 9.7 The effective electric field in a 2D channel with liquid induced by liquid flow in a semi
infinite chamber as a function of the flow velocity for identical liquids in the channel and in the
chamber. The temperature T = 300K, the ion concentration in liquidN0 = 1024 m−3, the thickness
of the channel dc = 10nm, the diffusion coefficients of ions D = 10−9 m2/s and the dielectric
constant of the liquid ε0 = 80. The dielectric constant of the dielectric in the gap between channel
ε = 10, and the separation between the channel and semi-infinite chamber d = 1nm

9.4.3 Casimir Frictional Drag in Low Dimensional
Structures Induced by Liquid Flow in Infinite System

As a limiting case of the situation considered above, let us consider a 2D system
immersed in a flowing liquid in an infinite chamber. We assume that the liquid flows
along the x-axis, and that the plane of the 2D system coincides with the xy-plane.
Let us calculate first the spectral function of the fluctuations of electric field in the
quiescent infinite liquid without the 2D-system. We will examine the non-retarded
limit, where only longitudinal fluctuations matters. According to the fluctuation-
dissipation theorem (see Sect. 3.1), for an infinite medium the correlation function
for the Fourier components of the longitudinal current density is determined by

∣∣j fk
∣∣2
ω

= �

(2π)2

[
n(ω) + 1/2

]
ω2Imε(ω, k), (9.61)

where k = (q, kz) is the wave vector. Using the continuity equation, the longitudinal
current density is connected to the charge density via ρk = kjk/ω. Thus,

∣∣ρ f
k

∣∣2
ω

= �

(2π)2

[
n(ω) + 1/2

]
k2Imε(ω, k). (9.62)

Poisson’s equation for the electric potential gives

ϕ
f
k = 4πρk

k2ε(ω, k)
. (9.63)
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In the xy-plane, the q-component of the electric potential is determined by

ϕ f
q =

∫
dkzeikz0

+

2π
ϕ

f
k, (9.64)

where k = √
q2 + k2z . Taking into account (9.62) and (9.63) we get

∣∣ϕ f
q

∣∣2
ω

= 4�
(
n(ω) + 1/2

)
Im�(ω), (9.65)

where

�(ω, q),= −
∫ ∞

−∞
dkzeikz0

+

2π

1

k2ε(ω, k)
. (9.66)

Taking into account that Eq = iqϕq we get |Ef
q|2ω = q2|ϕ f

q|2ω . From the diffusion
and Poisson’s equations we get

iω

D
ρk = k2

(
ρk + N0Q2

kBT
ϕk

)
, (9.67)

ε0k
2ϕk = 4πρk + 4πρ

f
k . (9.68)

From (9.65) and (9.68) we get the dielectric function of the Debye plasma

ε(k) = ε0

(
1 + q2D

k2 − iω/D

)
. (9.69)

Substituting (9.69) in (9.66) gives

�(ω, q) = − 1

ε0
(
q2D − iω/D

)
[
− iω/D

2q
+ q2D

2λ

]
. (9.70)

According to (9.6), the correlation function for the Fourier components of the fluc-
tuating surface charge density in the 2D system is determined by

∣∣τ f
q

∣∣2
ω

= �q2

πω

(
n(ω) + 1/2

)
Reσ(ω, q). (9.71)

If the 2D system is surrounded by liquid flow, the electric field created by the fluctua-
tions of the charge density in the fluid will induce surface charge density fluctuations
in the 2D system. The spectral correlation functions (9.65) and (9.71) are determined
in the rest reference frame of the liquid, and of the 2D system, respectively. In order
to find the connection between the electric fields in the different reference frames,
we use the Galileo transformation, which leads to the Doppler frequency shift of the
electrical field in the different reference frames. The electric field in the plane of the
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2D system, due to the fluctuations of the charge density in the liquid, will take the
form

E(x, t) = e−i(ω+qxV )t+iq·xEI
q, (9.72)

where EI
q is the sum of the electric fields created by the fluctuations of the charge

density in the fluid and the induced charge density in the 2D system:

EI
q = Ef

q + 4πiq�(ω, q)τ I
q(ω

+), (9.73)

where ω+ = ω + qxV and τ I
q is the surface-induced charge density. According to

Ohm’s law
jIq = σ+

q E
I
q = σ+

q

(
Ef
q + 4πiq�(ω, q)τ I

q(ω
+)

)
, (9.74)

where σ+
q = σ(ω+, q) is the longitudinal conductivity for the 2D system. The conti-

nuity equation for the surface charge density gives jindq = ω+τ ind
q /q and from (9.74)

we get

τ I
q = q

ω+
σ+
q E

f
q

1 − 4πiq2σ+
q /ω+�(ω, q)

(9.75)

and

EI
q = Ef

q

1 − 4πiq2σ+
q /ω+�(ω, q)

. (9.76)

In order to find the electric field created by the charge density fluctuations in the 2D
system, it is necessary to solve Poisson’s equation in the rest reference frame, of the
liquid. In this reference frame the charge density takes the form

τ (x, t) = e−i(ω−qxV )t+iq·xτ II
q , (9.77)

where the surface charge density is composed from the fluctuating τ f and induced
τ ind charge density: τ II

q = τ
f
q + τ ind

q . In the presence of the liquid flow, the electric
field in the plane of the 2D system, due to the fluctuating surface charge density, is
determined by

EII
q = 4πiq�(ω−, q)(τ ind

q + τ f
q ), (9.78)

where ω− = ω − qxV . From Ohm’s law, we get the following expression for the
induced charge density

τ ind
q = 4πiq2σ(ω, q)�(ω−, q)

ω

τ f

1 − 4πiq2σq�(ω−, q)/ω
. (9.79)
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Substituting (9.79) in (9.78), we get

EII
q = 4πiq�(ω−, q)τ f

1 − 4πiq2σq�(ω−, q)/ω
(9.80)

and

τ II
q = τ f

1 − 4πiq2σq�(ω−, q)/ω
. (9.81)

The friction force per unit area of the 2D system is given by

σ‖ =
∫ ∞

−∞
dω

∫
d2q

(2π)2

qx
q

〈
Eqτ

∗
q

〉
ω
, (9.82)

where Eq = EI
q + EII

q , τq = τ I
q + τ II

q . Substituting (9.75), (9.76) and (9.80), (9.81) in
(9.82) we get

σ‖ = 2�

π2

∫ ∞

−∞
dqy

∫ ∞

0
dqxqxq

2
{ ∫ ∞

0
dω

[
n(ω) − n(ω + qxv)

] ×

×
(

Reσ(ω + qxv)Im�(ω, q)

(ω + qxv) | 1 − 4πiq2σ(ω + qxv)�(ω, q)/(ω + qxv) |2 + (ω + qxv ↔ ω)

)
−

−
∫ qxv

0
dω

[
n(ω) + 1/2

]( Reσ(ω − qxv)Im�(ω, q)

(ω − qxv) | 1 − 4πiq2σ(ω − qxv)�(ω, q)/(ω − qxv) |2 +

+ (ω − qxv ↔ ω)

)}
, (9.83)

where (ω ± qxv ↔ ω) denotes the terms that are obtained from the preceding terms
by permutations of the arguments ω ± qxv and ω. With the same parameters used
above for the liquid, and for the high density 2D electron system, we get E =
8.1× 10−6vV/m. For a 1D-electron system, we obtained a formula that is similar to
(9.83).

Figure9.8 shows the result of the calculations of the effective electric field for
a 1D-electron system with the electron density per unit length nl = 3 × 109m−1,
the temperature T = 300K, and with the same parameters for the liquid as used
above. For the 1D-electron system, we obtained a slight deviation from the linear
dependence of the frictional drag on the liquid flow velocity. The frictional drag for
the 1D-electron system is one order of magnitude larger than for the 2D electron
system.

Figure9.9 shows the dependence of the effective electric field in the liquid in the
2D channel on the liquid flow velocity in the infinite chamber, assuming identical
liquid in the channel and in the chamber. Qualitatively, we obtained the same results
for a 1D channel.
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Fig. 9.8 The effective
electric field in a 1D-electron
system induced by liquid
flow in a infinite chamber, as
a function of the flow
velocity. For the same
parameters for the liquid as
in Fig. 9.7. The electron
concentration per unit length
in the 1D-system
nl = 3 × 109 m−1, and the
electron relaxation time
τ = 4 × 10−14 s

0 1 32 4
0

2

3

4

1

v (m/s)

E
 (1

0 
  V

/m
)

-4
Fig. 9.9 The same as
Fig. 9.7 but for infinite
chamber
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For a channel with open ends, the frictional drag force will induce a drift motion
of the ions in the liquid with the velocity vd = DcQE/kBT . The positive and negative
ions will drift in the same direction. If ions have different mobility then the drifting
ions will lead to an electric current whose direction will be determined by the current
created by the ions with the largest mobility. For a channel with closed ends, the
frictional drag force will lead to a change in ion concentration along the channel. In
the case of ions with the different mobilities, the friction force will be different for
the ions with the opposite charges. As a result, the ions of opposite charges will be
characterized by different distribution functions, which, as for electronic systems,
will result in an electric field and an induced voltage that can be measured. Let us
write the friction force acting on the ions of different type in the form: Fa = QEa and
Fb = QEb. From the condition that, in the static case, the flux density in the channel
must vanish, we get

na = − Q

kBT
(ϕ − Eax) , (9.84)

nb = Q

kBT
(ϕ + Eax) . (9.85)
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These equations must be supplemented with Poisson’s equation

d2ϕ

d2x
= −4πQ

εc
(na − nb). (9.86)

Substituting (9.84) and (9.85) in (9.86), we get

d2ϕ

d2x
= q2D (2ϕ − �Ex) , (9.87)

where �E = Ea − Eb. The solution of (9.87) with boundary condition

dϕ

dx

∣∣∣
x=±L/2

= 0, (9.88)

where L is the channel length, has the form

ϕ(x) = �E

2

(
x − 1√

2qD

sinh
√
2qDx

cosh
√
2qDL/2

)
. (9.89)

The voltage between the ends of the channel is determined by

U = ϕ(L/2) − ϕ(−L/2) = �E

(
L

2
− 1√

2qD
tanh

√
2qDL/2

)
. (9.90)

For qDL � 1, the voltage, which appears as a result of the frictional drag, will be
approximately equal to U ≈ �EL/2. Furthermore, the frictional drag will induce a
pressure difference �p = nLeE. For example, if N0 = 1024 m−3, L = 100µm and
E = 1000V/m, we get the pressure difference �p = 104 Pa, which should be easy
to measure. Assume now that one type of ions are fixed (adsorbed) on the walls of
the channel and an equal number of mobile ions of opposite sign are distributed in
the liquid phase. In this case, the motion of the polar liquid in the adjacent region will
lead to frictional drag force acting on the mobile ions in the channel. For a channel
with closed ends, this frictional drag will induce a voltage, which can be measured.
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