
Fast Two-Robot Disk Evacuation
with Wireless Communication

Ioannis Lamprou(B), Russell Martin, and Sven Schewe

Department of Computer Science, University of Liverpool, Liverpool, UK
{Ioannis.Lamprou,Russell.Martin,Sven.Schewe}@liverpool.ac.uk

Abstract. In the fast evacuation problem, we study the path planning
problem for two robots who want to minimize the worst-case evacuation
time on the unit disk. The robots are initially placed at the center of
the disk. In order to evacuate, they need to reach an unknown point, the
exit, on the boundary of the disk. Once one of the robots finds the exit,
it will instantaneously (using wireless communication) notify the other
agent, who will make a beeline to it.

The problem has been studied for robots with the same speed [8]. We
study a more general case where one robot has speed 1 and the other has
speed s ≥ 1. We provide optimal evacuation strategies in the case that
s ≥ c2.75 ≈ 2.75 by showing matching upper and lower bounds on the
worst-case evacuation time. For 1 ≤ s < c2.75, we show (non-matching)
upper and lower bounds on the evacuation time with a ratio less than
1.22. Moreover, we demonstrate that a different-speeds generalization of
the two-robot search strategy from [8] is outperformed by our proposed
strategies for any s ≥ c1.71 ≈ 1.71.
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1 Introduction

Consider a pair of mobile robots in an environment represented by a circular
disk of unit radius. The goal of the robots is to find an exit, i.e. a point at an
unknown location on the boundary of the disk, and both move to this exit. The
exit is only recognized when a robot visits it. The robots’ aim is to accomplish
this task as quickly as possible. This problem is referred to as the evacuation
problem. The robots start at the center of the disk and can move with a speed not
exceeding their maximum velocity (which may be different from one another).
They can coordinate their actions in any manner they like, and can communicate
wirelessly (instantaneously).

1.1 Related Work

Evacuation belongs to the realm of distributed search problems, which have a
long history in mathematics, computer science, and operations research, see,
e.g. [3].
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Salient features in search problems include the environment (e.g. a geomet-
ric one or graph-based), mobility of the robots (how they are allowed to move),
perception of and interaction with the environment, and their computational
and communication abilities. Typical tasks include exploring and mapping an
unknown environment, finding a (mobile or immobile) target (e.g. cops and rob-
bers games [4] and pursuit-evasion games [17]; the “lost at sea” problem [12];
the cow-path problem and plane-searching problem [2,5,14,15]), rendezvous or
gathering of mobile agents [16], and evacuation [7,8,10]. (Note that we distin-
guish between the distributed version of evacuation problems involving a search
for an unknown exit, and centralized versions, typically modeled as (dynamic)
capacitated flow problems on graphs, where the exit is known.) A general sur-
vey of search and rendezvous problems can be found in [1]. Also related is the
task of patrolling or monitoring, i.e. the periodic (re)visitation of (part of) the
environment [6,9,18].

In most of these settings, the typical cost is the time required to finish the
task (in a synchronous environment), or the total distance moved by the robots
to finish it (in an asynchronous setting). (Patrolling has a different “cost”, the
time between consecutive visits to any point in the region, the so-called “idle
time”.)

A little explored feature of the robots is their speed. Most past work has
focused on the case where all robots share the same (maximal) speed. Notable
exceptions of which the authors are aware include [7], which considers the evacu-
ation problem on the infinite line with robots with distinct maximal speeds, [9],
which introduces a non-intuitive ring patrolling strategy using three robots with
distinct maximal speeds, and [11,13], where the rendezvous problem with differ-
ent speeds in a cycle is studied. It is this feature, robots with different maximal
speeds, that we explore in this paper.

The most relevant previous work is [8,10], which explores the evacuation
problem in the unit disk with two robots with identical speeds (s = 1).

1.2 Our Results

We consider the evacuation problem in the unit disk using two robots with dis-
tinct maximal speeds (one with speed 1, the second with speed s ≥ 1). The robots
share a common clock and can communicate instantaneously when they have
found the exit (wireless communication) and so can synchronize their behavior
in the evacuation procedure. We assume that the robots can measure distances
to an arbitrary precision (equivalently, they can measure time to an arbitrary
precision), and can vary their speeds as they desire, up to their maximum speed.

We show that, even in the case of two robots, the analysis involved in finding
(time) optimal evacuation strategies can become intricate, with strategies that
depend on the ratio of the fast robot’s to the slow robot’s maximal speed.

For large s, we introduce an efficient and non-obvious search strategy, called
the Half-Chord Strategy (Fig. 1). We generalize a strategy from [8] for small s,
the “Both-to-the-Same-Point Strategy” (BSP), where the two robots move to
the same point on the boundary and then separately explore the boundary in
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clockwise and counterclockwise directions to find the exit. For values of s ≥ c1.86

(with c1.86 ≈ 1.856), we show that BSP is not optimal by demonstrating that
the Half-Chord Strategy is superior to it. Moreover, we improve on this with the
Fast-Chord Strategy (Fig. 4), which outperforms Half-Chord for 1.71 ≈ c1.71 <
s < c2.07 ≈ 2.07. We obtain optimality for all s ≥ c2.75 ≈ 2.75, in the wireless
setting, as we demonstrate matching upper and lower bounds on the evacuation
time. For s ∈ (1, c2.75), we provide lower bounds on the evacuation time that
do not match the bounds provided by the respective search strategies (BSP for
s < c1.71, Fast-Chord for s ∈ [c1.71, c2.07), and Half-Chord for s ≥ c2.07). The
worst ratio between our upper and lower bound, 1.22, is realized for s = c1.71.

Section 2 contains a more formal definition of the problem we consider.
Section 3 contains our upper bounds on the evacuation time, while Sect. 4 has
our lower bounds. In the interests of space, parts of the proofs are omitted from
this version, and we trust the reader to rely upon the supplied diagrams for the
intuition of our results.

2 Problem Definition and Strategy Space

In this section, we formally define the problem in question. Furthermore, we
provide a partition of the strategy space and some observations, which will be
useful in the bounds to follow.

Definition 1 (The Fast Evacuation Problem). Given a unit disk and two
robots starting at its center (the former with maximum speed s ≥ 1 and the
latter with maximum speed 1), provide an algorithm such that both robots reach
an unknown exit lying on a boundary point of the disk. The two robots, called
Fast and Slow, are allowed to move within the entire unit disk, can only identify
the exit when they stand on it, and can communicate wirelessly at any time.

Definition 2. An “evacuation strategy” is an algorithm on how each robot
moves such that both robots have evacuated the disk at the end of its execution.

The following remark is a direct consequence of the geometric environment
in which this fast evacuation scenario takes place.

Remark 1. In any evacuation strategy, when either robot discovers the exit, the
optimal strategy of the other one immediately reduces to following a beeline to
the exit.

We now proceed with identifying key aspects of potential strategies.

Definition 3. A “both-explore” strategy is a strategy for both robots to evacuate
the disk, where (in the worst-case) both of them explore at least two distinct points
on the boundary. We define the set of all both-explore strategies as BES.

Definition 4. A “fast-explores” strategy is a strategy where only Fast explores
the boundary searching for the exit. Slow, eventually, only reaches the exit point
and at any time it reaches no other point on the boundary of the disk. We define
the set of all fast-explores strategies as FES.
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Definition 5. A “slow-explores” strategy is a strategy where only Slow explores
the boundary searching for the exit. Fast, eventually, only reaches the exit point
and at any time it reaches no other point on the boundary of the disk. We define
the set of all slow-explores strategies as SES.

Notice that, for s = 1, if only one robot explores the boundary, we randomly
assign such a strategy to FES or SES. Below, let ALL stand for the set of all
evacuating strategies.

Proposition 1. (BES,FES, SES) forms a partition of ALL.

We remark that, when considering SES and FES strategies, it can become
a burden to forcefully keep the non-exploring robot away from the boundary.
E.g., if we only want Slow to explore in an SES strategy, the optimal behavior
of Fast would be to mimic the behavior of Slow. For FES strategies with s ≤ 2,
it also proves to be most natural to allow Slow to move on the boundary, but to
ignore it when Slow finds the exit first. For this reason we use FES and SES
strategies in this sense. Alternatively, one could also let the non-exploring robot
to move ε-close to the boundary.

We do not consider SES strategies in our analysis. An optimal SES strategy
is obviously to go to the boundary and explore the boundary (counter)clockwise.
The worst case time is 1 + 2π.

3 Upper Bounds

3.1 The Half-Chord Strategy

The idea for this strategy stems from the proof of the FES lower bound to
follow. The worst-case analysis is performed for s ∈ [2,∞). For the strategy
details below, please refer to Fig. 1. The center of the disk is denoted by O.
Fast’s trajectory is given with double arrows, while Slow’s is given with single
arrows. All angles and arcs are considered in counterclockwise order.

The Strategy. Initially, both robots move in beelines with an angle of π + 1/2
between them until Fast reaches the boundary (i.e. for 1

s time). Let B be the
first boundary point reached by Fast. From now on, Fast’s strategy reduces to
exploring the boundary. On the other hand, Slow continues on its beeline for
another 1

s time until it reaches point C (where |OC| = 2
s ). Then, it takes an arc

from C to M on the disk with radius 2
s centered at O (where M is the middle

point of chord BA, where A is the point with arc distance 2 arccos
(− 2

s

)
from B).

Finally, Slow traverses MB. Below, we provide a more structured and formal
strategy definition.

Fast moves as follows until the exit is found:

– for t ∈ [
0, 1

s

]
: moves toward B and

– for t ∈ (
1
s , 1+2π

s

]
: traverses the boundary counterclockwise.
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Slow moves as follows until the exit is found:

– Phase I: for t ∈ [
0, 2

s

]
moves toward C,

– Phase II: for t ∈
[
2
s , 1+2 arccos(−2/s)

s

]
moves toward M via CM on disk

(
O, 2

s

)
,

– Phase III: for t ∈
[
1+2 arccos(−2/s)

s , 1+2π
s

]
moves toward B via the MB

segment.

In Table 1, we shortly outline some core measurements on the emerging shape,
e.g. angles and lengths, which will be useful in the proofs that follow. We now
continue with some useful propositions.

Table 1. Measurements for Half-Chord Strategy

|OC| = 2
s

by choice

BA = 2 arccos
(− 2

s

)
by choice

φ = �BOC = π + 1/2 by choice

|CM| = 1
s
(2 arccos

(− 2
s

)− 1) slow on M exactly when fast on A

θ = �COM = s
2
|CM| = arccos

(− 2
s

)− 1/2 arc-to-angle

ψ = �MOB = 2π − φ − θ = π − arccos
(− 2

s

)
sum of angles around O

|AB| = 2 sin
(
2 arccos

(− 2
s

)
/2
)

= 2
√

1 − 4
s2

arc-to-chord computation

|AM | = |MB| = |AB|/2 =
√

1 − 4
s2

since M is the middle of the chord

�OMB = π/2 perpendicular bisector through center

Proposition 2. Fast reaches A exactly when Slow reaches M .

Proposition 3. Fast explores the whole boundary before Slow reaches B.

•

•

•
•

•O

C
B

A

M

Fig. 1. The Half-Chord
Strategy (case s = 4)

The aforementioned proposition, together with
the fact that it takes 1+2π

s time for Fast to explore
the whole boundary, provides us with the endtime
for Phase III and the strategy in general.

The main result of this section follows from the
combination of the upper bounds proved for Phases
I, II, and III.

Theorem 1. For any s ≥ 2, the worst-case evac-
uation time of the Half-Chord strategy is at most
1+2 arccos(− 2

s )
s +

√
1 − 4

s2 .
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Phase I

Lemma 1. The Half-Chord evacuation strategy takes at most

(1 + 2 arccos(−2/s))
s

+

√

1 − 4
s2

evacuation time, if the exit is found during Phase I.

Proof. We need only care about the time t ∈ [1/s, 2/s], since for less time Slow
has not yet reached the boundary. Imagine that the exit is discovered after
(1+a)/s time (for a ∈ [0, 1]). For a visualization, the reader can refer to Fig. 2a.
Slow has covered (1+a)/s distance on the OC segment, while Fast has explored
an a part of BA. Slow now takes a segment from its current position (namely
D) to the exit E. To compute |DE| we use the law of cosines in �DOE. Let
ω = �DOE. In case a ≤ 1

2 , ω ≤ π, and more accurately ω = a + ψ + θ =
π + a − 1

2 . In case a > 1
2 , ω > π, and more accurately ω = 2π − a − ψ − θ. Since

cos(2π − x) = cos(x), we can consider the two cases together. We compute,

|DE| =
√|OE|2 + |OD|2 − 2|OE||OD| cos(ω) = sqrt1 + (1+a)2

s2 + 21+a
s cos(1/2 − a)

Overall, the worst-case evacuation time is given by

max
a∈[0,1]

{
1 + a

s
+

√

1 +
(1 + a)2

s2
+ 2

1 + a

s
cos(1/2 − a)

}

.

To conclude the proof, it suffices to observe that 2
s +

√
1 + 22

s2 + 22
s is an

upper bound to the above quantity, since a ≤ 1 and cos(·) ≤ 1. Finally,
2
s +

√
1 + 22

s2 + 22
s ≤ 1+2 arccos(− 2

s )
s +

√
1 − 4

s2 for any s ≥ 2. �	

Phase II

Lemma 2. The Half-Chord evacuation strategy takes at most
1+2 arccos(− 2

s )
s +√

1 − 4
s2 evacuation time, if the exit is found during Phase II.

Proof. We prove that the worst-case placement for the exit is point A. Suppose
the exit E is found at the time when Slow lies on point S and has not yet covered
a τ part of CM. The corresponding central angle is sτ

2 , since CM is an arc on
(O, 2

s ). At the same time, Fast has not yet explored an sτ part of BA with a
corresponding central angle of size sτ . Then, Slow can move backwards on the
boundary of (O, 2

s ) for another τ distance to point D. Now, the central angle
from D to M is sτ

2 + sτ
2 = sτ and matches the central angle between E and A.

Thence, due to shifting by the same central angle, we get �EOD = �EOA +
�AOD = �DOM + �AOD = �AOM . Moreover, since |OD| = |OM | = 2

s and
|OE| = |OA| = 1, triangles �EOD and �AOM are congruent meaning that
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Fig. 2. Exit during Phases I &II (Examples for s = 4)

|ED| = |AB|. To sum up, if the exit is discovered τ time before Slow reaches

M , it takes at most another τ +
√

1 − 4
s2 time for it to reach it. At the same

time, it would take τ +
√

1 − 4
s2 for it to reach A. Hence, exiting through A is

the worst-case scenario and yields a total time of
1+2 arccos(− 2

s )
s +

√
1 − 4

s2 . �	

Phase III

Lemma 3. The Half-Chord evacuation strategy takes at most
1+2 arccos(− 2

s )
s +√

1 − 4
s2 evacuation time, if the exit is found during Phase III.

Proof. Since
1+2 arccos(− 2

s )
s time has already passed at the beginning of Phase

III, it suffices to show that at most
√

1 − 4
s2 time goes by when the exit is

discovered within AB.
Suppose that the exit is discovered τ time units after the beginning of Phase

III. Then, Slow lies at C (Fig. 3), τ distance away from M on the MB segment.
On the other hand, Fast lies on E, an sτ distance away from A on AB.

Consider a disk with center C and radius r =
√

1 − 4
s2 − τ . One can notice

that (C, r) intersects (O, 1) at two points: one of them is B and the other one is
D, where D is included in AB, since |AC| ≥ r for any choice of τ ≥ 0. Moreover,
we draw the chord DB and its middle point, say M ′. Now, notice that OM ′ is
perpendicular to DB, since DB is a chord of (O, 1) and also that OM ′ passes
through C, since DB is also a chord of (C, r). To conclude, we exhibit that E is
included in DB. Equivalently, that |AE| ≥ |AD|. We look into two cases.
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First, that �AOD ≤ �AOM . In this case, we compute �AOD = �AOM −
�DOM = �MOB − �DOM = �MOM ′ + �M ′OB − �DOM = �MOM ′ +
�DOM ′ − �DOM = 2 · �MOM ′, since �AOM = �MOB and �M ′OB =
�DOM ′ from the fact that OM (OM ′) bisects AB (DB). Moreover, �DOM ′ −
�DOM = �MOM ′. We compute �MOM ′ = arctan(sτ/2) by the right triangle
�MOC. Finally, �AOD = 2arctan(sτ/2) ≤ sτ = �AOE, since arctan(x) ≤ x
for x ≥ 0.

For the second case, �AOD > �AOM . Then, �AOD = �AOM +�MOD =
�MOB + �MOD = �MOM ′ + �M ′OB + �MOD = �MOM ′ + �DOM ′ +
�MOD = 2 ·�MOM ′, again by using the equalities deriving from bisecting the
chords. The rest of the proof follows as before. �	

Fig. 3. Exit during Phase III (when s = 4; exit E lies at the end of Fast’s arrow)

3.2 The Half-Chord Strategy for 1 ≤ S ≤ 2

We first observe that, for s = 2, the name “Half-Chord” is slightly misleading,
as the points A, B, and M coincide. The time needed for s = 2 is, as shown in
Theorem 1, 1+2π

s . Note also that the Half-Chord strategy is a BES strategy for
s = 2.

For s < 2, Slow can simply move even slower, namely with speed s
2 . Using

the same paths as for s = 2, this provides the same upper bound of 1+2π
s .

Theorem 2. For 1 ≤ s ≤ 2, the (generalized) Half-Chord strategy leads to a
1+2π

s evacuation time.
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3.3 The Both-to-the-Same-Point Strategy

This BES strategy follows the same key idea presented in [8] where it is proven
to be optimal for s = 1.

The Strategy. In the Both-to-the-Same-Point Strategy (shortly BSP strategy),
initially both robots set out toward the same boundary point moving in a beeline.
Once they arrive there, they move to opposite directions along the boundary.
This goes on, until the exit has been found by either robot or the robots meet
each other on the boundary. We restrict the analysis of BSP for s ∈ [1, 2], since
for s > c1.71 this strategy becomes non-dominant.

Theorem 3. The BSP strategy requires evacuation time at most

1 + 2

√

1 − 1
(s + 1)2

+
2arccos(− 1

s+1 ) − s + 1
s + 1

when s ∈ [1, 2].

3.4 The Fast-Chord Strategy

In the Half-Chord strategy for s = 2, we observe that the final point reached after
Phase I, i.e. point C, lies on the disk boundary. Thence, after that, Slow explores
CB, but so does Fast (since by its strategy it explores the whole boundary). This
seems like an unnecessary double-exploring of this part of the boundary. Thus,
we propose a new strategy, where Fast reaches C as usual, but then traverses
the CB chord, instead of CB. Furthermore, we could vary the position of C,
in order for Fast to reach B (for the second time) exactly when Slow reaches
D (a point before B) and so get Fast to explore some part of the boundary in
clockwise fashion as well. In this case, Slow does not traverse the whole CB.
Let us now describe more formally this Fast-Chord family of strategies. All arcs
are considered in counterclockwise fashion unless otherwise stated. Below, let
|BA| = s − 1, x1 = |AC|, x2 = |CB|, x3 = |DB| and y = |CB|; see Fig. 4.

y

s − 1

x1

x2

x3
•

•
•
•

•

O

C

B

D

A

Fig. 4. The Fast-Chord
Family of Strategies

The Strategy. Fast moves as follows until the exit
is found:

– for t ∈ [
0, 1

s

]
moves toward B,

– Phase I: for t ∈ (
1
s , 1

]
traverses BA,

– Phase IIa: for t ∈ (
1, 1 + x1

s

]
traverses AC,

– Phase IIb: for t ∈ (
1 + x1

s , 1 + x1+x2
s

]
traverses

CB and
– Phase IIc: for t ∈

(
1 + x1+x2

s , 1 + x1+x2
s + x3

s+1

]

moves toward D (clockwise) till it meets Slow.

Slow moves as follows until the exit is found:
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– for t ∈ [0, 1] moves toward C,
– for t ∈ (1, 1 + y] traverses CD,
– for t ∈

(
1 + y, 1 + y + x3

s+1

]
traverses DB till it meets Fast.

The following system of equations describes the relationship between the
variable distances:

⎧
⎨

⎩

x1 + y + x3 + s − 1 = 2π (I)
x2 = 2 sin

(
x3+y

2

)
(II)

x1 + x2 = s · y (III)

Equation (I) suggests how the disk boundary is partitioned. Equation (II)
suggests that x2 is the chord of an arc with length x3+y. Equation (III) suggests
that Fast traverses x1 and x2 at the same time as slow traverses y. That is,
since Fast lies on A exactly when Slow lies on C, then Fast arrives at B (for
the second time) exactly when Slow arrives at D. The latter happens at time
1+y = 1+ x1+x2

s . The remaining x3 part of the boundary can be explored in time
x3

s+1 , since both robots explore it concurrently until they meet. Hence, within x3
s+1

time, they can explore a distance equal to s · x3
s+1 + x3

s+1 = (s + 1) · x3
s+1 = x3. All

variables are non-negative representing distance.
The idea behind this paradigm is to try different values for x3 and then solve

the above system to extract x1, x2 and y. Nonetheless, due to the sin(·) function
in equation (II), it is not possible to obtain a symbolic solution. Thence, we
hereby provide bounds computed numerically. For any value of s, we iterate over
all possible x3 values and then solve the above system numerically. For each x3

value and for each exploration phase, we use a small time step and compute the
worst-case evacuation time. Then, we can select the x3 value which minimizes
this worst-case time. All this numerical work is implemented in Matlab. We
iterate over x3 in the interval [0, 2π − s + 1]. The upper bound for x3 stems
from the case x1 = y = 0. Indeed, notice that, for s = 1, Fast-Chord is exactly
BSP when we set x1 = y = 0. For the time parameter, namely t, we iterate in
the interval

[
0, 1 + x1+x2

s + x3
s+1

]
. Finally, we use a parametric representation of

the disk (where the center O lies on coordinates (0, 0)) to calculate the distance
between the two robots.

By studying the numerical bounds we obtain via the Fast-Chord method, we
state the following result, in comparison to the other two strategies studied in
this paper.

Theorem 4. Fast-Chord performs better than (Generalized) Half-Chord for s ∈
(c1.71, c2.07). It also performs better than Both-to-the-Same-Point for s ≥ c1.71.

4 Lower Bounds

The main tool behind our lower bounds is the following lemma from [8].
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Lemma 4 (Lemma 5 [8]). Consider a boundary of a disk whose subset of total
length u + ε > 0 has not been explored for some ε > 0 and π ≥ u > 0. Then
there exist two unexplored boundary points between which the distance along the
boundary is at least u.

4.1 Fast Explores

Lemma 5. Any FES-strategy takes at least

– 1+2π
s time for any s ∈ [1, 2] and

–
1+2 arccos(− 2

s )
s +

√
1 − 4

s2 time for any s ≥ 2.

Proof. For any s, Fast needs at least 1+2π
s time to explore the whole boundary.

We now show a better bound for s ≥ 2. At time 1+a
s (where a ≥ 0), Fast has

explored at most an a part of the boundary. Then, if we consider the time 1+a−ε
s

(where ε > 0), a 2π−(a−ε) = 2π−a+ε subset of the boundary has not yet been
explored. We bound a ∈ [π, 2π) such that 0 < 2π − a ≤ π holds. We now apply
Lemma 4 with u = 2π − a and ε. Thence, there exist two unexplored boundary
points between which the distance along the boundary is at least u. Let us now
consider the perpendicular bisector of the chord connecting these two points.
Depending on which side of the bisector Slow lies, an adversary may place the
exit on the boundary point lying at the opposite side. The best case for Slow
is to lie exactly on the point of the bisection. That is, Slow will have to cover

a distance of at least
2 sin(u

2 )
2 = sin

(
a
2

)
, where 2 sin

(
u
2

)
is the chord length. In

this case, the overall evacuation time is equal to 1+a
s + sin

(
a
2

)
and for the best

lower bound we compute max
π≤a<2π

{
1+a

s + sin
(

a
2

)}
. �	

4.2 Both Explore

The following lower bound is a result of applying Lemma 4 to obtain a gener-
alization of the lower bound proved in [8]. The proof considers a timestep when
both robots have explored some part of the boundary and lie on the opposite
ends of a long chord. Then, an adversary acts according to his best interests. He
either places the exit on the end opposite Fast or in the end being farthest to
Slow; the latter leading to a chord bisection argument similar to the one used in
Lemma 5.

Lemma 6. Any BES-strategy takes at least

– 1 + 2
s

√
1 − s2

(s+1)2 +
−s+2 arccos(− s

s+1 )+1

s+1 time for s ∈ [1, 2),

– 1+
√

1 − 4
(s+1)2 +

−s+2 arccos(− 2
s+1 )+1

s+1 for s ∈ [2, c4.84] (where c4.84 ≈ 4.8406)
and

– 1 + sin
(

s−1
2

)
time for s ∈ (c4.84, 2π + 1).
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The above lower bound loses its value as s grows. Hence, there is a need to
capture a lower bound for the case where Slow has not explored any part of the
boundary yet. This is possible, since we can apply an FES lower bound idea
when s is big enough.

Lemma 7. Any BES-strategy takes at least

– 1 + sin
(

s−1
2

)
time for s ∈ (π + 1, c4.97), where c4.97 ≈ 4.9699, and

–
1+2 arccos(− 2

s )
s +

√
1 − 4

s2 time for s ≥ c4.97.

4.3 An Improvement for Both Explore

λ

k

•

•

•

•

•

O
B

A

M
K

Fig. 5. An Improved BES
Lower Bound

We now obtain numerical values for a stronger
BES lower bound by performing a more com-
plex analysis on the Original BES lower bound
proof given in Lemma 6. The main idea behind
the improvement is to provide a better bound for
the subcase when the adversary places the exit on
the farthest endpoint from Slow’s current position.
Apparently, the best play for Slow is to lie exactly
on the midpoint of the chord with the unexplored
endpoints. Nevertheless, in order for Slow to be
there, it needs to spend some of its time, originally
destined for exploration, within the disk interior.
We hereby examine the best possible scenario for
Slow in terms of its distance from the midpoint following the above reasoning.
Let us refer to this lower bound as Improved BES.

Lemma 8. Improved BES is greater or equal to Original BES for any s ≥ 1.

Proof. At time 1 + y, where y ≥ 0 is a variable, Fast has explored at most an
s − 1 + sy part of the boundary and Slow has explored at most a y part of
the boundary. Now suppose that Slow has spent k time, where k ∈ [0, y], not
exploring the boundary, i.e. moving within the disk interior.

Notice that it takes 1 + 2π−s+1
s+1 time for the whole perimeter to be explored,

when both robots are only exploring after timestep 1. Thence, we upper-bound
y ≤ 2π−s+1

s+1 . To lower-bound y, we restrict the unexplored part u = 2π − s +
1 − (s + 1)y + k ≤ π. That is, we get y ≥ max{π−s+1+k

s+1 , 0}. Moreover, u > 0 is
already covered by the aforementioned upper bound.

Now, we are ready to apply Lemma 4: There exist two unexplored points
(say A,B) with arc distance ≥ 2π − s + 1 − (s + 1)y + k, which implies
that the chord between them has length at least 2 sin

(
2π−s+1−(s+1)y+k

2

)
=

2 sin
(

s−1+(s+1)y−k
2

)
. An adversary could place the exit on any of the two end-

points. If Slow reaches an endpoint first (case I), then the exit is placed on the
other side, such that Slow has to traverse the chord. If Fast reaches an endpoint
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first, then the exit is placed either on the other side (case II), meaning that Fast
has to traverse the chord, or on the endpoint that lies the farthest from Slow’s
current position (case III), meaning that Slow has to traverse at least half the
chord. We assume that both the robots and the adversary behave optimally.
Hence, the robots will always avoid case I.

Let us now examine more carefully what happens in case III. For a depiction
of the proof, see Fig. 5. The ideal location for Slow is to lie exactly on the chord
midpoint, say M . Nevertheless, this may not be possible due to it only spending
k time within the disk interior. Let us consider the minimum distance from the
chord midpoint to the boundary. This is exactly 1−λ, where λ = |OM | is the dis-
tance from the midpoint to the center of the disk. Notice that OM intesects AB
perpendicularly, since M is the midpoint of chord AB. Using the Pythagorean

theorem in �AMO, we get λ =
√

1 − sin2
(

s−1+(s+1)y−k
2

)
. If we consider the

case when 1−λ > k, then the ideal position for Slow is to lie k distance away from
the boundary and on the extension of OM (i.e. on point K). From there, Slow

can take a beeline to the exit, yielding a
√

sin2
(

s−1+(s+1)y−k
2

)
+ (1 − λ − k)2

distance again by the Pythagorean theorem, now in �AMK.
To conclude, Slow will try to minimize this beeline distance over k, while the

adversary will select a case between II and III that maximizes the total distance.
Overall, the optimization problem reduces to computing:

max
y∈[ymin,ymax)

⎧
⎪⎨

⎪⎩
1 + y + max

⎧
⎪⎨

⎪⎩

min
k∈[0,y]

2
s sin

(
s−1+(s+1)y−k

2

)
,

min
k∈[0,y]

√
sin2

(
s−1+(s+1)y−k

2

)
+ max {1 − λ − k, 0}2

⎫
⎪⎬

⎪⎭

⎫
⎪⎬

⎪⎭
(1)

Note that the above bound matches the original one for 1 − λ < k.
Last but not least, we need also consider the case where the adversary

chooses to place the exit on the last boundary point to be explored. In the
current setting, it takes at least u

s+1 = 2π−s+1−(s+1)y+k
s+1 extra time for both

robots to explore the rest of the boundary, since Fast explores s u
s+1 while Slow

explores u
s+1 for a total distance of u. Overall, we are looking to compute

max
y∈[ymin,ymax)

{
1 + y + 2π−s+1−(s+1)y

s+1

}
, since Slow wishes to minimize k. Due to

the inherent complexity of the optimization problem (1), we compute numerical
bounds. The computational work is done in Matlab, where we iterate over fea-
sible values of y and k. The resulting bounds show that, for all s ∈ [1, 2π + 1),
this lower bound is greater or equal to the lower bound given in Lemma 6 with
k = 0 always selected as the minimizer. �	

5 Comparison and Future Work

Regarding the lower bounds, for each value of s we select the minimum (weakest)
lower bound between the (maximum) BES and FES ones as our overall lower
bound. We see that Improved BES is strictly stronger than Original BES for
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any s ≥ c1.71 ≈ 1.71. Moreover, Improved BES is stronger than the FES lower
bound for s ≥ c2.75 ≈ 2.75.

As far as the upper bounds are concerned, we notice that Half-Chord out-
performs BSP for any s ≥ c1.86 ≈ 1.856. Besides, Fast-Chord outperforms BSP
for any s ≥ c1.71 ≈ 1.71. Finally, Fast-Chord outperforms Half-Chord for any
s ≤ c2.07 ≈ 2.072. That is, the introduction of Fast-Chord yields a better upper
bound for any s ∈ [c1.71, c2.07].

By comparing upper and lower bounds, we see that Half-Chord is optimal for
s ≥ c2.75, since the matching FES lower bound is the weakest in this interval.
On the other hand, for s < c2.75 the ratio between the bounds is at most 1.22
(maximized when s = c1.71), where the strategy changes from BSP to Fast-
Chord. The best strategy to use is BSP when s < c1.71, Fast-Chord when
c1.71 < s < c2.07 and Half-Chord for s ≥ c2.07.

Optimality for the case 1 < s < c2.75 remains open. Regarding further work,
one could consider a more-than-two-robots evacuation scenario. Moreover, the
non-wireless case for two-robots fast evacuation seems to be quite challenging
given that exact optimality is complex to obtain even for s = 1 [10].
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