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Abstract. Censor-Hillel et al. [PODC’15] recently showed how to effi-
ciently implement centralized algebraic algorithms for matrix multiplica-
tion in the congested clique model, a model of distributed computing that
has received increasing attention in the past few years. This paper devel-
ops further algebraic techniques for designing algorithms in this model.
We present deterministic and randomized algorithms, in the congested
clique model, for efficiently computing multiple independent instances of
matrix products, computing the determinant, the rank and the inverse
of a matrix, and solving systems of linear equations. As applications of
these techniques, we obtain more efficient algorithms for the computa-
tion, again in the congested clique model, of the all-pairs shortest paths
and the diameter in directed and undirected graphs with small weights,
improving over Censor-Hillel et al.’s work. We also obtain algorithms for
several other graph-theoretic problems such as computing the number of
edges in a maximum matching and the Gallai-Edmonds decomposition
of a simple graph, and computing a minimum vertex cover of a bipartite
graph.

1 Introduction

Background. The congested clique model is a model in distributed comput-
ing that has recently received increasing attention [2,6–11,17–19,22,23]. In this
model n nodes communicate with each other over a fully-connected network
(i.e., a clique) by exchanging messages of size O(log n) in synchronous rounds.
Compared with the more traditional congested model [24], the congested clique
model removes the effect of distances in the computation and thus focuses solely
on understanding the role of congestion in distributed computing.

Typical computational tasks studied in the congested clique model are graph-
theoretic problems [2,6–8,11,22], where a graph G on n vertices is initially dis-
tributed among the n nodes of the network (the �-th node of the network knows
the set of vertices adjacent to the �-th vertex of the graph, and the weights of the
corresponding edges if the graph is weighted) and the nodes want to compute
properties of G. Besides their theoretical interest and potential applications,
such problems have the following natural interpretation in the congested clique
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model: the graph G represents the actual topology of the network, each node
knows only its neighbors but can communicate to all the nodes of the network,
and the nodes want to learn information about the topology of the network.

Censor-Hillel et al. [2] recently developed algorithms for several graph-theore-
tic problems in the congested clique model by showing how to implement central-
ized algebraic algorithms for matrix multiplication in this model. More precisely,
they constructed a O(n1−2/ω)-round algorithm for matrix multiplication, where
ω denotes the exponent of matrix multiplication (the best known upper bound on
ω is ω < 2.3729, obtained in [16,29], which gives exponent 1−2/ω < 0.1572 in the
congested clique model), improving over the O(n2−ω) algorithm mentioned in [7],
in the following setting: given two n×n matrices A and B over a field, the �-th node
of the network initially owns the �-th row of A and the �-column of B, and needs to
output the �-th row and the �-column of the product AB. Censor-Hillel et al. con-
sequently obtained O(n1−2/ω)-round algorithms for several graph-theoretic tasks
that reduce to computing the powers of (some variant of) the adjacency matrix of
the graph, such as counting the number of triangles in a graph (which lead to an
improvement over the prior best algorithms for this task [6,7]), detecting the exis-
tence of a constant-length cycle and approximating the all-pairs shortest paths in
the input graph (improving the round complexity obtained in [22]). One of the
main advantages of such an algebraic approach in the congested clique model is
its versatility: it makes possible to construct fast algorithms for graph-theoretic
problems, and especially for problems for which the best non-algebraic centralized
algorithm is highly sequential and does not seem to be implementable efficiently in
the congested clique model, simply by showing a reduction to matrix multiplica-
tion (and naturally also showing that this reduction can be implemented efficiently
in the congested clique model).

Our results. In this paper we develop additional algebraic tools for the congested
clique model.

We first consider the task of computing in the congested clique model not only
one matrix product, but multiple independent matrix products. More precisely,
given k matrices A1, . . . , Ak each of size n × m and k matrices B1, . . . , Bk each
of size m × m, initially evenly distributed among the n nodes of the network,
the nodes want to compute the k matrix products A1B1, . . . , AkBk. Prior works
[2,7] considered only the case k = 1 and m = n, i.e., one product of two square
matrices. Our contribution is thus twofold: we consider the rectangular case, and
the case of several matrix products as well. Let us first discuss our results for
square matrices (m = n). By using sequentially k times the matrix multiplication
algorithm from [2], k matrix products can naturally be computed in O(kn1−2/ω)
rounds. In this work we show that we can actually do better.

Theorem 1 (Simplified version). In the congested clique model k indepen-
dent products of pairs of n × n matrices can be computed with round complexity

{
O(k2/ωn1−2/ω) if 1 ≤ k < n,
O(k) if k ≥ n.
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This generalization of the results from [2] follows from a simple strategy: divide
the n nodes of the network into k blocks (when k ≤ n), each containing roughly
n/k nodes, compute one of the k matrix products per block by using an app-
roach similar to [2] (i.e., a distributed version of the best centralized algorithm
computing one instance of square matrix multiplication), and finally distribute
the relevant part of the k output matrices to all the nodes of the network. Ana-
lyzing the resulting protocol shows that the dependence in k in the overall round
complexity is reduced to k2/ω. This sublinear dependence in k has a significant
number of implications (see below).

The complete version of Theorem 1, given in Sect. 3, also considers the gen-
eral case where the matrices may not be square (i.e., the case m �= n), which will
be crucial for some of our applications to the All-Pairs Shortest Path problem.
The proof becomes more technical than for the square case, but is conceptually
very similar: the main modification is simply to now implement a distributed
version of the best centralized algorithm for rectangular matrix multiplication.
The upper bounds obtained on the round complexity depend on the complex-
ity of the best centralized algorithms for rectangular matrix multiplication (in
particular the upper bounds given in [15]). While the major open problem is
still whether the product of two square matrices can be computed in a constant
(or nearly constant) number of rounds, our results show that for m = O(n0.651...),
the product of an n × m matrix by an m × n matrix can indeed be computed in
O(nε) rounds for any ε > 0. We also show lower bounds on the round complexity
of the general case (Proposition 1 in Sect. 3), which are tight for most values of
k and m, based on simple arguments from communication complexity.

We then study the following basic problems in linear algebra: computing the
determinant, the rank or the inverse of an n × n matrix over a finite field F of
order upper bounded by a polynomial of n, and solving a system of n linear equa-
tions and n variables. We call these problems DET(n,F), Rank(n,F), INV(n,F)
and SYS(n,F), respectively (the formal definitions are given in Sect. 2). While it
is known that in the centralized setting these problems can be solved with essen-
tially the same time complexity as matrix multiplication [1], these reductions
are typically sequential and do not work in a parallel setting. In this paper we
design fast deterministic and randomized algorithm for these four basis tasks,
and obtain the following results.

Theorem 2. Assume that F has characteristic greater than n. In the congested
clique model, the deterministic round complexity of DET(n,F) and INV(n,F) is
O(n1−1/ω).

Theorem 3. Assume that F has order |F| = Ω(n2 log n). In the congested clique
model, the randomized round complexity of DET(n,F), SYS(n,F) and Rank(n,F)
is O(n1−2/ω log n).

The upper bounds of Theorems 2 and 3 are O(n0.5786) and O(n0.1572), respec-
tively, by basing our implementation on the asymptotically fastest (but imprac-
tical) centralized algorithm for matrix multiplication corresponding to the upper
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bound ω < 2.3729. These bounds are O(n2/3) and O(n1/3 log n), respectively, by
basing our implementation on the trivial (but practical) centralized algorithm
for matrix multiplication (corresponding to the bound ω ≤ 3). These algorithms
are obtained by carefully adapting to the congested clique model the relevant
known parallel algorithms [5,12–14,25] for linear algebra, and using our efficient
algorithm for computing multiple matrix products (Theorem 1) as a subroutine.
An interesting open question is whether INV(n,F) can be solved with the same
(randomized) round complexity as the other tasks. This problem may very well
be more difficult; in the parallel setting in particular, to the best of our knowl-
edge, whether matrix inversion can be done with the same complexity as these
other tasks is also an open problem.

Applications of our results. The above results give new algorithms for many
graph-theoretic problems in the congested clique model, as described below and
summarized in Table 1.

Table 1. Summary of the applications of our algebraic techniques to graph-theoretic
problems in the congested clique model. Here n both represents the number of vertices
in the input graph and the number of nodes in the network.

Problem Round complexity Previously

APSP (undirected, weights in {0, 1, . . . , M}) Õ
(
M

2
ω n1− 2

ω

)
Õ
(
Mn1− 2

ω

)

APSP (directed, constant weights) O(n0.2096) Õ(n1/3)

Diameter (undirected, weights in {0, 1, . . . , M}) Õ
(
M

2
ω n1− 2

ω

)
Õ
(
Mn1− 2

ω

)

Computing the size of a maximum matching O
(
n1− 2

ω log n
)

—

Computing allowed edges in a perfect matching O(n1−1/ω) —

Gallai-Edmonds decomposition O(n1−1/ω) —

Minimum vertex cover in bipartite graphs O(n1−1/ω) —

Our main key tool to derive these applications is Theorem 7 in Sect. 3, which
gives an algorithm computing efficiently the distance product (defined in Sect. 2)
of two matrices with small integer entries based on our algorithm for multi-
ple matrix multiplication of Theorem 1. Computing the distance product is a
fundamental graph-theoretic task deeply related to the All-Pairs Shortest Path
(APSP) problem [27,28,30]. Combining this result with techniques from [28], and
observing that these techniques can be implemented efficiently in the congested
clique model, we then almost immediately obtain the following result.

Theorem 4. In the congested clique model, the deterministic round complex-
ity of the all-pairs shortest paths problem in an undirected graph of n vertices
with integer weights in {0, . . . , M}, where M is an integer such that M ≤ n, is
Õ(M2/ωn1−2/ω).



Further Algebraic Algorithms in the Congested Clique Model 61

Since computing the diameter of a graph reduces to solving the all-pairs shortest
paths, we obtain the same round complexity for diameter computation in the
same class of graphs. This improves over the Õ(Mn1−2/ω)-round algorithm for
these tasks (implicitly) given in [2]. The main application of our results neverthe-
less concerns the all-pair shortest paths problem over directed graphs (for which
the approach based on [28] does not work) with constant weights. We obtain the
following result by combining our algorithm for distance product computation
with Zwick’s approach [30].

Theorem 5. In the congested clique model, the randomized round complexity of
the all-pairs shortest paths problem in a directed graph of n vertices with integer
weights in {−M, . . . , 0, . . . , M}, where M = O(1), is O(n0.2096).

Prior to this work, the upper bound for the round complexity of this problem was
Õ(n1/3), obtained by directly computing the distance product (as done in [2]) in
the congested clique model. Again, Theorem 5 follows easily from Theorem 7 and
the observation that the reduction to distance product computation given in [30]
can be implemented efficiently in the congested clique model. The exponent
0.2096 in the statement of Theorem 5 is derived from the current best upper
bounds on the complexity of rectangular matrix multiplication in the centralized
setting [15].

Theorems 2 and 3 also enable us to solve a multitude of graph-theoretic prob-
lems in the congested clique model with a sublinear number of rounds. Examples
described in this paper are computing the number of edges in a maximum match-
ing of a simple graph with O(n1−2/ω log n) rounds, computing the set of allowed
edges in a perfect matching, the Gallai-Edmonds decomposition of a simple
graph, and a minimum vertex cover in a bipartite graph with O(n1−1/ω) rounds.
These results are obtained almost immediately from the appropriate reductions
to matrix inversion and similar problems known the centralized setting [3,20,26]
— indeed it is not hard to adapt all these reductions so that they can be imple-
mented efficiently in the congested clique model. Note that while non-algebraic
centralized algorithms solving these problems also exist (see, e.g., [21]), they are
typically sequential and do not appear to be efficiently implementable in the
congested clique model. The algebraic approach developed in this paper, made
possible by our algorithms for the computation of the determinant, the rank
and the inverse of matrix, appears to be currently the only way of obtaining fast
algorithms for these problems in the congested clique model.

Remarks on the organization of the paper. Due to space constraints, most of
the technical proofs are not included, but can be found in the full version of
the present paper. The discussion of randomized algorithms for the determinant
(Theorem 3) is also omitted from this version. The whole discussion detailing
the applications of our algebraic methods is omitted as well, with the exception
of the statement of Theorem 7 given in Sect. 3.
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2 Preliminaries

Notations. Through this paper we will use n to denote the number of nodes in
the network. The n nodes will be denoted 1, 2, . . . , n. The symbol F will always
denote a finite field of order upper bounded by a polynomial in n (which means
that each field element can be encoded with O(log n) bits and thus sent using
one message in the congested clique model). Given any positive integer p, we use
the notation [p] to represent the set {1, 2, . . . , p}. Given any p × p′ matrix A, we
will write its entries as A[i, j] for (i, j) ∈ [p] × [p′], and use the notation A[i, ∗]
to represent its i-th row and A[∗, j] to represent its j-th column.

Graph-theoretic problems in the congested clique model. As mentioned in the
introduction, typically the main tasks that we want to solve in the congested
clique model are graph-theoretical problems. In all the applications given in this
paper the number of vertices of the graph will be n, the same as the number
of nodes of the network. The input will be given as follows: initially each node
� ∈ [n] has the �-th row and the �-th column of the adjacency matrix of the
graph. Note that this distribution of the input, while being the most natural,
is not essential; the only important assumption is that the entries are evenly
distributed among the n nodes since they can then be redistributed in a constant
number of rounds as shown in the following Lemma by Dolev et al. [6], which
we will use many times in this paper.

Lemma 1. [6] In the congested clique model a set of messages in which no node
is the source of more than n messages and no node is the destination of more
than n messages can be delivered within two rounds if the source and destination
of each message is known in advance to all nodes.

Algebraic problems in the congested clique model. The five main algebraic prob-
lems that we consider in this paper are defined as follows.

MM(n,m, k,F) — Multiple Rectangular Matrix Multiplications
Input: matrices A1, . . . , Ak ∈ F

n×m and B1, . . . , Bk ∈ F
m×n distributed

among the n nodes
(Node � ∈ [n] has A1[�, ∗], . . . , Ak[�, ∗] and B1[∗, �], . . . , Bk[∗, �])

Output: the matrices A1B1, . . . , AkBk distributed among the n nodes
(Node � ∈ [n] has A1B1[�, ∗], . . . , AkBk[�, ∗] and
A1B1[∗, �], . . . , AkBk[∗, �])

DET(n,F) — Determinant
Input: matrix A ∈ F

n×n distributed among the n nodes
(Node � ∈ [n] has A[�, ∗] and A[∗, �])

Output: det(A) (Each node of the network has det(A))

Rank(n,F) — Rank
Input: matrix A ∈ F

n×n distributed among the n nodes
(Node � ∈ [n] has A[�, ∗] and A[∗, �])
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Output: rank(A) (Each node of the network has rank(A))

INV(n,F) — Inversion
Input: invertible matrix A ∈ F

n×n distributed among the n nodes
(Node � ∈ [n] has A[�, ∗] and A[∗, �])

Output: matrix A−1 distributed among the n nodes
(Node � ∈ [n] has A−1[�, ∗] and A−1[∗, �])

SYS(n,F) — Solution of a linear system
Input: invertible matrix A ∈ F

n×n and vector b ∈ F
n×1, distributed among

the n nodes (Node � ∈ [n] has A[�, ∗], A[∗, �] and b)

Output: the vector x ∈ F
n×1 such that Ax = b (Node � ∈ [n] has x[�])

Note that the distribution of the inputs and the outputs assumed in the above
five problems is mostly chosen for convenience. For instance, if needed the whole
vector x in the output of SYS(n,F) can be sent to all the nodes of the network
in two rounds using Lemma 1. The only important assumption is that when
dealing with matrices, the entries of the matrices must be evenly distributed
among the n nodes.

We will also in this paper consider the distance product of two matrices,
defined as follows.

Definition 1. Let m and n be two positive integers. Let A be an n × m matrix
and B be an m×n matrix, both with entries in R∪{∞}. The distance product of A
and B, denoted A∗B, is the n×n matrix C such that C[i, j] = mins∈[m]{A[i, s]+
B[s, j]} for all (i, j) ∈ [n] × [n].

We will be mainly interested in the case when the matrices have integer
entries. More precisely, we will consider the following problem.

DIST(n,m,M) — Computation of the distance product
Input: an n × m matrix A and an m × n matrix B, with entries in

{−M, . . . ,−1, 0, 1, . . . ,M} ∪ {∞}
(Node � ∈ [n] has A[�, ∗] and B[∗, �])

Output: the matrix C = A ∗ B distributed among the n nodes
(Node � ∈ [n] has C[�, ∗] and C[∗, �])

Centralized algebraic algorithms for matrix multiplication. We now briefly
describe algebraic algorithms for matrix multiplication and known results about
the complexity of rectangular matrix multiplication. We refer to [1] for a detailed
exposition of these concepts.

Let F be a field and m,n be two positive integer. Consider the problem of
computing the product of an n × m matrix by an m × n matrix over F. An
algebraic algorithm for this problem is described by three sets {αijμ}, {βijμ}
and {λijμ} of coefficients from F such that, for any n × m matrix A and any
m × n matrix B, the equality
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C[i, j] =
t∑

μ=1

λijμS(μ)T (μ)

holds for all (i, j) ∈ [n] × [n], where C = AB and

S(μ) =
n∑

i=1

m∑
j=1

αijμA[i, j], T (μ) =
n∑

i=1

m∑
j=1

βijμB[j, i],

for each s ∈ [t]. Note that each S(μ) and each T (μ) is an element of F. The
integer t is called the rank of the algorithm, and corresponds to the complexity
of the algorithm.

For instance, consider the trivial algorithm computing this matrix product
using the formula

C[i, j] =
m∑

s=1

A[i, s]B[s, j].

This algorithm can be described in the above formalism by taking t = n2m,
writing each μ ∈ [n2m] as a triple μ = (i′, j′, s′) ∈ [n] × [n] × [m], and choosing

λij(i′,j′,s′) =
{

1 if i = i′and j = j′,
0 otherwise,

αij(i′,j′,s′) =
{

1 if i = i′and j = s′,
0 otherwise, βij(i′,j′,s′) =

{
1 if i = j′and j = s′,
0 otherwise.

Note that this trivial algorithm, and the description we just gave, also works
over any semiring.

The exponent of matrix multiplication. For any non-negative real number γ,
let ω(γ) denote the minimal value τ such that the product of an n × 	nγ

matrix over F by an 	nγ
 × n matrix over F can be computed by an algebraic
algorithm of rank nτ+o(1) (i.e., can be computed with complexity O(nτ+ε) for
any ε > 0). As usual in the literature, we typically abuse notation and simply
write that such a product can be done with complexity O(nω(γ)), i.e., ignoring
the o(1) in the exponent. The value ω(1) is denoted by ω, and often called the
exponent of square matrix multiplication. Another important quantity is the
value α = sup{γ | ω(γ) = 2}.

The trivial algorithm for matrix multiplication gives the upper bound ω(γ) ≤
2 + γ, and thus ω ≤ 3 and α ≥ 0. The current best upper bound on ω is
ω < 2.3729, see [16,29]. The current best bound on α is α > 0.3029, see [15].
The best bounds on ω(γ) for γ > α can also be found in [15].

3 Matrix Multiplication in the Congested Clique Model

In this section we discuss the round complexity of Problems MM(n,m, k,F) and
DIST(n,m,M).

Our first result is the following theorem.
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Theorem 6 (Complete version). For any positive integer k ≤ n, the deter-
ministic round complexity of MM(n,m, k,F) is

⎧⎨
⎩

O(k) if 0 ≤ m ≤ √
kn,

O(k2/ω(γ)n1−2/ω(γ)) if
√

kn ≤ m < n2/k,
O(km/n) if m ≥ n2/k,

where γ is the solution of the equation
(

1 − log k

log n

)
γ = 1 − log k

log n
+

(
log m

log n
− 1

)
ω(γ). (1)

For any k ≥ n, the deterministic round complexity of MM(n,m, k,F) is
{

O(k) if 1 ≤ m ≤ n,
O(km/n) if m ≥ n.

The proof of Theorem 1, which will also show that Eq. (1) always has a solution
when k ≤ n and

√
kn ≤ m < n2/k, can be found in the full version of the

paper (a short discussion of the proof ideas was presented in the introduction).
As briefly mentioned in the introduction, the round complexity is constant for
any k ≤ √

n, and we further have round complexity O(nε), for any ε > 0, for
all values k ≤ n(1+α)/2 (the bound α > 0.3029 implies (1 + α)/2 > 0.6514). For
the case m = n the solution of Eq. (1) is γ = 1, which gives the bounds of the
simplified version of Theorem 1 presented in the introduction.

We now give lower bounds on the round complexity of MM(n,m, k,F) that
show that the upper bounds of Theorem 1 are tight, except possibly in the case√

kn ≤ m < n2/k when k ≤ n.

Proposition 1. The randomized round complexity of MM(n,m, k,F) is
{

Ω(k) if 1 ≤ m ≤ n,
Ω(km/n) if m ≥ n.

Proof. We first prove the lower bound Ω(km/n) for any m ≥ n. Let us consider
instances of MM(n,m, k,F) of the following form: for each s ∈ [k] all the rows of
As are zero except the first row; for each s ∈ [k] all the columns of Bs are zero
except the second column. Let us write Cs = AsBs for each s ∈ [k]. We prove the
lower bound by partitioning the n nodes of the network into the two sets {1} and
{2, . . . , n}, and considering the following two-party communication problem. Alice
(corresponding to the set {1}) has for input As[1, j] for all j ∈ [m] and all s ∈ [k].
Bob (corresponding to the set {2, . . . , n}) has for input Bs[i, 2] for all i ∈ [m] and
all s ∈ [k]. The goal is for Alice to output Cs[1, 2] for all s ∈ [k]. Note that Cs[1, 2] is
the inner product (over F) of the first row of As and the second column of Bs. Thus∑k

s=1 Cs[1, 2] is the inner product of two vectors of size km. Alice and Bob must
exchange Ω(km log |F|) bits to compute this value [4], which requires Ω(km/n)
rounds in the original congested clique model.
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We now prove the lower bound Ω(k) for any m ≥ 1. Let us consider instances
of MM(n,m, k,F) of the following form: for each s ∈ [k], all entries of As are
zero except the entry As[1, 1] which is one; for each s ∈ [k], Bs[i, j] = 0 for all
(i, j) /∈ {(1, j) | j ∈ {2, . . . , n}} (the other n − 1 entries are arbitrary). Again,
let us write Cs = AsBs for each s ∈ [k]. We prove the lower bound by again
partitioning the n nodes of the network into the two sets {1} and {2, . . . , n},
and considering the following two-party communication problem. Alice has no
input. Bob has for input Bs[1, j] for all j ∈ {2, . . . , n} and all s ∈ [k]. The goal is
for Alice to output Cs[1, j] for all j ∈ {2, . . . , n} and all s ∈ [k]. Since the output
reveals Bob’s whole input to Alice, Alice must receive Ω(k(n − 1) log |F|) bits,
which gives round complexity Ω(k) in the original congested clique model. �

One of the main applications of Theorem 1 is the following result, which will
imply all our results on the all-pairs shortest paths and diameter computation,
including Theorems 4 and 5.

Theorem 7. For any M ≤ n and m ≤ n, the deterministic round complexity
of DIST(n,m,M) is

⎧⎨
⎩

O(M log m) if 0 ≤ m ≤ √
Mn log m,

O
(
(M log m)2/ω(γ)n1−2/ω(γ)

)
if

√
Mn log m ≤ m ≤ n2/(M log m),

O (mM log m/n) if n2/(M log m) ≤ m ≤ n,

where γ is the solution of the equation
(
1− log M

log n

)
γ = 1− log M

log n +
(

log m
log n −1

)
ω(γ).

The proof of Theorem 7 is omitted, but can be found in the full version of the
paper. The idea is to show that DIST(n,m,M) reduces to MM(n,m, k,F) for
k ≈ M log m and a well-chosen finite field F, and then use Theorem 1 to get
a factor (M log m)2/ω(γ), instead of the factor M obtained in a straightforward
implementation of the distance product, in the complexity. This reduction is done
by first applying a standard encoding of the distance product into a usual matrix
product of matrices with integer entries of absolute value exp(M), and then
using Fourier transforms to split this latter matrix product into roughly M log m
independent matrix products over a small field.

4 Deterministic Computation of Determinant and Inverse
Matrix

In this section we present deterministic algorithms for computing the determi-
nant of a matrix and the inverse of a matrix in the congested clique model, and
prove Theorem 2. Our algorithms can be seen as efficient implementations of the
parallel algorithm by Preparata and Sarwate [25] based on the Faddeev-Leverrier
method.

Let A be an n×n matrix over a field F. Let det(λI −A) = λn+c1λ
n−1+ · · ·+

cn−1λ + cn be its characteristic polynomial. The determinant of A is (−1)ncn

and, if cn �= 0, its inverse is
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A−1 = −An−1 + c1A
n−2 + · · · + cn−2A + cn−1I

cn
.

Define the vector c = (c1, . . . , cn)T ∈ F
n×1. For any k ∈ [n] let sk denote the

trace of the matrix Ak, and define the vector s = (s1, . . . , sn)T ∈ F
n×1. Define

the n × n matrix

S =

⎛
⎜⎜⎜⎜⎜⎝

1
s1 2
s2 s1 3
...

...
...

. . .
sn−1 sn−2 sn−3 ... s1 n

⎞
⎟⎟⎟⎟⎟⎠

.

It can be easily shown (see, e.g., [5,25]) that Sc = −s, which enables us to recover
c from s if S is invertible. The matrix S is invertible whenever n! �= 0, which
is true in any field of characteristic zero or in any finite field of characteristic
strictly larger than n. The following proposition shows that the inverse of an
invertible triangular matrix can be computed efficiently in the congested clique
model.

Proposition 2. Let F be any field. There is a deterministic algorithm with
round complexity O(n1−2/ω) that solves INV(n,F) when the input A is an invert-
ible lower triangular matrix.

We are now ready to give the proof of Theorem 2.

Proof (of Theorem 2). For convenience we assume that n is a square, and write
p =

√
n. If n is not a square we can easily adapt the proof by taking p = 	√n
.

Observe that any integer a ∈ {0, 1, . . . , n − 1} can be written in a unique way as
a = (a1 − 1)p + (a2 − 1) with a1, a2 ∈ [p]. Below when we write a = (a1, a2) ∈ [n],
we mean that a1 and a2 are the two elements in [p] such that a = (a1−1)p+(a2−1).

For any � ∈ [n], let R� be the p × n matrix such that the i-th row of R� is
the �-th row of A(i−1)p, for each i ∈ [p]. Similarly, for any � ∈ [n], let C� be the
n × p matrix such that the j-th column of C� is the �-th column of Aj−1, for
each j ∈ [p]. For each � ∈ [n] define U� = R�C�, which is a p× p matrix. Observe
that, for any k = (k1, k2) ∈ [n], the identity

sk =
n∑

�=1

U�[k1, k2] (2)

holds. We will use this expression, together with the equation c = −S−1s to
compute the determinant in the congested clique model.

In order to compute the inverse of A we then use the following approach. For
any (a1, a2) ∈ [p] × [p], define the coefficient ca1,a2 ∈ F as follows:

ca1,a2 =
{

cn−1−(a1−1)p−(a2−1) if (a1, a2) �= (p, p),
1 if (a1, a2) = (p, p).
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For any a2 ∈ [p], define the n × n matrix Ea2 as follows:

Ea2 =
p∑

a1=1

ca1,a2A
(a1−1)p.

Note that the following holds whenever cn �= 0:

A−1 = −
∑n−1

a=0 cn−1−aAa

cn
= −

∑p
a1=1

∑p
a2=1 ca2,a1A

(a1−1)p+(a2−1)

cn
,

which gives

A−1 = −
∑p

a2=1 Ea2A
a2−1

cn
. (3)

The algorithm for DET(n,F) and INV(n,F) is described in Fig. 1. Steps 1
and 7.2 can be implemented in O(p2/ωn1−2/ω) rounds from Theorem 1 (or its
simplified version in the introduction). Step 5 can be implemented in O(n1−2/ω)
rounds, again from Theorem 1. At Steps 2, 3 and 6 each node receives n ele-
ments from the field F, so each of these three steps can be implemented in

Fig. 1. Distributed algorithm for computing the determinant of an n × n matrix A
and computing A−1 if det(A) �= 0. Initially each node � ∈ [n] has as input A[�, ∗] and
A[∗, �].
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two rounds from Lemma 1. The other steps (Steps 4, 7.1 and 7.3) do not
require any communication. The total round complexity of the algorithm is thus
O

(
p2/ωn1−2/ω

)
= O

(
n1−1/ω

)
, as claimed. �
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