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Abstract. The enormous amount of recently available mobile phone
data is providing unprecedented direct measurements of human behav-
ior. Early recognition and prediction of behavioral patterns are of great
importance in many societal applications like urban planning, trans-
portation optimization, and health-care. Understanding the relationships
between human behaviors and location’s context is an emerging interest
for understanding human-environmental dynamics. Growing availabil-
ity of Web 2.0, i.e. the increasing amount of websites with mainly user
created content and social platforms opens up an opportunity to study
such location’s contexts. This paper investigates relationships existing
between human behavior and location context, by analyzing log mobile
phone data records. First an advanced approach to categorize areas in
a city based on the presence and distribution of categories of human
activity (e.g., eating, working, and shopping) found across the areas, is
proposed. The proposed classification is then evaluated through its com-
parison with the patterns of temporal variation of mobile phone activity
and applying machine learning techniques to predict a timeline type of
communication activity in a given location based on the knowledge of
the obtained category vs. land-use type of the locations areas. The pro-
posed classification turns out to be more consistent with the temporal
variation of human communication activity, being a better predictor for
those compared to the official land use classification.
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1 Introduction

Recent extensive penetration of digital technologies into everyday life have
enabled creation and collection of vast amounts of data related to different
types of human activity. When available for research purposes this creates an
unprecedented opportunity for understanding human society directly from it’s
digital traces. There is an impressive amount of papers leveraging such data for
studying human behavior, including mobile phone records [5,16,29–31], vehicle
GPS traces [22,37], social media posts [20,21,25] and bank card transactions
[38,39]. With the growing mobile phone data records, environment modeling
can be designed and simulated for understanding human dynamics and corre-
lations between human behaviors and environments. Environment modeling is
important for a number of applications such as navigation systems, emergency
responses, and urban planning.

Researchers noticed that type of the area defined through official land use
is strongly related with the timeline of human activity [13,24,28,33,48]. But
those sources of literature do not provide extensive analyses on categorical pro-
file of the geographical areas. This limits the understanding of the dependency
of human behaviors from geographical areas. Our analysis confirms this relation,
however we show that land use by itself might be not enough, while categorical
profile of the area defined based on OSM provides a better prediction for the
activity timeline. For example, even within the same land use category, timelines
of activity still vary depending on the categorical profile. In this paper, different
from these works, we start from clustering the entire city based on area profiles,
that are a set of human activities associated with a geographical location, show-
ing that those activities have different area types in terms of the timelines of
mobile phone communication activity. Further we show that even the areas of
the same land use, which is formally defined by land-use management organiza-
tions, might have different clusters based on points of interest (POIs). But those
clustered areas are still different in terms of the timelines. This will contribute
to other works showing that not only the land use matters for human activity.

This paper uses mobile phone data records to determine the relationship
between human behaviors and geographic area context [9]. We present a series
of experimental results by comparing the clustering algorithms aiming at answer-
ing the following questions: (1) To what extent can geographical types explain
human behaviors in a city, (2) What is the relationship between human behav-
iors and geographical area profiles? We demonstrate our approach to predict area
profiles based on the timelines of mobile phone communication activities or vice
versa: to predict the timelines from area profiles. We validate our approach using
a real dataset of mobile phone and geographic data of Milan, Italy. Our area clus-
tering techniques improve the overall accuracy of the baseline to 64.89 %. Our
result shows that land-uses in city planning are not necessarily well defined that
an area type is defined with one type of human activity. But growing and devel-
opment of city structures enable various types of activities that are present in
one geographical area. So this type of analysis and its application is important
for determining robust land-uses for city planning. Also the hidden patterns and
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unknown correlations can be observed comparing the mobile phone timelines in
relevant areas. The result of this work is potentially useful to improve the clas-
sifications of human behaviors for better understanding of human dynamics in
real-life social phenomena and to provide a decision support for stakeholders in
areas, such as urban city, transport planning, tourism and events analysis, emer-
gency response, health improvement, community understanding, and economic
indicators.

The paper is structured as follows Sect. 3 introduces the data sources we
use in this research and the data-processing performed. The methodology is
described in Sect. 4. We present and discuss the experimental results in Sect. 5.
Finally, we summarize the discussions in Sect. 6.

2 Related Works

Human behavior is influenced by many contextual factors and their change, for
instance, snow fall, hurricane, and festival concerts. There are number of research
activities that shed new light on the influence of such contextual factors on
social relationships and how mobile phone data can be used to investigate the
influence of context factors on social dynamics. Researchers [2,4,15,28] use an
additional information about context factors like social events, geographical loca-
tion, weather condition, etc. in order to study the relationship between human
behaviors and such context factors. This is always as successful as the quality
of the context factors. The combination of some meteorological variables, such
as air temperature, solar radiation, relative humidity, can effect people’s com-
fort conditions in outdoor urban spaces [43], poor or extreme weather conditions
influence peoples physical activity [45]. Wang and Taylor [49] exhibited high
resilience, human mobility data obtained in steady states can possibly predict
the perturbation state. The results demonstrate that human movement trajec-
tories experienced significant perturbations during hurricanes during/after the
Hurricane Sandy in 2012. Sagl et al. [35] introduced an approach to provide
additional insights in some interactions between people and weather. Weather
can be seen as a higher-level phenomenon, a conglomerate that comprises sev-
eral meteorological variables including air temperature, rainfall, air pressure,
relative humidity, solar radiation, wind direction and speed, etc. The approach
has been significantly extended to a more advanced context-aware analysis in
[36]. Phithakkitnukoon et al. [28] used POIs to enrich geographical areas. The
areas are connected to a main activity (one of the four types of activities investi-
gated) considering the category of POIs located within it. To determine groups,
that have similar activity patterns, each mobile user’s trajectory is labeled with
human activities using Bayes Theorem in each time-slot of a day for extracting
daily activity patterns of the users. The study shows that daily activity pat-
terns are strongly correlated to a certain type of geographic area that shares
a common characteristic context. Similar to this research idea, social networks
[48] have been taken into account to discover activity patterns of individuals.
Noulas et al. [24] proposed an approach for modelling and characterization of
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geographic areas based on a number of user check-ins and a set of eights type
of general (human) activity categories in Foursquare. A Cosine similarity metric
is used to measure the similarity of geographical areas. A Spectral Clustering
algorithm together with K-Means clustering is applied to identify an area type.
The area profiles enables us to understand groups of individuals who have sim-
ilar activity patterns. Soto and Frias-Martinez [42] studied mobile phone data
records to characterize geographical areas with well defined human activities,
by using the Fuzzy C-Means clustering algorithm. The result indicated that five
different land uses can be identified and their representation was validated with
their geographical localization by the domain experts. Frias-Martinez et al. [13]
also studied geolocated tweets to characterize urban landscapes using a compli-
mentary source of land-use and landmark information. The authors focused on
determining the land-uses in a specific urban area based on tweeting patterns,
and identification of POIs in areas with high tweeting activity. Differently, Yuan
and Raubal [50] proposed to classify urban areas based on their mobility pat-
terns by measuring the similarity between time-series using the Dynamic Time
Warping (DTW) algorithm. Some areas focus on understanding urban dynamics
including dense area detection and their evolution over time [23,46]. Moreover,
[14,32,41] analyzed mobile phone data to characterize urban systems. More spa-
tial clustering approaches (Han et al. [19]) could group similar spatial objects
into classes, such as k-means, k-medoids, and Self Organizing Map. They have
been also used for performing effective and efficient clustering. In this research,
we use spectral clustering with eigengap heuristic followed by k-means cluster-
ing. Reades et al. [33] and also [18,27] used eigengap heuristic for clustering
urban land-uses. In many works [3,26,32,34,40,44] the authors analyzed mobile
phone data activity timelines to interpret land-use type. Pei et al. [26] analyzed
the correlation between urban land-use information and mobile phone data. The
author constructed a vector of aggregated mobile phone data to characterize
land-use types composed of two aspects: the normalized hourly call volume and
the total call volume. A semi-supervised fuzzy c-means clustering approach is
then applied to infer the land-use types. The method is validated using mobile
phone data collected in Singapore. Land use is determined with a detection rate
of 58.03 %. An analysis of the land-use classification results shows that the detec-
tion rate decreases as the heterogeneity of land use increases, and increases as
the density of cell phone towers increases. Girardin et al. [17] analyzed aggregate
mobile phone data records in New York City to explore the capacity to quantify
the evolution of the attractiveness of urban space and the impact of a public
event on the distribution of visitors and on the evolution of the attractiveness
of the points of interest in proximity.

3 Collecting and Pre-processing the Data

We use two types of datasources for this experiment; (1) POIs from available
geographical maps, Openstreetmap (2) Mobile phone network data (sms, inter-
net, call, etc.) generated by the largest operator company in Italy. The mobile
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phone traffic data is provided in a spatial grid, the rectangular grid of dimensions
100× 100, where each unit size of the grid is 235 m× 235 m. We use the grid as
our default configuration for collecting human activity distribution and mobile
network traffic activity distribution.

3.1 Openstreetmap

In [6–8,11], one of the key elements in the contextual description of geographical
regions is the point of interest (POI) (e.g. restaurants, ATMs, and bus stops)
that populates an area. A POI is a good proxy for predicting the content of
human activities in each area that was well evaluated in [10]. Employing a model
proposed in [10], a set of human activities likely to be performed in a given
geographical area, can be identified in terms of POI distribution. This allows
us to create area profiles of geographical locations in order to provide semantic
(high level) descriptions to mobile phone data records in Milan. For example,
a person looking for food if the phone call is located close to a restaurant. We
exploit the given spatial grid to enrich the locations with POIs from open and free
geographic information, Openstreetmap (OSM)1. We collected in total 552,133
POIs that refined into 158,797 activity relevant POIs across the locations. To
have a sufficient number and diversity of POIs in each location, we consider
the nearby areas for estimating the likelihood of human activities. The nearby
areas are the intersected locations within the aggregation radius of the centroid
point at each location. The aggregation radius is configured differently in each
location, which satisfies the need for the total number of POIs in such intersected
locations to be above the threshold h, see Fig. 1a and 1b where each location at
least h = 50 number of POIs in the intersected locations. Across locations, the
min, median, and max number of POIs are 50, 53, and 202.

(a) The location size (aggregation radius *
2) distribution

(b) Human activity relevant POI distribution
considering aggregation radius

Fig. 1. The distributions of POIs and human activities across locations.

1 http://www.openstreetmap.org.

http://www.openstreetmap.org
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In order to build area profiles of each location, a n × m dimensional matrix
An,m is defined for each location n ∈ {1, .., 10000}. Each element An,m contains
the weight of activity categories m in location n where the m ∈ {eating, educa-
tional, entertainment, health, outdoor, residential, shopping, sporting, traveling,
working}, with the total number of 10 measurements of human activities per
each location. The weight of each category of activities are estimated by the
HRBModel which allows us to generate a certain weight for human activities
that is proportional to the weight of relevant POIs located in each location.
The weight of POIs in a given location, is estimated by the following equa-
tion of tf − idf(f, l) = N(f,l)

argmax
w

{N(w,l):w∈l} ∗ log |L|
|{l∈L:f∈l}| , where f is a given

POI; f ∈ F , F={building, hospital, supermarket,...} and l is a given location;
l ∈ L, L={location1, location2, location3,...}, N(f, l) is the occurrence of POI
f and its appearance in location l and argmax

w
{N(w, l) : w ∈ l} is the maxi-

mum occurrence of all the POIs in location l, |L| is the number of all locations,
|{l ∈ L : f ∈ l}| is the number of locations where POI f appears.

Fig. 2. The activity distribution in Milan

The activity distribution in Milan area is shown in Fig. 2. The sporting,
working, eating and transportation types of activities are mainly performed in
the city.

3.2 Mobile Phone Network Traffic

In this work, we used a dataset from “BigDataChallenge”2 organized by Telecom
Italia. The dataset is the result of a computation over the Call Detail Records
(CDRs) generated by the Telecom Italia cellular network within Milan. The
dataset covers 1 month with 180 million mobile network events in November,
2014 as November is a normal month without any particular events organized
in Milan. The CDRs log the user activity for billing purposes and network man-
agement. There are many types of CDRs, for the generation of this dataset we
considered those related to the following activities: square id (the id of the square

2 http://www.telecomitalia.com/tit/it/bigdatachallenge.html.

http://www.telecomitalia.com/tit/it/bigdatachallenge.html
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that is part of the Milan GRID which contains spatially aggregated urban areas),
time interval (an aggregate time), received SMS (a CDR is generated each time
a user receives an SMS), sent SMS (a CDR is generated each time a user sends
an SMS), incoming Calls (a CDR is generated each time a user receives a call),
outgoing Calls (a CDR is generated each time a user issues a call), internet (a
CDR is generate each time, a user starts an internet connection, or a user ends
an internet connection).

By aggregating the aforementioned records, this dataset was created that pro-
vides mobile phone communication activities across locations. The call, sms and
internet connection activity logs are collected in each square of the spatial grid for
Milan urban area. The activity measurements are obtained by temporally aggre-
gating CDRs in time-slots of ten minutes. But the temporal variations make the
comparison of human behaviors more difficult. The standard approach to account
for temporal variations in human behavior is to divide time into coarse grained
time-slots. In Farrahi and Gatica-Perez [12], the following eight coarse-grained
time-slots are introduced: [00–7:00 am., 7:00–9:00 am., 9:00–11:00 am., 11:00
am.–2:00 pm., 2:00–5:00 pm., 5:00–7:00 pm., 7:00–9:00 pm., and 9:00 pm.–00
am.]. Here, we aggregate the mobile phone network data in such coarse-grained
time-slots to extract the pattern of 1 month network traffic volume in each loca-
tion. For each location, we then aggregated the total number of call (outgoing
and incoming call without considering a country code), and sms (incoming and
outgoing), internet activity for each of those eight time-slots. Such time-slot
based timelines can give us actual patterns of mobile network traffic activity.
Then the dataset reduced to 2.4 million CDR each of which consists of the fol-
lowings: square id, day of month, time-slot, and total number of mobile network
traffic activity. We build a n×p×d dimensional matrix Tn,p,d to collect a mobile
phone traffic activity timeline, where n is the number of locations in [1, 10000],
p is the time-slot divisions of the day [1, 8] and d is the day in [1, 31]. To identify
timeline patterns among those locations, we performed a normalization for the
timelines based on z-score which transforms the timeline into the output vector
with mean μ= 0 while standard deviation σ is negative if it is below the mean
or positive if it is above the mean. The normalized timelines by day is visualized
in Fig. 3 which show a stable communication activity within the month. For this

transformation, we used T ′
i,j,k =

Ti,j,k − μi

σi
, i ∈ n, j ∈ p, k ∈ d, where μi is the

average value of the mobile phone activity traffic in location i, σi is the standard
deviation of the mobile phone activity traffic in location i.

4 The Approach

We present our methodology for identifying the relation between geographical
locations and human behaviors. Our methodology is divided into two phases: (1)
clustering approaches for inferring categorical area types in terms of geographical
area profiles (2) classification approaches for validating the observed area types
by mobile phone data records. Clustering techniques are mostly unsupervised



166 Z. Dashdorj and S. Sobolevsky

Fig. 3. The timelines for each time-slot of day, z-score normalization by day

methods that can be used to organize data into groups based on similarities
among the individual data items. We use the spectral clustering algorithm which
makes use of the spectrum (eigenvalues) of the similarity matrix of the data
to perform dimensionality reduction before clustering in fewer dimensions. The
similarity matrix is provided as an input and consists of a quantitative assessment
of the relative similarity of each pair of points in the dataset.

We define a vector space model that contains a set of vectors corresponding
to areas. Relevance between areas is a similarity comparison of the deviation
of angles between each area vector. The similarity between the areas is cal-
culated by the cosine similarity metric by estimating the deviation of angles
among area vectors. For example, the similarity between area l1 and l2 would be
cos θl1,l2 = l1·l2

‖l2‖‖l1‖ where li denotes the area or the features associated to the
areas. We denote each area li with a set of corresponding features associated with
a weight measure j. Having the estimation of similarity between the areas, we
can now create a similarity graph described as the weight matrix W generated
by the cosine similarity metrics and the diagonal degree matrix D is utilized by
the spectral clustering algorithm which is the one of the most popular modern
clustering methods and performs better than traditional clustering algorithms.
We create the adjacency matrix A of the similarity graph and graph Laplacian
LA, LA = D−A (given by normalized graph Laplacian LAn = D−1/2LAD−1/2).
Based on eigengap heuristic [47], we identify the number of clusters by k-
nearest neighbor to observe in our dataset as k = argmaxi(λi+1 − λi) where
λi ∈ {l1, l2, l3, .., ln} denotes the eigenvalues of ln in the ascending order. Finally,
we easily detect the effective clusters (area profiles) S1, S2, S3, ..., Sk from the first
k eigenvectors identified by the k-means algorithms. We investigate the relation
between geographical locations and human behaviors based on categorical area
types. To do that, we use supervised learning algorithms to predict area profile
of a given area if we train a classification model with training data, which are
the timelines labeled with area types. In supervised learning, each observation
has a corresponding response or label. Classification models learn to predict a
discrete class given new predictor data. We use several of classifiers for learning
and prediction. We prepare a test set for testing classification models by k-fold
cross validation method.
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5 Experiments and Results

In this section, we demonstrate the identification of the relationships between
locations and human behaviors in terms of two types of features in each loca-
tion: (1) location contexts: categories of human activity estimated through types
of available POI (2) mobile communication activity timeline: mobile communi-
cation activity in time-series of coarse grained time-slots. In other words, we
estimate the extent to which human behaviors depend on geographical area
types. To identify and quantify these dependencies, we perform two types of
validations: (1) observed area type we defined vs human behavior (2) land-use
type defined formally vs human behavior by estimating the correlations and
prediction algorithms.

5.1 Observed Area Type Vs Human Behavior

We first check the two datasets can be clustered or randomly distributed
using Hopkins statistic, H =

∑n
i=1 yi∑n

i=1 xi+
∑n

i=1 yi
. The distance between element

pi and its nearest neighbor in dataset D is xi = minv∈D {dist(pi, v)} and
the distance between element qi and its nearest neighbor in D − qi is yi =
minv∈D,v �=qi {dist(qi, v)}. The Hopkins statistic for the location context dataset
is 0.02 and the mobile communication timeline is 0.04 that indicates that the
datasets are highly clustered and regularly distributed. So we then analyze the
correlations of location context and mobile phone communication timeline in
order to understand if humans are attracted to location contexts through the
area types (i.e., shopping, woking, and studying). To validate such relationship,
we start with the geographical area clustering based on the location context by
semi-supervised learning algorithms. We perform spectral clustering on the loca-
tions based on their similarity of human activity distribution An,m. Each loca-
tion of the grid has a distribution of activity categories with relative frequency of
their appearance. The spectral clustering with k-nearest neighbor (k = 10 based
on cosine similarity metrics) approach allows us to classify geographical areas L
based on such multi-dimensional features, An,m. We then observed significantly
different six types of areas, that are geo-located in Fig. 4(a). The average values
of the activity categories for those area types are presented in Fig. 4(b).

The table shows that categorical area type S4 contains high percentage values
for residential, and eating activities. The center of the city including a residential
zone were clustered into one area type. The area type S3 contains high percent-
age value on working activity. This classification can be refined if we increase
the number of area types observations. For each area type, we are now able to
extract and observe timelines Tn,p,d from mobile phone data records in order to
determine the correlation between the timelines and the area profiles for those
area types.

The density of the clusters are almost uniform distributed except cluster S4
and S5, see Fig. 5(a). This unbalanced datasets for clusters could contribute to an
acceptable global accuracy, but also to a (hidden) poor prediction for instances in
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(a) (b)

Fig. 4. (a) Observed area types of the geographical area of Milan based on the area
profiles, k= 6, where S1 is red, S2 is lime, S3 is blue, S4 is yellow, S5 is cyan/aqua, and
S6 is magenta/fuchsia. (b) The average values of the activity categories in categorical
area types observed. (Color figure online)

minority classes. In this context, alternative metrics, such as per class accuracy
will be considered. We estimate the accuracy per class using the two techniques
(canonical correlation coefficients vs learning techniques). Figure 6 shows the
actual volume of the mobile network traffic activities by the area types.

We illustrated the correlation between the area profiles An,m and timelines
Tn,p,d based on the canonical correlation [1] (see Fig. 5(b)). The canonical correla-
tion investigates the relationships between two sets of vectors by maximizing the
correlation in linear combination. In order words, canonical correlation finds the
optimal coordinate system for correlation analysis and the eigenvectors defines
the coordinate system. While the overall maximum correlation coefficient (j = 1)
is 65 % between the two vectors, the correlation coefficient by area types is high
between 72 % and 98 %. For example, the correlation in area type S5 is stronger
than other area types, in which working type of activities are more distributed.
The maximum correlation in S2 containing high percentage of sporting activity
is 82.38 %.

(a) (b)

Fig. 5. (a) The density distribution of area types observed in Milan. (b) Canonical
correlation between the two feature matrices for locations.
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Fig. 6. The average timeline of mobile phone data by area types (k= 6), where S1 is
red, S2 is lime, S3 is blue, S4 is yellow, S5 is cyan/aqua, and S6 is magenta/fuchsia
(Color figure online)

We also compared the distance between the two vectors (mean) of area types
to investigate the similarity of the relevant area profiles can have the similar
human behaviors. We observed linear correlation with a coefficient of r = 0.61
This result shows that as the distance between the area profiles is increased,
the timeline difference increases, and human behaviors are strongly correlated
to geographical area profiles. In second, we profiles the communication timelines
with the cluster labels observed in each location that will be used to estimate
the correlation by supervised learning algorithms. The prediction accuracy of
timeline types in a given location could be an evaluation of the dataset. To
that end, we train several predictive models (i.e., Bayesian algorithms, Decision
Trees, Probabilistic Discriminative models and Kernel machines.) to measure
the prediction accuracy by k-fold cross validation method (k = 10), which is
used to estimate how accurately a predictive model will perform. We need to
prepare training and test data. The training data are the timelines labeled by
area types through the location. This allows us to determine if timelines are
clustered as geographical area profiles. The experimental results on our data are
shown in Table 1. This classification of the predictive models is aimed at choosing
a statistical predictive algorithm to fit in our analysis.

Among the considered techniques, the Random Forest and the Nearest Neigh-
bor algorithms are resulted in the lowest error with high accuracy, in other words,
if we take the area profile of the nearest-neighbor (the most common area profile
of k-nearest-neighbors), that would give the right timeline type. The confusion
matrix of the Random Forest classifier, and the precision, recall are estimated in
the following Table 2. The receiver operating characteristic curve for visualizing
the performance of the classifiers is described in Fig. 7. This result shows that
the area type S5 is the well classified and compact by showing a strong correla-
tion between the area activity categories and area timeline. The area types S1,
S2, S3 and S4, S6 can be still refined in terms of the area activity categories.
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Table 1. Results for the predictive models with the use of area types observed by
spectral clustering algorithm

Algorithm Cross validation Overall ACC

Random classifier 0.83 16.7 %

Linear discriminant 0.5404 45.01 %

Quadratic discriminant 0.4649 52.90 %

Naive bayes (kernel density) 0.6748 20.38 %

K-NN (k = 5, euclidean dist) 0.3822 61.73 %

K-NN (k = 10, euclidean dist) 0.4068 59.26 %

Decision tree 0.4806 52.58 %

Random forest 0.3513 64.89 %

Multi-class SVM 0.4997 49.47 %

Table 2. Confusion matrix and precision, recall and f-measure in each area type defined
for predicting timeline based on location context about categorical human activity by
Random Forest classifier

Area type defined S1 S2 S3 S4 S5 S6

S1 8.91% 0.20% 1.80% 4.47% 0.07% 1.57%
S2 0.10% 8.58% 0.70% 1.77% 0.47% 1.30%
S3 1.77% 0.43% 10.15% 1.70% 1.27% 1.23%
S4 2.34% 0.53% 1.13% 19.63% 0.33% 1.54%
S5 0.03% 0.23% 1.37% 0.53% 6.54% 0.07%
S6 2.40% 1.27% 1.67% 2.74% 0.07% 11.08%

Prec. Recall. F-measure.

52.35% 57.30% 54.71%
66.41% 76.26% 70.99%
61.29% 60.32% 60.80%
76.96% 63.64% 69.67%
74.52% 74.81% 74.67%
57.64% 66.00% 61.54%

Fig. 7. Receiver operating characteristic to multi-class by random forest classifier
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(a) (b)

Fig. 8. (a) The distribution of land-use classification in Milan. (b) The distribution of
categorical activity clusters within commercial land-use area

5.2 Land-Use Type Vs Human Behavior

After we observed strong prediction accuracy of timelines based on categorical
area types, we analyze the relation between the timelines and land use types
which are formally defined by land-use management organizations. While many
works try to predict activity based on land use, we perform a comparative study
of the two approaches. We identify that even the area of the same land use might
have different area types in terms of area profiles and those are still different
in terms of human activity timelines quantified through mobile phone records,
which validates significance of activity-based classification vs official land use.
We predict the timeline type of a given area based on the land-use type using
the Random Forest and the Nearest Neighbor classifiers. We used the land-use
types from the OSM3 for this prediction task (see the distribution of land-use
types of Milan in Fig. 8(a)). The prediction accuracy of the Random Forest
classifier is 53.47 %. This shows that predicting power of categorical types is
higher compared to land use types.

We also match the area types we observed with the land-use types given
officially. The result shows that even within the same land-use type, the timelines
corresponding to different clusters are still different. For example, 58 % of the
commercial land-uses matched with the area type S3 which followed by S1,
S6 and S2, S3, S4, S5, shown in Fig. 8(b). The corresponding timelines to the
different clusters within the commercial land-use type are illustrated in Fig. 9.

The timelines in the same area type observed, also in the same land-use
officially defined, can be still refined, but the timeline pattern refinement will
require more emphasis on the appropriate features, for example, timelines for
weekday or weekend. The area profiles are semantically different concepts in
terms of human activities performed in geographical areas. Further, it will allow
us to identify a standard or exceptional type of mobile network activities in
relevant areas, as well as to enable the identification of unknown correlations, or
hidden patterns about anomalous behaviors.

3 http://wiki.openstreetmap.org/wiki/Key:landuse.

http://wiki.openstreetmap.org/wiki/Key:landuse
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Fig. 9. The timelines belong to different clusters within the commercial land-use: S1
is red, S2 is lime, S3 is blue, S4 is yellow, S5 is cyan/aqua, and S6 is magenta/fuchsia
(Color figure online)

6 Conclusion and Future Works

In this paper, we proposed an approach that characterizes and classifies geo-
graphical areas based on their anticipated (through POI distribution) human
activity categorical types, such as working or shopping oriented areas. We con-
centrated on the analysis of the relationship between such spatial context of
the area and observed human activity. Our approach compares the similarity
between area activity categorical profiles and human activity timeline categories
estimated through cell phone data records. We found an overall correlation of
61 % and canonical correlation of 65 % between contextual and timeline-based
classifications. We observed six types of areas according to the area activity cate-
gories where we compared their human activity timelines with their area activity
categories and the correlation (canonical) coefficient is between 72 % and 98 %.
For example, the area type S5 related to working activity has a strong correla-
tion of 98 % which followed by the area types, S2 related to sporting activity and
S3 related to the human activities in the center of the city. The supervised learn-
ing approach validates possibility of using an area categorical profile in order to
predict to some extent the network activity timeline (i.e., call, sms, and inter-
net). For example, the Random Forest approach performs well with the accuracy
of 64.89 %. So human behaviors’ temporal variation is characterized similarly in
relevant areas, which are identified based on the categories of human activity per-
formed in those locations. Furthermore we found that the prediction accuracy
based on the official land use types is only 53.47 %. So the official land-use types
by themselves are not enough to explain the observed impact of area context
on human activity timelines, also because even within the same land use type,
different activity categorical types still demonstrate different activity timelines.
Further, the semantic description of area profiles associated to mobile phone
data enables the investigation of interesting behavioral patterns, unknown cor-
relations, and hidden behaviors in relevant areas. We expect the approach to
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be further applicable to other ubiquitous data sources, like geo-localized tweets,
foursquare data, bank card transactions or the geo-temporal logs of any other
service.
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dense urban areas from mobile phone-call data: discovery and social dynamics. In:
Proceedings of the 2010 IEEE Second International Conference on Social Comput-
ing, SOCIALCOM 2010, pp. 241–248. IEEE Computer Society, Washington, DC
(2010)

http://arxiv.org/abs/1310.2963
http://arxiv.org/abs/1405.4301


176 Z. Dashdorj and S. Sobolevsky

47. von Luxburg, U.: A tutorial on spectral clustering. CoRR, abs/0711.0189 (2007)
48. Wakamiya, S., Lee, R., Sumiya, K.: Urban area characterization based on semantics

of crowd activities in twitter. In: Claramunt, C., Levashkin, S., Bertolotto, M. (eds.)
GeoS 2011. LNCS, vol. 6631, pp. 108–123. Springer, Heidelberg (2011)

49. Wang, Q., Taylor, J.E.: Quantifying human mobility perturbation, resilience in
hurricane sandy. PLoS ONE 9(11), e112608 (2014)

50. Yuan, Y., Raubal, M.: Extracting dynamic urban mobility patterns from mobile
phone data. In: Xiao, N., Kwan, M.-P., Goodchild, M.F., Shekhar, S. (eds.)
GIScience 2012. LNCS, vol. 7478, pp. 354–367. Springer, Heidelberg (2012)


	Characterization of Behavioral Patterns Exploiting Description of Geographical Areas
	1 Introduction
	2 Related Works
	3 Collecting and Pre-processing the Data
	3.1 Openstreetmap
	3.2 Mobile Phone Network Traffic

	4 The Approach
	5 Experiments and Results
	5.1 Observed Area Type Vs Human Behavior
	5.2 Land-Use Type Vs Human Behavior

	6 Conclusion and Future Works
	References


