
Cell Morphing: From Array Programs
to Array-Free Horn Clauses

David Monniaux1,2 and Laure Gonnord3(B)

1 University of Grenoble Alpes, VERIMAG, 38000 Grenoble, France
2 CNRS, VERIMAG, 38000 Grenoble, France

david.monniaux@imag.fr
3 University of Lyon, LIP (UMR CNRS/ENS Lyon/UCB Lyon1/Inria),

69000 Lyon, France
laure.gonnord@ens-lyon.fr

Abstract. Automatically verifying safety properties of programs is
hard. Many approaches exist for verifying programs operating on Boolean
and integer values (e.g. abstract interpretation, counterexample-guided
abstraction refinement using interpolants), but transposing them to array
properties has been fraught with difficulties. Our work addresses that
issue with a powerful and flexible abstraction that morphes concrete
array cells into a finite set of abstract ones. This abstraction is paramet-
ric both in precision and in the back-end analysis used.

From our programs with arrays, we generate nonlinear Horn clauses
over scalar variables only, in a common format with clear and unambigu-
ous logical semantics, for which there exist several solvers. We thus avoid
the use of solvers operating over arrays, which are still very immature.

Experiments with our prototype vaphor show that this approach can
prove automatically and without user annotations the functional correct-
ness of several classical examples, including selection sort, bubble sort,
insertion sort, as well as examples from literature on array analysis.

1 Introduction

In this article, we consider programs operating over arrays, or, more generally,
maps from an index type to a value type (in the following, we shall use “array”
and “map” interchangeably). Such programs contain read (e.g. v := a[i]) and
write (a[i] := v) operations over arrays, as well as “scalar” operations.1 We wish
to fully automatically verify properties on such programs; e.g. that a sorting
algorithm outputs a sorted permutation of its input.

The research leading to these results has received funding from the European
Research Council under the European Union’s Seventh Framework Programme
(FP/2007-2013) / ERC Grant Agreement nr. 306595 “STATOR”.

1 In the following, we shall lump as “scalar” operations all operations not involving
the array under consideration, e.g. i := i + 1. Any data types (integers, strings etc.)
are supported if supported by the back-end solver.

c© Springer-Verlag GmbH Germany 2016
X. Rival (Ed.): SAS 2016, LNCS 9837, pp. 361–382, 2016.
DOI: 10.1007/978-3-662-53413-7 18

http://erc.europa.eu/
http://erc.europa.eu/
http://stator.imag.fr/

362 D. Monniaux and L. Gonnord

Universally Quantified Properties. Very often, desirable properties over arrays are
universally quantified; e.g. sortedness may be expressed as ∀k1, k2 k1 < k2 =⇒
a[k1] ≤ a[k2]. However, formulas with universal quantification and linear arith-
metic over integers and at least one predicate symbol (a predicate being a func-
tion to the Booleans) form an undecidable class [20], of which some decidable sub-
classes have however been identified [8]. There is therefore no general algorithm
for checking that such invariants hold, let alone inferring them. Yet, there have
been several approaches proposed to infer such invariants (see Sect. 7).

We here propose a method for inferring such universally quantified invariants,
given a specification on the output of the program. This being undecidable, this
approach may fail to terminate in the general case, or may return “unknown”.
Experiments however show that our approach can successfully and automatically
verify nontrivial properties (e.g. the output from selection sort is sorted and is
a permutation of the input).

Our key insight is that if there is a proof of safety of an array-manipulating
program, it is likely that there exists a proof that can be expressed with simple
steps over properties relating only a small number N of (parametric) array cells,
called “distinguished cells”. For instance, all the sorting algorithms we tried
can be proved correct with N = 2, and simple array manipulations (copying,
reversing. . .) with N = 1.

Horn Clauses. We convert the verification problem to Horn clauses, a common
format for program verification problems [36] supported by a number of tools.
Usual conversions [18] map variables and operations from the program to vari-
ables of the same type and the same operations in the Horn clause problem:2

an integer is mapped to an integer, an array to an array, etc. If arrays are
not supported by the back-end analysis, they may be abstracted away (reads
replaced by nondeterministic choices, writes discarded) at the expense of pre-
cision. In contrast, our approach abstracts programs much less violently, with
tunable precision, even though the result is still a Horn clause problem with-
out arrays. Section 3 explains how many properties (e.g. initialization) can be
proved using one “distinguished cell” (N = 1), Sect. 4 explains how properties
such as sortedness can be proved using two cells; completely discarding arrays
corresponds to using zero of them.

An interesting characteristic of the Horn clauses we produce is that they
are nonlinear3, even though a straightforward translation of the semantics of a
control-flow graph into Hoare triples expressed as clauses yields a linear system
(whose unfoldings correspond to abstract execution traces). If a final property to
prove (e.g. “all values are 0”) queries one cell position, this query may morph, by
2 With the exception of pointers and references, which need special handling and may

be internally converted to array accesses.
3 A nonlinear clause is of the form P1(. . .) ∧ P2(. . .) ∧ · · · ∧ Pn(. . .) ∧
arithmetic condition =⇒ Q(. . .), with several antecedent predicates P1, P2,
Unfolding such rules yields a tree. In contrast a linear rule P (. . .) ∧
arithmetic condition =⇒ Q(. . .) has only one antecedent predicate, and unfold-
ing a system of such rules yields a linear chain.

Cell Morphing: From Array Programs to Array-Free Horn Clauses 363

the backward unfolding of the clauses, into a tree of queries at other locations,
in contrast to some earlier approaches [31].

We illustrate this approach with automated proofs of several examples from
the literature: we apply Sects. 3, 4 or 5 to obtain a system of Horn clauses without
arrays. This system is then fed to the Z3, Eldarica or Spacer solver, which
produces a model of this system, meaning that the postcondition (e.g. sortedness
or multiset of the output equal to that of the input) truly holds.4

Previous approaches [31] using “distinguished cells” amounted (even though
not described as such) to linear Horn rules; on contrast, our abstract semantics
uses non-linear Horn rules, which leads to higher precision (Sect. 7.1).

Contributions. Our main contribution is a system of rules for transforming the
atomic program statements in a program operating over arrays or maps, as well
as (optionally) the universally quantified postcondition to prove, into a system
of non-linear Horn clauses over scalar variables only. The precision of this trans-
formation is tunable using a Galois connection parameterized by the number of
“distinguished cells”; e.g. properties such as sortedness need two distinguished
cells (Sect. 4) while simpler properties need only one (Sect. 3). Statements oper-
ating over non-arrays variables are mapped (almost) identically to their concrete
semantics. This system over-approximates the behavior of the program. A solu-
tion of that system can be mapped to inductive invariants over the original
programs, including universal properties over arrays.

A second contribution, based on the first, is a system of rules that also keeps
track of array/map contents (Sect. 5) as a multiset. This system is suitable for
showing content properties, e.g. that the output of a sorting algorithm is a
permutation of the input, even though the sequence of operations is not directly
a sequence of swaps.

We implemented our approach and benchmarked it over several classical
examples of array algorithms (Sect. 6), comparing it favorably to other tools.

2 Program Verification as Solving Horn Clauses

A classical approach to program analysis is to consider a program as a control-
flow graph and to attach to each vertex pi (control point) an inductive invariant
Ii: a set of possible values x of the program variables (and memory stack and
heap, as needed) so that (i) the set associated to the initial control point pi0

contains the possible initialization values Si0 (ii) for each edge pi →c pj (c for
concrete), the set Ij associated to the target control point pj should include all
the states reachable from the states in the set Ii associated to the source control
point pi according to the transition relation τi,j of the edge. Inductiveness is
thus defined by Horn clauses5:

∀x, Si0(x) =⇒ Ii0(x) (1)
∀x,x′, Ii(x) ∧ τi,j(x,x′) =⇒ Ij(x′) (2)

4 Z3 and Eldarica can also occasionally directly solve Horn clauses over arrays; we
also compare to that.

5 Classically, we denote the sets using predicates: Ii0(x) means x ∈ Ii0 .

364 D. Monniaux and L. Gonnord

Fig. 1. Compact control-flow graph for Program 1

For proving safety properties, in addition to inductiveness, one requires that
error locations pe1 , . . . , pen

are proved to be unreachable (the associated set of
states is empty): this amounts to Horn clauses implying false: ∀x, Iei

(x) ⇒ ⊥.
Various tools can solve such systems of Horn clauses, that is, can synthesize

suitable predicates Ii, which constitute inductive invariants. In this article, we
tried Z36 with the PDR fixed point solver [22], Z3 with the Spacer solver
[24,25],7 and Eldarica [35].8 Since program verification is undecidable, such
tools, in general, may fail to terminate, or may return “unknown”.

For the sake of simplicity, we shall consider, in this article, that all integer
variables in programs are mathematical integers (Z) as opposed to machine
integers9 and that arrays are infinite. Again, it is easy to modify our semantics
to include systematic array bound checks, jumps to error conditions, etc.

In examples, instead of writing Istmt for the name of the predicate (inductive
invariant) at statement stmt , we shall write stmt directly, for readability’s sake:
thus we write e.g. loop for a predicate at the head of a loop. Furthermore, for
readability, we shall sometimes coalesce several successive statements into one.

Example 1 (Motivating example). Consider the program:
void a r r a y f i l l 1 (in t n , in t a [n]) {

for (in t i =0 ; i<n ; i ++) a [i]=42 ;
/∗ a s s e r t ∀0 ≤ k < n, a[k] = 42 ∗ /

}
We would like to prove that this program truly fills array a[] with value 42. The
flat encoding into Horn clauses assigns a predicate (set of states) to each of the
control nodes (Fig. 1), and turns each transition into a Horn rule with variables
ranging in Arr (A,B), the type of arrays of B indexed by A [26, Chap. 7]:

∀n ∈ Z ∀a ∈ Arr (Z,Z) n > 0 =⇒ loop(n, 0, a) (3)
∀n, i ∈ Z ∀a ∈ Arr (Z,Z) i < n ∧ loop(n, i, a) =⇒ loop(n, i + 1, store(a, i, 42)) (4)

6 https://github.com/Z3Prover hash 7f6ef0b6c0813f2e9e8f993d45722c0e5b99e152; due to
various problems we preferred not to use results from later versions.

7 https://bitbucket.org/spacer/code hash 7e1f9af01b796750d9097b331bb66b752ea0ee3c.
8 https://github.com/uuverifiers/eldarica/releases/tag/v1.1-rc.
9 A classical approach is to add overflow checks to the intermediate representation of

programs in order to be able to express their semantics with mathematical integers
even though they operate over machine integers.

https://github.com/Z3Prover
https://bitbucket.org/spacer/code
https://github.com/uuverifiers/eldarica/releases/tag/v1.1-rc

Cell Morphing: From Array Programs to Array-Free Horn Clauses 365

∀n, i ∈ Z ∀a ∈ Arr (Z,Z) i ≥ n ∧ loop(n, i, a) =⇒ end(n, i, a) (5)
∀x, n, i ∈ Z ∀a ∈ Arr (Z,Z) 0 ≤ x < n ∧ end(n, i, a) =⇒ select(a, x) = 42 (6)

where store(a, i, v) is array a where the value at index i has been replaced by v
and select(a, x) denotes a[x].

None of the tools we have tried (Z3, Spacer, Eldarica) has been able to
solve this system, presumably because they cannot infer universally quantified
invariants over arrays.10 Indeed, here the loop invariant needed is

0 ≤ i ≤ n ∧ (∀k 0 ≤ k < i =⇒ a[k] = 42) (7)

While 0 ≤ i ≤ n is inferred by a variety of approaches, the rest is tougher. We
shall also see (Example 6) that a slight alteration of this example also prevents
some earlier abstraction approaches from checking the desired property.

Most software model checkers attempt constructing invariants from Craig
interpolants obtained from refutations [9] of the accessibility of error states
in local [22] or global [29] unfoldings of the problem. However, interpolation
over array properties is difficult, especially since the goal is not to provide any
interpolant, but interpolants that generalize well to invariants [1,2]. This arti-
cle instead introduces a way to derive universally quantified invariants from the
analysis of a system of Horn clauses on scalar variables (without array variables).

3 Getting Did of the Arrays

To use the power of Horn solvers, we soundly abstract problems with arrays
to problems without arrays. In the Horn clauses for Example 1, we attached to
each program point p� a predicate I� over Z×Z× Arr (Z,Z) when the program
variables are two integers i, n and one integer-value, integer-indexed array a.11

In any solution of the system of clauses, if the valuation (i, n, a) is reachable at
program point p�, then I�(i, n, a) holds. Instead, in the case of Example 1, we
will consider a predicate I�

� over Z × Z × Z × Z (the array key → value has
been replaced by a pair (key , value)) such that I�

� (i, n, k, ak)12 holds for each
reachable state (i, n, a) satisfying a[k] = ak. This is the same Galois connection
[11] as some earlier works [31] [13, Sect. 2.1]; yet, as we shall see, our abstract
transformers are more precise.

Definition 1. The “one distinguished cell” abstraction of I ⊆ χ × Arr (ι, β) is
α(I) = {(x, i, a[i]) | x ∈ χ, i ∈ ι}. The concretization of I� ⊆ χ × (ι × β) is
γ(I�) = {(x, a) | ∀i ∈ ι (x, i, a[i]) ∈ I�}.

Theorem 1. P (χ × Arr (ι, β)) −−−→←−−−
α

γ P (χ × (ι × β)) is a Galois connection.

10 Some of these tools can however infer some simpler array invariants.
11 For instance, Iloop = loop(n, i, a), Iend = end(n, i, a).
12 also denoted by I�

� ((i, n), (k, ak)) for sake of readability.

366 D. Monniaux and L. Gonnord

To provide the abstract transformers, we will suppose in the sequel that any
statement in the program (control flow graph) will be: (i) either an array read
to a fresh variable, v=a[i]; in C syntax, v := a[i] in pseudo-code; the variables
of the program are (x, i, v) where x is a vector of arbitrarily many variables; (ii)
either an array write, a[i]=v; (where v and i are variables) in C syntax, a[i] := v
in pseudo-code; the variables of the program are (x, i, v) before and after the
statement; (iii) or a scalar operation, including assignments and guards over
scalar variables. More complex statements can be transformed to a sequence
of such statements, by introducing temporary variables if needed: for instance,
a[i] := a[j] is transformed into temp := a[j]; a[i] := temp.

Definition 2 (Read statement). Let v be a variable of type β, i be a variable
of type ι, and a be an array of values of type β with an index of type ι. Let x be the
other program variables, taken in χ. The concrete “next state” relation for the
read statement v=a[i]; between locations p1 and p2 is (x, i, v, a) →c (x, i, a[i], a).

Its forward abstract semantics is encoded into two Horn clauses:

∀x ∈ χ ∀i ∈ ι ∀v, ai ∈ β ∀k ∈ ι ∀ak ∈ β

k �= i ∧ I�
1

(
(x, i, v), (k, ak)

) ∧ I�
1

(
(x, i, v), (i, ai)

)
=⇒ I�

2

(
(x, i, ai), (k, ak)

) (8)

∀x ∈ χ ∀i ∈ ι ∀v, ai ∈ β ∀k ∈ ι ∀ak ∈ β

I�
1

(
(x, i, v), (i, ai)

)
=⇒ I�

2

(
(x, i, ai), (i, ai)

) (9)

The tuple (k, ak) now represents a “distinguished cell”. While rule 9 is
straightforward (ai is assigned to the variable v), the nonlinear rule 8 may be
more difficult to comprehend. The intuition is that, to have both ai = a[i] and
ak = a[k] at the read instruction with a given valuation (x, i) of the other vari-
ables, both ai = a[i] and ak = a[k] had to be reachable with the same valuation.

Remark 1. We use two separate rules for k = i and k �= i for better precision.
A single rule I�

1

(
(x, i, v), (k, ak)

) ∧ I�
1

(
(x, i, v), (i, ai)

)
=⇒ I�

2

(
(x, i, ai), (k, ak)

)

would not enforce that if i = k then ai = ak in the consequent.

From now on, we shall omit all universal quantifiers inside rules, for readability.

Definition 3 (Write statement). The concrete “next state” relation for
the write statement a[i]=v; is (x, i, v, a) →c (x, i, v, store(a, i, v)). Its forward
abstract semantics is encoded into two Horn clauses, depending on whether the
distinguished cell is i or not:

I�
1

(
(x, i, v), (k, ak)

) ∧ i �= k =⇒ I�
2

(
(x, i, v), (k, ak)

)
(10)

I�
1

(
(x, i, v), (i, ai)

)
=⇒ I�

2

(
(x, i, v), (i, v)

)
(11)

Example 2 (Example 1, cont.). The a[i] := 42 statement of Example 1 is trans-
lated into (the loop control point is divided into loop/write/incr, all predicates
of arity 4):

i �= k ∧ write(n, i, k, ak) =⇒ incr(n, i, k, ak) (12)

write(n, i, i, ai) =⇒ incr(n, i, i, 42) (13)

Cell Morphing: From Array Programs to Array-Free Horn Clauses 367

Definition 4 (Initialization). The creation of an array variable with nonde-
terministically chosen initial content is abstracted by I�

1(x) =⇒ I�
2(x, k, ak).

Definition 5 (Scalar statements). With the same notations as above, we
consider a statement (or sequence thereof) operating only on scalar variables:
x →s x′ if it is possible to obtain scalar values x′ after executing the state-
ment on scalar values x. The concrete “next state” relation for that statement
is (x, i, v, a) →c (x′, i, v, a). Its forward abstract semantics is encoded into:

I�
1(x, k, ak) ∧ x →s x′ =⇒ I�

2(x
′, k, ak) (14)

Example 3. A test x �= y gets abstracted as

I�
1(x, y, k, ak) ∧ x �= y =⇒ I�

2(x, y, k, ak) (15)

Definition 6. The scalar operation kill(v1, . . . , vn) removes variables v1, . . . , vn:
(x, v1, . . . , vn) → x. We shall apply it to get rid of dead variables, sometimes, for
the sake of brevity, without explicit note, by coalescing it with other operations.

Our Horn rules are of the form ∀y I�
1(f1(y)) ∧ · · · ∧ I�

1(fm(y)) ∧ P (y) =⇒
I�
2(g(y)) (y is a vector of variables, f1, . . . , fm vectors of terms depending on y, P

an arithmetic predicate over y). In other words, they impose in I�
2 the presence

of g(y) as soon as certain f1(y), . . . , fm(y) are found in I�
1. Let I�

2− be the set
of such imposed elements. This Horn rule is said to be sound if γ(I�

2−) includes
all states (x′, a′) such that there exists (x, a) in γ(I�

1) and (x, a) →c (x′, a′).

Lemma 1. The forward abstract semantics of the read statement (Definition 2),
of the write statement (Definition 3), of array initialization (Definition 4), of the
scalar statements (Definition 5) are sound w.r.t the Galois connection.

Remark 2. The scalar statements include “killing” dead variables (Definition 6).
Note that, contrary to many other abstractions, in ours, removing some variables
may cause irrecoverable loss of precision on other variables [31, Sect. 4.2]: if v
is live, then one can represent ∀k, a[k] = v, which implies ∀k1, k2 a[k1] = a[k2]
(constantness), but if v is discarded, the constantness of a is lost.

Theorem 2. If I�
1, . . . , I

�
m are a solution of a system of Horn clauses sound in

the above sense, then γ(I�
1), . . . , γ(I�

m) are inductive invariants w.r.t the concrete
semantics →c.

Definition 7 (Property conversion). A property “at program point p�, for
all x ∈ χ and all k ∈ ι, φ(x, k, a[k]) holds” (where φ is a formula, say over
arithmetic) is converted into a Horn query ∀x ∈ χ ∀k ∈ ι I�

� (x, k, ak) =⇒
φ(x, k, ak).

Our method for converting a scalar program into a system of Horn clauses
over scalar variables is thus:

368 D. Monniaux and L. Gonnord

Algorithm 1 (Abstraction into Horn constraints). Given the control-flow
graph of the program:

1. To each control point p�, with vector of scalar variables x�, associate a pred-
icate I�

� (x�, k, ak) in the Horn clause system (the vector of scalar variables
may change from control point to control point).

2. For each transition of the program, generate Horn rules according to
Definitions 2, 3, 5 as applicable (an initialization node has no antecedents in
its rule).

3. Generate Horn queries from desired properties according to Definition 7.

Example 4 (Example 1, continued). Let us now apply the Horn abstract seman-
tics from Definitions 3 and 5 to Program 1; in this case, β = Z, ι = {0, . . . , n−1}
(thus we always have 0 ≤ k < n) , χ = Z. After slight simplification, we get:

0 ≤ k < n =⇒ loop(n, 0, k, ak) (16)
0 ≤ k < n ∧ i < n ∧ loop(n, i, k, ak) =⇒ write(n, i, k, ak) (17)
0 ≤ k < n ∧ i 	= k ∧ write(n, i, k, ak) =⇒ incr(n, i, k, ak) (18)

write(n, i, i, ai) =⇒ incr(n, i, i, 42) (19)
0 ≤ k < n ∧ incr(n, i, k, ak) =⇒ loop(n, i + 1, k, ak) (20)

0 ≤ k < n ∧ i ≥ n ∧ loop(n, i, k, ak) =⇒ end(n, i, k, ak) (21)

Finally, we add the postcondition (using Definition 7):

0 ≤ k < n ∧ end(n, i, k, ak) ⇒ ak = 42 (22)

A solution to the resulting system of Horn clauses can be found by e.g. Z3.

Our approach can also be used to establish relationships between several
arrays, or between the initial values in an array and the final values: arrays a[i]
and b[j] can be abstracted by a quadruple (i, ai, j, bj).13

Example 5. Consider the problem of finding the minimum of an array slice
a[d . . . h − 1], with value b = a[p]:
void find minimum (in t n , in t a [n] , in t d , in t h) {

in t p = d , b = a [d] , i = d+1;
while (i < h) {

i f (a [i] < b) {
b = a [i] ;
p = i ;

}
i = i +1;

}
}
13 If one is sure that the only relation that matters between a and b are between cells

of same index, then one can use triples (i, ai, bi).

Cell Morphing: From Array Programs to Array-Free Horn Clauses 369

Again, we encode the abstraction of the statements (Definitions 2, 3, 5) as Horn
clauses. We obtained a predicate end(d, h, p, b, k, ak) constrained as follows:

end(d, h, p, b, p, ap) =⇒ b = ap (23)

d ≤ k < h ∧ end(d, h, p, b, k, ak) =⇒ b ≤ ak (24)

Rule 23 imposes the postcondition b = a[p], Rule 24 imposes the postcondition
∀k d ≤ k < h =⇒ b ≤ a[k]. This example is again solved by Z3.

Earlier approaches based on translation to programs [31], thus transition
systems, are equivalent to translating into linear Horn clauses where x1, . . . , xp

are the same in the antecedent and consequent:

I1(. . . , x1, a1, . . . , xp, ap) ∧ condition → I2(. . . , x1, a
′
1, . . . , xp, a

′
p) (25)

In contrast, in this article we use a much more powerful translation to non-
linear Horn clauses (Sect. 7.1) where x′′

1 , . . . , x′′
p differ from x1, . . . , xp:

I1(. . . , x1, a1, . . . , xp, ap) ∧ · · · ∧I1(. . . , x′′
1 , a′′

1 , . . . , a′′
p , x′′

p) ∧ condition

→ I2(. . . , x1, a
′
1, . . . , xp, a

′
p) (26)

Example 6 (Motivating example, altered). The earlier work [31] could success-
fully analyze Example 1. However a slight modification of the program prevents
it from doing so:

in t tab [n] ;
for (in t i =0 ; i<n ; i ++) tab [i]=42 ;

M: f = 0 ;
for (in t i =0 ; i<n ; i ++) { i f (tab [i] != 42) f =1 ; }
as se r t (f == 0) ;

For this particular example, the array tab would be abstracted all over the
program using a fixed number of cells tab[x1],. . . ,tab[xp], where x1, . . . , xp are
symbolic constants.

The second loop is then analyzed as though it were14.
for (in t i =0 ; i<n ; i ++) {

r = random () ;
i f (i == x1) r = a1 ;
...
i f (i == xp) r = ap ;

T : i f (r != 42) f =1 ;
}

14 It would still be possible to proceed by first analyzing the first loop, getting the
scalar invariant tabx = 42 at location M, quantifying it universally as ∀x tab[x], then
analyzing the second loop. Such an approach would however fail if this program was
itself included in an outer loop.

370 D. Monniaux and L. Gonnord

One easily sees that if p < n, there must be a loop iteration where i /∈
{x1, . . . , xp} and thus at location T, r takes any value and f may take value 1.
The output of our translation process in this example is the same until the M
control point, then15 it is:

end(n, i, k, ak) =⇒ loop2 (n, 0, x, k, ak, 0) (27)
loop2 (n, i, x, k, ak, f) ∧ i < n =⇒ rd2 (n, i, x, k, ak, f) (28)

rd2 (n, i, x, k, ak, f) ∧ i 	= k ∧ rd2(n,i,x,i,ai ,f) =⇒ test2 (n, i, ai, k, ak, f) (29)
rd2 (n, i, x, i, ai, f) =⇒ test2 (n, i, ai, i, ai, f) (30)

test2 (n, i, x, k, ak, f) ∧ x 	= 42 =⇒ loop2 (n, i + 1, k, ak, 1) (31)
test2 (n, i, x, k, ak, f) ∧ x = 42 =⇒ loop2 (n, i + 1, k, ak, f) (32)

loop2 (n, i, x, k, ak, f) ∧ i ≥ n =⇒ end2 (f) (33)
end2 (f) ⇒ f = 0 (property to prove) (34)

This abstraction is precise enough to prove the desired property, thanks to the
bold antecedent (multiples cell indices occur within the same unfolding). With-
out this nonlinear rule (removing this antecedent yields a sound abstraction
equivalent to [31]), the unfoldings of the system of rules all carry the same k
(index of the distinguished cell) between predicates: the program is analyzed
with respect to one single a[k], with k symbolic, leading to insufficient precision.

No Restrictions on Domain Type and Relationships, and Matrices. The kind of
relationship that can be inferred between loop indices, array indices and array
contents is limited only by the capabilities of the Horn solver. For instance,
invariants of the form ∀i i ≡ 0 (mod 2) =⇒ a[i] = 0 may be inferred if
the Horn solver supports numeric invariants involving divisibility. Similarly, we
have made no assumption regarding the nature of the indexing variable: we used
integers because arrays indexed by an integer range are a very common kind of
data structure, but really it can be any type supported by the Horn clause solver,
e.g. rationals or strings. For instance, matrices (resp. n-tensors) are specified by
having pairs of integers (resp. n-tuples) as indices.

4 Sortedness and Other N -ary Predicates

The Galois connection of Definition 1 expresses relations of the form ∀k ∈
ι φ(x, k, a[k]) where x are variables from the program, a a map and k an index
into the map a; in other words, relations between each array element individu-
ally and the rest of the variables. It cannot express properties such as sortedness,
which link two array elements: ∀k1, k2 ∈ ι k1 < k2 =⇒ a[k1] ≤ a[k2].

For such properties, we need two “distinguished cells”, with indices k1 and
k2. For efficiency, we break this symmetry between indices k1 and k2 by imposing
k1 < k2 for some total order.

15 The statement if tab[i]!=42 is decomposed into x:=a[i];if(x!=42).

Cell Morphing: From Array Programs to Array-Free Horn Clauses 371

Definition 8. The abstraction with indices k1 < k2 is

γ2<(I�) = {(x, a) | ∀k1 < k2 ∈ ι (x, k1, a[k1], k2, a[k2]) ∈ I�} (35)
α2<(I) = {(x, k1, a[k1], k2, a[k2]) | x ∈ χ, k1 ≤ k2 ∈ ι} (36)

Theorem 3. α2< and γ2< form a Galois connection:

P (χ × Arr (ι, β)) −−−−→←−−−−
α2<

γ2< P ({(x, k1, v1, k2, v2) | x ∈ χ, k1 < k2 ∈ ι, v1, v2 ∈ β})

These constructions easily generalize to arbitrary N indices k1, . . . , kN .

Definition 9 (Read, two indices k1 < k2). The abstraction of v := a[i] is:

I�
1(x, i, v, k1, ak1 , k2, ak2) ∧ I�

1(x, i, v, i, ai, k2, ak2)∧
I�
1(x, i, v, i, ai, k1, ak1) ∧ i < k1 < k2 =⇒ I�

2(x, i, ai, k1, ak1 , k2, ak2)
(37)

I�
1(x, i, v, i, ai, k2, ak2) ∧ I�

1(x, i, v, k1, ak1 , k2, ak2)∧
I�
1(x, i, v, k1, ak1 , i, ai) ∧ k1 < i < k2 =⇒ I�

2(x, i, ai, k1, ak1 , k2, ak2)
(38)

I�
1(x, i, v, k2, ak2 , i, ai) ∧ I�

1(x, i, v, k1, ak1 , i, ai)∧
I�
1(x, i, v, k1, ak1 , k2, ak2) ∧ k1 < k2 < i =⇒ I�

2(x, i, ai, k1, ak1 , k2, ak2)
(39)

I�
1(x, i, v, i, ai, k2, ak2) ∧ i < k2 =⇒ I�

2(x, i, ai, i, ai, k2, ak2) (40)

I�
1(x, i, v, k1, ak1 , i, ai) ∧ k1 < i =⇒ I�

2(x, i, ai, k1, ak1 , i, ai) (41)

This generalizes to N -ary abstraction by considering all orderings of i inside
k1 < · · · < kN , and for each ordering taking all sub-orderings of size N .

Definition 10 (Write statement, two indices k1 < k2). The abstraction of
a[i] := v is:

I�
1(x, i, v, k1, ak1 , k2, ak2) ∧ i 	= k1 ∧ i 	= k2 =⇒ I�

2(x, i, v, k1, ak1 , k2, ak2) (42)

I�
1(x, i, v, i, ai, k2, ak2) ∧ i < k2 =⇒ I�

2(x, i, v, i, v, k2, ak2) (43)

I�
1(x, i, v, k1, ak1 , i, ai) ∧ k1 < i =⇒ I�

2(x, i, v, k1, ak1 , i, v) (44)

Lemma 2. The abstract forward semantics of the read statement (Definition 9)
and of the write statement (Definition 10) are sound w.r.t the Galois connection.

Example 7 (Selection sort). Selection sort finds the least element in a[d . . . h−1]
(using Program 5 as its inner loop) and swaps it with a[d], then sorts a[d+1, h−1].
At the end, a[d0 . . . h − 1] is sorted, where d0 is the initial value of d.

in t d = d0 ;
while (d < h−1) {

in t p = d , b = a [d] , f = b , i = d+1;
while (i < h) { / / f i n d m i n i

i f (a [i] < b) {
b = a [i] ; p = i ;

}
i = i +1;

}

372 D. Monniaux and L. Gonnord

a [d] = b ; a [p] = f ; / / swap
d = d+1;

}
Using the rules for the read (Definition 9) and write (Definition 10) state-

ments, we write the abstract forward semantics of this program as a system of
Horn clauses.

We wish to prove that, at the end, a[d0, h − 1] is sorted: at the exit node,

∀d0 ≤ k1 < k2 < h, a[k1] ≤ a[k2] (45)

This is expressed as the final condition:

d0 ≤ k1 < k2 < h ∧ exit(d0, h, k1, ak1 , k2, ak2) =⇒ ak1 ≤ ak2 (46)

By running a solver on these clauses, we show that the output of selection
sort is truly sorted16 Let us note that this proof relies on nontrivial invariants:17

∀k1, k2, d0 ≤ k1 < d ∧ k1 ≤ k2 < h =⇒ a[k1] ≤ a[k2] (47)

This invariant can be expressed in our Horn clauses as:

d0 ≤ k1 < d ∧ k1 < k2 < h ∧ outerloop(d0, d, h, k1, ak1 , k2, ak2) =⇒ ak1 ≤ ak2 (48)

If this invariant is added to the problem as an additional query to prove, solving
time is reduced from 6 min to 1 s. It may seem counter-intuitive that a solver takes
less time to solve a problem with an additional constraint; but this constraint
expresses an invariant necessary to prove the solution, and thus nudges the solver
towards the solution.

Our approach is therefore flexible: if a solver fails to prove the desired prop-
erty on its own, it is possible to help it by providing partial invariants. This is a
less tedious approach than having to provide full invariants at every loop header,
as common in assisted Floyd-Hoare proofs.

5 Sets and Multisets

Our abstraction for maps may be used to abstract (multi)sets. Let us see for
instance how to abstract the multiset of elements of an array, so as to show that
the output of a sorting algorithm is a permutation of the input.

In Example 7, we showed how to prove that the output of selection sort is
sorted. This is not enough for functional correctness: we also have to prove that
the output is a permutation of the input, or, equivalently, that the multiset of
elements in the output array is the same as that in the input array.

16 In Example 8 we shall see how to prove that the multiset of elements in the output
is the same as in the input.

17 Nontrivial in the sense that a human user operating a Floyd-Hoare proof assistant
typically does not come up with them so easily.

Cell Morphing: From Array Programs to Array-Free Horn Clauses 373

Let us remark that it is easy to keep track, in an auxiliary map, of the number
#a(x) of elements of value x in the array a[]. Only write accesses to a[] have an
influence on #a: a write a[i] := v is replaced by a sequence:

#a(a[i]) := #a(a[i]) − 1; a[i] := v; #a(v) := #a(v) + 1 (49)

(that is, in addition to the array write, the count of elements for the value that
gets overwritten is decremented, and the count of elements for the new value is
incremented).

This auxiliary map #a can itself be abstracted using our approach! Let us
now see how to implement this in our abstract forward semantics expressed using
Horn clauses. We enrich our Galois connection (Definition 1) as follows:

Definition 11. The concretization of I� ⊆ χ × (ι × β) × (β × N) is

γ#(I�) =
{

(x, a) | ∀i ∈ ι ∀v ∈ β
(
x, (i, a[i]), (v, card{j ∈ ι | a[j] = v})

) ∈ I�
}

(50)

where cardX denotes the number of elements in the set X.
The abstraction of I ⊆ χ × Arr (ι, β) is

α#(I) =
{(

x, (i, a[i]), (v, card{j ∈ ι | a[j] = v})
) ∣

∣
∣ x ∈ χ, i ∈ ι

}
(51)

Theorem 4. P (χ × Arr (ι, β)) −−−−→←−−−−
α#

γ# P (χ × (ι × β) × (β × N))

The Horn rules for array reads and for scalar operations are the same as those
for our first abstraction, except that we carry over the extra two components
identically.

Definition 12 (Read statement). Same notations as Definition 2:

k 	= i ∧ I�
1

(
(x, i, v), (k, ak), (z, a#z)

)∧
I�
1

(
(x, i, v), (i, ai), (z, a#z)

)
=⇒ I�

2

(
(x, i, ai), (k, ak), (z, a#z)

)

I�
1

(
(x, i, v), (i, ai), (z, a#z)

)
=⇒ I�

2

(
(x, i, ai), (i, ai), (z, a#z)

)

Lemma 3. The abstract forward semantics of the read statement (Definition 12)
is a sound abstraction of the concrete semantics given in Definition 2.

The abstraction of the write statement is more complicated (see the sequence
of instructions in Formula 49). To abstract a write a[i] := v between control
points p1 and p2, we execute a read of the old value from the cell abstraction
of the array, decrement the number of cells with this value, execute the write to
the cell abstraction, and increment the number of cells with the new value.

374 D. Monniaux and L. Gonnord

Definition 13 (Write statement). With the same notations in Definition 3:

Step translation

e:=a[i]; #a[e]--; kill(e)
ai �= z ∧ I

�
1

(
(x, i, v), (k, ak), (z, a#z)

) ∧ I
�
1

(
(x, i, v), (i, ai), (z, a#z)

)

=⇒ I
�
a

(
(x, i, v), (k, ak), (z, a#z)

)

I
�
1

(
(x, i, v), (k, ak), (ai, a#z)

) ∧ I
�
1

(
(x, i, v), (i, ai), (ai, a#z)

)

=⇒ I
�
a

(
(x, i, v), (k, ak), (ai, a#z − 1)

)

#a[v]++ v �= z ∧ I
�
a

(
(x, i, v), (k, ak), (z, a#z)

)
=⇒ I

�
b

(
(x, i, v), (k, ak), (z, a#z)

)

I
�
a

(
(x, i, v), (k, ak), (v, a#z)

)
=⇒ I

�
b

(
(x, i, v), (k, ak), (v, a#z + 1)

)

a[i]=v i �= k ∧ I
�
1

(
(x, i, v), (k, ak), (z, a#z)

)
=⇒ I

�
2

(
(x, i, v), (k, ak), (z, a#z)

)

I
�
1

(
(x, i, v), (i, ai), (z, a#z)

)
=⇒ I

�
2

(
(x, i, v), (i, v), (z, a#z)

)

Lemma 4. The abstract forward semantics of the write statement (Defini-
tion 13) is a sound abstraction of the concrete semantics given in Definition 3.

If we want to compare the multiset of the contents of an array a at the end of
a procedure to its contents at the beginning of the procedure, one needs to keep
a copy of the old multiset. It is common that the property sought is a relation
between the number of occurrences #a(z) of an element z in the output array
a and its number of occurrences #a0(z) in the input array a0. In the above
formulas, one may therefore replace the pair (z, a#z) by (z, a#z, a

0
#z), with a0

#z

always propagated identically.

Example 8. Consider again selection sort (Program 7). We use the abstract
semantics for read (Definition 12) and write (Definition 13), with an additional
component a0

#z for tracking the original number of values z in the array a.
We specify the final property as the query

exit(l0, h, k, ak, z, a#z, a
0
#z) =⇒ a#z = a0

#z (52)

6 Experiments

Implementation. We implemented our prototype vaphor in 2k lines of OCaml.
vaphor takes as input a mini-Java program (a variation of While with array
accesses, and assertions) and produces a Smtlib2 file18. The core analyzer imple-
ments the translation for one and two-dimensional arrays described in Sects. 3
and 4, and also the direct translation toward a formula with array variables.

Experiments. We have tested our analyzer on several examples from the litera-
ture, including the array benchmark proposed in [15] also used in [3] (Table 1);
and other classical array algorithms including selection sort, bubble sort and
insertion sort (Table 2). We compared our approach to existing Horn clause
solvers capable of dealing with arrays. All these files are available on the web-
page https://hal.archives-ouvertes.fr/hal-01206882

18 http://smtlib.cs.uiowa.edu/.

https://hal.archives-ouvertes.fr/hal-01206882
http://smtlib.cs.uiowa.edu/

Cell Morphing: From Array Programs to Array-Free Horn Clauses 375

Table 1. Comparison on the array benchmarks of [15]. (Average) timing are in seconds, CPU

time. Abstraction with N = 1. “sat” means the property was proved, “unsat” that it could not be proved.

“hints” means that some invariants had to be manually supplied to the solver (e.g. even/odd conditions).

A star means that we used another version of the solver. Timeout was 5 mn unless otherwise noted. The

machine has 32 i3-3110M cores, 64GiB RAM, C/C++ solvers were compiled with gcc 4.8.4, the JVM is

OpenJDK 1.7.0-85.

Benchmark Z3/PDR Z3/Spacer Eldarica Comment

Res Time Res Time Res Time

Correct problems, “sat” expected

append sat 2.11 sat 0.85 sat 22.61

copy sat 4.66 sat 0.44 timeout(300 s)

find sat 0.20 sat 0.14 sat 12.93

findnonnull sat 0.50 sat 0.34 sat 12.04

initcte sat 0.16 sat 0.26 sat 13.28

init2i sat 0.31 sat 0.16 sat 14.67

partialcopy sat 1.88 sat 0.34 timeout(300 s)

reverse sat 40.70 sat 2.19 timeout(300 s)

strcpy sat 0.92 sat 0.37 sat* 66.69

strlen sat 0.24 sat 0.22 sat 36.69

swapncopy sat 71.16 timeout(300 s) timeout(300 s)

memcpy sat 3.54 sat 0.39 timeout(300 s)

initeven sat 1.32 sat 0.71 timeout(300 s) “hints”

mergeinterleave sat 39.49 sat 4.61 timeout 322.39 “hints”

Incorrect problems, “unsat” expected

copyodd buggy unsat 0.08 unsat 0.04 unsat 7.42

initeven buggy unsat 0.06 unsat 0.06 unsat 6.28

reverse buggy unsat 1.88 unsat 1.28 unsat 58.96

swapncopy buggy unsat 3.13 unsat 0.74 unsat 27.54

mergeinterleave buggy unsat 1.16 unsat 0.56 unsat 31.22

Limitations. Our tool does not currently implement the reasoning over array
contents (multiset of values). Experiments for these were thus conducted by
manually applying the transformations described in this article in order to obtain
a system of Horn clauses. For this reason, because applying rules manually is
tedious and error-prone, the only sorting algorithm for which we have checked
that the multiset of the output is equal to the multiset of the inputs is selection
sort. We are however confident that the two other algorithms would go through,
given that they use similar or simpler swapping structures.

Some examples from Dillig et al. [15] involve invariants with even/odd con-
straints. The Horn solvers we tried do not seem to be able to infer invariants
involving divisibility predicates unless these predicates were given by the user.
For these cases we added these even/odd properties as additional invariants to
prove.

Efficiency caveats. Our tool does not currently simplify the system of Horn
clauses that it produces. We have observed that, in some cases, manually sim-
plifying the clauses (removing useless variables, inlining single antecedents by
substitution. . .) dramatically reduces solving times. Also, precomputing some

376 D. Monniaux and L. Gonnord

Table 2. Other array-manipulating programs, including various sorting algorithms.
A star means that we used another version of the solver, R1 means random seed=1. The striked out result

is likely a bug in Z3; the alternative is a bug in Spacer, since the same system cannot be satisfiable and

unsatisfiable at the same time.

Benchmark N Z3/PDR Z3/Spacer Eldarica Comment

Res Time Res Time Res Time

bin search check 1 sat 0.71 sat 0.34 Crash

find mini check 1 sat 4.22 sat 0.82 sat 110.58

revrefill1D check buggy 1 unsat 0.03 unsat 0.07 unsat 9.21

array init 2D 1 sat 0.46 sat 0.22 sat 12.76

array sort 2D 1 sat 0.78 sat 0.30 sat 26.68

selection sort (sortedness) 2 sat* 99.04 timeout(300 s) timeout(300 s)

selection sort (sortedness) 2 unsat 83 sat 48 timeout 334 manual translation

selection sort (permutation) 1 timeout 600 sat 9.24 timeout 336 manual translation

bubble sort simplified 2 sat 5.98 sat 2.77 sat 158.70

insertion sort 2 sat(R1) 53.83 timeout(300 s) timeout(300 s)

simple scalar invariants on the Horn clauses (e.g. 0 ≤ k < i for a loop from k to
i − 1) and asserting them as assertions to prove in the Horn system sometimes
reduces solving time.

We have observed that the execution time of a Horn solver may dramatically
change depending on minor changes in the input, pseudo-random number gen-
erator seed, or version of the solver. For instance, the same version of Z3 solves
the same system of Horn clauses (proving the correctness of selection sort) in
3 min 40 s or 3 h 52 min depending on whether the random seed is 1 or 0.19

Furthermore, we have run into numerous problems with solvers, including
one example that, on successive versions of the same solver, produced “sat”
then “unknown” and finally “unsat”, as well as crashes.

For all these reasons, we believe that solving times should not be regarded
too closely. The purpose of our experimental evaluation is not to benchmark
solvers relative to each other, but to show that our abstraction, even though it
is incomplete, is powerful enough to lead to fully automated proofs of functional
correctness of nontrivial array manipulations, including sorting algorithms. Tools
for solving Horn clauses are still in their infancy and we thus expect performance
and reliability to increase dramatically.

7 Related Work

7.1 Cell-Based Abstractions

Smashing. The simplest abstraction for an array is to “smash” all cells into a
single one — this amounts to removing the k component from our first Galois
connection (Definition 1). The weakness of that approach is that all writes are
treated as “may writes” or weak updates: a[i] := x adds the value x to the values
19 We suspect that different choices in SAT lead to different proofs of unsatisfiability,

thus different interpolants and different refinements in the PDR algorithm.

Cell Morphing: From Array Programs to Array-Free Horn Clauses 377

possibly found in the array a, but there is no way to remove any value from that
set. Such an approach thus cannot treat initialization loops (e.g. Program 1)
precisely.

Exploding. At the other extreme, for an array of statically known finite length N
(which is common in embedded safety-critical software), one can distinguish all
cells a[0], . . . , a[N − 1] and treat them as separate variables a0, . . . , aN−1. This
is a good solution when N is small, but a terrible one when N is large: (i) many
analyses scale poorly with the number of active variables (ii) an initialization
loop will have to be unrolled N times to show it initializes all cells. Both smashing
and exploding have been used with success in the Astrée static analyzer [4,5].

Slices. More sophisticated analyses [12,17,19,32,33] distinguish slices or seg-
ments in the array; their boundaries depend on the index variables. For instance,
in array initialization (Program 1), one slice is the part already initialized (indices
< i), the other the part yet to be initialized (indices ≥ i). In the simplest case,
each slice is “smashed” into a single value, but more refined analyses express
relationships between slices. Since the slices are segments [a, b] of indices, these
analyses generalize poorly to multidimensional arrays. Also, there is often a
combinatorial explosion in analyzing how array slices may or may not overlap.

Cornish et al. [10] similarly apply a program-to-program translation over the
LLVM intermediate representation, followed by a scalar analysis.

To our best knowledge, all these approaches factor through our Galois con-
nections −−−→←−−−

α

γ
, −−−−→←−−−−

α2<

γ2<

or combinations thereof: that is, their abstraction can be
expressed as a composition of our abstraction and further abstraction — even
though our implementation of the abstract transfer functions is completely differ-
ent from theirs. Our approach, however, separates the concerns of (i) abstracting
array problems to array-less problems (ii) abstracting the relationships between
different cells and indices.

Fluid updates. Dillig et al. [15] extend the slice approach by introducing “fluid
updates” to overcome the dichotomy between strong and weak updates. They
specifically exclude sortedness from the kind of properties they can study.

Array removal by program transformation. Monniaux and Alberti [31] analyze
array programs by transforming them into array-free programs, which are sent
to a back-end analyzer. The resulting invariants contain extra index variables,
which can be universally quantified away, similar to the Skolem constants of
earlier invariant inference approaches [16,27]. We have explained (p. 3) why
these approaches are less precise than ours.

Another difficulty they obviously faced was the limitations of the back-end
solvers that they could use. The integer acceleration engine Flata severely lim-
its the kind of transition relations that can be considered and scales poorly. The
abstract interpreter ConcurInterproc can infer disjunctive properties (neces-
sary to distinguish two slices in an array) only if given case splits using observer

378 D. Monniaux and L. Gonnord

Boolean variables; but the cost increases greatly (exponentially, in the worst
case) with the number of such variables.

7.2 Horn Clauses

Transformations. De Angelis et al. [14] start from a system of Horn clauses
over array variables and apply a sequence of transformation rules that (i) either
yield the empty set of clauses, meaning the program is correct (ii) either yield
the “false” fact, meaning the program is incorrect (iii) either fails to terminate.
These rules are based on the axioms of arrays and on a generalization scheme
for arithmetic predicates using widening and convex hull.

In contrast to theirs, our approach (i) does not require a target property
to prove (though the backend solver may need one) (ii) does not mix concerns
about arrays and arithmetic constraints (iii) can prove the correctness of the full
insertion sort algorithm (they can prove only the inner loop).

Instantiation. Bjørner et al. [3] propose an approach for solving universally quan-
tified Horn clauses: a Horn clause (∀x P (x, y)) → Q(y), not handled by current
solvers, is abstracted by P (x1(y))∧· · ·∧P (xn(y)) → Q(y) where the xi are heuris-
tically chosen instantiations. Our approach can be construed as an application
of their approach to the axioms of arrays, with specific instantiation heuristics.

We improve on their interesting contribution in several ways. (i) Instead of
presenting our approach as a heuristic instantiation scheme, we show that it
corresponds to specific Galois connections, which clarifies what abstraction is
done and what kind of properties can or cannot be represented. (ii) We handle
sortedness properties. None of their examples deal with sortedness and it is
unclear how their instantiation heuristics would behave on them. (iii) We handle
multisets (and thus permutation properties) by reduction to arrays. It is possible
that our approach in this respect can be described as an instantiation scheme
over the axioms for arrays (including the multiset of array contents), but, again,
it is unclear how their instantiation heuristics would behave in this respect.

Their approach has not been implemented except in private research proto-
types; we could not run a comparison.20

7.3 Predicate Abstraction, CEGAR and Array Interpolants

There exist a variety of approaches based on counterexample-guided abstraction
refinement using Craig interpolants [28–30]. In a nutshell, Craig interpolants are
predicates suitable for proving, using Hoare triples, that some unfolding of the
execution cannot lead to an error state. They are typically processed from the
proof of unsatisfiability of the unfolding produced by an SMT solver.

Generating good interpolants from purely arithmetic problems is already
a difficult problem, and generating good universally quantified interpolants on
array properties has proved even more challenging [1,2,23].

20 Their approach is not implemented in Z3 (personal communication from N. Bjørner).

Cell Morphing: From Array Programs to Array-Free Horn Clauses 379

7.4 Acceleration

Bozga et al. [7] have proposed a method for accelerating certain transition rela-
tions involving actions over arrays, outputting the transitive closure in the form
of a counter automaton. Translating the counter automaton into a first-order
formula expressing the array properties however results in a loss of precision.

8 Conclusion and Perspectives

We have proposed a generic approach to abstract programs and universal prop-
erties over arrays (or arbitrary maps) by syntactic transformation into a system
of Horn clauses without arrays, which is then sent to a solver. This transforma-
tion is powerful enough to prove, fully automatically and within minutes, that
the output of selection sort is sorted and is a permutation of the input.

While some solvers have difficulties with the kind of Horn systems that we
generate, some (e.g. Spacer) are capable of solving them quite well. We have
used the stock version of the solvers, without tuning or help from their designers,
thus higher performance is to be expected in the future. If the solver cannot find
the invariants on its own, it can be helped by partial invariants from the user.

As experiments show, our approach significantly improves on the procedures
currently in array-capable Horn solvers, as well as earlier approaches for inferring
quantified array invariants: they typically cannot prove sorting algorithms.

Our rules are for forward analysis: a solution to our Horn clauses defines
a super-set of all states reachable from program initialization, and the desired
property is proved if this set is included in the property. We intend to investigate
backward analysis: find a super-set of the set of all states reachable from a
property violation, not intersecting the initial states.

One advantage of some of the approaches (the abstract interpretation ones
from Sect. 7.1 and the transformation from [31]) is that they are capable of
inferring what a program does, or at least a meaningful abstraction of it (e.g. “at
the end of this program all cells in the array a contains 42”) as opposed to merely
proving a property supplied by the user. Our approach can achieve this as well,
provided it is used with a Horn clause solver that provides interesting solutions
without the need of a query. This Horn clause solver should however be capable
of generating disjunctive properties (e.g. (k < i ∧ ak = 0) ∨ (k ≥ i ∧ ak = 42));
thus a simple approach by abstract interpretation of the Horn clauses in, say, a
sub-class of the convex polyhedra, will not do. We know of no such Horn solver;
designing one is a research challenge. Maybe certain partitioning approaches used
in sequential program verification [21,34] may be transposed to Horn clauses.

We have considered simple programs operating over arrays or maps, as
opposed to a real-life programming language with objects, references or, hor-
ror, pointer arithmetic. Yet, our approach can be adapted to such languages,
following methods that view memory as arrays [6], whose disjointness is proved
by typing (e.g. two values of different types can never be aliased, two fields of
different types can never be aliased) or by alias analysis.

380 D. Monniaux and L. Gonnord

Acknowledgments. We wish to thank the anonymous referees for their careful read-
ing and helpful comments.

References

1. Alberti, F., Monniaux, D.: Polyhedra to the rescue of array interpolants. In: Sym-
posium on applied computing (Software Verification & Testing), pp. 1745–1750.
ACM (2015). doi:10.1145/2695664.2695784

2. Alberti, F., Bruttomesso, R., Ghilardi, S., Ranise, S., Sharygina, N.: An extension
of lazy abstraction with interpolation for programs with arrays. Formal Methods
Syst. Des. 45(1), 63–109 (2014). doi:10.1007/s10703-014-0209-9

3. Bjørner, N., McMillan, K., Rybalchenko, A.: On solving universally quantified
Horn clauses. In: Logozzo, F., Fähndrich, M. (eds.) SAS 2013. LNCS, vol. 7935,
pp. 105–125. Springer, Heidelberg (2013). doi:10.1145/2695664.2695784

4. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux,
D., Rival, X.: Design and implementation of a special-purpose static program ana-
lyzer for safety-critical real-time embedded software. In: Mogensen, T.Æ., Schmidt,
D.A., Sudborough, I.H. (eds.) The Essence of Computation. LNCS, vol. 2566, pp.
85–108. Springer, Heidelberg (2002). doi:10.1007/3-540-36377-7 5

5. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux,
D., Rival, X.: A static analyzer for large safety-critical software. In: Programming
Language Design and Implementation (PLDI), pp. 196–207. ACM (2003). doi:10.
1145/781131.781153

6. Bornat, R.: Proving pointer programs in Hoare logic. In: Backhouse, R.C., Oliveira,
J.N. (eds.) MPC 2000. LNCS, vol. 1837, pp. 102–126. Springer, Heidelberg (2000).
doi:10.1007/10722010 8

7. Bozga, M., Habermehl, P., Iosif, R., Konečný, F., Vojnar, T.: Automatic ver-
ification of integer array programs. In: Bouajjani, A., Maler, O. (eds.) CAV
2009. LNCS, vol. 5643, pp. 157–172. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-02658-4 15

8. Bradley, A.R., Manna, Z., Sipma, H.B.: What’s decidable about arrays? In:
Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 427–
442. Springer, Heidelberg (2006). doi:10.1007/11609773 28

9. Christ, J.: Interpolation Modulo Theories. Ph.D thesis, University of Freiburg
(2015)

10. Cornish, J.R.M., Gange, G., Navas, J.A., Schachte, P., Søndergaard, H., Stuckey,
P.J.: Analyzing array manipulating programs by program transformation. In:
Proietti, M., Seki, H. (eds.) LOPSTR 2014. LNCS, vol. 8981, pp. 3–20. Springer,
Heidelberg (2015). doi:10.1007/978-3-319-17822-6 1

11. Cousot, P., Cousot, R.: Abstract interpretation frameworks. J. Log. Comput. 2(4),
511–547 (1992). doi:10.1093/logcom/2.4.511

12. Cousot, P., Cousot, R., Logozzo, F.: A parametric segmentation functor for fully
automatic and scalable array content analysis. In: Principles of Programming Lan-
guages (POPL), pp. 105–118. ACM (2011). doi:10.1145/1926385.1926399

13. Cousot, P., Cousot, R.: Invited talk: higher order abstract interpretation. In: IEEE
International Conference on Computer Languages, pp. 95–112. IEEE (1994)

14. De Angelis, E., Fioravanti, F., Pettorossi, A., Proietti, M.: A rule-based verification
strategy for array manipulating programs. Fundamenta Informaticae 140(3–4),
329–355 (2015). doi:10.3233/FI-2015-1257

http://dx.doi.org/10.1145/2695664.2695784
http://dx.doi.org/10.1007/s10703-014-0209-9
http://dx.doi.org/10.1145/2695664.2695784
http://dx.doi.org/10.1007/3-540-36377-7_5
http://dx.doi.org/10.1145/781131.781153
http://dx.doi.org/10.1145/781131.781153
http://dx.doi.org/10.1007/10722010_8
http://dx.doi.org/10.1007/978-3-642-02658-4_15
http://dx.doi.org/10.1007/978-3-642-02658-4_15
http://dx.doi.org/10.1007/11609773_28
http://dx.doi.org/10.1007/978-3-319-17822-6_1
http://dx.doi.org/10.1093/logcom/2.4.511
http://dx.doi.org/10.1145/1926385.1926399
http://dx.doi.org/10.3233/FI-2015-1257

Cell Morphing: From Array Programs to Array-Free Horn Clauses 381

15. Dillig, I., Dillig, T., Aiken, A.: Fluid updates: beyond strong vs. weak updates. In:
Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 246–266. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-11957-6 14

16. Flanagan, C., Qadeer, S.: Predicate abstraction for software verification. In: POPL,
pp. 191–202 (2002)

17. Gopan, D., Reps, T.W., Sagiv, S.: A framework for numeric analysis of array
operations. In: Principles of Programming Languages (POPL), pp. 338–350 (2005)
doi:10.1145/1040305.1040333

18. Gurfinkel, A., Kahsai, T., Komuravelli, A., Navas, J.A.: The seahorn verification
framework. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206,
pp. 343–361. Springer, Heidelberg (2015)

19. Halbwachs, N., Péron, M.: Discovering properties about arrays in simple programs.
In: Programming language design and implementation (PLDI), pp. 339–348. ACM
(2008) doi:10.1145/1375581.1375623

20. Halpern, J.Y.: Presburger arithmetic with unary predicates is Π1
1 complete. J.

Symbolic Logic 56(2), 637–642 (1991). doi:10.2307/2274706. ISSN 0022–4812
21. Henry, J., Monniaux, D., Moy, M.: Succinct representations for abstract interpre-

tation. In: Miné, A., Schmidt, D. (eds.) SAS 2012. LNCS, vol. 7460, pp. 283–299.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-33125-1 20

22. Hoder, K., Bjørner, N.: Generalized property directed reachability. In: Cimatti, A.,
Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 157–171. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-31612-8 13. ISBN 978-3-642-31611-1

23. Jhala, R., McMillan, K.L.: Array abstractions from proofs. In: Damm, W.,
Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 193–206. Springer, Heidelberg
(2007). doi:10.1007/978-3-540-73368-3 23

24. Komuravelli, A., Gurfinkel, A., Chaki, S., Clarke, E.M.: Automatic abstraction in
SMT-based unbounded software model checking. In: Sharygina, N., Veith, H. (eds.)
CAV 2013. LNCS, vol. 8044, pp. 846–862. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-39799-8 59. ISBN 978-3-642-39798-1

25. Komuravelli, A., Gurfinkel, A., Chaki, S.: SMT-based model checking for recur-
sive programs. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp.
17–34. Springer, Heidelberg (2014). doi:10.1007/978-3-319-08867-9 2. ISBN 978-
3-319-08866-2

26. Kroening, D., Strichman, O.: Decision Procedures. Springer, Heidelberg (2008).
ISBN 978-3-540-74104-6

27. Lahiri, S.K., Bryant, R.E.: Indexed predicate discovery for unbounded system ver-
ification. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 135–147.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-27813-9 11

28. McMillan, K.L.: Applications of craig interpolation to model checking. In: Ciardo,
G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 15–16. Springer,
Heidelberg (2005). doi:10.1007/11494744 2

29. McMillan, K.L.: Lazy abstraction with interpolants. In: Ball, T., Jones, R.B. (eds.)
CAV 2006. LNCS, vol. 4144, pp. 123–136. Springer, Heidelberg (2006). doi:10.1007/
11817963 14

30. McMillan, K.L.: Interpolants from Z3 proofs. In: Formal Methods in Computer-
Aided Design (FMCAD), pp. 19–27 (2011). ISBN 978-0-9835678-1-3

31. Monniaux, D., Alberti, F.: A simple abstraction of arrays and maps by program
translation. In: Blazy, S., Jensen, T. (eds.) SAS 2015. LNCS, vol. 9291, pp. 217–234.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-48288-9 13. ISBN 978-3-662-
48288-9

http://dx.doi.org/10.1007/978-3-642-11957-6_14
http://dx.doi.org/10.1145/1040305.1040333
http://dx.doi.org/10.1145/1375581.1375623
http://dx.doi.org/10.2307/2274706
http://dx.doi.org/10.1007/978-3-642-33125-1_20
http://dx.doi.org/10.1007/978-3-642-31612-8_13
http://dx.doi.org/10.1007/978-3-540-73368-3_23
http://dx.doi.org/10.1007/978-3-642-39799-8_59
http://dx.doi.org/10.1007/978-3-642-39799-8_59
http://dx.doi.org/10.1007/978-3-319-08867-9_2
http://dx.doi.org/10.1007/978-3-540-27813-9_11
http://dx.doi.org/10.1007/11494744_2
http://dx.doi.org/10.1007/11817963_14
http://dx.doi.org/10.1007/11817963_14
http://dx.doi.org/10.1007/978-3-662-48288-9_13

382 D. Monniaux and L. Gonnord

32. Péron, M.: Contributions to the Static Analysis of Programs HandlingArrays.
Theses, Université de Grenoble, September 2010. https://tel.archives-ouvertes.fr/
tel-00623697

33. Perrelle, V.: Analyse statique de programmes manipulant des tableaux. The-
ses, Université de Grenoble, February 2013. https://tel.archives-ouvertes.fr/
tel-00973892

34. Rival, X., Mauborgne, L.: The trace partitioning abstract domain. ACM Trans.
Program. Lang. Syst., 29(5) (2007). doi:10.1145/1275497.1275501

35. Rümmer, P., Hojjat, H., Kuncak, V.: Disjunctive interpolants for horn-clause verifi-
cation. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 347–363.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-39799-8 24. ISBN 978-3-642-
39798-1

36. Rümmer, P., Hojjat, H., Kuncak, V.: Classifying and solving horn clauses for veri-
fication. In: Cohen, E., Rybalchenko, A. (eds.) VSTTE 2013. LNCS, vol. 8164, pp.
1–21. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54108-7 1

https://tel.archives-ouvertes.fr/tel-00623697
https://tel.archives-ouvertes.fr/tel-00623697
https://tel.archives-ouvertes.fr/tel-00973892
https://tel.archives-ouvertes.fr/tel-00973892
http://dx.doi.org/10.1145/1275497.1275501
http://dx.doi.org/10.1007/978-3-642-39799-8_24
http://dx.doi.org/10.1007/978-3-642-54108-7_1

	Cell Morphing: From Array Programs to Array-Free Horn Clauses
	1 Introduction
	2 Program Verification as Solving Horn Clauses
	3 Getting Did of the Arrays
	4 Sortedness and Other N-ary Predicates
	5 Sets and Multisets
	6 Experiments
	7 Related Work
	7.1 Cell-Based Abstractions
	7.2 Horn Clauses
	7.3 Predicate Abstraction, CEGAR and Array Interpolants
	7.4 Acceleration

	8 Conclusion and Perspectives
	References

