
Chapter 3
Theory of the Fluctuating
Electromagnetic Field

There are two approaches for studying the fluctuating electromagnetic field. In the
first approach, proposed by Rytov [5–7], it is assumed that the fluctuating electro-
magnetic field is created by the thermal and quantum fluctuations of current density
j f inside the medium. The average

〈
j f

〉 = 0, and the correlation function
〈
j f j f

〉 �= 0
is expressed through the dielectric properties of medium on the basis of fluctuation-
dissipative theorem. The electromagnetic field can be calculated from Maxwell’s
equations with the fluctuating current density as the source. Knowing the fluctuating
electromagnetic field, it is possible to calculate the Poynting’s vector, stress tensor,
and so on, and to determine the heat transfer between the bodies [13, 93, 94, 115],
the van derWaals–Casimir interaction [42, 43] and the Casimir friction [11]. Among
these problems, the calculation of Casimir friction is the most complex, because it
requires a complex electrodynamic problem with moving boundaries to be solved
[99, 100, 121, 128]. In the second approach the electromagnetic field is described
by Green’s functions [43], which can be calculated using quantum electrodynamics
[183]. For equilibrium problems, such as the Casimir interaction, both approaches
give the same result [43], although the Green’s functions method is more general. For
non-equilibrium problems, Rytov’s approach is simpler; therefore, correct results for
the radiative heat transfer [93] and Casimir friction between two parallel planes [10,
11, 100, 121] were for the first time obtained using this approach.

3.1 Electromagnetic Fluctuations at Thermodynamical
Equilibrium

3.1.1 Electromagnetic Fluctuations and Linear
Response Theory

In this section, the key formulas of linear response theory are given, which then
are used for the description of the fluctuations of electromagnetic fields. For a more
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detailed presentation of linear response theory and its application in the theory of the
electromagnetic fluctuations, see [8, 107, 184, 185]. Consider a quantum-mechanical
system characterized by a Hamiltonian H0 and the equilibrium density matrix

ρ = e−βH0

Sp(e−βH0)
, β = 1

kBT
, (3.1)

where kB is the Boltzmann constant and T is temperature. Let us perturb this system
by an external perturbation of the form

Hint = −
∫

d3r
∑

j

Â j (r, t) f j (r, t), (3.2)

where f j (r, t) are the external forces and Â j (r, t) are the dynamical variables of the
system under consideration. A straightforward perturbation theory shows that the
linear response of the variable A j to f j is given by

Ai (r, t) =
∑

j

∫
d3r ′

∫
dt ′αi j (r, r′, t − t ′) f j (r′, t ′), (3.3)

where αi j (r, r′, t − t ′) is the usual susceptibility tensor defined by

αi j (r, r′, t − t ′) = i

�
θ(t − t ′)

〈
Âi (r, t) Â j (r′, t ′) − Â j (r′, t ′) Âi (r, t)

〉
, (3.4)

where θ is the step function: θ(τ ) = 1 if τ > 0 and zero otherwise, and where 〈· · · 〉
denotes an average with respect to the equilibrium density matrix (3.1). It is clear
from (3.3) that

δAi (r,ω)

δ f j (r′,ω)
= αi j (r, r′,ω) = i

�

∫ ∞

0
dteiωt

〈
Âi (r, t) Â j (r′, 0) − Â j (r′, 0) Âi (r, t)

〉
, (3.5)

where the Fourier-transformed quantities are defined by

ψ(t) = 1

2π

∫ ∞

−∞
dωψ(ω)e−iωt . (3.6)

According to the fluctuation-dissipative theorem, the spectral function of fluctu-
ations is expressed through the generalized susceptibility αi j (r, r′)

ϕi j (r, r′,ω) = 〈Ai (r)A j (r′)〉ω = i�

2
(α∗

j i (r
′, r,ω) − αi j (r, r′,ω)) coth

(
β�ω

2

)
,

(3.7)
where 〈Ai (r)A j (r)′〉ω is the Fourier-component of the symmetrized correlation func-
tion
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ϕi j (r, r′, t − t ′) = 1

2
〈 Âi (r, t) Â j (r′, t ′) + Â j (r′, t ′) Âi (r, t)〉, (3.8)

Equation (3.7) can be expressed through the fictitious random forces,whose action
would give the result, equivalent to the spontaneous fluctuations of the values of
Ai (r, t). We write for this

Ai (r,ω) =
∑

j

∫
d3r ′αi j (r, r′,ω) f j (r′,ω), (3.9)

fi (r,ω) =
∑

j

∫
d3r ′α−1

i j (r, r′,ω)A j (r′,ω), (3.10)

so that

〈 fi (r) f j (r′)〉ω =
∑

l

∫
d3r ′′α−1

il (r, r′′,ω)×

×
∑

m

∫
d3r ′′′α−1∗

jm (r′, r′′′,ω) 〈Al(r′′)Am(r′′′)〉ω. (3.11)

Using (3.7) and taking into account that

∫
d3r ′′α−1

il (r, r′′,ω)αl j (r′′, r′,ω) = δi jδ(r − r′),

we get

〈 fi (r) f j (r′)〉ω = i�

2
(α−1

i j (r, r′,ω) − α−1∗
j i (r′, r,ω)) coth

(
β�ω

2

)
. (3.12)

If the variables Ai and A j have the same signature under time reversal, then
αi j (r, r′,ω) = α j i (r′, r,ω). In this case, (3.7) can be rewritten in the form

〈Ai (r)A j (r)′〉ω = �Imαi j (r, r′,ω) coth

(
β�ω

2

)
. (3.13)

If variables Ai and A j have opposite parity, then αi j (r, r′,ω) = −α j i (r′, r,ω). In
this case, (3.7) can be rewritten in the form

〈Ai (r)A j (r)′〉ω = −i�Reαi j (r, r′,ω) coth

(
β�ω

2

)
. (3.14)
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For the problem of electromagnetic fluctuations, the external probes will be taken
to be external polarization Pext (r, t) and external magnetization Mext (r, t). The
Hamiltonian Hext , in the present case is

Hint = −
∫

d3r
[
Pext (r, t) · Ê(r, t) + Mext (r, t) · Ĥ(r, t)

]
, (3.15)

where Ê(r, t) and Ĥ(r, t) are the second-quantized operators corresponding to the
electric and magnetic field, respectively. We now introduce four types of response
functions:

DEE
i j (r, r′,ω) = δEi (r,ω)

δPext
j (r′,ω)

, (3.16)

DHE
i j (r, r′,ω) = δHi (r,ω)

δPext
j (r′,ω)

, (3.17)

DEH
i j (r, r′,ω) = δEi (r,ω)

δMext
j (r′,ω)

, (3.18)

DHH
i j (r, r′,ω) = δHi (r,ω)

δMext
j (r′,ω)

. (3.19)

and we introduce the corresponding symmetrized correlation functions

SEE
i j (r, r′, t − t ′) = 1

2

〈
Êi (r, t)Ê j (r′, t ′) + Ê j (r′, t ′)Êi (r, t)

〉
, (3.20)

SHE
i j (r, r′, t − t ′) = 1

2

〈
Ĥi (r, t)Ê j (r′, t ′) + Ê j (r′, t ′)Ĥi (r, t)

〉
, (3.21)

SEH
i j (r, r′, t − t ′) = 1

2

〈
Êi (r, t)Ĥ j (r′, t ′) + Ĥ j (r′, t ′)Êi (r, t)

〉
, (3.22)

SHH
i j (r, r′, t − t ′) = 1

2

〈
Ĥi (r, t)Ĥ j (r′, t ′) + Ĥ j (r′, t ′)Ĥi (r, t)

〉
. (3.23)

Taking into account that E(H) is an even (odd) variable under time reversal, from
the fluctuation-dissipation theorem we get

〈Ei (r)E j (r′)〉ω = �ImDEE
i j (r, r′,ω) coth

(
β�ω

2

)
, (3.24)

〈Hi (r)Hj (r′)〉ω = �ImDHH
i j (r, r′,ω) coth

(
β�ω

2

)
, (3.25)
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〈Hi (r)E j (r′)〉ω = −i�ReDHE
i j (r, r′,ω) coth

(
β�ω

2

)
, (3.26)

〈Ei (r)Hj (r′)〉ω = −i�ReDEH
i j (r, r′,ω) coth

(
β�ω

2

)
. (3.27)

Thus, the four response functions defined by (3.16)–(3.19) completely determine
the correlation functions. Note that the expressions (3.24) and (3.25) are real, and
expression (3.26) and (3.27) imaginary. Thismeans that the time correlation functions
of the components of E (and the components of H) are even functions of the time
t = t1 − t2 (as must be for the correlation between two functions, both of which are
even or odd with respect to the time reversal). However, the time correlation function
of the components E with the components of H is odd on the time (as must be for
two functions, one of which is even, and another is odd relative to time reversal).
Hence, it follows that the correlation functions between E and H at identical time
are not correlated with each other (odd function t becomes zero at t = 0). Thus
the average values of any bilinear product of E and H (at identical of time), for
example the Poynting’s vectors will vanish. The latter fact is, however, obvious: in
a medium that is in the thermal equilibrium and invariant relative to time reversal,
internal macroscopic energy flows cannot prevail.

Equation (3.24) can be expressed through the fictitious random components of
polarization, whose action would give the result, equivalent to the spontaneous fluc-
tuations of the values of Ei (r, t). We write for this

Ei (r,ω) =
∑

j

∫
d3r ′Di j (r, r′,ω)Pj (r′,ω), (3.28)

Pi (r,ω) =
∑

j

∫
d3r ′D−1

i j (r, r′,ω)E j (r′,ω), (3.29)

where Di j (r, r′,ω) = DEE
i j (r, r′,ω). For a non-magnetic medium, B = H

(Gaussian’s system of units is used) and

D(r) =
∫

d3r′ ↔
ε(r, r′, ω)E(r′), (3.30)

where
↔
ε(r, r′,ω) is the dielectric diadic of surrounding media. In this case, from the

Maxwell’s equations:

∇ × E = i
ω

c

(
B + 4πMext

)
, (3.31)

∇ × H = −i
ω

c

(
D + 4πPext

)
, (3.32)
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it follows that the generalized susceptibility Di j (r, r′,ω) obeys

(∇i∇k − δik∇2
)
Dkj (r, r′,ω) −

(ω

c

)2
∫

d3x ′′εik(r, r′′,ω)Dkj (r′′, r′,ω) =

=
(
4πω2

c2

)
δi jδ(r − r′), (3.33)

(∇′
j∇′

k − δ jk∇′2) Dik(r, r′,ω) −
(ω

c

)2
∫

d3x ′′εk j (r′′, r′,ω)Dik(r, r′′,ω) =

=
(
4πω2

c2

)
δi jδ(r − r′). (3.34)

From (3.33) and (3.34) we get

D−1
i j (r, r′,ω) =

(
c2

4πω2

) [(∇i∇ j − δik∇2
)
δ(r − r′) −

(ω

c

)2
εi j (r, r′,ω)

]
.

(3.35)
Taking into account (3.12) and (3.24), we get

〈Pi (r)Pj (r′)〉ω = �

4π
Imεi j (r, r′,ω) coth

(
β�ω

2

)
. (3.36)

Since the current density ji (r,ω) = −iωPi (r,ω), from (3.36) we get

〈 ji (r) j j (r′)〉ω = �ω2

4π
Imεi j (r, r′,ω) coth

(
β�ω

2

)
. (3.37)

3.1.2 Electromagnetic Fluctuations in a Homogeneous
Medium

For a spatially homogeneous medium the functions Di j and εi j in (3.33) depend only
on difference r−r′. Using the Fourier-transformation the differential equation (3.33)
can be transformed to the system of algebraic equations

(
ki kk − δikk

2
)
Dkj (k,ω) +

(ω

c

)2
εik(k,ω)Dkj (k,ω) =

= −
(
4πω2

c2

)
δi j . (3.38)

For the long-wave fluctuations, for which the wavelength is considerably larger
than interatomic distance (e.g., at room temperatures the characteristic wavelength of
thermal radiation λT = c�/kBT ≈ 10−5m), it is possible to neglect the dependence
of εi j on k. In this case, for a spatially homogeneous medium, it is possible to assume
εi j (k,ω) = δi jε(ω). In this case, the solution of equations (3.38) has the form
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Dik(ω,k) = − 4πω2/c2

ω2ε(ω)/c2 − k2

[
δik − c2ki kk

ω2ε(ω)

]
. (3.39)

In the vacuum ε(ω) = 1. But since in every material medium the sign of Imε(ω)

coincides with the sign of ω, then the vacuum corresponds to ε → 1 + i0 · signω.
In this case, we get

Dik(ω,k) = − 4πω2/c2

ω2/c2 − k2 + i0 · signω

[
δik − c2ki kk

ω2

]
. (3.40)

For spatially homogeneous unrestricted medium, the functions of Dik depend
only on the difference r − r′, and they are even function of this variable ((3.33) and
(3.34) contain only second order derivatives, and therefore Dik(ω, r) and Dik(ω,−r)
satisfy identical equations). Using the Fourier-transformation on r on both sides of
(3.24), we get

〈
Ei (r)Ek(r′)

〉
ωk = �ImDi j (k,ω) coth

(
β�ω

2

)
. (3.41)

For an isotropic nonmagnetic medium (μ = 1), the function Dik(k,ω) is determined
by (3.39). The problem of finding the spatial correlation function of fluctuations is
reduced to the calculation of the integral

Dik(r,ω) =
∫

d3k

(2π)3
eik·rDik(k,ω). (3.42)

The integration is performed using formulas

∫
d3k

(2π)3

eik·r

k2 + κ2
= e−κr

4πr
, (3.43)

∫
d3k

(2π)3

ki kkeik·r

k2 + κ2
= − ∂2

∂i∂k

e−κr

4πr
. (3.44)

The first of which is obtained by taking the Fourier-transformation of both side of
the known equality

(∇2 − κ2)
e−κr

r
= −4πδ(r), (3.45)

and the second is obtained by the differentiation of the first. As a result, we get

Dik(r,ω) =
[
ω2

c2
δik + ∂2

ε∂i∂k

]
1

r
exp

(
−ω

c

√−εr
)

, (3.46)
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where r = |r − r′|, and square-root must be taken with such sigh that Re
√−ε > 0.

For vacuum ε = 1, and
√−ε = −i . Hence according to (3.24)

〈
Ei (r)Ek(r′)

〉
ω

= �coth (β�) Im

{
1

ε

[
ω2

c2
δik + ∂2

∂i∂k

]
1

r
exp

(
−ω

c

√−εr
)}

. (3.47)

After contraction over indexes i, k (and using (3.45)), we get

〈
E(r) · E(r′)

〉
ω

= 2� coth

(
β�ω

2

)
Im

{
1

ε

[
εω2

c2r
exp

(
−ω

c

√−εr
)

− 2πδ(r)
]}

.

(3.48)
Spectral correlation function for fluctuations of the magnetic field can be calculated
from (3.47) taking into account the equality

〈
Bi (r)Bj (r′)

〉
ω

= c2

ω2
eimle jnk∇m∇′

n

〈
El(r)Ek(r′)

〉
ω
, (3.49)

where eiml and eink are the unit fully antisymmetric tensors. Using (3.49) leads
to correlation functions of the magnetic field, which differ from (3.47) and (3.48)
by the absence of the coefficient 1/ε before the square bracket. In this case, the δ-
function term under the sign Im in (3.48) becomes real and drops out. The appearance
of the imaginary part of ε in (3.47) and (3.48) shows the connection between the
electromagnetic fluctuations and the energy dissipation in the medium. Note that
even in the limit Imε → 0 (3.47) and (3.48) give non-vanishing expressions. This
is connected with order of transition to two limits—to the infinite size of medium
and vanishing Imε. Since in the infinite medium, even infinitesimally small Imε
leads eventually to energy absorption, then the used order of transitions to the limits
concerns to physically transparent environment, in which, as in any real medium,
non-vanishing absorption still exists.

Let us make, for example, the specified transition in the formula (3.48). For this
purpose we notice, that at small positive Imε (at ω > 0)

√−ε ≈ −i
√
Reε

(
1 + i

Imε

2Reε

)

(taking into account requirement Re
√−ε > 0). Therefore, in the limit Imε → 0 we

get

〈
E(r) · E(r′)

〉
ω

= 1

n2
〈
H(r) · H(r′)

〉
ω

= 2ω2
�

c2r
sin

ωnr

c
coth

(
β�ω

2

)
, (3.50)

where n = √
ε is a real refraction index. Due to absence of term with δ-function this

expression remains finite at r = r′:
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〈
E2

〉
ω

= 1

n2
〈
H2

〉
ω

= 2ω3
�n

c3
coth

(
β�ω

2

)
. (3.51)

Limiting transition to a case of the transparent medium can be performed at earlier
stage of calculations. Taking into account that the sign of Imε(ω) coincides with the
sign of ω, in the limit of transparent medium (3.39) takes the form

Dik(ω,k) = − 4πω2/c2

ω2n2/c2 − k2 + i0 · signω

[
δik − c2ki kk

ω2n2

]
. (3.52)

The imaginary part of this function is can be obtained using the formula

−Im
1

ω2n2/c2 − k2 + i0 · signω
= π · signω δ

(
ω2n2

c2
− k2

)
=

= π

2k

{
δ
(nω

c
− k

)
− δ

(nω

c
+ k

)}
,

As a result we get
〈Ei (r)Ek(r′)〉ωk =

= 2π2
�

k

(
ω2

c2
δik − ki kk

n2

) {
δ
(ωn

c
− k

)
− δ

(ωn

c
+ k

)}
coth

(
β�ω

2

)
. (3.53)

The arguments of the δ-functions in this expression have simple physical meaning:
they show that the fluctuation of field with the given value k are propagated in the
space with the velocity c/n, i.e. with the velocity of propagation of electromagnetic
waves in the medium. Using the inverse Fourier-transformation, it is possible from
(3.53) to get again (3.47).

The energy density of the fluctuating electromagnetic field in the transparent
medium (with μ = 1), in spectral interval dω is given by [191]

u(ω)dω = 1

8π

[
2

〈
E2

〉
ω

d(ωε)

dω
+ 2

〈
H2

〉
ω

]
dω

2π
. (3.54)

The factor 2 in the square brackets is connected with fact that in the calculation of
the energy density of the electromagnetic field, the integration is assumed only over
positive values of ω. At the same time, in calculating energy with the use of spectral
correlation function, theω integration is assumed from−∞ to∞. The transformation
of integration over infinite interval to semi-infinite interval gives an additional factor
2. Using (3.52) in (3.54), we get

u(ω)dω =
[

�ω

2
+ �ω

eβ�ω − 1

]
ω2n2

π2c3
d(nω)

dω
dω. (3.55)
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The first term in the brackets is connected with the zero-point energy of the field. The
second term gives energy density of the thermodynamically equilibrium electromag-
netic radiation in the transparent medium, i.e., the energy of black-body radiation.
This part of the formula could be also obtained without consideration of fluctua-
tions, by the corresponding generalization of the Planck formula for the black-body
radiation in vacuum. According to the latter, the energy density of black-body
radiation in the of the wave-vectors volume d3k is given by the formula

�ω

eβ�ω − 1

2d3k

(2π)3

where the factor 2 takes into account two directions of polarization. To obtain the
spectral density of energy it is necessary to replace d3k on 4πk2dk and to substitute
k = nω/c, i.e.:

k2dk = k2
dk

dω
dω = ω2n2

c3
d(nω)

dω
dω,

what gives the required result.

3.2 Electromagnetic Fluctuations for Nonequilibrium
Systems

In Sect. 3.1 the theory of electromagnetic fluctuations was presented for systems
in thermodynamic equilibrium. However, it is possible to develop the theory of
electromagnetic fluctuations for nonequilibrium systems. This theory is based on
the fluctuation-dissipation theorem for the current density. Assuming local thermal
equilibrium, it is possible to determine the statistical properties of the currents. This
approach composes the content of the Rytov’s theory [5–7], which is based on the
introduction of “random” current density into theMaxwell’s equations (similar to the
“random force in the theory of Brownian motion of particle). For the monochromatic
field (time factor exp(−iωt)) in a dielectric, nonmagnetic medium, these equations
are:

∇ × E = i
ω

c
B, (3.56)

∇ × B = −i
ω

c
D+4π

c
j f , (3.57)

where E, D, B are the electric and electric displacement field, and the magnetic
induction field, respectively. In Rytov’s theory the fluctuating current density has
statistical properties determined by the fluctuation-dissipative theorem. According
to fluctuation-dissipative theorem the average value of the product of components j f

is determined by the formula (3.37), which we rewrite in the form
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〈
j fi (r,ω) j f ∗k (r′,ω′)

〉
=

〈
j fi (r) j f ∗k (r′)

〉

ω
δ(ω − ω′), (3.58)

〈
j fi (r) j f ∗k (r′)

〉

ω
= �

(2π)2

(
1

2
+ n(ω)

)
ω2Imεik(r, r′,ω), (3.59)

n(ω) = 1

e�ω/kBT − 1
. (3.60)

InRytov’s theory,whichwill be used in the following for the nonequilibrium systems,
the Fourier-transformation of the correlation functions is defined by

ψ(t) =
∫ ∞

−∞
dωψ(ω)e−iωt . (3.61)

For this reason in (3.59) in comparison with (3.37) appears the additional factor
1/2π. From Maxwell’s equations it follows that the component of the electric field,
created by the random current density j f , is given by

Ei (r) = i

ω

∫
d3r′Dik(r, r′,ω) j fk (r′), (3.62)

where summation over repeated indexes is assumed. The Green’s functions of the
electromagnetic field, Di j (r, r′,ω), obey (3.33) and (3.34).

Using (3.33), (3.34) and (3.59), we can calculate the spectral correlation function
of the electric field, created by a body at a temperature of T by the fluctuations of
current density inside the body [13] (see Appendix A):

〈
Ei (r)E∗

j (r
′〉

ω
= �

8π2 coth

(
�ω

2kBT

) ∫
dr′′

∫
dr′′′Imεkl(r′′, r′′′)Dik(r, r′′)D∗

jl (r
′, r′′′)

= �c2

16π2iω2 coth

(
�ω

2kBT

)∫
dS′′

1l

(
Dik(r, r′′)∇′′

l D
∗
jk(r

′, r′′) −
− D∗

jk(r
′, r′′)∇′′

l Dik(r, r′′)
)
, (3.63)

where the points r and r′ are outside the body. Here we have transformed an integral
over the volume of the body into an integral over the surface of the body. For the
evanescent waves the surface of integration can be moved to infinity. Thus, using
(3.33) and (3.34), and taking into account that the surface integral vanishes in this
case, we get

〈
Ei (r)E j (r′)

〉evan
ω

= �

2π
coth

(
�ω

2kBT

)
ImDi j (r, r′). (3.64)

In the non-retarded limit the formalism can be simplified. In this case the electric
field can be written as the gradient of an electrostatic potential, E(r) = −∇φ(r).
Thus the total Poynting’s vector becomes
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(Stotal)ω = c

8π

∫
dS · {〈[

E × B∗]〉
ω

+ c.c.
} =

= c

8π

∫
dS · {− 〈[∇ × (φB∗)

] + φ
[∇ × B∗]〉

ω
+ c.c.

} =

= iω

8π

∫
dS · ∇′ (〈φ(r)φ∗(r′)

〉
ω

− c.c.
)
r=r′ (3.65)

In the same approximation we can write

Dik(r, r′) = − i

ω
∇i∇′

k D(r, r′),

where the function D(r, r′) obeys the Poisson’s equation

�D(r, r′) = −4πδ(r − r′). (3.66)

Using the identities

Dik(r, r′′)
(∇′′

l D
∗
jk(r

′, r′′) − ∇′′
k D

∗
jl(r

′, r′′)
) =

= − i

ω
∇i∇′′

k

[
D(r, r′′)

(∇′′
l D

∗
jk(r

′, r′′) − ∇′′
k D

∗
jl(r

′, r′′)
)] −

− 1

c2
∇i∇′

j D(r, r′′)∇′′
l D

∗(r′, r′′). (3.67)

Equation (A.1) from Appendix A gives

〈
Ei (r)E j (r′〉

ω
= ∇i∇′

j

〈
φ(r)φ∗(r′)

〉
ω

, (3.68)

〈
φ(r)φ∗(r′)

〉
ω

= �

16π2iω2
coth

(
�ω

2kBT

) ∫
dS′′

1

{
D∗(r′, r′′)∇′′D(r, r′′) −

−D(r, r′′)∇′′D∗(r′, r′′)
}
. (3.69)

3.3 Fluctuating Field in the Non-retarded Limit

In this section we present some applications where retardation effects can be
neglected, and where the full formalism developed above is not necessary. We con-
sider the interaction between an external charged or neutral particle (e.g., an electron,
ion or an atom) and a solid with a flat surface. If the separation between the particle
and the surface is small enough retardation effects can be neglected and the electric
field can be described by a scalar potential.
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Consider first a classical point charge moving along a prescribed path x(t) outside
a body with a flat surface. The electric potential from the charge can be written as a
sum of evanescent plane waves of the form

φext = eqzei(q·x−ωt),

where q = (qx , qy) is a two-dimensional wavevector, and where the xy is in the
surface, while the positive z direction point outwards from the solid. The external
potential φext polarizes the solid, and the induced polarization charges give rise to a
potential which for z > 0 must take the form

φind = −g(q,ω)e−qzei(q·x−ωt).

The linear response function g(q,ω) determines the response of the solid to any
external space and time-varying potential. If the solid can be described by a local
scalar dielectric function ε(ω), then

g = ε − 1

ε + 1
. (3.70)

Since ε(ω) has beenmeasured formanymaterials, this expression for g is very useful.
One can show that (3.70) is exact in the limit q → 0 but holds only approximately
for finite q. Indeed, much effort has been devoted to calculating g(q,ω) for simple
metals using the jellium model and various mean-field approximations to account
for the interaction between the electrons. Furthermore, the structure of g(q,ω) is
constrained by exact sum rules.

So far, our discussion has assumed thatφext arises froman external (classical) time-
varying charge distribution. In the problems which interest us here it is crusial to treat
the particle and substrate quantum mechanically. The quantum degrees of freedom
of the polarizable solid can be included by assuming that the induced potential φind

arises from a set of quantized boson excitations (e.g., surface plasmons or low-energy
electron-hole pairs). The total Hamiltonin is then given by

H = p2

2m
+U (x) +

∑

qα

�ωqαb
+
qαbqα +

∑

qα

Cqαe
−qz

(
bqαe

iq·x + H.c.
)
. (3.71)

Here, x and p are the position and momentum operators of the external electron
with mass m, treated as a distinguishable particle, ωqα, b+

qα and bqα are the angular
frequency and the creation and anhilation operators for the boson with the quantum
number (q,α), and Cqα is an energy parameter which determines its coupling to
the external electron. The parameters ωqα and Cqα can be related to g(q,ω) in the
following way. Assume that we constrain the electron to move (classically) along a
prescribed path x(t). We assume that the particle starts far away at t = 0, then moves
close to the surface of the solid, and then far away again so that z(0) ≈ z(t0) ∼ ∞.
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From (3.71), we obtain the equation of motion for the boson operator bqα (in the
Heisenberg picture),

i ḃqα = ωqαbqα + Cqα

�
e−qz(t)eiq·x(t)

and the solution

bqα(t0) = e−iωqαt0bqα(0) − i
Cqα

�

∫ t0

0
dt e−iωqα(t0−t)e−qz(t)+iq·x(t) (3.72)

Using (3.71) and (3.72), we obtain the net energy transfer from the particle to the
substrate

�E = 〈
�|[H(t0) − H(0)]|�〉 =

∑

q

∫
dω ω

∑

α

|Cqα|2δ(ω − ωqα)|Fq(ω)|2/�,

(3.73)
where

Fq(ω) =
∫ t0

0
dt e−qz(t)ei[ωt−q·x(t)], (3.74)

and where we have used the fact that the interaction energy term in H is zero at t = 0
and t = t0 as a result of our assumptions. Note that (3.73) is independent of the state
|�〉 of the boson system at t = 0.

On the other hand, the energy transfer �E can also be expressed in terms of
g(q,ω) as follows. By solving Poisson’s equation

∇2φext = −4πeδ(x − x(t)),

one obtains [for z < z(t)] the external potential

φext =
∫

d2qdω φ̃ext(q,ω)ei(q·x−ωt)+qz,

where
φ̃ext = − e

4π2q
Fq(ω). (3.75)

The energy transfer from the external particle is obtained by integrating the Poynting
vector over the surface z = 0 and over time. This gives:

�E = 1

4π

∫
dt d2x

[
φ

∂

∂t

∂

∂z
φ

]
, (3.76)

where the total potential φ = φext + φind is given by [for 0 ≤ z < z(t)]
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φ =
∫

d2qdω φ̃ext(q,ω)
[
eqz − g(q,ω)e−qz

]
ei(q·x−ωt), (3.77)

Substituting (3.75) and (3.77) in (3.76) gives

�E = e2

2π2

∫
d2q

∫ ∞

0
dω

ω

q
|Fq(ω)|2Img(q,ω). (3.78)

Comparing (3.73) with (3.78), and replacing

∑

q

→ A

(2π)2

∫
d2q, (3.79)

where A is the surface area, gives

∑

α

|Cqα|2δ(ω − ωqα) = 2e2�

Aq
Img(q,ω) (3.80)

which is our fundamental result.
As a simple example, assume that g is given by (3.70) with ε = 1 − ω2

p/ω
2 as is

valid for simple metals. Then

g = ε − 1

ε + 1
= 1

1 −
(

ω
ωs

)2 ,

whereωs = ωp/
√
2 is the surface plasmon frequency. Lettingω → ω+i0, we obtain

Img = πωsδ(ω − ωs)/2,

and from (3.80), ωq = ωs and

|Cqα|2 = πe2�ωs/Aq.

We will now give some important applications, which all involves the interaction
between an external charged or neutral particle (e.g., an ion or an atom) with the
fluctuating electromagnetic field of a nearby solid with a flat surface. When the
separation between the external particle is small enough so that retardation effects
can be neglected, but still large enough that there is negligible overlap between the
wavefunction of the particle and the wavefunction of the atoms of the solid, these
problems can be studied using the Hamiltonian Equation (3.71) with (3.80).



44 3 Theory of the Fluctuating Electromagnetic Field

3.3.1 Interaction Energy Between a Charged Particle
and a Solid: Image Potential

Consider first an external charged point particle at rest at x = (0, 0, z). In this case,
we obtain

∑

qα

�ωqαb
+
qαbqα +

∑

qα

Cqαe
−qz

(
bqα + b+

qα

)
=

∑

qα

�ωqαB
+
qαBqα −

∑

qα

|Cqα|2 e−2qz

�ωqα

where we have introduced shifted boson operators Bqα = bqα+Cqαe−qz/�ωqα. Note
that Bqα and B+

qα satisfy the same commutation algebra as the original operators.
The last term is the relaxation energy and can be identified as the generalized static
image-potential energy,

Uim(z) = −
∑

qα

|Cqα|2 e
−2qz

�ωqα

Using (3.80), this can also be written as

Uim = − e2

2π2

∫
d2q

∫ ∞

0
dω

Img(q,ω)

qω
e−2qz .

However, according to the ω → 0 limit of the appropriate Kramers–Kronig relation,

∫ ∞

0
dω

Img(q,ω)

ω
= π

2
g(q, 0),

so that

Uim = −e2

2

∫ ∞

0
dq g(q, 0)e−2qz .

Using the classical expression (3.70) for g gives g(q, 0) = 1 and Uim = −e2/4z.
A more accurate expression for g is given by

g(q, 0) = e2qd⊥(0)

where d⊥(0) is the centroid of the induced charge density at the metal surface
(at zero frequency). This formula gives

Uim = − e2

4
[
z − d⊥(0)

] .

The quantity d⊥(0) has been tabulated by Lang and Kohn for the jellium model at
different values of the electron gas density parameter rs .
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3.3.2 Interaction Energy Between a Neutral Particle
and a Solid: van der Waals Interaction

We consider now the interaction between a neutral particle; for example, an atom,
and a solid with a flat surface. The atom has many electrons with coordinates xi so
now (3.71) takes the form

H = H0 + V

where

H0 =
∑

i

p2i
2m

+U
(
x1, x2, ...

) +
∑

qα

�ωqαb
+
qαbqα

where U is the interaction energy between the electrons (and the ion) of the atom,
and

V =
∑

qα

Cqα

∑

i

e−qzi
(
bqαe

iq·xi + H.c.
)
. (3.81)

We now use second order pertubation theory to calculate the interaction energy
between the particle and the solid. We can write

�E = 〈A�|V |A�〉 − 〈
A�|V 1

H0 − E0
V |A�

〉

where |A〉 is the ground state of the atom and |�〉 the ground state of the solid.
Using (3.81), the first term in �E clearly vanishes, and the second term gives the
atom-solid van der Waals interaction energy:

UVdW = −〈
A�|V 1

H0 − E0
V |A�

〉

Substituting (3.81) in this expression gives

UVdW = −
∑

qα

|Cqα|2
∑

B

∣∣〈A
∣∣ ∑

i e
iq·xi ∣∣B

〉∣∣2

�ωqα + EB − EA

= −
∫ ∞

0
dω

∑

q

∑

α

|Cqα|2δ(ω − ωqα)
∑

B

|〈A| ∑i e
−qzi eiq·xi |B〉|2

�ω + EB − EA

where
∑

B is the sum over all states of the atom excluding the ground state A. Using
(3.80), this equation can be written as

UVdW = −2e2�

A

∫ ∞

0
dω

∑

q

1

q
Img(q,ω)

∑

B

|〈A| ∑i e
−qzi eiq·xi |B〉|2

�ω + EB − EA
(3.82)
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Next we write
(xi , zi ) = ẑz + ri

where z is the distance between the center of mass of the atom and the surface (z = 0)
of the solid. Since the relevant q in the sum in (3.82) are of the order 1/z or smaller,
and if we assume the size of the atom is small compare to z we can expand

e−qzi eiq·xi ≈ e−qz (1 + iri · Q)

where Q = (q, iq). Substitute this result in (3.82) gives

UVdW = −2�

A

∫ ∞

0
dω

∑

q

1

q
Img(q,ω)e−2qzQ∗ ·

∑

B

〈A| ∑i eri |B〉〈B| ∑i eri |A〉
�ω + EB − EA

· Q

For an atom the dyadic function

�̄ =
∑

B

〈A| ∑i eri |B〉〈B| ∑i eri |A〉
�ω + EB − EA

is proportional to the unit tensor �̄μν(ω) = �(ω)δμν where

�(ω) =
∑

B

〈A| ∑i exi |B〉〈B| ∑i exi |A〉
�ω + EB − EA

Using this result and that Q∗ · Q = 2q2 we get

UVdW = − 2�

A

∫ ∞
0

dω
∑

q
qImg(q, ω)e−2qz�(ω) = − �

2π2

∫
d2q qe−2qz Im

∫ ∞
0

dω g(q, ω)�(ω)

where we have used that �(ω) is real, and where we have replaced the sum over q
with the integral over q using (3.79). Since g(q,ω) is a causal response function, it
has its poles in the lower complex ω-half space. Thus, we can close the integral over
the upper half space and write the integral over the imaginary frequency axis. Thus,
with ω = iu and using that g(q, iu) is real we get:

UVdW = − �

2π2

∫
d2q qe−2qz

∫ ∞

0
du g(q, iu)Re �(iu)

Since

Re�(iu) =
∑

B

(EB − EA)
〈A| ∑i exi |B〉〈B| ∑i exi |A〉

(�u)2 + (EB − EA)2
= α(iu)

where α(ω) is the atomic polarizability, we get
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UVdW = −�

π

∫ ∞

0
dq q2e−2qz

∫ ∞

0
du g(q, iu)α(iu)

If we assume that g(q,ω) is given by (3.70) we get

UVdW = − �

4πz3

∫ ∞

0
dω

ε(iu) − 1

ε(iu) + 1
α(iu)

3.3.3 Inelastic Electron Scattering from Surfaces

As a final application of (3.71) and (3.80) consider inelastic scattering of electrons
from the fluctuating electromagnetic field of a solid with a flat surface. In this case,
we assume that the potential U (x) is an infinite potential step at the surface z = 0,
so that the stationary states for an electron, in the absence of coupling to the boson
system, are given by

〈x|k〉 = (2π)−3/2
(
e−ikz z − eikz z

)
eik‖·x‖ .

If the coupling to the substrate excitations isweak, onemayusefirst-order pertubation
theory (the golden rule) to calculate the rate w of inelastic scattering k → k′ via
excitation of a single boson,

w = 2π

�

∫
d3k′ ∑

qα

∑

nqα

P(nqα)δ(εk − εk′ − �ωqα)|〈k′, nqα + 1|Cqαe
−qz−iq·xb+

qα|k, nqα〉|2,

where P(nqα) is the probability that the boson mode qα contains nqα quanta. An
electron can also absorb a thermally excited boson, which is given by a similar
expression to that above but with nqα + 1 replaced by nqα and b+

qα replaced by bqα.
Using (3.80) this expression for w can be rewritten as

w = 4πe2

�A

∫
d3k ′ ∑

q

(nω + 1)
1

q
Img(q,ω)|〈k′|e−qz−iq·x|k〉|2,

where �ω = εk − εk′ . However,

〈k′|e−qz−iq·x|k〉 = 1

π
δ(k‖ − k′

‖ − q)

[
q

q2 + (kz + k ′
z)

2
− q

q2 + (kz − k ′
z)

2

]
,

so that

w = e2

�π3

A

(2π)2

∫
d3k ′(nω + 1)

q‖
(q2

‖ + q2
⊥)2

Img(q,ω),
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where q‖ = |k‖ − k′
‖| and q⊥ = kz − k ′

z . Finally, since the number of electrons that
hit the surface area A per unit time is given by

Ṅ = �k A

(2π)3m
cosθ,

we obtain, using ∫
d3k ′ =

∫
d�k ′d�ω

mk ′

�2
,

w

Ṅ
= 2

(πea0)2
1

cosθ

∫
d�k ′d�ω(nω + 1)

k ′

k

q‖
(q2

‖ + q2
⊥)2

Img(q,ω),

where a0 is the Bohr radius. If one defines P(k,k′)d�k′d�ω to be the relative prob-
ability that an incident electron is scattered into the range of energy losses between
�ω and �(ω + dω) and into the solid angle d�k′ around the direction k′, then

P(k,k′) = 2

(πea0)2
1

cosθ
(nω + 1)

k ′

k

q‖
(q2

‖ + q2
⊥)2

Img(q,ω),

This equation represents the most general formulation of so-called dipole scattering
theory, which has been remarkably useful in analyzing electron energy-loss mea-
surements [186]. As an application, consider electron scattering from the (collective)
C–O stretch vibrational mode of an ordered layer of CO molecules adsorbed on a
Cu(100) surface. The open circles in Fig. 3.1 shows the measured inelastic electron
scattering intensity, as a function of the polar collection angle θ. The solid line is the

Fig. 3.1 Experimental
elastic peak intensity (solid
circles) and C–O loss peak
intensity (open circles)
versus collection angle θ.
The solid curve is the dipole
theory calculation
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theory prediction using the expression for the g(q,ω) function for an ordered layer of
point particles (polarizability α) on a perfect conducting substrate [187] (see (6.47)).
Another important applications of the dipole scattering theory presented has been
the study of non-local dielectric response of metal surfaces [188–190].
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