
Quantitative Monitor Automata

Krishnendu Chatterjee1(B), Thomas A. Henzinger1, and Jan Otop2

1 IST Austria, Klosterneuburg, Austria
krish.chat@gmail.com

2 University of Wroclaw, Wroclaw, Poland

Abstract. In this paper we review various automata-theoretic for-
malisms for expressing quantitative properties. We start with finite-state
Boolean automata that express the traditional regular properties. We
then consider weighted ω-automata that can measure the average den-
sity of events, which finite-state Boolean automata cannot. However, even
weighted ω-automata cannot express basic performance properties like
average response time. We finally consider two formalisms of weighted
ω-automata with monitors, where the monitors are either (a) counters
or (b) weighted automata themselves. We present a translation result to
establish that these two formalisms are equivalent. Weighted ω-automata
with monitors generalize weighted ω-automata, and can express aver-
age response time property. They present a natural, robust, and expres-
sive framework for quantitative specifications, with important decidable
properties.

1 Introduction

In this work we review various automata-theoretic formalisms for express-
ing quantitative properties. We start with the motivation for quantitative
properties.1

Traditional to quantitative verification. The traditional formal verification prob-
lem considers Boolean or functional properties of systems, such as “every request
is eventually granted”. For analysis of resource-constrained systems, such as
embedded systems, or for performance analysis, quantitative properties are nec-
essary. Hence recently significant research activities have been devoted to quan-
titative aspects such as expressing properties like “the long-run average success

This research was supported in part by the Austrian Science Fund (FWF) under
grants S11402-N23 (RiSE/SHiNE) and Z211-N23 (Wittgenstein Award), ERC Start
grant (279307: Graph Games), Vienna Science and Technology Fund (WWTF)
through project ICT15-003 and by the National Science Centre (NCN), Poland under
grant 2014/15/D/ST6/04543.

1 We use the term “quantitative” in a non-probabilistic sense, which assigns a quantita-
tive value to each infinite run of a system, representing long-run average or maximal
response time, or power consumption, or the like, rather than taking a probabilistic
average over different runs.

c© Springer-Verlag GmbH Germany 2016
X. Rival (Ed.): SAS 2016, LNCS 9837, pp. 23–38, 2016.
DOI: 10.1007/978-3-662-53413-7 2

24 K. Chatterjee et al.

rate of an operation is at least one half” or “the long-run average (or the maxi-
mal, or the accumulated) resource consumption is below a threshold”.

Automata-based properties. Automata have been one of the standard ways to
express specifications of system properties. For example, for Boolean properties,
automata provide a robust way to express all ω-regular properties [28], and all
formulas expressed in Linear-time Temporal Logic (LTL) can be translated to
finite-state ω-automata [26]. We review in this paper various automata-based
frameworks to express quantitative properties.

Natural ways for extension. The first natural way to express quantitative prop-
erties is to consider automata with counters. However, computational analysis
of such models quickly leads to undecidability (such as two-counter machines),
and a classical way to limit expressiveness for decidability is to consider monitor
counters, i.e., the counter values do not influence the control. The second app-
roach is to consider automata with weights (or weighted automata). We describe
below various approaches that explore the two above possibilities.

Weighted automata over finite words. The first extension of automata with
weights was considered as weighted automata over finite words, where the
weights come from a semiring [22]. The weighted automata framework for exam-
ple can express the worst-case execution time, where every transition is labeled
with a weight that represents the instruction execution time, and the automa-
ton can choose the supremum over all traces. The weighted automata framework
has been significantly enhanced as cost register automata [2]. However, both the
weighted automata and the cost register automata framework are restricted to
finite words only. In this work we focus on automata over infinite words.

Weighted ω-automata. The counterpart of weighted automata for infinite words is
called weighted ω-automata (also referred to as quantitative automata in [14]). In
weighted ω-automata, which extend finite automata, every transition is assigned
a rational number called a weight. Hence every run gives rise to an infinite
sequence of weights, which is aggregated into a single value by a value function.
For non-deterministic weighted ω-automata, the value of a word w is the infimum
value of all runs over w. Weighted ω-automata provide a natural and flexible
framework for expressing quantitative properties [14]. For example, the property
of long-run average of the ratio of requests to grants can be expressed with
weighted ω-automata, but not weighted automata over finite words. However,
even weighted ω-automata cannot express the following basic property [18].

Example 1. Consider infinite words over {req, gra,#}, where req represents
requests, gra represents grants, and # represents idle. A basic and interesting
property is the average number of #’s between a request and the correspond-
ing grant, which represents the long-run average response time of the system.
We consider two variants: first, when at any point at most one request can be
pending, and in general, arbitrarily many requests can be pending.

Weighted automata with monitors. To express quantitative properties such as
average response time, weighted ω-automata can be extended with monitors.

Quantitative Monitor Automata 25

The monitors can be of two types: (a) counters; and (b) weighted automata over
finite words. We explain the two approaches below.

Automata with monitor counters. Automata with monitor counters are similar
in spirit to cost register automata, but for infinite words. They are automata
equipped with counters. At each transition, a counter can be started, termi-
nated, or the value of the counter can be increased or decreased. However, the
transitions do not depend on the counter values, and hence they are referred to
as monitor counters. The values of the counters when they are terminated give
rise to the sequence of weights. A value function aggregates the infinite sequence
into a single value. Automata with one monitor counter can express the average
response time property with at most one request pending (in general at most k
requests pending with k counters), which weighted ω-automata cannot.

Nested weighted automata. The second way to enrich expressiveness of weighted
ω-automata is to consider weighted automata over finite words as monitors. This
gives rise to the framework of nested weighted automata (NWA) [18]. An NWA
consists of a master automaton and a set of slave automata. The master automa-
ton runs over input infinite words. At every transition the master can invoke a
slave automaton that runs over a finite subword of the infinite word, starting
at the position where the slave automaton is invoked. Each slave automaton
terminates after a finite number of steps and returns a value to the master
automaton. Each slave automaton is equipped with a value function for finite
words, and the master automaton aggregates the returned values from slave
automata using a value function for infinite words. In other words, the slave
automata are weighted automata over finite words, whereas the master automa-
ton is an weighted ω-automaton. For Boolean finite automata, nested automata
are equivalent to the non-nested counterpart, whereas NWA are strictly more
expressive than non-nested weighted ω-automata [18], for example, NWA can
express the long-run average response time property (see [18, Example 5]). The
NWA framework provides a specification framework where many basic quan-
titative properties, that cannot be expressed by weighted ω-automata, can be
expressed easily, and it provides a natural framework to study quantitative run-
time verification (see [18, Sect. 5]). NWA can express the average response time
property with any number of requests pending.

The relationship. We establish a close relationship between NWA and automata
with monitor counters. More precisely, we show that automata with monitor
counters form a special class of NWA. An NWA has width k if at any point
at most k slave automata can be active. An NWA with bounded width is an
automaton that has width at most k, for some k. We show that the class of
automata with monitor counters exactly coincides with the class of NWA with
bounded width. Thus the two different ways of adding monitors to weighted
ω-automata coincide and give a robust formalism for quantitative specifications.
Note that NWA in general allow to have unbounded number of monitor counters,
and are more interesting as a theoretical framework, and also more challenging
to establish decidability results.

26 K. Chatterjee et al.

Decidability results. Finally, several interesting computational problems for NWA
are decidable [18]. For example, for a subclass of NWA that can express the
average response time property, the fundamental automata theoretic questions
of emptiness and universality are decidable [18, Theorem 15].

Summary. In summary, NWA provide a natural, expressive, and robust specifica-
tion framework for quantitative properties: it is a natural extension of weighted
ω-automata with nesting, which can express basic performance properties such
as average response time, and robust since two different formalisms of moni-
tors lead to the same expressive power. Moreover, it enjoys nice computational
aspects, such as decidability of the basic questions. A pictorial description of the
landscape of the various automata theoretic formalisms to express quantitative
properties is shown in Fig. 1.

Finite-state automata

Weighted automata

Weighted ω-automataCost register automata

≡Automata with
monitor counters

NWA of
bounded width

NWA

Weight extension

ω-extension
Register extension

(counters)

ω-extension Nesting extension

Unbounded extension

Fig. 1. An overview of the automata models discussed in this paper. The arrows are
labeled with a new feature introduced by a more general model, i.e., assigning values to
words (weight extension), allowing infinite words (ω-extension), allowing counter moni-
tors (register extension), allowing nesting (nesting extension), and allowing unbounded
number of monitors (unbounded extension).

Related works. While in this work we focus on weighted automata for infinite
words, we briefly mention the other related works. Weighted automata over
finite words (see the book [22] for an excellent collection of results) as well as

Quantitative Monitor Automata 27

infinite words without monitors [13,14,23] have been extensively studied. The
extension to weighted automata with monitor counters over finite words has
been considered as cost register automata in [2]. A version of NWA over finite
words has been studied in [6]. NWA over infinite words were introduced in [18].
NWA with bounded width have been studied in [16]. Several quantitative logics
have also been studied, such as [1,5,7]. While we will consider the basic decision
problems of emptiness and universality for weighted ω-automata, the study of
quantitative properties on other models (such as probabilistic models) or other
semantics (like probabilistic semantics) have also been studied extensively [3,4,
8–11,15,17,19,20,24,25,27].

2 Finite State Automata

In this section we consider Boolean finite-state automata to express qualitative
(i.e., functional or regular) properties.

Words. We consider a finite alphabet of letters Σ. A word over Σ is a (finite
or infinite) sequence of letters from Σ. We denote the i-th letter of a word w
by w[i]. The length of a finite word w is denoted by |w|; and the length of an
infinite word w is |w| = ∞.

Automata. An automaton A is a tuple 〈Σ,Q,Q0, δ, F 〉, where (1) Σ is the
alphabet, (2) Q is a finite set of states, (3) Q0 ⊆ Q is the set of initial states,
(4) δ ⊆ Q×Σ ×Q is a transition relation, and (5) F is a set of accepting states,
An automaton 〈Σ,Q, q0, δ, F 〉 is deterministic if and only if δ is a function from
Q × Σ into Q and Q0 is a singleton. In definitions of deterministic automata we
omit curly brackets in the description of Q0 and write 〈Σ,Q, q0, δ, F 〉.
Semantics of automata. A run π of an automaton A on a word w is a sequence
of states of A of length |w|+1 such that π[0] belong to the initial states of A and
for every 0 ≤ i ≤ |w|−1 we have (π[i], w[i], π[i+1]) is a transition of A. A run π
on a finite word w is accepting iff the last state π[|w|] of the run is an accepting
state of A. A run π on an infinite word w is accepting iff some accepting state
of A occurs infinitely often in π. For an automaton A and a word w, we define
Acc(w) as the set of accepting runs on w. Finally, we define a language recognized
by an automaton A as the set of words w such that Acc(w) �= ∅.

Example 2 (Responsiveness). We consider a system with three types of events:
requests (req), grants (gra) and null instructions (#). We consider the following
specifications express that the system is responsive:

SB1 G(req → ¬reqUgra): requests and grants are organized in non-overlapping
pairs

SB2 G(req → Fgra): every request is followed by a grant,
SB3 GFreq → GFgra: if infinite number of request is issued, the system issues

infinitely many grants

28 K. Chatterjee et al.

The above properties are ordered from the strongest to the weakest, i.e., the
first property implies the second and the second implies the third. The converse
implications do not hold.

Every LTL formula ϕ can be translated to a Büchi automaton, which recog-
nize words satisfying ϕ. In particular, properties SB1, SB2 and SB3 can be
expressed by automata presented in Fig. 2.

SB1

#, gra #
req

gra

SB2

#, gra #, req
req

gra

SB3

∗
∗
∗

#, gra

∗
∗

gra

Fig. 2. Finite-state automata expressing properties SB1, SB2 and SB3. Double circles
denote accepting states, the state the most to the left is an initial state and ∗ denotes
all letters req, gra, #.

Results. A basic question for automata is the language emptiness (resp., univer-
sality) problem that asks whether there exists a word that is accepted (resp., all
words are accepted). The emptiness problem is NLOGSPACE-complete whereas
the universality problem is PSPACE-complete [28].

3 Weighted Automata

In this section we present weighted automata over finite words and infinite words.
We call weighted automata over infinite words as weighted ω-automata (which
was originally called quantitative automata [14]). For brevity, if it is clear from the
context that we consider infinite words, then we simply use weighted automata
instead of weighted ω-automata. These automata assign numbers to words, and
hence can express quantitative properties such as workload of a system. The
following definitions are common for finite- and infinite-word automata.

Labeled automata. For a set X, an X-labeled automaton is an automaton
extended by a function C assigning elements of X to transitions of A. Formally,
X-labeled automaton A is a tuple 〈Σ,Q,Q0, δ, F, C〉, where 〈Σ,Q,Q0, δ, F 〉 is
an automaton and C : δ
→ X is a labeling function.

Weighted automata. A weighted automaton is a Z-labeled automaton, where
Z is the set of integers. The labels are called weights.

Semantics of weighted automata. We define the semantics of weighted
automata in two steps. First, we define the value of a run. Second, we define
the value of a word based on the values of its runs. To define values of runs, we
will consider value functions f that assign real numbers to sequences of integers.

Quantitative Monitor Automata 29

Given a non-empty word w, every run π of A on w defines a sequence of weights
of successive transitions of A, i.e., C(π) = (C(π[i − 1], w[i], π[i]))1≤i≤|w|; and
the value f(π) of the run π is defined as f(C(π)). We denote by (C(π))[i] the
weight of the i-th transition, i.e., C(π[i−1], w[i], π[i]). The value of a non-empty
word w assigned by the automaton A, denoted by LA(w), is the infimum of the
set of values of all accepting runs; i.e., infπ∈Acc(w) f(π), and we have the usual
semantics that the infimum of an empty set is infinite, i.e., the value of a word
that has no accepting run is infinite. Every run π on an empty word has length
1 and the sequence C(π) is empty, hence we define the value f(π) as an external
(not a real number) value ⊥. Thus, the value of the empty word is either ⊥, if
the empty word is accepted by A, or ∞ otherwise. To indicate a particular value
function f that defines the semantics, we will call a weighted automaton A an
f -automaton.

Value functions. We will consider the classical functions and their natural vari-
ants for value functions. For finite runs we consider the following value functions:
for runs of length n + 1 we have

1. Max and min: Max(π) = maxn
i=1(C(π))[i] and Min(π) = minn

i=1(C(π))[i].
2. Sum and absolute sum: the sum function Sum(π) =

∑n
i=1(C(π))[i] and the

absolute sum Sum+(π) =
∑n

i=1 Abs((C(π))[i]), where Abs(x) is the absolute
value of x.

We denote the above class of value functions for finite words as FinVal =
{Max,Min,Sum,Sum+}. For infinite runs we consider:

1. Supremum and Infimum, and Limit supremum and Limit infimum: Sup(π) =
sup{(C(π))[i] : i > 0}, Inf(π) = inf{(C(π))[i] : i > 0}, LimSup(π) =
lim sup{(C(π))[i] : i > 0}, and LimInf(π) = lim inf{(C(π))[i] : i > 0}.

2. Limit average: LimAvg(π) = lim sup
k→∞

1
k · ∑k

i=1(C(π))[i].

We denote the above class of value functions for infinite words as InfVal =
{Sup, Inf,LimSup,LimInf,LimAvg}.

Example 3 (Workload). Recall the setting of requests and grants from Example 2
and properties regarding responsiveness of the system. However, property 1 is
satisfied by a trace reqgrareq2gra . . . reqigra . . . in which the average number of
requests per grant tends to infinity. Property 1 implies the long-time average of
requests per grant is 1, but it is much stronger as it requires a pending request
to be matched with a grant before a new request can be issued. With LimAvg-
automata we can specify the workload of the system, which is defined as the
long-term average of difference between requests and grants.

Results. The classical decision questions for automata, emptiness and universal-
ity have their counterparts in the quantitative framework. The emptiness (resp.,
universality) problem that asks, given a weighted automaton and a threshold,
whether there exists a word whose value does not exceed the threshold (resp., val-
ues of all words do not exceed the threshold). The complexity of these problems

30 K. Chatterjee et al.

depends on the value function. For the finite words, a comprehensive account of
the results is available in [22]. Below we discuss the results for infinite words.
For the considered values functions, the emptiness problem is in PTIME [14,
Theorem 3], whereas complexity of the universality problem ranges between
PSPACE-complete [14, Theorem 7] and undecidable ([12, Theorem 5] which fol-
lows from [21, Theorem 4]).

4 Automata with Monitor Counters

In this section we consider automata with monitor counters, which extend
weighted ω-automata.

Automata with monitor counters. An automaton with n monitor counters
Am-c is a tuple 〈Σ,Q,Q0, δ, F 〉 where (1) Σ is the alphabet, (2) Q is a finite
set of states, (3) Q0 ⊆ Q0 is the set of initial states, (4) δ is a finite subset of
Q × Σ × Q × (Z ∪ {s, t})n called a transition relation, (each component refers
to one monitor counter, where letters s, t refer to starting and terminating the
counter, respectively, and the value from Z is the value that is added to the
counter), and (5) F is the set of accepting states. Moreover, we assume that
for every (q, a, q′,u) ∈ δ, at most one component in u contains s, i.e., at most
one counter is activated at each position. Intuitively, the automaton Am-c is
equipped with n counters. The transitions of Am-c do not depend on the values
of counters (hence, we call them monitor counters); and every transition is of the
form (q, a, q′,v), which means that if Am-c is in the state q and the current letter
is a, then it can move to the state q′ and update counters according to v. Each
counter is initially inactive. It is activated by the instruction s, and it changes
its value at every step by adding the value between −N and N until termination
t. The value of the counter at the time it is terminated is then assigned to the
position where it has been activated. An automaton with monitor counters Am-c

is deterministic if and only if Q0 is a singleton and δ is a function from Q × Σ
into Q × (Z ∪ {s, t})n.

Semantics of automata with monitor counters. A sequence π of elements
from Q×(Z×{⊥})n is a run of Am-c on a word w if (1) π[0] = 〈q0,⊥〉 and q0 ∈ Q0

and (2) for every i > 0, if π[i − 1] = 〈q,u〉 and π[i] = 〈q′,u′〉 then Am-c has a
transition (q, w[i], q′,v) and for every j ∈ [1, n] we have (a) if v[j] = s, then u[j] =
⊥ and u′[j] = 0, (b) if v[j] = t, then u[j] ∈ Z and u′[j] = ⊥, and (c) if v[j] ∈ Z,
then u′[j] = u[j]+v[j]. A run π is accepting if some state from F occurs infinitely
often on the first component of π, infinitely often some counter is activated
and every activated counter is finally terminated. An accepting run π defines a
sequence πW of integers and ⊥ as follows: let the counter started at position i
be j, and let the value of the counter j terminated at the earliest position after
i be xj , then πW [i] is xj . The semantics of automata with monitor counters is
given, similarly to weighted ω-automata, by applying the value function to πW .

More general counter operations. In our framework, the counter operations
we allow are: activation, adding an integer, and termination. More generally,

Quantitative Monitor Automata 31

we can allow other operations such as terminating a counter and discarding its
value, or adding the value of one counter to another and terminating it. These
operations are similar in spirit to the operations on registers with the copyless
restriction in the cost register automata [2]. In [2] it has been shown that the
copyless sum of registers can be eliminated using a variant of the subset construc-
tion. We can apply this construction to our framework, and this more general
operations do not add expressive power as compared to the basic operations
that we consider. Hence for simplicity, and ease of establishing equivalence with
other models, we consider the basic and fundamental set of counter operations
for automata with monitor counters.

q0 q1 q2 q3

(#,s,0) (#,0,s)

(a,1,-1)

(#,0,0)

(a,-1,1)

(#,t,t)

Fig. 3. The automaton Adiff computing the maximal difference between the lengths of
blocks of a’s at odd and the following even positions.

Example 4 (Blocks difference [16]). Consider an alphabet Σ = {a,#} and a lan-
guage L of words (#2a∗#a∗#)ω. On the words from L we consider a quantitative
property “the maximal block-length difference between odd and even positions”,
i.e., the value of word #2am[1]#am[2]#3 . . . is sup0≤i |m[2 ∗ i + 1] − m[2 ∗ i + 2]|.
This property can be expressed by a Sup-automaton Adiff with two monitor
counters depicted in Fig. 3.

The automaton Adiff has a single initial state q0, which is also the only
accepting state. It processes the word w in subwords #2ak#am# in the following
way. First, it reads #2 upon which it takes transitions from q0 to q1 and from q1

to q2, where it starts counters 1 and 2. Next, it moves to the state q2 where it
counts letters a incrementing counter 1 and decrementing counter 2. Then, upon
reading #, it moves to q3, where it counts letters a, but it decrements counter 1
and increments counter 2. After reading #2ak#am the value of counter 1 is k−m
and counter 2 is m − k. In the following transition from q3 to q0, the automaton
terminates both counters. The aggregating function of Adiff is Sup, thus the
automaton discards the lower value, i.e., the value of #2ak#am# is |k −m| and
the automaton computes the supremum over values of all blocks. It follows that
the value of #2am[1]#am[2]#3 . . . is sup0≤i |m[2 ∗ i + 1] − m[2 ∗ i + 2]|.
Example 5 ((Well-matched) average response time). Consider a system from
Examples 2 and 3 and assume that it satisfies property SB1, i.e., at every position
there is at most one pending request. Then, an automaton with a single monitor
counter can compute the average response time (ART) property, which asks for
the long-run average over requests of the number of steps between a request
and the following grant. E.g. ART of the trace (req##grareq#gra)ω is 1.5.

32 K. Chatterjee et al.

Note that ART of a word can be unbounded, whereas weighted ω-automata with
the limit average value function return values which are bounded by the value of
the maximal weight in the automaton. Therefore, the ART property cannot be
expressed by weighted ω-automata with the limit average value function or any
other value function considered in the literature. Below, we define an automaton
with monitor counters, which expresses a more general property.

We consider an extension on the ART property, called the 2-ART property,
which is essentially the ART property in systems with two types of requests
req1, req2 and grants gra1, gra2. In these systems, requests are satisfied only
by grants of an appropriate type. The automaton with two monitor counters
depicted in Fig. 4 computes the 2-ART property.

#, (0, 0) #, (1, 0)

#, (0, 1) #, (1, 1)

req1, (s, 0)

gra1, (t, 0)

req1, (s, 1)

gra1, (t, 1)

req2, (0, s)gra2, (0, t) req2, (1, s)gra2, (1, t)

Fig. 4. The automaton computing the 2-ART property

Results. In the following section, we show equivalence of automata with monitor
counters and nested weighted automata of bounded width. Due to this equiva-
lence, we refrain from complexity discussion here.

5 Nested Weighted Automata

In this section we describe nested weighted automata introduced in [18], and
closely follow the description of [18]. For more details and illustration of such
automata we refer the reader to [18]. We start with an informal description.

Informal description. A nested weighted automaton consists of a labeled automa-
ton over infinite words, called the master automaton, a value function f for
infinite words, and a set of weighted automata over finite words, called slave
automata. A nested weighted automaton can be viewed as follows: given a word,

Quantitative Monitor Automata 33

we consider the run of the master automaton on the word, but the weight of
each transition is determined by dynamically running slave automata; and then
the value of a run is obtained using the value function f . That is, the mas-
ter automaton proceeds on an input word as an usual automaton, except that
before it takes a transition, it starts a slave automaton corresponding to the
label of the current transition. The slave automaton starts at the current posi-
tion of the word of the master automaton and works on some finite part of the
input word. Once a slave automaton finishes, it returns its value to the master
automaton, which treats the returned value as the weight of the current transi-
tion that is being executed. The slave automaton might immediately accept and
return value ⊥, which corresponds to silent transitions. If one of slave automata
rejects, the nested weighted automaton rejects. In the sequel, a master automa-
ton is always a weighted ω-automaton, and the slave automata are weighted
automata. For brevity and uniformity, we simply use weighted automata. We
define this formally as follows.

Nested weighted automata. A nested weighted automaton (NWA) A is a
tuple 〈Amas; f ;B1, . . . ,Bk〉, where (1) Amas, called the master automaton, is a
{1, . . . , k}-labeled automaton over infinite words (the labels are the indexes of
automata B1, . . . ,Bk), (2) f is a value function on infinite words, called the mas-
ter value function, and (3) B1, . . . ,Bk are weighted automata over finite words
called slave automata. Intuitively, an NWA can be regarded as an f -automaton
whose weights are dynamically computed at every step by a corresponding slave
automaton. We define an (f ; g)-automaton as an NWA where the master value
function is f and all slave automata are g-automata.

Semantics: runs and values. A run of an NWA A on an infinite word w is an
infinite sequence (Π,π1, π2, . . .) such that (1) Π is a run of Amas on w; (2) for
every i > 0 we have πi is a run of the automaton BC(Π[i−1],w[i],Π[i]), referenced by
the label C(Π[i − 1], w[i],Π[i]) of the master automaton, on some finite word of
w[i, j]. The run (Π,π1, π2, . . .) is accepting if all runs Π,π1, π2, . . . are accepting
(i.e., Π satisfies its acceptance condition and each π1, π2, . . . ends in an accepting
state) and infinitely many runs of slave automata have length greater than 1 (the
master automaton takes infinitely many non-silent transitions). The value of the
run (Π,π1, π2, . . .) is defined as the value of f applied to the sequence of values
of runs of slave automata π1, π2, . . . with ⊥ values removed. The value of a word
w assigned by the automaton A, denoted by LA(w), is the infimum of the set of
values of all accepting runs. We require accepting runs to contain infinitely many
non-silent transitions because f is a value function over infinite sequences, so we
need the sequence v(π1)v(π2) . . . with ⊥ symbols removed to be infinite.

Deterministic nested weighted automata. An NWA A is deterministic if
(1) the master automaton and all slave automata are deterministic, and (2) slave
automata recognize prefix-free languages, i.e., languages L such that if w ∈ L,
then no proper extension of w belongs to L. Condition (2) implies that no accept-
ing run of a slave automaton visits an accepting state twice. Intuitively, slave
automata have to accept the first time they encounter an accepting state as they
will not see an accepting state again.

34 K. Chatterjee et al.

Example 6 (Average response time). Consider an alphabet Σ consisting of
requests req, grants gra, and null instructions #. The average response time
(ART) property asks for the average number of instructions between any request
and the following grant. An NWA computing the average response time is
depicted in Fig. 5. At every position with letter req the master automaton Amas

of A invokes the slave automaton B1, which computes the number of letters
from its initial position to the first following grant. The automaton B1 is a
Sum+-automaton. On letters # and gra the automaton Amas invokes the slave
automaton B2, which is a dummy automaton, i.e., it immediately accepts and
returns no weight. Invoking such a dummy automaton corresponds to taking
a silent transition. Thus, the sequence of values returned by slave automata
(54311 . . . in Fig. 5), is the sequence of response times for each request. There-
fore, the averages of these values is precisely the average response time; in the
NWA A, the value function f is LimAvg. Also this property cannot be expressed
by a non-nested automaton: a quantitative property is a function from words to
reals, and as a function the range of non-nested LimAvg-automata is bounded,
whereas the ART can have unbounded values (for details see [18]).

qa qF

(req, 1), (#, 1)

(gra, 0)

B1q0

(req, 1)

(#, 2), (gra, 2)

Amas B2

r r r # r g r g

5 4 3 1 1

1 2 3 4 5

1 2 3 4

1 2 3

1

1B1(req
3#reqgra)

B1(req
2#reqgra)

B1(req#reqgra)

B1(reqgra)

B1(reqgra)

Fig. 5. An NWA A computing ART. The master automaton Amas and slave automata
B1,B2 are on the left. A part of a run of A on word reqreqreq#reqgrareqgra . . . is
presented on the right.

5.1 NWA of Bounded Width

In this section we define a subclass of NWA, called NWA of bounded width, and
we discuss properties of this subclass.

Bounded width. An NWA has bounded width if and only if there exists a bound
C such that in every run at every position at most C slave automata are active.

Example 7 (Non-overlapping ART). Consider the NWA A from Example 6
depicted in Fig. 5, which does not have bounded width. The run in Fig. 5 has
width at least 4, but on word reqgrareq2grareq3gra . . . the number of active
slave automata at position of letter gra in subword reqigra is i. We consider a
variant of the ART property, called the 1-ART property, where after a request

Quantitative Monitor Automata 35

till it is granted additional requests are not considered. Formally, we consider
the ART property over the language L1 defined by (req#∗gra#∗)ω (equiva-
lently, given a request, the automata can check if the slave automaton is not
active, and only then invoke it). An NWA A1 computing the ART property over
L1 is obtained from the NWA from Fig. 5 by taking the product of the master
automaton Amas (from Fig. 5) with an automaton recognizing the language L1,
which is given by the automaton for the property SB1 presented in Fig. 2. The
automaton A1, as well as, A from Example 6 are (LimAvg;Sum+)-automata and
they are deterministic. Indeed, the master automaton and the slave automata
of A1 (resp., A) are deterministic and the slave automata recognize prefix-free
languages. Moreover, in any (infinite) run of A1 at most one slave automaton
is active, i.e., A1 has width 1. The dummy slave automata do not increase the
width as they immediately accept, and hence they are not considered as active
even at the position they are invoked. Finally, observe that the 1-ART property
can return unbounded values, which implies that there exists no (non-nested)
LimAvg-automaton expressing it.

Lemma 1 (Translation Lemma [17]). For every value function f ∈ InfVal on
infinite words we have the following: (1) Every deterministic f-automaton with
monitor counters Am-c can be transformed in polynomial time into an equivalent
deterministic (f ;Sum)-automaton of bounded width. (2) Every non-deterministic
(resp., deterministic) (f ;Sum)-automaton of bounded width can be transformed
in exponential time into an equivalent non-deterministic (resp., deterministic)
f-automaton with monitor counters.

Proof (Translation of automata with monitor counters to NWA): Con-
sider a deterministic f -automaton Am-c with k monitor counters and the set of
states Qm−c We define an (f ;Sum)-automaton A, which consists of a master
automaton Amas and slave automata {Bi,q : i ∈ {1, . . . , k}, q ∈ Qm−c} ∪ {B⊥}.
The slave automaton B⊥ is a dummy automaton, i.e., it has only a single state
which is both the initial and the accepting state. Invoking such an automaton
is equivalent to taking a silent transition (with no weight). Next, the master
automaton Amas and slave automata {Bi,q : i ∈ {1, . . . , k}, q ∈ Qm−c} are vari-
ants of Am-c, i.e., they share the underlying transition structure. The automaton
Amas simulates Am-c, i.e., it has the same states and the transitions among these
states as Am-c. However, whenever Am-c activates counter i, the master automa-
ton invokes the slave automaton Bi,q, where q is their current state (both Amas

and the simulated Am-c). The accepting condition of Amas is the same as of
Am-c. For every i ∈ {1, . . . , k}, the slave automaton Bi,q keeps track of counter
i, i.e., it simulates Am-c and applies instructions of Am-c for counter i to its value.
That is, whenever Am-c changes the value of counter i by m, the automaton Bi,q

takes a transition of the weight m. Finally, Bi,q terminates precisely when Am-c

terminates counter i. The semantics of automata with monitor counters implies
that A accepts if and only if Am-c accepts and, for every word, the sequences of
weights produced by the runs of A and Am-c on that word coincide. Therefore,
the values of A and Am-c coincide on every word.

36 K. Chatterjee et al.

(Translation of NWA of bounded width to automata with mon-
itor counters): We show that non-deterministic (resp., deterministic)
f -automata with monitor counters subsume non-deterministic (resp., deter-
ministic) (f ;Sum)-automata of bounded width. Consider a non-deterministic
(f ;Sum)-automaton A with width bounded by k. We define an f -automaton
Am-c with k monitor counters that works as follows. Let Qmas be the set of states
of the master automaton of A and Qs be the union of the sets of states of the slave
automata of A. The set of states of Am-c is Qmas×Qs× . . .×Qs = Qmas×(Qs)k.
The automaton Am-c simulates runs of the master automaton and slave automata
by keeping track of the state of the master automaton and states of up to k
active slave automata. Moreover, it uses counters to simulate the values of slave
automata, i.e., whenever a slave automaton is activated, Am-c simulates the exe-
cution of this automaton and assigns some counter i to that automaton. Next,
when the simulated slave automaton takes a transition of the weight m the
automaton Am-c changes the value of counter i by m. Finally, Am-c terminates
counter i when the corresponding slave automaton terminates.

Since A has width bounded by k, the simulating automaton Am-c never runs
out of counters to simulate slave automata. Moreover, as it simulates runs of
the master automaton and slave automata of A, there is a one-to-one correspon-
dence between runs of Am-c and runs of A and accepting runs of A correspond to
accepting runs of Am-c. Finally, the sequence of weights for the master automa-
ton determined by a given run of A coincides with the sequence of weights
of Am-c on the corresponding run. Therefore, the values of A and Am-c coin-
cide on every word. Thus, non-deterministic f -automata with monitor counters
subsume non-deterministic (f ;Sum)-automata of bounded width. Moreover, the
one-to-one correspondence between runs of A and Am-c implies that if A is deter-
ministic, then Am-c is deterministic. Therefore, deterministic f -automata with
monitor counters subsume deterministic (f ;Sum)-automata of bounded width.
This completes the proof.

Results. Complexity of the emptiness and the universality problems depends on
the value functions for the master automaton and slave automata. Both problems
can be undecidable. However, in decidable cases the problems are in PTime for
fixed width and PSpace-complete if the width is given in input. The detailed
complexity results are summarized in Tables 1–4 in [18] and Table 1 in [16].

5.2 NWA of Unbounded Width

NWA of unbounded width express the unrestricted average response time prop-
erty, where there is no restriction on the number of pending requests. This prop-
erty has been showed in Example 6.

Significance of results. The above example shows that NWA with unbounded
width can express properties such as average response time. As compared to
NWA with bounded width, analysis of NWA with unbounded width is more
challenging as there is no bound on the number of active slave automata.

Quantitative Monitor Automata 37

This model also corresponds to automata with monitor counters, where fresh
counters can be activated, and there is no bound on the number of counters.
Thus establishing positive results (such as decidability and complexity bounds)
is much more challenging and non-trivial for NWA with unbounded width. Below
we discuss the results about NWA with unbounded width.

Results. Complexity of the emptiness and the universality problems depends on
the value functions for the master automaton and slave automata. Both problems
can be undecidable. In decidable cases the complexity ranges between PSpace-
complete and ExpSpace. The detailed complexity results are summarized in
Tables 1–4 in [18].

6 Conclusion

In this work we considered various automata-theoretic formalisms to express
quantitative properties. The two different extensions of weighted ω-automata
with monitors, namely, with counters, or with weighted automata, have the same
expressive power and provide a robust framework for quantitative specifications.
There are several interesting directions of future works. First, we consider specific
value functions, such as limit-average. A framework of quantitative specifications
with general value functions and their characterization is an interesting direction
of future work. Second, to explore the effectiveness of weighted automata with
monitors in verification, such as in runtime verification, is another interesting
direction of future work.

References

1. Almagor, S., Boker, U., Kupferman, O.: Discounting in LTL. In: Ábrahám, E.,
Havelund, K. (eds.) TACAS 2014 (ETAPS). LNCS, vol. 8413, pp. 424–439.
Springer, Heidelberg (2014)

2. Alur, R., D’Antoni, L., Deshmukh, J.V., Raghothaman, M., Yuan, Y.: Regular
functions and cost register automata. In: LICS 2013, pp. 13–22 (2013)

3. Baier, C., Dubslaff, C., Klüppelholz, S.: Trade-off analysis meets probabilistic
model checking. In: CSL-LICS 2014, pp. 1:1–1:10 (2014)

4. Baier, C., Klein, J., Klüppelholz, S., Wunderlich, S.: Weight monitoring with linear
temporal logic: complexity and decidability. In: CSL-LICS 2014, pp. 11:1–11:10
(2014)

5. Boker, U., Chatterjee, K., Henzinger, T.A., Kupferman, O.: Temporal specifica-
tions with accumulative values. ACM TOCL 15(4), 1–25 (2014)

6. Bollig, B., Gastin, P., Monmege, B., Zeitoun, M.: Pebble weighted automata and
transitive closure logics. In: Gavoille, C., Kirchner, C., Meyer auf der Heide, F.,
Spirakis, P.G., Abramsky, S. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 587–598.
Springer, Heidelberg (2010)

7. Bouyer, P., Markey, N., Matteplackel, R.M.: Averaging in LTL. In: Baldan,
P., Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp. 266–280. Springer,
Heidelberg (2014)

38 K. Chatterjee et al.

8. Brázdil, T., Brozek, V., Chatterjee, K., Forejt, V., Kucera, A.: Two views on
multiple mean-payoff objectives in Markov decision processes. In: LICS 2011,
pp. 33–42 (2011)

9. Brázdil, T., Chatterjee, K., Forejt, V., Kucera, A.: Multigain: a controller synthesis
tool for MDPs with multiple mean-payoff objectives. In: TACAS 2015, pp. 181–187
(2015)

10. Chatterjee, K.: Markov decision processes with multiple long-run average objec-
tives. In: Arvind, V., Prasad, S. (eds.) FSTTCS 2007. LNCS, vol. 4855, pp. 473–484.
Springer, Heidelberg (2007)

11. Chatterjee, K., Doyen, L.: Energy and mean-payoff parity Markov decision
processes. In: Murlak, F., Sankowski, P. (eds.) MFCS 2011. LNCS, vol. 6907,
pp. 206–218. Springer, Heidelberg (2011)

12. Chatterjee, K., Doyen, L., Edelsbrunner, H., Henzinger, T.A., Rannou, P.: Mean-
payoff automaton expressions. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010.
LNCS, vol. 6269, pp. 269–283. Springer, Heidelberg (2010)

13. Chatterjee, K., Doyen, L., Henzinger, T.A.: Expressiveness and closure properties
for quantitative languages. LMCS, 6(3) (2010)

14. Chatterjee, K., Doyen, L., Henzinger, T.A.: Quantitative languages. ACM TOCL
11(4), 23 (2010)

15. Chatterjee, K., Forejt, V., Wojtczak, D.: Multi-objective discounted reward verifi-
cation in graphs and MDPs. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.)
LPAR-19 2013. LNCS, vol. 8312, pp. 228–242. Springer, Heidelberg (2013)

16. Chatterjee, K., Henzinger, T.A., Otop, J.: Nested weighted limit-average automata
of bounded width. To appear at MFCS 2016 (2016)

17. Chatterjee, K., Henzinger, T.A., Otop, J.: Quantitative automata under proba-
bilistic semantics. To appear at LICS 2016 (2016)

18. Chatterjee, K., Henzinger, T.A., Otop, J.: Nested weighted automata. In: LICS
2015, pp. 725–737 (2015)

19. Chatterjee, K., Komárková, Z., Kret́ınský, J.: Unifying two views on multiple mean-
payoff objectives in Markov Decision Processes. In: LICS 2015, pp. 244–256 (2015)

20. Chatterjee, K., Majumdar, R., Henzinger, T.A.: Markov decision processes with
multiple objectives. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol.
3884, pp. 325–336. Springer, Heidelberg (2006)

21. Degorre, A., Doyen, L., Gentilini, R., Raskin, J.-F., Toruńczyk, S.: Energy and
mean-payoff games with imperfect information. In: Dawar, A., Veith, H. (eds.)
CSL 2010. LNCS, vol. 6247, pp. 260–274. Springer, Heidelberg (2010)

22. Droste, M., Kuich, W., Vogler, H.: Handbook of Weighted Automata, 1st edn.
Springer, Heidelberg (2009)

23. Droste, M., Rahonis, G.: Weighted automata and weighted logics on infinite words.
In: Ibarra, O.H., Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036, pp. 49–58. Springer,
Heidelberg (2006)

24. Filar, J., Vrieze, K.: Competitive Markov Decision Processes. Springer, New York
(1996)

25. Forejt, V., Kwiatkowska, M., Norman, G., Parker, D., Qu, H.: Quantitative multi-
objective verification for probabilistic systems. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 112–127. Springer, Heidelberg (2011)

26. Pnueli, A., The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science, pp. 46–57. IEEE (1977)

27. Puterman, M.L., Processes, M.D.: Discrete Stochastic Dynamic Programming, 1st
edn. Wiley, New York (1994)

28. Thomas, W.: Automata on infinite objects. In: Handbook of Theoretical Computer
Science, vol. b, pp. 133–191. MIT Press, Cambridge (1990)

	Quantitative Monitor Automata
	1 Introduction
	2 Finite State Automata
	3 Weighted Automata
	4 Automata with Monitor Counters
	5 Nested Weighted Automata
	5.1 NWA of Bounded Width
	5.2 NWA of Unbounded Width

	6 Conclusion
	References

