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Preface

All media are surrounded by a fluctuating electromagnetic field due to the thermal
and quantum fluctuations of the current densities inside them. Close to the surface,
this fluctuating electromagnetic field is strongly enhanced due to the existence of
evanescent electromagnetic waves. This enhancement is especially large when, on
the surface, there are surface modes such as surface plasmons, surface polaritons, or
the vibrational modes of adsorbates. In the presence of the surface modes, thermal
radiation can exhibit spatial and temporal coherence.

In last few years, significant progress was achieved in the study of electro-
magnetic fluctuations at the nanoscale. This is connected with the development of
new experimental methods, which made it possible to probe these fluctuations at the
nanoscale, where fluctuations are much stronger than at larger length scales. Thus,
the measurements of Casimir–van der Waals forces were recently carried out with
unprecedented accuracy. These measurements agree with the theory of van der
Waals forces up to very large distances, where retardation effects become essential,
and where the interaction is determined by thermal fluctuations rather than quantum
fluctuations.

In recent years, considerable attention has been devoted to the studies of elec-
tromagnetic fluctuations for non-equilibrium systems. It was theoretically predicted
and experimentally confirmed that the radiative heat flux between two bodies with
different temperature in the near-field region is many orders of magnitude larger
than determined by the classical Stefan–Boltzmann law. Even more remarkable is
the fact that, for two bodies in relative motion, the electromagnetic fluctuations
result in a friction force, which is non-zero even in the absence of direct contact
between the bodies, i.e. isolated from each other by a vacuum gap. This type of
friction was measured between the electrons in quantum wells, and between ions in
narrow channels filled with liquid. We expect even larger such non-contact effects
as the technology for tailoring atomic and nanoscale materials improves.

In this monograph, a general theory of electromagnetic fluctuations is presented.
Both equilibrium and non-equilibrium electromagnetic fluctuations are examined.
The theory is applied for calculation of the thermal radiation, interaction forces, and
the radiative heat transfer between bodies in relative motion.

v



This monograph is organized as follows. A brief survey of the Casimir forces,
radiative heat transfer, and non-contact friction is given in the introduction (Chap. 1).
Chapter 2 presents an introduction to the theory of surface electromagnetic waves.
As shown in the subsequent sections, these surface waves play a key role in the
emissive and reflective surface properties. A brief description of the theory of the
fluctuating electromagnetic field is given in Chap. 3. Here, electromagnetic fluctu-
ations in thermodynamic equilibrium, and for non-equilibrium systems, are exam-
ined. The general theory of the fluctuating electromagnetic field is applied to the
thermal emission by plane sources (Chap. 4), Casimir interaction (Chap. 5), radiative
heat transfer (Chap. 6) and Casimir friction for the plate–plate (Chap. 7) and par-
ticle–plate (Chap. 8) configurations. Special attention is paid to the possible
mechanisms of enhancement of the radiative heat transfer and Casimir friction. The
theory of the frictional drag in nanostructures, induced by the fluctuating electro-
magnetic field, is examined in Chap. 9. The friction drag, which appears in
low-dimensional electronic systems, and in narrow channels with polar liquid, is
studied. Special attention is devoted to Casimir physics for graphene (see Chap. 10),
a material that has been proposed for the micro- and nanoelectromechanical systems
of future generations. Quantum Vavilov–Cherenkov radiation, associated with the
uniform motion of a neutral object is considered in Chap. 11. The phononic heat
transfer for planar and rough interfaces is considered in Chaps. 12 and 13, respec-
tively. The theory of electrostatic friction is presented in Chap. 14. This mechanism
of friction is connected with the electromagnetic field, created outside the moving
body by static electric charges, which are always present on the surface due to it
heterogeneity, or due to an applied voltage. Enhancement of the electrostatic friction
due to the vibrational modes of adsorbates and 2D electron structures is analyzed.
The non-contact friction theory is compared with experimental measurements. The
friction resulting from the emission of acoustic phonons, and due to the internal
friction, is studied in the Chap. 15.

The details of some calculations, which are not of direct physical interest, are
given in the appendices.

Samara, Russia Aleksandr I. Volokitin
Jülich, Germany Bo N.J. Persson
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Abstract

The theory of the electromagnetic fluctuations at the nanoscale, which is important
for many technology problems, is presented. The theory is applied to Casimir
forces, near-field radiative heat transfer, and to non-contact friction between
nanostructures, and many theory predictions are compared to experiments. This
book is mainly based on the publications of authors on the theory of the fluctuating
electromagnets field and its manifestations at the nanoscale, and will be useful to
researchers, engineers, and graduate and undergraduate students, who are special-
ized in the field of the physics and technology of nanostructures.
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Chapter 1
Introduction

Electromagnetic fluctuations are related to one of the most fundamental phenomena
in nature, namely Brownian motion. In [1–4], the nature of this motion is discussed,
and its statistical features are investigated. Studies of the thermal radiation frommate-
rials have played an important role in the history of physics. It is enough to mention
that quantummechanics originated from attempts to explain paradoxical experimen-
tal results related to black body radiation. In 1900, Max Planck used quantum theory
to explain the puzzling nature of the spectral density of thermal far-field radiation.
However, Planck realized that the situation becomes more complex in the near-field
region, when the distance from the surface of the body becomes smaller than the
characteristic wavelength of thermal radiation. In the early 20th century, the spectral
properties of thermal electromagnetic fluctuations were reliably studied in two lim-
iting cases. In the first case, which corresponds to the quasistationary region of the
spectrum, the Nyquist formula was obtained, which describes the spectral intensity
of noise in an arbitrary passive one-port with a given impedance. In the second case,
the Planck and Kirchhoff formulas were obtained, which describe the energy spec-
tral density and the equilibrium radiation intensity. In the middle of the 20th century,
Rytov created the general correlation theory of electromagnetic fluctuations on the
basis ofMaxwell’s equations [5–7]. FromRytov’s theory, one can obtain the spectrum
of fluctuations in the system for arbitrary relation between its significant dimensions
and characteristic wavelength of thermal radiation field. In this case, the Nyquist’s
and Kirchhoff’s laws follow as two limiting cases. A remarkable contribution to the
theory of fluctuation phenomena is the fluctuation-dissipation theorem established
by Callen and Welton [8], which connects the spectral density of the fluctuations of
the dynamic system that are characteristic of its dissipative properties.

The study of electromagnetic fluctuations is an important part of modern funda-
mental and applied science, because it is precisely the fluctuations of the electromag-
netic field that determine a large class of important physical phenomena, such as the
van der Waals interaction; the Casimir force, which can be considered as a special
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case of the van der Waals interaction; radiative heat transfer and Casimir friction
between bodies separated by a vacuum gap; the capture of atoms, molecules and
coherent material states by electromagnetic traps; and a number of major physico-
chemical phenomena near the surface of condensedmedia, such as the adsorption and
desorption of atoms and molecules. Electromagnetic fluctuations lead to a change
in the conditions and characteristics of the spontaneous photon emission of atoms
and molecules near surfaces, the shift of their energy levels, and the complete or
partial removal of degeneracy, which can substantially change the dynamics of the
phenomena. We emphasize that a study of resonance states in the spectra of ther-
mally stimulated fields allows the eigenmodes of the system to be discovered, i.e.,
its volume and surface polaritons, whose properties are totally determined by the
electrodynamic and geometric characteristics of the system. At present, in connec-
tion with new experiments, interest in Casimir physics is being revived. Figure1.1
illustrates the connection between the Casimir physics and Brownian motion.

Fig. 1.1 Relationship between Casimir physics and Brownian motion. The electromagnetic fluc-
tuations are the cornerstone of the Casimir physics, which includes Casimir forces, Casimir friction
and near-field radiative heat transfer. These fluctuations are described in the fluctuational electro-
dynamics by introducing a ‘random’ field into the Maxwell equation (just as, for example, one
introduces a ‘random’ force in the theory of Brownian motion)
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In the past, the non-radiative near-field part of the electromagnetic radiation
was usually ignored, because it plays no role in the far-field properties of emis-
sion from planar sources. Nevertheless, recent interest in microscale and nanoscale
radiative heat transfer [9–15], together with the development of local-probe thermal
microscopy [17, 18] has raised new challenges. These topics, and the recent progress
in detecting the non-contact friction force on a subattonewton level [19–21, 23–27],
and the observation of coherent thermal emission from materials [28–38], have the
substantial role of the non-radiative (evanescent) thermal electromagnetic field in
common. The physical mechanisms and phenomena occurring at the nanoscale have
received significant attention over the last decade because of improvements in nanos-
tructure fabrication, the development of advanced scanning probe microscopy and
interest in basic research. The findings have implications for topics such as ther-
mophotovoltaics, nano-electromechanical systems, heat-assisted magnetic record-
ing, heat-assisted litography, the design of devices that rely on resonant or coherent
heat emission, and nano-antennas.

1.1 Fluctuations and the Physical Origin of the van der
Waals and Casimir Forces

There are four known fundamental forces: electromagnetism, gravity, and weak and
strong interactions. Weak and strong interactions manifest themselves on length
scales in the order of the size of a nucleus; whereas, at larger distances, electromag-
netism and gravity prevail. It may therefore come as a surprise that two macroscopic
non-magnetic bodies with no net electric charge (or charge moments) can expe-
rience an attractive force much stronger than gravity. This force was predicted in
1948 by Hendrik Casimir [39], and now bears his name. The existence of this force
is one of the few direct macroscopic manifestations of quantum mechanics; others
are superfluidity, superconductivity, kaon oscillations, and the black body radiation
spectrum.

The origin of both the van der Waals and Casimir forces is connected to the
existence of quantum and thermal fluctuations. Two neutral particles have fluctuating
dipole moments resulting from quantum or thermal effects, which, for the particle
separation d, lead to a d−6 interaction energy. This long-range attraction is often the
dominant interactions between atoms andmolecules. Physically, this attraction arises
as shown in Fig. 1.2a: whenever one particle acquires a spontaneous dipole moment
p1, the resulting dipole electric field (black lines) polarizes the adjacent particle to
produce an induced dipole moment p2 ∼ d−3. Assuming positive polarizabilities,
these two dipoles are oriented so as to attract each other, with an interaction energy
that scales as d−6. This leads to the van der Waals ‘dispersion’ force, and similar
considerations apply to particles with permanent dipole moments that can rotate
freely. The key to a more general theory of the Casimir interaction is to understand
that this d−6 scaling of van der Waals forces is based two crucial approximations,
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Fig. 1.2 Relationship between van der Waals, Casimir-Polder and Casimir forces, whose origins
lie in the quantum fluctuations of dipoles. a, A fluctuating dipole p1 induces a fluctuating electro-
magnetic dipole field, which in turn induces a fluctuating dipole p2 on a nearby particle, leading to
van der Waals forces between the particles. b, When the particle spacing is large, retardation/wave
effects modify the interaction, leading to Casimir-Polder forces. When more than two particles
interact, the non-additive field interactions lead to a breakdown of the pairwise force laws. c, In
situations consisting of macroscopic bodies, the interaction between the many fluctuating dipoles
present within the bodies leads to Casimir forces. From [64]

that are not always valid: it neglects wave effects (quasi-static approximation), and
also neglects multiple scattering if there are more than two particles. The quasi-static
approximation assumes that the dipole moment p1 polarizes the second particle
instantaneously, which is valid if d is much smaller than the typical wavelength of
the fluctuating fields. For such separations, retardation effects are negligible. In this
separation region, the dispersion force is usually called the van der Waals force.
This is a non-relativistic quantum phenomenon and its theory was pioneered by
London (1930) [40]. However, the finite speed of light must be taken into account
when d is much larger than the typical wavelength, as shown in Fig. 1.2b, and it
turns out that the resulting Casimir-Polder interaction energy asymptotically scales
as d−7 for large values of d. At such separations, the dispersion forces are usually
called Casimir forces (for interaction between two macroscopic bodies) or Casimir-
Polder forces (for atom-atom and atom-wall interactions). These are both relativistic
and quantum-mechanical phenomena first described by Casimir (1948) [39] and
by Casimir and Polder (1948) [41], respectively. More generally, the interaction is
not a simple power law between these limits, but instead depends on an integral of
fluctuations at all frequencies scaled by a frequency-dependent polarizability of the
particles.

The presence of more than two particles further complicates the situation because
multiple scattering must be considered (Fig. 1.2b). For example, with three particles,
the initial dipole p1 will induce polarizations p2 and p3 in the other two particles, but
p2 will create its own field that further modifies p3, and so on. Thus, the interaction
between multiple particles is generally non-additive, and there is no two-body force
law that can simply be summed to incorporate all interactions. Multiple scattering is
negligible for a sufficiently dilute gas or for weak polarizabilities, but it becomes very
important for interactions between two (or more) solid bodies, which consist of many
fluctuating dipoles that all interact in a complicated way through the electromagnetic
radiation (Fig. 1.2c). When these multiple scattering effects are combined with wave
retardation in a complete picture, they yield the Casimir force.
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Hendrik Casimir based his prediction on a simplifiedmodel involving two parallel
perfectly conducting plates separated by a vacuum.Although the Casimir force arises
from electromagnetic fluctuations, real photons are not involved. Quantum mechan-
ically, these fluctuations can be described in terms of virtual photons of energy that
are equal to the zero-point energies of the electromagnetic modes of the system. By
considering the contribution of the electromagnetic field modes to the zero-point
energy (U ) of the parallel plate configuration, Casimir predicted an attractive force
between the plates. Because only electromagnetic modes that have nodes on both
walls can exist within the cavity, the mode frequencies (ω) depend on the separation
between the plates, giving rise to a pressure of P0 = −∂U0/∂d:

U0(d) = − π2
�c

720d3
, P0(d) = − π2

�c

240d4
(1.1)

where c is the vacuum speed of light and � is the reduced Planck’s constant. The
force in this case is attractive because the mode density in free space is larger than
that between the plates. Ideal metals are characterized by perfect reflectivity at all
frequencies, which means that the absorption wavelength is zero. Thus, the results
(1.1) are universal and valid at any separation distance. They do not transform to the
non-relativistic London forces at short separations. Due to the difference in these
early theoretical approaches to the description of the dispersion forces, the van der
Waals andCasimir-Polder (Casimir) forceswere originally thought of as twodifferent
kinds of forces rather than two limiting cases of a single physical phenomenon, which
is how they are presently understood.

A unified theory of both the van der Waals and Casimir forces between plane par-
allel material plates in thermal equilibrium separated by a vacuum gapwas developed
by Lifshitz (1955) [42]. Lifshitz’s theory describes dispersion forces between dissi-
pative media as a physical phenomenon caused by the fluctuating electromagnetic
field that is always present in both the interior and the exterior of any medium. To
calculate the fluctuating electromagnetic field, Lifshitz used Rytov’s theory [5–7].
Rytov’s theory is based on the introduction into the Maxwell equation of a ‘random’
field (just as, for example, one introduces a ‘random’ force in the theory of Brown-
ian motion). The fundamental characteristic of the random field is the correlation
function, determining the average value of the product of component of this field at
two different points in space. Initially, Rytov found this correlation function using
a phenomenological approach. Later, Rytov’s formula for the correlation function
of the random field was rigorously proved on the base of the fluctuation-dissipation
theorem. According to the fluctuation-dissipation theorem, there is a connection
between the spectrum of fluctuations of the physical quantity in an equilibrium dis-
sipative medium and the generalized susceptibilities of this medium, which describe
its reaction to an external influence. Using the theory of the fluctuating electromag-
netic field, Lifshitz derived general formulas for the free energy and force of the
dispersion interaction. In the limit of dilute bodies, these formulas describe the dis-
persion forces acting between atoms and molecules. In the framework of the Lifshitz
theory, material properties are represented by the frequency dependent dielectric
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permittivities and atomic properties by the dynamic atomic polarizabilities. In the
limiting cases of small and large separation distances, in comparison with the char-
acteristic absorption wavelength, the Lifshitz theory reproduces the results obtained
by London and by Casimir and Polder, respectively. It also describes the transition
region between the non-relativistic and relativistic limits.

Both quantum and thermal fluctuations contribute to the Casimir force. The gen-
eral theory of Casimir-van der Waals forces was developed in [43] using quantum
field theory. This theory confirmed the results of Lifshitz’s theory. Quantum fluctu-
ations dominate at small separation (d < λT = c�/kBT ) and thermal fluctuations
dominate at large separation (d > λT ). Casimir forces due to quantum fluctuations
have long been studied experimentally [44–56]. However, Casimir forces due to ther-
mal fluctuations were measured only recently, and these measurements confirmed
Lifshitz’s theory [57]. At present, interest in Casimir forces is increasing since it was
shown that it is possible to measure these forces with high accuracy [44–57]. Casimir
forces often dominate the interaction between nanostructures, and can result in adhe-
sion and mechanical failure between moving parts in small devices such as micro-
and nano-electromechanical systems [55, 56, 58, 59] (MEMS and NEMS). Due
to this practical interest and the fast progress in force detection techniques, exper-
imental [57, 60–63] and theoretical [64, 65] investigations of Casimir forces have
experienced an extraordinary ‘renaissance’ in the past few years. Various corrections
to these forces have been studied, such as finite conductivity [66], or temperature
corrections [67, 68].

TheLifshitz theorywas formulated for systems at thermal equilibrium.At present,
there is an interest in the study of systems outside of the thermal equilibrium, in
particular, in connection with the possibility of tuning the strength and sign of the
interaction [69–71]. Such systems also present a way to explore the role of thermal
fluctuations, which are usually masked at thermal equilibrium by the T = 0 K
component, which dominates the interaction up to very large distances, where the
interaction force is very small. In [71], the Casimir-Polder force was measured at
very large distances, and it was shown that the thermal effects on the Casimir-Polder
interaction agree with the theoretical prediction. This measurement was taken out-
side of thermal equilibrium, where thermal effects are stronger.

The fluctuating electromagnetic field in the Lifshitz theory is the classical analog
of vacuum (zero-point) oscillations in the field-theoretical approach developed by
Casimir. van Kampen et al. (1968) [72], Ninham et al. [73], Gerlach (1971) [74]
and Schram (1973) [75] narrowed the distinction between the Casimir and Lifshitz
approaches. They obtained the Lifshitz formulas for free energy and force between
two non-dissipative material plates as the difference between the free energies of
zero-point and thermal oscillations in the presence and in the absence of plates.
The eigenfrequencies of these oscillations were found from the standard continuity
boundary conditions for the electric and magnetic induction fields on the surfaces
of the dielectric plates. Later, Barash and Ginzburg (1975) [76] generalized this
approach for the case of plates made of dissipative materials in thermal equilibrium
with a heat reservoir. This generalization was presented by Millonni (1994) [45] and
by Mostepanenko and Trunov (1997) [77]. The applicability of the Lifshitz formula
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to dissipative materials was also demonstrated using the scattering approach (Genet
Lambrecht and Reynaud 2003) [78].

The theoretical foundations of theCasimir interaction are basedon twoapproaches.
The first approach is based on the theory of the equilibrium electromagnetic fluctu-
ations in the media. In the second approach, the Casimir effect is a vacuum quan-
tum effect resulting from the influence of external conditions and is described by
quantum field theory. In this case, boundary conditions are imposed (in place of
material boundaries) that restrict the quantization volume and affect the spectrum
of zero-point and thermal oscillations. In fact, the two different approaches can be
reconciled. There are derivations of the Lifshitz formulas and more general results
in different media where the dispersion force is viewed as a vacuum quantum effect
[79, 80]. The common roots in the theory of electromagnetic oscillations relate the
Casimir effect to other fluctuation phenomena, such as the radiative heat transfer
through a vacuum gap and the Casimir friction [11]. However, its origin in quan-
tum field theory relates the Casimir effect to other quantum vacuum effects such as
the Lamb shift and the anomalous magnetic moment of an electron, where virtual
particles play an important role [81].

During the last few years, far-reaching generalizations of the Lifshitz formulas
were obtained that express Casimir energy and the force between two separated
bodies of arbitrary shape in terms of matrices of infinite dimensions. This is often
referred to as the representation ofCasimir energy in terms of functional determinants
[82–84] or in terms of scattering matrices [85, 86]. Overviews of the Casimir effect
are given, for example, in [60, 87–90].

1.2 Radiative Heat Transfer

The radiative heat flux per unit area between two black bodies separated by d �
λT = c�/kBT is given by the Stefan-Boltzmann law

S = π2k4B
60�3c2

(
T 4
1 − T 4

2

)
, (1.2)

whereT1 andT2 are the temperatures of solid 1 and2, respectively, and c is the velocity
of light. In this limiting case, the heat transfer between two bodies is determined by
the propagating electromagnetic waves (far field) radiated by the bodies and does
not depend on the separation d (see Fig. 1.3). These propagating waves always exist
outside anybodydue to thermal andquantumfluctuations of the current density inside
the body. Quantum fluctuations are related to the uncertainty principle, and exist also
at zero temperature. Thermal fluctuations are due to the irregular thermal motion of
the particles in themedium, and vanish at zero temperature. The electromagnetic field
created by this fluctuating current density exists not only in the form of propagating
waves but also in the formof evanescentwaves, which are damped exponentiallywith
the distance away from the surface of the body. This fluctuating electromagnetic field
exists even at zero temperature, generated by quantum fluctuations. For an isolated
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Fig. 1.3 There are two modes for exchange of heat between two surfaces separated by vacuum: a
conventional radiative heat transfer via propagating electromagnetic waves; and b photon tunneling
via evanescent waves

Fig. 1.4 Evanescent waves play no role in thermal radiation from a hot dielectric surface to vacuum
(left), but evanescent waves can carry heat from a hot to a cold dielectric surface (right)

body the evanescent waves do not give any contribution to the energy radiation,
which is determined by Stefan-Boltzmann law. However, for two solids separated
by d < λT , the heat transfer may increase by many orders of magnitude due to the
evanescent electromagnetic waves; this is often refereed to as photon tunneling. The
concept of photon tunneling can be neatly illustrated by considering a transparent
dielectric such as glass (see Fig. 1.4). Within the dielectric, black body radiation has
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Fig. 1.5 At short distances,
evanescent states dominate
in phase space: propagating
photon modes carry heat flux
within the inner circle (with
the radius kBT/�c),
evanescent modes within the
outer circle (with the radius
d−1)

1/d

qx

qy

k  T / hcB

a higher density than in the vacuum, as can be seen from (1.2); if the velocity of
light is reduced, the density of radiation increases. The extra radiation is contained in
waves that have large wave vectors, q parallel to the surface. The normal component
of the wave vector, which in the vacuum region is given by pz = √

(ω/c)2 − q2,
will be pure imaginary for q > ω/c, where ω is the electromagnetic wave frequency.
This means that the photons with q > ω/c can not escape from the body, and will
be totally reflected from the surface. This phenomenon is known as total internal
reflection. Thus, the surface reflects just the right amount of radiation to ensure that
the intensity of the black body radiation emerging into vacuum does not exceed that
allowed by (1.2).

It is well known that a second dielectric, if close enough to the first one, will
modify the internal reflection condition so that some of the ‘evanescent photons’
tunnel across into the second medium.

Let us consider the electromagnetic field at a distance d from a surface. The region
in the q-space occupied by the propagating waves is q < kBT/�c. The phase space
region occupied by the evanescent waves is q < d−1. Thus, as illustrated in Fig. 1.5,
at short distance d � λT the number of photon states available to conduct heat may
be much larger for the evanescent waves than for the propagating waves. At low
temperatures (a few Kelvin), it is possible for photon tunneling to dominate the heat
transfer even at a spacing of a few mm, see Table1.1.

A great deal of attention has been devoted to the radiative heat transfer due to
evanescent waves in connection with scanning tunneling microscopy (STM), and
scanning thermal microscopy (SThM), under ultrahigh vacuum conditions [9–15,
17, 18]. It is now possible to measure extremely small amounts of heat transfer into
small volumes [91]. STM can be used for local heating of the surface, resulting
in local desorption or decomposition of molecular species, and this offers further
possibilities for the control of the local chemistry at surfaces by STM [92].

Theproblemof the radiative heat transfer between twoflat surfaceswas considered
many years ago by Polder and Van Hove [93]; Levin and Rytov [94]; and, more
recently, by Loomis and Maris [95]; Pendry [12]; Volokitin and Persson [13–15];
and Joulain et al. [9]. Polder and VanHove were the first to obtain the correct formula
for the heat transfer between twoflat surfaces. In their investigation, they usedRytov’s
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Table 1.1 The critical distance λT as a function of temperature. For surface separation d < λT
the heat transfer is dominated by the contribution from the evanescent electromagnetic modes. At
distances of a few nanometers, radiative heat flow is almost entirely due to the evanescent modes

T (K) λT (µm)

1 2298.8

4.2 545.2

100 22.9

273 8.4

1000 2.3

theory [5–7] of thefluctuating electromagnetic field. Later, this formulawas rederived
in [95]. However, Polder and Van Hove presented their result within the local optic
approximation, where the spatial variation of the dielectric function is neglected.
Thus, material for which non-local optical properties (such as the anomalous skin
effect) are important, and are excluded from their treatment. In general, non-local
optic effects become very important for short separation between bodies when

d < vF�/kBT, l,

where vF is the Fermi velocity, and l is the electron mean free path [191, 197].
In typical cases, non-local optic effects become very important for d < 1000 Å
[13]. In the subsequent treatment, they made numerical calculations not of the heat
flux itself, but of its derivative with respect to temperature, i.e., their numerical
result is valid only for small temperature differences. Pendry considered only the
non-retarded limit. The first theory that included non-local optic and retardation
effects was developed by Volokitin and Persson [13], who used the general theory
described above. Levin and Rytov [94] used the generalized Kirchhoff’s law [6]
to obtain an expression for the radiative heat transfer between two good conductor
surfaces. They studied the case of good conductors in detail, in both the normal and
the anomalous skin effect region. Pendry [12] gave a more compact derivation of the
formula for the heat flux between two semi-infinite bodies due to evanescent waves
and calculated the heat transfer between a point-dipole and a surface. Volokitin and
Persson [13] considered the problem of heat transfer between two flat surfaces as a
particular application of a general theory of the fluctuating electromagnetic field for
heat transfer between bodies with arbitrary shape. They numerically investigated the
dependence of the heat flux on the dielectric properties of the bodies, both in the local
optic approximation and using the non-local optic dielectric approach, and found
that, for good conductors, even for very small distances, the heat flux is dominated
by retardation effects. The efficiency of the radiative heat transfer depends strongly
on the dielectric properties of themedia. It was found in these works that the heat flux
diverges as the distance decreases if the temperature difference is assumed to be kept
at a constant value. These results were obtained using a macroscopic theory where
the spatial variation of the dielectric functionwas neglected. Thismacroscopic theory
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is only valid if the separation between bodies is much larger than the interatomic
distances inside the bodies. However, it is possible to determine an upper limit for the
heat flux, which at short separations depends only on the properties of the materials
[12] (see also Chap.6). This result is linked to quantum information theory, which
dictates that the maximal heat tunneling current in one channel is determined by the
temperature alone [12, 96]. The role of non-local dielectric response for the thermal
electromagnetic field near a planar surface was discussed in [13, 97].

In [12, 13, 15], it was shown that the heat flux can be greatly enhanced if the
conductivities of the materials are chosen to maximize the heat flow due to photon
tunneling. At room temperature, the heat flow is maximal at conductivities corre-
sponding to semi-metals. In fact, only a thinfilm (∼10Å) of a high-resistivitymaterial
is needed to maximize the heat flux. Another enhancement mechanism of the radia-
tive heat transfer can be connected with resonant photon tunneling between states
localized on the different surfaces. Recently it was discovered that resonant photon
tunneling between surface plasmon modes gives rise to an extraordinary enhance-
ment of the optical transmission through sub-wavelength hole arrays [98]. The same
coupling will enhance the radiative heat transfer (and the Casimir friction [99, 100])
if the frequency of these modes is sufficiently low enough to be excited by thermal
radiation. At room temperature, only the modes with frequencies below ∼1014 s−1

can be excited. For normal metals, surface plasmons have much too high frequen-
cies; at thermal frequencies, the dielectric function of normal metals becomes nearly
purely imaginary, which excludes surface plasmon enhancement of the heat transfer
for good conductors. However, surface plasmons for semiconductors are character-
ized by much smaller frequencies and by damping constants, and they can contribute
significantly to the heat transfer.

Enhancement of the heat transfer due to resonant photon tunneling between sur-
face plasmon modes localized on the surfaces of semiconductors was predicted by
Mulet et al. [16] and Volokitin and Persson [14, 15]. In these cases, multiple scat-
tering of electromagnetic waves by the surfaces of the bodies becomes important.
In particular, at sufficiently small separation d, the photons go back and forth sev-
eral times in the vacuum gap, building up a coherent constructive interference in
the forward direction, as would occur in resonant electron tunneling. In this case,
the surface plasmons on the isolated surfaces combine to form a ‘surface plasmon
molecule’, in much the same way as electronic states of isolated atoms combine to
form molecular levels. This will result in a very weak distance dependence of the
heat flux, because the photon transmission probability does not depend on d in this
case (see below). For large d, sequential tunneling is more likely, where a surface
plasmonmode decays by emitting a photon, which tunnels to the other surface where
it excites a plasmon, and then couples to the other excitations in the media and exits.
Other surface modes that can be excited by thermal radiation are adsorbate vibra-
tional modes. Especially for parallel vibrations, these modes may have very low
frequencies. Adsorbate vibrational mode enhancement of the radiative heat trans-
fer was predicted by Volokitin and Persson [14, 15] using a macroscopic approach
[14] for separation d > b, and a microscopic approach [15] for d < b, where b is
the interatomic distance between the adsorbates. In the latter case, the heat transfer
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occurs through the energy exchange between separate adsorbates. Persson et al.
[92] showed that localized photon tunneling between adsorbates can be used for
vibrational heating of molecules adsorbed on insulating surfaces. The heat transfer
between two small particles (when the size of the particles is much smaller than
separation between them) was first studied by Volokitin and Persson [13], and later
by Domingues et al. [101]. It has been shown that at small separation (d � λT )
the dipole-dipole interaction yields a large contribution to the heat transfer, whereas
the contribution of the photon emission and absorption process is negligible. This
near-field transfer between nanoparticles is analogous to the energy transfer between
molecules due to the dipole-dipole coupling, known as Forster transfer [102].

The first measurements of the radiative heat transfer between two chromium bod-
ies with flat surfaces was performed by Hargreaves [103]. However, placing two flat
parallel plates at a constant separation of a few hundred nanometers was difficult to
achieve. Later studies employing an indium needle in close proximity to a planar
thermocouple remained inconclusive [104]. More recently, an unambiguous demon-
stration of near-field radiative heat transfer under ultrahigh vacuum conditions was
given in [18, 105]. In the experiment, the heat transfer was measured between a
gold-coated scanning tunneling microscope and a plate of gold or GaN. It was found
that for tip-sample distances below 10nm, the heat flux differs markedly from the
divergent behavior predicted by macroscopic theory in which the local optic approx-
imation is used. While the shortcomings of the local optic approximation in macro-
scopic theory are well known [7, 107], their manifestation in an actual experiment
indicates a still unexplored potential of thermal microscopy as a new, quantitative
tool for the nanometer-scale investigation of solids. Unfortunately, the geometry of
the experiment in [18, 106] was too complex to allow for a quantitative comparison
with theory. Even today, a constant separation of a few tens-of-nanometers between
plates has not been accomplished. This problem forced most experimental groups
investigating heat transfer and forces between two surfaces to switch to a plane-
sphere geometry, which is much easier to align. The first measurements between
two dielectric materials in the plane-sphere geometry were reported in [108, 109].
In the experiment, the heat transfer between a sphere and a plate, both made from of
silica, was measured from 30nm to 10µm separation. It was demonstrated that sur-
face phonon polaritons dramatically enhance energy transfer between two surfaces at
small gaps. In [110], the prediction given by the theory of fluctuating electromagnetic
fields was confirmed, at least for separation ranging from 30nm to 2.5µm. Radiative
heat transfer in the extreme near field down to separation as small as two nanometers
was measured in [111]. The authors observed extremely large enhancements of the
radiative heat transfer in the extreme near field limit between both dielectric and
metal surface. The experimental results are in excellent agreement with theoretical
predictions within the framework of the fluctuational electrodynamics. Thus, the
experimental data provide unambiguous evidence for the validity of the fluctuational
electrodynamics and local optic approximation down to very short separation in the
order of one nanometer.
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1.3 Non-contact Friction

For more than 30 years physicists have been interested in how Casimir forces and
radiative heat transfer are modified for bodies moving relative to each other. A num-
ber of researchers have shown that the relative motion of bodies leads to a friction
force [11, 115, 117–121]. Theory predicts that the Casimir friction acts even at zero
temperature, where it is determined by quantum fluctuations. However, in recent
years, the existence of quantum friction was hotly debated [122–127]. A general
theory of Casimir forces, Casimir friction and the radiation heat transfer between
moving bodies was developed by us in [128]. This theory confirmed the correct-
ness of the previous results obtained using quantum mechanical perturbation theory
[115, 117], dynamical generalization of the Lifshitz-Rytov’s theory [100, 121] and
quantum field theory [129].

The problem of Casimir friction is closely related to non-contact friction between
nanostructures, including, for example, the frictional drag force between electrons
in 2D quantum wells [112–114], and the friction force between an atomic force
microscope tip and a substrate [19–23]. A great deal of attention has been devoted to
the problem of non-contact friction because of its importance for ultrasensitive force
detection experiments. This is because the ability to detect small forces is inextricably
linked to friction via the fluctuation-dissipation theorem. According to this theorem,
the random force that makes a small particle jitter would also cause friction if the
particle were dragged through the medium. For example, the detection of single
spins by magnetic resonance force microscopy [130], which has been proposed 3D
atomic imaging [131] and quantum computation [132], will require force fluctuations
(and consequently the friction) to be reduced to unprecedented levels. In addition, the
search for gravitation effects at the short length scale [133], and future measurements
of the Casimir and van der Waals forces [89], may eventually be limited by non-
contact friction effects.

In non-contact friction, bodies are separated by a potential barrier that is thick
enough to prevent electrons or other particles with a finite rest mass from tunnel-
ing across it, but allows interaction via the long-range electromagnetic field, which
is always present in the gap between bodies. Non-contact friction can be investi-
gated using an atomic force microscope, a probe which is an extremely sharp tip
attached to the elastic arm (cantilever). When scanning a surface, the tip of the can-
tilever slides above it at short distance. This device makes it possible to register the
strength of the normal and lateral force components of the interaction between the
surface and the probe-tip. Various mechanisms of non-contact friction are schemat-
ically illustrated in Fig. 1.6. If the bodies are in relative motion, the fluctuating cur-
rent density inside bodies will give rise to a friction which will be denoted as the
Casimir friction. The origin of the Casimir friction is closely connected to the van der
Waals-Casimir interaction. The van der Waals interaction arises when an atom or
molecule spontaneously develops an electric dipole moment due to quantum fluctu-
ations. The short-lived atomic polarity can induce a dipole moment in a neighboring
atom or molecule some distance away. The same is true for extended media, where
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Fig. 1.6 Four different mechanisms of non-contact friction at motion of the cantilever tip parallel
to the surface of a body. a Conservative van derWaals forces are due to the photon exchange (virtual
and real) between the bodies. This process is determined by the quantum and thermal fluctuations
of charge and current densities inside the bodies. In the case of a moving tip Doppler frequency
shift of the emitted photons and/or time delay of the interaction leads to the Casimir friction. b
Charged tip induces a surface image charge of opposite sign, which follows the motion of the tip
and experiences the ohmic losses. That is the source of the electrostatic friction. c Conservative
forces cause deformation of the surface. Moving deformation leads to the dissipation of energy due
to emission of phonons. dAmoving tip will induce a drag force acting on the adsorbates on surface
of substrate due to the Casimir or electrostatic interaction between the tip and adsorbates. Sliding
adsorbates lead to energy dissipation due to friction between adsorbates and the substrate

thermal and quantum fluctuation of the current density in one body induces a current
density in the other body; the interaction between these current densities is the origin
of the Casimir interaction [42, 43] (see also Chap.5).When two bodies are in relative
motion, the induced current will lag slightly behind the fluctuating current inducing
it, and this is the origin of the Casimir friction (Fig. 1.6a). The van derWaals - Casimir
interaction is mostly determined by exchange of virtual photons between the bodies
(connected with quantum fluctuations), and does not vanish even at zero temperature.
The contribution from real photons (connected with thermal fluctuations) becomes
important only at large separations between bodies. On the other hand, the Casimir
friction is determined by thermal or quantum fluctuations at small or large velocities,
respectively. The Casimir friction at zero temperature is denoted as quantum friction.
The Casimir friction is closely related to the Doppler effect (see Fig. 1.7). If one body
emits radiation, then in the rest reference frame of the second body these waves are
Doppler shifted which will result in different reflection amplitudes. Thus, photons
propagating in the opposite direction will reflect differently if the reflection ampli-
tude of the second body depends on the frequency. The same is true for radiation
emitted by the second body. The exchange of ‘Doppler shifted photons’ is the origin
of Casimir friction.
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Fig. 1.7 The electromagnetic waves emitted in the opposite direction by the body at the bottom
will experience opposite Doppler shift in the reference frame in which the body at the top is at
rest. Due to the frequency dispersion of the reflection amplitude, these electromagnetic waves will
reflect differently from the surface of the body at the top, which gives rise to momentum transfer
between the bodies. This momentum transfer is the origin of Casimir friction

The presence of an inhomogeneous tip-sample electric fields is difficult to avoid,
even under the best experimental conditions [21]. For example, even if both the tip
and the sampleweremetallic single crystals, the tipwould still have corners, andmore
than one crystallographic plane exposed. The presence of atomic steps, adsorbates,
and other defects will also contribute to the spatial variation of the surface potential.
This is referred to as “patch effect”. The surface potential can also be easily changed
by applying a voltage between the tip and the sample. An inhomogeneous electric
field can also be created by charged defects embedded in a dielectric sample. The
relative motion of the charged bodies will produce friction, which will be denoted
as the electrostatic friction (Fig. 1.6b).

Amoving tip will induce the dynamical deformation of surface of substrate due to
the Casimir or electrostatic interaction between the tip and surface. This dynamical
deformation will excite phonons in the substrate which are responsible for phononic
mechanism of non-contact friction (Fig. 1.6c).

A moving tip will induce a drag force acting on the adsorbates on the substrate
surface due to the Casimir or electrostatic interaction between the tip and adsorbates.
This drag force results in a drift motion of the adsorbates relative to the substrate,
and dissipation due to friction between adsorbates and substrate. This mechanism of
dissipation is responsible for the adsorbate drag friction (Fig. 1.6d).

From the point of view of the quantum mechanics, the Casimir friction originates
from two types of processes: (a) Excitations are created in each body with opposite
momentum and the frequencies of these excitations are connected by vqx = ω1+ω2,
where qx is the momentum transfer; and (b) An excitation is annihilated in one body
and created in another. The first process (a) is possible even at zero temperature, and
it gives rise to a friction force, which depends cubically on sliding velocity [11, 115,
121]. The second process (b) is possible only at finite temperatures, and gives rise
to a friction that depends linearly on the sliding velocity. Thus, process (b) will give
the main contribution to the friction at sufficiently high temperatures, and at not too
large velocities.



16 1 Introduction

In contrast to the Casimir interaction, for which theory is well established, the
field of Casimir friction is still controversial. As an example, different authors have
studied the Casimir friction between two flat surfaces in parallel relative motion
using different methods, and obtained results that are in sharp contradiction to each
other. The first calculation of Casimir friction was carried out by Teodorovich [135].
Teodorovich assumed that the friction force could be calculated as the ordinary
van der Waals force between bodies at rest, whose dielectric functions depend on
the velocity. Such an approach is completely unjustified because it does not take
into account occurrence of excitations, which are the origin of the Casimir friction.
Later the same approachwas used byMahanty [136] to calculate the friction between
molecules. Both theories predictwrong non-zero friction (to linear order in the sliding
velocity) at absolute zero of temperature. The same nonzero linear friction at zero
temperature was predicted in [137, 138]. In these works the friction force between
small particle and plane surfacewas calculated, assuming that the friction force power
is equal to the radiation power absorbed by the moving particle. From the energy
conservation law it follows that in the laboratory reference frame the radiation power
absorbed bymoving particles is equal (with opposite sign) to the heating power inside
the semi-infinite body, but it does not take into account the heating power generated
inside the particle. The latter heat generation is equal to the radiation power absorbed
by the particle in the rest reference frame of the particle. The right expression for
the energy dissipation due to friction can be obtained as the difference between
the radiation power absorbed by the particle in the rest reference frame of particle,
and in laboratory reference frame [139] (see also Appendix H). A correct treatment
within this approach gives a vanishing linear friction at T = 0 K. Schaich and Harris
developed a theory [140] based on Kubo formula for the friction coefficient. This
theory predicts vanishing linear friction at T = 0 K. However, in their calculations
they made the series of unphysical approximations, and, as a result, they did not
obtain the correct formula, establishing the connection of the friction coefficient
with the reflection amplitude.

In [141–143], different approaches were used to calculate the friction force, and
different results were obtained. The authors of these papers did not present sufficient
details in order to determine exactly where there is an error. In the work by Polevoi
[142], the friction forcewas determined from the calculation of the energy dissipation
due to friction. However, as above, such an approach requires delicate considerations.
All these papers predict a vanishing friction in the non-retarded limit, which formally
can be obtained in the limit of infinite light velocity c → ∞. However, at least for
short distances, one can neglect the retardation effects when calculating Casimir
friction, as well as Casimir forces. Probably, the errors of these works are related to
the fact that the authors took into account the relativistic effects, but they neglected
the non-relativistic effects. Pendry [115] assumed zero temperature and neglected
retardation effects, in which case the friction depends cubically on the velocity.
Persson and Zhang [117] obtained the formula for friction in the limit of small
velocities and finite temperature, again neglecting retardation effects.

In [121, 128], we developed a theory of Casimir friction based on the dynamical
modification of the well known Lifshitz theory [42] of the Casimir interaction. In
the non-retarded limit and for zero temperature, this theory agrees with the results
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of Pendry [115]. Similarly, in the non-retarded limit and for small sliding velocity,
this theory agrees with the study of Persson and Zhang [117]. The calculation of
the Casimir friction is more complicated than that of the Casimir-Lifshitz force
(and of the radiative heat transfer), because it requires the determination of the
electromagnetic field between moving boundaries. The solution can be found by
writing theboundary conditions on the surface of eachbody in the rest reference frame
of this body. The relation between the electromagnetic fields in the different reference
frames is determined by the Lorenz transformation. In [121], the electromagnetic
field in the vacuum gap between the bodies was calculated to linear order in V/c.
These linear terms correspond to the mixing of electromagnetic waves with different
polarizations. The waves with different polarization are statistically independent.
Thus, after averaging the stress tensor over the fluctuating electromagnetic field, the
mixing terms will give a contribution to the friction force in the order of (V/c)2.
In [121], the mixing terms were neglected, and the resulting formula for friction
force is accurate to order (V/c)2. The same approximation was used in [144] to
calculate the frictional drag between quantum wells, and in [99, 100] to calculate
the friction force between plane parallel surfaces in normal relative motion. For the
case of resonant photon tunneling between surface localized states, normal motion
gives drastically different result from parallel relative motion. It was shown that the
friction may increase by many orders of magnitude when the surfaces are covered by
adsorbates, or can support low-frequency surface plasmons. In this case, the friction
is determined by resonant photon tunneling between adsorbate vibrational modes, or
surface plasmon modes. When one of the bodies is sufficiently rarefied, this theory
gives the friction between aflat surface and a small particle,which, in the non-retarded
limit, is in agreementwith the results of Tomassone andWidom [145]. A theory of the
Casimir friction between a small particle and flat surface, which takes into account
screening, non-local optic effects, and retardation effects, was developed in [139].
In [129], the correctness of the approach based on the dynamical modification of
the Lifshitz theory was confirmed (at least to linear order in the sliding velocity v)
by rigorous quantum mechanical calculations (using the Kubo formula for friction
coefficient).

In [128], we presented a fully relativistic theory to the Casimir-Lifshitz forces
and the radiative heat transfer at non-equilibrium conditions, when the bodies are at
different temperatures, and move relative to each other with an arbitrary velocity v.
In comparison with previous calculations [99, 100, 121, 144], we did not make any
approximation in the Lorentz transformation of the electromagnetic field. Thus, we
determined the field in one inertial reference frame from the field in another reference
frame, resulting in an exact solution of the electromagnetic problem. Knowing the
electromagnetic field, we calculated the stress tensor and the Poynting vector, which
determined theCasimir-Lifshitz forces and the heat transfer, respectively.Upongoing
to the limit when one of the bodies is rarefied, we obtained the interaction force and
the heat transfer for a small particle-surface configuration [150].

Philbin and Leonhardt [122, 123] (henceforth refereed to as PL) calculated the
Casimir force and friction due to electromagnetic fluctuations between two perfectly
flat parallel dielectric surfaces separated by a vacuum and moving parallel to each
other. In [122] PL used Lifshitz theory [42, 43, 107] and considered only the case of
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zero temperature. The spectral correlation function for a fluctuating electromagnetic
field was expressed via the Green function of the electromagnetic field, which was
assumed to have the same analytical properties as in the equilibrium case when
the relative sliding velocity is zero. The cause of the discrepancy with the previous
studies was identified as a failure by PL to correctly account for the modification of
the analytic structure for the Green function found in the complex frequency plane
when two surfaces are in relative motion [124].

The Lifshitz’s theory of the van der Waals-Casimir interaction [42, 43, 107] also
includes the effect of thermal radiation. The Casimir effect is therefore also taken
to describe forces that have a contribution from thermal fluctuations as well as from
the quantum fluctuations. The formalism developed by Lifshitz, however, cannot be
used for plates at different temperatures. The general case of different temperatures
for plates sliding relative to each other was considered in [123, 128].

In [123], PL used the same approach as in [128], which is based on a dynamic
modification of the Rytov’s theory. The theory presented in [123] contains, as a
limiting case, the theory from [122]. For the contributions to the Casimir forces
resulting from thermal fluctuations, PLobtained the same results as in [128].However
at zero temperature, PL obtained a result that contradicts a substantial body of earlier
results [10, 11, 115, 121, 128]. Their conclusion was that, at zero temperature,
where only quantum fluctuations occur, friction is precisely zero. In [126] (see also
Appendix F), we argued for the correctness of the earlier results and pointed to the
errors in the reasoning of PL.

Silveirinha proposed a theory of quantum friction [146–148], which contradicts
a large number of papers devoted to the study of quantum friction, assuming that
the fluctuating electromagnetic field created by moving bodies can be described by
superposition of eigenmodes. All bodies have fluctuations, which are defined in the
rest reference frame of the corresponding body. When bodies are moving relative to
each other there is also relative motion of these fluctuations. In the simplest case,
these fluctuations can be described by systems of harmonic oscillators. Thus, there
may be two systems of harmonic oscillatorsmoving relative to each other.When both
systems are at rest there are eigenmodes, but when they are sliding relative to each
other, the whole system has no eigenmodes because it is a time dependent problem.

At present, the Casimir friction has been studied in the configurations: plate–plate
[11, 99, 100, 115, 116, 121, 128, 149], neutral particle-plate [11, 118–120, 139, 145,
150–156], and neutral particle-blackbody radiation [11, 128, 155, 157–161]. While
the predictions of the theory for the Casimir forces were verified in many experi-
ments [89], the detection of the Casimir friction is still a challenging problem for
experimentalists. However, the frictional drag between quantumwells [112–114] and
graphene sheets [162, 163], and the current–voltage dependence of non-suspended
graphene on the surface of the polar dielectric SiO2 [164], were accurately described
using the theory of the Casimir friction [144, 149, 165]. At present frictional drag
experiments [112–114, 162–164] have been performed only for weak electric fields,
when the induced drift motion of the free carriers is smaller than the threshold veloc-
ity for quantum friction. Thus, in these experiments, the frictional drag is dominated
by the contributions from thermal fluctuations. However, the measurements of the
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current–voltage dependence [164] were performed for the high electric field, where
the drift velocity is above the threshold velocity, and where the frictional drag is
dominated by quantum fluctuations [149, 165]. For reviews of the Casimir friction
see [10, 11].

The non-contact friction was investigated for the first time by a non-contact force
microscopy setup [19–21]. Thus, Gotsmann and Fuchs [20] reported measurements
of a long-range non-contact friction between an aluminum tip and a gold (111)
surface. The friction force, F acting on the tip was found to be proportional to the
velocity v, F = �v. Formotion of the tip normal to the surface the friction coefficient
�(d) = C ·d−3, where d is the tip-sample spacing andC = (8.0+5.5

−4.5)×10−35 N sm2.
Later Stipe et al. [21] studied non-contact friction between a gold surface and a gold-
coated cantilever as a function of tip-sample spacing d, temperature T , and the
bias voltage V . For vibration of the tip parallel to the surface they found �(d) =
α(T )(V 2+V 2

0 )/dn , where n = 1.3±0.2, and V0 ∼ 0.2V.At 295 K, for the spacing
d = 100 Å they found � = 1.5 × 10−13 kgs−1, which is ∼500 times smaller than
that reported in [20] at the same distance using a parallel cantilever configuration.
An applied voltage of 1V resulted in a friction � = 3 × 10−12 kg/s at 300K and
d = 20 nm. Using the fluctuation-dissipation theorem, the force fluctuations were
interpreted in terms of near-surface fluctuating electric fields interacting with static
surface charge. Recently, Kuehn et al. [24] observed a large non-contact friction
over polymer thin films. In [21], the non-contact friction has been also measured
for fused silica samples. Near the silica surface, the friction was found to be an
order of magnitude larger than for the gold sample. The silica sample had been
irradiated with γ rays, which produce E ′ centers (Si dangling bonds) at a density of
7× 1017 cm−3. Although the sample is electrically neutral overall, the E ′ centers are
known to be positively charged, creating enhanced field inhomogeneity and causing
the non-contact friction to rise by another order of magnitude.

Kisiel et al. [166] studied non-contact friction on a Nb film across the critical tem-
perature, Tc using a highly sensitive cantilever oscillating in the pendulum geometry
in ultrahigh vacuum. The friction coefficient � is reduced by a factor of three when
the sample enters the superconducting state. The temperature decay of � is found
to be in good agreement with the Bardeen-Cooper-Schrieffer theory, meaning that
friction has an electronic nature in the metallic state, whereas phononic friction dom-
inates in the superconducting state. This is supported by the dependence of friction
on the probe-sample distance, d, and on the bias voltage, V � is found to be pro-
portional to d−1 and V 2 in the metallic state, whereas � ∼ d−4 and � ∼ V 4 in the
superconducting state. Therefore, phononic friction becomes the main dissipation
channel below the critical temperature.

Dorofeyev et al. [19] claim that the non-contact friction observed in [19, 20] is
due to Ohmic losses mediated by the fluctuating electromagnetic field. This claim is
controversial, however, since the Casimir friction for good conductors such as copper
has been shown [121, 139, 144, 167] to be many orders of magnitude smaller than
the friction observed by Dorofeyev et al. In [168], it was proposed that in comparison
with good conductors, the Casimir friction may be strongly enhanced between the
high resistivity mica substrate and silica tip. However, in the experiment et al. the
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mica substrate and silica tip were coated by gold films thick enough to completely
screen the electromagnetic interaction between the underlying dielectrics.

At small separation d ∼ 1 nm, resonant photon tunneling between adsorbate
vibrationalmodes on the tip and the samplemay increase theCasimir frictionby seven
orders of magnitude in comparison with the good conductors with clean surfaces
[99, 100]. However, the distance dependence (∼1/d6) is stronger than that observed
experimentally [21].

In [169], a theory of non-contact friction was suggested where by the friction
arises fromOhmic losses associatedwith the electromagnetic field created bymoving
charges induced by the bias voltage. In the case of a spherical tip, this theory predicts
the same weak distance dependence of the friction as observed in the experiment,
but the magnitude of the friction is many orders of magnitude smaller than is found
experimentally. In [170, 171], we have shown that the electrostatic friction can be
greatly enhanced if there is an incommensurate adsorbate layer that can exhibit
acoustic vibrations. This theory gives a tentative explanation for the experimental
non-contact friction data [21]. The large non-contact friction observed in [24, 166]
over a thin film of Nb can be also explained by the electrostatic friction [166, 172].



Chapter 2
Surface Electromagnetic Waves

As will be shown in the subsequent sections, reflection and emission of electromag-
netic waves from surfaces of solids significantly depend on the presence of localized
surface modes, which include surface electromagnetic waves. This particular type of
wave exists at the interface between two different media. An electromagnetic surface
wave propagates along the interface and decreases exponentially in the perpendicular
direction. Surface waves due to a coupling between the electromagnetic field and a
resonant polarization oscillation in the material are called surface polaritons. From
a microscopic point of view, the surface waves at the interface of a metal is a charge
density wave or plasmon. They are therefore called surface plasmon polaritons. At
the interface of a dielectric, the surface wave is due to the coupling of an optical
phonon with the electromagnetic field. It is thus called surface phonon polariton.
Plasmon polaritons and phonon polaritons can also exist in the whole volume of
the material and are called polaritons. More details on this subject can be found in
textbooks such as Kittel [173, 174] and Ziman [175]. In what follows, we will focus
our attention on surface polaritons propagating along a plane interface. Excellent
reviews of the subject can be found in [176–179].

2.1 Surface Polaritons

Let us now study the nature of surface polaritons in the case of a plane interface
separating two linear, homogeneous and isotropic media, with different dielectric
constants. The system considered is depicted in Fig. 2.1.

The medium 1 (dielectric constant ε1 and magnetic constant μ1) fills the upper
half-space z > 0 whereas medium 2 (dielectric constant ε2 and magnetic constant
μ2) fills the lower half-space z < 0. The two media are supposed to be local and
dispersive so that their complex dielectric and magnetic constants only depend on ω.
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Fig. 2.1 A plane interface separating medium 1 (dielectric constant ε1, magnetic constant μ1) and
medium 2 (dielectric constant ε2, magnetic constant μ2)

The three directions x, y, z shown in Fig. 2.1 are characterized by their unit vectors
x̂, ŷ, ẑ. A point in space will be denoted R = (x, y, z) = (r, z). Similarly, a wave
vector k = (kx , ky, kz) = (q, kz) where q is the component parallel to the interface
and kz is the component in the z direction.

A surface wave is a particular solution of Maxwell’s equations, which propa-
gates along the interface and decreases exponentially in the perpendicular directions.
Because of the translational invariance of the system, it can be written in the form

E1(R, z) =
⎛
⎝

Ex,1

Ey,1

Ez,1

⎞
⎠ exp [i(q · r + kz1z)], (2.1)

E2(R, z) =
⎛
⎝

Ex,2

Ey,2

Ez,2

⎞
⎠ exp [i(q · r − kz2z)] (2.2)

where

kz1 =
√

ε1μ1

(ω

c

)2 − q2, Imkz1 > 0, (2.3)

kz2 =
√

ε2μ2

(ω

c

)2 − q2, Imkz2 > 0, (2.4)

where c is the speed of light in vacuum. We now look for the existence of surface
waves with s (TE: transverse electric field) or p (TM: transverse magnetic field)
polarization. In what follows, we shall assume that the wave propagates along the
y-axis.
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2.1.1 s-Polarization (TE)

In s-polarization, the electric field is perpendicular to the yz plane. The electric field,
E, is thus parallel to the x direction

E1(R,ω) = Ex,1x̂ exp[i(q · r + kz1z)], (2.5)

E2(R,ω) = Ex,2x̂ exp[i(q · r − kz2z)]. (2.6)

The magnetic field is then derived from the Maxwell equation H = −i∇ ×
E/(μ(ω)ω). The continuity conditions of the parallel components of the fields E
and H across the interface yield the following equations:

Ex,1 − Ex,2 = 0, (2.7)

kz1
μ1

Ex,1 + kz2
μ2

Ex,2 = 0. (2.8)

The system of (2.7) and (2.8) has a non-trivial solution if the coefficient determinant
is equal to zero. This gives

μ2kz1 + μ1kz2 = 0. (2.9)

Taking into account (2.3) and (2.4), one obtains from (2.9) the surface wave
dispersion relation for s-polarization:

q2 = ω2

c2
μ1μ2[μ2ε1 − μ1ε2]

μ2
2(ω) − μ2

1(ω)
. (2.10)

For the particular case when ε1 = ε2 = ε, the dispersion relation takes the simple
form:

q2 = ω2

c2
ε

μ1μ2

μ2(ω) + μ1(ω)
. (2.11)
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2.1.2 p-Polarization (TM)

For p-polarization, the electric field lies in the yz-plane and can be written in the
form:

E1(R, z) =
⎛
⎝

0
Ey,1

Ez,1

⎞
⎠ exp [i(q · r + kz1z)], (2.12)

E2(R, z) =
⎛
⎝

0
Ey,2

Ez,2

⎞
⎠ exp [i(q · r − kz2z)]. (2.13)

The continuity of the tangential electric field yields

Ey,1 − Ey,2 = 0. (2.14)

The continuity of the z-component of displacement field yields:

ε1Ez,1 = ε2Ez,2. (2.15)

The condition of transversality of the electromagnetic waves gives

qEy,1 + kz1Ez,1 = 0, qEy,2 − kz2Ez,2 = 0. (2.16)

Using (2.14) and (2.15) in (2.16), we get

ε2kz1 + ε1kz2 = 0. (2.17)

Taking into account (2.3) and (2.4), one obtains from (2.17) the surface wave
dispersion relation for p-polarization:

q2 = ω2

c2
ε1ε2[μ1ε2 − μ2ε1]

ε22 − ε21
(2.18)

For the particular case where μ1 = μ2 = μ, the dispersion relation takes the
simple form:

q2 = ω2

c2
μ

ε1ε2

ε1 + ε2
. (2.19)
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2.1.3 Some Comments

1. When the media are non-magnetic, there are no surface waves in s-polarization.
Indeed, the imaginary part of the z-components kzi is always positive, so that
kz1 + kz2 cannot be zero.

2. At a material–vacuum interface (ε1 = μ1 = 1), the dispersion relation for p-
polarization has the form

q = ω

c

√
ε2

ε2 + 1
. (2.20)

It follows that the wave vector becomes very large for a frequency such that
ε2 + 1 = 0.

3. The conditions (2.9) and (2.17) correspond to the poles of the Fresnel reflection
amplitude. Finding these poles is an alternative and simple way to find the dis-
persion relation. This is a particularly useful approach for the multilayers system.

4. For non-lossy media, one can find a real q corresponding to a real ω. This mode
exists only if ε2 < −1 in the case of an interface separating a vacuum from a
material.

5. In the presence of losses, the dispersion relation yields two equations but both
frequency and wavector can be complex, so that there are four parameters. Two
cases are of practical interest: (i) a real frequency and a complex wavevector, (ii)
a complex frequency and a real wavector. These two choices lead to different
shapes of the dispersion relation as discussed in [18–21]. The imaginary part of
the frequency describes the finite lifetime of the mode due to losses. Conversely,
for a given real frequency, the imaginary part of the lateral component of wave
vector yields a finite propagation length along the interface.

6. The dispersion relation (2.20) shows that for a real dielectric constant ε2 < −1,
q > ω/c. This mode cannot be excited by a plane wave whose wavevector is
such that q < ω/c. In order to excite this mode, it is necessary to increase the
wavevector. One can use a prism [14, 22, 23] or a grating [176].

2.1.4 Dispersion Relation

In this subsection, we will consider two types of surface waves: surface plasmon
polaritons and surface phonon polaritons. Surface plasmon polaritons are observed
at surfaces separating a dielectric from a medium with a gas of free electrons such
as a metal or a doped semiconductor. The dielectric function of the latter can in the
simplest case be modeled by a Drude model:

ε(ω) = ε∞ − ω2
p

ω2 + i�ω
, (2.21)
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Fig. 2.2 Dispersion relation for surface phonon polariton at a SiC/Vacuum interface. The flat
asymptote is situated at ωasym = 1.784 × 1014 s−1. The dashed line represents the light cone,
above which a wave is propagating and below which a wave is evanescent

where ωp is the plasma frequency and � accounts for the losses. Using this model
and neglecting the losses, we find that the resonance condition ε(ω) + 1 = 0 yields
ω = ωp/

√
2. For most metals, this frequency lies in the near UV so that these surface

waves are difficult to excite thermally. By contrast, surface phonon polaritons can be
excited thermally because they exist in the infrared. They have been studied through
measurements of emission and reflectivity spectra by Zhizhin and Vinogradov [179].

Let us study the dispersion relation of surface-phonon polaritons at a vac-
uum/SiliconCarbide (SiC) interface. SiC is a non-magneticmaterial whose dielectric
constant is well described by an oscillator model in the 2–22µm wavelength range
[180]:

ε(ω) = ε∞
(
1 + ω2

L − ω2
T

ω2
T − ω2 − i�ω

)
, (2.22)

where ε∞ = 6.7, ωL = 1.8 × 1014 s−1, ωT = 1.49 × 1014 s−1, and � = 8.9 × 1011

s−1. The dispersion relation at a SiC/vacuum interface is shown in Fig. 2.2.
This dispersion relation has been derived by assuming that the frequency,ω is com-

plex and the parallel wavevector, q = K , is real. This choice is well-suited to analyze
experimental measurements of spectra for fixed angles. The width of the resonance
peaks observed is related to the imaginary part of the frequency of the mode. We
note that the curve is situated below the light cone ω = cK so that the surface wave
is evanescent. We also observe a horizontal asymptote for ωasym = 1.784 × 1014 s−1

so that there is a peak in the density of electromagnetic states. We will see in
the next sections that the existence of surface modes at a particular frequency
plays a key role in many phenomena. Figure2.3 shows the dispersion relation
obtained when choosing a real frequency, ω, and a complex wavevector, q = K .
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Fig. 2.3 Dispersion relation for surface phonon polariton at a SiC/vacuum interface. Real ω chosen
so as to obtain a complex K . The x-axis is the real part of K . The horizontal asymptote is situated
at ωasym = 1.784×1014 s−1. The slanting dashed line represents the light line above which a wave
is propagating and below which a wave is evanescent

The x-axis is the real part of the complex wavevector. It can be seen that the shape
of the dispersion relation is significantly changed and a backbending of the curve is
observed. This type of behavior is observed experimentally when measurements are
taken at a fixed frequency and the angle is varied. Observed resonances in reflection
or emission experiments have an angular width, which is related to the imaginary
part of the complex wavevector.



Chapter 3
Theory of the Fluctuating
Electromagnetic Field

There are two approaches for studying the fluctuating electromagnetic field. In the
first approach, proposed by Rytov [5–7], it is assumed that the fluctuating electro-
magnetic field is created by the thermal and quantum fluctuations of current density
j f inside the medium. The average

〈
j f

〉 = 0, and the correlation function
〈
j f j f

〉 �= 0
is expressed through the dielectric properties of medium on the basis of fluctuation-
dissipative theorem. The electromagnetic field can be calculated from Maxwell’s
equations with the fluctuating current density as the source. Knowing the fluctuating
electromagnetic field, it is possible to calculate the Poynting’s vector, stress tensor,
and so on, and to determine the heat transfer between the bodies [13, 93, 94, 115],
the van derWaals–Casimir interaction [42, 43] and the Casimir friction [11]. Among
these problems, the calculation of Casimir friction is the most complex, because it
requires a complex electrodynamic problem with moving boundaries to be solved
[99, 100, 121, 128]. In the second approach the electromagnetic field is described
by Green’s functions [43], which can be calculated using quantum electrodynamics
[183]. For equilibrium problems, such as the Casimir interaction, both approaches
give the same result [43], although the Green’s functions method is more general. For
non-equilibrium problems, Rytov’s approach is simpler; therefore, correct results for
the radiative heat transfer [93] and Casimir friction between two parallel planes [10,
11, 100, 121] were for the first time obtained using this approach.

3.1 Electromagnetic Fluctuations at Thermodynamical
Equilibrium

3.1.1 Electromagnetic Fluctuations and Linear
Response Theory

In this section, the key formulas of linear response theory are given, which then
are used for the description of the fluctuations of electromagnetic fields. For a more
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detailed presentation of linear response theory and its application in the theory of the
electromagnetic fluctuations, see [8, 107, 184, 185]. Consider a quantum-mechanical
system characterized by a Hamiltonian H0 and the equilibrium density matrix

ρ = e−βH0

Sp(e−βH0)
, β = 1

kBT
, (3.1)

where kB is the Boltzmann constant and T is temperature. Let us perturb this system
by an external perturbation of the form

Hint = −
∫

d3r
∑

j

Â j (r, t) f j (r, t), (3.2)

where f j (r, t) are the external forces and Â j (r, t) are the dynamical variables of the
system under consideration. A straightforward perturbation theory shows that the
linear response of the variable A j to f j is given by

Ai (r, t) =
∑

j

∫
d3r ′

∫
dt ′αi j (r, r′, t − t ′) f j (r′, t ′), (3.3)

where αi j (r, r′, t − t ′) is the usual susceptibility tensor defined by

αi j (r, r′, t − t ′) = i

�
θ(t − t ′)

〈
Âi (r, t) Â j (r′, t ′) − Â j (r′, t ′) Âi (r, t)

〉
, (3.4)

where θ is the step function: θ(τ ) = 1 if τ > 0 and zero otherwise, and where 〈· · · 〉
denotes an average with respect to the equilibrium density matrix (3.1). It is clear
from (3.3) that

δAi (r,ω)

δ f j (r′,ω)
= αi j (r, r′,ω) = i

�

∫ ∞

0
dteiωt

〈
Âi (r, t) Â j (r′, 0) − Â j (r′, 0) Âi (r, t)

〉
, (3.5)

where the Fourier-transformed quantities are defined by

ψ(t) = 1

2π

∫ ∞

−∞
dωψ(ω)e−iωt . (3.6)

According to the fluctuation-dissipative theorem, the spectral function of fluctu-
ations is expressed through the generalized susceptibility αi j (r, r′)

ϕi j (r, r′,ω) = 〈Ai (r)A j (r′)〉ω = i�

2
(α∗

j i (r
′, r,ω) − αi j (r, r′,ω)) coth

(
β�ω

2

)
,

(3.7)
where 〈Ai (r)A j (r)′〉ω is the Fourier-component of the symmetrized correlation func-
tion
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ϕi j (r, r′, t − t ′) = 1

2
〈 Âi (r, t) Â j (r′, t ′) + Â j (r′, t ′) Âi (r, t)〉, (3.8)

Equation (3.7) can be expressed through the fictitious random forces,whose action
would give the result, equivalent to the spontaneous fluctuations of the values of
Ai (r, t). We write for this

Ai (r,ω) =
∑

j

∫
d3r ′αi j (r, r′,ω) f j (r′,ω), (3.9)

fi (r,ω) =
∑

j

∫
d3r ′α−1

i j (r, r′,ω)A j (r′,ω), (3.10)

so that

〈 fi (r) f j (r′)〉ω =
∑

l

∫
d3r ′′α−1

il (r, r′′,ω)×

×
∑

m

∫
d3r ′′′α−1∗

jm (r′, r′′′,ω) 〈Al(r′′)Am(r′′′)〉ω. (3.11)

Using (3.7) and taking into account that

∫
d3r ′′α−1

il (r, r′′,ω)αl j (r′′, r′,ω) = δi jδ(r − r′),

we get

〈 fi (r) f j (r′)〉ω = i�

2
(α−1

i j (r, r′,ω) − α−1∗
j i (r′, r,ω)) coth

(
β�ω

2

)
. (3.12)

If the variables Ai and A j have the same signature under time reversal, then
αi j (r, r′,ω) = α j i (r′, r,ω). In this case, (3.7) can be rewritten in the form

〈Ai (r)A j (r)′〉ω = �Imαi j (r, r′,ω) coth

(
β�ω

2

)
. (3.13)

If variables Ai and A j have opposite parity, then αi j (r, r′,ω) = −α j i (r′, r,ω). In
this case, (3.7) can be rewritten in the form

〈Ai (r)A j (r)′〉ω = −i�Reαi j (r, r′,ω) coth

(
β�ω

2

)
. (3.14)
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For the problem of electromagnetic fluctuations, the external probes will be taken
to be external polarization Pext (r, t) and external magnetization Mext (r, t). The
Hamiltonian Hext , in the present case is

Hint = −
∫

d3r
[
Pext (r, t) · Ê(r, t) + Mext (r, t) · Ĥ(r, t)

]
, (3.15)

where Ê(r, t) and Ĥ(r, t) are the second-quantized operators corresponding to the
electric and magnetic field, respectively. We now introduce four types of response
functions:

DEE
i j (r, r′,ω) = δEi (r,ω)

δPext
j (r′,ω)

, (3.16)

DHE
i j (r, r′,ω) = δHi (r,ω)

δPext
j (r′,ω)

, (3.17)

DEH
i j (r, r′,ω) = δEi (r,ω)

δMext
j (r′,ω)

, (3.18)

DHH
i j (r, r′,ω) = δHi (r,ω)

δMext
j (r′,ω)

. (3.19)

and we introduce the corresponding symmetrized correlation functions

SEE
i j (r, r′, t − t ′) = 1

2

〈
Êi (r, t)Ê j (r′, t ′) + Ê j (r′, t ′)Êi (r, t)

〉
, (3.20)

SHE
i j (r, r′, t − t ′) = 1

2

〈
Ĥi (r, t)Ê j (r′, t ′) + Ê j (r′, t ′)Ĥi (r, t)

〉
, (3.21)

SEH
i j (r, r′, t − t ′) = 1

2

〈
Êi (r, t)Ĥ j (r′, t ′) + Ĥ j (r′, t ′)Êi (r, t)

〉
, (3.22)

SHH
i j (r, r′, t − t ′) = 1

2

〈
Ĥi (r, t)Ĥ j (r′, t ′) + Ĥ j (r′, t ′)Ĥi (r, t)

〉
. (3.23)

Taking into account that E(H) is an even (odd) variable under time reversal, from
the fluctuation-dissipation theorem we get

〈Ei (r)E j (r′)〉ω = �ImDEE
i j (r, r′,ω) coth

(
β�ω

2

)
, (3.24)

〈Hi (r)Hj (r′)〉ω = �ImDHH
i j (r, r′,ω) coth

(
β�ω

2

)
, (3.25)
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〈Hi (r)E j (r′)〉ω = −i�ReDHE
i j (r, r′,ω) coth

(
β�ω

2

)
, (3.26)

〈Ei (r)Hj (r′)〉ω = −i�ReDEH
i j (r, r′,ω) coth

(
β�ω

2

)
. (3.27)

Thus, the four response functions defined by (3.16)–(3.19) completely determine
the correlation functions. Note that the expressions (3.24) and (3.25) are real, and
expression (3.26) and (3.27) imaginary. Thismeans that the time correlation functions
of the components of E (and the components of H) are even functions of the time
t = t1 − t2 (as must be for the correlation between two functions, both of which are
even or odd with respect to the time reversal). However, the time correlation function
of the components E with the components of H is odd on the time (as must be for
two functions, one of which is even, and another is odd relative to time reversal).
Hence, it follows that the correlation functions between E and H at identical time
are not correlated with each other (odd function t becomes zero at t = 0). Thus
the average values of any bilinear product of E and H (at identical of time), for
example the Poynting’s vectors will vanish. The latter fact is, however, obvious: in
a medium that is in the thermal equilibrium and invariant relative to time reversal,
internal macroscopic energy flows cannot prevail.

Equation (3.24) can be expressed through the fictitious random components of
polarization, whose action would give the result, equivalent to the spontaneous fluc-
tuations of the values of Ei (r, t). We write for this

Ei (r,ω) =
∑

j

∫
d3r ′Di j (r, r′,ω)Pj (r′,ω), (3.28)

Pi (r,ω) =
∑

j

∫
d3r ′D−1

i j (r, r′,ω)E j (r′,ω), (3.29)

where Di j (r, r′,ω) = DEE
i j (r, r′,ω). For a non-magnetic medium, B = H

(Gaussian’s system of units is used) and

D(r) =
∫

d3r′ ↔
ε(r, r′, ω)E(r′), (3.30)

where
↔
ε(r, r′,ω) is the dielectric diadic of surrounding media. In this case, from the

Maxwell’s equations:

∇ × E = i
ω

c

(
B + 4πMext

)
, (3.31)

∇ × H = −i
ω

c

(
D + 4πPext

)
, (3.32)
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it follows that the generalized susceptibility Di j (r, r′,ω) obeys

(∇i∇k − δik∇2
)
Dkj (r, r′,ω) −

(ω

c

)2
∫

d3x ′′εik(r, r′′,ω)Dkj (r′′, r′,ω) =

=
(
4πω2

c2

)
δi jδ(r − r′), (3.33)

(∇′
j∇′

k − δ jk∇′2) Dik(r, r′,ω) −
(ω

c

)2
∫

d3x ′′εk j (r′′, r′,ω)Dik(r, r′′,ω) =

=
(
4πω2

c2

)
δi jδ(r − r′). (3.34)

From (3.33) and (3.34) we get

D−1
i j (r, r′,ω) =

(
c2

4πω2

) [(∇i∇ j − δik∇2
)
δ(r − r′) −

(ω

c

)2
εi j (r, r′,ω)

]
.

(3.35)
Taking into account (3.12) and (3.24), we get

〈Pi (r)Pj (r′)〉ω = �

4π
Imεi j (r, r′,ω) coth

(
β�ω

2

)
. (3.36)

Since the current density ji (r,ω) = −iωPi (r,ω), from (3.36) we get

〈 ji (r) j j (r′)〉ω = �ω2

4π
Imεi j (r, r′,ω) coth

(
β�ω

2

)
. (3.37)

3.1.2 Electromagnetic Fluctuations in a Homogeneous
Medium

For a spatially homogeneous medium the functions Di j and εi j in (3.33) depend only
on difference r−r′. Using the Fourier-transformation the differential equation (3.33)
can be transformed to the system of algebraic equations

(
ki kk − δikk

2
)
Dkj (k,ω) +

(ω

c

)2
εik(k,ω)Dkj (k,ω) =

= −
(
4πω2

c2

)
δi j . (3.38)

For the long-wave fluctuations, for which the wavelength is considerably larger
than interatomic distance (e.g., at room temperatures the characteristic wavelength of
thermal radiation λT = c�/kBT ≈ 10−5m), it is possible to neglect the dependence
of εi j on k. In this case, for a spatially homogeneous medium, it is possible to assume
εi j (k,ω) = δi jε(ω). In this case, the solution of equations (3.38) has the form
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Dik(ω,k) = − 4πω2/c2

ω2ε(ω)/c2 − k2

[
δik − c2ki kk

ω2ε(ω)

]
. (3.39)

In the vacuum ε(ω) = 1. But since in every material medium the sign of Imε(ω)

coincides with the sign of ω, then the vacuum corresponds to ε → 1 + i0 · signω.
In this case, we get

Dik(ω,k) = − 4πω2/c2

ω2/c2 − k2 + i0 · signω

[
δik − c2ki kk

ω2

]
. (3.40)

For spatially homogeneous unrestricted medium, the functions of Dik depend
only on the difference r − r′, and they are even function of this variable ((3.33) and
(3.34) contain only second order derivatives, and therefore Dik(ω, r) and Dik(ω,−r)
satisfy identical equations). Using the Fourier-transformation on r on both sides of
(3.24), we get

〈
Ei (r)Ek(r′)

〉
ωk = �ImDi j (k,ω) coth

(
β�ω

2

)
. (3.41)

For an isotropic nonmagnetic medium (μ = 1), the function Dik(k,ω) is determined
by (3.39). The problem of finding the spatial correlation function of fluctuations is
reduced to the calculation of the integral

Dik(r,ω) =
∫

d3k

(2π)3
eik·rDik(k,ω). (3.42)

The integration is performed using formulas

∫
d3k

(2π)3

eik·r

k2 + κ2
= e−κr

4πr
, (3.43)

∫
d3k

(2π)3

ki kkeik·r

k2 + κ2
= − ∂2

∂i∂k

e−κr

4πr
. (3.44)

The first of which is obtained by taking the Fourier-transformation of both side of
the known equality

(∇2 − κ2)
e−κr

r
= −4πδ(r), (3.45)

and the second is obtained by the differentiation of the first. As a result, we get

Dik(r,ω) =
[
ω2

c2
δik + ∂2

ε∂i∂k

]
1

r
exp

(
−ω

c

√−εr
)

, (3.46)
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where r = |r − r′|, and square-root must be taken with such sigh that Re
√−ε > 0.

For vacuum ε = 1, and
√−ε = −i . Hence according to (3.24)

〈
Ei (r)Ek(r′)

〉
ω

= �coth (β�) Im

{
1

ε

[
ω2

c2
δik + ∂2

∂i∂k

]
1

r
exp

(
−ω

c

√−εr
)}

. (3.47)

After contraction over indexes i, k (and using (3.45)), we get

〈
E(r) · E(r′)

〉
ω

= 2� coth

(
β�ω

2

)
Im

{
1

ε

[
εω2

c2r
exp

(
−ω

c

√−εr
)

− 2πδ(r)
]}

.

(3.48)
Spectral correlation function for fluctuations of the magnetic field can be calculated
from (3.47) taking into account the equality

〈
Bi (r)Bj (r′)

〉
ω

= c2

ω2
eimle jnk∇m∇′

n

〈
El(r)Ek(r′)

〉
ω
, (3.49)

where eiml and eink are the unit fully antisymmetric tensors. Using (3.49) leads
to correlation functions of the magnetic field, which differ from (3.47) and (3.48)
by the absence of the coefficient 1/ε before the square bracket. In this case, the δ-
function term under the sign Im in (3.48) becomes real and drops out. The appearance
of the imaginary part of ε in (3.47) and (3.48) shows the connection between the
electromagnetic fluctuations and the energy dissipation in the medium. Note that
even in the limit Imε → 0 (3.47) and (3.48) give non-vanishing expressions. This
is connected with order of transition to two limits—to the infinite size of medium
and vanishing Imε. Since in the infinite medium, even infinitesimally small Imε
leads eventually to energy absorption, then the used order of transitions to the limits
concerns to physically transparent environment, in which, as in any real medium,
non-vanishing absorption still exists.

Let us make, for example, the specified transition in the formula (3.48). For this
purpose we notice, that at small positive Imε (at ω > 0)

√−ε ≈ −i
√
Reε

(
1 + i

Imε

2Reε

)

(taking into account requirement Re
√−ε > 0). Therefore, in the limit Imε → 0 we

get

〈
E(r) · E(r′)

〉
ω

= 1

n2
〈
H(r) · H(r′)

〉
ω

= 2ω2
�

c2r
sin

ωnr

c
coth

(
β�ω

2

)
, (3.50)

where n = √
ε is a real refraction index. Due to absence of term with δ-function this

expression remains finite at r = r′:
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〈
E2

〉
ω

= 1

n2
〈
H2

〉
ω

= 2ω3
�n

c3
coth

(
β�ω

2

)
. (3.51)

Limiting transition to a case of the transparent medium can be performed at earlier
stage of calculations. Taking into account that the sign of Imε(ω) coincides with the
sign of ω, in the limit of transparent medium (3.39) takes the form

Dik(ω,k) = − 4πω2/c2

ω2n2/c2 − k2 + i0 · signω

[
δik − c2ki kk

ω2n2

]
. (3.52)

The imaginary part of this function is can be obtained using the formula

−Im
1

ω2n2/c2 − k2 + i0 · signω
= π · signω δ

(
ω2n2

c2
− k2

)
=

= π

2k

{
δ
(nω

c
− k

)
− δ

(nω

c
+ k

)}
,

As a result we get
〈Ei (r)Ek(r′)〉ωk =

= 2π2
�

k

(
ω2

c2
δik − ki kk

n2

) {
δ
(ωn

c
− k

)
− δ

(ωn

c
+ k

)}
coth

(
β�ω

2

)
. (3.53)

The arguments of the δ-functions in this expression have simple physical meaning:
they show that the fluctuation of field with the given value k are propagated in the
space with the velocity c/n, i.e. with the velocity of propagation of electromagnetic
waves in the medium. Using the inverse Fourier-transformation, it is possible from
(3.53) to get again (3.47).

The energy density of the fluctuating electromagnetic field in the transparent
medium (with μ = 1), in spectral interval dω is given by [191]

u(ω)dω = 1

8π

[
2

〈
E2

〉
ω

d(ωε)

dω
+ 2

〈
H2

〉
ω

]
dω

2π
. (3.54)

The factor 2 in the square brackets is connected with fact that in the calculation of
the energy density of the electromagnetic field, the integration is assumed only over
positive values of ω. At the same time, in calculating energy with the use of spectral
correlation function, theω integration is assumed from−∞ to∞. The transformation
of integration over infinite interval to semi-infinite interval gives an additional factor
2. Using (3.52) in (3.54), we get

u(ω)dω =
[

�ω

2
+ �ω

eβ�ω − 1

]
ω2n2

π2c3
d(nω)

dω
dω. (3.55)
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The first term in the brackets is connected with the zero-point energy of the field. The
second term gives energy density of the thermodynamically equilibrium electromag-
netic radiation in the transparent medium, i.e., the energy of black-body radiation.
This part of the formula could be also obtained without consideration of fluctua-
tions, by the corresponding generalization of the Planck formula for the black-body
radiation in vacuum. According to the latter, the energy density of black-body
radiation in the of the wave-vectors volume d3k is given by the formula

�ω

eβ�ω − 1

2d3k

(2π)3

where the factor 2 takes into account two directions of polarization. To obtain the
spectral density of energy it is necessary to replace d3k on 4πk2dk and to substitute
k = nω/c, i.e.:

k2dk = k2
dk

dω
dω = ω2n2

c3
d(nω)

dω
dω,

what gives the required result.

3.2 Electromagnetic Fluctuations for Nonequilibrium
Systems

In Sect. 3.1 the theory of electromagnetic fluctuations was presented for systems
in thermodynamic equilibrium. However, it is possible to develop the theory of
electromagnetic fluctuations for nonequilibrium systems. This theory is based on
the fluctuation-dissipation theorem for the current density. Assuming local thermal
equilibrium, it is possible to determine the statistical properties of the currents. This
approach composes the content of the Rytov’s theory [5–7], which is based on the
introduction of “random” current density into theMaxwell’s equations (similar to the
“random force in the theory of Brownian motion of particle). For the monochromatic
field (time factor exp(−iωt)) in a dielectric, nonmagnetic medium, these equations
are:

∇ × E = i
ω

c
B, (3.56)

∇ × B = −i
ω

c
D+4π

c
j f , (3.57)

where E, D, B are the electric and electric displacement field, and the magnetic
induction field, respectively. In Rytov’s theory the fluctuating current density has
statistical properties determined by the fluctuation-dissipative theorem. According
to fluctuation-dissipative theorem the average value of the product of components j f

is determined by the formula (3.37), which we rewrite in the form
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〈
j fi (r,ω) j f ∗k (r′,ω′)

〉
=

〈
j fi (r) j f ∗k (r′)

〉

ω
δ(ω − ω′), (3.58)

〈
j fi (r) j f ∗k (r′)

〉

ω
= �

(2π)2

(
1

2
+ n(ω)

)
ω2Imεik(r, r′,ω), (3.59)

n(ω) = 1

e�ω/kBT − 1
. (3.60)

InRytov’s theory,whichwill be used in the following for the nonequilibrium systems,
the Fourier-transformation of the correlation functions is defined by

ψ(t) =
∫ ∞

−∞
dωψ(ω)e−iωt . (3.61)

For this reason in (3.59) in comparison with (3.37) appears the additional factor
1/2π. From Maxwell’s equations it follows that the component of the electric field,
created by the random current density j f , is given by

Ei (r) = i

ω

∫
d3r′Dik(r, r′,ω) j fk (r′), (3.62)

where summation over repeated indexes is assumed. The Green’s functions of the
electromagnetic field, Di j (r, r′,ω), obey (3.33) and (3.34).

Using (3.33), (3.34) and (3.59), we can calculate the spectral correlation function
of the electric field, created by a body at a temperature of T by the fluctuations of
current density inside the body [13] (see Appendix A):

〈
Ei (r)E∗

j (r
′〉

ω
= �

8π2 coth

(
�ω

2kBT

) ∫
dr′′

∫
dr′′′Imεkl(r′′, r′′′)Dik(r, r′′)D∗

jl (r
′, r′′′)

= �c2

16π2iω2 coth

(
�ω

2kBT

)∫
dS′′

1l

(
Dik(r, r′′)∇′′

l D
∗
jk(r

′, r′′) −
− D∗

jk(r
′, r′′)∇′′

l Dik(r, r′′)
)
, (3.63)

where the points r and r′ are outside the body. Here we have transformed an integral
over the volume of the body into an integral over the surface of the body. For the
evanescent waves the surface of integration can be moved to infinity. Thus, using
(3.33) and (3.34), and taking into account that the surface integral vanishes in this
case, we get

〈
Ei (r)E j (r′)

〉evan
ω

= �

2π
coth

(
�ω

2kBT

)
ImDi j (r, r′). (3.64)

In the non-retarded limit the formalism can be simplified. In this case the electric
field can be written as the gradient of an electrostatic potential, E(r) = −∇φ(r).
Thus the total Poynting’s vector becomes
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(Stotal)ω = c

8π

∫
dS · {〈[

E × B∗]〉
ω

+ c.c.
} =

= c

8π

∫
dS · {− 〈[∇ × (φB∗)

] + φ
[∇ × B∗]〉

ω
+ c.c.

} =

= iω

8π

∫
dS · ∇′ (〈φ(r)φ∗(r′)

〉
ω

− c.c.
)
r=r′ (3.65)

In the same approximation we can write

Dik(r, r′) = − i

ω
∇i∇′

k D(r, r′),

where the function D(r, r′) obeys the Poisson’s equation

�D(r, r′) = −4πδ(r − r′). (3.66)

Using the identities

Dik(r, r′′)
(∇′′

l D
∗
jk(r

′, r′′) − ∇′′
k D

∗
jl(r

′, r′′)
) =

= − i

ω
∇i∇′′

k

[
D(r, r′′)

(∇′′
l D

∗
jk(r

′, r′′) − ∇′′
k D

∗
jl(r

′, r′′)
)] −

− 1

c2
∇i∇′

j D(r, r′′)∇′′
l D

∗(r′, r′′). (3.67)

Equation (A.1) from Appendix A gives

〈
Ei (r)E j (r′〉

ω
= ∇i∇′

j

〈
φ(r)φ∗(r′)

〉
ω

, (3.68)

〈
φ(r)φ∗(r′)

〉
ω

= �

16π2iω2
coth

(
�ω

2kBT

) ∫
dS′′

1

{
D∗(r′, r′′)∇′′D(r, r′′) −

−D(r, r′′)∇′′D∗(r′, r′′)
}
. (3.69)

3.3 Fluctuating Field in the Non-retarded Limit

In this section we present some applications where retardation effects can be
neglected, and where the full formalism developed above is not necessary. We con-
sider the interaction between an external charged or neutral particle (e.g., an electron,
ion or an atom) and a solid with a flat surface. If the separation between the particle
and the surface is small enough retardation effects can be neglected and the electric
field can be described by a scalar potential.
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Consider first a classical point charge moving along a prescribed path x(t) outside
a body with a flat surface. The electric potential from the charge can be written as a
sum of evanescent plane waves of the form

φext = eqzei(q·x−ωt),

where q = (qx , qy) is a two-dimensional wavevector, and where the xy is in the
surface, while the positive z direction point outwards from the solid. The external
potential φext polarizes the solid, and the induced polarization charges give rise to a
potential which for z > 0 must take the form

φind = −g(q,ω)e−qzei(q·x−ωt).

The linear response function g(q,ω) determines the response of the solid to any
external space and time-varying potential. If the solid can be described by a local
scalar dielectric function ε(ω), then

g = ε − 1

ε + 1
. (3.70)

Since ε(ω) has beenmeasured formanymaterials, this expression for g is very useful.
One can show that (3.70) is exact in the limit q → 0 but holds only approximately
for finite q. Indeed, much effort has been devoted to calculating g(q,ω) for simple
metals using the jellium model and various mean-field approximations to account
for the interaction between the electrons. Furthermore, the structure of g(q,ω) is
constrained by exact sum rules.

So far, our discussion has assumed thatφext arises froman external (classical) time-
varying charge distribution. In the problems which interest us here it is crusial to treat
the particle and substrate quantum mechanically. The quantum degrees of freedom
of the polarizable solid can be included by assuming that the induced potential φind

arises from a set of quantized boson excitations (e.g., surface plasmons or low-energy
electron-hole pairs). The total Hamiltonin is then given by

H = p2

2m
+U (x) +

∑

qα

�ωqαb
+
qαbqα +

∑

qα

Cqαe
−qz

(
bqαe

iq·x + H.c.
)
. (3.71)

Here, x and p are the position and momentum operators of the external electron
with mass m, treated as a distinguishable particle, ωqα, b+

qα and bqα are the angular
frequency and the creation and anhilation operators for the boson with the quantum
number (q,α), and Cqα is an energy parameter which determines its coupling to
the external electron. The parameters ωqα and Cqα can be related to g(q,ω) in the
following way. Assume that we constrain the electron to move (classically) along a
prescribed path x(t). We assume that the particle starts far away at t = 0, then moves
close to the surface of the solid, and then far away again so that z(0) ≈ z(t0) ∼ ∞.
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From (3.71), we obtain the equation of motion for the boson operator bqα (in the
Heisenberg picture),

i ḃqα = ωqαbqα + Cqα

�
e−qz(t)eiq·x(t)

and the solution

bqα(t0) = e−iωqαt0bqα(0) − i
Cqα

�

∫ t0

0
dt e−iωqα(t0−t)e−qz(t)+iq·x(t) (3.72)

Using (3.71) and (3.72), we obtain the net energy transfer from the particle to the
substrate

�E = 〈
�|[H(t0) − H(0)]|�〉 =

∑

q

∫
dω ω

∑

α

|Cqα|2δ(ω − ωqα)|Fq(ω)|2/�,

(3.73)
where

Fq(ω) =
∫ t0

0
dt e−qz(t)ei[ωt−q·x(t)], (3.74)

and where we have used the fact that the interaction energy term in H is zero at t = 0
and t = t0 as a result of our assumptions. Note that (3.73) is independent of the state
|�〉 of the boson system at t = 0.

On the other hand, the energy transfer �E can also be expressed in terms of
g(q,ω) as follows. By solving Poisson’s equation

∇2φext = −4πeδ(x − x(t)),

one obtains [for z < z(t)] the external potential

φext =
∫

d2qdω φ̃ext(q,ω)ei(q·x−ωt)+qz,

where
φ̃ext = − e

4π2q
Fq(ω). (3.75)

The energy transfer from the external particle is obtained by integrating the Poynting
vector over the surface z = 0 and over time. This gives:

�E = 1

4π

∫
dt d2x

[
φ

∂

∂t

∂

∂z
φ

]
, (3.76)

where the total potential φ = φext + φind is given by [for 0 ≤ z < z(t)]
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φ =
∫

d2qdω φ̃ext(q,ω)
[
eqz − g(q,ω)e−qz

]
ei(q·x−ωt), (3.77)

Substituting (3.75) and (3.77) in (3.76) gives

�E = e2

2π2

∫
d2q

∫ ∞

0
dω

ω

q
|Fq(ω)|2Img(q,ω). (3.78)

Comparing (3.73) with (3.78), and replacing

∑

q

→ A

(2π)2

∫
d2q, (3.79)

where A is the surface area, gives

∑

α

|Cqα|2δ(ω − ωqα) = 2e2�

Aq
Img(q,ω) (3.80)

which is our fundamental result.
As a simple example, assume that g is given by (3.70) with ε = 1 − ω2

p/ω
2 as is

valid for simple metals. Then

g = ε − 1

ε + 1
= 1

1 −
(

ω
ωs

)2 ,

whereωs = ωp/
√
2 is the surface plasmon frequency. Lettingω → ω+i0, we obtain

Img = πωsδ(ω − ωs)/2,

and from (3.80), ωq = ωs and

|Cqα|2 = πe2�ωs/Aq.

We will now give some important applications, which all involves the interaction
between an external charged or neutral particle (e.g., an ion or an atom) with the
fluctuating electromagnetic field of a nearby solid with a flat surface. When the
separation between the external particle is small enough so that retardation effects
can be neglected, but still large enough that there is negligible overlap between the
wavefunction of the particle and the wavefunction of the atoms of the solid, these
problems can be studied using the Hamiltonian Equation (3.71) with (3.80).
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3.3.1 Interaction Energy Between a Charged Particle
and a Solid: Image Potential

Consider first an external charged point particle at rest at x = (0, 0, z). In this case,
we obtain

∑

qα

�ωqαb
+
qαbqα +

∑

qα

Cqαe
−qz

(
bqα + b+

qα

)
=

∑

qα

�ωqαB
+
qαBqα −

∑

qα

|Cqα|2 e−2qz

�ωqα

where we have introduced shifted boson operators Bqα = bqα+Cqαe−qz/�ωqα. Note
that Bqα and B+

qα satisfy the same commutation algebra as the original operators.
The last term is the relaxation energy and can be identified as the generalized static
image-potential energy,

Uim(z) = −
∑

qα

|Cqα|2 e
−2qz

�ωqα

Using (3.80), this can also be written as

Uim = − e2

2π2

∫
d2q

∫ ∞

0
dω

Img(q,ω)

qω
e−2qz .

However, according to the ω → 0 limit of the appropriate Kramers–Kronig relation,

∫ ∞

0
dω

Img(q,ω)

ω
= π

2
g(q, 0),

so that

Uim = −e2

2

∫ ∞

0
dq g(q, 0)e−2qz .

Using the classical expression (3.70) for g gives g(q, 0) = 1 and Uim = −e2/4z.
A more accurate expression for g is given by

g(q, 0) = e2qd⊥(0)

where d⊥(0) is the centroid of the induced charge density at the metal surface
(at zero frequency). This formula gives

Uim = − e2

4
[
z − d⊥(0)

] .

The quantity d⊥(0) has been tabulated by Lang and Kohn for the jellium model at
different values of the electron gas density parameter rs .



3.3 Fluctuating Field in the Non-retarded Limit 45

3.3.2 Interaction Energy Between a Neutral Particle
and a Solid: van der Waals Interaction

We consider now the interaction between a neutral particle; for example, an atom,
and a solid with a flat surface. The atom has many electrons with coordinates xi so
now (3.71) takes the form

H = H0 + V

where

H0 =
∑

i

p2i
2m

+U
(
x1, x2, ...

) +
∑

qα

�ωqαb
+
qαbqα

where U is the interaction energy between the electrons (and the ion) of the atom,
and

V =
∑

qα

Cqα

∑

i

e−qzi
(
bqαe

iq·xi + H.c.
)
. (3.81)

We now use second order pertubation theory to calculate the interaction energy
between the particle and the solid. We can write

�E = 〈A�|V |A�〉 − 〈
A�|V 1

H0 − E0
V |A�

〉

where |A〉 is the ground state of the atom and |�〉 the ground state of the solid.
Using (3.81), the first term in �E clearly vanishes, and the second term gives the
atom-solid van der Waals interaction energy:

UVdW = −〈
A�|V 1

H0 − E0
V |A�

〉

Substituting (3.81) in this expression gives

UVdW = −
∑

qα

|Cqα|2
∑

B

∣∣〈A
∣∣ ∑

i e
iq·xi ∣∣B

〉∣∣2

�ωqα + EB − EA

= −
∫ ∞

0
dω

∑

q

∑

α

|Cqα|2δ(ω − ωqα)
∑

B

|〈A| ∑i e
−qzi eiq·xi |B〉|2

�ω + EB − EA

where
∑

B is the sum over all states of the atom excluding the ground state A. Using
(3.80), this equation can be written as

UVdW = −2e2�

A

∫ ∞

0
dω

∑

q

1

q
Img(q,ω)

∑

B

|〈A| ∑i e
−qzi eiq·xi |B〉|2

�ω + EB − EA
(3.82)
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Next we write
(xi , zi ) = ẑz + ri

where z is the distance between the center of mass of the atom and the surface (z = 0)
of the solid. Since the relevant q in the sum in (3.82) are of the order 1/z or smaller,
and if we assume the size of the atom is small compare to z we can expand

e−qzi eiq·xi ≈ e−qz (1 + iri · Q)

where Q = (q, iq). Substitute this result in (3.82) gives

UVdW = −2�

A

∫ ∞

0
dω

∑

q

1

q
Img(q,ω)e−2qzQ∗ ·

∑

B

〈A| ∑i eri |B〉〈B| ∑i eri |A〉
�ω + EB − EA

· Q

For an atom the dyadic function

�̄ =
∑

B

〈A| ∑i eri |B〉〈B| ∑i eri |A〉
�ω + EB − EA

is proportional to the unit tensor �̄μν(ω) = �(ω)δμν where

�(ω) =
∑

B

〈A| ∑i exi |B〉〈B| ∑i exi |A〉
�ω + EB − EA

Using this result and that Q∗ · Q = 2q2 we get

UVdW = − 2�

A

∫ ∞
0

dω
∑

q
qImg(q, ω)e−2qz�(ω) = − �

2π2

∫
d2q qe−2qz Im

∫ ∞
0

dω g(q, ω)�(ω)

where we have used that �(ω) is real, and where we have replaced the sum over q
with the integral over q using (3.79). Since g(q,ω) is a causal response function, it
has its poles in the lower complex ω-half space. Thus, we can close the integral over
the upper half space and write the integral over the imaginary frequency axis. Thus,
with ω = iu and using that g(q, iu) is real we get:

UVdW = − �

2π2

∫
d2q qe−2qz

∫ ∞

0
du g(q, iu)Re �(iu)

Since

Re�(iu) =
∑

B

(EB − EA)
〈A| ∑i exi |B〉〈B| ∑i exi |A〉

(�u)2 + (EB − EA)2
= α(iu)

where α(ω) is the atomic polarizability, we get
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UVdW = −�

π

∫ ∞

0
dq q2e−2qz

∫ ∞

0
du g(q, iu)α(iu)

If we assume that g(q,ω) is given by (3.70) we get

UVdW = − �

4πz3

∫ ∞

0
dω

ε(iu) − 1

ε(iu) + 1
α(iu)

3.3.3 Inelastic Electron Scattering from Surfaces

As a final application of (3.71) and (3.80) consider inelastic scattering of electrons
from the fluctuating electromagnetic field of a solid with a flat surface. In this case,
we assume that the potential U (x) is an infinite potential step at the surface z = 0,
so that the stationary states for an electron, in the absence of coupling to the boson
system, are given by

〈x|k〉 = (2π)−3/2
(
e−ikz z − eikz z

)
eik‖·x‖ .

If the coupling to the substrate excitations isweak, onemayusefirst-order pertubation
theory (the golden rule) to calculate the rate w of inelastic scattering k → k′ via
excitation of a single boson,

w = 2π

�

∫
d3k′ ∑

qα

∑

nqα

P(nqα)δ(εk − εk′ − �ωqα)|〈k′, nqα + 1|Cqαe
−qz−iq·xb+

qα|k, nqα〉|2,

where P(nqα) is the probability that the boson mode qα contains nqα quanta. An
electron can also absorb a thermally excited boson, which is given by a similar
expression to that above but with nqα + 1 replaced by nqα and b+

qα replaced by bqα.
Using (3.80) this expression for w can be rewritten as

w = 4πe2

�A

∫
d3k ′ ∑

q

(nω + 1)
1

q
Img(q,ω)|〈k′|e−qz−iq·x|k〉|2,

where �ω = εk − εk′ . However,

〈k′|e−qz−iq·x|k〉 = 1

π
δ(k‖ − k′

‖ − q)

[
q

q2 + (kz + k ′
z)

2
− q

q2 + (kz − k ′
z)

2

]
,

so that

w = e2

�π3

A

(2π)2

∫
d3k ′(nω + 1)

q‖
(q2

‖ + q2
⊥)2

Img(q,ω),
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where q‖ = |k‖ − k′
‖| and q⊥ = kz − k ′

z . Finally, since the number of electrons that
hit the surface area A per unit time is given by

Ṅ = �k A

(2π)3m
cosθ,

we obtain, using ∫
d3k ′ =

∫
d�k ′d�ω

mk ′

�2
,

w

Ṅ
= 2

(πea0)2
1

cosθ

∫
d�k ′d�ω(nω + 1)

k ′

k

q‖
(q2

‖ + q2
⊥)2

Img(q,ω),

where a0 is the Bohr radius. If one defines P(k,k′)d�k′d�ω to be the relative prob-
ability that an incident electron is scattered into the range of energy losses between
�ω and �(ω + dω) and into the solid angle d�k′ around the direction k′, then

P(k,k′) = 2

(πea0)2
1

cosθ
(nω + 1)

k ′

k

q‖
(q2

‖ + q2
⊥)2

Img(q,ω),

This equation represents the most general formulation of so-called dipole scattering
theory, which has been remarkably useful in analyzing electron energy-loss mea-
surements [186]. As an application, consider electron scattering from the (collective)
C–O stretch vibrational mode of an ordered layer of CO molecules adsorbed on a
Cu(100) surface. The open circles in Fig. 3.1 shows the measured inelastic electron
scattering intensity, as a function of the polar collection angle θ. The solid line is the

Fig. 3.1 Experimental
elastic peak intensity (solid
circles) and C–O loss peak
intensity (open circles)
versus collection angle θ.
The solid curve is the dipole
theory calculation
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theory prediction using the expression for the g(q,ω) function for an ordered layer of
point particles (polarizability α) on a perfect conducting substrate [187] (see (6.47)).
Another important applications of the dipole scattering theory presented has been
the study of non-local dielectric response of metal surfaces [188–190].



Chapter 4
Spectral Correlation Function
for the Electromagnetic Field
from Planar Sources

The spectral correlation function for the fluctuating electromagnetic field outside a
semi-infinite solidwith a planar surface canbe calculatedusing the generalizedKirch-
hoff law for isotropic materials. For the more general case of anisotropic materials,
the same quantity is calculated using the Green function approach. The local density
of state of the electromagnetic field is calculated and analyzed in the near-field. In the
near-field, the thermal electromagnetic field can be spatially and temporally coherent
due to the existence of the surface plasmons or surface phonon polaritons. We show
that due to the coupling of the evanescent and propagating electromagnetic waves
introduced by a grating, the coherent properties of the electromagnetic field in the
near-field can be used to design highly directional (as compared with Lambertian
emission) thermal sources working in the far-field.

4.1 Generalized Kirchhoff Law

The theory presented in Sect. 3.2 can be used to calculate the spectral correlation
functions for an electromagnetic field radiated by any body. A particularly important
limiting case is the radiation from a flat surface. In Appendix A, these correlation
functions are calculated using the general theory of a fluctuating electromagnetic
field. However, for the planar geometry, these correlation functions can be obtained
in a simpler way using the generalized Kirchhoff law. According to the classical
Kirchhoff low, the intensity of emission of radiation from a flat element of a body
surface in certain direction at a fixed frequency is given by

I (ω, θ,φ) = I0(ω)[1 − κ(ω, θ,φ)] (4.1)

where θ is the angle between the normal to the surface and the direction to the
radiation detector, φ is the azimuthal angle in plane of the sample surface, κ(ω, θ,φ)

is the energy reflection coefficient of the body at a given frequency of the field in
the direction specified by the polar and azimuthal angles θ and φ, and I0(ω) is the
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equilibrium intensity of emission, which for a closed cavity is independent of the
incidence angle and of the material. In cases of isotropic materials, κ(ω, θ,φ) =
κ(ω, θ).

For planar geometry, the electromagnetic field can be decomposed on s- and
p-polarized electromagnetic fields. In this representation, the electric field of the
emitted radiation can be written in the form

E(r,ω) =
∫

d2q

(2π)2

[
Es(q,ω)n̂ + Ep(q,ω)K̂

]
ei(q·x+kz z) (4.2)

where r = (x, z), kz =
√

(ω/c)2 − q2, q̂ = q/q, n̂ = ẑ×q̂, K̂ = (qẑ−kzq̂)/k, k =
ω/c. The spectral spatial correlation function can be written in the form

〈
E(r)E∗(r′)

〉
ω

=
∫

d2q

(2π)2

[
n̂ws n̂ + K̂wpK̂∗

]
eiq·(x−x′)ei(kz z−k∗

z z
′), (4.3)

where ws = 〈|Es(q,ω)|2〉 and wp = 〈|Ep(q,ω)|2〉.
TheKirchhoff law is the consequence of the energy conservation law: the intensity

of the emitted radiation in thermal equilibriumshould be equal to the absorbed energy.
Therefore, theKirchhoff law can bewritten separately for the s- and p-components of
the electromagnetic field. Taking into account that the intensity of the electromagnetic
wave is proportional to 〈|Es(p)|2〉, the Kirchhoff law can be written in the form

〈|Es(p)(q,ω)|2〉 = 〈|E0,s(p)(q,ω)|2〉 [1 − |Rs(p)(q,ω)] (4.4)

where E0,s(p)(q,ω) is the amplitude of the incident plane wave of black body radia-
tion, and where Rp(s) is the reflection amplitude for p(s)-polarized electromagnetic
field. Taking into account that the energy density of the plane wave in the black body
radiation can be written in the form (see (3.54) and (3.61)):

1

8π

[〈2|Es(p)(q,ω)|2〉 + 2〈|Bs(p)(q,ω)|2〉] d2q

(2π)2
dω

= 1

2π
〈|Es(p)(q,ω)|2〉 d2q

(2π)2
dω

= �ω

(
1

2
+ 1

e(�ω/kBT ) − 1

)
d2q

(2π)2

dkz
2π

= �k2

4πkz
coth

(
�ω

2kBT

)
d2q

(2π)2
dω

(4.5)

for the propagating electromagnetic waves we get

w
prop
p(s) = coth

(
�ω

2kBT

)
�k2

2kz

(
1 − |Rps |2

)
(4.6)

To calculate the spectral correlation function for evanescent waves, we will assume
that above the surface of the body at the point r = r′ there is a small particle with
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fluctuating dipole moment p f , which is characterized by the spectral function of
fluctuations 〈

p f
i p

f
j

〉
ω

= �

π

(
1

2
+ ni (ω)

)
Imα(ω)δi j , (4.7)

where α(ω) is the polarizability of the particle. At each q it is convenient to choose
coordinate axes along vectors q̂, n̂, ẑ. The energy absorbed by the particle due to
interaction with the electromagnetic field emitted by the body is given by

Q̇ part
s (q,ω) = Re(−iωpind · E∗

s ) = ωImα(ω)|Es |2e−2Imkz z′
(4.8)

Q̇ part
p (q,ω) = Re(−iωpind · E∗

p) = ωImα(ω)|Ep|2 q
2 + |kz|2
k2

e−2Imkz z′
(4.9)

where pind = α(ω)E is the induced dipole moment of the particle. The electromag-
netic field at the point r created by the particle located at the point r′ (assuming
z < z′) can be written in the form

Epart
s (r, r′) = 2πik2

kz

(
eikz(z

′−z) + Rse
ikz(z+z′)

)
p f
n n̂e

iq·(x−x′), (4.10)

Epart
p = 2πi

kz

[(
eikz(z

′−z) + Rpe
ikz(z+z′)

)
qẑ (4.11)

+
(
eikz(z

′−z) − Rpe
ikz(z+z′)

)
kzq̂

]
(kz p

f
q + q f f

z )eiq·(x−x′),

Bpart
s = 2πik

kz

[(
eikz (z

′−z) + Rse
ikz (z+z′)

)
qẑ +

(
eikz (z

′−z) − Rse
ikz (z+z′)

)
kzq̂

]
p f
n e

iq·(x−x′),

(4.12)

Bpart
p (r, r′) = −2πik

kz

(
eikz(z

′−z) + Rpe
ikz(z+z′)

)
(kz p

f
q + q f f

z )n̂eiq·(x−x′). (4.13)

The energy absorbed by the body due to interactionwith the evanescentwaves created
by the particle is determined by the z-component of the Poynting vector and can be
written separately for p- and s-polarized waves:

Q̇b
s = c

8π

(〈EnB
∗
q 〉 + c · c) = coth

(
�ω

2kBT

)
�ck3

4|kz|2 (4.14)

× (kz − k∗
z )(R

∗
s − Rs)Imα(ω)e−2Imkz z′

,
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Q̇b
p = c

8π

(〈Eq B
∗
n 〉 + c · c) = coth

(
�ω

2kBT

)
�ck3

4|kz|2 (4.15)

× (kz − k∗
z )(R

∗
p − Rp)Imα(ω)

q2 + |kz|2
k2

e−2Imkz z′
.

In the thermal equilibrium, the energy absorbed by the particle should be equal to
the energy absorbed by the body. From this condition, and using (4.8), (4.9), (4.14)
and (4.15) we get

wevan
s(p) = coth

(
�ω

2kBT

)
�k2

4|kz|2
(
kz − k∗

z

) (
R∗
s(p) − Rs(p)

)
(4.16)

Taking into account that kz is pure real for the propagating waves (q < k) and
pure imaginary for the evanescent waves (q > k), the contribution to wp(s) from
propagating waves can be written in the form

w
prop
p(s) = coth

(
�ω

2kBT

)
�k2

4|kz|2
(
kz + k∗

z

) (
1 − |Rps |2

)
(4.17)

Summarizing (4.16) and (4.17) we finally get

ws(p) =w
prop
s(p) + wevan

s(p) = coth

(
�ω

2kBT

)
�k2

4|kz|2 (4.18)

× [
(kz + k∗

z )(1 − |Rp(s)|2) + (kz − k∗
z )(R

∗
s(p) − Rs(p))

]

Using Maxwell’s equation

∇ × E(r) = iω

c
B(r),

from (4.3), we get the spectral correlation function for the magnetic induction field

〈
B(r)B(r′)

〉
ω

= coth

(
�ω

2kBT

) ∫
d2q

(2π)2

[
n̂wpn̂ + K̂wsK̂∗

]
eiq·(x−x′)ei(kz z−k∗

z z
′),

(4.19)
and the spectral cross-correlation function

〈
E(r)B(r′)

〉
ω

= coth

(
�ω

2kBT

) ∫
d2q

(2π)2

[
K̂wpn̂ + n̂wsK̂∗

]
eiq·(x−x′)ei(kz z−k∗

z z
′).

(4.20)
Using (4.20), we can calculate the intensity of the radiated energy I (ω) into vacuum
at T = 0 K:

I (ω)dω = 2
[〈Sz(T,ω)〉 − 〈Sz(0,ω)〉] dω, (4.21)



4.1 Generalized Kirchhoff Law 55

where the factor 2 arises for the same reason as in (3.54). The z-component of the
Poynting vector is given by

〈Sz(T,ω)〉 = c

4π
Re[E(r) × B(r)]z

= c�

16π|kz|2 coth
(

�ω

2kBT

)∫ ∫
d2q

(2π)2

(kz + k∗
z )(ws + wp)

k

d2q

(2π)2

= c�k

4π2
coth

(
�ω

2kBT

)∫ ω
c

0
dqq

1 − |Rp|2 + 1 − |Rs |2
2

(4.22)

Only propagating waves (q < ω/c) contribute to this expression. Using (4.22) in
(4.21), we get

I (ω) = c�k

2π2

1

e(�ω/kBT ) − 1

∫ ω
c

0
dqq

1 − |Rp|2 + 1 − |Rs |2
2

(4.23)

Introducing d�, the elementary solid angle, we have the relation qdq/k2 =
d� cos θ/2π. The radiated intensity is then given by

I (ω) = �ω3

2π2c2
1

e(�ω/kBT ) − 1

∫
�

d�cosθ

2π

1 − |Rp|2 + 1 − |Rs |2
2

(4.24)

where the integration is over the upper semi-sphere for 0 < θ < π/2. In the case of
a black body, i.e. a body for which the reflection factors vanish, we get

I (ω) = �ω3

4π2c2
1

e(�ω/kBT ) − 1
= π I0(ω, T ) (4.25)

where

I0(ω, T ) = �ω3

4π3c2
1

e(�ω/kBT ) − 1
(4.26)

is the black body specific intensity. When the medium situated below the interface
does not behave as a black body, the flux takes the classical form

I (ω) = I0(ω, T )

∫
�

ε′(θ,ω) cos θd� (4.27)

where we have identified the emissivity ε′(θ,ω) = (1 − |Rp|2 + 1 − |Rs |2)/2. In
the presence of a single interface, we note that the radiation emitted is not different
from the usual one, i.e. near field does not play any role in this situation.
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4.2 The Green’s Function Approach

According to (A.4) outside of any body, the spectral correlation function for electric
field is given by:

〈
Ei (r)E∗

j (r
′)
〉
ω

= �c2

16π2iω2
coth

(
�ω

2kBT

)

×
∫

dS′′
1

{
Dik(r, r′′)∇′′D∗

jk(r
′, r′′) − D∗

jk(r
′, r′′)∇′′Dik(r, r′′)

}
.

(4.28)

For the plane surface, it is convenient to decompose the electromagnetic field into
s- and p-polarized plane waves. The decomposition of the electromagnetic field on
s- and p-polarizedwaves is determined by the vectors n̂s = [ẑ×q̂] = (−qy, qx , 0)/q,
n̂±
p = [k̂± × n̂s] = (∓qxkz,∓qykz, q2)/(kq) where k± = q ± ẑkz , kz = ((ω/c)2 −

q2)1/2, k = ω/c,q is the surface component of thewave vector. In this representation,
the Green’s tensor is given by

D̂(r, r′) =
∫

d2q

(2π)2
D̂(z, z′,q)eiq·(x−x′), (4.29)

and the spectral correlation function for the electric field is given by

〈
E(r)E∗(r′)

〉
ω

= �c2

16π2iω2
coth

(
�ω

2kBT

)∫
d2q

(2π)2

×
(
D̂(z, z′′,q)

∂

∂z′′ D̂
+(z′, z′′,q)

− ∂

∂z′′ D̂(z, z′′,q)D̂+(z′, z′′,q)
)
z′′=+0

eiq·(x−x′). (4.30)

TheGreen’s functions in (4.30) can be obtained from theGreen’s functions calculated
in Appendix C in the vacuum gap between two semi-infinite plates, assuming the
reflection amplitude for body two vanishes, R2p(s) = 0. As a result we get the
following expression for the Green’s function in (4.30)

D̂(z, z′) = 2πik2

kz

{
eikz |z−z′ | Î + R̂eikz(z+z′)

}
, (4.31)

where the 3 × 3 reflection matrix is given by

R̂ = n̂+Rn̂−,

n̂± = (n̂±
s , n̂±

p ). The 2× 2 reflectionmatrix Rλλ′ determines the reflection amplitudes
for the waves with different polarization λ = (s, p). This matrix is diagonal for
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isotropic materials. However, in the general case of anisotropic materials, this matrix
is not diagonal

R =
(
Rss Rsp

Rps Rss

)
.

Î is the 3 × 3 unit matrix. The substitution of (4.31) in (4.30) gives

〈
E(r)E∗(r′)

〉
ω

= coth

(
�ω

2kBT

)∫
d2q

(2π)2

(ω

c

)2
n̂+wn̂+∗, (4.32)

where

w = �

4|kz|2
[
(kz + k∗

z )(I − RR∗) + (k∗
z − kz)(R − R+)

]
,

where I is the 2 × 2 unit matrix. For the isotropic materials, the matrix w becomes
diagonal: wλλ′ = wλδλλ′ where

wλ = �

4|kz|2
[
(kz + k∗

z )(1 − |Rλ|2) + (k∗
z − kz)(Rλ − R∗

λ)
]
,

where λ = (s, p).
For the evanescent waves we can use (3.64). In this case, the calculations are sim-

pler. Taking into account the fact that, for the evanescent waves, kz is pure imaginary
(kz = i |kz|), we get

D̂(r, r′,ω) = 2πk2
∫

d2q

(2π)2

eiq·(x−x′)−|kz |(z+z′)

|kz| n̂+ImRn̂+∗ (4.33)

Substituting these equation in (3.64) gives the part of (4.32) corresponding to the
evanescent waves.

4.3 Density of Emitted Electromagnetic Energy

The energy density of the fluctuation electromagnetic field, radiated into the vacuum
by the medium, which occupies half-space z < 0, is, according to (3.54), given by

u(ω, T, r)dω = 1

8π

[
2〈E(r)2〉ω + 2〈H2〉ω

]
dω. (4.34)

Using (4.34) with (4.3) and (4.19), the total electromagnetic energy, radiated by
the solid at a temperature of T in the vacuum at a temperature of 0 K at a distance
of z from the surface of medium, is given by
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u(ω, T, z) = �(ω, T )ω2

4π2c3

{ ∫ ω
c

0

dqq

k|kz|
[
(1 − |Rp|2) + (1 − |Rs |2)

]+

+ 2
∫ ∞

ω
c

dqq3

k3|kz|
[
ImRp + ImRs

]
e−2|kz |z

}
, (4.35)

where k = ω/c, �(ω, T ) is determined by Plank’s formula

�(ω, T ) = �ω

eβ�ω − 1
. (4.36)

In (4.36), we do not take into account the temperature-independent contribution from
the zero-point oscillations of the electromagnetic field.

Let us apply the general equation (4.35) for concrete materials. Let us first con-
sider a material that supports surface waves in the infrared, such as silicon carbide
(SiC). Figure4.1 shows the energy density u(ω, T, z) versus the frequency at dif-
ferent distances from a semi-infinite solid of SiC. The semi-infinite medium is at
temperature T = 300 K whereas the vacuum is at T = 0 K. Note that at T = 300
K, Wiens law gives a peak wavelength for thermal radiation of λW = 10 µm. In the

Fig. 4.1 Total
electromagnetic energy
density above a plane
interface separating SiC at
T = 300 K from vacuum at
T = 0 K. From [9]
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far field, i.e. for distances z 	 λW , the energy density spectrum resembles that of a
black body. The difference from that of a Planck spectrum comes from the fact that
SiC is a material with a high reflectivity of around λW = 10 µm or ω = 1.7 × 1014

s−1. Thus, its emissivity is small at this frequency. This property follows from the
expression for the electromagnetic energy due to propagating waves only (first term
in (4.35))

u prop(ω, T, z) = u0(ω, T )

∫
d�

4π

[
(1 − |Rp|2) + (1 − |Rs |2)

]
2

, (4.37)

where we have used 2πqdq = k2 cos θd�, and where θ is the angle between the
emission direction and the normal of the surface. The integral is performed over a
half-space and u0(ω, T ) = (ω2/π2c3)�(ω, T ) is the electromagnetic energy density
in a cavity at thermal equilibrium T . In the far field, the evanescent waves do not
contribute to the energy density because of the exponential decay e−2|kz |z . We note
that if the medium is totally absorbing (Rp(s) = 0), then the energy density due to
propagating waves is half the energy calculated in a vacuum at thermal equilibrium.
This is not surprising, since we are computing only the emitted part of the radiation.
In the case of equilibrium radiation, there is also the contribution of the radiation
coming from the upper half-space. At a distance z = 1 µm, which is slightly larger
than λW , the energy density spectrum changes drastically and a strong peak emerges.
At z = 100 nm, one observes that the thermal emission is almost monochromatic
around ω = 1.79 × 1014 s−1. At this frequency, the energy density has increased
by more than four orders of magnitude. The peak corresponds to the excitation of a
surfacewave. This distance is in agreementwith the decay length of the surfacewaves
as discussed in Chap. 2. At distances much smaller than the wavelength, we enter
a regime that we denote as the extreme near field region. The leading contribution
now comes from the very large wavevectors q in the energy density integral. At large
q, it can be shown that kz ≈ kz1 ≈ iq, so that Rs tends to ≈ (ε − 1)(ω/2cq)2 and
Rp tends to its electrostatic limit (ε − 1)/(ε + 1). In this case, the contributions to
the density of the electric energy from p- and s-polarized electromagnetic waves are
given by

u p(r,ω) = 1

8
u0(ω, T )

( c

ωd

)3 ε′′

|ε + 1|2 , (4.38)

us(r,ω) = 1

16
u0(ω, T )

( c

ωd

)
ε′′, (4.39)

where ε′ and ε′′ are the real and imaginary part of dielectric function ε = ε′ + iε′′, and
u0(ω, T ) is the density of the electromagnetic energy for black body radiation. For
p-polarized electromagnetic waves and ε′′ � 1, the near-field emission spectrum has
a strong peak near the frequencyω0 defined by the condition ε′(ω0) = −1. This effect
results from the existence of a large number of surface modes with different wave
numbers but with frequencies ω ≈ ω0 that are very close to each other. Therefore,
if ε′′ is not very large at ω = ω0 the density of surface modes will necessarily
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display a strong peak at ω = ω0. From (4.38) and (4.39), it follows that us/u p ∼
|ε + 1|2(ωd/c)2. Formetals, |ε| 	 1, and therefore the contribution in energy density
from the s- polarizedwaves for the infrared frequencieswill exceed contribution from
the p- polarized waves up to the very small distances. The presence of surface waves
is the origin of the peak in the near-field spectrum of SiC at ω = 1.78 × 1014 s−1.
However, since the surface waves decay exponentially away from the surface, this
peak will vanish in the far zone. The presence of a resonance in the density of modes
N (z,ω) is, however, not required for observing spectral changes caused by the loss
of evanescent modes. Indeed, in the short-distance regime, the spectrum is given
by (4.38), whereas, in the far-field, the spectrum is given by (4.37). Thus, even in
the absence of resonant surface waves, the near-field spectrum is different from the
far-field spectrum, but the changes are less dramatic.

Not all materials that support surface waves exhibit strong peaks in their near-field
thermal energy density spectrum. Indeed, as can be seen in (4.38), a peak is exhibited
if the frequency where ε(ω) approaches −1 corresponds to a frequency range where
�(ω, T ) is not too small. For example,metals exhibit surface plasmonpolariton in the
UV or visible range where �(ω, T ) is exponentially small at ambient temperature.
Thus, metals do not exhibit any strong peak in their thermal energy density spectrum
in the near field.

4.4 Local Density of States

The density of states (DOS) is a fundamental quantity fromwhichmanymacroscopic
quantities can be derived. In statistical physics, the DOS allows the partition function
of a system, from which all the macroscopic properties follow, to be calculated.
The local density of states (LDOS) is useful for studying a non-uniform system.
The local density of electronic states is widely used in solid-state physics. It has
been shown [192], for instance, that a scanning tunneling microscope images the
electronic LDOS. The local character of the LDOS clearly describes the spatial
distribution of electrons in the solid. A similar spatial dependence is also relevant for
electromagnetic waves. Whereas the intensity is uniform in vacuum in equilibrium,
this is not the case in a waveguide or above an interface. In addition, while the
LDOS is well known and frequently used for electrons in solid-state physics [37], its
electromagnetic counterpart is not well known or used in the literature. Compared
with electronic systems, two differences must be taken into account: the vectorial
nature of the fields and the existence of losses.

We consider a system in thermal equilibrium at temperature T . In a vacuum, one
can define the electromagnetic energyU (ω) by the product of the DOS ρ(ω) and the
mean energy of each state at temperature T :

U (ω) = ρ(ω)
�ω

exp (�ω/kBT ) − 1
. (4.40)
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We now introduce an LDOS by using, as a starting point, the local density of
electromagnetic energy u(r,ω) at a given point r in space, and at a given angular
frequency ω. We define the LDOS ρ(r,ω) so that

u(r,ω) = ρ(r,ω)
�ω

exp (�ω/kBT ) − 1
. (4.41)

Using (4.35) for the LDOS for p- and s-propagating electromagnetic waves, we get

ρ
propE
p(s) = ρ

propH
p(s) = ρv

4

∫ ω
c

0

dqq

kkz

(
1 − |Rp(s)|2

)
, (4.42)

where the superscripts E and H denote the electric and magnetic contributions,
respectively; ρv(ω) = ω2/π2c3 is the vacuum density of states, and for the contribu-
tions from the evanescent waves we get

ρevanE(H)

p(s) = ρv

2

∫ ∞

ω
c

dqq

k|kz|
(
2q2

k2
− 1

)
ImRp(s)e

−2|kz |z, (4.43)

ρevanE(H)

s(p) = ρv

2

∫ ∞

ω
c

dqq

k|kz| ImRs(p)e
−2|kz |z . (4.44)

From (4.42)–(4.44), it follows that, for the propagating electromagnetic waves, the
energy of the magnetic field is equal to the energy of the electric field. For the
evanescent waves, taking into account that

(
2q2/k2 − 1

)
> 1, we get that, for

p-polarized waves, the dominate contribution to the energy comes from the electric
field, and, for s-polarized waves, the dominate contribution comes from themagnetic
field. This difference is explained as follows: for the plane wave, the electric field is
related to the induction magnetic field by (c/ω)[k × E] = B, where k = q + ẑkz .
Thus, for the s-polarized waves, we obtain the relationship |k|(c/ω)|E | = |B|. For
the propagating waves, |k| = √

q2 + k2z = (ω/c); therefore |E | = |B|, which
means the equality of the magnetic and electric energy. For the evanescent waves of
kz = i

√
q2 − (ω/c)2; therefore

|k| =
√
q2 + kzk∗

z =
√
2q2 −

(ω

c

)2
.

Thus, |B| = √
2(cq/ω)2 − 1|E | > |E |, which means that the magnetic energy is

larger than electric energy. Similarly, it is possible to show that for the p-polarized
evanescent waves, |E | = √

2(cq/ω)2 − 1|B| > |B|, i.e., in this case the electric
energy is larger than magnetic energy.

Using (4.42)–(4.44) and the Fresnel’s formulas for the reflection amplitudes, we
get that in the limit z � c/(ω|ε|1/2), the contribution from the evanescent waves
considerably exceeds the contribution from the propagating waves. In this limit
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ρE
p = ρv

8k3z3
ε′′

|ε + 1|2 , (4.45)

ρH
s = ρv

16kz
ε′′, (4.46)

ρH
p = ρv

4kz

ε′′

|ε + 1|2 , (4.47)

ρE
s = ρv

6
√
2

√|ε| + ε′, (4.48)

where, in obtaining (4.48), we have used that

∫ ∞

0
dqe−2qd Im

q − s

q + s
≈

∫ ∞

0
dqIm

q − s

q + s
=

= Im

{
| s0 | eiφ

∫ ∞

0
dt

t − √
t2 − 1

t + √
t2 − 1

}
=

= 1

2
Im

{
| s0 | eiφ

∫ ∞

−iπ/2
dz

(
e−z − e−3z

)} = 2

3
| s0 | cos(φ),

where s = √
q2 − (ω/c)2ε, s0 = (ω/c)

√
ε = |s0| exp iφ. From comparison of

(4.45)–(4.48) it follows that, for the metals in the infrared frequency region up to
very small distances, the main contribution to the energy density comes from the
magnetic field of the s-polarized electromagnetic waves.

4.5 Coherence Properties of Planar Thermal Sources
in the Near-Field

Equations (4.3) and (4.19) describe the temporal and spatial coherence of the ther-
mal radiation of the near field emitted into free space from the flat surface. Thermal
radiation is often presented as a typical example of an incoherent light source and
is in marked contrast to a laser. Whereas a laser is a highly monochromatic and
very directional light source, a thermal source has a broad spectrum and is usually
quasi-isotropic. However, as is often the case, different behavior can be expected
on a microscopic scale. Thus, it has been shown [28–30] that the field emitted by
a thermal source made of a polar material is enhanced by more than four orders of
magnitude and is partially coherent at distances in the order of 10–100nm. This phe-
nomenon is due to surface electromagnetic waves, and can be observed only onmate-
rial supporting them. The existence conditions for surface waves was considered in
Chap. 2. Surface electromagnetic waves are modes that propagate along an interface,
and decrease exponentially in the perpendicular direction (evanescent waves). The
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propagation length of these surface waves is typically hundred wavelengths, result-
ing in a long-range spatial correlation of the electromagnetic field along the interface
[28–30]. The near-field properties of the thermal electromagnetic field in the presence
of surface electromagnetic waves were reviewed in [9].

There are different types of optically active surface waves. Surface phonon polari-
tons are observed for polar material such as SiC, glass, II–IV and III–V semicon-
ductors. They are mechanical vibrations (phonons) propagating in a partially ionic
material so that each unit cell becomes an oscillating electric dipole. Surface plasmon
polaritons are longitudinal electron oscillations (acoustic type wave in an electron
gas) that can be observed for metals and doped semiconductors, which generate elec-
tromagnetic fields with longitudinal polarization. Surface waves due to excitons, and
vibrations of alkali ions in adlayers have also been observed.

Equations (4.3) and (4.19) also suggest a new application for near-field spec-
troscopy. The near-field spectrum at a given distance to the interface gives access to
ImRp(s), and one can hope to obtain information about the reflection amplitude for
large wave vectors, similar to the method usually used to obtain Rp(s) for propagating
electromagnetic waves from reflectivity measurements. With the rapid development
of near-field optical microscopy, such near-field spectra can be measured. This could
open the way to a new technique of local solid-state spectroscopy. The measurement
of thermal near-field using a scanning near-field microscope has been demonstrated
recently [193]. This is an important step towards the concept of local spectroscopy.

4.5.1 Spatial Coherence in the Near-Field

The spatial coherence of the electromagnetic field is characterized by its spectral
correlation function

〈
E(r)E(r′)

〉
ω
at two different points for a particular frequency.

Figure4.2 represents the spectral correlation function of the electric field for different
metallic surfaces at a given distance z = 0.05λ (λ = 2πc/ω is the wavelength) to
the interface. It can be seen that the correlation oscillates and has an exponentially
decaying envelope. The decay length is much larger than the wavelength, indicating
that the fields are coherent over large distances. This surprising phenomenon is due to
the excitation of surface waves along the interface. The physical mechanism is based
on the fact that a small volume element contains random currents that excite a surface
wave. This surface wave propagates along the interface over distances larger than the
wavelength. It follows that different points may be illuminated by the same random
source so that they are correlated. Accordingly, one does not expect any correlation
between the s-polarized field since no surface wave exists for s-polarization. If one
uses a material with a real part of the dielectric constant larger than −1, no surface
wave can propagate and thus no correlation should be observed. Therefore, Fig. 4.2
shows the case of tungsten in the visible that does not support surface waves. It is
seen that the coherence length is smaller than a wavelength so that the radiation field
appears to be more incoherent than blackbody radiation.
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Fig. 4.2 Spectral correlation function
〈
Ex (r)Ex (r′)

〉
ω
(denoted asWxx in the label of the figure) of

the thermally emitted x-component of the electric field vs. ρ/λ, where ρ = |r1 − r2| a for different
metals and b for SiC at different wavelengths. The long-range correlation is due to surface-plasmon
polaritons for metals, and to surface-phonon polaritons for SiC. From [29]

A similar behavior is observed for SiC, a polar material that supports surface-
phonon polaritons in a frequency band. Within this band, at a wavelength of 11.36
µm, a long-range correlation is observed, whereas for a wavelength (9.1 µm) that is
not in the band where surface waves exist, the correlation decays very rapidly.

Let us discuss in simple terms the physical origin of these unusual coherence
properties. The long-range coherence is unexpected because the fluctuating currents
are δ-correlated as shown by the fluctuation-dissipation theorem. This is the rea-
son why the fields are typically assumed to be δ-correlated in space. However, the
fluctuating currents excite weakly damped collective modes in the material. In the
case of a metal, a surface plasmon can be excited. In the case of a polar crystal,
a surface phonon polariton can be excited. Both surface waves are extended modes
along the surface. The induced currents associated with these extended modes are
therefore coherent over large distances. More precisely, the coherence length is
expected to be given by the decay length of these surface modes. This has been
confirmed by a detailed asymptotic analysis in [31]. The other surprising property
shown in Fig. 4.2 is that the coherence length defined as the FWMH of the cross-
spectral density can be smaller than the wavelength. In other words, a source can
be more spatially incoherent than the black body radiation. The key idea is that,
close to an interface, the field contains evanescent waves so that features smaller
than the wavelength can exist. This is not the case in a vacuum and therefore the
field has a minimum coherence length. Since the amplitude of evanescent waves of
large wavevector q decays as exp(−2qz), it is clear that the distance z appears as a
cutoff wavelength. This explains the coherence length increasing as z increases into
the near-field regime.
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4.5.2 Temporal Coherence in the Near-Field

The temporal coherence of the electromagnetic field is characterized by the time-
correlation function (at a fixed point r in space) of the electromagnetic field:

〈
Ek(r, t + τ )El(r, t)

〉
(4.49)

This correlation function is a measurement of the memory of the random field. It is
useful to introduce a typical decay time tcoh of the correlation function, called coher-
ence time. AMichelson interferometer with alignedmirrors performs ameasurement
of the correlation function. Indeed, the interference term of the signal can be written
as Ek(r, t + τ )El(r, t) where τ is the flight time corresponding to the optical path
length difference δopt between the two paths δopt = cτ . If the path length difference is
larger than the longitudinal coherence length ctcoh , no interferences can be observed.

The temporal coherence of the EM field is related to its power spectral density.
This is clearly seen by using theWiener–Khinchin theorem [181, 182], which shows
that the power spectral density is the Fourier transform of the correlation function.
Alternatively, we can start from (3.24). It follows that:

〈
Ek(r, t + τ )El(r, t)

〉 = Re

[∫ ∞

0
4�n(ω, T )Im[DEE

kl (r, r,ω)]eiωτ dω

2π

]
(4.50)

Let us first consider the temporal coherence of the field in vacuum. The imaginary
part of the Green’s tensor (3.46) does not diverge, and yields zero for non-diagonal
terms and ω3/3c3 for diagonal terms. It follows that the time-correlation function of
the blackbody radiation is given by:

〈
Ek(r, t + τ )El(r, t)

〉 = δklRe

[∫ ∞

0
4�(ω, T )

ω2

3c3
eiωτ dω

2π

]
(4.51)

Since the integrand has a large spectral width, it appears that the coherence time is
in the order of the peak radiation period.

If we now consider the case of an interface, we know that the spectrum can be very
different in the near field.We have seen previously that the contribution of the surface
wave dramatically modifies the density of electromagnetic energy. In particular, we
have seen that the density of energy becomes quasi-monochromatic, which suggests
a large coherence time. More specifically, in the extreme near field, we have seen in
Sect. 4.4 that the Green’s function has a resonant denominator ε + 1. Close to the
resonance where Re[ε(ω0)] = −1, we can expand the dielectric constant as

ε(ω) = −1 + iε′′(ω0) + (ω − ω0)
dε′

dω
(4.52)

where we have used the notation ε = ε′ + iε′′. Thus, the denominator ε + 1 can be
cast in the form
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Fig. 4.3 Experimental angular emission of a SiC grating at two different wavelengths. The angular
pattern has the characteristic shape of an antenna. It demonstrates the spatial coherence of the
thermal source. Measurements are taken at 800 K. From [36]

ε(ω) + 1 = dε′

dω
(ω − ω0 + i�), (4.53)

where � = ε′′/(dε′/dω). It is seen that the Green’s dyadic has a pole at the fre-
quency corresponding to the asymptote of the dispersion relation of the surface
wave. Its contribution to the integral (4.51) yields an exponential decay in the form
exp(iω0t−�t). It follows that in the extreme near field, the thermally emitted field is
temporally coherent with a coherence time given by �−1. The origin of the temporal
coherence of the electromagnetic field can thus be assigned to the very large density
of states due to the surface wave. It follows that, whereas the plane interface of a hot
metallic surface is a temporally incoherent source for an atom located in the far field,
it is a partially temporally coherent source for an atom located within a nanometric
distance from the interface.

4.5.3 Design of Coherent Thermal Sources

A spatially coherent source is a source that radiates a field that has a narrow angular
aperture at a given wavelength. The typical examples of coherent sources are lasers
and antennas. These sources have well-defined emission angular lobes. A narrow
angular emission lobe is a signature of the spatial coherence of the field in the
plane of the source. We have seen in the previous section that a source that supports a
surface wave is partially spatially coherent along the surface. However, because these
waves cannot propagate in vacuum, the coherence remains confined to the vicinity
of the surface. However, it is possible to couple the surface waves to the propagating
waves. This can be done in several ways. A practical way is to rule a grating on
the surface. The grating can then diffract the surface wave. By properly choosing
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the period of the grating, it is possible to control the angle of propagation of the
diffracted light. This was first observed in [32–34] for a very deep grating ruled on
a doped silicon surface. Such a material supports surface plasmon polaritons in the
infrared. A more effective source was realized using a gold grating by Kreiter et al.
[35]. In [38], a thermally stimulated midinfrared source was developed that emits
radiation within a narrow range of wavelengths (δλ/λ ≤ 0.2). In this experiment, the
silicon wafer was covered by a metal film. A lattice of holes in the metal mediated
the coupling of the surface plasmon states to the emitted light. This technology will
afford tunable infrared emitters with high power in a narrow spectral band critical
for sensing, spectroscopy and thermophotovoltaic applications. Figure4.3 shows the
angular emission pattern of a SiC grating. It can be clearly seen that the angular
aperture is very narrow, indicating a large coherence length [36].



Chapter 5
The Casimir Forces

To obtain a simple picture of the origin of the Casimir force, we begin this section
by considering a system of two plane parallel plates of ideal conductors, following
the original Casimir paper [39]. These planes produce a waveguide. The number of
electromagnetic modes in the waveguide is discrete and depends on the width of
the waveguide. From quantum electrodynamics, it is known that each mode with
frequency ω has a minimum energy �ω/2 referred to as vacuum fluctuations or
zero point motion. If the width decreases, the mode density decreases so that the
electromagnetic energy decreases. Hence, the existence of vacuum fluctuations
means that there is an attractive force between the two plates. This phenomenon
is clearly a macroscopic manifestation of the electromagnetic energy of the vacuum,
which is a pure quantum effect. After this short introduction, we apply a general
fully relativistic theory of the fluctuating electromagnetic field in the vacuum gap
between the plates (see Appendix B) to calculate the normal component of the stress
tensor, which determines the normal component of the force between the plates.
We consider a general non-equilibrium case and are sliding with arbitrary velocity
relative to each other. By considering one of the plates as sufficiently rarefied we
also obtain the Casimir force between a small neutral particle moving parallel to the
plate. Different limiting cases are considered.

5.1 Casimir Calculations

Casimir showed in 1948 [39] that one consequence of the zero-point field is an attrac-
tion force between two uncharged, perfectly conducting parallel plates (see Fig. 5.1
for V = 0). In this section, we present a standard calculation of the Casimir force.
Consider the electromagnetic modes appropriate to the interior of a rectangular

parallelepiped of sides Lx = Ly = L and Lz . For perfectly conducting walls, the
tangential component of the electric field E = −∂A/∂t must vanish on the walls.
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Fig. 5.1 Two semi-infinite
bodies with plane-parallel
surfaces separated by
a distance d. The upper
solids move parallel to other
with velocity V

Thus, the components of the vector potential

A(r, t) = A(r)e−iωt

are
Ax (r) = (8/V )1/2ax cos (kx x) sin (ky y) sin (kzz), (5.1)

Ay(r) = (8/V )1/2ay sin (kx x) cos (ky y) sin (kzz), (5.2)

Az(r) = (8/V )1/2ay sin (kx x) sin (ky y) cos (kzz), (5.3)

with a2x + a2y + a2z = 1, V = L2Lz , and

kx = lπ

L
, ky = mπ

L
, kz = nπ

Lz
, (5.4)

with l, m, and n each taking on positive integer values and zero. In order to satisfy
the transversality condition ∇ · A = 0 we also require

kx Ax + ky Ay + kz Az = π

L

(
l Ax + mAy

) + πn

Lz
Az = 0. (5.5)

Thus there are two independent polarizations, unless one of the integers l, m, n is
zero, in which case, (5.5) indicates that there is only one polarization. It is easy to
verify that (5.1)–(5.3) define a function satisfying the Helmbolz equation

∇2A(r) + k2A(r),
(
k = ω

c

)
(5.6)

as well as the condition that the transverse components of E vanish on the cavity
wall. Furthermore, these mode functions for different (kx , ky, kz) are orthogonal and
satisfy the normalization condition
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∫ L

0
dx

∫ L

0
dx

∫ Lz

0
dx

[
A2
x (r) + A2

y(r) + A2
z (r)

] = 1 (5.7)

The allowed frequencies are determined by

ωlmn = klmnc = πc

[
l2

L2
+ m2

L2
+ n2

L2
z

]1/2

. (5.8)

The zero-point energy of the field inside the cavity is therefore

′∑

lmn

(2)
1

2
�ωlmn =

′∑

lmn

π�c

[
l2

L2
+ m2

L2
+ n2

L2
z

]1/2

. (5.9)

The factor 2 arises from the two independent polarizations of modes with l, m, n �=
0. Prime on the summation symbol implies that a factor 1/2 should be inserted if
one of these integers is zero, since then we have just one independent polarization,
as noted earlier.

In the physical situation of interest, L is so large compared with Lz = d
that we may replace the sum over l and m in (5.9) with integrals:

∑
lmn →∑′

n(L/π)2
∫ ∫

dkxdky and

E(d) =
′∑

lmn

(2)
1

2
�ωlmn → L2

π2
(�c)

′∑

n

∫ ∞

0
dkx

∫ ∞

0
dky

[
k2x + k2y + n2

L2
z

]1/2

.

(5.10)
This integral is infinite; the zero-point energy of the vacuum is infinite in any finite
volume. This would generate an infinite gravitational field, and effects not observed
experimentally but which are we do not need to addressed here since only energy
differences occur in what follows.

If d were also made arbitrarily large, the sum over n could be replaced by an
integral. Then the zero-point energy (5.10) would be

E(d) = L2

π2
(�c)

d

π

∫ ∞

0
dkx

∫ ∞

0
dky

∫
dkz

[
k2x + k2k + k2z

]1/2
. (5.11)

which is also infinite.
The potential energy of the system when the plates are separated by a distance d

isU (d) = E(d) − E(∞). Thus, the energy required to bring the plates from a large
separation to the separation d is:

U (d) = L2
�c

π2

[ ′∑

n

∫ ∞

0
dkx

∫ ∞

0
dky

[
k2x + k2y + n2

L2
z

]1/2

−d

π

∫ ∞

0
dkx

∫ ∞

0
dky

∫ ∞

0
dkz

[
k2x + k2k + k2z

]1/2]
(5.12)
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Using polar coordinates q, φ in the (kx , ky)-plane, we have

U (d) = L2
�c

π2

(π

2

) [ ′∑

n

∫ ∞

0
dqq

[
q2 + n2

L2
z

]1/2

− d

π

∫ ∞

0

∫ ∞

0
dqqdkz

[
q2 + k2z

]1/2]
(5.13)

Since φ ranges from 0 to π/2 for kx , ky > 0. We now introduce a cutoff function
f (k) = f ([q2 + k2z ]1/2) such that f (k) = 1 for k � km and f (k) = 0 for k � km .
Physically, it can be argued that f (k) is necessary because the assumption of perfectly
conducting walls breaks down at small wavelengths, especially for wavelengths that
are small compared with an atomic dimension. We might then suppose that km ≈
1/a0, where a0 is the Bohr radius. We thus replace (5.13) with

U (d) = L2
�c

π2

(π

2

) [ ′∑

n

∫ ∞

0
dqq

[
q2 + n2

L2
z

]1/2

f

([
q2 + n2

L2
z

]1/2
)

−d

π

∫ ∞

0

∫ ∞

0
dqqdkz

[
q2 + k2z

]1/2
f

([
q2 + k2z

]1/2)
]

= L2
�c

4π

(
π3

d3

) [ ′∑

n

∫ ∞

0
dx

[
x + n2

]1/2
f

(π

d

[
x + n2

]1/2)

−
∫ ∞

0
dz

∫ ∞

0
dx

[
x + y2

]1/2
f

([
x + y2

]1/2)
]
, (5.14)

where we have defined the integration variables x = q2d2/π and y = kzd/π. Now

U (d) =
(

π2
�c

4d3

)
L2

[
1

2
F(0) +

∞∑

n=0

F(n) −
∫ ∞

0
dyF(y)

]

, (5.15)

where

F(y) =
∫ ∞

0
dx

(
x + y2

)1/2
f

(π

d

[
x + y2

]1/2)
(5.16)

According to the Euler-Maclaurin summation formula

∞∑

n=1

F(n) −
∫ ∞

0
dyF(y) = −1

2
F(0) − 1

12
F ′(0) + 1

720
F ′′′(0)... (5.17)

for F(∞) → 0. To evaluate the n-th derivative F (n)(y) we note that
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F(y) =
∫ ∞

y2
du

√
u f

(π

d

√
u
)

, F ′(y) = −2y2 f
(π

d
y
)

. (5.18)

Then F ′(0) = 0, F ′′′(0) = −4, and all higher derivatives, F (n) vanish if we assume
that all derivatives of the cutoff function vanish at y = 0. Thus

∞∑

n=1

F(n) −
∫ ∞

0
dyF(y) = −1

2
F(0) − 4

720

and

U (d) =
(

π2
�c

4d3

)
L2

( −4

720

)
(5.19)

which is finite and independent of the cutoff function. The attractive force per unit
area between the plates is then F(d) = π2

�c/240d4. This is the Casimir force. The
principle message of this section is that changes in the infinite zero-point energy of
the electromagnetic vacuum can be finite and observable. The role of the (infinite
large) zero point energies for gravitation is still an unsolved problem (see e.g. https://
en.wikipedia.org/wiki/Zero-point.energy).

5.2 Casimir Forces Between Two Plane-Parallel Surfaces

5.2.1 General Formulas

We consider two semi-infinite solids with flat parallel surfaces that are separated by
a distance d, and are moving with velocity V , relative to each other, see Fig. 5.1. We
introduce the two coordinate systems, K and K ′ with coordinate axes xyz and x ′y′z′.
In the K system, body 1 is at rest while body 2 ismovingwith the velocity V along the
x-axis (xy and x ′y′ planes are in the surface of body 1; x and x ′-axes have the same
direction, and the z and z′-axes point toward body 2). In the K ′ system, body 2 is
at rest while body 1 is moving with velocity −V along the x-axis. Since the system
is translational invariant in the x = (x, y) plane, the electromagnetic field can be
represented by the Fourier integrals

E(x, z, t) =
∫ ∞

−∞
dω

∫
d2q

(2π)2
eiq·x−iωtE(q,ω, z), (5.20)

B(x, z, t) =
∫ ∞

−∞
dω

∫
d2q

(2π)2
eiq·x−iωtB(q,ω, z), (5.21)

where E and B are the electric and magnetic induction field, respectively, and q is
the 2D wave vector in the xy-plane. After Fourier transformation, it is convenient

https://en.wikipedia.org/wiki/Zero-point.energy
https://en.wikipedia.org/wiki/Zero-point.energy
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to decompose the electromagnetic field into s- and p-polarized components. For
the p- and s-polarized electromagnetic waves, the electric field E(q,ω, z) is in the
plane of incidence, and perpendicular to that plane, respectively. In the vacuum gap
between the bodies, the electric field E(q,ω, z), and the magnetic induction field
B(q,ω, z) can be written in the form

E(q,ω, z) = (
vs n̂s + vpn̂ p

+)
eikz z + (

ws n̂s + wpn̂ p
−)

e−ikz z, (5.22)

B(q,ω, z) = c

ω

[ ([k+ × n̂s]vs + [k+ × n̂+
p ]vp

)
eikz z

+ ([k− × n̂s]ws + [k− × n̂−
p ]wp

)
e−ikz z

]
, (5.23)

k± = q ± ẑkz, kz =
((ω

c

)2 − q2

)1/2

, n̂s = [ẑ × q̂] = (−qy, qx , 0)/q,

n̂±
p = [k̂± × n̂s] = (∓qxkz,∓qykz, q

2
)
/(kq), k = ω

c
.

At the surfaces of the bodies, the amplitude of the outgoing electromagnetic wave
must be equal to the amplitude of the reflectedwave plus the amplitude of the radiated
wave. Thus, the boundary conditions for the electromagnetic field at z = 0 in the K -
reference frame can be written in the form

vp(s) = R1p(s)(ω, q)wp(s) + E f
1p(s)(ω, q), (5.24)

where R1p(s)(ω) is the reflection amplitude for surface 1 for the p(s)-polarized elec-
tromagnetic field, and where E f

1p(s)(ω) is the amplitude of the fluctuating electric

field radiated by body 1 for a p(s)-polarized wave. In the K
′
-reference frame, the

electric field can be written in the form

E′(q′,ω′, z) = (
v′
s n̂

′
s + v′

pn̂
′+
p

)
eikz z + (

w′
s n̂

′
s + w′

pn̂
′−
p

)
e−ikz z, (5.25)

where

q′ = (q ′
x , qy, 0), q

′
x = (qx − βk)γ, ω′ = (ω − Vqx )γ, γ = 1/

√
1 − β2,

β = V/c, n̂′
s = (−qy, q

′
x , 0)/q

′, n̂′±
p = (∓q ′

xkz,∓qykz, q
′2)/(k ′q ′),

q ′ = γ
√
q2 − 2βkqx + β2(k2 − q2

y ).

The boundary conditions at z = d in the K
′
-reference frame can be written in a

form similar to (5.24):
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w′
p(s) = e2ikzd R2p(s)(ω

′, q ′)v′
p(s) + eikzd E ′ f

2p(s)(ω
′, q ′), (5.26)

where R2p(s)(ω) is the reflection amplitude for surface 2 for p(s)-polarized elec-
tromagnetic field, and where E f

2p(s)(ω) is the amplitude of the fluctuating electric
field radiated by body 2 for a p(s)-polarized wave. A Lorentz transformation for the
electric field gives

E ′
x = Ex , E ′

y = (Ey − βBz)γ, E ′
z = (Ez + βBy)γ. (5.27)

Using (5.22), (5.23), (5.25) and (5.27), it is possible to express the amplitudes w′
p(s)

and v′
p(s) throughwp(s) and vp(s). Using these expressions in (5.26), we get equations

that, together with (5.24), form a system of equations, from which it is possible to
find wp(s) and vp(s). Details of the calculations are given in Appendix B.

The Casimir force is determined by the zz-component of the Maxwell’s stress
tensor σi j , calculated at z = 0:

σzz = 1

4π

∫ ∞

0
dω

∫
d2q

(2π)2

[ 〈|Ez(q,ω, z)|2〉 + 〈|Bz(q,ω, z)|2〉 −

− 〈|Eq(q,ω, z)|2〉 − 〈|En(q,ω, z)|2〉 −

− 〈|Bq(q,ω, z)|2〉 − 〈|Bn(q,ω, z)|2〉
]

z=0
. (5.28)

Using (5.22) (5.23) in (5.28), we get:

σzz = − 1

4π

∫ ∞

0
dω

∫
d2q

(2π)2

kz
k2

[(
kz + k∗

z

) ( 〈| wp |2〉 + 〈| ws |2〉 +

+ 〈| vp |2〉 + 〈| vs |2〉
)

+ (
kz − k∗

z

) 〈
wpv

∗
p + wsv

∗
s + c.c

〉]
. (5.29)

Substituting (B.15)–(B.18) into (5.29), and averaging over the fluctuating electro-
magnetic field, with the help of (B.19), we get the z-component of the force [128]:

Fz = σzz = − �

4π3 Re
∫ ∞

0
dω

∫
d2qkz

{
e2ikzd

[ (
q2 − βkqx

)2 [
R1p R

′
2pDss

+ R1s R
′
2s Dpp

]
− β2k2z q

2
y

[
R1p R

′
2s Dsp + R1s R

′
2pDps

] ]
�−1 + 1

}
[1 + n1(ω) + n2(ω

′)]

− �

16π3

∫ ∞

0
dω

∫

q< ω
c

d2q
kz

|�|2
[(

q2 − βkqx
)2 + β2k2z q

2
y

]

×
{(

q2 − βkqx
)2 [(

1− | R1p |2
) (

1+ | R′
2p |2

)
|Dss |2 − (1 ↔ 2,ω ↔ ω′)

]
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+β2k2z q
2
y

[(
1− | R1p |2

) (
1+ | R′

2s |2
)

|Dsp|2 − (1 ↔ 2,ω ↔ ω′)
]

+(p ↔ s)
} (

n1(ω) − n2(ω
′)
)

+ �

4π3

∫ ∞

0
dω

∫

q> ω
c

d2q
|kz |
|�|2

[(
q2 − βkqx

)2 + β2k2z q
2
y

]
e−2|kz |d

×
{(

q2 − βkqx
)2 [

ImR1pReR
′
2p|Dss |2 − (1 ↔ 2,ω ↔ ω′)

]
− β2k2z q

2
y

[
ImR1pReR

′
2s |Dsp|2

− (1 ↔ 2,ω ↔ ω′)
]

+ (p ↔ s)

} (
n1(ω) − n2(ω

′)
)
. (5.30)

where ω′ = (ω − qxV )γ, R′
2p(s) = R2p(s)(ω

′),

ni (ω) = 1

e�ω/kBTi − 1
,

Dpp = 1 − e2ikzd R1p R
′
2p, Dss = 1 − e2ikzd R1s R

′
2s,

Dsp = 1 + e2ikzd R1s R
′
2p, Dps = 1 + e2ikzd R1p R

′
2s,

� = (
q2 − βkqx

)2
Dss Dpp + β2k2z q

2
y Dps Dsp.

Equation (5.30) can be written in the form

Fneq
z (T1, T2, V, d) = Fz0(V, d) + Fneq

z,th (T1, T2, V, d) (5.31)

where the contribution of the zero-point (T = 0) fluctuations, Fz0(V, d), is separated
from that produced by the thermal fluctuations, Fneq

z,th (T1, T2, V, d). The result (5.30)
diverges at T = 0K and contains a constant (d-independent) terms in the thermal
part. The divergence has the same origin as the usual divergence of the zero-point
fields energy in quantum electrodynamics, while the constant terms are related to the
fact that we consider infinite bodies, and hence we neglect the force of the radiation
exerted on the remote, external surfaces of the two bodies. To recover the exact finite
value for the zero-temperature force, Fz0(V, d), and exclude the constant terms in
Feq
z,th(T, V, d), one has to subtract the infinite vacuumcontribution to the force,which

does not depend on separation d [42, 194].
Taking into account that n(−ω) = −1−n(ω), after substraction of d-independent

terms, from (5.30), we get for T1 = T2 = 0 K:

Fz = − �

4π3 Re

{∫ ∞

0
dω

∫
d2q −

∫ ∞

−∞
dqy

∫ ∞

0
dqx

∫ qx V

0
dω

}
kz
�
e2ikzd

×
{(
q2 − βkqx

)2 [
R1p R

′
2pDss + R1s R

′
2s Dpp

]



5.2 Casimir Forces Between Two Plane-Parallel Surfaces 77

−β2k2z q
2
y

[
R1p R

′
2s Dsp + R1s R

′
2pDps

] }

+ �

4π3

∫ ∞

−∞
dqy

∫ ∞

0
dqx

∫ qx V

0
dω

|kz |
|�|2

[(
q2 − βkqx

)2 + β2k2z q
2
y

]
e−2|kz |d

×
{(

q2 − βkqx
)2 [

ImR1pReR
′
2p|Dss |2 − (

1 ↔ 2,ω ↔ ω′)] − β2k2z q
2
y

[
ImR1pReR

′
2s |Dsp|2

− (
1 ↔ 2,ω ↔ ω′)] + (p ↔ s)

}
. (5.32)

If, in (5.30), one neglects the terms of the order β2, then the contributions from
the waves with p- and s-polarization will be separated. In this case, after substraction
of d-independent terms (5.30) reduces to

Fz = − �

4π3
Re

∫ ∞

0
dω

∫
d2qkz

(
1

R−1
1p R

′−1
2p e−2ikzd − 1

+ 1

R−1
1s R′−1

2s e−2ikzd − 1

)

[
1 + n1(ω) + n2(ω

′)
] − �

16π3

∫ ∞

0
dω

∫

q< ω
c

d2qkz

{[
(1− | R1p |2)(1+ | R′

2p |2) − (1 ↔ 2,ω ↔ ω′)
]

|Dpp|2

+ (p ↔ s)

} (
n1(ω) − n2(ω

′)
)

+ �

4π3

∫ ∞

0
dω

∫

q> ω
c

d2q|kz|e−2|kz |d

×
{[

ImR1pReR′
2p − (1 ↔ 2,ω ↔ ω′)

]

|Dpp|2 + (p ↔ s)

}
(
n1(ω) − n2(ω

′)
)

(5.33)

If we put V = 0, T1 = T2 = T and use the Fresnel’s formulas for the reflection
amplitudes, then (5.33) reduces to the formula obtained by Lifshitz [42]. Lifshitz
have shown that at T1 = T2 = 0 K, it is convenient to transform ω-integration
along the real axis into the integral along the imaginary axis in the upper half of the
complex ω-plane. After such transformation of the integration contour, introducing
new variables ω = iξ q = (ξ/c)

√
w2 − 1, we get

Fz = �

2π2c3

∫ ∞

0
dξ

∫ ∞

1
dww2ξ3

{[
(s1 + w)(s2 + w)

(s1 − w)(s2 − w)
exp

(
2wξ

c
d

)
− 1

]−1

+

+
[
(s1 + wε1)(s2 + wε2)

(s1 − wε1)(s2 − wε2)
exp

(
2wξ

c
d

)
− 1

]−1
}

, (5.34)
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where si = √
εi + w2 − 1, εi is the dielectric function for body i at ω = iξ. In

(5.34), it was taken into account that, on the imaginary axis, the dielectric function
is real [184].

5.2.2 Limiting Cases

First, we consider the case of “small” distances, by which we mean distances that
are small compared with the wavelengths λ0, which characterize the absorption
spectra of the given bodies. Because of the exponential factor exp (2wξd/c) in the
denominators of the expression under the integral (5.34), those value of w for which
wξd/c ∼ 1 are dominant in the integration with respect to w. In this case, w � 1
and therefore, for d, we can put si ≈ w. In this approximation, the first term in curly
brackets in (5.34) is zero, while the second term, after introducing the variable of
integration x = 2wξd/c, gives

F(d) = �

16π2d3

∫ ∞

0
dξ

∫ ∞

0
dxx2

[
(ε1 + 1)(ε2 + 1)

(ε1 − 1)(ε2 − 1)
ex − 1

]−1

, (5.35)

where, in this approximation, the lower limit of integration with respect to x is
replaced by zero. The functions ε2(iξ) − 1 decreases monotonically as ξ increases
and tend to zero. Therefore values of ξ that lie beyond a certain ξ ∼ ξ0 make a
negligible contribution to the integral; the condition that d should be small is that
d � c/ξ0. The integral

a

2

∫ ∞

0
dx

x2

aex − 1
(5.36)

decreases monotonically as a increases, from 1.2 at a = 1 to 1 at a = ∞ to 1. Thus,
with practically sufficient accuracy, (5.35) can be represented in the form

F(d) = �ω̄

8π2d3
, ω̄ =

∫ ∞

0
dξ

(
ε1(iξ) − 1)(ε2(iξ) − 1

)

(
ε1(iξ) + 1)(ε2(iξ) + 1

) . (5.37)

For metals at ξ ∼ ωp, where ωp is the plasma frequency, ε ≈ 1 + (ωp/ξ)
2. In this

case, for two identical metals ω̄ = (π/22.5)ωp.
We now consider the opposite limiting case of “large” distances, when λ0 � d �

λT = �c/kBT . We introduce in (5.34), a new variable of integration x = 2wξd/c,
and as the second variable, we take not ξ but w. Then ε1 and ε2 will be the function
of iξ = i xc/2wd. Because of the presence of factor exp(x) in the denominators of
the integrand, values x ∼ 1 are the only ones important in the integration over x .
Since w ≥ 1, the argument of the function ε for large d is nearly zero over the whole
of the important range of the variables. Because of this, we can replace ε1, ε2 with
their values for ξ = 0, i.e. the electrostatic dielectric constant ε10, ε20. Thus, finally,
we get
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Fz = �c

32π2d4

∫ ∞

0
dx

∫ ∞

1
dw

x3

w2

{[
(s10 + w)(s20 + w)

(s10 − w)(s20 − w)
ex − 1

]−1

+

+
[
(s10 + wε10)(s20 + wε20)

(s10 − wε10)(s20 − wε20)
ex − 1

]−1
}

, (5.38)

s10 =
√

ε10 − 1 + w2, s20 =
√

ε20 − 1 + w2.

Equation (5.38) is reduced to a very simple form when both bodies are metals. For
metals, the function ε(iξ) → ∞ as ξ → 0; therefore, we must put ε0 = ∞. If we
put ε01 = ε02 = ∞, we get

Fz = �c

16π2d4

∫ ∞

0
dx

∫ ∞

1
dw

x2

w2(ex − 1)
= π2

240

hc

d4
. (5.39)

This force is independent of the nature of the metal (a property that does not hold
for small distances, where the magnitude of the interaction depends on the behavior
of the function ε(iξ) for all values of ξ and not just for ξ = 0). This formula was
obtained by Casimir [39] by calculating the energy of the zero-point vibrations of an
electromagnetic field in a gap between twowalls that reflect ideally at all frequencies.

5.2.3 Effect of Temperature

Let us calculate the force Fz at thermal equilibrium (T1 = T2 = T , V = 0). In this
case, the integrand in (5.33) contains the factor

1 + 2n(ω) = coth

(
�ω

2kBT

)
.

We can deform the ω-integration path in (5.33) so that it runs along the
imaginary ω axis. Thus, the integral involves semicircles around the poles located at
ωn = iξn = i2πnkBT/�, where n = 0, 1, . . . . The integration along the semicircle
at ωn contributes iπ times the residue of the integrand at the pole ωn for n �= 0,
whereas, for n = 0, the contribution from the quarter-circle is iπ/2. The integration
between the poles gives purely imaginary expression. Thus, its contribution to the
force will be equal to zero. Thus, the resulting expression for the force has the form
[42]:
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Fz = kBT

πc3

∞∑

n=0

′
∫ ∞

1
dww2ξ3n

{[
(s1 + w)(s2 + w)

(s1 − w)(s2 − w)
exp

(
2wξn

c
d

)
− 1

]−1

+

+
[
(s1 + wε1)(s2 + wε2)

(s1 − wε1)(s2 − wε2)
exp

(
2wξn

c
d

)
− 1

]−1
}

, (5.40)

where the prime on the summation sign indicates that a factor 1/2must be included in
the n = 0 term. Because of the exponential factor exp (2wξnd/c) in the denominators
of the expression in (5.40), the dominant contribution to the sum gives the terms
for which ξn ∼ c/d, or n ∼ c�/dkBT . For dkBT/c� � 1, large values of n
will thus be important and we can replace the sum in (5.40) by an integration on
dn = (�/2πkBT )dξ. In this case, the temperature drop out and we are left with
(5.34). Thus, (5.34) is valid for separation d � c�/kBT ; at room temperatures, this
gives distances of up to ∼1µm.

In the case of high temperatures or large separation when

dkBT/c� � 1,

we need to keep only the first of the terms of the sum (5.40). However, we cannot
immediately put n = 0 because, in this case, the integral is ill-defined (the factor ξ3

tends to zero, but the integral overw diverges). This difficulty can be avoided by first
replacing w with a new variable of integration x = 2wξnd/c (as a result of which
the factor ξ3 disappears). If we then put ξn = 0, we get

Fz = kBT

16πd3

∫ ∞

0
dxx2

[
(ε10 + 1)(ε20 + 1)

(ε10 − 1)(ε20 − 1)
ex − 1

]−1

≈

≈ kBT

16πd3

(ε10 − 1)(ε20 − 1)

(ε10 + 1)(ε20 + 1)

∫ ∞

0
dxx2e−x = kBT

8πd3

(ε10 − 1)(ε20 − 1)

(ε10 + 1)(ε20 + 1)
. (5.41)

Thus, at sufficiently large distances, the decrease in the interaction slows down and
again goes as d−3, with a coefficient that now depends both on the temperature
and on the static value of the dielectric permeabilities. All other terms in the sum
(5.40) decrease exponentially for large dkBT/�c. Thus, for two metals separated by
a vacuum, the correct force is

Fz = kBT

8πd3

[

1 + 2

(
4πkBT d

�c

)2

exp

(
−4πkBT d

�c

)]

(5.42)

In a more accurate calculation, the first term in (5.42) should be replaced by ζ(3) =
1.2021, where ζ(k) is the Rimann zeta function. The condition dkBT/�c � 1 is,
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in fact, the quasiclassical condition (�ω � kBT , where ω ∼ c/d). Therefore, it is
natural that (5.41) does not contains �. The pressure (5.41) can be obtained from
the thermal free energy F = E − T S of the electromagnetic field (per unit area)
according to the thermodynamic identity P = −(∂F/∂l)T , where E and S are the
thermal energy and entropy, respectively. It is interesting to note that, unllike the free
energy, the thermal energy E decreases exponentially with d, which means that the
pressure (5.41) has a purely entropic origin.

It is important that, at large separations, only the p-polarization contributes to
the force. The reason is that, for low frequencies, the s-polarized field is nearly
purelymagnetic, but themagnetic field penetrates freely into a nonmagneticmaterial.
Let us empathize that the result (5.42) was obtained for interaction between real
metals. For ideal mirrors considered by Casimir, waves with both polarizations of
electromagnetic field are reflected. In this case, there will be an additional factor 2
in (5.42) due to the contribution of the s-polarization. This ideal case can be realized
using superconducting mirrors.

The formulas obtained in Sects. 5.2.2 and 5.2.3 can be generalized in such a way
so as to include the case when the gap between two bodies is filled by liquid, or when
on the surface of one body there is thin liquid film [43].

5.3 Interaction of a Small Particle with a Plane Surface

The Casimir force acting on a small particle moving parallel to a flat surface can be
obtained from the friction between two semi-infinite bodies in the limit when one
of the bodies is sufficiently rarefied. From (5.30) the contribution of the evanescent
waves to the Casimir force between two moving plates is given by

Fz = �

4π3 Im
∫ ∞

0
dω

∫

q> ω
c

d2q
kz
�
e−2kzd

{
R1p

[(
q2 − βkqx

)2
R′
2p Dss + β2k2z q

2
y R

′
2s Dsp

]
(5.43)

+ (p ↔ s)

}[
1 + n1(ω) + n2(ω

′)
]

+ �

4π3

∫ ∞

0
dω

∫

q> ω
c

d2q
kz

|�|2
[(
q2 − βkqx

)2 − β2k2z q
2
y

]
e−2kzd

{
ImR1p

[(
q2 − βkqx

)2ReR′
2p |Dss |2

+ β2k2z q
2
yReR

′
2s |Dsp |2

]
− ReR1p

[
ImR′

2p |Dss |2 + β2k2z q
2
y ImR′

2s |Dsp |2
]

+ (p ↔ s)

}(
n1(ω) − n2(ω

′)
)
,

where kz =
√
q2 − (

ω
c

)2
. In the casewhenonebody is rarefied, it is possible to neglect

the multiple scattering of the electromagnetic field in the vacuum gap between the
two surfaces. In this approximation Dss ≈ Dpp ≈ Dsp ≈ Dps ≈ 1,

� ≈ (q2 − βkqx )
2 − β2k2z q

2
y =

(
qq ′

γ

)2

and (5.43) can be written in the form
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Fz = �

4π3

∫ ∞
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dω

∫
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c

d2qkze
−2kzd

×
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ImR1pReR
′
2p + ImR1sReR
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coth
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�ω′
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.

(5.44)

We will assume that the rarefied plate consists of small particles, which have induced
electric dipole moments. The dielectric permittivity of this plate is close to the unity,
i.e. ε − 1 → 4πNα � 1, where N is the concentration of particles in the rarefied
plate in the co-moving reference frame, and α is their electric susceptibilities. To
linear order in the concentration N the reflection amplitudes are

R1p = ε2kz − √
k2z − (ε1 − 1)k

ε1kz + √
k2z − (ε − 1)k

≈ Nπ
q2 + k2z

k2z
α,

R1s = kz − √
k2z − (ε1 − 1)k2

kz + √
k2z − (ε2 − 1)k2

≈ Nπ
q2 − k2z

k2z
α

To obtain the friction force in the K frame, where a particle is moving with velocity
v parallel to a flat surface of a dielectric, the plate 2 should be assumed to be rarefied.
In this case

Fz = N ′
∫ ∞

d
dz fz(z), (5.45)

where N ′ = γN is the concentration of the particle in the plate 2 in the K frame,

fz = �

2γπ2

∫ ∞

0
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q> ω
c

d2qe−2kzd

{[
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]
Reα′coth
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)

+
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]
Imα′coth
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�ω′

2kBT2

) }
, (5.46)

where

φp =
(

ω′

c

)2

+ 2γ2
(
q2 − β2q2

x

) k2z
q2

, φs =
(

ω′

c

)2

+ 2γ2β2q2
y

k2z
q2
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At T1 = T2 = 0 K

fz = �

2γπ2
Im

∫ ∞

0
dω

∫

q>ω

d2qe−2kzd
[
φp Rp + φs Rs

]
α′
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∫ ∞

0
dqy

∫ ∞

0
dqx

∫ qxv

0
dωe−2kzd

[
φpReRp + φsReRs

]
Imα′, (5.47)

In the non relativistic (v � c) and nonretarded (d � λ0 � λT = c�/kBT ) limit

fz = �

π2
Im

∫ ∞

0
dω

∫
d2qe−2qdq2Rpα

′

− 4
�

π2

∫ ∞

0
dqy

∫ ∞

0
dqx

∫ qxv

0
dωe−2qdq2ReRpImα(ω − qxv). (5.48)

The force (5.48) corresponds to the (attractive) potential

U (d, v) = − �

2π2

∫ ∞

0
dξ

∫
d2qe−2qdqRp(iξ)Reα(iξ − qxv)

+ 2
�

π2

∫ ∞

0
dqy

∫ ∞

0
dqx

∫ qxv

0
dωe−2qdqReRpImα(ω − qxv) = U (0)(d, v) + �U (d, v).

(5.49)
where, in the first term, the integration contour is moved from the real axis to the
imaginary frequency axis. Using a non-dissipative model of metallic half-space,

ε(ω) = 1 − ω2
p

ω2
, Rp(iξ) = ω2

s

ω2
s + ξ2

, ωs = ωp√
2
,

and the atomic polarizability determined in a single oscillator model

α(iξ) = α(0)ω2
0

ω2
0 + ξ2

whereωp is the plasma frequency,α(0) is the static value of the atomic polarizability,
and ω0 is the atomic transition frequency, the term U (0)(d, v) in (5.49) simplifies to

U (0)(d, v) = −�α(0)ωs

16πd3

∫ ∞

0

[
(1 + η)θ(1 − ζx)

(1 + η)2 − ζ2x2
+ θ(ζx − 1)

[
1 − (η + ζx)2

]

]
(
K0(x)+K2(x)

)
x2dx,

(5.50)
where η = ωs/ω0, ζ = v/2ω0d, K0(x) and K2(x) are the modified Bessel function
of the second kind, and θ(x) is the step function. Taking into account that

∫ ∞

0

(
K0(x) + K2(x)

)
x2dx = 2π,

∫ ∞

0

(
K0(x) + K2(x)

)
x4dx = 12π

in the case ζ � 1 from (5.50) we get
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U (0)(d, v) = − �α(0)ωsω0

8d3(ωs + ω0)

[
1 + 6v2

d3(ωs + ω0)2

]
(5.51)

The imaginary part of the atomic polarizability can be written in the form

Imα(ω) = πα(0)ω0

2

[
δ(ω − ω0) − δ(ω + ω0)

]
(5.52)

Using this equation in (5.49) we get

�U (d, v) = 2
�

π2

∫ ∞

0
dqy

∫ ∞

0
dqx

∫ qxv

0
dωe−2qdqReRpImα(ω − qxv)

= −�α(0)ω0η
2

16πd3

∫ ∞

1/ζ

x2
(
K0(x) + K2(x)

)

η2 − (1 − ζx)2
dx (5.53)

In (5.53), the integral is taken in the sense of the principle value. For ζ � 1, the
integral in (5.51) quickly goes to zero as exp (−1/ζ), and therefore the van derWaals
potential is given by (5.51). For ζ � 1, taking into account that

Kn(x) →x→0
1

2
(n − 1)!

( x
2

)2
,

we get

U0(d, v) ≈ �α(0)ωs

8πd3ζ
, (5.54)

and

�U (d, v) ≈ �α(0)ω0η
2

8πd3ζ
. (5.55)

Note that, in this limit, the sign of the potential is positive, whichmeans that attraction
is replaced by repulsion.

At T1 = T2 = 0 K and v = 0 for d � λ0 the contribution to the interaction force
from the (dynamic) electric dipole moment is

fze = 2�

π

∫ ∞

0
dξ

∫ ∞

0
dqq3e−2qd Rp(iξ)αE (iξ) = 3�

4πd4

∫ ∞

0
dξ

ε(iξ) − 1

ε(iξ) + 1
αE (iξ).

(5.56)
This formula can be generalized to include the contribution from the (dynamic)
magnetic moment
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fzm = 2�

π

∫ ∞

0
dξ

∫ ∞

0
dqq3e−2qd Rs(iξ)αH (iξ) (5.57)

= 2�

π

∫ ∞

0
dξ

∫ ∞

0
dqq3e−2qd

√
q2 + (ξ/c)2 − √

q2 + (ξ/c)2ε(iξ)
√
q2 + (ξ/c)2 + √

q2 + (ξ/c)2ε(iξ)
αH (iξ)

≈ − �

8πc2d2

∫ ∞

0
dξξ2

(
ε(iξ) − 1

)
αH (iξ).

For a spherical particle with radius R the electric and magnetic susceptibilities are
given by [191]

αE = R3 ε − 1

ε + 2
, (5.58)

αH = − R3

2

[
1 − 3

κ2R2
+ 3

κR
cot κR

]
, (5.59)

where κ = k
√

ε − 1. In Drude model ε is given by

ε(iξ) = 1 + ω2
p

ξ(ξ + η)
≈ 1 + ω2

p

ξ2
, (5.60)

were it was taken into account that for typical metals η � ωp. Taking into account
(5.60), we get κ = iωp/c. When (ωp/c)R � 1 one can use expansion

cot
x→0

x → 1

x
− x

3
− x3

45
− 2x5

945
. . .

So that the magnetic susceptibility

αH ≈ −R3(ωp R/c)2/30.

Using (5.58) and (5.59) in (5.56), (5.57) and taking into account that (5.59) is valid
at ω ≤ ωl ∼ c/R, we get

Fze ≈ 3

4π

�ωp R3

d4
, Fzm ≈ 1

240π

�ωl R5

d2d4
p

, (5.61)

where dp = c/ωp. From (5.61) we get

Fzm/Fze ∼
(

dR

180d2
p

)2

.
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Thus, when R � d � dp, the dominant contribution to the interaction force is
determined by the particle dipole moment.

At large separation (λ0 � d � λT ), and assuming that the body 2 is sufficiently
rarefied, from (5.38), the interaction potential

U (d) = − 3�c

8πd4

∫ ∞

1
dw

1

w2

{
(s10 − w)

(s10 + w)2w2
+ (wε10 − s10)

(wε10 + s10)(
1 − 1

2w2

)}
α2E (0), (5.62)

A similar expression can be obtained for the contribution from themagnetic moment.
For metal ε10 → ∞, and in this case (5.62) reduces to

U (d) = −3α2(0)�c

8πd4
(5.63)

which coincides with the result of Casimir and Polder [7] for the interaction energy
of an atom with a wall of an ideal conductor. For a metal particle αE (0) = R3 and
αH (0) = −R3/2. Thus, in this case too, the main contribution to the interaction is
determined by the electric dipole moment.

5.4 Interaction Between Small Particles

We now show how it is possible to go from the macroscopic formula (5.34) to the
interaction between individual small particles in a vacuum. To do this, we assume
that both bodies 1 and 2 to be sufficiently rarefied, and that they consist of the
particles that have (dynamical) dipole and magnetic moments. From the point of
view of macroscopic electrodynamics, this means that their dielectric and magnetic
permeabilities are close to 1, i.e. differences ε1(2) − 1 = 4πn1(2)αE1(2) � 1 and
μ1(2) − 1 = 4πn1(2)αH1(2) � 1. We begin with “small” distances. From (5.35) to
linear order in the particle concentration we get

F(d) = �

64π2d3

∫ ∞

0
dξ

∫ ∞

0
dxx2

[
(ε1 − 1)(ε2 − 1) + (μ1 − 1)(μ2 − 1)

]
e−x

= n1n2�

2d3

∫ ∞

0
dξ

[
αE1(iξ)αE2(iξ) + αH1(iξ)αH2(iξ)

]
. (5.64)

If interaction potential of the particles is equal to u = −a/rn , which corresponds
to the force f = −dU/dr = an/rn+1, then the total energy of pairwise interactions
per unit surface area of all molecules in two half-spaces, separated by the gap d, will
be equal to

U = aπn1n2
dn−4

2

(n − 2)(n − 3)(n − 4)
, (5.65)
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and the force will equal to

F = aπn1n2
dn−3

2

(n − 2)(n − 3)
. (5.66)

Comparing (5.64) and (5.66), we get the interaction force between particles:

f (r) = 18�

πr7

∫ ∞

0
dξ

[
αE1(iξ)αE2(iξ) + αH1(iξ)αH2(iξ)

]
. (5.67)

For example, for hydrogen atoms, the dielectric susceptibility is determined by the
expression [184]

αE (ω) = e2

�

∑

n

|xn0|2
[

1

ωn0 − ω − i0
+ 1

ωn0 + ω + i0

]
, (5.68)

where xn0 = 〈n|x |0〉 is the matrix element of the coordinates of the electron in the
atom, ωn0 = (En − E0)/�, En and E0 are the energies of the stationary states |n〉
and |0〉. Using (5.68) in (5.67) for the interaction force between two hydrogen atoms
due to the (dynamic) dipole moments we get

F = 36e4

d7

∑

nm

|xn0|2|xm0|2
En − E0 + Em − E0

. (5.69)

The diamagnetic susceptibility of a hydrogen atom is several orders of magnitude
smaller than the dielectric susceptibility; therefore, it is possible to neglect the contri-
bution to the interaction force of from the magnetic moments. In the case of the inter-
action of the metallic particles in the frequency range ω ∼ ωp and for R � d � dp,
the ratio of magnetic and dielectric susceptibilities αH/αE ∼ 10−1(R/dp)

2 � 1;
therefore, the interaction force is determined by the dipole interaction.

For “large” distances, the formula for the attraction force between two “rarefied”
bodies, consisting of particleswith dipole andmagneticmoments, according to (5.38)
has the form

F = �c

2d4

[
α0
E1α

0
E2 + α0

H1α
0
H2

] ∫ ∞

0
dxx3e−x

∫ ∞

1
dw

1 − 2w2 + 2w4

8w8
=

= 23

40

�cn1n2
d4

[
α0
E1α

0
E2 + α0

H1α
0
H2

]
. (5.70)

This force corresponds to the interaction of two particles with a force

f = 161�c

4πr8
[
α0
E1α

0
E2 + α0

H1α
0
H2

]
. (5.71)
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The static magnetic susceptibilities α0
H of the particles are determined by the weak

diamagnetic effect. Therefore, the contribution from the magnetic moments can be
neglected. Formula (5.71) coincides with the results of the quantum mechanical
calculation by Casimir and Polder [41] of the attraction between two atoms when the
distance between them is sufficiently large for retardation effects to be important.

5.5 Casimir Force Out of Thermal Equilibrium

We consider now the force Fz(T1, T2, d) between two solids with temperatures T1
seperated T2 separated by distance d.

5.5.1 Force Between Identical Bodies

In the case of two identical materials, the force between two bodies can be found
without any calculations using the following simple consideration. If body 1 is at the
temperature T and body 2 be at T = 0, then the thermal contribution to the force
will be Fneq

z (T, 0, d). Because of the material identity, the pressure will be the same
if we interchange the temperatures of the bodies: Fneq

z,th (T, 0, d) = Fneq
z,th (0, T, d).

In general, we know from (5.33) that the thermal part of the force is given by the
sum of two terms each of which corresponding to a configuration where only one
of the bodies is at non-zero temperature, i.e., Fneq

z,th (T1, T2, d) = Fneq
z,th (T1, 0, d) +

Fneq
z,th (0, T2, d). It is now evident that at equilibrium, where T1 = T2 = T , the latter

equation Fneq
z,th (T, 0, d) = Fneq

z,th (0, T, d) = Feq
z,th(T, d) and we find for the total force

Fneq
z (T1, T2, d) = Feq

z (T1, d)

2
+ Feq

z (T2, d)

2
(5.72)

Therefore, the force between two bodies made from the same materials depends on
only the equilibrium forces at T1 and T2. It is interesting to note that (5.72) is valid
not only for the plane-parallel geometry, but also for any couple of identical bodies
of any shape displaced in a symmetric configuration with respect to a plane.

5.5.2 Force Between Different Bodies

At V = 0, the thermal contribution to the force between two different semi-infinite
bodies is according to (5.33) given by
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F
neq
z,th(T1, T2, d) = − �

4π3
Re

∫ ∞

0
dω

∫
d2qkz

(
1

R−1
1p R

−1
2p e

−2ikzd − 1

+ 1

R−1
1s R−1

2s e
−2ikzd − 1

+ 1

)
[
n1(ω) + n2(ω

′)
]

− �

16π3

∫ ∞

0
dω

∫

q< ω
c

d2qkz

{ | R2p |2 − | R1p |2
|Dpp|2

+(p ↔ s)

} (
n1(ω) − n2(ω

′)
)

+ �

4π3

∫ ∞

0
dω

∫

q> ω
c

d2q|kz|e−2|kz |d

×
{
ImR1pReR2p − ImR2pReR1p

|Dpp|2 + (p ↔ s)

} (
n1(ω) − n2(ω

′)
)

(5.73)

At equilibrium T1 = T2 = T , from (5.73) we get

F
eq
z,th(T, d) = Feq

z,th(T, d) − 4σT 4

3c
(5.74)

where Feq
z,th(T, d) is the equilibrium force determined by (5.33). The difference

between F
eq
z,th(T, d) and Feq

z,th(T, d) has a clear-physical origin. In fact, the force out
of equilibrium (5.73), from which (5.74) is derived, is calculated for bodies occu-
pying two infinite half-spaces. On the contrary, the equilibrium force Feq

z,th(T, d)

was obtained after proper regularization, and hence takes into account the pressure
exerted on the external surfaces of bodies of finite thickness (see discussion after
(5.30)). The non-equilibrium force can be written in the following useful form:

Fneq,PW
z,th (T1, T2, d) = Feq,PW

z,th (T1, d)

2
+ Feq,PW

z,th (T2, d)

2
− B(T1, T2)

+ �FPW
th (T1, d) − �FPW

th (T2, d) (5.75)

Fneq,PW
z,th (T1, T2, d) = Feq,EW

z,th (T1, d)

2
+ Feq,EW

z,th (T2, d)

2
+ �FEW

th (T1, d) − �FEW
th (T2, d) (5.76)
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where Feq,PW
z,th (T, d) and Feq,PW

z,th (T, d) are the equilibrium d-dependent contribu-
tions from propagating and evanescent waves, respectively; B(T1, T2) = 2σ(T1 +
T2)/3c is a d-independent contribution, discussed in (5.74). The expressions �FPW

th
(T, d) and �FEW

th (T, d) are antisymmetric with respect to the interchange of the
bodies ↔ and are defined as

�FPW
th (T, d) = �

4π2

∫ ∞

0
dω

1

c�ω/kBT − 1

∫ k

0
dqqkz

∑

μ=p,s

∣
∣R2μ

∣
∣2 − ∣

∣R1μ

∣
∣2

∣∣Dμμ

∣∣2
,

(5.77)

�FEW
th (T, d) = �

2π2

∫ ∞

0
dω

1

c�ω/kBT − 1
(5.78)

×
∫ ∞

k
dqqImkze

−2Im(kz)d
∑

μ=p,s

ImR1μReR2μ − ImR1μReR2μ
∣∣Dμμ

∣∣2
,

Note that the EW term (5.78), corresponding to the evanescent waves, goes to 0 for
d → ∞ because evanescent fields decay at large distances. However, the PW term
(5.77), corresponding to the propagating waves, contains an l-independent compo-
nent since, in the non-equilibrium situation, there is momentum transfer between
bodies. This d-independent component can be directly extracted from (5.77) using
the expansion

1
∣∣1 − Re2ikzd

∣∣2
= 1

1 − |R|2
(

1 + 2Re
∞∑

n=1

Rne2ikzd
)

, (5.79)

where R = R1μR2μ. This expansion shows explicitly the contributions from mul-
tiple reflections. The distance independent term corresponds to the first term in the
expansion (5.79), and it is related to the radiation that passes the gap only once,
i.e., without being reflected. Finally, it is possible to write �FPW

th (T, d) as the sum
�FPW

th (T, d) = �FPW
th,a (T, d) + �FPW

th,b (T, d), where the constant and the pure
d-dependent terms respectively, are

�FPW
th,a (T, d) = �

4π2

∫ ∞

0
dω

1

c�ω/kBT − 1

∫ k

0
dqqkz

∑

μ=p,s

∣
∣R2μ

∣
∣2 − ∣

∣R1μ
∣
∣2

1 − ∣∣R1μR2μ
∣∣2

, (5.80)

�FPW
th,b (T, d) = �

4π2

∫ ∞

0
dω

1

c�ω/kBT − 1

∫ k

0
dqqkz

∑

μ=p,s

∣
∣R2μ

∣
∣2 − ∣

∣R1μ
∣
∣2

1 − ∣∣R1μR2μ
∣∣2

(
R1μR2μ

)
e2inkzd ,

(5.81)
At thermal equilibrium T1 = T2 = T the sum of (5.75) and (5.76) provides the
Lifshitz formula except for the term−4σT 4/3c, which is canceled due to the pressure
exerted on the remote external surfaces of the bodies, as explicitly shown in the
next section. Out of thermal equilibrium, but for identical bodies, R1μ = R2μ, the
antisymmetric terms disappear: �FPW

th (T, d) = �FEW
th (T, d) = 0. In this case,

(5.72) is reproduced.



Chapter 6
Radiative Heat Transfer

In this section, we consider the basic principles of radiative heat transfer. The general
theory of the fluctuating electromagnetic field is applied for the calculation of the
radiative heat transfer in the plate–plate and particle–plate configurations using the
Green’s function and scattering matrix approaches. The Green’s function approach
is used to calculate the radiative heat transfer between anisotropic materials, and the
scattering matrix approach is used to calculate the radiative heat transfer between
plates in relative motion. By considering one of the plates as sufficiently rarefied, we
calculate the radiative heat transfer between a small neutral particle moving parallel
to the plate and the plate in the different reference frames. Different limiting cases are
considered.We consider the dependence of the heat transfer on the temperature T, the
shape and the separation d, and discuss the role of non-local and retardation effects.
Wefind that, for high-resistivitymaterial, the heat transfer is dominated by retardation
effects even for very short separations. The heat transfer at short separation between
the plates may increase by many orders of magnitude when the surfaces are covered
by adsorbates, or can support low-frequency surface plasmon polaritons (SPP) or
surface phonon polaritons (SPhP). In this case, the heat transfer is determined by
resonant photon tunneling between adsorbate vibrational modes, or SPP or SPhP
modes. Using the nonlocal optic dielectric approach, we study the dependence of
the heat flux between two metal surfaces on the electron concentration, and compare
this with the predictions of the local optic approximation.

6.1 The Green’s Function Theory

The theory of electromagnetic fluctuations presented in Chap. 4 can be used to
calculate the heat transfer between any two macroscopic bodies with different
temperatures, T1 and T2, whose surfaces are separated by a distance d, much
larger than the lattice constant of the solids. In this case, the problem can be
treated macroscopically.
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In order to calculate the radiative energy transfer between the bodies, we need the
ensemble average of the Poynting’s vector

〈S(r)〉ω = (c/8π)
〈
E(r) × B∗(r)

〉
ω

+ c.c. =

= ic2

8πω

{∇′ 〈E(r) · E∗(r′)
〉− 〈

(E(r) · ∇′)E∗(r′)
〉− c.c

}
r=r′ . (6.1)

Thus, the Poynting’s vector can be expressed through the average of the product
of the components of the electric field. According to the theory of the fluctuating
electromagnetic field, the spectral function of fluctuations of the electric field in the
vacuum gap between the bodies 1 and 2 is given by (3.63) and (3.64) [13] (see also
Appendix A)

〈
E(r)E∗(r′〉

ω
=
[
�1(ω) − �2(ω)

]

8π2ik2ω

∫
dS′′

1

{
D̂(r, r′′)∇′′D̂+(r′, r′′)−

− ∇′′D̂(r, r′′)D̂+(r′, r′′)
}

+ �2(ω)

πω
ImD̂(r, r′), (6.2)

where the integration is over the surface of the body 1,

�i (ω) = �ω
(
e�ω/kBTi − 1

)−1
. (6.3)

TheGreen’s functionmatrix of the electromagnetic field D̂(r, r′) in the space between
the bodies can be found by solving (3.33) and (3.34) with the appropriate boundary
conditions [13, 183] (see also Appendix C). The second term in (6.1) does not give
any contribution to the heat flux between two parallel surfaces because

〈(
E(r) · ∇′) E∗

z (r
′)
〉 = 〈∇ · E(r)E∗

z (r)
〉 = ∇z

〈
Ez(r)E∗

z (r)
〉
. (6.4)

This term is purely real and does not give any contribution to the z-component of
Poynting vector, which in this case is given by

〈Sz(r)〉ω = (c/8π)
〈
E(r) × B∗(r)

〉
ω

+ c.c. = ic2

8πω

{
〈E(r) · d

dz
E∗(r)〉ω − c.c.

}
.

(6.5)
Using (6.2), in (6.5) we get

〈Sz〉ω =
[
�1(ω) − �2(ω)

]

64π3k4

∫
d2q

(2π)2
Tr

[
D̂

∂2

∂z∂z′ D̂
+(z, z′) −

− ∂

∂z′ D̂
∂

∂z
D̂+(z, z′) + c.c.

]

z→z′
(6.6)
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For the planegeometry, the solutionof (3.33) and (3.34) ismost conveniently obtained
by representing theGreen’s function as Fourier integralswith respect to the transverse
coordinates x, y (the z-axis being normal to the surfaces); this gives a system of linear
inhomogeneous ordinary differential equations fromwhich theGreen’s functions can
be obtained as functions of z [13, 183]. The solution of these equations is described
in details in Appendix C. The Green’s function matrix for z > z′ can be written in
the form [195, 196]:

D̂ = 2πiω2

kzc2

[
D̂12

(
Îeikz (z−z′) + R̂1e

ikz (z+z′)
)

+ D̂21

(
R̂2R̂1e

2ikzd eikz (z
′−z) + R̂2e

2ikzd e−ikz (z+z′)
)]

,

(6.7)

where

R̂1 = n̂+R1n̂
−, R̂2 = n̂−R2n̂

+, Î = n̂+In̂+, D̂12 = n̂+D12n̂
+,

D̂21 = n̂−D21n̂
−, Di j = [

I − e2ikzd Ri R j
]−1

,

where I is the 2 × 2 unit matrix, the 3 × 2 matrix n̂± = (n̂±
s , n̂±

p ), kz =
((ω/c)2)−q2)1/2, λ = (s, p), n̂±

s = [ẑ× q̂] = (−qy, qx , 0)/q, n̂±
p = [k̂± × n̂±

s ] =
(∓qkz, q2/(kq), k = ω/c, k̂± = (q± ẑkz)/k, q = (qx , qy, 0). The 2× 2 reflection
matrix R determines the reflection amplitudes for the waves with different polar-
ization λ = (s, p). This matrix is diagonal for isotropic materials. However, in the
general cases of anisotropic materials, this matrix is not diagonal

Ri =
(
Ri
ss Ri

sp

Ri
ps Ri

ss

)
.

For the isotropic materials Rλλ′ = Rλδλλ′ and the Green’s function matrix is simpli-
fied

D̂isotropic = 2πiω2

kzc2

∑

λ=(s,p)

[
n̂+
λ n̂+

λ eikz (z−z′) + n̂+
λ n̂−

λ R1λe
ikz (z+z′) + n̂−

λ n̂−
λ R1λR2λe

2ikzd eikz (z
′−z)

+ n̂−
λ n̂

+
λ R2λe

2ikzde−ikz(z+z′)
] 1

1 − e2ikzd R1λR2λ
, (6.8)

Substitution of (6.7) in (6.6) gives [195, 196]:

Sz =
∫ ∞
0

dω

2π

[
�1(ω) − �2(ω)

]{ ∫

q< ω
c

d2q

(2π)2
Tr
[(

I − R+
2 R2

)
D12

(
I − R1R

+
1

)
D+
12

]

+
∫

q> ω
c

d2q

(2π)2
e−2|kz |dTr

[(
R+
2 − R2

)
D12

(
R1 − R+

1

)
D+
12

] }
. (6.9)
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6.2 The Scattering Matrix Theory

We introduce two coordinate systems, K and K ′ with coordinate axes xyz and x ′y′z′.
In the K system, body 1 is at rest while body 2 is moving with the velocity V , along
the x-axis (the xy and x ′y′ planes are in the surface of body 1, x and x ′-axes have the
same direction, and the z and z′-axes point toward body 2). In the K ′ system, body 2
is at rest while body 1 is moving with velocity−V along the x-axis. Since the system
is translational invariant in the x = (x, y) plane, the electromagnetic field can be
represented by the Fourier integrals (see (5.22) and (5.23)). In the vacuum region,
the electromagnetic field is determined by (5.22). Decomposing the electromagnetic
field into s- and p-electromagnetic waves and substituting (5.22) in (6.5), we obtain
the heat flux, transferred through the surface 1:

S1 = 1

4π

∫ ∞

0
dω

∫
d2q

(2π)2

ω

k2
[
(kz + k∗

z )
(〈| wp |2〉 + 〈| ws |2〉−

− 〈| vp |2〉− 〈| vs |2〉)+ (kz − k∗
z )
〈
(wpv

∗
p + wsv

∗
s − c.c

〉]
. (6.10)

In (6.10), the integration is performed only over positive values ofω, which introduce
an additional factor of 2. After averaging in (6.10) over the fluctuating electromag-
netic field with the use of (2.15)–(2.19) from Appendix B, we obtain the heat flux
through surface 1, separated from the surface 2 by vacuum gap (thickness d) [128]:

S1 = �

8π3

∫ ∞

0
dω

∫

q< ω
c

d2q
ω

|�|2
[ (

q2 − βkqx
)2 + β2k2z q

2
y

]
×

×
[ (

q2 − βkqx
)2 (

1− | R1p |2) (1− | R′
2p |2) |Dss |2+

+β2k2z q
2
y

(
1− | R1p |2) (1− | R′

2s |2) |Dsp|2 + (
p ↔ s

)] (
n2(ω

′) − n1(ω)
)+

+ �

2π3

∫ ∞

0
dω

∫

q> ω
c

d2q
ω

|�|2
[ (

q2 − βkqx
)2 + β2k2z q

2
y

]
e−2|kz |d×

×
[ (

q2 − βkqx
)2
ImR1pImR′

2p|Dss |2 − β2k2z q
2
y ImR1pImR′

2s |Dsp|2+

+ (
p ↔ s

)] (
n2(ω

′) − n1(ω)
)
. (6.11)

The quantities entering in (6.11) have the same meaning as in (5.30). There is also a
heat flux S2 from body 2 in the K ′-reference frame. Actually, S1 and S2 are the same
quantities, looked at from different coordinate systems. These quantities are related
by the equation:

FxV = S1 + S2/γ, (6.12)



6.2 The Scattering Matrix Theory 95

where Fx is the friction force, due to the relative motion of the two bodies. Equation
(6.12) has a simple meaning: the power of friction force is equal to heat flux through
the surfaces of both bodies. At V = 0, (6.11) is reduced to the formula obtained in
[13]

Sz =
∫ ∞

0

dω

2π

[
�1(ω) − �2(ω)

]{ ∫

q< ω
c

d2q

(2π)2
×

×
(
1− | R1p(q,ω) |2) (1− | R2p(q,ω) |2)

| 1 − e2ikzd R1p(q,ω)R2p(qω) |2 +

+ 4
∫

q> ω
c

d2q

(2π)2
e−2|kz |d ×

× ImR1p(q,ω)ImR2p(q,ω)

| 1 − e−2|kz |d R1p(q,ω)R2p(q,ω) |2 +

+ [p → s]
}
, (6.13)

where the symbol [p → s] stands for the terms that are obtained from the first two
terms by replacing the reflection amplitude Rp for the p-polarized electromagnetic
waves with the reflection amplitude Rs for the s-polarized electromagnetic waves,
andwhere kz = ((ω/c)2−q2)1/2. The contributions to the heat transfer from the prop-
agating (q < ω/c) and evanescent (q > ω/c) electromagnetic waves are determined
by the first and the second terms in (6.13), respectively. Because of the presence of the
exponential factor in the integrals in (6.13), the q-integration is effectively limited by
to q < λ−1

T for the propagating waves, and q < d−1 for the evanescent waves. Thus
from phase space arguments, it follows that the number of the available channels for
the heat transfer for the evanescent waves will be by a factor of (λT /d)2 larger than
the number of the available channels for the propagating waves. For d = 1 nm and
T = 300 K, this ratio is of the order of ∼108.

In the local optic approximation, and in the non-retarded limit, the formula (6.13)
reduces to the results first obtained in [93] and [115], respectively.

Equation (6.13) can be understood qualitatively as follows. The heat flux per
unit frequency is (thermal energy) × (transmission coefficient). The transmission
coefficient can be written in the form

| D |2 = | D1D2e
ikzd
(
1 + R1R2e

2ikzd + (
R1R2e

2ikzd
)2 + . . .

) |2=

= | D1 |2|| D2 |2 e−2Im(kz)d

| 1 − R1R2e2ikzd |2 , (6.14)

where D1 and D2 are the transmission amplitude for the surfaces 1 and 2, respec-
tively. The transmission amplitude D, for two interfaces with reflection amplitude
R1 and R2 is obtained by geometrical progression of the subsequent reflections of
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the electromagnetic waves between two surfaces, while keeping proper track of the
accumulated phase. Finally, one integrates over ω and the allowed q, and subtracts
the opposite fluxes.

6.3 General Formulas and Limiting Cases

Let us first consider some general consequences of (6.13). In the case of heat transfer
through the propagating photons (q ≤ ω/c), the heat transfer is maximal for black
bodies with zero reflection amplitude, R = Rr + i Ri = 0. Now, what is the photon-
tunneling equivalent of a black body? For q > ω/c there are no constraints on the
reflection amplitude, R(q,ω), other than that ImR(q,ω) is positive, and Rr and
Ri are connected by the Kramers–Kronig relation. Therefore, assuming identical
surfaces, we are free to maximize the transmission coefficient corresponding to the
photon tunneling

T = |D|2 = R2
i e

−2kd

∣∣1 − e−2kd R2
∣∣2

(6.15)

(where k = |kz|) with respect to Ri (or Rr ). This function is maximal when [115]:

R2
r + R2

i = e2kd , (6.16)

so that T = 1/4. Substituting this result in (6.13) gives the maximal contribution
from the evanescent waves:

(Sz)
evan
max = k2BT

2q2
c

24�
, (6.17)

where qc is a cut-off in q, determined by the properties of the material. It is clear
that the largest possible qc ∼ 1/b, where b is an inter-atomic distance. Thus, from
(1.2) and (6.17) we get the ratio of the maximal heat flux connected with evanescent
waves to the heat flux due to black body radiation (Sz)max/SBB ≈ 0.25(λT /b)2,
where λT = c�/kBT . At room temperature, the contribution to the heat flux from
the evanescent waves will be approximately eight orders of magnitude larger than
the contribution from black body radiation, and the upper boundary for the radiative
heat transfer at room temperature (Sz)max ∼ 1011 Wm−2. The result that there is a
maximumheat flow in agiven channel linkswithmoreprofound ideas of entropyflow.
It was shown [96] from very general arguments that the maximum of the information
flow in a single channel is linked to the flow of energy. Briefly, the arguments were
that the flow of information in a channel is limited by

Ė ≥ 3�ln22

π
İ 2, (6.18)
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where Ė is the energy flow and İ the information flow. Identifying the energy flow
with heat flow, S,

Ė = S İ = S

kBT ln2
(6.19)

we have

S ≤ πk2BT
2

3�
, (6.20)

hence,

S ≤ Smax = 2
∑

q

πk2BT
2

3�
, (6.21)

where factor 2 takes into account twopossible polarizations. Therefore, themaximum
in the heat flux per channel is interpreted as conducting themaximumallowed amount
of entropy per channel.

Let us apply the general theory to concrete materials. For the local optic case, the
reflection amplitudes are determined by the Fresnel formulas (3.17). For metals, the
dielectric function can be written in the form

ε = 1 + 4πiσ/ω, (6.22)

where σ is the conductivity that can be considered as constant in the mid- and far-
infrared region. For good conductors, when kBT/4πσ � 1 and λT |ε(ωT )|−3/2 <

d < λT |ε(ωT )|1/2, where ωT = c/λT = kBT/�, the contribution to the heat transfer
from p-polarized waves is determined by

Sp ≈ 0.2
(kBT )2

�λT d

(
kBT

4π�σ

)1/2

, (6.23)

while the s-wave contribution for d < λT |ε(ωT )|−1/2 is distance independent:

Ss ≈ 0.02
4πσkBT

λ2
T

. (6.24)

For good conductors, the heat flux associated with p-polarized electromagnetic
waves decreases with the separation as ∼d−1, and increases with decreasing con-
ductivity as σ−1/2. When kBT/4π�σ ≥ 1 the heat flux decreases with separation
as d−2. Figure6.1a shows the heat transfer between two semi-infinite silver bodies
separated by the distance d, and at the temperatures T1 = 273 K and T2 = 0 K.
The s- and p-wave contributions are shown separately, and the p-wave contribution
has been calculated using non-local optics, i.e. spatial dispersion of the dielectric
function was taken into account (the dashed line shows the result using local optics).
It is remarkable how important the s-contribution is even for short distances. The
nonlocal optics contribution to (Sz)p, which is important only for d < l (where l
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Fig. 6.1 a The heat transfer
flux between two
semi-infinite silver bodies,
one at temperature
T1 = 273 K and another at
T2 = 0 K, as a function of
the separation d. b The same
as (a) except that we have
reduced the Drude electron
relaxation time τ for solid 1
from a value corresponding
to a mean free path
vFτ = l = 560 to 20 Å. c
The same as (a) except that
we have reduced l to 3.4 Å.
The dashed lines correspond
to the results obtained within
local optic approximation.
(The base of the logarithm is
10.)
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is the electron mean free path in the bulk), is easy to calculate for free electron like
metals. The non-local surface contribution to ImRp is given by [117]

(
ImRp

)
surf = 2ξ

ω

ωp

q

kF
, (6.25)

where ξ(q) depends on the electron-density parameter rs but typically ξ(0) ∼ 1.
Using this expression for ImRp in (6.13) gives the (surface) contribution:

Ssurf ≈ ξ2k4B
ω2k2Fd

4�3

(
T 4
1 − T 4

2

)
. (6.26)

Note from Fig. 6.1a that the local optic contribution to (Sz)p depends nearly linearly
on 1/d in the studied distance interval, and that this contribution is much smaller
than the s-wave contribution. Both of these observations are in agreement with the
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analytical formulas presented above. However, for very high-resistivity materials,
the p-wave contribution becomes much more important, and a crossover to a 1/d2-
dependence of (Sz)p is observed at very short separations d. This is illustrated in
Fig. 6.1b and c, which have been calculated with the same parameters as in Fig. 6.1a,
except that the electronmean free path has been reduced from l = 560Å (the electron
mean free path for silver at room temperature) to 20 Å (approximately the electron
mean free path in lead at room temperature) (Fig. 6.1b) and 3.4 Å (of the order of
the lattice constant, representing the minimal possible mean free path) (Fig. 6.1c).
Note that when l decreases, the p-wave contribution to the heat transfer increases
while the s-wave contribution decreases. Since the mean free path cannot be much
smaller than the lattice constant, the result in Fig. 6.1c represents the largest possible
p-wave contribution for normal metals. However, the p-wave contribution may be
even larger for other materials, such as semimetals, with lower carrier concentration
than in normal metals. For high resistivity material, when kBT/4π�σ > 1 the heat
flux is proportional to the conductivity:

Sp ≈ 0.2
kBTσ

d2
. (6.27)

By tuning the resistivity of the material we can optimize the photon transmission
coefficient across the vacuum gap and hence the potential for heat transport by tun-
neling. The transmission coefficient |T (ω, q)|2 is proportional to the energy density
of the electromagnetic field associated with evanescent waves:

T (ω, q) ∼ ImRp(ω, q)e−qd . (6.28)

For q � |ε(ω)|1/2ω/c

ImRp(ω, q) ≈ Im
ε − 1

ε + 1
≈ 8πσ/ω

4 + (4πσ/ω)2
. (6.29)

Assuming that the conductivity, σ, is independent of ω and q the energy density is
maximal when

σmax = ω

2π
≈ kBT

2π�
= 2.3T (� · m)−1, (6.30)

wherewehave replaced�ωwith the typical thermal energy kBT .At room temperature
the optimum electrical conductivity is 690 (�·m)−1.

To illustrate this case, Fig. 6.2 shows the thermal flux as a function of the con-
ductivity of the solids. Again, we assume that one body is at zero temperature and
the other at T = 273 K. The solid surfaces are separated by d = 10 Å. The heat
flux for other separations can be obtained using scaling ∼1/d2, which holds for
high-resistivity materials. The heat flux is maximal when σ ≈ 920 (� m)−1.
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Fig. 6.2 The thermal flux as
a function of the conductivity
of the solids. The surfaces
are separated by d = 10 Å.
The heat flux for other
separations can be obtained
using scaling ∼1/d2, which
holds for high-resistivity
materials. (The base of the
logarithm is 10.)
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For good conductors, the most important contribution to the radiative heat trans-
fer comes from the non-local optic effects in the surface region. However, it was
shown above that the radiative heat transfer becomes much larger for high-resistivity
material, for which the volume contribution from non-local effects is also important.
Non-local optic refers to the fact that the current at point r depends on the elec-
tric field not only at point r, as it is assumed in the local optic approximation, but
also at points r′ �= r in a finite region around the point r. In the case when both
points are located outside of the surface region, the dielectric response function can
be expressed through the dielectric function appropriate for the semi-infinite elec-
tron gas. However, if one of the points r or r′ is located in the surface region, the
dielectric response function will be different from its volume value, and this gives
the surface contribution from non-locality. In order to verify the accuracy of the local
optic approximation, we study the dependence of the radiative heat transfer on the
dielectric properties of the materials within the non-local dielectric approach, which
was proposed some years ago for the investigation of the anomalous skin effects
[198] (see Appendix D).

Figure6.3 shows the thermal flux between two clean metal surfaces as a func-
tion of the electron density n. In the calculations, we have assumed that one body
is at zero temperature and the other at T = 273K, and the Drude relaxation time
τ = 4 × 10−14 s. When the electron density decreases, there is transition from a
degenerate electron gas (kBT � εF , where εF is the Fermi energy) to a
non-degenerate electron gas (kBT � εF ) at the density nF ∼ (KBTm)3/2/π2

�
3,

where m is the electron mass. At T = 273K, the transition density nF ∼ 1025 m−3.
The full line was obtained by interpolation between the two dashed curves, calcu-
lated in the non-local dielectric function formalism for the non-degenerate electron
gas (valid for n < nF ≈ 1025 m−3), and for the degenerate electron gas (for n > nF )

[198]. The thermal flux reaches the maximum Smax ≈ 5×108 W·m−2 at nmax ≈ 1025

m−3, which corresponds to the DC conductivity σ ≈ 3 × 103 (�·m)−1. Within the
local optic approximation, the radiative heat transfer ismaximal at nL max ≈ 1024 m−3

where SL max ≈ 109 W·m−2. The thermal flux due to traveling electromagnetic waves
is determined by formula (1.2) which gives SBB = 308W·m−2 for T = 273K.

Finally, we note that a thin high-resistivity coatings can drastically increase the
heat transfer between two solids. Figure6.4 shows the heat flux when thin films
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Fig. 6.3 The heat flux between two metal surfaces as a function of the free electron concentration
n. One body is at zero temperature and the other at T = 273K. The full line was obtained by
interpolation between curves (dashed lines) calculated in the non-local dielectric formalism for
a non-degenerate electron gas for n < nF ∼ 1025 m−3, and for a degenerate electron gas for
n > nF . Also shown are results (dashed lines) obtained within the local optic approximation. The
calculations were performed with the damping constant τ−1 = 2.5 × 1013 s−1, separation d = 10
Å and n0 = 8.6 × 1028 m−3. (The log-function is with basis 10.)

Fig. 6.4 The heat flux
between two semi-infinite
silver bodies coated with a
10 Å thick layer of a high
resistivity (ρ = 0.14 �cm)
material. Also shown is the
heat flux between two silver
bodies, and two
high-resistivity bodies. One
body is at zero temperature
and the other at T = 273 K.
a, b show the p- and s-wave
contributions, respectively.
(The base of the logarithm is
10.)
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(∼10 Å) of a high resistivity material ρ = 0.14 � cm, are deposited on silver
surfaces. One body is at zero temperature and the other at T = 273 K. (a) and (b)
show the p and s-contributions, respectively. Also shown are the heat fluxes when the
two bodies are made from silver, and from a high resistivity material. It is interesting
to note that while the p-wave contribution to the heat flux for the coated surfaces is
strongly influenced by the coating, the s-contribution is nearly unaffected.
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6.4 Resonant Photon Tunneling Enhancement
of the Radiative Heat Transfer

Another case where the transmission coefficient can be close to unity is connected
with resonant photon tunneling between surface states localized on the different
surfaces. The resonant condition corresponds to the case when the denominators in
(6.13) are small. For two identical surfaces and Ri � 1 ≤ Rr , where Ri and Rr

are the imaginary and real parts of the reflection amplitude, this corresponds to the
resonant condition R2

r exp(−2qd) = 1. The resonance condition can be fulfilled
even for the case when exp(−2qd) � 1, since, for the evanescent electromagnetic
waves, there is no restriction on the magnitude of real part or the modulus of R.
This opens up the possibility of resonant denominators for R2

r � 1. Close to the
resonance we can use the approximation

R = ωa

ω − ω0 − iη
, (6.31)

where ωa is a constant. Then from the resonant condition (Rr = ±eqd ) we get the
positions of the resonance

ω± = ω0 ± ωae
−qd . (6.32)

For the resonance condition to be valid, the separation �ω = |ω+ − ω−| between
two resonances in the transmission coefficient must be greater than the width η of
the resonance. This condition is valid only for q ≤ qc ≈ ln(2ωa/η)/d. For ω0 > ωa

and qcd > 1, we get

Sp± = ηq2
c

8π

[
�1(ω0) − �2(ω0)

]
. (6.33)

Note, that the explicit d dependence has dropped out of (6.33). However, S may
still be d-dependent, through the d-dependence of qc. For small distances, one can
expect that qc is determined by the dielectric properties of the material, and thus does
not depend on d. In this case, the heat transfer will also be distance independent.

Resonant photon tunneling enhancement of the heat transfer is possible for two
semiconductor surfaces that can support low-frequency surface plasmon modes
in the mid-infrared frequency region. The reflection amplitude Rp for a clean
semiconductor surface at d < λT |ε(ωT )|−1/2 is given by Fresnel’s formula (see
Appendix O.2). As an example, consider two clean surfaces of silicon carbide (SiC).
The optical properties of this material can be described using an oscillator model
[180]:

ε(ω) = ε∞
(
1 + ω2

L − ω2
T

ω2
T − ω2 − i�ω

)
, (6.34)

with ε∞ = 6.7, ωL = 1.8 × 1014 s−1, ωT = 1.49 × 1014 s−1, and � = 8.9 × 1011

s−1. The frequency of surface plasmons is determined by condition ε′(ω0) = −1 and
from (6.34) we get ω0 = 1.78 × 1014 s−1. The resonance parameters are
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ωa = ω2
L − ω2

T

ε∞ωL
= 8.2 × 1012−1, η = �/2, qc = 3.6/d, ω0 ≈ ωp

Using the above parameters in (6.33), and assuming that one surface is at temperature
T = 300 K and the other at T = 0 K, we get the heat flux S(d) between two clean
surfaces of SiC:

S ≈ 8.4 × 109

d2
W · m−2, (6.35)

where the distance d is in Å. Note that this heat flux is several orders of magnitude
larger than between two clean good conductor surfaces (see Fig. 6.1).

6.5 Adsorbate Vibrational Mode Enhancement
of the Radiative Heat Transfer

Another mechanism for resonant photon tunneling enhancement of the heat transfer
is possible between adsorbate vibrational modes localized on different surfaces. If
the distance between adsorbates d � R, where R stands for effective radius of the
adsorbate, each adsorbate is equivalent to a point dipole. As shown in [101], the
dipole approximation is valid for distances larger than a few adsorbate diameters.
Let us consider two particles with dipole polarizabilities α1(ω) and α2(ω) and with
the fluctuating dipole moments p f

1 and p f
2 normal to the surfaces. According to the

fluctuation-dissipation theorem [8, 184], the spectral function of fluctuations for the
dipole moment is given by

〈
p f
i p

f
j

〉

ω
= �

π

(
1

2
+ ni (ω)

)
Imαi (ω)δi j . (6.36)

Assume that the particles are situated opposite to each other on two different
surfaces, at the temperatures T1 and T2, respectively, and separated by the distance
d. The fluctuating electric field of a particle 1 does work on a particle 2. The rate of
work is determined by

P12 = 2
∫ ∞

0
dω ωImα2(ω)〈E12E12〉ω, (6.37)

where E12 is the electric field created by particle 1 at the position of particle 2:

E12 = 8p f
1 /d3

1 − α1α2
(
8/d3

)2 . (6.38)
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From (6.36)–(6.38) we get P12, and the rate of cooling of a particle 2 can be obtained
using the same formula by reciprocity. Thus, the total heat power exchange between
the particles is given by

P = P12 − P21 = 2�

π

∫ ∞

0
dω ω

Imα1Imα2
(
8/d3

)2
∣∣∣1 − (

8/d3
)2

α1α2

∣∣∣
2

(
n1(ω) − n2(ω)

)
. (6.39)

Let us first consider some general consequences of (6.39). There are no constraints
on the particle polarizability α(ω) = α′ + iα′′ other than that α′′ is positive, and α′
andα′′ are connected by the Kramers–Kronig relation. Therefore, assuming identical
surfaces, we are free to maximize the photon-tunneling transmission coefficient (for
comparison see also (6.15))

t =
(
8α′′/d3

)2
∣∣∣1 − (

8α/d3
)2∣∣∣

2 . (6.40)

This function has a maximum when α′2 + α′′2 = (
d3/8

)2
so that t = 1/4.

Substituting this result in (6.39) gives the upper bound for the heat transfer between
two particles:

Pmax = πk2B
3�

(
T 2
1 − T 2

2

)
. (6.41)

For adsorbed molecules at the concentration na = 1019 m−2, when one surface is at
zero temperatures and the other is at the room temperature, the maximal heat flux
due to the adsorbates Smax = na Pmax = 1012 Wm−2, which is nearly 10 orders of
magnitude larger than the heat flux due to the black body radiation, SBB = σBT =
4 × 102 Wm−2, where σB is the Boltzmann constant.

The conditions for resonant photon tunneling are determined by

α′(ω±) = ±d3/8. (6.42)

Close to resonance, we can use the approximation

α ≈ C

ω − ω0 − iη
, (6.43)

where C = e∗2/2Mω0, and where e∗ and M are the dynamical charge and mass of
the adsorbate, respectively.

For η � 8C/d3, from (6.39) we get

P = �η

2

[
ω+
(
n1(ω+) − n2(ω+)

)+ (+ → −)
]
, (6.44)



6.5 Adsorbate Vibrational Mode Enhancement of the Radiative Heat Transfer 105

whereω± = ω0±8C/d3. Using (6.44), we can estimate the heat flux between identi-
cal surfaces covered by adsorbates with concentration na : J ≈ na P . For 8C/d3 < η
we can neglect multiple scattering of the photon between the particles, so that the
denominator in the integrand in (6.39) is equal to unity. For d � b, where b is the
interparticle spacing, the heat flux between two surfaces covered by adsorbates with
concentration na1 and na2 can be obtained after integration of the heat flux between
two separated particles. We get

S = 24na1na2
d4

∫ ∞

0
dω Imα1Imα2

[
�1(ω) − �2(ω)

]
. (6.45)

Assuming that α can be approximated by (6.43), for ω0 � η (6.45) gives the heat
flux between two identical surfaces:

S = 12πC2n2a
d4η

[
�1(ω0) − �2(ω0)

]
. (6.46)

We note that (6.46) can be obtained directly from the heat flux between two
semi-infinite solids (determined by (6.13)), since in the limit d > b we can use
a macroscopic approach, where all information about optical properties of the sur-
face is included in reflection amplitude.

The reflection amplitude for p-polarized electromagnetic waves which takes into
account the contribution from a adsorbate layer, can be obtained using the approach
proposed in [99]. Using this approach we get [170, 171] (see also Appendix E):

Rp = 1 − s/(qε) + 4πna[sα‖/ε + qα⊥] − qa
(
1 − 4πnaqα‖

)

1 + s/(qε) + 4πna[sα‖/ε − qα⊥] + qa
(
1 + 4πnaqα‖

) , (6.47)

where s = √
q2 − (ω/c)2ε. The polarizability for ion vibrations (with dynamical

charge e∗) normal and parallel to the surface, is given by

α⊥(‖) = e∗2

M
(
ω2

⊥(‖) − ω2 − iωη⊥(‖)
) , (6.48)

where ω⊥(‖) is the frequency of the normal (parallel) adsorbate vibration, η⊥(‖) the
corresponding damping constant, and M is the adsorbate mass. In comparison with
the expression obtained in [199], (6.47) takes into account the fact that the centers
of the adsorbates are located at distance a away from the image plane of the metal.
Although this gives corrections of the order of qa � 1 to the reflection amplitude,
for parallel adsorbate vibrations on the good conductors (|ε| � 1), this correction
becomes important (seeSect. 7.8.2).As an illustration, inFig. 6.5wecompare the heat
flux between two Cu(100) surfaces covered by low concentration of potassium atoms
(na = 1018 m−2), with the heat flux between two clean Cu(100) surfaces. At sepa-
ration d = 1 nm, the heat flux between the adsorbate-covered surfaces is enhanced
by five orders of magnitude in comparison with the heat flux between the clean
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Fig. 6.5 The heat flux between two surfaces covered by adsorbates and between two clean surfaces,
as a function of the separation d. One body is at zero temperature and the other at T = 273 K. For
parameters corresponding to K/Cu(001) and Cu(001) [200] (ω⊥ = 1.9×1013 s−1,ω‖ = 4.5×1012

s−1, η‖ = 2.8 × 1010 s−1, η⊥ = 1.6 × 1012 s−1, e∗ = 0.88e). (The base of the logarithm is 10.)

surfaces, and by seven orders of magnitude in comparison with the black body radia-
tion. However, this enhancement of the heat flux disappears if only one of the surfaces
is covered by adsorbates. For d � b the numerical data can be approximated by the
formula

S ≈ 5.6 × 10−24 n
2
a

d4
W m−2, (6.49)

where d is in Å.
For d < b, the macroscopic approach is not valid and we must sum the heat flux

between each pair of adatoms. For η = 1012 s−1 and d < 10 Å, when one surface
has T = 300 K and the other T = 0 K, from (6.44) we get a distance independent
P ≈ 10−9 W. In this case, for na = 1018 m−2 the heat flux S ≈ Pna ≈ 109

Wm−2. Under the same conditions, the s-wave contribution to the heat flux between
two clean surfaces is Sclean ≈ 106 Wm−2. Thus, the photon tunneling between the
adsorbate vibrational states can strongly enhance the radiative heat transfer between
the surfaces.

It is interesting to note that in the strong coupling case (8c/d3 � η), the heat flux
between two molecules does not depend on the dynamical dipole moments of the
molecules (see (6.44)).However, in the opposite case ofweak coupling (8C/d3 � η),
the heat flux is proportional to the product of the squares of the dynamical dipole
moments (see (6.45)).

6.6 Vibrational Heating by Localized Photon Tunneling

The radiative heat transfer due to the evanescent electromagnetic waves (photon
tunneling) may be used for surface modification. Thus, if a hot tip is brought ∼1 nm
from a surface with a thin layer of heat sensitive polymer, one may induce local
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Fig. 6.6 The heat transfer
(photon tunneling) between a
tip atom (or molecule) and a
substrate atom (or molecule)

J

Ta

Tb

T0

T1

Jb

Ja

d

polymerization and this may be used for nanoscale lithography. This non-contact
mode of surfacemodificationmay have several advantages comparedwith the contact
mode: for example, no wear or contamination of the tip will occur.

Let us consider the radiative heat transfer between an adsorbed molecule on a
tip and another molecule adsorbed on a substrate. The temperature increase at the
adsorbed molecule may be very large, which may induce local chemical reactions,
such as diffusion or desorption.Heat transfer to some adsorbate vibrationalmode, i.e.,
vibrational heating, will be particularly important when the energy relaxation time
τb of the adsorbate mode is long compared with a relaxation time characterizing the
photon tunneling from the tip to the substrate adsorbate. High-frequency adsorbate
vibrations on metals typically have very short energy relaxation times (in the pico-
second range) owing to the continuum of low-energy electronic excitations [201,
202]. However, low-frequency adsorbate vibrations, e.g., frustrated translations, may
have rather long relaxation times (typically in the order of nanoseconds for inert
adsorbates on noble metals) [203], and in these cases photon tunneling heat transfer
may be important. Adsorbate vibrational modes on insulators may have very long
relaxation times if the resonance frequency is above the top of the bulk phonon
band. In these cases, energy relaxation is caused by multi-phonon processes, which
are often very slow. One extreme example is CO adsorbed on NaCl crystals [204],
where τb ≈ 10−3 s. For this case, even a very weak coupling to a hot tip may result
in heating of the C–O stretch vibration.

The photon tunneling energy transfer per unit time from a vibrational mode of
the tip adsorbate (frequency ωa and vibrational relaxation time τ ∗

a = η−1
a ) to a

vibrational mode (ωb, τ
∗
b ) of the substrate adsorbate (see Fig. 6.6) is given by (6.39).

The molecular polarizability is given by (6.48). The energy transfer rate from the tip
to the tip adsorbate is given by [205]
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Ja = �ωa

τa

[
n(ωa/T0) − n(ωa/Ta)

]
, (6.50)

and the energy transfer rate from the substrate adsorbate to the substrate

Jb = �ωb

τb

[
n(ωb/Tb) − n(ωb/T1)

]
, (6.51)

where τa and τb are the vibrational energy relaxation times. Note that, in general
1/τ ∗

a > 1/τa and 1/τ ∗
b > 1/τb since the vibrational relaxation rate 1/τ ∗ which

enters in the polarizability has contributions from both energy relaxation and pure
dephasing. In general, the integral in (6.39) must be performed numerically, but as
an illustration, let us consider the case where the relaxation time τ ∗

b � τ ∗
a . In this

case, (6.39) reduces to

P = r
�ωb

τb

[
n(ωb/Ta) − n(ωb/Tb)

]
, (6.52)

where
r = (τb/τ

∗
b )s

1 + [
2(ωa − ωb)τ ∗

a

]2 + 4s
, (6.53)

s = 64ωaτ
∗
a ωbτ

∗
b αvaαvb/d

6, (6.54)

where αva = e∗2
a /Maω

2
a and similar for mode b.

Note that the energy transfer rate Ja (and similar for Jb) depends only on the
energy relaxation rate 1/τa and not on the relaxation rate 1/τ ∗

a which determines
the width of the vibrational resonance state. The latter is the sum of 1/τa and a
pure dephasing contribution, which reflects the fluctuation ωa(t) in the vibrational
level position due to the irregular thermal motion of the atoms in the system, and
which depends on the anharmonic coupling between the different vibrational modes.
This level-fluctuation contributes to the vibrational linewidth as observed using, for
example, infrared spectroscopy, but not to the energy transfer between the adsorbate
and the solid on which it is adsorbed. On the other hand, the energy transfer rate P
between the two adsorbates is determined by the overlap in the vibrational resonance
states and it is therefore determined by τ ∗

a (and τ ∗
b ), and does not depend on τa (or

τb). (Note: the τ−1
b factor which appears in (6.52) cancels out against the factor τb in

the expression for r .)
In the high temperature limit n(ω/T ) ≈ kBT/�ω, and assuming that this relation

holds for all modes and temperatures relevant here, we get

P = rτ−1
b kB(Ta − Tb). (6.55)

We also get
Ja = τ−1

a kB(T0 − Ta), (6.56)

Jb = τ−1
b kB(Tb − T1). (6.57)
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Assuming first a steady state situation so that P = Ja = Jb we get from (6.55)–(6.57)
Ta ≈ T0 and

Tb ≈ T1 + r

1 + r
(T0 − T1), (6.58)

where we have assumed that τb � τa.
The theory above can also be used to estimate the time it takes to reach the

steady state where the (ensemble averaged) adsorbate temperature equals to (6.58).
In general we have

�ωb
d

dt
n(ωb/Tb(t)) = J (t) − Jb(t).

In the classical limit, this gives

dTb
dt

= − 1

τb
(1 + r)Tb + 1

τb
(T1 + rT0).

If we assume Tb(0) = T1, this gives

Tb(t) = T1 + r

1 + r
(T0 − T1)

(
1 − e−(1+r)t/τb

)
.

Thus for t � τ , where τ = τb/(1+r), the steady state temperature has been reached.
For adsorbates on insulating substrates τb will, in general, be very large if the

resonance frequency ωb is well above the highest substrate phonon frequency. We
nowconsider this case,which is equivalent to low temperature. Assume for simplicity
that the temperature of the substrate vanishes (T1 = 0) and assume that �ωa � kBT0
and �ωb � kBT0. In this case, is easy to show from (6.50)–(6.52) that Ta ≈ T0 and

Tb ≈ ωbT0
ωb + T0ln[(1 + r)/r ]

, (6.59)

where we have measured frequency in units of kB/�.
Let us now assume arbitrary tip and substrate temperatures but still assume τb �

τa. Using (6.50)–(6.52) we get Ta ≈ T0 and

ωb

Tb
= ln

[

1 + 1 + r

r
(
eωb/T0 − 1

)−1 + (
eωb/T1 − 1

)−1

]

. (6.60)

This expression reduces to (6.58) for high temperatures and to (6.59) for low
temperatures. In Fig. 6.7, we show the effective temperature Tb as a function of the
tip temperature T0 when T1 = 0.1�ωb/kB and r = 0.25.
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Fig. 6.7 The adsorbate
temperatures Ta and Tb as a
function of the tip
temperature T0 (all in units
of �ωb/kB ). For r = 9.25
and T1 = 0.1�ωb/kB
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The effective adsorbate temperature Tb, calculated above may be used to calculate

(or estimate) the rate w of an activated process: w = w0exp(−E/kBTb). When the
barrier height E is large, even a very small temperature increase will result in a large
increase in the reaction rate. It is also important to note that the excitation of a high
frequencymode, such as theC–O stretchmode, can result in reactions involving other
reaction coordinates; for example, diffusion, rotation or desorption. This is possible
because of anharmonic coupling between the high frequency mode and the reaction
coordinate mode. This has already been observed in STM studies of several different
adsorption systems [207, 208]. Let us give an example of an adsorption systemwhere
photon tunneling may give rise to a strong temperature increase. We focus on 13C18O
on NaCl(100) at T1 = 30 K which has been studied in detail by Chang and Ewing
[204]. In this case, ωb ≈ 2040 cm−1, τb ≈ 10−3 s (due mainly to decay via multi-
phonon emission [204]), and the (pure dephasing dominated) relaxation time [209]
τ ∗
b ≈ 10−10 s. We assume a Pt-tip at room temperature with an adsorbed 12C18O
with ωa ≈ 2064 cm−1 and τ ∗

a ≈ 3×10−12 s [210] mainly due to decay by excitation
of electron-hole pairs. Using the experimental measured vibrational polarizability
αav ≈ 0.2 Å3 and αbv ≈ 0.04 Å3 and assuming the tip–substrate separation of
d = 1 nm, we get s ≈ 20 and 2(ωa −ωb)τ

∗
a ≈ 16. Thus, from (6.53) we get r ≈ 106

and from (6.60) we get Tb ≈ 300 K where we have assumed the tip temperature
T0 = 300 K. The CO/NaCl case is an extreme case because of the exceptional long
vibrational energy relaxation time. However, the analysis presented above remains
unchanged for any τb larger than 10−8 s, so the conclusions are very general. Thus,
we expect strong heating effects due to photon tunneling for high-frequency modes
in adsorbed layers or films on insulating substrates.

The temperature increase for the C–O stretch vibration found above is similar to
the temperature increase observed (or calculated) for CO on Pd(110) during STM
experiments [207]. In this the case the excitation of theC–Ostretch vibration is caused
by inelastic tunneling. The temperature increase in the C–O stretch mode resulted in
COdiffusion as a result of energy transfer to the parallel frustrated translation because
of anharmonic coupling. This has been observed for CO molecule on Pd(110) [207],
and on Ag(110) [211]. We expect similar decay processes for vibrational excited CO
on NaCl resulting, in, for example, diffusion or desorption of the CO molecule.
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6.7 Radiative Heat Transfer Between a Small Particle
and a Plane Surface

The problem of radiative heat transfer between a small particle—considered to be
a point-like dipole—and a plane surface without motion of the particle relative to
the surface has been studied by several authors [16, 115, 139]. The more general
case of the radiative heat transfer at relativistic motion of the particle parallel to the
surface was studied in [150–152, 155, 156]. This case will be considered in Sect.
9.2. The particle could be a single molecule, or a dust particle, and it is modeled
by a sphere with radius R � d, where d is the separation between the particle and
the plane surface. The heat flux between the particle and substrate can be obtained
from for the heat flux between two semi-infinite bodies (see (6.11)), considering one
of them (say the body 2) as sufficiently “rarefied”. As in Sect. 5.3, from (6.11) at
V = 0 we get contribution to heat flux through the surface of a semi-infinite body.
We assume d � λT so that the heat flow result from the evanescent waves. In this
case, in K -reference frame the heat flux is given by

S = 4�

π

∫ ∞

0
dωω

(
n(ω, T1) − n(ω, T2)

) ∫ ∞

0
dqq2e−2qd ×

× {
ImRp(ω)ImαE (ω) + ImRs(ω)ImαH (ω)

}
. (6.61)

Due to presence of factor e−2qd in the q-integral, the most important contribution
comes from q ≈ 1/d, and in the ω-integration due to presence of the factor n(ω)

the most important contribution comes from ω ≈ ωT = kBT/�. For d � λ0 � λT ,
where λ0 = λT |ε(ωT )|−1/2, λT = c/ωT , Fresnel’s formulas for reflection ampli-
tudes can be written in the form

Rp = εkz − kz1
εkz + kz1

≈ ε − 1

ε + 1
, (6.62)

Rs = kz − kz1
kz − kz1

≈ 1

4

(
ω

cq

)2

(ε − 1), (6.63)

where kz = √
(ω/c)2 − q2, kz1 = √

(ω/c)2ε − q2. The dielectric and magnetic
susceptibility of a spherical particle with radius R are determined by (5.58) and
(5.59). For metals in the low frequency range ω � ν the dielectric permittivity
ε = 4πiσ/ω, where ν−1 is the electron relaxation time and σ is the conductivity.
Using this expression for dielectric permittivity in (5.58), (6.62) and (6.63) and
assuming ω � 4πσ, we get

ImRp ≈ 2ω

4πσ
, ImRs ≈ 1

4

(
ω

cq

)2 4πσ

ω
,
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ImαE (ω) = R3 3ω

4πσ
. (6.64)

From (5.59) and (5.60) at R � δ, where δ = c/
√
2πωσ, we get

ImαH = 1

30

(
R

δ

)2

R3 = 2πσωR5

15c2
. (6.65)

Using (6.64) and (6.65) in (6.61), we get S = SE + SH , where the contributions SE
and SH due to the electric and magnetic dipole moment S are given by

SE ≈ 2π3

5

(
R

d

)3 ( k4B
16π2�3σ1σ2

) (
T 4
1 − T 4

2

)
, (6.66)

SH ≈ π3

225

(
R

d

)(
16π2k4Bσ1σ2R4

�3c4

) (
T 4
1 − T 4

2

)
, (6.67)

where σ1(2) is the conductivity of substrate (sphere). For a example, for T2 = 300
K, d = 2R = 10 nm, σ1 = σ2 = 4 × 1017 s (which corresponds to gold), SE ≈
≈ 10−17 W and SH ≈ 10−11 W.

As pointed out in [115], large heat transfer is expected for high-resistivity mate-
rials. The heat flux (6.66) is maximized when kBT/4π�σ ≈ 1. In this case, for a
particle at room temperature, and a distance d = 2R = 10 nmabove a cold (T = 0K)
sample, we get Pp/d2 ≈ 107 Wm−2. This should be compared with the heating from
black body radiation. When the sample surface at temperature T2 is illuminated with
black body radiation at temperature T1, taking into account the surface reflectivity,
the heat flux to the sample from black body radiation is approximately [15, 93, 94]:

SBB = 1

8π3

∫ ∞

0
dω
[
�1(ω) − �2(ω)

] ∫

q<ω
c

d2q
(
1− | Rp(ω) |2)+ [p → s] =

= 0.4
k4BT

4
1

�3c2

(
kBT1
4π�σ

)1/2

− [T1 → T2], (6.68)

where [T1 → T2] stands for the term obtained from the first term by replacing T1 with
T2. For T2 ≈ 300 K and T1 ≈ 0 K, and for kBT/� ≈ 4πσ, (6.68) gives SBB ≈ 100
Wm−2. Thus, a particle may give rise to a large local enhancement of the heating of
the surface, compared with the uniform black body radiation.When the substrate and
the particle are made from the same materials, which can support surface plasmons
with frequencies ωs and ωp, respectively, in the two poles, an approximation the rate
of the heat transfer between them is given by

P =
(
3�R

d

){[
�1(ωsp) − �2(ωsp)

]+ [ωsp → ωss]
}
. (6.69)
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For SiC with ωs = 1.79×1014 s−1 and ωp = 1.76×1014 s−1, d = 10 nm, R = 5
nm, T1 = 300 K and T2 = 0 K, (6.62) gives P ≈ 1.6 × 10−10 W. We note that a
much larger heat transfer can be achieved if the surfaces are covered with adsorbates
with matched frequencies [14, 15] (see Sect. 6.5).

6.8 Near-Field Radiative Heating in Ion Traps

Electric-field noise near surfaces is a common problem in diverse areas of physics and
a limiting factor for many precision measurements. There are multiple mechanisms
by which such noise is generated, many of which are poorly understood. Laser-
cooled, trapped ions provide one of the most sensitive systems to probe electric-field
noise at MHz frequencies and over a distance range 30–3000 µm from a surface
[212]. This experimental setup represents one of the most promising systems for the
implementation of large-scale quantum information processing. Most of the basic
requirements for building a quantum computer have been demonstrated in the lab-
oratory and the generation of entangled states of up to 14 ions has been achieved.
Many experimental efforts are now focused on the development of miniaturization
and microfabrication techniques for ion traps to realize more efficient and also fully
scalable quantum computing architectures. However, when devices are miniaturized,
physics at the short distance becomes a challenge. This is evident in measurements of
the Casimir force or of noncontact friction; in the case of trapped ions, it manifests
itself in the appearance of an excess (‘anomalous’) heating rate and electric-field
noise near surfaces, as the trap-surface distance is decreased. Therefore, a detailed
understanding of the origin of this noise will be essential for the future progress
of trapped-ion quantum computing, as well as the development of several hybrid
quantum computing approaches where, for example, ions, Rydberg atoms, polar
molecules, or charged nanomechanical resonators are operated in the vicinity of
solid-state systems.

The heat transfer between an electrode and an ion trap, due to the fluctuating
electric field near the electrode, can for a spherically symmetric trap be written in
the form

P =
∫ ∞

−∞
dω

2π
ωImαt (ω)SE (ω), (6.70)

where the spectral density of the electric field fluctuations

SE (ω) = 〈|E(r0)|2
〉
ω

=
∫ ∞

−∞
dteiωt

〈
E(r0, t + τ ) · E(r0, τ )

〉
,

where r0 is the position of the trap. The polarizability of the trap is given by

αt (ω) = Q2

M

1

ω2
t − ω2 − iωηt

(6.71)
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where Q and M are the charge and mass of the ion in the trap, respectively; ωt and ηt
are the frequency and damping constant of the ion vibrations in the trap, respectively.
Using (6.71) in (6.70) and taking into account that for η � ωt

Imαt (ω) = πQ2

2M

[
δ(ω − ωt ) − δ(ω + ωt )

]
,

we get

P = Q2

2M
SE (ωt ). (6.72)

When the ion is laser cooled to the vibrational ground state, the fluctuating electric
fields couple to themotion of the ion and lead to an increase of the average vibrational
occupation number n̄ with a characteristic rate

˙̄n = P

�ωt
= Q2

2M�ωt
SE (ωt ) (6.73)

Using (4.2) in (6.72) for q ∼ 1/d � ωt/c we get

SE (ωt ) = 4�n(ωt , T )

∫ ∞
0

dqq2e−2qd ImRp(ωt , q) ≈ 4
kBT

ωt

∫ ∞
0

dqq2e−2qd ImRp(ωt , q),

(6.74)
where d is a distance between trapped ion and a metal surface. Rp is the reflection
amplitude for p-polarized waves. Equation (6.74) can be obtained directly from
(6.61). For a clean surface and c/ωt

√|ε| � d � c/ωt the reflection amplitude can
be written in the form

Rp = εkz − kz1
εkz + kz1

≈
q − ω

c
√

ε

q + ω
c
√

ε

≈ 1 − 2
ω

cq
√

ε
(6.75)

Using (6.75) in (6.74) with ε = 4πσ/ω we get

SE (ωt ) ≈ 2kBT

cd2

√
ωt

2πσ
(6.76)

For typical parameters of the ion trap (Q = 10−19 K, M = 10−26 kg, ωt = 108 s−1,
d = 10−4 m, T = 300 K, σ = 1018 s−1) we get ˙̄n ≈ 0.1 s−1, and SE (ωt ) ≈ 10−16

(V/m)2s−1 which is much smaller than the experimentally observed values.
Now we consider a surface covered by adsorbates. In this case, the reflection

amplitude is given by (6.47). For typical parameters of the ion trap, ε ∼ 1011 and
qa ∼ 10−6. In this case, the main contribution is provided by adsorbate vibrations
that are normal to the surface, and the reflection amplitude can be written in the form

Rp ≈ 1 + 8πnaqα⊥ (6.77)
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where na is the concentration of adsorbates, and α⊥ is the adsorbate polarizability l.
Using (6.78) in (6.74) we get

SE (ωt ) = 12πkBT naImα⊥(ωt )

ωt d4
, (6.78)

where, according to (6.48)

α⊥(ωt ) = e∗2

Ma

ωtηa
(
ω2
a − ω2

t

)2 + ω2
t η2

a

, (6.79)

where e∗ and Ma are the adsorbate charge and mass, ωa and ηa are the adsorbate
frequency and damping constant. Using (6.79) in (6.77), we get

SE (ωt ) = 12πkBT nae∗2

Mad4

ηa
(
ω2
a − ω2

t

)2 + ω2
t η2

a

(6.80)

The expression (6.80) can be very large in the case of resonance. In particular at
ωa = 10ηa and ηa ∼ ωt ∼ 108 s−1, we get SE (ωt ) ∼ 10−4 (V/m)2s and ˙̄n ∼ 1010

s−1. For the frequencies out of resonance we can neglect displacement of adsorbates
relative substrate. In this case displacement of the substrate surface under the action
of the stress applied to adsorbed layer is given by

uz(x) = Mzznae
∗Eze

iq·x−iωt (6.81)

The explicit form of the stress tensor Mi j in the elastic continuum model is given
in [213] (see also Appendix T). The displacement (6.81) will give rise to the dipole
moment per unit area

pz(x) = nae
∗uz(x) = Mzz(nae

∗)2Eze
iq·x−iωt . (6.82)

Thus, for this mechanism, naα in (6.78) should be replaced by nae∗2Mzz . For d �
cl/ωt , where cl is the longitudinal sound velocity and ρ is the density of substrate,
the stress tensor is given by

Mzz = i

ρωcl

and instead of (6.80), we get

SE (ωt ) = 12πkBT (nae∗)2

ρd4ω2
t cl

. (6.83)

For the same (typical) typical parameters as above, we get SE (ωt ) ∼ 10−7 (V/m)2s
and ˙̄n ∼ 107 s−1. Thus, this mechanism also gives an important contribution to the
heating rate.
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6.9 Radiative Heat Transfer Between Two Dipole
Inside a N-Dipole System

Let us consider a discrete set of N objects located at positions ri and maintained at
different temperatures Ti with i = 1, . . . , N . Suppose that the size of these objects
is small enough compared with the smallest thermal wavelength λTi = c�/(kBT ) so
that all individual objects can be modeled as simple radiating electrical dipoles. For
metals, one has also to include the magnetic dipole moments due to the induction of
eddy currents. Such an extension is straightforward and as such, for convenience, we
will consider electric dipoles only. The Fourier component of the electric field at the
frequency ω (with the convention f̂ (t) = ∫

dω
2π f (ω)e−iωt ) generated at the position

ri by the fluctuating part p f
j of electric dipole moment of the particle j which is

located at r j reads

Ei j = k2Gi jp f
j , (6.84)

where Gi j = G(ri , r j ,ω) is the dyadic Green’s tensor (i.e. the propagator) between
the particles i and j inside the set of N particles and k = ω/c. On the other hand,
by summing the contribution of fields radiated by each particle, the dipolar moment
induced by the total field on the i-th particle is given by

pindi = αi

∑

j �=i

Ei j , (6.85)

whereαi is the particle’s polarizability. Then, the power dissipated inside the particle
i at a given frequencyω due to the fluctuating fieldEi j generated by the particle j can
be calculated from the work of the fluctuating electromagnetic field on the charge
carriers as

Pj→i = 2Re
〈−iωpindi · E∗

i j

〉
, (6.86)

where the brackets represent the ensemble average. Using the relations (6.84) and
(6.85) between the dipole moments, and the fluctuation dissipation theorem, i.e.

〈
p f
j,α p

f
i,β

〉
= 2�ni (ω)δαβδi j ,

we find after a straightforward calculation that

Pj→i = 3
∫ ∞

0

dω

2π
�(ω, Tj )Ti, j (ω), (6.87)

where the transmission coefficient:

Ti, j (ω) = 3

4
k4Im(αi )Im(α j )Sp

[
Gi jGi j+] . (6.88)
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In order to present the heat flux in an obvious Landauer-like manner, we rewrite the
heat flux in terms of the conductance Gi, j = ∂Pj→i/∂Tj so that Pj→i = Gi, j�T .
Then we find

Pj→i = 3

(
π2k2BT

3h

)
T i, j�T, (6.89)

where T i, j = ∫
dx f (x)Ti, j (x)/(π2/3) is the mean transmission coefficient with

f (x) = x2 exp (−x)/(exp (x) − 1)2. In the case of two particles (N = 2), one can
show (see Sect. 6.5) that Ti, j (ω, d) ∈ [0, 1] and therefore T i, j (ω, d) ∈ [0, 1] as well.
Hence, the conductance between two dipoles is limited by three times the quantum
of thermal conductance π2k2BT/(3h). In other words, only three channels contribute
to the heat flow between two dipoles, namely the channels due to the coupling of the
three components p j,α with the same three components p j,α (i.e. same polarization).
Of course, by adding further particles, this limit cannot be exceeded, whereas the
heat flux can be increased or decreased with respect to the case of two particles.
Nevertheless, the number of channels increases if electric multipoles as well as the
magnetic moments come into play.

Now, for calculating the Green’s function for a system of N particles, we use the
set of 3N self-consistent equations

Ei j = k2Gi j
0 p j �=i + k2

∑

k �=i

Gik
0 αk/Ek j (6.90)

for i = 1, . . . , N with the free space Green’s function

Gi j
0 = k2eikri j

ri j

[(

1 + ikri j − 1

k2r2i j

)

1 + 3 − 3ikri j − k2r2i j
k2r2i j

r̂i j ⊗ r̂i j

]

,

where the unit vector r̂i j ≡ ri j/ri j , ri j = ri − r j and 1 stands for the unit dyadic
tensor. Comparing (6.84) and (6.90) we get the Green’s tensor

⎛

⎜
⎝

G1k

...

GNk

⎞

⎟
⎠ = [1 − A0]−1

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

G1k
0
...

G(k−1)k
0
0

G(k+1)k
0
...

GNk
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(6.91)

for k = 1, . . . , N with
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A0 = ω2

c2

⎛

⎜⎜⎜⎜
⎝

0 G12
0 α2 . . . G1N

0 αN

G21
0 α1

. . .
. . .

...
...

. . .
. . . G(N−1)N

0 αN

GN1
0 α1 . . . GN (N−1)

0 αN−1 0

⎞

⎟⎟⎟⎟
⎠

(6.92)

With this relation and (6.87), it is possible to determine the interparticle heat flux in
a system of N particles out of equilibrium.

Let us now apply this theoretical formalism to describe some emerging many-
particle effects. We consider the simplest possible configuration where such effects
occur that is a triplet of particles.We consider only the interparticle heat flux between
particle 1 and 2 separated by a distance 2l in the presence of the third particle. Here,
we assume that T1 = 300 K and T2 = T3 = 0. The interparticle heat flux is then
given by

φ1→2 = P1→2 − P2→1. (6.93)

In this case, the dyadic Green’s function has the form

G21 = D−1
213

[
G21

0 + ω2

c2
B213D−1

31 G
31
0

]
(6.94)

where

D213 = D21 − ω4

c4
B213D−1

31 B
312,

D21 = 1 − ω4

c4
G12

0 α1G12
0 α2,

and

B213 = G23
0 α3 + ω2

c2
G21

0 α1G13
0 α3.

Figure6.8 shows the resulting interparticle flux between particle 1 and 2 in the
presence of body 3 normalized to the flux for two isolated dipoles. The position of
the particles, for which the interparticle flux is calculated, is fixed, but the position of
the third particle is changed. It can be seen that for some geometric configurations,
the heat flux mediated by the presence of the third particle can be larger than the
value for two isolated dipoles. In particular, we observe an exaltation of heat flux
of approximately one order of magnitude when the third particle is located between
the two other particles, i.e., when all three particles are aligned. Hence, the heat flux
between two dipoles can dramatically be increased when inserting a third particle in
between.

The heat flux enhancement can be attributed to a three-body effect that is a resonant
surface mode coupling mediated by the third particle. This effect could be used to
improve, for example, the performance of near-field thermophotovoltaic devices, by
placing nanoparticles on the surface of photovoltaic cells.
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Fig. 6.8 Normalized heat
flux between two spherical
particles with the same
radius. A third particle is
located equidistant to
particles 1 and 2 (T1 = 300
K, T2 = T3 = 0 K). From
[214]

6.10 Local Heating of the Surface by an Atomic Force
Microscope Tip

An atomic force microscope tip, at a distance d above a flat sample surface with the
radius of curvature R � d, can be approximated by a sphere with radius R. In this
case, the heat transfer flux between the tip and the surface can be estimated using
the approximate method of Derjaguin [215], later called the proximity force approx-
imation (PFA) [216]. According to this method, the radiative flux in the gap between
two smooth curved surfaces at short separations can be approximately calculated as
a sum of fluxes between pairs of small parallel plates corresponding to the curved
geometry of the gap. Specifically, the sphere–plane heat flux is given by

P = 2π
∫ R

0
dρρS(z(ρ)), (6.95)

where R is the radius of the sphere, z(ρ) = d+R−√R2 − ρ2 denotes the tip–surface
distance as a function of the distance ρ from the tip symmetry axis, and the heat flux
per unit area S(z(ρ)) is determined for flat surfaces. This scheme was proposed in
[215, 217] for the calculation of the conservative van der Waals interaction; in this
case, the error is not larger than 5–10% in an atomic force application, and 25% in
the worst case situation [218]. We assume that the same scheme is also valid for
the calculation of heat transfer. We assume that the tip has a paraboloid shape given
[in cylindrical coordinates (z, ρ)] by the formula: z = d + ρ2/2R, where d is the
distance between the tip and the flat surface. If

S = C
(
d + ρ2/2R

)n , (6.96)
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we get

P = 2πR

n − 1

C

dn−1
= 2πRd

n − 1
S(d) ≡ Aeff S(d), (6.97)

where Aeff = 2πRd/(n − 1) is the effective surface area. In a more general case,
one must use numerical integration to obtain the heat transfer.

As an illustration, consider the heat flux between a SiC tip and a flat SiC surface.
From (6.35) and (6.97), we get that the heat transfer power between SiC tip at T1 =
300 K and a cold SiC surface (T2 = 0 K) at d � R: P(d) = 5.2 × 10−10(R/d) W.

The most general method available for calculating both the Casimir force and the
radiative heat transfer between many bodies of arbitrary shapes, materials, tempera-
tures and separations, expressed the Casimir force and radiative heat transfer in terms
of the scattering matrices of individual bodies [89, 219–227]. Specifically, a numer-
ically exact solution for the near-field radiative heat transfer between a sphere and
an infinite plane was first obtained using the scattering matrix approach (Fig. 6.9).

Fig. 6.9 Comparison of the
numerically exact solution
for NFRHT between a
sphere and a plane with
approximation schemes for
various sphere diameters and
gap sizes. From [228]
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6.11 A Nanoscale ‘Heat Stamp’

It has been proposed [229] that-near field optics could be exploited towrite extremely
fine details for integrated circuits. The basic idea of this proposal is that the compo-
nents of the electromagnetic field with short wavelengths (and therefore the potential
for high resolution) are naturally evanescent, and do not contribute to the far field.
Hence, fine details in any patterned mask will rapidly disappear with distance from
the mask. However, if it is possible to position the wafer close to the mask, then fine
details can be resolved. Roughly speaking, the separation between mask and wafer
must be of the same order as the lateral details to be resolved.

An extension of this idea was suggested [115] in the form of the ‘heat stamp’. It is
possible to imagine a mask consisting of a surface patterned alternatively in highly
reflecting (and therefore poorly emitting) material and a second material chosen
to maximize emission of heat into the evanescent modes. For adsorbate-covered
structures, it is possible to have a ‘heat stamp’ with atomic resolution.



Chapter 7
Casimir Friction Between Two Plates

In this section, two approaches in the theory of Casimir friction in the plate-plate
configuration are considered. The first approach is based on the fluctuation electro-
dynamics proposed by Rytov [5–7]. In this approach, the fluctuating electromagnetic
field is considered as a classical field that can be calculated fromMaxwell’s equation
with the fluctuating current density as the source of the field, and with appropri-
ate boundary conditions. This approach was used by Lifshitz in the theory of the
Casimir–van der Waals interaction [42] and by Volokitin and Persson for Casimir
friction [99, 100, 121, 128]. The calculation of Casimir friction is more complicated
than the calculation of Casimir–van der Waals forces because it requires the deter-
mination of the electromagnetic field between moving boundaries. The solution can
be found by writing the boundary conditions on the surface of each body in the rest
reference frame of this body. The relation between the electromagnetic fields in the
different reference frames is determined by the Lorenz transformation. The advan-
tage of this approach is that, in principle, it can be used for the calculation of friction
at arbitrary relative velocities. However, the calculations become very complicated
for bodies with complex geometry. At present, the solutions are known for Casimir
friction between two parallel plane surfaces [11, 99, 100, 121] and between a small
particle and a plane surface [11, 139, 151, 152]. The fluctuation electrodynamics
approach has some features in common with the ‘poor man’ derivation of quantum
friction given by Pendry [115].

In the second approach, the electromagnetic field is treated in the framework of
the quantum field theory. This approach was used in [43] to obtain the van der Waals
interaction for an arbitrary inhomogeneous medium, all parts of which are at rest.
For Casimir friction, the time-dependent perturbation theory can be used to calculate
the friction force [107]. In the lowest order of the perturbation theory, the friction
force is determined by the Kubo formula [107, 129, 140, 184].

In a simplified version of the Casimir friction theory, the electromagnetic field
of the isolated body is approximated by the system of the harmonic oscillators
[115, 117–121, 124]. In the case of relative sliding of several bodies, the problem of

© Springer-Verlag Berlin Heidelberg 2017
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Casimir friction is reduced to finding the solution for several systems of harmonic
oscillators with time-dependent interaction between them. Again, the Kubo formula
can be used to calculate the friction force. The calculations using oscillator model
are simplified due to the simple dependence of the operators on the time for the
non-interacting systems.

7.1 Kubo Formula Approach

Consider two bodies, one of which performs small vibrations relative to the other.
The interaction between the bodies can be described by the Hamiltonian

Hint = −F̂i
(
u0i e

−iωt + c.c.
)
, (7.1)

where F̂i is the force operator for the body performing vibrations with the coordinate
u(t) = u0e−iωt at the fixed separation between the bodies. According to the linear
response theory, the average value of the force is determined by the formula [184]

〈
F̂i
〉
= αi j (ω)u0 j e

−iωt + c.c., (7.2)

where 〈. . .〉 denotes averaging of the fluctuating force on the state of the thermal
equlibrium. According to the Kubo formula, the generalized susceptibility αi j (ω) is
determined by the formula [184]:

αi j (ω) = i

�

∫ ∞

0
dteiωt

〈
F̂i (t)F̂j (0) − F̂j (0)F̂i (t)

〉
, (7.3)

where F̂i (t) is the force operator in Heisenberg representation. The imaginary part
of the generalized susceptibility is determined by the formula [184]:

α′′
i j (ω) = 1

�
tanh

�ω

2kBT

∫ ∞

0
dteiωt

〈
F̂i (t)F̂j (0) + F̂j (0)F̂i (t)

〉
. (7.4)

In the limit ω → 0, the force can be written in the form

Fi =
(

α′
i j (0) + iω lim

ω→0

α′′
i j (ω)

ω

)
u0 j e

−iωt , (7.5)

where α′
i j is the real part of the generalized susceptibility. For two bodies slowly

moving relative to each other with velocity v, the force acting on the moving body
can be written in the form

F = F0−
↔
� ·v, (7.6)
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where the adiabatic forceF0 is independent of v, and
↔
� is the so-called friction tensor.

For vibrations v = −iωu0e−iωt , after comparison of (7.5) and (7.6), and taking into
account (7.4), we get the formula for the friction tensor

↔
�= lim

ω→0

α′′
i j (ω)

ω
= (kBT )−1Re

∫ ∞

0
dt
〈
F̂(t)F̂(0)

〉
. (7.7)

For the interaction between a localized and an extended system, (7.7) has been
derived by several authors (Schaich [230], d’Agliano et al. [231], Nourtier [232])
and is also valid for two extended systems. In the context of Casimir friction,
(7.7) was used by Schaich and Harris [140], but their treatment is incomplete.

In the case of extended systems, the fluctuating force operator can be expressed
through the operator of the stress tensor σ̂ik

F̂i =
∫

dSk σ̂ik, (7.8)

where the integration is over the surface of one of the bodies and

σ̂ik = 1

4π

[
Ei Ek + Bi Bk − 1

2
δik
(
E2 + B2

)]
, (7.9)

where Ei and Bi are the electric and magnetic induction field operators, respectively.
The calculation of the force–force correlation function can be done using the meth-
ods of the quantum field theory [183, 233]. Such calculations are described in [129]
(see also Appendix J). The advantage of this approach is that it only involves finding
the Green’s functions of the electromagnetic field for the equilibrium system with
fixed boundaries. Thus, this approach can be easily extended to bodies with com-
plex geometry. The theory presented above is restricted to small relative velocities.
However, it can be extended for large velocities.

7.2 Quantum Oscillator Model

In this section, we derive an expression for the van der Waals friction using a simple
model. For simplicity, we focus on zero temperature T = 0K and assume that d is
so small that retardation effects can be neglected. The calculation is based on the
formalism developed in [117, 121] and already used in Sect. 3.3. Assume that a
semi-infinite metal occupies the half space z ≤ 0. A charge distribution in the half
space z > d gives rise to an (external) potential, which must satisfy the Laplace
equation for z < d and which therefore can be written as a sum of evanescent plane
waves in the form

φinc = eqzeiq·x−iωt (7.10)
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where q = (qx , qy) is a 2D-wavevector. This potential will induce a charge distribu-
tion in the solid (occupying z < 0), which in turn gives rise to an electric potential,
which must satisfy the Laplace equation for z > 0, and which therefore can be
expanded into evanescent plane waves, which decay with increasing z > 0. Thus,
the total potential for 0 < z < d can be expanded in functions of the form

φext = (eqz − Rp(ω, q)e−qz
)
eiq·x−iωt (7.11)

where Rp(ω, q) is the reflection amplitude for p-polarized electromagnetic waves,
which we denoted by g(q,ω) in Sect. 3.3. For the present purposes, we can treat
the low-energy electron-hole pair excitations in the metals as bosons. As shown in
[234], the Hamiltonian for the total system can be written as

H =
∑

qα1

�ωqα1b
+
qα1

bqα1 +
∑

qα2

�ωqα2b
+
qα2

bqα2 + �ωb+b

+
∑

qα1n

Cqα1e
−qzn
(
bqα1e

iq·(xn+Vt) + h.c.
)
. (7.12)

Here ωqα1 , b
+
q1 and bqα1 are the angular frequency and creation and annihilation

operators for the bosons (of solid 1) with the quantum numbers (q,α1), and Cqα1

parameters determining the coupling between the boson excitations in solid 1with the
electrons in solid 2. Similarly, b+

qα2
and bqα2 are creation and annihilation operators

for bosons in solid 2, and (xn, zn) is the position operator of electron n in solid 2,
which in principle could be expressed in terms of the operators b+

qα2
and bqα2 , but

for the present purpose this is not necessary. The energy dissipation per unit time
induced by the electromagnetic field inside the metallic substrate is determined by
integrating the Poynting vector over the surface of the metal, and is given by

P = c

4π

∫
dSẑ · [E(r)×B∗(r)

]
z=+0 + c.c.

= iω

4π

∫
dS

(
ϕ(r)

d

dz
ϕ∗(r)

)

z=+0 + c.c.

= ω

π

∫ ∞

0

d2q

(2π)2
qImRp(ω, q). (7.13)

Using the Hamiltonian (7.12) and the Golden Rule formula, the absorbed energy per
unit time can also be written in the form

P = 2π

�2

∑

α1

( q

2πe

)2
�ω | Cqα1 |2 δ(ω − ωqα1) (7.14)

Comparing (7.13) and (7.14), we get the relation
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∑

α1

| Cqα1 |2 δ(ω − ωqα1) = 2e2�

Aq
ImR1p(ω, q) (7.15)

We can write the interaction Hamiltonian between solid 1 and 2 as

H
′ =
∑

q

(
V̂qe

iq·Vt + h.c.
)

Using time-dependent perturbation theory (with H
′
as the perturbation), we can cal-

culate the energy transfer from the translational motion (kinetic energy) to internal
excitations in the solids (boson excitations ωqα1 and ωqα2 in solid 1 and 2, respec-
tively):

P =2π

�2

∑

q12

�ωqδ(ωq − ωqα2 − ωqα1) | Cqα1 |2

× e−2qd | 〈nqα1 = 1, nqα2 = 1 |
∑

n

e−q(zn−d)e−iq·xnb+
qα1

| 0, 0〉 |2 (7.16)

where ωq = q · V. Note that that only the terms with qx > 0 give contribution to the
sum (7.16). To simplify (7.16), let us write

δ(ωq + ωqα2 − ωqα1) =
∫

dω′δ(ω′ − ωq1)δ(ωq − ω′ − ωq2) (7.17)

Substituting (7.17) in (7.16) and using (7.15) gives

P = 4πe2

A

∑

q

ωq

q
e−2qd

∫
dω′ImR1p(ω

′, q)Mq(ωq − ω′) (7.18)

where

Mq(ω) =
∑

α2

δ(ω − ωqα2) | 〈nqα2 = 1 |
∑

n

e−q(zn−d)e−iq·xn | 0〉 |2

The quantity Mq(ω) can be related to ImR2p(ω, q) using the same arguments that
were used in the derivation of (7.15). The energy dissipation per unit time in solid 2
due to interaction with plane wave in the form (7.11) is given by

P = AωqImR2p(ω
′, q)

π
. (7.19)

The same quantity can also be written in the form

P = 2πω

�

∑

α2

δ(ω − ωqα2) | 〈nqα2 = 1 |
∑

n

e−q(zn−d)e−iq·xn | 0〉 |2 (7.20)
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Comparing (7.19) and (7.20), we get

A�q

2π2e2
ImR2p(q,ω) =

∑

α2

δ(ω − ωqα2) | 〈nqα2 = 1 |
∑

n

e−q(zn−d)e−iq·xn | 0〉 |2

so we have that

Mq(ω) = A�q

2π2e2
ImR2p(q,ω) (7.21)

Substituting this result in (7.18) gives

P = 2�

π

∑

q

ωqe
−2qd

∫
dω′ImR1p(q,ω′)ImR2p(q,ωq − ω′) (7.22)

Finally, replacing
∑

q

→ A

4π2

∫
d2q,

and using the relation P = σAv between the power P and the shear stress σ gives

σ = �

π3

∫ ∞

0
dqy

∫ ∞

0
dqxqxe

−2qd
∫ qxv

0
dω′ImR1p(ω

′, q)ImR2p(q, qxv − ω′),

(7.23)
where we have used that equalities (7.15) and (7.21) are valid only for ω > 0
(Otherwise, the expressions on the right side of these equalities should be replaced
by zero). Equation (7.24) neglects multiple scattering of the electromagnetic waves
between surfaces. Due to multiple scattering instead of (7.10) the wave incident on
surface of solid 1 is given by

φinc = eqzeiq·x−iωt
(
1 + e−2qd R1p(ω)R2p(ω − qxv)

+ (
e−2qd R1p(ω)R2p(ω − qxv)

)2 + ...
) = eqzeiq·x−iωt

1 − e−2qd R1p(ω)R2p(ω − qxv)

(7.24)

Thus, (7.23) should be replaced with

σ = �

π3

∫ ∞

0
dqy

∫ ∞

0
dqxqxe

−2qd

×
∫ qxv

0
dω′ ImR1p(ω

′, q)ImR2p(qxV − ω′, q)

| 1 − e−2qd R1p(ω)R2p(ω − qxv) |2 (7.25)

At finite temperature (T > 0 K), an extra factor of
[
1 + n(ω′) + n(qxV − ω′)

]

must be inserted in the frequency integral in (7.25) to take into account the enhanced
probability for the excitation of bosons at finite temperature. For T > 0 K one
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must, in addition to the process considered above, also include scattering processes
where a thermally excited boson is annihilated either in solid 1 or in solid 2, namely
(nqα1 = 0, nqα2 = 1) → (1, 0) and (1, 0) → (0, 1).

7.3 Casimir Friction Between Two Plane Surfaces
in Parallel Relative Motion

Consider two semi-infinite solids with flat parallel surfaces separated by vacuum gap
with thickness d and moving in parallel with relative velocity v (see Fig. 15). The
frictional stress σ acting on the surface of solid 1 is determined by xz-component of
Maxwell’s stress tensor σi j , calculated at z = +0:

σxz = 1

8π

∫ +∞

−∞
dω
[〈
EzE

∗
x

〉+ 〈E∗
z Ex
〉+ 〈Bz B

∗
x

〉+ 〈B∗
z Bx
〉]
z=+0. (7.26)

Here, symbol 〈..〉 denotes statistical averaging with respect to the random fields E f
1

and E f
2 , radiated by solids 1 and 2. Averaging is performing with the help of (4.3)

and (4.19).
Calculation of the electromagnetic field in the vacuum gap between the surfaces

is given in Appendix B (see also Sect. 5.2). Using (B.3) and (B.4) from Appendix B
we get:

σxz = 1

4π

∫ ∞

0
dω

∫
d2q

(2π)2

qx
k2
[
(kz + k∗

z )
(〈| wp |2〉+ 〈| ws |2〉

− 〈| vp |2〉− 〈| vs |2〉)+ (kz − k∗
z )
〈
wpv

∗
p + wsv

∗
s − c.c

〉]
(7.27)

In (7.27), the integration over ω from −∞ to −∞ (see (7.26)) was replaced by the
integration along the positive axis, which gives an additional factor of two. Perform-
ing the averaging in (7.27) over the fluctuating electromagnetic field with the help
of (B.15)–(B.19) from Appendix B, gives frictional stress acting on surface of solid
1, separated from surface of solid 2 by vacuum gap (with thickness d) [128]:

σxz = �

8π3

∫ ∞

0
dω

∫

q< ω
c

d2q
qx

|�|2
[
(q2 − βkqx )

2 + β2k2z q
2
y

]×

× [(q2 − βkqx )
2(1− | R1p |2)(1− | R′

2p |2)|Dss |2+

+β2k2z q
2
y (1− | R1p |2)(1− | R′

2s |2)|Dsp|2 + (p ↔ s)
](
n2(ω

′) − n1(ω)
)+

+ �

2π3

∫ ∞

0
dω

∫

q> ω
c

d2q
qx

|�|2
[
(q2 − βkqx )

2 + β2k2z q
2
y

]
e−2|kz |d×
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× [(q2 − βkqx )
2ImR1pImR′

2p|Dss |2 − β2k2z q
2
y ImR1pImR′

2s |Dsp|2+

+ (p ↔ s)
](
n2(ω

′) − n1(ω)
)
, (7.28)

ni (ω) = 1

e�ω/kBTi − 1
,

Dpp = 1 − e2ikzd R1p R
′
2p, Dss = 1 − e2ikzd R1s R

′
2s,

Dsp = 1 + e2ikzd R1s R
′
2p, Dps = 1 + e2ikzd R1p R

′
2s,

� = (q2 − βkqx )
2Dss Dpp + β2k2z q

2
y Dps Dsp,

where R1p(s) and R′
2p(s) = R2p(s)(ω

′) are the reflection amplitudes for surfaces
1 and 2, respectively, for p(s)-polarized electromagnetic waves, ω′ = γ(ω − qxv),
γ = 1/

√
1 − β2,β = v/c, T1 and T2 are temperatures for solids 1 and 2, respectively.

The symbol (p ↔ s) denotes the terms that can be obtained from the preceding
terms by permutation of the indexes p and s. The first term in (7.28) represents the
contribution to the friction from propagating waves (q < ω/c), and the second term
from the evanescent waves (q > ω/c). If, in (7.28) one neglects the terms of the order
β2 then the contributions from waves with p- and s-polarization will be separated.
In this case, (7.28) is reduced to the formula obtained in [121]:

σxz = �

8π3

∫ ∞

0
dω

∫

q< ω
c

d2qqx×

×
{

(1− | R1p(ω) |2)(1− | R2p(ω
′) |2)

| 1 − e2ikzd R1p(ω)R2p(ω′) |2
(
n2(ω

′) − n1(ω)
)+ [Rp → Rs

]
}
+

+ �

2π3

∫ ∞

0
dω

∫

q> ω
c

d2qqxe
−2|kz |d×

×
{

ImR1p(ω)ImR2p(ω
′)

| 1 − e−2|kz |d R1p(ω)R2p(ω′) |2
(
n2(ω

′) − n1(ω)
)+ [Rp → Rs

]}
, (7.29)

where ω′ = ω − qxv, [Rp → Rs] denotes the term that is obtained from the first one
by replacement of the reflection amplitude Rp(ω) for p-polarized electromagnetic
waves, and by the reflection amplitude Rs(ω) for s-polarized electromagnetic waves.
Equation (7.29) was obtained by Volokitin and Persson [121] using the dynamical
modification of Lifshitz theory [42] for the van der Waals interaction. In the non-
retarded case (c → ∞), and for small velocities, v, (7.29) is reduced to the formula
obtained by Persson and Zhang [117]; in the non-retarded case and at zero temper-
ature, it is reduced to formula obtained by Pendry [115]. The nonrelativistic theory
from [121] is accurate to the terms of order β2.
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Comparison of (7.29) with (6.13) for radiative heat transfer shows that there
is an important difference in the type of the elementary excitations that play an
important role in these phenomena. For radiative heat transfer, all kinds of elementary
excitationswith frequencies that canbe thermally excited are equally important. In the
case of van der Waals friction, the large-momentum, low-frequency excitations are
particularly important. Such low-energy excitations can be associatedwith vibrations
ofmassive particles. In particular, many adsorbate vibrations parallel tometal surface
are characterized by very low frequencies.

7.3.1 Discussion of General Formula and Limiting Cases

For d 
 λT we can neglect the first term in (7.29) and the second term can be written
as

σxz = �

2π3

∫ ∞

−∞
dqy

∫ ∞

0
dqxqxe

−2qd

{∫ ∞

0
dω
[
n(ω) − n(ω + qxV )

]

×
(

ImR+
1pImR2p

| 1 − e−2qd R+
1p R2p |2 + (1 ↔ 2)

)

−
∫ qxv

0
dω
[
n(ω) + 1/2

]
(

ImR−
1pImR2p

| 1 − e−2qd R−
1p R2p |2 + (1 ↔ 2)

)

+ [p → s]
}

,

(7.30)

where R±
1p(s) = R1p(s)(ω±qxv). At T = 0K, the propagatingwaves do not contribute

to the friction, but the contribution from evanescent waves is non-zero. Taking into
account that n(−ω) = −1 − n(ω), from (7.28) we get friction mediated by the
evanescent electromagnetic waves at zero temperature (in the literature, this type of
friction is denoted as quantum friction [115])

σxz = − �

π3

∫ ∞

0
dqy

∫ ∞

0
dqx

∫ qxv

0
dω

qx
|�|2

[
(q2 − βkqx )

2 + β2k2z q
2
y

]
e−2|kz |d×

× [
(q2 − βkqx )

2ImR1pImR′
2p|Dss |2 − β2k2z q

2
y ImR1pImR′

2s |Dsp|2 + (p ↔ s)
]
.

(7.31)

The existence of quantum friction is still debated [122–127]. Thus, Philbin and
Leonhardt [122, 123] argued that there is no quantum friction. In [126], it was
shown that the theory presented in [122, 123] is incorrect (see also Appendix F). If,
in (7.31), one neglects the terms of the order β2, then (7.31) is reduced to the formula
obtained by Pendry [115]:
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σxz = − �

4π3

∫ ∞

−∞
dqy

∫ ∞

0
dqxqxe

−2qd
{ ∫ qxv

0
dω

×
(

ImR1p(ω
′)ImR2p

| 1 − e−2qd R1p(ω′)R2p |2 + (1 ↔ 2)

)
+ [p → s]

}
. (7.32)

In the local optic approximation for d < λT |ε(ωT )|−1/2, the reflection amplitude
for p-polarized electromagnetic waves is determined by Eq. (C.17) in Appendix C.
Substituting (C.17) in (7.32), and using the dielectric function (6.22), in the limiting
cases of small and high velocities, we get:

σ‖ = 15

26π2

(
�v

d4

)( v

4πσd

)2
for v << 4πσd, (7.33)

σ‖ = �(4πσ)2

2π2d2v
ln
( v

4πσd

)
for v >> 4πσd. (7.34)

For example, for good conductors with conductivity σ = 1017 s−1, for d = 1nm and
v = 1 m/s, the friction is extremely small: σ‖ ≈ 10−18 Nm−2 in compared with the
friction observed in [21] between the gold tip and gold substrate, corresponding to
σ‖ ∼ 1Nm−2. The friction increases when the conductivity decreases, but there is
a limit to the enhancement. Thus, according to the Drude model, the conductivity is
given by

σ = ne2τ

m
, (7.35)

where the relaxation time τ can not be shorter than∼10−16 s. The lowest value of the
electron concentration nmin is restricted by the validity of the macroscopic theory,
which requires that the average separation between electrons is much smaller than
the length scale of variation of the electric field, which is determined by separation
d. Thus nmin ≈ d−3 so that for d = 1nm, the conductivity can not be smaller than
σmin ≈ 1012 s−1 and, consequently, at v = 1 m/s, the frictional shear stress cannot
be larger than 10−13 Nm−2.

For v < dkBT/� (at d = 1nm and T = 300K, for v < 103m/s), the main
contribution to the friction (7.29) depends linearly on the sliding velocity v, so that
the frictional stresswhich acts on the surfaces of the two bodies in parallel and normal
relative motion, can be written in the form: σ = γv. For parallel relative motion,
the friction coefficient γ‖ = γrad

‖ + γevan
‖ has a contribution from the propagating

electromagnetic waves:

γrad
‖ = �

8π2

∫ ∞

0
dω

(
− ∂n

∂ω

)∫ ω
c

0
dq q3×

× (1 − |R1p|2)(1 − |R2p|2)
∣
∣1 − e2iγd R1p R2p

∣
∣2

+ [p → s], (7.36)



7.3 Casimir Friction Between Two Plane Surfaces in Parallel Relative Motion 133

and the contribution from the evanescent electromagnetic waves:

γevan
‖ = �

2π2

∫ ∞

0
dω

(
− ∂n

∂ω

)∫ ∞

ω
c

dq q3e−2|kz |d×

× ImR1pImR2p
1

∣∣1 − e−2|kz |d R1p R2p

∣∣2 + [p → s]. (7.37)

7.4 Casimir Friction Between Two Semi-infinite
Solids in Normal Relative Motion

The case of normal relative motion of two parallel flat surfaces is more complex
compared with the case of parallel relative motion. For normal motion, it cannot
be assumed, as in the case of parallel relative motion, that the body moves with
the constant relative velocity in the time interval from −∞ to +∞. As a result, in
the case of arbitrary velocities for normal relative motion, the friction force will be
a non-linear functional of the velocities. Here we consider the simplest case when
the friction force is linear in the relative velocity, when it is possible to use linear
response theory.

We consider two semi-infinite solids 1 and 2 with parallel flat surfaces. We intro-
duce a coordinate system with the xy-plane in the surface of body 1, and the z axis
along the upward normal. The surface of body 2 is located at z = d, performing small
amplitude vibrations along the z axeswith displacement coordinate uz(t) = u0e−iω0t .

Since the system is translationally invariant in the x = (x, y) plane, the electromag-
netic field can be represented by the Fourier integrals

E(x, z) =
∫

d2q

(2π)2
eiq·xE(q, z), (7.38)

B(x, z) =
∫

d2q

(2π)2
eiq·xB(q, z), (7.39)

where E and B are the electric and magnetic induction field, and q is the 2D wave
vector in the (x, y) plane. After the Fourier transformation, it is convenient to choose
the coordinate axis in the (x, y) plane along the vectors q and n = [ẑ × q]. The
scattering of the electromagnetic wave with the frequency ω from the vibrating
surface of the body 2will give rise to the harmonics at the frequencies ω ± ω0. Thus
in the vacuum gap between the bodies, the electric field E(q,ω, z) can, to linear
order in the displacement coordinate, be written in the form

E(q,ω, z) =
((
v0eipz + w0e

−i pz
)+
(
v1eip

+z + w1e
−i p+z

)
e−iω0t

)
e−iωt . (7.40)
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From (7.40) and Maxwell’s equation

− 1

c

∂B
∂t

= ∇ × E, (7.41)

we get the magnetic induction field B(q,ω, z)

B(q,ω, z) = c

[
1

ω

([
k− × w0

]
e−ikz z + [k+ × v0

]
eikz z

)+

+ 1

ω + ω0

([
k−

+ × w1
]
e−ik+

z z + [k+
+ × v1eip

+z]
)
e−iω0t

]
e−iωt , (7.42)

where k± = q ± ẑ p, p = ((ω/c)2 − q2)1/2, p+ = p(ω + ω0), k+
+ = k+(ω +

ω0), k−
+ = k−(ω + ω0). In (7.40) and (7.42) w0, v0, etc. are unknown amplitudes,

which can be found using appropriate boundary conditions (see below). At the sur-
faces of the bodies, the amplitude of the outgoing electromagnetic wave must be
equal to the amplitude of the reflected wave plus the amplitude of the radiated wave.
It is convenient to decompose the electromagnetic field into p- and s-polarized elec-
tromagnetic waves. For the p-polarized electromagnetic waves, the electric field is
in the incident plane determined by the vectors q and n, and for the s-polarized
electromagnetic waves, the electric field is normal to the incident plane. Thus, the
boundary conditions for the electromagnetic field at z = 0 can be written in the form

v0z(y) = R1p(s)(ω)w0z(n) + E f
1z(n)(ω), (7.43)

v1z(n) = R1p(s)(ω + ω0)w1z(n), (7.44)

where R1p(s)(ω) is the reflection amplitude for surface 1 for the p(s)-polarized elec-
tromagnetic field, and where E f

1z(y)(ω) are the components of the fluctuating electric
field outside the surface 1 in the absence of the body 2. The boundary condition at the
surface of the body 2 must be written in the reference frame where body 2 is at rest.
The electric field in this reference frame is determined by a Lorentz transformation.
To linear order in the vibrational frequency, this transformation has the form

E′ = E − iω0u(t)
[
êz × B

]

c
. (7.45)

v′
1z(q) = v1z(q) + ikzu0v0z(q); w′

1z(q) = w1z(q) − ikzu0w0z(q);

w′
1y = w1y − ω + ω0

ω
ikzu0w0y; v′

1y = v1y + ω + ω0

ω
ikzu0v0y .
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The boundary conditions for the electromagnetic field at z = d + u(t) in the rest
frame of body 2 can be written in the form

w0z(n) = e2ikzd R2p(s)(ω)v0z(n) + eikzd E f
2z(n)(ω), (7.46)

w1z − ikzu0w0z = e2ik
+
z d R+

2p(w1z + ikzu0v0z), (7.47)

w1n − i pu0
(ω + ω0)w0n

ω
= e2ikzd R+

2s

(
v1n + ikzu0

(ω + ω0)v0n

ω

)
, (7.48)

where R2p(s)(ω) is the reflection amplitude for surface 2 for the p(s)-polarized elec-
tromagnetic field, and where E f

2z(y)(ω) are the components of the fluctuating electric
field radiated by body 2. From (7.43), (7.44) and (7.46)–(7.48) we get

v0z(y) = R1p(s)E
f
2z(n)e

ikzd + E f
1z(n)

�
, (7.49)

w0z(n) = e2ikzd R2p(s)E
f
1z(n) + E f

2z(n)e
ikzd

�
, (7.50)

w1z = ikzu0

(
e2ikzd R f

2p + e2ik
+
z d R+

2p

)
E f
1z +

(
1 + e2ik

+
z d R+

2p R1

)
E f
2ze

ikzd

�p�
+
p

, (7.51)

w1n = ikzu0
ω + ω0

ω

(
e2ikzd R2s + e2ik

+
z d R+

2s

)
E f
1n +

(
1 + e2ik

+
z d R+

2s R1s

)
E f
2ne

ikzd

�s�
+
s

,

(7.52)
v1z(n) = R+

1p(s)w1z(n), (7.53)

where R+
p(s = Rp(s)(ω+ω0), �p(s) = 1−e2ikz pd R2p(s)R1p(s), and�+

p(s) = �p(s)(ω+
+ω0). The other components of the fluctuating electromagnetic field can be found
from the transversality conditions

qwx − pwz = 0, qvx + pvz = 0. (7.54)

The frictional stress σ which act on the surfaces of the two bodies can be obtained
from the zz− component of the Maxwell stress tensor σi j , evaluated at z = 0:

σzz = 1

4π

∫ ∞

0
dω

∫
d2q

(2π)2

[〈∣∣Ez(q,ω, z)
∣∣2〉+ 〈∣∣Bz(q,ω, z)

∣∣2〉−

−〈∣∣Eq(q,ω, z)
∣
∣2〉− 〈∣∣En(q,ω, z)

∣
∣2〉−

− 〈∣∣Bq(q,ω, z)
∣∣2〉− 〈∣∣Bn(q,ω, z)

∣∣2〉
]

z=0
. (7.55)
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To linear order in the vibrational coordinate u(t) and the frequency ω0, the stress
acting on the surface 1 can be written in the form

σzz = σ0zz(d) + u(t)
∂

∂d
σ0zz(d) + iω0γ⊥u(t). (7.56)

Here the first term determines the conservative van der Waals stress and the second
term is the adiabatic change of the conservative van derWaals stress during vibration.
The last term determines the frictional stress with the friction coefficient γ⊥. After
calculations, details of which are given in Appendix G, we get the friction coefficient
for normal relative motion γ⊥ = γrad

⊥ + γevan
⊥ , where the contribution to the friction

coefficient from the propagating electromagnetic waves is given by

γrad
⊥ = �

4π2

∫ ∞

0
dω

(
− ∂n

∂ω

)∫ ω
c

0
dq qk2z×

×[(1 − |R1p R2p|2
)
2 + |(1 − |R1p|2

)
R2pe

ikzd+

+ (1 − |R2p|2
)
R∗
1pe

−ikzd |2] 1
∣
∣1 − e2ikzd R1p R2p

∣
∣4

+ [p → s], (7.57)

and where the contribution to the friction from the evanescent electromagnetic waves
is given by

γevan
⊥ = �

π2

∫ ∞

0
dω

(
− ∂n

∂ω

)∫ ∞

ω
c

dq q|kz|2e−2|kz |d×

×[(ImR1p + e−2|kz |d ∣∣R1p

∣∣2ImR2p
)(
ImR2p + e−2|kz |d ∣∣R2p

∣∣2ImR1p
)+

+ e−2|kz |d(Im
(
R1p R2p

))2] 1
∣∣1 − e−2|kz |d R1p R2p

∣∣4
+ [p → s]. (7.58)

Equations (7.57) and (7.58) were first derived in [99, 100] using the semi-classical
theory of the fluctuating electromagnetic field. In [129] an alternative derivation was
given using the quantum field theory (see Appendix J).

There is a principal difference between the friction coefficients for normal and
parallel relative motion, related to the denominators in the formulas for the friction
coefficient. The resonant condition corresponds to the case when the denominators
of the integrand in (7.37) and (7.58), which are due to multiple scattering of the
electromagnetic waves from the opposite surfaces, is small. At resonance, if the
imaginary part of the reflection amplitude Ri 
 1 the integrand in (7.58) has a large
factor ∼1/R2

i , in sharp contrast to the case of parallel relative motion, where there
is no such enhancement factor.
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7.5 The Case of Good Conductors

Awell-conductingmetal has a dielectric function ε = 1−4πiσ/ω (σ is the conductiv-
ity) with an absolute value much larger than unity at frequencies ω < ωT = kBT/�,
and consequently Rpi << 1 and Rpr ≈ 1. Thus an enhancement in the friction due
to multiple scattering of the electromagnetic waves from the opposite surfaces is
possible only for very small q << 1/d. The calculation of the friction in this section
is accurate only to the leading order in the surface impedance ζ = ε−1/2 = ζ ′ − iζ ′′,
|ζ| << 1.

It is convenient to write the friction coefficient for the two flat surfaces in the form

γ = �

∫ ∞

0
dω

(
− ∂n

∂ω

)(
Ip + Is

)
. (7.59)

Within the local optic approximation the reflection amplitudes for the s- and p-
polarized electromagnetic waves are determined by the Fresnel formulas (C.17) from
Appendix C.

7.5.1 Parallel Relative Motion

Taking into account that qdq = kdk, from (7.37) for parallel relative motion of clean
surfaces within the local optic approximation, we get the following contribution to
the friction from the evanescent p-and s-polarized electromagnetic waves:

I evan‖p =
∫ ∞

0

dkk3

2π2

[
k2 +

(ω

c

)2]
[
Re(s/ε)

]2
∣∣[(s/ε)2 − k2

]
sinhkd + 2ik(s/ε)coshkd

∣∣2
,

(7.60)

I evan‖s =
∫ ∞

0

dkk3

2π2

[
k2 +

(ω

c

)2]
[
Re(s)

]2
∣∣(s2 − k2

)
sinhkd + 2ikscoshkd

∣∣2
. (7.61)

For d ≤ (c/ω)|ε(ω)|−1/2

Ip‖ ≈ 1.8
1

d4

( ω

4π2σ

)2
, (7.62)

I‖s ≈ 1

8π2

(
4πσω

c2

)2[
0.44 − 0.5ln

(
16πσωd2

c2

)]
. (7.63)

For c/ω � d ≥ (c/ω)|ε(ω)|−1/2 we get

I‖p ≈ 1

4π2

( ω

cd

)2 ω

4πσ

{
0.3 − ln

[
ωd

c

( ω

4πσ

)1/2]}
, (7.64)
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I‖s ≈ 0.2
c2

4πσωd6
. (7.65)

Integrating (7.65) over frequencies gives a divergent result. However, one should
take into account that (7.65) is only valid if ω ≥ ωmin , where ωmin is determined
from condition |ε(ωmin)|ω2

min ≈ c2d−2. From this condition we get

ωmin ≈ c2

4πσd2
. (7.66)

After substitution of the results obtained above in (7.59), and integration over fre-
quencies at d 
 λc = λT |ε(ωT )|−1/2, where ωT = c/λT = kBT/�, and using

∫ ∞

0

x2

4 sinh2 x/2
dx = π2

3

and ∫ ∞

0

x2 ln x

4 sinh2 x/2
dx = 1.1607,

we get

γevan
‖p ≈ 0.3

�

d4

(
kBT

4π�σ

)2

, (7.67)

γevan
‖s ≈ 10−2 �

λ4
c

(
1 − 2 ln(2d/λc)

)
. (7.68)

Accordingly, for λc 
 d 
 λT , using

∫ ∞

0

x3

4 sinh2 x/2
dx = 7.2123,

∫ ∞

0

x3 ln x

4 sinh2 x/2
dx = 7.8708

we get

γ‖p ≈ �

4π2λ2
cd

2

[
9.66 − 7.2 ln(d/λc)

]
, (7.69)

γ‖s ≈ 0.1
4πσkBT

c2d2
. (7.70)

In the derivation of (7.70) we have used
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∫ ∞

xmin

dx

4x sinh2 x/2
≈
∫ 0.01

xmin

dx

x3
+
∫ ∞

0.01

dx

4x sinh2 x/2
≈ 1

2x2
min

.

Let us now consider the contribution to friction from propagating waves. As
d → ∞ the integration over q in (7.36) involves an integration over an infinite
rapidly oscillating structure. With the aid of the averaging procedure

〈
lim
d→∞ t propp

〉
= 1

2π

∫ 2π

0
dϕ

(
1 − |Rp|2

)2

|1 − eiϕ|Rp|2|2 = 1 − |Rp|2
1 + |Rp|2 , (7.71)

〈
lim
d→∞ t props

〉
= 1 − |Rs |2

1 + |Rp|2 (7.72)

(where it is assumed that arguments q and ω of reflection amplitudes Rp and Rs do
not change during averaging) we get

γrad
‖ (d → ∞) = �

8π2

∫ ∞

0
dω

(
− ∂n

∂ω

)∫ ω
c

0
dq q3×

×
(
1 − |Rp|2
1 + |Rp|2 + [p → s]

)
. (7.73)

Using ∫ ∞

0

x3.5

ex − 1
dx = 12.268,

from (7.73) we get

γrad
‖ (d → ∞) = 1.8�

(
kBT

�c

)4( kBT

4π�σ

)1/2

. (7.74)

For good conductors at v 
 cd/λT , in the first term of formula (7.30) it is enough
to expand to linear order in the velocity, and in the second term it is possible to put

n(ω) ≈ kBT/�ω.

Thus, the frictional stress in this limit can be written in the form

σ‖ = γ‖v + 1

2π3
kBT

∫ ∞

−∞
dqy

∫ ∞

0
dqxqxe

−2qd×

×
∫ qxv

0

dω

ω

(
ImR−

1pImR2p

| 1 − e−2qd R−
1p R2p |2 + (1 ↔ 2)

)

+ [Rp → Rs]. (7.75)
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For d < λc = λT |ε(ωT )|−1/2 for two identical surfaces of good conductors, the
contribution from the p-polarized field gives:

σ‖p = γevan
‖p V + π

45

kBT

4π�σ

�V 2

4πσd5
, (7.76)

where the contribution to friction coefficient γevan
‖p from the p-polarized evanescent

waves is given by (7.67). Similarly, for s-polarized waves with the same condition,
we get

σ‖s = γevan
‖s V + 1

96π3

(
4πσ

c

)2(V
c

)2 kBT

d
, (7.77)

where γevan
‖s is given by (7.69). Comparison of the linear and quadratic velocity-terms

in (7.76) and (7.77) leads us to conclude that, in this case, the quadratic terms are
negligibly small in comparison with linear terms, both for s- and for p-polarized
electromagnetic waves.

7.5.2 Normal Relative Motion

For normal relative motion the friction coefficient can be also written in the form
(7.59), where

I evan⊥p =
∫ ∞

0

dk

π2
k5
[
Re(s/ε)

]2[[
(k2 + |s/ε|2)coshkd + 2k

[
Im(s/ε)

]
sinhkd

]2+

+ (k2 − |s/ε|2)2
] 1
∣∣((s/ε)2 − k2

)
sinhkd + 2ik(s/ε)coshkd

∣∣4
, (7.78)

I evan⊥s =
∫ ∞

0

dk

π2
k5
[
Res
]2[[

(k2 + |s|2)coshkd + 2kIms sinhkd
]2+

+ (k2 − |s|2)2
] 1
∣
∣(s2 − k2

)
sinhkd + 2iks coshkd

∣
∣4

. (7.79)

For I evan⊥p , for (c/ω)|ε|−3/2 < d < (c/ω)|ε|1/2 and |ζ| << 1, there is a singularity (as
k → 0) in the integrand of the type −1/k3, and the main contribution to the integral
comes from this singularity. Taking into account that sinhkd ≈ kd and coshkd ≈ 1
as k → 0, to first order in ζ we get
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I evan⊥p = 2
(ω

c

)2
ζ ′
∫ ∞

0

dk

π2

k5
∣∣k2d − 2i

(
ω
c

)
(ζ)
∣∣4 =

= ωζ ′

π2cd3

(
π

2
+ arctan ζ ′′/ζ ′ − ζ ′′/ζ ′

1 + (ζ ′′/ζ ′)2

)
. (7.80)

As k → 0, there is no singularity in the integrand of I evan⊥s ; thus the main contribution
to the integral comes from k ∼ d−1. For d < (c/ω)|ε|−1/2, Is becomes slowly
dependent on d:

I⊥s ≈
∫ ∞

0

dk

π2
k

[√

k4 +
(ω

c

)4|ε|2 − k2
]

e−2kd ≈

≈ 1

8π2

(ω

c

)4|ε|2(1.22 − ln
(
2d|ε|1/2 ω

c

)
, (7.81)

while for d > (c/ω)|ε|−1/2 we get

I⊥s ≈
( c
ω

)2
ζ ′2d−6. (7.82)

For the propagating electromagnetic waves, taking into account that qdq = −pdp,
we get

I rad⊥p =
(ω

c

)2
ζ ′2
∫ ω

c

0

dp

π2
p5

1 + cos2(pd)
∣∣p sin pd + 2i

(
ω
c

)
ζ cos pd

∣∣4
, (7.83)

I rad⊥s =
(ω

c

)2
ζ ′2
∫ ω

c

0

dp

π2
p5

1 + cos2(pd)
∣∣(ω

c

)
sin pd + 2i pζ cos pd

∣∣4
. (7.84)

For d < (c/ω)|ε|−1/2 the contribution to the friction from propagating waves is
negligibly small in the comparison with the contribution from the evanescent waves.
For d > (c/ω)|ε|−1/2 the main contribution to the integrals (7.83) and (7.84) comes
from the integration near the singularities at p = pn = πn/d < ω/c (where n is
an integer), where sin pd = 0. For the contribution to I radp from the singularity at
n = 0 we get

I rad⊥p ≈ ωζ ′

4π2cd3

(
π

2
− arctan ζ ′′/ζ ′ + ζ ′′/ζ ′

1 + (ζ ′′/ζ ′)2

)
. (7.85)

In the vicinity of other singularities pn �= 0, putting p = pn + p′, we have sin pd ≈
(−1)n p′ and cos pd ≈ (−1)n , and the contribution to the integral from the region
close to one singularity is
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≈ 2
(ω

c

)2
ζ ′2
∫

dp′
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1
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ζ
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≈ p4nc
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2
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1 + (ζ ′′/ζ ′)2

)
(7.86)

The number m of such contributions is obviously equal to the integer part of the
quantity y = ωd/πc (m = integ[y]), so that the total pn �= 0 contribution becomes

π2c

8ωd5ζ ′

(
π

2
− arctan ζ ′′/ζ ′ − ζ ′′/ζ ′

1 + (ζ ′′/ζ ′)2
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5
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2
+ (m + 1)3

3
− m

30
− 1

30

)

In the integral I rad⊥s there is no singularity at pn = 0, and the contribution from the
vicinity of the point pn �= 0 is

2
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∫ ω

c

0

dp′

π2

p5n∣
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)

and consequently

I rad⊥s = ω

8cd3ζ ′

(
π

2
− arctan ζ ′′/ζ ′ − ζ ′′/ζ ′

1 + (ζ ′′/ζ ′)2
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48cd3ζ ′
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− arctan ζ ′′/ζ ′ − ζ ′′/ζ ′

1 + (ζ ′′/ζ ′)2

)
m(m + 1)(2m + 1) (7.87)

For m >> 1, where we can assume m ≈ πω/cd, the s- and p-wave contribution are
approximately equal, and the total contribution from propagating electromagnetic
waves in this limit is

I rad⊥ = I rad⊥p + I rad⊥s ≈ 11ω4

240π3c4ζ ′ (7.88)

The above formulas were obtained from (7.57) and (7.58) by neglecting the spatial
dispersion of the dielectric function. However, these formulas depend only on the
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solids via the surface impedance ζ, which is equals to the ratio of the tangential
components of the electric and magnetic fields on the boundary of the body. Thus,
the results in this section also remain valid in the presence of spatial dispersion,
provided only that the surface impedance of the medium is small enough. Thus, we
would have arrived at the same formulas if we were to have assumed from the very
beginning that the Leontovich boundary condition E = ζH × n is satisfied on the
surface of the metal.

At not too low temperatures, the impedances of metals is given by

ζ ′ = ζ ′′ = (ω/8πσ)1/2. (7.89)

In the local optic approximation, it is assumed that there is no dependence of σ on q.
For ω < ωT = kBT/� it is also good approximation to neglect by the frequency
dependence of σ. In this approximation, using (7.80) for λW (kBT/4π�σ)3/2 < d <

λW (4π�σ/(kBT )1/2, where λW = c�/(kBT ), we get

γevan
⊥p = �

∫ ∞

0
dω

(
− ∂n

∂ω

)
I evan⊥p ≈ 0.13

�

d3λT

(
kBT

4π�σ

)1/2

. (7.90)

For comparison, the p-wave contribution for parallel relative motion for
d < λc, (λc = c/(4πσkBT )1/2) is given by (7.67). It is interesting to note that,
for normal relative motion, in contrast to parallel relative motion, practically for all
d > 0, the main contribution to friction comes from retardation effects, since (7.90),
in contrast to (7.67), contains the light velocity.

From (7.81), we get the s-wave contribution to friction for d < λc

γevan
⊥s ≈ 10−2 �

λ4
c

(
3 − 5 ln(2d/λc)

)
. (7.91)

For parallel relative motion, the s-wave contribution is a factor 1/2 smaller.
For d > λc, taking into account that (7.82) is valid only for ω > c2/4πσd2, we

get

γevan
⊥s ≈ πkBTσ

d2c2
. (7.92)

From (7.88) for d > λW , using

∫ ∞

0

x2.5

ex − 1
dx = 3.7445,

we get a distance-independent contribution to friction from propagating electromag-
netic waves:

γrad
⊥ ≈ 0.1

�

λ3
Tλc

. (7.93)
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7.6 Numerical Results

Figure7.1 shows the dependence of the frictional stress between two semi-infinite
bodies on the relative velocity v at different separations d. In the calculations the
Fresnel formulas for the reflection amplitude were used with the Drude permittivity ε
for copper. The frictional stress initially increases with velocity, reaches a maximum,
and then decreases at large values of the velocity. The presence of a maximum is
connected to the resonances, which are present in the integrand for the friction force
due to the coupled plasmon-polaritons of both surfaces [9, 11]. Doppler shift leads
to the displacement of the resonances relative to each other. If this displacement
becomes larger than the width of the resonance, then this leads the friction force
to decrease when the velocity increases. Figure7.2 shows the contribution to the
friction coefficient γ‖ from the evanescent electromagnetic waves for two semi-
infinite solids in parallel relative motion, with parameters chosen to correspond to
copper (τ−1 = 2.5 × 1013 s−1, ωp = 1.6 × 1016 s−1) at T = 273 K.

The same result for normal relative motion is shown in Fig. 7.3. We show the
s- and p-wave contributions separately. The dashed lines show the result when the
local (long-wavelength) dielectric function ε(ω) is used, and full lines show the
result obtained using the non-local optic dielectric formalism, which was proposed
some years ago for studying the anomalous skin-effect [198] (see also Appendix D).
This formalism takes into account the spatial dispersion of the dielectric function.
Figure7.2 shows that, for sufficiently small separations (d < 1000 Å), for parallel
relative motion, the non-local optic effects become very important for the p-wave
contribution. However, for the s-wave contribution, for both parallel and normal
relative motion, the non-local optic effects are negligibly small for practically all
separations. For normal relative motion, for the p-wave contribution, the non-local
optic effects are less important than for the parallel relative motion. The presented
calculations take into account the non-local effects in the bulk of the solids. In
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Fig. 7.1 The velocity dependence of the frictional stress acting between two semi-infinite bodies
at d = 10nm (1) and d = 100nm (2), with parameters chosen to correspond to copper (τ−1 =
2.5 × 1013 s−1, ωp = 1.6 × 1016 s−1). (The base of the logarithm is 10.)
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Fig. 7.2 The friction coefficient for two flat surfaces in parallel relative motion as a function of
separation d at T = 273 K with parameter chosen to correspond to copper (τ−1 = 2.5 × 1013 s−1

ωp = 1.6 × 1016 s−1). The contributions from the s- and p-polarized electromagnetic field are
shown separately. The full curves represent the results obtained within the non-local optic dielectric
formalism, and the dashed curves represent the result obtained within local optic approximation.
(The log-function is with basis 10.)
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Fig. 7.3 The same as in Fig. 7.2, but for normal relative motion

addition, there is the contribution to the non-local optical response from the surface
region, which was investigated in [13, 167]. For d > 10 Å, the non-local volume
contribution is of the same importance as the surface contribution.

As pointed out in [13, 121, 139, 144], the p-wave contribution increases and
the s- wave contribution decreases when the free electron density decreases. Within
the local optic approximation, the friction diverges in the limit of zero conductiv-
ity. This situation is different from the radiative heat transfer, where, even in the
local optics approximation, a maximum in the heat transfer occurs for conductivi-
ties corresponding to semi-metals. Figure7.4 shows the dependence of coefficient of
friction on the electron density. When the electron density decreases, there is transi-
tion from a degenerate electron gas to a non-degenerate electron gas at the density
nF ∼ (kBTm)3/2/π2

�
3. At T = 273 K, the transition density nF ∼ 1025 m−3.

For n > nF we use the (non-local) dielectric function appropriate for a degenerate
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Fig. 7.4 The friction coefficient for two flat surface in parallel relative motion as a function of
the free electron density n at T = 273K. The full curve was obtained by interpolation between
the result (dashed lines) obtained within the non-local optic dielectric approach, with dielectric
functions corresponding to a degenerate electron gas for n > nF ∼ 1025 m−3, and to a non-
degenerate electron gas for n < nF . The calculation were performed with the damping constant
τ−1 = 2.5 × 1013 s−1, separation d = 100Å and n0 = 8.6 × 1028 m−3. (The log-function is with
basis 10.)

electron gas, while for n < nF we use an expression corresponding to a non- degen-
erate electron gas. In the calculations, we used the electron mean free path l ≈ 600
Å. At d = 100 Å, the maximum value γmax ∼ 10−4kg s−1 m−2 is obtained for
nmax ∼ 1022m−3, corresponding to the DC conductivity σ ∼ 1(� m)−1.

7.7 The Case of Bad Conductors

Casimir friction can be greatly enhanced for high resistivity materials
(kBT/4π�σ > 1). Thus, for two surfaces in relative parallel motion, using the reflec-
tion coefficient in the electrostatic limit (d < c(�/4πσkBT )1/2)

Rp = ε − 1

ε + 1
, (7.94)

we get from (10.13)

γ⊥ ≈ 0.48
�

d4

kBT

4π�σ
(7.95)

and from (7.58) γ⊥ ≈ 10γ‖. Thus, in contrast to the heat flux, Casimir friction
diverges in the limit σ → 0. Of course, in reality, the friction must vanish in this
limit because the conductivity is proportional to the concentration, n, of free elec-
trons, and the frictionmust vanishwhen n vanishes. The origin of the discrepancy lies
in the breakdown of the macroscopic theory, which is not valid at very low electron
concentration (see Sect. 7.3.1). The macroscopic approach for the electromagnetic
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properties of matter is valid only when the length scale of spatial variation of elec-
tromagnetic field is much larger than the average distance between the electrons.
For the evanescent waves, this length scale is determined by separation, d, between
the bodies. From this condition, we can estimate the maximal friction, which corre-
sponds to high–resistivity materials. The minimal conductivity can be estimated as
(see Sect. 7.3.1)

σmin ∼ e2τ

md3
(7.96)

and maximum of friction

γ‖max ∼ 0.05
�

d4

kBT

4π�σmin
∼ 0.05

mkBT

4πe2τd
. (7.97)

To estimate the friction coefficient � for an atomic force microscope tip with the
radius of curvature R >> d, we can use the ‘proximity approximation’ given by
(6.95), with the heat flux per unit area replaced by the friction coefficient per unit
area. Using this approximation, for the friction coefficient for a spherical tip we get:

�s
‖ ≈ 2π

∫ ∞

0
dρργ‖

(
d + ρ2/2R

) = 0.05
2πR

3d3

kBT

4πσ
, (7.98)

and the maximum of friction can be estimated as

�s
‖max ∼ 0.05

2πR

3d3

kBT

4πσmin
∼ 0.1

mkBT R

4πe2τ
. (7.99)

For τ ∼ 10−16 s, R ∼ 1 µm and T = 300 K we get �max ∼ 10−14 kg s−1. This
friction is only one order of magnitude smaller than the friction observed in a recent
experiment at d = 10nm [21]. Similarly, in the case of a cylindrical tip we get:

�c
‖ ≈ 2w

∫ ∞

0
dργ‖

(
d + ρ2/2R

) = 21/2π

64

√
R

d

kBTw

4πσd3
, (7.100)

where w is the width of the tip, and the maximum of friction can be estimated as

�c
‖max ∼ 21/2π

64

√
R

d

kBTw

4πσmind3
∼ 21/2π

64

√
R

d

mkBTw

4πe2τ
. (7.101)

For w = 7µm, d = 10nm, and with the other parameters as above, (7.101) gives a
coefficient friction of the same order of magnitude as was observed in the experiment
[21]. Thus, the van der Waals friction between high resistivity materials can be
measured with the present state-of-the art equipment.

Recently, a large electrostatic non-contact friction has been observed between
an atomic force microscope tip and thin dielectric films [24]. Casimir friction will
also be large for dielectrics with high optical absorption at low-frequencies. As an
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example, we consider the van der Waals friction between thin water films adsorbed
on transparent dielectric substrates such as silica or mica. Water has an extremely
large static dielectric function of approximately 80. The low frequency contribution
to the dielectric function, responsible for this large static value, is due to relaxation of
the permanent dipoles of the water molecules. It can be accurately described by the
Debye [235] theory of rotational relaxation. The theoretical fit of the experimental
data is given by [236]:

ε(ω) = 4.35 + C

1 − iω/ω0
, (7.102)

where C = 72.24 and ω0 = 1.3 × 1011 s−1. We note that water has large absorption
in the radio-frequency range at ω ∼ ω0, and shows, in this region of the spectrum,
anomalous dispersion. In this frequency range, the dielectric constants ε3 of mica or
silica are nearly constant (and real) and |ε2| � ε3, where ε2 denotes the dielectric
function ofwater. For a planar filmwith the thickness d f and dielectric function ε2(ω)

on-top of a substrate with the dielectric function ε3(ω), the reflection amplitude

Rp = Rp21 − Rp23 exp(−2qd f )

1 − Rp21Rp23 exp(−2qd f )
, (7.103)

where
Rpi j = εi − ε j

εi + ε j
, (7.104)

and index 1 denotes vacuum. For qh 
 1 and q−1 ∼ d 
 |ε2|d f /ε3 the reflection
amplitude can be approximated by

Rp ≈ 1 − 2

ε2qd f
. (7.105)

�c
‖ = π�R1/2w

6
√
2C2d2

f d
3/2

(
kBT

�ω0

)2

. (7.106)

Substituting (7.105) in (10.13), and using the ‘proximity approximation’, we obtain
the friction between a cylindrical atomic force microscope tip and a sample

�c
‖ = π�R1/2w

6
√
2C2d2

f d
3/2

(
kBT

�ω0

)2

(7.107)

For d f = 1nm and with the other parameters the same as above we get �c
‖ = 4.8 ×

10−12 kg s−1. The friction observed in [21] has the same weak distance dependence
predicted by (7.107), but is one order of magnitude smaller than predicted by (7.107).
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7.8 Resonant Photon Tunneling Enhancement
of Casimir Friction

7.8.1 Surface Phonon–Polariton Enhancement
of Casimir Friction

As in the case of the radiative heat transfer, van der Waals friction can be greatly
enhanced by resonant photon tunneling between localized surface states, for example,
surface plasmon polaritons and adsorbate vibration modes. Using the same approx-
imation as when deriving (6.4), we get [100]

γ⊥ = 3

128

�
2ω2

a

d4kBT η

1

sinh2(�ω0/2kBT )
, (7.108)

and for parallel motion

γ‖ = �
2ηq4

c

128πkBT

1

sinh2(�ω0/2kBT )
. (7.109)

Resonant photon tunneling enhancement of Casimir friction is possible for two
semiconductor surfaces that can support low-frequency surface plasmon or surface
polariton modes. As an example, we consider two clean surfaces of silicon car-
bide (SiC). Using the parameters describing the optical properties of this material
(see Sect. 4.3) we get γ⊥ = 4.2 × 103/d4 kg · s−1 ·m−2 and γ‖ = 2.2 × 102/d4

kg · s−1 ·m−2, where the distance d is in Å. Note that the friction between the two
semiconductor surfaces is several orders of magnitude larger than between two clean
good conductor surfaces (see Figs. 7.2 and 7.3).

7.8.2 Adsorbate Vibrational Mode Enhancement
of the van der Waals Friction

Another enhancementmechanismofCasimir friction is connected to resonant photon
tunneling between adsorbate vibrational modes localized on the different surfaces.
In [99, 100], we have shown that resonant photon tunneling between two surfaces
separated by d = 1nm, and covered by a low concentration of potassium atoms,
results in a friction that is six orders of magnitude larger than for the clean surfaces.
The adsorbate induced enhancement of Casimir friction is even larger for Cs adsorp-
tion on Cu(100). In this case, even at low coverage (θ ∼ 0.1), the adsorbed layer
exhibits an acoustic branch for vibrations parallel to the surface [200]. Thus, ω‖ = 0
and according to (6.47), at small frequencies, the reflection amplitude is given by
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Rp = 1 − 2qaω2
q

ω2 − ω2
q + iωη

, (7.110)

where ω2
q = 4πnae∗2aq2/M , e∗ is the ion charge and a is the separation between an

ion and the image plane. Using (7.110) in (10.13) for

a

ηd

√
4πnae∗2a

Md2

 1,

we get

γ‖ ≈ 0.62
kBTa2

ηd6
. (7.111)

It is interesting to note that γ‖ in (7.111) does not depend on na , e∗ and M . However,
(7.110) is only valid when there are acoustic vibrations in the adsorbed layer. For
Cs adsorbed on the Cu(100) surface, acoustic vibrations exist only for coverages
θ ≥ 0.1 [200]. The friction acting on an atomic forcemicroscope tip can be estimated
using a similar approximation as (6.95). Using this approximation and (7.111) for a
cylindrical tip we get

�c
‖ ≈ 0.68

kBTa2R0.5w

ηd5.5
, (7.112)

where R is the radius of the curvature of the tip andw its width. For Cs adsorption on
Cu(100), the damping parameter η was estimated in [170] as η ≈ 3×109 s−1. Using
this value of η in (7.112) for a = 2.94 Å [200], R = 1µm, w = 7µm, T = 293 K
at d = 10nm we get �‖ = 0.5 × 10−13 kg/s, which is only three times smaller than
the friction observed in [21] at the same distance. However, van der Waals friction
is characterized by a much stronger distance dependence (∼ 1/d5.5) than observed
in the experiment (∼ 1/dn , where n = 1.3 ± 0.2). Thus, at small distances, van der
Waals friction will be much larger than the friction observed in [21], and can thus be
measured experimentally. Figure7.5 shows how the friction coefficient depends on
the distance, d, between the copper tip and the copper substrate, when the surfaces
of the tip and the substrate are covered by a low concentration of the Cs atoms, as
well as for clean surfaces. In comparison, the friction between two clean surfaces at
the separation d = 1nm is eleven orders of magnitude smaller. However, the friction
between clean surfaces shownonFig. 7.5was calculated in local optic approximation.
For parallel relative motion, non-local optic effects are very important (see Fig. 7.2),
and, when they are taken into account, the friction at d = 1nm between adsorbate
covered surfaces will be seven orders of magnitude larger than the friction between
clean surfaces.
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Fig. 7.5 The friction coefficient between the copper tip and copper substrate, the surfaces of
which are covered by low concentration of cesium atoms, as a function of the separation d. The
cylindrical tip is characterized by a radius of curvature R = 1µm and the width w = 7µm. The
other parameters correspond to Cs adsorbed on Cu(100) surface at coverage θ ≈ 0.1 [170, 200]:
e∗ = 0.28e, η = 3 × 109 s−1, a = 2.94 Å, T = 293K. (The base of the logarithm is 10.)



Chapter 8
Casimir Friction Between a Small Particle
and a Plane Surface

In this section, the friction force acting on a small neutral particle moving relative to a
flat surface of a solid is considered in the framework of the fluctuation electrodynamic
in non-relativistic and relativistic cases. The friction force in the particle–plate con-
figuration is deduced from the friction force in the plate–plate configuration assuming
one of the plates to be sufficiently rarefied. The effect of the multiple scattering of the
electromagnetic field between a particle and substrate is also studied. These effects
can be important for physisorbed molecules. For physisorbed molecules, high-order
processes, which are not included in the theory of Casimir friction, can dominate the
damping rate of physisorbedmolecules. The results of the theoretical calculations are
compared with experimental data. The special case of Casimir friction force acting
on a small neutral particle moving relative to black-body radiation is also analyzed.

8.1 Friction Force on a Particle Moving Parallel to a Plane
Surface: Non-relativistic Theory

The friction force acting on a small particle during motion parallel to a flat surface
can be obtained from the friction between two semi-infinite bodies in the limit when
one of the bodies is sufficiently rarefied. For d � λT = c�/kBT , in (7.28), it is
possible to neglect the first term and, in the second term, the integration can be
extended to the whole q-plane, and we can put kz ≈ iq. Let us assume that the
rarefied body consists of particles with dipole and magnetic moments. The dielectric
and magnetic susceptibilities of the rarefied body—let us say body 2 will be close
to unity, i.e. ε2 − 1 → 4πnαE2 � 1 and μ2 − 1 → 4πnαH2 � 1, where n is the
particle concentration in body 2, and αE2 and αH2 are their dielectric and magnetic
susceptibilities, respectively. In linear order, in the particle concentration n, according
to (C.17) from Appendix, C, the reflection amplitudes are given by
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R2p = ε2kz − √
ε2μ2k2 − q2

ε2kz + √
ε2μ2k2 − q2

≈ ε2 − 1

ε2 + 1
≈ 2πnαE,

R2s = μ2kz − √
ε2μ2k2 − q2

μ2kz + √
ε2μ2k2 − q2

≈ μ2 − 1

μ2 + 1
≈ 2πnαH .

If the particle–surface separation d � λT , then the friction force acting on a particle
moving parallel to a plane surface can be obtained from (7.28) as the ratio between
the change of the frictional shear stress after the displacement of body 2 by small
distance, dz, and the number of the particles in a slab with thickness dz:

Fpart
x = dσ‖(z)

ndz

∣
∣
∣
z=d

= 2�

π2

∫ ∞

0
dω

∫
d2qqxqe

−2qd
(
n2(ω

′) − n1(ω)
)×

× (
ImRpImα′

E + ImRsImα′
H

)
, (8.1)

where α′
E(H) = αE(H)(ω

′). After the transformation, we get:

Fpart
x = 2�

π2

∫ ∞

−∞
dqy

∫ ∞

0
dqxqxqe

−2qd

{∫ ∞

0
dω

[
n(ω) − n(ω + qxv)

]×

×
[(
ImR1p(ω + qxv)ImαE(ω) + [ω + qxv ↔ ω])+

+ (
ImR1s(ω + qxv)ImαH(ω) + [ω + qxv ↔ ω])

]
−

−
∫ qxv

0
dω[n(ω) + 1/2]

[(
ImR1p(ω − qxv)ImαE(ω) + [ω − qxv ↔ ω])+

+ (
ImR1p(ω − qxv)ImαH(ω) + [ω − qxv ↔ ω])

]}
, (8.2)

where the symbols [ω ± qxv ↔ ω] stand for the terms that can be obtained from the
preceding terms by interchanging ω ± qxv and ω. An alternative derivation of (8.2),
using the law of energy conservation without taking into account the contribution
frommagneticmoment, is given inAppendixH. To linear order in the sliding velocity
v from (8.2), we get Ffric = −�‖v, where

�‖ = 2�

π

∫ ∞

0
dω

(
−∂n(ω)

∂ω

)∫ ∞

0
dqq4e−2qd×

×
[
ImRp(q,ω)ImαE(ω) + ImRs(q,ω)ImαH(ω)

]
. (8.3)
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In the non-retarded limit, without taking into account the contribution from the
magnetic moment, this equation reduces to the formula obtained by Tomassone and
Widom [145].

For a spherical particle with radius R, the electrical and magnetic susceptibilities
are given by (5.58) and (5.59), respectively. In this case, from (8.3) in the limit
d <| ε(ω = kBT/�) |−1/2 λT for the contribution to the friction coefficient from
p-polarized waves, we get [139]:

�p‖ ≈ 3
�

d5

(
kBT

4π�

)2

σ−1
1 σ−1

2 R3, (8.4)

and for the contribution from s-polarized waves, we get

�s‖ ≈ π3

45

�

λ2
T

(
σ1σ2R2

c2

)(
R

d

)3

, (8.5)

where σ1 and σ2 are the conductivities of substrate and particle, respectively. For
d = 2R = 10nm, σ1 = σ2 = 4 × 1017 s−1 (which corresponds to gold at room
temperature), we get the very small friction coefficients: �p ∼ 10−29 kg · s−1 and
�s ∼ 10−24 kg · s−1. Note that the contribution to the friction between a small
particle and a plane metal surface is mainly due to the s-polarized waves, just as in
the case of the friction between two plane surfaces, and is many orders of magnitude
larger than contribution from the p-polarized waves. This is related to the screening
of the electromagnetic field inside the metal volume, which is stronger for the
p-polarized waves. As a result, the energy dissipation and, consequently, the friction
will be larger for the s-polarized waves. Figure8.1 shows the velocity-dependence
of the friction force acting on a small copper particle with R = 10nm, moving
above a copper sample at d = 20nm. The contributions from the electric dipole and
magnetic moments are shown separately. At small velocities, the contribution from
the magnetic moment is seven orders of magnitude larger than the contribution from
the electric dipole moment.

The friction can be greatly enhanced for high-resistivity materials. Using (8.3) in
the non-retarded limit (which can be formally obtained in the limit c → ∞), and for

Fig. 8.1 The velocity
dependence of the friction
force acting on a small
copper particle with radius
R = 10nm moving above a
copper sample at the
separation d = 20nm. The
contributions from the
electric dipole moment and
the magnetic moment are
shown separately. (The base
of the logarithm is 10)
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high-resistivity material (4πσ << kBT/�), we get:

�p‖ = 0.9
kBT

4πσ

R3

d5
(8.6)

where we have assumed that the particle and the substrate have the same dielectric
function ε = 1 + 4πiσ/ω. As discussed above (see Sect. 7.3.1), the macroscopic
theory (which was used in obtaining (8.6)) is only valid when σ 
 σmin ∼ e2τ/md3.
For σ ∼ σmin, d = 2R = 10nm and τ = 10−15 s (8.6) gives �p‖max ∼ 10−18 kg s−1.

If the particle and the substrate are made from the same material, able to support
the surface phonon–polaritons, the friction is given by

�‖ = 9kBTηR3

d5

(
1

ω2
s

+ 1

ω2
p

)

, (8.7)

whereωs andωp are the frequencies of the surface phonon–polaritons for the substrate
and the particle, respectively. If the substrate and the particle are made from silicon
carbide (SiC), ωs = 1.79× 1014 s−1 and ωp = 1.76 × 1014 s−1. Thus, for d = 2R =
10nm, η = 8.9 × 1011 s−1, and T = 300K, we get � ∼ 10−21 kg s−1. This friction
coefficient is three orders of magnitude larger than for the good conductors.

8.2 Friction Force on a Particle Moving Parallel to Plane
Surface: Relativistic Theory

The friction force acting on a particle moving parallel to a dielectric plate can be
obtained from the friction force between two plates each sliding relative to other,
assuming one of the plates as sufficiently rarefied (see Fig. 8.2). According to a fully
relativistic theory [128] (see also Sect. 7.3), the contributions to the friction force,

(a)

(b)
(c)

Fig. 8.2 The schemes of the configurations: a plate–plate; b particle–plate in the lab frame; and c
particle–plate in the rest frame of a particle. The friction force in the particle–plate configuration
in the lab frame can be obtained from the friction force in the plate–plate configuration, assuming
that plate 2 is rarefied and in the rest frame of a particle and assuming that plate 1 is rarefied
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F1x, and the radiation power, P1, absorbed by plate 1 from evanescent waves, which
dominate at small separations and low temperatures, are determined by the formulas

(
F1x

P1

)
=

∫
d2q

(2π)2

∫ cq

0

dω

2π

(
�qx
�ω

)
�12(ω,q)

[
n2(ω

′) − n1(ω)
]
, (8.8)

where the positive quantity

�12(ω,q) = 4sgn(ω′)
|�|2

[
(q2 − βkqx)

2 − β2k2z q
2
y

]{
ImR1p

[
(q2 − βkqx)

2ImR′
2p|Dss|2

+ β2k2z q
2
y ImR′

2s|Dsp|2
] + (p ↔ s)

}
e−2kzd, (8.9)

can be identified as a spectrally resolved photon emission rate:

� = (
q2 − βkqx

)2
DssDpp − β2k2z q

2
yDpsDsp,

Dpp = 1 − e−2kzdR1pR
′
2p, Dsp = 1 + e−2kzdR1sR

′
2p,

ni(ω) = [exp(�ω/kBTi)−1]−1, kz = √
q2 − (ω/c)2,R1p(s) is the reflection amplitude

for surface 1 in the K frame for a p(s)-polarized electromagnetic wave, R′
2p(s) =

R2p(s)(ω
′, q′) is the reflection amplitude for surface 2 in the K ′ frame for a p(s)-

polarized electromagnetic wave, ω′ = γ(ω−qxv), q′
x = γ(qx −βk),Dps = Dsp(p ↔

s). The symbol (p ↔ s) denotes the terms that are obtained from the preceding terms
by permutation of the p and s indexes.

Assuming that the dielectric permittivity of the rarefied plate is close to the unity,
i.e. ε − 1 → 4παN � 1, where N is the concentration of particles in a plate in the
co-moving reference frame, then, to linear order in the concentrationN , the reflection
amplitudes for the rarefied plate in the co-moving frame are:

Rp = εkz −
√
k2z − (ε − 1)

(
ω
c

)2

εkz +
√
k2z − (ε − 1)

(
ω
c

)2
≈ Nπ

q2 + k2z
k2z

α,

Rs = kz −
√
k2z − (ε − 1)

(
ω
c

)2

kz +
√
k2z − (ε − 1)

(
ω
c

)2
≈ Nπ

q2 − k2z
k2z

α. (8.10)

Because Rp(s) � 1 for the rarefied plate, it is possible to neglect multiple scattering
of the electromagnetic waves between the surfaces. In this approximation, �pp ≈
�ss ≈ �sp ≈ �sp ≈ 1 and

� ≈ (q2 − βkqx)
2 − β2k2z q

2
y = (qq′)2

γ2
, (8.11)
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(q2 − βkqx)
2ImR′

2p|�ss|2 + β2k2z q
2
y ImR′

2s|�sp|2

≈ (qq′)2

γ2
ImR′

2p + β2k2z q
2
y Im(R′

2p + R′
2s), (8.12)

�12 = −4

[
(
ImR1pImR′

2p + ImR1sImR′
2s

)
(

1 + γ2β2
k2z q

2
y

q2q′2

)

+ γ2β2
k2z q

2
y

q2q′2
(
ImR1pImR′

2s + ImR1sImR′
2p

)
]

. (8.13)

The friction force fx acting on a particle, and the radiation power w absorbed by
it, can be obtained in the K frame from (8.13), under the assumption that plate 2 is
sufficiently rarefied [150] (see Fig. 8.2b). In this case, the friction force acting on the
surface 2, F2x, and the radiation power absorbed by it, W2, are

(
F2x

W2

)
=

(−F1x

−W1

)
= N ′

∫ ∞

d
dz

(
fx(z)
w(z)

)
, (8.14)

where N ′ = γN is the concentration of particles in plate 2 in the K frame,

(
fx(z)
w(z)

)
= 1

γπ2

∫
d2q

×
∫ cq

0
dω

(
�qx
�ω

)
e−2kzz

kz

[
ImR1p(ω)φp + ImR1s(ω)φs

]
Imα(ω′)

[
n2(ω

′) − n1(ω)
]
,

(8.15)

φp =
(

ω′

c

)2

+ 2γ2
(
q2 − β2q2x

)k2z
q2

, φs =
(

ω′

c

)2

+ 2γ2β2q2y
k2z
q2

.

In the rest reference frame of an object, the radiation power absorbed by it is
equal to the heating power for the object. Thus, −w is equal to the heating power for
plate 1. Equation (8.15) agrees with the results obtained in [150, 152, 155]. However,
as shown in [61, 128], the acceleration and heating of the particle are determined by
the friction force f ′

x and by the radiation power w′ absorbed by the particle in the rest
reference frame of a particle (the K ′ frame)

m0γ
3 dv

dt
= m0

dv′

dt′
= f ′

x , (8.16)

w′ = dm0

dt′
c2 (8.17)
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where m0 is the rest mass of the particle, v′ � v and t′ are the velocity and time in
the K ′ frame, respectively. These quantities can be also obtained assuming plate 2 to
be sufficiently rarefied (see Fig. 8.2c). In this case, in the K ′ frame, the friction force
acting on the surface 2, F ′

2x, and the radiation power absorbed by it, W ′
2, are

(
F ′
2x

W ′
2

)
=

(−F̃1x

W̃1

)
= N

∫ ∞

d
dz

(
f ′
x(z)

w′(z)

)
, (8.18)

where F̃1x and W̃1 are obtained from F1x andW1 after the replacement of the indexes
1 ↔ 2,

(
f ′x
w′

)
= 1

π2

∫ ∞
0

dqx

∫ ∞
−∞

dqy

×
∫ cq

0
dω

(
�qx
−�ω

)
e−2kzd

kz

[
ImR1p(ω

′)φ′
p + ImR1s(ω

′)φ′
s

]
Imα(ω)

[
n1(ω

′) − n2(ω)
]
,

(8.19)

φ′
p =

(ω

c

)2 + 2γ2
(
q′2 − β2q′2

x

) k2z
q′2 , φ′

s =
(ω

c

)2 + 2γ2β2q2y
k2z
q′2 .

The relation between the different quantities in the K and K ′ frames can be found
using the Lorentz transformations for the energy-momentum tensor for a plate 2,
according to which

F2x = γ

(
F ′
2x + v

W ′
2

c2

)
, W2 = γ

(
W ′

2 + vF ′
2x

)
, (8.20)

Using (8.14) and (8.18) gives

fx = f ′
x + v

w′

c2
, w = w′ + vf ′

x . (8.21)

These relations also can be found using the Lorentz transformation for the energy-
momentum for a particle, according to which

px = γ
(
p′
x + vm0

)
, ε = γ

(
m0c

2 + vp′
x

)
, (8.22)

where px and ε are the momentum and energy, respectively, of a particle in the K
frame and p′

x and m0c2 are the same quantities in the K ′ frame. When the derivative
of the 4-momentum is taken with respect to lab time, then the factor γ in (8.22)
disappears because dt = γdt′ and the relations (8.21) are obtained [161]. From the
inverse transformations



160 8 Casimir Friction Between a Small Particle and a Plane Surface

F ′
2x = γ

(
F2x − v

W2

c2

)
, W ′

2 = γ(W2 − vF2x), (8.23)

follows
f ′
x = γ2

(
fx − v

w

c2

)
, w′ = γ2(w − vfx). (8.24)

These relations also can be obtained as above using the Lorentz transformation for
the energy-momentum for a particle. We note that, in contrast to the relations (8.21)
on the right side of the relations (8.24), there is an extra factor γ2. This is because
the friction force and the radiation power are not 4-vectors. The kinetic energy of a
particle in the lab frame is εK = ε −m0c2 where the total energy of a particle in the
K frame is ε = γ(m0c2 + p′

xv). The rate of change of the kinetic energy is

dεK

dt
= w′ + f ′

xv − w′

γ
= w − w′

γ
= vfx − (γ − 1)w′

γ2
. (8.25)

Thus, the rate of change of the kinetic energy in the K frame is equal to the friction
force power in this frame only when w′ = 0.

8.3 Effect of Multiple Scattering of the Electromagnetic
Waves

Equation (8.3) does not take into account the screening effect,which is due tomultiple
scattering of the electromagnetic waves between particle and substrate. This effect
becomes important in the case of the resonant photon tunneling between the localized
particle and substratemodes. A theory of friction that takes into account the screening
effects to linear order in velocity was developed in [139] using the semi-classical
theory of the fluctuating electromagnetic field. In [129] (see also Appendix K), the
same results were obtained using quantum field theory. Resonances that can be
excited by thermal radiation can exist only on the surfaces of semiconductors and
dielectrics. For good conductors, the surface plasmoms have high frequencies, and
cannot be excited by thermal radiation. Thus, for a metal particle, moving above a
metal surface, multiple scattering effects can be neglected. For a dielectric particle, it
is necessary to take into account only the dipole moment of the particle; the magnetic
moment can be neglected.

The screening effects are especially important for physisorbedmolecules, because
they contribute to friction that is proportional to the absolute value of molecule sus-
ceptibility. Without taking screening effects into account, the friction for a particles
is proportional to the imaginary part of the susceptibility, which is usually very small
for those frequencies that can be excited by thermal radiation. However, the real part
of susceptibility can be very large at the resonant frequency.
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There is fundamental difference between ‘vacuum’ friction for two flat surfaces
and for point dipole above a flat surface. In the former case, scattering of electro-
magnetic waves by the surfaces conserves the parallel momentum. Hence, the only
possible process of momentum transfer between two flat surfaces is the emission
of electromagnetic waves by one body, and the subsequent absorption by the other
body. For the evanescent waves, this process gives a contribution that is proportional
to the product of the imaginary part of the reflection factors for both surfaces. In the
case of a particle above the flat surface, the component of the momentum parallel
to the surface can change during scattering by the particle, resulting in momentum
transfer. This process gives a contribution that is proportional to product of the imag-
inary part of the reflection factor for a metal at a different value of the momentum
parallel to surface, and absolute value of the point dipole polarizability. The results
obtained below are applied to the problem of the vibrational energy relaxation of a
physisorbed molecule, and the friction and the heat transfer between an STM tip and
a metal surface.

We consider a semi-infinite metal having with a flat surface, which coincides with
the xy-coordinate plane, and with the z-axes pointed along the upward normal. A
point dipole is located at r0 = (0, 0, d), performing small amplitude vibrations with
the displacement vector u(t) = u0e−iω0t . To linear order in the vibrational coordinate
u(t), the polarization density corresponding to the point dipole can be written in the
form:

p(r, t) = p0δ(r − r0)e−iωt + p1(r,ω)e−i(ω+ω0)t, (8.26)

p1(r,ω) = p1δ(r − r0) − p0u0 · ∂

∂r
δ(r − r0), (8.27)

where p0 = pf + α(ω)E0,p1 = α(ω + ω0)E1, E(t) = E0e−iωt + E1e−i(ω+ω0)t is an
external electric field at the position of the dipole, α(ω) is the dipole polarizability of
the particle, pf is a fluctuating dipole moment, which, according to the fluctuation–
dissipation theorem, is characterized by spectral function of fluctuations [8, 184,
185]:

〈
pfi p

f ∗
j

〉

ω
= �

π

(
1

2
+ n(ω)

)
Imα(ω)δij. (8.28)

Outside themetal, the electric field is given by the sumof the electric field from the
point dipole, Ed(r, t), the electric field from the metal polarization charge induced
by the point dipole,Eind

d (r, t), and the electric field from themetalEs(r, t) in absence
of point dipole, and originates from thermal and quantum fluctuation of polarization
inside the metal:

Etotal(r, t) = Ed(r, t) + Eind
d (r, t) + Es(r, t). (8.29)

The force acting on the dipole is only determined by the last two fields. The electric
field Eind

d (r, t) can be written in the form:
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Eind
d (r, t) = Eind

d0 (r,ω)e−iωt + Eind
d1 (r,ω + ω0)e

−i(ω+ω0)t, (8.30)

Eind
d0i(r,ω) = Dij(r, r0,ω)p0j, (8.31)

Eind
d1i(r,ω +ω0) = Dij(r, r0,ω +ω0)p1j + u0 · ∂

∂r′Dij(r, r′,ω +ω0)r′=r0p0j (8.32)

where D̃ik(r, r′,ω) = D0
ik(r, r

′,ω) + Dik(r, r′,ω) obeys (3.33) and (3.34), and the
function D0

ik(r, r
′,ω) obeys the inhomogeneous equations (3.33) and (3.34) for free

space, i.e. in absence of themedium.The functionDik(r, r′,ω)determines the electric
field induced by a unit dipole due to polarization of themedium.Outside themedium,
this function has no singularities and obeys the homogeneous equations (3.33) and
(3.34). The solution of (3.33) and (3.34) is described in detail in Appendix C. The
electric field from themetalEs(r, t) = Es(r,ω)e−iωt is characterizedby the following
spectral function of fluctuations [10, 11, 15, 183, 185]

〈
Es
i (r)E

s∗
j (r′)

〉

ω
= �

π

(
1

2
+ n(ω)

)
ImDij(r, r′,ω). (8.33)

The electric fields E0 and E1 at the position of the point dipole can be found from
the condition of self-consistency:

E0i = Dii(r0, r0,ω)p0i + Es
i (r0,ω), (8.34)

E1i = Dii(r0, r0,ω + ω0)α(ω + ω0)E1i + u0 · ∂

∂r

(
Es
i (r,ω) +

+Dij(r0, r,ω + ω0)p0j + Dij(r, r0,ω)p0j

)

r=r0

. (8.35)

In (8.34) and (8.35), it was given that Dik(r, r) = δikDii(r, r). From (8.34)–(8.35):

E0i = Es
i (r0) + Dii(r0, r0,ω)pfi
1 − α(ω)Dii(r0, r0,ω)

, (8.36)

p0i = pfi + α(ω)Es
i (r0,ω)

1 − α(ω)Dii(r0, r0,ω)
, (8.37)

E1i =
u0 · ∂

∂r

(
Es
i (r) + Dij(r0, r,ω + ω0)p0j + Dij(r, r0,ω)p0j

)

r=r0

1 − α(ω + ω0)Dii(r0, r0,ω + ω0)
. (8.38)

The total electromagnetic force acting on a fluctuating dipole is determined by
the Lorentz force:
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F =
∫ ∞

−∞
dω

∫
d3r

(
〈ρE〉 + 1

c
〈j × B〉

)
, (8.39)

where the integration is over the volume of the dipole

E(r, t) = E0(r,ω)e−iωt + E1(r,ω + ω0)e
−i(ω+ω0)t (8.40)

and the magnetic induction field, which can be obtained from the electric field using
Maxwell’s equations

B(r, t) = −ic∇ ×
(
E0(r,ω)

e−iωt

ω
+ E1(r,ω + ω0)

e−i(ω+ω0)t

ω + ω0

)
. (8.41)

In (8.39), ρ(r, t) and j(r, t) are the electron and current densities of the dipole, which
can be expressed through the polarization density p(r, t):

ρ(r, t) = −∇ · p(r, t) = − ∂

∂xl

(
p0l(r,ω)e−iωt + p1l(r,ω)e−i(ω+ω0)t

)
, (8.42)

j(r, t) = ∂

∂t
p(r, t) = −i

(
ωp0(r,ω)e−iωt + (ω + ω0)p1(r,ω)e−i(ω+ω0)t

)
. (8.43)

To linear order in the vibrational coordinate u(t) and frequency ω0, the total force
acting on the point dipole can be written in the form

F(t) = Fst(r0) + Fdc(t) + Ffric(t). (8.44)

Here, the first term determines the conservative van der Waals force at the position
r = r0. The second term is the change of the conservative van derWaals force during
vibration, given by

Fdc(t) = u(t) · d

dr0
Fst(r0). (8.45)

The last term in (8.44) determines the friction force:

Ffric(t) = iω0
↔
� ·u(t) = − ↔

� ·u̇(t). (8.46)

Using results from Appendix I, for a particle moving parallel to the surface we
get:
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�‖ = 2�

π

∫ ∞

0
dω

(
− ∂n

∂ω

)
×

×
[ ∑

l=x,y,z

(
∂2

∂x∂x′ ImDll(r, r′)Im
α(ω)

1 − α(ω)Dll(r0, r0,ω)

)
−

−2 | α(ω) |2 Re
(

1
(
1 − α∗(ω)D∗

zz(r0, r0,ω)
)(
1 − α(ω)Dxx(r0, r0,ω)

)
)

×

×
(

∂

∂x
ImDxz(r, r0)

)2]

r=r0
r′=r0

, (8.47)

and for the motion normal to the surface we get

�⊥ = 2�

π

∫ ∞

0
dω

(
− ∂n

∂ω

) ∑

l=x,y,z

{
∂2

∂z∂z′

[
ImDll(r, r′,ω) +

+ Im

(
α(ω)Dll(r, r0,ω)Dll(r′, r0,ω)

1 − α(ω)Dll(r0, r0,ω)

)]
Im

α(ω)

1 − α(ω)Dll(r0, r0,ω)
+

+
(

∂

∂z
Im

(
α(ω)Dll(r, r0,ω)

1 − α(ω)Dll(r0, r0,ω)

))2}

r=r0
r′=r0

. (8.48)

8.4 Friction Force on Physisorbed Molecules

The sliding of lubricated surfaces has been studied for many years but the micro-
scopic origin of the friction force is still not well understood. During sliding at low
velocities, the lubrication fluid will be squeezed out from the contact areas between
the two solids, but usually one or a few monolayers of lubrication molecules will be
trapped between the surfaces (boundary lubrication). If the lateral corrugation of the
adsorbate–substrate interaction potential is weak, as is typically the case for saturated
hydrocarbons, then, during sliding, the molecules will slip relative to the surfaces.
One important problem in sliding friction is to understand the origin and magnitude
of the friction force acting on the individual molecules during slip. If the adsorbate
velocity, V , is much smaller than the sound velocity and (for a metallic substrate)
the Fermi velocity of the substrate, then the friction force acting on a molecule is
proportional to the velocity

F = −MηV, (8.49)

whereM is the molecule mass and η is the friction coefficient. For insulating surfaces
(e.g., most metal oxides), this atomic scale friction η can only be due to phonon
emission, but on metallic surfaces, both phonon and electronic friction occur and the
latter is connected with the energy transfer to the metal conduction electrons.
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Information about the friction parameter η can be deduced from infrared spec-
troscopy and inelastic helium scattering measurements since η determines the
linewidth of adsorbate vibrations if inhomogeneous broadening and pure dephas-
ing processes can be neglected [205, 206]. Information about η can also be deduced
from quartz crystal microbalance (QCM) measurements.

In the measurements by Krim et al. [238], one side of a quartz crystal was covered
by a thin silver or gold film. When a voltage is applied to the crystal, it performs
in-plane oscillations. If adsorbates are adsorbed on the metal film, the resulting
mass load will decrease the resonance frequency of the QC oscillator. However,
Krim et al. [238] also observed an increased damping of the QC oscillator that can
only result if, due to the inertia force, the adsorbates slide relative to the metal
surface. If the pinning by the corrugated substrate potential can be neglected, then,
from the adsorbate-induced change in the resonance frequency and damping of the
QC oscillator, one can deduce both the adsorbate concentration and the damping
η. Finally, for metals, the electronic contribution to the friction η can be deduced
from surface resistivity measurements [203, 239, 240]. In these measurements, the
adsorbate-induced change �R of the resistivity of a thin metallic film is measured.
It is easy to prove that �R ∼ η by equalizing the ohmic energy dissipation with the
frictional energy dissipation calculated in a reference frame moving with the drift
velocity of the conductions electrons.

In this section, we estimate the electronic friction for inert adsorbates on metal
surfaces. The metal is treated in the semi-infinite jellium model and the adsorbate–
substrate interaction is assumed to consist of the long-range attractive van der Waals
interaction plus a short-range repulsion, resulting from the overlap of the electron
clouds of the adsorbate and the substrate. We also discuss the relative importance of
the phononic and electronic friction for noble gas atoms and for saturated hydrocar-
bons adsorbed on metal surfaces.

In Sect. 8.4.1, the friction force acting on an adsorbed molecules is studied using
the theory of Casimir friction. However, this theory considers only the interaction
between molecule and substrate which can be described within the framework of
the dielectric formalism. At small separations between molecule and substrate, other
processes, which are not described by this formalism, become important. In contrast
to Casimir friction, these higher-order processes give a non-vanishing, linear in the
velocity, contribution to the friction at T = 0K. The friction acting on physisorbed
molecules, taking into account the high-order processes, was considered in [140,
241, 243]. It is well known that accurate results for the electron response of metal
surfaces requires realistic model for the surface, i.e., the Lang–Kohn model. In early
calculations [140, 241], very simple models were used, and the screening by the
conduction electrons was neglected, and the accuracy of the results is not clear. The
theory of friction of physisorbedmolecules presented in Sect. 8.4.2 takes into account
high-order processes and screening effects. In this theory, the friction is related to the
surface response function for which accurate calculations exist; for example, using
the time-dependent local density approximation.
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8.4.1 Casimir Friction

The friction force acting on the moving molecule usually is written in the form

F = −MηV, (8.50)

whereM is the mass and η is the coefficient of friction. For a physisorbed molecule,
we can neglect retardation effects. Formally, this corresponds to the limit c → ∞ in
the formulae for the Green’s function in (8.47) and (8.48). In Appendix C, we show
that in the non-retarded limit

Dxx(r, r′) =
∫

d2q

2π

q2x
q
Rp(q,ω)eiq(x−x′)−q(z+z′), (8.51)

Dyy(r, r′) =
∫

d2q

2π

q2y
q
Rp(q,ω)eiq(x−x′)−q(z+z′), (8.52)

Dzz(r, r′) =
∫

d2q

2π
qRp(q,ω)eiq(x−x′)−q(z+z′), (8.53)

Dxz(r, r′) = −i
∫

d2q

2π
qxRp(q,ω)eiq(x−x′)−q(z+z′), (8.54)

where Rp is the reflection amplitude for p-polarized electromagnetic waves. For
physical adsorption, formostmolecules, the imaginarypart ofmolecule polarizability
α(ω) is non-vanishing vanish only for very high frequencies. Thus, for frequencies
that can be excited by thermal radiation (ω ≤ ωT = kBT/�), Imα ≈ 0. Then, to
linear order in α(0)z−3

0 , from (8.47), (8.48) we get

η‖ = �α2(0)

2πM

∫ ∞

0
dω

(
− ∂n

∂ω

)[
3

∂2

∂z2
ImDzz(z, z0)ImDzz(z0, z0) −

−2

(
∂

∂z
ImDzz(z, z0)

)2]

z=z0

, (8.55)

η⊥ = 3�α2(0)

πM

∫ ∞

0
dω

(
− ∂n

∂ω

)[
∂2

∂z2
ImDzz(z, z0)ImDzz(z0, z0) +

+
(

∂

∂z
ImDzz(z, z0)

)2]

z=z0

. (8.56)

For z0 < min(l, �vF/kBT), where l is the electron mean free path and vF is the Fermi
velocity, the reflection amplitude Rp(q,ω)must be calculated using non-local optics.
The non-local surface contribution to ImRp is given by (6.25). Using this expression
for ImRp in (8.55) and (8.56), we get the surface contribution to the friction:
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η‖surf = 1.9
ξ2�α2(0)

Mz80

(
kBT

�ωp

)2
1

(kFz0)2
(8.57)

and η⊥surf = 8.4η‖surf . From low energy electron diffraction studies, it is known that
for physical adsorption of Xe on Ag(111), the separation between the Xe nucleus
and the jellium edge of Ag(111) is d = 2.4 Å. The static polarizability of Xe is
α(0) = 4.0 Å3 and kF = 1.9 Å−1. At room temperature, kBT/�ωp ∼ 10−3. Using
(8.57), we get η‖ ∼ 102 s−1 and η⊥ ∼ 103 s−1. These values are a factor ∼10−6

smaller than estimations obtained in [242] in the framework of a model taking into
account the (Pauli) repulsion of the conduction electrons from region occupied by
molecule. This means that, in the case of physisorption on normal metals, the friction
is determined by higher order processes that are not considered in the present theory.
The calculation of friction force taking into account these processes is given in
Sect. 8.4.2.

In the case of physisorption on high-resistivity material, we can neglect non-local
effects and use a local optic expression for reflection factor

Rp = ε(ω) − 1

ε(ω) + 1
, (8.58)

and the Green’s function is given by

Dzz(z, z
′) = ε(ω) − 1

ε(ω) + 1

2

(z + z′)3
. (8.59)

As an example we consider adsorption of a molecule on SiC. For this case, dielectric
function ε(ω) is determined by (6.34). Using (8.55), (8.56) and (8.59) for adsorption
of a molecule on SiC, in the resonance approximation (see Sect. 6.3) we get

η‖ = 9

128

�α2(0)

Mz80

�ωa

kBT

1

sinh2(�ω0/2kBT)
(8.60)

and η⊥ = 7η‖. For parameters, corresponding toXe (see above) on SiC (see Sect. 6.3)
η‖ ∼ 4.6 × 105 s−1 and η⊥ ∼ 3.2 × 106 s−1. Thus, for physical adsorption on
semiconductors and dielectrics surfaces, Casimir friction can be many orders of
magnitude larger than on metal surfaces. Another possible mechanism of friction
on dielectrics is related to the emission of substrate phonons (see Chap.15). In the
case of flat surfaces for the parallel motion of a particle, the effectiveness of this
mechanism will be low, and the main mechanism will be determined by Casimir
friction.

8.4.2 High-Order Processes

Consider a neutral molecule outside a metal surface. Let μ̂ be the dipole moment
operator of themolecule. In the dipole approximation, themolecule–metal interaction
Hamiltonian has the form
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H ′ = −μ̂ · ∇
∫

d3x′ ρ̂(x′)
|xa − x′| , (8.61)

where ρ(x′) is the charge density operator of the metal electrons and xa is the ion-
core position of the molecule. Instead of calculating the friction force on a uniformly
moving adsorbate, it is more convenient to consider an oscillating adsorbate (both
treatments give identical results). Let us write xa = x0 +Q0e(b + b+), where Q0 =
(�/2Mω)1/2, b and b+ are the annihilation and creation operators for the oscillator.
The direction e of the oscillation will be taken to be ẑ or x̂, where (x, y, z) is a
coordinate system with the z-axis normal to the surface, and the positive z direction
pointing away from the metal. Expanding (8.61) to linear order in Q0 gives

H ′ = −μ̂ · ∇
∫

d3x′ ρ̂(x′)
|x0 − x′|−

− μ̂ · ∇e · ∇
∫

d3x′ ρ̂(x′)
|x0 − x′|Q0(b + b+). (8.62)

Using expansion in 2D integral Fourier at (z0 − z) > 0

1

|x0 − x| =
∫

d2q

2πq
eiK·(x−x0),

where K = q − iqẑ, and q = (qx, qy), (8.62) can be transformed to

H ′ = μi

∫
d3xρ̂(x)Vi(x) + μiej

∫
d3xρ̂(x)Vij(x)Q0(b + b+), (8.63)

where

Vi(x) =
∫

d2q

2πq
Kie

iK·(x−x0), (8.64)

Vij(x) =
∫

d2q

2πq
KiKje

iK·(x−x0). (8.65)

Now, assume that the molecule is in its electronic ground state |A〉, and the oscillator
is in its first vibrational excited state (n = 1). Consider the decay rate w from
n = 1 → n = 0. Since 〈A∣∣μ̂∣∣A〉 = 0, we must go to the second order in perturbation
theory when calculating w:

w = 2π

�

∑

f

∣
∣
∣
∣
〈
A, f , n = 0

∣
∣
∣
∣H

′ 1

H0 − E0
H ′

∣
∣
∣
∣A, i, n = 1

〉∣∣
∣
∣

2

δ(Ef − Ei − �ω), (8.66)
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Fig. 8.3 Elementary processes involved in the damping of the adsorbate vibration: a A process
that results in a one electron-hole pair. This process is taken into account in the theory of Casimir
friction. b The process that results in two electron-hole pairs, this process is not taken into account
in the theory of Casimir friction

where E0 = EA + Ei + �ω is the initial energy and where |f 〉 and |i〉 denote the final
and initial states of the metal. Now, two final states are possible for the metal, namely
with (a) one or (b) two electron-hole pair excitations, as indicated in Fig. 8.3.

Processes (a) can be described in the framework of the dielectric formalism and
are taken into account with the theory of Casimir friction (see Sect. 8.4.1). As shown
in Sect. 8.4.1, the contribution to the friction from this process vanishes at zero
temperature. Processes (b) are not taken into account in the theory of Casimir friction.
However, as will be shown below, at short separations, these processes can give a
larger contribution to friction than the Casimir friction. Due to the fact that the
transitions from the initial state |i〉 to the final state |f 〉 in Fig. 8.3 proceed in two
steps, the interaction

V̂ = H ′ 1

H0 − E0
H ′

is non-local. However, we can formally define an effective local potential Veff (x) in
such a way that the matrix element Mif = e〈|Veff (x)|〉 equals the matrix element
associated with the two-step process:

Mif =
〈
f

∣
∣
∣
∣
〈
A, n = 0

∣
∣
∣
∣H

′ 1

H0 − E0
H ′

∣
∣
∣
∣A, n = 1

〉∣∣
∣
∣i
〉
. (8.67)

If we assume that ωa 
 ωp, where �ωa = EB −EA is the energy of the virtual atomic
transition and ωp is the metal plasma frequency, we can neglect the screening during
the electronic transitions kA → k′′B → k′A, in Fig. 8.3.This follows from the fact that
when ωa 
 ωp the electrons in the metal have no time to follow the rapidly changing
potential during such a virtual transition. On the other hand, the system stays a long
time in the final state and screening in this state is important. Substituting (8.66) in
(8.67) and neglecting screening effects during the rapid transitions, and assuming
|εF − εk′′ | � �ωa, gives
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Mfi = 1

2
αij(0)e

2
∫

d3xd3x′ϕk(x)ϕ∗
k′(x′)�(x, x′)×

× [
Vi(x)Vjl(x′) + Vi(x′)Vjl(x)

]
el, (8.68)

where ϕk , ϕk′ , ϕk′′ are the wave functions of the electron in the initial, final and
intermediate states, respectively. The function

�(x, x′) =
∑

k′′
(1 − 2nk′′)ϕk′′(x)ϕ∗

k′′(x′), (8.69)

where nk′′ is the Fermi distribution function (nk = 1, for k < kF , and zero otherwise).
The static polarizability for spherical molecule αij(0) = α(0)δij, where

α(0) = 2
∑

B

∣
∣〈B|μ̂x|A

〉∣∣2

EB − EA
. (8.70)

Now, let us consider the function �(x, x′). The second part of (8.69) includes sum-
mation over occupied states and this function is only significant for z, z′ < 0 where
z = 0 corresponds to the jellium edge. On the other hand, the product Vi(x)Vjl(x′)
is rather small in this region of space due to the rapid decay of this function with
increasing distance from the the jellium edge. In this region, we can neglect the
second term in (8.69) to get

�(x, x′) ≈
∑

k′′
ϕk′′(x)ϕ∗

k′′(x′) = δ(x − x′). (8.71)

The matrix element (8.68) can now be written as

Mfi = α(0)e2
∫

d3xϕk(x)ϕ∗
k′(x)Vi(x)Vil(x)el. (8.72)

so that
Veff (x) = α(0)eVi(x)Vil(x)el. (8.73)

With this effective potential, according to the Kubo formula, the friction coefficient
is given by [205, 206]

η = e2

Mω

∫
d3xd3x′Veff (x)Imχ(x, x′,ω)Veff (x′), (8.74)
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where χ is the density–density correlation function

χ = i

�

∫ ∞

0
dteiωt

〈[
ρ̂(x, t), ρ̂(x′, 0)

]〉
. (8.75)

In order to relate η to the reflection amplitude Rp(q,ω), we must expand Veff in
evanescent plane waves. Such an expansion is exact only in a region of space where
the function to be expanded satisfies the Laplace equation. In the present case, Veff

does not satisfy the Laplace equation anywhere, but in the surface region of the
metal it is nevertheless possible to approximate this function accurately with a sum
of evanescent plane waves (see Appendix L). We get

Veff ≈
∫

d2q

(2π)2
Vqe

iq·x‖+qz, (8.76)

where

Vq = 2q
∫

d3xVeff e
−iq·x‖+qz.

Using (8.64), (8.65) and (8.73),we get

Vq = 2iα(0)e
∫

d2q′ qK ′
i K

′′
i K

′′
j ej

q′q′′(q + q′ + q′′)
e−i(q′+q′′)z0 , (8.77)

where q′′ = q − q′, K′ = q′ − iq′ẑ K′′ = q′′ − iq′′ẑ. Using (8.76) in (8.74), we get

η = e2

Mω

∫
d2q

(2π)2

∫
dzdz′

∣
∣Vq

∣
∣2eqz+qz′ Imχ(q, z, z′,ω). (8.78)

According to the linear response theory, in the non-retarded limit, reflection ampli-
tudes for p-polarized evanescent waves can be written in the form [244]

Rp(q,ω) = 2π

q

∫
dzdz′eqz+qz′χ(q, z, z′,ω). (8.79)

From (8.78) and (8.79) we get

η = e2

2πMω

∫
d2q

(2π)2

∣
∣Vq

∣
∣2qImRp(q,ω) =

= e2α2(0)

π2Mω

∫
d2qq3

∣
∣
∣
∣

∫
d2q′ K′ · K′′K′′ · e

q′q′′(q + q′ + q′′)
e−(q′+q′′)z0

∣
∣
∣
∣

2

ImRp(q,ω). (8.80)
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At low frequencies, we have (see [245])

ImRp(q,ω) = 2ωqξ(q)/kFωp,

and (8.80) becomes

η = 2e2α2(0)

π2MkFωp

∫
d2qq4ξ(q)

∣
∣
∣
∣

∫
d2q′ K′ · K′′K′′ · e

q′q′′(q + q′ + q′′)
e−(q′+q′′)z0

∣
∣
∣
∣

2

. (8.81)

For e = x̂

η‖ = e2

�a0

[
k3Fα(0)

]2

(kFz0)10
m

M

ωF

ωp
kFa0I‖, (8.82)

where

I‖ = z100
4

π2

∫
d2qq4ξ(q)

∣
∣
∣
∣

∫
d2q′ (q′ · q′′ − q′q′′)(qx − q′

x)

q′|q − q′|(q + q′ + |q − q′|)e
−{q′+|q−q′|)z0

∣
∣
∣
∣

2

,

and for e = ẑ

η‖ = e2

�a0

[
k3Fα(0)

]2

(kFz0)10
m

M

ωF

ωp
kFa0I⊥, (8.83)

where

I⊥ = z100
4

π2

∫
d2qq4ξ(q)

∣
∣
∣
∣

∫
d2q′ (q′ · q′′ − q′q′′)

q′(q + q′ + |q − q′|)e
−{q′+|q−q′|)z0

∣
∣
∣
∣

2

.

In (8.82) and (8.83), a0 is the Bohr radius and kF the Fermi wave vector. The func-
tion ξ(q) has been calculated using the time-dependent local density approximation
(TDLDA). The numerical results [246] are accurately approximated by

ξ ≈ ξ0/
[
1 + a(q/kF)3

]
, (8.84)

where (xi0, a) = (0.89, 6.25) and (0.43, 2.49 for rs = 2 and 3, respectively. Using
(8.82) and (8.83), the integrals I‖ and I⊥ have been calculated numerically [243] and
the results are displayed in Fig. 8.4 as a function of kFz0 where z0 is the distance
between the nucleus.

8.4.3 Comparison of the Theory with Experiment

For inert atoms and molecules adsorbed on metal surfaces, one can (approximately)
distinguish between two contributions to the electronic friction associated with (a)
the long-ranged attractive van der Waals interaction and (b) the short-ranged Pauli
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Fig. 8.4 Frictional integrals
I‖ and I⊥ (defined in the text)
as a function of kFz0, where
z0 is the distance of the
center of the adsorbate from
the jellium edge of the
substrate. rs is Wigner–Zeitz
radius in atomic units

repulsion associated with the overlap of the electron clouds of the adsorbate and the
substrate. The latter contribution to η‖ has, for Xe on Ag(111), been estimated [242]
to be ≈ 6 × 107 s−1, and will now be compared with the contribution from the van
der Waals friction. From low-energy electron diffraction studies, it is known that
the separation between the Xe nucleus and the jellium edge of Ag(111) is d = 2.4
Å. The static polarizability of Xe is α(0) = 4.0 Å3. From (8.82), the contribution
to η‖ from the van der Waals interaction is estimated to be η‖ ≈ 4 × 107 s−1, i.e.,
only 30% smaller than that associated with the Pauli repulsion. The fact that the
two contributions are of a similar magnitude is probably related to the fact that at
the equilibrium separation, the attractive and repulsive adsorbate–substrate interac-
tions are of identical magnitude, which should result in dissipative forces of similar
magnitudes.

The electronic friction for Xe on Ag(111) can be deduced from surface resistivity
[247] data, η‖ ∼ 3×108 s−1. This value is only a factor of three larger than estimated
above, but it is likely that a non-negligible contribution to the electronic friction comes
from ‘chemical’ effects, namely from the fact that theXe-6s electronic resonance state
is located around the vacuum energy [248] with a tail extending down to the Fermi
energy. In [242], the chemical contribution to η‖ was estimated to be ∼1.5×108 s−1.
For the lighter noble gas atoms and for saturated hydrocarbonates, chemical effects
should be negligible since no electronic resonance states occur close to the Fermi
energy. An example is C2H6, for which surface resistivity data gives [239, 240]
η ∼ 3 × 108 s−1. Since C2H6 has almost the same binding energy as Xe, and since
the effective Lennard-Jones radius of C2H6 is practically identical to that of Xe,
the theoretical η‖, derived above for Xe should also be valid for C2H6 when scaled
by the mass ratio M(Xe)/M(C2H4) = 4.4. This gives the electronic friction η‖ ∼
4 × 108 s−1, which is in good agreement with surface resistivity data.

Many lubrication fluids consist of long-chain hydrocarbons but very little exper-
imental data relevant for sliding friction is available for such molecules adsorbed on
metallic surfaces. However, Witte and Wöll [249] have performed inelastic He-atom
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Table 8.1 Resonance frequencies and damping (full width at half-maximum) of the vibrational
modes (frustrated translations) normal to the surface for hydrocarbons physisorbed on Cu(100).
The calculated damping rates are obtained from (8.85) using the observed resonance frequencies.
Experimental data are from [249]

Molecule ω⊥(meV) γexp(meV) γtheory(meV)

n-hexan 6.8 1.4 1.2

n-octane 7.0 1.2 1.7

n-decane 7.0 1.9 2.2

Cyclohaxane 7.3 2.2 1.5

scattering from the saturated hydrocarbons n-hexane, n-octane, n-decane, and cyclo-
hexane adsorbed on Cu(100). The perpendicular vibrations of all these molecules
was found to be �ω⊥ ≈ 7 meV. In the most simple interaction model between a
physisorbed molecule and a metal surface, the interaction strength, and the force
constant, are proportional to α(0). Therefore the perpendicular vibrational energies
should be proportional to

√
α(0)/M. Witte and Wöll have shown that

√
α(0)/M

is almost equal for all the saturated hydrocarbons given above, indicating that, as
expected, all these molecules are physisorbed on Cu(100). In Table8.1, we have
summarized the observed linewidth γ of the perpendicular adsorbate vibrations.
Assuming that the linewidth is due to energy relaxation, one can deduce the friction
�η⊥ = γ. This gives η⊥ ∼ 2 × 1012 s−1 for the systems quoted in Table8.1. The
large magnitudes of the frictions quoted in Table8.1 cannot be explained as result-
ing from the electronic contribution which gives (η⊥)el ∼ 1 × 109 s−1, i.e., roughly
three orders of magnitude smaller than the observed friction. When ω‖ � ωD (where
ωD ≈ 30 is the Debye frequency), the phononic friction is accurately given by [250]

γ⊥ = 3

8π

M

ρ

(
ω⊥
ct

)3

ω⊥, (8.85)

where ct is the transverse sound velocity and ρ the mass density. The friction values
calculated from this formula are in close agreement with experiment, see Table8.1.
The reason for the importance of the phonon friction in these cases is the relative high
frequency of the perpendicular vibrational modes (note that: ηph ∼ ω4

⊥) while the
electronic friction ηel is independent of the resonance frequency ω⊥ of the adsorbate
vibration). Witte and Wöll could not detect any adsorbate vibrations parallel to the
surfaces, which indicates that these modes have a frequency that is too low frequency
(�ω‖ < 0.3meV), to be detectedwith the resolution of theHe-atomequipment.Using
the formula for the phononic friction,

γ‖ = 3

8π

M

ρ

(
ω‖
ct

)3

ω‖, (8.86)
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gives η‖ < 8 × 106 s−1. This should be compared with the calculated electronic
friction (η‖)el ∼ 3 × 108 s−1. Hence, the parallel friction is mainly of electronic
origin.

8.5 Force on a Particle in a Thermal Field

8.5.1 The Case of Small Velocities

Casimir friction also occurs when a particle moves relative to black-body radiation;
for example, relative to the walls of an oven, or relative to the cosmic microwave
background. This kind of friction has no position dependence, i.e. it is spatially
homogeneous. The consequence is a universal dissipative drag acting on all mat-
ter in relative motion with respect to a thermalized photon gas. To calculate this
universal drag to linear order in velocity, we can use the same approach as in
Sect. 8.3. Assuming that the size of the particle is smaller than λT , we get the friction
coefficient for a particle moving relative to black-body radiation.

�BB = 2�

π

∫ ∞

0
dω

(
− ∂n

∂ω

) ∑

k=x,y,z

Imαkk
∂2

∂x∂x′ ImDBB
kk (r, r′,ω)

∣
∣
∣
r=r′

, (8.87)

whereαkk is the polarizability of the particle, andDBB
kk (r, r′,ω) is theGreen’s function

of the black-body radiation. For a spherical particle αkk = α, and using the formula
(see [107] and also Sect. 3.1.2)

∑

k=x,y,z

DBB
kk (r, r′,ω) = 2

{
ω2

c2
1

|r − r′| exp
(
iω

c
|r − r′|

)
− 2πδ(r − r′)

}
, (8.88)

we get

�BB = β�
2

3πc5

∫ ∞

0
dω

ω5Imα(ω)

sinh2
(
1
2β�ω

) , (8.89)

where β−1 = kBT . Equation (8.124) was first obtained in [157] using a different
approach. The photon gas exerts a drag on any polarizable particle that moves with
respect to the reference frame in which the photon gas is thermalized, and this drag
is proportional to the relative velocity.

Tungsten ovens can operate at temperatures as high as 3000 K. If a beam of atoms,
ions or molecules passes through such an oven, it will be subject to drag due to the
Casimir friction mediated by the thermal radiation. For an atom or molecule, the
polarizability α can be characterized by a single absorption line at ω = ω0. In this
case, Imα(ω) = α0δ(ω/ω0 − 1), where α0 is the static polarizability at ω = 0.
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Setting m/τ = �BB, where m is the mass of the molecule and τ is the relaxation
time, gives

τ = 3πmc5�4

26α0(kBT)5

sinh2(x)

x6
, (8.90)

where x = β�ω0/2. The relaxation time has a minimum at a temperature-dependent
frequency that coincides with the minimum of the function f (x) = sinh2(x)/x6,
at xm = 2.98, where f (xm) = 0.137. Ba+ has a resonance near 2 eV, which is
approximately six times the thermal energy associated with a 3000K oven. For
this resonance, the relaxation time would be near the minimum, and for the ion
polarizability α0 ≈ 1.0 × 10−30 m3, one obtains the relaxation time ≈ 105 s, i.e.
1day. This relaxation time can be measured using ion traps.

For the cosmos, it is believed that hydrogen atoms condensed from protons and
electrons when the radiation cooled to approximately 3000 K, and that the coupling
of the cosmic radiation to matter due to Compton scattering becomes ineffective
below this condensation temperature [251].However atoms, ions, andmoleculeswith
absorption in the appropriate frequency range should remain coupled to the cosmic
radiation as its temperature drops from 3000 K to perhaps 300 K. This coupling
could influence the structure and anisotropies observed in recent experiments on
the cosmic microwave background [252]. It could also influence the behavior of
molecules formed from the residue of novas and supernovas, and then subject to drag
from a still hot cosmic microwave (i.e. electromagnetic) background. At much lower
temperatures, macroscopic bodies can coalesce, in which geometrically determined
resonances may become relevant.

8.5.2 Relativistic Case

We introduce two reference frames,K andK ′.K is the frame of black-body radiation,
and K ′ moves with velocity V along the x axis. In the K ′ frame a particle moves with
time-dependent velocity v′ � V along the x-axis. In the K ′ frame, we assume the
velocity vanishes at t = t0, v′(t0) = 0. However, since v′ � V , the difference
between the friction forces in the K ′ frame and the particle rest reference frame can
be neglected, and in this section the K ′ frame is denoted as the particle rest reference
frame. The relation between the x components of the momentum in the different
reference frames is given by

px = (p′
x + βE′/c)γ, (8.91)

where β = V/c, γ = 1/
√
1 − β2, E′ = E0/

√
1 − (v′/c)2 is the total energy of a

particle in theK ′ frame, andE0 = m0c2 is the rest energy of a particle. The rest energy
can change due to the absorption and emission of thermal radiation by a particle.
The connection between forces in the K and K ′ frames follows from (8.91)
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dpx
dt

= 1

1 + (V v′/c2)

[
dp′

x

dt′
+ V

dm0

dt′
1

√
1 − (v′/c)2

+ m0V
d

dt′

(
1

√
1 − (v′/c)2

)]

.

(8.92)

For v′ � V from (8.92) we get

Fx = F ′
x + V

dm0

dt′
, (8.93)

where Fx and F ′
x are the forces in the K and K ′ frames, respectively. The last term in

(8.93) determines the rate of change of themomentum of a particle in theK frame due
to the change of its rest mass as a result of the absorption and emission of radiation
by the particle. Taking into account that at v′ � V

dpx
dt

= d

dt

(
m0v√

1 − (v/c)2

)

= dm0

dt′
V + m0γ

3 dv

dt
, (8.94)

from (8.93) we get

m0γ
3 dv

dt
= dp′

x

dt′
= F ′

x, (8.95)

where v is the velocity of a particle in the K frame. From (8.95) it follows that
acceleration in the K frame is determined by the friction force in the K ′ frame.

A particle will move with a constant velocity (v = const) if an external force fx is
applied to it such that

γV
dm0

dt
= Fx + fx. (8.96)

If the force fx does not change the rest mass of a particle, then its value is the same
in the K and K ′ frames, i.e., fx = f ′

x . In this case

fx = −Fx + γV
dm0

dt
= −Fx + dm0

dt′
V = −F ′

x. (8.97)

Thus, for uniform motion of a particle, an external force must be applied which is
equal, but opposite in sign, to the friction force acting on the particle in the K ′ frame.

In the K ′-reference frame, the Lorenz force on the particle is determined by the
expression

F ′
x =

∫
d3r′

〈
ρ′E′∗

x

〉
+ 1

c

∫
d3r′

〈[
j′ × B′∗]

x

〉
, (8.98)

where E′ and B′ are the electric and induction field, respectively, and ρ′ and j′ are
the charge and current densities of the particle, respectively, which can be written in
the form
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ρ′ = −∇′ · P′, (8.99)

j′ = j′d + j′m, where

j′d = ∂P′

∂t′
(8.100)

j′m = c[∇′ × M′], (8.101)

where P′ andM′ are the vectors of polarization and magnetization, respectively. For
the point particle

P′ = p′
dδ(r

′ − r′
0), (8.102)

M = p′
mδ(r′ − r′

0), (8.103)

where p′
d and p

′
m are the dipole and magnetic moments, respectively. The force that

acts on the particle, can be written in the form F ′
x = F ′

xd + F ′
xm, where F

′
xd and F ′

xm
are the forces, which act on the dipole and magnetic moments, respectively. Taking
into account (8.99) and (8.100) the force, acting on the dipole, can be written in the
form

F ′
xd = −

∫
d3r′〈∇ · P′E′∗

x

〉 + 1

c

∫
d3r′

〈[
∂P′

∂t
× B′∗

]

x

〉
. (8.104)

The integrand in the second term in (8.104) can be written as

〈[
∂P′

∂t
× B′∗

]

x

〉
= ∂

∂t′

〈[
P′ × B′∗

]

x

〉
−

〈[
P′ × ∂B′∗

∂t′

]

x

〉
. (8.105)

Due to homogeneity of time, the first term in (8.105) is equal to zero, and taking into
account the Maxwell’s equation

∇′ × E′ = −1

c

∂B′

∂t′
, (8.106)

the second term can be written in the form

−
〈[
P′ × ∂B′∗

∂t′

]

x

〉
=

〈[
P′ × [∇ × E′]

]

x

〉
. (8.107)

After substitution of (8.107) in (8.104) and integration we get

F ′
xd = 〈

p′
d · ∇′E′∗

x

〉
r′=r′

0
+ 〈[

p′
d × [∇′ × E′∗]]x

〉
r′=r′

0
. (8.108)

Taking into account the vector equality

[
p′
d × [∇′ × E′∗]

]
= ∇′(p′

d · E′∗) − (p′
d · ∇′)E′∗ (8.109)
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we get

F ′
xd = ∂

∂x′
〈
p′
d · E′∗〉

r′=r′
0
. (8.110)

To calculate Fxm we use vector equality

[
[∇ × M′] × B′∗

]

x

= −
(

∂M′

∂x′ · B′∗
)

+ (B′∗ · ∇′)M ′
x. (8.111)

Integrating (8.111) over the particle volume and taking into account that∇′ · B′ = 0,
we get

Fxm =
∫

d3x′
〈[

[∇′ × M′] × B′∗
]

x

〉
= ∂

∂x′

〈
(
p′
m · B′∗)

〉

r′=r′
0

. (8.112)

After summation of the contributions due to interaction of the electromagnetic
field with the dipole and magnetic moments of the particle, we get

F ′
x = ∂

∂x′
〈
p′
e · E′∗(r′)

〉

r′=r′
0

+ ∂

∂x′
〈
p′
m · B′∗(r′)

〉

r′=r′
0

, (8.113)

where, according to the fluctuation electrodynamics, d′
e(m) = df ′

e(m) + din′
e(m), E

′ =
Ef ′ + Ein′, B′ = Bf ′ + Bin′, where df ′

e(m) and Ef ′(Bf ′) are the fluctuating dipole
(magnetic) moment of a particle and the electric (induction) field of the black-body
radiation, and din′

e(m) and Ein′(Ein′) are the dipole (magnetic) moment of a particle
induced by the black-body radiation and the electric (induction) field induced by
the fluctuating dipole (magnetic) moment of a particle, respectively. Because the
calculations of the contributions to the friction force from the dipole and magnetic
moments are very similar, below we will consider the contribution only from the
dipole moment.

Taking into account the statistical independence of the fluctuating quantities, the
Lorentz force can be written in the form

F ′
x = F ′

1x + F ′
2x, (8.114)

where

F ′
1x = ∂

∂x′
〈
din′
e · Ef ′∗(r′)

〉

r′=r′
0

, (8.115)

F ′
2x = ∂

∂x′
〈
df ′
e · Ein′∗(r′)

〉

r′=r′
0

. (8.116)

To calculate F ′
1x we write the electric field in the K ′ frame as a Fourier integral,

Ef ′(r′, t′) =
∫ ∞

−∞
dω′

2π

∫
d3k′

(2π)3
eik

′ ·r′−iω′t′Ef ′(k′,ω′),
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Using that

din′
e =

∫ ∞

−∞
dω′

2π

∫
d3k′

(2π)3
α(ω′)eik

′ ·r′−iω′t′Ef ′(k′,ω′).

where α(ω′) is the particle polarizability, we get

F ′
1x = −i

∫ ∞

∞
dω′

2π

∫
d3k′

(2π)3
k′
xα(ω′)

〈
Ef ′ · Ef ′∗

〉

ω′k′
. (8.117)

When we change from the K ′ frame to the K frame, 〈E′ · E′∗〉ω′k′ is transformed as
the energy density of a plane electromagnetic field. From the law of transformation
of the energy density of a plane electromagnetic field [253] we get

〈
Ef ′ · Ef ′∗

〉

ω′k′
=

〈
Ef · Ef∗

〉

ωk

(
ω′

ω

)2

. (8.118)

According to the theory of the fluctuating electromagnetic field, the spectral density
of the fluctuations of the electric field is determined by [107]

〈
Ef
i (r)E

f ∗
j (r′)

〉

ωk
= �ImDij(k,ω) coth

(
�ω

2kBT1

)
, (8.119)

where theGreen’s function of the electromagnetic field in the free space is determined
by

Dik(ω,k) = −
4πω2

c2

ω2

c2 − k2 + i0 · sgnω

[
δik − c2kikk

ω2

]
, (8.120)

T1 is the temperature of the black-body radiation. Taking into account that

Im
1

ω2

c2 − k2 + i0 · signω
= Im

1
ω′2
c2 − k′2 + i0 · sgnω′ ,

we get

〈
Ef ′ · Ef ′∗

〉

ω′k′
= 4π2

�k′
{
δ

(
ω′

c
− k′

)
− δ

(
ω′

c
+ k′

)}
coth

(
�ω

2kBT1

)
. (8.121)

Substitution of (8.121) in (8.117) and integration over ω′ gives

F ′
1x = �c

2π2

∫
d3k′k′k′

xImα(ck′) coth
(

�γ(ck′ + Vk′
x)

2kBT1

)
, (8.122)

where it was taken into account, that ω = (ω′ + k′
xV )γ. Introducing the new variable

ω′ = ck′, (8.122) can be written in the form
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F ′
1x = �

πc2

∫ ∞

0
dω′ω′2

∫ ω′
c

−ω′
c

dk′
xk

′
xImα(ω′) coth

(
�γ(ω′ + Vk′

x)

2kBT1

)
. (8.123)

At small velocities (V � c)Fx = −�V , where

� = �
2

3πc5kBT1

∫ ∞

0
dω

ω5Imα(ω)

sinh2
(

�ω
2kBT1

) , (8.124)

Equation (8.124) was first derived in [157] using a different approach. The rate
of change of the rest energy of a particle in the K ′ frame due to the absorption of
black-body radiation is determined by the equation

P′
1 = dm0

dt′
c2 = 〈

jin′e · Ef ′∗〉 = ∂

∂t′
〈
din′
e (t′) · Ef ′∗(t′0)

〉
t′=t′0 . (8.125)

After the calculations, which are similar to those used when calculating F ′
1x, we get

P′
1 = �

πc2

∫ ∞

0
dω′ω′2

∫ ω′
c

−ω′
c

dk′
xω

′Imα(ω′) coth
(

�γ(ω′ + Vk′
x)

2kBT1

)
. (8.126)

From (8.93), the friction force acting on a particle in theK-framedue to the interaction
with the black-body radiation is given by

F1x = F ′
1x + β

P′
1

c

= �

πc2

∫ ∞

0
dω′ω′2

∫ ω′
c

−ω′
c

dk′
x

(
k′
x + β

ω′

c

)
Imα(ω′) coth

(
�γ(ω′ + Vk′

x)

2kBT1

)
.

(8.127)

Introducing the new variables: k′
x = γ(qx − βω/c), ω′ = γ(ω − Vkx) in the integral

(8.127) we get

F1x = �γ

πc2

∫ ∞

0
dω

∫ ω
c

−ω
c

dkxkx(ω−Vkx)
2Imα[γ(ω−Vkx)] coth

(
�ω

2kBT1

)
, (8.128)

where we have taken into account that dω′dq′
x = dωdqx. To calculate F ′

2x in the K ′
frame we use the representation of the fluctuating dipole moment of a particle as a
Fourier integral

df (t′) =
∫ ∞

−∞
dω′

2π
e−iω′t′df (ω′). (8.129)

The electric field created in the K ′ frame by the fluctuating dipole moment of a
particle is determined by the equation
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Ein′
i (r′, t′) =

∫ ∞

−∞
dω′

2π

∫
d3k′

(2π)3
eik

′ ·(r′−r′
0)−iω′t′Dik(ω

′,k′)dfk (ω
′). (8.130)

According to the fluctuation–dissipation theorem, the spectral density of the fluctu-
ations of the fluctuating dipole moment is determined by the equation [107]

〈
dfi d

f ∗
k

〉

ω′
= �Imα(ω′) coth

(
�ω′

2kBT2

)
δik, (8.131)

where T2 is the temperature of a particle. Substituting (8.152) and (8.153) in (8.116)
and taking into account (8.154), we get

F ′
2x = − �

πc2

∫ ∞

0
dω′ω′2

∫ ω′
c

−ω′
c

dk′
xk

′
xImα(ω′) coth

(
�γω′

2kBT2

)
= 0. (8.132)

Thus, in the rest reference frame of a particle, the friction force due to its own
thermal radiation is zero. This result is due to the fact that, in this frame, due to the
symmetry, the total radiated momentum from the dipole radiation is identically zero.
Thus, the change in momentum of a particle in the rest reference frame is determined
by the Lorentz force F ′

x acting on a particle from the external electromagnetic field
associated with the black-body radiation observed in this reference frame. The rate
of change of the rest energy of a particle in the K ′ frame, due to its thermal radiation,
can be obtained with similar calculations

P′
2 =

〈
jf ′e · Ein′∗

〉
= ∂

∂t′

〈
df ′
e (t′) · Ein′∗(t′0)

〉

t′=t′0

= − �

πc2

∫ ∞

0
dω′ω′2

∫ ω′
c

−ω′
c

dk′
xω

′Imα(ω′) coth
(

�γω′

2kBT2

)
, (8.133)

and the friction force in the K frame associated with thermal radiation of a particle
is given by

F2x = F ′
2x + β

P′
2

c

= − �γ

πc2

∫ ∞

0
dω ×

∫ ω
c

−ω
c

dkxkx(ω − Vkx)
2Imα[γ(ω − Vkx)] coth

(
�γ(ω − Vkx)

2kBT2

)
.

(8.134)

The total friction force in the K frame is given by

Fx = F1x + F2x = 2�γ

πc2

∫ ∞

0
dω

∫ ω
c

−ω
c

dkxkx(ω − Vkx)
2Imα(γ(ω − Vkx))(n1(ω) − n2(ω

′)),

(8.135)



8.5 Force on a Particle in a Thermal Field 183

where ni(ω) = [exp(�ω/kBTi) − 1]−1. Equation (8.135) was first derived in [157].
Note that the friction force Fx can be either positive or negative. However, the accel-
eration, which is determined by the friction force F ′

x, is always negative. The total
heat absorbed by a particle in the K ′-frame is determined by the equation

P′ = P′
1 + P′

2 = 2�γ2

πc2

∫ ∞

0
dω′

∫ ω′/c

−ω′/c
dk′

xω
′(ω − Vqx)

2Imα[γ(ω − Vqx)](n1(ω) − n2(ω
′)).

(8.136)
In the K frame, the total change in energy of a particle due to the interaction with
the radiation field can be calculated from the law of the transformation of energy of
a particle: E = γ(E′ + p′

xV ), where E and E′ are the total energy of a particle in the
K and K ′ frames, respectively. From this relation, we get the equation for the rate of
change of the energy of a particle in the K frame

dE

dt
= P = P′ + F ′

xV = 2�γ

πc2

∫ ∞

0
dω

∫ ω/c

−ω/c
dkxω(ω − Vkx)

2Imα[γ(ω − Vkx)][n1(ω) − n2(ω
′)].

(8.137)
The rate of change of the energy of the black-body radiation in the K frame is
determined by the equation dWBB/dt = −P. The steady-state temperature of a
particle is determined by the condition P′(T1,T2) = 0, and for this state Fx = F ′

x
and P = F ′

xV .
The friction force acting on a particle moving relative to the black-body radiation

is determined by the imaginary part of the particle polarizability. For an atom, the
imaginary part of the polarizability is determined by the atom electronic linewidth
broadening due to the radiation mechanism, which can be calculated considering the
interaction of an atom with its own radiation. Taking into account this interaction,
the dipole moment of an atom induced by an external electric field Eext

x (ω, r0) can
be written in the form [129, 139]

pindx = α0(ω)(ω)
[
Eind
x (ω, r0) + Eext

x (ω, r0)
]
, (8.138)

where, in the single-oscillator model without the radiation linewidth broadening, the
atomic polarizability is given by the equation

α0(ω) = α(0)ω2
0

ω2
0 − ω2

, (8.139)

where α(0) is the static polarizability of an atom, and Eind
x (ω, r0) is the radi-

ation electric field created by the induced dipole moment of an atom. In the
Coulomb gauge, which is used in this article, the Green’s function of the elec-
tromagnetic field determines the electric field created by the unit point dipole, so
Eind
x (ω, r0) = D̃xx(ω, r0, r0)pindx , where D̃xx(ω, r0, r0) is the reduced part of the

Green’s function of the electromagnetic field in the vacuum, which takes into account
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only the contribution from the propagating electromagneticwaves and determines the
radiation in the far field. The Green’s function of the electromagnetic field in the vac-
uumDxx(ω, r, r0) diverges at r = r0. However, the contribution from the propagating
waves remains finite and purely imaginary at r = r0, and the divergent contribution
from the evanescent waves is real. Therefore, D̃xx(ω, r0, r0) = iImDxx(r0, r0). From
(8.138) and (8.139) we get

Imα(ω) = Im
pindx

Eext
x (ω, r0)

= Im
α(0)ω2

0

ω2
0 − ω2 − iα(0)ω2

0ImDxx(r0, r0)

= α2(0)ω4
0ImDxx(r0, r0)

(ω2
0 − ω2)2 + [

α(0)ω2
0ImDxx

]2 , (8.140)

where

ImDxx(r0, r0) = ImDyy = ImDzz =
∫

d3k

(2π)3
ImDxx(ω,k) = 2

3

(ω

c

)3
sgnω.

(8.141)
At resonance (ω2 ≈ ω2

0) usually α(0)ImDxx � 1 (for example, for a hydrogen atom
it is ∼ 10−6). Thus, the limit α(0)Dxx → i0 can be taken. In this case, the resonant
contribution is given by

Imα(ω) ≈ πα(0)ω0

2
[δ(ω − ω0) − δ(ω + ω0)], (8.142)

and the off-resonant contribution, which is far from resonance (ω2 � ω2
0), can be

given by

Imα(ω) ≈ 2

3

(ω

c

)3
α2(0)signω. (8.143)

The result (8.143) was also obtained in [160] using quantum electrodynamics. How-
ever, the analysis presented above is much simpler, and it clarifies the physical mean-
ing of the terms in the quantum electrodynamics perturbational theory. Using (8.142)
and (8.143) in (8.123) we get the resonant and off-resonant contributions to the fric-
tion force

Fres
1x = �ω5

0α(0)

c4

∫ 1

−1
dxx

[
exp

(
�γω0(1 + βx)

kBT1

)
− 1

]−1

, (8.144)

Fnonres
1x = −512π7

�α(0)2γ6

945c7

(
kBT1

�

)8

(7β + 14β3 + 3β5), (8.145)

For β � 1 the friction force F1x = −�V , where the resonant and off-resonant
contributions to the friction coefficient are
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�res = �
2α(0)ω6

0

6c5kBT1

1

sinh2
(

�ω0
2kBT1

) , (8.146)

�nonres = 512π7
�α(0)2

135c8

(
kBT1

�

)8

, (8.147)

The results (8.146) and (8.147) were obtained in [157, 160]. In the ultrarelativistic
case, (1 − β � kBT1/�ω0 � 1)

Fres
1x = ω4

0α(0)

c4
√
2kBT1

√
1 − β ln

�ω0
√
1 − β√

2kBT1
, (8.148)

Fnonres
1x = 216π7

�α(0)2

135c7(1 − β)3

(
kBT1

�

)8

(8.149)

Thus, in this case Fres
1x ∼ √

1 − β ln
√
1 − β → 0 and Fnonres

1x ∼ (1 − β)−3 → ∞ at
1 − β → 0.

For small velocities and typical temperatures, the infrared thermal peak of the
black-body radiation is far below the resonance frequency ω0, so it dominates the
far-off-resonant contribution (8.146), which has already been mentioned in [159].
However, in the ultrarelativistic case, the friction is dominated by the far-off-resonant
contribution for all temperatures.

According to (8.136), the total heat absorbed by an atom in the K ′ frame is
determined by the equation

P′ = 128π7k8Bα(0)2

315c6�7

[
γ6(7 + 35β2 + 21β4 + β6)T 8

1 − 7T 8
2

]
. (8.150)

For small velocities, the steady-state temperature of a particle is T2 = T1, and, in the
ultrarelativistic case, T2 ≈ (1− β)−3/8T1. The problem in calculating the imaginary
part of the atom’s polarizability in the far off-resonant field was considered in [159].
It was noted that in the literature that questions still remain regarding the gauge
invariance of the imaginary part of the polarizability. In this Section, the imaginary
part of the atomic polarizability in the field far from resonance is determined by the
imaginary part of the electric field of the unit point dipole, which is a gauge-invariant
quantity. In the Coulomb gauge, which is used in this article, the electric field of the
unit point dipole is the same as the Green’s function of the electromagnetic field. In
another gauge, the expression for the Green’s function will change; but, the electric
field determinedwith thisGreen’s functionwill remainunchanged.Therefore, despite
the fact that the Green’s function for the electromagnetic field is a gauge-dependent
quantity, the imaginary part of the atomic polarizability calculated in this Section
is a gauge-invariant quantity. The gauge invariance of the obtained results are also
confirmedby the direct calculation usingquantumelectrodynamics [160]. Thegauge-
invariant formulation presented in this Section confirms that the polarizability of the
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atom, for small frequencies, is a non-resonant effect, which is proportional to ω3

for small driving frequency ω. This is consistent with the gauge-invariant analysis
conducted in [160].

For a spherical particle with radius R, the electric and magnetic susceptibilities
are given by (5.58) and (5.59), respectively. For metals with 4πσ 
 kBT/� and for
c
√
2πσkBT 
 R, where σ is the conductivity, from (5.58) and (5.59) we get [191]

ImαE(ω) ≈ R3 3ω

4πσ
, (8.151)

ImαH(ω) = 4πσωR5

30c2
. (8.152)

Writing the friction coefficient � as m0/τ , where τ is a relaxation time, and using
m0 = 4πR3ρ/3, from (8.127)–(8.152), we get

τ−1
e ≈ 102

�

ρλ5
T

kBT

�σ
, (8.153)

τ−1
m ≈ 102

�R

ρλ6
T

σR

c
. (8.154)

where τ−1
e and τ−1

m are the contributions to 1/τ from the electric dipole and magnetic
moments, respectively. For T = 300 K, ρ ≈ 104 kg/m3, σ ≈ 1018 s−1 from (8.151
and 8.154) we get τe ∼ 1016 s and τm ∼ 1012 s. When the conductivity decreases,
τe also decreases and reaches minimum at 2πσ ≈ kBT/�. At T = 3000 K, this
minimum corresponds to approximately a day (τmin

e ≈ 105 s). In Sect. 8.5.1 the same
relaxation time was obtained for Ba+.

8.5.3 Einstein’s Formula

In this section, we give an alternative derivation of the formula for the force on a
particle in thermal field. This derivation establishes a link with Einstein and Hopf
derivation [254]. According to the linear response theory, the energy absorbed by a
particle per unit time can be written in the form [184]

dE

dt
= 2

∫ ∞

0

dω

2π

∫
d3k

(2π)3
ω
[
ImαE(ω) + ImαH(ω)

]〈
E · E∗〉

ωk (8.155)

The force acting on the particle is determined by the momentum absorbed by the
particle in the rest reference frame
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Fx = dP′
x

dt
= 2

c

∫ ∞

0

dω′

2π

∫
d3k′

(2π)3
ω′ cos θ′[ImαE(ω′) + ImαH(ω′)

]〈
E′ · E′∗〉

ω′k′

(8.156)
Using (8.118), and taking into account that the elementary volume in the (ω,k) space
is invariant under the Lorentz transformation, (8.156) can be rewritten in the form

Fx = dP′
x

dt
= 1

c

∫ ∞

0

dω

2π

∫ ∞

0

4πk2dk

(2π)3

×
∫ π

0
dθ sin θω′ cos θ′[ImαE(ω′) + ImαH(ω′)

]〈
E · E∗〉

ωk

(
ω′

ω

)2

(8.157)

Using (3.54) we get

∫
4πk2dk

(2π)3

〈
E · E∗〉

ωk = 〈
E2

〉
ω

= 4π2u(ω), (8.158)

where the spectral energy density of the thermal electromagnetic field u(ω) is given
by (3.55). Substituting (8.158) in (8.157) we get

Fx = dP′
x

dt
= 2π

c

∫ ∞

0
dω

∫ π

0
dθ sin θω′ cos θ′[ImαE(ω′) + ImαH(ω′)]u(ω)

(
ω′

ω

)2

(8.159)

From the Lorenz transformation for a plane electromagnetic wave, we get

ω = ω′γ
(
1 + V

c
cos θ

)
. (8.160)

cos θ = cos θ′ + V
c

1 + V
c cos θ′ . (8.161)

Inserting (8.160) and (8.161) in (8.159) we get

Fx = dP′
x

dt
= 2π

c

∫ ∞

0
dωω

∫ π

0

dθ sin θ cos θ
(
1 + V

c cos θ
)
3

[
ImαE(ω) + ImαH (ω)]u[γω

(
1 + V

c
cos θ

)]
,

(8.162)
where we have omitted the index prime. For a two-level atom we can neglect
ImαH(ω), and ImαE(ω) can be written in the form

ImαE(ω) = πM12(N1 − N2)δ(ω − ω0), (8.163)
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where M12 = e2|〈0|r|1〉|2/3�, and where N1 and N2 are the probabilities of the
ground and excited states, respectively; �ω0 = E1 − E2, where E1 and E2 are the
energies of the ground and excited states, respectively. Substituting (8.163) in (8.162)
in the case of small velocities (V/c � 1) we get

Fx = −
(

�ω0

c2

)
B12(N1 − N2)

[
u(ω0) − ω0

3

du(ω0)

dω0

]
V, (8.164)

where B12 = 4π2e2|〈0|r|1〉|2/3�2. Equation (8.164) is Einstein’s equation [254] for
the force on an atom moving in a thermal electromagnetic field.



Chapter 9
Casimir Frictional Drag Force
in Low-Dimensional Systems

Coulomb drag is a frictional coupling between electric currents flowing in spatially
separated conducting layers. It is caused by interlayer electron–electron interactions.
The frictional drag between quantum wells makes it possible to directly probe the
inter-particle interaction. Inter-particle interactions form the cornerstone of many-
body physics. Usually it is considered using time-dependent perturbation theory. In
the lowest order of this theory, the friction force is determined by the Kubo formula,
which gives the friction to linear order in relative drift velocity of the electrons in
the different layers. In this section, we calculate the frictional drag force in low-
dimensional systems at arbitrary relative sliding velocity using the theory of Casimir
friction.

We study the frictional drag force in low-dimensional systems (2D electron and
2D liquid systems) mediated by a fluctuating electromagnetic field, which originates
from the Brownian motion of the ions in the liquid. The analysis is focused on the
(2D system–2D system), (2D system–semi-infinite liquid), and (2D system–infinite
liquid) configurations. We show that for the 2D electron systems, the friction drag
depends linearly on the relative velocity of the free carries in the different media, but
for 2D liquid systems, the frictional drag depends nonlinear on the relative velocity.
For 2D systems, the frictional drag force induced by liquid flowmay be several orders
of magnitude larger than the frictional drag induced by an electronic current.

9.1 Introduction

The presence of the fluctuating electromagnetic field leads to a coupling between
bodies even when they are isolated from each other by a vacuum gap or a dielectric
layer. In the non-retarded limit (short separation between the bodies), this fluctuating
electromagnetic field is reduced to the fluctuating Coulomb field, which determines
the electron–electron (e–e) and electron–hole (e–h) interaction,which plays a leading

© Springer-Verlag Berlin Heidelberg 2017
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Fig. 9.1 Scheme of experiment for observation of the drag effect

role in a wide range of condensed matter phenomena such as the fractional quan-
tum Hall effect, high-temperature superconductivity, Wigner crystallization, exciton
condensates and the Mott transition. In addition, the e–e interaction is central to
problems involving quantum coherence since it is a leading mechanism of electron
dephasing.

Many-body effects are particularly important in low-dimensional systems. This
leads to many intriguing phenomena, such as Luttinger liquid behavior in quantum
wires, and the fractional quantum Hall effect and Wigner crystallization in 2D elec-
tron gases in a magnetic field. As technology improves and semiconductor devices
shrink further in size, interaction effects become even more pronounced and it may
become possible to probe these effects in novel experiments.

Despite its importance, the direct measurement of the e–e interaction through
transport experiments is difficult. This is a consequence of the e–e interaction’s
momentum conserving nature. However, the e–e interaction can be tested using
frictional drag. The frictional drag effect consists in driving an electric current in
one metallic layer and registration of the effect of the frictional drag of the electrons
in a second (parallel) metallic layer (Fig. 9.1). Such experiments were predicted
by Pogrebinskii [255] and Price [256] and were performed for 2D quantum wells
[112–114]. In these experiments, two quantum wells are separated by a dielectric
layer thick enough to prevent electrons from tunneling across it while still allowing
interlayer interaction between them. A current of density J2 = n2ev is driven through
layer 2 (where n2 is the carrier concentration per unit area in the second layer), see
Fig. 9.1. Due to the proximity of the layers, the interlayer interactions will induce a
current in layer 1 due to a friction stress σ = γv acting on the electrons in layer 1
from layer 2. If layer 1 is an open circuit, an electric field E1 will develop in the layer
whose influence cancels the frictional stress σ between the layers. Thus the frictional
stress σ = γv must equal the induced stress n1eE1 so that

γ = n1eE1/v = n2n1e
2E1/J2 = n1n2e

2ρ12, (9.1)
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Fig. 9.2 Two ways of studying of Casimir friction. Left A metallic block sliding relative to the
metallic substrate with the velocity v. An electronic frictional stress will act on the block (and on the
substrate). Right The shear stress σ can be measured if instead of sliding the upper block, a voltage
U2 is applied to the block resulting in a drift motion of the conduction electrons (velocity v).
The resulting frictional stress σ on the substrate electrons will generate a voltage difference U1
(proportional to σ), as indicated in the figure. Both approaches are equivalent if in the upper block
is possible to neglect scattering of the free carries by lattice defects

where the transresistivity ρ12 = E1/J2 is defined as the ratio of the induced electric
field in the first layer to the driving current density in the second layer. The transre-
sistivity is often interpreted in terms of a drag rate, which, in analogy with the Drude
model, is defined by τ−1

D = ρ12n2e2/m∗ = γ/n1m∗. These experiments spurred by
a large body of theoretical work both on electron–hole systems and on electron–
electron systems. Most of this work focused on interlayer Coulomb interaction, the
most obvious coupling mechanism and the one considered in the original theoretical
papers [255], though the contributions due to an exchange of phonons between the
layers have also been considered [113]. The most widely used approach to study the
drag effect is based on the Boltzmann equation [114, 257–259] and the Kubo for-
malism [260, 261]. In [114], a theory of the drag effect was developed based on the
semi-classical theory of the fluctuating electromagnetic field. The retardation effects
are automatically included in this approach.

The close connection of Casimir friction with frictional drag effect is illustrated
in Fig. 9.2. At present, both these phenomena attract considerable attention in con-
nection with the possibility of using them in the micro-and nano-electromechanical
systems (MEMS and NEMS), and biological objects, in which local dynamic effects
are intensively studied.

9.2 Fluctuating Electromagnetic Field

We consider two parallel 2D electron layers separated by a distance d. We introduce
two reference systemsK andK ′, with coordinate axes xyz and x′y′z′. The xy- and x′y′-
planes coincide with layer 1, with the x- and x′-axes pointing in the same direction,
and the z- and z′-axes pointing toward layer 2. The layers 1 and 2 are located at z = 0
and z = d, respectively. In the K system both layers are at rest. Assume now that in
layer 2, the conduction electrons move with the drift velocity v, corresponding to the
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current density j2 = n2ev,while no current flows in layer 1. TheK ′ reference system
moves with velocity v along to the x-axis relative to frame K . In the K ′ frame there
is no current density in layer 2, while the surrounding dielectric moves with velocity
−vx̂. FollowingLifshitz [42], to calculate the fluctuatingfieldwe shall use the general
theory due to Rytov, which is described in his books [5–7] (see also Sect. 3.1). This
method is based on the introduction of a ‘random’ field in the Maxwell equations
(just as, for example, one introduces a ‘random’ force in the theory of Brownian
motion of a particle). In the K-system for z < d, for a monochromatic field (time
factor exp(−iωt)) in a dielectric, nonmagnetic medium, these equations are:

∇ × E = i
ω

c
B, (9.2)

∇ × H = −i
ω

c
D + 4π

c
(j1 + j1f )δ(z), (9.3)

where, following Rytov, we divided the total current density j1tot in layer 1 into two
parts, j1tot = j1 + j1f , the fluctuating current density j1f associated with thermal and
quantum fluctuations, and the current density j1 induced by the electric field E:

j1α(r) =
∫

d2r′ σ1αβ(r − r′)Eβ(r′), (9.4)

where r is the 2D vector in the xy-plane, and σ1αβ(r−r′) is the conductivity tensor in
layer 1.D,H and B are the electric displacement field, themagnetic and themagnetic
induction fields, respectively. For nonmagnetic medium B = H and D = εE, where
ε is the dielectric constant of the surrounded media. According to the fluctuation-
dissipation theorem [184], the correlation function of the fluctuating current density
jf , determining the average value of the product of component of jf at two different
point in space, is given by (3.59). In this equation the dielectric tensor εαβ can
be expressed through the conductivity tensor σαβ according to the relation εαβ =
1 + 4πiσαβ/ω. As a result we get

〈
jfα(r,ω)j∗f β(r′,ω′)

〉 = 〈
jfα(r,ω)j∗f β(r′,ω)

〉
ω δ(ω − ω′), (9.5)

〈
jfα(r,ω)j∗f β(r′,ω)

〉
ω

= �ω

π

(
1

2
+ n(ω)

)
Re σαβ(r − r′,ω), (9.6)

where Re σαβ(r−r′) is the real part of the conductivity. We write the current density
in the form of a Fourier integral

j(r) =
∫

d2q j(q)eiq·r, (9.7)

where q is a 2D vector in the xy-plane. For the Fourier components jf (q), the corre-
lation function corresponding to the spatial correlation (9.6) is
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〈
jfα(q,ω)j∗f β(q′,ω)

〉
ω

= �ω

4π3

(
1

2
+ n(ω)

)
Re σαβ(q,ω)δ(q − q′), (9.8)

where

σαβ(q,ω) =
∫

d2r σαβ(r,ω)e−iq·r.

For the layers with assumed isotropy in the xy-plane, the conductivity tensor can be
written in the form

σαβ(q,ω) = qαqβ

q2
σl(q,ω) +

(
δαβ − qαqβ

q2

)
σt(q,ω), (9.9)

where σt(q,ω) and σl(q,ω) are the transverse and longitudinal conductivity of the
layer.

After decomposition of the components of the electromagnetic field into Fourier
integrals, the general solution of the Maxwell equations for z < d can be written in
the form

E =
{
veikzz + we−ikzz, 0 < z < d,

u1e−ikzz, z < 0,
(9.10)

B =−i
c

ω

⎧⎪⎪⎨
⎪⎪⎩

([
q × v

] + kz
[
ẑ × v

])
eikzz +

([
q × w

] − kz
[
ẑ × w

])
e−ikzz, 0 < z < d,([

q × u1
] − kz

[
ẑ × u1

])
e−ikzz, z < 0,

(9.11)

where v, w and u1 satisfy the transversality conditions

v · q + kzvz = 0, w · q − kzwz = 0, u1·q − kzu1z = 0, (9.12)

where

kz =
√(ω

c

)2
ε − q2 (9.13)

and ẑ is a unit vector along the z-axis. We now decompose the electromagnetic field
into s- and p-polarized waves. For the p-polarized waves, the electric field E is in
the plane determined by the vectors q̂ = q/q and ẑ, and perpendicular to this plane,
along the vector n = ẑ× q̂, for s-polarized waves. The boundary conditions at z = 0
for s- and p-polarized waves are given by

En(z = +0) = En(z = −0), (9.14)

dEn

dz
|z=+0 − dEn

dz
|z=−0 = −4πiω

c2
(
σ1t(q,ω)En + jf 1n

)
, (9.15)

Eq(z = +0) = Eq(z = −0), (9.16)
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dEq

dz
|z=+0 − dEq

dz
|z=−0 = −4πik2z

εω

(
σ1l(q,ω)Eq + jf 1q

)
, (9.17)

whereEq = q̂ · E,En = n · E and so on. From (9.15) and (9.17), we get the following
equations:

vq + R1pwq = −2πkz jf 1q
εωε1p

, (9.18)

vn + R1swn = −2πωjf 1n
kzc2ε1s

, (9.19)

where vq = q̂ · v and so on, the reflection amplitudes for the layer

R1s(p) = ε1s(p) − 1

ε1s(p)
,

and the dielectric functions of the layer

ε1s = 2πωσ1t

kzc2
+ 1, ε1p = 2πkzσ1l

ωε
+ 1.

The Maxwell equations in the K ′-system for z > 0 have the same form as (9.2)
and (9.3) with j → j2 and jf → jf 2. To first order in v/c the relations between D, E
and B, H are [191]

D = εE − (ε − 1)
v

c
x̂ × B, (9.20)

H = B − (ε − 1)
v

c
x̂ × E. (9.21)

Under a Lorentz transformation, we have to linear order in v/c: ω′ = ω − qxv and
q′ = q−x̂ωv/c2. Note also that kz is invariant under the Lorentz transformation, i.e.
kz = k′

z. It can be shown that the last terms in (9.20) and (9.21) give rise only to a
coupling between s- and p-polarized waves. However, as in Sect. 7.3 it can be shown
that this coupling gives a correction ∼(v/c)2 to the frictional drag force between the
layers, so this term can be omitted. The solution of the Maxwell equations in the K ′
reference frame can be written as

E′=
{
v′eikzz + w′e−ikzz, 0 < z < d

u2eikzz, z > d
(9.22)

From the boundary conditions for the s- and p-polarized waves we get the equations

w′
q′ + R2p(q′,ω′)e2ikzdv′

q′ = −2πkz jf 2q′(q′,ω′)eikzd

εω′ε2p(q′,ω′)
, (9.23)

w′
n′ + R2s(q′,ω′)e2ikzdv′

n′ = −2πω′jf 2n′(q′,ω′)eikzd

pc2ε2s(q′,ω′)
. (9.24)
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The relations between the fields in the K and K ′ reference frames are determined
by the Lorentz transformation. As shown in Sect. 7.3, such a Lorentz transformation
gives the terms of the order v/c, which couples the s- and p-polarized waves but
this results in a contribution to the frictional drag of the order (v/c)2. Thus, we can
take this transformation in zero order in v/c so that v′

q′(ω′) = vq(ω), v′
n′(ω′) =(

ω′/ω
)
vn (ω) and similar equations for w. After the transformation, the solution of

the system of the equations (9.18), (9.19), (9.23) and (9.24) takes the form

vq = 2πkz
�pε

[
jf 2q′(q′,ω′)eikzdR1p (q,ω)

ε2p(q′,ω′)ω′ − jf 1q (q,ω)

ε1p (q,ω) ω

]
, (9.25)

wq = 2πkz
�pε

[
jf 1q (q,ω) e2ikzdR2p(q′,ω′)

ε1p (q,ω) ω
− jf 2q′(q′,ω′)eikzd

ε2p(q′,ω′)ω′

]
, (9.26)

vn = 2πω

�skzc2

[
jf 2n′(q′,ω′)eikzdR1s (q,ω)

ε2s (q′,ω′)
− jf 1n (q,ω)

ε1s (q,ω)

]
, (9.27)

wn = 2πω

�skzc2

[
jf 1n(q,ω)e2ikzdR2s(q′,ω′)

ε1s(q′,ω)
− jf 2n′(q′,ω′)eikzd

ε2s(q′,ω′)

]
, (9.28)

vz = −qvq
kz

, wz = qwq

kz
, (9.29)

where we have introduced the notation

�p = 1 − e2ikzdR2p(q′,ω′)R1p(q,ω),

�s = 1 − e2ikzdR2s(q′,ω′)R1s(q,ω).

9.3 Casimir Frictional Drag Force Between Two
QuantumWells

The frictional drag stress σ, which acts on the conduction electrons in layer 1 can
be obtained from the xz-component of the Maxwell stress tensor σij, evaluated at
z = ±0

σ = 1

8π

∫ +∞

−∞
dω

{[
ε
〈
EzE

∗
x

〉 + 〈
BzB

∗
x

〉 + c.c
]
z=+0 − [...]z=−0

}
. (9.30)

Here the 〈...〉 denotes statistical averaging over the fluctuating current densities. The
averaging is carrying out with the aid of (9.5). Note that the components of the
fluctuating current density jf 1 and jf 2 refer to different layers, and are statistically
independent, so that the average of their product is zero. Expanding the electric field
and the magnetic induction in the Fourier series, we obtain
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σ = 1

8π

∫
dωd2q

{[
ε
〈
Ez (q,ω)E∗

x (q,ω)
〉 + 〈

Bz (q,ω)B∗
x (q,ω)

〉 +
+ c.c

]
z=+0 − [. . .]z=−0

}
. (9.31)

For a given value of q, it is convenient to express the component Ex and Bx in terms
of the components along the vectors q̂ and n

Ex = (qx/q)Eq − (qy/q)En, (9.32)

Bx = (qx/q)Bq − (qy/q)Bn. (9.33)

After substitution of expressions (9.32) and (9.33) into (9.31) and taking into
account that the term that is proportional to qy is equal to zero, we obtain

σ = 1

8π

∫
dωd2q

(2π)2
qx
q

{[
ε
〈
Ez (q,ω)E∗

q (q,ω)
〉 + 〈

Bz (q,ω)B∗
q (q,ω)

〉 +
+c.c

]
z=+0 − [...]z=−0

}
, (9.34)

where

Ez(z = +0) = (vz + wz) = (q/kz)(wq − vq) = (qk∗
z / | kz |2)(wq − vq), (9.35)

Ez(z = −0) = u1z = (q/kz)uq = (q/kz)(wq + vq), (9.36)

Eq(z = +0) = Eq(z = −0) = vq + wq, (9.37)

Bz(z = +0) = (qc/ω)(vn + wn) = Bz(z = −0) = (qc/ω)u1n, (9.38)

Bq(z = +0) = (kzc/ω)(wn − vn), (9.39)

Bq(z = −0) = (kzc/ω)u1n, (9.40)

After substituting these expressions into (9.34), we get

σ = 1

16π3

∫ +∞

0
dω

∫
d2qqx

(
ε

| kz |2
[
(kz + k∗

z )
(〈 | wq |2 〉 − 〈 | vq |2 〉−

−〈 | vq + wq |2 〉) + (kz − k∗
z )

〈(
vqw

∗
q − vqw

∗
q

)〉] +

+
( c

ω

)2 [
(kz + k∗

z )
(〈 | wn |2 〉 − 〈 | vn |2 〉 − 〈 | vn + wn |2 〉)−

−(kz − k∗
z )

〈(
vnw

∗
n − vnw

∗
n

)〉])
, (9.41)

where we integrate only over positive values of ω, which gives an extra factor of two.
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Substituting (9.25) and (9.29) into (9.41) and taking into account that kz = k∗
z for

q < ω/c and kz = −k∗
z for q > ω/c, we obtain

σ = �

8π3

∫ ∞

0
dω

∫
q<( ω

c )
√

ε
d2qqx ×

×
[
T1p(ω)T2p(ω − qxv)

(
n(ω − qxv) − n(ω)

)
| 1 − e2ikzdR1p(ω)R2p(ω − qxv) |2 −

−T1p(ω)
( | 1 − R2p(ω − qxv) |2 + | 1 − e2ikzdR2p

(
ω − qxv

) |2 )(
n(ω

) + 1/2)
)

| 1 − e2ikzdR1p(ω)R2p(ω − qxv) |2
]

+

+ �

2π3

∫ ∞

0
dω

∫
q>( ω

c )
√

ε
d2qqxe

−2|kz |d×

× ImR1p(ω)ImR2p(ω − qxv)

| 1 − e−2|kz |dR1p(ω)R2p(ω − qxv) |2
(
n(ω − qxv) − n(ω)

) +

+ [
p → s

]
, (9.42)

Tip(ω) = 1− | Rip |2 − | 1 − Rip |2= 4πReσil(ω)kz
ωε|εil|2 ,

Tis(ω) = 1− | Ris |2 − | 1 − Ris |2= 4πReσit(ω)ω

kzc2|εit |2 .

The first integral in (9.42) is the contribution to the frictional drag force from propa-
gating electromagnetic waves. The second term in (9.42) is derived from the evanes-
cent field.

When the separation between quantum wells d � λT , the contribution to friction
from propagating waves can be neglected. In this case, the first integral in (9.42)
can be neglected, and the second integral is reduced to (7.30), where Ri(ω) is the
reflection amplitude for layer i. In the random phase approximation, the equations
for reflection amplitude are given in Appendix M. For d < vF�/kBT , the reflection
amplitude for the p-polarized electromagnetic waves is given by [13, 117]

Rp = 1 + i�εω

2kFe2
, (9.43)

where ε is the dielectric constant for surrounded dielectric, kF = √
2πns is the Fermi

wavevector and ns is the electron concentration 2D electron layer. After substituting
(9.43) in (10.13) we obtain the contribution to the drag resistivity due to the p-
polarized waves

ρD = γ

(ne)2
= h

e2
πζ(3)

32

(
kBT

εF

)2 1

(kFd)2

1

(kTFd)2
, (9.44)

where qTF = 2a−1
0 /ε is the single-layer Tomas-Fermi screening wavevector, a0 =

�
2/m∗e2, and εF is the Fermi energy. Equation (9.44) is a factor of two larger than the

result obtained by Gramila et al. using an approach based on the Boltzmann equation
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[113], and approximately a factor of two smaller that the result obtained by Persson
and Zhang using a simple model of the van der Waals friction [117].

Figure9.3 shows the friction coefficient γ as a function of distance d between
two quantum wells at T = 3K, and with ns = 1.5 × 1015 m−2, m∗ = 0.067me,
vF = 1.6 × 107 cm s−1, and, for the electron mean free path, l = vFτ = 1.21 ×
105 Å. We have also assumed ε = 10, which corresponds to the condition of the
experiment [112, 113]. In this case, the s-wave contribution is negligibly small in
comparison with the p-wave contribution. For d = 175Å, we find γ = 3.3 × 10−9

kg·s−1m−2, which corresponds to a drag rate τ−1
D = 3.3 × 107 s−1, which is close

to the experimental value (τ−1
D )exp = 1.5 × 107 s−1 [112, 113].

Figure9.4 shows the friction coefficient for 2D-quantum wells with high electron
density ns = 1019 m−2, T = 273K, τ = 4× 10−14 s, and ε = 1, where the result for
other ε can be obtained using the scaling τDp ∼ ε2 and τDs is independent of ε.
In Figs. 9.3 and 9.4, the p- and s-wave contributions are shown separately. The
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Fig. 9.3 The frictional drag coefficient for two quantumwells atT = 3K as a function of separation
d. The s- and p-wave contributions are shown separately. The calculations were performed with
surface electron density ns = 1.5 × 1015 m−2, damping constant η = 1.3 × 1010 s−1, effective
electron mass m∗ = 0.067me, and dielectric constant ε = 10, which corresponds to the condition
of the experiment [112, 113]. (The base of the logarithm is 10.)

Fig. 9.4 The same as
Fig. 9.3 but now for at
T = 273 K,
ns = 1.05 × 1019 m−2,
η = 2.5 × 1013 s−1,
m∗ = me, and ε = 1. (The
base of the logarithm is 10)
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Fig. 9.5 The frictional drag coefficient for two quantum wells at T = 3 K as a function of electron
concentration ns. The full curve was obtained by interpolation between the curves (dashed lines)
obtained within the non-local optic dielectric approach, with the dielectric functions correspond-
ing to a degenerate electron gas (ns > nF ∼ 1014 m−2), and to the non-degenerate electron gas
(ns < nF ). The electron density parameter ns0 = 1.5×1015 m−2, damping constant η = 1.3×1010

s−1, effective electron mass m∗ = 0.067me, separation d = 175Å and the dielectric constant
ε = 10. (The base of the logarithm is 10)

calculations show that p-waves give a larger contribution for friction both for low-
density and high-density 2D quantum wells.

Figure9.5 shows the dependence of the friction coefficient on the electron den-
sity for the same parameters as in Fig. 9.3. In this case, the boundary between
degenerate and non-degenerate electron density is determined by the Fermi density
nF = 3kBTm∗/2π�

2 = 1.09×1014 m−2 . From the calculations, we find themaximum
of the frictional drag force for the electron density nmax ≈ 1× 1015 m−2; this means
that the experiment [112, 113] was performed the near optimum conditions.

The friction force per unit charge in the layer is determined by E = σ‖/nse, where
ns is the 2D-electron concentration in the layer. For v � vF , where vF is the Fermi
velocity, the friction force depends linearly on the velocity v. For d = 175Å at
T = 3K, and with ns = 1.5× 1015 m−2, the electron effective mass m∗ = 0.067me,
vF = 1.6 × 107 cm/s, the electron mean free path l = vFτ = 1.21 × 105 Å, and
ε = 10 (which corresponds to the condition of the experiment [113]) we get E =
6.5 × 10−6vV/m, where the velocity v is in m/s. For a current 200nA in a 2D layer
with the widthw = 20µm, the drift of electrons (drift velocity v = 60m/s) creates a
frictional drag force per unit charge in the adjacent quantumwell E = 4×10−4 V/m.
Note that for the electron systems, the frictional drag force decreases when the
electron concentration increases. For a example, for a 2D quantum wells with high
electron density (ns = 1019 m−2, T = 273K, τ = 4 × 10−14 s, ε = 10, m∗ = me) at
d = 175Å we get E = 1.2 × 10−9vV/m.
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9.4 Casimir Frictional Drag Induced by Liquid Flow
in Low-Dimensional Systems

In [262, 263], it was observed that the flow of a liquid over bundles of single-walled
carbon nanotubes (SWNT) induces a voltage in the sample along the direction of the
flow. Although several mechanisms were proposed to explain this effect [262–266,
268], only one of these mechanisms is related to a fluctuating electromagnetic field
created by chaotic Brownian motion of ions in liquid flow. The free carriers in a low-
dimensional system will experience frictional drag force due to this electromagnetic
field in direction of liquid flow. The intriguing idea of using frictional drag as a
non-contact means to detect motion in surrounding liquid was considered in [269].

9.4.1 Casimir Frictional Drag Between Two 2D Systems
Induced by Liquid Flow

Consider a fluid with the ions in a narrow channel with thickness dc. For d � q−1
D �

dc, where qD = √
4πN0Q2/εckBT is the Debye screening wave number (N0 is the

concentration of ions, and εc is the dielectric constant of the liquid in the channel, and
Q is the ion charge), the channel can be considered to be 2D. The Fourier transform
of the diffusion equation for the ions (of type a) in the channel can be written in the
form

iω

Da
σa
q = q2

(
σa
q + NaQ2dc

kBT
ϕq

)
, (9.45)

where σa
q and φq are the Fourier components of the surface charge density and the

electric potential, respectively, and Da is the diffusion coefficient of the ions in the
liquid in the channel. From (9.45), we get

σa
q = −NaQ2dc

kBT
q2

ϕq

q2 − iω/Da
. (9.46)

The surface current density resulting from the diffusion and drift of the ions of type
a, is determined by the formula

jaiq = −iqD
(
σa
q + NaQ

2dckBTϕq
) =

= −iω
NaQ2dc
kBT

1

q2 − iω/Da
Eq, (9.47)
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where Eq = −iqϕq is the Fourier component of the electric field. Furthermore, there
is a surface current density connected with the polarization of the liquid, which is
determined by the formula

jpq = −iωpq = −iωdc
ε − 1

4π
Eq, (9.48)

where pq and εc are the surface polarization and dielectric permeability of liquid in
the channel, respectively. Thus the total current density jq = σ(ω, q)Eq, where the
conductivity of the 2D-liquid is determined by the formula

σ(ω, q) = − iωdc
4π

(
−1 + εc

(
1 +

∑
a

q2D
q2 − iω/Da

))
. (9.49)

For the (2D electron)–(2D liquid) configuration (with the same parameters as in
Sect. 9.3 for electron system (with high electron density)) at d = 175Å, and with
εc = 80, N0 = 1024 m−3, D = 10−9 m2/s, dc = 100Å we get E = 4.6× 10−8vV/m,
which is one order of magnitude larger than for the (2D electron)–(2D electron)
configuration (with high electron density). Figure9.6 shows the dependence of the
effective electric field in the channel on the velocity of the liquid flow in the adjacent
channel, with the same liquid, for the (2D liquid)–(2D liquid) configuration.

Compared on the (2D-electron)–(2D-electron) and (2D-electron)–(2D-liquid)
configurations, for the (2D-liquid)–(2D-liquid) configuration the effective electric
field is many orders of magnitude larger, and depends nonlinearly on the liquid flow
velocity v.
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Fig. 9.6 The effective electric field in a 2D channel with liquid as a function of the flow velocity
in a second 2D channel for identical liquids in both channels. The temperature T = 300K, the ion
concentration in the liquid N0 = 1024 m−3, the thickness of the channels dc = 100Å, the diffusion
coefficients of ions D = 10−9 m2/s and the dielectric constant of the liquid εc = 80. The dielectric
constant of the dielectric in the gap between channel is ε = 10, and the separation between the
channels d = 175Å
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9.4.2 Casimir Frictional Drag in a 2D System Induced
by Liquid Flow in a Semi-infinite Chamber

Let us consider a 2D electron system, isolated from a semi-infinite liquid flow by
a dielectric layer with the thickness d. For the 2D electron system, the reflection
amplitude is given in Appendix M. To find the reflection amplitude for the interface
between the dielectric and the liquid, we will assume that the liquid fills the half-
space z ≥ 0, and that the half-plane with z < 0 is filled by a dielectric with the
dielectric constant ε. Let us study the reflection of an electromagnetic wave from
the surface of the liquid in the nonretarded limit, which formally corresponds to the
limit c → ∞. In the region z < 0 the potential can be written in the form

ϕq = (
e−qz − Reqz

)
eiq·x−iωt, (9.50)

where q is the magnitude of the component of the wave vector parallel to surface.
We will assume that the liquid consists of ions of two types a and b. The equation of
continuity for the ions

− iωni + ∇ · Ji = 0, (9.51)

where i = a, b, ni = Ni − N0, where Ni and N0 are the concentration of ions in the
presence and absence of the electric field, respectively. To linear order in the electric
field

Ji = −N0μiQi∇ϕ − Di∇ni, (9.52)

where Di is the diffusion coefficient, μi is the mobility and Qi is the charge for ions
of type i. The diffusion coefficient and the mobility are related to each other by
the Einstein relation: Di = kBTμi. We consider the case of different ion mobilities
differing considerably. In this case, in the calculation of dielectric response it is
possible to disregard the diffusion of the less mobile ions. Omitting the index i for
the more mobile ions, after substitution of (9.52) in (9.50), we obtain

iωn + D�

(
n + N0Q

kBT
ϕ

)
= 0. (9.53)

This equation must be supplemented with the Poisson’s equation

∇2ϕ = −4πQn

ε0
, (9.54)

where ε0 is the dielectric permeability of the liquid. The general solution of equations
(9.53) and (9.54) can be written in the form

ϕ = (
C1e

−λz + C2e
−qz

)
eiq·x, (9.55)
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where λ =
√
q2 + q2D − iω/D and qD = √

4πN0Q2/ε0kBT . At the interface (z = 0),
the electric potential and the normal component of the electric displacement field
must be continuous, and the normal component of the flow density must vanish.
From these boundary conditions, we obtain

C1 + C2 = 1 − R, (9.56)

− ε0(λC1 + qC2) + εq(1 + R) = 0, (9.57)

iωλC1 + Dq2DqC2 = 0. (9.58)

From (9.56) to (9.58) we get

Rlp = ε − 1

ε + 1
, (9.59)

where

ε = ε0λ
(
Dq2D − iω

)
ε
(
Dq2Dq − iωλ

) . (9.60)

For v � vF , the frictional drag force acting on the electrons in the 2D system,
due to the interaction with the ions in the liquid, increases linearly with the fluid
velocity v. In particular, for N0 = 1024 m−3, T = 273K, ε0 = 80, D = 10−9 m2/s,
for a high electron density (ns = 1019 m−2) in the 2D electron system, E = 1.4 ×
10−6vV/m. This effective electric field is three orders of magnitude larger than that
obtained for two 2D electron systems with high electron concentration, and of the
same order of magnitude as friction between two 2D-electron systems with a low
electron concentration.

Let us replace now the 2D electron structurewith the 2D channel with polar liquid.
Figure9.7 shows the dependence of the effective electric field in the 2D-channel on
the velocity of the liquid flow in the semi-infinite chamber, for identical liquid in
the channel and in the chamber. We have used the same parameters as above for the
liquid, with the separation between the channel and chamber d = 1nm. The effective
electric field in the channel initially increases with the fluid flow velocity, reaches
a maximum, and then decreases. The position of the maximum decreases when the
density of ions decreases. The frictional drag force induced by the liquid flow in
the narrow channel is nine orders of magnitude larger than the frictional drag force
induced in a 2D electron system.
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Fig. 9.7 The effective electric field in a 2D channel with liquid induced by liquid flow in a semi
infinite chamber as a function of the flow velocity for identical liquids in the channel and in the
chamber. The temperature T = 300K, the ion concentration in liquidN0 = 1024 m−3, the thickness
of the channel dc = 10nm, the diffusion coefficients of ions D = 10−9 m2/s and the dielectric
constant of the liquid ε0 = 80. The dielectric constant of the dielectric in the gap between channel
ε = 10, and the separation between the channel and semi-infinite chamber d = 1nm

9.4.3 Casimir Frictional Drag in Low Dimensional
Structures Induced by Liquid Flow in Infinite System

As a limiting case of the situation considered above, let us consider a 2D system
immersed in a flowing liquid in an infinite chamber. We assume that the liquid flows
along the x-axis, and that the plane of the 2D system coincides with the xy-plane.
Let us calculate first the spectral function of the fluctuations of electric field in the
quiescent infinite liquid without the 2D-system. We will examine the non-retarded
limit, where only longitudinal fluctuations matters. According to the fluctuation-
dissipation theorem (see Sect. 3.1), for an infinite medium the correlation function
for the Fourier components of the longitudinal current density is determined by

∣∣j fk
∣∣2
ω

= �

(2π)2

[
n(ω) + 1/2

]
ω2Imε(ω, k), (9.61)

where k = (q, kz) is the wave vector. Using the continuity equation, the longitudinal
current density is connected to the charge density via ρk = kjk/ω. Thus,

∣∣ρ f
k

∣∣2
ω

= �

(2π)2

[
n(ω) + 1/2

]
k2Imε(ω, k). (9.62)

Poisson’s equation for the electric potential gives

ϕ
f
k = 4πρk

k2ε(ω, k)
. (9.63)
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In the xy-plane, the q-component of the electric potential is determined by

ϕ f
q =

∫
dkzeikz0

+

2π
ϕ

f
k, (9.64)

where k = √
q2 + k2z . Taking into account (9.62) and (9.63) we get

∣∣ϕ f
q

∣∣2
ω

= 4�
(
n(ω) + 1/2

)
Im�(ω), (9.65)

where

�(ω, q),= −
∫ ∞

−∞
dkzeikz0

+

2π

1

k2ε(ω, k)
. (9.66)

Taking into account that Eq = iqϕq we get |Ef
q|2ω = q2|ϕ f

q|2ω . From the diffusion
and Poisson’s equations we get

iω

D
ρk = k2

(
ρk + N0Q2

kBT
ϕk

)
, (9.67)

ε0k
2ϕk = 4πρk + 4πρ

f
k . (9.68)

From (9.65) and (9.68) we get the dielectric function of the Debye plasma

ε(k) = ε0

(
1 + q2D

k2 − iω/D

)
. (9.69)

Substituting (9.69) in (9.66) gives

�(ω, q) = − 1

ε0
(
q2D − iω/D

)
[
− iω/D

2q
+ q2D

2λ

]
. (9.70)

According to (9.6), the correlation function for the Fourier components of the fluc-
tuating surface charge density in the 2D system is determined by

∣∣τ f
q

∣∣2
ω

= �q2

πω

(
n(ω) + 1/2

)
Reσ(ω, q). (9.71)

If the 2D system is surrounded by liquid flow, the electric field created by the fluctua-
tions of the charge density in the fluid will induce surface charge density fluctuations
in the 2D system. The spectral correlation functions (9.65) and (9.71) are determined
in the rest reference frame of the liquid, and of the 2D system, respectively. In order
to find the connection between the electric fields in the different reference frames,
we use the Galileo transformation, which leads to the Doppler frequency shift of the
electrical field in the different reference frames. The electric field in the plane of the
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2D system, due to the fluctuations of the charge density in the liquid, will take the
form

E(x, t) = e−i(ω+qxV )t+iq·xEI
q, (9.72)

where EI
q is the sum of the electric fields created by the fluctuations of the charge

density in the fluid and the induced charge density in the 2D system:

EI
q = Ef

q + 4πiq�(ω, q)τ I
q(ω

+), (9.73)

where ω+ = ω + qxV and τ I
q is the surface-induced charge density. According to

Ohm’s law
jIq = σ+

q E
I
q = σ+

q

(
Ef
q + 4πiq�(ω, q)τ I

q(ω
+)

)
, (9.74)

where σ+
q = σ(ω+, q) is the longitudinal conductivity for the 2D system. The conti-

nuity equation for the surface charge density gives jindq = ω+τ ind
q /q and from (9.74)

we get

τ I
q = q

ω+
σ+
q E

f
q

1 − 4πiq2σ+
q /ω+�(ω, q)

(9.75)

and

EI
q = Ef

q

1 − 4πiq2σ+
q /ω+�(ω, q)

. (9.76)

In order to find the electric field created by the charge density fluctuations in the 2D
system, it is necessary to solve Poisson’s equation in the rest reference frame, of the
liquid. In this reference frame the charge density takes the form

τ (x, t) = e−i(ω−qxV )t+iq·xτ II
q , (9.77)

where the surface charge density is composed from the fluctuating τ f and induced
τ ind charge density: τ II

q = τ
f
q + τ ind

q . In the presence of the liquid flow, the electric
field in the plane of the 2D system, due to the fluctuating surface charge density, is
determined by

EII
q = 4πiq�(ω−, q)(τ ind

q + τ f
q ), (9.78)

where ω− = ω − qxV . From Ohm’s law, we get the following expression for the
induced charge density

τ ind
q = 4πiq2σ(ω, q)�(ω−, q)

ω

τ f

1 − 4πiq2σq�(ω−, q)/ω
. (9.79)
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Substituting (9.79) in (9.78), we get

EII
q = 4πiq�(ω−, q)τ f

1 − 4πiq2σq�(ω−, q)/ω
(9.80)

and

τ II
q = τ f

1 − 4πiq2σq�(ω−, q)/ω
. (9.81)

The friction force per unit area of the 2D system is given by

σ‖ =
∫ ∞

−∞
dω

∫
d2q

(2π)2

qx
q

〈
Eqτ

∗
q

〉
ω
, (9.82)

where Eq = EI
q + EII

q , τq = τ I
q + τ II

q . Substituting (9.75), (9.76) and (9.80), (9.81) in
(9.82) we get

σ‖ = 2�

π2

∫ ∞

−∞
dqy

∫ ∞

0
dqxqxq

2
{ ∫ ∞

0
dω

[
n(ω) − n(ω + qxv)

] ×

×
(

Reσ(ω + qxv)Im�(ω, q)

(ω + qxv) | 1 − 4πiq2σ(ω + qxv)�(ω, q)/(ω + qxv) |2 + (ω + qxv ↔ ω)

)
−

−
∫ qxv

0
dω

[
n(ω) + 1/2

]( Reσ(ω − qxv)Im�(ω, q)

(ω − qxv) | 1 − 4πiq2σ(ω − qxv)�(ω, q)/(ω − qxv) |2 +

+ (ω − qxv ↔ ω)

)}
, (9.83)

where (ω ± qxv ↔ ω) denotes the terms that are obtained from the preceding terms
by permutations of the arguments ω ± qxv and ω. With the same parameters used
above for the liquid, and for the high density 2D electron system, we get E =
8.1× 10−6vV/m. For a 1D-electron system, we obtained a formula that is similar to
(9.83).

Figure9.8 shows the result of the calculations of the effective electric field for
a 1D-electron system with the electron density per unit length nl = 3 × 109m−1,
the temperature T = 300K, and with the same parameters for the liquid as used
above. For the 1D-electron system, we obtained a slight deviation from the linear
dependence of the frictional drag on the liquid flow velocity. The frictional drag for
the 1D-electron system is one order of magnitude larger than for the 2D electron
system.

Figure9.9 shows the dependence of the effective electric field in the liquid in the
2D channel on the liquid flow velocity in the infinite chamber, assuming identical
liquid in the channel and in the chamber. Qualitatively, we obtained the same results
for a 1D channel.
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Fig. 9.8 The effective
electric field in a 1D-electron
system induced by liquid
flow in a infinite chamber, as
a function of the flow
velocity. For the same
parameters for the liquid as
in Fig. 9.7. The electron
concentration per unit length
in the 1D-system
nl = 3 × 109 m−1, and the
electron relaxation time
τ = 4 × 10−14 s
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For a channel with open ends, the frictional drag force will induce a drift motion
of the ions in the liquid with the velocity vd = DcQE/kBT . The positive and negative
ions will drift in the same direction. If ions have different mobility then the drifting
ions will lead to an electric current whose direction will be determined by the current
created by the ions with the largest mobility. For a channel with closed ends, the
frictional drag force will lead to a change in ion concentration along the channel. In
the case of ions with the different mobilities, the friction force will be different for
the ions with the opposite charges. As a result, the ions of opposite charges will be
characterized by different distribution functions, which, as for electronic systems,
will result in an electric field and an induced voltage that can be measured. Let us
write the friction force acting on the ions of different type in the form: Fa = QEa and
Fb = QEb. From the condition that, in the static case, the flux density in the channel
must vanish, we get

na = − Q

kBT
(ϕ − Eax) , (9.84)

nb = Q

kBT
(ϕ + Eax) . (9.85)
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These equations must be supplemented with Poisson’s equation

d2ϕ

d2x
= −4πQ

εc
(na − nb). (9.86)

Substituting (9.84) and (9.85) in (9.86), we get

d2ϕ

d2x
= q2D (2ϕ − �Ex) , (9.87)

where �E = Ea − Eb. The solution of (9.87) with boundary condition

dϕ

dx

∣∣∣
x=±L/2

= 0, (9.88)

where L is the channel length, has the form

ϕ(x) = �E

2

(
x − 1√

2qD

sinh
√
2qDx

cosh
√
2qDL/2

)
. (9.89)

The voltage between the ends of the channel is determined by

U = ϕ(L/2) − ϕ(−L/2) = �E

(
L

2
− 1√

2qD
tanh

√
2qDL/2

)
. (9.90)

For qDL � 1, the voltage, which appears as a result of the frictional drag, will be
approximately equal to U ≈ �EL/2. Furthermore, the frictional drag will induce a
pressure difference �p = nLeE. For example, if N0 = 1024 m−3, L = 100µm and
E = 1000V/m, we get the pressure difference �p = 104 Pa, which should be easy
to measure. Assume now that one type of ions are fixed (adsorbed) on the walls of
the channel and an equal number of mobile ions of opposite sign are distributed in
the liquid phase. In this case, the motion of the polar liquid in the adjacent region will
lead to frictional drag force acting on the mobile ions in the channel. For a channel
with closed ends, this frictional drag will induce a voltage, which can be measured.



Chapter 10
Casimir Forces and Near-Field Radiative
Heat Transfer in Graphene Structures

Casimir has shown that quantum fluctuations of the electromagnetic field produce
an attractive force between macroscopic bodies. It has recently been shown that two
non-contacting bodies moving relative to each other experience a friction due to the
same quantumfluctuations of the electromagnetic field.However, until recently, there
was no experimental evidence for or against this effect, because the predicted friction
forces are very small, and precise measurements of quantum forces are incredibly
difficult with the presently available technology. The existence of quantum friction
is still debated even among theoreticians. However, the situation drastically changed
with the discovery of a newmaterial—graphene. We recently proposed that quantum
friction can be detected in frictional drag experiments between graphene sheets, and
in the transport properties of non-suspended graphene on an SiO2 substrate in a high
electric field.

Here, we investigate the dependence of the thermal Casimir force and the Casimir
friction force between two graphene sheets on the drift velocity of the electrons in one
graphene sheet. We show that the drift motion produces a measurable change of the
thermal Casimir force due to theDoppler effect. The thermal Casimir force, aswell as
the Casimir friction, are strongly enhanced in the case of resonant photon tunneling
when the energy of the emitted photon coincides with the energy of electron–hole
pair excitations. In the case of resonant photon tunneling, even for temperatures
above room temperature, the Casimir friction is dominated by quantum fluctuations.

We have used the theories of the Casimir friction and the near-field radiative
energy transfer to study the heat generation and dissipation in graphene due to the
interaction with phonon–polaritons in the (amorphous) SiO2 substrate and acoustic
phonons in graphene. For the low-field (low drift velocity) energy transfer between
non-suspended graphene and the substrate, radiative energy transfer gives a signif-
icant contribution in addition to the phononic heat transfer. High-field (large drift
velocity) heat transfer is determined by the phononic mechanism. For high elec-
tric field (large drift velocities) and low temperatures, quantum fluctuations give
an important contribution to the energy flux and the friction force. For suspended
graphene, the energy transfer coefficient at nanoscale gap is ∼3 orders of magnitude
larger than the radiative heat transfer coefficient of the blackbody radiation limit. We
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have pointed out that graphene can be used to study near-field radiative heat transfer
in the plate–plate configuration, and for shorter separations than is currently possible
in the plate–sphere configuration.

10.1 Introduction

Friction is usually a very complicated process. It appears in its most elementary
form when two flat surfaces, separated by a vacuum gap, are sliding relative to each
other at zero Kelvin, where the friction is generated by the relative movement of
quantum fluctuations. For several decades, physicists have been intrigued by the
idea of quantum friction. It has recently been shown that two non-contacting bodies
moving relative to each other experience a friction due to quantum fluctuations inside
the bodies [11, 115, 121, 128]. However, until recently, there was no experimental
evidence for or against this effect, because the predicted friction forces are very small,
and precise measurements of quantum friction are incredibly difficult with presently
available technology. Recently, we proposed [149, 165] that using graphene it should
be possible to detect quantum friction.

Graphene, isolated monolayer of carbon, which was obtained very recently
[270], consists of carbon atoms densely packed into a 2D honeycomb crystal lattice
(Fig. 10.1). The unique electronic andmechanical properties of graphene are actively
studied both theoretically and experimentally partly because of their importance for
fundamental physics, and also because of its possible technological applications
[270–273]. In particular, the valence band and conduction band in graphene touch
each other, at one point named the Dirac point. Near this point, the energy spectrum
for electrons and holes has a linear dispersion. Due to this linear (or ‘conical’) dis-
persion relation, electrons and holes near this point behave like relativistic particles
described by the Dirac equation for massless fermions.

Graphene can also be useful for the detection of quantum friction. Consider
graphene located on the surface of, for example, the polar dielectric SiO2, or nearby
on a second graphene sheet. In this case, the charge carriers in graphene experience

Fig. 10.1 Honeycomb
lattice of graphene
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additional friction due to interaction with the optical phonons in the dielectric, or the
electrons in the other graphene sheet. Due to the high mobility, in a strong electric
field the electrons in graphene can move with very high drift velocities (∼ 106m/s).
At such velocities, the main contribution to the friction will arise from quantum fluc-
tuations. Thus, quantum friction can be detected by measuring the high electric field
transport properties of graphene on a polar dielectric substrate, or by measuring the
voltage induced by friction in a second nearby graphene sheet.

10.2 The Casimir Forces in Graphene Systems

At present, a great deal of attention is devoted to the study of the Casimir forces
in graphene systems [274–282]. This is due to the unusual electronic properties of
graphene, which result in Casimir forces with unusual properties. For normal mate-
rials, the contribution to the Casimir force due to thermal fluctuations dominates
for d > λT ; but, for two graphene sheets, the thermal contribution dominates of
much shorter distances [282] d > ξT = �vF/kBT , where vF ∼ 106 m/s is the Fermi
velocity in graphene. At room temperature, the parameters λT and ξT are 7.6µm and
25nm, respectively. This property makes it possible to measure the thermal Casimir
force using an atomic force microscope, or other force-measuring techniques. Tailor-
ing the thermal Casimir force using Fermi level tuning by gate voltage was discussed
in [280].

An alternative method of tailoring the thermal Casimir force consists of driving an
electric current in a graphene sheet. It was shown by Pendry [115] that the reflection
amplitudes from a moving metal surface are modified due to the Doppler effect. The
same modification of reflection amplitudes can be obtained if, instead of the motion
of a metal plate, a drift motion of charge carriers is induced in it by applied voltage
[283]. The drift motion of the charge carries in graphene will result in a modification
of dielectric properties (and the Casimir force) of graphene due to the Doppler effect
[115] (see Fig. 1.7). If, in one of two parallel graphene sheets, an electric current
is induced, then the electromagnetic waves, radiated by the graphene sheet with-
out an electric current, will experience a frequency Doppler shift in the reference
frame moving with the drift velocity v of electrons in the other graphene sheet:
ω′ = ω − qxv, where qx is the parallel to the surface component of the momentum
transfer. The same is true for the waves emitted by the other graphene sheet. Due to
the frequency dependence of the reflection amplitudes, the electromagnetic waves
will reflect differently in comparison with the case when there is no drift motion of
electrons, and this will give rise to the change of the Casimir force. The effect of the
drift motion of charge carriers in one of the graphene sheet, on the thermal Casimir
force between graphene sheets, was investigated in [165].

Let us consider two graphene sheets separated by a vacuum gap with thickness
d � λT . Assume that the free charge carriers in one graphene sheet move with
drift velocity v � c along the x-axis (c is the light velocity) relative to the other
graphene sheet. Because a drift motion of the free charge carriers produces a similar
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modification of the reflection amplitudes as in the case of moving graphene sheet, the
theory of the Casimir forces between moving bodies [128] can be used to calculate
the Casimir forces between the sheets (both of which are at the rest) in the presence
of the drift motion of the free charge carriers in one graphene sheet. The force, which
acts on the surface of the sheet, can be calculated from the Maxwell stress tensor σi j ,
evaluated at the surface of the sheet at z = 0:

σi j = 1

4π

∫ ∞

0
dω

∫
d2q

(2π)2

[〈
Ei E

∗
j

〉
+

〈
E∗
i E j

〉
+

〈
Bi B

∗
j

〉
+

〈
B∗
i B j

〉

− δi j

(〈
E · E∗〉 + 〈

B · B∗〉)]
z=0

(10.1)

where 〈...〉 denotes statistical average over the fluctuating electromagnetic field.
According to [128], the Casimir force Fz = σzz between the moving media is deter-
mined by

Fz = FzT + Fz0, (10.2)

where the temperature-dependent term FzT , and the zero-temperature contribution
Fz0 are given by

FzT = �

π3

∫ ∞

0
dqy

∫ ∞

0
dqxqe

−2qd
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0
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+)n1(ω) + ReR1(ω)ImR2(ω
+)n2(ω+)

| 1 − e−2qd R1(ω)R2(ω+) |2

+ (1 ↔ 2)

)
+

∫ qxv

0
dω

(
ReR1(ω

−)ImR2(ω)n2(ω)

| 1 − e−2qd R1(ω−)R2(ω) |2 + (1 ↔ 2)

)}
,

(10.3)

Fz0 = �

2π3

∫ ∞

0
dqy

∫ ∞

0
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)
+
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0
dωqe−2qd
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(10.4)

where ni (ω)=[exp(�ω/kBTi ) − 1]−1 (i=1, 2), q=
√
q2
x + q2

y , s = √
(ω/c)2 + q2,

Ti is the temperature of i-th graphene sheet, Ri is the reflection amplitude for surface
i for p-polarized electromagnetic waves, and ω± = ω ± qxv. The symbol (1 ↔ 2)
denotes the terms that are obtained from the preceding terms by permutation of 1
and 2. In the first term in (10.4), the integration along the real axis was transformed
into an integration along the imaginary axis.
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The reflection amplitude for a 2D system is determined by [144]

Ri = εi − 1

εi
, εi = 2π pσi

ωε
+ 1, (10.5)

where p = √
(ω/c)2 − q2, σi is the longitudinal conductivity of the sheet, which

can written in the form σi = −iωe2�i (ω, q)/q2 where �i is the 2D polarizability.
The dielectric function of the sheet is determined by εi (ω, q) = 1 + vq�i (ω, q)

where vq = 2πe2/(qε) is the 2D Coulomb interaction. In terms of εi the reflection
amplitude can be written as

Ri = p(εi − 1)

p(εi − 1) + iq
(10.6)

In the integration on the real axis p ≈ iq for d < λT . Thus, in this case

Ri ≈ εi − 1

εi
, (10.7)

On the imaginary axis, p = is. In the finite lifetime generalization according to the
Mermin approximation [354], the dielectric function is determined by

ε(ω, q) ≈ 1 + (ω + iγ)
(
ε0(ω + iγ, q) − 1

)
ω + iγ

(
ε0(ω + iγ, q) − 1

)
/
(
ε0(0, q) − 1

) , (10.8)

where ε0(ω, q) is the RPA dielectric function and γ is the damping parameter. In
the study below, we used the dielectric function of graphene, which was calculated
recently within the random-phase approximation (RPA). The small (and constant)
value of the graphene Wigner-Seitz radius rs indicates that it is a weakly interacting
system for all carries densities, making the RPA an excellent approximation for
graphene (RPA is asymptotically exact in the rs � 1 limit). The dielectric function
is an analytical function in the upper half-space of the complex ω-plane:

ε0(ω, q) = 1 + 4kFe2

�vFq
− e2q

2�

√
ω2 − v2Fq

2

{
G

(
ω + 2vFkF

vFq

)
− G

(
ω − 2vFkF

vFq

)
− iπ

}
,

(10.9)
where

G(x) = x
√
x2 − 1 − ln

(
x +

√
x2 − 1

)
, (10.10)

where the Fermi wave vector kF = (πn)1/2, n is the concentration of charge car-
riers, the Fermi energy εF = �vFkF , vF ≈ 106 m/s is the Fermi velocity. The
damping parameter γ is due to electron scattering against impurities and acoustic
phonons in graphene sheet, and can be expressed through the low-field mobility
μ: γ = evF/(�kFμ). Scattering of the graphene carries by the acoustic phonons of
graphene places an intrinsic limits on the low-field room temperature (T0 = 300
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K) mobility, given by μ0 =20 m2/Vs at the graphene carriers density 1016 m−2

(see [357]), which gives γ = 8 × 1011 s−1. At other temperatures the mobility can
be obtained using the relation μ = μ0T0/T .

In addition to the intrinsic friction due to scattering against impurities and
phonons, during drift motion of the electrons in the graphene sheet, the extrinsic
friction occurs due to the interaction with the electrons in the nearby graphene
sheet. According to the theory of the Casimir friction [128], the friction force
Fx = σxz = FxT + Fx0, where at d � λT and v � c the contributions from ther-
mal (FxT ) and quantum (Fx0) fluctuations are given by [11, 115, 121, 149]

FxT = �
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. (10.12)

Equations (10.11) and (10.12) were initially obtained for 3D systems in [115] at
T = 0 and in [121] for finite temperatures. However, in [144] it was shown that the
same formulas are valid for 2D systems. For v < dkBT/� (at d = 1nm and T = 300
K for v < 4 × 104 m/s) the main contribution to the friction (10.11) depends linearly
on the sliding velocity v so that the friction force FxT = �v, where at T1 = T2 = T
the friction coefficient � is given by

� = �
2

8π2kBT

∫ ∞

0

dω

sinh2
(

�ω
2kBT

)
∫ ∞

0
dq q3e−2qd ImR1(ω)ImR2(ω)

| 1 − e−2qd R1(ω)R2(ω) |2 .

(10.13)
Due to the presence of an exponential factor in the expression (10.3) for the thermal

contribution to the Casimir force, the integration over frequency is effectively limited
to ω < ωT = kBT/�. Thus, for qxv ∼ v/d > ωT (at room temperature and for d =
1nm, this condition corresponds to the velocities v > 105 m/s), the integrand will
be modified in the whole range of integration, which will give rise to the significant
change of the thermal Casimir force. This change will be especially large in the case
of resonant photon tunnelingwhen the integrand has sharp resonances. The integrand
in the expression for the zero-temperature contribution to the Casimir force does not
contain any sharp cut-off in the frequency integration. Thus, the range of integration
will be wider and the change of the zero-temperature contribution will be significant
only for much higher velocities than for the thermal contribution.
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Fig. 10.2 The Casimir forces between two graphene sheets with carrier concentration
n = 1016m−2. a The dependence of the Casimir force on the separation d between the sheets.
The thermal and quantum contributions to the total Casimir force are shown separately. The ther-
mal contribution is shown for T = 600 K and for the drift velocities v = 0 and v = 2 × 106 m/s;
b The dependence of the thermal Casimir force on the drift velocity of electrons v in one of the
graphene sheet at d = 1nm

Figure10.2a shows the dependence of the Casimir force between two graphene
sheets on the separation, d, between the sheets. The thermal and quantum
contributions are shown separately. The thermal contribution was calculated for
T = 600 K and for the electron drift velocities v = 0 and v = 2 × 106 m/s. The
thermal contribution becomes larger than the quantum contribution for d > 50nm.
For d < 5nm, the thermal contribution calculated for v = 2 · 106 m/s is significantly
larger then the thermal contribution calculated at v = 0. For example, at d ≈ 3nm
the drift motion of the electrons gives rise to an increase of the thermal Casimir
force by one order of magnitude, and in this case the thermal contribution is only
one order of magnitude smaller than the quantum contribution, and can be measured
experimentally. Figure10.2b shows the dependence of the thermal Casimir force
FzT on the drift velocity of the electrons in the graphene sheet at d = 1nm. Note the
significant change of the thermal Casimir force for v/d > ωT (at room temperature
and for d = 1nm, this condition corresponds to the velocities v > 105 m/s).

Let us assume that in the rest reference frame, in which there is no drift motion
of electrons, an electron hole pair excitation has the energy ωeh(q) and momentum
q, then in the laboratory reference frame, in which the electron system is moving
with drift velocity v, due to the Doppler effect, the energy of this excitation will be
equal to ωeh(q) − qxv. For v > ωeh(q)/qx the excitation energy will be negative.
Thus, for velocities larger than critical velocity (vcr = ωeh(q)/qx ), as a result of
such excitation, the photon can be created with energy ωph(q) = qxv − ωeh(q) >

0, i.e. radiation arises. This radiation is reminiscent of the Cherenkov radiation,
which arises when an electron moves in a medium with a velocity exceeding the
light velocity in the medium. The difference between the two phenomena is that
Cherenkov radiation is connected to the radiation of electromagnetic waves, but
the radiation which arises from drift motion of the electron in the graphene sheet
results from the excitations of electron–hole pairs in graphene. Resonance arises
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when the photon emitted by the moving electron system in one graphene sheet with
energy ωph(q) = qxv − ωeh(q) > 0 will create excitation with energy ωeh(q) in the
other graphene sheet. In the case of graphene, the energy of the electron hole pair
excitation ωeh(q) ≈ vFq, where vF is the Fermi velocity. Thus, resonance arises
when qxv ≈ 2vFq, which requires that v > 2vF ≈ 2 × 106 m/s, in accordance with
the numerical calculations.

10.3 Using Graphene to Detect Quantum Friction

Quantum friction determines the ultimate limit to which the friction can be reduced.
In order to detect quantum friction, it is necessary to reduce the contribution to friction
from other mechanisms up to unprecedented levels. However, even in non-contact
friction experiments [166, 359], when two bodies are not in direct contact, there
are several contributions to the friction [11]. Moreover, quantum friction dominates
over thermal friction at velocities v > dkBT/� (at d = 1nm and room temperature:
v > 105m/s). However, at present, even for a hard cantilever, the velocity of the tip
cannot exceed 1 m/s [359].

We recently proposed [149] that it should be possible to detect quantum friction
in graphene adsorbed on an amorphous SiO2 substrate (Fig. 10.3). The electrons,
moving in graphene under the action of an electric field, will experience an intrinsic
friction due to interaction with the acoustic and optical phonons in graphene, and an
extrinsic friction due to interaction with the optical phonons in the SiO2-substrate.
In high electric fields, the electrons move with high velocities, and in this case the
main contribution to the friction arises from the interaction with the optical phonons
in graphene and in SiO2. However, the frequency of the optical phonons in graphene
is approximately four times larger than in SiO2. Therefore, the main contribution to
the friction will result from the interaction with the optical phonons in SiO2. Thus,
this frictional interaction determines the electrical conductivity of graphene at high
electric field.

The dissipated energy due to the friction results in heating of the graphene, and is
transferred to the SiO2 substrate via the near-field radiative heat transfer process and
direct phononic coupling. Using the theories of Casimir friction and the near-field
radiative heat transfer, we have formulated a theory that describes these phenom-
ena and allows us to predict experimentally measurable effects. In comparison with
the existing microscopic theories of transport in graphene [360, 361], our theory
is macroscopic. The electromagnetic interaction between graphene and a substrate
is described by the dielectric functions of the materials, which can be accurately
determined from theory and experiment.

Let us consider graphene and a substrate with flat parallel surfaces at separation
d � λT = c�/kBT . Assume that the free charge carriers in graphene move with the
velocity v � c (c is the light velocity) relative to the substrate. According to [11,
121, 128], the frictional stress Fx acting on the charge carriers in graphene, and the
radiative heat flux Sz across the surface of substrate, both mediated by a fluctuating
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electromagnetic field, are determined by
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, (10.14)
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ωImRd(ω)ImRg(ω
−)

| 1 − e−2qd Rd(ω)Rg(ω−) |2
[
ng(ω

−) − nd(ω)
]}

, (10.15)

where ni (ω) = [exp(�ω/kBTi − 1]−1 (i = g, d), Tg(d) is the temperature of graphene
(substrate), Ri is the reflection amplitude for surface i for p-polarized electromag-
netic waves, andω± = ω ± qxv. The reflection amplitude for graphene is determined
by (10.7) and for the substrate

Rd = εd − 1

εd + 1
, (10.16)

where εd is the dielectric function for substrate. The dielectric function of amorphous
SiO2 can be described using an oscillator model [358]

ε(ω) = ε∞ +
2∑
j=1

σ j

ω2
0, j − ω2 − iωγ j

, (10.17)

where parameters ω0, j , γ j and σ j were obtained by fitting the measured ε for
SiO2 to the above equation, and are given by ε∞ = 2.0014, σ1 = 4.4767 × 1027s−2,
ω0,1 = 8.6732 × 1013s−1, γ1 = 3.3026 × 1012s−1, σ2 = 2.3584 × 1028s−2, ω0,2 =
2.0219 × 1014s−1, and γ2 = 8.3983 × 1012s−1.

Fig. 10.3 Scheme of the
graphene field effect
transistor

grapheneelectrode

SiO2
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Fig. 10.4 The role of the interactionbetweenphononpolaritons inSiO2 and free carriers in graphene
for graphene field-effect transistor transport. The separation between graphene and the SiO2 is
d = 3.5 Å, and the charge density n = 1012 cm−12 a Current density-electric field dependence for
different temperatures. Inset shows the same dependence at T = 0 K; bDependence of the quantum
and thermal contributions to the friction force (per unit area) between SiO2 and the free carriers in
graphene per unit area on the drift velocity of electrons in graphene. The finite temperature curve
shows only the thermal contribution

The steady-state temperature can be obtained from the condition that the power
generated by friction must be equal to the energy transfer across the substrate surface

Fx (Td , Tg)v = Sz(Td , Tg) + αph(Tg − Td), (10.18)

where the second term in (10.18) takes into account the heat transfer through direct
phononic coupling;αph is the thermal contact conductance due to phononic coupling.

Figure10.4a shows the dependence of the current density on the electric field at
the carrier concentration n = 1012 cm−2, and for different temperatures. We have
found that, in agreement with the experiment [164], the current density saturates
at E ∼0.5–2.0 V/µm. According to the experiment, the saturation current density
Jsat = nevsat ≈ 1.6 mA/µm, and using the charge density concentration n = 1012

cm−2: vsat ≈ 106 m/s. The saturation current density depends weakly on the temper-
ature. In Fig. 10.4b, the contributions to the friction force from quantum and thermal
fluctuations are shown separately. In the saturation region, the contribution to the
friction force from quantum fluctuations dominates.

According to the theory of the Casimir friction [11] (see also above discussion),
the quantum friction, which exists even at zero temperature, is determined by the
creation of excitations (electron hole pairs or optical phonons) in each of the inter-
acting media. The frequency of the photon associated with the excitations in moving
body is determined by ωph = vqx − ω1, where ω1 is the excitation frequency in
the rest reference frame. This photon will create excitation in the other body with
the frequency ω2 = ωph = vqx − ω1. The relevant excitations in graphene are the
electron–hole pairs with energy ωeh(q) ≈ vFq, while for SiO2 the frequency of sur-
face phonon polaritons ω0 ≈ 60 meV (9 × 1013 s−1). Resonant photon tunneling
occurs at v > vF + ω0/qx . The maximal value of wave vector is ∼1/d. Thus, at
d = 0.35nm, resonance occurs for v > vsat = vF + ω0d ∼ 106 m/s, in accordance
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with the numerical calculations. Thus, measurements of the current density–electric
field relation of graphene adsorbed on SiO2 provide the possibility of detecting quan-
tum friction.

10.4 Casimir Frictional Drag Force Between
Graphene Sheets

An alternative method of studying Casimir friction consists of driving an electric
current in one metallic layer and studying the effect of the frictional drag on the
electrons in a second (parallel) metallic layer (Fig. 9.1). Such experiments were
proposed by Pogrebinskii [255] and Price [256], andwere performed for 2D quantum
wells [112–114]. In these experiments, a current is driven through layer 1. Due to
the proximity of the layers, the interlayer interactions will induce a current in layer
2 due to a frictional stress acting on the electrons in the layer 2 from layer 1. If
the layer 2 is an open circuit, an electric field E1 will develop in the layer whose
influence cancels the frictional stress σ between the layers. In the experiment [112],
the drift velocity v ∼102 m/s. According to the theory of the Casimir friction [121,
144], at such velocities, the thermal fluctuation gives the dominant contribution to
the friction, and the theoretical predictions are in agreement with experiment.

Frictional drag between graphene sheets was measured recently in [162, 163].
This study has fueled the recent theoretical investigations of frictional drag between
graphene sheets [362–368] mediated by a fluctuating Coulomb field. In all of these
investigations, the current density (or drift velocity v of the charge carries) is linearly
related to the driving electric field. Thus, only the thermal contribution to the frictional
drag was included. In the linear approximation, the electric field induced by the
frictional drag depends linearly on the current density J = nev (or drift velocity
v of the charge carries), E = ρD J = FxT /ne = � J/(ne)2, where � is the friction
coefficient and ρD = �/(ne)2 is the drag resistivity. For ω < vFq and q < 2kF the
dielectric function of graphene has the following form [356]

ε0(ω, q) ≈ 1 + 4e2kF
�vFq

(
1 + i

ω

vFq

)
, (10.19)

and the reflection amplitude

R0(ω, q) = ε0(ω, q) − 1

ε0(ω, q)
≈ 1 + i

�ω

4e2kF
, (10.20)

and (10.20) and (10.13) give the known result [362]

ρD = �

(ne)2
= h

e2
πζ(3)

32

(
kBT

εF

)2 1

(kFd)2

1

(kT Fd)2
, (10.21)
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Fig. 10.5 Frictional drag between two graphene sheets at the carrier concentration n = 1012 cm−2.
The finite temperature curves show only the thermal contributions to the friction. a Dependence of
friction force between graphene sheets on the drift velocity of charge carriers in one graphene sheet
at the layer separation d = 1nm. b The same as in (a) but at d = 10nm

where kT F = 4e2kF/�vF is the Thomas-Fermi screening wave vector. The frictional
drag force is much higher for high drift velocities (∼106 m/s), where it depends
non-linearly on the drift velocity, and is dominated by the quantum friction [149].
For v < vF (10.20) and (10.12) give the following result for quantum friction

Fx0 = �v

d4

15ζ(5)

128π2

(
v

vF

)2 1

(kT Fd)2
. (10.22)

In the linear approximation E = 5 × 10−4v (SI-units) for T = 300 K and
d = 10 nm. For a graphene sheet of length 1 µm, and with v = 100 m/s, this electric
field will induce the voltage V = 10 nV. From (10.21) and (10.22), the ratio between
the quantum and thermal friction Fx0/FxT = Fx0/(ne)2ρDv ≈ (15/8π2)(v/vT )2,
where vT = ωT d. Thus, for v > vT the friction is dominated by quantum friction (at
d = 1nm and room temperature: vT ≈ 4 × 104m/s).

Figure10.5a, b show that much larger electric fields can be induced at d = 1nm
(a) and d = 10nm (b) at large velocities. In these figures, the contributions to friction
from thermal and quantum fluctuations are shown separately. For v < 105 m/s, the
frictional drag effect for the graphene sheets strongly depends on temperature, i.e. it
is determined mainly by the thermal fluctuations. However, for v > 106m/s it will be
dominated byquantumfluctuations. Strong enhancement of friction occurs in the case
of resonant photon tunneling. As discussed above, resonant photon tunneling occurs
for v > 2vF ≈ 2 × 106 m/s. For such velocities and d = 1nm, quantum friction
dominates over the thermal contribution even at room temperature (see Fig. 10.5a).
For d = 10nm, quantum friction dominates at low temperatures (see Fig. 10.5b).

The use of graphene in frictional drag experiments has considerable advantages
in comparison with quantum wells. Such experiments can be performed in a vacuum
where the contribution from the phonon exchange can be excluded. In a vacuum,
one can easily measure the dependence of the frictional drag force on the separation
between graphene sheets. Due to the highmobility of the charge carriers in graphene,
the charge carriers can move with much higher drift velocity than in quantum wells.
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10.5 Near-Field Radiative Heat Transfer Between Closely
Spaced Graphene and Amorphous SiO2

In this Section,we investigate heat generation anddissipation due to friction produced
by the interaction between moving (drift velocity v) charge carriers in graphene
and the optical phonons in a nearby amorphous SiO2, and the acoustic phonons in
graphene. Friction produces thermal heating of the graphene, which results in near-
field radiative energy transfer and phononic heat transfer between the graphene and
SiO2. A self-consistent theory that describes these phenomena was formulated by us
in [149] (see also Sect. 10.3) and it allows us to predict experimentally measurable
effects. In comparison with the existing microscopic theories of energy transfer and
transport in graphene [360, 361], our theory is macroscopic.

According to (10.14) and (10.15) in the casewhen free carriers aremoving relative
to the substrate both thermal and quantum fluctuations give contributions to the
frictional stress and the radiative energy transfer. This situation is different from
that considered in [370, 371] where it was assumed that the free carries in graphene
had vanishing drift velocity. The contribution of the quantum fluctuations to the
frictional stress was investigated by us in [149] (see also Sect. 10.3). According to
(10.15) the contribution to the near-field energy transfer from quantum fluctuations
is determined by

Squantz = Sz(Td = Tg = 0) = − �

π3

∫ ∞

0
dqy

∫ ∞

0
dqx

∫ qx v

0
dωωe−2qd ImRd (ω)ImRg(ω

−)

| 1 − e−2qd Rd (ω)Rg(ω−) |2
(10.23)

As discussed in Sect. 10.3, for graphene on SiO2 the excess heat generated by
the current is transferred to the substrate through the near-field radiative heat trans-
fer, and via the direct phononic coupling (for which the heat transfer coefficient
α ≈ 108Wm−2K−1). At small temperature difference (�T = Tg − Td � Td ), from
(10.18) we get

�T = Fx0v − Sz0
αph + S′

z0 − F ′
x0v

(10.24)

where Fx0 = Fx (Td , Tg = Td), Sz0 = Sz(Td , Tg = Td),

F ′
x0 = dFx (Td , Tg)

dTg

∣∣∣
Tg=Td

, S′
z0 = dSz(Td , Tg)

dTg

∣∣∣
Tg=Td

We note that, in contrast to the heat transfer between bodies at rest, for moving
bodies the energy flux Sz(Td , Tg) is not equal to zero even for the case when there
is no temperature difference between the bodies. The energy transfer coefficient is
given by
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α = Sz(Td , Tg) + αph�T

�T
≈ (αph + S′

z0)Fx0v − Sz0F ′
x0v

Fx0v − Sz0
(10.25)

For small velocities Fx0 ∼ v and Sz0 ∼ v2. Thus, from (10.25) it follows that
in the limit v → 0 the energy transfer coefficient between moving bodies is not
reduced to the heat transfer coefficient between bodies at rest, which is determined
by αth = αph + S′

z0. This effect is due to the term Sz0 in the total energy flux
which exists only between moving bodies. The energy transfer coefficient can be
strongly enhanced in comparison with the heat transfer coefficient when Ft0v ≈ Sz0.
Figure10.6a shows the ratio of the energy transfer coefficient to the phononic heat
transfer coefficient for d = 0.35nm and n = 1016 m−2. For low and intermediate
fields, this ratio is larger than unity, which means that, in this region, the near-
fields radiative energy transfer gives an additional significant contribution to the heat
transfer. For nonsuspended graphene on SiO2, the energy and heat transfer are very
effective and the temperature difference does not rise high, even for such high elec-
tric fields that saturation in I − E characteristic starts [164] (see Fig. 10.6b). The
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Fig. 10.6 Radiative energy transfer between graphene and SiO2 for n = 1016m−2, d = 0.35nm
and αph = 1.0 × 108Wm−2K−1. a The dependence of the ratio between the total energy transfer
coefficient and the phononic heat transfer coefficient, on the electric field. b Dependence of the
temperature difference between graphene and substrate on the electric field. c Dependence of the
ratio between the heat flux only due to quantum fluctuations Squantz and the total energy flux, on
the electric field. d Dependence of the ratio between the friction force due to quantum fluctuations
Fquant
x and the total friction force, on the electric field
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radiative heat transfer between bodies at rest is determined only by thermal fluctu-
ations, in contrast to the radiative energy transfer between moving bodies, which is
determined by both thermal and quantum fluctuations. Figure10.6c shows that quan-
tum fluctuations can give significant contribution to the total energy transfer for low
temperatures and large electric field (high drift velocity). Similarly, in the (electric
current) saturation region, quantum fluctuations give significant contribution to the
total friction forcewhich is determined, as discussed above, by the sumof the extrinsic
and intrinsic friction forces (see Fig. 10.6d). The extrinsic friction force has contribu-
tions from both thermal and quantum fluctuations. The friction force due to quantum
fluctuations is denoted as quantum friction, which was discussed in Sect. 10.3
(see also [149]).

Figure10.7a shows the dependence of the energy transfer coefficient on the sepa-
ration d for low electric field (v → 0).At d ∼5nmand T = 300K the energy transfer
coefficient, due to the near-field radiative energy transfer, is∼104Wm−2K−1, which
is∼ three orders of magnitude larger than the radiative heat transfer coefficient due to
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Fig. 10.7 Radiative energy transfer between graphene and SiO2 for n = 1012cm−2 and αph = 0.
a Dependence of the energy transfer coefficient on the separation d for low electric field (v → 0);
b Dependence of the ratio between the energy transfer coefficient and the heat transfer coefficient
on the separation d for low electric field (v → 0); c Dependence of the radiative energy flux on
electric field for d = 1.0nm; d Dependence of the temperature difference between graphene and
substrate on electric field for d = 1.0nm
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the black-body radiation. In comparison, the near-field radiative heat transfer coeffi-
cient in the SiO2–SiO2 system for the plate–plate configuration, when extracted from
experimental data [109] for the plate–sphere configuration, is ∼2230Wm−2K−1 at
a ∼30nm gap. For this system, the radiative heat transfer coefficient depends on
the separation as 1/d2. Thus α ∼105Wm−2K−1 at d ∼5nm, which is one order
of magnitude larger than for the graphene-SiO2 system in the same configuration.
However, the sphere has a characteristic roughness of ∼ 40nm, and the experiments
[109, 110] were restricted to separation wider than 30nm (at smaller separation the
surface roughness affects the measured heat transfer). Thus, the extreme near-field-
separation, with d less than approximately 10nm, may not be accessible using a
plate–sphere geometry. A suspended graphene sheet has a roughness ∼1nm [372],
and measurements of the thermal contact conductance can be performed from sep-
aration larger than ∼1nm. At such separation one, would expect the emergence of
non-local and non-linear effects. This range is of great interest for the design of
nanoscale devices, as modern nanostructures are considerably smaller than 10nm
and are separated in some cases by only a few Angstroms.

Figure10.7b shows that, at small separations, there is significant difference
between the radiative energy transfer coefficient and the radiative heat transfer coef-
ficient determined (in the absence of direct phononic coupling) by α0 = S′

z0. This
difference vanishes for large separations because Sz0 and Fx0 rapidly decrease when
the separation increases. At large separation, the friction force is dominated by
the intrinsic friction and in this case α ≈ α0. Figure10.7c shows the dependence
of the radiative energy flux on electric field for d = 1nm. For this separation, the
energy transfer is considerably less effective than for d = 0.35nm, which leads to
a rapid increase of the temperature difference (see Fig. 10.7d). High temperatures
are achieved at low electric field (small drift velocities), where contribution to the
radiative energy transfer from quantum fluctuations is very small, and the energy
transfer is mainly determined by thermal fluctuations.



Chapter 11
Radiation by Uniformly Moving Sources

When a charged particle uniformlymoves through amediumwith the velocity higher
than the velocity of light in that medium, the Vavilov–Cherenkov radiation is pro-
duced by the medium. However, a uniformly moving neutral object can also excite
radiation in a medium of quantum origin. This phenomenon (denoted as the quan-
tum Vavilov– Cherenkov (QVC) radiation) is due to quantum fluctuations of the
electromagnetic field, is closely related with quantum friction, and exists only when
the velocity of an object relative to a medium exceeds a threshold velocity. In this
chapter, we consider the QVC radiation occurring during relative sliding of the two
transparent dielectric plates with the index of refraction n. We study this problem
using a non-relativistic and a fully relativistic theory.

Two transparent dielectric plates during relative sliding emit QVC radiation when
the sliding velocity exceeds a threshold velocity vc = 2nc/(n2 + 1). Close to the
threshold velocity, the friction force∼(v−vc)

5/2 and is dominated by the contribution
from the s-polarized electromagnetic waves. However, close to the light velocity, the
contributions from both polarizations are strongly enhanced, and a new contribution
occurs that is connected to the mixing of the waves with the different polarizations.

A small neutral particle moving parallel to a transparent dielectric plate emits
QVC radiation when the velocity exceeds a threshold velocity cc = c/n. This radi-
ation is responsible for quantum friction, which we will study in the particle rest
reference frame and in the lab frame, using a fully relativistic theory. The friction
forces in the particle-plate configuration in the different reference frames will be cal-
culated from the corresponding results in the plate-plate configuration, considering
one of the plates as sufficiently rarefied. We will show that in the realistic situation,
the friction force acting on a neutral nanoparticle due to QVC radiation can be com-
parable in magnitude to the friction force acting on a charged particle due to the
classical Vavilov–Cherenkov (CVC) radiation. Thus, in principle QVC radiation can
be detected using the same experimental setup as for CVC radiation. The challenges
for future experiments are to accelerate a particle, having sufficiently large fluctuat-
ing dipole moment, and to a velocities close to the light velocity, at small separation
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from a transparent dielectric surface. Non-relativistic QVC radiation can be observed
using a transparent dielectric with refractive index ∼10 in the near UV region.

11.1 Vavilov-Cherenkov Effect

A remarkable manifestation of the interaction between the electromagnetic field and
matter is the emission of light by charged particlemoving at a constant superluminally
velocity in a medium: Vavilov–Cherenkov (VC) radiation [284–289], which has
broad applications in the detection of high-energy charged particles in astrophysics
and particle physics. Radiation with a frequency ω occurs only if the charge velocity
v exceeds the phase velocity of light in a given transparent medium v0 = c/n(ω),
i.e.

v >
c

n(ω)
, (11.1)

where n(ω) is the refractive index (at the frequencyω) in themedium (c is the velocity
of light in vacuum). The specificity of radiation angular distribution is reflected in
the angle θ0 between the wave vector of emitted waves k and the velocity v, with

cosθ0 = c

n(ω)v
. (11.2)

The results (11.1) and (11.2) can be obtained using the Huygens principle according
to which, each point on the path of a charge moving with a constant velocity v is a
source of a spherical wave emitted as the charge passes the point (Fig. 11.1). If the
condition (11.1) is fulfilled, these spheres have a common envelope, a cone whose
apex coincides with the instantaneous charge position, the angle θ0 being defined by
expression (11.2). For a dispersionless medium (i.e. n is a constant), the angle θ is the

Fig. 11.1 Generation of the Vavilov–Cherenkov (VC) radiation ((c/n)t is the light path during time
t, vt = [c/(ncosθ0)]t is the distance covered by a charge (source)) for the same period
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same for all frequenciesω and radiation has a clear-cut front, which forms a conewith
the angle of opening π−2θ0 with the charge (source) in its apex (Fig. 11.1). This cone
is totally analogous to the Mach cone, which characterizes a shock wave generated
by the motion of a supersonic source (bullet, shell, aircraft, missile) in the air or other
media, the velocity of the shockwave or sound v playing the role of the phase velocity
of light v0 = c/n in expressions (11.1) and (11.2). The hydrodynamic (acoustic) front
at theMach cone is very sharp and easy to observe (e.g., as a supersonic plane flies by)
because the dispersion of sound, i.e. the dependence of its velocity v on frequency,
is normally very small.

The VC effect also occurs when a charge (source) propagates not in a continuous
medium but inside a narrow empty channel made in such matter. This is because
VC radiation is formed not only on the charge path but also near it, at a distance
of the order of the wavelength of emitted light λ = 2πc/(nω). The corresponding
radiation intensity naturally decreases with increasing radius r of the empty channel
in which a charge propagates axially. At

√
1 − (v/c)2 ∼1 radiation is almost as high

as it is in the absence of the channel provided r/λ ≤ 0.01 (in optics, this means that
r < 5nm). A qualitatively similar picture is obtained if a channel is replaced by a
slit, or when a charge moves near the medium (dielectric). This is essential because
the loss of energy for VC radiation when a charge moves in a medium is relatively
small and ionization losses in the immediate proximity to the trajectory dominate.
However, ionization losses are excluded when a charge propagates in channels, slits
or near the medium, while VC radiation persists. This is important, but not crucial,
for charges. However, in the case of the motion of a neutral particle, the phenomenon
is possible only if channels or gaps are available; otherwise, the particle is destroyed.

The radiation intensity can be calculated from the solution of the equations of
electrodynamics in a medium. From such a solution, the radiation intensity can be
obtained as a flux of the Poynting vector through the cylindrical surface surrounding
the charge trajectory. Another approach consists of in determining the force, which
slows down the moving charge (using, of course, the same equations). The work
of this force in a transparent medium is equivalent to the radiation energy. Such
calculations for a continuous medium are included in a textbook by Landau and
Lifshitz [191].

The VC radiation from a point charge emoving parallel to a transparent dielectric
surface at the separation d was studied by many authors (see [292] for review).
Here, we present a new, very simple consideration of this problem. We introduce a
Cartesian coordinate system with the x-axis along the line of motion of the charge.
The z-axis is normal to the dielectric surface so that the equation of the surface is
z = 0, and the charge is located at z = d. The rest reference for a dielectric is denoted
as the K frame, and the rest reference frame for the point charge is the K ′ frame. In
the K frame, the electromagnetic field can be represented as the sum of the waves
incident on the surface of a dielectric as well as those it reflects. The electric field
for z < d can be written in the form

E(q,ω, z) = (
Rs(ω, q)wsn̂s + Rp(ω, q)wpn̂

+
p

)
e−kzz + (

wsn̂s + wpn̂
−
p

)
ekzz (11.3)
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where the second term represents the electric field created by a point charge in free
space in the K frame, Rp(s) is the reflection amplitude for p(s)-polarized electromag-
netic waves kz = ((q2 − (ω + i0+/c)2)1/2, n̂s = [ẑ × q̂] = (−qy, qx, 0)/q, n̂±

p =
[k̂± × n̂s] = (∓qxikz,∓qyikz, q2)/(kq), k = ω/c, k̂± = (q ± iẑkz)/k. In the K ′
reference frame, co-moving with a charge, the electric field created by a point charge
in the free space for z < d is determined by the Coulomb law (ω′ = 0), and can be
written in the form

E0′(q′, 0, z) = −2πe

q′ (iq′ + ẑq′)e−q′(d−z). (11.4)

From the Lorenz transformation, for the electric field (see Appendix B), taking into
account that ω′ = 0, it follows

wp = −2πekγ

q
e−kzd, ws = i

2πekγqy
qq′ e−kzd, (11.5)

where kz = q′, ω = qxv. The Fourier component of the force acting on the point
charge e is given by

Fx(qx, qy) = eRe
[
Rpwp(n̂

+ · x̂) + Rsws(n̂s · x̂)]e−kzd

= −2πe2γ

qx

{

kzImRp + q2y
q2kz

Im
[
β2q2xRs − k2z Rp

]
}

e−2kzd (11.6)

The Fresnel’s formulas for the reflection amplitudes can be written in the form

Rp = iεkz − kzn
iεkz + kzn

, Rs = ikz − kzn
ikz + kzn

, (11.7)

where ε is the dielectric permeability, kzn =
√
q2x(εβ

2 − 1) − q2y and kz =
√
q2y + q2x(1 − β2). The imaginary part of the reflection amplitude is non-vanishing

only if εβ2 > 1 and q2y < q2x(εβ
2 − 1). Taking into account that

β2q2xRs − k2z Rp = −q2
(
1 + 2ikz

iεkz + kzn

)
,

(11.6) can be written in the form

Fx(qx, qy) = −4πe2γkzn
qx

εk2z + q2y
ε2k2z + k2zn

e−2kzd . (11.8)
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Integration over q′
x = qx/γ and qy, after introducing the new variable ω = qx/v,

yields

F = 2
∫ ∞
0

dω

2πγv

∫ ∞
−∞

dqy
2π

F(qx, qy) = − 2e2

π

∫ ∞
0

dω

ω

∫ qymax

−qymax
dqy

kzn
(
εk2z + q2y

)

ε2k2z + k2zn
e−2kzd , (11.9)

where qymax = (ω/v)
√

εβ2 − 1. It is convenient to replace variable qy by another
variable qy = qymaxsinθ, where θ is the angle between the negative z-axis and the
projection of the radiation wave vector on the yz-plane. Thus, (11.9) can be rewritten
in the form

F = 2e2

πv2

∫ ∞

0

dω

ω

εβ2 − 1

ε − 1

∫ π
2

− π
2

dθcos2θ
(ε + 1)(εβ2 − 1)sin2θ + ε(1 − β2)

(ε + 1)(εβ2 − 1)cos2θ − ε2β2 e−2d ω
v

√
(εβ2−1)sin2θ+1−β2

.

(11.10)

For the dispersionless medium (ε = n2 independent on ω, n is the refractive index),
carrying out the integration first over frequency, and then angle, from (11.10) we
obtain

f clasx = − e2

2βd2
1

n2 − 1

[
n2γ

√
γ2 + n2

−
√
n2 − 1

γ
− β

]

. (11.11)

In the ultrarelativistic case (β = 1) (11.11) is simplified to

f clasx (β = 1) = − e2

2d2
. (11.12)

11.2 Photon Emission and Anomalous Doppler Effect

The sources of VC radiation examined above (i.e. charges) have no internal degrees
of freedom. Another important case is a neutral particle without charge or any static
moment, but with a fluctuating dipole moment. For this case, a kinematic explanation
for the radiation and friction, above the Cherenkov threshold, can be given with the
following arguments [293]. The conservation of energy and momentum laws for the
case of photon emission by a particle are:

{
E1 = E2 + �ω, E1,2 =

√
m2

1,2c
4 + c2p21,2

p1 = p2 + �q, p1,2 = m1,2v1,2γ1,2
, (11.13)

where E1,2 and p1,2 are the energy and momentum of a particle with the rest mass
m1,2 = M + ε1,2/c2 before (subscript 1) and after (subscript 2) the emission of a

photon with the energy �ω and momentum �q, q = nω/c, γ1,2 = 1/
√
1 − v2

1,2, and
ε1,2 is the internal energy of a particle. From (11.13) follows
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(
E1 − �ω

c

)2

− (p1 − �k)2

= m2
1c

2 −
(

�ω

c

)2

(n2 − 1) − 2E1�ω

c2

(
1 − v1ncosθ

c

)
= m2

2c
2, (11.14)

or

(ε1−ε2)

(
2M + ε1 + ε2

c2

)
= 2E1�ω

c2

(
1 − v1ncosθ

c

)
+

(
�ω

c

)2

(n2−1). (11.15)

Assuming ε1,2 � Mc2 and that the recoil is negligible (�ω/Mc2 � 1), (11.15)
implies that

�ω = − ε2 − ε1

γ
(
1 − vncosθ/c

) . (11.16)

Assumingω > 0 from (11.16) follows that in the region of the normal Doppler effect,
when vn/ccosθ < 1 one has ε2 < ε1. Thus, the emission of a photon is possible only
when the state of the particle change from an upper energy level 1 to the lower level 2.
On the other hand in the anomalous Doppler effect region, when vn/ccosθ > 1 (i.e.
θ < θ0, where cosθ0 = c/nv, θ0 is the Vavilov-Cherenkov radiation angle) then
ε2 > ε1 and, therefore, the emission of a photon is accompanied by excitation of the
particle. The energy necessary for this process is gained from the kinetic energy of
motion of the particle. It is important to note that the superlightmotion (v > c/n), and
therefore the anomaloas Doppler effect, which is absent for the sublight (v < c/n)
motion, are only possible in presence of a medium. Taking into account that for a
transparent dielectric ω = ω(q) = cq/n, and introducing the projection of the wave
vector on the direction of the velocity qx = qcosθ, (11.16) can be written in the form

ω′ = −ω0 = γ
[
ω(q) − qxv

]
, (11.17)

whereω0 = (ε2−ε1)/� is the excitation frequency for the particle andω′ = −ω0 < 0
is the photon frequency, as seen from the moving particle. This is an illustration of
the so-called anomalous Doppler effect where the photon frequency, as seen from
the moving particle, is negative.

The above arguments can also be applied for an extended media. For the relative
sliding of two identical transparent dielectric plates, ω′ = −cq′/n where

q′ =
√

γ2(qx − vq/cn)2 + q2y > γ
(
qx − vq/cn

)

and (11.17) can be written in the form

qxv = ω(q) + ω(q′)
γ

> (cqx/n)
(
2 − v

cn

)
. (11.18)
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Thus, radiation exists only if the sliding velocity v exceeds the threshold velocity vc:

v > vc = 2nc

n2 + 1
. (11.19)

11.3 Quantum Friction Between Two Transparent Plates

Weconsider two semi-infinite solidswith flat parallel surfaces separated by a distance
d and moving with the velocity v relative to each other, see Fig. 5.1. We introduce the
two reference frames, K and K ′, with coordinate axes xyz and x′y′z′. In the K frame
body 1 is at rest while body 2 is moving with the velocity v along the x-axis relative
to body 1 (the xy and x′y′ planes are in the surface of body 1, the x and x′-axes have
the same direction, and the z and z′-axes point toward body 2). In the K ′ frame, body
2 is at rest while body 1 is moving with velocity −v along the x-axis. According to a
fully relativistic theory [128] (see also Sect. 7.3) the quantum friction force F1x, and
the radiation power P1 absorbed by plate 1 at T1 = T2 = 0, are determined by the
formulas

(
F1x

P1

)
=

∫ ∞

−∞
dqy
2π

∫ ∞

0

dqx
2π

∫ qxv

0

dω

2π

(
�qx
�ω

)
�12(ω,q). (11.20)

where the positive quantity

�12(ω,q) = 4sgn(ω′)
|�|2

[
(q2 − βkqx)

2 − β2k2z q
2
y

]{
ImR1p

[
(q2 − βkqx)

2ImR′
2p|�ss|2

+ β2k2z q
2
y ImR′

2s|�sp|2
] + (p ↔ s)

}
e−2kzd (11.21)

can be identified as a spectrally resolved photon emission rate,

� = (q2 − βkqx)
2�ss�pp − β2k2z q

2
y�ps�sp,

�pp = 1 − e−2kzdR1pR
′
2p, �sp = 1 + e−2kzdR1sR

′
2p,

kz = √
q2 − (ω/c)2, R1p(s) is the reflection amplitude for surface 1 in theK frame for

a p(s)-polarized electromagnetic wave, and R′
2p(s) = R2p(s)(ω

′, q′) is the reflection
amplitude for surface 2 in the K ′ frame for a p(s)-polarized electromagnetic wave,
ω′ = γ(ω−qxv), q′

x = γ(qx −βk),�ps = �sp(p ↔ s). The symbol (p ↔ s) denotes
the terms that are obtained from the preceding terms by permutation of indexes p
and s. If, in (11.20), one neglects terms of order β2, the contributions from the
p- and s- polarized waves will be separated. In this case, (11.20) is reduced to the
approximate (relativistic) formula
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(
Fx

P1

)
= − �

π3

∫ ∞

0
dqy

∫ ∞

0
dqx

∫ qxv

0
dω

(
�qx
�ω

) (
ImR1pImR′

2p

|Dpp|2 + ImR1sImR′
2s

|Dss|2
)

e−2kzd ,

(11.22)

For transparent dielectrics the reflection amplitudes are given by the Fresnel’s for-
mulas

Rp = in2kz −
√
n2

(
ω
c

)2 − q2

in2kz +
√
n2

(
ω
c

)2 − q2
, Rs = ikz −

√
n2

(
ω
c

)2 − q2

ikz +
√
n2

(
ω
c

)2 − q2
. (11.23)

In this case, the friction force can be written in the form

F1x = �v0

d4
g̃

(
v

v0
,
v

c
, n

)
, (11.24)

where g̃ is a function of two dimensionless velocity ratios, and the refractive index n.
In the non-relativistic limit (β2 � 1), the dependence on the vacuum light velocity
c drops out and

Fnrel
1x = �v0

d4

[
gs

(
v

v0

)
+ gp

(
v

v0
, n

)]
, (11.25)

where the s-wave contribution gs depends only on the ratio of the velocity v to the
light speed in the medium v0. However, the p-wave contribution depends also on the
refractive index n.

The imaginary part of the reflection amplitude R1p(s), given by (11.23), is only
nonzero when ω > v0q > v0qx. Similarly, ImR2p(s) is non-zero only when qxv−ω >

v0q′/γ > v0(qx − βω/c). Both of these conditions limit the range of integration to

v0qx < ω <
(v − v0)qx
1 − vv0/c2

. (11.26)

From this condition, it follows that the minimal velocity vc, at which friction occurs,
is determined by (11.19).

For transparent dielectrics, where there are no resonances in the reflection ampli-
tudes in the frequency rangewhere the quantum friction is non-vanishing, |Rs(p)| ≤ 1.
Thus, a good estimation of the friction force and the radiative heat transfer can be
obtained by neglecting the multiple-scattering of the electromagnetic waves by the
dielectric surfaces. In this approximation, Dpp ≈ Dss ≈ Dsp ≈ Dsp ≈ 1,

� ≈ (q2 − βkqx)
2 − β2k2z q

2
y = (qq′)2

γ2
,

(q2−βkqx)
2ImR′

2p|�ss|2+β2k2z q
2
y ImR′

2s|�sp|2 ≈ (qq′)2

γ2 ImR′
2p +β2k2z q

2
y Im(R′

2p+R′
2s),
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�12 = 4sgn(ω′)

[
(
ImR1pImR′

2p + ImR1sImR′
2s

)
(

1 + γ2β2
k2z q

2
y

q2q′2

)

+ γ2β2
k2z q

2
y

q2q′2
(
ImR1pImR′

2s + ImR1sImR′
2p

)
]

. (11.27)

Thus, the relativistic effects produce not only amixing of the waves with the different
polarizations, but also modify the contributions from the different polarizations.

Close to the threshold velocity v ≈ vc, when ξmin ≈ ξmax and

ymax = n2 + 1

n
√
n2 − 1

√
v − vc

v0
� 1,

the integration over qy in (11.20) is restricted by the range 0 < |qy| < ymaxqx �
qx. In this case, to lowest order in ymax, the mixing of the waves with different
polarizations can be neglected and the friction force is determined by the formula
(see Appendix O.1)

F1x ≈ �v0

d4

[
g̃s

(
v

v0
, n

)
+ g̃p

(
v

v0
, n

)]
, (11.28)

and the radiative heat transfer P1 = v0F1x, where

g̃s

(
v

v0
, n

)
= ζ(3)

5π2

n(n2 + 1)5

(n2 − 1)5
√
n2 − 1

(
v − vc

v0

)5/2

,

and g̃p = g̃s/n4. In the non-relativistic limit (n � 1)

gs

(
v

v0

)
= ζ(3)

5π2

(
v − vc

v0

)5/2

,

and gp(v/v0, n) = gs(v/v0)/n4.
Close to the light velocity (v → c) (see Appendix N.2), the s-wave contributions

to the friction force, given by the approximate formula (11.22), is finite:

Fapprox
xs ≈ 3�v

4π2d4

√
2

n2 − 1
ln

(
n +

√
n2 − 1

)
, (11.29)

and diverges as ∼γ in a fully relativistic theory given by (N.7),

Fxs ≈ 3�v

4π2d4

√
n − 1

2(n + 1)3/2
γ (11.30)

Other contributions can be estimated in a similar way.
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Figures11.2 and 11.3 show the dependence of the friction force between two
transparent dielectric plates on the relative sliding velocity in a non-relativistic the-
ory (Fig. 11.2a, b), and a fully relativistic theory for n = 2 (Fig. 11.3a) and n = 10
(Fig. 11.3b). In the non-relativistic theory, the contributions to the friction force from
s-and p-polarized waves are separated. The threshold velocity vc for appearance
of the VC radiation in the non-relativistic theory is equal to 2v0. The friction in
this theory is dominated by the s-wave contribution, which depends only on the
velocity ratio v/v0. In a fully relativistic theory, friction and radiation only exist for
v > vc = 2nc/(n2 + 1), which is equal to 0.8c for n = 2 (Fig. 11.3a) and 0.2c for
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Fig. 11.2 The dependence of friction force between two transparent dielectric plates on the relative
sliding velocity. The normalization factor for the forces �v0/π

3d4, v0 = c/n. a and b Results
of a non-relativistic theory for the contributions from s- and p-polarized electromagnetic waves,
respectively. The s-wave contribution in a non-relativistic theory depends only on the ratio v/v0.
The p-wave contributions are shown for n = 10 (green line) and n = 100 (blue line)
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Fig. 11.3 The same as
Fig. 11.2 but for a fully
relativistic theory. Figures
a and b Results of a fully
relativistic theory (red line)
for n = 2 and n = 10,
respectively. The blue and
green lines show the separate
contributions from the s- and
p-polarized electromagnetic
waves, respectively, obtained
using the approximate
(11.22). Insets show the
friction forces in the
ultrarelativistic case
(1 − β � 1)
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n = 10 (Fig. 11.3b). Figure11.3a, b also show results of an approximate relativis-
tic theory for the contributions to the friction force from s-polarized waves (blue
line) and p-polarized waves (green line) given by (11.22). In the approximate theory,
the reflection amplitude from the moving surface is approximated by the reflec-
tion amplitude in the co-moving reference frame at the frequencies and wavevectors
determined by the Lorenz transformation. The polarization mixing is not taken into
account in this theory, where the coupling betweenwaves with different polarizations
are neglected. Close to the threshold velocity, the mixing of the waves with different
polarizations is unimportant and the friction is dominated by the contribution from
the spolarized electromagnetic waves, which can be accurately described using the
approximate theory. However, in the ultrarelativistic case (γ � 1), both contribu-
tions from the different polarizations are strongly enhanced in the comparison with
the approximate theory, and a new contribution occurs that is connected with the
polarization mixing.
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11.4 Quantum Friction Between a Particle
and Transparent Plate

According to Sect. 8.2 the friction force acting on a particle fx, and the radiation
power absorbed by it p, in the K frame are

(
fx(z)
p(z)

)
= 1

γπ2

∫
d2q

∫ vqx

0
dω

(
�qx
�ω

)
e−2kzz

kz

[
ImRp(ω)φp+ImRs(ω)φs

]
Imα(ω′),

(11.31)

φp =
(

ω′

c

)2

+ 2γ2(q2 − β2q2x)
k2z
q2

, φs =
(

ω′

c

)2

+ 2γ2β2q2y
k2z
q2

.

Similarly, the friction force f ′
x and the radiation power p

′ absorbed by the particle in
the rest reference frame of a particle (the K ′ frame) are

(
f ′
x
p′

)
= 1

π2

∫ ∞

0
dqx

∫ ∞

−∞
dqy

∫ qxv

0
dω

(
�qx
−�ω

)
e−2kzd

kz

[
ImRp(ω

′)φ′
p+ImRs(ω

′)φ′
s

]
Imα(ω),

(11.32)

φ′
p =

(
ω

c

)2

+ 2γ2(q′2 − β2q′2
x

) k2z
q′2 , φ′

s =
(

ω

c

)2

+ 2γ2β2q2y
k2z
q′2 .

For transparent dielectrics the reflection amplitudes are given by the Fresnel’s for-
mulas

Rp = in2kz −
√
n2

(
ω
c

)2 − q2

in2kz +
√
n2

(
ω
c

)2 − q2
, Rs = ikz −

√
n2

(
ω
c

)2 − q2

ikz +
√
n2

(
ω
c

)2 − q2
. (11.33)

There is no restriction on the imaginary part of the particle polarizability in the
integration range 0 < ω < vxv. The integrand in (11.31) is nonzero only in the range
v0qx < ω < qxv, where the imaginary part of the reflection amplitude is nonzero,
and thus the critical velocity vc = v0 = c/n.

We assume that the imaginary part of the particle polarizability is determined by
the formula

Imα = R3ω2
0

ω/τ

(ω2 − ω2
0)

2 + (ω/τ )2
,

where R is the radius of the particle, ω0 is the plasmon frequency for the particle and
τ is the damping constant, then close to the resonance at ω ≈ ω0

Imα = R3ω0
π

2
δ(ω − ω0),

and from (11.32), the resonant contributions to the friction force and the heating
power close to the threshold velocity in the K ′ frame are dominated by the contribu-
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tions from p-polarized waves, and are given by (see Appendix O.1)

f res′xp = − �R3ω0

4d4(n2 − 1)

v − v0

v0

[
3 + 4q0d + 2(q0d)2

]
e−2q0d, (11.34)

wres′
p = �R3ω2

0

2d3(n2 − 1)

v − v0

v0

[
(1 + q0d)e−2q0d

]
(11.35)

where q0 = (n2 − 1)ω0/((v − v0)n2). In the off-resonant region ω � ω0

Imα = R3 ω

ω0τ
,

and again the dominant contributions are given by the p-polarized waves (see Appen-
dix Q.1):

f offres′xp ≈ − 5

4π

�R3v2
0

d6ω2
0τ

n4

(n2 − 1)3

(
v − v0

v0

)3

, (11.36)

woffres′
p ≈ 35

64π

�R3v3
0

d6ω2
0τ

n6

(n2 − 1)4

(
v − v0

v0

)4

. (11.37)

From (11.34)–(11.37), it follows that close to the threshold velocity w′ � f ′
xc. Thus,

from (8.21), it follows that fx ≈ f ′
x , which agrees with the results obtained in [156],

and w ≈ fxv. The change of the kinetic energy in this limit is determined by the
radiation power from a particle in the K frame; however, the change of the internal
energy and, consequently, the change of the rest mass of the particle, is small. The
off-resonant contribution to friction force from the frequency range ω � ω0 is only
important close to the threshold velocity ((v − v0)/v0 � 1), while, far from the
threshold velocity, the friction force is dominated by the resonant contribution from
ω ≈ ω0, as was already noted in [156] (Fig. 11.4a).

The friction force acting on the elementary charge e, due to the CVC radiation, is
determined by the well-known formula in [292] (see also Sect. 11.1)

f clasx = − e2

2βd2
1

n2 − 1

[
n2γ

√
γ2 + n2

−
√
n2 − 1

γ
− β

]

. (11.38)

In the ultra relativistic limit (γ � 1) (11.38) is significantly simplified to f clasx =
−e2/2d2. In Fig. 11.3 it is compared with the friction force due to the QVC radiation
on a neutral silver nano particle with the radius R = 4nm, and the particle-surface
separation d = 10nm. The surface plasmon frequency for a particle ω0 = ωp/

√
3,

where ωp=9.01eV is the bulk plasmon frequency for silver, and with losses (red
curve, τ−1 = 2.4 × 1014s−1) and no losses (green curve, τ−1 = +0). Far from the
threshold velocity, these friction forces are of the same order of the magnitude (see
Fig. 11.4a).
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Fig. 11.4 The dependence of the friction force acting on a silver nanoparticle, and on the elementary
charge e at motion parallel to the transparent dielectric on the ,relative sliding velocity. The radius
of particle R = 4nm, the separation d = 10nm, the refractive index n = 2. a The red and green
curves show the friction forces for a particle with losses (τ−1 = 2.4 × 1014s−1) and no losses
(τ−1 = +0). The blue curve shows the friction force on a elementary charge; e. b The red, blue and
pink curves show the total friction force, and the contributions from the p- and s-polarized waves,
respectively, in the particle rest reference (the K ′ frame) in the ultra relativistic case (γ � 1). The
green, yellow and light-blue curves—the same but in the lab frame (the K frame)

In the ultra relativistic limit (γ � 1)

Imα(ω′) = −π

2
ω0R

3δ(ω′ + ω0) = − π

2γ

ω0R3

v
δ

(
qx − ω

v
− ω0

γv

)
(11.39)

The negative sign of the imaginary part of the particle polarizability means that a
particle behaves like an object with negative absorption, amplifying certain incident
waves. This phenomenon is closely connected to superradiance first introduced by
Zel′dovich [294].He argued that a rotating object amplifies certain incidentwaves and
speculated that this would lead to spontaneous emission when quantum mechanics
is considered. The contributions to the friction force, and the radiation power, from
the s- and p-polarized waves in the K frame are given by (see Appendix O.1)

fsx = − 3�ω0R3

2d4(n + 1)

[
1 +

(
ω0d

cγ

)
C

]
, ps = − 3�vω0R3

2d4(n + 1)
(11.40)

fpx = −3�ω0R3

2d4
n

n + 1

[
1 +

(
ω0d

cγ

)
C′

]
, pp = −3�vω0R3

2d4
n

n + 1
, (11.41)
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where

C = 2

3π

√
n + 1

n − 1

[
n√

n2 − 1
tanh−1

√
n2 − 1

n
− 1

]

,

C′ = 2

3π
n

√
n + 1

n − 1

[
n2√
n4 − 1

tanh−1

√
n4 − 1

n2
− n√

n2 − 1
tanh−1

√
n2 − 1

n

]

,

In the K ′ frame, the friction force and the heat absorbed by a particle can be obtained
from the corresponding quantities in the K frame using the Lorenz transformations
(8.24). For example, for the contributions from the s-polarized waves

f ′
s = γ2(fs − βws) ≈ − 3�ω0R3

2d4(n + 1)

[
1 + Cγ

ω0d

c

]
, (11.42)

and

w′
s = γ2(ws − vfs) ≈ 3�vω0R3

2d4(n + 1)
Cγ

ω0d

c
. (11.43)

Thus, contrary to the K frame, where the friction force and the power of photon
emission are finite, in the K ′ frame the friction force and the radiation power both
diverge as ∼ γ (see Fig. 11.4b). These results also can be obtained by direct calcu-
lations in the K ′ frame. The radiation power w is determined mostly by the friction
force power fxv in the K frame (see (8.24)). From (8.25), it follows that the particle
heating power also contributes significantly in this limit to the change of the kinetic
energy.

11.5 Discussion

A silver particle with R = 4nm has the mass m0 ≈ 2.68 × 10−21 kg. Close to
the threshold velocity (v ≈ v0 = c/n) at n = 2, it has the kinetic energy EK =
m0c2(γ−1) ≈ 200TeV,which is larger than the energy of twoproton inLargeHadron
Collider 7 TeV. However the energy of a particle can be decreased by decreasing its
radius. According to (11.38) and (11.34), the intensity of the QVC radiation exceeds
the intensity of the CVC radiation when

�ω0

(
R

d

)3

>
e2

2d
(11.44)

The point dipole approximation is valid for d � R. Assuming d = 2R, the condition
(11.44) gives d > 4αd0 where the fine structure constant α ≈ 1/137 and d0 = c/ω0.
Using the typical value of ω0 in the UV range, d0 ∼10nm and thus d > 0.3nm. For
a particle with R = 0.4nm and d = 1nm, the reduction factor for the particle mass



242 11 Radiation by Uniformly Moving Sources

∼10−3 and the energy∼0.1TeV. The characteristic frequency of radiation ω ∼ v/d.
The threshold velocity v0 depends on the refractive index n. Recently transparent
metamaterials were developed with a very high reflective index in the UV range
[295]. At n = 20, the threshold velocity v0 ∼107m/s and at d = 1nm, the frequency
of the radiation ∼1016s−1 i.e. in the near-UV range. The energy of a particle in this
case is ∼1GeV. Thus, in principle, QVC radiation can be detected with the present
experimental setups but only in the region where relativistic effects are small.



Chapter 12
Phononic Heat Transfer at Planar Interfaces

12.1 Introduction

Almost all surfaces in nature and technology have roughness on many different
length scales [385]. When two macroscopic solids are brought into contact, even if
the applied force is very small for example, just the weight of the upper solid block,
the pressure in the asperity contact regions can be very high, usually close to the
yield stress of the (plastically) softer solid. As a result, good thermal contact may
occur within each microscopic contact region, but owing to the small area of real
contact, the (macroscopic) heat transfer coefficient may still be small. In fact, recent
studies have shown that in the case of surfaces with roughness on many different
length scales, the heat transfer is nearly independent of the area of real contact [296].
We emphasize that this remarkable and counter-intuitive result is only valid when
roughness occur over several decades in length scale.

For micro or nanoscale systems, the situation may be very different. Often, the
surfaces are very smoothwith typically nanometer (or less) roughness onmicrometer-
sized surface areas, and, because of adhesion, the solids often make contact over a
large fraction of the nominal contact area. The heat transfer between solids in perfect
contact is usually calculated using the so called acoustic and diffusive mismatch
models [297, 298], where it is assumed that all phonons scatter elastically at the
interface between two materials. In these models, there is no direct reference to
the nature of the solid–solid interaction across the interface, and the models cannot
describe the heat flow between weakly interacting solids. An acoustic mismatch
model for the thermal contact resistance of van derWaals contacts has been developed
by Prasher [299]

Here, we will discuss the heat transfer across interfaces. We focus mainly on
perfectly flat interfaces, but we also give some comments on the role of surface
roughness, a topicwhichwill be discussed in detail inChap. 13. The theorywepresent
is general, valid for both solid–solid, solid–liquid or solid–membrane systems with
arbitrary strength of the interaction across the contacting interface.We present simple
analytical results that can be used to estimate the heat transfer coefficient. We present
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numerical results for the heat transfer for solid–solid, solid–liquid He and solid–
membrane contacts. We consider in detail the heat transfer between graphene and
amorphous SiO2. For this system, the calculated value of the heat transfer coefficient
is in good agreement with the value deduced from experimental data.

12.2 Theory

Consider the interface between two solids, and assume that local thermal equilibrium
occurs everywhere except close to the interface. For weakly coupled systems, this
should be an excellent approximation up to atomic distances from the interface; how-
ever, for strongly coupled systems, one cannot expect full local thermal equilibrium
within one phonon mean free path from the interface. The energy flow (per unit area)
through the interface is given by [266]

J = α(T0 − T1),

where T0 and T1 are the local temperatures at the interface in solid 0 and 1, respec-
tively. The stress or pressure acting on the surface of solid 1 from solid 0 can be
written as

σ(x, t) = K
[
u0(x, t) − u1(x, t)

]
,

where u0 and u1 are the (perpendicular) surface displacement of solid 0 and 1 (see
Fig. 12.1) (x = (x, y) is a coordinate system in the interfacial plane), respectively,
and where K is a spring constant per unit area characterizing the interaction between
the two solids. For weakly interacting solids, the parallel interfacial spring constant
K‖ is usually much smaller than the perpendicular spring constant K⊥ = K , and we
will neglect the heat transfer resulting from the tangential interfacial stress associated
with thermal vibrations (phonons).

z

d    + u  - ueq 0 1

solid 1

solid 0solid 0solid 0

Fig. 12.1 Two solids 0 and 1 in contact. The interfacial surface separation is the sum of the
equilibrium separation deq and the difference in the surface displacements u0 − u1, due to thermal
movements, where both u0 and u1 are positivewhen the displacement points along the z-axis towards
the interior of solid 1. Due to interaction between the solids, a perpendicular stress (or pressure)
±K(u0(x, t) − u1(x, t)) will act on the (interfacial) surfaces of the solid
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If we define

u(q,ω) = 1

(2π)3

∫
d2xdt u(x, t)e−i(q·x−ωt),

we get
σ(q,ω) = K

[
u0(q,ω) − u1(q,ω)

]
. (12.1)

Within linear elasticity theory [301]

u1(q,ω) = M1(q,ω)σ(q,ω), (12.2)

where M1(q,ω) is determined by the elastic properties of solid 1. We consider the
heat transfer from solid 0 to solid 1. The displacement of an atom in solid 0 is the
sum of a contribution derived from the applied stress−σ, and a stochastic fluctuating
contribution u0f due to the thermal movement of the atoms in the solid in the absence
of interaction between the solids:

u0(q,ω) = u0f(q,ω) − M0(q,ω)σ(q,ω), (12.3)

Combining (12.1)–(12.3) gives

u1(q,ω) = KM1(q,ω)

1 + K
[
M0(q,ω) + M1(q,ω)

]u0f(q,ω), (12.4)

u0(q,ω) = 1 + KM1(q,ω)

1 + K
[
M0(q,ω) + M1(q,ω)

]u0f(q,ω). (12.5)

The energy transferred to solid 1 from solid 0 during the time period t0 can be
written as

�E =
∫

d2xdt u̇1(x, t)σ(x, t),

where u̇ = ∂u/∂t, and where the time-integral is over −t0/2 < t < t0/2 and the
spatial integral over the interfacial surface area A0 = L2

0 (−L0/2 < x < L0/2,
−L0/2 < y < L0/2). One can also write

�E = (2π)3
∫

d2qdω (−iω)u1(q,ω)σ(−q,−ω)

Using (12.1), (12.4) and (12.5), we obtain

�E = (2π)3
∫

d2qdω

× ωK2ImM1(q,ω)
∣∣1 + K

[
M0(q,ω) + M1(q,ω)

]∣∣2
〈|u0f(q,ω)|2〉, (12.6)
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where we have performed an ensemble (or thermal) average denoted by 〈..〉. Next,
note that (see Appendix P1)

〈|u0f(q,ω)|2〉 = A0t0
(2π)3

Cuu(q,ω), (12.7)

where A0 is the surface area, and

Cuu(q,ω) = 1

(2π)3

∫
d2xdt

〈
u0f(x, t)u0f(0, 0)

〉
ei(q·x−ωt),

is the displacement correlation function. Using the fluctuation–dissipation theorem
[300] we have (see also Appendix P2 and P3)

Cuu(q,ω) = 2

(2π)3

�(ω)

ω
ImM0(q,ω) (12.8)

where �(ω) = �ω
[
exp(�ω/kBT0) − 1

]−1
. Substituting (12.7) in (12.6) and using

(12.8) gives the heat current J0→1 = �E/A0t0 from solid 0 to solid 1:

J0→1 = 4

(2π)3

∫
d2q

∫ ∞

0
dω �(ω)

× KImM0(q,ω)KImM1(q,ω)
∣∣1 + K

[
M0(q,ω) + M1(q,ω)

]∣∣2
,

A similar equation with T0 replaced by T1 gives the energy transfer from solid 1
to solid 0, and the net energy flow J = J0→1 − J1→0. The heat transfer coefficient
α = (J0→1 − J1→0)/(T0 − T1) gives in the limit (T0 − T1) → 0:

α = 4

(2π)3

∫
d2q

∫ ∞

0
dω

∂�(ω)

∂T

× KImM0(q,ω)KImM1(q,ω)
∣∣1 + K

[
M0(q,ω) + M1(q,ω)

] ∣∣2
, (12.9)

To proceed we need expressions for M0(q,ω) and M1(q,ω). Here, we give the
M-function for (a) solids, (b) liquids and (c) membranes. In what follows, we do not
account for the atomistic nature of matter but use a continuum description so that
all vibrational modes of 3D -solids have linear dispersion relation, and the bending
mode of the (2D) membrane quadratic dispersion.
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12.2.1 Solids

Within the elastic continuum model, for an elastic solid with isotropic elastic
properties we have [301, 302]

M = i

ρc2T

pL(q,ω)

S(q,ω)

(
ω

cT

)2

(12.10)

where

S =
[(

ω

cT

)2

− 2q2
]2

+ 4q2pTpL

pL =
[(

ω

cL

)2

− q2 + i0

]1/2

pT =
[(

ω

cT

)2

− q2 + i0

]1/2

where cL, cT and ρ are the longitudinal and transverse sound velocities, and the mass
density, respectively.

12.2.2 Liquids

Since the shear modulus vanish for liquids, only longitudinal sound waves can prop-
agate in liquids. The M-function of liquids can be obtained directly from the solid
case by letting cT → 0:

M = ipL
ρω2

= i

ρω2

[(
ω

cL

)2

− q2 + i0

]1/2

(12.11)

12.2.3 Membranes

We assume that the out-of-plane displacement u(x, t) satisfies

ρ0
∂2u

∂t2
= −κ∇2∇2u + σ, (12.12)
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where ρ0 = n0m0 is the mass density per unit area of the 2D-system (m0 is the
atom mass and n0 the number of atoms per unit area), κ is the bending elasticity (for
graphene, κ ≈ 1 eV [303]), and σ(x, t) an external stress acting perpendicular to
the membrane (or xy-plane). Using the definition M(q,ω) = u(q,ω)/σ(q,ω) from
(12.12) we get

M = 1

κq4 − ρ0ω2 − i0+ . (12.13)

12.3 Some Limiting Cases

Assuming weak coupling between the solids (i.e., K is so mall that K[M0(q,ω) +
M1(q,ω)] 
 1), (12.9) reduces to

α = 4K2

(2π)3

∫
d2q

∫ ∞

0
dω

∂�(ω)

∂T
ImM1(q,ω)ImM0(q,ω). (12.14)

In the opposite limit of strong coupling (K[M0(q,ω) + M1(q,ω)] � 1), we get

α = 4

(2π)3

∫
d2q

∫ ∞

0
dω

∂�(ω)

∂T

ImM0(q,ω)ImM1(q,ω)

|M0(q,ω) + M1(q,ω)|2 , (12.15)

which does not depend on K . Note also that for very low temperatures only very
low frequency phonons will be thermally excited. Assuming a semi-infinite solid, as
ω ∼ q → 0, from (12.10) we have |M| ≈ 1/(ρcω) → ∞ (where c is the sound
velocity and ρ the mass density). Thus, at low enough temperatures (12.9) reduces to
(12.15) i.e., for very low temperatures the heat transfer is independent of the strength
of the interaction across the interface. The physical reason for this is that at very low
temperature the wavelength of the phonons becomes very long and the interfacial
interaction becomes irrelevant. The transition between the two regions of behavior
occurs when K|M| ≈ 1. Since |M| ≈ 1/(ρcω) we get K ≈ ρcω. But �ω ≈ kBT and
defining the thermal length λT = c/ω = c�/kBT we get the condition K ≈ ρc2/λT.
Since the elasticmodulusE ≈ ρc2 we getK ≈ E/λT.We can define a spring constant
between the atoms in the solid via k′ = Ea, where a is the lattice constant. Since
K = k/a2 we get k ≈ (a/λT)k′ as the condition for the transition between the two
different regimes in the heat transfer behavior. For most solids at room temperature
λT ≈ a, but at very low temperatures λT � a which means that even a very weak
(soft) interface (for which k is small), will appear as very strong (stiff) with respect
to the heat transfer at low temperatures (this result has also been obtained by Prasher
[299]).

Let us consider the case where the two solids are identical, and assume strong
coupling where (12.15) holds. For this case, we do not expect that the interface
will restrict the energy flow. If we consider high temperature, the kinetic energy per
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atom in solid 0 will be ∼kBT0 so the energy density Q ≈ kBT0/a30 (where a0 is
the lattice constant). Thus, if solid 1 is at zero temperature, we expect the energy
flow current across the interface to be of order J ≈ Qc/4 (the factor of 1/4 results
from the fact that only half of the phonons propagate in the positive z-direction and
the average velocity of these phonons in the z-direction is c/2). Thus, we expect
α ≈ kBc/(4a30). This result follows also from (12.15) if we notice that forM0 = M1

and high temperatures

α = kB
(2π)3

∫
d2q

∫ ∞

0
dω

[
ImM0(q,ω)

|M0(q,ω)|
]2

(12.16)

If we assume for simplicity thatM0 is given by (12.11) (but the same qualitative result
is obtained for solids), then the factor involving M0 is equal to unity for ω > cLq
and zero otherwise. Thus, (12.16) reduces to

α = kB
(2π)2

∫ cLqc

0
dω

∫ ω
cL

0
dq q = πcLkB

24a30
(12.17)

where we have used that qc ≈ π/a0. Thus, for identical materials and strong coupling
(12.9) reduces to the expected result.

Let us now briefly discuss the temperature-dependence of the heat transfer coeffi-
cient for high and low temperatures. For very low temperatures,α is given by (12.15).
Consider first a solid in contact with a solid or liquid. For these cases it follows that
M ∼ 1/ω (where we have used that ω ∼ q) so the temperature-dependence of the
heat transfer coefficient is determined by the term

α ∼
∫ ∞

0
dω

∂�(ω)

∂T
ω2

where we also have used that d2q ∼ ω2. Thus, we get

α ∼
∫ ∞

0
dω

exp(�ω/kBT)
[
exp(�ω/kBT) − 1

]2

(
�ω

kBT

)2

ω2 ∼ T 3

which agrees with the low-temperature dependence predicted by the acoustic mis-
match model [297]. For high temperatures, and assuming weak coupling, it can be
obtained from (12.14) in the same way that α is temperature independent. However,
the spring constant (per unit area) K may depend on the temperature; for example, as
a result of a thermally induced rearrangement of the atoms at the contacting interface,
or a thermally induced increase in the separation of the two surfaces at the interface,
which may be particularly important for weakly interacting systems. The tempera-
ture dependence of α for the case of solid–solid and solid–membrane contacts will
be discussed in Sect. 12.5.
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12.4 Phonon Heat Transfer at Disordered Interfaces:
Friction Model

At high temperature and for atomically disordered interfaces, the interfacial atoms
will performvery irregular, stochasticmotion. In this case, the heat transfer coefficient
α can be obtained (approximately) from a classical ‘friction’ model. This treatment
does not take into account, in a detailed way, the restrictions on the energy transfer
process by the conservation of parallel momentum, which arise for periodic (or
homogeneous) solids. See also Appendix D.

Let us assume that solid 0 has a lower maximal phonon frequency than solid 1.
In this case, most elastic waves (phonons) in solid 0 can in principle propagate into
solid 1, while the opposite is not true, since a phonon in solid 1 with higher energy
than the maximum phonon-energy in solid 0 will, because of energy conservation,
be totally reflected at the interface between the solids.

Consider an atom in solid 0 (with mass m0) vibrating with the velocity (v‖, v⊥).
The atom will exert a fluctuating force on solid 1, which will result in elastic waves
(phonons) being excited in solid 1. The emitted waves give rise to a friction force
acting on the atom in solid 0 (from solid 1), which we can write as [302]

Ff = −m0η‖v‖ − m0η⊥v⊥,

and the power transfer to solid 1 will be

P = − 〈
Ff · v〉 = m0η‖

〈
v2

‖
〉 + m0η⊥

〈
v2

⊥
〉
.

At high temperatures

m0
〈
v2

‖
〉 = 2kBT0, m0

〈
v2

⊥
〉 = kBT0.

Hence
P = (2η‖ + η⊥)kBT0.

A similar formula (with T0 replaced by T1) gives the power transfer from solid 1 to
solid 0. Hence

J = n0(2η‖ + η⊥)kB(T0 − T1),

where n0 = 1/a20 is the number of interfacial atoms per unit area in solid 0. Thus we
get

α = n0(2η‖ + η⊥)kB. (12.18)

For weak interfacial coupling we expect η⊥ � η‖, and we can neglect the η‖-term
in (12.18).
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The damping or friction coefficient η⊥ due to phonon emission was calculated
within elastic continuum mechanics in [302]. We have

η⊥ ≈ k2ξ′

ρ1m0c3T
= K2a40ξ

′

ρ1m0c3T
, (12.19)

where ξ′ ≈ 0.13 (see [304]). Using that n0 = 1/a20 and substituting (12.19) in (12.18)
gives

α = kBK2ξ′

ρ0ρ1c3T
, (12.20)

where

ξ′ = 1

8π
Re

∫ ∞

0
dx

2 (γ − x)1/2

(1 − 2x)2 + 4 (1 − x)1/2 (γ − x)1/2

where γ = (cT/cL)2, and where ρ0 = n0m0 is the (one atomic layer) mass per unit
surface area of solid 0. There are two contributions to the integral ξ′. One is derived
from the region x < 1 where the integral clearly has a non-vanishing real part. This
contribution corresponds to the excitation of transverse and longitudinal acoustic
phonons. The second contribution arises from the vicinity of the point (for x > 1)
where the denominator vanishes. This pole contribution corresponds to excitation
of surface (Rayleigh) waves. As shown in [302], approximately 65% of the radi-
ated energy is due to the surface (Rayleigh) phonons, and the rest by bulk acoustic
phonons.

We emphasize that (12.20) is only valid for high temperatures and weak cou-
pling. A more general equation for the heat transfer between solids when the phonon
emission occurs incoherently is derived in Appendix P4:

α ≈ 4A∗

(2π)3

∫ ∞

0
dω

∂�(ω)

∂T

KImM0(ω)KImM1(ω)
∣∣1 + K

[
M0(ω) + M1(ω)

]∣∣2
, (12.21)

where

M(ω) = 1

A∗

∫

q<qc

d2q M(q,ω),

where the integral is over |q| < qc, where πq2c = A∗. The cut-off wavevector qc is
the smallest of q1 and q2, where πq21 = (2π)2/a20 (where a0 is the lattice constant)
and where q2 = kBT/�c0 (where c0 is the smallest sound velocity of solid 0) is the
thermal wavevector. For high temperatures and weak coupling, for an Einstein model
of solid 0, (12.21) reduces to (12.20) (see Appendix P5).
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12.5 Numerical Results

We now present some numerical results to illustrate the theory presented above. We
consider (a) solid–solid, (b) solid–liquid and (c) solid–membrane systems.

12.5.1 Solid-Solid

We consider the heat transfer between two solids with perfectly flat contacting
surfaces. We take the sound velocities and the mass density and the (average) lattice
constant to be that of SiO2. We consider two cases: weakly interacting solids (soft
interface) with K = 2.52 × 1019 N/m3 (see Fig. 12.4), and solids with stronger
interaction (stiff interface), with 10 times larger K . In Fig. 12.2, we show the heat
transfer coefficient as a function of temperature. Note that, for high temperatures,
α is nearly 100 times larger for the stiff case as compared with the soft case. This
result is expected based on (12.9), which shows that α ∼ K2 as long as K is not too
large and the temperature is not too low. For low temperatures, both cases gives very
similar results, and for T < 3 K the heat transfer coefficient α ∼ T 3. The reason
for why, at low temperatures, the heat transfer is independent of the strength of the
interfacial interaction was explained in Sect. 12.3, and is due to the long wavelength
of the thermally excited phonons at low temperature.

For incoherent phonon transmission, using (12.21), we obtained the result shown
by dashed curves in Fig. 12.2. For both the soft and stiff interface, the results obtained
assumed that coherent and incoherent phonon transmission are similar.

0 1 2 3
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log T (K)

soft

stiff

lo
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  K
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Fig. 12.2 The logarithm (with 10 as basis) of the heat transfer coefficient as a function of the
logarithm of the temperature for weakly interacting solids (soft) with K = 2.52× 1019 N/m3, and
for solids with that interact stronger (stiff) with 10 times larger K . The solid lines are for coherent
phonon transmission, and the dashed lines are for incoherent phonon transmission. The initial slope
(for low temperature) of the curves is 3, corresponding to a ∼ T3 temperature dependence
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Fig. 12.3 The calculated
contact resistance
(multiplied by T3) between
liquid 4He and a-SiO2 as a
function of the temperature,
with K = 1.18 × 1019 N/m3
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12.5.2 Solid-Liquid

Heat transfer between liquid 4He and solids was studied by Kapitza [305] ∼60 years
ago, and R = 1/α is usually denoted as the Kapitza resistance [297, 306]. Let us
apply the theory above to the heat transfer between liquid 4He and a-SiO2. In the cal-
culation we use a He-substrate potential with well depth 10.2meV and 4He-substrate
equilibriumbond distance deq = 2.2Å,which agreeswith themodel parameters used
in [311]. With these parameters, we get the perpendicular He-substrate vibration fre-
quency ω⊥ ≈ 91 cm−1 and the spring constant K = 1.18× 1019 N/m3. In Fig. 12.3
we show the calculated contact resistance R (multiplied by T 3), as a function of the
temperature T . In this calculation, we have assumed that all the parameters (e.g., 4He
sound velocity c0 and mass density ρ0) characterizing the system are temperature
independent [309]. The Kapitza resistance has been measured (for T > 1 K) for
liquid 4He in contact with Quartz [308] and Sapphire [307] and this scales roughly
with temperature as T−3; the magnitude for T = 1 K is approximately 10 times
smaller than our calculated result, assuming incoherent phonon transfer. Experimen-
tal data show that, for T < 0.5 K, the Kapitza resistance increases much faster with
decreasing temperature than expected from the R ∼ T−3-dependence predicted by
our theory and most other theories. It is not clear what the origin of this discrepancy
may be, but it has been suggested to be associated with surface roughness. Unfortu-
nately, most measurements of the Kapitza resistance were performed before recent
advances in surface science, and many of the studied systems are likely to have oxide
and unknown contamination layers, which may explain the large fluctuations in the
measured contact resistance for nominally identical systems.

12.5.3 Solid-Membrane

Recently, it has been found that the heat generation in graphene field-effect transistors
can result in high temperatures and device failure [164].Thus, it is important to
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understand the mechanisms that influence the heat flow. Graphene can be considered
to be a 2D system (membrane). In this case, from (12.13), we get:

ImM0(q,ω) = πδ(κq4 − ρ0ω
2) = π

2ρ0ω1
δ(ω − ω1) (12.22)

where ω1 = (κ/ρ0)
1/2q2 = c(q)q, where we have defined the velocity c(q) =

(κ/ρ0)
1/2q. Substituting (12.22) in (12.9) and assuming high temperatures (kBT0 �

�ω1) so that �(ω) ≈ kBT0 gives:

J0→1 = kBT0
2πρ0

∫ ∞

0
dq

q

ω1
K2ImM1(q,ω1).

The heat transfer coefficient α = (J0→1 − J1→0)/(T0 − T1) is given by

α = kB
2πρ0

∫ ∞

0
dq

q

ω1
K2ImM1(q,ω1). (12.23)

Using the expression for M1(q,ω) derived in [301, 302] and ω1 = c(q)q gives

α = kBK2ξ

ρ0ρ1c3T
, (12.24)

where
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where cL, cT and ρ1 are the longitudinal and transverse sound velocities, and the
mass density, respectively, of solid 1. The cut off wavevector qc ≈ π/a1 (a1 is the
lattice constant, or the average distance between two nearby atoms) of solid 1.

There are two contributions to the integral ξ. One is derived from c(q) > cL, but
for graphene on a-SiO2, this gives only ∼10% of the contribution to the integral. For
c(q) < cL, the term after the Re operator is purely imaginary (and will therefore not
contribute to the integral), except for the case where the denominator vanishes. It is
found that this pole-contribution gives the main contribution (∼90%) to the integral,
and corresponds to the excitation of a Rayleigh surface (acoustic) phonon of solid 1.
This process involves energy exchange between a bending vibrational mode of the
graphene and a Rayleigh surface phonon mode of solid 1. The denominator vanishes
when c(q) = cR where

[
c2R
c2T

− 2

]2

− 4

[
1 − c2R

c2T

]1/2 [
1 − c2R

c2L

]1/2

= 0.
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Note that the Rayleigh velocity cR < cT but close to cT. For example, when
cL/cT = 2, cR ≈ 0.93cT, and the pole contribution to the integral in ξ is 0.083.
Note that (12.23) is of the same form as (12.19), and since ξ′ ≈ 0.13 ≈ ξ they give
very similar results.

In the model above, the heat transfer between the solids involves a single bending
mode of the membrane or 2D system. Because of the weak interaction (and large
separation) between the graphene and the substrate, it is likely that the coupling
between the in-plane vibrational modes of graphene and the substrate is negligible.
However, in reality there will always be some roughness at the interface, which will
blur the wavevector conservation rule. We therefore expect a narrow band of bending
modes to be involved in the energy transfer, rather than a single mode. The model
study above assumes implicitly that, due to lattice non-linearity (and defects), there
exist phonon scattering processes that rapidly transfer energy to the bending mode
involved in the heat exchange with the substrate. This requires very weak coupling
to the substrate, so that the energy transfer to the substrate is so slow that the bending
mode can be repopulated by phonon scattering processes in the 2D system—from
the in-plane phonon modes— in such a way that its population is always close to
what would be the case if complete thermal equilibrium occurs in the 2D system.
This may require high temperatures in order for multi-phonon scattering processes
to occur with enough rates.

We now consider graphene on amorphous SiO2. Graphene, the recently isolated
2D carbon material with unique properties due to its linear electronic dispersion,
is being actively explored for electronic applications [310]. Important properties
include the high mobilities reported especially, in suspended graphene; the fact that
graphene is the ultimately thin material; the stability of the carbon–carbon bond
in graphene; the ability to induce a band gap by electron confinement in graphene
nanoribbons; and its planar nature, which allows established pattering and etching
techniques to be applied. Recently, it has been found that the heat generation in
graphene field-effect transistors can result in high temperatures and device failure
[164]. Thus, it is important to understand the mechanisms that influence the heat
flow.

The graphene–a-SiO2 interaction is probably of the van der Waals type. In
[312], the interaction between the graphene C-atoms and the substrate Si and O
atoms was assumed to be described by Lennard-Jones (LJ) pair-potentials. Here,
we use a simplified picture where the substrate atoms form a simple cubic lat-
tice with the lattice constant determined by a1 = (m̄/ρ1)

1/3 ≈ 0.25 nm, where
m̄ = (mSi + 2mO)/3 ≈ 3.32 × 10−26 kg is the average substrate atomic mass,
and ρ1 ≈ 2200 kg/m3 the mass density of a-SiO2. We also use the effective LJ
energy parameter, ε = (εSi + 2εO)/3 ≈ 5.3 meV, and the bond-length parame-
ter σ = (σSi + 2σO)/3 ≈ 0.31 nm. With these parameters, we can calculate the
graphene–a-SiO2 interaction energy, U(d), per graphene carbon atom, as a func-
tion of the separation, d, between the center of a graphene carbon atom and the
center of the first layer of substrate atoms. We find (see Fig. 12.4) the graphene–
a-SiO2 binding energy Eb = −U(deq) ≈ 35 meV per carbon atom, and the
force constant k = U ′′(deq) (where deq ≈ 0.32 nm is the equilibrium separation)
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Fig. 12.4 The calculated
graphene–a-SiO2 interaction
energy U(d) per graphene
carbon atom, as a function of
the separation d (in nm)
between the center of a
graphene carbon atom and
the center of the first layer of
substrate atoms. See text for
details
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k = Ka20 = 2.4 N/m per carbon atom. This gives the perpendicular graphene—
a-SiO2 (uniform) vibration frequency ω⊥ ≈ (k/m0)

1/2 ≈ 55 cm−1, which is sim-
ilar to what is observed for the perpendicular vibrations of linear alkane molecules
on many surfaces (e.g., approximately 50 − 60 cm−1 for alkanes on metals and on
hydrogen terminated diamond C(111) [313]). UsingK = k/a20 = 1.82×1020 N/m3,
and the transverse and longitudinal sound velocities of solid 1 (cT = 3743 m/s and
cL = 5953 m/s), from (12.20) we obtain α ≈ 3 × 108 W/Km2.

The heat transfer coefficient between graphene and a perfectly flat a-SiO2 sub-
strate has not been measured directly, but measurements of the heat transfer between
carbon nanotubes and sapphire by Maune et al. [314] indicate that it may be of order
α ≈ 8 × 108 W/m2K. This value was deduced indirectly by measuring the break-
down voltage of carbon nanotubes, which could be related to the temperature increase
in the nanotubes. Molecular dynamics calculations [312] for nanotubes on a-SiO2

gives α ≈ 3×108 W/m2K (here it has been assumed that the contact width between
the nanotube and the substrate is 1/5 of the diameter of the nanotube). Finally, using
a so called 3 ω method, Chen et al. [315] have measured the heat transfer coefficient
α ≈ 2 × 108 W/m2K.

We now discuss the temperature dependence of the heat transfer coefficient. If we
assume that most of the heat transfer is via a substrate phonon mode at the frequency
ω0, then the temperature dependence of α should be given by

d�(ω0)

dT
= x2ex

(ex − 1)2
, (12.25)

where x = �ω0/kBT . In Fig. 12.5, we show the temperature dependence of the heat
transfer coefficient measured by Chen et al. [315] for 42 K < T < 310 K. The
solid lines were calculated using (24) with �ω0 = 11 meV (upper curve) and 7 meV
(lower curve). In ourmodel, all the substrate vibrational modes have linear dispersion
relation, for example, �ω = cRq for the Rayleigh mode—and, since the measured
phonon frequency ω(q) falls below the line obtained by extending the initial linear
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Fig. 12.5 The logarithm of
the contact resistance for
graphene on a-SiO2 as a
function of the logarithm of
the temperature. Square
symbols measured data from
[315]. Solid lines show the
calculated contact resistance
using (12.24) with
�ω0 = 11 meV (upper
curve) and �ω0 = 7 meV
(lower curve)
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Fig. 12.6 The frequency of
the graphene bending mode
becomes equal to the
frequency of the Rayleigh
mode when
ωbend(q) = ωR(q). The
Rayleigh mode dispersion
was measured for α-quartz
(0001) [316] and the bending
mode dispersion was
calculated using
ωbend = (κ/ρ0)

1/2q2 with
the bending stiffness
κ = 1.1 eV as obtained in
[303]
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dispersion to higher frequencies, it follows that the frequency where the graphene-
bending mode becomes equal to the frequency of the Rayleigh mode will occur
at a higher frequency than expected using the measured Rayleigh mode dispersion
relation. This is illustrated in Fig. 12.6 where we show the measured Rayleigh mode
dispersion for α-quartz (0001) [316]. Note that the frequencies of the bending mode
and the Rayleigh mode become equal when �ω ≈ 7 meV. However, using this
excitation energy in (12.25) gives too weak temperature dependence. There are two
possible explanations for this:

(a) In an improved calculation using the measured dispersion relations for the sub-
strate phonon modes, emission of bulk phonons may become more important
than in the present study where we assumed the linear phonon-dispersion is
valid for all wavevectors q. This would make higher excitation energies more
important and could lead to the effective (or average) excitation energy 11 meV
necessary to fit the observed temperature dependence.
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(b) As pointed out above, the model developed above for the heat transfer involves
a single, or a narrow band, of bending modes of the membrane or 2D system. In
order for this model to be valid, the coupling to the substrate must be so weak
that the energy transfer to the substrate from the bending mode occurs so slowly
that the mode can be repopulated by phonon scattering processes, in such a way
that its population is always close to what is expected if full thermal equilibrium
would occur within the 2D system. This may require high temperatures in order
for multi-phonon scattering processes to occur by sufficiently high enough rates.
This may contribute to the decrease in the heat transfer coefficient observed for
the graphene–a-SiO2 system below room temperature [315].

12.6 Role of Surface Roughness

Surfaces of engineering interest are never perfectly smooth and this must always be
taken into accountwhen analyzing interfacial heat transfer between contacting solids.
As discussed above, surface roughness and interfacial disorder on the same length
scale as the phonon wavelength may result in strong diffusive-like phonon scattering,
which may drastically affect the interfacial heat transfer. In addition, for elastically
hard solids, the area of real (atomic) contact A is usually a very small fraction of the
apparent contact area A0, which has a strong influence on the heat transfer [296], and
in many cases most of the heat may flow in the air film separating the non-contact
region. The heat transfer via the area of real contact is determined not just by the
heat transfer resistance across the contacting interface (of atomic scale thickness) as
studied above, but often most of the heat flow resistance is caused by the so-called
spreading resistance, related to the interaction between the heat flowfilaments, which
emerge from the areas of real contact. This latter contribution depends on the wide
(fractal-like) distribution of surface roughness length scales exhibited by most of the
surfaces of macroscopic solids (see Fig. 12.7). We will discuss this topic in detail in
Chap. 13, but here we give some additional comments.

For the contact between rough surfaces, the total heat transfer resistance is
(approximately) the sum of the two contributions:

1

α
≈ 1

αspred
+ 1

αc

where 1/αspred is the spreading resistance studied inChap. 13, and 1/αc the resistance
that determines the temperature jump (on atomistic length scale) across the area of
real contact. One can show that (see Appendix P6):

1

αc
≈ 1

αb

1

A0J20

∫
d2x J2z (x)
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Fig. 12.7 Heat flow in the contact region between a rigid block with a flat surface (bottom) and
en elastic solid with a randomly rough surface (top). The orange lines denote the heat current flux
lines in the upper solid. The heat current filaments expand laterally until the filaments from the
different contact regions touch each other. The “interaction” between the filaments gives rise to the
spreading resistance. Because of the fractal nature of most surfaces the interaction between the heat
flow filaments occur, on many different length scales

where Jz(x) is the heat current at the interface, J0 the average heat current, and αb

the (boundary) heat transfer coefficient studied above. If the heat current would be
constant through the area of real contact, then Jz = (A0/A)J0, where A is the area of
real contact. In this case, we get αc ≈ (A/A0)αb and

1

α
≈ 1

αspred
+ 1

αb

A0

A
(12.26)

For most hard macroscopic solids, the local pressure in the contact regions is very
high, which may result in ‘cold welded’ contact regions with good thermal contact,
in which case the contribution from the spreading resistance dominates the contact
resistance. However, for weakly coupled microscopic solids, the contribution from
the second term in (12.26) may be very important.

In [164], the temperature profile in graphene under currentwas studied experimen-
tally. The heat transfer coefficient between graphene and the a-SiO2 substrate was
determined by modeling the heat flow using the standard heat flow equation with the
heat transfer coefficient as the only unknown quantity. The authors found that using a
constant (temperature-independent) heat transfer coefficient α ≈ 2.5×107 W/m2K
the calculated temperature profiles in graphene are in good agreement with experi-
mental data. Thisα is approximately 10 times smaller than expected for perfectly flat
surfaces. In [369–371], we studied the heat transfer between graphene and a-SiO2.
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We assumed that because of surface roughness the graphene only makes partial
contact with the SiO2 substrate, which will reduce the heat transfer coefficient as
compared to the perfect contact case. The analysis indicated that the spreading resis-
tance contribution in (12.26)may be very important, and could explain themagnitude
of the observed heat contact resistance. However, assuming that (due to the rough-
ness)A/A0 ≈ 0.1, the second term in (12.26) becomes of the sameorder ofmagnitude
as the measured heat contact resistance. Thus, in this particular application it is not
clearwhich term in (12.26) dominates the contact resistance, and probably both terms
are important.

12.7 Summary

To summarize, we have studied the heat transfer between coupled systems with a flat
interface. We have presented simple analytical results, which can be used to estimate
the heat transfer coefficient. The interaction between the solids is characterized by a
spring constant (per unit area) K . The formalism developed is general and valid both
for strongly interacting (K → ∞) and weakly interacting (K → 0) solids. We have
shown that, at low enough temperatures, even a very weak interfacial interaction will
appear strong, and the heat transfer is then given by the limiting formula obtained
as K → ∞. Earlier analytical theories of heat transfer [297] do not account for the
strength of the interaction between the solids, but correspond to the limiting caseK →
∞. However, we have shown that, at room temperature (or higher temperatures), the
heat transfer between weakly interacting solids may be 100 times (or more) slower
than between strongly interacting solids.

Detailed results were presented for the heat transfer between a membrane
(graphene) and a semi-infinite solid (a-SiO2). For this case, the energy transfer was
dominated by energy exchange between a bending vibrational mode of the graphene,
and a Rayleigh surface phonon mode of the substrate. This model assumes implic-
itly that, due to lattice non-linearity (and defects), phonon scattering processes exist,
which rapidly transfer energy to the bending mode involved in the heat exchange
with the substrate. This may require high temperatures in order for multi-phonon
scattering processes to occur at a sufficiently high rate. The calculated value of the
heat transfer coefficient was found to be in good agreement with the value deduced
from the experimental data.



Chapter 13
Heat Transfer: Role of Surface Roughness

In this section, we study the heat transfer between elastic solids with randomly
rough surfaces. We include both the heat transfer from the area of real contact, and
the heat transfer between the surfaces in the non-contact regions.We apply a recently
developed contact mechanics theory, which accounts for the hierarchical nature of
the contact between solidswith roughness onmany different length scales. For elastic
contact, at the highest (atomic) resolution, the area of real contact typically consists
of atomic (nanometer) sized regions, and we discuss the implications of this for the
heat transfer. For solids with very smooth surfaces, as is typical in many modern
engineering applications, the interfacial separation in the non-contact regions will
be very small, and for this case we show the importance of the radiative heat transfer
associated with the evanescent electromagnetic waves, which exists outside of all
bodies.

13.1 Introduction

The heat transfer between solids is a topic of great importance. Classical applications
include topics such as cooling ofmicroelectronic devices, spacecraft structures, satel-
lite bolted joints, nuclear engineering, ball bearings, tires and heat exchangers. Other
potential applications involvemicroelectromechanical systems (MEMS). Heat trans-
fer is also of crucial importance in friction and wear processes; for example, rubber
friction on hard and rough substrates depends crucially on the temperature increase in
the rubber–counter surface asperity contact regions [373]. Another important appli-
cation is friction on icewhere a thinmeltwater filmmay form due to frictional heating
of the ice surface [426].

A large number of papers have been published on the heat transfer between ran-
domly rough surfaces [375]. However, most of these studies are based on asperity
contact models such as themodel of Greenwood andWilliamson (GW) [376]. Recent
studies have shown that the GW-model (and other asperity contact models [377]) are
very inaccurate [378, 379], mainly because of the neglect of the long-range elastic
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Fig. 13.1 The black area is the contact between two elastic solids with randomly rough surfaces.
For surfaces that have fractal-like roughness, the whole way down to the atomic length scale, the
contact at the highestmagnification (atomic resolution) typically consists of nanometer-sized atomic
clusters. The result is obtained usingMolecular Dynamics (MD), but since there is no natural length
scale in elastic continuum mechanics, the picture could also be the contact observed between two
macroscopic elastic solids. Adapted from [386]

coupling [380]. That is, if an asperity is pushed downwards somewhere, the elas-
tic deformation field extends a long distance away from the asperity, which will
influence the contact involving other asperities further away [381]. This effect is
neglected in the GW theory, but it is included in the contact mechanics model of
Persson [382–386], which we use in the present study. In addition, in the GWmodel,
the asperity contact regions are assumed to be circular (or elliptical) while the actual
contact regions (at high enough resolution) have fractal-like boundary lines [386–
388], see Fig. 13.1. Thus, because of their complex nature, one should try to avoid
directly involving the nature of the contact regions when studying contact mechanics
problems, such as the heat or electric contact resistance. The approach we use in
this section does not directly involve the nature of the contact regions. Finally, we
note that, for elastically hard solids, the area of real (atomic) contact A may be a
very small fraction of the nominal or apparent contact area A0, even at high nominal
squeezing pressures [389, 390].

Another important discovery in recent contact mechanics studies is that for elastic
contacts, the contact regions observed at atomic resolution may be just a few atoms
wide, i.e., the diameter of the contact regions may be of the order of ∼1 nm [391–
393]. The heat transfer via such small junctions may be very different from the
heat transfer through macroscopic-sized contact regions, where the heat transfer is
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Fig. 13.2 The contact region (black area) between two elastic solids observed at low (left) and high
(right) magnification. The contact resistance depends mainly on the long-wavelength roughness,
and can usually be calculated accurately from the nature of the contact observed at lowmagnification
(left)

usually assumed to be proportional to the linear size of the contact regions (this
is also the prediction of the macroscopic heat diffusion equation), rather than the
contact area. In particular, if the typical phonon wavelength involved in the heat
transfer becomes larger than the linear size of the contact regions (which will always
happen at a low enough temperature), the effective heat transfer may be strongly
reduced. Similarly, if the phonons mean free path is longer than the linear size of
the contact regions, ballistic (phonon) energy transfer may occur that cannot be
described by the macroscopic heat diffusion equation. These effects are likely to be
of crucial importance in manymodern applications involving micro- (or nano-) sized
objects, such as MEMS, where just a few atomic-sized contact regions may occur.
However, for macroscopic solids, the thermal (and electrical) contact resistance is
usually very insensitive to the nature of the contact regions observed at the highest
magnification, corresponding to atomistic (or nanoscale) length scales. In fact, the
heat transfer is determined mainly by the nature of the contact regions observed
at lower magnifications where the contact regions appear larger (see Sect. 13.5 and
[394, 395]), see Fig. 13.2. For example, in Sect. 13.2.3, we show that for self-affine
fractal surfaces, the contact resistance depends on the range of surface roughness
included in the analysis as ∼r(H) − (q0/q1)H , where q0 and q1 are the smallest and
the largest wavevector of the surface roughness included in the analysis, respectively,
and H is the Hurst exponent related to the fractal dimension via Df = 3 − H . The
number r(H) depends on H but is of the order of unity. In a typical case, H ≈ 0.8,
and including surface roughness over one wavevector decade q0 < q < q1 = 10q0
results in a heat resistance which typically is only∼10% smaller than obtained when
including infinitely many decades of length scales (i.e., with q1 = ∞ × q0). At the
same time, the area of real contact approaches zero as q0/q1 → 0. Thus, there is, in
general, no relation between the area of real contact (which is observed at the highest
magnification, and which determines the friction force in most cases, among other
things), and the heat (or electrical) contact resistance between the solids. One aspect
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of this in the context of electric conduction was pointed out a long time ago [396]: if
an insulating film covers the solids in the area of real contact, and if electrical contact
occurs by a large number of small breaks in the film, the resistance may be almost as
low as with no film. Similarly, the thermal contact resistance of macroscopic solids
usually does not depend onwhether the heat transfer occurred by diffusive or ballistic
phonon propagation, but rather the contact resistance is usually determined mainly
by the nature of the contact regions observed at relative low magnification.

Note that as H decreases towards zero (or the fractal dimension Df → 3), it is
necessary to includemore andmore decades in the length scales in order to obtain the
correct (or converged) contact resistance, and for H = 0 (or Df = 3) it is necessary
to include the roughness on thewhole way down to the atomic length scale (assuming
that the surfaces remain fractal-like with H = 0 the whole way down to the atomic
length scale). Most natural surfaces and surfaces of engineering interest have (if
self-affine fractal) H > 0.5 (or Df < 2.5); for example, surfaces prepared by crack
propagationor sandblasting typically have H ≈ 0.8 (see [397]), and in these cases the
contact resistance can be calculated accurately from the (apparent) contact observed
at relatively low magnification. However, some surfaces may have smaller Hurst
exponents. One interesting case is surfaces (of glassy solids) with frozen capillary
waves [385, 398] (which are of great engineering importance [398]), which have
H = 0. The heat transfer between such surfaces may be understood only by studying
the system at the highest magnification corresponding to atomic resolution.

In this section, we will consider the heat transfer between (macroscopic-sized)
solids in the light of recent advances in contact mechanics. We will study the contri-
bution to the heat transfer, not just from the area of real contact (observed at atomic
resolution), but also the heat transfer across the area of non-contact, in particular
the contribution from the fluctuating electromagnetic field, which surrounds all solid
objects [9, 11]. For high-resistivity materials and for hard and very flat surfaces, such
as those involved in many modern applications, (e.g., MEMS applications), this non-
contact radiative heat transfer may in fact dominate in the total heat transfer (at least
under vacuum condition). We note that for flat surfaces (in a vacuum) separated by a
distance d larger than the thermal length dT = c�/kBT , the non-contact heat transfer
is given by the classical Stefan–Boltzman law, and is independent of d. However, for
very short distances, the contribution from the evanescent electromagnetic waves to
the heat transfer will be many orders of magnitude larger than the contribution from
propagating electromagnetic waves (as given by the Stefan–Boltzman law) [11].

In most applications (but not in spacecraft applications), one is interested in the
heat transfer between solid objects located in the normal atmosphere and sometimes
in a fluid. Most solid objects in the normal atmosphere have organic and water
contamination layers, which may influence the heat transfer for at least two reasons:
(a) thin (nanometer) contamination layers may occur at the interface in the asperity
contact regions, which will affect the acoustic impedance of the contact junctions,
and hence the propagation of phonons between the solids (which usually is the origin
of the heat transfer, at least for most non-metallic systems); (b) in addition, capillary
bridges may form in the asperity contact regions and effectively increase the size
of the contact regions and increase the heat transfer. In the normal atmosphere, heat
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can also be transferred between the non-contact regions via heat diffusion or (at
short separation) ballistic processes in the surrounding gas. For larger separations
convective processes may also be important.

In the discussion above, we have assumed that the solids deform elastically andwe
have neglected the adhesional interaction between the solids. The contact mechanics
theory of Persson can also be applied to cases where adhesion and plastic flow are
important, and wewill briefly study how this may affect the heat transfer. Most solids
havemodified surface properties, e.g., metals are usually covered by thin oxide layers
with very different conductivities than the underlying bulk materials. However, as
mentioned above, this may not have any major influence on the contact resistance.

Recently, intense research has focused on heat transfer through atomic or
molecular-sized junctions [399, 400]. In light of the discussion presented above,
this topic may also be important for the heat transfer between solids, because of the
nanometer-sized nature of the contact regions between solidswith random roughness.

13.2 Theory

13.2.1 Heat Transfer Coefficient

Consider two elastic solids (rectangular blocks) with randomly rough surfaces
squeezed in contact as illustrated inFig. 13.3.Assume that the temperature at the outer
surfaces z = −d0 and z = d1 is kept fixed at T0 and T1, respectively, with T0 > T1.
Close to the interface, the heat current will vary rapidly in space, J = J(x, z), where
x = (x, y) denotes the lateral coordinate in the xy-plane. Far from the interface, we
will assume that the heat current is constant and in the z-direction, i.e., J = J0 ẑ. We
denote the average distance between the macro asperity contact regions by λ (see
[385]). We assume that λ << L , where L is the linear size of the apparent contact
between the elastic blocks. The temperature a distance∼λ from the contacting inter-

Fig. 13.3 Two elastic solids
with nominally flat surfaces
squeezed together with the
nominal pressure p0. The
heat current Jz(x) at the
contacting interface varies
strongly with the coordinate
x = (x, y) in the xy-plane.
The average heat current is
denoted by J0 = 〈Jz(x)〉
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face will be approximately independent of the lateral coordinate x = (x, y) and we
denote this temperature by T ′

0 and T ′
1 for z = −λ and z = λ, respectively. The heat

current for |z| >> λ is independent of x and can be written as (to zero order in λ/d0
and λ/d1):

J0 = −κ0
T ′
0 − T0
d0

= −κ1
T1 − T ′

1

d1
, (13.1)

where κ0 and κ1 are the heat conductivities of the two solid blocks. We assume that
the heat transfer across the interface is proportional to T ′

0 −T ′
1 and we define the heat

transfer coefficient α so that
J0 = α(T ′

0 − T ′
1) (13.2)

Combining (13.1) and (13.2) gives

J0 = T0 − T1
d0κ

−1
0 + d1κ

−1
1 + α−1

(13.3)

This equation is valid as long as λ << L and λ << d0, d1. Note that α depends
on the macroscopic (or nominal) pressure, which acts at the interface. Thus, if the
macroscopic pressure is non-uniform, as is the case in many practical applications,
e.g., when a ball is squeezed against a flat, it is necessary to include the dependence
of α on x. Thus, in general

J (x) = α(x)
[
T ′
0(x) − T ′

1(x)
]

(13.4)

It is expected that the contribution to α from the area of real contact would be pro-
portional to the heat conductivity κ (for simplicity, we assume here two solids of the
samematerial). Assuming only elastic deformation, contactmechanics theories show
that for low enough squeezing pressure p0, the area of real contact is proportional to
p0, and the size distribution of contact regions (and the interfacial stress probability
distribution) are independent of p0. Thus, it is expected that α is proportional to p0.
For randomly rough surfaces, the contact mechanics depends only on the (effective)
elastic modulus E∗ and on the surface roughness power spectrum C(q). Thus, the
only way to construct a quantity which is proportional to p0κ and with the same
dimension as J0/�T , using the quantities that characterize the problem, is

α ≈ p0κ

E∗u0

where u0 is a length parameter that is determined from the surface roughness
power spectrum C(q). For self-affine fractal surfaces, C(q) depends only on the
root-mean-square roughness hrms, the fractal dimension Df , which is dimension-
less, and on the low and high cut-off wavevectors q0 and q1. Thus in this case
u0 = hrms f (Df , q0/q1, q0hrms). This result is consistent with the analysis presented
in Sect. 13.2.3. Using the GW-theory results in an expression for α of the form given
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above, but with a different function f , which now (even for low squeezing pressures)
also depends on p0/E∗ (see, e.g., [401]).

13.2.2 Calculation of α

The heat current J and the heat energy density Q are assumed to be given by

J = −κ∇T, Q = ρCVT

where κ is the heat conductivity, ρ the mass density and CV the heat capacitivity.
We consider a steady state condition where Q is time independent. Thus, the heat
energy continuity equation

∇ · J + ∂Q

∂t
= 0

reduces to
∇2T = 0

We assume that the surface roughness at the interface is so small that, when solving
the heat flow equation, we can consider the surfaces as flat. However, the heat flow
across the interface will be highly non-uniform and given by the heat current Jz(x)
(we assume |∇h| << 1, where h(x) is the surface height profile). Let us first study
the heat flow in the upper solid. We can take into account the heat flow from the
lower solid by introducing a heat source at the interface z = 0 i.e.

∇2T = −2Jz(x)δ(z)/κ1 (13.5)

Similarly, when studying the temperature in the lower solid, we introduce a heat sink
on the surface z = 0 so that

∇2T = 2Jz(x)δ(z)/κ0 (13.6)

Let us first study the temperature for z > 0. We write

Jz(x) =
∫

d2q Jz(q)eiq·x, (13.7)

Jz(q) = 1

(2π)2

∫
d2x Jz(x)e−iq·x, (13.8)

where q = (qx , qy) is a 2D wavevector. From (13.5), we get

T (x, z) = T1 − 1

κ1
J0(z − d1) − 1

πκ1

∫
d2qdk

�Jz(q)

−q2 − k2
ei(q·x+kz), (13.9)
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where k is the z-component of the wavevector. In (13.9), J0 = 〈Jz(x)〉 is the average
heat current and

�Jz(x) = Jz(x) − J0 (13.10)

Performing the k-integral in (13.9) gives

T (x, z) = T1 − 1

κ1
J0(z − d1) + 1

κ1

∫
d2q

1

q
�Jz(q)eiq·x−qz (13.11)

Similarly, temperature field for z < 0 can be obtained with:

T (x, z) = T0 − 1

κ0
J0(z + d0) − 1

κ0

∫
d2q

1

q
�Jz(q)eiq·x+qz (13.12)

Let us define
φ(x) = T (x,−0) − T (x,+0)

Using (13.11) and (13.12) we get

φ(x) = T0 − T1 −
(
d0
κ0

+ d1
κ1

)
J0 − 1

κ

∫
d2q

1

q
�Jz(q)eiq·x (13.13)

where
1

κ
= 1

κ0
+ 1

κ1
(13.14)

From (13.13) we get

φ(q) = Mδ(q) − 1

κq
�Jz(q) (13.15)

where

M = T0 − T1 −
(
d0
κ0

+ d1
κ1

)
J0 (13.16)

We will now consider two different cases:

13.2.3 Heat Flow Through the Area of Real Contact

Let us consider the heat flow through the area of real contact between two blocks
squeezed together with the nominal pressure p0. Since the average separation ū
between the surfaces at the interface decreasesmonotonicallywith increasing squeez-
ing pressure p0 we can consider p0 as a function of ū. An exact and remarkable sim-
ple relationship exists between the heat flow coefficient α and the interfacial normal
stiffness dp0/dū of the contact.
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In the contact region, Jz(x)will be non-zero but T (x,+0)−T (x,−0)will vanish.
On the other surface area, Jz(x) will vanish. Using these boundary conditions, and
(13.15) in Appendix Q1 we show that

α ≈ − 2κ

E∗
dp0
dū

. (13.17)

where E∗ is the effective elastic modulus

1

E∗ = 1 − ν2
0

E0
+ 1 − ν2

1

E1
,

where E0 and ν0 are the Young’s elastic modulus and the Poisson ratio, respectively,
for solid 0 and similar for solid 1. Equation (13.17) is, in fact, exact (see AppendixQ1
and [395]),which shows that the heat transfer ismainly determinedby thegeometrical
distribution of the contact area (given by the region where σz(x) is non-vanishing),
and by the thermal interaction between the heat flow through the various contact
spots (see Appendix Q1). Note that, for a small load the squeezing pressure p0
depends on the (average) interfacial separation ū via the exponential law [383] p0 ∼
exp(−ū/u0). Thus, the vertical stiffness dp0/dū = −p0/u0 so we can also write

α ≈ p02κ

E∗u0
. (13.18)

The length parameteru0 in (13.18) canbe calculated (approximately) from the surface
roughness power spectrum C(q) using [384]

u0 = √
π

∫ q1

q0

dq q2C(q)w(q)

where

w(q) =
(

π

∫ q

q0

dq ′q ′3C(q ′)
)−1/2

where q0 is the long-distance cut-off (or roll-off) wavevector and q1 the wavevec-
tor of the shortest wavelength roughness included in the analysis. Assume that the
combined surface roughness is selfaffine fractal for q0 < q < q1. In this case,

C(q) = H

π

(
hrms

q0

)2 (
q0
q

)2(H+1)

where H is the Hurst exponent related to the fractal dimension via Df = 3 − H .
Substituting this C(q) into the equations above gives

u0 ≈
(
2(1 − H)

πH

)1/2

hrms

[

r(H) −
(
q0
q1

)H
]

.
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where

r(H) = H

2(1 − H)

∫ ∞

1
dx (x − 1)−1/2 x−1/[2(1−H)]

Note that r(H) is of order unity (see [383]). As discussed in the introduction, this
implies that the contact resistance in general is determined accurately by one or two
decades of the longest-wavelength roughness components, and that in general there
is no relationship between the area of real contact (which is observed at the highest
magnification, and which determines, the friction force in most cases, among other
things), and the contact resistance between the solids.

Note that from (13.3) it follows that one can neglect the heat contact resistance if

κ/d << α

where κ/d is the smallest of κ0/d0 and κ1/d1. Using (13.18), this gives

d >> u0(E
∗/p0)

We note that in modern high-tech applications the linear size (or thickness) d of the
physical system may be very small, and in these cases the heat contact resistance
may be particular important.

If roughness occurs only on one length scale, say with wavelength λ and height
h, then the pressure necessary for complete contact will be of order

p0 ≈ E∗h/λ

Substituting this in (13.18) gives
α ≈ κ/λ (13.19)

where we have used that u0 ≈ h. Thus, α−1 ≈ λκ−1 which is the expected result
because the denominator in (13.3) is only accurate to zero order in λκ−1. (Alterna-
tively, substituting (13.19) in (13.3) gives a term of the type (d +λ)κ−1 which is the
correct result since d in (13.3) should really be d − λ.)

As an example [402], consider two nominal flat steel plates (in vacuum) with the
thickness d0 = d1 = 0.5 cm and with the root-mean-square roughness ∼1µm. The
plates are squeezed together with the nominal pressure p0 = 0.1MPa. The ratio
between the measured surface and bulk thermal contact resistance is approximatey
150. Using (13.3) we get

�T/J0 = 2d0κ
−1
0 + α−1.

Thus, the (theoretical) ratio between the surface and the bulk contributions to the
thermal resistance is: κ0

2αd0
,
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where κ0 is the heat conductivity of the bulk steel. Using (13.18) with κ = κ0/2 this
gives

κ0

2αd0
= u0

d0

E∗

p0
(13.20)

With (from theory) u0 ≈ 1µm, and E∗ ≈ 110GPa, p0 = 0.1MPa and 2d0 = 1 cm,
from (13.20) the ratio between the thermal surface and bulk resistance is ≈200, in
good agreement with the experimental data.

The discussion above assumes purely elastic deformations. However, plastic
flow is likely to occur in the present application at sufficiently short length-scales,
observed at high magnification. Since the heat flow is determined mainly by the
long-wavelength roughness components, i.e., by the roughness observed at relative
low magnification, when calculating the heat transfer, one may often assume that the
surfaces deform purely elastically, even if plastic deformation is observed at high
magnification, see Sect. 13.5.

13.2.4 Heat Flow Through the Non-contact Area

Let us now assume that

Jz(x) = β(x)
[
T (x,−0) − T (x,+0)

] = β(x)φ(x)

From (13.15) we get

φ(q) = Mδ(q) − 1

κq

∫
d2q ′ β(q − q′)

[
1 − (2π)2

A0
δ(q)

]
φ(q′) (13.21)

Next, note that

J0 = 1

A0

∫
d2x Jz(x) = 1

A0

∫
d2x β(x)φ(x) = (2π)2

A0

∫
d2q β(−q)φ(q)

(13.22)
Equation (13.21) can be solved by iteration. The zero-order solution

φ(q) = Mδ(q)

Substituting this in (13.22) gives

J0 = M
(2π)2

A0
β(q = 0) = M β̄ (13.23)

where

β̄ = 〈
β(x)

〉 = 1

A0

∫
d2x β(x)
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is the average of β(x) over the whole interfacial area A0. Substituting (13.16) in
(13.23) and solving for J0 gives an equation of the form (13.3) with α = β̄.

The first-order solution to (13.21) is

φ(q) = Mδ(q) − M

κq
β(q)

[
1 − (2π)2

A0
δ(q)

]
(13.24)

Substituting (13.24) in (13.22) gives again an equation of the form (13.3) with

α = β̄ − (2π)2

κA0

∫
d2q

1

q

〈
|β(q)|2

〉 [
1 − (2π)2

A0
δ(q)

]
, (13.25)

where we have added 〈..〉 which denotes ensemble average, and where we used that

〈
β(q)β(−q)

〉
=

〈
|β(q)|2

〉

We can rewrite (13.25) as follows. Let us define the correlation function

Cβ(q) = 1

(2π)2

∫
d2x

〈
β(x)β(0)

〉
eiq·x (13.26)

Note that

Cβ(q) = (2π)2

A0

〈
|β(q)|2

〉
(13.27)

This equation follows from the fact that the statistical properties are assumed to be
translational invariant in the x-plane, and is proved as follows:

Cβ(q) = 1

(2π)2

∫
d2x

〈
β(x)β(0)

〉
eiq·x

= 1

(2π)2

∫
d2x

〈
β(x + x′)β(x′)

〉
eiq·x

= 1

(2π)2

∫
d2x ′′

〈
β(x′′)β(x′)

〉
eiq·(x′′−x′)

This equation must be independent of x′ and we can therefore integrate over the
x′-plane and divide by the area A0 giving

Cβ(q) = 1

(2π)2A0

∫
d2x ′d2x ′′

〈
β(x′′)β(x′)

〉
eiq·(x′′−x′)

= (2π)2

A0

〈
|β(q)|2

〉
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Let us define
�β(x) = β(x) − β̄ (13.28)

We get
�β(q) = β(q) − β̄δ(q)

and thus 〈
|�β(q)|2

〉
=

〈
|β(q)|2

〉 [
1 − (2π)2

A0
δ(q)

]
(13.29)

where we have used that

β̄δ(q) = (2π)2

A0
β(q)δ(q)

and that

δ(q)δ(−q) = δ(q)
1

(2π)2

∫
d2x e−iq·x = δ(q)

A0

(2π)2

Using (13.25) and (13.29) gives

α = β̄ − 1

κ

∫
d2qq−1C�β(q) (13.30)

Let us write 〈
�β

(
x
)
�β

(
0
)〉 =

〈(
�β

)2〉
f (x) (13.31)

where f (0) = 1. We write

f (x) =
∫

d2q f (q)eiq·x

so that f (x = 0) = 1 gives ∫
d2q f (q) = 1 (13.32)

Using (13.31) and (13.32), (13.30) takes the form

α = β̄ −
〈(

�β
)2〉

κ−1l (13.33)

where the correlation length

l =
∫
d2q q−1 f (q)
∫
d2q f (q)

For randomly rough surfaces with isotropic statistical properties, f (q) depends only
on q = |q| so that
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l =
∫ ∞
0 dq f (q)

∫ ∞
0 dq q f (q)

Most surfaces of engineering interest are fractal-like, with the surface roughness
power spectrum having a (long-distance) roll-off wavevector q0. In this case, it can
be shown from that l ≈ q−1

0 . For the surface used in the numerical study presented
below in Sect. 13.4 one have q0 ≈ 107 m−1 (see Fig. 13.8). Furthermore, in this case
(for amorphous silicon dioxide solids) κ ≈ 1W/mK and if we assume that 〈(�β)2〉
is of order β̄2 we get the ratio between the second and the first term in (13.33) to be
of order β̄/(q0κ) ≈ 0.01, where we have used the fact that, typically (see Fig. 13.9),
β̄ ≈ 0.1MW/m2K. Thus, in the application presented in Sect. 13.4 the second term
in the expansion (13.33) is negligible.

Equation (13.33) represents the first two terms in an infinite series which would
result if (13.21) is iterated to infinite order. The result, (13.33), is only useful if the
first term β̄ is much larger that the second term. If this is not the case one would need
to also include higher order terms (in principle, to infinite order), which becomes
very hard to calculate using the iterative procedure. By comparing the magnitude
between the two terms in (13.33), one can determine if it is legitimate to include only
the lowest order term β̄.

We now consider two applications of (13.33), namely the contribution to the heat
transfer from (a) the electromagnetic field (in vacuum) and (b) from heat transfer via
a gas (e.g., the normal atmosphere), which we assume is surrounding the two solids.

13.2.5 (a) Radiative Contribution to α (in Vacuum)

The heat flux per unit area between two black bodies separated by d >> dT =
c�/kBT is given by the Stefan–Boltzmann law

J0 = π2k4B
60�3c2

(
T 4
0 − T 4

1

)

where T0 and T1 are the temperatures of solids 1 and 2, respectively, and c is the light
velocity. In this limiting case, the heat transfer between the bodies is determined by
the propagating electromagnetic waves radiated by the bodies and does not depend
on the separation d between the bodies. Electromagnetic waves (or photons) always
exist outside any body due to thermal or quantum fluctuations of the current density
inside the body. The electromagnetic field created by the fluctuating current density
also exists in the form of evanescent waves, which are damped exponentially with
the distance away from the surface of the body. For an isolated body, the evanescent
waves do not give a contribution to the energy radiation. However, for two solids
separated by d < dT , the heat transfer may increase by many orders of magnitude
due to the evanescent electromagnetic waves—this is often referred to as photon
tunneling.
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For short separation between two solids with flat surfaces (d << dT ), the heat
current due to the evanescent electromagnetic waves is given by (6.13) [11]

J0 = 4

(2π)3

∫ ∞

0
dω

(
�0(ω) − �1(ω)

) ∫
d2q e−2qd ImR0(ω)ImR1(ω)

|1 − e−2qd R0(ω)R1(ω)|2
(13.34)

where
�(ω) = �ω

(
e�ω/kBT − 1

)−1

and

R(ω) = ε(ω) − 1

ε(ω) + 1

where ε(ω) is the dielectric function. From (13.34), it follows that the heat current
scale as 1/d2 with the separation between the solid surfaces. The heat current is
especially large in the case of resonant photon tunneling between surface modes
localized on the two different surfaces. The resonant condition corresponds to the
casewhen the denominator in the integrand of (13.34) is small. Close to the resonance
we can use the approximation

R ≈ ω1

ω − ω0 − iγ
,

where ω1 is a constant and ω0 is determined by the equation Re[ε(ω0) + 1] = 0. In
this case, the heat current is determined by [11]

J0 ≈ μ
γ

d2

[
�0(ω0) − �1(ω0)

]
,

whereμ ≈ [log(2ωa/γ)]2/(8π). Ifwewrite T1 = T0−�T and assume�T/T0 << 1
we get J0 = α�T with

α ≈ μ
kBγ

d2

η2exp(η)
[
exp(η) − 1

]2 (13.35)

where η = �ω0/kBT0.
Resonant photon tunneling enhancement of the heat transfer is possible for

two semiconductor or insulator surfaces, which can support low-frequency surface
phonon–polariton modes in the mid-infrared frequency region. As an example, con-
sider two clean surfaces of (amorphous) silicon dioxide (SiO2). The optical properties
of this material can be described using an oscillator model [358]

ε(ω) = ε∞ + a

ω2
a − ω2 − iωγa

+ b

ω2
b − ω2 − iωγb
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Fig. 13.4 Solid line
calculated (using (13.34))
heat current per unit area, J0,
between two (amorphous)
silicon dioxide bodies, as a
function of the temperature
difference �T . The solids
have flat surfaces separated
by d = 1 nm. One solid is at
the temperature T = 296K
and the other at T + �T .
Dashed line linear function
with the slope given by the
initial slope (at �T = 0) of
the solid line
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The frequency-dependent term in this expression is due to optical phonons. The val-
ues for the parameters ε∞, (a,ωa, γa) and (b,ωb, γb) are given in [358], In Fig. 13.4,
we show the calculated heat current per unit area, J0, as a function of the temperature
difference �T . The solids have flat surfaces separated by d = 1 nm. One solid is at
the temperature T = 296K and the other at T + �T . When �T << T , the heat
transfer depends (nearly) linearly on the temperature difference �T (see Fig. 13.4),
and we can define the heat transfer coefficient α = J0/�T . In the present case (for
d = d0 = 1 nm), α = α0 ≈ 2 × 106 W/m2K. If the surfaces are not smooth but if
roughness occurs so that the separation d varies with the coordinate x = (x, y), we
have to first order in the expansion (13.33):

α = β̄ = α0
〈
(d0/d)2

〉
(13.36)

where 〈..〉 stands for ensemble average, or average over the whole surface area, and
where α0 is the heat transfer between flat surfaces separated by d = d0.

In the present case, the heat transfer is associated with thermally excited optical
(surface) phonons. That is, the electric field of a thermally excited optical phonon
in one solid excites an optical phonon in the other solid, leading to energy transfer.
The excitation transfer occurs in both directions, but if one solid is hotter than the
other, there will be a net transfer of energy from the hotter to the colder solid. For
metals, low-energy excited electron–hole pairs will also contribute to the energy
transfer; however, for good metals, the screening of the fluctuating electric field
by the conduction electrons leads to very ineffective heat transfer. However, if the
metals are covered withmetal oxide layers, and if the separation between the solids is
smaller than the oxide layer thickness, the energy transfer may again be due mainly
to the optical phonons of the oxide, and the magnitude of the heat current will be
similar to what we calculated above for (amorphous) silicon dioxide.

Let us consider a high-tech application. Consider a MEMS device involving very
smooth (amorphous) silicon dioxide slabs. Consider, for example, a very thin silicon
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dioxide slab rotating on a silicon dioxide substrate. During operation, a large amount
of frictional energymay be generated at the interface. Assume that the disk is pressed
against the substrate with the nominal stress or pressure p0. This does not need to be
an external applied force but may be due to the long-ranged van der Waals attraction
between the solids, or due to capillary bridges formed in the vicinity of the (asperity)
contact regions between the solids. The heat transfer due to the area of real contact
(assuming purely elastic deformation) can be calculated from (13.18). Let us make a
very rough estimate: surfaces used in MEMS application typically have a roughness
of the order of a few nanometers. Thus, u0 ∼ 1 nm and for (amorphous) silicon
dioxide the heat conductivity κ ≈ 1W/Km. Thus, from (13.18):

α ≈ (p0/E) × 109 W/m2K (13.37)

In a typical case, the nominal pressure p0 may be (due to the van derWaals interaction
and capillary bridges) between 106–107 Pa andwith E ≈ 1011 Pa we get from (13.37)
α ≈ 104–105 W/Km2. If the root-mean-square roughness is of the order ∼1 nm
we expect the average separation between the surfaces to be of the order a few
nanometer so that 〈(d0/d)2〉 ≈ 0.1 giving the non-contact contribution to α from
the electromagnetic field of order (from (13.36)) 105 W/Km2, i.e., larger than or of
similar magnitude to the contribution from the area of real contact.

13.2.6 (b) Contribution to α from Heat Transfer
via the Surrounding Gas or Liquid

Consider two solids with flat surfaces separated by a distance d. Assume that the
solids are surrounded by a gas. Let � be the gas mean free path. If d >> �, the
heat transfer between the solids occurs via heat diffusion in the gas. If d << �, the
heat transfer occurs by ballistic propagation of gas molecules from one surface to
the other. In this case, gas molecules reflected from the hotter surface will have (on
the average) higher kinetic energy than the gas molecules reflected from the colder
surface. This will result in heat transfer from the hotter to the colder surface. The
heat current is approximately given by [403]:

J0 ≈ κgas�T

d + a�

where a is a number of order unity and depends on the interaction between the gas
molecules and the solid walls [375]. For air (and most other gases) at the normal
atmospheric pressure and at room temperature, � ≈ 65 nm and κgas ≈ 0.02W/mK.
For contacting surfaces with surface roughness, we get to first order in the expansion
in (13.33):

α ≈ κgas
〈
(d + �)−1

〉 = κgas

∫ ∞

0
duP(u)(u + �)−1 (13.38)
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where 〈..〉 stands for ensemble average or averaging over the surface area, and where
P(u) is the probability distribution of interfacial separations. Equation (13.38) also
holds if the surfaces are surrounded by a liquid rather than a gas. In this case, κgas

must be replaced with the liquid heat conductivity κliq and in most cases one can put
� equal to zero.

If we again consider a MEMS application where the average surface separation
is of the order of nanometers, we can neglect the d-dependence in (13.38) and get
α ≈ κgas/� ≈ 3 × 105 W/m2K, which is similar to the contribution from the
electromagnetic coupling.

13.2.7 (c) Contribution to α from Heat Transfer
via Capillary Bridges

If the solid walls are wetted by water, in a humid atmosphere, capillary bridges will
form spontaneously at the interface in the vicinity of the asperity contact regions. For
very smooth surfaces, such as in MEMS applications, the fluid (in this case water)
may occupy a large region between the surfaces and will then dominate the heat
transfer between the solids. Similarly, contamination layers (mainly organic mole-
cules), which cover most natural surfaces may form capillary bridges between the
contacting solids, and contribute in an important way to the heat transfer coefficient.
The fraction of the interfacial surface area occupied by fluid bridges, and the sep-
aration between the solids in the fluid-covered region, can be calculated using the
theory developed in [404]. From this, it is possible to calculate the contribution to
the heat transfer using (13.38):

α ≈ κliq
〈
d−1

〉 ≈ κliq

∫ dK

a
duP(u)u−1 (13.39)

where P(u) is the distribution of interfacial separation u. The lower cut-off a in the
integral is a distance in the order of a molecular length and dK is the maximum height
of the liquid bridge, which, for a system in thermal equilibrium and for a wetting
liquid, is in the order of the Kelvin length. Note that P(u) is normalized and that

∫ dK

a
duA0P(u) = �A (13.40)

is the surface area (projected on the xy-plane)where the surface separation is between
a < u < dK. In (13.40), A0 is the nominal contact area.
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13.3 Contact Mechanics: Short Review
and Basic Equations

The theory of heat transfer presented above depends on quantities that can be calcu-
lated using contact mechanics theories. Thus, the heat flux through the non-contact
area (Sect. 13.2.4) depends on the average of some function f [d(x)] of the interfacial
separation d(x). If P(u) denotes the probability distribution of interfacial separation
u then

〈
f (d)

〉 =
∫ ∞

a
du f (u)P(u) (13.41)

where a is a short-distance cut-off (typically of molecular dimension). The contri-
bution from the area of real contact depends on the elastic energy Uel stored in the
asperity contact regions. In the limit of small contact pressureUel = p0u0, where u0
is a length that is of order the root-mean-square roughness of the combined roughness
profile.All the quantities P(u),Uel and u0 can be calculatedwith good accuracy using
the contact mechanics model of Persson. Here, we will briefly review this theory and
give the basic equations relevant for heat transfer.

Consider the frictionless contact between two elastic solids with the Young’s
elastic modulus E0 and E1 and the Poisson ratios ν0 and ν1. Assume that the solid
surfaces have the height profiles h0(x) and h1(x), respectively. The elastic contact
mechanics for the solids is equivalent to those of a rigid substrate with the height
profile h(x) = h0(x) + h1(x) and a second elastic solid with a flat surface and with
the Young’s modulus E and the Poisson ratio ν chosen so that [405]

1 − ν2

E
= 1 − ν2

0

E0
+ 1 − ν2

1

E1
. (13.42)

The contact mechanics formalism developed elsewhere [382–385] is based on
studying the interface between two contacting solids at different magnification ζ,
see Fig. 13.5. When the system is studied at the magnification ζ it appears as if the
contact area (projected on the xy-plane) equals A(ζ), but, when the magnification
increases, it is observed that the contact is incomplete and the surfaces in the apparent
contact area A(ζ) are in fact separated by the average distance ū(ζ), see Fig. 13.6.
The (apparent) relative contact area A(ζ)/A0 at the magnification ζ is given by [382,
384]

A(ζ)

A0
= 1

(πG)1/2

∫ p0

0
dσ e−σ2/4G = erf

( p0
2G1/2

)
(13.43)

where

G(ζ) = π

4

(
E

1 − ν2

)2 ∫ ζq0

q0

dqq3C(q) (13.44)
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Fig. 13.5 An rubber block
(dotted area) in adhesive
contact with a hard rough
substrate (dashed area). The
substrate has roughness on
many different length scales
and the rubber makes partial
contact with the substrate on
all length scales. When a
contact area is studied at low
magnification it appears as if
complete contact occur, but
when the magnification is
increased it is observed that,
in reality, only partial contact
occurs

Fig. 13.6 An asperity
contact region observed at
the magnification ζ. It
appears that complete
contact occurs in the asperity
contact region, but when the
magnification increase to the
highest (atomic scale)
magnification ζ1, it is
observed that the solids are
actually separated by the
average distance ū(ζ)

magnification ζ

elastic solid

rigid solid

ζ1

u(ζ)
_

where the surface roughness power spectrum

C(q) = 1

(2π)2

∫
d2x

〈
h(x)h(0)

〉
e−iq·x (13.45)

where 〈...〉 stands for ensemble average. The height profile h(x) of the rough surface
can be measured routinely today on all relevant length scales using optical and stylus
experiments.

We define u1(ζ) to be the (average) height separating the surfaces that appear
to come into contact when the magnification decreases from ζ to ζ − �ζ, where
�ζ is a small (infinitesimal) change in the magnification. u1(ζ) is a monotonically
decreasing function of ζ, and can be calculated from the average interfacial separation
ū(ζ) and A(ζ) using (see [384])

u1(ζ) = ū(ζ) + ū′(ζ)A(ζ)/A′(ζ), (13.46)
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where [384]

ū(ζ) = √
π

∫ q1

ζq0

dq q2C(q)w(q)

∫ ∞

p(ζ)

dp′ 1

p′ e
−[w(q,ζ)p′/E∗]2 , (13.47)

where E∗ = E/(1 − ν2), and where p(ζ) = p0A0/A(ζ) and

w(q, ζ) =
(

π

∫ q

ζq0

dq ′ q ′3C(q ′)
)−1/2

.

The distribution of interfacial separations

P(u) = 〈
δ[u − u(x)]〉

where u(x) is the separation between the surfaces at point x. As shown in [384] we
have (approximately)

P(u) =
∫ ∞

1
dζ

[ − A′(ζ)
]
δ
[
u − u1(ζ)

]
(13.48)

Thus we can write (13.41) as

〈
f (d)

〉 =
∫ ζ1

1
dζ

[ − A′(ζ)
]
f
[
u1(ζ)

]
(13.49)

where ζ1 is defined by u1(ζ1) = a.
Finally, the elastic energy Uel (see Fig. 13.7) and the length parameter u0 can be

calculated as follows. The elastic energy Uel has been studied in [380]:

Uel = A0E
∗ π

2

∫ q1

q0

dq q2W (q, p)C(q). (13.50)

Fig. 13.7 An elastic block
squeezed against a rigid
rough substrate. The
separation between the
average plane of the
substrate and the average
plane of the lower surface of
the block is denoted by u.
Elastic energy is stored in the
block in the vicinity of the
asperity contact regions

u

p

elastic energy

hard substrate

elastic block

0

z
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In the simplest case, one take W (q, p) = P(q, p) = A(ζ)/A0 can be taken as the
relative contact area when the interface is studied at the magnification ζ = q/q0,
which depends on the applied pressure p = p0. A more accurate expression is

W (q, p) = P(q, p)
[
γ + (1 − γ)P2(q, p)

]
. (13.51)

However, in this case (13.47) must be modified appropriately (see [384]). For the
parameter γ in (13.51) we have found that γ ≈ 0.5 gives good agreement between
the theory and numerical studies [386].

For small pressures, one can show that [384]:

p = βE∗e−ū/u0 , (13.52)

where

u0 = √
πγ

∫ q1

q0

dq q2C(q)w(q), (13.53)

where w(q) = w(q, 1), and where

β = εexp

[∫ q1
q0

dq q2C(q)w(q)logw(q)
∫ q1
q0

dq q2C(q)w(q)

]

, (13.54)

where (for γ = 1) ε = 0.7493.

13.4 Numerical Results

In this section, we present numerical results to illustrate the theory. We focus on an
MEMS-like application. In Fig. 13.8, we show the surface roughness power spectrum
C(q) as a function of the wavevector q on a log-log scale (with 10 as a basis) for
a typical surface used in MEMS applications, with the root mean square roughness
2.5 nm when measured over an area 10µm × 10µm. In Fig. 13.9, we show for
this case the contribution to the heat transfer coefficient α from the direct contact
area, and the non-contact contribution due to the fluctuating electromagnetic (EM)
field and due to heat transfer via the surrounding gas. In the calculation of the EM-
contribution, we have used (13.36) with α0 = 2.0MW/m2K (and d0 = 1 nm).
For the contribution from the surrounding gas, we have used (13.38) with κgas =
0.024W/mK and � = 65 nm (and a = 1). For the contact contribution, we used
(13.18) with κ = 1W/mK. In all calculations, we have assumed E∗ = 86GPa
and that the contact is elastic (no plastic yielding). The relative weak (squeezing)
pressure-dependence of the contribution from the non-contact area is due to the fact
that the (average) surface separation is smaller than the mean-free-path � of the gas
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Fig. 13.8 Surface roughness
power spectrum C(q) as a
function of the wavevector q
on a log-log scale (with 10 as
basis). (for a typical surface
used in MEMS applications
with the root mean square
roughness 2.5 nm when
measured over an area
10µm × 10µm)
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Fig. 13.9 The contribution
to the heat transfer
coefficient α from the direct
contact area, and the
non-contact contribution due
to the fluctuating
electromagnetic (EM) field
and due to heat transfer via
the surrounding gas. (for a
randomly rough surface with
the (combined) surface
roughness power spectrum
shown in Fig. 13.8)
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molecules in the non-contact area. Thus, for squeezing pressures above ∼100MPa
the contact contribution will dominate the heat transfer.

We have also studied the contribution to the heat transfer from capillary bridges,
which, on hydrophilic surfaces, form spontaneously in a humid atmosphere. The
capillary bridges gives an attractive force (to be added to the external squeezing
force), which pulls the solids closer together. We have used the theory presented
in [404] to include the influence of capillary bridges on the contact mechanics,
and to determine the fraction of the interface area filled with fluid at any given
relative humidity. In Fig. 13.10, we show the logarithm (with 10 as the basis) of the
contribution to the heat transfer coefficient α from the real contact areas, and from
the water in the capillary bridges, as a function of the relative (water) humidity. For
relative humidity below ∼0.4, the contribution to the heat transfer from capillary
bridges decreases roughly linearly with decreasing humidity (and vanishes at zero
humidity), and for relative humidity below ∼0.015, the heat transfer via the area of
real contact will be more important than the contribution from the capillary bridges.
However, the contribution from heat transfer via the air or vapor phase (not shown)
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Fig. 13.10 The logarithm (with 10 as the basis) of the contribution to the heat transfer coefficient
α from the real contact areas, and from the water in the capillary bridges, as a function of the
relative (water) humidity. (for a randomly rough surface with the (combined) surface roughness
power spectrum shown in Fig. 13.8. The squeezing pressure p0 = 4MPa and the effective solid
elastic modulus E∗ = 86GPa. The heat conductivity of water κfluid = 0.58W/mK)

is approximately ∼0.3MW/m2K (see Fig. 13.9), and will hence give the dominant
contribution to the heat transfer for relative humidity below 0.3. The small increase
in the contribution from the area of real contact for relative humidity around∼0.94 is
due to the increase in the contact area due to the force from the capillary bridges. For
soft elastic solids (such as rubber), this effect is much more important: see [404] for
a detailed discussion of this effect, which will also affect (increase) the heat transfer
in a drastic way.

We note that heat transfer via capillary bridges has recently been observed in
nanoscale point contact experiments [406] in which the authors investigated the heat
transfer mechanisms at a ∼100 nm diameter point contact between a sample and a
probe tip of a scanning thermal microscope. They observed heat transfer both due to
the surrounding (atmospheric) air as well as via capillary bridges.

13.5 Role of Adhesion and Plastic Deformation

In the theory above, we have assumed that the solids deform purely elastically. How-
ever, in many practical situations, the solids will deform plastically at sufficiently
short length scales. Similarly, inmany practical situations, in particular for elastically
soft solids, the area of real contact may depend strongly on the adhesive interaction
across the contacting interface. Here, we will briefly discuss under which circum-
stances this will affect the heat transfer between the solids.

The contribution to the heat transfer from the area of real contact between two
solids depends on the elastic energy Uel stored in the asperity contact regions,
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or, at applied loads that are sufficiently small, on the length parameter u0. For
most randomly rough surfaces, these quantities are determined mainly by the long-
wavelength, large amplitude surface roughness components. Similarly, the interfa-
cial separation, which determines the non-contact contribution to the heat transfer,
depends mainly on the long-wavelength, large amplitude surface roughness compo-
nents. On the other hand, plastic deformation and adhesion often manifests only at
short length scales, corresponding to high magnification. For this reason, in many
cases, one may assume purely elastic deformation when calculating the heat transfer,
even if, at sufficiently short length scales, all asperities have yielded plastically, or
the adhesion has strongly increased the (apparent) contact area. Let us illustrate this
with the amorphous silicon dioxide system studied in Sect. 13.4.

In Fig. 13.11, we show the elastic and plastic contact area as a function of magni-
fication on a log-log scale (with 10 as the basis). Also shown is the asperity-induced
elastic energy Uel(ζ) in units of the full elastic energy Uel(ζ1) obtained when all the
roughness (with wavevectors below q1 = ζ1q0) is included. Note that approximately
90% of the full elastic energy is already obtained at the magnification where the
elastic and plastic contact areas are equal, and approximately 60% of the full elastic
energy is obtained when Apl/Ael ≈ 0.01. Thus, in the present case, to a good approx-
imation, we can neglect the plastic deformation when studying the heat transfer. In
the calculation, we have assumed the penetration hardness σY = 4GPa and the
squeezing pressure p0 = 4MPa. Thus, at high magnification, where all the contact
regions are plastically deformed, the relative contact area A/A0 = p0/σY = 0.001
is in good agreement with the numerical data in Fig. 13.11.

If necessary, it is easy to include adhesion and plastic deformation when calcu-
lating the heat transfer coefficient α. Thus, (13.17) is also valid when adhesion is

U   (ζ) / U   (ζ  )el el 1

elastic

plastic

log (A/A  )0

1
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0 1 2 3 4
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Fig. 13.11 The elastic Ael and plastic Apl contact area as a function of magnification on a log-log
scale (with 10 as basis). The penetration hardnessσY = 4GPa and the applied pressure p0 = 4MPa.
Also shown is the asperity-induced elastic energy Uel(ζ) in units of the full elastic energy Uel(ζ1)
obtained when all the roughness (with wavevectors below q1 = ζ1q0) is included. The vertical
dashed line indicates the magnification where Ael = Apl
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included, at least as long as adhesion is treated as a contact interaction. However, in
this case, the interfacial stiffness dp0/dū must be calculated including the adhesion
(see [407]). Plastic deformation can be included in an approximate way as follows. If
two solids are squeezed together at the pressure p0, they will deform elastically and,
at short length scales, plastically. If the contact is then removed, the surfaces will be
sufficiently locally plastically deformed. Assume now that the surfaces are moved
into contact again at exactly the same position as the original contact, and with the
same squeezing pressure p0 applied. In this case, the solids will deform purely elasti-
cally and the theory outlined in this section can be (approximately) applied, assuming
that the surface roughness power spectrum C̄(q) of the (plastically) deformed surface
is known. In [385], we have described an approximate way of how to obtain C̄(q)

from C(q) by defining (with q = ζq0) [408]

C̄(q) =
⎡

⎣1 −
(
Apl(ζ)

A0
pl

)6
⎤

⎦C(q)

where A0
pl = FN/σY. The basic picture behind this definition is that surface rough-

ness at short length scales get smoothed out by plastic deformation, resulting in an
effective cut-off of the power spectrum for large wavevectors (corresponding to short
distances).

13.6 Application to Tires

Here, wewill briefly discuss heat transfer in the context of tires. The rolling resistance
μR of a tire determines the heat production in a tire during driving on a strait planar
road at a constant velocity v. In a stationary state the energy produced per unit time,
W = μRFNv, must equal to the transfer of energy per unit time, from the tire to the
surrounding atmosphere and to the road surface. Here, we will briefly discuss the
relative importance of these two different contributions to the heat transfer.

Assume, for simplicity, that the frictional heat is produced uniformly in the tread
rubber, and assume a tire without tread pattern. Let z be a coordinate axis perpendic-
ular to the rubber surface. In this case, at stationary conditions, the temperature in the
tread rubber satisfies T ′′(z) = −q̇/κ where q̇ is the frictional heat produced per unit
volume and unit time. We assume that the heat current vanishes at the inner rubber
surface (z = 0, see Fig. 13.12), so that T ′(0) = 0. Thus, we get T (z) = T0− q̇z2/2κ.
The heat current at the outer rubber surface

J0 = −κT ′(d) = q̇d. (13.55)

The temperature of the outer surface of the tread rubber
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Fig. 13.12 Temperature
distribution of rubber tread
(thickness d) in contact with
the air. The air temperature
(for z > d) and the
temperature at the outer
(z = d) and inner (z = 0)
rubber surfaces are denoted
by Tair , T1 and T0,
respectively

0 d z

T

T0

T1

Tair

T1 = T (d) = T0 − q̇d2/2κ (13.56)

Let us now assume that the heat transfer to the surrounding

J0 = α(T1 − Tair) (13.57)

Combining (13.55)–(13.57) gives

T1 = T0 − T0 − Tair
1 + 2κ/dα

(13.58)

For rubber κ ≈ 0.2W/mK and with d = 1 cm and α ≈ 100W/m2K, as is typical
for (forced) convective heat transfer between a tire and (dry) air (see Appendix Q2
and [409]), we get

T1 ≈ 0.3T0 + 0.7Tair.

The temperature profile is shown (schematically) in Fig. 13.12. In reality, the heat
production, even during pure rolling, will be somewhat larger close to the outer
surface of the tread and the resulting temperature profile in the tread rubber will
therefore be more uniform than indicated by the analysis above.

Let us now discuss the relative importance of the contributions to the heat transfer
to the air and to the road. We assume that the heat transfer to the atmosphere and
to the road are proportional to the temperature difference T1 − Tair and T1 − Troad,
respectively. We get

μRFNv = αairAsurf(T1 − Tair) + αroadA0(T1 − Troad) (13.59)

where Asurf is the outer surface area of the tread, and A0 the nominal tire-road
footprint area. For rubber in contact with a road surface, κ in (13.18) is ≈0.2W/mK
and with p0/E∗ ≈ 0.04 and u0 ≈ 10−3 m (as calculated for a typical case) we
get αroad ≈ 10W/m2K, which is smaller than the contribution from the forced
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convection. Since the nominal contact area between the tire and the road is much
smaller than the total rubber tread area, we conclude that the contribution from the
area of real contact between the road and the tire is rather unimportant. During fast
acceleration, wear processes may occur, involving the transfer of hot rubber particles
to the road surface, but such processes will not considered here. In addition, at the
inlet of the tire-road footprint area, air may be compressed and then rapidly squeezed
out from the tire-road contact area resulting in strong forced convective cooling of
the rubber surface in the contact area. A similar process involving the inflow of air
occurs at the exit of the tire-road footprint area. A detailed study of this complex
process is necessary in order to accurately determine the heat transfer from a tire to
the surrounding atmosphere and the road surface.

For a passenger car tire during driving on a strait planar road at a constant velocity
v, the tire temperature that follows from (13.59) is in reasonably agreement with
experiment. Thus, using (13.59) we get

�T = T1 − Tair ≈ μRFNv

αairAsurf
(13.60)

and with αair = 100W/m2K, Asurf ≈ 0.5m2 and μR ≈ 0.02, FN = 3500N and
v = 30m/s we get �T ≈ 40 ◦C.

The discussion above has focused on the stationary state where the heat energy
produced in the tire per unit time is equal to the energy given off to the surrounding
per unit time. However, for a rolling tire it may take a very long time to arrive at this
stationary state. In the simplest picture, assuming a uniform temperature in the tire
rubber, we get from energy conservation

ρCv
dT

dt
= q̇ − α

d
(T − Tair)

or, if T (0) = Tair,

T (t) = Tair + q̇d

α

(
1 − e−t/τ

)
,

where the relaxation time τ = ρCVd/α ≈ 200 s. In reality, the temperature in the
tire is not uniform, and this will introduce another relaxation time τ ′, defined as
the time it takes for heat to diffuse a distance d, which is of order τ ′ = ρCVd2/κ.
The ratio τ ′/τ = αd/κ. For rubber κ ≈ 0.2W/mK and assuming d = 1 cm and
α = 100W/m2K gives τ ′/τ ≈ 5 or τ ′ ≈ 103 s. Experimental data have shown that
it typically takes ∼30min to fully build up the tire temperature during rolling [409].

Rubber friction depends sensitively on the temperature of the rubber; in particular,
the temperature close to the rubber surface in contact with the road. The temperature
in the surface region of a tire varies rapidly in space and time, which must be consid-
ered when calculating the rubber friction [373]. The shortest time and length scales
are related to the contact between the road asperities and the rubber surface in the
tire-road footprint contact area. During a slip, this generates intense heating, which
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varies over length scales from a few micrometers to several milometers, and over
time scales shorter than the time a rubber patch stays in the footprint, which typi-
cally may be of the order a fewmilliseconds. During this short time, very little heat is
transferred to the surrounding, and very little heat conduction has occured inside the
rubber, i.e., the heat energy mainly stays where it is produced by the internal friction
in the rubber. This results in a flash temperature effect, which has a crucial influence
on rubber friction [373]. However, rubber friction also depends on the background
temperature (usually denoted by T0), which varies relatively slowly in space and
time, e.g., on time scales from the time (∼0.1 s) it takes for the tire to perform a few
rotations, up to the time (∼30min) necessary to build up the full tire temperature
after any change in the driving condition (e.g., from the start of driving). Note that the
time variation of the background temperature T0 depends on the surrounding (e.g.,
the air and road temperatures, humidity and rain) and on the driving history, while
the flash temperature effect mainly depends on the slip history of a tread block (or
rubber surface patch) in the footprint contact area, but not on the outside air or road
temperature, or atmospheric condition.

13.7 Experimental Test of the Theory

We have performed a very simple experiment to test the theoretical predictions for
the heat transfer. The setup consists of two containers (see Fig. 13.13), both filled
with distilled water, standing on top of each other with a thin silicon rubber film in
between. The upper container is made from copper (inner diameter 5 cm), and the
water is heated to the boiling temperature (i.e., T0 = 100 ◦C). The lower container is
made from PMMA with a cylindrical copper block at the top. To study the effect of
surface roughness on the heat transfer, the copper block can be replaced by another
copper block with different surface roughness. In the experiments presented below
we used three copper blocks with different surface roughness.

The temperature T1(t) of the water in the lower container will increase with time
t due to the heat current J0 flowing from the upper container to the lower container:

Fig. 13.13 Experiment to
test the theoretical
predictions for the heat
transfer across interfaces.
The increase in the
temperature T1(t) of the
water in the lower container,
with increasing time t ,
determines the heat transfer
between the upper and lower
water container

heating mixing

thermal
isolation

rubber

copper T0

T1

water

FN
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J0 = ρCVṪ1d (13.61)

where d is the height of the water column in the lower container (in our experiment
d = 3.5 cm), and where ρ and CV are the water mass density and heat capacity,
respectively. We measure the temperature of the water in the lower container as a
function of time, starting at 25 ◦C. To obtain a uniform temperature of the water in
the lower container we mix it using a (magnetic-driven) rotating metal bar.

We have investigated the heat transfer using copper blocks with different surface
roughness. To prepare the rough surfaces, we have pressed annealed (plastically soft)
copper blocks with smooth surface against sandpaper, using a hydraulic press. We
repeated this procedure several times to obtain randomly rough surfaces. The rough-
ness of the copper surfaces can be changed by differing the grade of the sandpaper
used (consisting of particles with different average diameter). Due to the surface
roughness, the contact between the top surface of the lower container and the thin
silicon rubber sheet (thickness d0 = 2.5mm) attached to the upper container, is only
partial. The bottom surface of the upper container has been highly polished and we
can neglect the heat resistance at this rubber–copper interface. Thus, most of the
resistance to the heat flow arises from the heat diffusion through the rubber sheet,
and from the resistance to the heat flow at the interface between the rubber and the
rough copper block.

The rubber sheet (elastic modulus E = 2.5MPa, Poisson ratio ν = 0.5) was
made from a silicone elastomer (polydimethylsiloxane; PDMS). We have used
PDMS because of its almost purely elastic behavior on the time scales involved
in our experiments. The PDMS sample was prepared using a two-component
kit (Sylgard 184) purchased from Dow Corning (Midland, MI). This kit con-
sists of a base (vinyl-terminated PDMS) and a curing agent (methylhydrosiloxane-
dimethylsiloxane copolymer) with a suitable catalyst. From these two components,
we prepared a mixture of 10:1 (base/cross linker) in weight. The mixture was
degassed to remove the trapped air induced by stirring from the mixing process
and then poured into cylindrical casts (diameter 5 cm and height d0 = 2.5mm).
The bottom of these casts were made from glass in order to obtain smooth surfaces
(negligible roughness). The samples were cured in an oven at 80 ◦C for over 12h.

Using (13.3), we can write

J0 ≈ T0 − T1(t)

d0κ
−1
0 + α−1

(13.62)

where κ0 the heat conductivity of the rubber. Here, we have neglected the influence
of the copper blocks on the heat transfer resistance, which is a good approximation
because of the high thermal conductivity of copper. Combining (13.61) and (13.62)
gives

τ0Ṫ1 = T0 − T1(t)

where the relaxation time
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τ0 = ρCVd

(
d0
κ0

+ 1

α

)
.

If we assume that τ0 is time independent, we get

T1(t) = T0 + [
T1(0) − T0

]
e−t/τ0 . (13.63)

In the study above, we have assumed that there is no heat transfer from the lower
container to the surrounding. However, if necessary, one can easily take into account
such a heat transfer: If we assume that the heat transfer depends linearly on the
temperature difference between the water and the surrounding, we can write

J1 = α1 (T1 − Tsurr)

In this case, it is easy to show that (13.63) is replaced with

T1(t) = Ta + [
T1(0) − Ta

]
e−t/τ . (13.64)

where Ta is the temperature in the water after a long time (stationary state where
J0 = J1), and where the relaxation time τ now is given by

τ = ρCVd
Ta − Tsurr
T0 − Tsurr

(
d0
κ0

+ 1

α

)
.

The heat transfer across the rubber–copper interface can occur via the area of
real contact, or via the non-contact area via heat diffusion in the thin air film or via
radiative heat transfer. Since all these heat transfer processes act in parallel, we have

α ≈ αgas + αcon + αrad.

Let us estimate the relative importance of these different contributions to α. Using
the (diffusive) heat conductivity of air κgas ≈ 0.02W/mK and assuming 〈d−1〉 =
(20µm)−1 gives

αgas = κgas
〈
(d + �)−1

〉 ≈ κgas
〈
d−1

〉 ≈ 1000W/m2K.

Let us assume that p0 ≈ 0.01MPa, E∗ ≈ 2MPa, u0 ≈ 10µm and (for rubber)
κ0 = 0.2W/mK. Thus

αcon = p0κ0

E∗u0
≈ 100W/m2K.

Here we have used that κ ≈ κ0 (since the heat conductivity κ1 of copper is much
higher than that for the rubber). Finally, assuming that the radiative heat transfer is
well approximated by the Stefan–Boltzmann law and assuming that (T0−T1)/T1 <<

1, we get with T0 = 373K
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αrad ≈ π2k4B
60�3c2

4T 3
0 ≈ 10W/m2K

Note that αrad is independent of the squeezing pressure p0, while αcon ∼ p0. The
pressure dependence of αgas will be discussed below.

In the experiment reported on below, the silicon rubber film has the thickness
d0 = 2.5mm so that d−1

0 κ0 ≈ 100W/m2K. Thus

1

d−1
0 κ0

+ 1

α
≈

(
1

100
+ 1

1000 + 100 + 10

) (
W/m2K

)−1

and it is clear from this equation that, in the present case, the thin rubber film will
give the dominant contribution to the heat resistance. This is in accordance with our
experimental data presented below.

13.8 Experimental Results and Discussion

To test the theory, we have performed the experiment described in Sect. 13.7. We
have performed experiments on four different (copper) substrate surfaces; namely,
one highly polished surface (surface 0) with the root-mean-square (rms) roughness
of 64 nm, and three rough surfaces with rms roughness of 42, 88 and 114µm. In
Fig. 13.14,we show the surface roughness power spectrumof the three latter surfaces.
Including only the roughness with wavelength above ∼30µm, the rms slope of all
three surfaces are of order unity, and the normalized surface area A/A0 ≈ 1.5 in all
cases.

In Fig. 13.15, we show for the surfaces 1, 2 and 3, the pressure dependence of
heat transfer coefficient from the contact area (αcon) and from the air-gap (αgas). In
calculating the results in Fig. 13.15, we have used (13.18) (with u0 from (13.53))

Fig. 13.14 The surface
roughness power spectrum
of the three copper surfaces
used in the experiment. The
surfaces 1, 2 and 3 have a
root-mean-square roughness
of 42, 88 and 114µm,
respectively
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Fig. 13.15 The variation of
the heat transfer coefficient
from the contact area (αcon)
and from the air-gap (αgas)
with the squeezing pressure.
The surfaces 1, 2 and 3 have
the power spectra shown in
Fig. 13.14
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(top figure) and (13.38) (with P(u) from (13.48)) (bottom figure). Note that both
αcon and αgas vary (nearly) linearly with p0. The latter may at first appear remarkable
because we know that at the low (nominal) squeezing pressures used in the present
calculation (where the area of real contact varies linearlywith p0), the average surface
separation ū = 〈u〉 depends logarithmically on p0. However, the heat transfer via
heat diffusion in the air gap depends on 〈(u + �)−1〉, which depends on p0 almost
linearly as long as ū >> �, which is obeyed in our case. This can be understood as
follows: 〈u〉 is determinedmainly by the surface regions where the surface separation
is close to its largest value. On the other hand 〈(u + �)−1〉 is determined mainly by
the surface regions where u is very small, i.e., narrow strips (which we will refer to as
boundary strips) of surface area close to the area of real contact. Now, for small p0,
the area of real contact increases linearly with p0 while the distribution of sizes of
the contact regions is independent of p0. It follows that the total area of the boundary
strips will also increase linearly with p0. Thus, since 〈(u + �)−1〉 is determined
mainly by this surface area, it follows that 〈(u + �)−1〉 will be nearly proportional
to p0. We note that in Fig. 13.9, αgas is nearly pressure independent, but this is due to
the fact that the (combined) surface in this case is extremely smooth (rms roughness
2.5 nm) so that the u-term in 〈(u + �)−1〉 can be neglected compared with the gas
mean free path�, giving a nearly pressure-independent gas heat transfer coefficient.
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Fig. 13.16 The variation of
the cumulative probability
with the height (or
gap-separation) u. The
surfaces 1 and 3 (top) and 2
(bottom) have the power
spectras shown in Fig. 13.14.
For each surface, the curves
are for the nominal
squeezing pressures (from
right to left): 11.8, 23.7,
35.5, 47.3, 59.2 and 71.0 kPa
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However, in the system studied above, ū is much larger than� and the result is nearly
independent of �.

Note that in the present case (see Fig. 13.15), αgas >> αcon so that the present
experiment mainly tests the theory for the heat flow in the air gap.

In Fig. 13.16, we show the variation of the cumulative probability with the height
(or gap-separation) u for the surfaces 1 and 3 (top) and 2 (bottom).

In Fig. 13.17, we show the measured (dots) and calculated (using (70b)) (solid
lines) temperatures in the lower container as a function of time. Results are for all four
surfaces and for the nominal squeezing pressure p0 = 0.012MPa. The experiments
were repeated 16 times and all the experimental data points are shown in the figure.
In Fig. 13.18, we show the measured (dots) and calculated (solid lines) temperatures
in the lower container as a function of time. Results are for surface 2 for the nominal
squeezing pressure p0 = 0.012 (lower curve) and 0.071MPa (upper curve).Note that
there is no fitting parameter in the theory calculations, and the agreement between
theory and experiment is relatively good.

It would be interesting to repeat the experiment presented above under vacuum
conditions. In this case, approximately half of the heat transfer resistance will arise
from heat diffusion in the thin rubber film and half arises from the area of real
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Fig. 13.17 The measured
(dots) and calculated (solid
lines) temperatures in the
lower container as a function
of time. Results are for all
four surfaces and for the
nominal squeezing pressure
p0 = 0.012MPa
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Fig. 13.18 The measured
(dots) and calculated (solid
lines) temperature in the
lower container as a function
of time. Results are for
surface 2 for the nominal
squeezing pressure
p0 = 0.012 (lower curve)
and 0.071MPa (upper curve)
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contact, and it would be easy to accurately test the theory for the latter contribution.
It would also be interesting to repeat the experiment using elastic materials with
thermal conductivities much higher than that of silicon rubber.

The heat resistance of the system studied above is dominated by the thin rubber
film. The reason for this is the low heat conductivity of rubber (approximately 100
times lower than for metals). For direct metal–metal contact the contact resistance
will bemuchmore important. However, for very rough surfaces it is likely that plastic
flow is already observed at such low magnifications (corresponding to large length
scales) such that it will affect the contact resistance. Nevertheless, it is interesting to
compare the theory predictions for elastic contact with experimental data for metal–
metal contacts.

In Fig. 13.19, we show the measured heat transfer coefficient for metal–metal
contacts with steel, copper and aluminum [410]. The surfaces have the effective (or
combined) rms surface roughness hrms = 7.2µm (steel), 2.2µm (Cu) and 5.0µm
(Al). Assume that the variation of α with p0 is mainly due to the area of real contact,
i.e., we neglect the heat transfer via the thin air film between the surfaces. For the
experiments involving rubber discussed above, the contribution to the heat transfer
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Fig. 13.19 Variation of the heat transfer coefficient α with the squeezing pressure p0 for metal–
metal contact with steel, copper and aluminum. The surfaces have the effective (or combined)
root-mean-square surface roughness values hrms = 7.2µm (steel), 2.2µm (copper) and 5.0µm
(aluminum). The heat conductivity of the metals are κ = 54W/mK (steel), 381W/mK (copper)
and 174W/mK (aluminum). Based on experimental data from [410]

coefficient α from the area of real contact was smaller by a factor of ∼20 than
the contribution from heat diffusion in the air gap, but because of the much higher
thermal conductivity of metals (typically ∼100–1000 times higher) the contribution
to α from the area of real contact (which is proportional to κ) will be much more
important. Fitting the data points in Fig. 13.19 with straight lines gives the slope
dα/dp0(exp) (in units of m/sK):

2 × 10−4 (steel), 7 × 10−3 (Cu), 1.2 × 10−3 (Al)

Using (13.18) with u0 ≈ 0.4hrms (here we have assumed γ = 0.4) gives dα/dp0
(theory) = κ/E∗u0:

1 × 10−4 (steel), 4 × 10−3 (Cu), 1.3 × 10−3 (Al)

The agreement between theory and experiment is very good, taking into account
that plastic deformation may have some influence on the result, and that an accu-
rate analysis requires the full surface roughness power spectrum C(q) (in order to
calculate u0 accurately, and in order to include plastic deformation if necessary,
which was not reported on in [410]). We note that experimental results such as those
presented in Fig. 13.19 are usually analyzed with a phenomenological model, which
assumes plastic flow and neglects elastic deformation. In this theory, the heat transfer
coefficient [411]

α ≈ κsp0
hrmsσY

(13.65)
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is proportional to the rms surface slope, s, but it is well known that this quantity is
dominated by the very shortest wavelength roughness, which in fact makes the theory
ill-defined. In [410], the data presented in Fig. 13.19 were analyzed using (13.65)
with s = 0.035, 0.006 and 0.03 for the steel, Cu and Au surfaces, respectively.
However, analysis of polished surfaces with a similar rms roughness to those used in
the experiments usually gives slopes of order unity when all roughness, down to the
nanometer, is included in the analysis [412].Using s ≈ 1 in (13.65) gives heat transfer
coefficients approximately ∼100 times larger than observed in the experiments. (In
our theory (13.18) s/σY in (13.65) is replaced by 1/E∗, and since, typically, E∗/σY ≈
100, our theory is consistent with experimental observations.) [413]. We conclude
that the theory behind (13.65) is incorrect or incomplete. A theory that includes both
elastic and plastic deformation was described in Sect. 13.5.

13.9 Electric Contact Resistance

It is easy to show that the problem of the electrical contact resistance is mathemati-
cally equivalent to the problem of the thermal contact resistance. Thus, the electric
current (per unit nominal contact area) J0 through an interface between solids with
randomly rough surfaces can be related to the electric potential drop �φ at the inter-
face via J0 = α′�φ where, in analogy with (13.17),

α′ = 2p0κ′

E∗u0
(13.66)

where κ′ is the electrical conductivity. However, from a practical point of view the
problem of the electrical contact resistance is more complex than for the heat contact
resistance because of the great sensitivity of the electric conductivity on the type of
material (see Appendix Q3). Thus, in a metal–metal contact, the contact resistance
will depend sensitively on whether the thin insulating oxide layers, which cover most
metals, are fractured, so that direct metal–metal contact can occur. On the other hand,
in most cases there will be a negligible contribution to the electric conductivity from
the non-contact regions.

13.10 Summary

We have studied the heat transfer between elastic solids with randomly rough but
nominally flat surfaces squeezed in contact with the pressure p0. Our approach is
based on studying the heat flow and contact mechanics in wavevector space rather
than real space, which has the advantage that we do not need to consider the very
complex fractal-like shape of the contact regions in real space. We have included
both the heat flow in the area of real contact as well as the heat flow across the
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non-contact surface region. For the latter contribution, we have included the heat
transfer both from the fluctuating electromagnetic field (which surrounds all material
objects), and the heat flow via the surrounding gas or liquid.We have also studied the
contribution to the heat transfer from capillary bridges, which form spontaneously
in a humid atmosphere (e.g., as a result of organic and water contamination films
which occur on most solid surfaces in the normal atmosphere). We have presented
an illustrative application relevant for MEMS applications involving very smooth
amorphous silicon dioxide surfaces. In this case, we find that all the mentioned heat
transfer processes may be of approximately equal importance.

We have briefly discussed the role of plastic deformation and adhesion on the
contact heat resistance. We have pointed out that even if plastic deformation and
adhesion are important at short length scales (or high magnifications), they may
have a negligible influence on the heat transfer since the elastic energy stored in
the asperity contact regions, which mainly determines both the interfacial separation
and the contact heat transfer coefficient, is usually mainly determined by the long–
wavelength surface roughness components, at least for fractal-like surfaces with
fractal dimension Df < 2.5 (which is typically obeyed for natural surfaces and
surfaces of engineering interest).



Chapter 14
Electrostatic Friction

We consider the effect of an external bias voltage and the spatial variation of the
surface potential on the damping of cantilever vibrations. The electrostatic friction
is due to energy losses in the sample created by the electromagnetic field from the
oscillating charges induced on the surface of the tip by the bias voltage and spatial
variation of the surface potential. A similar effect arises when the tip is oscillating in
the electrostatic field created by charged defects in a dielectric substrate. The electro-
static friction can be compared with Casimir friction originating from the fluctuating
electromagnetic field due to quantum and thermal fluctuation of the current den-
sity inside the bodies. We show that electrostatic and Casimir friction can be greatly
enhanced if, on the surfaces of the sample and the tip, there are 2D systems; for exam-
ple, a 2D electron system or on incommensurate layers of adsorbed ions exhibiting
acoustic vibrations. We show that the damping of the cantilever vibrations due to
the electrostatic friction may be of similar magnitude as the damping observed in
experiments.We also show that, at short separation, the Casimir frictionmay be large
enough to be measured experimentally. We consider the contribution from contact
electrification to the work necessary to separate two solid bodies. The variations of
the surface potential resulting from contact electrification give the contribution to the
work necessary to separate two solid bodies. For silicon rubber (polydimethylsilox-
ane, PDMS),we discuss in detail the relative importance of the different contributions
to the observed work of adhesion.

14.1 Effect of a Bias Voltage and the Spatial Variation
of the Surface Potential

The electrostatic potential at the surface of a metal relative to its interior depends on
the magnitude of the surface dipole moment per unit area, which, in turn, depends on
the separation of the lattice planes that are parallel to the surface [317]. Variations of
the crystallographic directions at the surface of a clean polycrystalline metal results

© Springer-Verlag Berlin Heidelberg 2017
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in a variation of the surface potential. This is referred to as the ‘patch effect’. Patch
potentials are also generated and influenced by surface contamination and, in the
case of alloys, by variation in the chemical composition. The surface potential can
be easily changed by applying a voltage between an atomic force microscope tip
and the sample. The electrostatic forces between conducting surfaces due to spatial
variation of the surface potential were studied in [318].

Patch potential variation is specific to the particular sample and depends on envi-
ronmental factors. Spatial variation of surface potential is expected to be related to the
physical size of the surface crystallites, which, in the case of metal, is typically of the
order of 1µm. Thin films deposited on substrates at temperatures much lower than
the melting point of the film are often amorphous, with non-uniform thickness and
crystallite size of the same order as the thickness of the film [319]. Annealing of the
film can produce grain structures that are substantially larger than the film thickness.
The patch-potential variations have been measured under various conditions using
vibrating or rotating plate electrometers [320]. Notably, it was shown that large-scale
variations in surface potential were caused by adsorption of contaminants, whichwas
transient and found to reduce the variation of surface potential of the clean surfaces
[50, 52].

a. General theory We begin by considering a model in which the tip of a metallic
cantilever of length L is a section of a cylindrical surface with the radius of curvature
R (Fig. 14.1). The cantilever is perpendicular to a flat sample surface, which occupies
the xy plane, with the z-axis pointing away from the sample. The tip displacement
u(t) = x̂u0e−iωt is assumed to be parallel to the surface (along the x axis), which
will be a good approximation when the oscillation amplitude u0 is sufficiently small.
The cantilever width w, i.e. the size in the direction perpendicular to the xz plane,
is taken to be much larger than its thickness c (w � c), and d is the separation
between the tip and the sample surface. It is straightforward to obtain the static
electric field distribution when d � R. In this case, the electrostatic field of the
entire cylinder is effectively the same as that due to its bottom part. The problem
is then reduced to solving the 2D Laplace equation with the boundary conditions
that the potential has the constant values V and 0 at the metallic surfaces of the tip
and the sample, respectively. In this case, the electric field distribution outside the
conductors is equal to the field due to two charged wires passing through points at
z = ±d1 = ±√

(d + R)2 − R2 [191]. The wires have charges ±Q per unit length,
Q = CV , where C−1 = 2 ln[(d + R + d1)/R]. The electric potential at a point r
exterior to the tip and the sample is given by

ϕ0(r) = −2Q
[
ln |r − r+| − ln |r − r−|] =

= Q
∫ ∞

−∞
dq

|q|e
iqx

[
e−|q||z−z+| − e−|q||z−z−|] , (14.1)

where r± = ±ẑd1. The attractive cantilever-surface force can be calculated in a
straightforward manner using (14.1) [169].



14.1 Effect of a Bias Voltage and the Spatial Variation … 301

Fig. 14.1 Scheme of the
tip–sample system. The tip
shape is characterized by its
length L and the cylindrical
tip radius of curvature, R
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A somewhat different picture applies in the case of an oscillating charged tip. The
cantilever charge does not change when its tip moves parallel to the surface, while
the sample charge varies in time at any fixed point. Thus, the electric field from the
oscillating tip will be the same as from an oscillating wire located at z = d1. The
oscillating electric potential due to the tip, at a point r exterior to the tip and the
sample is given by

ϕ1(r, t) = ϕ1(r)e−iωt + c.c., (14.2)

where

ϕ1(r) =i Qu0

∫ ∞

−∞
dqq

|q| e
iqx

[
e−|q||z−z+| − e−|q||z−z−|Rp(q,ω)

]
, (14.3)

and Rp(q,ω) is the reflection amplitude for the p polarized electromagnetic waves.
The electric field is given by E(r) = −∇ϕ(r). The energy dissipation per unit time
induced by the electromagnetic field inside of the metallic substrate is determined
by integrating the Poynting vector over the surface of the metal, and is given by
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P = c

4π

∫
dSẑ · [

E(r)×B∗(r)
]
z=+0 + c.c. =

= − iω

4π

∫
dS

(
ϕ1(r)

d

dz
ϕ∗
1(r)

)

z=+0

+ c.c. =

= 4ωQ2|u0|2w
∫ ∞

0
dqqe−2qd1 ImRp(ω, q). (14.4)

Taking into account that the energy dissipation per unit time must be equal to
2ω2� |u0|2, using (14.4) gives the friction coefficient:

� = lim
ω→0

2C2V 2w

∫ ∞

0
dqqe−2qd1

ImRp(ω, bq)

ω
. (14.5)

An alternative derivation of (14.5) is given in Appendix R. Now, assume that the
electric potential at the surface of the tip is inhomogeneous and consists of the
domains or ‘patches’. The cylinder with linear size w is ‘divided’ into cylinder
segments with the linear size wi : w = ∑

i wi � wi � √
dR, and with the surface

potential Vis = V +Vi , where V is the bias voltage and Vi is the randomly fluctuating
surface potential for the domain i . In the case of a cylindrical tip geometry, all domains
give independent contributions to the friction,which can be obtained from (14.5) after
replacement V → V +Vi andw → wi . The contribution to friction from all domains
is given by

� =
∑

i

�i =
∑

i

lim
ω→0

2C2(V + Vi )
2wi

∫ ∞

0
dqqe−2qd1

ImRp(ω, q)

ω
=

= lim
ω→0

2C2
(
V 2 + V 2

0

)
w

∫ ∞

0
dqqe−2qd1

ImRp(ω, vq)

ω
, (14.6)

where we have used that the average value of the fluctuating surface potential 〈Vi 〉 =∑
i wi Vi = 0 and V 2

0 = ∑
i wi V 2

i /w, so that V0 is the root mean square variation
of the surface potential. According to (14.6), bias voltage and patch contributions to
the friction have the same dependence on d.

Many experiments use thermally evaporated thin films of gold [21]. The work
function of gold is 5.47, 5.37, and 5.31eV for the 〈100〉, 〈110〉, and 〈111〉 direction,
respectively [321]. If the surfaces are clean and amorphous then we can assume that
they consist of equal areas of these three crystallographic planes, and the root-mean-
square 〈σ2

v〉1/2 of the potential distribution becomes:

〈
σ2

v

〉1/2 =
√〈

(Vi − Vj )
2〉 =

√

2
(〈
V 2
i

〉 − 〈
Vi

〉2) ≈ 90mV. (14.7)

When annealed, thin gold films formmesa structures with the 〈111〉 crystallographic
planes exposed. In this case, variations of the surface potential are presumably
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generated by the material lying between the mesas. The size of the mesas depends
on the temperature of the substrate during the formation of the film.

Sukenik et al. measured the root mean square variation of the surface potential due
to thermally evaporated gold using the Stark effect in sodium atoms [322]. The films
were partially optically transparent with a thickness of 42nm and heated at 120 ◦C
for several hours in vacuum. They deduced that the magnitude of the fluctuating
surface potential is V0 = 150mV, and showed that the scale of the lateral variation
of the surface potential is of the order of the film thickness. The measurement of the
non-contact friction between a gold tip and the gold sample gave V0 ∼ 200mV [21],
thus confirming the prediction of the theory that this parameter is determined by the
root mean square variation of the surface potential.

Now, let us consider a spherical tip (radius R) with (constant voltage) surface
domains with the linear size Ri . If R � Ri � √

dR, the domain on the apex of
the tip will give the main contribution to the friction. In this case, we can neglect
the spatial variation of the surface potential and the electric field induced by the bias
voltage is approximately the same as that which would be produced in the vacuum
region between two point charges ±Qi = ±C(V + Vi ) located at [170, 171]

z = ±d1 = ±
√
3Rd/2 +

√
(3Rd/2)2 + Rd3 + d4, (14.8)

where

C = d2
1 − d2

2d
. (14.9)

It can be shown that the electrostatic force between the tip and the metal surface
within this approximation agrees very well with the exact expression for a sphere
above a metal surface [323]. The vibrations of the tip will produce an oscillating
electromagnetic field, which, in the vacuum region, coincides with the electromag-
netic field of an oscillating point charge. The friction coefficient for a point charge
moving parallel to the surface due to the electromagnetic energy losses inside the
sample is determined by [242] (see also Appendix R)

�‖ = lim
ω→0

Q2
i

2

∫ ∞

0
dqq2e−2qd1

ImRp(ω, q)

ω
. (14.10)

For motion normal to the surface, �⊥ = 2�‖. Thus, just as for the cylindrical tip
geometry, for a spherical tip, the friction depends quadratically on the bias volt-
age. However, for a spherical tip, the parabola begins from zero in contrast to the
cylindrical tip where the parabola begins from a finite positive value.

b. Clean surfaces For clean flat surfaces, the reflection amplitude is determined
by the Fresnel formula (O.2). In this case, for a cylindrical tip with radius R � d
and for a metal substrate, (14.6) gives:

�c
cl = w

(
V 2 + V 2

0

)

26πσd2
. (14.11)
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With w = 7 × 10−6 m and σ = 4 × 1017 s−1 (which corresponds to gold at 300K),
and with d = 20nm and V = 1V, (14.11) gives � = 2.4 × 10−20 kg/s, which is
eight orders of magnitude smaller than the experimental value 3 × 10−12 kg/s [21].

Assuming R >> d, using (14.10) and (O.2) gives the friction between a spherical
tip and a clean sample surface

�s
cl = 31/2R1/2V 2

27d3/2πσ
. (14.12)

This expression is only a factor of 1.6 smaller than the result obtained independently
in [169]. For the same parameters as above and at d = 20 nm, the friction for
a spherical tip is two orders of magnitude smaller than for the cylindrical tip. The
friction determined by (14.12) has the same distance dependence as in the experiment
[21]. However, the magnitude of the friction is too small to explain the experimental
data.

To get insight into the possible mechanisms of the enhancement of non-contact
friction, it is instructive to note that (14.11) can be obtained qualitatively from the
following simple geometrical arguments [324]. The vibrating tipwill induce a current
in the sample in a volume with the spatial dimensions Lx , Ly and Lz . The instanta-
neous dissipated power in the sample is given by P ∼ I 2r , where I is the current
and r is the effective resistance. The current I is proportional to the tip velocity vx ,
and can be written as I ∼ vx Qt/Lx , where Qt is the charge of the tip. The effective
resistance r can be approximated by themacroscopic relation r = ρLx/LyLz,where
ρ is the resistivity. Using these simple expressions for the current I and the resistance,
and using the relation Qt = CtVs (where Ct is the tip–sample capacitance) for the
induced charge, the instantaneous power dissipation is

P ∼ ρ
v2
xC

2
t V

2
s

Lx L y Lz
. (14.13)

Comparing this expression with P = �v2
x we get

� ∼ ρ
C2
t V

2
s

Lx L y Lz
. (14.14)

For cylindrical tip vibrating above the clean surface Ly ∼ w and Lx ∼ Lz ∼ d1. For
d � R the tip–sample capacitance Ct ∼ w

√
R/8d and d1 ∼ √

2dR. Substituting
these expressions in (14.14) gives (14.11) to within a numerical factor of order of
unity. From (14.14), it follows that the friction will increase when the thickness Lz

of the ‘dissipation volume’ decreases. This is the reason that 2D systems may exhibit
higher friction than 3D systems.

c. Film on top of a higher resistivity substrate From the qualitative arguments
given above, it follows that, for a thin metal film on top of a higher resistivity
substrate—for example. a dielectric or a high resistivity metal—the friction will be
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larger, than for a semi-infinite sample with the same bulk resistivity as for the film.
In this case, the main part of the dissipation occurs within the film, and according to
(14.14) this will give rise to a strong enhancement of the friction.

For a planar film with thickness d f and dielectric constant ε2 on top of a substrate
with dielectric constant ε3, the reflection amplitude is determined by (7.103). For a
metallic film on a dielectric substrate, or a metallic film on a metallic substrate with
σ2 � σ3, for d1 � d f and R � d, (14.6) and (7.103) give

�c
f = w

(
V 2 + V 2

0

)
R1/2

29/2πσ2d f d3/2
. (14.15)

This is greater, by a factor of 2
√
2dR/d f , than the corresponding friction for a

semi-infinite sample with the clean surface with the same bulk conductivity as for
the film. For a thin film, the effective resistivity of the substrate is increased, giving
rise to additional ohmic dissipation. In [169], (14.15) was obtained using a different
approach, and neglecting the spatial variation of the surface potential.

d. 2D system on top of a dielectric or metal substrate Let us now consider a 2D
system such as an electronic surface states or a quantum well, or an incommensurate
layer of ions adsorbed on a metal surface. For example, for the Cs/Cu(100) sys-
tem, experimental data suggest the existence of an acoustic film mode even for the
dilute phase (coverage θ ≈ 0.1). This implies that the Cs/Cu(100) adsorbate layer
experiences a negligible surface pinning potential. The reflection amplitude for a 2D
system is given by (7.110) and

ImRp ≈ 2ωηqaω2
q

(
ω2 − ω2

q

)2 + ω2η2
, (14.16)

where ω2
q = 4πnae∗2aq2/M . In the case of a 2D structure on top of a dielectric, the

factor qa in (14.16) and in the expression for ω2
q must be replaced by 1/ε, where ε is

the dielectric function of the substrate. Using (14.16) in (14.6) for R � d we get

�c
ad = wηMR1/2

(
V 2 + V 2

0

)

29/2d3/2πnae∗2 . (14.17)

This friction exhibits the same distance dependence as observed experimentally [21].
The same expression for the friction is valid for a 2D structure on top of a dielectric.
Comparing (14.11) and (14.17), we find that a 2D structure on top of a substrate
gives the samemagnitude of friction as for a semi-infinite solid (with a clean surface)
with the effective conductivity σe f f = nae∗2/Mη2d1. Agreement with experiment
[21] for d = 20nm is obtained if σe f f ≈ 4 × 109 s−1. In the case of a 2D electron
system, for R = 1µm, such an effective conductivity is obtained if η‖ = 1014 s−1 and
na = 1015 m−2. For Cs/Cu(100) and for na = 1018 m−2 (θ ≈ 0.1), the electric charge
of the Cs ions e∗ = 0.28e (see [200]). Due to the similarities of Cu and Au surfaces, a
similar effective charge can be expected for the Cs/Au surface. For such a 2D system,
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agreement with experimental data is obtained for na = 1018 m−2 and η‖ = 1011 s−1.
In [170] we estimated the damping parameter associated with the covalent bond for
Cs atom on Cu(100): η‖cov = 3× 109 s−1. However, the collisions between the ions,
and between the ions and other surface defects, will also contribute to η. In this case,
ηcol ∼ vT / l where vT ∼ √

kBT/M , and l is the ion mean free path. For T = 293 K
and l ∼ 1 nm, we get ηcol = 1011 s−1.

For a spherical tip and a 2D system on top of the substrate, from (14.16) and
(14.10) for R � d, we get the contribution to the friction from the 2D system

�s
ad = 3RMηV 2

26dπnae∗2 . (14.18)

At d = 20 nm, this friction is ∼ two orders of magnitude smaller than for the
cylindrical tip.

14.2 Friction Due to Spatial Fluctuations of Static Charge
in the Bulk of the Sample

In this section, we consider a dielectric substrate with a stationary, inhomogeneous
distribution of charged defects. Such a situation was investigated experimentally
[21] by employing a fused silica sample irradiated with γ rays. In the course of
irradiation, positively charged centers (Si dangling bonds) are generated. Randomly
distributed positive charges are compensated for by randomly distributed negative
charges; thus, on average, the sample is electrically neutral. We model the sample
as though it consists of microscopically small volume elements �Vi . Each volume
element chosen is sufficiently small that, within it, not more than one charge center is
present. Thus, the electric charge qi of each element is equal to±e or 0, in such a way
that the average 〈qi 〉 = 0. We will consider the fluctuations of charges in different
volume elements i, j to be statistically independent, so that 〈qiq j 〉 = 0 for i �= j .
The mean square of charge fluctuations within a given element 〈qiqi 〉 ≈ 2Ne2, N is
the average number of positive charges in one volume element. In the absence of the
cross terms the average tip-sample friction coefficient is determined by adding the
friction coefficient from all the charges qi . According to (14.10), the contribution to
the friction coefficient from the charge qi in the element �Vi is given by

��i‖ = lim
ω→0

Ne2
∫ ∞

0
dqq2e−2qdi

ImRp(ω, q)

ω
, (14.19)

where di = D(xi , yi )− zi . Here the coordinates xi , yi , zi give the position of the i th
volume element in the substrate, and D(xi , yi ) is the distance between the sample
and points xi , yi located on the surface of the tip. The total friction coefficient is
obtained by summing all of the volume elements. Replacing the sum by an integral
(N

∑ → n
∫
d3r , where n is the number of the positive charge centers per unit
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volume), and integration over z gives

�‖ = lim
ω→0

ne2

2

∫ ∞

0
dqq

∫
dx

∫
dye−2qD(x,y) ImRp(ω, q)

ω
. (14.20)

For a cylindrical tip, D(x, y) = d + x2/2R, and we get

�c
‖ = lim

ω→0

√
πRne2w

2

∫ ∞

0
dqq1/2e−2qd ImRp(ω, q)

ω
. (14.21)

Using the same parameters as in Sect. 14.1, for a cylindrical gold tip separated by
d = 10nm from a dielectric sample with n = 7 × 1017 cm−3 we get �‖ = 4.4 ×
10−20 kg s−1.

For the tip surface with a 2D structure on it, using (14.16) we get

�c
2D‖ = 1

25/2

( e

e∗
)2

√
R

d

nw

na
Mη = e2nw

16σe f f d
. (14.22)

With σe f f = nae∗2/2Mηd1 = 4 × 109 s−1, n = 7 × 1017 cm−3, and with the other
parameters the same as before, we get, for d = 10nm, �c

2D‖ = 3.5 × 10−12 kg s−1,
which is nearly the same as the experimental observations [21]. Thus, the theory of the
friction between a gold tip and silica substrate with an inhomogeneous distribution
of the charged defects is consistent with the theory of friction between a gold tip
and gold substrate (see Sect. 14.1). In both theories, we have assumed that the gold
surfaces are covered by a 2D structure.

The analysis above has ignored the screening of the electric field in the dielectric
substrate. This can be justified in the case of very small tip–sample separations
(substantially smaller than the screening length), since only defects in the surface
layer of thickness d contribute to the integral in (14.20). When the screening is
included, the effective electric field outside the sample will be reduced by the factor
(ε+1)/2 [191], and the friction coefficient will be reduced by the factor ((ε+1)/2)2,
which is equal to 6.25 in the case of silica. However, the heterogeneity of the tip
surface can be larger than for the sample surface, so that the damping parameter η
can be larger for the 2D structure on the surface of the tip. This increase in η and
screening effect will compensate for each other.

14.3 Contact Electrification and the Work of Adhesion

When two solid objects are removed after adhesional or frictional contact, they will
in general remain charged [325–329]. At the macroscopic level, charging usually
manifests itself as spark discharging upon contact with a third (conducting) body,
or as an adhesive force. The long-range electrostatic force resulting from charging
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is important in many technological processes such as photocopying, laser printing,
electrostatic separation methods, and sliding-triboelectric nanogenerators based on
in-plane charge separation [330]. Contact charging is also the origin of unwanted
effects such as electric shocks, explosions or damage of electronic equipment.

Contact electrification is one of the oldest areas of scientific study, originating
more than 2500 years ago when Thales of Miletus carried out experiments showing
that rubbing amber against wool leads to electrostatic charging [331]. In spite of its
historical nature and practical importance, there aremany problems related to contact
electrification that are not well understood, such as the role of surface roughness
[332–334], surface migration [335] and contact de-electrification [336].

The influence of contact electrification on adhesion has been studied in pioneering
work by Derjaguin et al. [337, 338] and by Roberts [339]. These studies, and most
later studies, have assumed that removing the contact between two bodies results in
the bodies having uniform surface charge distributions of opposite signs. However,
a very recent work [340–342] has shown that the bodies in general have surface
charge distributions that vary rapidly in space (on the sub-micrometer scale) between
positive and negative values, and that the net charge on each object is much smaller
(sometimes by a factor of∼1000) than would result by integrating the absolute value
of the fluctuating charge distribution over the surface area of a body.

Contact electrification occurs even between solids made from the same material
[340]. This has been demonstrated for silicon rubber (PDMS). If two rubber sheets
in adhesive contact (contact area A) are separated, they obtain net charges ±Q of
opposite sign. However, as discussed above, each surface has surface charge distrib-
utions that fluctuate rapidly between positive and negative values, with magnitudes
much higher than the average surface charge densities ±Q/A. The net charge scales
with the contact surface area Q ∼ A1/2, as expected based on a picture where the
net charge results from randomly adding positively and negatively charged domains
(with individual area �A) on the surface area A: when N = A/�A >> 1, we
expect from statistical mechanics that the net charge on the surface A is proportional
to N 1/2 as observed [340]. Note that in the thermodynamic limit, A → ∞, the net
surface charge density Q/A = 0.

In this Section, we will present an accurate calculation of the contribution from
contact electrification to the work of adhesion to separate two solids. The same
problem has been addressed in a less accurate approach by Brörmann et al. [343].
They assumed that the charged domains formed a mosaic pattern of squares, where
each nearby square has a charge of the opposite sign but of equal magnitude. The
authors applied an approximate procedure [325] (see also [344, 345]) to this problem,
in order to obtain the contribution to the work of adhesion from charging. In this
Section, we will present a general theory in which, the surface charge distribution
σ(x) is characterized by the density–density correlation function 〈σ(x)σ(0)〉, the
power spectrum of which can be deduced directly from Kelvin Force Microscopy
(KFM) potential maps. We find that, for polymers, the contact electrification may
only contribute a small amount to the observed work of adhesion. However, more
KFMmeasurements at smaller tip–substrate separations are necessary to confirm the
conclusion presented below.
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Fig. 14.2 After separation
the bottom solid has the
surface charge distribution
σ0(x) and the top solid has
the surface charge
distribution −σ0(x), i.e., the
charge distribution on one
surface is the negative of that
of the other surface

σ0 (x,y)

−σ0 (x,y)

PDMS rubber

PDMS rubber

E(x,y)

z

x0

d
ε0

ε1

ε1

We will calculate the force between the two charged solids when the surfaces are
separated by the distance d, see Fig. 14.2. The lower surface has the surface charge
density σ0(x), where x = (x, y) is the in-plane coordinate, and the upper surface has
the surface charge density −σ0(x), i.e., the charge distribution on one surface is the
negative of that of the other surface. We write the electric field as E = −∇φ so that
the electric potential φ satisfies ∇2φ = 0 everywhere except for z = 0 and z = d.
We write

σ0(x) =
∫

d2q σ0(q)eiq·x.

The electrostatic stress tensor

σi j = 1

4π

(
Ei E j − 1

2
E2δi j

)
.

Here we are interested in the zz-component:

σzz = 1

8π

(
E2
z − E2

‖
)
. (14.23)

In the space between the surfaces, the electric potential:

φ =
∫

d2q
[
φ0(q)e−qz + φ1(q)eqz

]
eiq·x

where q = (qx , qy) and x = (x, y) are 2D vectors. Thus for z = 0:

Ez =
∫

d2q q
[
φ0(q) − φ1(q)

]
eiq·x, (14.24)

and

E‖ =
∫

d2q(−iq)
[
φ0(q) + φ1(q)

]
eiq·x. (14.25)

Using (14.23), (14.24) and (14.25) gives
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∫
d2x σzz = 2πRe

∫
d2q q2φ0(q)φ∗

1(q). (14.26)

We now calculate φ0(q) and φ1(q). We write the electric potential φ(q, z) as:

φ = φ0e
−qz + φ1e

qz for 0 < z < d,

φ = φ2e
qz for z < 0,

φ = φ3e
−q(z−d) for z > d.

Since φ must be continuous for z = 0 and z = d, we get:

φ0 + φ1 = φ2, (14.27)

φ0e
−qd + φ1e

qd = φ3. (14.28)

Let ε0 and ε1 be the dielectric function of the region between the bodies (0 < z < d)
and in the bodies (z < 0 and z > d), respectively. In our application, the space
between the bodies is filled with non-polar gas and ε0 ≈ 1. From the boundary
conditions ε0Ez(0+) − ε1Ez(−0+) = 4πσ0 and ε1Ez(d + 0+) − ε0Ez(d − 0+) =
−4πσ0, and using (14.27) and (14.28), we get:

φ0 + gφ1 = 2π

q
σ

gφ0e
−qd + φ1e

qd = −2π

q
σ

where σ = σ02/(ε1 + ε0) and g = (ε1 − ε0)/(ε1 + ε0). Solving these equations gives:

φ0 = 2π

q

σ

1 + ge−qd
, φ1 = e−qdφ0.

Using these equations in (14.26) gives

〈Fz〉 =
∫

d2x 〈σzz〉 = (2π)3
∫

d2q
〈|σ(q)|2〉 e−qd

(1 + ge−qd)2
, (14.29)

where we have performed an ensemble average denoted by 〈..〉.
Consider the correlation function:

〈|σ(q)|2〉 = 1

(2π)4

∫
d2xd2x ′ 〈σ(x)σ(x′)

〉
eiq·(x−x′).



14.3 Contact Electrification and the Work of Adhesion 311

Assuming that the statistical properties of the surface charge distribution are trans-
lational invariant, we get:

〈
σ(x)σ(x′)

〉 = 〈
σ(x − x′)σ(0)

〉

and
〈|σ(q)|2〉 = A0

(2π)4

∫
d2x

〈
σ(x)σ(0)

〉
eiq·x

where A0 is the surface area. If σ̄ = 〈σ(x)〉 denotes the average surface charge
density, then we define the charge density power spectrum:

Cσσ(q) = 1

(2π)2

∫
d2x

〈[σ(x) − σ̄][σ(0) − σ̄]〉eiq·x. (14.30)

Using this definition, we get:

〈|σ(q)|2〉 = A0

(2π)2

[
Cσσ(q) + σ̄2δ(q)

]
. (14.31)

Substituting (14.31) in (14.29) gives

〈Fz〉 = 2πA0σ̄
2 + 2πA0

∫
d2q Cσσ(q)

e−qd

(1 + ge−qd)2
.

We expect the statistical properties of the surface charge distribution to be isotropic,
which implies that Cσσ(q) only depends on the magnitude q = |q|. This gives:

〈Fz(d)〉 = 2πA0σ̄
2 + (2π)2A0

∫
dq qCσσ(q)

e−qd

(1 + ge−qd)2
.

The first term in this expression is the attraction between the surfaces due to the
(average) uniform component of the charge distribution, which, as expected, is inde-
pendent of the separation between the surfaces (similar to a parallel condenser).
The second term is the contribution from the fluctuating components of the surface
charge distribution. The contribution to the work of adhesion from the surface charge
is given by:

U =
∫ d

0
dz 〈Fz(z)〉 = 2πA0σ̄

2d

+ (2π)2A0

∫ ∞

0
dq qCσσ(q)

∫ d

0
dz

e−qz

(1 + ge−qz)2
. (14.32)

For an infinite system, the first term inU increases without limit as the surfaces are
separated. For bodies of finite size, the expression given above for the contribution
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from the net charging is of course only valid for separations smaller than the linear
size of the bodies (i.e. d < L , where A0 = L2), and the interaction energy will decay
like ∼ 1/d for large separation. Thus, for a finite-sized system, the contribution to
the normalized workU/A0 to separate the solids, from the first term inU , will be of
order ∼σ̄2L , with a prefactor which depends on the actual shape of the bodies. Note
that, in the thermodynamic limit L → ∞, since σ̄ ∼ 1/L this contribution to U/A0

will actually vanish. Roberts (see [339]) has argued that the first term in (14.32)
gives a negligible contribution to the work of adhesion also for finite-sized objects.
Here, we take a more pragmatic approach and we will not include this term in the
work of adhesion, in particular since it depends on the shape of the bodies, and also
because, experimentally, it is easy to measure the work to separate the solids such
small distance that the first term in (14.32) is completely negligible, see [346]. The
contribution to the work of adhesion from the second term in (14.32) (for d → ∞)
is:

wch = U

A0
= (2π)2

1 + g

∫ ∞

0
dq Cσσ(q). (14.33)

Note that the integral
∫

d2q Cσσ(q) = 〈[σ(x) − σ̄]2〉 = 〈
�σ2

〉
(14.34)

is the mean of the square of the fluctuating surface charge distribution. Using this
equation we can write:

wch = 2π

1 + g

〈
�σ2

〉

〈q〉 (14.35)

where

〈q〉 =
∫ ∞
0 dq qCσσ(q)
∫ ∞
0 dq Cσσ(q)

. (14.36)

The study above is for the limiting case where the surfaces separate so fast that no
decay in the surface charge distribution takes place before the separation is so large as
to give a negligible interaction force. Experiments [341] have shown that the charge
distribution decays with increasing time as exp(−t/τ ), where the relaxation time
τ ≈ 103 s depends on the atmospheric condition (e.g., the humidity and concentration
of ions in the surrounding gas). Taking into account the decay in the surface charge
distribution, and assuming z = vt (where v is the normal separation velocity), we
need to replace the integral over z in (14.32) with:

f (q, v) =
∫ ∞

0
dz

e−qze−2t/τ

(1 + ge−qz)2
=

∫ ∞

0
dz

e−(qz+2z/vτ )

(1 + ge−qz)2

and (14.32) becomes

wch = (2π)2
∫ ∞

0
dq qCσσ(q) f (q, v). (14.37)



14.3 Contact Electrification and the Work of Adhesion 313

In the limit v → ∞, we have f → 1/[q(1 + g)] and, in this limit, (14.37) reduces
to (14.35). In the opposite limit of very small surface separation velocity, f →
vτ/[2(1 + g)2] and in this limit

wch = (2π)2vτ

2(1 + g)2

∫ ∞

0
dq qCσσ(q) = πvτ

〈
�σ2

〉

(1 + g)2
. (14.38)

Note that this expression is of the form (14.35) with 1/〈q〉 replaced by vτ/[2(1+g)].
Since, typically, τ ≈ 103 s and (1 + g) ≈ 1 and 〈q〉 ≈ q1 ≈ 109 m−1 (where q1 is
defined below), we get vc = 2(1 + g)/(〈q〉τ ) ≈ 10−12 m/s. In most applications,
we expect the separation velocity to be in the vicinity of the crack tip v >> vc, and
in this case the limiting equation (14.35) holds accurately. Note, however, that the
separation velocity v may be much smaller than the crack tip velocity.

In the KFM measurement, the local potential at some fixed distance d above the
surface is measured, rather than the surface charge density. From the measured data,
the potential power spectrum

Cφφ(q) = 1

(2π)2

∫
d2x

〈[φ(x) − φ̄][φ(0) − φ̄]〉 eiq·x

can be directly obtained. However, we can relate the potential to the charge density:

φ(q) = 2π

q
σ(q)e−qd .

Thus

Cσσ(q) = q2

(2π)2
Cφφ(q)e2qd . (14.39)

The results presented above are in Gaussian units. To obtain (14.39) in SI units we
mustmultiply the right-hand sidewith (4πε0)

2,where ε0 = 8.8542×10−12 CV−1m−1.
Thus:

Cσσ(q) = 4ε20q
2Cφφ(q)e2qd . (14.40)

To get (14.33) in SI units we must multiply the right-hand side by (4πε0)
−1:

wch = π

2ε0(1 + g)

∫ ∞

0
dq Cσσ(q). (14.41)

We now analyze experimental data involving elastically soft solids with smooth
surfaces, where the initial contact between the solids is complete due to the adhesion
between the solids. In [341], several such systems were studied and here we focus on
PDMS rubber against PDMS.After breaking the adhesive contact between two sheets
of PDMS (which involves interfacial crack propagation), the electrostatic potential a
distance d above one of the surfaces was probed usingKFMmeasurements. From the
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Fig. 14.3 a The voltage
power spectrum Cφφ and b
the surface charge density
power spectrum Cσσ as a
function of the wavevector.
The results have been
calculated from the measured
(KFM) voltage maps for
PDMS/PDMS (blue) and
PDMS/polycarbonate (PC)
(red) [341]
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measured potentialmap,we have calculated the potential power spectrumCφφ(q) and
then, from (14.40), the charge density power spectrum Cσσ(q). The measurements
were done at the tip–substrate separation d ≈ 10−7 m, and since the electric potential
from a surface charge density distribution with the wavevector q decay as exp(−qd)

with the distance d from the surface, the KFM is effectively limited to probing the
surface charge distribution with wavevector q < 1/d. In Fig. 14.3 we show both
power spectra for q < 2 × 107 m−1. Note that the charge density power spectrum
appears to saturate for a largewavevector, say q > q0, with q0 ≈ 107 m−1. This result
follows if, as expected, the process of creating surface charges is uncorrelated in space
at short length scales. In that case, 〈σ(x)σ(0)〉 ∼ δ(x) and using (14.30), this gives
Cσσ(q) = const. The fact thatCσσ(q) decays for decreasing q for q < q0 ≈ 107 m−1

implies that at some length scales λ0 = 2π/q0 ≈ 0.6µm the charge distribution
becomes correlated. The physical reason for this may relate to inhomogeneities on
the PDMS surface; for example. due to filler particles (see below).

We assume that the charge density power spectrum saturate for q > q0 at C0
σσ ≈

2.2 × 10−23 C2/m2 (see Fig. 14.3b). The assumption that the process of creating
surface charges is uncorrelated in space at short length scales givesC0

σσ = (2π)−2e2n,
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where n = 1/λ2
1 is the number of elementary charges (±e) per unit surface area.

Thus, we obtain n = 3.4 × 1016 m−2 and λ1 ≈ 6 nm and q1 = 2π/λ1 ≈ 109 m−1.
The charge density 〈|σ|〉 = ne ≈ 0.5µC/cm2 is similar to what was estimated
by Baytekin et al. [341]. Using (14.34) we get the mean square charge fluctuation
〈�σ2〉 ≈ πq2

1C
0
σσ ≈ 7 × 10−5 C2/m4 or the rms charge fluctuation ≈1µC/cm2,

which, as expected, is similar to ne.
From (14.41) we get wch ≈ (q1 − q0)C0

σσ/ε0, where we have used that
π/[2(1 + g)] ≈ 1. The large wavevector cut-off q1 is of order 2π/λ1, where λ1

is of the order of the average separation between the surface charges (which we
assume to be point charges of magnitude ±e, where e is the electron charge). Since
q0 << q1 ≈ 109 m−1 we get wch ≈ q1C0

σσ/ε0 ≈ 0.002 J/m2. This value is smaller
than the measured work of adhesion during adiabatic (very slow) separation of the
surfaces where [346] w ≈ 0.05 J/m2.

The calculation above does not include the interaction between the charges when
the surface separation is smaller than ∼1 nm. However, this contribution cannot
be accurately estimated without an accurate knowledge of the exact location and
spatial extent of the localized charges, and probably also require knowledge about
how the charge separation processes occur; for example, whether it involves electron
tunneling at some finite surface separation.

The analysis above is based on the assumption that the surface charge density
power spectrum saturates at a value C0

σσ ≈ 2.2 × 10−23 C2/m2 for large wavevec-
tors. This hypothesis should be tested by performing KFMmeasurements to smaller
tip–substrate separations. The number of surface charges per unit area, n, which
determines the cut-off q1 in the study above, may also be probed by surface reaction
experiments, such as the bleaching experiments reported on in [342].

Sylgard 184, which was used in [341], is intrinsically a heterogeneous polymer
with siliceous fillers [347]. Even though the filler is partially modified by organic
groups, it imparts non-negligible polarity of the polymer as evidenced from the high
contact angle hysteresis (∼20◦–40◦) of water on this polymer as compared with that
(∼5◦) on a pure PDMS matrix. X-ray photoelectron spectroscopy [348] also shows
that the Silicon (Si2p) peak of the silica is 1 eV higher than that of the surrounding
matrix, thus suggesting that the electron affinity of the silica rich region is probably
different from that of the surrounding matrix. So, when two surfaces of sylgard
184 are brought close to each other, electrons may be transferred from one type of
domain to another, which may show up as heterogeneous patches when the surfaces
are separated. If the binding energy of the Si2p peak is an indicator, the PDMS
matrix is more electron-rich than the silica-rich region. The breaking of the siloxane
bond requires a very large force and is unlikely to contribute to charging [348–350].
Silica almost always has silanol (SiOH) groups. The silanol groups may form very
weak hydrogen bondwith the oxygen of polydimethylsiloxane. If that happens, some
charge transfer may occur during the separation of the surfaces, which will show up
as heterogeneous charge after the two surfaces are separated. This idea may be tested
experimentally by performing KFM experiments using a clean PDMS network that
does not have silica fillers.
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At low crack-tip velocities, where the viscoelastic energy dissipation at the crack
tip, and other non-equilibrium effects, are negligible (see [346]), thework of adhesion
is usually assumed to result from the van der Waals interaction between the surfaces
at the interface. The study above indeed indicated that the contributions from contact
electrification gives only a small fraction (∼4%) of the observed work of adhesion.

To summarize, we have derived a general expression for the contribution to the
work of adhesion from contact electrification, and we have shown that, for PDMS
(and probably for polymers in general), the contact electrification gives only a small
fraction of the observed work of adhesion. More KFM measurements at smaller
tip–substrate separations are necessary to confirm this conclusion.

14.4 Influence of Attractive Force on Cantilever
Eigenfrequencies

Besides the damping of vibrations, interaction of the tip with a sample leads to a
change in the cantilever eigenfrequency. When the cantilever geometry satisfies the
conditions L � w � c, where the L , w and c are the length, the width, and the
thickness of the cantilever, respectively, we can employ the equation of elasticity
[351] to describe the dynamics. In the case of an isotropic material, the transverse
displacement X (z, t), of the beam centerline (along the x axis) (see Fig. 14.4), sat-

Fig. 14.4 Transverse
displacement X (z, t) of the
cantilever centerline. The
attractive force T acts along
the z axis. A restoring force
X ′T acts on the tip when
α �= 0. From [169]
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isfies the differential equation:

ρcS
∂2

∂t2
X (z, t) = −E Ii

∂4

∂z4
X (z, t) + T

∂2

∂z2
X (z, t), (14.42)

where ρc is the density of the cantilever material, S = wc is the cross-section area,
E is Young’s modulus, Ii = c3w/12 is the bending moment of inertia, and T is
a stretching force. The clamped end, at z = 0, imposes the boundary conditions
X (z = 0) = X ′(z = 0) = 0. The free end at z = L imposes the boundary
conditions My ≡ E Ii X ′′ = 0 and Fx ≡ −E Ii X ′′′ + T X ′ = 0, where My and Fx

are the moment of the elastic force and the elastic force in the y and x directions,
respectively. The term T X ′ describes the effect of the restoring force when there is a
non-vanishing angle between T and the centerline direction at z = L (see Fig. 14.4).
This expression for the restoring force is valid in the case of small angles α between
vertical axis and the beam baseline, i.e. when sinα ≈ tanα = −X ′(z = L). The
fundamental vibration eigenfunction is given by X (z, t) = X0(z) cos(ωt), where

X0(z) = A
[
(�2 cosλL + λ2 cosh�L)(cosλz − cosh�z) +

+(� sin λL − λ sinh�L)(� sin λz − λ sinh�z)
]
. (14.43)

Here A is a constant,

� = [
τ/2 + (κ4 + τ 2/4)1/2

]1/2
, λ = [ − τ/2 + (κ4+

+τ 2/4)1/2
]1/2

, τ = T/E Ii , κ4 = ω2ρcS/E Ii . (14.44)

The value of κ in (14.44) obeys the following eigenvalue equation:

2κ4 + (τ 2 + 2κ4) cosλL cosh�L + κ2τ sin λL sinh�L = 0. (14.45)

The minimum value of κ (κmin) that obeys (14.45) determines the fundamental
eigenfrequency and the explicit form of the fundamental eigenfunction X (z, t). In
the absence of the stretching force, (T = 0), we get κ2 = 3.516/L2 and

ω = (3.516/L2)(E Ii/ρi S)1/2. (14.46)

To estimate ω we set c = 250 nm, w = 7µm, L = 250µm, and use the material
constants of Si : ρc = 2.33×103 kg·m−3, E = 9×1010 kg ·m−1· s−2. Then, we have
ω/2π ≈ 4 × 103 s−1, which is approximately the same as the value quoted in [21].

In the general case, the fundamental frequency is a function of the tip–sample
separation, d, bias voltage V , tip geometry, and concentration of charge centers via
the attraction force,T (V ). In the case of attraction dueonly to an external bias voltage,
there is a quadratic dependence of T on V . The proportionality coefficient depends
on the geometry of the tip–sample system. The results of numerical calculations of
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Fig. 14.5 Numerical results
for the cantilever frequency
ω and effective mass mef as
a function of the bias voltage
V in the case of a cylindrical
tip and d = 20 nm (see text).
From [169]

the ω(V ) dependence are shown in Fig. 14.5 for a cylindrical geometry showing that
the bias voltage can have a considerable effect on the frequency shift.

In the limit of very large V (when T L2/(E Ii ) � 1), the first term on the right-
hand-side of (14.42) can be omitted, and (14.42) is transformed into the equation
for the vibration of a string. In this case, a linear dependence of ω on V (ω ∝ V/L)
should occur.

Along with the resonant frequency, the cantilever effective mass also depends
on V . The effective mass mef f is the coefficient entering the oscillator equation,

mef f
∂2X (t)

∂t2
+ �

∂X (t)

∂t
+ kX (t) = 0, (14.47)

as a parameter that determines the inertial force (� is a friction coefficient, k a spring
constant, and X (t), as stated previously, is the coordinate of the tip). The mass mef f

depends on the coefficients in (14.42). This dependence can be obtained from the
requirement that the kinetic energy of the flexible beam equals that of the oscillator,
the two being of one and the same physical quantity. This condition defines mef f as

mef f = ρcS
∫ L

0
dzX2

0(z)/X
2
0(L), (14.48)

where X0(z) is given by (14.43).
Thus, mef f depends on the variation of X0 with z, which in turn depends on the

stretching force T and the other parameters in (14.42). In the simplest case, T = 0,
we have mef f = ρcLS/4, i.e., a quarter of the beam’s actual mass. In general, the
possible variation of mef f should be taken into account when the friction coefficient
� is obtained experimentally from the relation� = mef f ω/Q, where Q is the quality
factor. In other words, not only the quality factor and the eigenfrequency, but also the
value ofmef f is required to obtain�. The dependencemef f (V ) is shown in Fig. 14.5.
It is seen to be similar to that of ω(V ) at small values of V .
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Fig. 14.6 Effect of
Casimir–Lifshitz force on
the frequency ω. Solid line,
R = 0.5µm; dashed line,
R = 1.0µm; dotted line,
R = 2µm. From [169]

Figure14.6 shows the effect of the Casimir–Lifshitz force on the fundamental
frequency in the case of a spherical tip. The three curves illustrate the tendency
of ω(d, R) to increase with the attractive force, which varies with d and R as
T ∼ R/d2 (see (S.4) in Appendix S1). The frequency shift observed in [21] at
d = 2 nm for a gold sample corresponds to the curve R = 0.5µm in Fig. 14.6.
When we use the experimental value 1µm for the radius of curvature in the y direc-
tion, and set the radius of curvature in the x direction equal to the cantilever thickness
c = 0.25µm, then, according to Appendix S2, we obtain radius of equivalent spheri-
cal tip Rexp = √

Rx Ry = 0.5µm, i.e., Rexp = R. Hence the frequency shift observed
by Stipe et al. [21] might be attributable to the Casimir–Lifshitz effect.

There are other physical mechanisms that may contribute to the frequency shift.
Spatial variation of the surface potential, whose role in damping of vibrations was
discussed in Sect. 14.1, will also contribute to the attraction force between the tip
and the sample. In the presence of a bias voltage V , the attraction force of the tip to
the sample is given by (see (S.8) from Appendix S2)

T s(d) = RV 2

4d
. (14.49)

In the case of variation of the surface potential bias voltage, V in (14.49), should be
replaced on V0, where V0 is the root-mean-square variation of the surface potential.
As discussed in Sect. 14.1, in the experiment in [21] V0 ≈ 0.2V. Thus, the ratio of
the Casimir–Lifshitz force (see (S.4) in Appendix S1) to the force induced by the
work function anisotropy is of the order

R�ωp

32
√
2d2

/
RV 2

0

4d
≈ (12 nm/d). (14.50)

For d = 2 nm, this ratio is equal to 6. Hence, the anisotropy of the work function
has a negligible effect on the frequency shift obtained in [21].



Chapter 15
Phonon and Internal Non-contact Friction

A moving tip will induce the dynamic deformation of the surface of the substrate
due to the Casimir or electrostatic interaction between the tip and the surface. This
dynamic deformation will excite phonons in the substrate, which are responsible for
phononic mechanism of non-contact friction. In this section, phononic friction is
studied using the elastic continuum model. The obtained results are used to explain
non-contact friction measurement over the metal superconductor transition, which
allows phononic and electronic contribution to friction to be distinguished from one
another. In the upcoming discussion of phononic friction in Sect. 15.1, it is assumed
that the deformations of the solids are purely elastic. However, deformation will
be purely elastic (or adiabatic) only for infinitely small velocities, so that, at every
moment, the system stays in the equilibrium state. Real motion in fact always occurs
with finite velocity, and the body does not stay in equilibrium. Thus, non-adiabatic
‘flow-processes’ occur, resulting in dissipation of the mechanical energy. At least
two kinds of processes result in energy dissipation: (a) heat flow resulting from the
temperature gradient, and (b) some kind of internal motion, such as point defect
flipping. These processes of energy dissipation can be denoted (as in liquids) as
internal friction or viscosity.

15.1 Non-contact Friction Due to Excitation
of Substrate Phonons

Consider a tip that performs harmonic oscillation, u = u0 exp(−iωt) + c.c., above
an elastic bodywith a flat surface. This will result in an oscillating stress acting on the
surface of the solid that excites acoustic waves with parallel wave number q < ω/cs,
where cs is the sound velocity. The stress σi z acting on the surface of the elastic solid
can be represented through the Fourier integral

σi z(x, t) =
∫

d2q

(2π)2
σi (q)u0e

iq·x−iωt + c.c. (15.1)
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Using the theory of elasticity (assuming an isotropic elastic medium for simplicity),
it is possible to calculate the displacement field ui at the surface z = 0 in response
to the surface stress distribution σi z ,

ui (x, t) =
∫

d2q

(2π)2
Mi j (q,ω)σ j (q)u0e

iq·x−iωt + c.c. (15.2)

Using the elastic continuummodel, the explicit form of the tensorMi j was derived
in [213] (see also Appendix T). The energy dissipation per unit time is equal to

P =
∫

d2x〈 .
ui (x, t)σi z(x, t)〉 = z

= 2ω
∫

d2q

(2π)2
ImMi j (q,ω)σi (q)σ∗

j (q)|u0|2, (15.3)

where 〈...〉 stands for time averaging. The energy dissipation per unit time must be
equal to � <

.
u (t)2 >= �2ω2 |u0|2. Comparing this expression with (15.3) gives

� =
∫

d2q

(2π)2

ImMi j (q,ω)

ω
σi (q)σ∗

j (q). (15.4)

At typical experimental conditions,we haveω ∼103–106 s−1 andqr∗ < ωr∗/cs <

10−3 � 1, where the effective radius of the interaction r∗ ≈ √
dR, d is the separation

between the tip and the sample, and R is the radius of curvature of the tip. In this case,
the contribution to the friction from excitation of acoustic waves can be determined
by calculating the energy dissipation due to an oscillating point force applied to the
surface of the semi-infinite elastic continuum (see Appendix T). These calculations
were carried out in connection with the vibrational energy relaxation of adsorbates
[250]. According to this theory (see also Appendix T) the friction coefficient for
vibration of the tip normal to the surface is given by

�⊥ = ξ⊥
4π

K 2

ρc3t
, (15.5)

where ξ⊥ ≈ 1.65, ct is the transverse sound velocity of the solid, ρ is the mass
density of the sample, K = ∂F/∂d, where F(d) is the static force acting on the tip
due to interaction with the sample. For vibration of the tip parallel to the sample
surface, the friction coefficient due to excitation of the acoustic waves is given by
(see Appendix T):

�‖ = ξ‖
4π

ω2

ρc5t
F2
z (d), (15.6)
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where ξ‖ ≈ 1.50. Using (15.5) and (15.6), we get that �‖/�⊥ ∼(ωd/ct )2 � 1.
Thus, the phononic friction coefficient for parallel vibrations of the tip will be by
many orders of magnitude smaller than for normal vibrations. We consider now two
different contributions to the tip sample interaction.

For spherical tip with the radius of curvature R, the attraction force of the tip to
the surface due to Casimir Lifshitz interaction is determined by (see Appendix S1):

Fz(d) = R�ωp

32
√
2d2

(15.7)

and

Ks = R�ωp

16
√
2d3

. (15.8)

Similarly, in the case of a cylindrical tip, we have

Fc
z (d) = 3wR1/2

�ωp

28d5/2
(15.9)

and

Kc = 15wR1/2
�ωp

29d7/2
. (15.10)

For a copper tip separated froma copper substrate by d = 10 nm, andwith R = 1µm,
w = 7µm, we get for a spherical tip �s

⊥ = 6.3 × 10−18 kgs−1 and for a cylindrical
tip �c

⊥ = 1.3 × 10−14 kgs−1. The phononic friction decreases as d−6 and d−7 for
spherical and cylindrical tip, respectively.

In the presence of the bias voltage, V , the attractive force between the tip and the
sample at d � R is given by (see Appendix S2)

Fc(d) = wV 2R1/2

27/2d3/2
(15.11)

for a cylindrical tip, and

Fs(d) = RV 2

4d
(15.12)

for a spherical tip. For bias voltage V = 1 Volt, and with the other parameters the
same as above, we get �s

⊥ = 8.8 × 10−17 kgs−1 and �c
⊥ = 1.2 × 10−13 kgs−1 for the

spherical and cylindrical tip, respectively. Note that, in this case, the friction depends
on the bias voltage as V 4.
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15.2 Suppression of Electronic Friction
in the Superconducting State

The ratio between the electron and phononmechanisms of friction plays an important
role in understanding the nature of friction. The non-contact friction was reported
on both metal [21] and dielectric materials [24]. This means that the pendulum can
induce both phononic and electronic excitations while oscillating in close proximity
to a substrate. The atomic force microscopy (AFM) experiments in contact mode
have shown how the friction forces acting on a sharp tip crossing a silicon surface
are influenced by the isotopic composition [417] and the doping conditions [418] of
the sample. This can be attributed to different degrees of phononic and electronic
excitations.

For metals, the van der Waals and electrostatic friction, associated with the drift
motion of charges in the medium, the relative importance of the electronic and
phononicmechanisms of energy dissipation can be probed by changing the resistance
of a material. In the most elegant way, this can be done by turning on and off the
resistance of the material by changing the temperature near the critical point of tran-
sition to the superconducting state Tc. This was first done bymeans of a quartz crystal
microbalance technique [419]. The results showed that the slip times of N2 mole-
cules on Pb films rise significantly below the critical temperature Tc, corresponding
to a reduction of the friction, and indicating the importance of the electronic friction
compared with phononic friction. However, the transition in the friction coefficient
observed in this experiment was quite abrupt. This is in contrast with the predictions
of the Bardeen–Cooper–Schrieffer (BCS) theory, which is commonly accepted to
describe superconductivity at low temperatures [420].

Another experiment of this typewas carried out in [166] inwhich the friction force
acting on a sharp silicon tip oscillating in the pendulum geometry was measured at
distances up to 3nm from a Nb film. The cantilever tip performed small oscillations
parallel to silicon surface covered with a film of niobium with thickness of 150nm
(see Fig. 15.1). Frictionwasmeasured in a range of 7K across the critical temperature
Tc = 9.2 K of Nb. Furthermore, the variations of the friction coefficient with the tip
surface distance and the bias voltage in both normal and superconducting states were
studied.

A comparison with the BCS theory [420, 421] and a model developed in [171,
422] allowed the authors to conclude that the electronic friction is themain dissipative
channel in the metallic state, and it smoothly decays below the critical temperature,
until phononic friction becomes dominant.

The temperature variation of the friction coefficient when the Nb sample was
warmed up crossing the critical point Tc = 9.2 K is shown in Fig. 15.2. The tip
was oscillated at a distance d = 0.5 nm from the Nb layer. Friction increases sig-
nificantly when the critical temperature Tc is approached and it levels off when
T > Tc. In Fig. 15.2, the friction transition appears smooth, which is in contrast to
the quartz crystal microbalance measurements on Pb films by Dayo and colleagues
[419]. Figure15.2 also shows the friction coefficient �0 of the free cantilever in the
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Fig. 15.1 AFM topography
image of the Nb film studied
in the experiment. The
cantilever is oriented
perpendicular to the surface
(pendulum geometry), while
its tip can oscillate parallel to
the film surface. The inset
shows the tip at different
scales. From [166]

same range of temperatures. This coefficient is determined by thermoelastic damping
as well as by bulk and surface losses. It is equal to �0 = 2.9 × 10−12 kg s−1 when
T = 13 K and decreases in a rather continuous way down to 2.0 × 10−12 kg s−1 at
T = 6 K. This is in qualitative agreement with studies of internal friction of silicon
cantilevers [25].

The distance dependencies of the friction coefficient � in the metal (T = 13 K)
and in the superconducting phase (T = 5.8 K) are compared in Fig. 15.3.

At a separation d = 0.5 nm from the Nb surface, the coefficient � in the metal
phase is approximately three times larger when compared with the superconducting
phase. At closer distances, the friction coefficient levels off in the metal phase (but
not in the superconducting phase), which is also shown in Fig. 15.3. The experimental
data can be fitted by a power law � ∼1/dn , with the exponent n = 1.0 ± 0.1 in the
metallic state and n = 3.8 ± 0.3 in the superconducting state.

The data in Figs. 15.2 and 15.3 were recorded after compensating for the contact
potential with a bias voltage V applied between the tip and the sample. In this way,
the contribution to the friction force due to long-range electrostatic-induced losses
is suppressed. Figure15.4 shows the energy dissipation as a function of the bias
voltage V . The curves in Fig. 15.4 correspond again to the temperatures T = 13
K and T = 5.8 K, where the sample is in the metal and in the superconducting
phases. The tip sample distance was again set to d = 0.5 nm, as in Fig. 15.2. The
voltage dependence of the friction coefficient �(V ) is now well fitted by a power law
� ∼(V − V0)

α with exponents α = 2.2 ± 0.3 and α = 4.2 ± 0.4 in the metal and in
the superconducting phases, respectively. The quantity V0 is the contact potential. In
the experiment, V0 is approximately 0.14 V in the superconducting phase and 0.17
V in the metal phase.

Interpretation of the experimental data in [166]was based on the theoretical analy-
sis proposed by Persson [420].When the cantilever tip oscillates in close proximity to
the Nb film, the time-dependent mechanical stresses induced in the sample produce
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Fig. 15.2 Temperature variation of the friction coefficient � across the critical point Tc = 9.2 K
of Nb. The red squares correspond to a separation d = 0.5 nm between the tip and the sample. The
data are well fitted by the analytic curve expected from the BCS theory (green line). The black dots
correspond to the temperature dependence of the friction coefficient �0 measured at a separation d
of several micrometres (free cantilever). From [166]

Fig. 15.3 Distance dependence of the friction coefficient in the metallic and in the superconducting
state of Nb. The contact potential was compensated for both curves. The data are approximated by
an inverse power law� ∼1/dn formula, with n = 1.0 for metal Nb and n = 3.8 for superconductor.
At a tip sample distance d = 0.5 nm, the friction coefficient is approximately three times larger
in the metallic state (� = 5.2 × 10−12 kg s−1) when compared with the superconducting state
(� = 1.8 × 10−12 kg s−1). The inset shows the same experimental data on a double logarithmic
scale. From [166]
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Fig. 15.4 Non-contact
friction as a function of the
bias voltage V in the metallic
and superconducting state of
Nb. The pendulum oscillates
at a distance d = 0.5 nm
from the Nb surface. Note
that friction has a quadratic
dependence for metal Nb,
whereas it varies as the
fourth power of V below the
critical temperature Tc. From
[166]

longitudinal acoustic surface waves. As the energy required to break up a Cooper pair
into two quasiparticles (∼10−4 eV) is much larger than the typical energy of acoustic
phonons (∼10−6 eV), the acoustic waves can interact only with the normal electrons
near the Fermi surface.When the transition temperature Tc is approached frombelow,
the acoustic wave attenuation rises rapidly, reflecting the increasing normal electron
population that causes the electron-induced friction. For a BCS superconductor, the
electronic friction caused by phonon electron interaction is expected to vary with the
temperature T according to the relation [421]

�(T )

�(Tc)
= 2

exp
[
�(T )/kBT

] + 1
(15.13)

where the energy bandgap � depends on the temperature T as [423]

�(T ) = C
kBTc√

1 − T/Tc
(15.14)

The proportionality coefficient C in (15.13) is the same for all BCS superconductors
and is equal to 3.52. This quantity determines the ratio between the energy gap at
T = 0 and the thermal energy at T = Tc. The temperature dependence given by
previous equations was first verified in pioneering measurements of longitudinal
acoustic wave attenuation [424], which were among the first experimental verifica-
tions of the BCS theory. The data in Fig. 15.2 are also in agreement with (15.13)
and (15.14), with the fit parameter C = 3.8 ± 0.7. This gives a first indication that
electronic friction should play a major role, not only in the normal state but also in a
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range of a few degrees below the critical point Tc. Further support for this hypothesis
comes from the distance dependence of the friction coefficient in Fig. 15.3.

In their measurements on gold, Stipe et al. [21] also fitted the data using the power
law� ∼1/dn , with n = 1.3 ± 0.2. This value is consistentwith the exponent d = 1.5
expected for the friction caused (on a cylindrical tip) by a 2D electron system in the
metal [170, 171, 422] (see Sect. 14.1). For a spherical tip, the exponent predicted by
the theory is n = 1, which is in very good agreement with measurements in [166] at
T = 13 K.

The situation changes when the sample enters the superconducting regime. The
steeper distance decay observed at T = 5.8 K shows that the electronic friction is not
any more the dominant dissipation channel at this temperature. A major contribution
to friction must therefore come from the excitations of phonons in the Nb surface.
Again we predicted [170, 171, 422] (see also Sect. 15.1) that, when a spherical tip
oscillates laterally above an elastic surface (at a fixed frequency), the phonon friction
coefficient is proportional to F2(d), where F(d) is the static force resulting from
the interaction between the tip and the surface. According to the Lifshitz theory
[42], the elastic stress caused by the van der Waals interaction leads to a static force
F(d) ∼1/d2, so that the phonon friction coefficient �ph is expected to vary as d−4.
The exponent n = 3.8 ± 0.3 describing the dependence of friction on the inverse
of d in measurements in [166] in the superconducting state of Nb is in excellent
agreement with this prediction. The enhanced role of phononic friction (compared
with electronic friction) below Tc is confirmed by the voltage dependence of the
coefficient � that is shown in Fig. 15.4. As F(d) ∼V 2, phononic friction has to vary
as the fourth power of the voltage V . Conversely, the friction coefficient �el due to
ohmic losses of the electromagnetic field energy inside the sample follows a quadratic
law (see Sect. 14.1). This is exactly what was observed in measurements [166] in the
superconducting and in the metallic state.

15.3 Non-contact Friction Due to the Internal Friction
of the Substrate

The friction coefficient due to the internal friction is determined by (15.4). However,
in contrast to the phononic friction, large values of q � ω/ct play themost important
role for the internal friction. For q � ω/cs the tensor component Mzz is given by
[213]

Mzz = 2(1 − ν2)

Eq
, (15.15)

where E(ω) is the complex elastic modulus and ν is the Poisson ratio.
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15.3.1 van der Waals Interaction

For R � d, only the σzz component of the stress tensor due to the van der Waals
interaction is important. In this case, for vibrations of the cylindrical tip parallel to
the sample surface, we get

σz(q) =
∫

d2xeiqx
∂

∂x
σzz(x) =

= − iqx�ωp R1/2

27d5/2

sin(qyw/2)

qy
(3 + ξ2 + 3ξ)e−ξ, (15.16)

where σzz is given by (S.3) from Appendix S1 and ξ = √
2dRqx . Using (15.16) and

(15.15) in (15.4), for cylindrical tip we get

�c
‖ = 75π

216
w�

2ω2
p

d6

Im
(
E/(1 − ν2)

)
ω|E/(1 − ν2)|2 . (15.17)

For a spherical tip, similar calculations give

�s
‖ = 0.25

29
√
2π

R1/2
�
2ω2

p

d11/2

Im
(
E/(1 − ν2)

)
ω|E/(1 − ν2)|2 . (15.18)

In general, ImE(ω) has many resonance peaks, corresponding to different thermally
activated relaxation processes. One important source of internal friction at high fre-
quencies is related to thermal currents: elastic compression of amaterial is commonly
associated with heating effects. If the compression takes place sufficiently rapidly,
there is no opportunity for heat to be conducted away, while, for very slow compres-
sion, temperature gradients are eliminated by thermal conduction. In both of these
cases, the process of compression will be reversible. In the former case it will be
adiabatic and in the latter case isothermal. In both of these limiting cases, the con-
tribution from thermal current to the internal friction will be negligible. However,
in the intermediate frequency regime, we expect dissipation of mechanical energy
into heat. The characteristic frequency for the maximum dissipation will be of the
order of ωt = 1/τ where, from dimensional arguments, we expect the relaxation
time τ ∼l2/D, where l is the linear size of the compression region and the thermal
diffusibility D = κ/ρCp (where Cp is the specific heat and κ the heat conductiv-
ity). For l ∼103 Å this gives for gold ωt ≈ 1011 s−1, which is much higher than the
resonance frequency of the cantilever of the atomic force microscope. Another very
important contribution to the internal friction is point-defect flipping. This involves
thermally activated transitions of point defects or loose sites in crystalline and amor-
phous network. A special case is the vibrational motion of adsorbates at the surface
of the substrate and/or on the tip, as was treated separately in Sect. 14.1.
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Another contribution to the internal friction comes fromgrain-boundary slip [352].
For a copper cylindrical tip and a copper substrate using d = 10 nm,w = 7µm, R =
1µm, ω = 104 s−1, and, as is typical for metals [353], ImE(ω)/ |E(ω)| ≈ 10−5 and
E ≈ 1011 N/m2, gives�c

‖ ≈ 10−16 kgs−1. Thus, at this separation, the internal friction
gives a much smaller contribution to the friction coefficient than the electrostatic
friction due to bias voltage or spatial variation of the surface potential. However,
internal friction can give the dominant contribution for small separations d ≤ 1 nm.
For a spherical tip with R = 1µm, the friction coefficient is two orders of magnitude
smaller. Finally we note, as a curiosity, that the internal friction of solids gives a very
important contribution to the rolling resistance of the most solids [425], and is the
main contribution to rubber friction on rough substrates; for example, road surface
[426], where, in the transition region between the rubbery and glassy region of the
rubber visco elastic spectra, ImE(ω)/ |E(ω)| ≈ 1.



Appendix A
Spectral Function of Fluctuations
of the Electric Fields

Using (3.33), (3.34) and (3.62), we get

〈
Ei (r)E

∗
j (r

′〉
ω

= �

8π2
coth

(
�ω

2kBT

)∫
dr′′

∫
dr′′′Imεkl (r

′′, r′′′)Dik (r, r′′)D∗
jl (r

′, r′′′)

= �

16π2i
coth

(
�ω

2kBT

)∫
dr′′

∫
dr′′′[εkl (r′′, r′′′)Dik (r, r′′)]D∗

jl (r
′, r′′′) − Dik (r, r′′)[ε∗

kl (r
′′, r′′′)D∗

jl (r
′, r′′′)]

= �c2

16π2iω2
coth

(
�ω

2kBT

)∫
dS′′

1l ×

×
{
Dik (r, r′′)

(
∇′′
l D

∗
jk (r

′, r′′) − ∇′′
k D

∗
jl (r

′, r′′)
)

−

− D∗
jk (r

′, r′′)(∇′′
l Dik (r, r′′) − ∇′′

k Dil (r, r′′))
}
, (A.1)

where we have transformed an integral over the volume of the body to an integral
over the surface of the body. Assume that the two points r and r′ lie outside the
bodies. Using that outside the body for r �= r′ �= r′′

Dik(r, r′′)∇′′
k D

∗
jl(r

′, r′′) = ∇′′
k

(
Dik(r, r′′)D∗

jl(r
′, r′′)

)
, (A.2)

D∗
Jk(r

′, r′′)∇′′
k Dil(r, r′′) = ∇′′

k

(
D∗

jk(r
′, r′′)Dil(r, r′′)

)
, (A.3)

and performing the surface integral in (A.1) gives:

〈
Ei (r)E∗

j (r
′)
〉
ω

= �c2

16π2iω2
coth

(
�ω

2kBT

)
×

×
∫

dS′′
1 ·

{
Dik(r, r′′)∇′′D∗

jk(r
′, r′′) − D∗

jk(r
′, r′′)∇′′Dik(r, r′′)

}
. (A.4)
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Appendix B
Fluctuating Electromagnetic Field
in the Vacuum Gap Between Two Plane
Surfaces Moving Relative to Each Other

Weconsider two semi-infinite solidswith flat parallel surfaces separated by a distance
d and moving with velocity V relative to each other, see Fig. 5.1. We introduce the
two the coordinate systems K and K ′ with coordinate axes xyz and x ′y′z′. In the
K system, body 1 is at rest, while body 2 is moving with the velocity V along the
x-axis (the xy and x ′y′ planes are in the surface of body 1, x and x ′-axes have the
same direction, and the z and z′-axes point toward body 2). In the K ′ system body,
2 is at rest while body 1 is moving with velocity −V along the x-axis. Since the
system is translational invariant in the x = (x, y) plane, the electromagnetic field
can be represented by the Fourier integrals

E(x, z, t) =
∫ ∞

−∞
dω

∫
d2q

(2π)2
eiq·x−iωtE(q, ω, z), (B.1)

B(x, z, t) =
∫ ∞

−∞
dω

∫
d2q

(2π)2
eiq·x−iωtB(q, ω, z), (B.2)

where E and B are the electric and magnetic induction field, respectively, and q is
the 2D wave vector in xy-plane. After Fourier transformation, it is convenient to
decompose the electromagnetic field into s- and p-polarized components. For the p-
and s-polarized electromagnetic waves, the electric field E(q, ω, z) is in the plane of
incidence, and perpendicular to that plane, respectively. In the vacuum gap between
the bodies, the electric field, E(q, ω, z), and the magnetic induction field, B(q, ω, z),
can be written in the form

E(q, ω, z) = (
vs n̂s + vpn̂ p

+) eikz z + (
ws n̂s + wpn̂ p

−) e−ikz z, (B.3)

B(q, ω, z) = c

ω

[([k+ × n̂s]vs + [k+ × n̂+
p ]vp

)
eikz z

+ ([k− × n̂s]ws + [k− × n̂−
p ]wp

)
e−ikz z

]
, (B.4)
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k± = q ± ẑkz, kz = ((ω/c)2 − q2)1/2, n̂s = [ẑ × q̂] = (−qy, qx , 0)/q, n̂±
p =,

= [k̂± × n̂s] = (∓qxkz,∓qykz, q2)/(kq), k = ω/c. At the surfaces of the bodies,
the amplitude of the outgoing electromagnetic wave must be equal to the amplitude
of the reflected wave plus the amplitude of the radiated wave. Thus, the boundary
conditions for the electromagnetic field at z = 0 in the K -reference frame can be
written in the form

vp(s) = R1p(s)(ω, q)wp(s) + E f
1p(s)(ω, q), (B.5)

where R1p(s)(ω) is the reflection amplitude for surface 1 for the p(s)-polarized elec-
tromagnetic field, and where E f

1p(s)(ω) is the amplitude of the fluctuating electric

field radiated by body 1 for a p(s)-polarized wave. In the K
′
-reference frame the

electric field can be written in the form

E′(q′, ω′, z) = (
v′
s n̂

′
s + v′

pn̂
′+
p

)
eikz z + (

w′
s n̂

′
s + w′

pn̂
′−
p

)
e−ikz z, (B.6)

where q′ = (q ′
x , qy, 0), q

′
x = (qx−βk)γ, ω′ = (ω−Vqx )γ, γ = 1/

√
1 − β2, β =

V/c, n̂′
s = (−qy, q ′

x , 0)/q
′, n̂′±

p = (∓q ′
xkz,∓qykz, q ′2)/(k ′q ′),

q ′ = γ

√
q2 − 2βkqx + β2(k2 − q2

y ).

The boundary conditions at z = d in the K
′
-reference frame can be written in a form

similar to (B.5):

w′
p(s) = e2ikzd R2p(s)(ω

′, q ′)v′
p(s) + eikzd E ′ f

2p(s)(ω
′, q ′), (B.7)

where R2p(s)(ω) is the reflection amplitude for surface 2 for the p(s)-polarized elec-
tromagnetic field, and where E f

2p(s)(ω) is the amplitude of the fluctuating electric
field radiated by body 2 for a p(s)-polarized wave. A Lorentz transformation for the
electric field gives:

E ′
x = Ex , E ′

y = (Ey − βBz)γ, E ′
z = (Ez + βBy)γ. (B.8)

Using (B.3), (B.4), (B.6) and (B.8) we get

v′
p = k ′γ

kqq ′
[−βkzqyvs + (q2 − βkqx )vp

]
, (B.9)

w′
p = k ′γ

kqq ′
[
βkzqyws + (q2 − βkqx )wp

]
, (B.10)

v′
s = k ′γ

kqq ′
[
βkzqyvp + (q2 − βkqx )vs

]
, (B.11)
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w′
s = k ′γ

kqq ′
[−βkzqywp + (q2 − βkqx )ws

]
. (B.12)

Substituting (B.9)–(B.12) in (B.7) and using (B.5), we get

(q2 − βkqx )Dppwp + βkzqyDspws

= e2ikzd R′
2p

[
(q2 − βkqx )E

f
1p − βkzqy E

f
1s

]
+ kqq ′

k ′γ
eikzd E ′ f

2p,
(B.13)

(q2 − βkqx )Dssws − βkzqyDpswp

= e2ikzd R′
2s

[
(q2 − βkqx )E

f
1s + βkzqy E

f
1p

]
+ kqq ′

k ′γ
eikzd E ′ f

2s ,
(B.14)

where
Dpp = 1 − e2ikzd R1p R

′
2p, Dss = 1 − e2ikzd R1s R

′
2s,

Dsp = 1 + e2ikzd R1s R
′
2p, Dps = 1 + e2ikzd R1p R

′
2s,

R′
2p(s) = R2p(s)(ω

′, q ′). From (B.13), (B.14) and (B.5) we get

wp =
{ [

(q2 − βkqx )
2R′

2pDss − β2k2z q
2
y R

′
2s Dsp

]
E f
1pe

2ikzd

− βkzqy(q
2 − βkqx )(R

′
2p + R′

2s)E
f
1se

2ikzd

+ kqq ′

k ′γ

[
(q2 − βkqx )Dss E

′ f
2p − βkzqyDspE

′ f
2s

]
eikzd

}
�−1,

(B.15)

vp =
{ [

(q2 − βkqx )
2Dss + β2k2z q

2
y Dsp

]
E f
1p

− βkzqy(q
2 − βkqx )R1p(R

′
2p + R′

2s)e
2ikzd E f

1s

+ kqq ′

k ′γ
R1p

[
(q2 − βkqx )Dss E

′ f
2p − βkzqyDspE

′ f
2s

]
eikzd

}
�−1,

(B.16)

ws =
{ [

(q2 − βkqx )
2R′

2s Dpp − β2k2z q
2
y R

′
2pDps

]
E f
1se

2ikzd

+ βkzqy(q
2 − βkqx )(R

′
2p + R′

2s)E
f
1pe

2ikzd

+ kqq ′

k ′γ

[
(q2 − βkqx )DppE

′ f
2s + βkzqyDps E

′ f
2p

]
eikzd

}
�−1,

(B.17)
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vs =
{ [

(q2 − βkqx )
2Dpp + β2k2z q

2
y Dps

]
E f
1s

+ βkzqy(q
2 − βkqx )R1p(R

′
2p + R′

2s)e
2ikzd E f

1p

+ kqq ′

k ′γ
R1s

[
(q2 − βkqx )DppE

′ f
2s + βkzqyDps E

′ f
2p

]
eikzd

}
�−1,

(B.18)

� = (q2 − βkqx )
2Dss Dpp + β2k2z q

2
y Dps Dsp.

The fundamental characteristic of the fluctuating electromagnetic field is the
correlation function, determining the average of the product of the amplitudes
E f

p(s)(q, ω). According to the general theory of the fluctuating electromagnetic field
(see Sect. 3.2):

〈|E f
p(s)(q, ω)|2〉 = �ω2

2c2|kz|2
(
n(ω) + 1

2

)[
(kz + k∗

z )(1 − |Rp(s)|2)

+ (kz − k∗
z )(R

∗
p(s) − Rp(s))

]
,

(B.19)

where
〈
...
〉
denotes the statistical average over the random field.We note that kz is real

for q < ω/c (propagating waves), and purely imaginary for q > ω/c (evanescent
waves). The Bose-Einstein factor

n(ω) = 1

e�ω/kBT − 1
.

Thus, for q < ω/c and q > ω/c the correlation functions are determined by the first
and the second terms in (B.19), respectively.



Appendix C
The Green’s Function of the Electromagnetic
Field in the Vacuum Gap Between
Two Plane Surfaces

Suppose that the half-space z < 0 is occupied by a solid at temperature T1 with the
reflection matrix R1(q, ω). Similarly, the half-space z > d is occupied with a solid
at temperature T2 with the reflection matrix R2(q, ω). The 2 × 2 reflection matrix
Ri determines the reflection amplitudes for the waves with different polarization
λ = (s, p). This matrix is diagonal for isotropic materials. However, in general
cases of anisotropic materials, this matrix is non diagional

Ri =
(
Ri
ss Ri

sp

Ri
ps Ri

ss

)
.

The region 0 < z < d is assumed to be vacuum. Here q is the surfaces component
of wave vector k = (q, kz) and

kz =
√(ω

c

)2 − q2. (C.1)

Since the system is uniform in the x = (x, y) plane, the Green’s function Di j (r, r′)
can be represented by the Fourier integral

Di j (r, r′) =
∫

d2q

(2π)2
eiq(x−x′)Di j (z, z

′, q, ω). (C.2)

In the xy-plane it is convenient to choose the coordinate axes along the vectors
q̂ = q/q and n̂ = ẑ × q̂ . In this coordinate system (3.33), (3.34) for the Green’s
functions become

(
k2z + ∂2

∂z2

)
Dnn(z, z

′) = −4πω2

c2
δ(z − z′), (C.3)

(
ω2

c2
+ ∂2

∂z2

)
Dqq(z, z

′) − iq
∂

∂z
Dzq(z, z

′) = −4πω2

c2
δ(z − z′), (C.4)
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k2z Dzq(z, z
′) − iq

∂

∂z
Dqq(z, z

′) = 0, (C.5)

k2z Dzz(z, z
′) − iq

∂

∂z
Dqz(z, z

′) = −4πω2

c2
δ(z − z′), (C.6)

k2z Dqz(z, z
′) + iq

∂

∂z′ Dqq(z, z
′) = 0. (C.7)

The components Dqn , Dzn of the Green’s function vanish, since the equations for
them turn out to be homogeneous. Solving the system of (C.3)–(C.7) amounts to
solving two equations: (C.3) for Dnn and the equation for Dqq which follows from
(C.4), (C.5) (

k2z + ∂2

∂z2

)
Dqq(z, z

′) = −4πk2z δ(z − z′), (C.8)

after which Dqz , Dzq and Dzz for z �= z′ are obtained as

Dqz = − iq

k2z

∂

∂z′ Dqq; Dzq = iq

k2z

∂

∂z
Dqq; (C.9)

Dzz = q2

k4z

∂2

∂z∂z′ Dqq . (C.10)

In the vacuum gap, 0 < z < d the Green’s matrix can be written in the form

D̂(z, z′) = D̂0(z, z
′) + vλn̂

+
λ e

ikz z + wλn̂
−
λ e

−ikz z (C.11)

where the Green’s function of the electromagnetic field for a free space is given by

D̂0(z, z
′) = eikz |z−z′ |

{
D̂+

0 (z, z′), for z > z′

D̂−
0 (z, z′), for z < z′ , (C.12)

where

D±
0 (z, z′) = 2π ik2

kz
n̂±

λ n̂
±
λ (C.13)

where kz = ((ω/c)2) − q2)1/2, λ = (s, p), n̂±
s = [ẑ × q̂] = (−qy, qx , 0)/q, n̂±

p =
[k̂± × n̂±

s ] = (∓qkz, q2/(kq), k = ω/c, k̂± = (q ± ẑkz)/k, q = (qx , qy, 0). At
the boundaries z = 0 and z = d, the amplitude of the scattered wave is equal to
amplitude of incident wave times to the corresponding reflection amplitude. The
boundary conditions for the Green’s matrix give

v = R1

(
2π ik2

kz
eikz z

′
n̂− + w

)
z = 0,
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w = R2e
2ikzd

(
2π ik2

kz
e−ikz z′

n̂+ + v
)

z = d, (C.14)

where v = (vs, vp), w = (ws, wp), n̂± = (n̂±
s , n̂±

p ). The substitution of the solution
of the system of the (C.14) in formula (C.11) gives the Green’s matrix. The Green’s
matrix for z > z′ can be written in the form [195, 196]

D̂ = 2π iω2

kzc2

[
D̂12

(
Îeikz (z−z′)+R̂1e

ikz (z+z′)
)

+D̂21

(
R̂2R̂1e

2ikzd eikz (z
′−z)+R̂2e

2ikzd e−ikz (z+z′)
)]

,

(C.15)
where

R̂1 = n̂+R1n̂−, R̂2 = n̂−R2n̂+, Î = n̂+In̂+, D̂12 = n̂+D12n̂+, D̂21 = n̂−D21n̂−, Di j = [I − e2ikz d Ri R j ]−1,

where I is the 2× 2 unit matrix. For isotropic materials, the Green’s matrix takes the
form

D̂isotropic = 2π iω2

kzc2

∑

λ=(s,p)

[
n̂+
λ n̂+

λ eikz (z−z′) + n̂+
λ n̂−

λ R1λe
ikz (z+z′) + n̂−

λ n̂−
λ R1λR2λe

2ikzd eikz (z
′−z)

+ n̂−
λ n̂+

λ R2λe
2ikzd e−ikz (z+z′)] 1

1 − e2ikzd R1λR2λ
,

(C.16)
In our approach, the calculation of the reflection amplitudes for s- and p-polarized
waves constitutes two separate problems, which can be solved taking into account
non-local effects. For the local optic case, the reflection amplitudes are determined
by the well-known Fresnel formulas

Rip = εi kz + si
εi kz + si

, Ris = μi kz − si
kz + si

, (C.17)

where εi and μi are the complex dielectric and magnetic permeability for body i ,
respectively, and

si =
√

ω2

c2
εiμi − q2. (C.18)



Appendix D
Reflection Amplitudes for Electromagnetic
Waves for Medium with Spatial Dispersion

At d < l, vF/ω, where l is the electron mean free path, and where vF is the Fermi
velocity, the system will be characterized by non-local dielectric function ε(q, ω).
Volume non-local optic effects can be described by an approach, proposed some
years ago for the investigations of the optical properties of a semi-infinite electron
gas [198].

According to [198], the reflection amplitude for p-polarized electromagnetic
fields, incident on the flat surface, is determined by [198]

Rp = p − Z p

q + Z p
, (D.1)

where the surface impedance Z p is given by

Z p = 2i

π

∫ ∞

0

dqz
Q2

(
q2

εl(ω, Q)
+

(
ω
c

)2
q2
z(

ω
c

)2
εt (ω, Q) − Q2

)
, (D.2)

where εl is the finite life-time generalization of the longitudinal Lindhard dielectric
function, which according to [354] can be written as:

εl(ω, Q) = 1 + (1 + i/ωτ)(ε0l (ω + i/τ, Q) − 1)

1 + (i/ωτ)(ε0l (ω + i/τ, Q) − 1)/(ε0l (0, Q) − 1)
, (D.3)

ε0l (ω, Q) = 1 + 3ω2
p

Q2v2
F

fl , (D.4)

fl = 1

2
+ 1

8z

(
[1 − (z − u)2] ln z − u + 1

z − u − 1
+ [1 − (z + u)2] ln z + u + 1

z + u − 1

)
,

(D.5)
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where Q2 = q2 + q2
z , z = Q/2kF , u = ω/(QvF ), ωp is the plasma frequency, τ

is the Drude relaxation time, and where vF and kF are the Fermi velocity and wave
vector, respectively. For s-polarization, the reflection factor is determined by

Rs = 1 − Zs p

1 + Zs p
, (D.6)

where

Zs = 2i

π

∫ ∞

0

dqz(
ω
c

)2
εt (ω, Q) − Q2

, (D.7)

εt (ω, Q) = 1 − ω2
p

ω(ω + ikz)
ft , (D.8)

ft = 3

8
(z2 + 3u′2 + 1) − 3

32z

(
[1 − (z − u′)2]2 ln z − u′ + 1

z − u′ − 1

+ [1 − (z + u′)2]2 ln z + u′ + 1

z + u′ − 1

)
,

(D.9)

u′ = (ω + iτ−1)/(QvF ). For the non-degenerate electron gas, the longitudinal and
transfers dielectric functions are determined by classical equations [43]:

ε0l (ω, Q) = 1 +
(

ωp

QvT

)2 [
1 + F

(
ω√
2QvT

)]
, (D.10)

εt (ω, Q) = 1 + ω2
p

ω(ω + ikz)
F

(
ω + ikz√
2QvT

)
, (D.11)

where the function F(x) is defined by the integral

F(x) = x√
π

∫ +∞

−∞
dz

e−z2

z − x − i0
(D.12)

and vT = √
kBT/m, where m is the electron mass.



Appendix E
Fresnel’s Reflection Amplitude
for Surfaces with a Layer of Adsorbed
Molecules

Let us consider a semi-infinite medium with a flat surface, which coincides with
the xy-plane, with the z-axis pointing into medium. The surface of the medium is
assumed to be covered with an adsorbed layer, situated at z = −a. The plane of
incidence of the electromagnetic waves coincides with the xz-plane, and the x-axis
is directed along wave vector q. The macroscopic electric field can be written in the
form

E = eiqx ×
⎧
⎨
⎩

Ieikz pz + Re−ikz pz; z < −a,

Aeikz pz + Be−ikz pz; −a < z < 0,
Teisz; z > 0,

(E.1)

where kz = ((ω/c)2 −q2)1/2, s = ((ω/c)2ε(ω)−q2)1/2, and ε(ω) is dielectric func-
tion for the medium. Boundary condition for the normal component of displacement
field D⊥ at z = −a can be obtained, integrating the equation ∇ · D = 0 [199]. As a
result we get

D⊥(z = −a + 0) − D⊥(z = −a − 0) = −
∫ −a+0

−a−0
dz∇ · D‖, (E.2)

where D‖ is the projection of D on xy-plane. Since D = E + 4πP, and taking into
account that E‖, in contrast to P‖, has no singularities in adsorbed layer, on the right
side of (E.2), we can replace D‖ by 4πP‖. Thus

D⊥(z = −a + 0) − D⊥(z = −a − 0) = −4π∇ · p‖, (E.3)

where p‖ denotes the component of the polarization vector parallel to the surface,
which can be related to electric field: p‖ = naα‖E‖, where na is the surface density
of adsorbed molecules, and α‖ is molecule polarizability parallel to the surface.

The boundary condition for E‖ can be derived from Faraday’s law [45]

∮
E · dr = iω

c

∫
B · dS. (E.4)
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One typically takes the two integrals around the perimeter and through the interior,
respectively, of a rectangle, whose long sides are parallel to and on different sides of
the adsorbed layer, and whose short sides are perpendicular to and cross the adsorbed
layer, and takes the limit as the short sides become macroscopically infinitesimal.
Since B‖ is continuous and has no singularities, in evaluating the right-hand side
of (E.4); then as the rectangle shrink to an infinitesimal macroscopic height, the
right-hand side of (E.4) makes no contribution.

The macroscopic distribution singularity that may cause E⊥ to be discontinuous
is a δ function in the charge density representing the adsorbate charge. There may
also be a δ′ function in the charge density representing the normal adsorbate dipole
moment, which makes E‖. The integral of E across a short leg of the rectangle is
precisely equal to 4π times the normal component of dipole moment

∫ −a+0

−a−0

(
Ez(x,z)− Ez(x+�x,z)

)
dz = 4π

(
pz(x+�x)− pz(x)

) ≈ 4π∇‖ pz(x)·�x.

(E.5)
As a result, we get boundary condition for parallel component of electric field

E‖(−a + 0) − E‖(−a − 0) = −4π∇‖ pz(x). (E.6)

In linear response approximation, the normal component of dipole moment can be
written in the form

p⊥ = naα⊥E⊥, (E.7)

where α⊥ is the (complex frequency dependent) adsorbate polarizability perpendic-
ular to the adsorbate layer. In (E.7), E⊥ can be taken at z = −a−0, since the account
of dependence E⊥ on z in adsorbate layer will give rise to corrections of a higher
order in q.

For the p-polarized electromagnetic field I, R, A and B are in the xz-plane.
The components of each are related because each is the amplitude of a transverse
wave: Ix = −(kz/q)Iz , Rx = (kz/q)Rz , Ax = −(kz/q)Az , Bx = (kz/q)Bz . In this
case, taking into account (E.2), (E.6), the boundary condition for evanescent waves
(q � ω/c) at z = −a can be written in the form

Aze
qa + B−qa

z − Rze
−qa − Ize

qa = 4πqnaα‖
(
Rze

−qa − Ize
qa
)
, (E.8)

Bze
−qa − Aze

qa − Rze
−qa + Ize

qa = −4πnaα⊥
(
Rze

−qa + Ize
qa
)
. (E.9)

At z = 0 and for q � ω|ε(ω)|1/2/c the reflection amplitude is determined by

Bz = ε − 1

ε + 1
Az . (E.10)

From (E.8)–(E.10) at qa  1 we get (6.47) for reflection amplitude Rz .



Appendix F
Comparison with the Results of Philbin
and Leonhardt

Philbin andLeohardt (PL) ([122, 123]) calculated theCasimir forces betweenmoving
plates and found that there is no quantum friction at all. In [122], PL used the
Lifshitz theory and considered only the case of zero temperature. There are two
variants of Lifshitz theory. In the first variant, the Maxwell stress tensor is calculated
using the electromagnetic field, which was calculated using Rytov’s theory. In the
second variant, the Maxwell stress tensor is calculated using the Green’s functions
of the electromagnetic field, which were calculated fromMaxwell’s equations. Both
of these variants give the same results for forces. In [122], PL used the second
variant of the Lifshitz theory. The general case of finite and different temperatures
was considered by PL in [123]. The theory from [123] contains, as a limiting case,
the theory from [122]. In particular, in both of these theories, the authors came to
conclusion that there is no lateral force on the plates in relative motion. In [123],
PL used the same approach as Volokitin et al. [128] (henceforth referred to as VP;
see also Sect. 7.3), but came to the opposite conclusion that there is no ‘quantum’
friction. Between these two studies, there is a difference only in the technical details.
VP calculated the total electromagnetic field in the rest reference frame of surface 1.
The total electromagnetic field contains the contributions from quantum and thermal
fluctuations in both bodies. This electromagnetic field was used in the calculations
of the stress tensor and the Poynting’s vector in the rest reference frame of surface 1.
LP divided the total stress tensor into two contributions from surfaces 1 and 2. The
contribution from surface 2 was first calculated in the rest reference frame of surface
2. The contribution from the surface 2 again was divided into two components—
one from quantum and the other from thermal fluctuations. The separation of the
quantum-vacuum from the thermal effect is achieved by the identity

coth

(
�ω

2kBT

)
= sgn(ω) + 2sgn(ω)

[
exp

(
�|ω|
kBT2

)
− 1

]−1

(F.1)

where the first term gives the quantum part and the second term, containing the Plank
spectrum, gives the thermal radiation part. The Lorentz transformation for the stress
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tensor was used to obtain the contribution from thermal fluctuations in body 2 in
the rest reference frame of surface 1. The integrand of this contribution contains the
factor

2sgn(ω′)
[
exp

(
�|ω′|
kBT2

)
− 1

]−1

(F.2)

As a result, for the total contribution from thermal fluctuations in both bodies, PL
obtained exactly the same results as obtained by VP. However, for the contribution
from quantum fluctuations, PL proposed that the Lorentz transformation is not valid,
and arrived at the conclusion that the zero-point radiation fromplate 2 can be obtained
by the replacement of a factor in the integrand in the expression for contribution from
thermal fluctuations:

2sgn(ω′)
[
exp

(
�|ω′|
kBT2

)
− 1

]−1

→ sgn(ω) + 2sgn(ω′)
[
exp

(
�|ω′|
kBT2

)
− 1

]−1

(F.3)
The contribution from plate 1 is given by a similar expression as from plate 2. As
a result, for friction force PL obtained expression similar to (7.28) but with the
replacement (

n2(ω
′) − n1(ω)

) → (
sgn(ω′)n2(|ω′|) − n1(ω)

)
. (F.4)

For finite temperatures, PL obtained the same contribution to friction from thermal
fluctuations as VP. However, it is clear from (F.4) that at T = 0 K the factor on the
right side of (F.4) is equal to zero, which led PL to the conclusion that there is no
lateral force at zero temperature. PL claimed that the vanishing of the lateral force
at zero temperature can be viewed as a consequence of the Lorentz invariance of the
quantum zero-point radiation–it has the same ‘spectrum’ in every inertial reference
frame. However, instead of proving this PL just postulated the existence of such an
invariance. If the Lorentz transformation is used also to calculate the contribution
to stress tensor from quantum fluctuations in plate 2, in the rest reference frame of
plate 1, then instead of the factor given by the right side of (F.3), in the integrand
will occur the factor

sgn(ω′) + 2sgn(ω′)
[
exp

(
�|ω′|
kBT2

)
− 1

]−1

= 1 + 2n2(ω
′), (F.5)

which will result in the friction force given by (7.28). For the propagating waves,
sgn(ω′) = sgn(ω) (forω > 0) and from (7.28) it follows that the contribution to fric-
tion from propagating waves is equal to zero at zero temperature, which agrees with
the principle of relativity. However, the contribution from evanescent waves is not
equal to zero even at zero temperature because in this case sgn(ω′) < 0 forω < qxV .
PL claim that perhaps the Lorentz transformation for the stress tensor is not valid for
the contribution to stress tensor from quantum fluctuations. However, VP, instead of
using the Lorentz transformation for the stress tensor, apply this transformation for
the calculation of the electromagnetic field. This electromagnetic field is used to cal-
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culate the stress tensor in the rest reference frame of plate 1. The result was the same.
Thus, contrary to the opinion of PL, we argue that the Lorentz invariance exists only
for quantum fluctuations corresponding to propagating waves. This means that the
spectral characteristics of the electromagnetic field in absolute vacuum (without of
any bodies) are the same in all inertial reference frames; otherwise it will contradict
the principle of relativity. This result follows from the Lorentz transformation for
the electromagnetic field corresponding to the propagating electromagnetic waves.
For evanescent waves, there is no Lorentz invariance of the spectral properties of the
electromagnetic field. This result, which also follows from the Lorentz transforma-
tion, does not contradict the principle of relativity because there are no evanescent
waves in absolute vacuum.

At zero temperature, the integration in (7.28) includes only the interval 0 <

ω < qxV . This integration takes into account the contribution to the friction from
excitations in this frequency range, which exists even at zero temperature. PL did
not include these excitations, and as a result they got zero friction. Excitations that
exist even at zero temperature contribute not only to the lateral force, but also to the
normal force (see (5.30)). Thus the conservative Casimir-Lifshitz force also contains
some additional terms that were overlooked by PL.

Pendry [12, 124] has also showed that the friction is finite even at zero temper-
ature, in qualitative agreement with most previous approaches to the problem, but
in contradiction to the conclusion of PL. However, Pendry considered a very simple
non-retarded and non-relativistic model. In contrast to Pendry, in the framework of
the same model, we showed that the calculation of PL is in error. We have shown
that this error is due to the assumption that the zero-point radiation, corresponding
to the evanescent electromagnetic waves, obey Lorentz invariance. In addition, we
also show that normal component of Casimir-Lifshitz force calculated by PL is also
incorrect.

Since theory from [122] is a limiting case of theory from [123], our discussion is
applicable for both of these papers.



Appendix G
Derivation of (7.57) and (7.58)

After substituting (7.40) and (7.42) into formula (7.55), we get to linear order in
vibrational coordinate u0 and the frequency ω0:

σzz = 1

4π

∫ ∞

0
dω

∫
d2q

(2π)2

(
kz
q2

[(
kz + k∗

z

)(〈 |w0z |2
〉 + 〈 |v0z |2

〉)

+(
kz − k∗

z

)(〈
w0zv

∗
0z

〉 + c.c
)] +

( c

ω

)2
p
[(
kz + k∗

z

)(〈 |w0n |2
〉 + 〈 |v0n |2

〉)

+(
kz − k∗

z

)(〈
w0yv

∗
0n

〉 + c.c
)] +

(
k+
z

q2

[(
kz + k∗

z

)(〈
w1zw

∗
0z

〉 + 〈
v1zv

∗
0z

〉 + c.c.
)

+(
kz − k∗

z

)(〈
w1zv

∗
0z

〉 + 〈
v1zw

∗
0z

〉 + c.c.
)] + c2

ω(ω + ω0)
k+
z

[(
kz + k∗

z

)(〈
w1nw

∗
0n

〉

+ 〈
v1nv

∗
0n

〉 + c.c.
) + (

kz − k∗
z

)(〈
w1nv

∗
0n

〉 + 〈
v1nw

∗
0n

〉 + c.c.
)])

e−iω0t
)

. (G.1)

γ⊥ = 1

4πu0i

∫ ∞

0
dω0

∫
d2q

(2π)2

(
∂

∂ω0

(
k+
z

q2

[(
kz + k∗

z

)(〈
w1zw

∗
0z

〉 + 〈
v1zv

∗
0z

〉 − c.c.
)

+(
kz − k∗

z

)(〈
v1zw

∗
0z

〉 + 〈
w1zv

∗
0z

〉 − c.c.
)] + c2

ω(ω + ω0)
k+
z

[(
kz + k∗

z

)(〈
w1nw

∗
0n

〉

+ 〈
v1nv

∗
0n

〉 − c.c.
) + (

kz − k∗
z

)(〈
v1nv

∗
0y

〉 + 〈
v1nw

∗
0n

〉 − c.c.
)]))

ω0=0

(G.2)

Using (4.3) and (4.18), and (7.49)–(7.53), we get

1

q2
∂

∂ω0

(
k+
z

(
kz + k∗

z

)(〈
w1zw

∗
0z

〉 + 〈
v1zv

∗
0z

〉) − c.c.
)
ω0=0 = 2iu0

(
n(ω) + 1

2

)

× ∂

∂ω
k2z

[(1 − |R1p R2p|2
)2 + |(1 − |R1p|2

)
R2peikzd + (

1 − |R2p|2
)
R∗
1pe

−ikzd |2
|�p|4

]
, (G.3)
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1

q2
∂

∂ω0

(
k+
z

(
kz − k∗

z

)(〈
w1zv

∗
0z

〉 + 〈
v1zw

∗
0z

〉) − c.c.
)

ω0=0
= 8iu0

(
n(ω) + 1

2

)

× ∂

∂ω

k2z
|�p|4

[(
ImR1p + e−2|kz |d |R1p|2ImR2p

)(
ImR2p + e−2|kz |d |R1p|2ImR2p

)

+ e−2|kz |d Im
(
R1p R2p

)2]
e−2|kz |d . (G.4)

Other similar expressions for the s-wave contribution can be obtained from (G.3)
and (G.4) by replacement of the reflection amplitude Rp for p-polarized waves by
the reflection amplitude Rs for s-polarized waves. After substituting (G.3) and (G.4),
and similar expression for s-polarized waves, in (G.2) we get (7.57)–(7.58) for the
friction coefficient for normal relative motion.



Appendix H
Derivation of the Friction Force on a Particle
from the Energy Conservation Law

The relation between the current densities in the laboratory reference frame, and in
the reference frame where the particle is at rest and the metal is moving with velocity
−V, in the non-relativistic limit, is given by: jsp(ind) = jsp(ind)′ + ρsp(ind)V, where
jsp(ind)′ and ρsp(ind) are the spontaneous (induced) current and charge density in the
particle in themoving reference frame, and jsp(ind) andρsp(ind) are the same quantities
in laboratory reference frame (we take into account that, in the non-relativistic theory,
the charge density is the same for both reference frame). Using this relation we get
the relation between the rate of the work of the electric field in the volume of the
particle in the laboratory and moving reference frame:

− dW

dt
=

∫ 〈
jspEind

〉
d3r +

∫ 〈
jindEsp

〉
d3r

=
∫ 〈

jsp
′
Eind

〉
d3r +

∫ 〈
jind

′
Esp

〉
d3r

+V·
(∫ 〈

ρspEind
〉)

d3r +
(∫ 〈

ρindEsp
〉)

d3r

= −dW0

dt
+ V · F, (H.1)

where Esp is the fluctuating electric field outside the metal in absence of the particle.
Eind is the electric field from the metal induced by the spontaneous current density
jsp, −dW0/dt is the rate of the work in the moving reference frame, which is equal
to the rate of the heat production in the volume of the particle, and F is the total
force that acts on the particle, which, in the present case, is equal to the friction
force. We note that the electric field in the non-relativistic limit is the same in both
reference frames. For amoving point dipole, the spontaneous current density jsp(r, t)
is given by

jsp(r, t) = −iδ(z − z0)p f
∫

d2q

(2π)2
(ω + qxV ) eiq·r−i(ω+qx V )t , (H.2)
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and without screening effects, the induced electric field is given by

E ind
l (r, t) =

∫
d2q

(2π)2
Dlj (q, ω + qxV, z, z0)p

f
j e

iq·r−i(ω+qx V )t . (H.3)

Using (H.2) and (H.3), we get

∫ 〈
jspEind∗〉 d3r = −8

∫ ∞

0
dω

∫
d2qqe−2qz0 A(ω, T )

×(ω + qxV )ImRp(ω + qxV )Imα(ω), (H.4)

where we have used spectral function of fluctuations of dipole moment given by
(8.28), and take into account that, in the nonrelativistic limit (see AppendixC):

∑
l=x,y,z

Dll(q, ω, z, z0) = 2Dqq(q, ω, z, z0) = 4πqe−q(z+z0)Rp(ω). (H.5)

After the Fourier decomposition of the fluctuating electric field from the metal

Es(r, t) =
∫

d2q

(2π)2
Es(q, ω, z)ei(q·r−ωt), (H.6)

the induced current density in the particle is given by

jind(r, t) = −iδ(z − z0)
∫

d2q

(2π)2

∫
d2q ′

(2π)2

[
ω − V (qx − q ′

x )
]

×α(ω − qxV )Es(q, ω, z0)e
iq′ ·r−i[ω−V (qx−q ′

x )t]. (H.7)

From (H.6) and (H.7), we get

∫ 〈
jindEs∗〉 d3r = 8

π

∫ ∞

0
dω

∫
d2qqe−2qz0

(
1

2
+ n(ω)

)
ωImRp(ω)Imα(ω − qxV ).

(H.8)
For the total rate of work performed by the electric field in the volume of the moving
particle, we get

− dW

dt
= 8

π

∫ ∞

0
dω

∫
d2qqe−2qz0

(
1

2
+ n(ω)

)[
ωImR(ω)Imα(ω − qxV )

−(ω + qxV )ImRp(ω + qxV )Imα(ω)

]
. (H.9)

The rate of work performed by the electric field in the volume of the particle in the
reference frame where the particle is at rest and the metal is moving with velocity
−V can be found in a similar way to the laboratory system, and is given by
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−dW0

dt
= 8

π

∫ ∞

0
dω

∫
d2qqe−2qz0

(
1

2
+ n(ω)

)

×
[
(ω − qxV ) ImRp(ω)Imα(ω − qxV ) − ωImR(ω + qxV )Imα(ω)

]
. (H.10)

From (H.1), (H.9) and (H.10), we get friction force

F = 8

π

∫ ∞

0
dω

∫
d2qqqxe

−2qz0

×
(
1

2
+ n(ω)

) [
ImRp(ω)Imα(ω − qxV ) − ImRp(ω + qxV )Imα(ω)

]

= 2�

π2

∫ ∞

−∞
dqy

∫ ∞

0
dqxqxqe

−2qz0

{∫ ∞

0
dω [n(ω + qxV ) − n(ω)]

× [
ImRp(ω)Imα(ω + qxV ) + ImRp(ω + qxV )Imα(ω)

]

+
∫ qx V

0
dω

(
1

2
+ n(ω)

)

× [
ImRp(ω)Imα(ω − qxV ) + ImRp(ω − qxV )Imα(ω)

]
.

}
(H.11)

This formula is in complete agreement with the results in [13, 115, 121, 145] (see
also Sect. 8.1). To linear order in the sliding velocity V from (H.11), we get

F = 2�V

π

∫ ∞

0
dω

∂n(ω)

∂ω

∫ ∞

0
dqq4e−2qd ImRp(q, ω)Imα(ω). (H.12)



Appendix I
Derivation of (8.47) and (8.48)

The forces on a particle from the electric and magnetic induction fields in (8.39), to
linear order in the vibrational coordinate u(t), can be written in the form:

∫ ∞

−∞
dω

∫
d3r

〈
ρE∗〉 =

∫ ∞

−∞
dω

∫
d3r

〈
pl(r, t)

∂

∂xl
E∗(r, t)

〉

=
∫ ∞

−∞
dω

∂

∂xl

(〈
p0l

(
1 + u0 · ∂

∂r

) (
E∗
d0(r, ω) + Es∗(r, ω)

)〉

+ [〈
p0lE∗

1(r, ω − ω0)
〉 + 〈

p1l
(
E∗
d0(r, ω) + Es∗(r, ω)

)〉]
e−iω0t

)

r=r0

, (I.1)

1

c

∫ ∞

−∞
dω

∫
d3r

〈
j × B∗〉 =

∫ ∞

−∞
dω

{〈
p0 × ∇ × (

E∗
d0(r) + Es∗(r)

)〉

+
[

ω

ω − ω0

(
∇ 〈

p0 · E∗
1(r, ω − ω0)

〉 − ∂

∂xl

〈
p0lE∗

1(r, ω − ω0)
〉)

+ω + ω0

ω

(
∇
〈(

p1 + p0 u0 · ∂

∂r

)
· (E∗

d0(r) + Es∗(r)
)〉

− ∂

∂xl

〈 (
p1l + p0lu0 · ∂

∂r

)(
E∗
d0(r) + Es∗(r)

)〉))]
e−iω0t

}

r=r0

. (I.2)
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From (I.1) and (I.2), it follows that the friction force is determined by the formula

Ffric = 1

2
ω0

∫ ∞

−∞
dω

[
∇ ∂

∂ω0

(
ω

ω − ω0

〈
p0 · E∗

1(r, ω − ω0)
〉

+ω + ω0

ω

〈
p1 · (E∗

d0(r) + Es∗(r)
)〉)

ω0=0

− c.c.

]

r=r0

. (I.3)

Next, to simplify (I.3), note that

(
∂

∂ω0

E∗
1l(r, ω − ω0)

ω − ω0

)

ω0=0

= −u0 · ∂

∂r′

[
∂

∂ω

(
α∗(ω)D∗

lk(r, r0, ω)

ω
(
1 − α∗(ω)D∗

kk(r0, r0, ω)
)
)

× (
Es∗
k (r′, ω) + D∗

kk(r
′, r′, ω)p0k

) + α∗(ω)D∗
lk(r, r0, ω)

ω
(
1 − α∗(ω)D∗

kk(r0, r0, ω)
)

× ∂

∂ω

(
D∗

ks(r0, r′, ω)

)
p∗
0s + ∂

∂ω

(
D∗

lk(r, r′, ω)

ω

)
p∗
0k

]

r′=r0

, (I.4)

(
∂

∂ω0
(ω + ω0)p1l

)

ω0=0

=
(

∂

∂ω0
(ω + ω0)α(ω + ω0)E1l

)

ω0=0

= u0 · ∂

∂r′

[
∂

∂ω

(
ωα(ω)

1 − α(ω)Dll(r0, r0, ω)

) (
Es
l (r

′, ω) + Dll(r′, r′, ω)p0l
)

+ ωα(ω)

1 − α(ω)Dll(r0, r0, ω)

∂

∂ω

(
Dlk(r0, r′, ω)

)
p0k

]

r′=r0

, (I.5)

and the following expression for the spectral function of fluctuations

〈p0l p0k〉 = �

π

(
1

2
+ n(ω)

)
δlkIm

α(ω)

1 − α(ω)Dll(r0, r0, ω)
, (I.6)

〈
p0l E

s∗
k (r′, ω)

〉 = �

π

(
1

2
+ n(ω)

)
α(ω)

1 − α(ω)Dll(r0, r0, ω)
ImDlk(r0, r′, ω), (I.7)
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〈(
Es
l (r

′, ω) + Dll(r′, r′, ω)p0l
) (

Es∗
l (r, ω) + D∗

lk(r, r0, ω)p∗
0k

)〉

= �

π

(
1

2
+ n(ω)

)[
ImDll(r, r′, ω) + α∗(ω)

1 − α∗(ω)D∗
kk(r0, r0, ω)

D∗
lk(r, r0, ω)

× ImDlk(r′, r0, ω) + Dll(r′, r′, ω)Im

(
α(ω)Dll(r, r0, ω)

1 − α(ω)Dll(r0, r0, ω)

)]
. (I.8)

Using (I.4) and (I.5) for the vibration along the x-axis, (I.3) is reduced to

(
Ffric

)
x =u0ω0

∫ ∞

−∞
dω

�

π

(
1

2
+ n(ω)

)

× ∂

∂ω

[ ∑
l=x,y,z

(
∂2

∂x∂x ′ ImDll(r, r′)Im
α(ω)

1 − α(ω)Dll(r0, r0, ω)

)

−2 |α(ω) |2 Re
(

1

(1 − α(ω)∗Dzz(r0, r0, ω)∗) (1 − α(ω)∗Dxx (r0, r0, ω))

)

×
(

∂

∂x
ImDxz(r, r0)

)2]
r=r0
r′=r0

, (I.9)

where we have used that for the vibrations parallel to the surface

∂

∂x
Dll(r, r) = 0, (I.10)

∂

∂x
Dlk(r, r0)

∣∣∣∣
r=r0

= − ∂

∂x
Dlk(r0, r)

∣∣∣∣
r=r0

= ∂

∂x
Dxz(r, r0)

∣∣∣∣
r=r0

(δxlδzk − δxkδzl) . (I.11)

For vibrations normal to the surface, only the diagonal elements of the Green’s
function are non-vanishing and, for this case, (I.3) reduces to

(
Ffric

)
z = u0ω0

∫ ∞

−∞
dω

�

π

(
1

2
+ n(ω)

)
∂

∂ω

∑
l=x,y,z

{
∂2

∂z∂z′

[
ImDll(r, r′, ω)

+ Im

(
α(ω)Dll(r, r0, ω)Dll(r′, r0, ω)

1 − α(ω)Dll(r0, r0, ω)

)]
Im

α(ω)

1 − α(ω)Dll(r0, r0, ω)

+
(

∂

∂z
Im

(
α(ω)Dll(r, r0, ω)

1 − α(ω)Dll(r0, r0, ω)

))2}
r=r0
r′=r0

. (I.12)



Appendix J
Calculation of the Casimir Friction Between
Plane Surfaces Using Quantum Field Theory

J.1 Parallel Relative Motion

Assume that the xy-plane coincides with one of the surfaces. For parallel relative
motion, the friction coefficient �‖ = �xx = �yy . Using quantum field theory [183],
the expression for the friction coefficient (7.7) for parallel relative motion can be
written in the form

�‖ = lim
ω0→0

Im
GR

xx (ω0 + iδ)

ω0
, (J.1)

where GR
xx is the retarded Green’s function given by

GR
xx (ω) = i

�

∫ ∞

0
dteiωt

〈
F̂x (t)F̂x(0) − F̂x (0)F̂x (t)

〉
, (J.2)

where

F̂x =
∫

dSz σ̂xz, (J.3)

where the surface integral is taken over the surface of the body at z = 0,

σ̂xz = (Ex Ez + EzEx + Bx Bz + Bz Bx ) /8π. (J.4)

The function GR
xx can be obtained by analytic continuation in the upper half of

ω-plane of the temperature Green’s function Gxx (ω), determined on the discrete set
of point iωn = i2πn/β by the formula

Gxx (iωn) = −1

�

∫ β

0
dτeiωnτ

〈
Tτ F̂x(τ )F̂x (0)

〉
, (J.5)

where n is an integer and β = �/kBT , and where Tτ is the time-ordering operator.
The function Gxx (iωn) can be calculated using standard techniques of quantum
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field theory [183, 233], and can be represented through the Green’s functions of the
electromagnetic field

DEE
i j (r, r′, iωn) = Di j (r, r′, iωn) = −1

�

∫ β

0
dτeiωnτ

〈
Tτ Êi (τ )Ê j (0)

〉
, (J.6)

where the retarded Green’s functions Di j (r, r′, ω) obey the equations [183]:

(∇i∇k − δik∇2
)
Dkj (r, r′, ω) −

(
ω

c

)2 ∫
d3x ′′εik(r, r′′, ω)Dkj (r′′, r′, ω)

=
(
4πω2

c2

)
δi jδ(r − r′), (J.7)

(∇′
j∇′

k − δ jk∇′2) Dik(r, r′, ω) −
(

ω

c

)2 ∫
d3x ′′εk j (r′′, r′, ω)Dik(r, r′′, ω)

=
(
4πω2

c2

)
δi jδ(r − r′). (J.8)

For the plane surface, it is convenient to decompose the electromagnetic field into s-
and p-polarized plane waves. Introducing q̂ = q/q and n̂ = [ẑ × q̂], where q is the
surface component of the wave vector, the Green’s tensor is given by

↔
DEE (r, r′) =

∫
d2q

(2π)2

(
n̂DEE

nn (z, z′, q)n̂ + q̂ DEE
qq (z, z′, q)q̂ + ẑDEE

zz (z, z′, q)ẑ

+ ẑDEE
zq (z, z′, q)q̂ + q̂ DEE

qz (z, z′, q)ẑ
)
eiq·(x−x′). (J.9)

where we have taken into account that DEE
nz = DEE

nq = 0 (see Appendix A and C).
For two plane parallel surfaces, the solution of (3.33) and (3.34) is derived in
AppendixC.Using themethods of the quantumfield theory [183, 233] for theGreen’s
function Gxx we get

Gxx (iωn) = �A

16π2β

∫
d2q

(2π)2

∑
ωm

q2x
q2

[
DEE
qq (q, iωm , z, z′)DEE

zz (−q, iωn − iωm , z, z′)

+DEE
qz (q, iωm , z, z′)DEE

zq (−q, iωn − iωm , z, z′)

+DBB
qq (q, iωm , z, z′)DBB

zz (−q, iωn − iωm , z, z′)

+ DBB
qz (q, iωm , z, z′)DBB

zq (−q, iωn − iωm , z, z′)
]
z=z′=0

, (J.10)

where A is the surface area, and DBB
i j (q, iωm, z, z′) is given by [183]
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DBB
i j (r, r′, iωn) = −

(
c

ωn

)2

eilke jst∇l∇′
s D

EE
kt (r, r′, iωn), (J.11)

where ei jl is the completely asymmetric unit tensor. In (J.10), we omitted terms
involving products of Green’s functions associated with the p- and s-polarized elec-
tromagnetic field because, after the frequency summations, they cancel out each
other.

All sums on ωm in (J.10) can be calculated as a result of similar calculations.
Thus, as an illustration, we consider only the sum:

1

β

∑
ωm

DEE
qz (q, iωm)DEE

zq (−q, iωn − iωm). (J.12)

According to the Lehmann representation [183, 233], the Green’s function can be
written in the form

DEE
αβ (ωn, r, r′) = 1

π

∫ ∞

−∞
dx

ρEE
αβ (x, r, r′)
x − iωn

, (J.13)

where

ρEE
αβ (ω, r, r′) =

∑
n,m

exp(F − En)(Eα(r))nm(Eα(r′))mn(1 − e−βωmn )δ(ω − ωmn).

Using (J.13) and standard rules for the evaluation of the sum such as (J.12) [233] we
get

1

β

∑
ωm

DEE
qz (q, ωm)DEE

zq (−q, iωn − iωm)

=
∫ ∞

−∞
dω

[ (
ρEE
qz (q, ω)DEE

zq (−q, iωn − ω)
)
n(ω)

+ (
DEE

qz (q, iωn − ω)ρEE
zq (−q, ω)

)
(n(ω) + 1)

]
, (J.14)

where n(ω) = [exp(�ω/kBT ) − 1]−1. Using (C.9) and (C.10) in (J.14), we get

�

β

∑
ωm

DEE
qz (q, iωm)DEE

zq (−q, iωn − iωm)

= −q2 �

π

∫ ∞

−∞
dω

[(
∂

∂z′
ρEE
qq (ω, z, z′)
k2z (ω)

∂

∂z

Dqq(iωn − ω, z, z′)
k2z (iωn − ω)

)
n(ω)

+
(

∂

∂z′
DEE

qq (iωn − ω, z, z′)
k2z (iωn − ω)

∂

∂z

ρEE
qq (ω, z, z′)
k2z (ω)

)
(n(ω) + 1)

]
, (J.15)
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where k2z (ω) = (ω/c)2 − q2. Replacing iωn → ω0 + iδ and taking the imaginary
part of (J.15) in the limit ω0 → 0 we get the following contribution to the friction
from (J.15)

lim
ω0→0

1

ω0
Im lim

iωn→ω0+iδ

�

β

∑
ωm

DEE
qz (q, iωm)DEE

zq (−q, iωn − iωm)

= −2�q2

πk4z

∫ ∞

0
dω

(
− ∂n

∂ω

)(
∂

∂z
ImDqq(ω)

)(
∂

∂z′ ImDqq(ω)

)
. (J.16)

Calculating in a similar way the other sums on frequencies in (J.10), we get

γxx = �

8π3

∫ ∞

0
dω

(
− ∂n

∂ω

)∫
d2q

(2π)2

q2
x

q2

{[
ImDqq ImDzz

−q2

k4z

(
∂

∂z
ImDqq

)(
∂

∂z′ ImDqq

)]
+
( c

ω

)4
q2

[
ImDnn

∂2

∂z∂z′ ImDnn

−
(

∂

∂z
ImDnn

)(
∂

∂z′ ImDnn

)]}

z=z′=0

. (J.17)

Using (C.9), (C.10), (C.16) for the Green’s functions in (J.17), the contribution to
the friction from the propagating (q < ω/c) waves becomes:

γ rad‖ = �

8π3

∫ ∞

0
dω

(
− ∂n

∂ω

)∫

q< ω
c

d2qq2x

×
[
Re

(
1 + R1p R2pe2ikzd − R1p − R2pe2ikzd

1 − e2ikzd R1p R2p

)
Re

(
1 + R1p R2pe2ikzd + R1p + R2pe2ikzd

1 − e2ikzd R1p R2p

)

−
(
Im

R1p − R2pe2ikzd

1 − e2ikzd R1p R2p

)2

+ [p → s]
]

= �

8π2

∫ ∞

0
dω

(
− ∂n

∂ω

)∫ ω
c

0
dqq3

(1 − |R1p|2)(1 − |R2p|2)
|1 − e2ikzd R1p R2p|2 + [p → s]. (J.18)

Similarly, the contribution to the friction from the evanescent electromagnetic waves
(q > ω/c):

γ evan
‖ = �

8π3

∫ ∞

0
dω

(
− ∂n

∂ω

)∫

q> ω
c

d2qq2
x

×
[

− Im

(
2R1p R2pe−2|kz |d − R1p − R2pe−2|kz |d

1 − e−2|kz |d R1p R2p

)
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× Im

(
2R1p R2pe−2|kz |d + R1p + R2pe−2|kz |d

1 − e−2|kz |d R1p R2p

)

−
(
Im

R1p − R2pe−2|kz |d

1 − e−2|kz |d R1p R2p

)2

+ [p → s]
]

= �

2π2

∫ ∞

0
dω

(
− ∂n

∂ω

)∫ ∞

ω
c

dqq3e−2|kz |d ImR1pImR2p

|1 − e−2|kz |d R1p R2p|2 (J.19)

+ [p → s].

Equations (J.18) and (J.20) were first derived in [100] using the dynamical modifi-
cation of the Lifshitz theory.

J.2 Normal Relative Motion

For two plane surfaces in normal relative motion, the force operator is given by

F̂z =
∫

dSz σ̂zz, (J.20)

σ̂zz = (
EzEz − Ex Ex − EyEy + Bz Bz − Bx Bx − By By

)
/8π. (J.21)

The friction coefficient for normal relativemotion can be obtained from the analytical
continuation in the upper part of ω-plane of the Green’s function Gzz(iωn), which is
determined by

Gzz(iωn) = �A

32π2β

∫
d2q

(2π)2

∑
ωm

q2
x

q2

[
DEE

zz DEE
zz + DEE

qq DEE
qq + DEE

nn DEE
nn

− DEE
zq DEE

zq − DEE
qz DEE

qz − DEB
zn DEB

zn − DEB
nz DEB

nz

+ DEB
qn DEB

qn + DEB
nq DEB

nq + [E ↔ B]
]
, (J.22)

where the arguments of the Green functions in (J.22) are the same as in (J.10),
[E ↔ B] denotes the termswhich can be obtained from the first terms by permutation
of the upper case indexes E and B, and

DEB
i j (r, r′, ωn) = c

ωn
e jkl∇′

k D
EE
il (r, r′, ωn), (J.23)

DBE
i j (r, r′, ωn) = − c

ωn
eikl∇k D

EE
l j (r, r′, ωn). (J.24)
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Performing similar calculations as for the parallel relative motion we get

γ⊥ = �

16π3

∫ ∞

0
dω

(
− ∂n

∂ω

)∫
d2q

(2π)2

×
{[ (

ImDqq
)2 + k4z

q4
(ImDzz)

2 + 2

k2z

(
∂

∂z
ImDzz

)2 ]

+
( c

ω

)4 [
k4z (ImDnn)

2 +
(

∂2

∂z∂z′ ImDnn

)2

+ 2k2z

(
∂

∂z′ ImDnn(z, z
′)
)2 ]}

z=z′=0

. (J.25)

Substitution of the expressions for the Green’s functions from (C.9), (C.10), (C.16)
in (J.25) gives the contribution to the friction from the propagating waves:

γ rad⊥ = �

16π3

∫ ∞

0
dω

(
− ∂n

∂ω

)∫

q< ω
c

d2qk2z

×
[(

Re
1 + R1p R2pe2ikzd − R1p − R2pe2ikzd

1 − e2ikzd R1p R2p

)2

+
(
Re

1 + R1p R2pe2ikzd + R1p + R2pe2ikzd

1 − e2ikzd R1p R2p

)2

+ 2

(
Im

R1p − R2pe2ikzd

1 − e2ikzd R1p R2p

)2

+ [p → s]
]

= �

4π2

∫ ∞

0
dω

(
− ∂n

∂ω

)∫ ω
c

0
dqqk2z

× (1 − |R1p |2|R2p |2)2 + |(1 − |R1p |2)R2peikzd + (1 − |R2p |2)R∗
1pe

−ikzd |2
|1 − e2ikzd R1p R2p |4 + [p → s]. (J.26)

In similar way one can obtain the contribution to the friction from the evanescent
electromagnetic waves:

γ evan⊥ = �

4π3

∫ ∞

0
dω

(
− ∂n

∂ω

)∫

q> ω
c

d2q|kz |2

×
[(

Im
2R1p R2pe−2|kz |d − R1p − R2pe−2|kz |d

1 − e−2|kz |d R1p R2p

)2

+
(
Im

2R1p R2pe−2|kz |d + R1p + R2pe−2|kz |d

1 − e−2|kz |d R1p R2p

)2

(J.27)



Appendix J: Calculation of the Casimir Friction Between Plane … 365

− 2

(
Im

R1p − R2pe−2|kz |d

1 − e−2|kz |d R1p R2p

)2

+ [p → s]
]

= �

π2

∫ ∞

0
dω

(
− ∂n

∂ω

)∫ ∞
ω
c

dqq|kz |2e−2|kz |d

×
[(

ImR1p + e−2|kz |d||R1p |2ImR2p

)(
ImR2p + e−2|kz |d||R2p |2ImR1p

)

+ e−2|kz |d
(
Im(R1p R2p)

)2] 1

|1 − e−2|kz |d R1p R2p |4 + [p → s]. (J.28)

Equations (J.26) and (J.28) were first presented without derivation in [99]. In [100],
(J.26) and (J.28) were derived using the dynamical modification of the semiclassical
Lifshitz theory [42] of the van der Waals interaction, and the Rytov theory [5–7] of
the fluctuating electromagnetic field.



Appendix K
Calculation of the Casimir Friction Between
a Small Particle and Plane Surface Using
Quantum Field Theory

K.1 Parallel Relative Motion

For parallel relative motion, the friction coefficient �‖ = �xx = �yy . The Lorentz
force acting on a small particle located at point r0 can be written in the form

F̂x =
[
pk

∂

∂xk
Ex (r) + 1

c

(
jy Bz − jz By

)]

r=r0

, (K.1)

wherep and j are the dipolemoment and current operators of the particle, respectively.
E and B are the external electric and magnetic induction field operators, respectively.
The interaction of the electromagnetic field with the particle is described by the
Hamiltonian

Hint = −1

c
A(r0) · j, (K.2)

where A(r) is the vector potential operator. Taking into account that

j = ∂

∂t
p, (K.3)

∇ × E = 1

c

∂

∂t
B, (K.4)

one can prove that the friction coefficient is determined by (J.1) where

GR
xx (ω) = i

�

∫ ∞

0
dteiωt

×
〈
pk(t)

∂

∂x
Ek(r, t)pl(0)

∂

∂x ′ El(r′, 0)− pl(0)
∂

∂x ′ El(r′, 0)pk(t)
∂

∂x
Ek(r, t)

〉
r=r′=r0

,

(K.5)
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where summation over repeated indexes is assumed. Performing similar calculations
as in Appendix J and using the relation

E(r, t) = −1

c

∂

∂t
A(r, t), (K.6)

we get

�‖ = 2�

π

∫ ∞

0
dω

(
− ∂n

∂ω

){ ∑
k=x,y,z

Imαkk
∂2

∂x∂x ′ ImDkk(r, r′, ω)

− 2Re
(
αxx (ω)α∗

zz(ω)
) ( ∂

∂x
ImDxz(r, r0, ω)

)2 }

r=r′=r0

, (K.7)

where Di j (r, r′) is the Green’s functions of the electromagnetic field for one plane
surface. These Green’s functions can be obtained from the Green’s functions for the
two-plane surface geometry (see AppendixC) by putting R2p(s) = 0. The polariz-
ability of the particle

αkk(ω) = i

�

∫ ∞

0
dteiωt

〈
pk(t)pk(0) − pk(0)pk(t)

〉
(K.8)

can be written as

αi i (ω) = α0
i i (ω)

1 − α0
i i (ω)Dii (r0, r0)

, (K.9)

where α0
i i (ω) is the free-particle polarizability. In deriving (K.7) we have also used

the identity

Imαxx (ω)Im

[
αzz(ω)

∂

∂x
Dxz(r, r0, ω)

∂

∂x
Dxz(r, r0, ω)

]

+Imαzz(ω)Im

[
αxx (ω)

∂

∂x
Dxz(r, r0, ω)

∂

∂x
Dxz(r, r0, ω)

]

−2Im

[
αxx (ω)

∂

∂x
Dxz(r, r0, ω)

]
Im

[
αzz(ω)

∂

∂x
Dxz(r, r0, ω)

]

= 2Re
(
αxx (ω)α∗

zz(ω)
) ( ∂

∂x
ImDxz(r, r0, ω)

)2

. (K.10)
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K.2 Normal Relative Motion

The friction coefficient for a particle moving normal to the sample surface can be
obtained in a similar as for parallel relative motion. In this case the Green’s function
GR

xx must be replaced by GR
zz where

GR
zz(ω) = i

�

∫ ∞

0
dteiωt

×
〈
pk(t)

∂

∂z
Ek(r, t)pl(0)

∂

∂z′ El(r′, 0) − pl(0)
∂

∂z′ El(r′, 0)pk(t)
∂

∂z
Ek(r, t)

〉
r=r′=r0

.

(K.11)
Performing similar calculations as in Appendix K.1, we get

�⊥ = 2�

π

∫ ∞

0
dω

(
− ∂n

∂ω

) ∑
k=x,y,z

{
Imαkk(ω)

∂2

∂z∂z′
[
ImDkk(r, r′, ω)

+Im
(
αkk Dkk(r, r0, ω)Dkk(r′, r0, ω)

) ] +
[ ∂

∂z
Im (αkk(ω)Dkk(r, r0, ω))

]2}

r=r′=r0

.

(K.12)

For a spherical particle with radius R, (K.12) is only valid if R  d. In the non-
resonant case α0

kk ∼ R3 and Dkk ∼ d−3. Thus in this case αD ∼ (R/d)3  1 and
we can neglect screening effects. For a spherical particle αkk = α, and using the
formula (which is valid in the non-retarded limit, formally obtained as c → ∞, see
[139] and also AppendixC)

∑
k=x,y,z

Dkk(r, r′, ω) = 4π
∫

d2qq

(2π)2

[
e−q|z−z′ | + Rp(q, ω)e−q(z+z′)

]
eiq(x−x′),

(K.13)
from (K.7) and (K.12) we get

�‖ = 2
�

π

∫ ∞

0
dω

(
−∂n(ω)

∂ω

)∫ ∞

0
dqq4e−2qd ImRp(q, ω)Imα(ω) (K.14)

Equations (K.7) and (K.12) were obtained in [139] using the dynamical modification
of the semi-classical Rytov theory [5–7] of the fluctuating electromagnetic field, and
(K.14) was derived in [145] using the fluctuation-dissipation theorem.



Appendix L
Derivation of (8.77)

Assume that {φn} forms an incomplete set of basis function and that we want to
approximate a function f that is as accurate as possible by a sum f ≈ ∑

n anφn .
The standard way of doing this is to form I = ∫

d3x( f −∑
n anφn)

2 and minimize
I with respect to the expansion coefficients an . In the present case this gives (8.77).
If we define the error ε = I/

∫
d3x f 2 then, in the present case, we obtain ε = 0.07

and ε = 0.18 for the case e = x̂ and ẑ, respectively.
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Appendix M
Reflection Amplitudes for a 2D Quantum Well

The reflection amplitudes for a 2D-electron system are determined by [144]

Rs(p) = εs(p) − 1

εs(p) + 1
, εs = 4πωσt

kzc2
+ 1, εp = 4πkzσl

ωε
+ 1, (M.1)

where σl and σt are the transverse and longitudinal conductivities of the layer. The
longitudinal conductivity can be written in the form

σl(ω, q) = −iω

q2
χl(ω, q), (M.2)

whereχl is the finite lifetime generalization of the longitudinal 2D-Lindhard response
function, which can be written as [354]:

χl(ω, Q) = (1 + i/ωτ)χ0
l (ω + i/τ, Q)

1 + (i/ωτ)χ0
l (ω + i/τ, Q)/χ0

l (0, Q)
, (M.3)

where, for a degenerate electron gas,

χ0
l (ω, q) = nse2

zm∗v2
F

{
2z +

√
(u − z)2 − 1 −

√
(u + z)2 − 1

}
, (M.4)

where τ is the relaxation time, z = q/2kF , u = ω/(qvF ), and kF and vF are the
Fermi wave vector and Fermi velocity, respectively, and ns is the 2D electron density
in the layer. The transverse conductivity of the layer is determined by

σt (ω, q) = − inse2

3(ω + iτ−1)m∗z

{[
(u′ + z)2 − 1

]3/2

− [
(u′ − z)2 − 1

]3/2 − 2z
[
3u′2 + z2

]}
, (M.5)
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where u′ = ω+iτ−1. For a non-degenerate electron gas the longitudinal conductivity
is determined by (M.2) with

χ0
l (ω, q) = nse2

kBT

[
1 + F

(
ω√
2qvT

)]
, (M.6)

and transverse conductivity is given by

σt (ω, q) = − inse2

m∗(ω + ikz)
F

(
ω√
2qvT

)
, (M.7)

where vT = √
kBT/m∗ andm∗ is the effective electron mass, and where the function

F(x) is defined by the integral

F(x) = x√
π

∫ +∞

−∞
dz

e−z2

z − x − i0
. (M.8)



Appendix N
Quantum VC Radiation in the Plate-Plate
Configuration

N.1 Close to the Threshold Velocity

Close to the threshold ((v − vc)/v0  1), the range in ω becomes narrow. For small
ω − qxv:

k2zn = n2
(ω

c

)2 − q2 =
[
(ω − qxv0)(ω + qxv0)

v2
0

− q2
y

]

≈
(

ω − qxv0
v0

)
2qx − q2

y , (N.1)

k ′2
nz =

(
ω′

v0

)2

− q ′2

= −γ 2 [qx (v − v0) − ω(1 − vv0/c2)][qx (v + v0) − ω(1 + vv0/c2]
v2
0

− q2
y

= 1

v0

[
(n2 + 1)2

n2(n2 − 1)
(v − vc)qx − (ω − qxv0)

]
2qx − q2

y . (N.2)

From (N.1) and (N.2) follow the ranges in ω and qy : ω− < ω < ω+ where

ω− = qxv0 + v0q2
y

2qx
, ω+ = qxv0 + (n2 + 1)2

n2(n2 − 1)
(v − vc)qx − v0q2

y

2qx
,

and 0 ≤ qy ≤ qmax , where

q2
max = (n2 + 1)2

n2(n2 − 1)

v − vc

v0
q2
x  q2

x .

After changing the variables qy → qx ymax y,
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ω → qxv0

(
1 + y2max

2
+ zy2max

1 − y2

2

)
,

where

y2max = (n2 + 1)2

n2(n2 − 1)

v − vc

v0
,

the imaginary parts for the reflection amplitudes can be written in the form

ImRs = 2kzkzn
k2z + k2zn

≈ 2kzn
kz

≈ 2n

qx
√
n2 − 1

√(
ω − qxv0

v0

)
2qx − q2y = 2nymax√

n2 − 1

√
1 − y2

√
1 + z ∼

√
v − vc

v0
,

(N.3)

ImR′
s = 2kzk′

zn

k2z + k′2
zn

≈ 2k′
zn

kz
≈ 2n

qx
√
n2 − 1

√
1

v0

[
(n2 + 1)2

n2 − 1
(v − vc)qx − (ω − qxv0)

]
2qx − q2y

= 2nymax√
n2 − 1

√
1 − y2

√
1 − z ∼

√
v − vc

v0
, (N.4)

ImRp ≈ ImRs/n2, ImR′
p ≈ ImR′

s/n
2. Because the integrand in (11.20) is propor-

tional to the product of the imaginary parts of the reflection amplitudes, which are of
the order (v − vc)/v0 to lowest order in (v − vc)/v0, all other terms in the integrand
should be taken at v = vc. In this approximation, the mixing of the waves with the
different polarization can be neglected because they are of order q2

y ∼ (v − vc)/v0
and the reflection amplitudes Rs = Rp = 1, and the integral for the contribution to
the friction force from s-polarized waves is reduced to

Fs
1x ≈ �v0

π3

∫ ∞
0

dqxq
3
x

e−2qx d
√
n2−1/n

(1 − e−2qx d
√
n2−1/n)2

(
2n√
n2 − 1

)2

y5max

∫ 1

0
dy(1 − y2)2

∫ 1

−1
dz
√
1 − z2

(N.5)
which produces (11.28).

N.2 Close to the Light Velocity: v → c

Introducing new variables ω = qxvξ and qy = qx y the integration in (11.27) over
qx can be performed analytically giving

(
Fx
P1

)
= − 3�v

8π3d4

∫ ξmax

ξmin

dξ

∫ ymax

0
dy

(
1
vξ

)
1

κ4
z

[(
ImR1pImR′

2p + ImR1s ImR′
2s

)(
1 + γ 2β2 κ2

z y
2

w2w′2

)

+γ 2β2 κ2
z y

2

w2w′2
(
ImR1pImR′

2s + ImR1s ImR′
2p

)]
(N.6)
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where: κ2
z = 1 − β2ξ 2 + y2, w2 = 1 + y2, w′2 = γ 2(1 − β2ξ)2 + y2,

ξmin = 1

nβ
, ξmax = 1 − 1

γ 2β(n − β)
= nβ − 1

β(n − β)
.

In new variables kz = qxκz ,

k2nz = (n2 − 1)
(ω

c

)2 − k2z = q2
x (y

2
1 − y2),

k ′2
nz = (n2 − 1)

(
ω′

c

)2

− k2z = q2
x (y

2
0 − y2),

where y1 = n2β2ξ 2 − 1,

y20 = γ 2[n2β2(1 − ξ)2 − (1 − β2ξ)2]

ImRs = 2kzknz
k2z + k2nz

=
2
√
1 − β2ξ 2 + y2

√
y21 − y2

(n2 − 1)β2ξ 2
,

ImR′
s = 2kzk ′

nz

k2z + k ′2
nz

=
2
√
1 − β2ξ 2 + y2

√
y20 − y2

(n2 − 1)γ 2β2(1 − ξ)2
,

ImRp = 2n2kzknz
n4k2z + k2nz

= 2n2
√
1 − β2ξ 2 + y2

√
n2β2ξ 2 − 1 − y2

(n2 − 1)β2ξ 2 + (n4 − 1)(1 − β2ξ 2 + y2)
,

ImR′
p = 2n2kzknz

n4k2z + k2nz
=

2n2
√
1 − β2ξ 2 + y2

√
y20 − y2

y20 + (n4 − 1)(1 − β2ξ 2 + y2) + 1 − β2ξ 2
,

ymax =
{
y0 for ξc < ξ < ξmax

y1 for ξmin < ξ < ξc
,

where ξc = γ /(1+ γ ) ≈ 1− 1/γ . For γ � 1, the main contribution to the integral
over ξ in (N.6) comes from the region ξc < ξ < ξmax . The s-wave contribution is
given by

(
Fxs
P1s

)
≈ 3�v

8π3d4

∫ ξmax

ξc
dξ

∫ 1

0
dy

(
1
v

)
4y20

√
1 − y2

(n2 − 1)3/2γ 2(1 − ξ)2

×
{

1

1 − β2ξ2 + y20 y
2

+ γ 2 y20 y
2

(1 + y20 y
2)[γ 2(1 − β2ξ)2 + y20 y

2]

}
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≈ 3�v

4π2d4

(
1
v

){[ √
2

n2 − 1
ln(n +

√
n2 − 1) − 1√

n2 − 1(n + 1)
− 2

(n2 − 1)
√

γ
+ 1

(n2 − 1)3/2γ

]

+
[ √

n − 1

2(n + 1)3/2
γ − 1√

n2 − 1(n + 1)
ln(n − 1)γ − 1

2(n2 − 1)3/2γ

]}
. (N.7)

The other contributions can be estimated in a similar way.



Appendix O
Quantum VC Radiation in the Particle–Plate
Configuration

O.1 Particle with No Losses

O.1.1 Close to the Threshold Velocity

The resonant contribution to the friction force comes from ω in the range

ω0 < ω <
v − v0

1 − vv0/c2
qx .

Near resonance, the particle polarazibility can be approximated by the formula

Imα = R3ω2
0

ωγ

(ω2 − ω2
0)

2 + ω2γ 2
≈ R3ω0

π

2
[δ(ω − ω0) − δ(ω + ω0)] (O.1)

Close to the threshold velocity ((v − v0)/v0  1) and at the resonance

k ′2
nz = − 1

v0

[
n2

(n2 − 1)
(v − v0)qx − ω0

]
2qx − q2

y . (O.2)

Introducing new variables qx = q0x , qy = q0ymax y where q0 = ω0(n2 − 1)/((v −
v0)n2),

y2max = 2
n2

n2 − 1
x(x − 1)

v − v0

v0
 x2

the imaginary part of the reflection amplitudes can be written in the form

ImR′
w ≈ 2

x
ymax

√
1 − y2
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The p-wave resonant contribution to the friction force in the K ′ frame is given by

f ′
x ≈ − 24�q4

0

π2(n2 − 1)

(π

2
R3ω0

) v − v0

v0

∫ ∞

1
dxx2(x − 1)e−2q0dx

∫ 1

0
dy

√
1 − y2

= − �R3ω0

4d4(n2 − 1)

v − v0

v0
[3 + 4q0d + 2(q0d)2]e−2q0d (O.3)

w′ ≈ 24�ω0q3
0

π2(n2 − 1)

(π

2
R3ω0

) v − v0

v0

∫ ∞

1
dxx(x − 1)

∫ 1

0
dy

√
1 − y2

= �R3ω2
0

2d3(n2 − 1)

v − v0

v0
(1 + q0d)e−2q0d ]. (O.4)

O.1.2 Limiting Case v → c

In the ultra relativistic limit (γ � 1)

Imα(ω′) = −π

2
ω0R

3δ(ω′ + ω0) = − π

2γ

ω0R3

v
δ

(
qx − ω

v
− ω0

γ v

)
(O.5)

After the integration in (11.31) over qx

k2z =
(

ω

γ v

)2

+ 2ωω0

γ v
+
(

ω0

γ v

)2

+ q2
y (O.6)

k2nz =
[
ω

v
(nβ − 1) − ω0

γ v

] [
ω

v
(nβ + 1) + ω0

γ v

]
− q2

y (O.7)

For ω < Cγ v/d where C  1: kz ≈ qy ,

k2nz ≈ (n2 − 1)
(ω

v

)2 − q2
y (O.8)

Introducing the new variable

qy = ω

v
y
√
n2 − 1

where 0 ≤ y ≤ 1, the imaginary part of the reflection amplitudes can be written in
the form

ImRs = 2kzknz
k2z + k2nz

= 2y
√
1 − y2, (O.9)
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ImRp = 2n2kzknz
n4k2z + k2nz

= 2n2y
√
1 − y2

1 + (n4 − 1)y2
, (O.10)

and

φp ≈ φs ≈ 2γ 2
(ω

v

)2 (n2 − 1)2y4

1 + (n2 − 1)y2
. (O.11)

The contributions from the s- and p-polarized waves in the K frame are given by

fsx = − 4�

π
ω0R

3
∫ 1

0
dy

(n2 − 1)2y4
√
1 − y2

1 + (n2 − 1)y2

∫ ∞
0

d
(ω

v

)(ω

v
+ ω0

γ v

)(ω

v

)2
e−2(ω/v)yd

√
n2−1

= − 3�ω0R
3

2d4(n + 1)

[
1 +

(
ω0d

cγ

)
C

]
(O.12)

where

C = 2

3π

√
n + 1

n − 1

[
n√

n2 − 1
tanh−1

√
n2 − 1

n
− 1

]
,

ws = − 4�v

π
ω0R

3
∫ 1

0
dy

(n2 − 1)2 y4
√
1 − y2

1 + (n2 − 1)y2

∫ ∞
0

d
(ω

v

) (ω

v

)3
e−2(ω/v)yd

√
n2−1

= − 3�vω0R
3

2d4(n + 1)
, (O.13)

f px = − 4�

π
ω0R

3
∫ 1

0
dy

n2(n2 − 1)2 y4
√
1 − y2

[1 + (n2 − 1)y2][1 + (n4 − 1)y2]
∫ ∞
0

d
(ω

v

)(ω

v
+ ω0

γ v

)(ω

v

)2
e−2(ω/v)yd

√
n2−1

= − 3�ω0R
3

2d4
n

n + 1

[
1 +

(
ω0d

cγ

)
C ′

]
, (O.14)

where

C ′ = 2

3π
n

√
n + 1

n − 1

[
n2√
n4 − 1

tanh−1

√
n4 − 1

n2
− n√

n2 − 1
tanh−1

√
n2 − 1

n

]
,

wp = − 4�

π
ω0R

3
∫ 1

0
dy

n2(n2 − 1)2y4
√
1 − y2

[1 + (n2 − 1)y2][1 + (n4 − 1)y2]
∫ ∞
0

d
(ω

v

) (ω

v

)3
e−2(ω/v)yd

√
n2−1

= − 3�vω0R
3

2d4
n

n + 1
. (O.15)

In deriving (O.12)–(O.15), the following integrals were used
∫ 1

0
dy

√
1 − y2

1 + (n2 − 1)y2
= π

n + 1
,

∫ 1

0
dy

y
√
1 − y2

1 + (n2 − 1)y2
= 1

n2 − 1

[
n√

n2 − 1
tanh−1

√
n2 − 1

n
− 1

]
,
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∫ 1

0
dy

√
1 − y2

]1 + (n2 − 1)y2]1 + (n4 − 1)y2] = π

n(n + 1)
,

∫ 1

0
dy

√
1 − y2

]1 + (n2 − 1)y2]1 + (n4 − 1)y2] = 1

n2(n2 − 1)

[
n2√
n4 − 1

tanh−1

√
n4 − 1

n2
− n√

n2 − 1
tanh−1

√
n2 − 1

n

]
.

In the K ′, frame the friction force and the heat absorbed by a particle can be obtained
from the corresponding quantities in the K frame using the Lorenz transformations
(8.24). For example, for the contributions from the s-polarized waves

f ′
s = γ 2( fs − βws) ≈ − 3�ω0R3

2d4(n + 1)

[
1 + Cγ

ω0d

c

]
, (O.16)

and

w′
s = γ 2(ws − v fs) ≈ 3�vω0R3

2d4(n + 1)
Cγ

ω0d

c
. (O.17)

Thus, contrary to the K frame where the friction force and the power of photon
emission are finite, in the K ′ frame the friction force and the radiation power both
diverge as (1 − β)−1/2. These results can be confirmed by the direct calculations in
the K ′ where

Imα(ω) = −π

2
ω0R

3δ(ω − ω0) (O.18)

After the integration in (11.32) over ω

k2z = q2
x + q2

y −
(ω0

c

)2
(O.19)

k′2
nz = γ 2

[
n2β2

(
qx − ω0

v

)2 −
(
qx − ω0

c

)2] − q2y

≈ γ 2(n2 − 1)
(
qx − ω0

v

)2 − q2
y (O.20)

Introducing the new variable

qy = γ
√
n2 − 1

(
qx − ω0

v

)
y

where 0 ≤ y ≤ 1 and qx ≥ ω0/v, the same (O.9) and (O.10) are obtained for ImRp(s)

and

φp ≈ φs ≈ 2γ 4
(
qx − ω0

v

)2 (n2 − 1)2y4

1 + (n2 − 1)y2
. (O.21)
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The contributions from the s- and p-polarized waves in the K ′ frame are given by

f ′
sx = − 4�

π
ω0R

3γ 4
∫ 1

0
dy

(n2 − 1)2y4
√
1 − y2

1 + (n2 − 1)y2

∫ ∞
0

dqxqx
(
qx − ω0

v

)2
e−2(qx−ω0/v)ydγ

√
n2−1

= − 3�ω0R
3

2d4(n + 1)

[
1 + Cγ

ω0d

c

]
, (O.22)

w′
s = 4�

π
ω2
0R

3γ 4
∫ 1

0
dy

(n2 − 1)2y4
√
1 − y2

1 + (n2 − 1)y2

∫ ∞
0

dqx
(
qx − ω0

v

)2
e−2(qx−ω0/v)ydγ

√
n2−1

= 3�vω0R
3

2d4(n + 1)
Cγ

ω0d

c
. (O.23)

O.2 The Off-Resonant Contribution for a Particle
with Losses Close to the Threshold Velocity

The off-resonant contribution to the friction force comes from ω in the range

0 < ω <
v − v0

1 − vv0/c2
qx  ω0.

In this frequency range, the low-frequency approximation for the particle polariz-
ability can be used

Imα = R3ω2
0

ωγ

(ω2 − ω2
0)

2 + ω2γ 2
≈ R3ωγ

ω2
0

Close to the threshold velocity ((v − v0)/v0  1), ω is small and to lowest order in
(v − v0)/v0  1

k ′2
nz =

(
ω′

v0

)2

− q ′2

= γ 2 [qx (v − v0) − ω(1 − vv0/c2)][qx(v + v0) − ω(1 + vv0/c2]
v2
0

− q2
y

= 1

v0

[
n2

(n2 − 1)
(v − v0)qx − ω

]
2qx − q2

y . (O.24)

The integration over qy is restricted by the range 0 < qy < qx ymax , where

y2max = 2
n2

n2 − 1

v − v0

v0
 1.
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Introducing new variables qy = qx ymax y,

ω = qxv0y
2
max

1 − y2

2
z

the imaginary part of the reflection amplitudes can be written in the form

ImR′
s = 2kzk ′

zn

k2z + k ′2
zn

≈ 2k ′
zn

kz
≈ 2

qx

√
1

v0

[
n2

(n2 − 1)
(v − v0)qx − ω

]
2qx − q2

y

= 2ymax

√
1 − y2

√
1 − z ∼

√
v − v0

v0
, (O.25)

and ImR′
s = ImR′

s/n
2,

φ′
s ≈ 2q2

x , φ′
s ∼ q2

x y
2
max  q2

x .

To lowest order in (v−v0)/v0 the friction force is determined only by the contribution
from the p-polarized waves, which is given by

f ′
x ≈ 2�y6maxv

2
0R

3

n2π2

∫ ∞

0
dqxq

5
x e

−2qx d
∫ 1

0
dy(1 − y2)5/2

∫ 1

0
dzz

√
1 − z

= − 5

4π

�R3v2
0

d6ω2
0τ

n4

(n2 − 1)3

(
v − v0

v0

)3

, (O.26)

and the heat absorbed by the particle in the K ′ frame is given by

w′ ≈ �y8maxv
3
0R

3

n2π2

∫ ∞

0
dqxq

5
x e

−2qx d
∫ 1

0
dy(1 − y2)7/2

∫ 1

0
dzz

√
1 − z

= 35

64π

�R3v3
0

d6ω2
0τ

n6

(n2 − 1)4

(
v − v0

v0

)4

. (O.27)



Appendix P
Phononic Heat Transfer at Planar Interfaces

P.1 Derivation of (12.7)

Here, we prove (12.7). We get

〈|u0f(q, ω)|2〉 = 1

(2π)6

∫
d2xdtd2x ′dt ′

×〈u0f(x, t)u0f(x′, t ′)〉ei[q·(x−x′)−ω(t−t ′)]

= 1

(2π)6

∫
d2xdtd2x ′dt ′

×〈u0f(x − x′, t − t ′)u0f(0, 0)〉ei[q·(x−x′)−ω(t−t ′)]

= 1

(2π)6

∫
d2xdtd2x ′dt ′〈u0f(x, t)u0f(0, 0)〉ei[q·x−iωt]

= A0t0
(2π)3

Cuu(q, ω)

P.2 Derivation of (12.8)

Herewepresent an alternative derivation of (12.8).Assume that the two solids interact
weakly. In this case the energy transfer from solid 0 to solid 1 is given by (12.6) with
K → 0:

�E = (2π)3
∫

d2qdω ωK 2ImM1(q, ω)〈|u0f(q, ω)|2〉. (P.1)
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At thermal equilibrium this must equal the energy transfer from solid 1 to solid 0
given by

�E = (2π)3
∫

d2qdω ωK 2ImM0(q, ω)〈|u1f(q, ω)|2〉 (P.2)

From (P.1) and (P.2) we get

ImM1(q, ω)〈|u0f(q, ω)|2〉 = ImM0(q, ω)〈|u1f(q, ω)|2〉 (P.3)

We now assume that solid 1 is a layer of non-interacting harmonic oscillators. Thus
if ρ1 is the mass per unit area we have

ρ1ü1 + ω2
1u1 = σ

or

u1(q, ω) = σ(q, ω)

ρ1(ω
2
1 − ω2) − i0+

Thus

M1(q, ω) = 1

ρ1(ω
2
1 − ω2) − i0+

and for ω > 0
ImM1(q, ω) = π

2ρ1ω1
δ(ω − ω1) (P.4)

We write u1 in the standard form:

u1 = 1

(2π)2

∫
d2q

(
�

2ρ1ω1

)1/2 (
bqe

i(q·x−ω1t) + b+
q e

−i(q·x−ω1t)
)
,

so that for ω > 0:

u1(q, ω) = 1

(2π)2

(
�

2ρ1ω1

)1/2

bqδ(ω − ω1)

Thus we get

〈|u1(q, ω)|2〉 = t0
(2π)5

�

2ρ1ω1

1

2
〈bqb

+
q + b+

q bq〉δ(ω − ω1)

where we have used that

[δ(ω − ω1)]
2 = δ(ω − ω1)

1

2π

∫
dt = δ(ω − ω1)

t0
2π
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Using

〈bqb
+
q + b+

q bq〉 = [2n(ω1) + 1](2π)2δ(q − q) = [2n(ω1) + 1]A0

we get

〈|u1f(q, ω)|2〉 = A0t0
(2π)5

�

2ρ1ω1

(
n(ω) + 1

2

)
δ(ω − ω1) (P.5)

Combining (P.3)–(P.5) gives

〈|u0f(q, ω)|2〉 = 2A0t0�

(2π)6

(
n(ω) + 1

2

)
ImM0(q, ω). (P.6)

P.3 Alternative Derivation of (12.8)

Equation (12.8) is a standard result but the derivation is repeated here for the readers
convenience. Let us write the Hamiltonian as

H = H0 +
∫

d2x u(x, t)σ (x, t)

where σ(x, t) is an external stress acting on the surface z = 0 of the solid. We first
derive a formal expression for M(q, ω) defined by the linear response formula

〈u(q, ω)〉 = M(q, ω)σ (q, ω)

We write 〈u〉 = Tr(ρu) where the density operator satisfies

i�
∂ρ

∂t
= [H, ρ]

We write ρ = ρ0 + ρ1 and get

ρ1 = 1

i�

∫ t

−∞
dt ′e−i H0(t−t ′)/�[V (t ′), ρ0]eiH0(t−t ′)/�

Thus, using 〈u〉 = Tr(ρ1u) we get

〈u〉 = 1

i�

∫
d2x ′dt ′ θ(t − t ′)〈[u(x, t), u(x′, t ′)]〉σ(x′, t ′)

= 1

i�

∫
d2x ′dt ′θ(t − t ′)〈[u(x − x′, t − t ′), u(0, 0)]〉σ(x′, t ′)
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Thus

M(q, ω) = 1

i�

∫
d2xdt θ(t)〈[u(x, t), u(0, 0)]〉e−i(q·x−ωt) (P.7)

where
u(x, t) = e−i H0t/�u(x, 0)eiH0t/�.

Let |n〉 be an eigenstate of H0 corresponding to the energy En . Using (P.7), we get

M(q, ω) = 1

i�

∫
d2xdt θ(t)

∑
nm

Z−1e−βEn e−i(q·x−ωt)

× (〈n|u(x, 0)|m〉〈m|u(0, 0)|n〉e−i(En−Em )t/�

− 〈n|u(0, 0)|m〉〈m|u(x, 0)|n〉ei(En−Em )t/�
)

= 1

i�

∫
d2x

∑
nm

Z−1e−βEn e−iq·x

×
( 〈n|u(x, 0)|m〉〈m|u(0, 0)|n〉

i(En − Em)/� − iω + 0+

+ 〈n|u(0, 0)|m〉〈m|u(x, 0)|n〉
i(En − Em)/� + iω − 0+

)
(P.8)

where β = 1/kBT and Z = ∑
n exp(−βEn). From (P.8), we get

ImM(q, ω) = π

�

∫
d2x

∑
nm

Z−1e−βEn e−iq·x

×(〈n|u(x, 0)|m〉〈m|u(0, 0)|n〉(−δ[ω − (En − Em)/�])

+ 〈n|u(0, 0)|m〉〈m|u(x, 0)|n〉δ[ω + (En − Em)/�]) (P.9)

Changing the summation index from (n,m) → (m, n), the (m, n)-dependent part of
the second term in (P.9) can be rewritten as

∑
nm

e−βEm 〈m|u(0, 0)|n〉〈n|u(x, 0)|m〉

×δ[ω − (En − Em)/�]

=
∑
nm

e−βEn e−β(Em−En)〈n|u(x, 0)|m〉〈m|u(0, 0)|n〉
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×δ[ω − (En − Em)/�]

= eβω
∑
nm

e−βEn 〈n|u(x, 0)|m〉〈m|u(0, 0)|n〉

×δ[ω − (En − Em)/�]

Replacing the second term in (P.9) with this expression gives

ImM(q, ω) = 1

2�

(
eβ�ω − 1

)

×
∫

d2xdt e−i(q·x−iωt)〈u(x, t)u(0, 0)〉

= 1

2�

(
eβ�ω − 1

)
(2π)3Cuu(q, ω)

From the last equation follows the fluctuation–dissipation theorem:

Cuu(q, ω) = 1

(2π)3

2�

eβ�ω − 1
ImM(q, ω).

P.4 Phonon Heat Transfer at Disordered Interfaces

We assume high temperatures and interfacial disorder. In this case, the elastic waves
generated by the stochastic pulsating forces between the atoms at the interface give
rise to (nearly) incoherent emission of sound waves (or phonons). Thus, we can
obtain the total energy transfer by just adding up the contributions from the elastic
waves emitted from each interfacial atom. Assume for simplicity that the interfacial
atoms of solid 0 for a simple square lattice with lattice constant a0. Consider the
atom at x = 0 and let u0(t) denote the vertical displacement of the atom. The force

F(t) = k[u0(t) − u1(t)],

or
F(ω) = k[u0(ω) − u1(ω)], (P.10)

is acting on solid 1 at x = 0. We can write k = Ka20 where K is the force constant
per unit area. The force F(t) gives a stress

σ(x, t) = F(t)δ(x)
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acting on solid 1. We can also write

σ(q, ω) = (2π)−2F(ω)

Note that

u1(ω) = u1(x = 0, ω) =
∫

d2q u1(q, ω)

=
∫

d2q M1(q, ω)σ (q, ω)

= 1

(2π)2

∫
d2q M1(q, ω)F(ω) = M̄1(ω)F(ω), (P.11)

where

M̄1(ω) = 1

(2π)2

∫
d2q M1(q, ω)

In a similar way, we get

u0(ω) = u0f(ω) − M̄0(ω)F(ω). (P.12)

Combining (P.10)–(P.12) gives

u1(ω) = kM̄1(ω)

1 + k[M̄0(ω) + M̄1(ω)]u0f(ω), (P.13)

u0(ω) = 1 + kM̄1(ω)

1 + k[M̄0(ω) + M̄1(ω)]u0f(ω). (P.14)

The energy transferred to solid 1 from solid 0 during the time period t0 can be written
as

�E = N
∫

dt u̇1(t)F(t),

where N = A0/a20 is the number of interfacial atoms of solid 0. One can also write

�E = 2πN
∫

dω (−iω)u1(ω)F(−ω)

Using (P.10) and (P.13) and (P.14), we obtain

�E = 2πN
∫

dω
ωk2ImM̄1(ω)

|1 + k[M̄0(ω) + M̄1(ω)]|2 〈|u0f(ω)|2〉, (P.15)
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where we have performed an ensemble (or thermal) average denoted by 〈..〉. Next,
note that

〈|u0f(ω)|2〉 = 1

(2π)2

∫
dtdt ′ 〈u0f(t)u0f(t ′)〉e−iω(t−t ′)

= 1

(2π)2

∫
dtdt ′〈u0f(t − t ′)u0f(0)〉e−iω(t−t ′)

= 1

(2π)2

∫
dtdt ′〈u0f(t)u0f(0)〉eiωt = 2t0

2π
C̄uu(ω), (P.16)

where

C̄uu(ω) = 1

2π

∫
dt 〈u0f(t)u0f(0)〉e−iωt ,

is the displacement correlation function. Note that

C̄uu(ω) =
∫

d2q Cuu(q, ω)

Thus, using (12.8), we get

C̄uu(ω) = 2

(2π)3

�(ω)

ω
Im

∫
d2q M0(q, ω) = 2

2π

�(ω)

ω
ImM̄0(ω) (P.17)

Substituting (P.16) in (P.15) and using (P.17) gives the heat current J0→1 = �E/A0t0
from solid 0 to solid 1:

J0→1 = 4A∗

(2π)3

∫ ∞

0
dω �(ω)

K ImM0(ω)K ImM1(ω)

|1 + K [M0(ω) + M1(ω)]|2 ,

where A∗ = (2π)2/a20 is the area of the Brillouin zone and where we have defined

M(ω) = a20 M̄(ω) = 1

A∗

∫

q<qc

d2q M(q, ω)

where the q-integral is over |q| < qc with πq2
c = A∗. A similar equation with T0

replaced by T1 gives the energy transfer from solid 1 to solid 0, and the net energy
flow J = J0→1 − J1→0. The heat transfer coefficient α = (J0→1 − J1→0)/(T0 − T1)
gives in the limit (T0 − T1) → 0:

α = 4A∗

(2π)3

∫ ∞

0
dω

∂�(ω)

∂T

K ImM0(ω)K ImM1(ω)

|1 + K [M0(ω) + M1(ω)]|2 .

The derivation above is only valid for high temperatures where kBT > �ω0, where
�ω0 is the highest phonon energy of solid 0. However, we can apply the theory
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(approximately) to all temperatures if we take the cut-off wavevector qc to be the
smallest of q1 and q2, where πq2

1 = (2π)2/a20 (where a0 is the lattice constant)
and where q2 = kBT/�c0 (where c0 is the smallest sound velocity of solid 0) is the
thermal wavevector.

P.5 Derivation of (12.20) from (12.21)

Here we show that (12.21) reduces to (12.20) for high temperatures and when solid
0 is described by an Einstein model. At high temperatures and weak interfacial
coupling, (12.21) becomes

α = 4kBA∗

(2π)3

∫ ∞

0
dω K 2ImM0(ω)ImM1(ω) (P.18)

We assume for solid 0 that

M0(ω) = 1

ρ0(ω
2
0 − ω2) − i0+

where ρ0 = m0/a20 is the mass per unit area. Thus

ImM0(ω) = π

2ρ0ω0
δ(ω0 − ω)

Substituting this in (P.18) gives

α = 4kBK 2A∗

(2π)3

π

2ρ0ω0
ImM1(ω0)

= kBK 2

(2π)2

1

ρ0ω0

∫
d2q ImM1(q, ω0)

Substituting (12.10) into this equation and denoting q = (ω0/cT)x1/2 gives

α = kBK 2

ρ0ρ1c3T

1

8π
Re

∫ ∞

0
dx

2 (γ − x)1/2

(1 − 2x)2 + 4 (1 − x)1/2 (γ − x)1/2
(P.19)

where γ = (cT/cL)2, which agrees with (12.20).
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P.6 Derivation of (12.26)

Let 1/αc be the interfacial contact resistance associated with the jump in the temper-
ature (on an atomistic scale) in the contact area between two solids, and let 1/αspred

be the spreading resistance associated with the interaction between the heat filaments
emerging from all the contact regions. Since these two resistances act in series one,
expect the total contact resistance to be the sum of the two contributions, i.e.,

1

α
≈ 1

αspred
+ 1

αc

We can prove this equation and (12.25) using the formalism developed in [296]. We
assume that all the heat energy flows via the area of real contact. In this case, the
interfacial heat current Jz(x) vanishes in the non-contact area. In the area of real
contact, the temperature T (x, z) changes abruptly (on an atomistic scale) when z
increases from z = −0+ (in solid 0) to z = 0+ (in solid 1), and the jump determines
the heat current: Jz(x) = αb[T (x,−0)−T (x,+0)]. Ifwe denoteψ(x) = T (x,−0)−
T (x,+0), the equation

Jz(x)[Jz(x) − αbψ(x)] = 0

will be valid everywhere at the interface. From this equation, we get

∫
d2q ′ Jz(q − q′)[Jz(q′) − αbψ(q′)] = 0

Following the derivation in Sect. 2.2.1 in [296], we get the equation

1

α
= (2π)2

κ

1

A0 J 2
0

∫
d2q

1

q
〈|�Jz(q)|2〉 + 1

αb

1

A0 J 2
0

∫
d2x J 2

z (x) = 1

αspred
+ 1

αc
(P.20)

Here J0 is the average or nominal heat current, �Jz(x) = Jz(x) − J0, and κ an
effective heat conductivity (κ−1 = κ−1

0 + κ−1
1 ). The first term in (P.20) is the spread-

ing resistance studied in [296] while the second term is the contribution from the
temperature jump on the atomistic scale across the area of real contact.
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Heat Transfer: Role of Surface Roughness

Q.1 Derivation of the Relation Between the Heat Transfer
Coefficient and the Contact Stiffness

Consider two elastic blocks with nominally flat surfaces squeezed together with the
nominal pressure p0. In [213], it was shown that the normal displacement u0z of the
surface of solid 0 is related to the normal stress σz via

u0z(q) = 2

E∗
0q

σz(q), (Q.1)

where E∗
0 = E0/(1 − ν2

0 ). In a similar way

u1z(q) = − 2

E∗
1q

σz(q). (Q.2)

Let uz = u0z − u1z be the difference between the (interfacial) surface displacement
fields. Using (Q.1) and (Q.2) gives

uz(q) = 2

E∗q
σz(q) (Q.3)

where
1

E∗ = 1

E∗
0

+ 1

E∗
1

The normal (interfacial) stress σz(x) and the difference in the surface displacement
uz(x) = u0z(x)−u1z(x) at the interface depend on the squeezing pressure p0 applied
to the upper surface of the block.Alternatively, since the average separation ū between
the surfaces at the interface decreases monotonically with increasing p we can
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consider uz and σz to depend parametrically on ū. The derivatives of these quantities
with respect to ū are denoted by σ ′

z and u′
z . Using (Q.3) we get

u′
z(q) = 2

E∗q
σ ′
z(q). (Q.4)

with the boundary conditions that σ ′
z(x) vanishes in the non-contact region, while

u′
z(x) vanishes in the contact regions (since h(x) is a fix function, independent of u).

In addition, the condition
1

A0

∫
d2x σz(x) = p0,

takes the form
1

A0

∫
d2x σ ′

z(x) = p′
0.

If we denote ψz = σ ′
z/p

′, we can write

1

A0

∫
d2x ψz(x) = 1,

and (Q.4) takes the form
φz(q) = q−1ψz(q), (Q.5)

where

φz = E∗

2p′
0

u′
z . (Q.6)

Consider now the relation between Jz(x) and �T (x). The relevant boundary condi-
tion are that Jz(x) vanish in the non-contact region while�T (x) vanish in the contact
regions. In addition, we must have

1

A0

∫
d2x Jz(x) = J0,

If we denote ψ = Jz/J0 we can write

1

A0

∫
d2x ψ(x) = 1,

and (13.15) takes the form
φ(q) = q−1ψ(q), (Q.7)

where
φ = −(κ/J0)�T (Q.8)
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Note that the systems of equations for (φz, ψz) and (φ,ψ) are identical and therefore
φz = φ and ψz = ψ . Using that φz = φ from (Q.6) and (Q.8), we get

�T = − J0E∗

κ2p′
0

u′
z (Q.9)

Next note that
∫

d2x u′
z(x) = d

du

∫
d2x uz(x) = d

du
A0u = A0,

while ∫
d2x �T (x) = A0 J0/α,

Thus, integrating (Q.9) over x gives

α = − 2κ

E∗ p
′
0.

Q.2 Convective Heat Transfer

Here we briefly summarize some results related to forced convective heat transfer
[414]. When a fluid (e.g., air) flows around a solid object, the tangential (and the
normal) component of the fluid velocity usually vanishes on the surface of the solid.
This results in the formation of a thin boundary layer (thickness δ) at the surface of
the solid where the fluid velocity rapidly increases from zero to some value that is
of order the main stream velocity outside of the solid. If the temperature T1 at the
solid surface is different from the fluid temperature Tfluid, the fluid temperature in
the boundary layer will also change rapidly from T1 to Tfluid. Depending on the fluid
flow velocity, the fluid viscosity and the dimension of the solid object the flow will
be laminar or turbulent, and the heat transfer process is fundamentally different in
these two limiting cases. In a typical case (for air), the thickness δ ≈ 1 mm and the
heat transfer coefficient α ≈ κ/δ ≈ 10 W/m2K.

Let us consider heat transfer from a rotating disk as a model for the heat transfer
from a tire [415]. In this case, it has been shown [416] that fully turbulent flow occur
if the Reynolds number Re > 2.5 × 105 where

Re = ωR2

ν
= vRR

ν

where R is the radius of the disk (or rather the distance from the center of the disk to
some surface patch on the disk), ω the angular velocity and ν the kinematic viscosity
of air. In typical tire applications Re > 2.5×105 so turbulent flowwill prevail inmost
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tire applications. In this case, the heat transfer coefficient is given approximately by
[416]:

αair ≈ 0.019
κair

R

(
vRR

ν

)0.8

.

As an example, at T = 300 K for air ν = 15.7×10−6 m2/s and κair = 0.025W/mK
and assuming R = 0.3 m and vR = 30 m/s we get αair ≈ 63 W/m2K.

Q.3 Thermal and Electric Conductivities

Heat conduction results from the collisions between atoms, as in fluids; or by free
electron diffusion, as predominant in metals; or phonon diffusion as predominant
in insulators. In liquids and gases, the molecules are usually further apart than in
solids, giving a lower chance of molecules colliding and passing on thermal energy.
Metals are usually the best conductors of thermal energy. This is due to the free-
moving electrons, which are able to transfer thermal energy rapidly through the
metal. However, the difference in the thermal conductivity of metals and non-metals
are usually not more than a factor ∼100. Typical values for the heat conductivity
are κ ≈ 100 W/mK for metals, ≈1 W/mK for insulators (e.g., metal oxides or
polymers), ≈0.1 W/mK for fluids (but for water κ ≈ 0.6 W/mK) and ≈0.02W/mK
for gases at normal atmospheric pressure and room temperature.

In contrast to thermal heat transfer, electric conduction always involves themotion
of charged particles (electrons or ions). For this reason, the electric contact resistance
is much more sensitive to oxide or contamination layers at the contacting interface
then for the heat transfer. For the electric conduction, the variation of the conductivity
between good conductors (most metals), with the typical electric conductivity κ ′ ≈
107 (�m)−1, and bad conductors, such as silicon dioxide glass or (natural) rubber
where κ ′ ≈ 10−14 (�m)−1, is huge. This makes the electrical contact resistance
of metals sensitive to (nanometer) thin oxide or contamination layers. However, as
highlighted in the Introduction, if there is a large number of small breaks in the film,
the resistance may be almost as low as with no film.



Appendix R
Friction Coefficient for Point Charges Moving
Relative to a Plane Surface: Non-relativistic
Theory

Consider a semi-infinitemetalwith a flat surface that coincideswith the xy coordinate
plane, and with the z-axes pointed along the upward normal. The electric field above
the flat surface can be represented by the Fourier integral

E(r) =
∫

d2q

(2π)2
eiq·r−iωtE(q, z) (R.1)

with similar expression for the magnetic induction field B(r). For q � ω/c and
z > 0, the electric and magnetic induction field can be written in the form

E(q, z) = v0q [ẑ(eqz + Rpe
−qz) + q̂i(eqz − Rpe

−qz)], (R.2)

B(q, z) = − ω

cq
n̂Ez(q, z), (R.3)

where n̂ = ẑ × q̂, and where Rp is the reflection amplitude for the p-polarized
electromagnetic field. The energy dissipation induced by the electromagnetic field
in the bulk of the metal is determined by integrating the Poynting vector over the
surface of the metal, and is given by

Q̇ = − c

4π

∫
d2q

(2π)2
(EqB

∗
n + c.c.) = ω

π

∫
d2q

(2π)2q
ImR(ω)

∣∣v0q
∣∣2 . (R.4)

Consider now a point charges ei located at (ri , d + zi ), and performing small ampli-
tude vibrations with the vibrational coordinate u(t) = ẑu0e−iωt . In this case

v0q = −2π iu0
∑
i

ei e
iq·ri−q(d+zi )qx . (R.5)
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Taking into account that the energy dissipation per unit time must be equal to
2ω2� |u0|2, using (R.4) and (R.5) gives the friction coefficient:

�‖ = lim
ω→0

∫ ∞

0

d2q

πq
q2
x e

−2qd ImRp(ω, q)

ω

∣∣∣∣∣
∑
i

ei e
iq·ri−qzi

∣∣∣∣∣
2

. (R.6)

For a uniformly charged wire with the length w passing through point z = d along
the y-axis, from (R.6), we get

�‖ = lim
ω→0

Q2
∫ ∞

−∞
dqx

∫ ∞

−∞
dqy

q2
x

2πq
e−2qd ImR(q, ω)

ω

∣∣∣∣
∫ w/2

−w/2
dyeiqy y

∣∣∣∣

= lim
ω→0

Q2w

∫ ∞

−∞
dqx

∫ ∞

−∞
dqy

q2
x

q
e−2qd ImR(q, ω)

ω
δ(qy)

= lim
ω→0

2Q2w

∫ ∞

0
dqxqxe

−2qd ImR(q, ω)

ω
. (R.7)



Appendix S
Attracting Force Between a Tip and a Flat
Surface of a Body

S.1 van der Waals Interaction

Accordingly to the Lifshitz theory [43, 44], the stress σzz(d) acting on the surfaces of
two identical semi-infinite bodies due to van derWaals interaction, at small separation
d  c/ωp (where ωp is the plasma frequency) and for d  λT , is given by:

σzz(d) = �

8π2d3

∫ ∞

0
dξ

[ε(iξ) − 1]2
[ε(iξ) + 1]2 . (S.1)

In the Drude model, the explicit form of ε is

ε(iξ) = 1 + ω2
p

ξ(ξ + η)
. (S.2)

For many metals, the damping constant η  ωp and be neglected in integral (S.1).
It follows from (S.1) and (S.2) that

σzz = �ωp

32
√
2πd3

. (S.3)

For a spherical tip of radius R, using the same approximation as in (6.95), we get

Fz(d) = R�ωp

32
√
2d2

. (S.4)

Similarly, in the case of a cylindrical tip, we have

Fc
z (d) = 3wR1/2

�ωp

28d5/2
. (S.5)
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S.2 Electrostatic Interaction due to a Bias Voltage

In the presence of the bias voltage V , the attractive force per unit area between two
plane surfaces given by

σzz(V ) = V 2

8πd2
. (S.6)

Using this formula and the ‘proximity’ approximation, as in (6.95), we get attraction
force between tip and sample at d  R

Fc(d) = wV 2R1/2

27/2d3/2
(S.7)

for a cylindrical tip, and

Fs(d) = RV 2

4d
(S.8)

for a spherical tip.
Let us consider now an ellipsoidal tip surface with two different principle cur-

vatures. In the vicinity of a sample, the equation describing this surface involves a
quadratic dependence on x and y:

z(x, y) = d + x2

2Rx
+ y2

2Ry
, (S.9)

where Rx and Ry are the radii of curvature in the two directions. In the ‘prox-
imity’ approximation, after changing integration variables x = (Rx/Ry)

1/4x ′ and
y = (Ry/Rx )

1/4y′ we get (S.8) as for spherical tip with R = (Rx Ry)
1/2.



Appendix T
Friction Coefficient due to Excitation
of the Acoustic Waves

According to [213] the tensor
↔
M in (15.3) is given by

↔
M = i

ρct

(
1

S(q, ω

[
Q(q, ω)(ẑq − qẑ)

+
(

ω

ct

)2

(pl ẑẑ + pt q̂q̂)
]

+ nn
1

pt

)
, (T.1)

where q̂ = q/q, n = ẑ × q̂ and

S =
(

ω2

c2t
− 2q2

)2

+ 4q2 pt pl, (T.2)

Q = 2q2 − ω2

c2t
+ 2pt pl , (T.3)

pt =
√

ω2

c2t
− q2, pl =

√
ω2

c2l
− q2, (T.4)

where ρ, ct , and cl are the mass density and the transverse and longitudinal sound
velocities of the solid, respectively. Note that ct and cl are, in general, complex
frequency-dependent quantities given by

c2t = E

2ρ(1 + ν)
, (T.5)

c2l = E(1 − ν)

ρ(1 + ν)(1 − 2ν)
, (T.6)

where E(ω) is the complex elastic modulus and ν is the Poisson ration.
The acoustic waves have wave number q < ω/ct . In typical cases the frequency

of the vibrations of AFM tip ω ∼ 103 − 106 s−1 and qRint < ωRint/ct  1, where
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Rint ∼ √
dR is the effective radius of the interaction of the tip with the sample

surface. In this case, for vibrations of the tip normal to the surface, the Fourier
transform of the surface stress is

σ⊥i (q) =
∫

d2xeiqx ∂

∂d
σ 0
i z(x, d)

≈ δi z

∫
d2x

∂

∂d
σ 0
zz(x, d) = ∂

∂d
Fz(d), (T.7)

where σ 0
i z is the static stress acting on the surface of the sample. Using (T.7) and

(T.1) in (15.4) we get

�⊥ = ξ⊥
4π

K 2

ρc3t
, (T.8)

where ξ⊥ = ξ⊥l + ξ⊥t + ξ⊥s , K = ∂Fz/∂d and where the contributions from the
longitudinal ξ⊥l , the transverse ξ⊥t , and surface (Rayleigh) ξ⊥s acoustic waves are
given by

ξ⊥l =
∫ (ct/cl )2

0
dx

√
(ct/cl)2 − x

(1 − 2x)2 + 4x
√

(1 − x)
√

(ct/cl)2 − x
, (T.9)

ξ⊥t =
∫ 1

(ct/cl )2
dx

4x[x − (ct/cl)2]
√
1 − x

(1 − 2x)4 + 16x2[x − (ct/cl)2](1 − x)
, (T.10)

ξ⊥s = π
√
xc − (ct/cl)2/ f

′(xc), (T.11)

where
f (x) = 4x

√
x − 1

√
x − (ct/cl)2 − (2x − 1)2 (T.12)

and where xc is the solution of the equation f (x) = 0. In (T.9)–(T.11), the sound
velocities ct and cl are assumed real, taken at ω = 0. For vibrations of the tip parallel
to the surface, the main contribution to the energy dissipation is due to the excitation
of acoustic waves, which are excited by the component, of the surface stress acting
normal to the surface. For this component we get

σ‖z(q) =
∫

d2xeiq·x ∂

∂x
σ 0
zz(x) ≈ iqx Fz(d). (T.13)

Using (T.13) and (T.1) in (15.4), we get

�‖ = ξ‖
8π

ω2

ρc5t
F2
z (d), (T.14)

ξ‖ = ξ‖l + ξ‖t + ξ‖s ,
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ξ‖l =
∫ (ct/cl )2

0
dxx

√
(ct/cl)2 − x

(1 − 2x)2 + 4x
√

(1 − x)
√

(ct/cl)2 − x
, (T.15)

ξ‖t =
∫ 1

(ct/cl )2
dxx

4x[x − (ct/cl)2]
√
1 − x

(1 − 2x)4 + 16x2[x − (ct/cl)2](1 − x)
, (T.16)

ξ‖s = πxc
√
xc − (ct/cl)2/ f

′(xc). (T.17)

For most metals ct/cl ≈ 1/2 and for this case ξ⊥ = 1.62 and ξ‖ = 1.50.
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