
 123

Transactions on
Large-Scale
Data- and Knowledge-
Centered Systems XXVIII

Special Issue on Database- and Expert-Systems
Applications

LN
CS

 9
94

0

Abdelkader Hameurlain • Josef Küng • Roland Wagner
Editors-in-Chief

Jo
ur

na
l S

ub
lin

e Qimin Chen
Guest Editor

Lecture Notes in Computer Science 9940

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/8637

http://www.springer.com/series/8637

Abdelkader Hameurlain • Josef Küng
Roland Wagner • Qimin Chen (Eds.)

Transactions on
Large-Scale
Data- and Knowledge-
Centered Systems XXVIII
Special Issue on Database- and Expert-Systems
Applications

123

Editors-in-Chief

Abdelkader Hameurlain
IRIT, Paul Sabatier University
Toulouse
France

Josef Küng
FAW, University of Linz
Linz
Austria

Guest Editor

Qimin Chen
HP Labs
Sunnyvale, CA
USA

Roland Wagner
FAW, University of Linz
Linz
Austria

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-662-53454-0 ISBN 978-3-662-53455-7 (eBook)
DOI 10.1007/978-3-662-53455-7

Library of Congress Control Number: 2015943846

© Springer-Verlag Berlin Heidelberg 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer-Verlag GmbH Berlin Heidelberg

Preface

The 26th International Conference on Database and Expert Systems Applications,
DEXA 2015, held in Valencia, Spain, September 1–4, 2015, provided a premier forum
and unique opportunity for researchers, developers, and users from different disciplines
to present the state of the art, exchange research ideas, share industry experiences, and
explore future directions at the intersection of data management, knowledge engi-
neering, and artificial intelligence. This special issue of Springer’s Transactions on
Large-Scale Data- and Knowledge-Centered Systems (TLDKS) contains extended
versions of selected papers presented at the conference. While these articles describe
the technical trend and the breakthroughs made in the field, the general message
delivered from them is that turning big data to big value requires incorporating
cutting-edge hardware, software, algorithms and machine-intelligence.

Efficient graph-processing is a pressing demand in social-network analytics. A so-
lution to the challenge of leveraging modern hardware in order to speed up the simi-
larity join in graph processing is given in the article “Accelerating Set Similarity Joins
Using GPUs”, authored by Mateus S. H. Cruz, Yusuke Kozawa, Toshiyuki Amagasa,
and Hiroyuki Kitagawa. In this paper, the authors propose a GPU (Graphics Processing
Unit) supported set similarity joins scheme. It takes advantage of the massive parallel
processing offered by GPUs, as well as the space efficiency of the MinHash algorithm
in estimating set similarity, to achieve high performance without sacrificing accuracy.
The experimental results show more than two orders of magnitude performance gain
compared with the serial version of CPU implementation, and 25 times performance
gain compared with the parallel version of CPU implementation. This solution can be
applied to a variety of applications such as data integration and plagiarism detection.

Parallel processing is the key to accelerating machine-learning on big data. How-
ever, many machine leaning algorithms involve iterations that are hard to be paral-
lelized from either the load balancing among processors, memory access overhead, or
race conditions, such as those relying on hierarchical parameter estimation. The article
“Divide-and-Conquer Parallelism for Learning Mixture Models”, authored by Takaya
Kawakatsu, Akira Kinoshita, Atsuhiro Takasu, and Jun Adachi, addresses this problem.
In this paper, the authors propose a recursive divide-and-conquer-based parallelization
method for high-speed machine learning, which uses a tree structure for recursive tasks
to enable effective load balancing and to avoid race conditions in memory access. The
experiment results show that applying this mechanism to machine learning can reach a
scalability superior to FIFO scheduling, with robust load imbalance.

Maintaining multistore systems has become a new trend for integrated access to
multiple, heterogeneous data, either structured or unstructured. A typical solution is to
extend a relational query engine to use SQL-like queries to retrieve data from other data
sources such as HDFS, which, however, requires the system to provide a relational
view of the unstructured data. An alternative approach is proposed in the article
“Multistore Big Data Integration with CloudMdsQL”, authored by Carlyna

Bondiombouy, Boyan Kolev, Oleksandra Levchenko, and Patrick Valduriez. In this
paper, a functional SQL-like query language (based on CloudMdsQL) is introduced for
integrated data retrieved from different data stores, therefore taking full advantage
of the functionality of the underlying data management frameworks. It allows user
defined map/filter/reduce operators to be embedded in traditional SQL statements. It
further allows the filtering conditions to be pushed down to the underlying data pro-
cessing framework as early as possible for the purpose of optimization. The usability of
this query language and the benefits of the query optimization mechanism are
demonstrated by the experimental results.

One of the primary goals of exploring big data is to discover useful patterns and
concepts. There exist several kinds of conventional pattern matching algorithms; for
instance, the terminology-based algorithms are used to compare concepts based on their
names or descriptions, the structure-based algorithms are used to align concept hier-
archies to find similarities; the statistic-based algorithms classify concepts in terms of
various generative models. In the article “Ontology Matching with Knowledge Rules”,
authored by Shangpu Jiang, Daniel Lowd, Sabin Kafle, and Dejing Dou, the focus is
shifted to aligning concepts by comparing their relationships with other known con-
cepts. Such relationships are expressed in various ways – Bayesian networks, decision
trees, association rules, etc.

The article “Regularized Cost-Model Oblivious Database Tuning with Reinforce-
ment Learning”, authored by Debabrota Basu, Qian Lin, Weidong Chen, Hoang Tam
Vo, Zihong Yuan, Pierre Senellart, and Stephane Bressan, proposes a machine learning
approach for adaptive database performance tuning, a critical issue for efficient
information management, especially in the big data context. With this approach, the
cost model is learned through reinforcement learning. In the use case of index tuning,
the executions of queries and updates are modeled as a Markov decision process, with
states represented in database configurations, actions causing configuration changes,
corresponding cost parameters, as well as query and update evaluations. Two important
challenges in the reinforcement learning process are discussed: the unavailability of a
cost model and the size of the state space. The solution to the first challenge is to learn
the cost model iteratively, using regularization to avoid overfitting; the solution to the
second challenge is to prune the state space intelligently. The proposed approach is
empirically and comparatively evaluated on a standard OLTP dataset, which shows
competitive advantage.

The article “Workload-Aware Self-tuning Histograms for the Semantic Web”,
authored by Katerina Zamani, Angelos Charalambidis, Stasinos Konstantopoulos,
Nickolas Zoulis, and Effrosyni Mavroudi, further discusses how to optimize the his-
tograms for semantic Web. As we know, query processing systems typically rely on
histograms which represent approximate data distribution, to optimize query execution.
Histograms can be constructed by scanning the datasets and aggregating the values
of the selected fields, and progressively refined by analyzing query results. This article
tackles the following issue: histograms are typically built from numerical data, but the
Semantic Web is described with various data types which are not necessarily numeric.
In this work a generalized histograms framework over arbitrary data types is estab-
lished with the formalism for specifying value ranges corresponding to various data-
types. Then the Jaro-Winkler metric is introduced to define URI ranges based on the

VI Preface

hierarchical nature of URI strings. The empirical evaluation results, conducted using
the open-sourced STRHist system that implements this approach, demonstrate its
competitive advantage.

We would like to thank all the authors for their contributions to this special issue.
We are grateful to the reviewers of these articles for their invaluable efforts in col-
laborating with the authors to deliver readers the precise ideas, theories, and solutions
on the above state-of-the-art technologies. Our deep appreciation also goes to Prof.
Roland Wagner, Chairman of the DEXA Organization, Ms. Gabriela Wagner, Secre-
tary of DEXA, the distinguished keynote speakers, Program Committee members, and
all presenters and attendees of DEXA 2015. Their contributions help to keep DEXA a
distinguished platform for exchanging research ideas and exploring new directions,
thus setting the stage for this special TLDKS issue.

June 2016 Qiming Chen
Abdelkader Hameurlain

Preface VII

Organization

Editorial Board

Reza Akbarinia Inria, France
Bernd Amann LIP6 - UPMC, France
Dagmar Auer FAW, Austria
Stéphane Bressan National University of Singapore, Singapore
Francesco Buccafurri Università Mediterranea di Reggio Calabria, Italy
Qiming Chen HP-Lab, USA
Mirel Cosulschi University of Craiova, Romania
Dirk Draheim University of Innsbruck, Austria
Johann Eder Alpen Adria University Klagenfurt, Austria
Georg Gottlob Oxford University, UK
Anastasios Gounaris Aristotle University of Thessaloniki, Greece
Theo Härder Technical University of Kaiserslautern, Germany
Andreas Herzig IRIT, Paul Sabatier University, France
Dieter Kranzlmüller Ludwig-Maximilians-Universität München, Germany
Philippe Lamarre INSA Lyon, France
Lenka Lhotská Technical University of Prague, Czech Republic
Vladimir Marik Technical University of Prague, Czech Republic
Franck Morvan Paul Sabatier University, IRIT, France
Kjetil Nørvåg Norwegian University of Science and Technology,

Norway
Gultekin Ozsoyoglu Case Western Reserve University, USA
Themis Palpanas Paris Descartes University, France
Torben Bach Pedersen Aalborg University, Denmark
Günther Pernul University of Regensburg, Germany
Sherif Sakr University of New South Wales, Australia
Klaus-Dieter Schewe University of Linz, Austria
A Min Tjoa Vienna University of Technology, Austria
Chao Wang Oak Ridge National Laboratory, USA

External Reviewers

Nadia Bennani INSA of Lyon, France
Miroslav Bursa Czech Technical University, Prague, Czech Republic
Eugene Chong Oracale Incorporation, USA
Jérôme Darmont University of Lyon, France
Flavius Frasincar Erasmus University Rotterdam, The Netherlands
Jeff LeFevre HP Enterprise, USA

Junqiang Liu Zhejiang Gongshang University, China
Rui Liu HP Enterprise, USA
Raj Sundermann Georgia State University, USA
Lucia Vaira University of Salento, Italy
Kevin Wilkinson HP Enterprise, USA
Shaoyi Yin Paul Sabatier University, Toulouse, France
Qiang Zhu The University of Michigan, USA

X Organization

Contents

Accelerating Set Similarity Joins Using GPUs . 1
Mateus S.H. Cruz, Yusuke Kozawa, Toshiyuki Amagasa,
and Hiroyuki Kitagawa

Divide-and-Conquer Parallelism for Learning Mixture Models 23
Takaya Kawakatsu, Akira Kinoshita, Atsuhiro Takasu,
and Jun Adachi

Multistore Big Data Integration with CloudMdsQL 48
Carlyna Bondiombouy, Boyan Kolev, Oleksandra Levchenko,
and Patrick Valduriez

Ontology Matching with Knowledge Rules . 75
Shangpu Jiang, Daniel Lowd, Sabin Kafle, and Dejing Dou

Regularized Cost-Model Oblivious Database Tuning with Reinforcement
Learning . 96

Debabrota Basu, Qian Lin, Weidong Chen, Hoang Tam Vo,
Zihong Yuan, Pierre Senellart, and Stéphane Bressan

Workload-Aware Self-tuning Histograms for the Semantic Web 133
Katerina Zamani, Angelos Charalambidis, Stasinos Konstantopoulos,
Nickolas Zoulis, and Effrosyni Mavroudi

Author Index . 157

http://dx.doi.org/10.1007/978-3-662-53455-7_1
http://dx.doi.org/10.1007/978-3-662-53455-7_2
http://dx.doi.org/10.1007/978-3-662-53455-7_3
http://dx.doi.org/10.1007/978-3-662-53455-7_4
http://dx.doi.org/10.1007/978-3-662-53455-7_5
http://dx.doi.org/10.1007/978-3-662-53455-7_5
http://dx.doi.org/10.1007/978-3-662-53455-7_6

Accelerating Set Similarity Joins Using GPUs

Mateus S.H. Cruz1(B), Yusuke Kozawa1, Toshiyuki Amagasa2,
and Hiroyuki Kitagawa2

1 Graduate School of Systems and Information Engineering,
University of Tsukuba, Tsukuba, Japan

{mshcruz,kyusuke}@kde.cs.tsukuba.ac.jp
2 Faculty of Engineering, Information and Systems,

University of Tsukuba, Tsukuba, Japan
{amagasa,kitagawa}@cs.tsukuba.ac.jp

Abstract. We propose a scheme for efficient set similarity joins on
Graphics Processing Units (GPUs). Due to the rapid growth and diver-
sification of data, there is an increasing demand for fast execution of
set similarity joins in applications that vary from data integration to
plagiarism detection. To tackle this problem, our solution takes advan-
tage of the massive parallel processing offered by GPUs. Additionally,
we employ MinHash to estimate the similarity between two sets in terms
of Jaccard similarity. By exploiting the high parallelism of GPUs and
the space efficiency provided by MinHash, we can achieve high perfor-
mance without sacrificing accuracy. Experimental results show that our
proposed method is more than two orders of magnitude faster than the
serial version of CPU implementation, and 25 times faster than the paral-
lel version of CPU implementation, while generating highly precise query
results.

Keywords: GPU · Parallel processing · Similarity join · MinHash

1 Introduction

A similarity join is an operator that, given two database relations and a simi-
larity threshold, outputs all pairs of records, one from each relation, whose sim-
ilarity is greater than the specified threshold. It has become a significant class
of database operations due to the diversification of data, and it is used in many
applications, such as data cleaning, entity recognition and duplicate elimina-
tion [3,5]. As an example, for data integration purposes, it might be interesting
to detect whether University of Tsukuba and Tsukuba University refer to the
same entity. In this case, the similarity join can identify such a pair of records
as being similar.

Set similarity join [11] is a variation of similarity join that works on sets
instead of regular records, and it is an important operation in the family of
similarity joins due to its applicability on different data (e.g., market basket
data, text and images). Regarding the similarity aspect, there is a number of
c© Springer-Verlag Berlin Heidelberg 2016
A. Hameurlain et al. (Eds.): TLDKS XXVIII, LNCS 9940, pp. 1–22, 2016.
DOI: 10.1007/978-3-662-53455-7 1

2 M.S.H. Cruz et al.

well-known similarity metrics used to compare sets (e.g., Jaccard similarity and
cosine similarity).

One of the major drawbacks of a set similarity join is that it is a com-
putationally demanding task, especially in the current scenario in which the
size of datasets grows rapidly due to the trend of Big Data. For this rea-
son, many researchers have proposed different set similarity join processing
schemes [21,23,24]. Among them, it has been shown that parallel computation
is a cost-effective option to tackle this problem [16,20], especially with the use
of Graphics Processing Units (GPUs), which have been gaining much attention
due to their performance in general processing [19].

There are numerous technical challenges when performing set similarity join
using GPUs. First, how to deal with large datasets using GPU’s memory, which
is limited up to a few GBs in size. Second, how to make the best use of the
high parallelism of GPUs in different stages of the processing (e.g., similarity
computation and the join itself). Third, how to take advantage of the different
types of memories on GPUs, such as device memory and shared memory, in
order to maximize the performance.

In this research, we propose a new scheme of set similarity join on GPUs.
To address the aforementioned technical challenges, we employ MinHash [2] to
estimate the similarity between two sets in terms of their Jaccard similarity.
MinHash is known to be a space-efficient algorithm to estimate the Jaccard sim-
ilarity, while making it possible to maintain a good trade-off between accuracy
and computation time. Moreover, we carefully design data structures and mem-
ory access patterns to exploit the GPU’s massive parallelism and achieve high
speedups.

Experimental results show that our proposed method is more than two orders
of magnitude faster than the serial version of CPU implementation, and 25 times
faster than the parallel version of CPU implementation. In both cases, we assure
the quality of the results by maximizing precision and recall values. We expect
that such contributions can be effectively applied to process large datasets in
real-world applications.

This paper extends a previous work [25] by exploring the state of the art in
more depth, by providing more details related to implementation and method-
ology, and by offering additional experiments.

The remainder of this paper is organized as follows. Section 2 offers an
overview of the similarity join operation applied to sets. Section 3 introduces
the special hardware used, namely GPU, highlighting its main features and jus-
tifying its use in this work. In Sect. 4, we discuss the details of the proposed
solution, and in Sect. 5 we present the experiments conducted to evaluate it.
Section 6 examines the related work. Finally, Sect. 7 covers the conclusions and
the future work.

2 Similarity Joins over Sets

In a database, given two relations containing many records, it is common to use
the join operation to identify the pairs of records that are similar enough to

Accelerating Set Similarity Joins Using GPUs 3

satisfy a predefined similarity condition. Such operation is called similarity join.
This section introduces the application of similarity joins over sets, as well as
the similarity measure used in our work, namely Jaccard similarity. After that,
we explain how we take advantage of the MinHash [2] technique to estimate
similarities, thus saving space and reducing computation time.

2.1 Set Similarity Joins

In many applications, we need to deal with sets (or multisets) of values as a part
of data records. Some of the major examples are bag-of-words (documents), bag-
of-visual-words (images) and transaction data [1,15]. Given database relations
with records containing sets, one may wish to identify pairs of records whose sets
are similar; in other words, two sets that share many elements. We refer to this
variant of similarity join as a set similarity join. Henceforth, we use similarity
join to denote set similarity join, if there is no ambiguity.

For example, Fig. 1 presents two collections of documents (R and S) that con-
tain two documents each (R0, R1; S0, S1). In this scenario, the objective of the
similarity join is to retrieve pairs of documents, one from each relation, that have
a similarity degree greater than a specified threshold. Although there is a vari-
ety of methods to calculate the similarity between two documents, here we repre-
sent documents as sets of words (or tokens), and apply a set similarity method to
determine how similar they are. We choose to use the Jaccard similarity (JS) since
it is a well-known and commonly used technique to measure similarity between
sets, and its calculation has high affinity with the GPU architecture. One can cal-
culate the Jaccard similarity between two sets, X and Y , in the following way:
JS (X,Y) = |X ∩ Y |/|X ∪ Y |. Considering this formula and the documents in
Fig. 1, we obtain the following results: JS (R0, S0) = 3/5 = 0.6, JS (R0, S1) =
1/6 = 0.17, JS (R1, S0) = 1/7 = 0.14 and JS (R1, S1) = 1/6 = 0.17.

The computation of Jaccard similarity requires a number of pairwise com-
parisons among the elements from different sets to identify common elements,
which incurs a long execution time, particularly when the sets being compared
are large. In addition, it is necessary to store the whole sets in memory, which
can require prohibitive storage [13].

database
transactions
are crucial

important
gains

using gpu

database
transactions

are important

gpu are
fast

R0 R1 S0 S1

Collection R Collection S

Fig. 1. Two collections of documents (R and S).

4 M.S.H. Cruz et al.

2.2 MinHash

To address the aforementioned problems, Broder et al. proposed a technique
called MinHash (Min-wise Hashing) [2]. Its main idea is to create signatures
for each set based on its elements and then compare the signatures to estimate
their Jaccard similarity. If two sets have many coinciding signature parts, they
share some degree of similarity. In this way, it is possible to estimate the Jaccard
similarity without conducting costly scans over all elements. In addition one only
needs to store the signatures instead of all the elements of the sets, which greatly
contributes to reduce storage space.

After its introduction, Li et al. suggested a series of improvements for
the MinHash technique related to memory use and computation performance
[12–14]. Our work is based on the latest of those improvements, namely, One
Permutation Hashing [14].

In order to estimate the similarity of the documents in Fig. 1 using One
Permutation Hashing, first we change their representation to a data structure
called characteristic matrix (Fig. 2a), which assigns the value 1 when a token
represented by a row belongs to a document represented by a column, and 0
when it does not.

After that, in order to obtain an unbiased similarity estimation, a random
permutation of rows is applied to the characteristic matrix, followed by a divi-
sion of the rows into partitions (henceforth called bins) of approximate size
(Fig. 2b). However, the actual permutation of rows in a large matrix constitutes
an expensive operation, and MinHash uses hash functions to emulate such per-
mutation. Compared to the original MinHash approach [2], One Permutation
Hashing presents a more efficient strategy for computation and storage, since it
computes only one permutation instead of a few hundreds. For example, con-
sidering a dataset with D (e.g., 109) features, each permutation emulated by

R0 R1 S0 S1

database 1 0 1 0

transactions 1 0 1 0

are 1 0 1 1

crucial 1 0 0 0

important 0 1 1 0

gains 0 1 0 0

using 0 1 0 0

gpu 0 1 0 1

fast 0 0 0 1

(a) Before row permutation

R0 R1 S0 S1

fast 0 0 0 1

important 0 1 1 0

gains 0 1 0 0

database 1 0 1 0

are 1 0 1 1

crucial 1 0 0 0

gpu 0 1 0 1

using 0 1 0 0

transactions 1 0 1 0

bin0

bin1

bin2

(b) After row permutation

Fig. 2. Characteristic matrices constructed based on the documents from Fig. 1, before
and after a permutation of rows.

Accelerating Set Similarity Joins Using GPUs 5

b0 b1 b2

R0 * 3 8

R1 1 * 6

S0 1 3 8

S1 0 4 6

Fig. 3. Signature matrix, with columns corresponding to the bins composing the signa-
tures of documents, and rows corresponding to the documents themselves. The symbol
* denotes an empty bin.

a hash function would require a an array of D positions. Considering a large
number k (e.g., k = 500) of hash functions, a total of D × k positions would
be needed for the scheme, thus making the storage requirements impractical for
many large-scale applications [14].

For each bin, each document has a value that will compose its signature.
This value is the index of the row containing the first 1 (scanning the matrix
in a top-down fashion) in the column representing the document. For example,
the signature for the document S0 is 1, 3 and 8. It can happen that a bin
for a given document does not have any value (e.g., the first bin of set R0,
since it has no 1), and this case is also taken into consideration during the
similarity estimation. Figure 3 shows a data structure called signature matrix,
which contains the signatures obtained for all the documents.

Finally, the similarity between any two documents is estimated by Eq. 1 [14],
where Nmat is the number of matching bins between the signatures of the two
documents, b represents the total number of bins composing the signatures, and
Nemp refers to the number of matching empty bins.

Sim(X,Y) =
Nmat

(b − Nemp)
(1)

The estimated similarities for the given example are Sim(R0, S0) = 2/3 =
0.6, Sim(R0, S1) = 0/3 = 0, Sim(R1, S0) = 1/3 = 0.33 and Sim(R1, S1) =
1/3 = 0.33. Even though this is a simple example, the estimated values can
be considered close to the real Jaccard similarities previously calculated (0.67,
0.17, 0.14 and 0.17). In practical terms, using more bins yields a more accurate
estimation, but it also increases the size of the signature matrix.

Let us observe an important characteristic of MinHash. Since the signatures
are independent of each other, it presents a good opportunity for parallelization.
Indeed, the combination of MinHash and parallel processing using GPUs has
been considered by Li et al. [13], as they showed a reduction of the processing
time by more than an order of magnitude in online learning applications. While
their focus was the MinHash itself, here we use it as a tool in the similarity join
processing.

6 M.S.H. Cruz et al.

3 General-Purpose Processing on Graphics Processing
Units

Despite being originally designed for games and other graphic applications, the
applications of Graphics Processing Units (GPUs) have been extended to general
computation due to their high computational power [19]. This section presents
the features of this hardware and the challenges encountered when using it.

The properties of a modern GPU can be seen from both a computing and a
memory-related perspective (Fig. 4). In terms of computational components, the
GPU’s scalar processors (SPs) run the primary processing unit, called thread.
GPU programs (commonly referred to as kernels) run in an SPMD (Single Pro-
gram Multiple Data) fashion on these lightweight threads. Threads form blocks,
which are scheduled to run on streaming multiprocessors (SMs).

The memory hierarchy of a GPU consists of three main elements: registers,
shared memory and device memory. Each thread has access to its own registers
(quickly accessible, but small in size) through the register file, but cannot access
the registers of other threads. In order to share data among threads in a block,
it is possible to use the shared memory, which is also fast, but still small (16 KB
to 96 KB per SM depending on the GPU’s capability). Lastly, in order to share
data between multiple blocks, the device memory (also called global memory) is
used. However, it should be noted that the device memory suffers from a long
access latency as it resides outside the SMs.

When programming a GPU, one of the greatest challenges is the effective
utilization of this hardware’s architecture. For example, there are several benefits
in exploring the faster memories, as it minimizes the access to the slower device
memory and increases the overall performance.

SM0

...

SMm

Device Memory

Shared Memory

SP0 SP1
... SPn

Register File

Fig. 4. Architecture of a modern GPU.

Accelerating Set Similarity Joins Using GPUs 7

Input: 2 4 0 1 3

Output: 0 2 6 6 7

Fig. 5. Scan primitive.

In order to apply a GPU for general processing, it is common to use ded-
icated libraries that can facilitate such task. Our solution employs NVIDIA’s
CUDA [17], which provides an extension of the C programming language, by
which one can define parts of a program to be executed on the GPU.

In terms of algorithms, a number of data-parallel operations, usually called
primitives, have been ported to be executed on GPUs in order to facilitate pro-
gramming tasks. He et al. [7,8] provide details on the design and implementation
of many of these primitives.

One primitive particularly useful for our work is scan or prefix-sum
(Definition 1 [26]), which has been target of several works [22,27,28]. Figure 5
illustrates its basic form (where the binary operator is addition) by receiving
as input an array of integers and outputting an array where the value in each
position is the sum of the values of previous positions.

Definition 1. The scan (or prefix-sum) operation takes a binary associative
operator ⊕ with identity I, and an array of n elements [a0, a1, ..., an−1], and
returns the array [I, a0, (a0 ⊕ a1), ..., (a0 ⊕ a1 ⊕ ... ⊕ an−2)].

As detailed in Sect. 4.3, we use the scan primitive to calculate the positions
where each GPU block will write the result of its computation, allowing us to
overcome the lack of incremental memory allocation during the execution of
kernels and to avoid write conflicts between blocks. We chose to adopt the scan
implementation provided by the library Thrust [9] due to its high performance
and ease of use.

4 GPU Acceleration of Set Similarity Joins

In the following discussion, we consider sets to be text documents stored on disk,
but the solution can be readily adapted to other types of data, as shown in the
experimental evaluation (Sect. 5). We also assume that techniques to prepare
text data for processing (e.g., stop-word removal and stemming) are out of our
scope, and should take place before the similarity join processing.

Figure 6 shows the workflow of the proposed scheme. First, the system
receives two collections of documents representing relations R and S. After that,
it executes the three main steps of our solution: preprocessing, signature matrix
computation and similarity join. Finally, the result can be presented to the user
after being properly formatted.

8 M.S.H. Cruz et al.

R S

Input

Preprocessing
Characteristic

matrix

Signature Matrix
Computation

Signature
matrix

Similarity
Join

Array of
similar pairs

Output
formatter

Similar
Pairs

CPU GPU

Output

Fig. 6. System’s workflow.

4.1 Preprocessing

In the preprocessing step, we construct a compact representation of the charac-
teristic matrix, since the original one is usually highly sparse. By doing so, the
data to be transferred to the GPU is greatly reduced (more than 95 % for the
datasets used in the experimental evaluation in Sect. 5).

This representation is based on the Compressed Row Storage (CRS) for-
mat [6], which uses three arrays: var, which stores the values of the nonzero
elements of the matrix; col ind, that holds the column indexes of the elements
in the var array; and row ptr, which keeps the locations in the var array that
start a row in the matrix.

Considering that the nonzero elements of the characteristic matrix have the
same value, 1, there is only need to store their positions. Figure 7 shows such
representation for the characteristic matrix of the previous example (Fig. 2). The
array doc start holds the positions in the array doc tok where the documents
start, and the array doc tok shows what tokens belong to each document.

R0 R1 S0 S1

doc start 0 4 8 12 15

doc tok 0 1 2 3 4 5 6 7 0 1 2 4 2 7 8

Fig. 7. Compact representation of the characteristic matrix.

Accelerating Set Similarity Joins Using GPUs 9

After its construction, the characteristic matrix is sent to the GPU, and we
assume it fits completely in the device memory. The processing of large datasets,
which do not fit into the device memory is part of future work. Nevertheless, the
aforementioned method allows us to deal with sufficiently large datasets using
current GPUs in many practical applications.

4.2 Signature Matrix Computation on GPU

Once the characteristic matrix is in the GPU’s device memory, the next step
is to construct the signature matrix. Algorithm 1 shows how we parallelize the
MinHash technique, and Fig. 8 illustrates such processing. In practical terms, one
block is responsible for computing the signature of one document at a time. Each
thread in the block (1) accesses the device memory, (2) retrieves the position of
one token of the document, (3) applies a hash function to it to simulate the row
permutation, (4) calculates which bin the token will fit into, and (5) updates
that bin. If more than one value is assigned to the same bin, the algorithm keeps
the minimum value (hence the name MinHash).

During its computation, the signature for the document is stored in the
shared memory, which supports fast communication between the threads of a
block. This is advantageous in two aspects: (1) it allows fast updates of val-
ues when constructing the signature matrix, and (2) since different threads can

Algorithm 1. Parallel MinHash.
input : characteristic matrix CM t×d (t tokens, d documents), number of bins b
output: signature matrix SM d×b (d documents, b bins)

1 bin size ← �t/b�;
2 for i ← 0 to d in parallel do // executed by blocks

3 for j ← 0 to t in parallel do // executed by threads

4 if CM j,i = 1 then
5 h ← hash(CM j,i);
6 bin idx ← �h/bin size�;
7 SM i,bin idx ← min(SM i,bin idx , h);

8 end

9 end

10 end

R0 R1 S0 S1

0 4 8 12 15

0 1 2 3 4 5 6 7 0 1 2 4 2 7 8

Fig. 8. Computation of the signature matrix based on the characteristic matrix. Each
GPU block is responsible for one document, and each thread is assigned to one token.

10 M.S.H. Cruz et al.

access sequential memory positions, it favors the coalesced access to the device
memory when the signature computation ends. Accessing the device memory
in a coalesced manner means that a number of threads will access consecutive
memory locations, and such accesses can be grouped into a single transaction.
This makes the transfer of data from and to the device memory significantly
faster.

The complete signature matrix is laid out in the device memory as a single
array of integers. Since the number of bins per signature is known, it is possible
to perform direct access to the signature of any given document.

After the signature matrix is constructed, it is kept in the GPU’s memory
to be used in the next step: the join itself. This also minimizes data transfers
between CPU and GPU.

4.3 Similarity Joins on GPU

The next step is the similarity join, and it utilizes the results obtained in the
previous phase, i.e., the signatures generated using MinHash. To address the
similarity join problem, we choose to parallelize the nested-loop join (NLJ) algo-
rithm. The nested-loop join algorithm iterates through the two relations being
joined and check whether the pairs of records, one from each relation, com-
ply with a given predicate. For the similarity join case, this predicate is that
the records of the pairs must have a degree of similarity greater than a given
threshold.

Algorithm 2 outlines our parallelization of the NLJ for GPUs. Initially, each
block reads the signature of a document from collection R and copies it to the
shared memory (line 2, Fig. 9a). Then, threads compare the value of each bin of
that signature to the corresponding signature bin of a document from collection
S (lines 3–7), checking whether they match and whether the bin is empty (lines
8–12). The access to the data in the device memory is done in a coalesced manner,
as illustrated by Fig. 9b. Finally, using Eq. 1, if the comparison yields a similarity
greater than the given threshold (line 15–16), that pair of documents belongs to
the final result (line 17).

As highlighted by He et al. [8], outputting the result from a join performed
in the GPU raises two main problems. Firstly, since the size of the output is
initially unknown, it is also not possible to know how much memory should be
allocated on the GPU to hold the result. In addition, there may be conflicts
between blocks when writing on the device memory. For this reason, He et al.
[8] proposed a join scheme for result output that allows parallel writing, which
we also adopt in this work.

Their join scheme performs the join in three phases (Fig. 10):

1. The join is run once, and the blocks count the number of similar pairs found
in their portion of the execution, writing this amount in an array stored in
the device memory. There is no write conflict in this phase, since each block
writes in a different position of the array.

Accelerating Set Similarity Joins Using GPUs 11

Algorithm 2. Parallel nested-loop join.
input : signature matrix SM d×b (d documents, b bins), similarity threshold ε
output: pairs of sets whose similarity is greater than ε

1 foreach r ∈ R in parallel do // executed by blocks

2 r signature ← SM r;// read the row corresponding to the signature

of r and store it in the shared memory

3 foreach s ∈ S in parallel do // executed by threads

4 coinciding minhashes ← 0;
5 empty bins ← 0;
6 for i ← 0 to b do
7 if r signaturei = SM s,i then
8 if r signaturei is empty then
9 empty bins ← empty bins + 1;

10 else
11 coinciding minhashes ← coinciding minhashes + 1;
12 end

13 end

14 end
15 pair similarity ← coinciding minhashes/(b − empty bins);
16 if pair similarity ≥ ε then
17 output(r, s);
18 end

19 end

20 end

R0 * 3 8

R1 1 * 6

S0 1 3 8

S1 0 4 6

(a) Block level

* 3 8 1 3 8

(b) Thread level

Fig. 9. Parallelization of NLJ.

2. Using the scan primitive, it is possible to know the correct size of memory
that should be allocated for the results, as well as where the threads of each
block should start writing the similar pairs they found.

3. The similarity join is run once again, outputting the similar pairs to the
proper positions in the allocated space.

After that, depending on the application, the pairs can be transferred back
to the CPU and output to the user (using the output formatter) or kept in the
GPU for further processing by other algorithms.

12 M.S.H. Cruz et al.

4 2 0 2

0 4 6 6

B0 B0 B0 B0 B1 B1 B3 B3

Fig. 10. Example of the three-phase join scheme [8]. First, four blocks write the size
of their results in the first array. Then, the scan primitive gives the starting positions
where each block should write. Finally, each block writes its results in the last array.

5 Experiments

In this section we present the experiments performed to evaluate our proposal.
First, we introduce the used datasets and the environment on which the exper-
iments were conducted. Then we show the results related to performance and
accuracy. For all the experiments, unless stated, the similarity threshold was 0.8
and the number of bins composing the sets’ signatures was 32.

In order to evaluate the impact of parallelization on similarity joins, we cre-
ated three versions of the proposed scheme: CPU Serial, CPU Parallel, and GPU.
They were compared using the same datasets and hardware, as detailed in the
following sections.

5.1 Datasets

To demonstrate the range of applicability of our work, we chose datasets from
three distinct domains (Table 1). The Images dataset, made available at the
UCI Machine Learning Repository1, consists of image features extracted from
the Corel image collection. The Abstracts dataset, composed by abstracts of
publications from MEDLINE, were obtained from TREC-9 Filtering Track Col-
lections2. Finally, Transactions is a transactional dataset available through the
FIMI repository3.

From the original datasets, we chose sets uniformly at random in order to
create the collections R and S, whose sizes vary from 1,024 to 524,288 sets.

1 http://archive.ics.uci.edu/ml/datasets/.
2 http://trec.nist.gov/data/t9 filtering.html.
3 http://fimi.ua.ac.be/data/.

http://archive.ics.uci.edu/ml/datasets/
http://trec.nist.gov/data/t9_filtering.html
http://fimi.ua.ac.be/data/

Accelerating Set Similarity Joins Using GPUs 13

Table 1. Characteristics of datasets.

Dataset Cardinality Avg. # of tokens per record

Images 68,040 32

Abstracts 233,445 165

Transactions 1,692,082 177

5.2 Environment

The CPU used in our experiments was an Intel Xeon E5-1650 (6 cores, 12
threads) with 32 GB of memory. The GPU was an NVIDIA Tesla K20Xm (2688
scalar processors) with 6 GB of memory. Regarding the compilers, GCC 4.4.7
(with the flag -O3) was used for the part of the code to run on the CPU, and
NVCC 6.5 (with the flags -O3 and -use fast math) compiled the code for the
GPU. For the parallelization of the CPU version, we used OpenMP 4.0 [18]. The
implementation of the hash function was done using MurmurHash [10].

5.3 Performance Comparison

Figures 11, 12 and 13 present the execution time of our approach for the three
implementations (GPU, CPU Parallel and CPU Serial) using the three datasets.

Let us first consider the MinHash part, i.e., the time taken for the construc-
tion of the signature matrix. It can be seen from the results (Fig. 11a, b and c)
that the GPU version of MinHash is more than 20 times faster than the serial
implementation on CPU, and more than 3 times faster than the parallel imple-
mentation on CPU. These findings reinforce the idea that MinHash is indeed
suitable for parallel processing.

For the join part (Fig. 12a, b and c), the speedups are even higher. The
GPU implementation is more than 150 times faster than the CPU Serial imple-
mentation, and almost 25 times faster than the CPU Parallel implementation.

10−4

10−3

10−2

10−1

100

210211212213214215216217218219

|R|

E
la

ps
ed

 ti
m

e
(s

)

CPU (Serial)
CPU (Parallel)
GPU

(a) Images

10−4

10−3

10−2

10−1

100

210211212213214215216217218219

|R|

E
la

ps
ed

 ti
m

e
(s

)

CPU (Serial)
CPU (Parallel)
GPU

(b) Abstracts

10−4

10−3

10−2

10−1

100

210211212213214215216217218219

|R|

E
la

ps
ed

 ti
m

e
(s

)

CPU (Serial)
CPU (Parallel)
GPU

(c) Transactions

Fig. 11. Minhash performance comparison (|R| = |S|).

14 M.S.H. Cruz et al.

10−2

100

102

104

210211212213214215216217218219

|R|

E
la

ps
ed

 ti
m

e
(s

)

CPU (Serial)
CPU (Parallel)
GPU

(a) Images

10−2

100

102

104

210211212213214215216217218219

|R|
E

la
ps

ed
 ti

m
e

(s
)

CPU (Serial)
CPU (Parallel)
GPU

(b) Abstracts

10−2

100

102

104

210211212213214215216217218219

|R|

E
la

ps
ed

 ti
m

e
(s

)

CPU (Serial)
CPU (Parallel)
GPU

(c) Transactions

Fig. 12. Join performance comparison (|R| = |S|).

10−1

100

101

102

103

104

210211212213214215216217218219

|R|

E
la

ps
ed

 ti
m

e
(s

)

CPU (Serial)
CPU (Parallel)
GPU

(a) Images

10−1

100

101

102

103

104

210211212213214215216217218219

|R|

E
la

ps
ed

 ti
m

e
(s

)

CPU (Serial)
CPU (Parallel)
GPU

(b) Abstracts

10−1

100

101

102

103

104

210211212213214215216217218219

|R|

E
la

ps
ed

 ti
m

e
(s

)

CPU (Serial)
CPU (Parallel)
GPU

(c) Transactions

Fig. 13. Overall performance comparison (|R| = |S|).

The speedups of more than two orders of magnitude demonstrate that the NLJ
algorithm can benefit from the massive parallelism provided by GPUs.

Measurements of the total time of execution (Fig. 13a, b and c) show that
the GPU implementation achieves speedups of approximately 120 times when
compared to the CPU Serial implementation, and approximately 20 times when
compared to the CPU Parallel implementation.

The analysis of performance details provides some insights into why the
overall speedup is lower than the join speedup. Tables 2, 3 and 4 present the
breakdown of the execution time for each of the datasets used. Especially for
larger collections, the join step is the most time consuming part for both CPU
implementations. However, for the GPU implementation, reading from data disk
becomes the bottleneck, as it is done in a sequential manner by the CPU. There-
fore, since the overall measured time includes reading data from disk, the speedup
achieved is less than the one for the join step alone.

It can also be noted that the compact data structures used in the solution
contribute directly for the short data transfer time between CPU and GPU. In
the case of the CPU implementations, this transfer time does not apply, since
the data stays on the CPU throughout the whole execution.

Accelerating Set Similarity Joins Using GPUs 15

Table 2. Breakdown of the execution time in seconds when joining collections of the
same size (Images dataset, |R| = |S| = 524, 288).

GPU CPU (Parallel) CPU (Serial)

Read from disk 47.7 47.2 47.4

Preprocessing 2.9 2.9 2.9

MinHash 0.034 0.053 0.332

Join 145 2,988 27,964

Data transfer 0.53 0 0

Total 197 3,040 28,016

Table 3. Breakdown of the execution time in seconds when joining collections of the
same size (Abstracts dataset, |R| = |S| = 524, 288).

GPU CPU (Parallel) CPU (Serial)

Read from disk 201.5 200.5 198.4

Preprocessing 9.3 9.4 9.1

MinHash 0.037 0.151 1.033

Join 145 1,403 11,955

Data transfer 0.09 0 0

Total 359 1,615 12,167

Table 4. Breakdown of the execution time in seconds when joining collections of the
same size (Transactions dataset, |R| = |S| = 524, 288).

GPU CPU (Parallel) CPU (Serial)

Read from disk 379.8 378.4 376.2

Preprocessing 15.9 16.1 15.6

MinHash 0.040 0.250 1.728

Join 147 1,513 13,323

Data transfer 0.21 0 0

Total 549 1,914 13,723

5.4 Accuracy Evaluation

Since our scheme uses the MinHash technique to estimate the similarity between
sets, it is also important to evaluate how accurate the results obtained from
it are. We evaluated the accuracy of the proposal in terms of precision and
recall. Precision relates to the fraction of really similar pairs among all the pairs
retrieved by the algorithm, and recall refers to the fraction of really similar pairs
that were correctly retrieved.

16 M.S.H. Cruz et al.

Table 5. Impact of varying number of bins on precision, recall and execution time
(GPU implementation, Abstracts dataset, |R| = |S| = 65, 536).

Number of bins Precision Recall Execution time (s)

1 0.0000 0.9999 25.3

2 0.0275 0.9999 25.4

4 0.9733 0.9999 25.6

8 0.9994 0.9999 25.7

16 0.9998 1.0000 26.1

32 1.0000 1.0000 27.4

64 1.0000 1.0000 29.6

128 1.0000 1.0000 34.4

256 1.0000 1.0000 45.8

384 1.0000 1.0000 77.6

512 1.0000 1.0000 133.6

640 1.0000 1.0000 161.5

Table 5 presents the measurements of experiments in which we varied the
number of bins composing the signatures of the sets, showing the impact of
the number of bins on the number of similar pairs found, as well as on the
performance.

Using a small number of bins (e.g., 1 or 2) results in dissimilar documents
having similar signatures, thus making the algorithm retrieve a large number
of pairs. Although most of the retrieved pairs are false positives (hence the low
precision values), the majority of the really similar pairs is also retrieved, which is
shown by the high values of recall. As the number of bins increases, the number of
pairs retrieved nears the number of really similar pairs, thus increasing precision
values.

On the other hand, increasing the number of bins also incurs a longer exe-
cution time. Therefore, it is important to achieve a balance between accuracy
and execution time. For the used datasets, using 32 bins offered a good trade-off,
yielding the lowest execution time without false positive or false negative results.

5.5 Other Experiments

We also conducted experiments varying other parameters of the implementation
or characteristics of the data sets. For instance, Fig. 14 shows that, in the GPU
implementation, varying the number of threads per block has little impact on
the performance.

Figure 15 reveals that all three implementations are not significantly affected
by varying the similarity threshold. In other words, although the number of
similar pairs found changes, the GPU implementation is consistently faster than
the other two.

Accelerating Set Similarity Joins Using GPUs 17

0

25

50

75

100

12
8

25
6

38
4

51
2

64
0

76
8

89
6
10

24

Threads per block

E
la

ps
ed

 ti
m

e
(s

)
GPU

(a) Images

0

25

50

75

100

12
8

25
6

38
4

51
2

64
0

76
8

89
6
10

24

Threads per block

E
la

ps
ed

 ti
m

e
(s

)

GPU

(b) Abstracts

0

25

50

75

100

12
8

25
6

38
4

51
2

64
0

76
8

89
6
10

24

Threads per block

E
la

ps
ed

 ti
m

e
(s

)

GPU

(c) Transactions

Fig. 14. Execution time varying the number of threads per GPU block (|R| = |S| =
131, 072).

101.5

102

102.5

103

103.5

104

0.2 0.4 0.6 0.8 1.0
Similarity threshold

E
la

ps
ed

 ti
m

e
(s

)

CPU (Serial)
CPU (Parallel)
GPU

(a) Images

101.5

102

102.5

103

103.5

104

0.2 0.4 0.6 0.8 1.0
Similarity threshold

E
la

ps
ed

 ti
m

e
(s

)

CPU (Serial)
CPU (Parallel)
GPU

(b) Abstracts

101.5

102

102.5

103

103.5

104

0.2 0.4 0.6 0.8 1.0
Similarity threshold

E
la

ps
ed

 ti
m

e
(s

)

CPU (Serial)
CPU (Parallel)
GPU

(c) Transactions

Fig. 15. Execution time varying the similarity threshold (|R| = |S| = 131, 072).

Table 6. Precision and recall varying similarity threshold (GPU implementation,
Abstracts dataset, |R| = |S| = 8, 192).

Similarity threshold Precision Recall

0.2 0.08 0.89

0.4 0.99 0.99

0.6 1.00 1.00

0.8 1.00 1.00

1.0 1.00 1.00

Table 6 shows the impact of the similarity threshold on precision and recall
levels. When the threshold is low, many pairs with a low degree of similarity are
also part of the result (false positives). This situation is illustrated by the low
precision value when the similarity threshold is 0.2.

Additionally, we constructed different collections of sets by varying the num-
ber of matching sets between them, i.e., the join selectivity. Figure 16 indicates
that varying the selectivity does not impact the join performance.

18 M.S.H. Cruz et al.

101

101.5

102

102.5

103

103.5

104

0.1 0.2 0.3 0.4 0.5
Selectivity

E
la

ps
ed

 ti
m

e
(s

)

CPU (Serial)
CPU (Parallel)
GPU

(a) Images

101

101.5

102

102.5

103

103.5

104

0.1 0.2 0.3 0.4 0.5
Selectivity

E
la

ps
ed

 ti
m

e
(s

)

CPU (Serial)
CPU (Parallel)
GPU

(b) Abstracts

101

101.5

102

102.5

103

103.5

104

0.1 0.2 0.3 0.4 0.5
Selectivity

E
la

ps
ed

 ti
m

e
(s

)

CPU (Serial)
CPU (Parallel)
GPU

(c) Transactions

Fig. 16. Execution time varying the join minimum selectivity (|R| = |S| = 131, 072).

100.5

101

101.5

102

102.5

103

2|S| 4|S| 8|S| 16|S| 32|S|
|R| (|S| = 8,192)

E
la

ps
ed

 ti
m

e
(s

)

CPU (Serial)
CPU (Parallel)
GPU

(a) Images

100.5

101

101.5

102

102.5

103

2|S| 4|S| 8|S| 16|S| 32|S|
|R| (|S| = 8,192)

E
la

ps
ed

 ti
m

e
(s

)

CPU (Serial)
CPU (Parallel)
GPU

(b) Abstracts

100.5

101

101.5

102

102.5

103

2|S| 4|S| 8|S| 16|S| 32|S|
|R| (|S| = 8,192)

E
la

ps
ed

 ti
m

e
(s

)

CPU (Serial)
CPU (Parallel)
GPU

(c) Transactions

Fig. 17. Overall performance comparisons varying the size of the outer collection
joined.

Finally, we also investigated the performance when joining collections of dif-
ferent sizes. Figure 17 shows the overall results when we vary the size of the
collection processed the outer loop. Similar results were found when varying the
size of the collection processed by the inner loop.

6 Related Work

This section presents works related to our proposal, which can be mainly divided
in three categories: works that exploit GPUs for faster processing, works intro-
ducing novel similarity join algorithms, and works that, like ours, combine the
previous two categories.

6.1 General-Purpose Processing on Graphics Processing Units

The use of GPUs for general processing is present in a number of areas nowadays
(e.g., physics, chemistry and biology) [19]. In Computer Science, it has been used
in network optimization [29], data mining [30], etc.

Accelerating Set Similarity Joins Using GPUs 19

In a work that exploited GPU to perform relational joins, He et al. [7,8]
presented implementations built on top of the parallel primitives mentioned pre-
viously. They evaluated the performance of four types of join (nested-loop join,
indexed nested-loop join, sort-merge join and hash join) and obtained speedups
of up to 7 times in comparison with the CPU counterpart. He et al. also con-
sidered relevant optimization aspects, like coalesced memory access to improve
spatial locality, resulting in reduction of memory stalls and faster execution.

6.2 Similarity Joins

A survey done by Jiang et al. [11] made comparisons between a number
of string similarity join approaches. The majority of these works focus on
the elimination of unnecessary work and adopt a filter-verification approach
[3,5,21,23,24,31–35], which initially prunes dissimilar pairs and leaves only can-
didate pairs that are later verified whether they are really similar. The evaluated
algorithms were divided into categories, depending on the similarity metric they
use. In the particular case of Jaccard similarity, AdaptJoin [23] and PPJoin+ [24]
gave the best results. The survey included differences concerning the performance
of algorithms based on the size of the dataset and on the length of the joined
strings. Jiang et al. [11] also pointed out the necessity for disk-based algorithms
to deal with really large datasets that do not fit in memory.

The adaptations of these serial algorithms for parallel environment can be
seen as good opportunities for future work. Further investigation is necessary
to determine if they are suitable for parallel processing, especially using GPUs,
which require fewer memory transfers operations to be effective.

Other works focused on taking advantage of parallel processing to produce
more scalable similarity join algorithms. Among these, Vernica et al. [20], Met-
wally et al. [16] and Deng et al. [4] used MapReduce to distribute the processing
among nodes in CPU clusters.

6.3 GPU Accelerated Similarity Join

Although the similarity join is a thoroughly discussed topic, works utilizing
GPUs for the processing speedup are not numerous. Lieberman et al. [15]
mapped the similarity join operation to a sort-and-search problem and used
well-known algorithms and primitives for GPUs to perform these tasks. After
applying the bitonic sort algorithm to create a set of space-filling curves from
one of the relations, they processed each record of the relation set in parallel,
executing searches in the space-filling curves. The similarity between the records
was calculated using the Minkowski metric.

Böhm et al. [1] proposed two GPU-accelerated nested-loop join (NLJ) algo-
rithms to perform the similarity join operation, and used Euclidean distance
to calculate the similarity in both cases. The best of the two methods was the
index-supported similarity join, which has a preprocessing phase to create an
index structure based on directories. The authors alleged that the GPU version

20 M.S.H. Cruz et al.

of the indexed-supported similarity join achieved an improvement of 4.6 times
when compared to its serial CPU version.

The main characteristic that discerns our work from the other similarity join
schemes for GPUs is the effective use of MinHash to overcome challenges inherent
to the use of GPUs for general-purpose computation, as emphasized in Sect. 2.2.
Furthermore, to the best of our knowledge, our solution is the first one to couple
Jaccard similarity and GPUs to tackle the similarity join problem.

A performance comparison with other works [1,13,15] was not possible since
the source codes of previous solutions were not available.

7 Conclusions

We have proposed a GPU-accelerated similarity join scheme that uses MinHash
in its similarity calculation step and achieved a speedup of more than two orders
of magnitude when compared to the serial version of the algorithm. Moreover,
the high levels of precision and recall obtained in the experimental evaluation
confirmed the accuracy of our scheme.

The strongest point of GPUs is their superior throughput when compared
to CPUs. However, they require special implementation techniques to minimize
memory access and data transfer. For this purpose, using MinHash to estimate
the similarity of sets is particularly beneficial, since it enables a parallelizable
way to represent the sets in a compact manner, thus saving storage and reducing
data transfer. Furthermore, our implementation explored the faster memories of
GPUs (registers and shared memory) to diminish effects of memory stalls. We
believe this solution can aid in the task of processing large datasets in a cost-
effective way without ignoring the quality of the results.

Since the join is the most expensive part of the processing, future works
will focus on the investigation and implementation of better join techniques on
GPUs. For the algorithms developed in a next phase, the main requirements are
parallelizable processing-intensive parts and infrequent memory transfers.

Acknowledgments. We thank the editors and the reviewers for their remarks and
suggestions. This research was partly supported by the Grant-in-Aid for Scientific
Research (B) (#26280037) from the Japan Society for the Promotion of Science.

References

1. Böhm, C., Noll, R., Plant, C., Zherdin, A.: Index-supported similarity join on
graphics processors. BTW 144, 57–66 (2009)

2. Broder, A.Z., Charikar, M., Frieze, A.M., Mitzenmacher, M.: Min-wise independent
permutations. J. Comput. Syst. Sci. 60(3), 630–659 (2000)

3. Chaudhuri, S., Ganti, V., Kaushik, R.: A primitive operator for similarity joins in
data cleaning. In: Proceedings of ICDE, p. 5 (2006)

4. Deng, D., Li, G., Hao, S., Wang, J., Feng, J.: Massjoin: a MapReduce-based method
for scalable string similarity joins. In: Proceedings of ICDE, pp. 340–351 (2014)

Accelerating Set Similarity Joins Using GPUs 21

5. Gravano, L., Ipeirotis, P.G., Jagadish, H.V., Koudas, N., Muthukrishnan, S.,
Srivastava, D.: Approximate string joins in a database (almost) for free. In:
Proceedings of VLDB, pp. 491–500 (2001)

6. Greathouse, J.L., Daga, M.: Efficient sparse matrix-vector multiplication on GPUs
using the CSR storage format. In: Proceedings of SC, pp. 769–780 (2014)

7. He, B., Lu, M., Yang, K., Fang, R., Govindaraju, N.K., Luo, Q., Sander, P.V.:
Relational query coprocessing on graphics processors. TODS 34(4), 21:1–21:39
(2009)

8. He, B., Yang, K., Fang, R., Lu, M., Govindaraju, N., Luo, Q., Sander, P.: Relational
joins on graphics processors. In: Proceedings of SIGMOD, pp. 511–524 (2008)

9. Hoberock, J., Bell, N.: Thrust: A Productivity-Oriented Library for CUDA.
Morgan Kaufmann Publishers, San Francisco (2012)

10. Appleby, A.: MurmurHash3 (2016)
11. Jiang, Y., Li, G., Feng, J., Li, W.S.: String similarity joins: an experimental eval-

uation. PVLDB 7(8), 625–636 (2014)
12. Li, P., Knig, A.C.: b-bit minwise hashing. CoRR abs/0910.3349 (2009)
13. Li, P., Shrivastava, A., König, A.C.: GPU-based minwise hashing. In: Proceedings

of WWW, pp. 565–566 (2012)
14. Li, P., Owen, A.B., Zhang, C.H.: One permutation hashing for efficient search and

learning. CoRR abs/1208.1259 (2012)
15. Lieberman, M.D., Sankaranarayanan, J., Samet, H.: A fast similarity join algorithm

using graphics processing units. In: Proceedings of ICDE, pp. 1111–1120 (2008)
16. Metwally, A., Faloutsos, C.: V-Smart-Join: a scalable MapReduce framework for

all-pair similarity joins of multisets and vectors. PVLDB 5(8), 704–715 (2012)
17. NVIDIA Corporation: NVIDIA CUDA Compute Unified Device Architecture Pro-

gramming Guide (2007)
18. OpenMP Architecture Review Board: OpenMP Application Program Interface

Version 4.0 (2013)
19. Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Krger, J., Lefohn, A.,

Purcell, T.J.: A survey of general-purpose computation on graphics hardware.
Comput. Graph. Forum 26(1), 80–113 (2007)

20. Rares, V., Carey, M.J., Chen, L.: Efficient parallel set-similarity joins using MapRe-
duce. In: Proceedings of SIGMOD, pp. 495–506 (2010)

21. Sarawagi, S., Kirpal, A.: Efficient set joins on similarity predicates. In: Proceedings
of SIGMOD, pp. 743–754 (2004)

22. Sengupta, S., Harris, M., Zhang, Y., Owens, J.D.: Scan primitives for GPU com-
puting. In: Proceedings of GH, pp. 97–106 (2007)

23. Wang, J., Li, G., Feng, J.: Can we beat the prefix filtering? An adaptive framework
for similarity join and search. In: Proceedings of SIGMOD, pp. 85–96 (2012)

24. Xiao, C., Wang, W., Lin, X., Yu, J.X.: Efficient similarity joins for near duplicate
detection. In: Proceedings of WWW, pp. 131–140 (2008)

25. Cruz, M.S.H., Kozawa, Y., Amagasa, T., Kitagawa, H.: GPU acceleration of set
similarity joins. In: Chen, Q., Hameurlain, A., Toumani, F., Wagner, R., Decker, H.
(eds.) DEXA 2015. LNCS, vol. 9261, pp. 384–398. Springer, Heidelberg (2015)

26. Harris, M.: Parallel prefix sum (Scan) with CUDA (2009)
27. Dotsenko, Y., Govindaraju, N.K., Sloan, P., Boyd, C., Manferdelli, J.: Fast scan

algorithms on graphics processors. In: Proceedings of ICS, pp. 205–213 (2008)
28. Yan, S., Long, G., Zhang, Y.: StreamScan: fast scan algorithms for GPUs without

global barrier synchronization. In: Proceedings of PPoPP, pp. 229–238 (2013)
29. Han, S., Jang, K., Park, K., Moon, S.: PacketShader: a GPU-accelerated software

router. In: Proceedings of SIGCOMM, pp. 195–206 (2010)

22 M.S.H. Cruz et al.

30. Gainaru, A., Slusanschi, E., Trausan-Matu, S.: Mapping data mining algorithms
on a GPU architecture: a study. In: Kryszkiewicz, M., Rybinski, H., Skowron, A.,
Raś, Z.W. (eds.) ISMIS 2011. LNCS, vol. 6804, pp. 102–112. Springer, Heidelberg
(2011)

31. Li, G., Deng, D., Wang, J., Feng, J.: Pass-join: a partition-based method for simi-
larity joins. PVLDB 5, 253–264 (2011)

32. Xiao, C., Wang, W., Lin, X.: Ed-Join: an efficient algorithm for similarity joins
with edit distance constraints. PVLDB 1, 933–944 (2008)

33. Bayardo, R., Ma, Y., Srikant, R.: Scaling up all pairs similarity search. In:
Proceedings of WWW, pp. 131–140 (2007)

34. Ribeiro, L., Härder, T.: Generalizing prefix filtering to improve set similarity joins.
Inf. Syst. 36, 62–78 (2011)

35. Wang, W., Qin, J., Chuan, X., Lin, X., Shen, H.: VChunkJoin: an efficient algo-
rithm for edit similarity joins. TKDE 25, 1916–1929 (2013)

Divide-and-Conquer Parallelism
for Learning Mixture Models

Takaya Kawakatsu1(B), Akira Kinoshita1, Atsuhiro Takasu2,
and Jun Adachi2

1 The University of Tokyo, 2-1-2 Hitotsubashi, Chiyoda, Tokyo, Japan
{kat,kinoshita}@nii.ac.jp

2 National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda, Tokyo, Japan
{takasu,adachi}@nii.ac.jp

Abstract. From the viewpoint of load balancing among processors, the
acceleration of machine-learning algorithms by using parallel loops is not
realistic for some models involving hierarchical parameter estimation.
There are also other serious issues such as memory access speed and
race conditions. Some approaches to the race condition problem, such
as mutual exclusion and atomic operations, degrade the memory access
performance. Another issue is that the first-in-first-out (FIFO) scheduler
supported by frameworks such as Hadoop can waste considerable time
on queuing and this will also affect the learning speed. In this paper, we
propose a recursive divide-and-conquer-based parallelization method for
high-speed machine learning. Our approach exploits a tree structure for
recursive tasks, which enables effective load balancing. Race conditions
are also avoided, without slowing down the memory access, by separating
the variables for summation. We have applied our approach to tasks
that involve learning mixture models. Our experimental results show
scalability superior to FIFO scheduling with an atomic-based solution to
race conditions and robustness against load imbalance.

Keywords: Divide and conquer · Machine learning · Parallelization ·
NUMA

1 Introduction

There is growing interest in the mining of huge datasets against a backdrop
of inexpensive, high-performance parallel computation environments, such as
shared-memory machines and distributed-memory clusters. Fortunately, modern
computers can have large memories, with hundreds of gigabytes per CPU socket,
and the memory size limitation may not continue to be a severe problem in itself.
For this reason, state-of-the-art parallel computing frameworks like Spark [1,2],
Piccolo [3], and Spartan [4] can take an in-memory approach that stores data in
dynamic random access memory (DRAM) instead of on hard disks. Nonetheless,
there remain four critical issues to consider: memory access speed, load imbalance,
race conditions, and scheduling overhead.
c© Springer-Verlag Berlin Heidelberg 2016
A. Hameurlain et al. (Eds.): TLDKS XXVIII, LNCS 9940, pp. 23–47, 2016.
DOI: 10.1007/978-3-662-53455-7 2

24 T. Kawakatsu et al.

A processor accesses data in its memory via a bus and spends considerable
time simply waiting for a response from the memory. In shared-memory systems,
many processors can share the same bus. Therefore, the latency and throughput
of the bus will have a great impact on calculation speed. For distributed-memory
systems in particular, each computation node must exchange data for processing
via message-passing frameworks such as MPI1, with even poorer throughput and
greater latency than bus-based systems. Therefore, we should carefully consider
memory access speeds when considering the computation speed of a program.
The essential requirement is to improve the reference locality of the program.

Load imbalance refers to the condition where one processor can be working
hard while another processor is waiting idly, which can cause serious throughput
degradation. In some data-mining models, the computation cost per observation
data item is not uniform and load imbalance may occur. To avoid this, dynamic
scheduling may be a solution.

Another characteristic issue in parallel computation is the possibility of race
conditions. For shared-memory systems, if several processors attempt to access
the same memory address at the same time, the integrity of the calculation can
be compromised. Mutual exclusion using a semaphore [5] or mutex can avoid
race conditions, but can involve substantial overheads. As an alternative, we can
use atomic operations supported by the hardware. However, this may remain
expensive because of latency in the cache-coherence protocol, as discussed later.

The fourth issue is scheduling overhead. The classic first-in-first-out (FIFO)
scheduler supported by existing frameworks such as OpenMP2 and Hadoop3 is
implemented under a flat partitioning strategy, which divides and allocates tasks
to each processor without detailed consideration of their interrelationships. A flat
scheduler cannot adjust the granularity of the subtasks and it tends to allocate
tasks with extremely small granularity. Because a FIFO scheduler has only one
task queue and all processors access the queue frequently, the queuing time may
become a serious bottleneck, particularly with fine-grained parallelization.

In this paper, we propose a solution for these four issues by bringing together
two relevant concepts: work-stealing [6,7] and the buffering solution under a
recursive divide-and-conquer-based parallelization approach called ADCA. The
combination of a work-stealing scheduler with our ADCA will reduce scheduling
overheads because of the absence of bottlenecks, while ADCA also achieves effi-
cient load balancing with optimum granularity. Buffering is a method whereby
each processor does local calculations wherever possible, with a master proces-
sor integrating the local results later. This helps to avoid both race conditions
and latency caused by the cache-coherence protocol. ADCA and the buffering
solution are our main contributions.

As target applications for ADCA, we focus on machine-learning algorithms
that repeat a learning step many times, with each step handling the obser-
vation data in parallel. Expectation-maximization (EM) algorithms [8,9] on

1 http://www.mpi-forum.org.
2 http://www.openmp.org.
3 http://hadoop.apache.org.

http://www.mpi-forum.org
http://www.openmp.org
http://hadoop.apache.org

Divide-and-Conquer Parallelism for Learning Mixture Models 25

a Gaussian mixture model (GMM) or a hierarchical Poisson mixture model
(HPMM) [10,11] are well-known examples of such applications. Mixture mod-
els are popular and versatile; their applications include wireless sensor networks
[12,13], speech recognition [14,15], and moving object detection [16–19]. Another
principal application, back-propagation-based learning [20] of neural networks,
can also be parallelized using the same approach [21,22].

In Sect. 2, we formulate parallel computing in general terms, introducing our
main concept, three-step parallel computing, and then introduce work-stealing
and the buffering solution. In Sect. 3, we summarize related work on parallel EM
algorithms and then explain our EM algorithm based on ADCA. In Sect. 4, we
demonstrate our method’s superior scalability to FIFO scheduling and to the
atomic solution by experiments with GMMs. We also demonstrate our method’s
robustness against load imbalance by experiments with HPMMs. Finally, we
conclude this paper in Sect. 5.

2 Parallel Computation Models

There are a vast number of approaches to parallel computing; it is not easy for
users to select an approach that meets their requirements. Even though paral-
lel technologies may not seem to cooperate with each other, we can integrate
them according to the three-step parallel computing principle, which contains
three phases: parallelization, execution, and communication. In the paralleliza-
tion phase, the programmer writes the source code specifying those parts where
parallel processing is possible. In the execution phase, a computer executes the
program serially, assigning tasks to its computation units as required. Finally,
in the communication phase, the units synchronize and exchange values.

2.1 Parallelization of Algorithms

In the parallelization phase, the programmer effectively informs the computer
which statements can be executed in parallel. This can be separated into two
subphases: the algorithm phase and the directive phase. In the algorithm phase,
the programmer chooses the form of parallelism: data parallelism [23] or task
parallelism. The programmer then specifies the parallelizable statements in the
directive phase. For data parallelism, the program is described as a loop, as
illustrated in Fig. 1a. That is also called loop parallelism. OpenMP supports
loop parallelism by the directive parallel for. Furthermore, single-instruction
multiple-data (SIMD) [24] instructions, such as Intel streaming SIMD extensions,
can be categorized as data parallelism. When exploiting data parallelism, we
must assume that the program describes an operator that takes an array element
as an argument.

Next, task parallelism can be described by using fork and join functions in
a recursive manner, as illustrated in Fig. 1b. After the fork function is called, a
new thread is created and executed. Each thread processes a user-defined task,
and the calculation result is returned to the invoker thread by calling the join

26 T. Kawakatsu et al.

(a) Data parallelism. (b) Task parallelism.

Fig. 1. Data parallelism and task parallelism. A parallel program can be described in
a loop manner or a fork–join manner.

function. Actually, the fork and join functions are provided by the pthreads,
pthread create and pthread join, respectively.

In many cases, the critical statement that has the most significant impact on
the execution time is a for loop with many iterations. A data-parallel program
can be much simpler than a task-parallel program. For this reason, parallel loops
are frequently exploited in computationally heavy programs. The EM algorithm
on a GMM can be parallelized in the loop manner [25–30]. However, parallel loops
are not applicable when the data have mostly nonarray structures like graphs or
trees. The HPMM is a simple example of such a case. Therefore, parallelizable
machine learning for graphical models must be described in a fork–join manner.

In practice, data and task parallelism can work together in a single program,
such as forking tasks in a parallel loop or exploiting a parallel loop in a recursive
task, because parallel loops can be treated as the syntactical sugar of the fork
and join functions. Of course, there are devices that hardly support task par-
allelism, such as graphical processing units (GPUs). Task parallelism on a GPU
remains a challenging problem [31,32].

Finally, the directive phase can be categorized as involving explicit directives
or implicit directives. The fork and join functions are examples of explicit direc-
tives that permit programmers to describe precisely the relationships between
forked tasks. For the implicit case, a scheduler determines automatically whether
statements are to be executed in parallel or serially. That decision is realized on
the assumption that each task has referential transparency. That is, there are
no side effects such as destructive assignment to a global variable.

2.2 Parallel Execution Mechanism

A program that manages tasks is called a scheduler, dealing with three subphases:
traversal, delivery, and balancing.

In the traversal phase, the scheduler scans the remaining tasks to determine
the order of task execution. In task parallelism, tasks have a recursive tree-based
structure, and in general, there are two primary options, depth-first traversal,
or breadth-first traversal.

Divide-and-Conquer Parallelism for Learning Mixture Models 27

Fig. 2. General FIFO-based solution to counter load imbalance. The program is par-
titioned into tasks that are allocated one by one to the computation units.

Then, in the delivery phase, the scheduler determines the computation unit
that executes each task. This phase plays an important role in controlling ref-
erence locality, with the scheduler aiming to reduce load-and-store latency by
allocating each task to a computation unit located near the data associated with
that task. This is particularly important for machine-learning algorithms, where
the computer must repeat a learning step many times until the model converges.
Ideally, the scheduler should assign tasks to the computation units so that each
unit handles the same data chunk in every learning step, reducing the necessity
for data exchanges between units. However, such an optimization does not make
sense if the program then has serious load imbalances. In some machine-learning
algorithms, the computation cost per task may not be uniform.

In the balancing phase, the scheduler relieves a load imbalance when it detects
an idling computation unit. This is an ex post effort, whereas the delivery phase
is an ex ante effort. There are two options for this phase: pushing [33–35] and
pulling [6,7,36–40]. Pushing is when a busy unit takes the initiative as a producer
and sends its remaining tasks to idling units by passing messages whenever
requested by the idling units. In contrast, pulling is when an idle unit takes the
initiative as a consumer and snatches its next task from another unit.

The FIFO scheduling illustrated in Fig. 2 is a typical example of a pulling
scheduler. An idling unit tries to snatch its next task for execution from a shared
task queue called the runqueue. The program is partitioned into many subtasks
that are appended to the runqueue by calling the fork function. Because of its
simplicity, FIFO scheduling is widely used in Hadoop and UNIX. While this
may appear to be a good solution, it can cause excessively fine-grained task
snatching and the resulting overhead will reduce the benefits of the parallel
computation. A shared queue is accessed frequently by all computation units
and therefore behaves as a single point of failure. Hence, the queuing time may
become significant, even though the queue implementation utilizes a lock-free-
based protection technique instead of mutual exclusion such as a mutex. To avoid
this, the task partitioning should be as coarse-grained as possible; however, load
balancing will then be less effective. As another issue, we suspect that the ability

28 T. Kawakatsu et al.

Fig. 3. Breadth-first task distribution with a work-stealing scheduler. Idle unit #1 steals
a task in a FIFO fashion to minimize the stealing frequency.

to tune referential locality can be poor and this will become a serious problem,
particularly in the context of distributed processing.

Mohr et al. introduced a novel balancing technique called work-stealing for
their LISP system [6,41]. They focused on the property of a recursive program
that the size of each task can be halved by expanding the tree-structured tasks.
As illustrated in Fig. 3, the work-stealing scheduler first expands the root task
into a minimum number of subtasks, and distributes them to computation units
either by pushing or pulling. When a computation unit becomes idle, the sched-
uler divides another unit’s task in half and reassigns one half to the idle unit.
This behavior is called work-stealing. In this way, the program is always divided
into the smallest number of tasks required, thereby achieving a minimum number
of stealing events.

A typical work-stealing scheduler [35,40,42] is constructed by exploiting a
thread library such as pthreads. Each computation unit is expressed as a worker
thread fixed to the unit and has its own local deque or double-ended queue to
hold tasks remaining to be executed. Tasks are popped by the owner unit and
executed one by one in a last-in first-out (LIFO) fashion. When there are no
idling units, each worker behaves independently of the others. If a unit becomes
idle, with an empty deque, the unit scouts around other units’ deques until it
finds a task and steals it in a FIFO fashion, as described in Algorithm1.

Of course, a remaining task may create new tasks by calling a fork function,
and such subtasks are appended into the local deque in a LIFO fashion, as shown
in Algorithm 1. Hence, the tasks in each deque are stored in order of descending
age. That is, an idling unit steals the oldest remaining task, and that will be the
one nearest to the root of the task tree. This is the reason for the work-stealing

Divide-and-Conquer Parallelism for Learning Mixture Models 29

Algorithm 1 . A worker thread’s behavior in a work-stealing scheduler.
Require: myself : the worker thread, victim: another worker thread

procedure fork(function, arguments)
task = new task(function, arguments)
myself.deque.append(task)
return task

end procedure
procedure join(task)

repeat
if myself.deque.is empty then

next = victim.deque.pop FIFO()
next.execute()

else
next = myself.deque.pop LIFO()
next.execute()

end if
until task.is finished

end procedure

scheduler being able to achieve the minimum number of stealing events necessary.
In addition, there is no single point of failure, and the overhead will be smaller than
that for the FIFO scheduler.

2.3 Communication Mechanism

In the communication mechanism, each computation unit exchanges values via
a bus or network. For example, when calculating the mean value of a series,
each unit will calculate the mean of a chunk, with a master unit then unifying
the means into a single value. There are two options for the communication
mechanism: distributed memory and shared memory.

In a distributed-memory system, each computation unit has its own memory
and its address space is not shared with other units. Communication among units is
realizedbyexplicitmessagepassing,withgreater latency than localmemoryaccess.

In a shared-memory system, several computation units have access to a large
memory with an address space shared among all computation units. There is no
need for explicit message passing, with communication achieved by reading from
or writing to shared variables.

A great problem for shared-memory systems is the possibility of race condi-
tions, as shown in Fig. 4a. Suppose that two computation units, #0 and #1, are
adding some numbers into a shared variable total concurrently. Such an oper-
ation is called a load-modify-store operation, but the result can be incorrect,
because of conflicts between loading and storing. Using atomic operations can
be a solution. An atomic operation is guaranteed to exclude any load or store
operations by other computation units until the operation finishes.

Note that, because memory access latency suspends an operation for a time,
modern processors support the out-of-order execution paradigm, going on to

30 T. Kawakatsu et al.

(a) Race among threads. (b) Buffering solution.

Fig. 4. A race condition among computation units and our buffering solution. The sum
may be incorrect if several units access the same variable at the same time.

execute other instructions until the processor obtains all required data from
the memory. This accelerates serial program execution, but can compromise
the integrity of a parallel program that includes some critical instructions that
must be strictly executed in a particular order. Figure 5 is an example of such a
program, where thread2 waits until thread1 updates value. The loop is called
spin waiting or busy waiting, and is frequently used for thread synchronization.
If the statements are executed out of order, thread2 may load an old value
before the update by thread1. As a solution, an atomic operation often involves
a memory fence, instructions that inhibit out-of-order execution.

Considering the memory access patterns of machine-learning algorithms, the
use of atomic operations may not be an adequate solution. Main memories based
on DRAM operate more slowly than processors, so that modern computers insert
caches based on static random-access memory (SRAM) between the processors
and main memories. Main memory access is blocked if the cache memory has
a valid replica of the addressed data. The problem is that several computation
units may have replicas of the same data item in their own cache memories and
the stored replica values may become outdated. Machine-learning algorithms
access all the observation items simultaneously to calculate summations in each
learning step, and cache conflicts may occur frequently. A cache-coherence [43,
44] protocol invalidates the old replica to relieve conflicts, as illustrated in Fig. 6.
However, this may become a serious bottleneck. For this reason, we recommend
a buffering solution, as shown in Fig. 4b. The solution separates the memory
addresses physically to avoid cache conflicts. Each computation unit calculates
a summation into its local buffer and the master unit retrieves these to calculate
the total summation after calling a join function. This method can be combined
easily with our divide-and-conquer-based parallelization approach.

2.4 Parallel Computing Frameworks

Many frameworks assist parallelization, parallel execution, and communication.

Divide-and-Conquer Parallelism for Learning Mixture Models 31

Fig. 5. Data exchange between threads by spin waiting. The synchronization will fail
if the statements are executed out of order.

Fig. 6. Cache coherence among computation units. The protocol will cause a bottleneck
whenever units are accessing the same address.

As a parallelization framework, we could use a high-performance-computing
(HPC) language such as Cilk [7,36], X10 [45], or Chapel [46]. They support
task parallelism, and Chapel also supports data parallelism with sophisticated
syntax. OpenMP is another well-known framework for task and data parallelism
for shared-memory environments. These languages and libraries are examples of
the explicit-directive approach, while MapReduce [47] is a library-level variant
of the implicit-directive approach.

As a parallel execution framework, we could use a work-stealing scheduler
such as Intel’s TBB4, qthreads [38,39], or MassiveThreads [40]. Pthreads5 does
not support work-stealing by itself, but is an essential component for implement-
ing such schedulers.

In the context of communication mechanisms, some general-purpose lan-
guages provide helpful programming models for parallel computation, even
though they were not designed primarily as HPC languages. For example, Go6

supports sophisticated syntax for message passing. In low-level programming,
MPI is a standardized message-passing framework that supports MPI Send and
MPI Recv. In the context of enterprise applications, Hadoop is a well-maintained
platform for distributed data processing. In the context of shared-memory com-
munication, the simplest example is multithread programming using a thread
library. In C++11, all global variables are shared among threads by default,
unless using a thread local specifier, and by using std::atomic templates7, a
programmer can write thread-safe access to shared data.

4 http://www.threadingbuildingblocks.org.
5 http://computing.llnl.gov/tutorials/pthreads/.
6 http://golang.org.
7 http://www.cplusplus.com/reference/atomic/atomic.

http://www.threadingbuildingblocks.org
http://computing.llnl.gov/tutorials/pthreads/
http://golang.org
http://www.cplusplus.com/reference/atomic/atomic

32 T. Kawakatsu et al.

The ADCA proposal in Sect. 3.2 follows the principles of parallelization, par-
allel execution and communication. In the parallelization phase, ADCA adopts
task parallelism to describe a divide-and-conquer algorithm. In the parallel exe-
cution phase, ADCA utilizes a pulling-based work-stealing scheduler to distrib-
ute tasks to computation units. Then, ADCA realizes communication among
units by using shared-memory; the cache coherence problem is reduced thanks
to the buffering solution.

3 Parallel EM Algorithms

The EM algorithm comprises an E-step and an M-step. The E-step computes a
single posterior P (k|xn) for each pair of an observation item xn and a mixture
component k that indicates how likely it is that the item xn was generated by
the component. In the M-step, the posteriors are summed to estimate revised
parameter values. The E-step is then repeated using the revised model. This EM
iteration continues until the likelihood function L, which indicates how well the
model regenerates the dataset, converges to a maximum.

To parallelize the EM algorithm, we should divide each E-step and M-step
into a number of tasks and allocate them to computation units. For GMMs, the
axis of the observation item xn and the axis of mixtures k are available for this
division. As illustrated in Fig. 7, reference locality is maximized whenever we
divide the posterior table into squares because the total number of observation
items and model parameters to be loaded to calculate the posterior subtable is
minimized. The number of observation items is usually much greater than the
number of mixture components. Consequently, we must divide the n axis more
than the k axis.

The EM algorithm includes summation processes in the M-step, and we must
take measures against race conditions among computation units. In general, race
conditions are resolved by using mutual exclusion techniques such as semaphores,
or by using atomic instructions. However, we do not recommend these approaches
because mutual exclusion involves a blocking time, and an atomic operation on a
shared variable involves the cache-coherence problem. The best solution is to let
each computation unit use its own local memory to hold intermediate results,
thereby computing a partial sum independently, before a single unit retrieves
the intermediate results to compute the total.

3.1 Related Work

Nonuniform memory access (NUMA) is a shared-memory architecture for which
a computation unit and local memory form a pair called a NUMA node. Modern
processors support NUMA at the chip level and a NUMA node is generally equiv-
alent to a processor socket. The memory address space is continuous, enabling
each NUMA node to access another node’s local memory in the same way as for
its own local memory. In a shared-memory system, all computation units share
the threads of a process and any unit can execute a thread. Because the threads

Divide-and-Conquer Parallelism for Learning Mixture Models 33

(a) Rectangular division. (b) Cubic division.

Fig. 7. Cubic division of the posterior table. Space requirements are minimized when
the posterior table is divided into cubes. The symbols such as θ and qnk are described
in detail in Appendix A.

share a common address space assigned to the process, we can implement pro-
grams without explicit message passing among threads. However, noting that all
NUMA nodes will be interconnected via a bus, nonlocal memory accesses will
have higher latency than local memory accesses for a computation unit. Conse-
quently, programmers should aim to maximize reference locality to increase the
proportion of local memory accesses. Kwedlo [25] proposed a parallel version of
the EM algorithm for a NUMA computer. He used the parallel loop of OpenMP
and introduced two techniques for improving the reference locality, the buffering
solution and first touching.

When we parallelize an EM algorithm, we normally partition the observation
items into a number of data chunks and assign them to threads. On the one hand,
a race condition will never arise in the E-step because there is no summation
over the observation items. On the other hand, parameter recalculation in the
M-step requires summation over the posteriors. Whenever several computation
units read from and write to the same address simultaneously, a race condition
is possible, with the revised parameters differing from the correct values. To
avoid this, Kwedlo arranged an independent array for each unit, with each unit
calculating a partial sum into its own array. The partial sums are then integrated
by a single thread at the end of the M-step. He introduced a buffering solution,
although OpenMP supports safe summation via the reduction clause, because
that clause cannot handle array types [25]. Accordingly, Kwedlo proposed his
own buffering solution, coincidentally similar to Fig. 4b.

First-touching [48,49] is a well-known optimization method in the context of
combining Linux8 and NUMA. In Linux, a logical memory address is not bound
to a physical memory address initially. When a thread accesses the logical address
for the first time, a small physical memory space called a page, is selected from
the closest NUMA node and allocated to the logical address. Therefore, Kwedlo
made all threads access their own chunk before running the EM algorithm [25].

8 https://www.kernel.org.

https://www.kernel.org

34 T. Kawakatsu et al.

Distributed memory is a parallel clustering-based architecture that comprises
many computers called nodes interconnected via a network. The meaning of node
in distributed computing is somewhat different from that used in the description
of NUMA. For distributed memory, each node is a processor with several cores
that use a shared-memory architecture. That is, the distributed-memory system
has at least two levels of memory hierarchy: internode and intranode. Internode
communication is realized by explicit message passing, with internode latency
being greater than intranode shared-memory access. Therefore, we must consider
reference locality more carefully than for shared-memory systems.

The message-passing communication model is applicable to both distributed
and shared-memory systems. It rarely depends on the detailed architecture,
with its application being wider than that of the shared-memory programming
model. For this reason, the message-passing model is more popular with pro-
grammers using high-level languages such as Java and Scala. A programmer can
use highly abstract concurrent-execution models such as MapReduce, with the
background scheduler then assigning tasks to the computation units. MapRe-
duce, supported by Hadoop, offers a simple but powerful abstraction. However,
that is too abstract to enable control of the reference locality, unlike NUMA
programming exploiting the first-touch policy. Therefore, MapReduce might be
convenient but can result in poor throughput. Its handling of hard-disk I/O
overhead is another principal reason for its poor performance [1].

Currently, there are several parallel-computing frameworks based on mes-
sage passing, such as Spark [1], Piccolo [3], and GraphLab [50,51]. Spark is a
framework that aligns data in memory to reduce hard-disk I/O overheads, and
provides its own distributed, immutable collection framework called the resilient
distributed dataset (RDD) [2]. Because RDD elements are in memory, Spark
runs faster than Hadoop MapReduce, which must read observation dataset from
hard disks each time they are required. Piccolo is a distributed in-memory hash-
table framework that runs parallel applications with high efficiency, similarly to
RDD. GraphLab is a distributed machine-learning framework in which the pro-
grammer describes calculations and data flows by using directed graphs. Each
node behaves as if it was a local Map or Reduce facility, with the many Map
and Reduce operations all running in parallel.

In the world of low-level programming, hybrid parallel computing [52–54] is a
popular approach. It uses a thread implementation such as pthreads inside the
nodes and MPI among the nodes. Yang et al. [26] proposed an EM algorithm
using a hybrid parallelization approach. It divides and conquers the observation
items and integrates partial sums at the end of the M-step, as shown in Fig. 8.
The implementation has a hierarchical structure. First, the master node assigns
an observation data subset to each distributed node by utilizing MPI. Next, each
distributed node partitions its subset into smaller subsets and allocates them to
threads running on each node. At the end of every M-step, each distributed node
calculates its internal summation and the master node collects them to calculate
the total sum. This approach achieves good reference locality because nodes do
not exchange any values until the intranode calculations are completely finished.

Divide-and-Conquer Parallelism for Learning Mixture Models 35

Fig. 8. Hybrid message-passing and shared-memory parallelization. This approach uses
a thread inside the node and message passing among the nodes.

The authors attribute the reduction in scheduling overheads to static scheduling.
That is, their approach divides the data into equal-sized subsets before running
the EM algorithm and never deals with load balancing. Of course, the processing
throughput might suffer if load imbalances occur.

3.2 Our ADCA Proposal

To utilize a work-stealing scheduler, we must transform the EM algorithm to a
divide-and-conquer form, which is not difficult because we can divide the obser-
vation dataset recursively and calculate the posteriors in parallel in the E-step. In
the M-step, we repartition the dataset to recalculate the parameters recursively
as shown in Algorithm 2. This version of the EM algorithm performs effective
dynamic load balancing.

ADCA also achieves good reference locality. The divided observation subset
and its counterpart will be aligned closely in the memory address space. Machine-
learning algorithms repeat learning steps until the model regenerates the training
data. Therefore, the programmer can optimize ADCA so that each computation
unit retrieves a chunk of the dataset from storage before processing, and handles
only its own local chunk in every subsequent step. This optimization may reduce
internode I/O transactions dramatically in distributed-memory systems, which
is a direction for our future work.

Note that the observation items should not be divided into single data items
because the calculation cost per observation item would then be very small, and
too-frequent task-switching operations might degrade the processing throughput.
Therefore, we introduce a grain size parameter as the minimum size for a subset
of the observation data. When recursive division of the subsets reaches the grain
size, no further division occurs. Although we do not examine selection methods

36 T. Kawakatsu et al.

Algorithm 2 . Divide&conquer-based EM algorithm for a GMM.
Require: xn: observation items, N : number of observation items, grain: grain size
Ensure: wk: weight, µk: mean, Sk: covariance

repeat
Estep(x1, ..,xN)
Mstep(x1, ..,xN)

until likelihood converges

procedure Estep(chunk of xn)
if chunksize > grain then

Estep(half of xn)
Estep(half of xn)

else
for each pair (xn, k) do

calculate qnk as P (k|xn)
end for

end if
end procedure

procedure Mstep(chunk of xsnk)
if chunksize > grain then

task1 = Mstep(half of xn)
task2 = Mstep(half of xn)
sum1 = join task1
sum2 = join task2

return sum1 + sum2

else
sum = 0
for each pair (xsn, k) do

sumk += (qnk, qnkxn, qnkx
2
n)

end for
return sum

end if
end procedure

for the grain size here, it can be smaller than for the FIFO scheduler because of
the small overhead of the work-stealing-based scheduler, as described in Sect. 2.2.

ADCA has another advantage, the avoidance of race conditions. As shown
in Algorithm 2, the parameter recalculation in the M-step is implemented using
buffering, and there are no critical sections. Accordingly, there is no need for
mutual exclusion or atomic operations on shared variables, which enables much
faster computation. Of course, our approach may have the disadvantage of requir-
ing more memory than other approaches do.

4 Experiment and Results

Table 1 describes the experimental environments. For most experiments, we used
the hu080, but the strong and weak scaling of ADCA were also measured using
the hp160. Both are shared-memory computers with many NUMA nodes, using
CentOS9 and the GNU compiler collections (gcc10) 5.2 and 4.8.

To demonstrate the scalability and robustness against load imbalance of our
approach, we transformed the EM algorithms into the divide-and-conquer form
shown in Algorithm 2. In a previous paper [55], we described the implementation
of ADCA in the programming language Chapel, employing MassiveThreads [40]
as the work-stealing scheduler, and compared it with a FIFO approach that used
OpenMP. For the purposes of this paper, we have implemented a work-stealing
scheduler and a FIFO scheduler in C++11 to unify the experimental conditions,

9 http://www.centos.org.
10 http://gcc.gnu.org.

http://www.centos.org
http://gcc.gnu.org

Divide-and-Conquer Parallelism for Learning Mixture Models 37

Table 1. Experimental machine environments.

Name hu080 hp160

CPU Xeon E7 4870 Xeon E7 8891 v2

Clock 2.4 GHz Clock 3.2 GHz

Cores 10 Cores 10

Cache L1d 32 kB/core L1d 32 kB/core

L2 256 kB/core L2 256 kB/core

L3 30.0 MB L3 37.5 MB

NUMA Nodes 8 Nodes 16

RAM 64 GB/node RAM 0.75 TB/node

excluding the schedulers and parallelization approaches. Both schedulers employ
the lock-free deque implementation proposed by Arora et al. [56], instead of using
a mutex-based deque such as MassiveThreads. We examined three aspects of the
system: the effect of the buffering solution, robustness against fine-grained paral-
lelism, and robustness against load imbalance. The effect of the buffering solution
was ascertained by comparison with the atomic solution using a GMM. Robust-
ness against fine-grained parallelism was tested by comparison with the FIFO
approach, again using the EM algorithm on a GMM. Robustness against load
imbalance was examined by learning both load-imbalanced and load-balanced
HPMM datasets.

For the experiments, we prepared randomly generated training data. For the
GMMs, each observation item was generated by eight mixture components, and
was expressed as an eight-dimensional vector, with each value expressed in 64-bit
floating-point form. For the HPMMs, each item was generated by eight mixture
components, and was expressed as a two-dimensional 64-bit integer vector.

The graphs below show results for both strong and weak scaling. They indi-
cate how processing speed varies with the number of computation units, but the
size of the dataset is fixed in strong scaling, whereas the size varies in proportion
to the number of units in weak scaling. For strong scaling, the vertical axis indi-
cates the throughput in megarecords per second (MRPS), whereas it indicates
the processing time per EM iteration for weak scaling.

4.1 Effect of Buffering Solution

To demonstrate the effect of the buffering solution, we compared the difference
in scalability between the buffering solution and the atomic solution for the EM
algorithm on a GMM. We adopted the FIFO approach in both cases and set the
grain size to 256. That is, each task handles 256 observation items. The datasets
had 268,435,456 items in total in strong scaling and 2,097,152 items per core in
weak scaling. Figure 9 shows the comparison results. The atomic solution did not
so much speed up as slow down in weak scaling, whereas the buffering solution
achieved an almost linear speedup. The atomic solution decelerated at a rate

38 T. Kawakatsu et al.

(a) Strong scaling. (b) Weak scaling.

Fig. 9. Atomic solution vs buffering solution (hu080).

(a) Strong scaling. (b) Weak scaling.

Fig. 10. Scalability of the EM algorithm on a GMM (hu080).

of 28 seconds per core. Note that the total throughput was invariant regardless
of the number of cores. This suggests that there exists a bottleneck setting the
upper limit of the throughput. We suspect that the cache-coherence protocol
was the main factor.

4.2 Robustness Against Fine-Grained Parallelism

To demonstrate the robustness against fine-grained parallelization, we compared
the difference in scalability between the FIFO-based approach and ADCA, while
varying the grain size from 256 items to 16 items. The sizes of the datasets were
the same as those for Fig. 9. Figure 10 shows the evaluation result. When the
grain size was set to 256, the FIFO approach accelerated between 1 and 80 cores
at a rate that was 15.7 % less than that for ADCA. When the grain size was set
to 16, the FIFO approach decelerated beyond 24 cores, and it did not speed up
beyond a factor of 17.5. In contrast, our approach achieved a near-linear speedup
in both cases. This could be explained by the overhead of the shared runqueue.

Divide-and-Conquer Parallelism for Learning Mixture Models 39

Fig. 11. Maximum queuing time with FIFO scheduling (hu080).

(a) Strong scaling. (b) Weak scaling.

Fig. 12. Scalability of the EM algorithm on an HPMM (hu080).

To test that hypothesis, we also measured the queuing time of the shared
runqueue. The queuing time was shorter than a millisecond, which made direct
measurements difficult. We therefore implemented a program that repeats task-
popping from a shared queue 268,435,456 times to calculate the average queuing
time. Figure 11 shows the result. The queuing time increased as the number of
cores increased. That is, a popping request was cancelled when several compu-
tation units simultaneously tried to obtain a task from the queue, thanks to
the protection technique proposed by Arora et al. [56]. As seen in Fig. 11, the
queuing required several micro-seconds whenever a queuing rush occurred.

As seen in Fig. 10, a single core could handle 0.9 observation items per
microsecond, which means that the queuing time has a great impact on the
lack of acceleration. For the FIFO case, the shared runqueue was accessed fre-
quently by all computation units. For the ADCA, such rushes are rare. This is
the reason for the superior robustness against fine-grained parallelization.

40 T. Kawakatsu et al.

4.3 Robustness Against Load Imbalance

To demonstrate the robustness against load imbalance of ADCA, we evaluated
strong and weak scaling using the EM algorithm on an HPMM. For the strong
scaling, we tested two datasets: equal and slope. In the equal dataset, each
segment had the same number of observation items. In the slope dataset, the
number of observation items in each segment was made proportional to the
segment ID, assigned continuously from 1 to either 1024 or 16,384. The datasets
comprised 134,217,728 observation items. The grain size was set to 256. For
weak scaling, we tested two series of datasets: fixed and scale. In the fixed
datasets, the number of segments was constant, regardless of the number of cores.
In the scale datasets, the number of segments was proportional to the number
of cores. The datasets contained 1,048,576 items per core and the grain size was
set to 256. Figure 12 shows the results. For both the equal and slope datasets,
ADCA achieved an almost linear speedup. Note that the graphs almost exactly

(a) Strong scaling. (b) Weak scaling.

Fig. 13. Scalability of the EM algorithm on a GMM (hp160).

(a) Strong scaling. (b) Weak scaling.

Fig. 14. Scalability of the EM algorithm on an HPMM (hp160).

Divide-and-Conquer Parallelism for Learning Mixture Models 41

match each other, with load imbalance having little influence. The weak scaling
results demonstrate the great flexibility of ADCA, which is applicable to both
large tasks handling many observation items and to small tasks handling a few
observation items. In all cases, the throughput was constant and the processing
time was determined only by the size of the dataset.

4.4 Scalability on a 160-Core NUMA Machine

We evaluated strong and weak scaling for our method not only on hu080, but
also on hp160. The GMM datasets involved a total of 268,435,456 observation
items for strong scaling and 1,048,576 observation items per core for weak scal-
ing. The HPMM datasets involved a total of 134,217,728 observation items for
strong scaling and 524,288 observation items per core for weak scaling. In the
HPMM case, the number of items in each segment followed a continuous uniform
distribution for strong scaling and a Gaussian distribution for weak scaling. The
grain size was 1024. Figures 13 and 14 show the results, indicating a near-linear
speedup.

5 Conclusions

We have investigated a divide-and-conquer-based parallel computation strategy
for machine-learning algorithms. Our approach not only reduces task-scheduling
overheads dramatically, but also realizes efficient load balancing by cooperating
with a work-stealing scheduler. Furthermore, the divide-and-conquer algorithm
derives parameters without requiring mutual exclusion or atomic operations with
shared variables by using a buffering solution that avoids the bottleneck of cache-
coherence protocols in NUMA environments. We tested the scalability of our
approach with both 80-core and 160-core NUMA computers and found that
the divide-and-conquer solution achieved far superior scalability to FIFO-based
parallelization and showed robustness against load-imbalanced datasets.

In this work, we have evaluated our method only for shared-memory com-
puters with little discussion of reference locality because the buffering solution
dealt with much of the reference-locality problem effectively. However, we intend
to investigate ADCA for distributed-memory environments in future work, and
the buffering solution alone would not be sufficient provision against the greater
latency of message passing. Considering the memory access patterns of machine-
learning algorithms, there is room for improved reference locality, given that the
algorithms access observation items one by one continuously at each learning
step, and repeat the steps many times. That is, after the scheduler assigns tasks
and observation subsets to nodes before processing, enabling each task to access
only its local data, the scheduler could improve reference locality by sending the
same tasks to the same nodes at every step, as proposed by Yang et al. [26].

In other future work, our approach will seek to exploit the characteristics of
GPUs. As stated in Sect. 2.1, GPUs are hardly applicable to graphical models
on their own. Fortunately, a CPU can cooperate with a GPU by using CUDA

42 T. Kawakatsu et al.

[57,58], and a GPU could realize load balancing by cooperating with ADCA
through CUDA. As shown in Algorithm2, our approach employs a loop at the
grain level. We expect GPUs to be able to accelerate this loop.

Acknowledgment. This work was supported by the CPS-IIP (http://www.cps.nii.
ac.jp.) project under the research promotion program for national challenges Research
and development for the realization of the next-generation IT platforms of the Ministry
of Education, Culture, Sports, Science and Technology (MEXT), Japan. The experi-
mental environment was made available by Assistant Prof. Hajime Imura at the Meme
Media Laboratory, Hokkaido University, and Yasuhiro Shirai at HP Japan Inc.

A General EM Algorithm

A.1 EM on GMM

The GMM is a popular probabilistic model described by a weighted linear sum
of K normal distributions:

p(x) =
K∑

k=1

wkN (x;µk, Sk), (1)

where wk is the weight, µk is the mean, and Sk is the covariance matrix of the kth
normal distribution. An observation item x is generated by a normal distribution
selected with a probability of wk. We transcribe parameters θk = (wk,µk, Sk)
for the sake of simplicity, and θ is the set of all θk. The likelihood function L(θ)
indicates how likely it is that the probabilistic model regenerates the training
dataset. Assuming independence among observation items, L(θ) is equal to the
joint probability of all observation data. L is defined in log-likelihood terms
because p(xn|θ) is very small:

L(θ) =
N∑

n

log
K∑

k

wkN (xn;µk, Sk). (2)

In the EM context, we need only maximize L. However, because a GMM is a
latent-variable model, it requires step-by-step improvement. The posterior prob-
ability qnk that the nth observation item xn is generated by the kth normal
distribution is:

qnk =
wkN (xn;µk, Sk)

K∑

k

wkN (xn;µk, Sk)

. (3)

Of the two repeated steps, the E-step calculates qnk for all pairs of data xn and
the kth normal distribution, and the M-step updates the parameters as follows:

ŵk =
1
N

N∑

n

qnk, (4)

http://www.cps.nii.ac.jp
http://www.cps.nii.ac.jp

Divide-and-Conquer Parallelism for Learning Mixture Models 43

µ̂k =
1

Nŵk

N∑

n

qnkxn, (5)

Ŝk =
1

Nŵk

N∑

n

qnk(xn − µ̂k)T (xn − µ̂k). (6)

The E-step and M-step are repeated alternately until L converges. In practice,
the covariance matrix Sk is assumed to be a diagonal matrix and the calculation
is therefore simplified as follows:

Ŝkd =
1

Nŵk

(
N∑

n

q̂nkx
2
nd

)
− µ̂2

kd. (7)

In the E-step, N ×K qnk is calculated, and in the M-step, qnk is summed in the
N axis and the parameter θk is updated. However, the posterior table can be
too large and can exceed the hard-disk capacity when N is very large. Because
of poor memory throughput, the processing speed will then degrade greatly. To
avoid this condition, the parallel EM algorithm requires a large memory space.

A.2 EM on HPMM

Kinoshita et al. used an HPMM to detect traffic incidents [10]. They assumed
that probe-car records follow a hierarchical PMM and that each road segment
has its own local parameters. In their model, the probability of a single record
x in a segment s is described as follows:

p(x|s) =
K∑

k=1

wskP(x;µk), (8)

where wsk is the kth Poisson distribution’s weight in segment s, and µk is the
kth Poisson distribution’s mean. wsk is particular to the segment, whereas µk is
common to all segments. The log-likelihood L(θ) is defined as follows:

L(θ) =
S∑

s=1

Ns∑

n=1

log
K∑

k=1

wskP(xsn;µk), (9)

where Ns is the number of records in segment s. As for GMMs, we must calculate
the posterior probability qsnk that the nth record xsn in segment s is generated
by the kth Poisson distribution for all pairs of (s, n, k) in each E-step:

qsnk =
wskP(xsn;µk)

K∑

k=1

wskP(xsn;µk)

. (10)

44 T. Kawakatsu et al.

In the M-step, the weight wsk and mean µk are recalculated:

ŵsk =
1

Ns

Ns∑

n=1

qsnk, (11)

µ̂k =

S∑

s=1

Ns∑

n=1

qsnkxsn

S∑

s=1

Ns∑

n=1

qsnk

. (12)

Each road segment has a massive number of records, with the actual number
varying greatly from segment to segment. This implies that we should take mea-
sures against load imbalance.

References

1. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenkerand, S., Stoica, I.: Spark: clus-
ter computing with working sets. In: Proceedings of the 2nd USENIX Conference
on Hot Topics in Cloud Computing, June 2010

2. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., MacCauley, M., Franklin,
M.J., Shenker, S., Stoica, I.: Resilient distributed datasets: a fault-tolerant abstrac-
tion for in-memory cluster computing. In: Proceedings of the 9th USENIX Con-
ference on Networked Systems Design and Implementation, April 2012

3. Power, R., Li, J.: Piccolo: building fast, distributed programs with partitioned
tables. In: Proceedings of the 9th USENIX Conference on Operating Systems
Design and Implementation, October 2010

4. Huang, C., Chen, Q., Wang, Z., Power, R., Ortiz, J., Li, J., Xiao, Z.: Spartan:
a distributed array framework with smart tiling. In: Proceedings of the USENIX
Annual Technical Conference, July 2015

5. Dijkstra, E.W.: Cooperating sequential processes. EWD: EWD123 (1968)
6. Mohr, E., Kranz Jr., D.A., Halstead, R.H.: Lazy task creation: a technique for

increasing the granularity of parallel programs. In: Proceedings of the 1990 ACM
Conference on LISP and Functional Programming, May 1990

7. Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Randall, K.H., Zhou,
Y.: Cilk: an efficient multithreaded runtime system. In: Proceedings of the Fifth
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
August 1995

8. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete
data via the EM algorithm. J. Roy. Stat. Soc. Ser. B (Methodol.) 39(1), 1–38
(1977)

9. McLachlan, G.J., Krishnan, T.: The EM Algorithm and Extensions. Wiley,
Hoboken (2008)

10. Kinoshita, A., Takasu, A., Adachi, J.: Traffic incident detection using probabilistic
topic model. In: Proceedings of the Workshops of the EDBT/ICDT 2014 Joint
Conference, March 2014

Divide-and-Conquer Parallelism for Learning Mixture Models 45

11. Kinoshita, A., Takasu, A., Adachi, J.: Real-time traffic incident detection using a
probabilistic topic model. Inf. Syst. 54(C), 169–188 (2015)

12. Pereira, S.S., Lopez-Valcarce, R., Pages-Zamora, A.: A diffusion-based EM algo-
rithm for distributed estimation in unreliable sensor networks. IEEE Signal
Process. Lett. 20(6), 595–598 (2013)

13. Chen, J., Salim, M.B., Matsumoto, M.: A gaussian mixture model-based continuous
boundary detection for 3d sensor networks. Sensors 10(8), 7632–7650 (2010)

14. Miura, K., Noguchi, H., Kawaguchi, H., Yoshimoto, M.: A low memory bandwidth
gaussian mixture model (GMM) processor for 20,000-word real-time speech recog-
nition FPGA system. In: 2008 International Conference on ICECE Technology,
December 2008

15. Gupta, K., Owens, J.D.: Three-layer optimizations for fast GMM computations on
GPU-like parallel processors. In: IEEE Workshop on Automatic Speech Recogni-
tion & Understanding, December 2009

16. Stauffer, C., Grimson, W.E.L.: Adaptive background mixture models for real-time
tracking. In: IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, June 1999

17. Li, H., Achim, A., Bull, D.R.: GMM-based efficient foreground detection with
adaptive region update. In: Proceedings of the 16th IEEE International Conference
on Image Processing, November 2009

18. Patel, C.I., Patel, R.: Gaussian mixture model based moving object detection from
video sequence. In: Proceedings of the International Conference and Workshop on
Emerging Trends in Technology, February 2011

19. Song, Y., Li, X., Liu, Q.: Fast moving object detection using improved gaussian
mixture models. In: International Conference on Audio, Language and Image
Processing, July 2014

20. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-
propagating errors. In: Neurocomputing: Foundations of Research, January 1988

21. Liu, Z., Li, H., Miao, G.: MapReduce-based backpropagation neural network over
large scale mobile data. In: Sixth International Conference on Natural Computa-
tion, August 2010

22. Gu, R., Shen, F., Huang, Y.: A parallel computing platform for training large scale
neural networks. In: IEEE International Conference on Big Data, October 2013

23. Hillis, W.D., Steele Jr., G.L.: Data parallel algorithms. Commun. ACM Spec. Issue
Parallelism 29(12), 1170–1183 (1986)

24. Flynn, M.J.: Some computer organizations and their effectiveness. IEEE Trans.
Comput. C–21(9), 948–960 (1972)

25. Kwedlo, W.: A parallel EM algorithm for Gaussian mixture models implemented
on a NUMA system using OpenMP. In: 22nd Euromicro International Conference
on Parallel, Distributed and Network-Based Processing (PDP), February 2014

26. Yang, R., Xiong, T., Chen, T., Huang, Z., Feng, S.: DISTRIM: parallel GMM
learning on multicore cluster. In: IEEE International Conference on Computer
Science and Automation Engineering (CSAE), May 2012

27. Wolfe, J., Haghighi, A., Klein, D.: Fully distributed EM for very large datasets. In:
Proceedings of the 25th International Conference on Machine Learning, July 2008

28. Kumar, N.S.L.P., Satoor, S., Buck, L.: Fast parallel expectation maximization
for gaussian mixture models on GPUs using CUDA. In: 11th IEEE International
Conference on High Performance Computing and Communications, June 2009

46 T. Kawakatsu et al.

29. Machlica, L., Vanek, J., Zajic, Z.: Fast estimation of gaussian mixture model para-
meters on GPU using CUDA. In: 12th International Conference on Parallel and
Distributed Computing, Applications and Technologies (PDCAT), October 2011

30. Altinigneli, M.C., Plant, C., Bohm, C.: Massively parallel expectation maximiza-
tion using graphics processing units. In: Proceedings of the 19th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, August 2013

31. Bergstrom, L., Reppy, J.: Nested data-parallelism on the GPU. In: Proceedings of
the 17th ACM SIGPLAN International Conference on Functional Programming,
September 2012

32. Lee, H., Brown, K.J., Sujeeth, A.K., Rompf, T., Olkotun, K.: Locality-aware map-
ping of nested parallel patterns on GPU. In: Proceedings of eht 47th Annual
IEEE/ACM International Symposium on Microarchitecture, December 2014

33. Feeley, M.: A message passing implementation of lazy task creation. In: Halstead,
R.H., Ito, T. (eds.) PSC 1992. LNCS, vol. 748, pp. 94–107. Springer, Heidelberg
(1993). doi:10.1007/BFb0018649

34. Umatani, S., Yasugi, M., Komiya, T., Yuasa, T.: Pursuing laziness for efficient
implementation of modern multithreaded languages. In: Veidenbaum, A., Joe, K.,
Amano, H., Aiso, H. (eds.) ISHPC 2003. LNCS, vol. 2858, pp. 174–188. Springer,
Heidelberg (2003). doi:10.1007/978-3-540-39707-6 13

35. Acar, U.A., Chargueraud, A., Rainey, M.: Scheduling parallel programs by work
stealing with private deques. In: Proceedings of the 18th ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming, February 2013

36. Frigo, M., Leiserson, C.E., Randall, K.H.: The implementation of the Cilk-5 mul-
tithreaded language. In: Proceedings of the ACM SIGPLAN 1998 Conference on
Programming Language Design and Implementation, May 1998

37. Min, S.J., Iancu, C., Yelick, K.: Hierarchical work stealing on manycore clusters.
In: Fifth Conference on Partitioned Global Address Space Programming Models,
October 2011

38. Olivier, S.L., Porterfield, A.K., Wheeler, K.B., Prins, J.F.: Scheduling task paral-
lelism on multi-socket multicore systems. In: Proceedings of the 1st International
Workshop on Runtime and Operating Systems for Supercomputers, May 2011

39. Olivier, S.L., Porterfield, A.K., Wheeler, K.B., Spiegel, M., Prins, J.F.: OpenMP
task scheduling strategies for multicore numa systems. Int. J. High Perform. Com-
put. Appl. 26(2), 110–124 (2012)

40. Nakashima, J., Nakatani, S., Taura, K.: Design and implementation of a customiz-
able work stealing scheduler. In: 3rd International Workshop on Runtime and Oper-
ating Systems for Supercomputers, June 2013

41. Kranz, D.A., Halstead, R.H., Mohr Jr., E.: Mul-T: a high-performance parallel
lisp. In: Proceedings of the ACM SIGPLAN 1989 Conference on Programming
Language Design and Implementation, June 1989

42. Wheeler, K.B., Murphy, R.C., Thain, D.: Qthreads: an API for programming with
millions of lightweight threads. In: IEEE International Symposium on Parallel and
Distributed Processing, April 2008

43. Molka, D., Hackenberg, D., Shone, R., Muller, M.S.: Memory performance and
cache coherency effects on an intel nahalem multiprocessor system. In: 18th
International Conference on Parallel Architectures and Compilation Techniques,
September 2009

44. Molka, D., Hackenberg, D., Schone, R., Nagel, W.E.: Cache coherence protocol and
memory performance of the intel haswell-EP architecture. In: 44th International
Conference on Parallel Processing, September 2015

http://dx.doi.org/10.1007/BFb0018649
http://dx.doi.org/10.1007/978-3-540-39707-6_13

Divide-and-Conquer Parallelism for Learning Mixture Models 47

45. Charles, P., Donawa, C., Ebcioglu, K., Grothoff, C., Kielstra, A., von Praun, C.,
Saraswat, V., Sarkar, V.: X10: an object-oriented approach to non-uniform cluster
computing. In: Proceedings of the 20th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications, October
2005

46. Callahan, D., Chamberlain, B.L., Zima, H.P.: The cascade high productivity lan-
guage. In: 9th International Workshop on High-Level Parallel Programming Models
and Supportive Environments, April 2004

47. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
In: Proceedings of the 6th Conference on Symposium on Opearting Systems Design
& Implementation, vol. 6, December 2004

48. Furmento, N., Goglin, B.: Enabling high-performance memory migration for mul-
tithreaded applications on Linux. In: IEEE International Symposium on Parallel
& Distributed Processing, May 2009

49. Lameter, C.: NUMA (non-uniform memory access): an overview. Queue 11(7), 40
(2013)

50. Low, Y., Gonzalez, J., Kyrola, A., Bickson, D., Guestrin, C., Hellerstein, J.:
GraphLab: a new framework for parallel machine learning. In: Proceedings of the
26th Conference on Uncertainty in Artificial Intelligence, June 2010

51. Low, Y., Bickson, D., Gonzalez, J., Guestrin, C., Kyrola, A., Hellerstein, J.M.:
Distributed GraphLab: a framework for machine learning and data mining in the
cloud. In: Proceedings of the VLDB Endowment, April 2012

52. Hamidouche, K., Falcou, J., Etiemble, D.: A framework for an automatic hybrid
MPI+ openMP code generation. In: Proceedings of the 19th High Performance
Computing Symposia, April 2011

53. Si, M., Pena, A.J., Balaji, P., Takagi, M., Ishikawa, Y.: MT-MPI: multithreaded
MPI for many-core environments. In: Proceedings of the 28th ACM International
Conference on Supercomputing, June 2014

54. Luo, M., Lu, X., Hamidouche, K., Kandalla, K., Panda, D.K.: Initial study of multi-
endpoint runtime for MPI+ openMP hybrid programming model on multi-core
systems. In: Proceedings of the 19th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, February 2014

55. Kawakatsu, T., Kinoshita, A., Takasu, A., Adachi, J.: Highly efficient paral-
lel framework: a divide-and-conquer approach. In: Chen, Q., Hameurlain, A.,
Toumani, F., Wagner, R., Decker, H. (eds.) DEXA 2015. LNCS, vol. 9262, pp.
162–176. Springer, Heidelberg (2015). doi:10.1007/978-3-319-22852-5 15

56. Arora, N.S., Blumofe, R.D., Plaxton, C.G.: Thread scheduling for multipro-
grammed multiprocessors. In: Proceedings of the Tenth Annual ACM Symposium
on Parallel Algorithms and Architectures, June 1998

57. Kirk, D.B., Hwu, W.W.: Processors, Programming Massively Parallel: A Hands-on
Approach. Morgan Kaufmann, San Francisco (2010)

58. Nvidia. CUDA C programming guide version 6.5, August 2014

http://dx.doi.org/10.1007/978-3-319-22852-5_15

Multistore Big Data Integration
with CloudMdsQL

Carlyna Bondiombouy, Boyan Kolev(&), Oleksandra Levchenko,
and Patrick Valduriez

Inria and LIRMM, University of Montpellier, Montpellier, France
{carlyna.bondiombouy,boyan.kolev,

oleksandra.levchenko,patrick.valduriez}@inria.fr

Abstract. Multistore systems have been recently proposed to provide integrated
access to multiple, heterogeneous data stores through a single query engine. In
particular, much attention is being paid on the integration of unstructured big data
typically stored in HDFS with relational data. One main solution is to use a
relational query engine that allows SQL-like queries to retrieve data from HDFS,
which requires the system to provide a relational view of the unstructured data
and hence is not always feasible. In this paper, we propose a functional SQL-like
query language (based on CloudMdsQL) that can integrate data retrieved from
different data stores, to take full advantage of the functionality of the underlying
data processing frameworks by allowing the ad-hoc usage of user defined
map/filter/reduce operators in combination with traditional SQL statements.
Furthermore, our solution allows for optimization by enabling subquery rewrit-
ing so that bind join can be used and filter conditions can be pushed down and
applied by the data processing framework as early as possible. We validate our
approach through implementation and experimental validation with three data
stores and representative queries. The experimental results demonstrate the
usability of the query language and the benefits from query optimization.

1 Introduction

A major trend in cloud computing and big data is the understanding that there is “no
one size fits all” solution. Thus, there has been a blooming of different cloud data
management solutions, such as NoSQL, distributed file systems (e.g. Hadoop HDFS),
and big data processing frameworks (e.g. Hadoop MapReduce or Apache Spark),
specialized for different kinds of data and able to perform orders of magnitude better
than traditional RDBMS. However, this has led to a wide diversification of data store
interfaces and the loss of a common programming paradigm. This makes it very hard
for a user to integrate and analyze her data sitting in different data stores, e.g. RDBMS,
NoSQL and HDFS. To address this problem, multistore systems [1, 8, 9, 11–15] have
been recently proposed to provide integrated access to multiple, heterogeneous data
stores through a single query engine.

Compared to multidatabase systems [16], multistore systems typically trade source
autonomy for efficiency, using a tightly-coupled approach. In particular, much attention
is being paid on the integration of unstructured big data (e.g. produced by web

© Springer-Verlag Berlin Heidelberg 2016
A. Hameurlain et al. (Eds.): TLDKS XXVIII, LNCS 9940, pp. 48–74, 2016.
DOI: 10.1007/978-3-662-53455-7_3

applications) typically stored in HDFS with relational data, e.g. in a data warehouse.
One main solution is to use a relational query engine (e.g. Apache Hive) on top of a
data processing framework (e.g. Hadoop MapReduce), which allows SQL-like queries
to retrieve data from HDFS. However, this requires the system to provide a relational
view of the unstructured data, which is not always feasible. In case the data store is
managed independently from the relational query processing system, complex data
transformations may need to take place (e.g. by applying specific map-reduce jobs)
before the data can be processed by means of relational operators. Let us illustrate the
problem, which will be the focus of this paper, with the following scenario.

Example scenario. An editorial office needs to find appropriate reporters for a list of
publications based on given keywords. For the purpose, the editors need an analysis of
the logs from a scientific forum stored in a Hadoop cluster in the cloud to find experts
in a certain research field, considering the users who have mentioned particular key-
words most frequently; and these results must be joined to the relational data in an
RDBMS containing author and publication information. However, the forum appli-
cation keeps log data about its posts in a non-tabular structure (the left side of the
example below), namely in text files where a single record corresponds to one post and
contains a fixed number of fields about the post itself (timestamp and username in the
example) followed by a variable number of fields storing the keywords mentioned in
the post.

2014-12-13, alice, storage, cloud
2014-12-22, bob, cloud, virtual, app
2014-12-24, alice, cloud

KW expert freq
cloud alice 2
storage alice 1
virtual bob 1
app bob 1

The unstructured log data needs to be transformed into a tabular dataset containing
for each keyword the expert who mentioned it most frequently (the right side of the
example above). Such transformation requires the use of programming techniques like
chaining map/reduce operations that should take place before the data is involved in
relational operators. Then the result dataset will be ready to be joined with the pub-
lication data retrieved from the RDBMS in order to suggest an appropriate reviewer for
each publication. Being able to request such data processing with a single query is the
scenario that motivates our work. However, the challenge in front of the query pro-
cessor is optimization, i.e. it should be able of analyzing the operator execution flow of
a query and performing operation reordering to take advantage of well-known opti-
mization techniques (e.g. selection pushdowns and use of semi-joins) in order to yield
efficient query execution.

Existing solutions to integrate such unstructured and structured data do not directly
apply to solve our problem, as they rely on having a relational view of the unstructured
data, and hence require complex transformations. SQL engines, such as Hive, on top of
distributed data processing frameworks are not always capable of querying unstruc-
tured HDFS data, thereby forcing the user to query the data by defining map/reduce
functions.

Multistore Big Data Integration with CloudMdsQL 49

Our approach is different as we propose a query language that can directly express
subqueries that can take full advantage of the functionality of the underlying data
processing frameworks. Furthermore, the language should allow for query optimiza-
tion, so that the query operator execution sequence specified by the user may be
reordered by taking into account the properties of map/filter/reduce operators together
with the properties of relational operators. This is especially useful for applying effi-
cient query optimization by exploiting bind joins [10]; and we pay special attention to
this throughout our experimental evaluation. Finally, we want to respect the autonomy
of the data stores, e.g. HDFS and RDBMS, so that they can be accessible and con-
trolled from outside our query engine with their own interface.

In this paper, we propose a functional SQL-like query language (based on
CloudMdsQL) and query engine to retrieve data from two different kinds of data stores –
an RDBMS and a distributed data processing framework such as Apache Spark or
Hadoop MapReduce on top of HDFS – and combine them by applying data integration
operators (mostly joins). We assume that each data store is fully autonomous, i.e. the
query engine has no control over the structure and organization of data in the data
stores. For this reason, the architecture of our query engine is based on the traditional
mediator/wrapper architectural approach [21] that abstracts the query engine from the
specifics of each of the underlying data stores. However, users need to be aware of how
data are organized across the data stores, so that they write valid queries. A single query
of our language can request data to be retrieved from both stores and then a join to be
performed over the retrieved datasets. The query therefore contains embedded invo-
cations to the underlying data stores, expressed as subqueries. As our query language is
functional, it introduces a tight coupling between data and functions. A subquery,
addressing the data processing framework, is represented by a sequence of map/filter/
reduce operations, expressed in a formal notation. On the other hand, SQL is used to
express subqueries that address the relational data store as well as the main statement
that performs the integration of data retrieved by all subqueries. Thus, a query benefits
from both high expressivity (by allowing the ad-hoc usage of user defined map/
filter/reduce operators in combination with traditional SQL statements) and optimiz-
ability (by enabling subquery rewriting so that bind join and filter conditions can be
pushed inside and executed at the data store as early as possible).

This paper is a major extension of [4], with an improved generic architecture of the
query engine (to support a wider range of underlying data models and to provide a
tighter coupling with the data processing framework), a real experimental validation
with three data stores (relational, document, and HDFS) and queries across them, and a
more detailed comparison with the state of the art.

The rest of this paper is organized as follows. Section 2 introduces the language and
its notation to express map/filter/reduce subqueries. Section 3 presents the architecture
of the query engine. Section 4 elaborates more on the query processing and presents the
properties of map/filter/reduce operators that constitute rewrite rules to perform query
optimization. Section 5 gives a use case example walkthrough. Section 6 presents an
experimental validation with (semi-)structured data stored in PostgreSQL and Mon-
goDB, and unstructured data stored in an HDFS cluster and processed using Apache
Spark. Section 7 discusses related work. Section 8 concludes.

50 C. Bondiombouy et al.

2 Query Language

The query language is based on a more general common query language, called
CloudMdsQL [12], designed in the context of the CoherentPaaS project [7] to solve the
problem of querying multiple heterogeneous databases (e.g. relational and NoSQL)
within a single query while preserving the expressivity of their local query mecha-
nisms. The common language itself is SQL-based with the extended capabilities for
embedding subqueries expressed in terms of each data store’s native query interface.
The common data model respectively is table-based, with support of rich datatypes that
can capture a wide range of the underlying data stores’ datatypes, such as MongoDB
arrays and JSON objects, in order to handle non-flat and nested data, with basic
operators over such composite datatypes.

In this section, we introduce a formal notation to define Map/Filter/Reduce
(MFR) subqueries in CloudMdsQL that request data processing in an underlying big
data processing framework (DPF). Then we give an overview of how MFR statements
are combined with SQL statements to express integration queries against a relational
database and a DPF. Notice that the data processing defined in an MFR statement is not
executed by the query engine, but is meant to be translated to a sequence of invocations
to API functions of the DPF. In this paper, we use Apache Spark as an example of
DPF, but the concept can be generalized to a wider range of frameworks that support
the MapReduce programming model (such as Hadoop MapReduce, CouchDB, etc.).

2.1 MFR Notation

An MFR statement represents a sequence of MFR operations on datasets. A dataset is
considered simply as an abstraction for a set of tuples, where a tuple is a list of values,
each of which can be a scalar value or another tuple. Although tuples can generally
have any number of elements, mostly datasets that consist of key-value tuples are being
processed by MFR operations. In terms of Apache Spark, a dataset corresponds to an
RDD (Resilient Distributed Dataset – the basic programming unit of Spark). Each of
the three major MFR operations (MAP, FILTER and REDUCE) takes as input a dataset
and produces another dataset by performing the corresponding transformation.
Therefore, for each operation there should be specified the transformation that needs to
be applied on tuples from the input dataset to produce the output tuples. Normally, a
transformation is expressed with an SQL-like expression that involves special vari-
ables; however, more specific transformations may be defined through the use of
lambda functions.

Core operators. The MAP operator produces key-value tuples by performing a
specified transformation on the input tuples. The transformation is defined as an
SQL-like expression that will be evaluated for each tuple of the input data set and
should return a pair of values. The special variable TUPLE refers to the input tuple and
its elements are addressed using a bracket notation. Moreover, the variables KEY and
VALUE may be used as aliases to TUPLE[0] and TUPLE [1] respectively.
The FILTER operator selects from the input tuples only those, for which a specified

Multistore Big Data Integration with CloudMdsQL 51

condition is evaluated to true. The filter condition is defined as a boolean expression
using the same special variables TUPLE, KEY, and VALUE. The REDUCE operator
performs aggregation on values associated with the same key and produces a key-value
dataset where each key is unique. The reduce transformation may be specified as an
aggregate function (SUM, AVG, MIN, MAX or COUNT). Similarly to MAP, two other
mapping operators are introduced: FLAT_MAP may produce numerous output tuples
for a single input tuple; and MAP_VALUES defines a transformation that preserves the
keys, i.e. applicable only to the values.

Let us consider the following simple example inspired by the popular MapReduce
tutorial application “word count”. We assume that the input dataset for the MFR
statement is a list of words. To count the words that contain the string ‘cloud’, we write
the following composition of MFR operations:

The first operation transforms each tuple (which has a single word as its only
element) of the input dataset into a key-value pair where the word is mapped to a value
of 1. The second operation selects only those key-value pairs for which the key con-
tains the string ‘cloud’. And the third one groups all tuples by key and performs a sum
aggregate on the values for each key.

To process this statement, the query engine first looks for opportunities to optimize
the execution by operator reordering. By applying MFR rewrite rules (explained in
detail in Sect. 4.2), it finds out that the FILTER and MAP operations may be swapped
so that the filtering is applied at an earlier stage. Further, it translates the sequence of
operations into invocations of the underlying DPF’s API. Notice that whenever a
REDUCE transformation function has the associative property (like the SUM func-
tion), an additional combiner function call may be generated that precedes the actual
reducer, so that as much data as possible will be reduced locally; e.g., this would be
valid in the case of Hadoop MapReduce as the DPF, because it does not automatically
perform local reduce. In the case of Apache Spark as the DPF, the query engine
generates the following Python fragment to be included in a script that will be executed
in Spark’s Python environment:

In this example, all the MFR operations are translated to their corresponding Spark
functions and all transformation expressions are translated to Python anonymous
functions. In fact, to increase its expressivity, the MFR notation allows direct usage of
anonymous functions to specify transformation expressions. This allows user-defined
mapping functions, filter predicates, or aggregates to be used in an MFR statement. The
user, however, needs to be aware of how the query engine is configured to interface the
DPF, in order to know which language to use for the definition of inline anonymous
functions (e.g. Spark may be used with Python or Scala, CouchDB – with JavaScript,
etc.).

52 C. Bondiombouy et al.

Input/output operators are normally used for transformation of data before and after
the core map/filter/reduce execution chain. The SCAN operator loads data from its
storage and transforms it to a dataset ready to be consumed by a core MFR operator.
The PROJECT operator converts a key-value dataset to a tabular dataset ready to be
involved in relational operations.

2.2 Combining SQL and MFR

Queries that integrate data from both a relational data store and a DPF usually consist
of two subqueries (one expressed in SQL that addresses the relational database and
another expressed in MFR that addresses the DPF) and an integration SELECT
statement. The syntax follows the CloudMdsQL grammar introduced in [12]. A sub-
query is defined as a named table expression, i.e. an expression that returns a table and
has a name and signature. The signature defines the names and types of the columns of
the returned relation. Thus, each query, although agnostic to the underlying data stores’
schemas, is executed in the context of an ad-hoc schema, formed by all named table
expressions within the query. A named table expression can be defined by means of
either an SQL SELECT statement (that the query compiler is able to analyze and
possibly rewrite) or a native expression (that the query compiler considers as a black
box and passes to the wrapper as is, thus delegating it the processing of the subquery).

In this paper, we extend the usability of CloudMdsQL by adding the capability of
handling MFR subqueries against DPFs and combining them with subqueries against
other data stores. This is done in full compliance with CloudMdsQL properties, such as
the ability to express nested subqueries (so that the output of one subquery, e.g. against
an RDBMS, can be used as input to another subquery, e.g. MFR) which we further
illustrate by the usage of bind joins. MFR subqueries are expressed as native named
table expressions; this means that they are passed to their corresponding wrappers to
process them (explained in more detail in Sect. 3).

In general, a single query can address a number of data stores by containing several
named table expressions. We will now illustrate with a simple example how SQL and
MFR statements can be combined, and in Sect. 5 will focus on a more sophisticated
example involving 3 data stores. The following sample query contains two subqueries,
defined by the named table expressions T1 and T2, and addressed respectively against
the data stores aliased with identifiers rdb (for the SQL database) and hdfs (for the
DPF):

The purpose of this query is to perform relational algebra operations (expressed in
the main SELECT statement) on two datasets retrieved from a relational database and a
DPF. The two subqueries are sent independently for execution against their data stores

Multistore Big Data Integration with CloudMdsQL 53

in order the retrieved relations to be joined by the query engine. The SQL table
expression T1 is defined by an SQL subquery. T2 is an MFR expression that requests
data retrieval from a text source and data processing by the specified map/reduce
operations. Both subqueries are subject to rewriting by pushing into it the filter con-
dition kw LIKE ‘%cloud%’, specified in the main SELECT statement, thus reducing
the amount of the retrieved data by increasing the subquery selectivity and the overall
efficiency. The so retrieved datasets are then converted to relations following their
corresponding signatures, so that the main SELECT statement can be processed with
semantic correctness. The PROJECT operator in the MFR statement provides a map-
ping between the dataset fields and the named table expression columns.

3 Generic Query Engine Architecture

The dominant state-of-the-art architectural model that addresses the problem of data
integration and query processing across a diverse set of data stores is the
mediator/wrapper architecture. A mediator is a software module that exploits encoded
knowledge about certain sets or subsets of data to create information for a higher layer
of applications [16]. In addition, a wrapper or adapter is a software component that
encapsulates and hides the underlying complexity of sets or subsets of data by means of
well-defined interfaces (it establishes communication and a data flow between medi-
ators and data stores). In this section, we briefly describe the generic architecture of our
system with an overview of the required steps to process a query.

The query language presented hereby assumes a query engine that follows the
traditional mediator/wrapper architectural approach. By explicitly naming a data store
identifier in a named table expression’s signature, the query addresses the specific
wrapper that is preliminarily configured and responsible for handling subqueries
against the corresponding data store. Thus, a query can express an integration of data
across several data stores, and in particular, integration of structured (relational DB),
semi-structured (document DB), and unstructured (distributed storage, based on HDFS)
data, which is the case that we focus on throughout our experimental validation.

Figure 1 depicts the corresponding system architecture, containing a CloudMdsQL
compiler, a common query processor (the mediator), three wrappers, and the three data
stores – a distributed data processing framework (DPF), an RDBMS, and a document
data store. The DPF is in charge of performing parallel data processing over a dis-
tributed data store. In this architecture, each data source has an associated wrapper that
is responsible for executing subqueries against the data store and converting the
retrieved datasets to tables matching the requested number and types of columns, so
that they are ready to be consumed by relational operators at the query processor. The
query processor consumes the query execution plan generated by the compiler and
interacts with the wrappers through a common interface to: request handling of sub-
queries, centralize the information provided by the wrappers, and integrate the sub-
queries’ results. The wrappers transform subqueries provided via the common interface
into queries for the data stores. This generic architecture gives us the possibility to use a
specific implementation of the query processor and DPF wrapper, while reusing the
CloudMdsQL query compiler and wrappers for relational and document data stores

54 C. Bondiombouy et al.

[12]. Although we can also reuse the CloudMdsQL query engine that has a distributed
architecture [12], in our experimental work we explore the possibility to adapt the
parallel SQL engine Spark SQL [2] to serve as the query processor, thus providing a
tighter coupling between the query processor and the underlying DPF and hence taking
more advantage of massive parallelism when joining HDFS with relational and doc-
ument data.

Each of the wrappers is responsible for completing the execution of subqueries and
retrieving the results. Upon initialization, each wrapper may provide to the query
compiler the capability of its data store to process pushed down operations [12]. In our
setup, all the three wrappers can accept pushdowns of filter predicates. Both the rela-
tional and document data store wrappers accept requests from the query processor in
the form of query execution sub-plans represented as trees of relational algebra oper-
ators, resulting from the compilation of the SELECT statements expressed in the
corresponding SQL named table expressions. The sub-plans may include selection
operations resulting from pushed down predicates. The wrapper of the relational
database has to build a SELECT statement out of a query sub-plan and to run it against
its data store; then it retrieves the datasets and delivers them to the query processor in
the corresponding format. The wrapper of the document data store (in our case,
MongoDB) has to translate the sequence of relational operators from a query sub-plan
to the corresponding sequence of MongoDB API calls; then it converts the resulting
documents to tuples that match the signature of the corresponding named table
expression [12].

Fig. 1. Basic architecture of the query engine

Multistore Big Data Integration with CloudMdsQL 55

The wrapper of the distributed data processing framework has a slightly different
behavior as it processes MFR expressions wrapped in native subqueries. First it parses
and interprets a subquery written in MFR notation; then uses the MFR planner to find
optimization opportunities; and finally translates the resulting sequence of MFR
operations to a sequence of DPF’s API methods to be executed. Once a dataset is
retrieved as a result of the subquery execution, the wrapper provides it to the query
processor in the format requested by the corresponding named table expression sig-
nature. The MFR planner decides where to position pushed down operations; e.g. it
applies rules for MFR operator reordering to find the optimal place of a filter operation
in order to apply it as early as possible and thus to reduce the query execution cost. To
search for alternative operation orderings, the planner takes into account MFR rewrite
rules, introduced in next section.

4 Query Processing

The query compiler first decomposes the query into a preliminary query execution plan
(QEP), which, in its simplest form, is a tree structure representing relational operations.
At this step, the compiler also identifies sub-trees within the query plan, each of which
is associated to a certain data store. Each of these sub-plans is meant to be delivered to
the corresponding wrapper, which has to translate it to a native query and execute it
against its data. The rest of the QEP is the common plan that will be handled by the
query engine.

4.1 Query Optimization

Before its actual execution, a QEP may be rewritten by the query optimizer. To compare
alternative rewritings of a query, the optimizer uses a simple catalog, which provides
basic information about data store collections such as cardinalities, attribute selectivities
and indexes, and a simple cost model. Because of the autonomy of the underlying data
stores, in order to derive local cost models, various classical black-box approaches for
heterogeneous cost modeling, such as probing [26] and sampling [25, 27], have been
adopted by the query optimizer. Thus, cost information can be collected by the wrappers
and exposed to the optimizer in the form of cost functions or database statistics. Fur-
thermore, the query language allows for user-defined cost and selectivity functions. And
in case of lack of any cost information, heuristic rules are applied.

In our concrete example scenario with PostgreSQL, MongoDB, and MFR sub-
queries, we use the following strategy. The query optimizer executes an EXPLAIN
request to PostgreSQL to directly estimate the cost of a subquery. The MongoDB
wrapper runs in background probing queries to collect cardinalities of document col-
lections, index availabilities, and index value distributions (to compute selectivities)
and caches them in the query engine’s catalog. As for an MFR subquery, if there is no
user-provided cost information, the optimizer assumes that it is more expensive than
SQL subqueries and plans it at the end of the join order, which would also potentially
benefit from the execution of bind joins.

56 C. Bondiombouy et al.

The search space explored for optimization is the set of all possible rewritings of
the initial query, by pushing down select operations, expressing bind joins, and join
ordering. Unlike in traditional query optimization where many different permutations
are possible, this search space is not very large, so we use a simple exhaustive search
strategy.

Subquery rewriting takes place in order to request early execution of some oper-
ators and thus to increase its overall efficiency. Although several operations are subject
to pushdowns across subqueries, in this paper we concentrate on the inclusion of only
filter operations inside an MFR subquery. Generally, this is done in two stages: first,
the query processor determines which operations can be pushed down for remote
execution at the data stores; and second, the MFR planner may further determine the
optimal place for inclusion of pushed down operations within the MFR operator chain
by applying MFR rewrite rules (explained later in this section). Pushing a selection
operation inside a subquery, either in SQL query or MFR operation chain, is usually
considered beneficial, because it delegates the selection directly to the data store, which
allows for early reducing of the size of data processed and retrieved from the data
stores.

4.2 MFR Rewrite Rules

In this section, we introduce and enumerate some rules for reordering of MFR oper-
ators, based on their algebraic properties. These rules are used by the MFR planner to
optimize an MFR subquery after a selection pushdown takes place.

Rule #1 (name substitution): upon pushdown, the filter is included just before the
PROJECT operator and the filter predicate expression is rewritten by substituting
column names with references to dataset fields as per the mapping defined by the
PROJECT expressions. After this initial inclusion, other rules apply to determine
whether it can be moved even farther. Example:

is rewritten to:

Rule #2: REDUCE(<transformation>).FILTER(<predicate>) is equiva-
lent to FILTER(<predicate>).REDUCE(<transformation>), if predi-
cate condition is a function only of the KEY, because thus, applying the FILTER
before the REDUCE will preserve the values associated to those keys that satisfy the
filter condition as they would be if the FILTER was applied after the REDUCE.
Analogously, under the same conditions, MAP_VALUES(<transformation>).
FILTER(<predicate>) is equivalent to FILTER(<predicate>).MAP_VA-
LUES(<transformation>).

Rule #3: MAP(<expr_list>).FILTER(<predicate1>) is equivalent to
FILTER(<predicate2>).MAP(<expr_list>), where predicate1 is

Multistore Big Data Integration with CloudMdsQL 57

rewritten to predicate2 by substituting KEY and VALUE as per the mapping defined
in expr_list. Example:

Since planning a filter as early as possible always increases the efficiency, the
planner always takes advantage of moving a filter by applying rules #2 and #3
whenever they are applicable.

4.3 Bind Join

Bind join [10] is an efficient method for implementing semi-joins across heterogeneous
data stores that uses subquery rewriting to push the join conditions. In this paper, we
adapt the bind join approach for MFR subqueries and we focus on it in our experi-
mental evaluation, as it brings a significant performance gain in certain occasions.

Using bind join between relational data (expressed in an SQL named table
expression) and big data (expressed in an MFR named table expression) allows for
reducing the computation cost at the DPF and the communication cost between the
DPF and the query engine. This approach implicates that the list of distinct values of
the join attribute(s) from the relation, preliminarily retrieved from the relational data
store, is passed as a filter to the MFR subquery. To illustrate the approach, let us
consider the following SELECT statement performing a join between an SQL named
table R and an MFR named table H:

SELECT H.x, R.y FROM R JOIN H ON R.id = H.id WHERE R.z='abc'

To process this query using the bind join method, first, the table R is retrieved from
the relational data store; then, assuming that the distinct values of R.id are, r1. . .rn
the condition id IN ðr1; . . .; rnÞ is passed as a FILTER to the MFR subquery that
retrieves the dataset H from HDFS data store. Thus, only the tuples from H that match
the join criteria are retrieved. Moreover, if the filter condition can be pushed even
further in the MFR chain (according to the MFR rewrite rules) and thus to overcome at
least one REDUCE operation, this may lead to a significant performance boost, as data
will be filtered before at least one shuffle phase.

To estimate the expected performance gain of a bind join, the query optimizer takes
into account the overhead a bind join may produce. First, when using bind join, the
query engine must wait for the SQL named table to be fully retrieved before initiating
the execution of the MFR subquery. Second, if the number of distinct values of the join
attribute is large, using a bind join may slower the performance as it requires data to be
pushed into the MFR subquery. In the example above, the query engine first asks the
RDBMS (e.g. by running an EXPLAIN statement) for an estimation of the cardinality
of data retrieved from R, after rewriting the SQL subquery by including the selection
condition R.z = ‘abc’. If the estimated cardinality does not exceed a certain
threshold, the optimizer plans for performing a bind join that can significantly increase
the MFR subquery selectivity and affect the volume of transferred data.

58 C. Bondiombouy et al.

5 Use Case Example

In this section, we reveal the steps the query engine takes to process a query using
selection pushdown and especially bind join as optimization techniques. We also focus
on the way the query engine dynamically rewrites the MFR subquery to perform a bind
join. We consider three distinct data stores: PostgreSQL as the relational database
(referred to as rdb), MongoDB as the document database (referred to as mongo)
which will be subqueried by SQL expressions that are mapped by the wrapper to
MongoDB calls, and an HDFS cluster (referred to as hdfs) processed using the
Apache Spark framework.

Datasets. For the use case walkthrough we consider small sample datasets in the
context of the multistore query example described in Sect. 1.

The rdb database stores structured data about scientists and their affiliations in the
following table:

Scientists:
Name Affiliation Country
Ricardo UPM Spain
Martin CWI Netherlands
Patrick INRIA France
Boyan INRIA France
Larri UPC Spain
Rui INESC Portugal

The mongo database contains a document collection about publications including
their keywords as follows:

Publications(
{ title:'Snapshot Isolation in Cloud DBs', author:'Ricardo',
 keywords: ['transaction', 'cloud'] },
{ title:'Principles of Distributed Cloud DBs', author:'Patrick',
 keywords: ['cloud', 'storage'] },
{ title:'Graph Databases', author:'Larri', keywords: ['graph', 'NoSQL']}
)

HDFS stores unstructured log data from a scientific forum in text files where a
single record corresponds to one post and contains a timestamp and username followed
by a variable number of fields storing the keywords mentioned in the post:

Posts (date, author, kw1, kw2, …, kwn)

2014-11-10, alice, storage, cloud
2014-11-10, bob, cloud, virtual, app
2014-11-10, alice, cloud

Query 1. This query aims at finding appropriate reviewers for publications of authors
with a certain affiliation. It considers each publication’s keywords and the experts who
have mentioned them most frequently on the scientific forum. The query combines data
from the three data stores and can be expressed as follows.

Multistore Big Data Integration with CloudMdsQL 59

scientists(name string, affiliation string)@rdb = (
 SELECT name, affiliation
 FROM scientists
)

publications(autor string, title string, keywords array)@mongo = (
 SELECT author, title, keywords
 FROM publications
)

experts(kw string, expert string)@hdfs = {*
 SCAN(TEXT, 'posts.txt', ',') (op1)
 .FLAT_MAP(lambda data: product(data[2:], [data[1]])) (op2)
 .MAP(TUPLE, 1) (op3)
 .REDUCE(SUM) (op4)
 .MAP(KEY[0], (KEY[1], VALUE)) (op5)
 .REDUCE(lambda a, b: b if b[1] > a[1] else a) (op6)
 .PROJECT(KEY, VALUE[0]) (op7)
 *}

SELECT p.author, p.title, e.kw, e.expert
FROM scientists s, publications p, experts e
WHERE s.affiliation = 'INRIA'
 AND p.author = s.name
 AND e.kw IN p.keywords

Query 1 contains three subqueries. The first two subqueries is a typical SQL
statement to get data about respectively scientists (from PostgreSQL) and scientific
publications (from MongoDB). The third subquery is an MFR operation chain that
transforms the unstructured log data from the forum posts and represents the result of
text analytics as a relation that maps each keyword to the person who has most
frequently mentioned it. To achieve the result dataset, the MFR operations request
transformations over the stored data, each of which is expressed either in a declarative
way or with anonymous (lambda) Python functions.

The SCAN operation op1 reads data from the specified text source and splits each
line to an array of values. Let us recall that the produced array contains the author of the
post in its second element and the mentioned keywords in the subarray starting from
the third element. The following FLAT_MAP operation op2 consumes each emitted
array as a tuple and transforms each tuple using the defined Python lambda function,
which performs a Cartesian product between the keywords subarray and the author,
thus emitting a number of keyword-author pairs. Each of these pairs is passed to the
MAP operation op3, which produces a new dataset, where each keyword-author pair is
mapped to a value of 1. Then the REDUCE operation op4 aggregates the number of
occurrences for each keyword-author pair. The next MAP operation op5 transforms the
dataset by mapping each keyword to a pair of author-occurrences. The REDUCE op6
finds for each keyword the author with the maximum number of occurrences, thus
finding the expert who has mostly used the keyword. Finally, the PROJECT defines the
mapping between the dataset fields and the columns of the returned relation.

Query Processing. First, Query 1 is compiled into the preliminary execution plan,
depicted in Fig. 2. Then, the query optimizer finds the opportunity for pushing down
the condition affiliation = ’INRIA’ into the relational data store. Thus, the
selection condition is included in the WHERE clause of the subquery for rdb. Doing

60 C. Bondiombouy et al.

this, the compiler determines that the column s.affiliation is no longer referenced
in the common execution plan, so it is simply removed from the corresponding pro-
jection on scientists from rdb. This pushdown implies increasing the selectivity
of the subquery, which is identified by the optimizer as an opportunity for performing a
bind join. To further verify this opportunity, the query optimizer asks rdb to estimate
the cardinality for the rewritten SQL subquery and, considering also the availability of
an index on the field author in the MongoDB collection publications, the
optimizer plans for bind join by pushing into the sub-plan for MongoDB the selection
condition author IN <authors>, where <authors> refers to the list of distinct
values of the s.name column, which will be determined at runtime.

Analogously, by using the catalog information provided by the MongoDB wrapper
to estimate the cardinality of the join between scientists and publications, the optimizer
plans to also involve the MFR subquery into a bind join and thus pushes the bind join
condition kw IN (<keywords>). Here, <keywords> is a placeholder for the list
of distinct keywords retrieved from the column p.keywords. Recall that each value
in p.keywords is an array, so the query processor will have to first flatten the
intermediate relation by transforming the array-type column p.keywords to a
scalar-type column named __keywords. Since p.keywords participates in the join
condition kw IN keywords, its flattening leads to transforming the join to an
equi-join which allows for the query engine to utilize efficient methods for equi-joins.

Furthermore, the MFR planner seeks for opportunities to move the bind join filter
condition kw IN (<keywords>) earlier in the MFR operation chain by applying the

Fig. 2. Preliminary query plan for Query 1

Multistore Big Data Integration with CloudMdsQL 61

MFR rewrite rules, explained below. At this stage, although <keywords> is not
known, the planner has all the information needed to apply the rules. After these
transformations, the optimized query plan (Fig. 3) is executed by the query processor.
In this notation, we use the symbol F to denote the flattening operator.

To execute the query plan, the query engine takes the following steps:

1. The query processor delivers to the wrapper of rdb the following SQL statement,
rewritten by taking into account the pushed selection condition, for execution
against the PostgreSQL data store, and waits for the corresponding result set to be
retrieved in order to compose the bind join condition for the next step.

SELECT nam
FROM scien
WHERE affi

me
ntists
iliation = 'IINRIA'

Name
Patrick
Boyan

2. The MongoDB wrapper prepares a native query to send to the MongoDB database
to retrieve those tuples from publications that match the bind join criteria. It
takes into account the bind join condition derived from the already retrieved data
from rdb and generates a MongoDB query whose SQL equivalent would be the
following:

Fig. 3. Optimized query plan for Query 1

62 C. Bondiombouy et al.

SELECT title, author, keywords FROM publications
WHERE author IN ('Patrick', 'Boyan')

However, the wrapper does not generate an SQL statement; instead it generates
directly the corresponding MongoDB native query:

db.publications.find(
 { author: {$in:['Patrick', 'Boyan']} },
 { title: 1, author: 1, keywords: 1, _id: 0 }
)

Upon receiving the result dataset (a MongoDB document collection), the wrapper
converts it to a table, according to the signature of the named table expression
publications, ready to be joined with the already retrieved result set from step
1. The result of the bind join is the contents of the following intermediate relation:

author title keywords
Patrick Principles of DDBS ['cloud', 'storage']

3. The flattening operator transforms the intermediate relation from step 2 to the
following one:

author title __keywords
Patrick Principles of DDBS cloud
Patrick Principles of DDBS storage

4. The query processor identifies a list of the distinct values of the join attribute
__keywords and derives from it the bind join condition kw IN (‘cloud’,
‘storage’) to push inside the subquery against hdfs.

5. The MFR planner for the wrapper of hdfs decides at which stage of the MFR
sequence to insert the filter, by applying a number of rewrite rules. According to
rule #1, the planner initially inserts the filter just before the PROJECT op7 by
rewriting the condition expression as follows:

.FILTER(KEY IN ('cloud', 'storage'))

Next, by applying consecutively rules #2 and #3, the planner moves the FILTER
before the MAP op5 by rewriting its condition expression according to rule #3:

.FILTER(KEY[0] IN ('cloud', 'storage'))

Analogously, rules #2 and #3 are applied again, moving the FILTER before op3,
rewriting the expression once again, and thus settling it to its final position. After all
transformations the MFR subquery is converted to the final MFR expression below.

 SCAN(TEXT, 'posts.txt', ',')
.FLAT_MAP(lambda data: product(data[2:], [data[1]]))
.FILTER(TUPLE[0] IN ('cloud', 'storage'))
.MAP(TUPLE, 1)
.REDUCE(SUM)
.MAP(KEY[0], (KEY[1], VALUE))
.REDUCE(lambda a, b: b if b[1] > a[1] else a)

6. The wrapper interprets the reordered MFR sequence, translates it to the Python
script below as per the Python API methods of Spark, and executes it within the
Spark framework.

Multistore Big Data Integration with CloudMdsQL 63

 sc.textFile('posts.txt').map(lambda line: line.split(',')) \
.flatMap(lambda data: product(data[2:], [data[1]])) \
.filter(lambda tup: tup[0] in ['cloud','storage']) \
.map(lambda tup: (tup, 1)) \
.reduceByKey(lambda a, b: a + b) \
.map(lambda tup: (tup[0][0], (tup[0][1], tup[1]))) \
.reduceByKey(lambda a, b: b if b[1] > a[1] else a)

The result of MFR query reordering and interpreting on Spark is another
intermediate relation:
kw expert
cloud alice
storage alice

7. The intermediate relations from steps 3 and 6 are joined to produce the final result
that lists the suggested experts for each publication regarding the given keywords:

author title kw expert
Patrick Principles of DDBS cloud alice
Patrick Principles of DDBS storage alice

6 Experimental Validation

The goal of our experimental validation is to evaluate the impact of query rewriting and
optimization on execution time. More specifically, we explore the performance benefit
of using bind join under different conditions. To achieve this, we have implemented a
prototype of our query engine, aiming at implementing the proposed optimization
techniques. In this section, we first describe the current implementation of the query
engine prototype. Then, we introduce the datasets, based on the use case example in
Sect. 5. Finally, we present our experimental results.

6.1 Prototype

For the purpose of our experiments, we have developed a prototype that invokes the
Spark SQL [2] engine to perform data integration. The query compiler/optimizer is
implemented in C ++; it compiles a CloudMdsQL query into an optimized query
execution plan. Then, a flow of invocations of Spark SQL’s Python API methods is
generated out of the execution plan. Thus, each MFR subquery, after being translated to
a Python piece of code, is natively executed in the Spark context, while for performing
relational operations on MFR and SQL named tables our prototype takes advantage of
Spark SQL’s DataFrame API. Wrappers are implemented as Python classes, whose
execute() method accepts a native query or a query sub-plan, executes the corre-
sponding query against its data store, and returns a DataFrame object ready to be
consumed by relational operators at Spark SQL. In our evaluation scenario, we use three
data stores (rdb, mongo, and hdfs) whose wrappers are implemented as follows:

64 C. Bondiombouy et al.

• The PostgreSQL wrapper loads a PostgreSQL data source by invoking sqlCon-
text.read().format(“jdbc”). Thus, the wrapper is able to execute SQL
statements against the relational database using its JDBC driver. The wrapper
exports an explain() function that the query optimizer invokes to get an esti-
mation of the cost of a subquery. It can also be queried about the existence of
certain indexes on table columns and their types.

• The wrapper for MongoDB is implemented as a wrapper to an SQL compatible data
store, i.e. it performs native MongoDB query invocations according to their SQL
equivalent. It uses the pymongo library to query the database and then transforms a
result set into a Spark DataFrame. The wrapper maintains the catalog information
by running probing queries such as db.collection.stats() to keep actual
database statistics. Similarly to the PostgreSQL wrapper, it also provides infor-
mation about available indexes on document attributes.

• The MFR wrapper implements an MFR planner to optimize MFR expressions in
accordance with any pushed down selections. The wrapper uses Spark’s
Python API, and thus translates each transformation to Python lambda functions.
Besides, it also accepts raw Python lambda functions as transformation definitions.
The wrapper executes the dynamically built Python code using the reflection
capabilities of Python by means of the eval() function. Then, it transforms the
resulting RDD into a Spark DataFrame.

Normally, if the QEP involves no bind joins, after all data frames that correspond to
all named tables within a query are loaded into the Spark SQL context, the query
engine simply invokes sqlContext.sql() to execute the integration SELECT
statement as is. In case of a bind join, the query engine takes a couple of more steps.
First, it performs a SELECT DISTINCT query on an intermediate table and then uses
the retrieved distinct values to build the bind join condition that will be pushed inside
the subquery for the other named table that participates in the join. If there is a flatten
operator, the query engine uses the LATERAL VIEW clause available in Spark SQL. In
our use case example, the publications named table is flattened into a temporary table
using the command:

SELECT author, title, __keywords
FROM publications
LATERAL VIEW explode(keywords) _k AS __keywords

Then, to do the bind join, SELECT DISTINCT __keywords is performed on that
temporary table.

6.2 Datasets

We performed our experimental evaluation in the context of the use case example,
presented in Sect. 5. For this purpose, we generated data to populate the PostgreSQL
table scientists, the MongoDB document collection publications, and text

Multistore Big Data Integration with CloudMdsQL 65

files with unstructured log data stored in HDFS. All data is uniformly distributed and
consistent. The datasets have the following characteristics:

• Table scientists contains 10 K rows, distributed over 1000 distinct affiliations,
making 10 authors per affiliation.

• Collection publications contains 10 M documents, with uniform distribution
of values of the author attribute, making 1 K publications per scientist. Each
publication is randomly assigned a set of 6 to 10 keywords out of 10 K distinct
keyword values. Also, there is an association between authors and keywords, so
that all the publications of a single author reference only 1 % of all the keywords.
This means that a join involving the publications of a single author will have a
selectivity factor of 1 %; hence 100 distinct values for the bind join condition. The
total size of the collection is 10 GB.

• HDFS contains 16 K files distributed between the nodes, with 100 K tuples per file
making 1.6 billion tuples, corresponding to posts from 10 K forum users with 10 K
distinct keywords mentioned by them. The first field of each tuple is a timestamp
and does not have an impact on the experimental results. The second field contains
the author of the post as a string value. The remainder of the tuple line contains 1 to
10 keyword string values, randomly chosen out of the same set of 10 K distinct
keywords. The total size of the data is 124 GB.

6.3 Experimental Results

To evaluate the impact of optimization on query execution, we use a cluster of the
GRID5000 platform (www.grid5000.fr), with one node for PostgreSQL and MongoDB
and 4 to 16 nodes for the HDFS cluster. The Spark cluster, used as both the DPF and
the query processor, is collocated with the HDFS cluster. Each node in the cluster runs
on 16 CPU cores at 2.4 GHz, 64 GB main memory, and the network bandwidth is
10Gbps.

To demonstrate in detail the optimization techniques and their impact on the query
execution, we prepared 3 different queries. We execute each of them in three different
HDFS cluster setups – with 4, 8, and 16 nodes. Then we compare the execution times
without and with bind join to the MFR subquery, which are illustrated in each query’s
corresponding graphical chart. We do not focus on evaluating the bind join between
PostgreSQL and MongoDB, as its benefit is less significant when compared to the
benefit of doing bind join to the MFR subquery, because of the big difference in data
sizes.

All the queries use the following common named table expressions, which we
created as stored expressions:

66 C. Bondiombouy et al.

http://www.grid5000.fr

CREATE NAMED EXPRESSION
scientists(name string, affiliation string)@rdb = (
 SELECT name, affiliation
 FROM scientists
);

CREATE NAMED EXPRESSION
publications(autor string, title string, keywords array)@mongo = (
 SELECT author, title, keywords
 FROM publications
);

CREATE NAMED EXPRESSION
experts(kw string, expert string)@hdfs = {*
 SCAN(TEXT, 'posts.txt', ',')
 .FLAT_MAP(lambda data: product(data[2:], [data[1]]))
 .MAP(TUPLE, 1)
 .REDUCE(SUM)
 .MAP(KEY[0], (KEY[1], VALUE))
 .REDUCE(lambda a, b: b if b[1] > a[1] else a)
 .PROJECT(KEY, VALUE[0])
 *};

CREATE NAMED EXPRESSION
experts_alt(kw string, expert string)@hdfs = {*
 SCAN(TEXT, 'posts.txt', ',')
 .FLAT_MAP(lambda data: product(data[2:], [data[1]]))
 .MAP_VALUES(lambda v: Counter([v]))
 .REDUCE(lambda C1, C2: C1 + C2)
 .MAP_VALUES(lambda C: \
 reduce(lambda a,b: b if b[1] > a[1] else a, C.items()))
 .PROJECT(KEY, VALUE[0])
 *};

Thus, each of the queries is expressed as a single SELECT statement that uses the
above named table expressions. The named tables scientists, publications,
and experts have exactly the same definition as in the use case example from
Sect. 5.

The named table experts_alt does the same as experts, but its MFR
sequence contains only one REDUCE (respectively, it does only one shuffle) and more
complex map functions. It uses Python’s Counter dictionary collection, with the
additive property to sum up numeric values grouped by the key. The first MAP_VA-
LUES maps a keyword to a Counter object, initialized with a single author key. Then
the REDUCE sums all Counter objects associated to a single keyword, so that the result
from it is an aggregated Counter dictionary, where an author is mapped to a number of
occurrences of the keyword. The final MAP_VALUES uses Python’s reduce()
function (note that this is not Spark’s reduce operator) to choose from all items in a
Counter the author with the highest number of occurrences for a keyword.

Query 0 involves only the MongoDB database and the DPF to find experts for the
publications of only one author. Thus, the selectivity factor of the bind join is 1 %, as
the number of keywords used by a single author is 1 % of the total number of key-
words. As we experimented with different number of nodes, we observe that the query
execution efficiency and the benefit of the bind join scale well when the number of
nodes increases. This is also observed in the rest of the queries.

Multistore Big Data Integration with CloudMdsQL 67

-- Query 0
SELECT p.author, p.title, e.kw, e.expert
FROM publications p, experts e
WHERE p.author = 'author1'
 AND e.kw IN p.keywords

Query 1, as already introduced in Sect. 5, involves all the data stores and aims at
finding experts for publications of authors with a certain affiliation. This makes a selec-
tivity factor of 10 % for the bind join, as there are 10 authors per affiliation. In addition,we
explore another variant of the query, filtered to three affiliations, or 30 % selectivity factor
of the bind join. We enumerate the two variants as Query 1.1 and Query 1.2.

-- Query 1.1: selectivity factor 10%
SELECT p.author, p.title, e.kw, e.expert
FROM scientists s, publications p, experts e
WHERE s.affiliation = 'affiliation1'
 AND p.author = s.name AND e.kw IN p.keywords

-- Query 1.2: selectivity factor 30%
SELECT p.author, p.title, e.kw, e.expert
FROM scientists s, publications p, experts e
WHERE s.affiliation IN ('affiliation1', 'affiliation2', 'affiliation3')
 AND p.author = s.name AND e.kw IN p.keywords

68 C. Bondiombouy et al.

Query 2 does the same as Query 1, but uses the MFR subquery experts_alt,
which uses more sophisticated map functions, but makes only one shuffle, where the
key is a keyword. For comparison, the MFR expression experts makes two shuffles,
of which the first one uses a bigger key, composed of a keyword-author pair. Therefore,
the corresponding Spark computation of Query 2 involves much smaller size of data to
be shuffled compared to Query 1, which explains its better overall efficiency and higher
relative benefit of using bind join. Like with Query 1, we explore two variants with
different selectivity factors of the bind join condition.

-- Query 2.1: selectivity factor 10%
SELECT p.author, p.title, e.kw, e.expert
FROM scientists s, publications p, experts_alt e
WHERE s.affiliation = 'affiliation1'
 AND p.author = s.name AND e.kw IN p.keywords

-- Query 2.2: selectivity factor 30%
SELECT p.author, p.title, e.kw, e.expert
FROM scientists s, publications p, experts_alt e
WHERE s.affiliation IN ('affiliation1', 'affiliation2', 'affiliation3')
 AND p.author = s.name AND e.kw IN p.keywords

This experimental evaluation illustrates the query engine’s ability to perform
optimization and choose the most efficient execution plan. The results show the sig-
nificant benefit of performing bind join in our experimental scenario, despite the
overhead it produces (see Sect. 4.3).

7 Related Work

The problem of accessing heterogeneous data sources has long been studied in the
context of multidatabase and data integration systems [16]. The typical solution is to
provide a common data model and query language to transparently access data sources
through a mediator, thus hiding data source heterogeneity and distribution.

Multistore Big Data Integration with CloudMdsQL 69

The main requirements for a common query language (and data model) are support
for nested queries, schema independence, and data-metadata transformation [22].
Nested queries allow queries to be arbitrarily chained together in sequences, so the
result of one query (for one data store) may be used as the input of another (for another
data store). Schema independence allows the user to formulate queries that are robust in
front of schema evolution. Data-metadata transformation is important to deal with
heterogeneous data models. To satisfy these requirements, several functional SQL-like
languages have been introduced, with Functional SQL [20] being the first of them.
More recently, FunSQL [3] has been proposed for the cloud, to allow shipping the code
of an application to its data.

With respect to combining SQL and map/reduce operators, a number of SQL-like
query languages have been recently introduced. HiveQL is the query language of the
data warehousing solution Hive, built on top of Hadoop MapReduce [18]. Hive gives a
relational view of HDFS stored unstructured data. HiveQL queries are decomposed to
relational operators, which are then compiled to MapReduce jobs to be executed on
Hadoop. In addition, HiveQL allows custom scripts, defining MapReduce jobs, to be
referred in queries and used in combination with relational operators. SCOPE [6] is a
declarative language from Microsoft designed to specify the processing of large
sequential files stored in Cosmos, a distributed computing platform. SCOPE provides
selection, join and aggregation operators and allows the users to implement their own
operators and user-defined functions. SCOPE expressions and predicates are translated
into C#. In addition, it allows implementing custom extractors, processors and reducers
and combining operators for manipulating rowsets. SCOPE has been extended to
combine SQL and MapReduce operators in a single language [24]. These systems are
used over a single distributed storage system and therefore do not address the problem
of integrating a number of diverse data stores.

To access heterogeneous databases, the mediator/wrapper architecture has several
advantages. First, the specialized components of the architecture allow the various
concerns of different kinds of users to be handled separately. Second, mediators typ-
ically specialize in a related set of data sources with “similar” data, and thus export
schemas and semantics related to a particular domain. The specialization of the com-
ponents leads to a flexible and extensible distributed system. In particular, it allows
seamless integration of different data stored in very different data sources, ranging from
full-fledged relational databases to simple files. DISCO [19] is a data integration system
for accessing Web data sources, using an operator-based approach. It combines a
generic cost model with specific cost information provided by the data source wrap-
pers, thus allowing flexible cost estimation.

More recently, with the advent of cloud databases and big data processing
frameworks, multidatabase solutions have evolved towards multistore systems that
provide integrated access to a number of RDBMS, NoSQL and HDFS data stores
through a common query engine. We can divide multistore systems between
loosely-coupled, tightly-coupled and hybrid.

Loosely-coupled multistore systems are reminiscent of multidatabase systems in
that they can deal with autonomous data stores, which can then be accessed through the
multistore system common interface as well as separately through their local API. Most
loosely-coupled systems support only read-only queries. Loosely-coupled multistore

70 C. Bondiombouy et al.

systems follow the mediator/wrapper architecture with several data stores (e.g. NoSQL
and RDBMS). BigIntegrator [14] integrates data from cloud-based NoSQL big data
stores, such as Google’s Bigtable, and relational databases. The system relies on
mapping a limited set of relational operators to native queries expressed in GQL
(Google Bigtable query language). With GQL, the task is achievable because it rep-
resents a subset of SQL. However, it only works for Bigtable-like systems and cannot
integrate data from HDFS. QoX [17] integrates data from RDBMS and HDFS data
stores through an XML common data model. It produces SQL statements for relational
data stores, and Pig/Hive code for interfacing Hadoop to access HDFS data. The QoX
optimizer uses a dataflow approach for optimizing queries over data stores, with a black
box approach for cost modeling. SQL ++ [15] mediates SQL and NoSQL data sources
through a semi-structured common data model. The data model supports relational
operators and to handle efficiently nested data, it also provides a flatten operator. The
common query engine translates subqueries to native queries to be executed against
data stores with or without schema. All these approaches mediate heterogeneous data
stores through a single common data model. The polystore BigDAWG [9] goes one
step further by defining “islands of information”, where each island corresponds to a
specific data model and its language and provides transparent access to a subset of the
underlying data stores through the island’s data model. The system enables cross-island
queries (across different data models) by moving intermediate datasets between islands
in an optimized way.

Tightly-coupled multistore systems have been introduced with the goal of inte-
grating Hadoop or Spark for big data analysis with traditional (parallel) RDBMSs.
Tightly-coupled multistore systems trade autonomy for performance, typically in a
shared-nothing cluster, taking advantage of massive parallelism. Odyssey [11] enables
storing and querying data within HDFS and RDBMS, using opportunistic materialized
views. MISO [13] is a method for tuning the physical design of a multistore system
(Hive/HDFS and RDBMS), i.e. deciding in which data store the data should reside, in
order to improve the performance of big data query processing. The intermediate
results of query execution are treated as opportunistic materialized views, which can
then be placed in the underlying stores to optimize the evaluation of subsequent
queries. JEN [23] allows joining data from two data stores, HDFS and RDBMS, with
parallel join algorithms, in particular, an efficient zigzag join algorithm, and techniques
to minimize data movement. As the data size grows, executing the join on the HDFS
side appears to be more efficient. Polybase [8] is a feature of Microsoft SQL Server
Parallel Data Warehouse to access HDFS data using SQL. It allows HDFS data to be
referenced through external PDW tables and joined with native PDW tables using SQL
queries. HadoopDB [1] provides Hadoop MapReduce/HDFS access to multiple
single-node RDBMS servers (e.g. PostgreSQL or MySQL) deployed across a cluster,
as in a shared-nothing parallel DBMS. It interfaces MapReduce with RDBMS through
database connectors that execute SQL queries to return key-value pairs. Estocada [5] is
a self-tuning multistore platform for providing access to datasets in native format while
automatically placing fragments of the datasets across heterogeneous stores. For query
optimization, Estocada combines both cost-based and rule-based approaches.

Hybrid systems support data source autonomy as in loosely-coupled systems, and
exploit the local data source interface as in tightly-coupled systems, and typically

Multistore Big Data Integration with CloudMdsQL 71

HDFS through a parallel data processing framework like MapReduce or Spark.
Spark SQL [2] is a parallel SQL engine built on top of Apache Spark and designed to
provide tight integration between relational and procedural processing through a
declarative API that integrates relational operators with procedural Spark code, taking
advantage of massive parallelism. Spark SQL provides a DataFrame API that can map
to relations arbitrary object collections and thus enables relational operations across
Spark’s RDDs and external data sources. In addition, it includes a flexible and
extensible optimizer that supports operator pushdowns to data sources, according to
their capabilities.

Our work fits in the hybrid system category as, similarly to Spark SQL, it uses
Spark API to access the DPF data store, while querying the other stores through an
SQL wrapper. However, it adds value by allowing the ad-hoc usage of user-defined
map/reduce operators directly in MFR subqueries, yet allowing for optimization
through the use of bind join and operator reordering. Furthermore, it does not give up
the underlying data store’s autonomy.

8 Conclusion

In this paper, we proposed a functional SQL-like query language and query engine to
integrate data from relational, NoSQL, and big data stores (such as HDFS). Our query
language can directly express subqueries that can take full advantage of the func-
tionality of the underlying data stores and processing frameworks. Furthermore, it
allows for query optimization, so that the query operator execution sequence specified
by the user may be reordered by taking into account the properties of map/filter/reduce
operators together with the properties of relational operators. Finally, compared with
the related work on multistore systems, our work fits in the hybrid system category.
However, it does not give up data store’s autonomy, thus making our approach more
general.

Our validation demonstrates that the proposed query language achieves the fol-
lowing requirements. First, it provides high expressivity by allowing the ad-hoc usage
of specific map/filter/reduce operators through the MFR notation, as it was demon-
strated with the hdfs subqueries. Second, it is optimizable as was demonstrated
through performing bind join by rewriting the MFR subquery after retrieving the
dataset from the MongoDB database. Finally, it allows for reducing the amount of
processed data during the execution of the MFR sequence by reordering MFR oper-
ators according to the determined rules. Our performance evaluation illustrates the
query engine’s ability to optimize a query and choose the most efficient execution
strategy.

Acknowledgements. This research has been partially funded by the European Commission
under project CoherentPaaS (FP7-611068).

72 C. Bondiombouy et al.

References

1. Abouzeid, A., Badja-Pawlikowski, K., Abadi, D., Silberschatz, A., Rasin, A.: HadoopDB:
an architectural hybrid of MapReduce and DBMS technologies for analytical workloads.
PVLDB 2, 922–933 (2009)

2. Armbrust, M., Xin, R., Lian, C., Huai, Y., Liu, D., Bradley, J., Meng, X., Kaftan, T.,
Franklin, M., Ghodsi, A., Zaharia, M.: Spark SQL: relational data processing in Spark. In:
ACM SIGMOD International Conference on Management of Data, pp. 1383–1394 (2015)

3. Binnig, C., Rehrmann, R., Faerber, F., Riewe, R.: FunSQL: it is time to make SQL
functional. In: EDBT/ICDT Conference, pp. 41–46 (2012)

4. Bondiombouy, C., Kolev, B., Levchenko, O., Valduriez, P.: Integrating big data and
relational data with a functional SQL-like query language. In: Chen, Q., Hameurlain, A.,
Toumani, F., Wagner, R., Decker, H. (eds.) DEXA 2015. LNCS, vol. 9261, pp. 170–185.
Springer, Heidelberg (2015)

5. Bugiotti, F., Bursztyn, D., Deutsch, A., Ileana, I., Manolescu, I.: Invisible glue: scalable
self-tuning multi-stores. In: CIDR Conference (2015)

6. Chaiken, R., Jenkins, B., Larson, P., Ramsey, B., Shakib, D., Weaver, S., Zhou, J.: SCOPE:
easy and efficient parallel processing of massive data sets. PVLDB 1, 1265–1276 (2008)

7. CoherentPaaS project. http://coherentpaas.eu
8. DeWitt, D., Halverson, A., Nehme, R., Shankar, S., Aguilar-Saborit, J., Avanes, A., Flasza,

M., Gramling, M.: Split query processing in Polybase. In: ACM SIGMOD Conference,
pp. 1255–1266 (2013)

9. Duggan, J., Elmore, A.J., Stonebraker, M., Balazinska, M., Howe, B., Kepner, J., Madden,
S., Maier, D., Mattson, T., Zdonik, S.: The BigDAWG polystore system. ACM SIGMOD
Rec. 44(2), 11–16 (2015)

10. Haas, L., Kossmann, D., Wimmers, E., Yang, J.: Optimizing queries across diverse data
sources. In: International Conference on Very Large Databases (VLDB), pp. 276–285
(1997)

11. Hacigümüs, H., Sankaranarayanan, J., Tatemura, J., LeFevre, J., Polyzotis, N.: Odyssey: a
multi-store system for evolutionary analytics. PVLDB 6, 1180–1181 (2013)

12. Kolev, B., Valduriez, P., Bondiombouy, C., Jiménez-Peris, R., Pau, R., Pereira, J.:
CloudMdsQL: querying heterogeneous cloud data stores with a common language. In:
Distributed and parallel databases, pp. 463–503 (2015). http://link.springer.com/article/10.
1007%2Fs10619-015-7185-y

13. LeFevre, J., Sankaranarayanan, J., Hacigümüs, H., Tatemura, J., Polyzotis, N., Carey, M.:
MISO: souping up big data query processing with a multistore system. In: ACM SIGMOD
Conference, pp. 1591–1602 (2014)

14. Minpeng, Z., Tore, R.: Querying combined cloud-based and relational databases. In:
International Conference on Cloud and Service Computing (CSC), pp. 330–335 (2011)

15. Ong, K.W., Papakonstantinou, Y., Vernoux, R.: The SQL ++ semi-structured data model
and query language: a capabilities survey of SQL-on-Hadoop, NoSQL and NewSQL
databases (2014). Corr, abs/1405.3631

16. Özsu, T., Valduriez, P.: Principles of Distributed Database Systems. Springer, New York
(2011)

17. Simitsis, A., Wilkinson, K., Castellanos, M., Dayal, U.: Optimizing analytic data flows for
multiple execution engines. In: ACM SIGMOD Conference, pp. 829–840 (2012)

18. Thusoo, A., Sarma, J.S., Jain, N., Shao, Z., Chakka, P., Anthony, S., Liu, H., Wyckoff, P.,
Murthy, R.: Hive - a warehousing solution over a map-reduce framework. PVLDB 2, 1626–
1629 (2009)

Multistore Big Data Integration with CloudMdsQL 73

http://coherentpaas.eu
http://springerlink.bibliotecabuap.elogim.com/article/10.1007%2Fs10619-015-7185-y
http://springerlink.bibliotecabuap.elogim.com/article/10.1007%2Fs10619-015-7185-y

19. Tomasic, A., Raschid, L., Valduriez, P.: Scaling access to heterogeneous data sources with
DISCO. IEEE Trans. Knowl. Data Eng. 10, 808–823 (1998)

20. Valduriez, P., Danforth, S.: Functional SQL, an SQL upward compatible database
programming language. Inf. Sci. 62, 183–203 (1992)

21. Wiederhold, G.: Mediators in the architecture of future information systems. Computer 25,
38–49 (1992)

22. Wyss, C.M., Robertson, E.L.: Relational languages for metadata integration. ACM Trans.
Database Syst. 30(2), 624–660 (2005)

23. Yuanyuan, T., Zou, T., Özcan, F., Gonscalves, R., Pirahesh, H.: Joins for hybrid
warehouses: exploiting massive parallelism in hadoop and enterprise data warehouses. In:
EDBT/ICDT Conference, pp. 373–384 (2015)

24. Zhou, J., Bruno, N., Wu, M., Larson, P., Chaiken, R., Shakib, D.: SCOPE: Parallel
Databases Meet MapReduce. PVLDB 21, 611–636 (2012)

25. Zhu, Q., Larson, P.-A.: A query sampling method for estimating local cost parameters in a
multidatabase system. In: International Conference on Data Engineering (ICDE), pp. 144–
153 (1994)

26. Zhu, Q., Larson, P.-A.: Global query processing and optimization in the CORDS
multidatabase system. In: International Conference on Parallel and Distributed Computing
Systems, pp. 640–647 (1996)

27. Zhu, Q., Sun, Y., Motheramgari, S.: Developing cost models with qualitative variables for
dynamic multidatabase environments. In: International Conference on Data Engineering
(ICDE), pp. 413–424 (2000)

74 C. Bondiombouy et al.

Ontology Matching with Knowledge Rules

Shangpu Jiang, Daniel Lowd, Sabin Kafle, and Dejing Dou(B)

Department of Computer and Information Science,
University of Oregon, Eugene, USA

{shangpu,lowd,skafle,dou}@cs.uoregon.edu

Abstract. Ontology matching is the process of automatically determin-
ing the semantic equivalences between the concepts of two ontologies.
Most ontology matching algorithms are based on two types of strate-
gies: terminology-based strategies, which align concepts based on their
names or descriptions, and structure-based strategies, which exploit con-
cept hierarchies to find the alignment. In many domains, there is addi-
tional information about the relationships of concepts represented in var-
ious ways, such as Bayesian networks, decision trees, and association
rules. We propose to use the similarities between these relationships to
find more accurate alignments. We accomplish this by defining soft con-
straints that prefer alignments where corresponding concepts have the
same local relationships encoded as knowledge rules. We use a probabilis-
tic framework to integrate this new knowledge-based strategy with stan-
dard terminology-based and structure-based strategies. Furthermore, our
method is particularly effective in identifying correspondences between
complex concepts. Our method achieves better F-score than the state-
of-the-art on three ontology matching domains.

1 Introduction

An ontology is an explicit specification of a conceptualization Gruber (1993)
in a domain. Ontology matching is the process of aligning two semantically
related ontologies in the same domain. Traditionally, this task is performed by
human experts from the domain of the ontologies. Since the task is tedious and
error prone, especially in large ontologies, there has been substantial work on
developing automated or semi-automated ontology matching systems (Shvaiko
and Jerome 2013). While some automated matching systems make use of data
instances (e.g., Doan et al. (2004)), in this paper we focus on the schema-level
ontology matching task, in which no data instance is used.

Previous automatic ontology matching systems mainly use two classes of
strategies. Terminology-based strategies discover corresponding concepts with
similar names or descriptions. Structure-based strategies discover corresponding
groups of concepts with similar hierarchies. In many cases, additional informa-
tion about the relationships among the concepts is available through domain
models, such as Bayesian networks, decision trees, and association rules. A
domain model can be represented as a collection of knowledge rules, each of
which denotes a semantic relationship among several concepts. These relation-
ships may be complex, uncertain, and rely on imprecise numeric values. In this
c© Springer-Verlag Berlin Heidelberg 2016
A. Hameurlain et al. (Eds.): TLDKS XXVIII, LNCS 9940, pp. 75–95, 2016.
DOI: 10.1007/978-3-662-53455-7 4

76 S. Jiang et al.

paper, we introduce a new knowledge-based strategy, which uses the structure of
these knowledge rules as (soft) constraints on the alignment.

As a motivating example, consider two ontologies in the basketball game
domain. One ontology has datatype properties height, weight, center, forward
and guard for players, while the other ontology has the corresponding datatype
properties h, w, and position. Terminology-based strategies may not identify
these correspondences. However, if we know that a large value of height implies
center is true in the first ontology, and the same relationship holds for h and
position = Center in the second ontology, then we tend to believe that height
maps to h and center maps to position = Center.

We use Markov logic networks (MLNs) Domingos and Lowd (2009) as a prob-
abilistic language to combine the knowledge-based strategy with other strategies,
in a formalism similar to that of Niepert et al. (2010). In particular, we encode
the knowledge-based strategy with weighted formulas that increase the probabil-
ity of alignments where corresponding concepts have isomorphic relationships.
We use an MLN inference engine to find the most likely alignment. We name
our method Knowledge-Aware Ontology Matching (KAOM).

Our approach is also capable of identifying complex correspondences, an
extremely difficult task in ontology matching. A complex correspondence is
a correspondence between a simple concept and a complex concept (e.g.,
grad student maps to the union of PhD and Masters). This can be achieved by
constructing a set of complex concepts (e.g., unions of concepts) in each ontology,
subsequently generating candidate complex correspondences, and using multiple
strategies – including the knowledge-based strategy – to find the correct ones.

The contributions of this work are as follows:

– We show how to represent common types of domain models as knowledge
rules, and how to use these knowledge rules to obtain more accurate ontology
alignments. We combine the knowledge-based strategy with terminological and
structural strategies using Markov logic, a coherent probabilistic model.

– By incorporating complex concepts, our approach is also capable of discovering
complex correspondences, which is a very difficult scenario in the ontology
matching task.

– Our approach is especially effective in identifying the correspondences of
numerical or nominal datatype properties as well. This has been very diffi-
cult for most schema-level ontology matching approaches.

This paper is an extended version of Jiang et al. (2015). Besides providing
more details in background and related work, we have added more ontologies and
much more experimental results to show the effectiveness and advantages of our
KAOM approach. In the census domain, we added another ontology “pums90” in
addition to “adult” and “income”, so we have 3 pairs of ontologies for matching
instead of 1 pair. We show that our method outperforms the baseline in recall and
F1 score in all 3 ontology matching tasks. In the conference domain, we added
another 2 ontologies to the original 5, and we have 21 pairs of ontologies instead
of 10 pairs. In total, we have added 13 new pairs of ontology matching tasks

Ontology Matching with Knowledge Rules 77

which basically double the experimental results compared with the conference
version of our paper. In general, we show that our method not only outperforms
the baseline method that does not use knowledge-based information, but also
outperforms two state-of-the-art systems in terms of recall and F1, especially in
tasks that automatically discover complex correspondences.

The paper is organized as follows. In Sect. 2, we define ontology matching
and review previous work. In Sect. 3, we introduce the concept of “knowledge
rules” with a definition and examples. In Sect. 4, we present the knowledge-
based strategy. In Sect. 5, we show how to incorporate complex concepts in our
method. In Sect. 6, we formalize our method with Markov logic networks. We
present experimental results in Sect. 7 and conclude in Sect. 8.

2 Background and Related Work

In AI, an ontology is an explicit specification of a conceptualization (Gruber 1993)
in a domain. This conceptualization provides a formal knowledge representation
through concepts from a domain, and relationships between these concepts. The
term ontology comes from philosophy, where it corresponds to the study of exis-
tence or reality, and as Gruber points out “For knowledge-based systems, what
exists is exactly that which can be represented” (Gruber 1993). Through con-
cepts, individuals of these concepts, relationships, and constraints, an ontology
provides a vocabulary and a model of the domain it represents. Because of this
domain model, it is possible to perform inference. In this work, we consider
Description Logic based ontologies, as those described through the Web Ontol-
ogy Language (OWL). OWL is the standard ontology language proposed by the
World Wide Web Consortium (W3C).

In the same domain, people may develop different ontologies or database
schemas for their own applications. Therefore, identifying the corresponding enti-
ties of different knowledge base or database systems has been a crucial step for
semantic integration problems, e.g., ontology translation and ontology merging
in the AI community (Noy 2004), and data translation, data integration (Doan
and Halevy 2005) and data exchange (Kolaitis 2005) in the database community.

In this work, we will focus on ontologies that are described by OWL. Given
two OWL ontologies, a formal definition of ontology matching is given as follows.

Definition 1 (Ontology Matching (Euzenat and Shvaiko 2007)). Given two
ontologies O1 and O2, a correspondence is a 3-tuple 〈e1, e2, r〉 where e1 and e2
are entities of the first and second ontologies respectively, and r is a semantic
relationship such as equivalence (≡) and subsumptions (� or �). An alignment
is a set of correspondences. Ontology matching is the task or process of identi-
fying the correct semantic alignment between the two ontologies. In most cases,
ontology matching focuses on equivalence relationships only.

Automatic or semi-automatic matching discovery has received a lot of atten-
tion in recent years in both AI and database communities, such as the approaches
described in Shvaiko and Jerome 2013, Rahm and Bernstein 2001. In fact, an

78 S. Jiang et al.

ontology and a database schema share many common features, as they both
essentially define a vocabulary of concepts/entities and the relationships and con-
straints among them. Therefore, the approaches for automatic schema matching
and ontology matching are similar as well.

Most existing ontology matching and schema matching systems mainly
use two types of strategies: terminology-based and structure-based strategies
(Shvaiko and Jerome 2013). Terminology-based strategies for ontology match-
ing are based on terminological similarity of concepts and relationships, such
as string-based or linguistic similarity measures. Structure-based strategies are
based on the assumption that two matching ontologies should have similar local
structures, where the structure is represented by subsumption relationships of
classes and properties, and domains and ranges of properties. Advanced ontology
matching systems often combine the two types of strategies, e.g., PROMPT (Noy
and Musen 2000), CUPID (Madhavan et al. 2001), Similarity Flooding (Melnik
et al. 2002), iMatch (Albagli et al. 2009) and PRIOR+ (Mao et al. 2010).

Recently, a probabilistic framework based on Markov logic was proposed to
combine multiple strategies (Niepert et al. 2010). In particular, it encodes mul-
tiple strategies and heuristics into hard and soft constraints of Markov logic,
and finds the best matching by minimizing the weighted number of violated
constraints. The constraints include string similarity, the cardinality constraints
which enforce that each concept matches at most one concept, the coherence con-
straints which prevent inconsistency induced by the matching, and the stability
constraints which penalize dissimilar local subsumption relationships.

Definition 2 (Complex Correspondences). A complex concept is a com-
position (e.g., unions, complements) of one or more simple concepts. In OWL1,
there are several constructors for creating complex classes and properties (see
the top part of Table 1 for an incomplete list of constructors). A complex corre-
spondence is an equivalence relationship between a simple class or property and
a complex class or property in two ontologies (Ritze et al. 2008).

Previous work has taken several different approaches to find complex corre-
spondences (i.e., complex matching). iMap (Dhamankar et al. 2004) employs a
set of searchers, each specialized in certain types of complex correspondences con-
taining operators for primitive classes, such as string concatenation or arithmetic
operations on numbers, and uses beam search to reduce the search space. One
characteristic of iMap is that it generates explanations for matchings, but it needs
domain knowledge to evaluate candidate matchings. Ritze et al. (2008) gener-
ate complex correspondences based on linguistic and structural features given a
candidate one-to-one alignment. They summarize four patterns of complex cor-
respondences: Class by Attribute Type (CAT), Class by Inverse Attribute Type
(CIAT), Class by Attribute Value (CAV), and Property Chain pattern (PC). For
example, there are two conditions for a CAT matching pattern O1 : a ≡ O2 : ∃p.b:
a and b are terminologically similar, and the domain of p is a superclass of a.

1 http://www.w3.org/TR/owl2-primer/.

http://www.w3.org/TR/owl2-primer/

Ontology Matching with Knowledge Rules 79

An et al. (2005a; 2005b) provide interesting methods to construct complex
mapping rules between relational tables or XML data and ontologies when given
an initial set of correspondences between the concepts in the schemas and ontolo-
gies. They offer the mapping formalisms to capture the semantics of XML or
relational schemas by constructing the semantic trees from them. Their gener-
ated rules will be useful to domain experts for further refinement, as well as to
applications. Finally, when aligned or overlapping data is available, inductive
logic programming (ILP) techniques can be used as well (Hu et al. 2011, Qin
et al. 2007).

Many ontology matching or schema matching systems make use of data
instances to some extent (Dhamankar et al. 2004, Doan et al. 2002, Hu et al. 2011,
Qin et al. 2007). For instance, GLUE (Doan et al. 2002) employs machine learning
and exploits data instances to find matchings between concepts. However, in this
paper, we focus on the case where data are not available or data sharing is not
preferred because of communication cost or privacy concerns.

3 Representation of Domain Knowledge

In the AI community, knowledge is typically represented in formal languages,
among which ontology-based languages are the most widely used forms. As we
mentioned, the Web Ontology Language (OWL) is the W3C standard ontology
language that describes the classes and properties of objects in a specific domain.
OWL and many other ontology languages are based on variations of description
logics. In ontology languages such as OWL, knowledge is represented as logic
axioms. These axioms describe properties of classes or relationships (e.g., a rela-
tionship is functional, symmetric, or antisymmetric, etc.), or a relationship of
several entities (e.g., the relationship ‘grandfather’ is the composition of the two
relationships ‘father’ and ‘parent’).

The choice of using description logic as the foundation of the Semantic Web
ontology languages is largely due to the trade-off between expressivity and rea-
soning efficiency. In tasks such as ontology matching, reasoning does not need
to be instant, so we can afford to consider other forms of knowledge outside of
a specific ontology language or description logic.

Definition 3 (Knowledge Rule). A knowledge rule is a sentence R(a, b, . . . ; θ)
in a formal language which consists of a relationship R, a set of entities (i.e.,
classes, attributes or relationship) {a, b, . . .}, and (optionally) a set of parameters
θ. A knowledge rule carries logical or probabilistic semantics representing the rela-
tionship among these entities. The specific semantics depend on R.

Many domain models and other types of knowledge can be represented as
sets of knowledge rules, each rule describing the relationship of a small number
of entities. The semantics of each relationship R can typically be expressed with
a formal language. Table 1 shows some examples of the symbols used in formal
languages such as description logic, along with their associated semantics.

80 S. Jiang et al.

Table 1. Syntax and semantics of DL symbols (top), DL axioms (middle), and other
knowledge rules used in the examples of the paper (bottom)

Syntax Semantics

� D
⊥ ∅
C � D CI ∩ DI

C � D CI ∪ DI

¬C D\CI

∀R.C {x ∈ D|∀y((x, y) ∈ RI → y ∈ CI)}
∃R.C {x ∈ D|∃y((x, y) ∈ RI ∧ y ∈ CI)}
R ◦ S {(x, y)|∃z((x, z) ∈ RI ∧ (z, y) ∈ SI)}
R− {(x, y)|(y, x) ∈ RI}
R � C {(x, y) ∈ RI |x ∈ CI}
R � C {(x, y) ∈ RI |y ∈ CI}
C � D CI ⊆ DI

C � ¬D CI ∩ DI = ∅
R ≺ S y < y′ for ∀(x, y) ∈ RI ∧ (x, y′) ∈ SI

C ⇒ D Pr(DI |CI) is close to 1

We illustrate a few forms of knowledge rules with the following examples.
For each rule, we provide a description in English, a logical representation, and
an encoding as a knowledge rule with a particular semantic relationship, Ri. We
define a new relationship in each example, but, in a large domain model, most
relationships would be appear many times in different rules.

Example 1. The submission deadline precedes the camera ready deadline:

paperDueOn ≺ manuscriptDueOn

This is represented as R1(paperDueOn, manuscriptDueOn) with R1(a, b) : a ≺ b.

Example 2. A basketball player taller than 81 in. and heavier than 245 pounds
is likely to be a center:

h > 81 ∧ w > 245 ⇒ pos = Center

This rule can be viewed as a branch of a decision tree or an association rule.
It can be represented as R2(h, w, pos=Center, [81, 245]), with R2(a, b, c, θ) : a >
θ1 ∧ b > θ2 ⇒ c.

Example 3. A smoker’s friend is likely to be a smoker as well:

Smokes(x) ∧ Friend(x, y) ⇒ Smokes(y)

Ontology Matching with Knowledge Rules 81

Relational rules such as this one describe relationships of attributes across mul-
tiple tables, as opposed to propositional data mining rules that are restricted
to a single table. This rule can be represented as R3(Smokes, Friend) with
R3(a, b) : a(x) ∧ b(x, y) ⇒ a(y).

For the remainder of this paper, we will assume that the knowledge in both
ontologies is represented as knowledge rules, as described in this section.

4 Our New Knowledge-Based Strategy

We propose a new strategy for ontology matching that uses the similarity of
knowledge rules in the two ontologies. It is inspired by the structure-based strat-
egy in many ontology matching algorithms (e.g., (Melnik et al. 2002 and Niepert
et al. 2010)). It naturally extends the subsumption relationship of entities in
structure-based strategies to other types of relationships.

We use Markov logic to combine the knowledge-based strategy with other
strategies. In particular, each strategy is represented as a set of soft constraints,
each of which assigns a score to the alignments satisfying it, and the alignment
with the highest total score is chosen as the best alignment. We now describe the
soft constraints encoding the knowledge-based strategy. Our complete Markov
logic-based approach, including the soft constraints required for the other strate-
gies, will be described in Sect. 6.

For each relationship Rk that appears in both domains, we introduce a set
of soft constraints so that the alignments that preserve these relationships are
preferred to those that do not:

+wk Rk(a, b) ∧ ¬Rk(a′, b′) ⇒ a �≡ a′ ∨ b �≡ b′

+w′
k Rk(a, b) ∧ Rk(a′, b′) ⇒ a ≡ a′ ∧ b ≡ b′

∀a, b ∈ O1, a
′, b′ ∈ O2

These formulas assume Rk is a binary relationship, but they trivially gen-
eralize to any arity, e.g., Rk(a, b, c, d, e, . . .). Note that separate constraints are
created for each possible tuple of constants from the respective domains. The
numbers preceding the constraints (wk and w′

k) are the weights. A larger weight
represents a stronger constraint, since alignments are ranked based on the total
weights of the constraints they satisfy. A missing weight means the constraint is
a hard constraint which must be satisfied.

Example 4. A reviewer of a paper cannot be the paper’s author. In the cmt2

ontology we have R4(writePaper, readPaper) and in the confOf ontology we
have R4(write, reviews) where R4(a, b) : a � ¬b is the disjoint relationship of
properties. Applying the constraint formulas defined above, we increase the score
of all alignments containing the two correct correspondences: writePaper ≡
writes and readPaper ≡ reviews.
2 Throughout the paper, we will use ontologies in the conference domain (cmt, confOf,
conference, edas, ekaw) and the NBA domain (nba-os, yahoo) in our examples. The
characteristics of these ontologies will be further described in Sect. 7.

82 S. Jiang et al.

Rules involving continuous numerical attributes often include parameters
(e.g., thresholds in Example 2) that do not match between different ontologies.
In order to apply the knowledge-based strategy to numerical attributes, we make
the assumption that corresponding numerical attributes roughly have a positive
linear transformation. This assumption is often true in real applications, for
instance, when an imperial measure of height matches to a metric measure of
height. We propose two methods to handle numerical attributes.

The first method is to compute a distance measure (e.g., Kullback-Leibler
divergence) between the distributions of the corresponding attributes in a can-
didate alignment. Although the two distributions describe different attributes,
the distance can be computed by assuming a linear transformation between the
two attributes. The coefficients of the mapping relationship can be roughly esti-
mated using the ranges of attribute values appearing in the knowledge rules (see
Example 5 below).

Specifically, if the distance between rules R(a, b, . . . , θ) and R(a’, b’, . . . , θ′)
is d, then we add the constraint:

a ≡ a′ ∧ b ≡ b′ ∧ c ≡ c′

with a weight of max(d0 − d, 0) for a given threshold d0.

Example 5. In the nba-os ontology, we have conditional rules converted from a
decision tree, such as

h > 81 ∧ w > 245 ⇒ Center

Similarly, in the nbayahoo ontology, we have

h’ > 2.06 ∧ w’ > 112.5 ⇒ Center’

Here the knowledge rules represent the conditional distributions of multiple enti-
ties. We define the distance between the two conditional distributions as

d(h, w, Center; h’, w’, Center’) =Ep(h,w)d(p(Center|h, w)||p(Center’|h’, w’))

where E(·) is expectation and d(p||p′) is a distance measure. Because Center and
Center′ are binary attributes, we simply use |p−p′| as the distance measure. For
numerical attributes, we can use the difference of two distribution histograms
as the distance measure. We assume the attribute correspondences (h and h’, w
and w’) are linear mappings, and the linear relation can be roughly estimated
(e.g., by simply matching the minimum and maximum numbers in these rules).
When computing the expectation over h and w, we apply the linear mapping to
generate corresponding values of h’ and w’, e.g., h’ = 0.025 h, w’ = 0.45 w.
The distribution of the conditional attributes p(h, w) can be roughly estimated
as independent and uniform over the ranges of the attributes.

The second method for handling continuous attributes is to discretize them,
reducing the continuous attribute problem to the discrete problem described
earlier. For example, suppose each continuous attribute x is replaced with a

Ontology Matching with Knowledge Rules 83

discrete attribute xd, indicating the quartile of x rather than its original value.
Then we have R5(hd, wd, Center) and R5(h’d, w’d, Center’) with relationship
R5(a, b, c) : a = 4 ∧ b = 4 ⇒ c, and the discrete value of 4 indicates that both a
and b are in the top quartile. Other discretization methods are also possible, as
long as the discretization is done the same way in both domains.

Our method does not rely on the forms of knowledge rules, nor does it rely
on the algorithms used to learn these rules. As long as similar techniques or tools
are used on both sides of ontologies, we would always be able to find interesting
knowledge-based similarities between the two ontologies.

5 Finding Complex Correspondences

Our approach can also find complex correspondences, which contain complex
concepts in either or both of the ontologies. We add the complex concepts into
consideration and treat them the same way as simple concepts. Then we jointly
solve all the simple and complex correspondences by considering terminology,
structure, and knowledge-based strategies in a single probabilistic formulation.

First, because complex concepts may be recursively defined and potentially
infinite, we need to select a finite subset of complex concepts and use them
to generate the candidate correspondences. We will only include the complex
concepts occurring in the ontology axioms or in the knowledge rules.

Second, we need to define a string similarity measure for each type of com-
plex correspondence. For example, Ritze et al. (2008) requires two conditions for
a Class by Attribute Type (CAT) matching pattern O1 : a ≡ O2 : ∃p.b (e.g., a =
Accepted Paper, p = hasDecision, b =Acceptance): a and b are terminologically
similar, and the domain of p (Paper in the example) is a superclass of a. We can
therefore define the string similarity of a and ∃p.b to be the string similarity of a
and b which coincides with the first condition, and the second condition is encoded
in the structure stability constraints. The string similarity measure of many other
types of correspondences can be defined similarly based on the heuristic method
in Ritze et al. (2008). If there does not exist a straight-forward way to define the
string similarity for a certain type of complex correspondences, we can simply set
it to 0 and rely on other strategies to identify such correspondences.

Lastly, we need constraints for the correspondence of two complex concepts.
The corresponding component concepts and same constructor always implies
the corresponding complex concepts, while in the other direction, it is a soft
constraint.

consk(a, b) ≡ consk(a′, b′) ⇐ a ≡ a′ ∧ b ≡ b′

+wc
k consk(a, b) ≡ consk(a′, b′) ⇒ a ≡ a′ ∧ b ≡ b′

where consk are different constructors for complex concepts, e.g., union, ∃p.b.
Some complex correspondences are almost impossible to be identified with

traditional strategies. With the knowledge-based strategy, it becomes possible.

84 S. Jiang et al.

Example 6. A reviewer of a paper cannot be the paper’s author. In the cmt
ontology we have

writePaper � ¬readPaper
and in the conference ontology we have

contributes � Reviewed contribution � ¬(contributes ◦ reviews)

We first build two complex concepts contributes � Reviewed contribution
and contributes ◦ reviews. With R4(a, b) = a � ¬b (disjoint properties), the
score function would favor the correspondences

writePaper ≡ contributes � Reviewed contribution

readPaper ≡ contributes ◦ reviews

6 Knowledge Aware Ontology Matching

In this section, we present our approach, Knowledge Aware Ontology Matching
(KAOM). KAOM uses Markov logic networks (MLNs) to solve the ontology
matching task. The MLN formulation is similar to Nieper et al. (2010) but
incorporates the knowledge-based matching strategy and treatment of complex
correspondences.

An MLN (Domingos and Lowd 2009) is a set of weighted formulas in first-
order logic. Given a set of constants for individuals in a domain, an MLN induces
a probability distribution over Herbrand interpretations or “possible worlds”. In
the ontology matching problem, we represent a correspondence in first-order logic
using a binary relationship, match(a1,a2), which is true if concept a1 from the
first ontology is semantically equivalent to concept a2 from the second ontol-
ogy (e.g., match(writePaper, writes) means writePaper ≡ writes). Each
possible world therefore corresponds to an alignment of the two ontologies. We
want to find the most probable possible world, which is the configuration that
maximizes the sum of weights of satisfied formulas.

We define three components of the MLN of the ontology matching problem:
constants, evidence and formulas. The logical constants are the entities in both
ontologies, including the simple named ones and the complex ones. The evidence
includes the complete set of OWL-supported relationships (e.g., subsumptions
and disjointness) among all concepts in each ontology, and rules represented as
first-order atomic predicates as described in the Sect. 3. We use an OWL reasoner
to create the complete set of OWL axioms.

For the formulas, we begin with a set of formulas adapted from Nieper
et al. (2010):

1. A-priori similarity is the string similarity between all pairs of concepts:

sa,a′ match(a, a′)

Ontology Matching with Knowledge Rules 85

where sa,a′ is the string similarity between a and a′, which also serves as the
weight of the formula. We use the Levenshtein measure (Levenshtein 1966)
for simple correspondences. This atomic formula increases the probability of
matching pairs of concepts with similar strings, all other things being equal.

2. Cardinality constraints enforce one-to-one simple (or complex) correspon-
dences:

match(a, a′) ∧ match(a, a′′) ⇒ a′ = a′′

3. Coherence constraints enforce consistency of subclass relationships:

match(a, a′) ∧ match(b, b′) ∧ a � b ⇒ a′ � ¬b′

4. Stability constraints enforce consistency of the subclass relationships between
the two ontologies. They can be viewed as a special case of the knowledge-
based constraints we introduce below.

Knowledge-Based Constraints. We now describe how we incorporate
knowledge-based constraints into the MLN formulation through new formu-
las relating knowledge rules to matchings. The stability constraints in Nieper
et al. (2010) consider three subclass relationships, including a is a subclass of
b (subclass), and a is a subclass or superclass of the domain or range of a
property b (domainsub, rangesub). We extend the relationships (knowledge rule
patterns) to sub-property, disjoint properties, and user-defined relationships such
as ordering of dates, and non-deterministic relationships such as correlation and
anti-correlation:

−wk Rk(a, b, . . .) ∧ ¬Rk(a
′, b′, . . .) ⇒ match(a, a′) ∧ match(b, b′) ∧ . . . , k = 1, . . . , m

(1)

where m is the number of knowledge rule patterns. User-defined relationships
include those derived from decision trees, association rules, expert systems, and
other knowledge sources outside the ontology.

Besides the stability constraints, we introduce a new group of similarity
constraints that encourage knowledge rules with the same pattern to have cor-
responding concepts.

+w′
k Rk(a, b, . . .) ∧ Rk(a

′, b′, . . .) ⇒ match(a, a′) ∧ match(b, b′) ∧ . . . , k = 1, . . . , m
(2)

For numerical rules, we instead use MLN formulas:

d0 − d match(a, a′) ∧ match(b, b′) ∧ . . . , k = 1, . . . ,m (3)

where d is a distance measure of the two rules Rk(a, b, . . .) and R′
k(a

′, b′, ...) and
d0 is a threshold determining whether the rules are similar or not.

To handle complex correspondences, we add complex concepts that occur in
knowledge rules as constants of the MLN, and add knowledge rules that contain

86 S. Jiang et al.

these new complex concepts. We define the string similarity and enforce type
constraints between simple and complex concepts, as described in Sect. 5. For
complex to complex correspondences, the string similarity measure is zero, but
we have constraints

match(a, a′) ∧ match(b, b′) ∧ . . . ⇒match(c, c′)
wc

k match(a, a′) ∧ match(b, b′) ∧ . . . ⇐match(c, c′)

where c = consk(a, b, . . .), c′ = consk(a′, b′, . . .) for each constructor consk.

7 Experiments

We test our KAOM approach on three domains: NBA, census, and conference.
The sizes of the ontologies of these domains are listed in Table 2. These domains
contain very different forms of ontologies and knowledge rules, so we can examine
the generality and robustness of our approach.

We use Pellet (Sirin et al. 2007) for logical inference of the ontological axioms
and TheBeast3 (Riedel 2008) and Rockit4 (Noessner et al. 2013) for Markov logic
inference. We ran all experiments on a machine with 24 Intel Xeon E5-2640
cores @2500 MHz and 8GB memory. We compare our system (KAOM) with
three others: KAOM without the knowledge-based strategy (MLOM), CODI
(Huber et al. 2011) (the same set of formulas as MLOM with a different MLN

Table 2. Number of classes, object properties, data properties and nominal values of
each ontology used in the experiments.

domain ontology # classes # object props # data props # values

NBA nba-os 3 3 20 3

yahoo 4 4 21 7

census adult 1 0 15 101

income 1 0 12 97

pums90 1 0 11 93

OntoFarm cmt 36 50 10 0

confOf 38 13 25 0

conference 60 46 18 6

edas 103 30 20 0

ekaw 78 33 0 0

iasted 133 38 3 0

sigkdd 45 17 11 0

3 http://code.google.com/p/thebeast/.
4 https://code.google.com/p/rockit/. We use RockIt for the census domain because

TheBeast is not able to handle the large number of rules in that domain.

http://code.google.com/p/thebeast/
https://code.google.com/p/rockit/

Ontology Matching with Knowledge Rules 87

implementation), and logmap2 (Jiménez-Ruiz et al. 2012), a top performing
system in OAEI 20145.

We manually specify the weights of the Markov logic formulas in KAOM and
MLOM. The weights of stability constraints for subclass relationships are set
with values same as the ones used in (Niepert et al. 2010), i.e., the weight for
subclass is −0.5, and those for sub-domain and range are −0.25. In KAOM, we
also set the weights for different types of similarity rules based on our assessment
of their relative importance and kept these weights fixed during the experiments.

7.1 NBA

The NBA domain is a simple experiment we use to demonstrate the effective-
ness of our approach. We collected data from the NBA official website and the
Yahoo NBA website. For each ontology, we used the WinMine toolkit6 to learn
a decision tree for each attribute using the other attributes as inputs.

For each pair of conditional distributions based on decision tree with up to
three attributes, we calculate their similarity based on the distance measure
described in Example 5. We use the Markov logic formula (3) with the thresh-
old d0 = 0.2. To make the task more challenging, we did not use any name
similarity measures. Our method successfully identified the correspondence of
all the numerical and nominal attributes, including height, weight and positions
(center, forward and guard) of players. In contrast, without a name similarity
measure, no other method can solve the matching problem at all.

7.2 Census

We consider three census datasets and their ontologies from UC Irvine data
repository7. All three datasets represent census data but are sampled and post-
processed differently. These census ontologies are flat with a single concept but
many datatype properties and nominal values. For this domain, we use associa-
tion rules as the knowledge. We first discretize each numerical attribute into five
intervals, and then generate association rules for each ontology using the Apriori
algorithm with a minimum confidence of 0.9 and minimum support of 0.001. For
example, one generated rule is:

age=’(-inf-25.5]’ education=’11th’ hours-per-week=’(-inf-35.5]’

==> adjusted-gross-income=’<=50K’ conf:(1)

This is represented as

R6(aged, 11th, hours-per-weekd, adjusted-gross-incomed)

where xd refers to the discretized value of x, split into one fifth percentile inter-
vals, and R6(a, b, c, d) : a = 1 ∧ b ∧ c = 1 ⇒ d = 1. For scalability reasons, we
5 http://oaei.ontologymatching.org/2014/.
6 http://research.microsoft.com/en-us/um/people/dmax/WinMine/Tooldoc.htm.
7 https://archive.ics.uci.edu/ml/datasets.html.

http://oaei.ontologymatching.org/2014/
http://research.microsoft.com/en-us/um/people/dmax/WinMine/Tooldoc.htm
https://archive.ics.uci.edu/ml/datasets.html

88 S. Jiang et al.

consider up to three concepts in a knowledge rule, i.e., association rules with
up to three attributes. The weight of knowledge-based constraints are chosen to
balance with the string similarities. For this experiment we set it to 0.01.

In Nieper et al. (2010), only the correspondences with apriori similarity mea-
sure larger than a threshold τ are added as evidence. We set τ with different
values from 0.50 to 0.90. When τ is large, we deliberately discard the string sim-
ilarity information for some correspondences. Our baseline MLOM for this task
is an extension of Nieper et al. (2010) by adding correspondences of nominal
values and their dependencies with the related attributes. The results are shown
in Figs. 1, 2 and 3.

We can see that MLOM outperforms KAOM in terms of precision, while
KAOM always gets better recall and F1-score in all three ontology matching
tasks. This means our approach fully leverages the knowledge rule information

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

0.5 0.6 0.7 0.8 0.9
τ

Prec:KAOM
Recall:KAOM

F1:KAOM
Prec:MLOM

Recall:MLOM
F1:MLOM

Fig. 1. Precision, recall and F1 on the census domain (adult and income ontologies)
as a function of the string similarity threshold τ .

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.5 0.6 0.7 0.8 0.9
τ

Prec:KAOM
Recall:KAOM

F1:KAOM

Prec:MLOM
Recall:MLOM

F1:MLOM

Fig. 2. Precision, recall and F1 on the census domain (adult and pums90 ontologies)
as a function of the string similarity threshold τ

Ontology Matching with Knowledge Rules 89

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

0.5 0.7 0.7 0.8 0.9
τ

Prec:KAOM
Recall:KAOM

F1:KAOM

Prec:MLOM
Recall:MLOM

F1:MLOM

Fig. 3. Precision, recall and F1 on the census domain (pums90 and income ontologies)
as a function of the string similarity threshold τ

and thus does not rely too much on the names of the concepts to determine
the matching. For example, in the adult and income pair, when τ is 0.70,
KAOM finds 6 out of 8 correspondences of values of adult:workclass and
income:class of worker, while MLOM finds none.

For ontology matching task between pums90 and adult ontologies and
between pums90 and income, the corresponding names are even more different.
Yet, KAOM is always successful in finding the mapping between the attribute
yearsch present in pums90 ontology and the attribute education in both adult
and income ontologies. Unsurprisingly, MLOM is also able to obtain mappings
between attributes pob (place of birth) and native-country present in pums90
and adult ontology due to the large number of matches in the nominal val-
ues of both attributes. The difference between the attribute mappings of group
(education, yearsch) and (pob, native-country) is in the nominal values of
the attributes, with the former having dissimilar nominal value sets while the
latter has the exact nominal value sets. This clearly indicate the advantage of
KAOM over MLOM in such cases.

The other two systems, CODI and logmap2, were not designed for nominal
value correspondences. For instance, in the adult and income ontology match-
ing, CODI only finds 7 and logmap2 only finds 3 attribute correspondences,
while KAOM and MLOM find all the 12 attribute correspondences.

7.3 OntoFarm

In order to show how our system can use manually created expert knowledge
bases, we use OntoFarm, a standard ontology matching benchmark for an aca-
demic conference domain as the third domain in our experiments. As part of
OAEI, it has been widely used in the evaluation of ontology matching systems.
We have used 7 of the OntoFarm ontologies (cmt, conference, confOf, edas,
ekaw, iasted, sigkdd) for this experiment. Using their knowledge of computer

90 S. Jiang et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

Prec Recall F1

logmap2
CODI

MLOM
KAOM

Fig. 4. Average precision, recall and F1 on the OntoFarm domain with only the one-
to-one correspondences

science conferences and the structure of just one ontology, two individuals (i.e.,
human experts) listed a number of rules (e.g., Example 1). We then translated
these rules into each of the 7 ontologies. Thus, the same knowledge was added to
each of the ontologies, but its representation depended on the specific ontology.
For some ontologies, some of the rules were not representable with the concepts
in them and thus had to be omitted. This manually constructed knowledge base
was developed before running any experiments and kept fixed throughout our
experiments. Among the 7 ontologies, we have 21 pairs of matching tasks in total.
We set τ to 0.70, and the weight for the knowledge similarity constraints to 1.0.
It is hard to show 21 matching results in figures. We show the average precision,
recall, and F1 measures of 21 matching results from different methods.

We first compare the four methods to the reference one-to-one alignment from
the benchmark (Fig. 4). KAOM has worse precision than the state-of-the-art sys-
tems such as logmap2 and CODI, but has comparable or better recall. It was
able to identify correspondences in which the concept names are very different,
for instance, cmt:readPaper ≡ confOf:reviews. Note that the similarity con-
straints work in concert with other constraints. For instance, in Example 4, since
disjointness is a symmetric knowledge rule, domain and range constraints could
be helpful to identify whether cmt:writePaper should match to confOf:writes
or confOf:reviews.

To evaluate our approach on complex correspondences, we extended the ref-
erence alignment with hand-labeled complex correspondences (Fig. 5). MLOM
does not perform well in this task because the complex correspondences require
a good similarity measure to become candidates (such as the linguistic features
in Ritze et al. (2008)). KAOM, however, uses the structure of the rules to find
many complex correspondences without relying on complex similarity measures.
KAOM also outperforms the logmap2 and CODI in recall and F1, despite that we
do not use any complex linguistic features but merely the Levenshtein similarity.

Ontology Matching with Knowledge Rules 91

 0

 0.2

 0.4

 0.6

 0.8

 1

Prec Recall F1

logmap2
CODI

MLOM
KAOM

KAOM-learn

Fig. 5. Average precision, recall and F1 on the OntoFarm domain with the complex
correspondences.

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.3 0.35 0.4 0.45 0.5 0.55 0.6

Pr
ec

is
io

n

Recall

KAOM
logmap2

CODI

Fig. 6. Average precision-recall curve on the OntoFarm domain with the complex cor-
respondences.

For this task we also tried learning the weights of the formulas8 (KAOM-
learn). For each pair (i.e., 2 ontologies) of the 21 pairs of ontologies, we used the
other 5 ontologies (i.e., 7 in total) as training data. So there are 10 pairs in the
5 ontologies for training. KAOM-learn performs slightly better than KAOM.

With the hand-picked or automatically learned weights, KAOM produces a
single most-likely alignment. However, we can further tune KAOM to produce
alignments with higher recall or higher precision. We accomplish this by adding
the MLN formula match(a, a′) with weight w. When w is positive, alignments
with more matches are more likely, and when w is negative, alignments with
fewer matches are more likely (all other things being equal). We adjusted this
weight to produce the precision-recall curve shown in Fig. 6. KAOM dominates

8 We used MIRA implemented in TheBeast for weight learning.

92 S. Jiang et al.

CODI and provides much higher recall values than logmap2, although logmap2’s
best precision remains slightly above KAOM’s.

7.4 Discussion

In a real world application, we would like to use the KAOM system in the fol-
lowing way. Given two ontologies, such as two ontologies in the business domain,
there are two scenarios that fit KAOM well: (1) If datasets are not available in
either ontology, we only can rely on the knowledge rules from the ontologies,
themselves. (2) If there are some datasets in one or both ontologies, but data
sharing is not preferred because of communication cost or privacy concerns, we
still can utilize data mining in a simple way.

In the first scenario, to map two ontologies, we can use Pellet to automatically
create the complete set of OWL axioms, and then manually represent those OWL
axioms in MLN as the evidence. The translation from OWL axioms to MLN
can be automatic, in such future work, because it is basically a syntax transla-
tion process. Then we can use MLN formulas for A-priori similarity, cardinality
constraints, coherence constraints, stability constraints, and knowledge-based
constraints for the ontology matching process. The knowledge-based constraints
include sub-property, disjoint properties, and user-defined relationships. Repre-
senting user-defined relationships as knowledge-based constraints is a manual
process. If any ontology has some constants, such as named entities or relation-
ships, we will add them into MLN, as well. Then we can run KAOM, with the
support of TheBeast and Rockit, to assign a score to the potential alignment
that satisfies each soft constraint. The alignment with the highest total score
is chosen as the best alignment. We output all alignments with scores that are
higher than a threshold (e.g., 0.8).

In the second scenario, if one or both ontologies may have datasets, we can use
WinMine to generate decision tree rules and association rules. Both rules can
be manually represented as knowledge-based constraints in MLN. Again, this
process can be automatic with a (future) syntax translator; but the selection
of generated decision tree rules or association rules requires a human to make
some judgments. Therefore, it cannot be fully automatic. The other steps, such as
constants, evidence, and constraints from ontologies themselves, are generated in
the same way as in the first scenario. The knowledge-based constraints generated
from data mining provide additional knowledge for KAOM. Then we can run
KAOM, with the support of TheBeast and Rockit, to assign a score to any
potential alignment that satisfies each soft constraint. The alignment with the
highest total score is chosen as the best alignment. We output all alignments
with scores that are higher than the threshold.

Of note: We need to manually specify the weights of the Markov logic formu-
las in KAOM, in the ways explained in the beginning of this section. Although
the experiments are from different domains, we can see that the performance of
KAOM in the second scenario (i.e., NBA and Census) is better than in the first
scenario (i.e., OntoFarm), which does not have any dataset. This is a tradeoff

Ontology Matching with Knowledge Rules 93

between performance and data availability. Even without any dataset, the per-
formance of KAOM in OntoFarm is still satisfiable. In real-world applications,
such as in the business domain, it is very possible that one or both ontologies
would have some datasets. KAOM can take advantage of the data without data
sharing, which most machine learning-based matching approaches, e.g., GLUE,
require. The system can be scaled to larger ontologies (i.e., those with more con-
cepts) than the reported ones, because adding more soft constraints will not make
the inference much harder. If the real world application is extended to database
schema matching, we believe the foreign keys or other integrity constraints can
be presented as knowledge-based constraints in MLN, as well, considering that
the database constraints can be represented as logic rules. Therefore, KAOM
can be applied to database schema matching without any change.

8 Conclusion

We proposed a new ontology matching algorithm KAOM. The key component
of KAOM is the knowledge-based strategy, which is based on the intuition that
ontologies about the same domain should contain similar knowledge rules, in
spite of the different terminologies they use. KAOM is also capable of discov-
ering complex correspondences, by treating complex concepts the same way as
simple ones. We encode the knowledge-based strategy and other strategies in
Markov logic and find the best alignment with its inference tools. Experiments on
the datasets and ontologies from three different domains show that our method
effectively uses knowledge rules of different forms to outperform several state-
of-the-art ontology matching methods.

Acknowledgement. This research is being funded by NSF grant IIS-1118050. The
authors would like to thank the generous comments from the anonymous reviewers.
Their comments have greatly helped improve this research and prepare this paper.

References

OWL Web Ontology Language. http://www.w3.org/TR/owl-ref/
Albagli, S., Shimony, S., Ben-Eliyahu-Zohary, R.: Markov network based ontology

matching. In: Proceedings of the 21st International Joint Conference on Artifi-
cial Intelligence (IJCAI 2009) (2009). https://www.aaai.org/ocs/index.php/IJCAI/
IJCAI-09/paper/view/442/831

An, Y., Borgida, A., Mylopoulos, J.: Inferring complex semantic mappings between
relational tables and ontologies from simple correspondences. In: Meersman, R.,
Tari, Z. (eds.) OTM 2005. LNCS, vol. 3761, pp. 1152–1169. Springer, Heidelberg
(2005a). doi:10.1007/11575801 15

An, Y., Borgida, A., Mylopoulos, J.: constructing complex semantic mappings between
XML data and ontologies. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A.
(eds.) ISWC 2005. LNCS, vol. 3729, pp. 6–20. Springer, Heidelberg (2005b). doi:10.
1007/11574620 4

http://www.w3.org/TR/owl-ref/
https://www.aaai.org/ocs/index.php/IJCAI/IJCAI-09/paper/view/442/831
https://www.aaai.org/ocs/index.php/IJCAI/IJCAI-09/paper/view/442/831
http://dx.doi.org/10.1007/11575801_15
http://dx.doi.org/10.1007/11574620_4
http://dx.doi.org/10.1007/11574620_4

94 S. Jiang et al.

Dhamankar, R., Lee, Y., Doan, A., Halevy, A., Domingos, P.: iMAP: discovering com-
plex semantic matches between database schemas. In: Proceedings of the 2004 ACM
SIGMOD International Conference on Management of Data, pp. 383–394 (2004).
doi:10.1145/1007568.1007612. ISBN:1-58113-859-8

Doan, A., Halevy, A.Y.: Semantic-integration research in the database community.
AI Mag. 26(1), 83–94 (2005). http://dl.acm.org/citation.cfm?id=1090488.1090497,
ISSN:0738-4602

Doan, A., Madhavan, J., Domingos, P., Halevy, A.: Learning to map between ontologies
on the semantic web. In: Proceedings of the 11th International Conference on World
Wide Web, pp. 662–673 (2002). doi:10.1145/511446.51153, ISBN:1-58113-449-5

Doan, A., Madhavan, J., Domingos, P., Halevy, A.: Ontology matching: a machine
learning approach. In: Staab, S., Studer, R. (eds.) Handbook on Ontologies in Infor-
mation Systems, pp. 385–403. Springer, New York (2004)

Domingos, P., Lowd, D., Logic, M.: An Interface Layer for Artificial Intelligence.
Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan &
Claypool, San Rafael (2009). http://books.google.com/books?id=ijqFfoIy T0C,
ISBN:9781598296921

Euzenat, J., Shvaiko, P.: Ontology Matching. Springer-Verlag New York Inc., Secaucus
(2007). ISBN:3540496114

Gruber, T.R.: A translation approach to portable ontology specifications. Knowl.
Acquis. 5(2), 199–220 (1993). doi:10.1006/knac.1993.1008

Hu, W., Chen, J., Zhang, H., Qu, Y.: Learning complex mappings between ontologies.
In: Proceedings of Joint International Semantic Technology Conference, pp. 350–357
(2011)

Huber, J., Sztyler, T., Noessner, J., Meilicke, C.: CODI: combinatorial optimization
for data integration-results for OAEI 2011. In: Ontology Matching, p. 134 (2011)

Jiang, S., Lowd, D., Dou, D.: Ontology matching with knowledge rules. In: Chen, Q.,
Hameurlain, A., Toumani, F., Wagner, R., Decker, H. (eds.) DEXA 2015. LNCS,
vol. 9262, pp. 94–108. Springer, Heidelberg (2015). doi:10.1007/978-3-319-22849-5 7

Jiménez-Ruiz, E., Grau, B.C., Zhou, Y.: LogMap. 2.0: towards logic-based, scalable and
interactive ontology matching. In: Proceedings of the 4th International Workshop
on Semantic Web Applications and Tools for the Life Sciences, SWAT4LS 2011, pp.
45–46 (2012). doi:10.1145/2166896.2166911, ISBN:978-1-4503-1076-5

Kolaitis, P.G.: Schema mappings, data exchange, metadata management. In: Proceed-
ings of the Twenty-Fourth ACM SIGMOD-SIGACT-SIGART Symposium on Prin-
ciples of Database Systems, PODS 2005, pp. 61–75. ACM, New York (2005). doi:10.
1145/1065167.1065176, ISBN:1-59593-062-0

Levenshtein, V.: Binary codes capable of correcting deletions, insertions and reversals.
Soviet Physics Doklady 10, 707 (1966)

Madhavan, J., Bernstein, P.A., Rahm, E.: Generic schema matching with Cupid. In:
The VLDB Journal, pp. 49–58 (2001)

Mao, M., Peng, Y., Spring, M.: An adaptive ontology mapping approach with neural
network based constraint satisfaction. Web Semant. 8(1), 14–25 (2010). doi:10.1016/
j.websem.2009.11.002. ISSN:1570-8268

Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity flooding: a versatile graph match-
ing algorithm. In: Proceedings of Eighteenth International Conference on Data Engi-
neering (2002)

Niepert, M., Meilicke, C., Stuckenschmidt, H.: A probabilistic-logical framework for
ontology matching. In: Fox M., Poole, D. (eds.) Proceedings of the 24th AAAI Con-
ference on Artificial Intelligence, pp. 1413–1418, July 2010

http://dx.doi.org/10.1145/1007568.1007612
http://dl.acm.org/citation.cfm?id=1090488.1090497
http://dx.doi.org/10.1145/511446.51153
http://books.google.com/books?id=ijqFfoIy_T0C
http://dx.doi.org/10.1006/knac.1993.1008
http://dx.doi.org/10.1007/978-3-319-22849-5_7
http://dx.doi.org/10.1145/2166896.2166911
http://dx.doi.org/10.1145/1065167.1065176
http://dx.doi.org/10.1145/1065167.1065176
http://dx.doi.org/10.1016/j.websem.2009.11.002
http://dx.doi.org/10.1016/j.websem.2009.11.002

Ontology Matching with Knowledge Rules 95

Noessner, J., Niepert, M., Stuckenschmidt, H.: RockIt: exploiting parallelism and sym-
metry for MAP inference in statistical relational models. In Proceedings of the
Twenty-Seventh AAAI Conference on Artificial Intelligence (2013). http://www.
aaai.org/ocs/index.php/AAAI/AAAI13/paper/view/6240

Noy, N.F.: Semantic integration: a survey of ontology-based approaches. SIGMOD Rec.
33(4), 65–70 (2004). doi:10.1145/1041410.1041421. ISSN:0163-5808

Noy, N.F., Musen, M.A.: PROMPT: algorithm and tool for automated ontology merg-
ing and alignment. In: Proceedings of the Seventeenth National Conference on Arti-
ficial Intelligence and Twelfth Conference on Innovative Applications of Artificial
Intelligence, pp. 450–455 (2000). http://dl.acm.org/citation.cfm?id=647288.721118,
ISBN:0-262-51112-6

Qin, H., Dou, D., LePendu, P.: Discovering executable semantic mappings between
ontologies. In: Meersman, R., Tari, Z. (eds.) OTM 2007. LNCS, vol. 4803, pp. 832–
849. Springer, Heidelberg (2007). doi:10.1007/978-3-540-76848-7 56

Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.
VLDB J. 10(4), 334–350 (2001). doi:10.1007/s007780100057. ISSN:1066-8888

Riedel, S.: Improving the accuracy and efficiency of MAP inference for Markov logic.
In: Proceedings of the 24th Conference on Uncertainty in Artificial Intelligence (UAI
2008), pp. 468–475 (2008)

Ritze, D., Meilicke, C., Svb-Zamazal, O., Stuckenschmidt, H.: A pattern-based ontol-
ogy matching approach for detecting complex correspondences. In: Ontology Match-
ing (OM 2009), vol. 551 (2008). http://dblp.uni-trier.de/db/conf/semweb/om2009.
html#RitzeMSS08

Shvaiko, P., Jerome, E.: Ontology matching: state of the art and future challenges.
IEEE Trans. Knowl. Data Eng. 25(1), 158–176 (2013). doi:10.1109/TKDE.2011.
253. ISSN:1041-4347

Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: a practical OWL-
DL reasoner. Web Semant. 5(2), 51–53 (2007). doi:10.1016/j.websem.2007.03.004.
ISSN:1570-8268

http://www.aaai.org/ocs/index.php/AAAI/AAAI13/paper/view/6240
http://www.aaai.org/ocs/index.php/AAAI/AAAI13/paper/view/6240
http://dx.doi.org/10.1145/1041410.1041421
http://dl.acm.org/citation.cfm?id=647288.721118
http://dx.doi.org/10.1007/978-3-540-76848-7_56
http://dx.doi.org/10.1007/s007780100057
http://dblp.uni-trier.de/db/conf/semweb/om2009.html#RitzeMSS08
http://dblp.uni-trier.de/db/conf/semweb/om2009.html#RitzeMSS08
http://dx.doi.org/10.1109/TKDE.2011.253
http://dx.doi.org/10.1109/TKDE.2011.253
http://dx.doi.org/10.1016/j.websem.2007.03.004

Regularized Cost-Model Oblivious Database
Tuning with Reinforcement Learning

Debabrota Basu1, Qian Lin1, Weidong Chen1, Hoang Tam Vo3, Zihong Yuan1,
Pierre Senellart1,2(B), and Stéphane Bressan1

1 School of Computing, National University of Singapore, Singapore, Singapore
debabrota.basu@u.nus.edu

2 LTCI, CNRS, Télécom ParisTech, Université Paris-Saclay, Paris, France
pierre.senellart@telecom-paristech.fr

3 SAP Research and Innovation, Singapore, Singapore

Abstract. In this paper, we propose a learning approach to adaptive
performance tuning of database applications. The objective is to validate
the opportunity to devise a tuning strategy that does not need prior
knowledge of a cost model. Instead, the cost model is learned through
reinforcement learning. We instantiate our approach to the use case of
index tuning. We model the execution of queries and updates as a Markov
decision process whose states are database configurations, actions are
configuration changes, and rewards are functions of the cost of configura-
tion change and query and update evaluation. During the reinforcement
learning process, we face two important challenges: the unavailability of
a cost model and the size of the state space. To address the former, we
iteratively learn the cost model, in a principled manner, using regular-
ization to avoid overfitting. To address the latter, we devise strategies to
prune the state space, both in the general case and for the use case of
index tuning. We empirically and comparatively evaluate our approach
on a standard OLTP dataset. We show that our approach is competitive
with state-of-the-art adaptive index tuning, which is dependent on a cost
model.

1 Introduction

In a recent SIGMOD blog entry [23], Guy Lohman asked “Is query optimiza-
tion a ‘solved’ problem?”. He argued that current query optimizers and their
cost models can be critically wrong. Instead of relying on wrong cost models,
Stillger et al. have proposed LEO-DB2, a learning optimizer [40]; its enhanced
performance with respect to classical query optimizers strengthens the claim of
discrepancies introduced by the predetermined cost models. Stillger et al. have
proposed LEO-DB2, a learning optimizer [40]; its enhanced performance with
respect to classical query optimizers strengthens the claim of discrepancies intro-
duced by the predetermined cost models.

This is our perspective in this article: we propose a learning approach to
performance tuning of database applications. By performance tuning, we mean
selection of an optimal physical database configuration in view of the workload.
c© Springer-Verlag Berlin Heidelberg 2016
A. Hameurlain et al. (Eds.): TLDKS XXVIII, LNCS 9940, pp. 96–132, 2016.
DOI: 10.1007/978-3-662-53455-7 5

Regularized Cost-Model Oblivious Database Tuning 97

In general, configurations differ in the indexes, materialized views, partitions,
replicas, and other parameters. While most existing tuning systems and litera-
ture [10,38,39] rely on a predefined cost model, the objective of this work is to
validate the opportunity for a tuning strategy to do without.

To achieve this, we propose a formulation of database tuning as a reinforce-
ment learning problem (see Sect. 3). The execution of queries and updates is
modelled as a Markov decision process whose states are database configurations,
whose actions are configuration changes, and whose rewards are functions of
the cost of configuration change and query/update evaluation. This formulation
does not rely on a preexisting cost model, rather it learns it.

We present a solution to the reinforcement learning formulation that tackles
the curse of dimensionality (Sect. 4). To do this, we reduce the search space by
exploiting the quasi-metric properties of the configuration change cost, and we
approximate the cumulative cost with a linear model. We formally prove that,
assuming such a linear approximation is sound, our approach converges to an
optimal policy for estimating the cost.

We then tackle in Sect. 5 the problem of overfitting: to avoid instability while
learning the cost model, we add a regularization term in learning the cost model.
We formally derive a bound on the total regret of the regularized estimation,
that is logarithmic in the time step (i.e., in the size of the workload).

We instantiate our approach to the use case of index tuning (Sect. 6), devel-
oping in particular optimizations specific to this use case to reduce the search
space. The approaches of Sects. 4 and 5 provide us with two algorithms COREIL
and rCOREIL to solve the index tuning problem.

We use this case to demonstrate the validity of a cost-model oblivious data-
base tuning with reinforcement learning, through experimental evaluation on a
TPC-C workload [30] (see Sect. 7). We compare the performance with the Work
Function Index Tuning (WFIT) algorithm [39]. Results show that our approach
is competitive yet does not need knowledge of a cost model. While the compar-
ison of WFIT with COREIL establishes reinforcement learning as an effective
approach to automatize the index tuning problem, performance of rCOREIL
with respect to COREIL demonstrates that the learning performance is signifi-
cantly enhanced by a crisp estimation of the cost model.

Related work is discussed in Sect. 2.
This article extends a conference publication [6]. In addition to minor edits

and precisions added throughout the paper, the following material is novel: the
discussion of related work on reinforcement learning (Sect. 2.2); the result of
convergence to an optimal policy (Proposition 2) and its proof; the introduction
of regularization (Sect. 5), including bounds on regrets (Theorem1 and Sect. 6.4),
the experimental comparison between regularized and non-regularized versions
of our approach (Sect. 7.4) and the study of the quality of their cost estimators
(Sect. 7.5).

98 D. Basu et al.

2 Related Work

We now review the related work in two areas of relevance: self-tuning databases,
and the use of reinforcement learning for data management applications.

2.1 Automated Database Configuration

Table 1 provides a brief classification of related research in automated database
configuration, in terms of various dimensions: the offline or online nature of
the algorithm (see further), and the physical design aspects being considered by
these works (index selection, vertical partitioning, or mixed design together with
horizontal partitioning and replication).

Offline Algorithms. Traditionally, automated database configuration is con-
ducted in an offline manner. In that approach, database administrators (DBAs)
identify representative workloads from the trace of historical database queries
and updates. That task can be done either manually or with the help of sophis-
ticated tools provided by database vendors. Based on these representative work-
loads, new database configurations are realized: for example, new beneficial
indexes to be created [1,20,45], smart vertical partitioning for reducing I/O costs
[17,22,33], or possibly a combination of index selection, partitioning and repli-
cation for both stand-alone databases [11,13,27] and parallel databases [2,32].

Online Algorithms. Given the increasing complication and agility of database
applications, coupled with the introduction of modern database environments
such as database-as-a-service, the aforementioned manual task of DBAs, though
it can be done at regular times in an offline fashion, becomes even more tedious
and problematic. Therefore, it is desirable to design more automated solutions to
the database design problem that are able to continuously monitor changes in the
workload and react in a timely manner by adapting the database configuration
to the new workload. In fact, the problem of online index selection has been well-
studied in the past [10,12,24,25,39]. Generally, these techniques adopt the same
working model in which the system continuously tracks the incoming queries for
identifying candidate indexes, profiles the benefit of the indexes, and realizes the
ones that are most useful for query execution. Specifically, an online approach to
physical design tuning (index selection) was proposed in [10]. The essence of the

Table 1. Automated physical database design

Index selection Vert. partitioning Mixed

Offline [1,20,45] [17,22,33] Stand-alone:[11,13,27]

Parallel DBs:[2,32]

Online [10,24,25,39] [3,21,36]

Regularized Cost-Model Oblivious Database Tuning 99

algorithm is to progressively choose the optimal plan at each step by using a case-
by-case analysis on the potential benefits that we may lose by not implementing
relevant candidate indexes. That is, each new database configuration is selected
only when a physical change, i.e., creating or deleting an index, would be helpful
in improving system performance. Similarly, a framework for continuous online
physical tuning was proposed in [38] where effective indexes are created and
deleted in response to the shifting workload. Furthermore, the framework is able
to self-regulate its performance by providing explicit mechanism for controlling
the overhead of profiling the benefit of indexes.

One of the key components of an index selection algorithm is profiling
indexes’ benefit, i.e., how to evaluate the cost of executing a query workload
with the new indexes as well as the cost of configuration transition, i.e., creating
and deleting indexes. To realize this function, most of the aforementioned online
algorithms exploit a what-if optimizer [14] which returns such estimated costs.
For examples, the what-if optimizer of DB2 was used in [39], and the what-if
optimizer of SQL Server was employed in [10], while the classical optimizer of
PostgreSQL was extended to support what-if analysis in [38]. However, it is well-
known that invoking the optimizer for estimating the cost of each query under
different configurations is expensive [27]. In this work, we propose an algorithm
that does not require the use of a what-if optimizer while being able to adap-
tively provide a better database configuration in the end, as reported in our
experimental results.

More recently, as column-oriented databases have attracted a great deal of
attention in both academia and industry, online algorithms for automated verti-
cal partitioning becomes critical for such an emerging breed of database systems
[3,21,36]. Specifically, a storage advisor for SAP’s HANA in-memory database
system was proposed in [36] in order to take advantage of both columnar and
row-oriented storage layouts. At the core of that storage advisor is a cost model
which is used to estimate and compare query execution times for different stores.
Similarly, a continuous layout adaptation has been recently been introduced in
[3] with the aim to support multiple storage layouts in a single engine which
is able to adapt to changing data access patterns. The adaptive store monitors
the access patterns of incoming queries through a dynamic window of N queries
and devises cost models for evaluating the workload and layout transformation
cost. Furthermore, in order to efficiently find a near optimal data layout for a
given workload, the hybrid store exploits proper heuristic techniques to prune
the immense search space of alternative data layouts. On the contrary, the algo-
rithm introduced in [21] uses data mining techniques for vertical partitioning
in database systems. The technique is based on closed item sets mining from
a query set and system statistic information at run-time, and hence is able to
automatically detect changing workloads and perform a re-partitioning action
without the need of interaction from DBAs.

Recently, [5,9] have aimed at solving the problem of online index selection
for large join queries and data warehouses. Since both approaches use a pre-
defined cost model, similarly to [39], it renders them susceptible to erroneous

100 D. Basu et al.

estimations of the cost model. In our work, we are removing the effects of errors
made by the cost model by learning it. This gives our approach more robust-
ness and flexibility than cost-model–dependent ones. Moreover, [9] uses genetic
algorithms to optimize the selection of multi-table indexes incrementally. But
genetic algorithms generally performs worse than reinforcement learning [34] in
this kind of dynamic optimization tasks due to its more exploratory nature. In
addition, reinforcement learning agents have a more real-time behaviour than
genetic behaviour. In [5], authors use a heuristics approach where they incre-
mentally look for frequent itemsets in a query workload. With the knowledge
base acquired from there updates, indexes are generated for the frequent item-
sets while eliminating the ones generated for infrequent itemsets. Due to such
greedy behaviour, higher variance and instability is expected than for reinforce-
ment learning approaches where a trade-off between exploration and exploitation
is reached through learning.

Discussion. Compared to the state-of-the-art in online automated database
design, our proposed overall approach is more general and has the potential
to be applied for various problems such as index selection, horizontal/vertical
partitioning design, and in combination with replication as well; we note however
that we experiment solely with index tuning in this article. More importantly,
as our proposed online algorithm is able to learn the estimated cost of queries
gradually through subsequent iterations, it does not need the what-if optimizer
for estimating query cost. Therefore, our proposed algorithm is applicable to
a wider range of database management systems which may not implement a
what-if optimizer or expose its interface to users.

2.2 Reinforcement Learning in Data Management

Reinforcement learning [41] is about determining the best thing to do next under
an evolving knowledge of the world, in order to reach a goal. This goal is com-
monly represented as maximization of the cumulative reward obtained while
performing some actions. Here each action leads to an individual reward and to
a new state, usually in a stochastic manner. Markov decision processes (MDPs)
[29] are a common model for reinforcement learning scenarios. In this model
each action leads to a new state and to a given reward according to a prob-
ability distribution that must be learned. This implies an inherent trade-off
between exploration (trying out new actions leading to new states and to poten-
tially high rewards) and exploitation (performing actions already known to yield
high rewards), a compromise explored in depth in, e.g., the stateless model of
multi-armed bandits [4]. Despite being well-adapted to the modelling of uncer-
tain environments, the use of MDPs in data management applications has been
limited so far. The use of MDP for modelling data cleaning tasks has been
raised in [7]. In that paper, the authors discussed the absence of a straight-
forward technique to do that because of the huge state space. More generally,

Regularized Cost-Model Oblivious Database Tuning 101

the following reasons may explain the difficulties in using reinforcement learning
in data management applications:

(i) As in [7], the state space is typically huge, representing all possible partial
knowledge of the world. This can be phrased as the curse of dimensionality.

(ii) States have complex structures, namely that of the data, or, in our case, of
the database configuration.

(iii) Rewards may be delayed, obtained after a long sequence of state transitions.
This is for example the case in focused Web crawling, which is a data-
centric application domain. Still multi-armed bandits have been successfully
applied [16] to this problem.

(iv) Because of data uncertainty, there may be only partial observability of the
current state. That changes the problem to a partially observable Markov
decision process [43].

The last two issues are fortunately not prevalent in the online tuning problem
discussed here. This lets us formulate online tuning problem as an MDP and
focus on a solution to the first two problems.

3 Problem Definition

Let R be a logical database schema. We can consider R to be the set of its
possible database instances. Let S be the set of corresponding physical database
configurations of instances of R. For a given database instance, two configura-
tions s and s′ may differ in the indexes, materialized views, partitions, replicas,
and other parameters. For a given instance, two configurations will be logically
equivalent if they yield the same results for all queries and updates.

The cost of changing configuration from s ∈ S to s′ ∈ S is denoted by the
function δ(s, s′). The function δ(s, s′) is not necessarily symmetric, i.e., we may
have δ(s, s′) �= δ(s′, s). This property emerges as the cost of changing configura-
tion from s to s′ and the reverse may not be the same. On the other hand, it is
a non-negative function and also verifies the identity of indiscernibles: formally,
δ(s, s′) ≥ 0 and the equality holds if and only if s = s′. Physically this means
that there is no free configuration change. As it is always cheaper to do a direct
configuration change, we get

∀s, s′, s′′ ∈ S δ(s, s′′) ≤ δ(s, s′) + δ(s′, s′′).

This is simply the triangle inequality. As δ exhibits the aforementioned proper-
ties, it is a quasi-metric on S.

Let Q be a workload, defined as a schedule of queries and updates. For
brevity, we refer to both of them as queries. To simplify, we consider the schedule
to be sequential and the issue of concurrency control orthogonal to the current
presentation. Thus, query qt represents the tth query in the schedule, which is
executed at time t.

We model a query qt as a random variable, whose generating distribution
may not be known a priori. It means that qt is only observable at time t.

102 D. Basu et al.

The cost of executing query q ∈ Q on configuration s ∈ S is denoted by the
function cost(s, q). For a given query, the cost function is always positive as the
system have to pay some cost to execute a query.

Let s0 be the initial configuration of the database. At any time t the config-
uration is changed from st−1 to st with the following events in order:

1. Arrival of query qt. We call q̂t the observation of qt at time t.
2. Choice of the configuration st ∈ S based on q̂1, q̂2, . . . , q̂t and st−1.
3. Change of configuration from st−1 to st. If no configuration change occurs at

time t, then st = st−1.
4. Execution of query q̂t under the configuration st.

Thus, the system has to pay the sum of the cost of configuration change and
that of query execution during each transition. Now, we define per-stage cost as

C(st−1, st, q̂t) := δ(st−1, st) + cost(st, q̂t).

We can phrase in other words the stochastic decision process of choosing the
configuration changes as a Markov decision process (MDP) [29] where states are
database configurations, actions are configuration changes, and penalties (neg-
ative rewards) are the per-stage cost of the action. Note that in contrast to
the general framework of MDPs, transitions from one state to another on an
action are deterministic. Indeed, in this process there is no uncertainty associ-
ated with the new configuration when a configuration change is decided. On the
other hand, penalties are stochastic, as they depend on the query which is a
random variable. In the absence of a reliable cost model, the cost of a query in
a configuration is not known in advance. This makes penalties uncertain.

Ideally, the problem would be to find the sequence of configurations that
minimizes the sum of future per-stage costs. We assume an infinite horizon [41],
which means an action will affect all the future states and actions of the system.
But it makes the cumulative sum of future per-stage costs infinite. One practical
way to circumvent this problem is to introduce a discount factor γ ∈ [0, 1).
Mathematically, it makes the cumulative sum of per-stage costs convergent.
Physically, it gives more importance to immediate costs than to costs distant
in the future, which is a practical intuition. Now, the problem translates into
finding the sequence of configurations that minimize a discounted cumulative cost
defined with γ. Under Markov assumption, a sequence of configuration changes
is represented by a function, called policy π : S × Q → S. Given the current
configuration st−1 and a query q̂t, a policy π determines the next configuration
st := π(st−1, q̂t).

We define the cost-to-go function V π for a policy π as:

V π(s) := E

[∞∑

t=1

γt−1C(st−1, st, q̂t)

]
such that

{
s0 = s

st = π(st−1, q̂t), t ≥ 1
(1)

where 0 < γ < 1 is the discount factor. The value of V π(s) represents the expected
cumulative cost for the following policy π from the current configuration s.

Regularized Cost-Model Oblivious Database Tuning 103

Let U be the set of all policies for a given database schema. Our problem can
now be formally phrased as to minimize the expected cumulative cost, i.e., to
find an optimal policy π∗ such that

π∗ := arg min
π∈U

V π(s0)

where the initial state s0 is given.

4 Adaptive Database Tuning

4.1 Algorithm Framework

In order to find the optimal policy π∗, we start from an arbitrary policy π,
compute an estimation of its cost-to-go function, and incrementally attempt to
improve it using the current estimate of the cost-to-go function V for each s ∈ S.
This strategy is known as policy iteration [41] in the reinforcement learning
literature.

Traditionally, policy iteration functions as follows. Assuming the probability
distribution of qt is known in advance, we improve the cost-to-go function V

πt

of the policy πt at iteration t using

V
πt(s) = min

s′∈S

(
δ(s, s′) + E [cost(s′, q)] + γV

πt−1(s′)
)

(2)

We obtain the updated policy as arg minπt∈U V
πt(s). The algorithm ter-

minates when there is no change in the policy. The proof of optimality and
convergence of policy iteration can be found in [28].

Unfortunately, policy iteration suffers from several problems. First, there may
not be any proper model available beforehand for the cost function cost(s, q).
Second, the curse of dimensionality [28] makes the direct computation of V
hard. Third, the probability distribution of queries is not assumed to be known
a priori, making it impossible to compute the expected cost of query execution
E [cost(s′, q)].

Instead, we apply the basic framework shown in Algorithm1. The initial pol-
icy π0 and cost model C0 can be initialized arbitrarily or using some intelligent
heuristics. In line 5 of Algorithm1, we have tried to overcome the issues at the
root of the curse of dimensionality by juxtaposing the original problem with

Algorithm 1. Algorithm Framework
1: Initialization: an arbitrary policy π0 and a cost model C0

2: Repeat till convergence
3: V

πt−1 ← approximate using a linear projection over φ(s)
4: Ct−1 ← approximate using a linear projection over η(s, q̂t)
5: πt ← arg min

s∈S′

(
Ct−1 + γV

πt−1(s)
)

6: End

104 D. Basu et al.

approximated per-stage cost and cost-to-go function. Firstly, we map a configu-
ration to a vector of associated feature φ(s). Then, we approximate the cost-to-
go function by a linear model θT φ(s) with parameter θ. It is extracted from a
reduced subspace S′ of configuration space S that makes the search for optimal
policy computationally cheaper. Finally, we learn the per-stage cost C(s, s′, q̂)
by a linear model ζT η(s, q̂) with parameter ζ. This method does not need any
prior knowledge of the cost model, rather it learns the model iteratively. Thus,
we have resolved shortcomings of policy iteration and the need of predefined cost
model for the performance tuning problem in our algorithm. These methods are
depicted and analysed in the following sections.

4.2 Reducing the Search Space

In order to reduce the size of search space in line 5 of Algorithm 1, we filter the
configurations that satisfy certain necessary conditions deduced from an optimal
policy.

Proposition 1. Let s be any configuration and q̂ be any observed query. Let π∗

be an optimal policy. If π∗(s, q̂) = s′, then cost(s, q̂) − cost(s′, q̂) ≥ 0. Further-
more, if δ(s, s′) > 0, i.e., if the configurations certainly change after a query,
then cost(s, q̂) − cost(s′, q̂) > 0.

Proof. Since π∗(s, q̂) = s′, we have

δ(s, s′) + cost(s′, q̂) + γV (s′)
≤ cost(s, q̂) + γV (s)

= cost(s, q̂) + γE
[
min
s′′

(δ(s, s′′) + cost(s′′, q̂) + γV (s′′))
]

≤ cost(s, q̂) + γδ(s, s′) + γV (s′),

where the second inequality is obtained by exploiting triangle inequality
δ(s, s′′) ≤ δ(s, s′) + δ(s′, s′′), as δ is a quasi-metric on S.

This infers that

cost(s, q̂) − cost(s′, q̂) ≥ (1 − γ)δ(s, s′) ≥ 0.

The assertion follows. �	
By Proposition 1, if π∗ is an optimal policy and s′ = π∗(s, q̂) �= s, then

cost(s, q̂) > cost(s′, q̂). Thus, we can define a reduced subspace as

Ss,q̂ = {s′ ∈ S | cost(s, q̂) > cost(s′, q̂)}.

Hence, at each time t, we can solve

πt = arg min
s∈Sst−1,q̂t

(
δ(st−1, s) + cost(s, q̂t) + γV

πt−1(s)
)
. (3)

Next, we design an algorithm that converges to an optimal policy through
searching in the reduced set Ss,q̂.

Regularized Cost-Model Oblivious Database Tuning 105

4.3 Modified Policy Iteration with Cost Model Learning

We calculate the optimal policy using the least square policy iteration
(LSPI) [18]. If for any policy π, there exists a vector θ such that we can approx-
imate V π(s) = θT φ(s) for any configuration s, then LSPI converges to the
optimal policy. This mathematical guarantee makes LSPI a useful tool to solve
the MDP as defined in Sect. 3. But the LSPI algorithm needs a predefined cost
model to update the policy and evaluate the cost-to-go function. It is not obvi-
ous that any form of cost model would be available and as mentioned in Sect. 1,
pre-defined cost models may be critically wrong. This motivates us to develop
another form of the algorithm, where the cost model can be equivalently obtained
through learning.

Assume that there exists a feature mapping η such that cost(s, q) ≈ ζT η(s, q)
for some vector ζ. Changing the configuration from s to s′ can be considered as
executing a special query q(s, s′). Therefore we approximate

δ(s, s′) = cost(s, q(s, s′)) ≈ ζT η(s, q(s, s′)).

The vector ζ can be updated iteratively using the well-known recursive least
squares estimation (RLSE) [44] as shown in Algorithm 2, where ηt = η(st−1, q̂t)
and ε̂t = (ζt−1)T ηt − cost(st−1, q̂t) is the prediction error. Combining RLSE
with LSPI, we get our cost-model oblivious algorithm as shown in Algorithm3.

In Algorithm 3, the vector θ determines the current policy. We can make a
decision by solving the equation in line 6. The values of δ(st−1, s) and cost(s, q̂t)
are obtained from the approximation of the cost model. The vector θt is used to
approximate the cost-to-go function following the current policy. If θt converges,
then we update the current policy (line 14–16).

Instead of using any heuristics we initialize policy π0 as initial configuration
s0 and the cost-model C0 as 0, as shown in the lines 1–3 of Algorithm3.

Proposition 2. If for any policy π, there exists a vector θ such that
V π(s) = θT φ(s) for any configuration s, Algorithm3 will converge to an optimal
policy.

Proof. Let V : S → R be a set of bounded, real-valued functions. Then V is a
Banach space with the norm ‖v‖ = ‖v‖∞ = sup |v(s)| for any v ∈ V.

Algorithm 2. Recursive least squares estimation.

1: procedure RLSE(ε̂t, B
t−1

, ζt−1, ηt)

2: γt ← 1 + (ηt)T B
t−1

ηt

3: B
t ← B

t−1 − 1
γt (B

t−1
ηt(ηt)T B

t−1
)

4: ζt ← ζt−1 − 1
γt B

t−1
ηtε̂t

5: return B
t
, ζt.

6: end procedure

106 D. Basu et al.

Algorithm 3. Least squares policy iteration with RLSE.
1: Initialize the configuration s0.
2: Initialize θ0 = θ = 0 and B0 = εI.
3: Initialize ζ0 = 0 and B

0
= εI.

4: for t=1,2,3,. . . do
5: Let q̂t be the just received query.
6: st ← arg min

s∈Sst−1,q̂t

(ζt−1)T η(st−1, q(st−1, s)) + (ζt−1)T η(s, q̂t) + γθT φ(s)

7: Change the configuration to st.
8: Execute query q̂t.
9: Ĉt ← δ(st−1, st) + cost(st, q̂t).

10: ε̂t ← (ζt−1)T η(st−1, q̂t) − cost(st−1, q̂t)

11: Bt ← Bt−1 − Bt−1φ(st−1)(φ(st−1)−γφ(st))
T Bt−1

1+(φ(st−1)−γφ(st))T Bt−1φ(st−1)
.

12: θt ← θt−1 +
(Ĉt−(φ(st−1)−γφ(st)

T θt−1)Bt−1φ(st−1)

1+(φ(st−1)−γφ(st))T Bt−1φ(st−1)
.

13: (B
t
, ζt) ← RLSE(ε̂t, B

t−1
, ζt−1, ηt)

14: if (θt) converges then
15: θ ← θt .
16: end if
17: end for

If we redefine our problem in the reduced search space, we get:

arg min
π∈U

E

[∞∑

t=1

γt−1 (δ(st−1, st) + cost(st, q))

]
(4)

such that : st = π(st−1, q), st ∈ Sst−1,q, for t ≥ 1

Then Algorithm 3 is analogous to LSPI over the reduced search space. For this
new problem given by Eq. (4), Algorithm 3 converges to a unique cost-to-go func-
tion Ṽ ∈ V. We need to show that V ∗ = Ṽ . That means we need to prove the
cost-to-go function estimate by Algorithm 3 is the optimal one.

Let us define the process of updating policy as a mapping M : V → V. Now
based on Eq. (2), it can be expressed as

Mv(s) = E
[

min
s′∈Ss,q

(δ(s, s′) + cost(s′, q) + γv(s′))
]
.

For a particular configuration s and query q, let

a∗
s,q(v) = arg min

s′∈Ss,q

(δ(s, s′) + cost(s′, q) + γv(s′)) .

Regularized Cost-Model Oblivious Database Tuning 107

Assume that Mv(s) ≥ Mu(s). Then

0 ≤ Mv(s) − Mu(s)

= E
[
δ(s, a∗

s,q(v)) + cost(a∗
s,q(v), q) + γv(a∗

s,q(v))
]

− E
[
δ(s, a∗

s,q(u)) + cost(a∗
s,q(u), q) + γu(a∗

s,q(u))
]

≤ E
[
δ(s, a∗

s,q(u)) + cost(a∗
s,q(u), q) + γv(a∗

s,q(u))
]

− E
[
δ(s, a∗

s,q(u)) + cost(a∗
s,q(u), q) + γu(a∗

s,q(u))
]

= γE
[
v(a∗

s,q(u)) − u(a∗
s,q(u))

]

≤ γE [‖v − u‖] = γ‖v − u‖.

Thus we can conclude, |Mv(s)−Mu(s)| ≤ γ|v(s)−u(s)| for all configuration
s ∈ S. From the definition of our norm, we can write

sup
s∈S

|Mv(s) − Mu(s)| = ‖Mv − Mu‖ ≤ γ‖v − u‖.

This means that if 0 ≤ γ < 1, M is a contraction mapping. By [28, Propo-
sition 3.10.2], there exists a unique v∗ such that Mv∗ = v∗, such that for an
arbitrary v0, the sequence vn generated by vn+1 = Mvn converges to v∗. By the
property of convergence of LSPI [18], v∗ = Ṽ . From Proposition 1, the optimal
cost-to-go function V ∗ also satisfies MV ∗ = V ∗. Hence V ∗ = Ṽ and the property
of convergence of LSPI is preserved in Algorithm 3. �	

5 Adaptive Database Tuning with Regularized
Cost-Model Learning

In the results that we will present in Sect. 7.3, we will observe a higher variance of
Algorithm 3 for index tuning than that of the state-of-art WFIT algorithm [39].
This high variance is caused mainly due to the absence of the cost model. As
Algorithm 3 decides the policy depending on the estimated cost model, any error
in the cost model causes instability in its outcome.

The process of cost-model estimation by accumulating information of incom-
ing queries is analogous to approximating a function online from its incoming
samples. Here, the function is the per-stage cost model C : S×S×Q̃ → R. Here,
Q̃ is the extended set of queries given by Q ∪ {q(s, s′) | s, s′ ∈ S}. We obtain
this Q̃ by considering configuration updates as special queries, as explained in
Sect. 4.3. Now, the per-stage cost function can be defined as

C(st−1, st, q̂t) = cost(st−1, q(st−1, st)) + cost(st, q̂t)

This equation shows that if we consider changing the configuration from s to s′ as
executing a special query q(s, s′), approximating the function cost : S × Q̃ → R

in turn approximates the per-stage cost.
As explained in the previous section, we approximate cost online using linear

projection to the feature space of the observed state and query. At each step we

108 D. Basu et al.

obtain some vector ζ such that cost(s, q) ≈ ζT η(s, q). Here, η(s, q) is the feature
vector corresponding to state s and query q. In order to obtain the optimal
approximation, we initialize with an arbitrary ζ and then recursively improve
our estimate of ζ using recursive least squares estimation (RLSE) algorithm [44].
But the issues with RLSE are:

i. It tries to minimize the square error per step

ε̂2t =
(
(ζt−1)T ηt − cost(st−1, q̂t)

)2

which is highly sensitive to outliers. If RLSE faces some query or configura-
tion update which is very different from the previously observed queries, the
estimation of ζ can change drastically.

ii. The algorithm becomes unstable if the components of η(s, q) are highly cor-
related. This may happen when the algorithm passes through a series of
related queries.

As the reinforcement learning algorithm uses the estimated cost model to
decide policies and to evaluate them, error or instability in the estimated cost
model at any step affects its performance. Specifically, large deviations arise in
the estimated cost model due to the queries which are far from the previously
learned distribution. This costs the learning algorithm some time to adapt. It
also affects the policy and evaluation of the present state and action. We thus
propose to use a regularized cost-model estimator instead of RLSE, which is less
sensitive to outliers and relatively stable, so as to improve the performance of
Algorithm 3 and decrease its variance.

5.1 Regularized Cost-Model Estimator

In order to avoid the effect of outliers, we can penalize high variance of ζ by
adding a regularization term with the squared prediction error of RLSE. Thus
at time step t, the new estimator will try to find

ζt = arg min
ζ

P t given ε̂t, B
t−1

, ζt−1,ηt (5)

such that:

P t := ε̂2t + λ‖ζt−1‖22
=

(〈ζt−1,ηt〉 − cost(st−1, q̂t)
)2

+ λ〈ζt−1, ζt−1〉.

Here, λ > 0 is the regularization parameter. Square of L2-norm, ‖ζ‖22, is the
regularization function. ηt := η(st−1, q̂t) is the feature vector of state st−1 and
query q̂t. We call this squared error the loss function Lt defined at time t for a
given choice of ζt. Thus,

Lt(ζt) :=
(〈ζt,ηt〉 − cost(st−1, q̂t)

)2
.

Regularized Cost-Model Oblivious Database Tuning 109

The dual of this problem can be considered as picking up such an ζt

inside an n-dimensional Euclidean ball B
n
λ of radius s(λ) that minimizes the

error ε̂2t . From an optimization point of view, we choose ζt inside B
n
λ :={

ζ | ‖ζ‖22 ≤ s(λ) and ζ ∈ R
n
}

rather than searching for it in the whole space
R

n. This estimator penalizes any drastic change in the cost model due to some
outlier query. If some query tries to pull ζt out of Bn

λ, this estimator regularizes
ζt at the boundary. It also induces sparsity in the components of estimating
vector ζ that eliminates the instability due to highly correlated queries.

Algorithm 4. Regularized cost-model estimation.
1: Initialize ζ0 = 0 and R0 = εI.
2: for t=1,2,3,. . . do
3: ε̂t ← (ζt−1)T ηt − cost(st−1, q̂t)
4: γt ← λ + (ηt)T Rt−1ηt

5: Rt ← Rt−1 − 1
γt (Rt−1ηt(ηt)T Rt−1)

6: ζt ← ζt−1 − 1
γt Rt−1ηtε̂t

7: return Rt, ζt

8: end for

The online penalized cost-model estimation algorithm obtained from this
formulation is shown in Algorithm4. Generally, the optimal values of ε and
λ are decided using a cross-validation procedure. In Sect. 6.4, we are going to
derive the optimal value of ε and a probable estimation for λ for the index tuning
problem. This will decide optimal values of the hyper-parameters for a given set
of workload with theoretical performance bounds.

5.2 Performance Bound

We can depict this online cost-model estimation task as a simple game between
a decision maker and an adversary [35]. In database tuning, the decision maker
is our cost-model estimating algorithm and the adversary is the workload pro-
viding an uncertain sequence of queries. Then, we can formulate the game as
Algorithm 5.

Algorithm 5. Cost-model Estimation Game.
1: Initialize ζ0 = 0.
2: for t=1,2,3,. . . , T do
3: Algorithm 4 picks ζt ∈ B

n
λ according to Eq. (5)

4: Adversary picks (ηt, ct)
5: Algorithm suffers loss Lt(ζ

t)
6: end for

110 D. Basu et al.

We can define the regret of this game after time step T as,

RegT :=
T∑

t=1

Lt(ζt) −
T∑

t=1

Lt(ζOPT) (6)

where ζOPT is the solution picked up by an offline expert that minimizes the
cumulative loss after time step T . RegT is the difference between cumulative
sum of errors up to time T obtained using Algorithm4 and the optimal offline
algorithm. This regret term captures deviation of the cost-model estimated by
the Algorithm 5 from the computable optimal cost model.

As the loss function L(ζ) is the square of the error between estimated and
actual values of cost at time t, it is a convex function over the set of ζ. According
to the analysis given in [35], we can canonically describe our estimation model
as a scheme to develop a Legendre potential function Φ(ζOPT) with time t for
the given workload, where the initial value of potential is given by:

Φ0(ζOPT) := ‖ζOPT‖2

and its value at time t is updated as

Φt(ζOPT) := Φt−1(ζOPT) +
1
λ

Lt(ζt).

Now, we can re-write Eq. (5) as:

ζt = arg min
ζ∈B

n
λ

[
DΦ0(ζ

OPT, ζt−1) +
1
λ

(∇Lt−1(ζt−1))
T

ζt−1

]
(7)

Here, DΦ0(ζ
OPT, ζt−1) is the Bregman divergence [26] between ζOPT and

ζt−1 along the potential field Φ0(ζOPT). This term in Eq. (7) inclines Algorithm 4
to choose such a ζ which is nearest to optimal ζOPT on the ‖ζ‖2 manifold. Also,
∇Lt−1(ζt−1)T ζt−1 is the change of the loss function in the direction of ζt−1.
Minimization of this term is equivalent to selection of such a ζt that minimizes
the corresponding loss. Thus, the ζt picked up by the Algorithm is the one that
minimizes a linear combination of these two terms weighted by λ. From this
formulation we can obtain the following lemma for the regret bound.

Lemma 1. After time step T , the upper bound of the regret of Algorithm4 can
be given by

RegT ≤ λ‖ζOPT‖2 +
1
λ

T∑

t=1

ε̂t
2(ηt)T Rtηt. (8)

Proof. Applying Theorem 1 of [42] on Eq. (7) we get the inequalities,

RegT ≤ λ

[
DΦ0(ζ

OPT, ζ0) − DΦT
(ζOPT, ζT+1) +

T∑

t=1

DΦt
(ζt, ζt+1)

]

≤ λ

[
DΦ0(ζ

OPT, ζ0) +
T∑

t=1

DΦt
(ζt, ζt+1)

]
.

Regularized Cost-Model Oblivious Database Tuning 111

From the definition of the Legendre potential we get:

Φt(ζ) = Φt−1(ζ) +
1

λ
Lt(ζ)

= ‖ζ‖2 +
T∑

t=1

(〈ζ, ηt〉 − cost(st−1, q̂t)
)2

= ζT

(

I +
1

λ

T∑

t=1

ηt(ηt)T

)

ζ − ζT

(
1

λ

T∑

t=1

cost(st−1, q̂t)η
t

)

+
T∑

t=1

cost(st−1, q̂t)
2

= ζT (RT)−1ζ − ζT bT + CT

where bT =
∑T

t=1 ctηt and CT =
∑T

t=1 cost(st−1, q̂t))2. Thus, the dual of the
potential can be given by

Φ∗
t (ζ) = ζT RT ζ − 2ζT RT bT + (bT)T RT bT

Now, from the definition of Φ0 and properties of Bregman divergence,

DΦ0(ζ
OPT, ζ0) = D‖ζOPT‖2(ζOPT, ζ0)

= ‖ζOPT‖2

and

DΦt
(ζt, ζt+1) = DΦ∗

t

(∇Φt(ζt+1),∇Φt(ζt)
)

= DΦ∗
t

(
0,∇Φt(ζt)

)

= DΦ∗
t

(
0,

1
λ

∇Lt(ζt)
)

=
1
λ2

(∇Lt(ζt)
)T

Rt
(∇Lt(ζt)

)

=
1
λ2

(〈ζ,ηt〉 − cost(st−1, q̂t)
)2

(ηt)T Rtηt

=
1
λ2

ε̂t
2(ηt)T Rtηt.

By replacing these results in the aforementioned inequality we get:

RegT ≤ λ‖ζOPT‖2 +
1
λ

T∑

t=1

ε̂t
2(ηt)T Rtηt.

�	
Lemma 2. If R0 ∈ R

n×n and invertible,

(ηt)T Rtηt = 1 − det(Rt)
det(Rt−1)

∀t = 1, 2, . . . , T (9)

112 D. Basu et al.

Proof. From [19], we get if there exists an invertible matrix B ∈ R
n×n such that

A = B + xxT , where x ∈ R
n, then

xT A−1x = 1 − det(B)
det(A)

(10)

As, per Algorithm 4, R0 = εI, it is invertible. Since (Rt)−1 = (Rt−1)−1+ηt(ηt)T ,
by the Sherman–Morrison formula, all Rt’s are invertible for t ≥ 0. Thus, simply
replacing A by (Rt)−1 and B by (Rt−1)−1 in Eq. (10), we obtain

(ηt)T Rtηt = 1 − det((Rt−1)−1)
det((Rt)−1)

= 1 − det(Rt)
det(Rt−1)

since, det((Rt)−1) = 1
det(Rt) . �	

Using Lemmas 1 and 2, we finally derive the regret bound for the regularized
cost-model estimator in the following theorem.

Theorem 1. If we consider the error as a bounded function such that 0 ≤ ε̂t
2 ≤

Emax and ‖ηt‖∞ ≤ δ,

RegT ≤ λ‖ζOPT‖2 +
Emax

λ

[
nln

(
1 +

εδ2T

n

)
− (n − 1)ln(ε)

]
(11)

where R0 = εI.

Proof. Let us assume the squared error has an upper bound Emax for a given
workload. Under this assumption, we get from Eqs. (8) and (9),

RegT ≤ λ‖ζOPT‖2 +
Emax

λ

T∑

t=1

(
1 − det(Rt)

det(Rt−1)

)

≤ λ‖ζOPT‖2 − Emax

λ

T∑

t=1

ln
(

det(Rt)
det(Rt−1)

)

= λ‖ζOPT‖2 +
Emax

λ
ln

(
det(R0)
det(RT)

)

= λ‖ζOPT‖2 +
Emax

λ

[
ln(ε) − ln(det(RT))

]

= λ‖ζOPT‖2 +
Emax

λ

[
ln(ε) + ln

(
det

(
1
ε
I +

T∑

t=1

ηt(ηt)T

))]

= λ‖ζOPT‖2 +
Emax

λ

[
n∑

k=1

ln (1 + ελk) − (n − 1) ln(ε)

]
.

Because

det

(
1
ε
I +

T∑

t=1

ηt(ηt)T

)
= ε−ndet

(
I + ε

T∑

t=1

ηt(ηt)T

)
= ε−n

n∏

k=1

(1 + ελk)

Regularized Cost-Model Oblivious Database Tuning 113

where λ1, . . . , λn are eigenvalues of the matrix
∑T

t=1 ηt(ηt)T . As the eigenvalues
of

∑T
t=1 ηt(ηt)T are equal to the eigenvalues of its Gram matrix Gij = (ηi)T ηj ,

we can write
n∑

k=1

λk = Trace(G) =
T∑

t=1

(ηt)T ηt ≤ δ2T

where ‖ηt‖∞ ≤ δ, that is, the maximum value of any component of η is bounded
by δ. In the above inequality, the equality holds if and only if λ1 = λ2 = . . . =
λn = δ2T

n . By applying this condition, we get the regret bound as

RegT ≤ λ‖ζOPT‖2 +
Emax

λ

[
nln

(
1 +

εδ2T

n

)
− (n − 1)ln(ε)

]
.

�	
This theorem shows that our estimation of the cost model using Algorithm 4

is always upper bounded by a constant value depending on the optimal solution
added with a term that increases with time logarithmically. This shows that
the regret, which is the cumulative deviation of the cost model computed by
Algorithm 4 with respect to the optimal one, increases very slowly with time.
That means the error of estimation in each and every time step is considerably
small.

6 Case Study: Index Tuning

In this section we present COREIL (for Cost-model Oblivious REInforcement
Learning algorithm) and its regularized version, rCOREIL. COREIL and rCOR-
EIL instantiate Algorithm 3 taking as cost-model estimators Algorithms 2 and 4
respectively. Both of them tune the configurations differing in their secondary
indexes and handle the configuration changes corresponding to the creation and
deletion of indexes. COREIL uses reinforcement learning approach to solve the
index tuning problem on-the fly. It projects index tuning as an MDP and applies
Algorithm 3 to solve it. On the other hand, rCOREIL uses the regularized cost-
model estimator, described in Sect. 5.1; rCOREIL’s regularized estimator affords
it to leverage the fact that if we serve the learning algorithm with a better cost-
model to evaluate its policy better, it will perform better. In this section, we also
define the feature mappings φ and η for both COREIL and rCOREIL. They are
used to approximate the cost-to-go function V and the cost function respectively.
At the end of this section we prove tighter performance bounds for Algorithm4
in case of index tuning. We also derive optimal values of the parameters λ and
ε for a given workload.

6.1 Reducing the Search Space

Let I be the set of indexes that can be created. Each configuration s ∈ S is an
element of the power set 2I . For example, 7 attributes in a schema of R yield a

114 D. Basu et al.

total of 13699 indexes and a total of 213699 possible configurations. Such a large
search space invalidates a naive brute-force search for the optimal policy.

For any query q̂, let r(q̂) be a function that returns a set of recommended
indexes. This function may be already provided by the database system (e.g.,
as with IBM DB2), or it can be implemented externally [1]. Let d(q̂) ⊆ I be the
set of indexes being modified (update, insertion or deletion) by q̂. We can define
the reduced search space as

Ss,q̂ = {s′ ∈ S | (s − d(q̂)) ⊆ s′ ⊆ (s ∪ r(q̂))}. (12)

Deleting indexes in d(q̂) will reduce the index maintenance overhead and creating
indexes in r(q) will reduce the query execution cost. Note that the definition of
Ss,q̂ here is a subset of the one defined in Sect. 4.2 which deals with the general
configurations.

Note that for tree-structured indexes (e.g., B+-tree), we could further con-
sider the prefix closure of indexes for optimization. For any configuration s ∈ 2I ,
define the prefix closure of s as

〈s〉 = {i ∈ I | i is a prefix of an index j for some j ∈ s}. (13)

Thus in Eq. (12), we use 〈r(q̂)〉 to replace r(q̂) for better approximation. The
intuition is that in case of i /∈ s but i ⊆ 〈s〉 we can leverage the prefix index to
answer the query.

6.2 Defining the Feature Mapping φ

Let V be the cost-to-go function following a policy. As mentioned earlier,
Algorithm 3 relies on a proper feature mapping φ that approximates the cost-
to-go function as V (s) ≈ θT φ(s) for some vector θ. The challenge lies in how to
define φ under the scenario of index tuning. Both in COREIL and rCOREIL,
we define it as

φs′(s) :=

{
1, if s′ ⊆ s

−1, otherwise

for each s, s′ ∈ S. Let φ = (φs′)s′∈S . Note that φ∅ is an intercept term since
φ∅(s) = 1 for all s ∈ S. The following proposition shows the effectiveness of φ
for capturing the values of the cost-to-go function V .

Proposition 3. There exists a unique θ = (θs′)s′∈S which approximates the
value function as

V (s) =
∑

s′∈S

θs′φs′(s) = θT φ(s). (14)

Proof. Suppose S = {s1, s2, . . . , s|S|}. Note that we use superscripts to denote
the ordering of elements in S.

Regularized Cost-Model Oblivious Database Tuning 115

Let V = (V (s))T
s∈S and M be a |S| × |S| matrix such that

Mi,j = φsj (si).

Let θ be a |S|-dimension column vector such that Mθ = V . If M is invertible
then θ = M−1V and thus Eq. (14) holds.

We now show that M is invertible. Let ψ be a |S| × |S| matrix such that

ψi,j = Mi,j + 1.

We claim that ψ is invertible and its inverse is the matrix τ such that

τi,j = (−1)|si|−|sj |ψi,j .

To see this, consider

(τψ)i,j =
∑

1≤k≤|S|
(−1)|si|−|sk|ψi,kψk,j

=
∑

sj⊆sk⊆si

(−1)|si|−|sk|.

Therefore (τψ)i,j = 1 if and only if i = j. By the Sherman-Morrison formula,
M is also invertible.

However, for any configuration s, θ(s) is a |2I |-dimensional vector. In order
to reduce the dimensionality, the cost-to-go function can be approximated by
V (s) ≈ ∑

s′∈S,|s′|≤N θs′φs′(s) for some integer N . Here we assume that the
collaborative benefit among indexes could be negligible if the number of indexes
exceeds N . In particular when N = 1, we have

V (s) ≈ θ0 +
∑

i∈I

θiφi(s). (15)

where we ignore all the collaborative benefits among indexes in a configuration.
This is reasonable since any index in a database management system is often
of individual contribution for answering queries [31]. Therefore, we derive φ
from Eq. (15) as φ(s) = (1, (φi(s))T

i∈I)
T . By using this feature mapping φ, both

COREIL and rCOREIL approximate the cost-to-go function V (s) ≈ θT φ(s) for
some vector θ.

6.3 Defining the Feature Mapping η

A good feature mapping for approximating functions δ and cost must take into
account both the benefit from the current configuration and the maintenance
overhead of the configuration.

116 D. Basu et al.

To capture the difference between the index set recommended by the database
system and that of the current configuration, we define a function β(s, q̂) =
(1, (βi(s, q̂))T

i∈I)
T , where

βi(s, q̂) :=

⎧
⎪⎨

⎪⎩

0, i /∈ r(q̂)
1, i ∈ r(q̂) and i ∈ s

−1, i ∈ r(q̂) and i /∈ s.

If the execution of query q̂ cannot benefit from index i then βi(s, q̂) always
equals zero; otherwise, βi(s, q̂) equals 1 or -1 depending on whether s contains i
or not. For tree-structured indexes, we could further consider the prefix closure
of indexes as defined in Eq. (13) for optimization.

On the other hand, to capture whether a query (update, insertion or deletion)
modifies any index in the current configuration, we define a function α(s, q̂) =
(αi(s, q̂))i∈I where

αi(s, q̂) =

{
1, if i ∈ s and q̂ modify i

0, otherwise.

Note that if q̂ is a selection query, α trivially returns 0.
By combining β and α, we get the feature mapping η = (βT ,αT)T used in

both of the algorithms. It can be used to approximate the functions δ and cost
as described in Sect. 4.3.

6.4 Performance Bounds for Regularized COREIL

rCOREIL applies Algorithm4 for cost-model estimation, while COREIL uses
RLSE for this. If we follow Algorithm3, on line 13 rCOREIL calls the regular-
ized cost-model estimator with arguments ε̂t, Rt−1, ζt−1,ηt instead of RLSE.
Following Theorem 1 and the construction of the feature map in Sect. 6.3,
Proposition 4 gives a tighter regret bound for the cost-model estimation of
rCOREIL.

Proposition 4. If we consider the error as a bounded function such that 0 ≤
ε̂t

2 ≤ Emax:

RegrCOREIL
T ≤ λ‖ζOPT ‖2 +

Emax

λ
[2nlnT − nlnn] (16)

and the optimal value for ε is given by:

ε∗ =
n2 − n

T
.

Proof. From Sect. 6.3, ‖ηt‖∞ ≤ 1. Equation (11) transforms into

RegrCOREIL
T ≤ λ‖ζOPT ‖2 +

Emax

λ

[
nln

(
1 +

εT

n

)
− (n − 1)ln(ε)

]
.

Regularized Cost-Model Oblivious Database Tuning 117

Now, we determine the optimal value of ε by minimizing the RHS of above
inequality as this will impose tighter limit on the bound. Thus,

[
∂(RHS)

∂ε

]

ε∗=0

= 0.

By solving this, we get ε∗ = n2−n
T . Substituting this value in the previous inequal-

ity gives us the regret bound for regularized COREIL algorithm as

RegrCOREIL
T ≤ λ‖ζOPT ‖2 +

Emax

λ
[2nln(T) − nln(n)] .

�	
Similarly, we can also find out the optimal value of λ that will make the upper
bound tightest.

Corollary 1. If the value of optimal solution ζOPT can be predicted beforehand,
the optimal value of λ is given by

λ∗ =
Emax

‖ζOPT ‖2 [2nln(T) − nln(n)]

where the stopping time T is given.

Proof. As an optimal λ will minimize the RHS of Eq. (16), we get it by setting
the partial derivative of the RHS with respect to λ as zero. This simply gives
us, λ∗ = Emax

‖ζOP T ‖2 [2nln(T) − nln(n)].

Substituting the optimal value of λ in Eq. (16) for a given T and ζOPT , we
get

RegrCOREIL
T ≤ ‖ζOPT ‖2 + Emax [2nln(T) − nln(n)] .

For large n and comparatively smaller T , [2nln(T) − nln(n)] is a negative number
that makes the plausible error in cost-model estimation much smaller than even
the magnitude of the optimal ζ vector. This shows the guarantee on the quality
of the cost-model estimated by rCOREIL once the parameters are properly set.

7 Performance Evaluation

In this section, we present an empirical evaluation of COREIL and rCOREIL
through two sets of experiments. In the first set of experiments, we implement
a prototype of COREIL in Java. We compare its performance with that of
the state-of-the-art WFIT algorithm [39] (briefly described in Sect. 7.2). In the
results, we can see that COREIL shows competitive performance with WFIT
but has higher variance. This validates the efficiency of the reinforcement learn-
ing approach to solve the index tuning problem on the fly. This shows that, even
without any assumption of a pre-determined cost model, it is possible to perform
at the level of the state-of-the-art.

118 D. Basu et al.

In the second set of experiments, we evaluate the performance of rCOR-
EIL with respect to COREIL. The results show enhancements in performance
by rCOREIL as reasoned in Sect. 5. This validates the claim in Sect. 5 that
the higher variance of COREIL is due to suboptimal use of the RLSE algo-
rithm. It also establishes the fact that if we serve the learning algorithm with an
enhanced estimation of cost-model, it improves the performance substantially.
In these experiments, we also check the sensitivity of rCOREIL with respect to
the parameter λ and cross-validate the optimal value for the given workload.

7.1 Dataset and Workload

The dataset and workload is conforming to the TPC-C specification [30] and
generated by the OLTP-Bench tool [15]. The 5 types of transactions in TPC-C
are distributed as NewOrder 45%, Payment 43%, OrderStatus 4%, Delivery 4%
and StockLevel 4%. Each of these transactions are associated with 3 ∼ 5 SQL
statements (query/update). The scale factor used throughout the experiments
is 2. We do not leverage any repetition or periodicity of the workload in our
approach; still for robustness there may be up to 10% of repetition of queries.
Note that [39] additionally uses the dataset NREF in its experiments. However,
this dataset and workload are not publicly available.

7.2 WFIT: Brief Description

WFIT is proposed in [39] as a method of semi-automatic index tuning. This
algorithm keeps the database administrator “in the loop” by generating rec-
ommendations. These recommendations are generated through a feedback loop
originating from the administrator’s preferences. This process is based on the
Work Function Algorithm [8]. In order to determine the change of configuration,
WFIT considers all the queries observed in the past. Then it solves a determin-
istic problem of minimizing the total processing cost. However, while doing so, it
assumes the existence of a pre-determined cost model served by the database sys-
tem or administrator. Due to use of a pre-defined cost model for all the datasets
and workloads it faces the problems discussed in the Introduction. Results doc-
umented in the following sections will show the importance of a reinforcement
learning approach to make the process generic and cost-model oblivious.

7.3 COREIL: Experiments and Results

Experimental Set-Up. We conduct all the experiments on a server running
IBM DB2 10.5. The server is equipped with Intel i7-2600 Quad-Core @ 3.40 GHz
and 4 GB RAM. We measure wall-clock times for execution of all components.
Specially, for execution of workload queries or index creating/dropping, we mea-
sure the response time of processing corresponding SQL statement in DB2. Addi-
tionally, WFIT uses the what-if optimizer of DB2 to evaluate the cost. In this
setup, each query is executed only once and all the queries were generated from
one execution history.

Regularized Cost-Model Oblivious Database Tuning 119

Efficiency. Figure 1 shows the total cost of processing TPC-C queries for online
index tuning of COREIL and WFIT. Total cost consists of the overhead of
corresponding tuning algorithm, cost of configuration change and that of query
execution. Results show that, after convergence, COREIL has lower processing
cost most of the time. But COREIL converges slower than WFIT, which is
expected since it does not rely on the what-if optimizer to guide the index

Fig. 1. Evolution of the efficiency (total time per query) of the two systems from the
beginning of the workload (smoothed by averaging over a moving window of size 20)

Fig. 2. Box chart of the efficiency (total time per query) of the two systems. We show
in both cases the 9th and 91th percentiles (whiskers), first and third quartiles (box)
and median (horizontal rule).

120 D. Basu et al.

creations.1 With respect to the whole execution set, the average processing cost
of COREIL (451 ms) is competitive to that of WFIT (452 ms). However, if we
calculate the average processing cost of the 500th query forwards, the average
performance of COREIL (357 ms) outperforms that of WFIT (423 ms). To obtain
further insight from these data, we study the distribution of the processing time
per query, as shown in Fig. 2. As can be seen, although COREIL exhibits larger
variance in the processing cost, its median is significantly lower that that of
WFIT. All these results confirms that COREIL has better efficiency than WFIT
under a long term execution.

Figures 3 and 4 show analysis of the overhead of corresponding tuning algo-
rithm and cost of configuration change respectively. By comparing Fig. 1 with
Fig. 3, we can see that the overhead of the tuning algorithm dominates the total
cost and the overhead of COREIL is significantly lower than that of WFIT.
In addition, WFIT tends to make costlier configuration changes than COREIL,
which is reflected in a higher time for configuration change. This would be dis-
cussed further in the micro-analysis. Note that both methods converge rather
quickly and no configuration change happens beyond the 700th query.

A possible reason for the comparatively smaller overhead of COREIL with
respect to WFIT, in addition to not relying on a possibly costly what-if opti-
mizer, is the MDP structure. In MDPs, all the history of the system is assumed

0 500 1,000 1,500 2,000 2,500 3,000
0

500

1,000

1,500

Fig. 3. Evolution of the overhead (time of the optimization itself) of the two systems
from the beginning of the workload (smoothed by averaging over a moving window of
size 20)

1 By convergence we mean the first stable patch in Fig. 1 after the series of high spikes,
around the 500th query. The convergence point is qualitatively chosen by observing
characteristics of the curve.

Regularized Cost-Model Oblivious Database Tuning 121

0 500 1,000 1,500 2,000 2,500 3,000
0

5,000

10,000

15,000

20,000

Fig. 4. Evolution of the time taken by configuration change (index creation and
destruction) of the two systems from the beginning of the workload; no configura-
tion change happens past query #700. All values except the vertical lines shown in the
figure are zero.

to be summarized in the present state and the cost-function. Thus, COREIL has
to do less book-keeping than WFIT.

Effectiveness. To verify the effectiveness of indexes created by the tuning algo-
rithms, we extract the cost of query execution from the total cost. Figure 5 (note
the logarithmic y-axis) indicates that the set of indexes created by COREIL
shows competitive effectiveness with that created by WFIT, though WFIT is
more effective in general and exhibits less variance after convergence. Again,
this is to be expected since COREIL does not have access to any cost model for
the queries. As previously noted, the total running time is lower for COREIL
than WFIT, as overhead rather than query execution dominates running time
for both systems.

We have also performed a micro-analysis to check whether the indexes created
by the algorithms are reasonable. We observe that WFIT creates more indexes
with longer compound attributes, whereas COREIL is more parsimonious in
creating indexes. For instance, WFIT creates a 14-attribute index as shown
below.

[S_W_ID, S_I_ID, S_DIST_10, S_DIST_09, S_DIST_08, S_DIST_07,
S_DIST_06, S_DIST_05, S_DIST_04, S_DIST_03, S_DIST_02,
S_DIST_01, S_DATA, S_QUANTITY]

The reason of WFIT creating such a complex index is probably due to multiple
queries with the following pattern.

122 D. Basu et al.

0 500 1,000 1,500 2,000 2,500 3,000

101

102

103

Fig. 5. Evolution of the effectiveness (query execution time in the DBMS alone) of the
two systems from the beginning of the workload (smoothed by averaging over a moving
window of size 20); logarithmic y-axis

SELECT S_QUANTITY, S_DATA, S_DIST_01, S_DIST_02, S_DIST_03,
S_DIST_04, S_DIST_05, S_DIST_06, S_DIST_07, S_DIST_08,
S_DIST_09, S_DIST_10

FROM STOCK
WHERE S_I_ID = 69082 AND S_W_ID = 1;

In contrast, COREIL tends to create shorter compound-attribute indexes.
For example, COREIL created an index [S I ID, S W ID] which is definitely
beneficial to answer the query above and is competitive in performance compared
with the one created by WFIT.

7.4 rCOREIL: Experiments and Results

Experimental Set-Up. We run COREIL and rCOREIL, with a set of λ val-
ues 300, 350, 400, 450, and 500. The previous set of experiments have already
established competitive performance of COREIL with WFIT. In this set we
evaluate the basic idea of rCOREIL: providing regularized estimation of cost-
model enhances the performance of COREIL and also stabilizes it. We conduct
all the experiments on a server running IBM DB2 10.5 with scale factor and
time measure, mentioned in the previous set of experiments. But here the server
is installed on a 64 bit Windows virtual box with dual-core 2-GB hard disk.
It operates in an Ubuntu machine with Intel i7-2600 Quad-Core @ 3.40 GHz
and 4 GB RAM. This eventually makes both version of algorithms slower in
comparison to the previous physical machine installation.

Regularized Cost-Model Oblivious Database Tuning 123

Efficiency. As the offline optimal outcome for this workload is unavailable
beforehand, we set an expected range of λ as [300, 600] depending on the other
parameters like the number of queries and the size of state space. Figure 6 shows
efficiency of COREIL and rCOREIL with different values of λ. As promised
by Algorithm 4, variations of rCOREIL are always showing lesser median and

Fig. 6. Box chart of the efficiency (total time per query) of COREIL and its improved
version with different values of λ. We show in both cases the 9th and 91st percentile
(whiskers), first and third quartiles (box) and median (horizontal rule).

0 500 1,000 1,500 2,000 2,500 3,000

1,600

1,800

2,000

2,200

2,400

Fig. 7. Evolution of the efficiency (total time per query) of COREIL and rCOREIL
with λ = 400 from the beginning of the workload (smoothed by averaging over a moving
window of size 20)

124 D. Basu et al.

variance of total cost. We can also observe from the boxplot, the efficiency is
maximum as well as the variance is minimum for λ = 400. As efficiency is the final
measure that controls runtime performance of the algorithm, we have considered
this as optimal value of λ for further analysis. This process is analogous to cross-
validation of parameter λ, where the proved bounds help us to set a range
of values for searching it instead of going through an arbitrary large range of
values. Though here we are validating depending upon the result obtained from
the whole run of 3,000 queries in the workload, the optimal λ would typically
be set, in a realistic scenario, after running first 500 queries of the workload
with different parameter values and then choosing the optimal one. Figure 7
shows that rCOREIL with λ = 400 outperforms COREIL. With respect to the
whole execution set, the average processing cost of rCOREIL is 1758 ms which
is significantly less than that of COREIL (1975 ms). Also the standard deviation
of rCOREIL is 90 ms which is half of that of COREIL, 180 ms. This enhanced
performance and low variance establishes the claim that if we serve the learning
algorithm with a better estimation of cost-model it will improve.

Figures 8 and 9 show analysis of the overhead of corresponding tuning algo-
rithms and cost of configuration change respectively. In this set of experiments
also, we can see that the overhead of the tuning algorithms dominates their total
cost. Here, the overhead of rCOREIL for each query is on an average 207 ms lower
than that of COREIL. This is more than 10% improvement over the average
overhead of COREIL. In addition, rCOREIL (mean: 644 ms) also makes cheaper
configuration changes than COREIL (mean: 858 ms). rCOREIL also converges
faster than COREIL as the last configuration update made by rCOREIL occurs

0 500 1,000 1,500 2,000 2,500 3,000

1,600

1,800

2,000

2,200

2,400

Fig. 8. Evolution of the overhead (time of the optimization itself) of COREIL and
rCOREIL with λ = 400 from the beginning of the workload (smoothed by averaging
over a moving window of size 20)

Regularized Cost-Model Oblivious Database Tuning 125

0 500 1,000 1,500 2,000 2,500 3,000
0

1,000

2,000

3,000

4,000

Fig. 9. Evolution of the time taken by configuration change (index creation and
destruction) of COREIL and rCOREIL with λ = 400 from the beginning of the work-
load; no configuration change happens past query #2000. All values except the vertical
lines shown in the figure are zero.

at the 335thquery but the last two updates for COREIL occur at the 358th and
1940th queries respectively. If we look closely, the 358th and 1940th queries in
this particular experiment are:

SELECT COUNT(DISTINCT (S_I_ID)) AS STOCK_COUNT
FROM ORDER_LINE, STOCK
WHERE OL_W_ID = 2 AND OL_D_ID = 10 AND OL_O_ID < 3509

AND OL_O_ID >= 3509 - 20 AND S_W_ID = 2
AND S_I_ID = OL_I_ID AND S_QUANTITY < 20;

and

SELECT COUNT(DISTINCT (S_I_ID)) AS STOCK_COUNT
FROM ORDER_LINE, STOCK
WHERE OL_W_ID = 1 AND OL_D_ID = 8 AND OL_O_ID < 3438

AND OL_O_ID >= 3438 - 20 AND S_W_ID = 1
AND S_I_ID = OL_I_ID AND S_QUANTITY < 11;

In reaction to this, COREIL creates indexes [ORDER LINE.OL D ID,ORDER LINE.
+OL W ID] and [STOCK.S W ID, STOCK.S QUANTITY] respectively. It turns out
that such indexes are not of much use for most other queries (only 6 out of 3000
queries benefit of one of these indexes). COREIL makes configuration updates to
tune the indexes for such queries, while the regularized cost model of rCOREIL
does not make configuration updates due to rare and complex events, because
it regularizes any big change due to such an outlier. Instead, rCOREIL has a

126 D. Basu et al.

0 500 1,000 1,500 2,000 2,500 3,000
100

101

Fig. 10. Evolution of the effectiveness (query execution time in the DBMS alone) of
COREIL and rCOREIL with λ = 400 from the beginning of the workload (smoothed
by averaging over a moving window of size 20); logarithmic y-axis

slightly higher the overhead to find out the optimal indexes. For example, in
the window consisting of 10 queries after the 359th query average overhead of
rCOREIL increases from 1724 ms to 1748 ms.

Effectiveness. Like Sect. 7.3, here also we extract the cost of query execution
to verify the effectiveness of indexes created by the tuning algorithms. Figure 10
indicates that the set of indexes created by rCOREIL are significantly more
effective than those created by COREIL. We can see the average query execution
time of rCOREIL is less than that of COREIL almost by a factor of 10.

At a micro-analysis level, we observe rCOREIL creates only one index with
two combined attributes, all other indexes being single-attribute. On the other
hand, COREIL creates only one index with a single attribute whereas all other
indexes have two attributes. This observation shows that though COREIL cre-
ates parsimonious and efficient indexes, rCOREIL shows even better specificity
and effectiveness in doing so.

7.5 Analysis of Cost Estimator

In order to examine the quality of the three cost estimators used by WFIT,
COREIL, and rCOREIL to predict the actual cost of query executions or con-
figuration updates, we observe the actual execution time, the estimated cost,
and that returned by the what-if optimizer during every run of experiments for
COREIL and rCOREIL, respectively. The scatter plot of Fig. 11 shows that the
what-if cost has significantly less correlation (0.013) with the actual execution

Regularized Cost-Model Oblivious Database Tuning 127

Fig. 11. Scatter plot of the estimated cost by COREIL and the what-if optimizer vs
execution time. Left shows correlation between cost estimated by COREIL and actual
execution time (in ms). Right shows (on a log y-axis) correlation between the cost
estimated by the what-if optimizer and the actual execution time (in ms) in the same
run.

0 200 400 600
0

0.5

1

0 200 400 600

101

102

103

104

Fig. 12. Scatter plot of the estimated cost by rCOREIL and the what-if optimizer vs
execution time. Left shows correlation between cost estimated by rCOREIL and actual
execution time (in ms). Right shows (on a log y-axis) correlation between the cost
estimated by the what-if optimizer and the actual execution time (in ms) in the same
run.

time than COREIL (0.1539) Again, the scatter plot of Fig. 12 shows the regu-
larized cost estimated by rCOREIL has significantly higher positive correlation
(0.1558) than that predicted by the what-if optimizer. This proves that the exe-
cution time estimated by COREIL and rCOREIL are significantly more reliable
than the ones estimated by what-if optimizer. It can also been observed that

128 D. Basu et al.

0 500 1,000 1,500 2,000 2,500 3,000

10−3

10−2

10−1

100

101

102

103

Fig. 13. Evolution of the estimated costs of COREIL and rCOREIL with λ = 400
from the beginning of the workload (smoothed by averaging over a moving window of
size 20); logarithmic y-axis

rCOREIL provides better estimations: visually, there are many more points at
the middle of Fig. 12 (left) with positive inclination.

Finally, Fig. 13 shows that the regularized cost model estimator of rCOREIL
gives a more stable estimation of the cost model than that of COREIL, as the cost
model estimated by COREIL (averaged over 20 queries) shows higher variance
and also sensitivity to changes in types of queries.

8 Conclusion

We have presented a cost-model oblivious solution to the problem of perfor-
mance tuning. We first formalized the problem as a Markov decision process.
Then we devised and presented a solution, which addresses both issues of the
curse of dimensionality and of over-fitting. We instantiated the problem to the
case of index tuning. For this case, we implemented and evaluated the COR-
EIL and rCOREIL algorithms, with and without regularization, respectively.
Experiments show competitive performance with respect to the state-of-the-art
WFIT algorithm, despite our approach being cost-model oblivious. We also show
that as our cost-model estimation becomes crisp and stable the performance of
learner improves significantly. Beyond the material presented in this paper, we
continue studying the universality and robustness of the COREIL and rCOREIL
approaches.

Specially for rCOREIL, it is an interesting problem to determine the optimal
regularization parameter on the go or to adapt it with the dynamics of workload.
Though now this process causes us only a one-time up-front cost, following the

Regularized Cost-Model Oblivious Database Tuning 129

flavour of our approach we would like to perform it online. One possible method
is to run COREIL for the first 500 queries and to calculate the costs for different
set of regularization parameter values simultaneously for that period. Following
that, we can choose the parameter value that causes minimum average estimation
of the cost function.

We are now running further empirical performance evaluation tests with
other datasets such as TPC-E, TPC-H and dedicated benchmarks for online
index tuning [37]. For completeness from an engineering perspective, we are
considering concurrent access, which was ignored in the algorithm and experi-
ments presented in this paper for the sake of simplicity. We are also going to
look at the favourable case of predictable workload such as periodic transactions.
Furthermore, we are extending the solution to other aspects of database configu-
ration, including partitioning and replication. For each of these aspects, we need
to devise specific and non-trivial heuristics that help curb the combinatorial
explosion of the configuration space as well as specific intelligent initialization
techniques.

Finally, note that a critical assumption in our approach is that queries arrive
sequentially and that nothing is known ahead of time about the workload. Both
assumptions do not held in a number of realistic settings: queries can be submit-
ted concurrently to the database, and a workload may often be predictable (such
as when it consists of similar transactions, repeated on different data items). We
leave for further work the adaptation of rCOREIL to such settings.

Acknowledgement. We thank Prof. Haibo Chen for valuable feedback on this work.
This research is funded by the National Research Foundation Singapore under its
Campus for Research Excellence and Technological Enterprise (CREATE) programme
with the SP2 project of the Energy and Environmental Sustainability Solutions for
Megacities – E2S2 programme.

References

1. Agrawal, S., Chaudhuri, S., Narasayya, V.R.: Automated selection of materialized
views and indexes in sql databases. In: Proceedings of the 26th International
Conference on Very Large Data Bases (VLDB 2000), pp. 496–505 (2000)

2. Agrawal, S., Narasayya, V., Yang, B.: Integrating vertical and horizontal parti-
tioning into automated physical database design. In: Proceedings of the 2004 ACM
SIGMOD International Conference on Management of Data (SIGMOD 2004), pp.
359–370 (2004)

3. Alagiannis, I., Idreos, S., Ailamaki, A.: H2o: a hands-free adaptive store. In: Pro-
ceedings of the 2014 ACM SIGMOD International Conference on Management of
Data (SIGMOD 2014) (2014)

4. Audibert, J.Y., Munos, R., Szepesvári, C.: Exploration-exploitation tradeoff using
variance estimates in multi-armed bandits. Theoret. Comput. Sci. 410(19), 1876–
1902 (2009)

5. Azefack, S., Aouiche, K., Darmont, J.: Dynamic index selection in data ware-
houses. CoRR abs/0809.1965 (2008). http://arXiv.org/abs/0809.1965

http://arxiv.org/abs/0809.1965

130 D. Basu et al.

6. Basu, D., Lin, Q., Chen, W., Vo, H.T., Yuan, Z., Senellart, P., Bressan, S.:
Cost-model oblivious database tuning with reinforcement learning. In: Chen, Q.,
Hameurlain,A.,Toumani, F.,Wagner,R.,Decker,H. (eds.)DEXA2015. LNCS, vol.
9262, pp. 253–268. Springer, Heidelberg (2015). doi:10.1007/978-3-319-22849-5 18

7. Benedikt, M., Bohannon, P., Bruns, G.: Data cleaning for decision support. In:
Proceedings of the 1st International VLDB Workshop on Clean Databases (Cle-
anDB 2006) (2006)

8. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cam-
bridge University Press, Cambridge (1998)

9. Bouchakri, R., Bellatreche, L., Hidouci, K.-W.: Static and incremental selection
of multi-table indexes for very large join queries. In: Morzy, T., Valduriez, P.,
Bellatreche, L. (eds.) ADBIS 2015. LNCS, vol. 9282, pp. 43–56. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-33074-2 4

10. Bruno, N., Chaudhuri, S.: An online approach to physical design tuning. In: Pro-
ceedings of the 23th IEEE International Conference on Data Engineering (ICDE
2007), pp. 826–835 (2007)

11. Bruno, N., Chaudhuri, S.: Constrained physical design tuning. Proc. VLDB
Endow. 1(1), 4–15 (2008)

12. Bruno, N., Chaudhuri, S.: Interactive physical design tuning. In: Proceedings of
the 26th IEEE International Conference on Data Engineering (ICDE 2010), pp.
1161–1164 (2010)

13. Bruno, N., Nehme, R.V.: Configuration-parametric query optimization for physi-
cal design tuning. In: Proceedings of the 2008 ACM SIGMOD International Con-
ference on Management of Data (SIGMOD 2008), pp. 941–952 (2008)

14. Chaudhuri, S., Narasayya, V.: Autoadmin: what-if index analysis utility. In: Pro-
ceedings of the 1998 ACM SIGMOD International Conference on Management of
Data (SIGMOD 1998), pp. 367–378 (1998)

15. Difallah, D.E., Pavlo, A., Curino, C., Cudre-Mauroux, P.: Oltp-bench: an exten-
sible testbed for benchmarking relational databases. Proc. VLDB Endow. 7(4),
277–288 (2013)

16. Gouriten, G., Maniu, S., Senellart, P.: Scalable, generic, and adaptive systems for
focused crawling. In: Proceedings of the 25th ACM Conference on Hypertext and
Social Media (HT 2014), pp. 35–45 (2014)

17. Hammer, M., Niamir, B.: A heuristic approach to attribute partitioning. In: Pro-
ceedings of the 1979 ACM SIGMOD International Conference on Management of
Data (SIGMOD 1979), pp. 93–101 (1979)

18. Lagoudakis, M.G., Parr, R.: Least-squares policy iteration. J. Mach. Learn. Res.
4, 1107–1149 (2003)

19. Lai, T.L., Wei, C.Z.: Least squares estimates in stochastic regression models with
applications to identification and control of dynamic systems. Ann. Stat. 154–166
(1982)

20. LeFevre, F., Sankaranarayanan, J., Hacigumus, H., Tatemura, J., Polyzotis, N.,
Carey, M.J.: Exploiting opportunistic physical design in large-scale data ana-
lytics. In: Proceedings of the 2014 ACM SIGMOD International Conference on
Management of Data (SIGMOD 2014) (2014)

21. Li, L., Gruenwald, L.: Self-managing online partitioner for databases (smopd):
a vertical database partitioning system with a fully automatic online approach.
In: Proceedings of the 17th International Database Engineering and Applications
Symposium (IDEAS 2013), pp. 168–173 (2013)

http://dx.doi.org/10.1007/978-3-319-22849-5_18
http://dx.doi.org/10.1007/978-3-642-33074-2_4

Regularized Cost-Model Oblivious Database Tuning 131

22. Lightstone, S., Bhattacharjee, B.: Automated design of multidimensional clus-
tering tables for relational databases. In: Proceedings of the 30th International
Conference on Very Large Data Bases (VLDB 2004), pp. 1170–1181 (2004)

23. Lohman, G.M.: Is query optimization a “solved” problem? (2014). http://wp.
sigmod.org/?p=1075

24. Luhring, M., Sattler, K.U., Schmidt, K., Schallehn, E.: Autonomous manage-
ment of soft indexes. In: Proceedings of the 2nd International Workshop on Self-
Managing Data Bases (SMDB 2007), pp. 450–458 (2007)

25. Malik, T., Wang, X., Dash, D., Chaudhary, A., Ailamaki, A., Burns, R.: Adaptive
physical design for curated archives. In: Ailamaki, A., Bowers, S. (eds.) SSDBM
2012. LNCS, vol. 7338, pp. 148–166. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-02279-1 11

26. Nielsen, F., Bhatia, R.: Matrix Information Geometry. Springer, Heidelberg (2013)
27. Papadomanolakis, S., Dash, D., Ailamaki, A.: Efficient use of the query opti-

mizer for automated physical design. In: Proceedings of the 33rd International
Conference on Very Large Data Bases (VLDB 2007), pp. 1093–1104 (2007)

28. Powell, W.B.: Approximate Dynamic Programming: Solving the Curses of Dimen-
sionality. Wiley-Interscience, Hoboken (2007)

29. Puterman, M.L.: Markov Decision Processes Discrete Stochastic Dynamic Pro-
gramming, vol. 414. Wiley, Hoboken (2009)

30. Raab, F.: TPC-C - the standard benchmark for online transaction process-
ing (OLTP). In: Gray, J. (ed.) The Benchmark Handbook. Morgan Kaufmann,
Burlington (1993)

31. Ramakrishnan, R., Gehrke, J., Gehrke, J.: Database Management Systems, vol.
3. McGraw-Hill, New York (2003)

32. Rao, J., Zhang, C., Megiddo, N., Lohman, G.: Automating physical database
design in a parallel database. In: Proceedings of the 2002 ACM SIGMOD Inter-
national Conference on Management of Data (SIGMOD 2002), pp. 558–569 (2002)

33. Rasin, A., Zdonik, S.: An automatic physical design tool for clustered column-
stores. In: Proceedings of the 16th International Conference on Extending Data-
base Technology (EDBT 2013), pp. 203–214 (2013)

34. Rieser, V., Robinson, D.T., Murray-Rust, D., Rounsevell, M.: A comparison of
genetic algorithms and reinforcement learning for optimising sustainable forest
management. GeoComputation (2011)

35. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (2015)
36. Rösch, P., Dannecker, L., Färber, F., Hackenbroich, G.: A storage advisor for

hybrid-store databases. Proc. VLDB Endow. 5(12), 1748–1758 (2012)
37. Schnaitter, K., Polyzotis, N.: A benchmark for online index selection. In: 2009

IEEE 25th International Conference on Data Engineering, pp. 1701–1708, March
2009

38. Schnaitter, K., Abiteboul, S., Milo, T., Polyzotis, N.: On-line index selection for
shifting workloads. In: Proceedings of the 2nd International Workshop on Self-
Managing Data Bases (SMDB 2007), pp. 459–468 (2007)

39. Schnaitter, K., Polyzotis, N.: Semi-automatic index tuning: keeping dbas in the
loop. Proc. VLDB Endow. 5(5), 478–489 (2012)

40. Stillger, M., Lohman, G.M., Markl, V., Kandil, M.: LEO - DB2’s LEarning Opti-
mizer. In: VLDB (2001)

41. Sutton, R.S., Barto, A.G.: Reinforcement Learning. MIT Press, Cambridge (1998)

http://wp.sigmod.org/?p=1075
http://wp.sigmod.org/?p=1075
http://dx.doi.org/10.1007/978-3-642-02279-1_11
http://dx.doi.org/10.1007/978-3-642-02279-1_11

132 D. Basu et al.

42. Warmuth, M.K., Jagota, A.K.: Continuous and discrete-time nonlinear gradient
descent: relative loss bounds and convergence. In: Electronic proceedings of the
5th International Symposium on Artificial Intelligence and Mathematics. Citeseer
(1997)

43. White, D.J.: Markov Decision Processes. Wiley, New York (1993)
44. Young, P.: Recursive least squares estimation. In: Recursive Estimation and Time-

Series Analysis, pp. 29–46. Springer, Berlin, Heidelberg (2011)
45. Zilio, D.C., Zuzarte, C., Lightstone, S., Ma, W., Lohman, G.M., Cochrane, R.,

Pirahesh, H., Colby, L.S., Gryz, J., Alton, E., Liang, D., Valentin, G.: Recom-
mending materialized views and indexes with IBM DB2 design advisor. In: Pro-
ceedings of the 1st International Conference on Autonomic Computing (ICAC
2004), pp. 180–188 (2004)

Workload-Aware Self-tuning Histograms
for the Semantic Web

Katerina Zamani1, Angelos Charalambidis1(B), Stasinos Konstantopoulos1,
Nickolas Zoulis1,2, and Effrosyni Mavroudi3

1 Institute of Informatics and Telecommunications,
NCSR ‘Demokritos’, Athens, Greece

{kzam,acharal,konstant}@iit.demokritos.gr
2 Computer Science Department, Athens University of Economics

and Business, Athens, Greece
3 School of Electrical and Computer Engineering, National Technical

University of Athens, Athens, Greece

Abstract. Query processing systems typically rely on histograms, data
structures that approximate data distribution, in order to optimize query
execution. Histograms can be constructed by scanning the database
tables and aggregating the values of the attributes in the table, or, more
efficiently, progressively refined by analysing query results. Most of the
relevant literature focuses on histograms of numerical data, exploiting
the natural concept of a numerical range as an estimator of the volume
of data that falls within the range. This, however, leaves Semantic Web
data outside the scope of the histograms literature, as its most promi-
nent datatype, the URI, does not offer itself to defining such ranges. This
article first establishes a framework that formalises histograms over arbi-
trary data types and provides a formalism for specifying value ranges for
different datatypes. This makes explicit the properties that ranges are
required to have, so that histogram refinement algorithms are applicable.
We demonstrate that our framework subsumes histograms over numer-
ical data as a special case by using to formulate the state-of-the-art in
numerical histograms. We then proceed to use the Jaro-Winkler metric
to define URI ranges by exploiting the hierarchical nature of URI strings.
This greatly extends the state of the art, where strings are treated as cat-
egorical data that can only be described by enumeration. We then present
the open-source STRHist system that implements these ideas. We finally
present empirical evaluation results using STRHist over a real dataset
and query workload extracted from AGRIS, the most popular and widely
used bibliographic database on agricultural research and technology.

1 Introduction

Query optimizers in query processing systems typically rely on histograms, data
structures that approximate data distribution, in order to be able to apply their
cost model. Histograms can be constructed by scanning the database tables and
aggregating the values of the attributes in the table; and similarly maintained
in the face of database updates.
c© Springer-Verlag Berlin Heidelberg 2016
A. Hameurlain et al. (Eds.): TLDKS XXVIII, LNCS 9940, pp. 133–156, 2016.
DOI: 10.1007/978-3-662-53455-7 6

134 K. Zamani et al.

This histogram lifecycle, however, cannot be efficiently applied to large-scale
and frequently updated databases, such as, for example, stores of sensor data. An
alternative approach is taken by adaptive query processing systems that update
their histograms by observing and analysing the results of the queries that consti-
tute the client-requested workload, as opposed to maintenance workload only for
updating the histograms. The relevant databases literature focuses on numerical
attributes, exploiting the concept of an interval as a description of a set of numer-
ical values that is succinct and that has a length that can be used to estimate the
cardinality of many different intervals that have roughly the same density.

In the work described here, we investigate how to extend adaptive query
processing so that it can be applied to the domain of strings, typically treated
as purely categorical symbols that can only be described by enumeration. This,
however, disregards the fact that there are several classes of strings that have
an internal structure and that can be handled in a more sophisticated man-
ner. Specifically, we use string prefixes to expresses ‘intervals’, i.e., sub-spaces
of the overall string space that are interesting from the point of view of pro-
viding query optimization statistics. Although weaker than regular expressions,
prefixes can be very efficiently applied and can capture interesting ranges in
hierarchically-structured string domains, such as that of URIs. We also experi-
ment with describing a string range as a volume of strings similar to a central
string, quantifying similarity in a way that favours similar prefixes.

This attention on URIs is motivated by their prominent position in the
increasingly popular Semantic Web and Linked Data infrastructures for pub-
lishing data. In fact, these paradigms motivate adaptive query processing for a
further reason besides the scale of the data: distributed querying engines often
concentrate loose federations of publicly-readable remote data sources over which
the distributed querying engine cannot effect that histograms are maintained
and published. Furthermore, the URIs of large-scale datasets are not hand-
crafted names but are automatically generated following naming conventions,
usually hierarchical. These observations both motivate extending adaptive query
processing to Semantic Web data stores and also present an opportunity for our
string prefix extension.

In the remainder of this article, we first review self-tuning histograms (Sect. 2)
where we identify STHoles as our starting point, a very successful algorithm for
multi-dimensional histograms of numerical data. We proceed to formalize the key
concepts in STHoles in a way that subsumes STHoles as its specialization for
numerical intervals (Sect. 3) and to provide two alternatives for an extension that
covers URI strings (Sect. 4). We then proceed to present experimental results
using our prototype implementations (Sect. 5) and conclude (Sect. 6).

2 Background

In their simplest form, histograms describe an attribute a. The range of possible
values of a is divided into non-overlapping ranges. A histogram is a set of buckets
where each bucket is associated with a range and holds the number of tuples

Workload-Aware Self-tuning Histograms for the Semantic Web 135

where the value for a is within the bucket’s range. Self-tuning histograms are
progressively refined from query feedback after each selection on a, using the
actual result count to update the statistics in the bucket of a. In order to manage
memory usage, some error is tolerated and buckets with similar statistics are
merged into a single bucket with a wider range. In workload-aware self-tuning
histograms, frequently used buckets (in a given workload) are split into narrower
and more accurate buckets, while less frequently used buckets are more likely to
be merged with more dissimilar buckets and produce a larger error when used.

Workload-aware self-tuning histograms have been successfully used in rela-
tional databases as a way to avoid the costly creation of static histograms of
massive datasets. These techniques are memory efficient as they are focused
towards the current workload, providing more accurate statistics for data regions
that are being queried more frequently. Furthermore, they efficiently adapt to
changes in the data distribution or the focus of the workload as they exploit
query feedback collected from the production workload and do not impose any
maintenance workload.

2.1 Histograms of Numerical Attributes

In one of their earliest instances [1], such one-dimensional histograms of numer-
ical attributes were used to hold statistics on intermediate tables (SIT), where
each SIT corresponds to an intermediate node of the query plan. Adjacent buck-
ets shared their ranges’ edges and the ranges of all the buckets together covered
the entire range of values of the attribute. In order to estimate the cardinal-
ity of arbitrary select-project-join (SPJ) queries, statistics are estimated for the
individual patterns and then propagated through the query plan. Consider, for
instance an SPJ query of the form:

(R.x = S.y) AND (S.a < 10)

The histograms of tables R and S are used to estimate the selectivity of R �� S
ignoring S.a < 10 and then the histogram of S.a is used to estimate the selectivity
of S.a < 10 over the result of R �� S.

To avoid the propagation of errors through a sequence of operators, SITs
cat also match intermediate sub-expressions of the query. That is to say, we
would use statistics that are built on the result of the query expression R ��
S specifically on ranges of S.a values, rather than estimates derived from the
isolated statistics of R.x, S.y, and S.a. A workload-driven technique was used
to identify the SITs that maximized the benefit to the query optimizer.

These ideas are relevant to the Learning Optimizer (LEO) framework [2] used
in DB2. LEO monitors query execution and accordingly adjusts the cardinality
estimates and statistics used by the query optimizer. By comparing estimated
and actual cardinalities, LEO gives positive or negative feedback to the statistics
and the cardinality model used. Correlations can be also detected when estimates
for individual predicates are known to be accurate but some combination of them
is not. LEO does not modify statistics, but saves separately adjustment factors

136 K. Zamani et al.

such that the product of the adjustment factor and the estimated selectivity
derived from the DB2 statistics yields the correct selectivity. Stillger et al. [2]
demonstrated that LEO improves cardinality estimates by orders of magnitude,
changing plans to improve performance by orders of magnitude, while adding
less than 5 % overhead to execution time when collecting query feedback.

STGrid [3] extends these ideas to multidimensional self-tuning histograms
that use query workloads to refine a grid-based histogram structure. These self-
tuning histograms are a low-cost alternative to traditional histograms with com-
parable accuracy. However, since the splitting (or merging) of each bucket entails
the splitting (or merging) of several other buckets that could be far away from
and unrelated to the original one, overall accuracy is degraded in order to satisfy
the grid-partitioning constraint.

To alleviate the poor bucket layout problem of STGrid, STHoles [4] allows
buckets to overlap. This more flexible data structure allows STHoles to exploit
feedback in a truly multi-dimensional way and is adopted by many subsequent
algorithms [5,6], including the one presented here. STHoles allows for inclusion
relationships between buckets, resulting in a tree-structured histogram where
each node represents a bucket. Holes are sub-regions of a bucket with different
tuple density and are buckets themselves. To refine an STHoles histogram, query
results are used to count how many tuples fall inside each bucket of the current
histogram. Each partial intersection of query results and a bucket can be used
to refine the histogram by drilling new holes, whenever the query results diverge
from the prediction made through the bucket’s statistics.

In order to maintain a constant number of buckets, buckets with close tuple
densities are merged to make space for new holes. A penalty function measures
the difference in approximation accuracy between the old and the new histogram
to choose which buckets to merge. Parent-child merges are useful to eliminate
buckets that become too similar to their parents; sibling merges are useful to
extrapolate frequency distributions to yet unseen regions in the data domain
and also to consolidate buckets with similar density that cover nearby regions.

ISOMER [5] is a more recent feedback-based algorithm for building and
maintaining multidimensional histograms. ISOMER uses the histogram struc-
ture of STHoles and the information-theoretic principle of maximum entropy to
refine the histogram based on query feedback records (QFR). QFRs are 〈q,N(q)〉
records that match queries against the size of the query result. Once ISOMER
obtains a consistent set of QFRs, the algorithm computes the ‘simplest’ (in terms
of entropy) histogram that is consistent with all QFRs added so far. The result
is a maximization problem under a system of constraints, solved with iterative
scaling. Furthermore, to meet a space budget ISOMER discards QFRs merges
buckets in a way similar to STHoles.

Except for storing cardinalities, another useful statistic for selectivity esti-
mation of queries with equality or LIKE selection predicates is the number of
distinct values. Kaushik and Suciu [7] presented the first self-tuning histogram
modelling cardinalities and distinct value counts, which was based on the same
entropy maximization (EM) principle as ISOMER but with a different proba-
bility space. Due to the computational complexity of the resulting EM problem,

Workload-Aware Self-tuning Histograms for the Semantic Web 137

they minimize instead the squared distance between the histogram’s estimates
and the query feedback viewed as vectors. However, their method can only con-
struct one-dimensional histograms on numerical or categorical data.

Markl et al. [8] address the problem of combining complementary selectivity
estimations from multiple sources (estimations which are computed using ISO-
MER histograms) to obtain a consistent selectivity estimation using the idea of
maximum entropy. Similar to the approach in ISOMER, this work exploits all
available information and avoids biasing the optimizer towards plans for which
the least information is known [9].

Khachatryan et al. [10] note that like traditional index structures such as R-
Trees, STHoles fails in high-dimensional data spaces and is sensitive to the order
of tree construction. As far as the latter is concerned, they argue that if the first
few queries define a top-level bucket structure that is bad, the subsequent tuning
is unlikely to correct it. They propose an initializing with subspace buckets which
are derived from a subspace clustering algorithm. They use the MineClus cell
clustering algorithm, which outputs a set of clusters with an assigned importance.
Each cluster consists of tuples and has dimensions d1, d2, ..., dk. The correspond-
ing bucket is the minimal rectangle containing these points-tuples and spans the
entire length of every dimension not in d1, d2, ..., dk. They showed that the new
initialization improves estimation quality and, in some situations, reduces the
number of buckets.

2.2 Histograms of Categorical Attributes

STHoles and, in general, workload-aware self-tuning histograms have been suc-
cessfully used in relational databases as a low-overhead alternative to statically
re-scanning database tables. The resulting histogram is focused towards the cur-
rent workload, providing more accurate statistics for data regions that are being
queried more frequently. Furthermore, they are able to adapt to changes in data
distribution and thus are well-suited for datasets with frequently changing con-
tents. They are, however, for the most part targeting numerical attributes, since
they exploit the idea that a value range is an indication of the size of the range.
Turning our attention to the Semantic Web, the Resource Description Frame-
work (RDF) is the dominant standard for expressing information. RDF infor-
mation is a graph where properties (labelled edges) link two resources to each
other or one resource to a literal (a concrete value). The relevance of this dis-
cussion to self-tuning histograms is that RDF uses URIs as abstract symbols
that denote resources. Given this prominent role of URIs in RDF data, extend-
ing self-tuning histograms to string attributes can have a significant impact in
optimizing querying of RDF datasets.

There has been relatively limited amount of work around string selectivity
estimation in the field of relational databases. Chaudhuri et al. [11] proposed
to collect multiple candidate identifying substrings of a string using, for exam-
ple, a Markov estimator and build a regression tree as a combination function
of their estimated selectivities, in order to alleviate the selectivity underestima-
tion problem of queries involving string predicates in previous methods, which

138 K. Zamani et al.

used independence and Markov assumptions. In 2005, Lim et al. [12] introduced
CXHist, which is a workload-aware histogram for selectivity estimation support-
ing a broad class of XML string-based queries. CXHist is the first histogram
based on classification that uses feature distributions to summarize queries and
quantize their selectivities into buckets and a naive-Bayes classifier to capture
the mapping between queries and their selectivity.

Within the Semantic Web community itself, the SWOOGLE search engine
collects metadata, such as classes, class instances and properties for web doc-
uments and relations between documents [13]. LODStats computes several
schema-level statistical values for large-scale RDF datasets using an approach
based on statement streams [14]. More closely related to our work is RDFS-
tats [15], which is a generator for statistics of RDF sources like SPARQL end-
points. They generate different statistical items such as instances per class and
histograms. Unlike our approach, they generate different static histograms (i.e.
that must be rebuilt to reflect any changes in the RDF source) per class, prop-
erty and XML data type. For range estimations on strings, RDFStats mentions
three possibilities: (a) one bucket for each distinct string, resulting in large his-
tograms; (b) reducing strings to prefixes; or (c) using a hash function to reduce
the number of distinct strings, although no appropriate general-purpose hash
function has been identified. However, as Harth et al. [16] have also noted in
relation to Q-Trees for indexing RDF triples, hashing URIs is a purely syntac-
tic mapping from URIs to numerical coordinates and fails to take into account
the semantic similarity between resources; and no universally good function has
been identified.

As URIs are the most prominent datatype in the Semantic Web, the absence
of an extension that can naturally handle URI strings leaves Semantic Web data
outside the scope of many developments in self-tuning histograms.

3 Self-Tuning String Histograms

In this section we establish a new histogram structure that extends the structure
of the STHoles algorithm with the ability to cover strings. We also present the
algorithms that construct and refine this new structure.

In our treatment, we first defer defining how string ranges are specified.
Instead, we construct a framework of preliminary definitions where we specify
the properties that must be satisfied by any compliant definition of string ranges.
We then proceed to construct two alternative string ranges: the first one is based
on prefixes and is a slight re-formulation of previous work [17] so that it complies
with this framework. The second definition of string ranges is based on string
distance.

3.1 Preliminaries

Let D be a dimension, any subset of D be a range in D, and P(D) the set of
all possible ranges in D. A range can be defined either implicitly by constraints

Workload-Aware Self-tuning Histograms for the Semantic Web 139

over the values of D or explicitly by enumeration. Note that D ∈ P(D), meaning
that a range does not need to impose a restriction but can also include the whole
dimension. Let H be a histogram of n dimensions D1, . . . Dn. Let V(H) be the
set of all possible n-dimensional vectors (r1, . . . rn) where ∀i ∈ [1, n] : ri ∈ P(Di).

A histogram is represented as an inclusion hierarchy of buckets; we shall use
BH to denote the set of buckets of a histogram H.

Definition 1. Each bucket b ∈ BH is an entity of histogram H such that:

– b is associated with a box(b) ∈ VH , the vector that specifies the set of tuples
that the bucket describes.

– b is associated with a size(b) which indicates the number of tuples that match
box(b)

– b is associated with n values dvc(b,Di), i = 1 . . . n which indicate the number
of distinct values appearing in dimension Di of the tuples that match box(b).

We define the density of a bucket b to be the quantity

density(b) =
size(b)∏

i:ri∈box(b)

dvc(b,Di)

Definition 2. Every histogram implicitly includes a bucket b� such that
box(b�) ≡ (D1, . . . Dn) that is, the bucket that imposes no restrictions in any of
the dimensions of H and includes all tuples. We call this the top bucket b�.

The implication of Definition 2 is that the overall size of the dataset and
the number of distinct values in each dimension should be known (or at least
approximated) regardless of what query feedback has been received. In our imple-
mentation we assume the root bucket (the top-most bucket of the hierarchy) as
an approximation of the top.

Let QH be the set of all possible queries over the tables covered by H.
Regardless of how they are syntactically expressed, we perceive QH as the set
of all possible restrictions over the dimensions of H; thus:

Definition 3. Each query q ∈ QH is an entity of histogram H such that:

– q is associated with a box(q) ∈ VH , the vector that specifies the restrictions
expressed by the query

– q is associated with a size(q) which indicates the number of tuples that are
returned by executing q.

As pointed out earlier, in our preliminary constructions ranges are simply
defined as any subset of D, without making any requirements on how these are
specified; in fact they may even be specified by enumeration. However, in order
to realize the memory efficiency of workload-aware histograms, ranges should
be specified intensionally, so that their representation consumes a memory unit
regardless of how many elements match the specification. We shall present below
the definitions we propose for string ranges; at this point, it suffices to define a
range as follows:

140 K. Zamani et al.

Definition 4. We define a range r ∈ P(D) of dimension D of histogram H to
be an entity of H with the following properties:

– There is a membership function memberr : D → {true, false} that can con-
sistently decide for any t ∈ D whether it is or is not inside r.

– There is an intersection function � : P(D) × P(D) → P(D) that returns the
range resulting from the intersection of two ranges.

It should be noted that we do not make any claims on the intersection function,
although it is advantageous if such a function is approximately (if not exactly)
the same as a function that would output a range that has as extension the
intersection of the ranges’ extensions. However, it should be possible to oper-
ate in instantiations of the framework where the (strict) intersection cannot be
computed or syntactically represented for all pairs of ranges. In such instan-
tiations, our relaxed definition of � provides the flexibility to define operators
that roughly (but not exactly) correspond to producing a representation for the
intersection of the extensions of its operands.

We use range intersection to also define multi-dimensional box intersection
as follows:

Definition 5. Given two boxes v1, v2 ∈ VH from the n-dimensional histogram
H, let v1 = (r1,1, . . . r1,n) and v2 = (r2,1, . . . r2,n). We define box intersection:

v1 � v2 = (r1,1 � r2,1, . . . r1,n � r2,n)

Definition 6. Given two boxes v1, v2 ∈ VH from the n-dimensional histogram
H, let v1 = (r1,1, . . . r1,n) and v2 = (r2,1, . . . r2,n). We say that v1 encloses v2 iff
∀i ∈ [1, n] at least one of the following holds:

1. r2,i ⊆ r1,i ⊂ Di, that is, none of the ranges is the complete dimension and
r2,i is contained within r1,i

2. r2,i = Di and r1,i ⊂ Di, that is, if one of the ranges is the complete dimension
then it is enclosed by the one that is not.

3. r2,i = r1,i = Di, that is, both ranges are the complete dimension.

It should be noted that we have defined an unrestricted dimension as being
enclosed by (rather than enclosing) a restriction. The rationale behind this will
be explained in conjunction with bucket merging (Sect. 3.4).

Definition 7. Given two boxes v1, v2 ∈ VH from histogram H, v1 tightly
encloses v2 iff v1 encloses v2 and there is no u ∈ VH such that v1 � u � v2.

Definition 8. Given a query q ∈ QH , we associate with q the best fit, the set
of buckets bf(q) ⊆ BH such that

∀b ∈ bf(q) : box(b) tightly encloses box(q)

Lemma 1. For every query there is always a non-empty best fit.

Workload-Aware Self-tuning Histograms for the Semantic Web 141

Proof. There is always at least one bucket that encloses any box(q), the top
bucket b� (Definition 2). If there is no other bucket that encloses box(q), then
b� tightly encloses box(q) (Definition 7) and thus bf(q) = {b�}, which is non-
empty. If there are other buckets that enclose box(q), then there is also at least
one that tightly encloses box(q), so bf(q) is non-empty.

3.2 Cardinality Estimation

Being able to predict the size of querying results is important input for query
execution optimizers, but the specifics of how this optimization is performed is
outside the scope of this paper. We will here proceed to define metrics over the
values associated with the buckets of H in order to predict size(q), q ∈ QH , the
number of results returned by q.

In the literature, numerical intervals are used to succinctly define ranges and
to efficiently decide if a query is enclosed by a bucket or not. The numerical
difference between the interval’s starting and ending value is sometimes used
to define range length and, in multi-dimensional buckets, bucket volume: an
estimator of the number of tuples in a bucket. We, accordingly, define range
length as follows:

Definition 9. Given a histogram dimension D and a range r ∈ P(D) we define
the function length : P(D) → R as follows:

1. Unrestricted ranges that span the whole dimension have length 0.
2. If r is an extensionally defined range of any type, then length(r) = |r|, the

number of distinct values in the range.
3. If r is a numerical range defined by an interval [x, y], then length(r) = y −

x + 1.

The addition of the unit term guarantees that the length cannot be zero even if
x = y, i.e., even if the numerical range is a single point. This makes the third
clause of the definition consistent with the second one, since for any number n
we would expect the length of the singleton {n} according to clause 2 to be the
same as the length of the range [n, n] that can also only include a single distinct
value. It should also be noted that this is the only situation in which the length
of a range can be 1. This property is important for Definition 10 below.

We will revisit this definition in Sect. 4 and complete it with the definition of
length for URI ranges. Regardless of how length is defined for numerical, URI,
or other types of ranges, we propose the following function as an estimator of
the number of tuples that lie inside q, given a histogram:

Definition 10. Given a histogram H and a query q, let box(q) = r1, ...rn. We
define the function estH : VH → R as follows:

estH (box(q)) =
∑

b∈bf(q)

size (b)∏
i:length(ri)=1

dvc (b,Di)

142 K. Zamani et al.

The intuition behind this definition is that we identify a best-fitting bucket
(cf. Definition 8) and assume that tuples are uniformly distributed among the
distinct values in each dimension. Since the query might have bindings for some
of its dimensions, we use this assumption to apply simple division to estimate
the fraction of the bucket’s tuples that will be selected by the query dimensions
that are unbinded variables. Naturally, this also assumes that the length of the
range of the query’s box can only be 1 for binded dimensions and is greater than
1 otherwise. This property is guaranteed by the definition of categorical and
numerical length (Definition 9), and should also be observed by any extensions
for other types.

3.3 Histogram Construction and Refinement

The construction of the histogram follows the same high level steps as the
STHoles algorithm. In particular, we start with an empty histogram. For each
query q in the workload, we identify candidate buckets bi that intersect with q.
For each candidate bucket bi we compute bi � q and these intersections constitute
candidate holes ci. We then shrink each candidate hole to the largest sub-region
that does not intersect with the box of any other bucket, we count the exact
number of tuples from the result stream that lie inside the shrunk hole and the
distinct values count. Then, we determine whether the current density of the
candidate bucket is close to the actual density of the candidate hole. If not, we
‘drill’ the candidate hole as a new histogram bucket and we move all children of
bi that are enclosed by ci to the new bucket (Algorithms 1 and 2).

A point of divergence from STHoles is when shrinking candidate holes. Let
X be the set of all buckets that partially intersect with a candidate hole ci.
STHoles selects at each step the pair 〈x, j〉 that comprises bucket x ∈ X and
dimension j such that shrinking ci along j by excluding x has as a result the
smallest reduction of ci. Instead of checking for the optimal 〈x, j〉 our method
selects the first pair where shrinking ci along j by excluding x results in the
smallest relative reduction of ci’s length in that dimension, the intuition being
that often excluding x will give similar relative reduction along all dimensions.

Algorithm 1. Refinement of a histogram H given a set of queries W .
procedure Refine(H,W)

for all queries q ∈ W do
if q is not contained in H then

expand H’s root bucket so that it contains q

for all buckets bi such that q � bi �= ∅ do
(ci, Tci , dci) ← ShrinkBucket(bi, q)
if estimation is not accurate then

DrillHole(bi, ci, Tci , dci)

while H has too many buckets do
Let b1, b2 in H with the lowest penaltyH(b1, b2)
Merge(b1, b2)

Workload-Aware Self-tuning Histograms for the Semantic Web 143

Algorithm 2. Drilling a hole in bucket b, given a candidate hole c and the
counted cardinality Tc and distinct values Dc(i) for each dimension Di.

procedure DrillHole(b, c, Tc, dc(·))
if box(b) = box(c) then

size(b) ← Tc

dvc(b,Di) ← Dc(i) ∀i ∈ attributes
else

Add a new child bn of b to the histogram
box(bn) ← c
size(bn) ← Tc

dvc(bn, Di) ← dc(i) ∀i ∈ attributes
Migrate all children of b that are enclosed by c
so they become children of bn

Algorithm 3. Shrink a bucket that is enclosed by the intersection of b and q
and does not partially intersect any other bucket.

function ShrinkBucket(b, q)
c ← box(q) ∩ box(b)
P ← {bi ∈ children(b) | c ∩ box(bi) �= ∅ ∧ box(bi) �⊆ c}
while P �= ∅ do

Get first bucket bi ∈ P and dimension j
such that shrinking c along j by excluding bi results
in the smallest reduction of c.
Shrink c along j
P ← {bi ∈children(b) | c ∩ box(bi) �=∅ ∧ box(bi) �⊆c}

Count from the result the number of tuples in c, Tc

for all attributes i do
Count from the result the number of
distinct values of the ith attribute in c, dc(i).

return (c, Tc, dc(·))

We then shrink ci, we update participants and repeat the procedure until there
are no participants left (Algorithm 3). This may result in a suboptimal shrink,
but we avoid examining all possible combinations at each step. Furthermore, in
STHoles the number of tuples in this shrunk subregion is estimated assuming
uniformity; instead, we measure exactly the number of tuples and distinct values
per dimension.

3.4 Bucket Merging

In order to limit the number of buckets and memory usage, buckets are merged
to make space for drilling new holes. Following STHoles, our method looks for
parent-child or sibling buckets that can be merged with minimal impact on the
cardinality estimations. We diverge from STHoles when computing the box, size,
and dvc associated with the merged bucket as well as in the penalty measure

144 K. Zamani et al.

that guides the merging process towards merges that have the smallest impact
on estimation accuracy.

Let b1, b2 be two buckets in the n-dimensional histogram H and let H ′ be
the histogram after the merge and bm the bucket in H ′ that replaces b1 and b2.
In the parent-child case, the parent bucket, let that be b1, tightly encloses the
child bucket. In this case, we merge b2 into b1, so that box(bm) ≡ box(b1). Any
children that b2 had become children of bm.

In sibling-sibling merges, let bp be the common parent bucket that tightly
encloses both siblings b1 and b2. The merged bucket bm is a child of bp and the
parent of all children of b1 and b2. The box of bm must be such that it encloses
the boxes of b1 and b2, without partially overlapping with any further siblings.
Different implementations might achieve this either by defining checks that block
sibling merges or by defining the box of bm in such a way that it also encloses
any further siblings that partially overlap with the extended box that encloses
b1 and b2.

The size of bm is estimated by adding the sizes of b1 and b2; the distinct
values count of bm is estimated by the maximum distinct values count among
the merged buckets:

1. box(bp) tightly encloses box(bm)
2. box(bm) tightly encloses both buckets b1, b2
3. box(bm) tightly encloses the boxes of all children of bp that partially intersect

either of b1, b2. That is, box(bm) encloses box(bc) for all bc such that:
(a) bp tightly encloses bc; and
(b) box(b1) partially overlaps box(bc) or box(b2) partially overlaps box(bc)

4. size(bm) =
∑

k=1,2,c1,...

size(bk)

5. dvc(bm) = max
k=1,2,c1,...

dvc(bk)

It should be noted that the procedure that constructs the merged bucket bm is
deterministic and thus bm can be uniquely determined by b1 and b2. In Point 3
above, it should be stressed that the partially intersecting buckets bc are not
merged into bm, but that the latter is expanded so that it can assume bc as its
children. This is because in some algorithms (including STHoles), box(bm) can
become larger than box(b1) ∪ box(b2) in order to have a succinct description
with a single interval in each dimension. As a result, it might cut across other
buckets; box(bm) should then be extended so as to subsume those as children. In
order to avoid, however, dropping informative restrictions, STHoles only extends
box(bm) along dimensions where the boxes of bc do have a restriction. In order to
capture this, we have defined the encloses relation (Definition 6) in a way that
makes unrestricted dimensions enclosed by (rather than enclosing) restrictions.

In order to decide which is the optimal merge at any stage of histogram
refinement, we need to balance between merges of buckets with similar statistics
(minimizing the error introduced by discarding the statistics held in the merged
buckets) and buckets with similar boxes (minimizing the error introduced by
generalizing boxes beyond what was warranted by hole drilling, i.e., query feed-
back). To achieve the latter, we first define a distance function that evaluates

Workload-Aware Self-tuning Histograms for the Semantic Web 145

Definition 11. Given a histogram H and any two of its boxes v1 and v2, we
define the distance between v1 and v2 as any function distanceH : VH ×VH → R

that has the following properties:

– distance(v1, v1) = 0
– If v1 encloses v2 then distance(v1, v2) = 0.

We can now define the penalty function that evaluates a possible merge:

Definition 12. Given a histogram H and any three of its buckets b1, b2 and
bm, we define the penalty function penaltyH : BH × BH → R of merging b1 and
b2 into bm as follows:

penaltyH(b1, b2)

=
1
2

(|density(b1) − density(bm)|
density(b1) + density(bm)

+
|density(b2) − density(bm)|
density(b2) + density(bm)

)

+
∑

i

(|dvc(b1, i) − dvc(bm, i)|
dvc(b1, i) + dvc(bm, i)

+
|dvc(b2, i) − dvc(bm, i)|
dvc(b2, i) + dvc(bm, i)

)

+ distance (box (b1) ,box (b2))

The first two terms of this function represent the error in the statistics introduced
by the merge while the third term increases the penalty for bucket pairs that are
more distant as defined in Definition 11. Therefore, a sibling-sibling merge must
have a small enough statistics-based penalty to be preferred over a parent-child
merge, so that it can counter the fact that parent-child merges always have 0
distance-based penalty (since a child is always enclosed by its parent).

This penalty function allows us to rank the candidate bucket pairs and select
the one with the minimum penalty. It should be noted though that not every
bucket pair can be candidate for merging. The following merging constraints
apply:

– The new box(bm) should not intersect with any other box, otherwise we would
result in an inconsistent histogram

– The new box(bm) should not cover more than the half volume of its parent.
This constraint is significant in order to control over-generalization in the
early stages of an histogram when distant siblings might not be blocked from
merging by the previous clause

– If the new box(bm) encloses the boxes of other buckets, bm assumes these
buckets as as its children.

The specifics of how to calculate the box of the merged bucket are left to be
defined for each dimension type.

3.5 Extending for Further Types

We have deliberately avoided binding the discussion so far to specific data types,
in order to define a general framework for histograms. The only exception is that

146 K. Zamani et al.

the length of numerical ranges is already defined (Definition 9), in order to ensure
backwards compatibility with numerical ranges in STHoles.

In order to specify the histograms of a new data type, which we shall here
call newtype, one needs to provide the following:

1 A function newtype member that satisfies the definition of the generic member
function (Definition 4).

2. A function newtype intersection that satisfies the definition of the generic
intersection function (Definition 4).

3. A function newtype length that satisfies the definition of the generic length
function (Definition 9).

4. A function newtype distance that satisfies the definition of the generic distance
function (Definition 11).

5. A procedure for calculating the box of the resulting bucket in sibling merging.
This procedure must satisfy the merging constraints in Sect. 3.4.

In the following section we will proceed to present two alternative specifications
for URI histograms within this framework.

4 URI Ranges

As a first approach to expressing ranges of URIs, we have looked at prefixes.
Prefixes can naturally express ranges of semantically related resources given
the natural tendency to group together relevant items in hierarchical structures
such as pathnames and URIs. We have also experimented with exploiting a
geometrical analogy where we express a range as the volume around a central
URI; again, we have defined distance in a way that prefixes weigh more, in order
to preserve the bias towards hierarchical structures but offering more flexibility
by comparison to exact prefix matching.

4.1 Prefix Ranges

In this approach we assume string prefixes as the description language for implic-
itly defining string ranges.

Definition 13. Let H be a histogram and D be a string dimension of H. We
define a prefix range r of D to be a set of strings, denoted as Pref(r). The strings
in Pref(r) are to be interpreted as the prefixes of the elements of D that are in
r. For any string s ∈ D we define prefix membership as follows:

memberr(s) =
{

true, ∃p ∈ Pref(r) : s starts with p
false, otherwise

In order to satisfy the requirements set in Sect. 3.5, we need to define the func-
tions prefix intersection, prefix length, and prefix distance over prefix ranges, as
well as the procedure for sibling merging.

Workload-Aware Self-tuning Histograms for the Semantic Web 147

Definition 14. Let H be a histogram, D a string dimension of H, and r1, r2 ∈
P(D) two prefix ranges over D. The range intersection r1 � r2 is defined as:

1. If r1, r2 are string ranges defined by sets of prefixes, then r1 � r2 =
{p|(p1, p2) ∈ Pref(r1) × Pref(r2) ∧ (p = p1 = p2 ∨ one of p1, p2 is a prefix
of the other and p is the longest (more specific) of the two)}

2. If one of the ranges is a string range defined by sets of prefixes (say r1 without
loss of generality) and the other is an explicit set of strings (say r2), then
r1 � r2 = {v|v ∈ r2 ∧ ∃p ∈ r1 : p is a prefix of v}

3. In any other case, r1 � r2 = r1 ∩ r2.

Definition 15. Given a histogram dimension D and a range r ∈ P(D) we
define the function length : P(D) → R as follows:

1. Unrestricted ranges that span the whole dimension have length 0.
2. If r is an extensionally defined range of any type, then length(r) = |r|, the

number of distinct values in the range.
3. If r is a numerical range defined by an interval [x, y], then length(r) = y −

x + 1.
4. If r is a string range defined by a set of prefixes Pref(r), then length(r) =

1 + |Pref(r)|
It should be noted that no prefix range can ever be guaranteed to be equivalent
to an extensional singleton range, since any valid URI prefix can be extended into
a longer valid URI subsumed by the prefix. Therefore, all and only extensional
singleton ranges can have a length of 1, which satisfies Requirement 3.

Definition 16. Let r1 and r2 be prefix ranges. We define the prefix distance
between r1 and r2 to be a constant 0 for any r1, r2.

That is to say, in this setup there is no bias in sibling merges towards more
similar prefixes and candidate merges are evaluated only on the basis of the
similarity of the statistics in the buckets.

Box of Merged Siblings. Suppose that sibling buckets b1 and b2 are to be
merged. The box of the merged bucket bm is calculated as the union of the
prefixes in each:

Pref(box(bm)) = Pref(box(b1)) ∪ Pref(box(b2))

4.2 Similarity Ranges

In this approach we use the Jaro-Winkler similarity metric [18] to define the
distance between two strings. This metric is suitable for URI comparison since
it provides preference to the strings that match exactly at the beginning. Based
on this, we define URI ranges as spherical volumes around a characteristic central
URI, so that a range is specified by a URI (the center) and the radius around it
that is within the range.

148 K. Zamani et al.

Definition 17. Let H be a histogram and D be a string dimension of H. Let
JW : D × D → [0, 1] be the Jaro-Winkler metric that assigns a similarity to
an unordered pair of strings from D. We define similarity range rd as a tuple
rd = 〈c,R〉 where c is a string called the center of r denoted as center(r) and
R ∈ R is called the radius of r and denoted as radius(r). For any string s ∈ D
we define similarity membership as follows:

memberr(s) =

{
true, if 1 − JW(s, center(r)) ≤ radius(r)
false, otherwise

In order to satisfy the requirements set in Sect. 3.5, we need to define the
functions similarity intersection, similarity length, and similarity distance over
similarity ranges, as well as the procedure for sibling merging.

Definition 18. Given two similarity ranges of the same dimension r1, r2 ∈
P(D) their similarity intersection is defined as r1 � r2 = 〈c′, R′〉 where:

c′ = center(ri) where i = argmaxi=1,2 radius(ri)
R′ = max{0, radius(r1) + radius(r2) − distanceH(r1, r2)}

Definition 19. Given a histogram dimension D and a range r ∈ P(D) we
define the similarity length function length : P(D) → R as follows:

1. Unrestricted ranges that span the whole dimension have length 0.
2. If r is an extensionally defined range of any type then length(r) = |r|, the

number of distinct values in the range.
3. If r is a numerical range defined by an interval [x, y], then length(r) = y −

x + 1.
4. If r is a similarity range then length(r) = 1 + radius(r)

It should be noted that range 〈u, 0〉 has u as its single member and is equiv-
alent to the extensional singleton range u. The similarity range length is 1 in
both cases, which satisfies Requirement 3.

Definition 20. Let r1 and r2 be similarity ranges. We define the similarity
distance between r1 and r2 using the Jaro-Winkler similarity of their centers:

distanceH(r1, r2) = 1 − JW(center(r1), center(r2))

Box of Merged Siblings. Suppose that sibling buckets b1 and b2 are to be
merged. The box of the merged bucket bm is calculated for each dimension i that
is URI dimension, where r1 is the range of b1 in dimension i, r2 is the range of
b2 in dimension i, and rm is the range of bm in dimension i. We assume that for
every range ri we can assign consistently an id and without loss of generality let
r1 be the range with the smallest id.

1. If radius(r1) = 0 and radius(r2) = 0, then:

center(rm) = center(r1)
radius(rm) = distanceH(r1, r2)

Workload-Aware Self-tuning Histograms for the Semantic Web 149

2. If radius(r1) �= 0 ∧ radius(r2) �= 0, then:

center(rm) =

{
center(r1), if radius(r1) ≥ radius(r2)
center(r2), otherwise

radius(rm) =

{
distanceH(r1, r2) + radius(r2), if radius(r1) ≥ radius(r2)
distanceH(r1, r2) + radius(r1), otherwise

3. otherwise,

center(rm) =

{
center(r1), if radius(r1) �= 0
center(r2), otherwise

radius(rm) = distanceH(r1, r2)

That is, the center of the merged range is that of the range with the greater
radius, and the radius of the merged range is large enough so that the merged
range also encloses the range with the smaller radius. The intuition behind this
definition is that by assuming the larger of the two ranges as the basis for the
merged range, a smaller expansion will be needed in order to enclose the other
range, reducing the risk of over-generalizing.

4.3 Discussion

We have defined a multi-dimensional histogram over numerical, string, and cat-
egorical data. The core added value of this work is that we introduce the notion
of descriptions in string dimensions, akin to intervals for numerical dimensions.
This has considerable advantages for RDF stores and, more generally, in the
Semantic Web and Linked Open Data domain, where URIs have a prominent
role and offer the opportunity to exploit the hierarchical structure of their string
representation.

Initially, we propose prefixes as the formalism for expressing string ranges,
motivated by its applicability to URI structure. We then relax this formalism,
using similarity ranges to describe string ranges based on string distances. This
is no loss of generality, since it is straightforward to use more expressive pattern
formalisms (such as regular expressions) without altering the core method but
at a considerable computational cost. The only requirement is that membership,
intersection and some notion of length can be defined. Length, in particular, can
be used in the way STHoles uses it as an indication of a bucket’s size relative
to the size of its parent bucket. If a metric of distance or dissimilarity can be
defined, this is also exploited to introduce bias towards merging similar ranges,
but this is not required.

What allows us to relax the definition of length by comparison to STHoles,
is that for range queries we return the statistics of the bucket that more tightly
encloses the query, instead of returning an estimation based on the ratio of the
volume occupied by the query to the volume of the overall bucket. In other

150 K. Zamani et al.

words, we use length more as a metric of the size of description, rather than
a metric of the bucket size (the number of tuples that fit this description). To
compensate, we exactly measure in query results (rather than estimate) bucket
size when shrinking buckets, compensating for the extra computational time
by avoiding examining all combinations of buckets × dimensions (cf. Sect. 3.3).
For point queries (with unit length), we also take into account statistics about
distinct value counts in a bucket, increasing the accuracy of the estimation.

A limitation of our algorithm is that when we merge two sibling buckets we
assign to the resulting bucket the sum of the sizes of the merged buckets and of
the children of the resulting bucket, which is an overestimation of the real size.
Furthermore, we also assign as distinct value count the maximum of the distinct
value counts of these buckets, which is an underestimation of the real distinct
value count. These estimations will persist until subsequent workload queries
effect an update of merged bucket’s statistics and will be used in cardinality
estimations. We try to compensate for these possibly inaccurate estimations
by carefully selecting buckets for sibling-sibling merging and defining a sibling-
sibling merge penalty which favours the merging of buckets which not only have
similar statistics, i.e. densities and distinct value counts, but their central strings
are also similar. Besides empirically testing and tuning these estimators, we are
also planning to extend the theoretical framework so that estimated values are
represented as ranges or distributions, and subsequent calculations take into
account the whole range or the distribution parameters rather than a single
value.

In general, and despite these limitations, our framework is an accurate
theoretical account of STHoles, a state-of-the-art algorithm for self-tuning multi-
dimensional numerical histograms, and an extension to heterogeneous numeri-
cal/string histograms that is backwards-compatible with STHoles.

5 Experiments

To empirically validate our approach, the algorithm presented above has been
implemented in Java as the STRHist module of the Semagrow Stack [19], an
optimized distributed querying system for the Semantic Web.1 The execution
flow of the Semagrow Stack starts with client queries, analysed to build an
optimal query plan. The optimizer relies on cardinality statistics (produced by
STRHist) in order to provide an execution plan for the Semagrow Query Execu-
tion Engine. This engine, besides joining results and serving them to the client
application, also forwards to STRHist measurements collected during query exe-
cution. STRHist analyses these query feedback logs in batches to maintain the
histogram that is used by the optimizer. The histogram is persisted in RDF
stores using the Sevod vocabulary [20], which expresses the in-memory tree of
bucket objects that is the internal representation of STRHist.

1 STRHist is available at https://github.com/semagrow/strhist. For more details on
Semagrow, please see http://semagrow.github.io.

https://github.com/semagrow/strhist
http://semagrow.github.io

Workload-Aware Self-tuning Histograms for the Semantic Web 151

5.1 Experimental Setup

We applied STRHist to the AGRIS bibliographic database on agricultural
research and technology maintained by the Food and Agriculture Organization
of the UN. AGRIS comprises approximately 23 million RDF triples describing
4 million distinct publications with standard bibliographic attributes.2 AGRIS
consolidates data from more than 150 institutions from 65 countries. Bibliogra-
phy items are denoted by URIs that are constructed following a convention that
includes the location of the contributing institution and the date of incorpora-
tion into AGRIS. As scientific output increases through the years and since there
is considerable variation in the scientific output of different countries, there are
interesting generalizations to be captured by patterns over publication URIs.

We define a 3-dimensional histogram over subject, predicate and object vari-
ables. Subject URIs are represented as strings3 while predicate URIs are treated
as categorical values, since there is always a small number of distinct predicates.
Each bucket is composed of a 3-dimensional subject/predicate/object bounding
box, a size indicating the number of triples contained in the bucket, and the
number of distinct subjects, predicates and objects.

We experiment on a real query workload extracted from the logs of the user
evaluation of the Semagrow Stack [21]. We separated the workload into a training
set that is used to refine of a histogram H over D and an evaluation set that
is used to compare the statistics reported by the histogram against the actual
dataset. Specifically, we measure the average absolute estimation error and the
root mean square error of histogram H on the respective workload W :

errABS
H,D (W) =

1
|W |

∑

q∈W

|estH(q) − actD(q)|

errRMS
H,D (W) =

1
|W |

√ ∑

q∈W

(estH(q) − actD(q))2

where estH(q) is the cardinality estimation for query q and actD(q) is the actual
number of tuples in D that satisfy q.

The expected behaviour of the algorithm is to improve estimates by adding
buckets that punch holes and add sub-buckets in areas where there is a difference
between the actual statistics and the histogram estimates. Considering how client
applications access some ‘areas’ more heavily than others, the algorithm zooms
into such critical regions to provide more accurate statistics. Naturally, the more
interesting observations relate to the effect of merges as soon as the available
space is exhausted, so we have allocated to STRHist unrealistically small memory
(50 and 100 buckets).

2 Please see http://agris.fao.org for more details on AGRIS. The AGRIS site mentions
7 million distinct publications, but this includes recent additions that are not in end-
2013 data dump used for these experiments.

3 We use the canonical string representation of URIs as defined in Sect. 2, IETF
RFC 7320 (http://tools.ietf.org/html/rfc7320).

http://agris.fao.org
http://tools.ietf.org/html/rfc7320

152 K. Zamani et al.

5.2 Results

The AGRIS workload queries follow the same template: Both subjects and pred-
icate URIs are defined by the query, leaving the object dimension unrestricted.
As it represents a real scenario, we may have duplicate queries in the workload.
To generate the workload we randomly select a set of queries for refinement and
another set for evaluation. Therefore, we create 24 batches of 55 training queries,
totalling 1320 training queries, followed by a set of 100 evaluation queries used to
compare the estimations against the actual size of the query results and the esti-
mated ones. We experiment with different system configurations. Specifically, we

Table 1. Estimation error (RMS and absolute) versus training batch and merges
(parent-child (PC) and sibling-sibling (SS) merges) using prefixes and similarity ranges.
Configured for a maximum of 50 buckets.

Training batch Similarity ranges Prefix ranges

Error Merges Error Merges

RMS Abs PC SS Total RMS Abs PC SS Total

01 0.283 2.14 0 0 0 0.283 2.14 0 0 0

02 0.414 2.58 3 3 6 0.457 2.67 5 12 17

03 1.728 9.26 23 6 29 1.562 6.61 8 30 38

04 1.758 9.84 19 8 27 2.350 11.55 11 28 39

05 0.899 7.89 13 6 19 2.711 15.13 12 30 42

06 4.483 40.84 9 13 22 5.856 26.36 9 23 32

07 4.691 44.66 31 0 31 6.844 32.58 11 28 49

08 4.762 46.08 44 1 45 6.724 38.20 5 44 49

09 4.735 45.58 31 21 52 6.911 41.52 5 42 47

10 4.787 46.57 20 4 24 7.968 46.96 11 28 39

11 4.794 47.07 25 3 28 10.444 60.59 11 28 39

12 4.814 47.07 15 6 21 12.153 70.67 13 27 40

13 4.814 43.56 23 6 29 13.883 81.95 13 28 41

14 4.608 43.56 23 8 31 14.201 85.07 12 27 39

15 4.608 47.58 28 6 34 14.201 85.07 11 28 39

16 4.841 47.58 29 4 33 19.365 110.09 14 28 42

17 4.841 47.58 35 4 39 23.147 131.65 14 28 42

18 4.841 47.58 24 5 29 23.415 134.37 13 27 40

19 4.841 47.58 24 4 28 23.792 137.85 10 28 38

20 4.841 47.58 41 1 42 23.792 137.85 15 28 43

21 4.841 47.58 32 5 37 27.048 157.13 13 28 41

22 4.841 47.58 14 2 16 27.048 157.13 14 28 42

23 4.841 47.58 27 2 29 27.567 162.20 13 28 41

24 4.841 47.58 14 1 15 27.567 162.20 2 8 10

Workload-Aware Self-tuning Histograms for the Semantic Web 153

set a maximum of 100 and 50 buckets. Moreover, we evaluate both reported rep-
resentations for string ranges (i.e. prefix ranges and similarity ranges). Tables 1
and 2 depict the average errors of the evaluation queryset and the number of
merges performed during each training batch.

One can note that the similarity range approach produced more accurate
estimations, especially when the maximum number of buckets is very limited
causing more merges. Using this observation we can infer that the similarity
range approach makes better merging decisions than the prefix range one. The
reason that prefixes cannot create as good merged buckets as in the similarity

Table 2. Estimation error (RMS and absolute) versus training batch and merges
(parent-child (PC) and sibling-sibling (SS) merges) using prefixes and similarity ranges.
Configured for a maximum of 100 buckets.

Training batch Similarity ranges Prefix ranges

Error Merges Error Merges

RMS Abs PC SS Total RMS Abs PC SS Total

01 0.283 2.14 0 0 0 0.283 2.14 0 0 0

02 0.259 1.73 0 0 0 0.259 1.73 0 0 0

03 0.259 1.73 0 0 0 0.259 1.73 0 0 0

04 0.408 2.56 10 4 14 0.259 1.73 7 8 15

05 1.688 8.88 20 10 30 0.259 1.73 6 30 36

06 1.768 10.94 15 9 24 0.259 1.73 10 24 34

07 4.581 32.96 24 4 28 0.259 1.73 13 28 41

08 5.886 40.53 23 11 34 0.472 2.48 9 33 42

09 8.236 76.94 37 19 56 1.919 5.91 1 52 53

10 8.236 76.94 22 3 25 2.687 8.87 13 29 42

11 6.654 50.75 17 5 22 4.624 12.11 11 27 38

12 6.136 43.52 12 9 21 4.960 13.79 13 28 41

13 5.921 40.84 18 5 23 5.528 15.23 12 28 40

14 5.530 35.94 13 3 26 5.537 15.53 13 27 40

15 5.740 35.92 7 5 12 5.537 15.93 13 28 41

16 5.740 35.94 9 4 13 5.806 16.92 13 27 40

17 6.190 41.42 16 4 20 5.955 17.72 10 28 38

18 5.623 34.68 13 5 18 5.955 17.72 11 27 38

19 5.623 34.68 10 2 12 9.658 25.56 8 22 30

20 5.623 34.68 6 0 6 10.846 28.44 15 28 43

21 5.623 34.65 12 7 19 10.846 28.44 11 27 38

22 6.102 37.50 12 11 23 12.453 33.24 11 28 39

23 6.182 38.47 21 0 21 12.872 35.16 13 27 40

24 10.137 98.79 11 0 11 12.876 35.56 8 17 25

154 K. Zamani et al.

ranges is that (a) prefixes as a succinct description is more restrictive and (b)
the AGRIS URIs have a hierarchical structure, but this structure is not that
deep that it would make strict prefixes expressive. Notice that the total merges
performed per batch are fewer in the similarity range case. This is due to the
fact that more training queries are already accurately estimated and thus the
histogram refinement algorithm discards them without drilling new holes. More-
over, this observation is also consistent even after considerable merges have been
applied to the histogram, deducing that merged buckets are not introducing sig-
nificant error to the estimations.

The histogram stabilizes after a certain number of training batches, as evi-
denced by the fact that the error remains constant. A significant difference can
be seen in the type of merging preferred by the two approaches: the number of
the parent-child merges is higher in similarity range approach, while the prefix
range approach prefers the sibling merging. This demonstrates the bias towards
parent-child merges encoded by the distance-based penalty in similarity merging.

6 Conclusions

In this article we have presented an algorithm for building and maintaining
multi-dimensional histograms exploiting query feedback. Our algorithm is based
on STHoles algorithm, but extends it to also handle URIs. One significant con-
tributions of the article is that it establishes a framework that formalises his-
tograms over arbitrary data types and identifies the specification of a language
for specifying data ranges as a key element of histograms. Building upon this, we
have identified the properties that any such language should have for histogram
refinement algorithms to be applicable.

This led to the second major contribution, that of proposing the Jaro-Winkler
similarity metric as an appropriate basis upon which to build a formalization of
histograms over URI strings. This metric has the advantage of accommodat-
ing the hierarchical nature of URI strings by placing more importance on the
beginning of the string, while being more flexible than strict prefix matching.
This gives our system a great advantage over the state of the art, where ranges
are only defined over numerical data and strings are treated as categorical data
that can only be described by enumeration: by having the ability to succinctly
describe ranges of related URI strings, finer (and thus more accurate) histograms
can fit a given amount of memory.

As future work, we will experiment with a more sophisticated estimation
of the size of a bucket based from the radius of its box. One idea would be
to dynamically adapt a conversion ratio parameter to the observed query feed-
back, so as to better fit each given dimension in a dataset. This will improve
multi-dimensional volume calculations, since it will lift the assumption that the
breadth of a URI description and the size of the data that fits the description
grow uniformly. An even more ambitious goal is to define the length of URI
string ranges in a way that it can be combined with numerical range length, so
that multi-dimensional and heterogeneous (strings and numbers) buckets can be
assigned a meaningful volume.

Workload-Aware Self-tuning Histograms for the Semantic Web 155

Another strain of future research will experiment with finer representations
of clusters of URIs than the radius around a single central URI. This would
allow us to improve sibling merging, as our current approach is prone to over-
generalizing and making the histogram sensitive to the query feedback it receives
when it is first constructed.

With respect to the software development, we plan to develop a more scalable
implementation of the algorithm which will be able to efficiently serve histograms
from databases and not from in-memory Java objects. Although the unavoidable
delay is not critical for the refinement phase, it can be unacceptable for the run-
time usage of the histogram by query optimizers. To keep such delays manageable,
a caching mechanism will need to be integrated in the implementation so that the
most frequent accesses to the histogram are served from a memory cache.

Acknowledgements. The research leading to these results has received funding from
the European Union’s Seventh Framework Programme (FP7/2007-2013) under grant
agreement No. 318497. For more details about the SemaGrow project please see
http://www.semagrow.eu and about the Semagrow system please see http://semagrow.
github.io.

References

1. Bruno, N., Chaudhuri, S.: Exploiting statistics on query expressions for optimiza-
tion. In: Proceedings of the 2002 ACM International Conference on Management
of Data (SIGMOD 2002), New York, NY, USA, pp. 263–274. ACM (2002)

2. Stillger, M., Lohman, G.M., Markl, V., Kandil, M.: LEO - DB2’s LEarning opti-
mizer. In: Proceedings of the 27th International Conference on Very Large Data
Bases, VLDB 2001, San Francisco, CA, USA, pp. 19–28. Morgan Kaufmann Pub-
lishers Inc. (2001)

3. Aboulnaga, A., Chaudhuri, S.: Self-tuning histograms: building histograms without
looking at data. In: Proceedings of the 1999 ACM International Conference on
Management of Data (SIGMOD 1999), New York, NY, USA, pp. 181–192. ACM
(1999)

4. Bruno, N., Chaudhuri, S., Gravano, L.: STHoles: a multidimensional workload-
aware histogram. In: Proceedings of the 2001 ACM SIGMOD International Con-
ference on Management of Data (SIGMOD 2001), pp. 211–222 (2001)

5. Srivastava, U., Haas, P.J., Markl, V., Kutsch, M., Tran, T.M.: ISOMER: consistent
histogram construction using query feedback. In: Proceedings of the 22nd Inter-
national Conference on Data Engineering (ICDE 2006), Washington, DC, USA.
IEEE Computer Society (2006)

6. Roh, Y.J., Kim, J.H., Chung, Y.D., Son, J.H., Kim, M.H.: Hierarchically organized
skew-tolerant histograms for geographic data objects. In: Proceedings of the 2010
ACM SIGMOD International Conference on Management of Data, SIGMOD 2010,
New York, NY, USA, pp. 627–638. ACM (2010)

7. Kaushik, R., Suciu, D.: Consistent histograms in the presence of distinct value
counts. Proc. VLDB Endowment 2, 850–861 (2009)

8. Markl, V., Haas, P.J., Kutsch, M., Megiddo, N., Srivastava, U., Tran, T.M.: Con-
sistent selectivity estimation via maximum entropy. VLDB J. 16, 55–76 (2007)

http://www.semagrow.eu
http://semagrow.github.io
http://semagrow.github.io

156 K. Zamani et al.

9. Bruno, N., Chaudhuri, S., Weikum, G.: Database tuning using online algorithms.
In: Liu, L., Özsu, M.T. (eds.) Encyclopedia of Database Systems, pp. 741–744.
Springer, New York (2009)

10. Khachatryan, A., Müller, E., Stier, C., Böhm, K.: Sensitivity of self-tuning his-
tograms: query order affecting accuracy and robustness. In: Ailamaki, A., Bowers,
S. (eds.) SSDBM 2012. LNCS, vol. 7338, pp. 334–342. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-31235-9 22

11. Chaudhuri, S., Ganti, V., Gravano, L.: Selectivity estimation for string predicates:
overcoming the underestimation problem. In: Proceedings of the 20th International
Conference on Data Engineering (ICDE 2004), Washington, DC, USA. IEEE Com-
puter Society (2004)

12. Lim, L., Wang, M., Vitter, J.S.: CXHist: an on-line classification-based histogram
for XML string selectivity estimation. In: Proceedings of the 31st International
Conference on Very Large Data Bases (VLDB 2005), Trondheim, Norway, 30
August – 2 September 2005, pp. 1187–1198 (2005)

13. Ding, L., Finin, T., Joshi, A., Pan, R., Cost, R.S., Peng, Y., Reddivari, P., Doshi,
V., Sachs, J.: Swoogle: a search and metadata engine for the semantic web. In:
Proceedings of the Thirteenth ACM International Conference on Information and
Knowledge Management, CIKM 2004, New York, NY, USA, pp. 652–659. ACM
(2004)

14. Auer, S., Demter, J., Martin, M., Lehmann, J.: LODStats – an extensible frame-
work for high-performance dataset analytics. In: Teije, A., Völker, J., Handschuh,
S., Stuckenschmidt, H., d’Acquin, M., Nikolov, A., Aussenac-Gilles, N., Hernandez,
N. (eds.) EKAW 2012. LNCS (LNAI), vol. 7603, pp. 353–362. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-33876-2 31

15. Langegger, A., Wöss, W.: RDFStats - an extensible RDF statistics generator and
library. In: 23rd International Workshop on Database and Expert Systems Appli-
cations, Los Alamitos, CA, USA, pp. 79–83. IEEE Computer Society (2009)

16. Harth, A., Hose, K., Karnstedt, M., Polleres, A., Sattler, K.U., Umbrich, J.: Data
summaries for on-demand queries over linked data. In: Proceedings of the 19th
International World Wide Web Conference (WWW 2010), Raleigh, NC, USA, 26–
30 April 2010

17. Zoulis, N., Mavroudi, E., Lykoura, A., Charalambidis, A., Konstantopoulos, S.:
Workload-aware self-tuning histograms of string data. In: Chen, Q., Hameurlain,
A., Toumani, F., Wagner, R., Decker, H. (eds.) DEXA 2015. LNCS, vol. 9261, pp.
285–299. Springer, Heidelberg (2015). doi:10.1007/978-3-319-22849-5 20

18. Winkler, W.E.: String comparator metrics and enhanced decision rules in the
Fellegi-Sunter model of record linkage. In: Proceedings of the Section on Survey
Research Methods, Technical report, pp. 354–359. American Statistical Association
(1990)

19. Charalambidis, A., Troumpoukis, A., Konstantopoulos, S.: SemaGrow: optimizing
federated SPARQL queries. In: Proceedings of the 11th International Conference
on Semantic Systems (SEMANTiCS 2015), Vienna, Austria, 15–18 September 2015

20. Charalambidis, A., Konstantopoulos, S., Karkaletsis, V.: Dataset descriptions for
optimizing federated querying. In: Companion Proceedings of the 24th Interna-
tional World Wide Web Conference Companion Proceedings (WWW 2015), Poster
Session, Florence, Italy, 18–22 May 2015

21. Celli, F., Keizer, J., Jaques, Y., Konstantopoulos, S., Vudragović, D.: Discovering,
indexing and interlinking information resources. F1000Research 4 (2015). (Version
2; referees: 3 approved)

http://dx.doi.org/10.1007/978-3-642-31235-9_22
http://dx.doi.org/10.1007/978-3-642-33876-2_31
http://dx.doi.org/10.1007/978-3-319-22849-5_20

Author Index

Adachi, Jun 23
Amagasa, Toshiyuki 1

Basu, Debabrota 96
Bondiombouy, Carlyna 48
Bressan, Stéphane 96

Charalambidis, Angelos 133
Chen, Weidong 96
Cruz, Mateus S.H. 1

Dou, Dejing 75

Jiang, Shangpu 75

Kafle, Sabin 75
Kawakatsu, Takaya 23
Kinoshita, Akira 23
Kitagawa, Hiroyuki 1
Kolev, Boyan 48

Konstantopoulos, Stasinos 133
Kozawa, Yusuke 1

Levchenko, Oleksandra 48
Lin, Qian 96
Lowd, Daniel 75

Mavroudi, Effrosyni 133

Senellart, Pierre 96

Takasu, Atsuhiro 23

Valduriez, Patrick 48
Vo, Hoang Tam 96

Yuan, Zihong 96

Zamani, Katerina 133
Zoulis, Nickolas 133

	Preface
	Organization
	Contents
	Accelerating Set Similarity Joins Using GPUs
	1 Introduction
	2 Similarity Joins over Sets
	2.1 Set Similarity Joins
	2.2 MinHash

	3 General-Purpose Processing on Graphics Processing Units
	4 GPU Acceleration of Set Similarity Joins
	4.1 Preprocessing
	4.2 Signature Matrix Computation on GPU
	4.3 Similarity Joins on GPU

	5 Experiments
	5.1 Datasets
	5.2 Environment
	5.3 Performance Comparison
	5.4 Accuracy Evaluation
	5.5 Other Experiments

	6 Related Work
	6.1 General-Purpose Processing on Graphics Processing Units
	6.2 Similarity Joins
	6.3 GPU Accelerated Similarity Join

	7 Conclusions
	References

	Divide-and-Conquer Parallelism for Learning Mixture Models
	1 Introduction
	2 Parallel Computation Models
	2.1 Parallelization of Algorithms
	2.2 Parallel Execution Mechanism
	2.3 Communication Mechanism
	2.4 Parallel Computing Frameworks

	3 Parallel EM Algorithms
	3.1 Related Work
	3.2 Our ADCA Proposal

	4 Experiment and Results
	4.1 Effect of Buffering Solution
	4.2 Robustness Against Fine-Grained Parallelism
	4.3 Robustness Against Load Imbalance
	4.4 Scalability on a 160-Core NUMA Machine

	5 Conclusions
	A General EM Algorithm
	A.1 EM on GMM
	A.2 EM on HPMM

	References

	Multistore Big Data Integration with CloudMdsQL
	Abstract
	1 Introduction
	2 Query Language
	2.1 MFR Notation
	2.2 Combining SQL and MFR

	3 Generic Query Engine Architecture
	4 Query Processing
	4.1 Query Optimization
	4.2 MFR Rewrite Rules
	4.3 Bind Join

	5 Use Case Example
	6 Experimental Validation
	6.1 Prototype
	6.2 Datasets
	6.3 Experimental Results

	7 Related Work
	8 Conclusion
	Acknowledgements
	References

	Ontology Matching with Knowledge Rules
	1 Introduction
	2 Background and Related Work
	3 Representation of Domain Knowledge
	4 Our New Knowledge-Based Strategy
	5 Finding Complex Correspondences
	6 Knowledge Aware Ontology Matching
	7 Experiments
	7.1 NBA
	7.2 Census
	7.3 OntoFarm
	7.4 Discussion

	8 Conclusion
	References

	Regularized Cost-Model Oblivious Database Tuning with Reinforcement Learning
	1 Introduction
	2 Related Work
	2.1 Automated Database Configuration
	2.2 Reinforcement Learning in Data Management

	3 Problem Definition
	4 Adaptive Database Tuning
	4.1 Algorithm Framework
	4.2 Reducing the Search Space
	4.3 Modified Policy Iteration with Cost Model Learning

	5 Adaptive Database Tuning with Regularized Cost-Model Learning
	5.1 Regularized Cost-Model Estimator
	5.2 Performance Bound

	6 Case Study: Index Tuning
	6.1 Reducing the Search Space
	6.2 Defining the Feature Mapping
	6.3 Defining the Feature Mapping
	6.4 Performance Bounds for Regularized COREIL

	7 Performance Evaluation
	7.1 Dataset and Workload
	7.2 WFIT: Brief Description
	7.3 COREIL: Experiments and Results
	7.4 rCOREIL: Experiments and Results
	7.5 Analysis of Cost Estimator

	8 Conclusion
	References

	Workload-Aware Self-tuning Histograms for the Semantic Web
	1 Introduction
	2 Background
	2.1 Histograms of Numerical Attributes
	2.2 Histograms of Categorical Attributes

	3 Self-Tuning String Histograms
	3.1 Preliminaries
	3.2 Cardinality Estimation
	3.3 Histogram Construction and Refinement
	3.4 Bucket Merging
	3.5 Extending for Further Types

	4 URI Ranges
	4.1 Prefix Ranges
	4.2 Similarity Ranges
	4.3 Discussion

	5 Experiments
	5.1 Experimental Setup
	5.2 Results

	6 Conclusions
	References

	Author Index

