
Chapter 4
Spectral Correlation Function
for the Electromagnetic Field
from Planar Sources

The spectral correlation function for the fluctuating electromagnetic field outside a
semi-infinite solidwith a planar surface canbe calculatedusing the generalizedKirch-
hoff law for isotropic materials. For the more general case of anisotropic materials,
the same quantity is calculated using the Green function approach. The local density
of state of the electromagnetic field is calculated and analyzed in the near-field. In the
near-field, the thermal electromagnetic field can be spatially and temporally coherent
due to the existence of the surface plasmons or surface phonon polaritons. We show
that due to the coupling of the evanescent and propagating electromagnetic waves
introduced by a grating, the coherent properties of the electromagnetic field in the
near-field can be used to design highly directional (as compared with Lambertian
emission) thermal sources working in the far-field.

4.1 Generalized Kirchhoff Law

The theory presented in Sect. 3.2 can be used to calculate the spectral correlation
functions for an electromagnetic field radiated by any body. A particularly important
limiting case is the radiation from a flat surface. In Appendix A, these correlation
functions are calculated using the general theory of a fluctuating electromagnetic
field. However, for the planar geometry, these correlation functions can be obtained
in a simpler way using the generalized Kirchhoff law. According to the classical
Kirchhoff low, the intensity of emission of radiation from a flat element of a body
surface in certain direction at a fixed frequency is given by

I (ω, θ,φ) = I0(ω)[1 − κ(ω, θ,φ)] (4.1)

where θ is the angle between the normal to the surface and the direction to the
radiation detector, φ is the azimuthal angle in plane of the sample surface, κ(ω, θ,φ)

is the energy reflection coefficient of the body at a given frequency of the field in
the direction specified by the polar and azimuthal angles θ and φ, and I0(ω) is the
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52 4 Spectral Correlation Function for the Electromagnetic Field …

equilibrium intensity of emission, which for a closed cavity is independent of the
incidence angle and of the material. In cases of isotropic materials, κ(ω, θ,φ) =
κ(ω, θ).

For planar geometry, the electromagnetic field can be decomposed on s- and
p-polarized electromagnetic fields. In this representation, the electric field of the
emitted radiation can be written in the form

E(r,ω) =
∫

d2q

(2π)2

[
Es(q,ω)n̂ + Ep(q,ω)K̂

]
ei(q·x+kz z) (4.2)

where r = (x, z), kz =
√

(ω/c)2 − q2, q̂ = q/q, n̂ = ẑ×q̂, K̂ = (qẑ−kzq̂)/k, k =
ω/c. The spectral spatial correlation function can be written in the form

〈
E(r)E∗(r′)

〉
ω

=
∫

d2q

(2π)2

[
n̂ws n̂ + K̂wpK̂∗

]
eiq·(x−x′)ei(kz z−k∗

z z
′), (4.3)

where ws = 〈|Es(q,ω)|2〉 and wp = 〈|Ep(q,ω)|2〉.
TheKirchhoff law is the consequence of the energy conservation law: the intensity

of the emitted radiation in thermal equilibriumshould be equal to the absorbed energy.
Therefore, theKirchhoff law can bewritten separately for the s- and p-components of
the electromagnetic field. Taking into account that the intensity of the electromagnetic
wave is proportional to 〈|Es(p)|2〉, the Kirchhoff law can be written in the form

〈|Es(p)(q,ω)|2〉 = 〈|E0,s(p)(q,ω)|2〉 [1 − |Rs(p)(q,ω)] (4.4)

where E0,s(p)(q,ω) is the amplitude of the incident plane wave of black body radia-
tion, and where Rp(s) is the reflection amplitude for p(s)-polarized electromagnetic
field. Taking into account that the energy density of the plane wave in the black body
radiation can be written in the form (see (3.54) and (3.61)):

1

8π

[〈2|Es(p)(q,ω)|2〉 + 2〈|Bs(p)(q,ω)|2〉] d2q

(2π)2
dω

= 1

2π
〈|Es(p)(q,ω)|2〉 d2q

(2π)2
dω

= �ω

(
1

2
+ 1

e(�ω/kBT ) − 1

)
d2q

(2π)2

dkz
2π

= �k2

4πkz
coth

(
�ω

2kBT

)
d2q

(2π)2
dω

(4.5)

for the propagating electromagnetic waves we get

w
prop
p(s) = coth

(
�ω

2kBT

)
�k2

2kz

(
1 − |Rps |2

)
(4.6)

To calculate the spectral correlation function for evanescent waves, we will assume
that above the surface of the body at the point r = r′ there is a small particle with
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fluctuating dipole moment p f , which is characterized by the spectral function of
fluctuations 〈

p f
i p

f
j

〉
ω

= �

π

(
1

2
+ ni (ω)

)
Imα(ω)δi j , (4.7)

where α(ω) is the polarizability of the particle. At each q it is convenient to choose
coordinate axes along vectors q̂, n̂, ẑ. The energy absorbed by the particle due to
interaction with the electromagnetic field emitted by the body is given by

Q̇ part
s (q,ω) = Re(−iωpind · E∗

s ) = ωImα(ω)|Es |2e−2Imkz z′
(4.8)

Q̇ part
p (q,ω) = Re(−iωpind · E∗

p) = ωImα(ω)|Ep|2 q
2 + |kz|2
k2

e−2Imkz z′
(4.9)

where pind = α(ω)E is the induced dipole moment of the particle. The electromag-
netic field at the point r created by the particle located at the point r′ (assuming
z < z′) can be written in the form

Epart
s (r, r′) = 2πik2

kz

(
eikz(z

′−z) + Rse
ikz(z+z′)

)
p f
n n̂e

iq·(x−x′), (4.10)

Epart
p = 2πi

kz

[(
eikz(z

′−z) + Rpe
ikz(z+z′)

)
qẑ (4.11)

+
(
eikz(z

′−z) − Rpe
ikz(z+z′)

)
kzq̂

]
(kz p

f
q + q f f

z )eiq·(x−x′),

Bpart
s = 2πik

kz

[(
eikz (z

′−z) + Rse
ikz (z+z′)

)
qẑ +

(
eikz (z

′−z) − Rse
ikz (z+z′)

)
kzq̂

]
p f
n e

iq·(x−x′),

(4.12)

Bpart
p (r, r′) = −2πik

kz

(
eikz(z

′−z) + Rpe
ikz(z+z′)

)
(kz p

f
q + q f f

z )n̂eiq·(x−x′). (4.13)

The energy absorbed by the body due to interactionwith the evanescentwaves created
by the particle is determined by the z-component of the Poynting vector and can be
written separately for p- and s-polarized waves:

Q̇b
s = c

8π

(〈EnB
∗
q 〉 + c · c) = coth

(
�ω

2kBT

)
�ck3

4|kz|2 (4.14)

× (kz − k∗
z )(R

∗
s − Rs)Imα(ω)e−2Imkz z′

,
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Q̇b
p = c

8π

(〈Eq B
∗
n 〉 + c · c) = coth

(
�ω

2kBT

)
�ck3

4|kz|2 (4.15)

× (kz − k∗
z )(R

∗
p − Rp)Imα(ω)

q2 + |kz|2
k2

e−2Imkz z′
.

In the thermal equilibrium, the energy absorbed by the particle should be equal to
the energy absorbed by the body. From this condition, and using (4.8), (4.9), (4.14)
and (4.15) we get

wevan
s(p) = coth

(
�ω

2kBT

)
�k2

4|kz|2
(
kz − k∗

z

) (
R∗
s(p) − Rs(p)

)
(4.16)

Taking into account that kz is pure real for the propagating waves (q < k) and
pure imaginary for the evanescent waves (q > k), the contribution to wp(s) from
propagating waves can be written in the form

w
prop
p(s) = coth

(
�ω

2kBT

)
�k2

4|kz|2
(
kz + k∗

z

) (
1 − |Rps |2

)
(4.17)

Summarizing (4.16) and (4.17) we finally get

ws(p) =w
prop
s(p) + wevan

s(p) = coth

(
�ω

2kBT

)
�k2

4|kz|2 (4.18)

× [
(kz + k∗

z )(1 − |Rp(s)|2) + (kz − k∗
z )(R

∗
s(p) − Rs(p))

]

Using Maxwell’s equation

∇ × E(r) = iω

c
B(r),

from (4.3), we get the spectral correlation function for the magnetic induction field

〈
B(r)B(r′)

〉
ω

= coth

(
�ω

2kBT

) ∫
d2q

(2π)2

[
n̂wpn̂ + K̂wsK̂∗

]
eiq·(x−x′)ei(kz z−k∗

z z
′),

(4.19)
and the spectral cross-correlation function

〈
E(r)B(r′)

〉
ω

= coth

(
�ω

2kBT

) ∫
d2q

(2π)2

[
K̂wpn̂ + n̂wsK̂∗

]
eiq·(x−x′)ei(kz z−k∗

z z
′).

(4.20)
Using (4.20), we can calculate the intensity of the radiated energy I (ω) into vacuum
at T = 0 K:

I (ω)dω = 2
[〈Sz(T,ω)〉 − 〈Sz(0,ω)〉] dω, (4.21)
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where the factor 2 arises for the same reason as in (3.54). The z-component of the
Poynting vector is given by

〈Sz(T,ω)〉 = c

4π
Re[E(r) × B(r)]z

= c�

16π|kz|2 coth
(

�ω

2kBT

)∫ ∫
d2q

(2π)2

(kz + k∗
z )(ws + wp)

k

d2q

(2π)2

= c�k

4π2
coth

(
�ω

2kBT

)∫ ω
c

0
dqq

1 − |Rp|2 + 1 − |Rs |2
2

(4.22)

Only propagating waves (q < ω/c) contribute to this expression. Using (4.22) in
(4.21), we get

I (ω) = c�k

2π2

1

e(�ω/kBT ) − 1

∫ ω
c

0
dqq

1 − |Rp|2 + 1 − |Rs |2
2

(4.23)

Introducing d�, the elementary solid angle, we have the relation qdq/k2 =
d� cos θ/2π. The radiated intensity is then given by

I (ω) = �ω3

2π2c2
1

e(�ω/kBT ) − 1

∫
�

d�cosθ

2π

1 − |Rp|2 + 1 − |Rs |2
2

(4.24)

where the integration is over the upper semi-sphere for 0 < θ < π/2. In the case of
a black body, i.e. a body for which the reflection factors vanish, we get

I (ω) = �ω3

4π2c2
1

e(�ω/kBT ) − 1
= π I0(ω, T ) (4.25)

where

I0(ω, T ) = �ω3

4π3c2
1

e(�ω/kBT ) − 1
(4.26)

is the black body specific intensity. When the medium situated below the interface
does not behave as a black body, the flux takes the classical form

I (ω) = I0(ω, T )

∫
�

ε′(θ,ω) cos θd� (4.27)

where we have identified the emissivity ε′(θ,ω) = (1 − |Rp|2 + 1 − |Rs |2)/2. In
the presence of a single interface, we note that the radiation emitted is not different
from the usual one, i.e. near field does not play any role in this situation.
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4.2 The Green’s Function Approach

According to (A.4) outside of any body, the spectral correlation function for electric
field is given by:

〈
Ei (r)E∗

j (r
′)
〉
ω

= �c2

16π2iω2
coth

(
�ω

2kBT

)

×
∫

dS′′
1

{
Dik(r, r′′)∇′′D∗

jk(r
′, r′′) − D∗

jk(r
′, r′′)∇′′Dik(r, r′′)

}
.

(4.28)

For the plane surface, it is convenient to decompose the electromagnetic field into
s- and p-polarized plane waves. The decomposition of the electromagnetic field on
s- and p-polarizedwaves is determined by the vectors n̂s = [ẑ×q̂] = (−qy, qx , 0)/q,
n̂±
p = [k̂± × n̂s] = (∓qxkz,∓qykz, q2)/(kq) where k± = q ± ẑkz , kz = ((ω/c)2 −

q2)1/2, k = ω/c,q is the surface component of thewave vector. In this representation,
the Green’s tensor is given by

D̂(r, r′) =
∫

d2q

(2π)2
D̂(z, z′,q)eiq·(x−x′), (4.29)

and the spectral correlation function for the electric field is given by

〈
E(r)E∗(r′)

〉
ω

= �c2

16π2iω2
coth

(
�ω

2kBT

)∫
d2q

(2π)2

×
(
D̂(z, z′′,q)

∂

∂z′′ D̂
+(z′, z′′,q)

− ∂

∂z′′ D̂(z, z′′,q)D̂+(z′, z′′,q)
)
z′′=+0

eiq·(x−x′). (4.30)

TheGreen’s functions in (4.30) can be obtained from theGreen’s functions calculated
in Appendix C in the vacuum gap between two semi-infinite plates, assuming the
reflection amplitude for body two vanishes, R2p(s) = 0. As a result we get the
following expression for the Green’s function in (4.30)

D̂(z, z′) = 2πik2

kz

{
eikz |z−z′ | Î + R̂eikz(z+z′)

}
, (4.31)

where the 3 × 3 reflection matrix is given by

R̂ = n̂+Rn̂−,

n̂± = (n̂±
s , n̂±

p ). The 2× 2 reflectionmatrix Rλλ′ determines the reflection amplitudes
for the waves with different polarization λ = (s, p). This matrix is diagonal for
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isotropic materials. However, in the general case of anisotropic materials, this matrix
is not diagonal

R =
(
Rss Rsp

Rps Rss

)
.

Î is the 3 × 3 unit matrix. The substitution of (4.31) in (4.30) gives

〈
E(r)E∗(r′)

〉
ω

= coth

(
�ω

2kBT

)∫
d2q

(2π)2

(ω

c

)2
n̂+wn̂+∗, (4.32)

where

w = �

4|kz|2
[
(kz + k∗

z )(I − RR∗) + (k∗
z − kz)(R − R+)

]
,

where I is the 2 × 2 unit matrix. For the isotropic materials, the matrix w becomes
diagonal: wλλ′ = wλδλλ′ where

wλ = �

4|kz|2
[
(kz + k∗

z )(1 − |Rλ|2) + (k∗
z − kz)(Rλ − R∗

λ)
]
,

where λ = (s, p).
For the evanescent waves we can use (3.64). In this case, the calculations are sim-

pler. Taking into account the fact that, for the evanescent waves, kz is pure imaginary
(kz = i |kz|), we get

D̂(r, r′,ω) = 2πk2
∫

d2q

(2π)2

eiq·(x−x′)−|kz |(z+z′)

|kz| n̂+ImRn̂+∗ (4.33)

Substituting these equation in (3.64) gives the part of (4.32) corresponding to the
evanescent waves.

4.3 Density of Emitted Electromagnetic Energy

The energy density of the fluctuation electromagnetic field, radiated into the vacuum
by the medium, which occupies half-space z < 0, is, according to (3.54), given by

u(ω, T, r)dω = 1

8π

[
2〈E(r)2〉ω + 2〈H2〉ω

]
dω. (4.34)

Using (4.34) with (4.3) and (4.19), the total electromagnetic energy, radiated by
the solid at a temperature of T in the vacuum at a temperature of 0 K at a distance
of z from the surface of medium, is given by
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u(ω, T, z) = �(ω, T )ω2

4π2c3

{ ∫ ω
c

0

dqq

k|kz|
[
(1 − |Rp|2) + (1 − |Rs |2)

]+

+ 2
∫ ∞

ω
c

dqq3

k3|kz|
[
ImRp + ImRs

]
e−2|kz |z

}
, (4.35)

where k = ω/c, �(ω, T ) is determined by Plank’s formula

�(ω, T ) = �ω

eβ�ω − 1
. (4.36)

In (4.36), we do not take into account the temperature-independent contribution from
the zero-point oscillations of the electromagnetic field.

Let us apply the general equation (4.35) for concrete materials. Let us first con-
sider a material that supports surface waves in the infrared, such as silicon carbide
(SiC). Figure4.1 shows the energy density u(ω, T, z) versus the frequency at dif-
ferent distances from a semi-infinite solid of SiC. The semi-infinite medium is at
temperature T = 300 K whereas the vacuum is at T = 0 K. Note that at T = 300
K, Wiens law gives a peak wavelength for thermal radiation of λW = 10 µm. In the

Fig. 4.1 Total
electromagnetic energy
density above a plane
interface separating SiC at
T = 300 K from vacuum at
T = 0 K. From [9]
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far field, i.e. for distances z 	 λW , the energy density spectrum resembles that of a
black body. The difference from that of a Planck spectrum comes from the fact that
SiC is a material with a high reflectivity of around λW = 10 µm or ω = 1.7 × 1014

s−1. Thus, its emissivity is small at this frequency. This property follows from the
expression for the electromagnetic energy due to propagating waves only (first term
in (4.35))

u prop(ω, T, z) = u0(ω, T )

∫
d�

4π

[
(1 − |Rp|2) + (1 − |Rs |2)

]
2

, (4.37)

where we have used 2πqdq = k2 cos θd�, and where θ is the angle between the
emission direction and the normal of the surface. The integral is performed over a
half-space and u0(ω, T ) = (ω2/π2c3)�(ω, T ) is the electromagnetic energy density
in a cavity at thermal equilibrium T . In the far field, the evanescent waves do not
contribute to the energy density because of the exponential decay e−2|kz |z . We note
that if the medium is totally absorbing (Rp(s) = 0), then the energy density due to
propagating waves is half the energy calculated in a vacuum at thermal equilibrium.
This is not surprising, since we are computing only the emitted part of the radiation.
In the case of equilibrium radiation, there is also the contribution of the radiation
coming from the upper half-space. At a distance z = 1 µm, which is slightly larger
than λW , the energy density spectrum changes drastically and a strong peak emerges.
At z = 100 nm, one observes that the thermal emission is almost monochromatic
around ω = 1.79 × 1014 s−1. At this frequency, the energy density has increased
by more than four orders of magnitude. The peak corresponds to the excitation of a
surfacewave. This distance is in agreementwith the decay length of the surfacewaves
as discussed in Chap. 2. At distances much smaller than the wavelength, we enter
a regime that we denote as the extreme near field region. The leading contribution
now comes from the very large wavevectors q in the energy density integral. At large
q, it can be shown that kz ≈ kz1 ≈ iq, so that Rs tends to ≈ (ε − 1)(ω/2cq)2 and
Rp tends to its electrostatic limit (ε − 1)/(ε + 1). In this case, the contributions to
the density of the electric energy from p- and s-polarized electromagnetic waves are
given by

u p(r,ω) = 1

8
u0(ω, T )

( c

ωd

)3 ε′′

|ε + 1|2 , (4.38)

us(r,ω) = 1

16
u0(ω, T )

( c

ωd

)
ε′′, (4.39)

where ε′ and ε′′ are the real and imaginary part of dielectric function ε = ε′ + iε′′, and
u0(ω, T ) is the density of the electromagnetic energy for black body radiation. For
p-polarized electromagnetic waves and ε′′ � 1, the near-field emission spectrum has
a strong peak near the frequencyω0 defined by the condition ε′(ω0) = −1. This effect
results from the existence of a large number of surface modes with different wave
numbers but with frequencies ω ≈ ω0 that are very close to each other. Therefore,
if ε′′ is not very large at ω = ω0 the density of surface modes will necessarily
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display a strong peak at ω = ω0. From (4.38) and (4.39), it follows that us/u p ∼
|ε + 1|2(ωd/c)2. Formetals, |ε| 	 1, and therefore the contribution in energy density
from the s- polarizedwaves for the infrared frequencieswill exceed contribution from
the p- polarized waves up to the very small distances. The presence of surface waves
is the origin of the peak in the near-field spectrum of SiC at ω = 1.78 × 1014 s−1.
However, since the surface waves decay exponentially away from the surface, this
peak will vanish in the far zone. The presence of a resonance in the density of modes
N (z,ω) is, however, not required for observing spectral changes caused by the loss
of evanescent modes. Indeed, in the short-distance regime, the spectrum is given
by (4.38), whereas, in the far-field, the spectrum is given by (4.37). Thus, even in
the absence of resonant surface waves, the near-field spectrum is different from the
far-field spectrum, but the changes are less dramatic.

Not all materials that support surface waves exhibit strong peaks in their near-field
thermal energy density spectrum. Indeed, as can be seen in (4.38), a peak is exhibited
if the frequency where ε(ω) approaches −1 corresponds to a frequency range where
�(ω, T ) is not too small. For example,metals exhibit surface plasmonpolariton in the
UV or visible range where �(ω, T ) is exponentially small at ambient temperature.
Thus, metals do not exhibit any strong peak in their thermal energy density spectrum
in the near field.

4.4 Local Density of States

The density of states (DOS) is a fundamental quantity fromwhichmanymacroscopic
quantities can be derived. In statistical physics, the DOS allows the partition function
of a system, from which all the macroscopic properties follow, to be calculated.
The local density of states (LDOS) is useful for studying a non-uniform system.
The local density of electronic states is widely used in solid-state physics. It has
been shown [192], for instance, that a scanning tunneling microscope images the
electronic LDOS. The local character of the LDOS clearly describes the spatial
distribution of electrons in the solid. A similar spatial dependence is also relevant for
electromagnetic waves. Whereas the intensity is uniform in vacuum in equilibrium,
this is not the case in a waveguide or above an interface. In addition, while the
LDOS is well known and frequently used for electrons in solid-state physics [37], its
electromagnetic counterpart is not well known or used in the literature. Compared
with electronic systems, two differences must be taken into account: the vectorial
nature of the fields and the existence of losses.

We consider a system in thermal equilibrium at temperature T . In a vacuum, one
can define the electromagnetic energyU (ω) by the product of the DOS ρ(ω) and the
mean energy of each state at temperature T :

U (ω) = ρ(ω)
�ω

exp (�ω/kBT ) − 1
. (4.40)



4.4 Local Density of States 61

We now introduce an LDOS by using, as a starting point, the local density of
electromagnetic energy u(r,ω) at a given point r in space, and at a given angular
frequency ω. We define the LDOS ρ(r,ω) so that

u(r,ω) = ρ(r,ω)
�ω

exp (�ω/kBT ) − 1
. (4.41)

Using (4.35) for the LDOS for p- and s-propagating electromagnetic waves, we get

ρ
propE
p(s) = ρ

propH
p(s) = ρv

4

∫ ω
c

0

dqq

kkz

(
1 − |Rp(s)|2

)
, (4.42)

where the superscripts E and H denote the electric and magnetic contributions,
respectively; ρv(ω) = ω2/π2c3 is the vacuum density of states, and for the contribu-
tions from the evanescent waves we get

ρevanE(H)

p(s) = ρv

2

∫ ∞

ω
c

dqq

k|kz|
(
2q2

k2
− 1

)
ImRp(s)e

−2|kz |z, (4.43)

ρevanE(H)

s(p) = ρv

2

∫ ∞

ω
c

dqq

k|kz| ImRs(p)e
−2|kz |z . (4.44)

From (4.42)–(4.44), it follows that, for the propagating electromagnetic waves, the
energy of the magnetic field is equal to the energy of the electric field. For the
evanescent waves, taking into account that

(
2q2/k2 − 1

)
> 1, we get that, for

p-polarized waves, the dominate contribution to the energy comes from the electric
field, and, for s-polarized waves, the dominate contribution comes from themagnetic
field. This difference is explained as follows: for the plane wave, the electric field is
related to the induction magnetic field by (c/ω)[k × E] = B, where k = q + ẑkz .
Thus, for the s-polarized waves, we obtain the relationship |k|(c/ω)|E | = |B|. For
the propagating waves, |k| = √

q2 + k2z = (ω/c); therefore |E | = |B|, which
means the equality of the magnetic and electric energy. For the evanescent waves of
kz = i

√
q2 − (ω/c)2; therefore

|k| =
√
q2 + kzk∗

z =
√
2q2 −

(ω

c

)2
.

Thus, |B| = √
2(cq/ω)2 − 1|E | > |E |, which means that the magnetic energy is

larger than electric energy. Similarly, it is possible to show that for the p-polarized
evanescent waves, |E | = √

2(cq/ω)2 − 1|B| > |B|, i.e., in this case the electric
energy is larger than magnetic energy.

Using (4.42)–(4.44) and the Fresnel’s formulas for the reflection amplitudes, we
get that in the limit z � c/(ω|ε|1/2), the contribution from the evanescent waves
considerably exceeds the contribution from the propagating waves. In this limit
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ρE
p = ρv

8k3z3
ε′′

|ε + 1|2 , (4.45)

ρH
s = ρv

16kz
ε′′, (4.46)

ρH
p = ρv

4kz

ε′′

|ε + 1|2 , (4.47)

ρE
s = ρv

6
√
2

√|ε| + ε′, (4.48)

where, in obtaining (4.48), we have used that

∫ ∞

0
dqe−2qd Im

q − s

q + s
≈

∫ ∞

0
dqIm

q − s

q + s
=

= Im

{
| s0 | eiφ

∫ ∞

0
dt

t − √
t2 − 1

t + √
t2 − 1

}
=

= 1

2
Im

{
| s0 | eiφ

∫ ∞

−iπ/2
dz

(
e−z − e−3z

)} = 2

3
| s0 | cos(φ),

where s = √
q2 − (ω/c)2ε, s0 = (ω/c)

√
ε = |s0| exp iφ. From comparison of

(4.45)–(4.48) it follows that, for the metals in the infrared frequency region up to
very small distances, the main contribution to the energy density comes from the
magnetic field of the s-polarized electromagnetic waves.

4.5 Coherence Properties of Planar Thermal Sources
in the Near-Field

Equations (4.3) and (4.19) describe the temporal and spatial coherence of the ther-
mal radiation of the near field emitted into free space from the flat surface. Thermal
radiation is often presented as a typical example of an incoherent light source and
is in marked contrast to a laser. Whereas a laser is a highly monochromatic and
very directional light source, a thermal source has a broad spectrum and is usually
quasi-isotropic. However, as is often the case, different behavior can be expected
on a microscopic scale. Thus, it has been shown [28–30] that the field emitted by
a thermal source made of a polar material is enhanced by more than four orders of
magnitude and is partially coherent at distances in the order of 10–100nm. This phe-
nomenon is due to surface electromagnetic waves, and can be observed only onmate-
rial supporting them. The existence conditions for surface waves was considered in
Chap. 2. Surface electromagnetic waves are modes that propagate along an interface,
and decrease exponentially in the perpendicular direction (evanescent waves). The
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propagation length of these surface waves is typically hundred wavelengths, result-
ing in a long-range spatial correlation of the electromagnetic field along the interface
[28–30]. The near-field properties of the thermal electromagnetic field in the presence
of surface electromagnetic waves were reviewed in [9].

There are different types of optically active surface waves. Surface phonon polari-
tons are observed for polar material such as SiC, glass, II–IV and III–V semicon-
ductors. They are mechanical vibrations (phonons) propagating in a partially ionic
material so that each unit cell becomes an oscillating electric dipole. Surface plasmon
polaritons are longitudinal electron oscillations (acoustic type wave in an electron
gas) that can be observed for metals and doped semiconductors, which generate elec-
tromagnetic fields with longitudinal polarization. Surface waves due to excitons, and
vibrations of alkali ions in adlayers have also been observed.

Equations (4.3) and (4.19) also suggest a new application for near-field spec-
troscopy. The near-field spectrum at a given distance to the interface gives access to
ImRp(s), and one can hope to obtain information about the reflection amplitude for
large wave vectors, similar to the method usually used to obtain Rp(s) for propagating
electromagnetic waves from reflectivity measurements. With the rapid development
of near-field optical microscopy, such near-field spectra can be measured. This could
open the way to a new technique of local solid-state spectroscopy. The measurement
of thermal near-field using a scanning near-field microscope has been demonstrated
recently [193]. This is an important step towards the concept of local spectroscopy.

4.5.1 Spatial Coherence in the Near-Field

The spatial coherence of the electromagnetic field is characterized by its spectral
correlation function

〈
E(r)E(r′)

〉
ω
at two different points for a particular frequency.

Figure4.2 represents the spectral correlation function of the electric field for different
metallic surfaces at a given distance z = 0.05λ (λ = 2πc/ω is the wavelength) to
the interface. It can be seen that the correlation oscillates and has an exponentially
decaying envelope. The decay length is much larger than the wavelength, indicating
that the fields are coherent over large distances. This surprising phenomenon is due to
the excitation of surface waves along the interface. The physical mechanism is based
on the fact that a small volume element contains random currents that excite a surface
wave. This surface wave propagates along the interface over distances larger than the
wavelength. It follows that different points may be illuminated by the same random
source so that they are correlated. Accordingly, one does not expect any correlation
between the s-polarized field since no surface wave exists for s-polarization. If one
uses a material with a real part of the dielectric constant larger than −1, no surface
wave can propagate and thus no correlation should be observed. Therefore, Fig. 4.2
shows the case of tungsten in the visible that does not support surface waves. It is
seen that the coherence length is smaller than a wavelength so that the radiation field
appears to be more incoherent than blackbody radiation.
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Fig. 4.2 Spectral correlation function
〈
Ex (r)Ex (r′)

〉
ω
(denoted asWxx in the label of the figure) of

the thermally emitted x-component of the electric field vs. ρ/λ, where ρ = |r1 − r2| a for different
metals and b for SiC at different wavelengths. The long-range correlation is due to surface-plasmon
polaritons for metals, and to surface-phonon polaritons for SiC. From [29]

A similar behavior is observed for SiC, a polar material that supports surface-
phonon polaritons in a frequency band. Within this band, at a wavelength of 11.36
µm, a long-range correlation is observed, whereas for a wavelength (9.1 µm) that is
not in the band where surface waves exist, the correlation decays very rapidly.

Let us discuss in simple terms the physical origin of these unusual coherence
properties. The long-range coherence is unexpected because the fluctuating currents
are δ-correlated as shown by the fluctuation-dissipation theorem. This is the rea-
son why the fields are typically assumed to be δ-correlated in space. However, the
fluctuating currents excite weakly damped collective modes in the material. In the
case of a metal, a surface plasmon can be excited. In the case of a polar crystal,
a surface phonon polariton can be excited. Both surface waves are extended modes
along the surface. The induced currents associated with these extended modes are
therefore coherent over large distances. More precisely, the coherence length is
expected to be given by the decay length of these surface modes. This has been
confirmed by a detailed asymptotic analysis in [31]. The other surprising property
shown in Fig. 4.2 is that the coherence length defined as the FWMH of the cross-
spectral density can be smaller than the wavelength. In other words, a source can
be more spatially incoherent than the black body radiation. The key idea is that,
close to an interface, the field contains evanescent waves so that features smaller
than the wavelength can exist. This is not the case in a vacuum and therefore the
field has a minimum coherence length. Since the amplitude of evanescent waves of
large wavevector q decays as exp(−2qz), it is clear that the distance z appears as a
cutoff wavelength. This explains the coherence length increasing as z increases into
the near-field regime.
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4.5.2 Temporal Coherence in the Near-Field

The temporal coherence of the electromagnetic field is characterized by the time-
correlation function (at a fixed point r in space) of the electromagnetic field:

〈
Ek(r, t + τ )El(r, t)

〉
(4.49)

This correlation function is a measurement of the memory of the random field. It is
useful to introduce a typical decay time tcoh of the correlation function, called coher-
ence time. AMichelson interferometer with alignedmirrors performs ameasurement
of the correlation function. Indeed, the interference term of the signal can be written
as Ek(r, t + τ )El(r, t) where τ is the flight time corresponding to the optical path
length difference δopt between the two paths δopt = cτ . If the path length difference is
larger than the longitudinal coherence length ctcoh , no interferences can be observed.

The temporal coherence of the EM field is related to its power spectral density.
This is clearly seen by using theWiener–Khinchin theorem [181, 182], which shows
that the power spectral density is the Fourier transform of the correlation function.
Alternatively, we can start from (3.24). It follows that:

〈
Ek(r, t + τ )El(r, t)

〉 = Re

[∫ ∞

0
4�n(ω, T )Im[DEE

kl (r, r,ω)]eiωτ dω

2π

]
(4.50)

Let us first consider the temporal coherence of the field in vacuum. The imaginary
part of the Green’s tensor (3.46) does not diverge, and yields zero for non-diagonal
terms and ω3/3c3 for diagonal terms. It follows that the time-correlation function of
the blackbody radiation is given by:

〈
Ek(r, t + τ )El(r, t)

〉 = δklRe

[∫ ∞

0
4�(ω, T )

ω2

3c3
eiωτ dω

2π

]
(4.51)

Since the integrand has a large spectral width, it appears that the coherence time is
in the order of the peak radiation period.

If we now consider the case of an interface, we know that the spectrum can be very
different in the near field.We have seen previously that the contribution of the surface
wave dramatically modifies the density of electromagnetic energy. In particular, we
have seen that the density of energy becomes quasi-monochromatic, which suggests
a large coherence time. More specifically, in the extreme near field, we have seen in
Sect. 4.4 that the Green’s function has a resonant denominator ε + 1. Close to the
resonance where Re[ε(ω0)] = −1, we can expand the dielectric constant as

ε(ω) = −1 + iε′′(ω0) + (ω − ω0)
dε′

dω
(4.52)

where we have used the notation ε = ε′ + iε′′. Thus, the denominator ε + 1 can be
cast in the form
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Fig. 4.3 Experimental angular emission of a SiC grating at two different wavelengths. The angular
pattern has the characteristic shape of an antenna. It demonstrates the spatial coherence of the
thermal source. Measurements are taken at 800 K. From [36]

ε(ω) + 1 = dε′

dω
(ω − ω0 + i�), (4.53)

where � = ε′′/(dε′/dω). It is seen that the Green’s dyadic has a pole at the fre-
quency corresponding to the asymptote of the dispersion relation of the surface
wave. Its contribution to the integral (4.51) yields an exponential decay in the form
exp(iω0t−�t). It follows that in the extreme near field, the thermally emitted field is
temporally coherent with a coherence time given by �−1. The origin of the temporal
coherence of the electromagnetic field can thus be assigned to the very large density
of states due to the surface wave. It follows that, whereas the plane interface of a hot
metallic surface is a temporally incoherent source for an atom located in the far field,
it is a partially temporally coherent source for an atom located within a nanometric
distance from the interface.

4.5.3 Design of Coherent Thermal Sources

A spatially coherent source is a source that radiates a field that has a narrow angular
aperture at a given wavelength. The typical examples of coherent sources are lasers
and antennas. These sources have well-defined emission angular lobes. A narrow
angular emission lobe is a signature of the spatial coherence of the field in the
plane of the source. We have seen in the previous section that a source that supports a
surface wave is partially spatially coherent along the surface. However, because these
waves cannot propagate in vacuum, the coherence remains confined to the vicinity
of the surface. However, it is possible to couple the surface waves to the propagating
waves. This can be done in several ways. A practical way is to rule a grating on
the surface. The grating can then diffract the surface wave. By properly choosing
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the period of the grating, it is possible to control the angle of propagation of the
diffracted light. This was first observed in [32–34] for a very deep grating ruled on
a doped silicon surface. Such a material supports surface plasmon polaritons in the
infrared. A more effective source was realized using a gold grating by Kreiter et al.
[35]. In [38], a thermally stimulated midinfrared source was developed that emits
radiation within a narrow range of wavelengths (δλ/λ ≤ 0.2). In this experiment, the
silicon wafer was covered by a metal film. A lattice of holes in the metal mediated
the coupling of the surface plasmon states to the emitted light. This technology will
afford tunable infrared emitters with high power in a narrow spectral band critical
for sensing, spectroscopy and thermophotovoltaic applications. Figure4.3 shows the
angular emission pattern of a SiC grating. It can be clearly seen that the angular
aperture is very narrow, indicating a large coherence length [36].
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