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Abstract. We provide a thorough study of distributed property testing
– producing algorithms for the approximation problems of property test-
ing in the CONGEST model. In particular, for the so-called dense graph
testing model we emulate sequential tests for nearly all graph proper-
ties having 1-sided tests, while in the general and sparse models we
obtain faster tests for triangle-freeness, cycle-freeness and bipartiteness,
respectively. In addition, we show a logarithmic lower bound for testing
bipartiteness and cycle-freeness, which holds even in the LOCAL model.

In most cases, aided by parallelism, the distributed algorithms have
a much shorter running time as compared to their counterparts from
the sequential querying model of traditional property testing. The sim-
plest property testing algorithms allow a relatively smooth transitioning
to the distributed model. For the more complex tasks we develop new
machinery that may be of independent interest.

1 Introduction

The performance of many distributed algorithms naturally depends on properties
of the underlying network graph. Therefore, an inherent goal is to check whether
the graph, or some given subgraph, has certain properties. However, in some
cases this is known to be hard, such as in the CONGEST model [29]. In this
model, computation proceeds in synchronous rounds, in each of which every
vertex can send an O(log n)-bit message to each of its neighbors. Lower bounds
for the number of rounds of type Ω̃(

√
n + D) are known for verifying many

global graph properties, where n is the number of vertices in the network, D is
its diameter and Ω̃ hides polylogarithmic factors (see, e.g. Das-Sarma et al. [34]).

To overcome such difficulties, we adopt the relaxation used in graph property
testing, as first defined in [17,19], to the distributed setting. That is, rather than
aiming for an exact answer to the question of whether the graph G satisfies a
certain property P , we settle for distinguishing the case of satisfying P from the
case of being ε-far from it, for an appropriate measure of being far.

Apart from its theoretical interest, this relaxation is motivated by the com-
mon scenario of having distributed algorithms for some tasks that perform better
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given a certain property of the network topology, or given that the graph almost
satisfies that property. For example, Hirvonen et al. [23] show an algorithm for
finding a large cut in triangle-free graphs (with additional constraints), and for
finding an (1 − ε)-approximation if at most an ε fraction of all edges are part
of a triangle. Similarly, Pettie and Su [30] provide fast algorithms for coloring
triangle-free graphs.

We construct fast distributed algorithms for testing various graph properties.
An important byproduct of this study is a toolbox that we believe will be useful
in other settings as well.

1.1 Our Contributions

We provide a rigorous study of property testing methods in the realm of dis-
tributed computing under the CONGEST model. We construct 1-sided error
distributed ε-tests, in which if the graph satisfies the property then all vertices
output accept, and if it is ε-far from satisfying the property then at least one
vertex outputs reject with probability at least 2/3. Using the standard amplifi-
cation method of invoking such a test O(log n) times and having a vertex output
reject if there is at least one invocation in which it should output reject, gives
rejection with higher probability at the price of a multiplicative O(log n) factor
for the number of rounds.

The definition of a graph being ε-far from satisfying a property is roughly
one of the following (see the preliminaries section in the full version, [8], for
precise definitions): (1) Changing any εn2 entries in the adjacency matrix does
not give a graph that satisfies the property (dense model), or (2) changing any
ε ·max{n,m} entries in the adjacency matrix does not give a graph that satisfies
the property, where m is the number of edges (general model). A particular case
here is when the degrees are bounded by some constant d, and any resulting
graph must comply with this restriction as well (sparse model).

In a sequential ε-test, access to the input is provided by queries, whose type
depends on the model. In the dense model these are asking whether two vertices
v, u are neighbors, and in the general and sparse models these can be either
asking what the degree of a vertex v is, or asking what the i-th neighbor of v
is (the ordering of neighbors is arbitrary). While a sequential ε-test can touch
only a small handful of vertices with its queries, in a distributed test the lack
of ability to communicate over large distances is offset by having all n vertices
operating in parallel.

Our first contribution is a general scheme for a near-complete emulation
in the distributed context of ε-tests originating from the dense graph model
(Sect. 2). This makes use of the fact that in the dense model all (sequential)
testing algorithms can be made non-adaptive, which roughly means that queries
do not depend on responses to previous queries (see the preliminaries section
in the full version for definition). In fact, such tests can be made to have a
very simple structure, allowing the vertices in the distributed model to “band
together” for an emulation of the test. There is only one additional technical
condition (which we define in Sect. 2), since in the distributed model we cannot
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handle properties whose counter-examples can be “split” to disjoint graphs. For
example, the distributed model cannot hope to handle the property of the graph
having no disjoint union of two triangles, a property for which there exists a test
in the dense model.

Theorem 1. Any ε-test in the dense graph model for a non-disjointed property
that makes q queries can be converted to an O(q2)-round distributed ε-test.

We next move away from the dense graph model to the sparse and general
models, that are sometimes considered to be more realistic. In the general model,
there exists no test for the property of containing no triangle that makes a num-
ber of queries independent of the number of graph vertices [2]. Here the distrib-
uted model can do better, because the reason for this deficiency is addressed by
having all vertices operate concurrently. In Sect. 3 we adapt the interim lemmas
used in the best testing algorithm constructed in [2], and construct a distributed
algorithm whose number of rounds is independent of n.

Theorem 2. There is a distributed ε-test in the general graph model for triangle-
freeness, that requires O(ε−2) rounds.

The sparse and general models inherently require adaptive property testing
algorithms, since there is no other way to trace a path from a given vertex
forward, or follow its neighborhood. Testing triangle-freeness sequentially uses
adaptivity only to a small degree. However, other problems in the sparse and
general models, such as the one we explore next, have a high degree of adaptiv-
ity built into their sequential algorithms, and we need to take special care for
emulating it in the distributed setting.

In the sparse model (degrees bounded by a constant d), we adapt ideas from
the bipartiteness testing algorithm of [18], in which we search for odd-length
cycles. Here again the performance of a distributed algorithm surpasses that of
the test (a number of rounds polylogarithmic in n vs. a number of queries which
is Ω(

√
n) – a lower bound that is given in [19]). The following is proved in Sect. 4.

Theorem 3. There is a distributed ε-test in the bounded degree graph model for
the property of being bipartite, that requires O(poly(ε−1 log(nε−1))) rounds.

In the course of proving Theorem 3 we develop a method that we consider to
be of independent interest1. The algorithm performs 2n random walks concur-
rently (two starting from each vertex). The parallel execution of random walks
despite the congestion restriction is achieved by making sure that the walks have
a uniform stationary distribution, and then showing that congestion is “close to
average”, which for the uniform stationary distribution is constant.

In Sect. 5 we show a fast test for cycle-freeness. This makes use of a com-
binatorial lemma that we prove, about cycles that remain in the graph after
removing edges independently with probability ε/2. The following summarizes
our result for testing cycle-freeness.
1 This was recently independently and concurrently devised in [16] for a different use.
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Theorem 4. There is a distributed ε-test in the general graph model for cycle-
freeness, that requires O(log n/ε) rounds.

We also prove lower bounds for testing bipartiteness and cycle-freeness that
match the upper bound for the latter property. Roughly speaking, these are
obtained by using the probabilistic method with alterations to construct graphs
which are far from being bipartite or cycle-free, but all of their cycles are of
length that is at least logarithmic. This technique bears some similarity to the
classic result by Erdös [12], which showed the existence of graphs with large
girth and large chromatic number. The following are given in Sect. 6.

Theorem 5. Any distributed 1/100-test in the bounded degree or general graph
model for the property of being bipartite requiresΩ(log n) rounds of communication.

Theorem 6. Any distributed 1/100-test in the bounded degree graph or general
model for cycle-freeness requires Ω(log n) rounds of communication.

Roadmap: The paper is organized as follows. The remainder of this section con-
sists of related work and historical background on property testing. The emula-
tion of sequential tests for the dense model is given in Sect. 2. In Sect. 3 we give
our distributed test for triangle-freeness. In Sect. 4 we provide a distributed test
for bipartiteness, along with our new method of executing many random walks,
and in Sect. 5 we give our test for cycle-freeness. Section 6 gives our logarithmic
lower bounds for testing bipartiteness and cycle-freeness. We conclude with a
short discussion in Sect. 7.

1.2 Related Work

The only previous work that directly relates to our distributed setting is due to
Brakerski and Patt-Shamir [7]. They show a tolerant property testing algorithm
for finding large (linear in size) near-cliques in the graph. An ε-near clique is
a set of vertices for which all but an ε-fraction of the pairs of vertices have an
edge between them. The algorithm is tolerant, in the sense that it finds a linear
near-clique if there exists a linear ε3-near clique. That is, the testing algorithm
considers two thresholds of being close to having the property (in this case –
containing a linear size clique). We are unaware of any other work on property
testing in this distributed setting.

Testing in a different distributed setting was considered in Arfaoui et al. [4].
They study testing for cycle-freeness, in a setting where each vertex may collect
information of its entire neighborhood up to some distance, and send a short
string of bits to a central authority who decides whether the graph is cycle-free.

Related to having information being sent to, or received by, a central author-
ity, is the concept of proof-labelling schemes, introduced by Korman et al. [26]
(for extensions see, e.g., Baruch et al. [5]). In this setting, each vertex is given
some external label, and by exchanging labels the vertices need to decide whether
a given property of the graph holds. This is different from our setting in which no
information other than vertex IDs is available. Another setting that is related to



Fast Distributed Algorithms for Testing Graph Properties 47

proof-labelling schemes, but differs from our model, is the prover-verifier model
of Foerster et al. [14].

Sequential property testing has the goal of computing without processing
the entire input. The wider family of local computation algorithms (LCA) is
known to have connections with distributed computing, as shown by Parnas and
Ron [28] and later used by others. A recent study by Göös et al. [22] proves that
under some conditions, the fact that a centralized algorithm can query distant
vertices does not help with speeding up computation. However, they consider
the LOCAL model, and their results apply to certain properties that are not
influenced by distances.

Finding induced subgraphs is a crucial task and has been studied in several
different distributed models (see, e.g., [9–11,25]). Notice that for finding sub-
graphs, having many instances of the desired subgraph can help speedup the
computation, as in [10]. This is in contrast to algorithms that perform faster if
there are no or only few instances, as explained above, which is why we test for,
e.g., the property of being triangle-free, rather for the property of containing
triangles. (Notice that these are not the same, and in fact every graph with 3/ε
or more vertices is ε-close to having a triangle.)

Parallelizing many random walks was addressed in [1], where the question of
graph covering via random walks is discussed. It is shown there that for certain
families of graphs there is a substantial speedup in the time it takes for k walks
starting from the same vertex to cover the graph, as compared to a single walk.
No edge congestion constraints are taken into account. In [35], it is shown how to
perform, under congestion, a single random walk of length L in Õ(

√
LD) rounds,

and k random walks in Õ(
√

kLD + k) rounds, where D is the diameter of the
graph. Our method has no dependence on the diameter, allowing us to perform
a multitude of short walks much faster.

1.3 Historical Overview

The first papers to consider the question of property testing were [6] and [33].
The original motivations for defining property testing were its connection to
some Computerized Learning models, and the ability to leverage some prop-
erties to construct Probabilistically Checkable Proofs (PCPs – this is related
to property testing through the areas of Locally Testable Codes and Locally
Decodable Codes, LTCs and LDCs). Other motivations since then have entered
the fray, and foremost among them are sublinear-time algorithms, and other
big-data considerations. Since virtually no property can be decidable without
reading the entire input, property testing introduces a notion of the allowable
approximation to the original problem. In general, the algorithm has to distin-
guish inputs satisfying the property, from inputs that are ε-far from it. For more
information on the general scheme of “classical” property testing, consult the
surveys [13,20,31].

The older of the graph testing models discussed here is the dense model,
as defined in the seminal work of Goldreich, Goldwasser and Ron [17]. The
dense graph model has historically kick-started combinatorial property testing
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in earnest, but it has some shortcomings. Its main one is the distance function,
which makes sense only if we consider graphs having many edges (hence the
name “dense model”) – any graph with o(n2) edges is indistinguishable in this
model from an empty graph.

The stricter and at times more plausible distance function is one which is
relative to the actual number of edges, rather than the maximum

(
n
2

)
. The general

model was defined in [2], while the sparse model was defined already in [19]. The
main difference between the sparse and the general graph models is that in the
former there is also a guaranteed upper bound d on the degrees of the vertices,
which is given to the algorithm in advance (the query complexity may then
depend on d, either explicitly, or more commonly implicitly by considering d to
be a constant).

2 Distributed Emulation of Sequential Tests in the Dense
Model

We begin by showing that under a certain assumption of being non-disjointed,
which we define below, a property P that has a sequential test in the dense model
that requires q queries can be tested in the distributed setting within O(q2)
rounds. We prove this by constructing an emulation that translates sequential
tests to distributed ones. We first introduce a definition of a witness graph and
then adapt [21, Theorem 2.2], restricted to 1-sided error tests, to our terminology.

Definition 1. Let P be a property of graphs with n vertices. Let G′ be a graph
with k < n vertices. We say that G′ is a witness against P, if it is not an induced
subgraph of any graph that satisfies P .

Notice that if G′ has an induced subgraph H that is a witness against P , then by
the above definition G′ is also a witness against P . The work of [21] transforms
tests of graphs in the dense model to a canonical form where the query scheme is
based on vertex selection. This is useful in particular for the distributed model,
where the computational work is essentially based in the vertices. We require
the following special case for 1-sided error tests.

Lemma 1 ([21, Theorem 2.2]). Let P be a property of graphs with n vertices. If
there exists a 1-sided error ε-test for P with query complexity q(n, ε), then there
exists a 1-sided error ε-test for P that uniformly selects a set of q′ = 2q(n, ε)
vertices, and accepts iff the induced subgraph is not a witness against P .

Our emulation leverages Lemma 1 under an assumption on the property P .

Definition 2. We say that P is a non-disjointed property if for every graph G
that does not satisfy P and an induced subgraph G′ of G such that G′ is a witness
against P , G′ has some connected component which is also a witness against P .
We call such components witness components.

We are now ready to formally state our main theorem for this section.
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Theorem 1. Any ε-test in the dense graph model for a non-disjointed property
that makes q queries can be converted to an O(q2)-round distributed ε-test.

We claim that not satisfying a non-disjointed property cannot rely on sub-
graphs that are not connected, which is exactly what we need to forbid in a
distributed setting. Formally, the property P is a non-disjointed property if and
only if all minimal witnesses that are induced subgraphs of G are connected.
Here minimal refers to the standard terminology, which means that no proper
induced subgraph is a witness against P .

Next, we give the distributed test (its pseudo-code form appears in the full
version). The test has an outer loop in which each vertex picks itself with prob-
ability 5q/n, collects its neighborhood of a certain size of edges between picked
vertices in an inner loop, and rejects if it identifies a witness against P . The
outer loop repeats two times because not only does the sequential test have an
error probability, but also with some small probability we may randomly pick
too many or not enough vertices in order to emulate it. Repeating the main loop
twice reduces the error probability back to below 1/3. In the inner loop, each
vertex collects its neighborhood of picked vertices and checks if its connected
component is a witness against P . To limit communications this is done only
for components of picked vertices that are sufficiently small: if a vertex detects
that it is part of a component with too many edges then it accepts and does not
participate until the next iteration of the outer loop.

To analyze the algorithm, we begin by proving (see full version) that there
is a constant probability of at least 2/3 for the number of picked vertices to be
sufficient and not too large, namely, between q and 10q. Now, we can use the
guarantees of the sequential test to obtain the guarantees of our algorithm.

Lemma 2. Let P be a non-disjointed graph property. If G satisfies P then all
vertices output accept in the emulation algorithm. If G is ε-far from satisfying
P , then with probability at least 2/3 there exists a vertex that outputs reject.

We now address the round complexity. Each vertex only sends and receives
information from its q-neighborhood about edges between the chosen vertices.
If too many vertices are chosen we detect this and accept. Otherwise we only
communicate the chosen vertices and their edges, which requires O(q2) rounds
using standard pipelining2. Together with Lemma 2, this proves Theorem 1.

Applications: k-colorability and perfect graphs. We provide some exam-
ples of usage of Theorem 1. A result by Alon and Shapira [3] states that all graph
properties closed under induced subgraphs are testable in a number of queries
that depends only on ε−1. We note that, except for certain specific properties for
which there are ad-hoc proofs (such as k-colorability), the dependence is usually
a tower function in ε−1 or worse (asymptotically larger).

2 Pipelining means that each vertex has a buffer for each edge, which holds the infor-
mation (edges between chosen vertices, in our case) it needs to send over that edge.
The vertex sends the pieces of information one after the other.
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From this, together with Lemma 1 and Theorem 1, we deduce that if P is a
non-disjointed property closed under induced subgraphs, then it is testable, for
every fixed ε, in a constant number of rounds. Our emulation implies a distrib-
uted 1-sided error ε-test for k-colorability that requires O(poly(kε−1)) rounds,
and a distributed 1-sided error ε-test for being a perfect graph3 whose running
time depends only on ε (see full version for complete details).

3 Distributed Test for Triangle-Freeness

In this section we show a distributed ε-test for triangle-freeness. Notice that
since triangle-freeness is a non-disjointed property, Theorem 1 gives a distributed
ε-test for triangle-freeness under the dense model with a number of rounds that
is O(q2), where q is the number of queries required for a sequential ε-test for
triangle-freeness. However, for triangle-freeness, the known number of queries is
a tower function in log(1/ε) [15].

Here we leverage the inherent parallelism that we can obtain when checking
the neighbors of a vertex, and show a test for triangle-freeness that requires
only O(ε−2) rounds. Importantly, our algorithm works not only for the dense
graph model, but for the general graph model (where distances are relative to
the actual number of edges), which subsumes it. In the sequential setting, a test
for triangle-freeness in the general model requires a number of queries that is
some constant power of n by [2]. Our proof, which appears in the full version,
actually follows the groundwork laid in [2] for the general graph model – their
algorithm picks a vertex and checks two of its neighbors for being connected,
while we perform the check for all vertices in parallel.

Theorem 2. There is a distributed ε-test in the general graph model for triangle-
freeness, that requires O(ε−2) rounds.

4 Distributed Bipartiteness Test for Bounded Degree
Graphs

In this section we show a distributed ε-test for being bipartite for graphs with
degrees bounded by d. Our test builds upon the sequential test of [18] and, as in
the case of triangle freeness, takes advantage of the ability to parallelize queries.
While the number of queries of the sequential test is Ω(

√
n) [19], the number

of rounds in the distributed test is only polylogarithmic in n and polynomial in
ε−1. As in [18], we assume that d is a constant, and omit it from our expressions
(it is implicit in the O notation for L below).

Let us first outline the algorithm of [18], since our distributed test borrows
from its framework and our analysis is in part derived from it. The sequential
test basically tries to detect odd cycles. It consists of T iterations, in each of

3 A graph G is said to be perfect if for every induced subgraph G′ of G, the chromatic
number of G′ equals the size of the largest clique in G′.
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which a vertex s is selected uniformly at random and K random walks of length
L are performed starting from the source s. If, in any iteration with a chosen
source s, there is a vertex v which is reached by an even prefix of a random
walk and an odd prefix of a random walk (possibly the same walk), then the
algorithm rejects, as this indicates the existence of an odd cycle. Otherwise,
the algorithm accepts. To obtain an ε-test the parameters are chosen to be
T = O(ε−1), K = O(ε−4

√
n log1/2 (nε−1)), and L = O(ε−8 log6 n).

The main approach of our distributed test is similar, except that a key ingre-
dient is that we can afford to perform much fewer random walks from every
vertex, namely O(poly(ε−1 log nε−1)). This is because we can run random walks
in parallel originating from all vertices at once. However, a crucial challenge that
we need to address is that several random walks may collide on an edge, violating
its congestion bound. To address this issue, our central observation is that lazy
random walks (chosen to have a uniform stationary distribution) provide for a
very low probability of having too many of these collisions at once. The main
part of the analysis is in showing that with high probability there will never be
too many walks concurrently in the same vertex, so we can comply with the
congestion bound. We begin by formally defining the lazy random walks we use.

Definition 3. A lazy random walk over a graph G with degree bound d is a
random walk, that is, a (memory-less) sequence of random variables Y1, Y2, . . .
taking values from the vertex set V , where the transition probability Pr[Yk =
v|Yk−1 = u] is 1

2d if uv is an edge of G, 1−deg(u)
2d if u = v, and 0 otherwise.

The stationary distribution for the lazy random walk of Definition 3 is uni-
form [32, Section 8]. Next, we describe a procedure to handle one iteration of
moving the random walks (Algorithm 1). Our distributed test for bipartiteness
(its pseudo-code form is in the full version) initiates only 2 lazy random walks
from every vertex concurrently, and searches for odd cycles that can be detected
if an even prefix and an odd prefix of 2 such random walks collide at some vertex.

It is quite immediate that Algorithm 1 takes O(ξ) rounds (the value of ξ
is given below). Our main result here is that using L iterations of Algorithm 1
indeed provides a distributed ε-test for bipartiteness.

Theorem 3. There is a distributed ε-test in the bounded degree graph model for
the property of being bipartite, that requires O(poly(ε−1 log(nε−1))) rounds.

The number of rounds is immediate from the algorithm – it is dominated
by the L calls to Algorithm 1, making a total of O(ξL) rounds, which is indeed
O(poly(ε−1 log(nε−1))). To prove the rest of Theorem 3 we need some notation,
and a lemma from [18] that bounds from below the probabilities for detecting
odd cycles if G is ε-far from being bipartite.

Given a source s, if there is a vertex v which is reached by an even prefix of
a random walk wi from s and an odd prefix of a random walk wj from s, we
say that walks wi and wj detect a violation. Let ps(k, �) be the probability that,
out of k random walks of length � starting from s, there are two that detect
a violation. Using this notation, ps(K,L) is the probability that the sequential
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Algorithm 1. Move random walks once with input ξ

Variables: Wv walks residing in v (multiset), Hv history of walks through v
Input: ξ, the maximum congestion per vertex allowed
# each walk is characterized by (i, u) where i is the number of actual

moves and u is the origin vertex

1 for each vertex v simultaneously
2 if |Wv| ≤ ξ then # give up if exceeded the maximum allowed

3 for every (i, u) in Wv do
4 draw next destination w (according to the lazy walk scheme)
5 if w �= v then # walk exits v
6 send (i + 1, u) to w
7 remove (i, u) from Wv

8 wait until the maximum time for all other vertices to process up to ξ walks
9 add the walks received by v to Wv and Hv # walks entering v

algorithm outlined in the beginning rejects in an iteration in which s is chosen.
Since we are only interested in walks of length L, we denote ps(k) = ps(k, L).
A good vertex is a vertex for which this probability is bounded as follows.

We say a vertex s is called good if ps(K) ≥ 1/10. In [18] it was proved that if
G is ε-far from being bipartite then at least an ε/16-fraction of the vertices are
good. In contrast to [18], we do not perform K random walks from every vertex
in each iteration, but rather only 2. Hence, what we need for our analysis is a
bound on ps(2). To this end, we use K as a parameter, and express ps(2) in terms
of K and ps(K), by showing that for every vertex s, ps(2) ≥ 2ps(K)/K(K − 1).

Using this relationship between ps(2), K and ps(K), we prove that our algo-
rithm is an ε-test. First we prove this for the random walks themselves, ignoring
the possibility that Algorithm 1 will skip moving random walks due to its con-
dition in Line 2.

Lemma 3. If G is ε-far from being bipartite, and we perform η iterations of
starting 2 random walks of length L from every vertex, the probability that no
violation is detected is bounded by 1/4.

As explained earlier, the main hurdle on the road to prove Theorem 3 is in
proving that the allowed congestion will not be exceeded. We prove the following
general claim about the probability for k lazy random walks of length � from each
vertex to exceed a maximum congestion factor of ξ walks allowed in each vertex
at the beginning of each iteration. Here, an iteration is a sequence of rounds in
which all walks are advanced by one step (whether or not they actually switch
vertices).

Lemma 4. With probability at least 1 − 1/n, running k lazy random walks of
length � originating from every vertex will not exceed the maximum congestion
factor of ξ = γ + k = 3(2 ln n + ln �) + k walks allowed in each vertex at the
beginning of each iteration, if γ > k.
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If G is bipartite then all vertices output accept in our bipartiteness test,
because there are no odd cycles and thus no violation detecting walks. If G is ε-far
from bipartite, we use Lemma 3, in conjunction with Lemma 4 with parameters
k = 2, � = L and γ = 3(2 ln n+ln L) as used by our bipartiteness test. By a union
bound the probability to accept G will be bounded by 1/4+1/n < 1/3 (assuming
n > 12), providing for the required bound on the rejection probability. This,
with the communication complexity analysis of our distributed bipartiteness
test, gives Theorem 3.

5 Distributed Test for Cycle-Freeness

In this section, we give a distributed algorithm to test if a graph G with m
edges is cycle-free or if at least εm edges have to be removed to make it so.
Intuitively, in order to search for cycles, one can run a breadth-first search (BFS)
and have a vertex output reject if two different paths reach it. The downside
of this exact solution is that its running time depends on the diameter of the
graph. To overcome this, a basic approach would be to run a BFS from each
vertex of the graph, but for shorter distances. However, running multiple BFSs
simultaneously is expensive, due to the congestion on the edges. Instead, we use
a simple prioritization rule that drops BFS constructions with lower priority,
which makes sure that one BFS remains alive.4

Our technique consists of three parts. First, we make the graph G sparser,
by removing each of its edges independently with probability ε/2. We denote the
sampled graph by G′ and prove that if G is far from being cycle-free then so is
G′, and in particular, G′ contains a cycle.

Then, we run a partial BFS over G′ from each vertex, while prioritizing by
ids: each vertex keeps only the BFS that originates in the vertex with the largest
id and drops the rest of the BFSs. The length of this procedure is according to
a threshold T = 20 log n/ε. This gives detection of a cycle that is contained in
a component of G′ with a low diameter of up to T , if such a cycle exists, since
a surviving BFS covers the component. Such a cycle is also a cycle in G. If no
such cycle exists in G′, then G′ has some component with diameter larger than
T . For large components, we take each surviving BFS that reached some vertex
v at a certain distance �, and from v we run a new partial BFS in the original
graph G. These BFSs are again prioritized, this time according to the distance
�. Our main tool is proving that with high probability, if there is a shortest path
in G′ of length T/2 between two vertices, then there is a cycle in G between
them of length at most T . This allows our BFSs on G to find such a cycle. We
start with the following combinatorial lemma that shows the above claim.
4 A more involved analysis of multiple prioritized BFS executions was used in [24],

allowing all BFS executions to fully finish in a short time without too much delay
due to congestion. Since we require a much weaker guarantee, we can avoid the
strong full-fledged prioritization algorithm of [24] and settle for a simple rule that
keeps one BFS tree alive. Also, the multiple BFS construction of [27] does not fit
our demands as it may not reach all desired vertices within the required distance, in
case there are many vertices that are closer.
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Lemma 5. Given a graph G, let G′ be obtained by independently deleting each
edge in G with probability ε

2 . Then, with probability at least 1 − 1
n3 , every vertex

v ∈ G′ that has a vertex w ∈ G′ at a distance 10 log n
ε , has a closed path passing

through it in G, that contains a simple cycle, of length at most 20 log n
ε .

Next, we prove that indeed there is a high probability, of at least 1−e−ε2m/32,
that G′ contains a cycle if G is ε-far from being cycle-free.

In the full version we provide pseudocode for both our prioritized multiple
BFS and an ε-test for cycle freeness.

Theorem 4. Our algorithm is a distributed ε-test in the general graph model
for the property of being cycle-free, that requires O(log n/ε) rounds.

6 Lower Bounds

In this section, we prove that any distributed algorithm for ε-testing bipartiteness
or cycle-freeness in bounded-degree graphs requires Ω(log n) rounds of commu-
nication. This applies even to the less restricted LOCAL model, which does not
limit the size of the messages. We construct bounded-degree graphs that are ε-far
from being bipartite, such that all cycles are of length Ω(log n). We argue that
any distributed algorithm that runs in O(log n) rounds does not detect a wit-
ness for non-bipartiteness. We also show that the same construction proves that
every distributed algorithm for ε-testing cycle-freeness requires Ω(log n) rounds
of communication. Formally, we prove the following theorem.

Theorem 5. Any distributed 1/100-test in the bounded degree or general graph
model for the property of being bipartite requires Ω(log n) rounds of communica-
tion.

To prove Theorem 5, we show the existence of a graph G′ that is far from
being bipartite, but all of its cycles are at least of logarithmic length. Since in
T rounds of a distributed algorithm, the output of every vertex cannot depend
on vertices that are at distance greater than T from it, no vertex can detect a
cycle in G′ in less than O(log n) rounds, which proves Theorem 5. To prove the
existence of G′ we use the probabilistic method with alterations, and prove the
following.

Lemma 6. Let G be a random graph on n vertices where each edge is present
with probability 1000/n. Let G′ be obtained by removing all edges incident with
vertices of degree greater than 2000, and one edge from each cycle of length
at most log n/ log 1000. Then with probability at least 1/2 − e−100 − e−n, G′ is
1/100-far from being bipartite.

Since a graph that is ε-far from being bipartite is also ε-far from being cycle-
free, we immediately obtain the same lower bound for testing cycle-freeness:

Theorem 6. Any distributed 1/100-test in the bounded degree graph or general
model for cycle-freeness requires Ω(log n) rounds of communication.
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7 Discussion

This paper provides a thorough study of distributed property testing. It provides
an emulation technique for the dense graph model and constructs fast distributed
algorithms for testing triangle-freeness, cycle-freeness and bipartiteness. We also
present lower bounds for both bipartiteness and cycle-freeness.

This work raises many important open questions, the immediate of which is to
devise fast distributed testing algorithms for additional problems. One example
is testing freeness of other small subgraphs. More ambitious goals are to handle
dynamic graphs, and to find more general connections between testability in the
sequential model and the distributed model. Finally, there is fertile ground for
obtaining additional lower bounds in this setting, in order to fully understand
the complexity of distributed property testing.
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