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Abstract. For overlay networks, the ability to recover from a variety
of problems like membership changes or faults is a key element to pre-
serve their functionality. In recent years, various self-stabilizing overlay
networks have been proposed that have the advantage of being able to
recover from any illegal state. However, the vast majority of these net-
works cannot give any guarantees on its functionality while the recov-
ery process is going on. We are especially interested in searchability,
i.e., the functionality that search messages for a specific identifier are
answered successfully if a node with that identifier exists in the network.
We investigate overlay networks that are not only self-stabilizing but
that also ensure that monotonic searchability is maintained while the
recovery process is going on, as long as there are no corrupted messages
in the system. More precisely, once a search message from node u to
another node v is successfully delivered, all future search messages from
u to v succeed as well. Monotonic searchability was recently introduced
in OPODIS 2015, in which the authors provide a solution for a sim-
ple line topology. We present the first universal approach to maintain
monotonic searchability that is applicable to a wide range of topologies.
As the base for our approach, we introduce a set of primitives for manip-
ulating overlay networks that allows us to maintain searchability and
show how existing protocols can be transformed to use theses primitives.
We complement this result with a generic search protocol that together
with the use of our primitives guarantees monotonic searchability. As an
additional feature, searching existing nodes with the generic search pro-
tocol is as fast as searching a node with any other fixed routing protocol
once the topology has stabilized.

1 Introduction

In this paper, we continue our research started in [16] and investigate protocols
for self-stabilizing overlay networks that guarantee the monotonic preservation
of a characteristic that we call searchability, i.e., once a search message from node
u to another node v is successfully delivered, all future search messages from u to
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v succeed as well. Instead of focusing on a specific topology, as done in [16], we
present an approach that is aimed at universality. As a base, we present a set of
primitives for overlay network maintainance for which we prove that they enable
monotonic searchability. On top of that, we give a generic search protocol that,
together with a protocol that solely uses these primitives, guarantees monotonic
searchability. Additionally, we show that existing self-stabilizing overlay network
protocols can be transformed to use our primitives.

To the best of our knowledge, we are the first to investigate monotonic search-
ability as an attempt to explore maintaining properties beyond the traditional
“time and space” metrics during stabilization. We believe that the question of
how to maintain monotonic searchability and similar properties during topolog-
ical stabilization has a lot of potential for future research.

1.1 Model

We consider a distributed system consisting of a fixed set of nodes in which
each node has a unique reference and a unique immutable numerical identifier
(or short id). The system is controlled by a protocol that specifies the variables
and actions that are available in each node. In addition to the protocol-based
variables there is a system-based variable for each node called channel whose
values are sets of messages. We denote the channel of a node u as u.Ch and
it contains all incoming messages to u. Its message capacity is unbounded and
messages never get lost. A node can add a message to u.Ch if it has a reference
of u. Besides these channels there are no further communication means, so only
point-to-point communication is possible.

There are two types of actions that a protocol can execute. The first type
has the form of a standard procedure 〈label〉(〈parameters〉) : 〈command〉, where
label is the unique name of that action, parameters specifies the parameter list of
the action, and command specifies the statements to be executed when calling
that action. Such actions can be called locally (which causes their immediate
execution) and remotely. In fact, we assume that every message must be of the
form 〈label〉(〈parameters〉), where label specifies the action to be called in the
receiving node and parameters contains the parameters to be passed to that
action call. All other messages are ignored by nodes. The second type has the
form 〈label〉 : 〈guard〉 −→ 〈command〉, where label and command are defined
as above and guard is a predicate over local variables. We call an action whose
guard is simply true a timeout action.

The system state is an assignment of values to every variable of each node and
messages to each channel. An action in some node u is enabled in some system
state if its guard evaluates to true, or if there is a message in u.Ch requesting to
call it. In the latter case, when the corresponding action is executed, the message
is processed (and it is removed from u.Ch). An action is disabled otherwise.
Receiving and processing a message is considered as an atomic step.

A computation is an infinite fair sequence of system states such that for each
state Si, the next state Si+1 is obtained by executing an action that is enabled in
Si. This disallows the overlap of action execution, i.e., action execution is atomic.
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We assume weakly fair action execution and fair message receipt. Weakly fair
action execution means that if an action is enabled in all but finitely many states
of a computation, then this action is executed infinitely often. Note that a time-
out action of a node is executed infinitely often. Fair message receipt means that
if a computation contains a state in which there is a message in a channel of a
node that enables an action in that node, then that action is eventually executed
with the parameters of that message, i.e., the message is eventually processed.
Besides these fairness assumptions, we place no bounds on message propagation
delay or relative nodes execution speeds, i.e., we allow fully asynchronous com-
putations and non-FIFO message delivery. A computation suffix is a sequence of
computation states past a particular state of this computation. In other words,
the suffix of the computation is obtained by removing the initial state and finitely
many subsequent states. Note that a computation suffix is also a computation.
We say a state S′ is reachable from a state S if starting in S there is a sequence
of action executions such that we end up in state S′. We use the notion S < S′

as a shorthand to indicate that the state S happened chronologically before S′.
We consider protocols that do not manipulate the internals of node refer-

ences. Specifically, a protocol is compare-store-send if the only operations that
it executes on node references is comparing them, storing them in local memory
and sending them in a message. In a compare-store-send protocol, a node may
learn a new reference of a node only by receiving it in a message. A compare-
store-send protocol cannot create new references. It can only operate on the
references given to it.

The overlay network of a set of nodes is determined by their knowledge of
each other. We say that there is a (directed) edge from a to b, denoted by (a, b),
if node a stores a reference of b in its local memory or has a message in a.Ch
carrying the reference of b. In the former case, the edge is called explicit, and
in the latter case, the edge is called implicit. Messages can only be sent via
explicit edges. Note that message receipt converts an implicit edge to an explicit
edge since the message is in the local memory of a node while it is processed.
With NG we denote the directed network (multi-)graph given by the explicit
and implicit edges. ENG is the subgraph of NG induced by only the explicit
edges. A weakly connected component of a directed graph G is a subgraph of
G of maximum size so that for any two nodes u and v in that subgraph there
is a (not necessarily directed) path from u to v. Two nodes that are not in
the same weakly connected component are disconnected. We assume that the
positions of the processes in the topology are encapsulated in their identifier
and that there is a distance measure which is based on the identifiers of the
processes and which can be checked locally. That is, for a given identifier ID,
each node u can decide for each neighbor v whether v is closer to the node w
with id(w) = ID if such a node exists (we also say that id(v) is closer to ID
than id(u) or ds(id(v), ID) < ds(id(u), ID)). For a node u, we define R(u, ID)
as the set containing u and all processes v for which there is a path Q from u
to v via explicit edges such that for each edge (a, b) that is traversed in Q it
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holds that ds(id(b), ID) < ds(id(a), ID). Furthermore, for a set U , we define
R(U, ID) :=

⋃
u∈U R(u, ID).

We are particularly concerned with search requests, i.e., Search(v, destID)
messages that are routed along ENG according to a given search protocol, where
v is the sender of the message and destID is the identifier of a node we are looking
for. We assume that Search() requests are initiated locally by an (possibly user
controlled) application operating on top of the network. Note that destID does
not need to be an id of an existing node w, since it is also possible that we are
searching for a node that is not in the system. If a Search(v, destID) message
reaches a node w with id(w) = destID, the search request succeeds; if the
message reaches some node u with id(u) �= destID and cannot be forwarded
anymore according to the given search protocol, the search request fails.

1.2 Problem Statement

A protocol is self-stabilizing if it satisfies the following two properties as long as
no transient faults occur: (i) Convergence: starting from an arbitrary system
state, the protocol is guaranteed to arrive at a legitimate state and (ii) Clo-
sure: starting from a legitimate state the protocol remains in legitimate states
thereafter.

A self-stabilizing protocol is thus able to recover from transient faults regard-
less of their nature. Moreover, a self-stabilizing protocol does not have to be
initialized as it eventually starts to behave correctly regardless of its initial
state. In topological self-stabilization we allow self-stabilizing protocols to per-
form changes to the overlay network NG. A legitimate state may then include a
particular graph topology or a family of graph topologies. We are interested in
self-stabilizing protocols that stabilize to static topologies, i.e., in every compu-
tation of the protocol that starts from a legitimate state, ENG stays the same,
as long as the node set stays the same.

In this paper we are not focusing on building a self-stabilizing protocol for a
particular topology. Instead we are interested in providing a reliable protocol for
searching in a wide range of topologies that fulfill certain requirements. Tradi-
tionally, search protocols for a given topology were only required to deliver the
search messages reliably once a legitimate state has been reached. However, it
is not possible to determine when a legitimate state has been reached. Further-
more, searching reliably during the stabilization phase is much more involved.
We say a self-stabilizing protocol satisfies monotonic searchability according
to some search protocol R if it holds for any pair of nodes v, w that once a
Search(v, id(w)) request (that is routed according to R) initiated at time t
succeeds, any Search(v, id(w)) request initiated at a time t′ > t will succeed.
We do not mention R if it is clear from the context. A protocol is said to sat-
isfy non-trivial monotonic searchability if (i) it satisfies monotonic searchability
and (ii) every computation of the protocol contains a suffix such that for each
pair of nodes v, w, Search(v, id(w)) requests will succeed if there is a path
from v to w in the target topology. Throughout the paper we will only inves-
tigate non-trivial monotonic searchability. Consequently, whenever we use the
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term monotonic searchability in the following, we implicitly refer to non-trivial
monotonic searchability.

A message invariant is a predicate of the following form: If there is a mes-
sage m in the incoming channel of a node, then a logical predicate P must hold.
A protocol may specify one or more message invariants. An arbitrary message
m in a system is called corrupted if the existence of m violates one or multiple
message invariants. A state S is called admissible if there are no corrupted mes-
sages in S. We say a (self-stabilizing) protocol admissibly satisfies a predicate P
if the following two conditions hold: (i) the predicate is satisfied in all compu-
tation suffixes of the protocol that start from admissible states, and (ii) every
computation of the protocol contains at least one admissible state. A protocol
unconditionally satisfies a predicate if it satisfies this predicate starting from
any state.

The following was proven in [16]:

Lemma 1. No self-stabilizing compare-store-send protocol can unconditionally
satisfy monotonic searchability.

Consequently, to prove monotonic searchability for a protocol (according to
a given search protocol R) it is sufficient to show that: (i) in every computation
of the protocol that starts from an admissible state, every state is admissible,
(ii) in every computation of the protocol there is an admissible state, and (iii)
the protocol satisfies monotonic searchability according to R in every compu-
tation that starts from an admissible state. Note that we have not defined any
invariants yet and it is possible to pick invariants such that the set of admissible
states equals the set of legitimate states, in which the problem becomes trivial.
However, for the invariants we provide, any initial topology can be an admissible
state. In particular, as long as no corrupt messages are initially in the system,
our protocols satisfy monotonic searchability throughout the computation.

We will show that a broad class of existing self-stabilizing protocols can be
transformed to satisfy monotonic searchability. More specifically, we will consider
protocols that fulfill the mdl property, i.e., for any action a of the protocol it
holds that (i) a node u executing action a will always keep a reference of another
node v in its local memory if an edge (u, v) is part of the final topology, and
(ii) if a node u executing action a in state S decides not to keep a reference of
another node v in its local memory, every other action of the protocol executed
by u in a subsequent state will decide to not keep the reference of v, and (iii)
a node u executing action a decides deterministically and solely based on its
local memory whether to send and where to send the reference of v, and (iv) in
every legitimate state, for every reference of a node v contained in a message
m in the channel of a node u (i.e., for any implicit edge (u, v)), there are fixed
cycle-free paths (u = u1, u2, . . . , uk) such that ui sends the reference of v to
ui+1, and uk has an explicit edge (uk, v) (note that there is only one path if
the reference is never duplicated), i.e., the reference of v is forwarded along
fixed paths until it finally fuses with an existing reference. Informally speaking,
the first two properties imply that the protocol monotonically converges to its
desired topology, since edges of the topology are always kept and edges that are
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not part of the topology are obviated over time. The last property implies that
in legitimate states, all implicit edges will eventually merge with explicit edges.
Note that the mdl property is generally not a severe restriction. Most existing
protocols that stabilize to static topologies naturally fulfill this property.

In addition to the mdl property and the assumption that the final topology
is static, we have one more condition on the topologies and their distance mea-
sures. The generic search protocol we will use to achieve monotonic searchability
assumes that in the target topology for every pair of nodes u, v within the same
connected component, there is a path of explicit edges from u to v with the
property that each edge on the path strictly decreases the distance to v (i.e., for
each edge (a, b) that is traversed in the path, ds(id(b), id(v)) < ds(id(a), id(v))).
Note that many topologies naturally fulfill this property (in particular, whenever
the distance is defined as the number of nodes on a shortest path).

1.3 Our Contribution

To the best of our knowledge, we are the first to solve the problem of searching
reliably during the stabilization phase in self-stabilizing topologies. Although
routing with a low dilation is a major motivation behind the use of overlay
topologies, prior to this work, one could not rely on the routing paths in such
topologies1: In previous approaches, it can happen that a node u is able to send
a message to a node v, while it is unable to do so in a later state, only because
the system has not stabilized yet (which is not locally detectable by the nodes).
In our solution, once a search message from a node u has successfully arrived
at a node v, every further search message from u to v will also arrive at its
destination, regardless of whether the system has fully stabilized or not.

We present a universal set of primitives for manipulating edges that protocols
should use and a simple generic search protocol, which together satisfy monotonic
searchability. Moreover, we provide a general description of how a broad class of
self-stabilizing protocols for overlay networks can be transformed such that they
use these primitives, thus satisfying monotonic searchability afterwards.

Our results of Sect. 3 may be of independent interest, where we reinvesti-
gate the fundamental primitives for manipulating edges introduced in [13] and
strengthen the results concerning the universality of these primitives.

2 Related Work

The idea of self-stabilization in distributed computing was introduced by
E.W. Dijkstra in 1974 [4], in which he investigated the problem of self-stabilization
in a token ring. In order to recover certain network topologies from any weakly con-
nected state, researchers started with simple line and ring networks (e.g., [7,18]).
Over the years more and more topologies were considered, ranging from skip lists

1 Note that [16] did solve the problem of monotonic searchability for the list, but the
list has a worst-case routing time of Ω(n), thus not offering a low dilation.
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and skip graphs [8,14], to expanders [6], and small-world graphs [12]. Also a uni-
versal algorithm for topological self-stabilization is known [1].

In the last 20 years many approaches have been investigated that focus on
maintaining safety properties during convergence phase of self-stabilization, e.g.
snap-stabilization [2,3], super-stabilization [5], safe convergence [11] and self-
stabilization with service guarantee [10]. Closest to our work is the notion of
monotonic convergence by Yamauchi and Tixeuil [19]. A self-stabilizing protocol
is monotonically converging if every change done by a node p makes the system
approach a legitimate state and if every node changes its output only once.
The authors investigate monotonically converging protocols for different classical
distributed problems (e.g., leader election and vertex coloring) and focus on the
amount of non-local information that is needed for them.

Research on monotonic searchability was initiated in [16], in which the
authors proved that it is impossible to satisfy monotonic searchability if cor-
rupted messages are present. In addition, they presented a self-stabilizing pro-
tocol for the line topology that is able to satisfy monotonic searchability.

3 Primitives for Topology Maintenance

An important property for every overlay management protocol is that weak
connectivity is never lost by its own actions. Therefore, it is highly desirable that
every node only executes actions that preserve weak connectivity. Koutsopoulos
et al. [13] introduced the following four primitives for manipulating edges in an
overlay network.

Introduction. If a node u has a reference of two nodes v and w with v �= w, u
introduces w to v if u sends a message to v containing a reference of w while
keeping the reference.

Delegation. If a node u has a reference of two nodes v and w s.t. u, v, w are
all different, then u delegates w’s reference of v if u sends a message to v
containing a reference of w and deletes the reference of w.

Fusion. If a node u has two references v and w with v = w, then u fuses the
two references if it only keeps one of these references.

Reversal. If a node u has a reference of some other node v, then u reverses the
connection if it sends a reference of itself to v and deletes its reference of v.

Note that the four primitives can be executed locally by every node in a wait-
free fashion. Furthermore, for the Introduction primitive, it is possible that w =
u, i.e., u introduces itself to v. The authors show that these four primitives are
safe in a sense that they preserve weak connectivity (as long as there is no fault).
This implies that any distributed protocol whose actions can be decomposed into
these four primitives is guaranteed to preserve weak connectivity.

We define IDF as the set containing the first three primitives: Introduction,
Delegation and Fusion. Let PIDF denote the set of all distributed protocols where
all interactions between processes can be decomposed into the primitives of IDF .
According to [13] these protocols even preserve strong connectivity in a sense that
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for any pair of nodes u, v with a directed path in NG there will always be a directed
path from u to v in NG. To the best of our knowledge, all self-stabilizing topol-
ogy maintenance protocols proposed so far (such as the list [7,15,18], the Delau-
nay graph [9], etc.) satisfy this property. Moreover, in [13], the four primitives were
shown to be universal, i.e. the primitives allow one to get from any weakly con-
nected graph G = (V,E) to any other weakly connected graph G′ = (V,E′) for
NG. In fact, only the first three primitives (i.e., IDF) are necessary to get from
any weakly connected graph to any strongly connected graph, which is sufficient in
our case ([13] denote this by weak universality). Note that the notion of universal-
ity for a set of primitives is not constructive, i.e., only in principle the primitives
allow one to get from any weakly connected graph to any other weakly connected
graph. We strengthen the results concerning universality of the primitives with the
following theorem (the proof can be found in the full version [17]).

Theorem 1. Any compare-store-send protocol that self-stabilizes to a static
strongly-connected topology and preserves weak connectivity can be transformed
such that the interactions between nodes can be decomposed into the primitives
of IDF .

4 Primitives for Monotonic Searchability

Although the primitives of [13] are general enough to construct any conceivable
overlay, they do not inherently satisfy monotonic searchability. This is due to
the fact that the Delegation primitive replaces an explicit edge (u, v) by a path
(u,w, v) consisting of an explicit edge (u,w) and an implicit edge (w, v) and thus
a search message from u to v issued after the delegation may be processed by w
before there is a path from w to v via explicit edges, causing the search message
to fail (even though an earlier message sent while (u, v) was still an explicit edge
was delivered successfully). Consequently, we are going to introduce a new set
of primitives that enables monotonic searchability. We say a set of primitives is
search-universal according to a set of Invariants I if the following holds:

1. the set of primitives is weakly universal,
2. starting from every state in which the invariants in I hold, for every pair of

nodes u and v as soon as there is a path via explicit edges from u to v, there
will be a path via explicit edges from u to v in every subsequent step.

We are now going to introduce a modified set of primitives that are search-
universal. Moreover, we will show that these new primitives are also general
enough to cover all self-stabilizing protocols that can be built by the original
primitives. Consequently, we ultimately aim at a result similar to Theorem 1 for
the new primitives.

Remember that we assume the mdl property. Therefore, in every fixed state
S in every execution of a self-stabilizing protocol, each node u can divide its
explicit edges into two subsets: the stable edges and the temporary edges (not to
be confused with implicit edges). The first set contains those explicit edges that
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u wants to keep, given its current neighborhood in S; the second set holds the
explicit edges that are not needed from the perspective of u in S. Note that the
set of temporary edges can also be the empty set.

For the new primitives, a node does not only store references of its neighbors,
but additionally stores sequence numbers for every reference in its local memory,
i.e., every node u stores for each neighbor v an entry u.eseq[id(v)] (or u.eseq[v],
in short). We keep the Introduction primitive as in Sect. 3 and change Delegation
and Fusion in the following way:

Safe-Delegation. Consider a node u that has references of two different nodes
v and w. In order to perform Safe-Delegation, u has to distinguish between
(u,w) being implicit or temporary.

If (u,w) is an implicit edge, it is delegated as in the original delega-
tion primitive (we will later refer to this case as an implicit delegation or
ImplDelegate(t) o avoid confusion with the original primitives). If (u,w)
is a temporary edge, it can only be delegated to a node v if (u, v) is a sta-
ble edge. Whenever an explicit edge (u,w) is to be delegated to another
node v, u sends a DelegateREQ(u,w, eseq) message to v, where eseq =
u.eseq[w]. Additionally, it sets u.eseq[v] to max{u.eseq[v], u.eseq[w] + 1}.
Any node v that receives a DelegateREQ(u,w, eseq) message, adds (v, w)
to its set of explicit edges (if it does not already exist), sets v.eseq[w] to
max{v.eseq[w], eseq+1} and sends a DelegateACK(w, eseq) message back
to u. Upon receipt of this message, u checks whether eseq = u.eseq[w] and
whether (u,w) is actually a temporary edge (note that the last check is nec-
essary to handle corrupt initial states). If both conditions hold, u removes
the temporary explicit edge to w and sends an ImplDelegate(w) message
to one of its neighbors. Otherwise, u simply acts as it would upon receipt of
an ImplDelegate(w) message.

Fusion. If a node u has two references v and w with v = w, then u fuses the two
references if it only keeps one of these references. Note that when a node u
receives a DelegateREQ(v,w,eseq) message and already stores a reference
of w, it also behaves as described in the Safe-Delegation primitive.

We define ISF as the set containing the three primitives Introduction, Safe-
Delegation and Fusion. Throughout the paper we assume that DelegateREQ()
and DelegateACK() messages are only sent in the Safe-Delegation primitive.
Analogous to PIDF , let PISF denote the set of all distributed protocols where all
interactions between processes can be decomposed into the primitives of ISF .
Likewise to the mdl property, we say that a protocol fulfills the stable mdl

property, if the protocol fulfills the mdl property with respect to stable explicit
edges. More specifically, for any action a of the protocol it holds that a node
u executing action a will always keep a reference of another node v in its local
memory (i.e., the stable edge (u, v)) if an edge (u, v) is part of the final topology,
and if a node u executing action a in some state S decides to not keep a reference
of another node v in its local memory (i.e., the temporary or implicit edge (u, v)),
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every other action of the protocol executed by u in any state S′ > S will decide
to not keep the reference of v.

4.1 Universality of the New Primitives

To show that our primitives are search-universal we first show that they are
weakly universal. The corresponding proof can be found in the full version.

Lemma 2. ISF is weakly universal.

In order to enable monotonic searchability, we define the following two mes-
sage invariants:

1. If there is a DelegateREQ(u,w,eseq) message in v.Ch, then there exists a
path P = (u = x1, x2, . . . , xk = v) that does not contain (u,w) and for every
1 ≤ i < k, xi.eseq[xi+1] > u.eseq[w], or u.eseq[w] > eseq.

2. If there is a DelegateACK(w,eseq) message in u.Ch, then there exists a
path P = (u = x1, x2, . . . , xk = w) that does not contain (u,w) and for every
1 ≤ i < k, xi.eseq[xi+1] > u.eseq[w], or u.eseq[w] > eseq.

Intuitively, Invariant 1 says that whenever node v has aDelegateREQ(u,w,eseq)
message in v.Ch (i.e., node u asked v to establish the edge (v, w) such that it
may remove its own (u,w) edge), then there is a path from u to v that does
not use the edge (u,w). Invariant 2 states that whenever a node u has a Dele-

gateACK(w,seq) message in u.Ch (i.e., some other node v which u asked to estab-
lish the edge (v, w) has already done so), then there is a path from u to w that
does not use the edge (u,w). However, both statements only need to hold if the
value of eseq indicates that the messages belong to a current safe-delegation, i.e.,
if u.seq[w] > eseq, the DelegateREQ() or DelegateACK() message can be
ignored.

We define the predicate E(u, v) to be true if and only if there exists a directed
path from u to v via explicit edges. In order to show search-universality, we prove
the following lemma.

Lemma 3. Consider a computation of a protocol P ∈ PISF that fulfills the
stable mdl property. If there is a state S such that Invariants 1 and 2 hold, then
they will hold in every subsequent state. Additionally, for every state S′ ≥ S
it holds that if E(u, v) ≡ TRUE in S′, then E(u, v) ≡ TRUE in every state
S′′ ≥ S′.

Lemmas 2 and 3 imply the following corollary:

Corollary 1. ISF is search-universal according to Invariants 1 and 2.

We conclude this section by showing that a protocol A ∈ PIDF that fulfills
the mdl property and self-stabilizes to some topology can be transformed into a
protocol B ∈ PISF that fulfills the stable mdl property and for which it holds
that in every computation of B there is a state in which Invariant 1–2 hold. The
corresponding proof can be found in the full version [17].
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Theorem 2. Consider a protocol A ∈ PIDF that self-stabilizes to a strongly-
connected topology T and that fulfills the mdl property. Then A can be trans-
formed into another protocol B ∈ PISF such that B fulfills the stable mdl

property, B self-stabilizes to the same topology, and in every computation of B
there exists a computation suffix in which Invariants 1 and 2 hold.

5 The Generic Search Protocol

In this section we describe a generic search protocol such that every protocol in
PISF fulfilling the stable mdl property satisfies monotonic searchability accord-
ing to that search protocol. We assume that when a node u wants to search for
a node with identifier ID, it performs an InitiateNewSearch(ID) action in
which a Search(u, ID) message is created. The search request is regarded as
answered as soon as the Search(u, ID) message is either dropped, i.e., it fails,
or is received by the node w with id(w) = ID, i.e. it succeeds.

The principle idea of the generic search protocol is the following: A node u
with a Search(u, ID) message does not directly forward this message through
the network but buffers it. Instead, u initiates a probing algorithm whose goal
is to either receive the reference of the node w with id(w) = ID, or to get a
negative response in case this node does not exist or cannot be reached yet. In
the former case, u directly sends Search(u, ID) to w. In the latter case, u drops
Search(u, ID). Whenever an additional Search(u, ID) message for the same
identifier ID is initiated at u while a probing for ID is still in progress, this
message is combined with previous Search(u, ID) messages waiting at u.

For the probing, a node u with a buffered Search(u, ID) message periodically
initiates a new Probe() message in its Timeout action. This Probe() message
contains four arguments: First, a reference source of the source of the Probe()
message., i.e., a reference of u. Second, the identifier destID of the node that is
searched, i.e., ID. Third, a set Next that holds references of all neighbors of u with
a closer distance to destID than id(u). Last, a sequence number seq that is used
to distinguish probe messages that belong to different probing processes from the
same node and for the same target, i.e., seq = u.seq[ID], where u.seq[ID] is a value
stored at u. This is necessary because in each execution of the Timeout action, a
new probe message is sent, although upon receival of the first response to such a
message, the set of buffered search messages is sent out to the target or dropped
completely. Thus, future repliesmay arrive afterwards anduhas to know that these
are outdated. All in all, u initiates a Probe(source, destID,Next, seq) message
and sends this message to the node in Next whose identifier has the maximum
distance to ID (i.e., it is the closest to u).

Any intermediate node v that receives a Probe(source, destID,Next, seq)
message first checks whether id(v) = destID. If so, v sends a reference of
itself to source via a ProbeSuccess(destID, dest) message with dest = v.
Otherwise, v removes itself from Next and adds all its neighbors to Next
that have a closer distance to destID than itself. If Next is empty after this
step, v responds to source via a ProbeFail(destID, seq) message. Otherwise,
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v forwards the Probe(source, destID,Next, seq) message (with the already
described changes performed to Next) to the node in Next whose identifier has
the maximum distance to ID. If the initiator u of a probe receives a Probe-

Success(destID, dest) or a ProbeFail(destID, seq) message, it first checks
whether seq ≥ u.seq[destID], i.e., it checks whether the received message is a
response to the current batch of search requests. If it is from an earlier probe,
u simply drops the received message. Otherwise, u acts depending on the mes-
sage it received: In case of a ProbeSuccess(destID, dest) message, u sends
out all (possibly combined) Search(u, destID) messages waiting at u to dest
(thus stopping the probing). In case of a ProbeFail(destID, seq) message, u
drops all Search(u, destID) messages waiting at u to dest (thus also stopping
the probing). In both cases, u additionally increases u.seq[destID] such that
probe messages that are still in the system at this point in time cannot have any
effects on future requests. The pseudocode of the generic search protocol and
supplementary details can be found in the full version [17].

Using the protocol as specified above could cause a high dilation because each
probe message in each step is always sent to the node with the highest distance
to the target in Next, even if a shorter path is possible. Luckily, if there exists
a fast routing protocol for the stabilized target topology (i.e., o(n) hops in the
worst case), it is possible to speed up search messages in legitimate states (and
possibly even earlier). Details can be found in the full version [17].

As the generic search protocol cannot guarantee to function properly under
the presence of corrupt messages, we define the following additional invariants
that are maintained during the execution of the generic search protocol (that
did not start with corrupt messages):

3. If there is a Probe(source, destID,Next, seq) message in u.Ch, then
(a) u ∈ Next and ∀w ∈ Next \ {u} : ds(id(w), destID) ≤ ds(id(u), destID),
(b) R(Next, ID) ⊆ R(source, ID), and
(c) if v exists with id(v) = destID and v /∈ R(Next, destID), then for every

admissible state with source.seq[destID] < seq, v /∈ R(source, destID).
If there is a FastProbe(source, destID) message in u.Ch, then
(d) u ∈ R(source, destID).

4. If there is a ProbeSuccess(destID, dest) message in u.Ch, then id(dest) =
destID and dest ∈ R(u, destID).

5. If there is a ProbeFail(destID, seq) message in u.Ch, then if v exists such
that id(v) = destID, then for every admissible state with u.seq[destID] <
seq, v /∈ R(u, destID).

6. If there is a Search(v, destID) message in u.Ch, then id(u) = destID and
u ∈ R(v, destID).

We say a protocol for the self-stabilization of a topology is monotonic-
searchability-sufficient (ms-sufficient) if (i) all interactions between processes
can be decomposed into the primitives in ISF , (ii) it fulfills the stable mdl

property, (iii) it uses the generic search protocol for searching, (iv) no Probe(),
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ProbeSuccess(), ProbeFail(), or Search() message is sent at any other occa-
sion than the ones specified in the generic search protocol, and (v) in every com-
putation of the protocol there is a state in which the first two invariants hold.
Note that Theorem 2 implies the following:

Corollary 2. Any conventional protocol A ∈ PIDF that self-stabilizes to a
strongly-connected topology T and that fulfills the mdl property can be trans-
formed into an ms-sufficient protocol that stabilizes the same topology.

For an ms-sufficient protocol, we define a state as admissible if all six invariants
hold. The proof of the following theorem can be found in the full version [17].

Theorem 3. Every ms-sufficient protocol satisfies monotonic searchability
according to Invariant 1–6.

The following result follows from the description of the generic search protocol:

Corollary 3. Every ms-sufficient protocol P that stabilizes to a topology T and
in which the generic search protocol uses a routing strategy with a worst-case
routing time of O(T (n)) for the fast search as described in the protocol, then P
answers successful search requests in legitimate states in time O(T (n)).

6 Conclusion and Outlook

In this work we further strengthened the notion of monotonic searchability intro-
duced in [16] by presenting a universal approach for adapting conventional pro-
tocols for topological self-stabilization such that they satisfy monotonic search-
ability. Even more, we carved out some design principles that protocols should
adhere to in order to enable reliable searches even during the stabilization phase.

Although our results solve the problem of monotonic searchability for a wide
range of topologies, there are certain aspects that have not been studied yet.
For example, we did not consider the additional cost of convergence (i.e., the
amount of additional messages to be sent), nor the impact of our methods on
the convergence time of the topology. Additionally, while our generic search
protocol enables us to search existing nodes in legitimate states with a low
dilation, searching for a non-existing node can still cause a message to travel
Ω(n) hops, even in a legitimate state. Whether this is provably necessary or
could be improved is still an open question.
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