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Abstract. We present a novel framework for automated verification of
linearizability for concurrent data structures that implement sets, stacks,
and queues. The framework requires the user to provide a linearization
policy, which describes how linearization point placement in different
concurrent threads affect each other; such linearization policies are often
provided informally together with descriptions of new algorithms. We
present a specification formalism for linearization policies which allows
the user to specify, in a simple and concise manner, complex patterns
including non-fixed linearization points. To automate verification, we
extend thread-modular reasoning to bound the number of considered
threads, and use a novel symbolic representation for unbounded heap
structures that store data from an unbounded domain. We have imple-
mented our framework in a tool and successfully used it to prove lineariz-
ability for a wide range of algorithms, including all implementations of
concurrent sets, stacks, and queues based on singly-linked lists that are
known to us from the literature.

1 Introduction

Data structures that can be accessed concurrently by many parallel threads are
a central component of many software applications, and are implemented in sev-
eral widely used libraries (e.g., java.util.concurrent). Linearizability [17] is
the standard correctness criterion for such concurrent data structure implemen-
tations. It states that each operation on the data structure can be considered as
being performed atomically at some point, called the linearization point (LP),
between its invocation and return. This allows client threads to understand the
data structure in terms of atomic actions, without considering the complications
of concurrency.

Linearizable concurrent data structures typically employ fine-grained syn-
chronization, replacing locks by atomic operations such as compare-and-swap,
and are therefore notoriously difficult to get correct, witnessed, e.g., by a num-
ber of bugs in published algorithms [8,20]. It is therefore important to develop
efficient techniques for automatically verifying their correctness. This requires
overcoming several challenges.

One challenge is that the criterion of linearizability is harder to establish than
standard correctness criteria, such as control state reachability; in fact, prov-
ing linearizability with respect to a given data structure specification is unde-
cidable, even in frameworks where verification of temporal safety properties is
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decidable [5]. This has lead to verification techniques that establish some form of
simulation between concurrent and sequential executions, and whose mechaniza-
tion requires an interactive theorem prover (e.g., [6,7,25,26]). Automation has
been successful only under simplifying assumptions. A natural one is that LPs
are fixed, i.e., can be affixed to particular statements in method implementations
[1,3,30]. However, for a large class of linearizable implementations, the LPs are
not fixed in the code of their methods, but depend on actions of other threads in
each particular execution. This happens, e.g., for algorithms that employ various
forms of helping mechanisms, in which the execution of a particular statement
in one thread defines the LP for one or several other threads [13,14,34,35].

Another challenge is that verification techniques must be able to reason about
fine-grained concurrent programs that are infinite-state in many dimensions:
they consist of an unbounded number of concurrent threads, which operate on
an unbounded domain of data values, and use unbounded dynamically allocated
memory. This challenge has been addressed by bounding the number of accessing
threads [2,32,33], restricting the class of algorithms that can be verified [15,31],
or requiring auxiliary lemmas [24,36].

Contributions. In this paper, we present a novel uniform framework for auto-
matically verifying linearizability of concurrent data structure implementations,
which handles the above challenges. In our framework, the user provides (i) a
C-like description of the data structure implementation, (ii) a specification of
sequential data structure semantics, using the simple technique of observers [1],
and (iii) a linearization policy, which describes how LP placement in differ-
ent concurrent threads affect each other; such linearization policies are often
provided informally together with descriptions of new data structure implemen-
tations. Our framework then automatically checks that the requirement of lin-
earizability (wrp. to the data structure specification) is satisfied when LPs are
placed according to the given linearization policy. Ours is the first framework
that can automatically verify all linearizable singly-linked list-based implementa-
tions of sets, stacks, and queues that have appeared in the verification literature,
requiring only a small amount of user annotation (of linearization policies). Our
framework relies on a number of advancements over the state-of-the-art.

1. We handle non-fixed LPs by a novel formalism for specifying linearization
policies, by means of so-called controllers. Linearization policies capture inter-
thread constraints on LP placement. They are often described informally by
the algorithm designers together with each new data structure implementa-
tion when explaining why it is linearizable. Our controllers offer a way to
express such policies in a simple and uniform manner. They can express com-
plex patterns for linearization that are much more general than fixed LPs,
including all the ones that are known to us from the literature, such as help-
ing and flat-combining [12–14,23,24,34,35]. Each method is equipped with a
controller, whose task is to announce the occurrence of potential linearization
points for that method. The controller is defined by a few simple rules that
are triggered by its thread, and may also interact with controllers of other
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threads, in order to properly announce LPs. We specify the data structure
semantics by adapting the technique of observers [1], that check correctness
of the sequence of LP announcements. We extend previous usage of observers
by allowing a controller to announce an LP several times. This extension
allow us to handle implementations where the occurrence of a (non-fixed)
LP is conditional on some predicted future condition; a false prediction can
then (under some restrictions) be corrected by a renewed LP announcement.
In previous approaches, such situations were handled by prophecy variables
or backward simulation (e.g., [25]), that make automated verification sig-
nificantly more difficult. The use of observers and controllers reduces verifi-
cation to establishing that each method invocation generates a sequence of
LP announcements, the last of which may change the state of the observer
and conforms to the method’s call and return parameters, such that that
the total sequence of LP announcements is not rejected by the observer. The
establishment of these conditions can be reduced to control state reachability
using standard techniques; our framework accomplishes this by automatically
generated monitors.

2. We handle the challenge of an unbounded number of threads by extending the
successful thread-modular approach which verifies a concurrent program by
generating an invariant that correlates the global state with the local state of
an arbitrary thread [3]. We must extend it to handle global transitions where
several threads synchronize, due to interaction between controllers. We show
that the number of synchronizing threads that need to be considered in the
abstract postcondition computation is bounded by 3 · (#O) + 2 where #O is
the diameter of the observer. Furthermore, we define a condition, which we
call stuttering, that allows to reduce the number of synchronizing threads to
only two. The stuttering condition can be verified through a simple syntactic
check and is indeed satisfied by all the examples that we have considered.

3. In order to reason about concurrent programs that operate on an unbounded
data domain via dynamically allocated memory, we present a novel symbolic
representation of singly-linked heap structures.

For stacks and queues Chakraborty et al. [15], and later Boujjani et al. [4],
showed that linearizability can be checked by observing only the sequence of
method calls and returns, without considering potential LP placement. This
technique cannot check linearizabilitiy of sets. We can adapt their technique to
our framework. By using observers as defined in [4,15] and adapting controllers
accordingly, we can use our symbolic verification technique to automatically
verify stacks and queues without considering potential LP placement.

We have implemented our technique in a tool, and applied it to specify and
automatically verify linearizability of all the implementations of concurrent set,
queue, and stack algorithms known to us in the literature, as well as some algo-
rithms for implementing atomic memory read/write operations. To use the tool,
the user needs to provide the code of the algorithm together with the controllers
that specify linearization policies. To our knowledge, this is the first time all
these examples are verified fully automatically in the same framework.
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Related Work. Much previous work has been devoted to the manual veri-
fication of linearizability for concurrent programs. Examples include [18,28].
In [24], O’Hearn et al. define a hindsight lemma that provides a non-constructive
evidence for linearizability. The lemma is used to prove linearizability of an
optimistic variant of the lazy set algorithm. Vafeiadis [29] uses forward and
backward simulation relations together with history or prophecy variables to
prove linearizability. These approaches are manual, and without tool implemen-
tations. Mechanical proofs of linearizability, using interactive theorem provers,
have been reported in [6,7,25,26]. For instance, Colvin et al. [6] verify the lazy
set algorithm in PVS, using a combination of forward and backward simulations.

There are several works on automatic verification of linearizability. In [31],
Vafeiadis develops an automatic tool for proving linearizability that employs
instrumentation to verify logically pure executions. However, this work can han-
dle non-fixed LPs only for read-only methods, i.e., methods that do not modify
the heap. This means that the method cannot handle algorithms like the Elimi-
nation queue [23], HSY stack [14], CCAS [12], RDCSS [12] and HM set [16] that
we consider in this paper. In addition, their shape abstraction is not powerful
enough to handle algorithms like Harris set [11] and Michael set [22] that are also
handled by our method. Chakraborty et al. [15] describe an “aspect-oriented”
method for modular verification of concurrent queues that they use to prove lin-
earizability of the Herlihy/Wing queue. Bouajjani et al. [4] extended this work to
show that verifying linearizability for certain fixed abstract data types, including
queues and stacks, is reducible to control-state reachability. We can incorporate
this technique into our framework by a suitable construction of observers. The
method can not be applied to sets. The most recent work of Zhu et al. [36]
describe a tool that is applied for specific set, queue, and stack algorithms. For
queue algorithms, their technique can handle queues with helping mechanism
except for HW queue [17] which is handled by our paper. For set algorithms, the
authors can only handle those that perform an optimistic contains (or lookup)
operation by applying the hindsight lemma from [24]. Hindsight-based proofs pro-
vide only non-constructive evidence of linearizability. Furthermore, some algo-
rithms (e.g., the unordered list algorithm considered in Sect. 8 of this paper)
do not contain the code patterns required by the hindsight method. Algorithms
with non-optimistic contains (or lookup) operation like HM [16], Harris [11] and
Michael [22] sets cannot be verified by their technique. Vechev et al. [33] check
linearizability with user-specified non-fixed LPs, using a tool for finite-state ver-
ification. Their method assumes a bounded number of threads, and they report
state space explosion when having more than two threads. Dragoi et al. [10]
describe a method for proving linearizability that is applicable to algorithms
with non-fixed LPs. However, their method needs to rewrite the implementation
so that all operations have linearization points within the rewritten code. Černý
et al. [32] show decidability of a class of programs with a bounded number of
threads operating on concurrent data structures. Finally, the works [1,3,30] all
require fixed linearization points.
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We have not found any report in the literature of a verification method
that is sufficiently powerful to automatically verify the class of concurrent set
implementations based on sorted and non-sorted singly-linked lists having non-
optimistic contains (or lookup) operations we consider. For instance the lock-free
sets of HM [16], Harris [11], or Michael [22], or unordered set of [35].

2 Data Structures, Observers, and Linearizability

Data Structure Semantics. A data structure DS is a pair 〈D,M〉 where D is the
data domain and M is the alphabet of method names. An operation op is of
the form m(din , dout) where m ∈ M is a method name and din , dout ∈ D are the
input resp. output data values. A trace of DS is a sequence of operations. The
behavior [[DS]] of DS is the set of traces. We often identify DS with its behavior
[[DS]]. For example, in the Set data structure, the set of method names is given by
{add, rmv, ctn}, and the data domain is the union Z ∪ B of the sets of integers
and Booleans. Input and output data values are in Z and B respectively. For
instance, the operation add(3, tt) successfully adds the value 3, while ctn(2, ff)
is a failed search for 2 in the set.

s0 s1

s2

add(x, tt)

rmv(x, tt)

add(x, ff)

rmv(x, tt)

ctn(x, tt)

add(x, tt)

rmv(x, ff)

ctn(x, ff)

Fig. 1. Set observer.

Observers. We specify traces of data
structures by observers, as introduced
in [1]. Observers are finite automata
extended with a finite set of regis-
ters that assume values in Z. At ini-
tialization, the registers are nondeter-
ministically assigned arbitrary values,
which never change during a run of the
observer. Formally, an observer O is
a tuple

〈
SO, sO

init, X
O,ΔO, sO

acc

〉
where

SO is a finite set of observer states
including the initial state sO

init and the
accepting state sO

acc, a finite set XO of
registers, and ΔO is a finite set of transitions. Transitions are of the form〈
s1, m(xin , xout), s2

〉
where xin and xout are either registers or constants, i.e.,

transitions are labeled by operations whose input or output data may be para-
meterized on registers. The observer accepts a trace if it can be processed in such
a way that an accepting state is reached. Observers can be used to give exact
specifications of the behaviors of data structures such as sets, queues, and stacks.
The observer is defined in such a way that it accepts precisely those traces that
do not belong to the behavior of the data structure. This is best illustrated by an
example. Figure 1 depicts an observer that accepts the sequences of operations
that are not in [[Set]].

Linearizability. An operation m(din , dout) gives rise to two actions, namely a call
action

(
eid, m, din

) ↓ and a return action (eid, m, dout ) ↑, where eid ∈ N is an
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action identifier. A history h is a sequence of actions such that for each return
action a2 in h there is a unique matching call action a1 where the action identifiers
in a1 and a2 are identical and different from the action identifiers of all other
actions in h and such that a1 occurs before a2 in h. A call action carries always the
same method name as its matching return action. A call action which does not
match any return action in h is said to be pending. A history without pending call
actions is said to be complete. A completed extension of h is a complete history
h′ obtained from h by appending (at the end) zero or more return actions that
are matched by pending call actions in h, and thereafter removing pending call
actions. For action identifiers eid1, eid2, we write eid1 �h eid2 to denote that
the return action with identifier eid1 occurs before the call action with identifier
eid2 in h. We say that a history is sequential if it is of the form a1a

′
1a2a

′
2 · · · ana′

n

where a′
i is the matching action of ai for all i : 1 ≤ i ≤ n, i.e., each call action

is immediately followed by the matching return action. We identify a sequential
history of the above form with the corresponding trace op1op2 · · · opn where
opi = m(dini , douti ), ai =

(
eidi, m, dini

) ↓, and ai = (eidi, m, douti ) ↑, i.e., we merge
each call action together with the matching return action into one operation.
A complete history h′ is a linearization of h if (i) h′ is a permutation of h, (ii) h′

is sequential, and (iii) eid1 �h′ eid2 if eid1 �h eid2 for each pair of action
identifiers eid1 and eid2. We say that a sequential history h′ is valid wrt. DS if
the corresponding trace is in [[DS]]. We say that h is linearizable wrt. DS if there
is a completed extension of h, which has a linearization that is valid wrt. DS.
A set H of histories is linearizable wrt. DS if all members of H are linearizable
wrt. DS.

3 Programs

In this section, we introduce programs that consist of arbitrary numbers of
concurrently executing threads that access a concurrent data structure. Each
thread executes a method that performs an operation on the data structure.
Each method declares local variables and a method body. Variables are either
pointer variables (to heap cells), or data variables, assuming values from an
infinite (ordered) domain, or from some finite set F that includes the Boolean
values B. We assume w.l.o.g. that the infinite set is given by the set Z of integers.
The body is built in the standard way from atomic commands, using standard
control flow constructs (sequential composition, selection, and loop constructs).
Each statement is equipped with a unique label. We assume that the set of
local variables include the parameter of the method in addition to the program
counter pc whose value is the label of the next statement to be executed. Method
execution is terminated by executing a return command, which may return a
value. The global variables can be accessed by all threads, whereas local variables
can be accessed only by the thread which is invoking the corresponding method.
We assume that all global variables are pointer variables, and that they are ini-
tialized, together with the heap, by an initialization method, which is executed
once at the beginning of program execution.
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Heap cells have a fixed set F of fields, namely data fields that assume values
in Z or F, and lock fields. Furthermore, each cell has one pointer field, denoted
next, and hence heap cells are organized into singly-linked lists. We use the term
Z-field for a data field that assumes values in Z, and the terms F-field and lock
field with analogous meaning. Atomic commands include assignments between
data variables, pointer variables, or fields of cells pointed to by a pointer variable.
The command new Node() allocates a new structure of type Node on the heap,
and returns a reference to it. The compare-and-swap command CAS(&a,b,c)
atomically compares the values of a and b. If equal, it assigns the value of c
to a and returns true, otherwise, it leaves a unchanged and returns false.
We assume a memory management mechanism, which automatically collects
garbage, and also ensures that a new cell is fresh, i.e., has not been used before
by the program; this avoids the so-called ABA problem (e.g., [21]).

Figure 2 depicts a program Lazy Set [13] that implements a concurrent set
containing elements from Z. The set is implemented as an ordered singly linked
list. The program contains three methods, add, rmv, and ctn, corresponding to
operations that add, remove, and check the existence of an element in the set,
respectively. Each method takes an element as argument, and returns a value
which indicates whether or not the operation has been successful. For instance,
the operation add(e) returns the value true if e was not already a member of
the set. In such a case a new cell with data value e is added to its appropriate
position in the list. If e is already present, then the list is not changed and the
value false is returned. The program also contains the subroutine locate that
is called by add and rmv methods. A cell in the list has two data fields: mark :F,
where F = {0, 1}, and val :Z, one lock field lock, and one pointer field next.
The rmv method first logically removes the node from the list by setting the
mark field, before physically removing the node. The ctn method is wait-free
and traverses the list ignoring the locks inside the cells.

4 Linearization Policies

In this section, we introduce our formalism of controllers for expressing lineariza-
tion policies. A linearization policy is expressed by defining for each method an
associated controller, which is responsible for generating operations announcing
the occurrence of LPs during each method invocation. The controller is occa-
sionally activated, either by its thread or by another controller, and mediates
the interaction of the thread with the observer as well as with other threads.

To add controllers, we first declare some statements in each method to be
triggering: these are marked by the symbol •, as in Fig. 2. We specify the behavior
of the controller, belonging to a method m, by a set Rm of reaction rules. To define
these rules, we first define different types of events that are used to specify
their behaviors. Recall that an operation is of the form m(din , dout) where m is
a method name and din , dout ∈ D are data values. Operations are emitted by
the controller to the observer to notify that the thread executing the method
performs a linearization of the corresponding method with the given input and
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struct Node {
bool lock;

int val;

Node * next;

bool mark;

}

locate(e):

local p, c

1 while (true)

2 p := Head;

3 c := p.next;

4 while (c.val < e)

5 p := c;

6 c := c.next

7 lock(p); lock(c);

8 if (! p.mark &&

! c.mark&&

p.next=c)

9 return(p,c);

10 else

11 unlock(p);

12 unlock(c);

add(e):

local p, c, n, r

1 (p,c) := locate(e);

2 if (c.val <> e) •
3 n :=

new Node(

0,e,c,false);

4 p.next := n; •
5 r := true;

6 else r := false;

7 unlock(p);

8 unlock(c);

9 return r;

rmv(e):
local p, c, n, r

1 (p,c) := locate(e);

2 if (c.val = e) •
3 c.mark := true; •
4 n := c.next;

5 p.next := n;

6 r := true;

7 else r := false;

8 unlock(p);unlock(c);

9 return r;

ctn(e):

local c

1 c := Head;

2 while (c.val < e)

3 c := c.next

4 b := c.mark •
5 if (!b

&& c.val = e)

6 return true;

7 else

8 return false;

initialize() :

Head := new Node(

0,- ∞,null,false);

Tail := new Node(

0,+ ∞, null,false)

Head.next := Tail;

Fig. 2. Lazy Set.

Fig. 3. Reaction Rules for Controllers of Lazy Set.

output values. Next, we fix a set Σ of broadcast messages, each with a fixed arity,
which are used for synchronization between controllers. A message is formed by
supplying data values as parameters. In reaction rules, these data values are
denoted by expressions over the variables of the method, which are evaluated in
the current state when the rule is invoked. In an operation, the first parameter,
denoting input, must be either a constant or the parameter of the method call.

– A triggered rule, of form when • provided cnd emit op broadcast se,
specifies that whenever the method executes a triggering statement and the
condition cnd evaluates to true, then the controller performs a reaction in
which it emits the operation obtained by evaluating op to the observer, and
broadcasts the message obtained by evaluating se to the controllers of other
threads. The broadcast message se is optional.
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– A receiving rule, of form when 〈re, ord〉 provided cnd emit op, specifies
that whenever the observer of some other thread broadcasts the message
obtained by evaluating re, and cnd evaluates to true, then the controller
performs a reaction where it emits the operation obtained by evaluating op to
the observer. Note that no further broadcasting is performed. The interaction
of the thread with the observer may occur either before or after the sender
thread, according to the flag ord.

A controller may also use a finite set of states, which restrict the possible
sequences of reactions by a controller in the standard way. Whenever such states
are used, the rule includes source and target states using kewords from and
goto. In Fig. 3, the rule ρ7 changes the state from q0 to q1, meaning that no fur-
ther applications of rules ρ6 or ρ7 are possible, since they both start from state
q0. Rules that do not mention states can be applied regardless of the controller
state and leave it unchanged.

Let us illustrate how the reaction rules for controllers in Fig. 3 specify LPs for
the algorithm in Fig. 2. Here, a successful rmv method has its LP at line 3, and an
unsuccessful rmv has its LP at line 2 when the test c.val = e evaluates to false.
Therefore, both these statements are marked as triggering. The controller has a
reaction rule for each of these cases: in Fig. 3: rule ρ3 corresponds to a successful
rmv, whereas rule ρ4 corresponds to an unsuccessful rmv. Rule ρ4 states that
whenever the rmv method executes a triggering statement, from a state where
pc=2 and c.val <> e, then the operation rmv(e,false) will be emitted to the
observer.

A successful add method has its LP at line 4. Therefore, the controller for
add has the triggered rule ρ1 which emits the operation add(e,true) to the
observer. In addition, the controller also broadcasts the message add(e), which
is received by any controller for a ctn method which has not yet passed line 4,
thereby linearizing an unsuccessful ctn(e) method by emitting ctn(e,false)
to the observer. The keyword before denotes that the operation ctn(e,false)
will be presented before add(e,true) to the observer. Since the reception of
add(e) is performed in the same atomic step as the triggering statement at line
4 of the add method, this describes a linearization pattern, where a ctn method,
which has not yet reached line 4, linearizes an unsuccessful ctn-invocation just
before some other thread linearizes a successful add of the same element.

To see why unsuccessful ctn method invocations may not have fixed LPs,
note that the naive attempt of defining the LP at line 4 provided that the test
at line 5 fails will not work. Namely, the ctn method may traverse the list and
arrive at line 4 in a situation where the element e is not in the list (either e is
not in any cell, or the cell containing e is marked). However, before executing
the command at line 4, another thread performs an add operation, inserting a
new cell containing the element e into the list. The problem is now that the ctn
method cannot “see” the new cell, since it is unreachable from the cell currently
pointed to by the variable b of the ctn method. If the ctn method would now
try to linearize an unsuccessful ctn(e), this would violate the semantics of a set,
since the add method just linearized a successful insertion of e.



70 P.A. Abdulla et al.

A solution to this problem, following [13], is to let an unsuccessful ctn(e)
method linearize at line 4 only if no successful add(e) method linearized since its
invocation. If some other thread linearizes a successful add(e) before the ctn(e)
method executes line 4, then the ctn(e) method should linearize immediately
before the add(e) method. This solution is expressed by the rules in Fig. 3. Note,
however, that it is now possible for an invocation of a successful ctn(e) to emit
several operations: It can first emit ctn(e,false) together with the linearization
of a successful add(e), and thereafter emit ctn(e,true) when it executes the
statement at line 4, if it then finds the element e in the list (by rule ρ5). In such
a case, both operations are fine with the observer, and the last one is the event
that causes the method to return true, i.e., conforms with the parameters and
returns values.

Verifying Linearization Policies. By using an observer to specify the sequen-
tial semantics of the data structure, and defining controllers that specify the
linearization policy, the verification of linearizability is reduced to establishing
four conditions: (i) each method invocation generates a non-empty sequence of
operations, (ii) the last operation of a method conforms to its parameters and
return value, (iii) only the last operation of a method may change the state of
the observer, and (iv) the sequence of all operations cannot drive the observer to
an accepting state. Our verification framework automatically reduces the estab-
lishment of these conditions to a problem of checking control state reachability.
This is done by augmenting the observer by a monitor. The monitor is auto-
matically generated. It keeps track of the state of the observer, and records the
sequence of operations and call and return actions generated by the threads. For
each thread, it keeps track of whether it has linearized, whether it has caused a
state change in the observer, and the parameters used in its last linearization.
Using this information, it goes to an error state whenever any of the above four
conditions is violated. The correctness of this approach is established in the next
section, as Theorem 1.

5 Semantics

In this section, we formalize the semantics of programs, controllers, observers,
and monitors, as introduced in the preceding sections. We do this in several
steps. First, we define the state of the heap and the transition relation induced
by a single thread. From this we derive the semantics of the program and use
it to define its history set. We then define the semantics of observers, and its
augmentation by the monitor; the observer is embedded in the monitor. Finally,
we define the product of the augmented program and the monitor. On this basis,
we can formally state and prove the correctness of our approach, as Theorem 1.

For a function f : A 
→ B from a set A to a set B, we use f [a1 ← b1, . . . , an ←
bn] to denote the function f ′ such that f ′(ai) = bi and f ′(a) = f(a) if a 
∈
{a1, . . . , an}.
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Below, we assume a program P with a set Xgl of global variables, a data
structure DS specified as an observer O. We assume that each thread th executes
one method denoted Method (th).

Heaps. A heap (state) is a tuple H =
〈
C, succ, Valgl, ValC

〉
, where (i) C is

a finite set of cells, including the two special cells null and ⊥ (dangling); we
define C

− = C − {null,⊥}, (ii) succ : C− → C is a total function that defines
the next-pointer relation, i.e., succ (c) = c′ means that cell c points to c′,
(iii) Valgl : Xgl → C maps the global (pointer) variables to their values, and
(iv) ValC : C× F → F∪Z maps data and lock fields of each cell to their values.
We assume that the heap is initialized by an initialization thread, and let Hinit

denote the initial heap.

Threads. A local state loc of a thread th wrt. a heap H defines the values of its
local variables, including the program counter pc and the input parameter for
the method executed by th. In addition, there is the special initial state idle,
and terminated state term. A view view is a pair 〈loc,H〉, where loc is a local
state wrt. the heap H. A thread th induces a transition relation −→th on views.
Initially, th is in the state idle. It becomes active by executing a transition

〈idle,H〉 (th,m,din)↓−−−−−−−→th 〈locthinit,H〉, labeled by a call action with th as the event
identifier and m = Method (th). It moves to an initial local state locthinit where
din is the value of its input parameter, the value of pc is the label of the first
statement of the method, and the other local variables are undefined. Thereafter,
th executes statements one after one. We write view

λ−→thview′ to denote that
the statement labeled by λ can be executed from view, yielding view′. Note that
the next move of th is uniquely determined by view, since th cannot access the
local states of other threads. Finally, th terminates when executing its return

command giving rise to a transition 〈loc,H〉 (th,m,dout)↑−−−−−−−→th 〈term,H〉, labeled by
a return action with th as event identifier, m = Method (th), and dout as the
returned value.

Programs. A configuration of a program P is a tuple 〈T, LOC,H〉 where T is a
set of threads, H is a heap, and LOC is a local state mapping over T wrt. H
that maps each thread th ∈ T to its local state LOC (th) wrt. H. The initial
configuration cP

init is the pair 〈LOCinit,Hinit〉, where LOCinit (th) = idle for
each th ∈ T, i.e., P starts its execution from a configuration with an initial
heap, and with each thread in its initial local state. A program P induces a
transition relation −→P where each step corresponds to one move of a single
thread. This is captured by the rules P1, P2, and P3 of Fig. 4 (here ε denotes the
empty word.) Note that the only visible transitions are those corresponding to
call and return actions. A history of P is a sequence of form a1a2 · · · an, such that
there is a sequence c0

a1−→Pc1
a2−→P · · · cn−1

an−−→Pcn of transitions from the initial
configuration c0 = cP

init. We define H (P) to be the set of histories of P. We say
that P is linearizable wrt. DS if the set H (P) is linearizable wrt. DS.
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Controllers. The controller of a thread th induces a transition relation −→cntrl(th),
which depends on the current view view of th. For an expression expr denoting
an operation, broadcast message, or condition, let view(expr) denote the result
of evaluating expr in the state view. For a predicate cnd , we let view |= cnd
denote that view(cnd) is true. Transitions are defined by the set RMethod(th)

of rules (Rth for short) associated with the method of th. Rule C1 describes
transitions induced by a triggered rule, and states that if cnd is true under
view, then the controller emits the operation obtained by instantiating op and
broadcasts the message obtained by instantiating se, according to view. Rule
C2 describes transitions induced by receiving a message e′, and states that if
re equals the value of e′ in view, and cnd evaluates to true in view, then the
operation view(op) is emitted. In both cases, the controller also emits to the
observer the identity th of the thread. This identity will be used for bookkeeping
by the monitor (see below.)

Augmented Threads. An augmented view 〈q, loc,H〉 extends a view 〈loc,H〉
with a state q of the controller. We define a transition relation −→aug(th) over
augmented views that describes the behavior of a thread th when augmented
with its controller. For a label λ of a statement we write λ• to denote that
the corresponding statement is triggered. Rule TC1 states that a non-triggered
statement by the thread does not affect the state of the controller, and does not
emit or broadcast anything. Rule TC2 states a return action by the thread. Rule
TC3 states that when the thread th performs a triggered statement, then the
controller will emit an operation to the observer and broadcast messages to the
other threads. The reception of broadcast messages will be described in Rule R.

Augmented Programs. An augmented program Q is obtained from a program P
by augmenting each thread with its controller. A configuration c of Q is a tuple
〈T, Q, LOC,H〉, which extends a configuration of P by a controller state mapping,
Q, which maps each thread th ∈ T to the state of its controller. We define
the size |c| = |T| and define ThreadsOf (c) = T. We use CQ to denote the set of
configurations of Q. Transitions of Q are performed by the threads in T. The rule
Q1 describes return action or a non-triggered statement in which only its local
state and the heap may change. Rule Q2 describes the case where a thread ths

executes a triggered statement and hence also broadcasts a message to the other
threads. Before describing this rule, we describe the effect of message reception.
Consider a set T of threads, a heap H, a controller state mapping Q over T, and
a local state mapping LOC over T wrt. H. We will define a relation that extracts
the set of threads in T that can receive e from ths. For ord ∈ {before, after},
define enabled (T, Q, LOC,H, e, ord, ths) to be the set of threads th ∈ T such that
(i) th 
= ths, i.e., a receiver thread should be different from the sender thread,

and (ii) 〈LOC(th),H〉 : Q(th)
〈th,op〉|〈e,ord〉?−−−−−−−−−−→cntrl(th)q

′ for some q′ and op, i.e., the
controller of th has an enabled receiving rule that can receive e, with the ordering
flag given by ord. The rule R describes the effect of receiving a message that has
been broadcast by a sender thread ths. Each thread that can receive the message
will do so, and the thread potentially will all change their controller state and
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idle, H (th,m,din)↓−−−−−−−→th locthinit, H

T, LOC, H (th,m,din)↓−−−−−−−→P T, LOC[th ← locthinit], H
P1

loc, H (th,m,dout)↑−−−−−−−→th term, H

T, LOC, H (th,m,dout)↑−−−−−−−→P T, LOC[th ← term], H
P2

loc, H λ−→th loc , H
T, LOC, H ε−→P T, LOC[th ← loc ], H

P3

view |= cnd , m(din , dout) = view(op) , e = view(se) ,
(from q when • provided cnd emit op broadcast se goto q ) ∈ Rth

C1

view : q
th,m(din ,dout ) |e!−−−−−−−−−−−→cntrl(th)q .

view |= cnd , m(din , dout) = view(op) , e = view(re) , (from q when re provided cnd emit op goto q ) ∈ Rth

C2

view : q
th,m(din ,dout ) | e ,ord ?−−−−−−−−−−−−−−−−→cntrl(th)q

loc, H λ−→th loc , H , ¬λ•
TC1

q, loc, H ε−→aug(th) q, loc , H

loc, H (th,m,dout)↑−−−−−−−→th loc , H
TC2

q, loc, H (th,m,dout)↑−−−−−−−→aug(th) q, loc , H

loc, H λ−→th loc , H , λ• , loc, H : q
th,op |e !−−−−−−→cntrl(th)q ,

TC3

q, loc, H th,op |e !−−−−−−→aug(th) q , loc , H

enabled (T, Q, LOC, H, e, ord, ths) = {th1, . . . , thn} , ∀i : 1 ≤ i ≤ n : LOC(thi), H : Q(thi)
thi,opi | e,ord ?−−−−−−−−−−−→thiqi

R
T/ths, LOC, H : Q

op1···opn| e,ord ?
Q[th1 ← q1, . . . , thn ← qn]

LOC(th) = loc , q, loc, H τ−→aug(th) q, loc , H , τ ∈ ε, th, m, dout ↑
Q1

T, Q, LOC, H τ−→Q T, Q, LOC[th ← loc ], H

q, loc, H ths,op |e!−−−−−−−→aug(ths) q , loc , H ,

T/ths, LOC, H : Q w1| e,before ?
Q , T/ths, LOC, H : Q w2| e,after ?

Q
Q2

T, Q, LOC, H w1• ths,op •w2−−−−−−−−−−→Q T, Q [ths ← q ], LOC[ths ← loc ], H
s, m(xin , xout), s ∈ ΔO , Val xin = din , Val xout = dout

O1

s, Val
th,m(din ,dout )−−−−−−−−−−→O s , Val

∀xin .xout .s . ¬ s, m(xin , xout), s ∈ ΔO ∧ Val xin = din ∧ Val xout = dout

O2

s, Val
th,m(din ,dout )−−−−−−−−−−→O s, Val

s, Val
m(din ,dout )−−−−−−−→O s, Val , Lin (th) ∈ {0, 1} , Method (th) = m

T, s, Val , Lin, RV
th,m(din ,dout )−−−−−−−−−−→M T, s, Val , Lin[th ← 1], RV[th ← dout ]

M1

s, Val
th,m(din ,dout )−−−−−−−−−−→O s , Val , s = s , Lin (th) ∈ {0, 1} , Method (th) = m

T, s, Val , Lin, RV
th,m(din ,dout )−−−−−−−−−−→M T, s , Val , Lin[th ← 2], RV[th ← dout ]

M2

c
th,m(din ,dout )−−−−−−−−−−→O sO

acc, Val

T, c, Lin, RV
th,m(din ,dout )−−−−−−−−−−→M error

M3
Lin (th) = 0

T, c, Lin, RV
(th,m,dout)↑−−−−−−−→M error

M4

Lin (th) = 2

T, c, Lin, RV
th,m(din ,dout )−−−−−−−−−−→M error

M5
RV (th) = dout

T, c, Lin, RV
(th,m,dout)↑−−−−−−−→M error

M6

error
e−→M error

M7

∀i : 0 ≤ i < n : ci
ei+1−−−→Mci+1

M8
c0

e1···en−−−−→Mcn

c1
w−→Qc1 , c2

w−→Mc2
QM

c1, c2 S c1, c2

Fig. 4. Inference rules of the semantics.
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emit an operation. Notice that the receiver threads are collected in a set and
therefore the rule allows any ordering of the receiving threads. We are now ready
to explain the rule Q2. The sender thread ths broadcast a message e2 that will be
received by other threads according to rule R. The sender thread and the receiver
threads, all emit operations (e1 and w respectively). Depending on the order
specified in the specification of the controller, a receiving thread may linearize
before or after ths. Notice that the receiver threads only change the local states of
their controllers and the state of the observer. An initial configuration of Q ∈ CQ

is of the form 〈T, Qinit, LOCinit,Hinit〉 where, for each th ∈ T, LOCinit (th) is the
initial state of the controller of th, and LOCinit (th) = idle.

Observers. Let O =
〈
SO, sO

init, X
O,ΔO, sO

acc

〉
. A configuration c of O is a pair

〈s, Val〉 where s ∈ SO is an observer state and Val assigns a value to each
register in O. We use CO to denote the set of configurations of O. The transition
relation −→O of the observer is described by the rules O1 and O2 of Fig. 4. Rule O1
states that if there is an enabled transition that is labeled by a given action then
such a transition may be performed. Rule O2 states that if there is no such a
transition, the observer remains in its current state. Notice that the rules imply
that the register values never change during a run of the observer. An initial
configuration of O ∈ CO is of the form

〈
sO
init, Val

〉
.

Monitors. The monitor M augments the observer. It keeps track of the observer
state, and the sequence of operations and call and return actions generated by
the threads of the augmented program. It reports an error if one of the following
happens: (i) a thread terminates without having linearized, (ii) the parameters
of call and return actions are different from those of the corresponding emitted
operation, (iii) a thread linearizes although it has previously changed the state
of the observer, or (iv) Q generates a trace which violates the specification of
the data structure DS. The monitor keeps track of these conditions as follows.
A configuration of M is either (i) a tuple 〈T, c, Lin, RV〉 where T is a set of threads,
c is an observer configuration, Lin : T 
→ {0, 1, 2}, and RV : T 
→ Z∪F; or (ii) the
special state error. For a thread th ∈ T, the values 0, 1, 2 of Lin (th) have the
following interpretations: 0 means that th has not linearized yet, 1 means that
th has linearized but not changed the state of the observer, and 2 means that th
has both linearized and changed the state of the observer. Furthermore, RV (th)
stores the value returned by th the latest time it performed a linearization. In
case c is of the first form, we define ThreadsOf (c) = T. We use CM to denote
the set of configurations of M. The rules M1 through M8 describe the transition
relation −→M induced by M. Rule M1 describes the scenario when the monitor
detects an operation m(din , dout) performed by a thread th such that O does not
change its state. In such a case, the flag Lin for th is updated to 1 (the thread
has linearized but not changed the state of the observer), and the latest value
dout returned by th is stored RV. Rule M2 is similar except that the observer
changes state and hence the flag Lin is updated to 2 for th. Notice that in
both rules, a premise is that th has not changed the observer state previously
(the flag Lin for th is different from 2.) Rules M3, M4, M5, and M6 describe the
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conditions (i), (ii), (iii), and (iv) respectively described above that lead to the
error state. The rule M7 describes the fact that the error state is a sink, i.e.,
once M enters that state then it will never leave it. Finally, rule M8 describes
the reflexive transitive closure of the relation −→M. An initial configuration of
M ∈ CM is of the form 〈T, cinit, Lininit, RVinit〉 where cinit ∈ cO

init is an initial
configuration of O, Lininit (th) = 0 and RVinit (th) is undefined for every thread
th ∈ T.

Product. We use S = Q⊗M to denote the system obtained by running Q
and M together. A (initial) configuration of S is of the form 〈c1, c2〉 where
c1 and c2 are (initial) configurations of Q and M respectively such that
ThreadsOf (c1) = ThreadsOf (c2). We use CS to denote the set of configura-
tions of S. The induced transition relation −→S is described by rule QM of Fig. 4.
Intuitively, in the composed systems, the augmented program and the moni-
tor synchronize through the actions they produce. For a configuration c ∈ CS ,
we define Post (c) = {c′ | c−→Sc′}. For a set C of system configurations, we
define Post (C) =

⋃
c∈C Post (c). We say that that error is reachable in S if

c−→S∗ 〈c′, error〉 for an initial configuration c of S and configuration c′ of Q.

Verifying Linearizability. The correctness of this approach is established in the
following theorem.

Theorem 1. If error is not reachable in S then P is linearizable wrt. DS.

Proof. To prove P is linearizable wrt. DS. We must establish that for any history
h of P, there exists a history h′ such that h′ is linearization of h and h′ is valid
wrt. DS. So, consider a history h of P. From Condition (i) in the paragraph
about monitors in Sect. 5, h is a complete history. Then from Conditions (ii)
and (iii), each action in h has a LP and whose call and return parameters are
consistent with the corresponding emitted operation by the controller. There-
fore, there exists a complete sequential history h′ which is a permutation of h
whose actions are ordered according to the order of their LPs in h. Therefore
h′ is linearization of h. From Condition (iv), h′ is valid wrt. DS. Therefore, h is
linearizable wrt. DS. ��

6 Thread Abstraction

By Theorem 1, linearizability can be verified by establishing a reachability prop-
erty for the product S = Q⊗M. This verification must handle the challenges
of an unbounded number of threads, an unbounded heap, and unbounded data
domain. In this section, we describe how we handle an unbounded number of
threads by adapting the thread-modular approach [3], and extending it to handle
global transitions where several threads synchronize, due to interaction between
controllers.

Let a heap cell c be accessible from a thread th if it is reachable (directly
or via sequence of next-pointers) from a global variable or local variable of th1.



76 P.A. Abdulla et al.

A thread abstracted configuration of S is a pair 〈cta, private〉, where cta ∈ CS

with ThreadsOf (cta) = {th1}, such that each cell in the heap of cta is accessi-
ble from th1 (i.e., the heap has no garbage), and where private is a predicate
over the cells in the heap of cta. For a system configuration cS , let αthread

(
cS)

be the set of thread abstracted configurations 〈cta, private〉, such that (i) cta

can be obtained by removing all threads from cS except one, renaming that
thread to th1, and thereafter removing all heap cells that are not accessible
from th1, (ii) private(c) is true iff in cS , the heap cell c is accessible only from
the thread that is not removed. For a set C of system configurations, define
αthread (C) =

⋃
cS∈C αthread

(
cS)

. Conversely, for a set C of thread abstracted
configurations, define γthread (C) =

{
cS | αthread({C}) ⊆ C

}
. Define the post-

condition operation Postta on sets of thread abstracted configurations in the
standard way by Postta (C) = αthread(Post (γthread(C))). By standard argu-
ments, Postta then soundly overapproximates Post.
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Fig. 5. Example of (a) heap state of Lazy Set algorithm, (b) its thread-abstracted
version, and (c) symbolic version. The observer register x has value 9.

In Fig. 5 (a) is a possible heap state of the Lazy Set algorithm of Fig. 2.
Each cell contains the values of val, mark, and lock from top to bottom, where
✔ denotes true, and ✗ denotes false (or free for lock). There are three threads,
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1, 2, and 3 with pointer variable p[i] of thread i labeling the cell that it points
to. The observer register x has value 9. Figure 5 (b) shows its thread abstraction
onto thread 1.

We observe that the concretization of a set of abstract configurations is a set
of configurations with arbitrary sizes. However, as we argue below, it is sufficient
to only consider such sizes up to 3 · (#O) + 2. The reason is that the thread
abstraction encodes, for an arbitrary thread th, its view, i.e., its local state, the
state of the heap, and the observer. In order to preserve soundness, we need
not only to consider the transitions of th, but also how the transitions of other
threads may change the states of the heap and the observer. Suppose that a
different thread th′ performs a transition. We consider two cases depending on
whether th′ sends a broadcast message or not. If not, it is sufficient for th to
see how th′ alone changes the heap and the observer. If th′ sends a message an
arbitrary number of threads may receive it. Now note that only th′ may change
the heap, while the receivers only change the state of the observer (Sect. 5). Also
note that the values of the observer registers never change. The total effect is that
th′ may change the state of the heap, while the other threads only change the
state of the observer. Any such effect can be accomplished by only considering
at most 3 · (#O)+2 threads. The diameter #O of O is the length of the longest
simple path in O. Formally, define γk

thread (C) = {c | (c ∈ γthread (C)) ∩ |c| ≤ k},
i.e., it is the set of configurations of in the concretization of C with at most k
threads.

Lemma 1. For a set of abstract configurations C, we have Postta(C) =
αthread

(
Post

(
γk
thread (C)

))
where k = 3 · (#O) + 2.

As we mentioned above, when we perform helping transitions, the only effect
of receiver threads is to change the state of the observer. When the receivers do
not change the observer to a non-accepting state, we say that the transition is
stuttering wrt. the observer. The system S is stuttering if all helping transitions of
S are stuttering. This can be verified by a simple syntactic check of the observer
and controller. In all the examples we have considered, the system turns out
to be stuttering. For instance, the receiver threads in the Lazy Set algorithm
are all performing stuttering ctn operations. Hence, the concretization needs
only consider the sender thread, together with the thread whose view we are
considering, reducing the number of threads to two.

Lemma 2. For a set abstract configurations C of S, if S is stuttering, then
Postta(C) = αthread

(
Post

(
γ2
thread (C)

))
.

7 Symbolic Shape and Data Abstraction

This section describes how we handle an unbounded heap and data domain in
thread-abstracted configurations. We assume that each heap cell contains exactly
one Z-field.

The abstraction of thread-abstracted configurations we use is a variation of
a well-known abstraction of singly-linked lists [19]. We explicitly represent only
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a finite subset of the heap cells, called the relevant cells. The remaining cells are
summarized into linked-list segments of arbitrary length. Thus, we intuitively
abstract the heap into a graph-like structure, whose nodes are relevant cells, and
whose edges are the connecting segments. More precisely, a cell c (in a thread-
abstracted configuration) is relevant if it is either (i) pointed to by a (global or
local) pointer variable, or (ii) the value of c1.next and c2.next for two different
cells c1, c2 ∈ C, one of which is reachable from some global variable, or (iii) the
value of c′.next for some cell c′ ∈ C such that private(c′) but ¬private(c).
Each relevant cell is connected, by a linked-list segment, to a uniquely defined
next relevant cell. For instance, the thread abstracted heap in Fig. 5(b) has 5
relevant cells: 4 cells that are pointed to by variables (Head, Tail, p[1], and
c[1]) and the cell where the lower list segment meets the upper one (the sec-
ond cell in the top row). The corresponding symbolic representation, shown in
Fig. 5(c), contains only the relevant cells, and connects each relevant cell to its
successor relevant cell. Note that the cell containing 4 is not relevant, since it is
not globally reachable. Consequently, we do not represent the precise branching
structure among cells that are not globally reachable. This is an optimization to
limit the size of our symbolic representation.

Our symbolic representation must now represent (A) data variables and data
fields of relevant cells, and (B) data fields of list segments. For (A) we do as
follows.

1. Each data and lock variable, and each data and lock field of each relevant
cell, is mapped to a domain which depends on the set of values it can assume:
(i) variables and fields that assume values in F are mapped to F, (ii) lock
variables and fields are mapped to {th1, other , free}, representing whether
the lock was last acquired by th1, by another thread, or is free, (iii) variables
and fields that assume values in Z are mapped to [XO 
→ {=, 
=}], representing
for each observer register x ∈ XO, whether or not the value of the variable or
field equals the value of x.

2. Each pair of variables or fields that assume values in Z is mapped to a subset
of {<,=, >}, representing the set of possible relations between them.=

For (B), we define a domain of path expressions, which capture the following
information about a segment.

– The possible relations between adjacent Z-fields in the heap segment, repre-
sented as a subset of {<,=, >}, e.g., to represent that the segment is sorted.

– The set of observer registers whose value appears in some Z-field of the seg-
ment. For these registers, the path expression provides (i) the order in which
the first occurrence of their values appear in the segment; this allows, e.g.,
to check ordering properties between data values for stacks and queues, and
(ii) whether there is exactly one, or more than one occurrence of their value.

– For each data and lock field, the set of possible values of that field in the
heap segment, represented as a subset of the domain defined in case 1 above.
This subset is provided both for the cells whose Z-field is not equal to any
observer register, and for the cells whose Z-field is equal to each observer
register.
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To illustrate, in Fig. 5(c), each heap segment is labeled by a representation of
its path expression. The first component of each path expression is {<}, i.e.,
the segment is sorted. The path expression at the top right has as its second
component the sequence x1, expressing that there is exactly one cell whose Z-
field has the same value as the observer register x. The row x : [{✔} , {✗}]
expresses that the cells whose Z-value is equal to that of x, have their mark field
true, and their lock field free. The row 
=: [{✗} , {✗}] expresses that the other
cells have their mark field false, and their lock field free. The two lower path
expressions express that no cell has a value equal to that of x, and summarize
the possible values of fields.

The symbolic representation combines the above described shape and data
representations, representing thread-abstracted configurations by symbolic config-
urations. These are tuples of form Φ = 〈I, Valv, nextrel, π, Vald, Valr, private〉,
where

– I is a finite set of indices, denoting the relevant cells of the heap,
– Valv maps each (global or local) pointer variable to an index in I,
– nextrel maps each index i to I ∪ {null,⊥},
– π maps each index i to a path expression; intuitively, if the index i represents

the relevant cell c, then nextrel(i) represents the next relevant cell, and
π(i) summarizes the heap segment between c and the cell represented by
nextrel(i),

– Vald maps data variables and fields of relevant cells to appropriate domains,
and Valr maps pair of those that assume values in Z to a subset of {<,=, >}.

– private is a predicate on indices.

We define a satisfaction relation between thread-abstracted and symbolic config-
urations. A symbolic representation Ψ is a set of symbolic configurations. A set
of thread-abstracted configurations then satisfies a symbolic representation Ψ if
each of its thread-abstracted configuration satisfies some symbolic configuration
in Ψ.

Symbolic Postcondition Computation. It remains to define a symbolic post oper-
ation Postsymb on symbolic representations that reflects Postta on sets of thread-
abstracted configurations. Given a set Ψ of symbolic configurations representing
possible views of single threads, it first generates all ways of merging them to
symbolic representations of combined views of k threads; thereafter comput-
ing their postconditions wrp. to the next statement in each thread; and finally
projecting the results onto each of the k participating threads. As follows from
Lemmas 1 and 2, it is sufficient to consider only bounded values of k, and indeed
k = 2 is sufficient for all examples that we considered.

8 Experimental Results

Based on our framework, we have implemented a tool in OCaml, and used it for
verifying 19 concurrent algorithms (both lock-based and lock-free) including two
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Fig. 6. Experimental Results for verifying concurrent programs

stacks, five queues, nine ordered sets, one unordered set and two CAS algorithms.
The user needs to provide the program code and the set of controllers. The
experiments were performed on a desktop 2.8 GHz processor with 8 GB memory.
The results are presented in Fig. 6, where running times are given in seconds.
Figure 6(a) provides the verification results for all algorithms except for HW
queue with provided linearization policies, using the technique of controllers
introduced in the paper. Figure 6(b) provides the verification results for queues
and stack without LP placement, using the technique adapted from [4,15]. All
experiments start from the initial heap, and end either when the analysis reaches
the fixed point or when a violation of linearizability is detected.

Helping. The algorithms marked by � use helping. We run some of the algo-
rithms with two different helping patterns (such as the ones described in Sect. 3),
and report the execution time for each.

Arrays. Our tool does not currently support arrays, and hence we have trans-
formed arrays to singly-linked lists in the algorithms that use the former.

Safety Properties. Our tool is also capable of verifying memory related safety
properties such as the absence of null pointer dereferencing, dangling pointers,
double-freeing, cycles, and dereferencing of freed nodes, as well as sortedness. In
fact, for each algorithm, the time reported in Fig. 6 is the sum of the times taken
to show linearizability and all the properties mentioned above.

Running Times. As can be seen from the table, the running times vary in the
different examples. This is due to the types of shapes that are produced during
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the analysis. For instance, the CCAS, RDCSS, stack and queue algorithms with-
out an elimination produce simple shape patterns and hence they have shorter
running times. Several features may make shapes more complex, such as inser-
tion/removal of elements in the middle of a list in the ordered set algorithms,
and having two linked lists (instead of one) in the elimination queue and stack
algorithms. Also, the unordered set algorithm generates complex shapes since it
allows physically removed elements to re-appear in the set.

Error Detection. In addition to establishing correctness of the original versions
of the benchmark algorithms, we tested our tool with intentionally inserted bugs.
For example, we emitted broadcast messages in the controllers or inserted bugs
into the codes of algorithms. In all cases, the tool, as expected, successfully
detected and reported the bug. In the Lazy Set algorithm, when we emitted rule
ρ7 in Fig. 3, the tool reported an error. As another example, when we removed
the statement in line 4 of the add method in the Lazy Set algorithm, the tool
also reported an error.

9 Conclusions

We have presented a uniform framework for automatically verifying linearizabil-
ity of singly-linked list-based concurrent implementations of sets, stacks, and
queues, annotated with linearization policies. Our contributions include a novel
formalism for specifying linearization policies with non-fixed LPs, an extension of
thread-modular reasoning, and an extension of existing symbolic representations
of unbounded singly-linked-list structures containing data from an unbounded
domain. We have verified all linearizable singly-linked list-based implementations
known to us in the literature. In the future, we intend to extend the framework
to more complex data structures.
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In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9207, pp. 3–19.
Springer, Heidelberg (2015)


	Automated Verification of Linearization Policies
	1 Introduction
	2 Data Structures, Observers, and Linearizability
	3 Programs
	4 Linearization Policies
	5 Semantics
	6 Thread Abstraction
	7 Symbolic Shape and Data Abstraction
	8 Experimental Results
	9 Conclusions
	References


