
Bounded Abstract Interpretation

Maria Christakis1(B) and Valentin Wüstholz2(B)

1 Microsoft Research, Redmond, USA
mchri@microsoft.com

2 The University of Texas at Austin, Austin, USA
valentin@cs.utexas.edu

Abstract. In practice, software engineers are only able to spend a
limited amount of resources on statically analyzing their code. Such
resources may refer to their available time or their tolerance for impre-
cision, and usually depend on when in their workflow a static analysis is
run. To serve these different needs, we propose a technique that enables
engineers to interactively bound a static analysis based on the avail-
able resources. When all resources are exhausted, our technique soundly
records the achieved verification results with a program instrumentation.
Consequently, as more resources become available, any static analysis
may continue from where the previous analysis left off. Our technique is
applicable to any abstract interpreter, and we have implemented it for
the .NET static analyzer Clousot. Our experiments show that bounded
abstract interpretation can significantly increase the performance of the
analysis (by up to 8x) while also increasing the quality of the reported
warnings (more definite warnings that detect genuine bugs).

1 Introduction

Software engineers typically have very different resources to devote to checking
correctness of their code by running a static program analysis. These resources
refer to an engineer’s available time, or their tolerance for imprecision and spu-
rious errors. The availability of such resources may depend on several factors,
like when in an engineer’s workflow static analysis is run (for instance, in the
editor, after every build, during code reviewing, or before a release), how critical
their code is, or how willing they are to go through all warnings reported by the
analysis.

As an example, consider that software engineers might choose to run a static
analyzer for a very short amount of time (say, a few minutes) after every build,
in which case they expect it to provide immediate feedback even if certain errors
might be missed. In contrast, when waiting for code reviewers to sign off, engi-
neers could take advantage of the wait and resume the analysis of their code
from where it had previously left off (say, after the last build). However, this
time, the analysis can run for a longer period of time since code reviews take at
least a few hours to complete [28,29]. Engineers would now expect to find most
errors in their code before making it available to others and are, therefore, more
tolerant to spurious errors.
c© Springer-Verlag GmbH Germany 2016
X. Rival (Ed.): SAS 2016, LNCS 9837, pp. 105–125, 2016.
DOI: 10.1007/978-3-662-53413-7 6



106 M. Christakis and V. Wüstholz

Fig. 1. Example that demonstrates loss of precision in the analysis after performing
a widening operation at program point 3 in method M. The source code for method M

is shown on the top left. On the right, we show the control flow graph of the method
(program points are depicted as nodes, and edges capture control flow and code). On
the bottom left, we show the abstract interval state for variable c at an intermediate
and the final state.

In this paper, we propose a technique that enables users to interactively
adapt a static analysis to their available resources. We focus on static analysis
in the form of abstract interpretation [11]. When there are no more resources,
our technique soundly records, in the form of a program instrumentation, any
correctness guarantees that have been achieved until that point in the analysis.
Consequently, once more resources become available, the static analysis will not
start from scratch; it will instead reuse these already collected verification results
to continue from where it left off.

As an example, consider method M on the top left of Fig. 1. On line 2, we ini-
tialize a counter c, which is later incremented in the body of a non-deterministic
while-loop (lines 3–7). After the loop, there are two assertions, the first of which
(line 8) always holds, whereas the second one (line 9) constitutes an error.

When analyzing method M with the relatively imprecise interval domain [11],
the abstract interpreter generates two warnings, one for each assertion in the
code. Our technique allows software engineers to bound the analysis such that
it runs faster and only reports the genuine error on line 9. Since the bounded



Bounded Abstract Interpretation 107

analysis might miss errors, it is also possible to continue analyzing the code at a
later point by reusing the verification results that have been previously collected.

Although bounded abstract interpretation is a general approach for bounding
the analysis based on user resources, the possible analysis bounds that we dis-
cuss in this paper are time, imprecision, and the number of spurious errors. The
bounded abstract interpreter is a verification tool until a bound is reached, at
which point it switches to bug-finding while precisely recording its own unsound-
ness. This technique opens up a new way of building highly tunable abstract
interpreters by soundly recording their intermediate verification results.

Our paper makes the following contributions. It presents:

– an algorithm for bounding a static analysis based on abstract interpretation
according to the user’s available resources,

– verification annotations and an instrumentation for soundly recording any
intermediate verification results when a bound of the analysis is reached,

– three application scenarios for interactively tuning an analyzer to reduce the
time, imprecision, and number of spurious errors of the analysis, and

– an experimental evaluation that explores the potential of bounded abstract
interpretation when applied in a real, industrial analyzer.

Outline. The following section introduces the verification annotations that we
use to record any intermediate verification results of the abstract interpreter.
In Sects. 3 and 4, we present the algorithm for soundly recording these results
and several application scenarios of our approach. In Sect. 5, we discuss our
experimental results. We review related work in Sect. 6 and conclude in Sect. 7.

2 Verification Annotations

To soundly encode intermediate, partial verification results [30], we use two
kinds of annotations. In our previous work, an explicit assumption of the form
assumed P as a expresses that an analysis assumed property P to hold at this
point in the code without checking it [5,6,8,30]. The unique assumption identifier
a may be used to refer to this explicit assumption at other program points. In
the context of bounded abstract interpretation, an assumed statement is used
to express that the analyzer unsoundly assumes that a property P holds for
all possible program states at a given program point. Actually, P holds only
for those states that were explored by the analyzer within its limited resources,
which is why the assumption is unsound.

As an example, consider that right before performing the widening operation
at program point 3 of method M (see Fig. 1), the abstract interpreter runs out of
user resources. At this stage of the analysis, we have learned that c ∈ [0, 1], as
is also shown by the table in Fig. 1. Since all resources have been exhausted, the
analyzer (unsoundly) assumes that c ∈ [0, 1] at this program point, even though
a fixed point has not yet been reached. We capture this unsound assumption by
introducing an assumed statement at the loop header, as shown on line 4 of
Fig. 2.



108 M. Christakis and V. Wüstholz

Fig. 2. Verification annotations (highlighted in gray) in method M for expressing the
intermediate results achieved before performing the widening operation at program
point 3 of Fig. 1.

To record intermediate, partial verification results, we introduce a new kind
of verification annotations, namely, partially-justified assumptions of the form
assume P provided A. These assumptions express that property P has been
soundly derived (or inferred) by the analyzer provided that A holds. The con-
dition A is a boolean expression over assumption identifiers, each of which is
introduced in an assumed statement.

In Fig. 2, we use partially-justified assume statements to soundly record the
verification results achieved by the analyzer within its bounds. At every program
point, we introduce an assume statement to document what we have learned
about variable c so far, also shown in the column for intermediate results of the
table of Fig. 1. The properties of the assume statements are soundly inferred
as long as explicit assumption a holds. Note that on line 16 we are also able to
explicitly capture the fact that the first assertion in method M has been verified
provided that a holds.

The concrete semantics of these verification annotations is defined in terms of
assignments and standard assume statements, which are understood by most
existing analyzers. For modular analyses, each assumption identifier corresponds
to a local boolean variable, which is declared at the beginning of the enclosing
method and initialized to true. A statement assumed P as a is encoded as:

a = a && P ;



Bounded Abstract Interpretation 109

This means that variable a accumulates the assumed properties for all executions
of this statement. Note that this encoding ensures that any unsound assumption
is captured at the program point at which it is made by the static analyzer,
instead of where it is used.

A statement assume P provided A is encoded using a standard assume
statement:

assume A ⇒ P ;

This captures that the derived property P holds provided that the condition A
holds, and it precisely reflects that P was soundly learned by the static ana-
lyzer under condition A. It also allows us to express that an analyzer found a
program point to be unreachable if condition A holds. This can be achieved by
instrumenting that program point with the following statement:

assume false provided A;

In some cases, an analyzer may even determine that an assertion P never holds
at a given program point if condition A holds. We refer to this as a definite
warning. This can be captured in the following way (line 19 of Fig. 2):

assume ¬P provided A;

3 Sound Intermediate Verification Results

Abstract interpretation uses a fixed-point computation to converge on its ver-
ification results. Therefore, verification results only become valid once a fixed
point has been reached. As a consequence, abstract interpreters cannot simply
be interrupted at any point during the analysis when user-provided resources
run out. In this section, we demonstrate a novel technique for soundly sharing
verification results at intermediate states during an analysis.

3.1 Analysis

As a first step, we present an algorithm for analyzing a program such that the
analysis can be interrupted at any point when a certain bound is reached. We
give concrete examples of such bounds in the next section, but for now, the reader
may assume that we refer to a user’s available time, tolerance for imprecision,
or for spurious errors. On a high level, our algorithm, Algorithm 1, uses abstract
interpretation to analyze a program in the usual way until a bound is reached for
a given program point. Now, the abstract state is not updated at this program
point, and consequently, no change is propagated to subsequent program points,
contrary to what is typically done. Instead, we only record that a bound is
reached at the program point and continue the analysis without modifying the
abstract state. As expected, this speeds up the fixed-point computation. Note
that our algorithm is independent of a particular abstract domain.

As an example, consider an if-statement with a then- and an else-branch.
Also, assume that, at a certain point in the analysis, the then-branch has already



110 M. Christakis and V. Wüstholz

been analyzed and the program point right after the if-statement holds the post-
state of the then-branch. After analyzing the else-branch of the if-statement, the
program point right after the if-statement should be updated by joining the
existing state with the state at the end of the else-branch. Now, imagine that a
bound is reached at this point after the if-statement. Instead of performing the
join and updating the state, we simply record this program point and continue.

As a result, the imprecision that may have been introduced by joining the
states of both branches is avoided. In exchange for not losing precision, the
analysis becomes unsound. In particular, any code after the if-statement is ana-
lyzed as if the else-branch did not exist. This, on one hand, potentially reduces
the number of spurious errors of the analysis but, on the other hand, might
make the analysis miss errors. The benefit for a user with limited resources is
that the analysis becomes more precise within the allocated resources. Moreover,
by recording at which program points unsoundness may have been introduced
due to a bound, we soundly capture the verification results using the annota-
tions from Sect. 2, as we explain in Sect. 3.2. This instrumentation achieves two
additional goals: (1) the bounded abstract interpreter still provides definite cor-
rectness guarantees, and (2) the analysis of the program can still continue from
where it left off at a later point, when user resources become available again.

Let us now describe our algorithm in more technical detail. In Algorithm 1,
procedure Analyze takes as arguments the program p, linit, which denotes the
label or program point from which the analysis begins, and preinit, which denotes
the initial abstract state, that is, the pre-state of linit. For example, if linit is the
first program point in a method body, then preinit could refer to the state that
expresses the precondition of the method.

On lines 2–5, we perform necessary initializations. Variable q is a work queue
containing the labels that remain to be analyzed. Specifically, it contains tuples
whose first element is a label and whose second element is a pre-state of that
label. Initially, we push to q a tuple with linit and its pre-state preinit. Variable
b is a set of labels for which a bound has been reached, and thus, whose state
has not been updated as usual. Set b is initially empty. Variables pre and post
denote maps from a label to its computed pre- and post-state, respectively.
Initially, these maps are also empty.

The loop on lines 6–20 iterates until q is empty. While q is not empty, we
pop a label and its pre-state from the queue (line 7) and check whether a bound
has been reached for this label. This is determined by the generic procedure
BoundReached (line 8), which we instantiate in Sect. 4 for different application
scenarios. If a bound has indeed been reached for a label l, then we add this label
to set b (line 9). Otherwise, we determine the pre-state for l (lines 11–16).

Specifically, if the pre map already contains a previous pre-state for label l
(line 12) and widening is desired (line 13), we perform widening of the previously
computed pre-state of l, pre(l), and its current pre-state (line 14). This current
pre-state comes from the work queue and has been computed by performing
earlier steps of the analysis, as we show next. If widening is not desired, we
instead perform a join of the two pre-states of l (line 16).



Bounded Abstract Interpretation 111

Algorithm 1. Bounded analysis
1 procedure Analyze(p, linit, preinit)
2 q ← Push(〈linit, preinit〉, EmptyQueue())
3 b ← EmptySet()
4 pre ← EmptyMap()
5 post ← EmptyMap()
6 while ¬IsEmpty(q) do
7 〈l, prel〉, q ← Pop(q)
8 if BoundReached(pre, post, l, prel) then
9 b ← Add(b, l)

10 else
11 pre′

l ← prel
12 if l ∈ dom(pre) then
13 if WideningDesired(l, pre, pre′

l) then
14 pre′

l ← ∇(pre(l), pre′
l)

15 else
16 pre′

l ← pre(l) � pre′
l

17 postl ← Step(p, pre′
l, l)

18 post(l), pre(l) ← postl, pre
′
l

19 foreach s in Successors(p, l)
20 q ← Push(q, 〈s, postl〉)
21 return pre, post, b

On line 17, our algorithm performs one step of analysis for label l, that is,
we compute the post-state of l by executing an abstract transformer, and on
line 18, we update the pre and post maps with the new pre- and post-states of l.
For each successor s of l in program p (line 19), that is, for each program point
immediately succeeding l, we push s and its new pre-state (line 20), postl, to the
work queue.

When the work queue becomes empty, procedure Analyze returns the infor-
mation that has been learned during the analysis for each program point (stored
in the pre and post maps). We also return the set b, which is used in Sect. 3.2
for soundly expressing the intermediate verification results of the analysis, that
is, the verification results that were achieved within the available resources.

To illustrate, let us explain Algorithm 1 on the example of Fig. 1. We assume
that procedure BoundReached returns true whenever a widening operation
would be used, in other words, the bound prevents any widening. This is the
case at label 3 of method M (see graph of Fig. 1), right after the intermediate
states shown in the table of Fig. 1 have been computed. As a result, label 3 is
added to set b, and the interval state for variable c remains [0, 1], which has
earlier been stored to the pre and post maps as pre(3) and post(2), respectively.

Similarly to abstract interpretation, many static analysis techniques, such
as data flow analysis, or predicate abstraction [21], also perform a fixed-point
computation in order to converge on their verification results. Therefore, our
algorithm could also be applied to such analysis techniques that may progres-
sively lose precision on examples like that of Fig. 1.



112 M. Christakis and V. Wüstholz

3.2 Instrumentation

Algorithm 2 shows how to instrument the program with intermediate verification
results. In particular, procedure Instrument is run after Analyze to record,
in the form of the verification annotations presented in Sect. 2, the information
that has soundly been learned by the analysis at each program point.

On a high level, our algorithm concretizes the abstract states that have been
computed for each program point by procedure Analyze and, after each point,
inserts either an assume statement or an assumed statement, if a bound has
been reached for the corresponding program point. Recall that an assumed
statement denotes that at the corresponding program point the abstract inter-
preter unsoundly assumed that a property P holds for all possible program
states, even though P actually holds only for those states that were explored
by the analyzer within its limited resources. An assume statement expresses
properties that have soundly been derived by the analyzer provided that an
(unsound) assumption made by the analysis holds.

Procedure Instrument takes as arguments the program p, the map post
from a label to its computed post-state, and the set b of labels for which a
bound has been reached. Note that post and b are computed and returned by
Analyze. For each label l in program p (line 2), we first concretize the bottom
state and assign it to postl (line 3), which denotes the concrete post-state of l.
If the post map contains an entry for l (line 4), then we update postl with that
entry (line 5). Finally, we check if a bound was reached at label l (line 6). In this
case, we instrument the program to add an assumed statement for property
postl right after program point l (line 7). We use label l as the unique assumption
identifier in the assumed statement. In particular, the instrumentation added
after program point l looks as follows:

assumed postl as l;

If label l is not in set b (line 8), we add an assume statement for property postl,
whose provided clause is a conjunction of all assumption identifiers (or labels)
in set b (line 9). Assuming that set b contains n labels, the instrumentation in
this case looks as follows:

assume postl provided l0 ∧ l1 ∧ ... ∧ ln−1;

Algorithm 2. Instrumentation of sound intermediate verification
results

1 procedure Instrument(p, post, b)
2 foreach l in Labels(p)
3 postl ← Concretize(⊥)
4 if l ∈ dom(post) then
5 postl ← Concretize(post(l))

6 if l ∈ b then
7 InsertAssumed(p, l, postl)
8 else
9 InsertAssume(p, l, postl, b)



Bounded Abstract Interpretation 113

This statement means that postl has been soundly learned by the abstract inter-
preter provided that the unsound assumptions made by the analysis at program
points l0, ..., ln−1 hold. With this instrumentation, a partially-justified assump-
tion might depend on identifiers of explicit assumptions made later in the code.
However, note that the boolean variables corresponding to these identifiers are
trivially true at the point of the partially-justified assumption due to their ini-
tialization (see Sect. 2).

Recall that for label 3 of method M, in Fig. 1, a bound was reached for
the widening operation. Therefore, according to Algorithm 2, we introduce an
assumed statement at that program point, as shown in Fig. 2. At all other
program points, we insert an assume statement, as shown in the same figure.
Note that the properties of these statements are the concretized, intermedi-
ate abstract states for variable c, which are shown in the table of Fig. 1. Also
note that the provided clauses of the assume statements correspond to the
unsound assumption made at program point 3. We added line 16 of Fig. 2 to
show that the subsequent assertion is verified under assumption a. Similarly, we
added line 20 of Fig. 2 to show that the subsequent assertion is found to never
hold.

For simplicity, we record intermediate verification results for each program
point in the code. However, an optimization could remove any assume state-
ments that only contribute information that can easily be derived from the
remaining ones.

Soundness Argument. In standard abstract interpretation, the inferred prop-
erties for labels that are not in the work queue are sound, given that the inferred
properties for labels that are still in the queue hold. In bounded abstract inter-
pretation, the inferred properties for labels that are not in the work queue are
sound, given that the inferred properties for labels that are still in the queue
or in the set of labels for which a bound has been reached hold. Our verification
annotations precisely express these soundness guarantees since the work queue
eventually ends up empty.

4 Applications

In this section, we discuss examples of user resources and the corresponding
bounds that may be imposed during the analysis. In particular, we describe
possible instantiations of procedure BoundReached from Algorithm 1 and an
application scenario for each such instantiation.

4.1 Bounding Time

As a first example, consider running the computationally expensive polyhedra
abstract domain [12]. In comparison to other simpler domains, it typically takes
longer for the verification results of this domain to reach a fixed point. Simply
imposing a timeout on such expensive analyses does not solve the problem for



114 M. Christakis and V. Wüstholz

engineers who are often not willing to wait for long-running analyses to termi-
nate. In case a timeout is hit before a fixed point is reached, all intermediate
verification results are lost.

The implementation of procedure BoundReached for this scenario is very
simple. For BoundReached to be deterministic, there needs to be a symbolic
notion of time, instead of actual time that varies from machine to machine.
Each symbolic time tick could, for example, refer to a step of the analysis in
Algorithm 1 (line 17). For instance, this can be implemented using a shared
counter of symbolic ticks, which is updated in procedure Step, and a shared
bound on the total number of ticks allowed to happen in the analysis, in other
words, a symbolic timeout selected by the user. Note that, when reaching this
bound, the number of explicit assumptions in the instrumentation is usually
small as it is bounded by the size of queue q in Algorithm 1 at the point of the
timeout.

4.2 Bounding Imprecision

We now consider as our limited resource a user’s tolerance for imprecision. Specif-
ically, three common sources of imprecision in abstract interpretation are joins,
widenings, and calls. The motivation behind having a threshold on the amount of
imprecision is the following: the analysis keeps accumulating imprecision while
it runs, and after a certain point, many reported warnings are spurious and
caused solely by the accumulated imprecision. Note that, for simplicity, we do
not consider all possible sources of imprecision since accurately identifying them
is an orthogonal issue; imprecision of the analysis generally depends on both the
abstract domain and the analyzed program, and existing work [17,18] could be
used to identify possible imprecision sources with more accuracy.

A join operation approximates the union of two sets of concrete program
states in the abstract domain. In particular, it is often not possible to pre-
cisely express the union in a given abstract domain, thus, resulting in over-
approximation. By bounding the number of joins, we are able to control the
amount of imprecision that is caused by an abstract domain’s inability to accu-
rately express union (or disjunction) of states even though the join operation
itself is known to be complete [17,18].

Algorithm 3 shows an implementation of BoundReached that counts the
number of imprecise joins. On line 2, we check whether label l is in the domain
of the pre map (storing the current pre-state for each label) and whether a join
is desired. If this is the case, we compute the join of the current pre-state pre(l)
with the pre-state prel from the work queue on line 3. If its result pre′

l, which may
become the current pre-state for label l, is less than (not possible due to property
of join) or equal to pre(l), the join does not lead to additional imprecision and
we do not increase the global counter joins for imprecise joins. Otherwise, we do
(line 5). Note that, in this algorithm, we conservatively consider any join that
generates a different result than pre(l) as imprecise. This may include joins that
are actually precise, but efficiently checking for imprecise joins is usually not
possible within an abstract domain and the overhead would defeat the purpose.



Bounded Abstract Interpretation 115

Algorithm 3. Bounded imprecision due to joins
1 procedure BoundReached(pre, post, l, prel)
2 if l ∈ dom(pre) ∧ ¬WideningDesired(l, pre, prel) then
3 pre′

l ← pre(l) � prel
4 if ¬(pre′

l 
 pre(l)) then
5 joins ← joins + 1
6 return maxJoins < joins

7 return false

On line 6, we return whether the number of imprecise joins has exceeded the
bound.

Similarly to joins, a widening operation is a source of imprecision as its result
purposefully over-approximates its arguments in order to reach a fixed point
more efficiently. The instantiation of procedure BoundReached in this case is
similar to the one for joins in Algorithm 3. If widening is desired, we increase
the global counter for imprecise widenings only if the result of performing the
widening is different from the current pre-state in the map pre.

In modular abstract interpretation, calls also constitute a source of impre-
cision as the relation between a method’s arguments and its return values is
unknown. This relation is, in the best case, described by user-provided spec-
ifications, which however might not be precise enough to avoid some over-
approximation in the analysis. To bound the amount of imprecision due to calls,
BoundReached can be implemented such that the analysis simply terminates
after analyzing a limited number of calls.

In addition to joins, widenings, and calls, our technique may be applied to
any source of imprecision in a static analysis. For instance, we could bound the
imprecision of certain abstract transformers, such as standard assume state-
ments. Let us explain this concept through the following concrete example.

Consider an if-statement whose condition checks whether variable x is non-
zero. Now, imagine that we are using an interval domain to learn the possible
values of x. Right before the if-statement, we have inferred that x ∈ [−1, 1]. In the
then-branch, even though we know that x cannot be zero (due to the condition of
the if-statement), the analysis still derives that x ∈ [−1, 1] since there is no way
to express that x is either −1 or 1 in the interval domain. Therefore, assuming
the condition of the if-statement in the then-branch is imprecise due to lack of
expressiveness in this abstract domain. In such cases, our technique can restrict
the imprecision that is introduced in the analysis because of such transformers
by bounding their number, just like we do for calls.

More generally, one could imagine a slight generalization of Algorithm 1
that, in such cases, would execute an under-approximating abstract transformer
and add the corresponding label to the set b of labels that have not been fully
explored.

Note that, since we are making the analyzer aware of its sources of impre-
cision, our technique may also be used for ranking any warnings emitted by
the analyzer. For example, warnings emitted when introducing fewer sources of



116 M. Christakis and V. Wüstholz

imprecision in the analysis could be shown to the user first, before warnings that
are emitted when more sources of imprecision may have affected the analysis.

4.3 Bounding Spurious Errors

The third scenario refers to bounding the number of spurious errors that are
reported to the user. This acknowledges the fact that human time, required to
identify spurious errors, is often more precious than analysis time. On the other
hand, it is not always practical to use the most expensive and precise analysis for
all code. To strike a good balance, we propose to only run a more precise analysis
or one with higher bounds if the less expensive analysis will emit warnings. Before
this switch happens, we record the verification results that have been collected
until that point by the less expensive analysis so that they are not lost.

Fig. 3. Example for bounding spurious errors.

Let us consider the example in Fig. 3. When analyzing method N with the
interval domain, we reach a point right before applying widening where the
assertion holds. However, after widening, c ∈ [0,∞] is inferred right before the
assertion and an error is reported. To avoid this spurious error, we can interrupt
the analysis and record the results before the widening by marking the assertion
as verified under an explicit assumption in the loop header, like in Fig. 2.

A second analysis can now take over. It could be the same analysis as before,
an analysis with a more precise abstract domain, or one with higher bounds. It
could even be dynamic test generation [5,8]. This second analysis can benefit
from the existing verification results since the assertion has already been fully
verified for the else-branch (the explicit assumption always holds on that branch).
By applying a very inexpensive instrumentation from our previous work [5,8],
we can prune away the fully-verified else-branch. This allows even an analysis of
the same precision to verify the resulting instrumented program. In particular,
c ∈ [7,∞] is derived right before the assertion, and method N is fully verified.

In other words, a subsequent analysis (static or dynamic) can analyze the
instrumented program that is produced after running the previous analysis. As
demonstrated in this section, the encoded intermediate results make it possi-
ble to ignore certain parts of the program state or even entire program paths.
Our previous work has specifically shown that this instrumentation is suitable



Bounded Abstract Interpretation 117

for subsequent analyses, in the context of dynamic test generation [6,8] and
deductive verification [25].

5 Experimental Evaluation

Setup. We have implemented our technique and algorithms in the widely-used,
commercial static analyzer Clousot [16], an abstract interpretation tool for .NET
and Code Contracts [15].

For our experiments, we selected a large, popular, open-source C# project
on GitHub, namely MSBuild, which is a platform for building applications and
can be found at https://github.com/Microsoft/msbuild. The MSBuild project
consists of five components, MSBuild, Microsoft.Build, Microsoft.Build.Framework,
Microsoft.Build.Tasks, and Microsoft.Build.Utilities. We selected a project that has
not been annotated with contracts in order not to depend on the quality of user-
provided annotations.

We ran our version of Clousot, which we call ClousotLight, on one core
assembly pertaining to each of MSBuild’s components (in the bb10a5c change-
set), MSBuild.exe, Microsoft.Build.dll, Microsoft.Build.Framework.dll,
Microsoft.Build.Tasks.Core.dll, Microsoft.Build.Utilities.Core.dll.
For our evaluation, we used Clousot’s default settings, in addition to the con-
figurations of ClousotLight that we describe in the rest of this section. Note
that we did not use Clousot’s contract inference in order to isolate the effect of
bounds within individual methods; in practice however, contract inference can
be useful as a complementary approach for reducing imprecision due to calls.
We performed all experiments on a 64-bit machine with an Intel Xeon processor
at 3.50 GHz and 32 GB of RAM.

Table 1. The number of potential imprecisions in the analysis of 11,990 methods (when
no bounds are imposed), categorized as joins, widenings, and calls. Overall, 3,378,692
abstract transformers were executed during the analysis.

Joins Widenings Calls

Potential imprecisions 199,354 (55.6 %) 3,251 (0.9 %) 155,990 (43.5 %)

Experiments. We used ClousotLight to analyze 11,990 methods, which are all
the methods defined in the five core assemblies of MSBuild.

Table 1 summarizes the number of potential imprecisions in the analysis of
these methods (when no bounds are imposed), categorized as joins, widenings,
and calls. We observed that joins and calls account for the majority (99.1 %) of
all these possible sources of imprecision. In total, the analysis executed 3,378,692
abstract transformers (that is, calls to procedure Step from Algorithm 1). Note
that we only counted joins and widenings that result in an update of the program
state. For calls, we only counted those that modify any heap location or have a

https://github.com/Microsoft/msbuild


118 M. Christakis and V. Wüstholz

JWC0 J0 J1 J2 J4 J8 W0 W1 W2 C0 C1 C2 C4 C8 Inf
0

10

20

30

40
33.39

15.67 15.47 15.34 14.57 13.43
9.1 7.69 6.7

11.94 11.87 11.19 10.7 10.05

4.3

Configuration

W
ar

n
in
gs

/t
im

e
(s
)

Fig. 4. The average number of warnings in 11,990 methods that were emitted per
second of the analysis, for each configuration.

Table 2. The number of warnings (second column) emitted during the duration of the
analysis in seconds (third column), for each configuration (first column).

Configuration Warnings Time (s)

JWC0 5,304 159
J0 11,777 752
J1 11,913 770
J2 12,008 783
J4 12,137 833
J8 12,240 911
W0 12,466 1,370
W1 12,467 1,621
W2 12,473 1,861
C0 5,214 437
C1 5,214 439
C2 7,195 643
C4 8,403 785
C8 9,683 963
Inf 12,480 2,902

return value. In other words, we did not count joins, widenings, and calls that
definitely do not contribute any imprecision to the analysis.

For all experiments that we describe in the rest of this section, we used
15 different configurations of ClousotLight, namely JWC0, J0, J1, J2, J4, J8,
W0, W1, W2, C0, C1, C2, C4, C8, and Inf. The configuration names denote the
bounds that we imposed on the analysis. For instance, J0 indicates that we allow
up to zero joins per method, W1 indicates that we allow up to one widening per
method, and C2 that we allow up to two calls per method. JWC0 means that



Bounded Abstract Interpretation 119

JWC0 J0 J1 J2 J4 J8 W0 W1 W2 C0 C1 C2 C4 C8 Inf InfI InfFInfIF
0

50

100

150

200

250

300

Configuration

N
u
m
b
er

of
w
ar

n
in
gs

B
P
F
C

Fig. 5. Manual classification of warnings. We performed this classification for the ten
methods that had the largest difference in the number of emitted warnings between
configurations JWC0 and Inf. The warnings are classified into four categories: (1) B for
genuine, confirmed bugs in the code of the method, (2) P for warnings that depend on
the values of the method’s parameters, (3) F for warnings that depend on the values of
fields in the current object, and (4) C for warnings that depend on what a call modifies,
including its return values.

we do not allow any joins, widenings, or calls, and Inf that we do not impose
any bounds on the analysis (as in Table 1). These configurations emerged by
choosing different bounds for each separate source of imprecision (e.g., J0, W1,
C2) as well as the smallest bound for every source of imprecision (JWC0).

Figure 4 shows, for each configuration, the average number of warnings that
were emitted per second of the analysis. Note that the fastest configuration is
JWC0, with approximately 8x more warnings per second over Inf. The slowest
configuration is W2, with 1.5x more warnings per second over Inf.

Table 2 shows the exact number of warnings (second column) emitted during
the duration of the analysis (third column), for each configuration (first col-
umn). As shown in the table, configuration Inf generates 12,480 warnings in
approximately 48 min. Configuration J0 generates approximately 94 % of these
warnings in around 13 min. Configurations J8 and W0 generate almost all warn-
ings in around 15 and 23 min, respectively.

We evaluate the impact of our technique on the number of genuine and spuri-
ous errors by manually classifying more than 300 warnings that were emitted by
ClousotLight (see Fig. 5). We performed this classification for the ten methods
(each consisting of hundreds of lines of code) that had the largest difference in
the number of emitted warnings between configurations JWC0 and Inf. Since in
a modular setting it is difficult to tell which warnings are spurious, we classify
the warnings into four categories: (1) B for genuine, confirmed bugs in the code
of the method, (2) P for warnings that depend on the values of the method’s
parameters and could be fixed by adding a precondition, (3) F for warnings that
depend on the values of fields in the current object and could be fixed by adding
a precondition or an object invariant, and (4) C for warnings that depend on



120 M. Christakis and V. Wüstholz

what a call modifies, including its return values, and could be fixed by adding a
postcondition in the callee.

We defined these particular categories as they provide an indication of the
severity of a generated warning for the author of a method. For example, the
author of a method should definitely fix any bugs in its code (B), and is likely to
resolve issues due to the method’s parameters (P). We consider B and P high-
severity warnings. The author of a method, however, is less inclined to address
warnings caused by the fields of the current object (F), which would affect the
entire class, let alone, add postconditions to callees that may have been written
by someone else (C). We consider F and C low-severity warnings.

As shown in Fig. 5, we found genuine bugs in MSBuild, three null-dereferences
in particular, which we have reported to the project’s developers and have now
been fixed (issue #452 on GitHub). All three bugs are found by J2, J4, J8, the
W configurations, and Inf. Configurations J0 and J1 detect only one of these
errors, which happens to share its root cause with the other two. In other words,
by addressing this one warning, all three errors could be fixed. Moreover, J0 and
J1 report the warning as a definite one, that is, the analyzer proves that there
is a null-dereference, which is made explicit by our annotations (see Sect. 2).

In general, the J configurations miss few warnings of high severity (between
15 % for J0 and 0 % for J8), as shown in the figure. The W configurations find
exactly the same warnings as Inf. The C configurations perform very aggressive
under-approximation of the state space and, consequently, miss all genuine bugs.
This could be remedied by a less coarse under-approximation for calls.

As we observed in Fig. 5, the J and W configurations report a number of
warnings very close to that reported by Inf. However, this is achieved with a sig-
nificant speedup of the analysis. To further reduce the number of reported warn-
ings in one run of a single analysis, a user may turn on orthogonal techniques,
such as contract inference or filtering/ranking. For comparison, we include three
variants of the Inf configuration with nearly identical running times: InfI (with
Clousot’s contract inference enabled), InfF (with Clousot’s low-noise filtering
enabled), and InfIF (with both of these options enabled). We observe that, by
enabling Clousot’s noise filtering, all high-priority warnings are missed and very
few low-priority warnings are reported. We believe that a very fast configuration
such as JWC0 strikes a much better balance as it reports 60 % of the high-
priority warnings after a much shorter running time. We confirm that contract
inference does help in reducing low-priority warnings noticeably. However, this
complementary technique shows similar benefits when used with configurations
that perform bounding and also benefits from their speedup.

To further evaluate whether our technique improves the detection of genuine
bugs, we reviewed all definite warnings that were reported for MSBuild by con-
figurations Inf, J0, and JWC0. Recall that the term “definite warnings” refers
to messages that warn about an error that will definitely occur according to the
analysis, instead of an error that may occur. Clousot prioritizes such warnings
when reporting them to users. Inf reported 25 definite warnings, none of which
corresponded to genuine bugs. JWC0 reported 15 definite warnings and detected



Bounded Abstract Interpretation 121

one genuine bug, while J0 reported 44 definite warnings and detected two dif-
ferent and independent genuine bugs (including one of the three bugs from the
manual classification). We have reported these bugs, which have been confirmed
by the developers (issues #569 and #574 on GitHub). One of them has already
been fixed, and the other will be addressed by deleting the buggy code.

This experiment suggests that a bounded analysis can significantly increase
the number of definite warnings, which should be reported to the user first, as
well as the number of genuine bugs detected by these warnings. For J0, the num-
ber of these warnings is increased by almost 2x. The aggressive JWC0 reports
fewer definite warnings than Inf, however, a genuine bug is still detected by these
warnings, whereas for Inf, it is missed.

Discussion. The experiments we have presented in this section demonstrate
two beneficial aspects of bounded abstract interpretation: (1) it increases the
performance of the analysis (by up to 8x) by interactively ignoring certain parts
of the state space, and (2) when bounding imprecision, it can improve the quality
of the reported warnings, either by increasing the number of definite warnings
or the number of genuine bugs detected by these warnings, while only missing
few high-severity warnings.

We have evaluated these aspects of bounded abstract interpretation in a
modular analyzer, which is already highly scalable partly due to its modularity.
We expect that the impact of our technique on the scalability of whole-program
analysis should be even greater. Moreover, modular analysis is typically more
prone to reporting spurious errors, which our technique alleviates with the second
aspect that we described above.

For our experiments, we did not evaluate the first and third application sce-
narios, about bounding time and spurious errors, respectively. Bounding the time
of the analysis is easy and very useful in practice, however, the analysis results
are too unpredictable for us to draw any meaningful conclusions, for instance
about the number of genuine bugs. We did not evaluate how the collaboration of
multiple analyses helps reduce the number of spurious errors as we have experi-
mented with several such scenarios in our previous work [5,6,8,30].

6 Related Work

Model Checking. Bounded model checking [4,9] is an established technique
for detecting errors in specifications of finite state machines by only considering
a bounded number of state transitions. This core idea has been extended in
numerous tools, such as CBMC [10], for bug-finding in infinite state programs.
In contrast, bounded abstract interpretation is based on a sound verification
technique for infinite state programs [11]. It provides a way to terminate the
analysis based on a chosen bound (e.g., the maximum number of joins) and to
soundly capture the verification results as a program instrumentation, which can
be understood by a wide range of other analyses. Furthermore, an advantage of
our technique is that it can analyze an infinite number of paths even before a
bound is hit.



122 M. Christakis and V. Wüstholz

Conditional model checking (CMC) [2,3] combines different model checkers
to improve overall performance and state-space coverage. In particular, CMC
aims at encoding verification results of model checkers right before a spaceout
or timeout is hit, which are typical limitations of model checking techniques. A
complementary model checker may then be used to continue the analysis from
where the previous tool left off. A conditional model checker takes as input a
program and its specification as well as a condition that describes the states that
have previously been verified. It produces another such condition to encode the
new verification results.

There are the following significant differences between CMC and our tech-
nique. CMC focuses on alleviating the effect of exhausting physical bounds,
such as time or memory consumption. Our notion of bounds is more flexible and
driven primarily by the user’s resources. Moreover, the verification annotations
that we use for representing partial static analysis results are suitable for modu-
lar analyses and relatively compact (there typically is a constant instrumentation
overhead in terms of the original program size). Also, our annotations are uni-
versally understood by most program analyzers, as opposed to the verification
condition of CMC.

Symbolic Execution. Our technique features the following significant differ-
ences over approaches based on symbolic execution [23]: (1) it produces sound
results, (2) reasoning over abstract domains is typically more efficient than rea-
soning about logical domains (e.g., using SMT solvers), and (3) by relying on
abstract interpretation, it inherently avoids path explosion and is more scalable.

Angelic Verification. There are two sources of spurious errors in static analy-
sis: those that are generated in the presence of an unconstrained environment,
and those that are caused by an imprecision of the analysis itself. Angelic ver-
ification [13] aims at constraining a verifier to report warnings only when no
acceptable environment specification exists to prove a given property. In other
words, angelic verification reduces the number of spurious errors generated due to
an unconstrained environment, whereas our technique can address both sources
of spurious errors.

Unsoundness. Our previous work on documenting any unsoundness in a static
analyzer [5–8] focuses on making explicit fixed and deliberate unsound assump-
tions of the analysis, for example, that arithmetic overflow can never occur. Such
fixed assumptions are used in most practical static analyzers and are deliberately
introduced by designers (e.g., to reduce spurious errors). In contrast, this work
focuses on providing users with a flexible way to interactively bound the analy-
sis while soundly recording intermediate results such that the analysis can be
resumed later on. Unsound assumptions are encountered dynamically during the
analysis based on the user-provided bounds.

Ranking of Warnings. Work on ranking analysis warnings, for instance by
using statistical measures [24], is orthogonal to ours. Such techniques typically
constitute a post-analysis step that is not aware of the internal imprecision of
the abstract interpreter, even though there is some work that considers sources



Bounded Abstract Interpretation 123

of imprecision encountered during the analysis [22]. Instead of performing a
post-analysis, we rely on bounding the analysis itself to suppress warnings.

Work on differential static analysis [1] and verification modulo versions [26]
suppresses warnings based on another program or program version. Our work,
on the other hand, does not require such a reference program or version.

An existing approach [17] makes it possible to prove completeness of an
analysis for a given program. This provides a way to rank higher warnings for
which the analysis is shown to be complete. Unlike our approach, it requires a
dedicated proof system and input from the designer of the analysis, which makes
it more difficult to apply in practice.

In addition, there are orthogonal approaches for controlling imprecision (e.g.,
due to joins [27], widenings [19,20], and generally incompleteness of abstract
domains [14]) of an existing analysis. In contrast to our work, these approaches
focus on refining the analysis to reduce imprecision while still reaching a fixed-
point (usually at the cost of performance). The scenario described in Sect. 4.2 is
just one possible application of our approach for bounding an analysis based on
user resources. Even with approaches that refine the analysis, it can make sense
to use our approach since they inherently cannot avoid every imprecision.

7 Conclusion

We have presented a technique for imposing different bounds on a static analy-
sis based on abstract interpretation. Although such bounds make the analysis
unsound, we are able to express its verification results in a sound way by instru-
menting the program. This opens up a new way for building highly tunable (with
respect to precision and performance) analyzers by soundly sharing intermediate
analysis results early on. In our experiments, we evaluate several such bounds in
an analyzer and show that the analysis time can be significantly reduced while
increasing the quality of the reported warnings. The trade-off between analysis
time and unsoundness is also beneficial in determining when in the workflow of
a software engineer a static analysis should run and with which bounds.

Acknowledgments. We thank Rainer Sigwald for promptly confirming and helping
us resolve the MSBuild bugs as well as the anonymous reviewers for their constructive
feedback.

References

1. Ball, T., Hackett, B., Lahiri, S.K., Qadeer, S., Vanegue, J.: Towards scalable mod-
ular checking of user-defined properties. In: Leavens, G.T., O’Hearn, P., Rajamani,
S.K. (eds.) VSTTE 2010. LNCS, vol. 6217, pp. 1–24. Springer, Heidelberg (2010)

2. Beyer, D., Henzinger, T.A., Keremoglu, M.E., Wendler, P.: Conditional model
checking. CoRR, abs/1109.6926 (2011)

3. Beyer, D., Henzinger, T.A., Keremoglu, M.E., Wendler, P.: Conditional model
checking: a technique to pass information between verifiers. In: FSE, pp. 57–67.
ACM (2012)



124 M. Christakis and V. Wüstholz

4. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999)

5. Christakis, M.: Narrowing the gap between verification and systematic testing.
Ph.D. thesis, ETH Zurich (2015)

6. Christakis, M., Müller, P., Wüstholz, V.: Collaborative verification and testing with
explicit assumptions. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol.
7436, pp. 132–146. Springer, Heidelberg (2012)

7. Christakis, M., Müller, P., Wüstholz, V.: An experimental evaluation of deliberate
unsoundness in a static program analyzer. In: D’Souza, D., Lal, A., Larsen, K.G.
(eds.) VMCAI 2015. LNCS, vol. 8931, pp. 336–354. Springer, Heidelberg (2015)

8. Christakis, M., Müller, P., Wüstholz, V.: Guiding dynamic symbolic execution
toward unverified program executions. In: ICSE. ACM (2016, to appear)

9. Clarke, E.M., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satis-
fiability solving. FMSD 19, 7–34 (2001)

10. Clarke, E., Kroning, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004)

11. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL, pp.
238–252. ACM (1977)

12. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: POPL, pp. 84–96. ACM (1978)

13. Das, A., Lahiri, S.K., Lal, A., Li, Y.: Angelic verification: precise verification mod-
ulo unknowns. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol.
9206, pp. 324–342. Springer, Heidelberg (2015)

14. D’Silva, V., Haller, L., Kroening, D.: Abstract conflict driven learning. In: POPL,
pp. 143–154. ACM (2013)

15. Fähndrich, M., Barnett, M., Logozzo, F.: Embedded contract languages. In: SAC,
pp. 2103–2110. ACM (2010)

16. Fähndrich, M., Logozzo, F.: Static contract checking with abstract interpretation.
In: Beckert, B., Marché, C. (eds.) FoVeOOS 2010. LNCS, vol. 6528, pp. 10–30.
Springer, Heidelberg (2011)

17. Giacobazzi, R., Logozzo, F., Ranzato, F.: Analyzing program analyses. In: POPL,
pp. 261–273. ACM (2015)

18. Giacobazzi, R., Ranzato, F., Scozzari, F.: Making abstract interpretations com-
plete. J. ACM 47, 361–416 (2000)

19. Gopan, D., Reps, T.: Lookahead widening. In: Ball, T., Jones, R.B. (eds.) CAV
2006. LNCS, vol. 4144, pp. 452–466. Springer, Heidelberg (2006)

20. Gopan, D., Reps, T.: Guided static analysis. In: Riis Nielson, H., Filé, G. (eds.)
SAS 2007. LNCS, vol. 4634, pp. 349–365. Springer, Heidelberg (2007)

21. Graf, S., Säıdi, H.: Construction of abstract state graphs with PVS. In: Grumberg,
O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)

22. Jung, Y., Kim, J., Shin, J., Yi, K.: Taming false alarms from a domain-unaware C
analyzer by a Bayesian statistical post analysis. In: Hankin, C., Siveroni, I. (eds.)
SAS 2005. LNCS, vol. 3672, pp. 203–217. Springer, Heidelberg (2005)

23. King, J.C.: Symbolic execution and program testing. CACM 19, 385–394 (1976)
24. Kremenek, T., Engler, D.R.: Z-ranking: using statistical analysis to counter the

impact of static analysis approximations. In: Cousot, R. (ed.) SAS 2003. LNCS,
vol. 2694, pp. 295–315. Springer, Heidelberg (2003)



Bounded Abstract Interpretation 125

25. Leino, K.R.M., Wüstholz, V.: Fine-grained caching of verification results. In:
Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 380–397.
Springer, Heidelberg (2015)

26. Logozzo, F., Lahiri, S.K., Fähndrich, M., Blackshear, S.: Verification modulo ver-
sions: towards usable verification. In: PLDI, pp. 294–304. ACM (2014)

27. Mauborgne, L., Rival, X.: Trace partitioning in abstract interpretation based static
analyzers. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 5–20. Springer,
Heidelberg (2005)

28. Do, L.N.Q., Ali, K., Bodden, E., Livshits, B.: Toward a just-in-time static analysis.
Technical Report TUD-CS-2015-1167, Technische Universität Darmstadt (2015)

29. Sadowski, C., van Gogh, J., Jaspan, C., Söderberg, E., Winter, C., Tricorder: build-
ing a program analysis ecosystem. In: ICSE, pp. 598–608. IEEE Computer Society
(2015)

30. Wüstholz, V.: Partial verification results. Ph.D. thesis, ETH Zurich (2015)


	Bounded Abstract Interpretation
	1 Introduction
	2 Verification Annotations
	3 Sound Intermediate Verification Results
	3.1 Analysis
	3.2 Instrumentation

	4 Applications
	4.1 Bounding Time
	4.2 Bounding Imprecision
	4.3 Bounding Spurious Errors

	5 Experimental Evaluation
	6 Related Work
	7 Conclusion
	References


