
Chapter 10
Casimir Forces and Near-Field Radiative
Heat Transfer in Graphene Structures

Casimir has shown that quantum fluctuations of the electromagnetic field produce
an attractive force between macroscopic bodies. It has recently been shown that two
non-contacting bodies moving relative to each other experience a friction due to the
same quantumfluctuations of the electromagnetic field.However, until recently, there
was no experimental evidence for or against this effect, because the predicted friction
forces are very small, and precise measurements of quantum forces are incredibly
difficult with the presently available technology. The existence of quantum friction
is still debated even among theoreticians. However, the situation drastically changed
with the discovery of a newmaterial—graphene. We recently proposed that quantum
friction can be detected in frictional drag experiments between graphene sheets, and
in the transport properties of non-suspended graphene on an SiO2 substrate in a high
electric field.

Here, we investigate the dependence of the thermal Casimir force and the Casimir
friction force between two graphene sheets on the drift velocity of the electrons in one
graphene sheet. We show that the drift motion produces a measurable change of the
thermal Casimir force due to theDoppler effect. The thermal Casimir force, aswell as
the Casimir friction, are strongly enhanced in the case of resonant photon tunneling
when the energy of the emitted photon coincides with the energy of electron–hole
pair excitations. In the case of resonant photon tunneling, even for temperatures
above room temperature, the Casimir friction is dominated by quantum fluctuations.

We have used the theories of the Casimir friction and the near-field radiative
energy transfer to study the heat generation and dissipation in graphene due to the
interaction with phonon–polaritons in the (amorphous) SiO2 substrate and acoustic
phonons in graphene. For the low-field (low drift velocity) energy transfer between
non-suspended graphene and the substrate, radiative energy transfer gives a signif-
icant contribution in addition to the phononic heat transfer. High-field (large drift
velocity) heat transfer is determined by the phononic mechanism. For high elec-
tric field (large drift velocities) and low temperatures, quantum fluctuations give
an important contribution to the energy flux and the friction force. For suspended
graphene, the energy transfer coefficient at nanoscale gap is ∼3 orders of magnitude
larger than the radiative heat transfer coefficient of the blackbody radiation limit. We
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have pointed out that graphene can be used to study near-field radiative heat transfer
in the plate–plate configuration, and for shorter separations than is currently possible
in the plate–sphere configuration.

10.1 Introduction

Friction is usually a very complicated process. It appears in its most elementary
form when two flat surfaces, separated by a vacuum gap, are sliding relative to each
other at zero Kelvin, where the friction is generated by the relative movement of
quantum fluctuations. For several decades, physicists have been intrigued by the
idea of quantum friction. It has recently been shown that two non-contacting bodies
moving relative to each other experience a friction due to quantum fluctuations inside
the bodies [11, 115, 121, 128]. However, until recently, there was no experimental
evidence for or against this effect, because the predicted friction forces are very small,
and precise measurements of quantum friction are incredibly difficult with presently
available technology. Recently, we proposed [149, 165] that using graphene it should
be possible to detect quantum friction.

Graphene, isolated monolayer of carbon, which was obtained very recently
[270], consists of carbon atoms densely packed into a 2D honeycomb crystal lattice
(Fig. 10.1). The unique electronic andmechanical properties of graphene are actively
studied both theoretically and experimentally partly because of their importance for
fundamental physics, and also because of its possible technological applications
[270–273]. In particular, the valence band and conduction band in graphene touch
each other, at one point named the Dirac point. Near this point, the energy spectrum
for electrons and holes has a linear dispersion. Due to this linear (or ‘conical’) dis-
persion relation, electrons and holes near this point behave like relativistic particles
described by the Dirac equation for massless fermions.

Graphene can also be useful for the detection of quantum friction. Consider
graphene located on the surface of, for example, the polar dielectric SiO2, or nearby
on a second graphene sheet. In this case, the charge carriers in graphene experience

Fig. 10.1 Honeycomb
lattice of graphene
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additional friction due to interaction with the optical phonons in the dielectric, or the
electrons in the other graphene sheet. Due to the high mobility, in a strong electric
field the electrons in graphene can move with very high drift velocities (∼ 106m/s).
At such velocities, the main contribution to the friction will arise from quantum fluc-
tuations. Thus, quantum friction can be detected by measuring the high electric field
transport properties of graphene on a polar dielectric substrate, or by measuring the
voltage induced by friction in a second nearby graphene sheet.

10.2 The Casimir Forces in Graphene Systems

At present, a great deal of attention is devoted to the study of the Casimir forces
in graphene systems [274–282]. This is due to the unusual electronic properties of
graphene, which result in Casimir forces with unusual properties. For normal mate-
rials, the contribution to the Casimir force due to thermal fluctuations dominates
for d > λT ; but, for two graphene sheets, the thermal contribution dominates of
much shorter distances [282] d > ξT = �vF/kBT , where vF ∼ 106 m/s is the Fermi
velocity in graphene. At room temperature, the parameters λT and ξT are 7.6µm and
25nm, respectively. This property makes it possible to measure the thermal Casimir
force using an atomic force microscope, or other force-measuring techniques. Tailor-
ing the thermal Casimir force using Fermi level tuning by gate voltage was discussed
in [280].

An alternative method of tailoring the thermal Casimir force consists of driving an
electric current in a graphene sheet. It was shown by Pendry [115] that the reflection
amplitudes from a moving metal surface are modified due to the Doppler effect. The
same modification of reflection amplitudes can be obtained if, instead of the motion
of a metal plate, a drift motion of charge carriers is induced in it by applied voltage
[283]. The drift motion of the charge carries in graphene will result in a modification
of dielectric properties (and the Casimir force) of graphene due to the Doppler effect
[115] (see Fig. 1.7). If, in one of two parallel graphene sheets, an electric current
is induced, then the electromagnetic waves, radiated by the graphene sheet with-
out an electric current, will experience a frequency Doppler shift in the reference
frame moving with the drift velocity v of electrons in the other graphene sheet:
ω′ = ω − qxv, where qx is the parallel to the surface component of the momentum
transfer. The same is true for the waves emitted by the other graphene sheet. Due to
the frequency dependence of the reflection amplitudes, the electromagnetic waves
will reflect differently in comparison with the case when there is no drift motion of
electrons, and this will give rise to the change of the Casimir force. The effect of the
drift motion of charge carriers in one of the graphene sheet, on the thermal Casimir
force between graphene sheets, was investigated in [165].

Let us consider two graphene sheets separated by a vacuum gap with thickness
d � λT . Assume that the free charge carriers in one graphene sheet move with
drift velocity v � c along the x-axis (c is the light velocity) relative to the other
graphene sheet. Because a drift motion of the free charge carriers produces a similar
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modification of the reflection amplitudes as in the case of moving graphene sheet, the
theory of the Casimir forces between moving bodies [128] can be used to calculate
the Casimir forces between the sheets (both of which are at the rest) in the presence
of the drift motion of the free charge carriers in one graphene sheet. The force, which
acts on the surface of the sheet, can be calculated from the Maxwell stress tensor σi j ,
evaluated at the surface of the sheet at z = 0:

σi j = 1
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where 〈...〉 denotes statistical average over the fluctuating electromagnetic field.
According to [128], the Casimir force Fz = σzz between the moving media is deter-
mined by

Fz = FzT + Fz0, (10.2)

where the temperature-dependent term FzT , and the zero-temperature contribution
Fz0 are given by
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where ni (ω)=[exp(�ω/kBTi ) − 1]−1 (i=1, 2), q=
√
q2
x + q2

y , s = √
(ω/c)2 + q2,

Ti is the temperature of i-th graphene sheet, Ri is the reflection amplitude for surface
i for p-polarized electromagnetic waves, and ω± = ω ± qxv. The symbol (1 ↔ 2)
denotes the terms that are obtained from the preceding terms by permutation of 1
and 2. In the first term in (10.4), the integration along the real axis was transformed
into an integration along the imaginary axis.
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The reflection amplitude for a 2D system is determined by [144]

Ri = εi − 1

εi
, εi = 2π pσi

ωε
+ 1, (10.5)

where p = √
(ω/c)2 − q2, σi is the longitudinal conductivity of the sheet, which

can written in the form σi = −iωe2�i (ω, q)/q2 where �i is the 2D polarizability.
The dielectric function of the sheet is determined by εi (ω, q) = 1 + vq�i (ω, q)

where vq = 2πe2/(qε) is the 2D Coulomb interaction. In terms of εi the reflection
amplitude can be written as

Ri = p(εi − 1)

p(εi − 1) + iq
(10.6)

In the integration on the real axis p ≈ iq for d < λT . Thus, in this case

Ri ≈ εi − 1

εi
, (10.7)

On the imaginary axis, p = is. In the finite lifetime generalization according to the
Mermin approximation [354], the dielectric function is determined by
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where ε0(ω, q) is the RPA dielectric function and γ is the damping parameter. In
the study below, we used the dielectric function of graphene, which was calculated
recently within the random-phase approximation (RPA). The small (and constant)
value of the graphene Wigner-Seitz radius rs indicates that it is a weakly interacting
system for all carries densities, making the RPA an excellent approximation for
graphene (RPA is asymptotically exact in the rs � 1 limit). The dielectric function
is an analytical function in the upper half-space of the complex ω-plane:
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where the Fermi wave vector kF = (πn)1/2, n is the concentration of charge car-
riers, the Fermi energy εF = �vFkF , vF ≈ 106 m/s is the Fermi velocity. The
damping parameter γ is due to electron scattering against impurities and acoustic
phonons in graphene sheet, and can be expressed through the low-field mobility
μ: γ = evF/(�kFμ). Scattering of the graphene carries by the acoustic phonons of
graphene places an intrinsic limits on the low-field room temperature (T0 = 300
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K) mobility, given by μ0 =20 m2/Vs at the graphene carriers density 1016 m−2

(see [357]), which gives γ = 8 × 1011 s−1. At other temperatures the mobility can
be obtained using the relation μ = μ0T0/T .

In addition to the intrinsic friction due to scattering against impurities and
phonons, during drift motion of the electrons in the graphene sheet, the extrinsic
friction occurs due to the interaction with the electrons in the nearby graphene
sheet. According to the theory of the Casimir friction [128], the friction force
Fx = σxz = FxT + Fx0, where at d � λT and v � c the contributions from ther-
mal (FxT ) and quantum (Fx0) fluctuations are given by [11, 115, 121, 149]
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Equations (10.11) and (10.12) were initially obtained for 3D systems in [115] at
T = 0 and in [121] for finite temperatures. However, in [144] it was shown that the
same formulas are valid for 2D systems. For v < dkBT/� (at d = 1nm and T = 300
K for v < 4 × 104 m/s) the main contribution to the friction (10.11) depends linearly
on the sliding velocity v so that the friction force FxT = �v, where at T1 = T2 = T
the friction coefficient � is given by

� = �
2

8π2kBT

∫ ∞

0

dω

sinh2
(

�ω
2kBT

)
∫ ∞

0
dq q3e−2qd ImR1(ω)ImR2(ω)

| 1 − e−2qd R1(ω)R2(ω) |2 .

(10.13)
Due to the presence of an exponential factor in the expression (10.3) for the thermal

contribution to the Casimir force, the integration over frequency is effectively limited
to ω < ωT = kBT/�. Thus, for qxv ∼ v/d > ωT (at room temperature and for d =
1nm, this condition corresponds to the velocities v > 105 m/s), the integrand will
be modified in the whole range of integration, which will give rise to the significant
change of the thermal Casimir force. This change will be especially large in the case
of resonant photon tunnelingwhen the integrand has sharp resonances. The integrand
in the expression for the zero-temperature contribution to the Casimir force does not
contain any sharp cut-off in the frequency integration. Thus, the range of integration
will be wider and the change of the zero-temperature contribution will be significant
only for much higher velocities than for the thermal contribution.
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Fig. 10.2 The Casimir forces between two graphene sheets with carrier concentration
n = 1016m−2. a The dependence of the Casimir force on the separation d between the sheets.
The thermal and quantum contributions to the total Casimir force are shown separately. The ther-
mal contribution is shown for T = 600 K and for the drift velocities v = 0 and v = 2 × 106 m/s;
b The dependence of the thermal Casimir force on the drift velocity of electrons v in one of the
graphene sheet at d = 1nm

Figure10.2a shows the dependence of the Casimir force between two graphene
sheets on the separation, d, between the sheets. The thermal and quantum
contributions are shown separately. The thermal contribution was calculated for
T = 600 K and for the electron drift velocities v = 0 and v = 2 × 106 m/s. The
thermal contribution becomes larger than the quantum contribution for d > 50nm.
For d < 5nm, the thermal contribution calculated for v = 2 · 106 m/s is significantly
larger then the thermal contribution calculated at v = 0. For example, at d ≈ 3nm
the drift motion of the electrons gives rise to an increase of the thermal Casimir
force by one order of magnitude, and in this case the thermal contribution is only
one order of magnitude smaller than the quantum contribution, and can be measured
experimentally. Figure10.2b shows the dependence of the thermal Casimir force
FzT on the drift velocity of the electrons in the graphene sheet at d = 1nm. Note the
significant change of the thermal Casimir force for v/d > ωT (at room temperature
and for d = 1nm, this condition corresponds to the velocities v > 105 m/s).

Let us assume that in the rest reference frame, in which there is no drift motion
of electrons, an electron hole pair excitation has the energy ωeh(q) and momentum
q, then in the laboratory reference frame, in which the electron system is moving
with drift velocity v, due to the Doppler effect, the energy of this excitation will be
equal to ωeh(q) − qxv. For v > ωeh(q)/qx the excitation energy will be negative.
Thus, for velocities larger than critical velocity (vcr = ωeh(q)/qx ), as a result of
such excitation, the photon can be created with energy ωph(q) = qxv − ωeh(q) >

0, i.e. radiation arises. This radiation is reminiscent of the Cherenkov radiation,
which arises when an electron moves in a medium with a velocity exceeding the
light velocity in the medium. The difference between the two phenomena is that
Cherenkov radiation is connected to the radiation of electromagnetic waves, but
the radiation which arises from drift motion of the electron in the graphene sheet
results from the excitations of electron–hole pairs in graphene. Resonance arises
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when the photon emitted by the moving electron system in one graphene sheet with
energy ωph(q) = qxv − ωeh(q) > 0 will create excitation with energy ωeh(q) in the
other graphene sheet. In the case of graphene, the energy of the electron hole pair
excitation ωeh(q) ≈ vFq, where vF is the Fermi velocity. Thus, resonance arises
when qxv ≈ 2vFq, which requires that v > 2vF ≈ 2 × 106 m/s, in accordance with
the numerical calculations.

10.3 Using Graphene to Detect Quantum Friction

Quantum friction determines the ultimate limit to which the friction can be reduced.
In order to detect quantum friction, it is necessary to reduce the contribution to friction
from other mechanisms up to unprecedented levels. However, even in non-contact
friction experiments [166, 359], when two bodies are not in direct contact, there
are several contributions to the friction [11]. Moreover, quantum friction dominates
over thermal friction at velocities v > dkBT/� (at d = 1nm and room temperature:
v > 105m/s). However, at present, even for a hard cantilever, the velocity of the tip
cannot exceed 1 m/s [359].

We recently proposed [149] that it should be possible to detect quantum friction
in graphene adsorbed on an amorphous SiO2 substrate (Fig. 10.3). The electrons,
moving in graphene under the action of an electric field, will experience an intrinsic
friction due to interaction with the acoustic and optical phonons in graphene, and an
extrinsic friction due to interaction with the optical phonons in the SiO2-substrate.
In high electric fields, the electrons move with high velocities, and in this case the
main contribution to the friction arises from the interaction with the optical phonons
in graphene and in SiO2. However, the frequency of the optical phonons in graphene
is approximately four times larger than in SiO2. Therefore, the main contribution to
the friction will result from the interaction with the optical phonons in SiO2. Thus,
this frictional interaction determines the electrical conductivity of graphene at high
electric field.

The dissipated energy due to the friction results in heating of the graphene, and is
transferred to the SiO2 substrate via the near-field radiative heat transfer process and
direct phononic coupling. Using the theories of Casimir friction and the near-field
radiative heat transfer, we have formulated a theory that describes these phenom-
ena and allows us to predict experimentally measurable effects. In comparison with
the existing microscopic theories of transport in graphene [360, 361], our theory
is macroscopic. The electromagnetic interaction between graphene and a substrate
is described by the dielectric functions of the materials, which can be accurately
determined from theory and experiment.

Let us consider graphene and a substrate with flat parallel surfaces at separation
d � λT = c�/kBT . Assume that the free charge carriers in graphene move with the
velocity v � c (c is the light velocity) relative to the substrate. According to [11,
121, 128], the frictional stress Fx acting on the charge carriers in graphene, and the
radiative heat flux Sz across the surface of substrate, both mediated by a fluctuating
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electromagnetic field, are determined by
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where ni (ω) = [exp(�ω/kBTi − 1]−1 (i = g, d), Tg(d) is the temperature of graphene
(substrate), Ri is the reflection amplitude for surface i for p-polarized electromag-
netic waves, andω± = ω ± qxv. The reflection amplitude for graphene is determined
by (10.7) and for the substrate

Rd = εd − 1

εd + 1
, (10.16)

where εd is the dielectric function for substrate. The dielectric function of amorphous
SiO2 can be described using an oscillator model [358]

ε(ω) = ε∞ +
2∑
j=1

σ j

ω2
0, j − ω2 − iωγ j

, (10.17)

where parameters ω0, j , γ j and σ j were obtained by fitting the measured ε for
SiO2 to the above equation, and are given by ε∞ = 2.0014, σ1 = 4.4767 × 1027s−2,
ω0,1 = 8.6732 × 1013s−1, γ1 = 3.3026 × 1012s−1, σ2 = 2.3584 × 1028s−2, ω0,2 =
2.0219 × 1014s−1, and γ2 = 8.3983 × 1012s−1.

Fig. 10.3 Scheme of the
graphene field effect
transistor

grapheneelectrode

SiO2
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Fig. 10.4 The role of the interactionbetweenphononpolaritons inSiO2 and free carriers in graphene
for graphene field-effect transistor transport. The separation between graphene and the SiO2 is
d = 3.5 Å, and the charge density n = 1012 cm−12 a Current density-electric field dependence for
different temperatures. Inset shows the same dependence at T = 0 K; bDependence of the quantum
and thermal contributions to the friction force (per unit area) between SiO2 and the free carriers in
graphene per unit area on the drift velocity of electrons in graphene. The finite temperature curve
shows only the thermal contribution

The steady-state temperature can be obtained from the condition that the power
generated by friction must be equal to the energy transfer across the substrate surface

Fx (Td , Tg)v = Sz(Td , Tg) + αph(Tg − Td), (10.18)

where the second term in (10.18) takes into account the heat transfer through direct
phononic coupling;αph is the thermal contact conductance due to phononic coupling.

Figure10.4a shows the dependence of the current density on the electric field at
the carrier concentration n = 1012 cm−2, and for different temperatures. We have
found that, in agreement with the experiment [164], the current density saturates
at E ∼0.5–2.0 V/µm. According to the experiment, the saturation current density
Jsat = nevsat ≈ 1.6 mA/µm, and using the charge density concentration n = 1012

cm−2: vsat ≈ 106 m/s. The saturation current density depends weakly on the temper-
ature. In Fig. 10.4b, the contributions to the friction force from quantum and thermal
fluctuations are shown separately. In the saturation region, the contribution to the
friction force from quantum fluctuations dominates.

According to the theory of the Casimir friction [11] (see also above discussion),
the quantum friction, which exists even at zero temperature, is determined by the
creation of excitations (electron hole pairs or optical phonons) in each of the inter-
acting media. The frequency of the photon associated with the excitations in moving
body is determined by ωph = vqx − ω1, where ω1 is the excitation frequency in
the rest reference frame. This photon will create excitation in the other body with
the frequency ω2 = ωph = vqx − ω1. The relevant excitations in graphene are the
electron–hole pairs with energy ωeh(q) ≈ vFq, while for SiO2 the frequency of sur-
face phonon polaritons ω0 ≈ 60 meV (9 × 1013 s−1). Resonant photon tunneling
occurs at v > vF + ω0/qx . The maximal value of wave vector is ∼1/d. Thus, at
d = 0.35nm, resonance occurs for v > vsat = vF + ω0d ∼ 106 m/s, in accordance
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with the numerical calculations. Thus, measurements of the current density–electric
field relation of graphene adsorbed on SiO2 provide the possibility of detecting quan-
tum friction.

10.4 Casimir Frictional Drag Force Between
Graphene Sheets

An alternative method of studying Casimir friction consists of driving an electric
current in one metallic layer and studying the effect of the frictional drag on the
electrons in a second (parallel) metallic layer (Fig. 9.1). Such experiments were
proposed by Pogrebinskii [255] and Price [256], andwere performed for 2D quantum
wells [112–114]. In these experiments, a current is driven through layer 1. Due to
the proximity of the layers, the interlayer interactions will induce a current in layer
2 due to a frictional stress acting on the electrons in the layer 2 from layer 1. If
the layer 2 is an open circuit, an electric field E1 will develop in the layer whose
influence cancels the frictional stress σ between the layers. In the experiment [112],
the drift velocity v ∼102 m/s. According to the theory of the Casimir friction [121,
144], at such velocities, the thermal fluctuation gives the dominant contribution to
the friction, and the theoretical predictions are in agreement with experiment.

Frictional drag between graphene sheets was measured recently in [162, 163].
This study has fueled the recent theoretical investigations of frictional drag between
graphene sheets [362–368] mediated by a fluctuating Coulomb field. In all of these
investigations, the current density (or drift velocity v of the charge carries) is linearly
related to the driving electric field. Thus, only the thermal contribution to the frictional
drag was included. In the linear approximation, the electric field induced by the
frictional drag depends linearly on the current density J = nev (or drift velocity
v of the charge carries), E = ρD J = FxT /ne = � J/(ne)2, where � is the friction
coefficient and ρD = �/(ne)2 is the drag resistivity. For ω < vFq and q < 2kF the
dielectric function of graphene has the following form [356]

ε0(ω, q) ≈ 1 + 4e2kF
�vFq

(
1 + i

ω

vFq

)
, (10.19)

and the reflection amplitude

R0(ω, q) = ε0(ω, q) − 1

ε0(ω, q)
≈ 1 + i

�ω

4e2kF
, (10.20)

and (10.20) and (10.13) give the known result [362]

ρD = �

(ne)2
= h

e2
πζ(3)

32

(
kBT

εF

)2 1

(kFd)2

1

(kT Fd)2
, (10.21)
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Fig. 10.5 Frictional drag between two graphene sheets at the carrier concentration n = 1012 cm−2.
The finite temperature curves show only the thermal contributions to the friction. a Dependence of
friction force between graphene sheets on the drift velocity of charge carriers in one graphene sheet
at the layer separation d = 1nm. b The same as in (a) but at d = 10nm

where kT F = 4e2kF/�vF is the Thomas-Fermi screening wave vector. The frictional
drag force is much higher for high drift velocities (∼106 m/s), where it depends
non-linearly on the drift velocity, and is dominated by the quantum friction [149].
For v < vF (10.20) and (10.12) give the following result for quantum friction

Fx0 = �v

d4

15ζ(5)

128π2

(
v

vF

)2 1

(kT Fd)2
. (10.22)

In the linear approximation E = 5 × 10−4v (SI-units) for T = 300 K and
d = 10 nm. For a graphene sheet of length 1 µm, and with v = 100 m/s, this electric
field will induce the voltage V = 10 nV. From (10.21) and (10.22), the ratio between
the quantum and thermal friction Fx0/FxT = Fx0/(ne)2ρDv ≈ (15/8π2)(v/vT )2,
where vT = ωT d. Thus, for v > vT the friction is dominated by quantum friction (at
d = 1nm and room temperature: vT ≈ 4 × 104m/s).

Figure10.5a, b show that much larger electric fields can be induced at d = 1nm
(a) and d = 10nm (b) at large velocities. In these figures, the contributions to friction
from thermal and quantum fluctuations are shown separately. For v < 105 m/s, the
frictional drag effect for the graphene sheets strongly depends on temperature, i.e. it
is determined mainly by the thermal fluctuations. However, for v > 106m/s it will be
dominated byquantumfluctuations. Strong enhancement of friction occurs in the case
of resonant photon tunneling. As discussed above, resonant photon tunneling occurs
for v > 2vF ≈ 2 × 106 m/s. For such velocities and d = 1nm, quantum friction
dominates over the thermal contribution even at room temperature (see Fig. 10.5a).
For d = 10nm, quantum friction dominates at low temperatures (see Fig. 10.5b).

The use of graphene in frictional drag experiments has considerable advantages
in comparison with quantum wells. Such experiments can be performed in a vacuum
where the contribution from the phonon exchange can be excluded. In a vacuum,
one can easily measure the dependence of the frictional drag force on the separation
between graphene sheets. Due to the highmobility of the charge carriers in graphene,
the charge carriers can move with much higher drift velocity than in quantum wells.
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10.5 Near-Field Radiative Heat Transfer Between Closely
Spaced Graphene and Amorphous SiO2

In this Section,we investigate heat generation anddissipation due to friction produced
by the interaction between moving (drift velocity v) charge carriers in graphene
and the optical phonons in a nearby amorphous SiO2, and the acoustic phonons in
graphene. Friction produces thermal heating of the graphene, which results in near-
field radiative energy transfer and phononic heat transfer between the graphene and
SiO2. A self-consistent theory that describes these phenomena was formulated by us
in [149] (see also Sect. 10.3) and it allows us to predict experimentally measurable
effects. In comparison with the existing microscopic theories of energy transfer and
transport in graphene [360, 361], our theory is macroscopic.

According to (10.14) and (10.15) in the casewhen free carriers aremoving relative
to the substrate both thermal and quantum fluctuations give contributions to the
frictional stress and the radiative energy transfer. This situation is different from
that considered in [370, 371] where it was assumed that the free carries in graphene
had vanishing drift velocity. The contribution of the quantum fluctuations to the
frictional stress was investigated by us in [149] (see also Sect. 10.3). According to
(10.15) the contribution to the near-field energy transfer from quantum fluctuations
is determined by

Squantz = Sz(Td = Tg = 0) = − �

π3

∫ ∞

0
dqy

∫ ∞

0
dqx

∫ qx v

0
dωωe−2qd ImRd (ω)ImRg(ω

−)

| 1 − e−2qd Rd (ω)Rg(ω−) |2
(10.23)

As discussed in Sect. 10.3, for graphene on SiO2 the excess heat generated by
the current is transferred to the substrate through the near-field radiative heat trans-
fer, and via the direct phononic coupling (for which the heat transfer coefficient
α ≈ 108Wm−2K−1). At small temperature difference (�T = Tg − Td � Td ), from
(10.18) we get

�T = Fx0v − Sz0
αph + S′

z0 − F ′
x0v

(10.24)

where Fx0 = Fx (Td , Tg = Td), Sz0 = Sz(Td , Tg = Td),

F ′
x0 = dFx (Td , Tg)

dTg

∣∣∣
Tg=Td

, S′
z0 = dSz(Td , Tg)

dTg

∣∣∣
Tg=Td

We note that, in contrast to the heat transfer between bodies at rest, for moving
bodies the energy flux Sz(Td , Tg) is not equal to zero even for the case when there
is no temperature difference between the bodies. The energy transfer coefficient is
given by
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α = Sz(Td , Tg) + αph�T

�T
≈ (αph + S′

z0)Fx0v − Sz0F ′
x0v

Fx0v − Sz0
(10.25)

For small velocities Fx0 ∼ v and Sz0 ∼ v2. Thus, from (10.25) it follows that
in the limit v → 0 the energy transfer coefficient between moving bodies is not
reduced to the heat transfer coefficient between bodies at rest, which is determined
by αth = αph + S′

z0. This effect is due to the term Sz0 in the total energy flux
which exists only between moving bodies. The energy transfer coefficient can be
strongly enhanced in comparison with the heat transfer coefficient when Ft0v ≈ Sz0.
Figure10.6a shows the ratio of the energy transfer coefficient to the phononic heat
transfer coefficient for d = 0.35nm and n = 1016 m−2. For low and intermediate
fields, this ratio is larger than unity, which means that, in this region, the near-
fields radiative energy transfer gives an additional significant contribution to the heat
transfer. For nonsuspended graphene on SiO2, the energy and heat transfer are very
effective and the temperature difference does not rise high, even for such high elec-
tric fields that saturation in I − E characteristic starts [164] (see Fig. 10.6b). The
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Fig. 10.6 Radiative energy transfer between graphene and SiO2 for n = 1016m−2, d = 0.35nm
and αph = 1.0 × 108Wm−2K−1. a The dependence of the ratio between the total energy transfer
coefficient and the phononic heat transfer coefficient, on the electric field. b Dependence of the
temperature difference between graphene and substrate on the electric field. c Dependence of the
ratio between the heat flux only due to quantum fluctuations Squantz and the total energy flux, on
the electric field. d Dependence of the ratio between the friction force due to quantum fluctuations
Fquant
x and the total friction force, on the electric field
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radiative heat transfer between bodies at rest is determined only by thermal fluctu-
ations, in contrast to the radiative energy transfer between moving bodies, which is
determined by both thermal and quantum fluctuations. Figure10.6c shows that quan-
tum fluctuations can give significant contribution to the total energy transfer for low
temperatures and large electric field (high drift velocity). Similarly, in the (electric
current) saturation region, quantum fluctuations give significant contribution to the
total friction forcewhich is determined, as discussed above, by the sumof the extrinsic
and intrinsic friction forces (see Fig. 10.6d). The extrinsic friction force has contribu-
tions from both thermal and quantum fluctuations. The friction force due to quantum
fluctuations is denoted as quantum friction, which was discussed in Sect. 10.3
(see also [149]).

Figure10.7a shows the dependence of the energy transfer coefficient on the sepa-
ration d for low electric field (v → 0).At d ∼5nmand T = 300K the energy transfer
coefficient, due to the near-field radiative energy transfer, is∼104Wm−2K−1, which
is∼ three orders of magnitude larger than the radiative heat transfer coefficient due to
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Fig. 10.7 Radiative energy transfer between graphene and SiO2 for n = 1012cm−2 and αph = 0.
a Dependence of the energy transfer coefficient on the separation d for low electric field (v → 0);
b Dependence of the ratio between the energy transfer coefficient and the heat transfer coefficient
on the separation d for low electric field (v → 0); c Dependence of the radiative energy flux on
electric field for d = 1.0nm; d Dependence of the temperature difference between graphene and
substrate on electric field for d = 1.0nm
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the black-body radiation. In comparison, the near-field radiative heat transfer coeffi-
cient in the SiO2–SiO2 system for the plate–plate configuration, when extracted from
experimental data [109] for the plate–sphere configuration, is ∼2230Wm−2K−1 at
a ∼30nm gap. For this system, the radiative heat transfer coefficient depends on
the separation as 1/d2. Thus α ∼105Wm−2K−1 at d ∼5nm, which is one order
of magnitude larger than for the graphene-SiO2 system in the same configuration.
However, the sphere has a characteristic roughness of ∼ 40nm, and the experiments
[109, 110] were restricted to separation wider than 30nm (at smaller separation the
surface roughness affects the measured heat transfer). Thus, the extreme near-field-
separation, with d less than approximately 10nm, may not be accessible using a
plate–sphere geometry. A suspended graphene sheet has a roughness ∼1nm [372],
and measurements of the thermal contact conductance can be performed from sep-
aration larger than ∼1nm. At such separation one, would expect the emergence of
non-local and non-linear effects. This range is of great interest for the design of
nanoscale devices, as modern nanostructures are considerably smaller than 10nm
and are separated in some cases by only a few Angstroms.

Figure10.7b shows that, at small separations, there is significant difference
between the radiative energy transfer coefficient and the radiative heat transfer coef-
ficient determined (in the absence of direct phononic coupling) by α0 = S′

z0. This
difference vanishes for large separations because Sz0 and Fx0 rapidly decrease when
the separation increases. At large separation, the friction force is dominated by
the intrinsic friction and in this case α ≈ α0. Figure10.7c shows the dependence
of the radiative energy flux on electric field for d = 1nm. For this separation, the
energy transfer is considerably less effective than for d = 0.35nm, which leads to
a rapid increase of the temperature difference (see Fig. 10.7d). High temperatures
are achieved at low electric field (small drift velocities), where contribution to the
radiative energy transfer from quantum fluctuations is very small, and the energy
transfer is mainly determined by thermal fluctuations.
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