
Generalized Homogeneous Polynomials
for Efficient Template-Based Nonlinear

Invariant Synthesis

Kensuke Kojima1,2, Minoru Kinoshita1,4, and Kohei Suenaga1,3(B)

1 Kyoto University, Kyoto, Japan
ksuenaga@kuis.kyoto-u.ac.jp
2 JST CREST, Kyoto, Japan

3 JST PRESTO, Kyoto, Japan
4 KLab Inc., Tokyo, Japan

Abstract. The template-based method is one of the most successful
approaches to algebraic invariant synthesis. In this method, an algo-
rithm designates a template polynomial p over program variables, gener-
ates constraints for p = 0 to be an invariant, and solves the generated
constraints. However, this approach often suffers from an increasing tem-
plate size if the degree of a template polynomial is too high.

We propose a technique to make template-based methods more effi-
cient. Our technique is based on the following finding: If an algebraic
invariant exists, then there is a specific algebraic invariant that we call a
generalized homogeneous algebraic invariant that is often smaller. This
finding justifies using only a smaller template that corresponds to a gen-
eralized homogeneous algebraic invariant.

Concretely, we state our finding above formally based on the abstract
semantics of an imperative program proposed by Cachera et al. Then,
we modify their template-based invariant synthesis so that it generates
only generalized homogeneous algebraic invariants. This modification is
proved to be sound. Furthermore, we also empirically demonstrate the
merit of the restriction to generalized homogeneous algebraic invariants.
Our implementation outperforms that of Cachera et al. for programs
that require a higher-degree template.

1 Introduction

We consider the following postcondition problem: Given a program c, discover a
fact that holds at the end of c regardless of the initial state. This paper focuses
on a postcondition written as an algebraic condition p1 = 0∧· · ·∧pn = 0, where
p1, . . . , pn are polynomials over program variables; this problem is a basis for
static verification of functional correctness.

One approach to this problem is invariant synthesis, in which we are to
compute a family of predicates Pl indexed by program locations l such that Pl

holds whenever the execution of c reaches l. The invariant associated with the
end of c is a solution to the postcondition problem.
c© Springer-Verlag GmbH Germany 2016
X. Rival (Ed.): SAS 2016, LNCS 9837, pp. 278–299, 2016.
DOI: 10.1007/978-3-662-53413-7 14

Generalized Homogeneous Polynomials 279

Because of its importance in static program verification, algebraic invariant
synthesis has been intensively studied [4,16,19,20]. Among these proposed tech-
niques, one successful approach is the constraint-based method in which invariant
synthesis is reduced to a constraint-solving problem. During constraint genera-
tion, this method designates templates, which are polynomials over the program
variables with unknown parameters at the coefficient positions [20]. The algo-
rithm generates constraints that ensure that the templates are invariants and
obtains the invariants by solving the constraints1.

Example 1. The program cfall in Fig. 1 models the behavior of a mass point
with weight 1 and with a constant acceleration rate; the program takes friction
between the mass point and air into account2. For this program, the postcondi-
tion −gt + gt0 − v + v0 − xρ + x0ρ = 0 holds regardless of the initial state.

Fig. 1. Program cfall , which models a falling mass point. The
symbols in the program represent the following quantities: x is
the position of the point, v is its speed, t is time, x0 is the initial
position, v0 is the initial speed, t0 is the initial value of the clock
t, g is the acceleration rate, ρ is the friction coefficient, and dt
is the discretization interval. The simultaneous substitution in
the loop body numerically updates the values of x, v, and t. The
values of x, v, and t are numerical solutions of the differential
equations dx

dt
= v and dt

dt
= 1; notice that the force applied by

the air to the mass point is −ρv, which leads to the differential
equation for dv

dt
= −g − ρv.

We describe how
a template-based
method computes
the postcondition in
Example 1. The
method described
here differs from the
one we explore in
this paper; this
explanation is in-
tended to suggest
the flavor of a tem-
plate method.

A template-based
method generates a
template polynomial
over the program
variables that represent an invariant at Line 4. Suppose the generated polynomial
p(x0, v0, t0, x, v, t, a, dt , g, ρ) is of degree 2 over the variables: p(x0, v0, t0, x, v,
t, a, dt , g, ρ) := a1 + at0t0 + ax0x0 + · · · + agρgρ, where aw is the coefficient
parameter associated with the power product w. The procedure then generates
constraints such that p(x0, v0, t0, x, v, t, a, dt , g, ρ) = 0 is indeed an invariant at
Line 4. The method proposed by Sankaranarayanan et al. [20] based on the
Gröbner basis [5] generates the constraints as an equations over the parameters;
in this case, a solution to the constraints gives −gt+ ga− v + v0 −xρ+x0ρ = 0,
which is indeed an invariant at the end of cfall .

One of the drawbacks of the template-based method is excessive growth
of the size of a template. Blindly generating a template of degree d for a

1 The constraint-based method by Cachera et al. [4], which is the basis of the current
paper, uses a template also for other purposes. See Sect. 6 for details.

2 Although the guard condition t−a �= 0 should be t−a < 0 in a real-world numerical
program, we use the current example for presentation purposes.

280 K. Kojima et al.

degree parameter d makes the invariant synthesis less scalable for higher-
degree invariants. For example, the program in Example 1 has an invariant
−gt2 + gt20 − 2tv + 2t0v0 + 2x − 2x0 = 0 at Line 4. This invariant requires a
degree-3 template, which has

(
10+3

3

)
= 286 monomials in this case.

We propose a hack to alleviate this drawback in the template-based methods.
Our method is inspired by a rule of thumb in physics called the principle of
quantity dimension: A physical law should not add two quantities with different
quantity dimensions [2]. If we accept this principle, then, at least for a physically
meaningful program such as cfall , an invariant (and therefore a template) should
consist of monomials with the same quantity dimensions.

Indeed, the polynomial −gt+gt0−v+v0−xρ+x0ρ in the invariant calculated
in Example 1 consists only of quantities that represent velocities. (Notice that ρ
is a quantity that corresponds to the inverse of a time quantity.) The polynomial
−gt2+gt20−2tv+2t0v0+2x−2x0 above consists only of quantities corresponding
to the length. If we use the notation of quantity dimensions used in physics,
the former polynomial consists only of monomials with the quantity dimension
LT−1, whereas the latter consists only of L, where L and T represent quantity
dimensions for lengths and times, respectively.

By leveraging the quantity dimension principle in the template synthesis
phase, we can reduce the size of a template. For example, we could use a template
that consists only of monomials for, say, velocity quantities instead of the general
degree-2 polynomial p(x0, v0, x, v, t, a, dt , g, ρ) used above, which yields a smaller
template.

The idea of the quantity dimension principle can be nicely captured by gen-
eralizing the notion of homogeneous polynomials. A polynomial is said to be
homogeneous if it consists of monomials of the same degree; for example, the
polynomial x3 + x2y + xy2 + y3 is a homogeneous polynomial of degree 3. We
generalize this notion of homogeneity so that (1) a degree is an expression cor-
responding to a quantity dimension (e.g., LT−1) and (2) each variable has its
own degree in degree computation.

Let us describe our idea using an example, deferring formal definitions.
Suppose we have the following degree assignment for each program variable:
Γ := {x0 �→ L, t0 �→ T, g �→ LT−2, t �→ T, dt �→ T, x �→ L, v �→ LT−1, v0 �→
LT−1, ρ �→ T−1, a �→ T }. This degree assignment intuitively corresponds to the
assignment of the quantity dimension to each variable. With this degree assign-
ment Γ , all of the monomials in −gt + gt0 − v + v0 − xρ + x0ρ have the same
degree; for example, the monomial −gt has degree Γ (g)Γ (t) = (LT−2)T =
LT−1 and monomial xρ has degree Γ (x)Γ (ρ) = LT−1, and so on. Hence,
−gt + gt0 − v + v0 − xρ + x0ρ is a homogeneous polynomial in the generalized
sense. Such a polynomial is called a generalized homogeneous (GH) polynomial.
We call an algebraic invariant with a GH polynomial a generalized homogeneous
algebraic (GHA) invariant.

The main result of this paper is a formalization of this idea: If there is
an algebraic invariant of a given program c, then there is a GHA invariant.
This justifies the use of a template that corresponds to a GH polynomial in the

Generalized Homogeneous Polynomials 281

template method. We demonstrate this result by using the abstract semantics
of an imperative programming language proposed by Cachera et al. [4]. We also
empirically show that the algorithm by Cachera et al. can be made more efficient
using this idea.

As we saw above, the definition of GH polynomials is parameterized over
a degree assignment Γ . The type inference algorithm for the dimension type
system proposed by Kennedy [12,13] can be used to find an appropriate degree
assignment; Γ above is inferred using this algorithm. The dimension type system
was originally proposed for detecting a violation of the quantity-dimension prin-
ciple in a numerical program. Our work gives an application of the dimension
type system to invariant synthesis.

Although the method is inspired by the principle of quantity dimensions, it
can be applied to a program that does not model a physical phenomenon because
we abstract the notion of a quantity dimension using that of generalized homo-
geneity. All the programs used in our experiments (Sect. 7) are indeed physically
nonsensical programs.

The rest of this paper is organized as follows. Section 2 sets up the basic math-
ematical definitions used in this paper; Sect. 3 defines the syntax and semantics
of the target language and its abstract semantics; Sect. 4 defines GH polynomi-
als; Sect. 5 defines the revised abstract semantics as the restriction of the original
one to the set of GH polynomials and shows that the revised semantics is sound
and complete; Sect. 6 gives a template-based invariant-synthesis algorithm and
shows its soundness; Sect. 7 reports the experimental results; Sect. 8 discusses
related work; and Sect. 9 presents the conclusions. Several proofs are given in
the appendices.

2 Preliminaries

R is the set of real numbers and N is the set of natural numbers. We write |S| for
the cardinality of S if S is a finite set. We designate an infinite set of variables
Var. K is a field ranged over by metavariable k; we use the standard notation
for the operations on K. For x1, . . . , xn ∈ Var, we write K[x1, . . . , xn], ranged
over by p and q, for the set of polynomials in x1, . . . , xn over K.

A subset I ⊆ K[x1, . . . , xn] is called an ideal if (1) I is an additive subgroup
and (2) pq ∈ I for any p ∈ I and q ∈ K[x1, . . . , xn]. A set S ⊆ K[x1, . . . , xn]
is said to generate the ideal I, written I = 〈S〉, if I is the smallest ideal that
contains S.

We call an expression of the form xd1
1 . . . xdN

N , where d1, . . . , dN ∈ N and
x1, . . . , xN ∈ Var, a power product over x1, . . . , xn; w is a metavariable for
power products. We call

∑
di the degree of this power product. A monomial is a

term of the form kw; the degree of this monomial is that of w. We write deg(p),
the degree of the polynomial p, for the maximum degree of the monomials in p.

A state, ranged over by σ, is a finite map from Var to K. We write St for
the set of states. We use the metavariable S for a subset of St. We write σ(p) for
the evaluated value of p under σ. Concretely, σ(p) := p(σ(x1), . . . , σ(xn)). The
set P(St) constitutes a complete lattice with respect to the set-inclusion order.

282 K. Kojima et al.

3 Language

This section defines the target language, its concrete semantics, and its abstract
semantics. We essentially follow the development by Cachera et al. [4]; we refer
the interested reader to this paper.

The syntax of the target language is as follows:

c ::= skip | x:=p | c1; c2 | if p = 0 then c1 else c2 | while p �� 0 do c

where �� is either = or 	=, and p is a polynomial over the program variables. We
restrict the guard to a single-polynomial algebraic condition (i.e., p = 0) or its
negation.

The semantics of this language is given by the following denotation function,
which is essentially the same as that by Cachera et al.

�c� : (P(St), ⊆) → (P(St), ⊆)
�skip�(S) = S
�x:=p�(S) = {σ | σ[x �→ σ(p)] ∈ S}
�c1; c2�(S) = �c1�(�c2�(S))

�if p = 0 then c1 else c2�(S) = {σ ∈ �c1�(S) | σ(p) = 0} ∪ {σ ∈ �c2�(S) | σ(p) �= 0}
�while p �� 0 do c�(S) = ν(λX.{σ ∈ S | σ(p) ��� 0} ∪ {σ ∈ �c�(X) | σ(p) �� 0}),

where �� ∈ {=, 	=} and νF is the greatest fixed point of F . Intuitively, σ ∈ �c�(S)
means that executing c from σ results in a state in S if the execution terminates;
notice that σ should be in �c�(S) if c does not terminate. The semantics uses the
greatest fixed point instead of the least fixed point in the while statement so
that �c�(S) contains the states from which the execution of c does not terminate.
If we used the least fixed point in the semantics of a while loop, then only the
initial states from which the program terminates would be in the denotation of
the loop. For example, consider the following program P that does not terminate
for any initial state: while 0 = 0 do skip. Then, �P �(S) should be St. However,
if the denotation of a while loop were given by the least fixed point, then �P �(S)
would be ∅.

Example 2. Recall the program cfall in Fig. 1. Let p1 be −gt + gt0 − v +
v0 − xρ + x0ρ, p2 be −gt2 + gt20 − 2tv + 2t0v0 + 2x − 2x0, p be p1 +
p2, and S be {σ ∈ St|σ(p) = 0}. We show that �cfall�(S) = St. We write
c1 for (x, v, t) := (x0, v0, t0), and c2 for (x, v, t) := (x + vdt , v − gdt −
ρvdt , t + dt). We have �cfall�(S) = �c1�(�while t − a 	= 0 do c2�(S)) = �c1�(νF)
where F (X) = {σ ∈ S|σ(t − a) = 0} ∪ {σ ∈ �c2�(X)|σ(t − a) 	= 0}. It is easy to
check that �c1�(S) = St, so it suffices to show that νF ⊇ S. This holds
because S is a fixed point of F . Indeed, F (S) = {σ ∈ S|σ(t − a) = 0} ∪
{σ ∈ �c2�(S)|σ(t − a) 	= 0} = {σ ∈ S|σ(t − a) = 0} ∪ {σ ∈ S|σ(t − a) 	= 0} = S
as desired. Note that �c2�(S) = S because c2 does not change the value of p.

The abstract semantics is essentially the same as that given by Cachera
et al. [4] with a small adjustment. The preorder � ⊆ P(K[x1, . . . , xn]) ×

Generalized Homogeneous Polynomials 283

P(K[x1, . . . , xn]) is defined by S1 � S2 : S2 ⊆ S1
3. Then P(K[x1, . . . , xn])

is a complete lattice, and the meet is given as the set unions: Given H ∈
P(K[x1, . . . , xn]) and U ⊆ P(K[x1, . . . , xn]), H � G for all G ∈ U if and only
if H �

⋃
U .

The abstraction α(S) is defined by {p ∈ K[x1, . . . , xn]|∀σ ∈ S, σ(p) = 0}, the
polynomials evaluated to 0 under all the states of S. The concretization γ(G)
is defined by {σ ∈ St|∀p ∈ G, σ(p) = 0}, the states that evaluate all the polyno-
mials in G to 0. The pair of α and γ constitutes a Galois connection; indeed,
both α(S)� G and S ⊆ γ(G) are by definition equivalent to the following:
∀p ∈ G,∀σ ∈ S, σ(p) = 0. For example, the set of a state {{x1 �→ 1, x2 �→ 0}}
is abstracted by the set {(x1 − 1)p1 + x2p2 | p1, p2 ∈ K[x1, . . . , xn]}; this set is
equivalently 〈x1 − 1, x2〉, the ideal generated by x1 − 1 and x2.

The definition of the abstract semantics is parameterized over a remainder-
like operation Rem(f, p) that satisfies Rem(f, p) = f − qp for some q; we
allow any Rem that satisfies this condition to be used. Note that this differs
from the standard remainder operation where we require LM�(p) — the greatest
monomial in p with respect to a monomial order � — not to divide any monomial
in LM�(Rem(f, p)). We write Rem(G, p), where G is a set of polynomials, for
the set {Rem(f, p)|f ∈ G \{0}}.

The abstract semantics �c��
Rem is defined as follows.

�c��
Rem : (P(K[x1, . . . , xn]), ��) → (P(K[x1, . . . , xn]), ��)

�skip��
Rem(G) = G

�x:=p��
Rem(G) = G[x := p]

�c1; c2�
�
Rem(G) = �c1�

�
Rem(�c2�

�
Rem(G))

�if p = 0 then c1 else c2�
�
Rem(G) = p · �c2�

�
Rem(G) ∪ Rem(�c1�

�
Rem(G), p)

�while p �= 0 do c��
Rem(G) = ν(λH.p · �c��

Rem(H) ∪ Rem(G, p))

�while p = 0 do c��
Rem(G) = ν(λH.p · G ∪ Rem(�c��

Rem(H), p)).

In this definition, G[x := p] = {q[x := p]|q ∈ G} and q[x := p] is the polynomial
obtained by replacing x with p in q. νF exists for an arbitrary monotone F
because we are working in the complete lattice P(K[x1, . . . , xn]); concretely, we
have νF =

⋃{G|G� F (G)}.
�c��

Rem transfers backward a set of polynomials whose values are 0. Cachera
et al. [4, Theorem 3] showed the soundness of this abstract semantics: For any
program c and a set of polynomials G, we have γ(�c��

Rem(G)) ⊆ �c�(γ(G)).
Although our abstract values are sets rather than ideals, we can prove this
theorem in the same way (i.e., induction on the structure of c) as the original
proof.

The highlight of the abstract semantics is the definition of �if p = 0
then c1 else c2�

�
Rem. In order to explain this case, let us describe a part

3 The original abstract semantics of Cachera et al. [4] is defined as a transformer on
ideals of polynomials; however, we formulate it here so that it operates on sets of
polynomials because their invariant-synthesis algorithm depends on the choice of a
generator of an ideal.

284 K. Kojima et al.

of the soundness proof: We show γ(�if p = 0 then c1 else c2�
�
Rem(G)) ⊆

�if p = 0 then c1 else c2�(γ(G)) assuming γ(�c1�
�
Rem(G)) ⊆ �c1�(γ(G)) and

γ(�c2�
�
Rem(G)) ⊆ �c2�(γ(G)). Suppose σ ∈ γ(�if p = 0 then c1 else c2�

�
Rem(G)).

Our goal is to show σ ∈ �if p = 0 then c1 else c2�(γ(G)). Therefore, it suffices
to show that (1) σ(p) = 0 implies σ ∈ �c1�(γ(G)), and (2) σ(p) 	= 0 implies
σ ∈ �c2�(γ(G)).

– We first show that if σ(p) = 0 then σ ∈ �c1�(γ(G)). By the induction
hypothesis, we have γ(�c1�

�
Rem(G)) ⊆ �c1�(γ(G)), so it suffices to show

that σ ∈ γ(�c1�
�
Rem(G)). Take f ∈ �c1�

�
Rem(G). Then there exists r ∈

Rem(�c1�
�
Rem(G), p) and q ∈ K[x1, . . . , xn] such that f = qp + r. Because

σ(p) = 0 and r ∈ Rem(�c1�
�
Rem(G), p) ⊆ �if p = 0 then c1 else c2�

�
Rem(G)

and σ ∈ �if p = 0 then c1 else c2�
�
Rem(G), we have σ(f) = σ(q)σ(p)+σ(r) = 0.

Since f is an arbitrary element of �c1�
�
Rem(G), by definition of γ we conclude

that σ ∈ γ(�c1�
�
Rem(G)).

– Next we show that σ(p) 	= 0 implies σ ∈ �c2�(γ(G)). By the induction hypoth-
esis, we have γ(�c2�

�
Rem(G)) ⊆ �c2�(γ(G)), so it suffices to show that σ ∈

γ(�c2�
�
Rem(G)). Take f ∈ �c2�

�
Rem(G). Then pf ∈ p · �c2�

�
Rem(G) ⊆ �if p = 0

then c1 else c2�
�
Rem(G), thus σ(pf) = 0. From the assumption σ(p) 	= 0, this

implies σ(f) = 0. Since f is arbitrary, we conclude that σ ∈ γ(�c2�
�
Rem(G))4.

The abstract semantics is related to the postcondition problem as follows:

Theorem 1. If �c��
Rem(G) = {0}, then �c�(γ(G)) = St (hence g = 0 is a

solution of the postcondition problem for any g ∈ G).

Proof. From the soundness above, γ(�c��
Rem(G)) = γ({0}) = St ⊆ �c�(γ(G));

therefore �c�(γ(G)) = St follows because St is the top element in the concrete
domain.

Example 3. We exemplify how the abstract semantics works using the program
cfall in Fig. 1. Set p, c1, and c2 as in Example 2. Define Rem in this exam-
ple by Rem(f, p) = f . First, let F (H) := (t − a)�c2�

�
Rem(H) ∪ {p}, g0 := 1,

gn+1 := (t − a)(t + dt − a) . . . (t + ndt − a), and G = {gnp|n ∈ N}. Then
νF = G. Indeed, by definition of �, we have � = ∅, and it is easy to
check that Fn(�) = {gkp|0 ≤ k < n}. Therefore we have νF � G, because G
is the greatest lower bound of (Fn(�))n∈N. By simple computation, we can
see that G is a fixed point of F , so we also have G� νF ; hence, νF =
G. Therefore, �cfall�

�
Rem({p}) = {0}: �cfall�

�
Rem({p}) = �c1�

�
Rem(�while t −

a 	= 0 do c2�
�
Rem({p})) = �c1�

�
Rem(ν(λH.(t − a)�c2�

�
Rem(H) ∪ Rem({p}, t −

a))) = �c1�
�
Rem(ν(λH.(t − a)�c2�

�
Rem(H) ∪ {p})) = �c1�

�
Rem({gnp|n ∈ N}) =

{(gnp)[x := x0, v := v0, t := t0]|n ∈ N} = {0}.

4 The soundness would still hold even if we defined �if p = 0 then c1 else c2�
�
Rem(G) by

�c2�
�
Rem(G)∪Rem(�c1�

�
Rem(G), p) instead of p ·�c2��

Rem(G)∪Rem(�c1�
�
Rem(G), p).

The multiplier p makes the abstract semantics more precise.

Generalized Homogeneous Polynomials 285

By Theorem 1, a set of polynomials G such that �c��
Rem(G) = {0} for some

Rem constitutes a solution of the postcondition problem. The choice of Rem
indeed matters in solving the postcondition problem: There are c and G such
that �c��

Rem(G) = {0} holds for some Rem but not for others. The reader is
referred to [4, Sect. 4.1] for a concrete example.

4 Generalized Homogeneous Polynomials

4.1 Definition

A polynomial p is said to be a homogeneous polynomial of degree d if the degree
of every monomial in p is d [5]. As we mentioned in Sect. 1, we generalize this
notion of homogeneity.

We first generalize the notion of the degree of a polynomial.

Definition 1. The group of generalized degrees (g-degrees) GDegB, ranged
over by τ , is an Abelian group freely generated by the finite set B; that is,
GDegB := {bn1

1 . . . bnm
m | b1, . . . , bm ∈ B,n1, . . . , nm ∈ Z}. We call B the set of

the base degrees. We often omit B in GDegB if the set of the base degrees is
clear from the context.

For example, if we set B to {L, T}, then L, T , and LT−1 are all generalized
degrees. By definition, GDegB has the multiplication on these g-degrees (e.g.,
(LT) · (LT−2) = L2T−1 and (LT 2)2 = L2T 4).

Fig. 2. Typing rules

In the analogy of quantity dimen-
sions, the set B corresponds to the
base quantity dimensions (e.g., L for
lengths and T for times); the set
GDegB corresponds to the derived
quantity dimensions (e.g., LT−1 for
velocities and LT−2 for acceleration
rates.); multiplication expresses the
relationship among quantity dimen-
sions (e.g., LT−1 ·T = L for velocity×
time = distance.)

Definition 2. A g-degree assignment
is a finite mapping from Var to
GDeg. A metavariable Γ ranges
over the set of g-degree assign-
ments. For a power product w :=
xd1
1 . . . xdn

n , we write gdegΓ (w) for
Γ (x1)d1 . . . Γ (xn)dn and call it the g-degree of w under Γ (or simply g-degree
of w if Γ is not important); gdegΓ (kw), the g-degree of a monomial kw under
Γ , is defined by gdegΓ (w).

286 K. Kojima et al.

For example, set Γ to {t �→ T, v �→ LT−1}; then gdegΓ (2vt) = L. In terms
of the analogy with quantity dimensions, this means that the expression 2vt
represents a length.

Definition 3. We say p is a generalized homogeneous (GH) polynomial of g-
degree τ under Γ if every monomial in p has the g-degree τ under Γ . We
write gdegΓ (p) for the g-degree of p if it is a GH polynomial under Γ ; if it
is not, then gdegΓ (p) is not defined. We write K[x1, . . . , xn]Γ,τ for the set
of the GH polynomials with g-degree τ under Γ . We write K[x1, . . . , xn]Γ for⋃

τ∈GDeg K[x1, . . . , xn]Γ,τ .

Example 4. The polynomial −gt2 + gt20 −2tv +2t0v0 +2x−2x0 (the polynomial
p2 in Example 2) is a GH-polynomial under

Γ :=
{

g �→ LT−2, t �→ T, v �→ LT−1, x �→ L, x0 �→ L,
v0 �→ LT−1, ρ �→ T−1, a �→ T

}

because all the monomials in p2 have the same g-degree in common; for example,
gdegΓ (−gt2) = Γ (g)Γ (t)2 = (LT−2)T 2 = L; gdegΓ (−2tv) = Γ (t)Γ (v) =
T (LT−1) = L; gdegΓ (2x) = Γ (x) = L; and gdegΓ (−2x0) = Γ (x0) = L.
Therefore, gdegΓ (p2) = L. We also have gdegΓ (p1) = LT−1.

It is easy to see that any p ∈ K[x1, . . . , xn] can be uniquely written as the
finite sum of GH polynomials as pΓ,τ1 + · · · + pΓ,τm

, where pΓ,τi
is the summand

of g-degree τi under Γ in this representation. For example, the polynomial p
in Example 2, can be written as pL + pLT−1 where pL = p1 and pLT−1 = p2
from the previous example. We call pΓ,τ the homogeneous component of p with
g-degree τ under Γ , or simply a homogeneous component of p; we often omit Γ
part if it is clear from the context.

The definitions above are parameterized over a g-degree assignment Γ . It is
determined from the usage of variables in a given program, which is captured
by the following type judgment.

Definition 4. The judgment Γ � c is the smallest relation that satisfies the
rules in Fig. 2. We say Γ is consistent with the program c if Γ � c holds.

The consistency relation above is an adaptation of the dimension type system
proposed by Kennedy [12,13] to our imperative language. A g-degree assignment
Γ such that Γ � c holds makes every polynomial in c a GH one. In the rule T-
Assign, we require the polynomial p to have the same g-degree as that of x
in Γ .

4.2 Automated Inference of the G-Degree Assignment

Kennedy also proposed a constraint-based automated type inference algorithm
of his type system [12,13]. We adapt his algorithm so that, given a command
c, it infers a g-degree assignment Γ such that Γ � c. The algorithm is in three
steps: (1) designating a template of the g-degree assignment, (2) generating
constraints over g-degrees, and (3) solving the constraints. In order to make the
current paper self-contained, we explain each step below.

Generalized Homogeneous Polynomials 287

Step 1: Designating a template of the g-degree assignment Let Sc := {x1, . . . , xn}
be the set of the variables occurring in the given program c. Then, the algorithm
first designates a template g-degree assignment Γc := {x1 �→ αx1 , . . . , xn �→ αxn

}
where αx1 , . . . , αxn

are fresh unknowns taken from the set GDegV for the g-
degrees of x1, . . . , xn. For example, given the program cfall in Fig. 1, the algo-
rithm designates

Γcfall :=
{

g �→ αg, t �→ αt, dt �→ αdt , v �→ αv, x �→ αx,
x0 �→ αx0 , v0 �→ αv0 , ρ �→ αρ, a �→ αa

}

where αg, αt, αdt , αv, αx, αx0 , αv0 , αρ, αa are distinct unknowns for the g-degrees
of the variables that are to be inferred.

Step 2: Generating constraints over g-degrees The algorithm then generates the
constraints over the g-degrees. We first define the set of constraints. Let GDeg′

be GDeg{α1,...,αn} in the rest of this section, where α1, . . . , αn are the unknowns
generated in the previous step. (Recall that GDegS is the set of g-degrees gen-
erated by S. Therefore, GDeg′ is the set of products of the form αk1

1 . . . αkn
n for

k1, . . . , kn ∈ Z.) The Γc generated in the previous step can be seen as a map
from Var to GDeg′.

A g-degree constraint is an equation τ1 = τ2 where τ1, τ2 ∈ GDeg′. We
use a metavariable σ for maps from {α1, . . . , αn} to GDegB . This map can be
naturally extended to take the elements of GDeg′. We say that σ is a solution
of a constraint set C if it satisfies all the equations in C. For example, the
map σ := {αv �→ LT−1, αx �→ L,αt �→ T} is a solution of the constraint set
{αv = αxα−1

t } since σ(αv) = LT−1 = σ(αxα−1
t) = σ(αx)σ(αt)−1.

For a polynomial p := a1w1 + · · · + anwn, we write gdeg′
Γ (p) for

the pair (gdegΓ (w1), C) where C is ∅ if n = 1 and {gdegΓ (w1) =
gdegΓ (w2), . . . ,gdegΓ (wn−1) = gdegΓ (wn) } otherwise. The intuition of
gdeg′

Γ (p) = (τ, C) is that, for any solution σ of C, the polynomial p is gen-
eralized homogeneous and its g-degree is σ(τ).

For example, let Γ be {v �→ αv, g �→ αg, x �→ αx} and p be 2v2 + gx; then,
gdeg′

Γ (p) is the pair (α2
v, C) where C is {α2

v = αgαx}. For a solution σ :=
{αv �→ LT−1, αg �→ LT−2, αx �→ L} of C, σ(Γ) = { v �→ LT−1, g �→ LT−2, x �→
L }. The polynomial p is generalized homogeneous under σ(Γ) since σ(Γ)(v2) =
σ(Γ)(gx) = L2T−2. This is equal to σ(α2

v).
The function PT for the constraint generation is defined as follows:

PT (Γ, skip) := ∅
PT (Γ, c1; c2) := PT (Γ, c1) ∪ PT (Γ, c2)
PT (Γ, x:=p) := {Γ (x) = τ} ∪ C

where (τ, C) := gdeg′
Γ (p)

PT (Γ, if p = 0 then c1 else c2) := C ∪ PT (Γ, c1) ∪ PT (Γ, c2)
where (τ, C) := gdeg′

Γ (p)
PT (Γ,while p �� 0 do c) := PT (Γ, c)

where (τ, C) := gdeg′
Γ (p).

288 K. Kojima et al.

The constraints PT (Γ, c) is defined so that its any solution σ satisfies σ(Γ) �
c. The definition essentially constructs the derivation tree of Γ � c following the
rules in Fig. 2 and collects the constraints appearing in the tree.

Example 5. PT (Γcfall , cfall) generates the following constraints. From the com-
mands in Line 1, the constraint set {αx = αx0 , αv = αv0 , αt = αt0} is generated;
from the guard in Line 2, {αt = αa} is generated; from the right-hand side of Line
3, the constraint set {αx = αvαdt , αv = αgαdt , αgαdt = αραvαdt , αt = αdt},
which ensures the generalized homogeneity of each polynomial, is generated; PT
also generates {αx = αx, αv = αv, αt = αt}, which ensures that the g-degrees of
the left-hand side and the right-hand side are identical.

Step 3: Solving the constraints The algorithm then calculates a solution of the
generated constraints. The constraint-solving procedure is almost the same as
that by Kennedy [12, Section 5.2], which is based on Lankford’s unification algo-
rithm5 [14].

The procedure obtains a solution σ from the given constraint set C by apply-
ing the following rewriting rules successively:

(∅, σ) → σ
({α′kαn = 1} ∪ C, σ) → ({α′ �→ α−n

k }(C), {α′ �→ α−n
k } ◦ σ)

where k is the exponent with least absolute value
(if k divides all the integers in n)

({α′kαn = 1} ∪ C, σ) → ({ωkαn mod k = 1} ∪ σ′(C), σ′ ◦ σ)
where k is the exponent with least absolute value,
σ′ = {α′ �→ ωα−�n

k �},
and ω is a fresh element of GDegV
(if there is an integer in n that is not divisible by k)

({1 = 1} ∪ C, σ) → (C, σ)
({τ1 = τ2} ∪ C, σ) → ({τ1τ

−1
2 = 1} ∪ C, σ)

C → (C, ∅).

The idea of the procedure is to construct a solution iteratively converting a
constraint α′kαn = 1 to {α′ �→ α−n

k } if k divides all the integers in n (i.e., the
second case). If k does not (i.e., the third case)6, the procedure (1) splits n

k to
the quotient �n

k � and the remainder n mod k, (2) generates a fresh g-degree
variable ω representing α−n mod k

k , and (3) sets α′ in the solution to ωα−�n
k �

which is equal to α−n
k .

After obtaining a solution with the procedure above, the inference algorithm
assigns different base degree to each surviving g-degree variable.

Example 6. Consider the following constraint set C:
{

αxα−1
x0

= 1, αvα−1
v0

= 1, αtα
−1
t0 = 1, αtα

−1
dt = 1,

αxα−1
v α−1

dt = 1, αvα−1
g α−1

dt = 1, αgαdtα
−1
ρ α−1

v α−1
dt = 1

}

5 We do not discuss the termination of the procedure in this paper. See Kennedy [12,
Section 5.2].

6 We do not use this case in the rest of this paper.

Generalized Homogeneous Polynomials 289

which is equivalent to that of Example 5. After several steps of rewriting, the
procedure obtains

⎛

⎝
{

αv0α
−1
g α−1

dt = 1,
αgα

−1
ρ α−1

v0
= 1

}
,

⎧
⎨

⎩

αx �→ αv0αdt , αv �→ αv0 ,
αt �→ αdt , αt0 �→ αdt ,
αx0 �→ αv0αdt

⎫
⎬

⎭

⎞

⎠ .

At the next step, suppose that the procedure picks up the constraint
αv0α

−1
g α−1

dt = 1. By applying the second rule, the procedure generates the fol-
lowing state

⎛

⎝
{

α−1
ρ α−1

dt = 1
}

,

⎧
⎨

⎩

αx �→ αgα
2
dt , αv �→ αgαdt ,

αt �→ αdt , αt0 �→ αdt ,
αx0 �→ αgα

2
dt , αv0 �→ αgαdt

⎫
⎬

⎭

⎞

⎠ .

Then, with the second and last rules, the procedure obtains the following
solution:

⎧
⎨

⎩

αx �→ αgα
2
dt , αv �→ αgαdt ,

αt �→ αdt , αt0 �→ αdt ,
αx0 �→ αgα

2
dt , αv0 �→ αgαdt , αρ �→ α−1

dt

⎫
⎬

⎭
.

By assigning the base degree A to αg and T to αdt , we have the following
solution:

{
αx �→ AT 2, αv �→ AT,αt �→ T, αt0 �→ T,
αx0 �→ AT 2, αv0 �→ AT,αρ �→ T−1

}
.

Notice the set of base degrees is different from that we used in Example 4;
in this example, the g-degree for the acceleration rates (A) is used as a base
degree, whereas that for lengths (L) is used in Example 4. This happens because
the order of the constraints chosen in an execution of the inference algorithm
is nondeterministic. Our results in the rest of this paper do not depend on a
specific choice of base degrees.

Limitation. A limitation of the current g-degree inference algorithm is that,
even if a constant symbol in a program is intended to be of a g-degree other
than 1, it has to be of g-degree 1 in the current type system. For example,
consider the program c′

fall obtained by replacing g in cfall with 9.81 and ρ with
0.24. Then, the g-degrees of v and dt are inferred to be 1 due to the assignment
v := v−9.8dt−0.24vdt in c′

fall : The constraints for this assignment generated by
the inference algorithm is {αv = αdt , αdt = αvαdt , αv = αv}, whose only solution
is {αv �→ 1, αdt �→ 1}. This degenerated g-degrees are propagated to the other
variables during the inference of c′

fall , leading to the g-degree assignment in which
all the variables have the g-degree 1. This g-degree assignment is not useful
for the template-size reduction; any polynomial is a GH polynomial under this
assignment.

As a workaround, our current implementation that will be described in Sect. 7
uses an extension that can assign a g-degree other than 1 to each occurrence of a

290 K. Kojima et al.

constant symbol by treating a constant symbol as a variable. For example, for the
following program sumpowerd: (x, y, s) := (X + 1, 0, 1);while x 	= 0 do if y =
0 then(x, y) := (x − 1, x) else(s, y) := (s + yd, y − 1), the inference algorithm
treats the underlined occurrence of 1 as a variable and assigns T d to it; the other
occurrences of 0 and 1 are given g-degree T . This g-degree assignment indeed
produces a smaller template.

5 Abstract Semantics Restricted to GH Polynomials

This section gives the main result of this paper: If there is an algebraic invariant
of c and Γ � c, then there exists an algebraic invariant that consists of a GH
polynomial under Γ .

To state this result formally, we revise our abstract semantics by restricting it
to the domain of the GH polynomials. The domain is obtained by replacing the
underlying set of the domain P(K[x1, . . . , xn]) with P(K[x1, . . . , xn]Γ). This is
a subset of P(K[x1, . . . , xn]) that is closed under arbitrary meets. We can define
the abstraction and the concretization in the same way as in Sect. 3.

The revised abstract semantics �c��H
Rem,Γ , which we hereafter call GH abstract

semantics, is the same as the original one except that it is parameterized over
the g-degree assignment Γ . In the following definition, we write Rem(G, p) for
{Rem(f, p) | f ∈ (G ∩ K[x1, . . . , xn]Γ)\{0}}, the set of the remainder obtained
from a GH polynomial in G and p. We assume that our choice of Rem is a
remainder operation such that whenever both f and p are GH polynomials, so
is Rem(f, p).

�skip��H
Rem,Γ (G) = G

�x:=p��H
Rem,Γ (G) = G[x := p]

�c1; c2�
�H
Rem,Γ (G) = �c1�

�H
Rem,Γ (�c2�

�H
Rem,Γ (G))

�if p = 0 then c1 else c2�
�H
Rem,Γ (G) = p · �c2�

�H
Rem,Γ (G) ∪ Rem(�c1�

�H
Rem,Γ (G), p)

�while p 	= 0 do c��H
Rem,Γ (G) = ν(λH.p · �c��H

Rem,Γ (H) ∪ Rem(G, p))
�while p = 0 do c��H

Rem,Γ (G) = ν(λH.p · G ∪ Rem(�c��H
Rem,Γ (H), p)).

The following theorem guarantees that the invariant found using the seman-
tics �c��H

Rem,Γ is indeed an invariant of c.

Theorem 2 (Soundness of the GH abstract semantics). If Γ � c and G

is a set of GH polynomials under Γ , then �c��H
Rem,Γ (G) = �c��

Rem(G).

Proof. By induction on c.

This theorem implies that if g is a GH polynomial under Γ and �c��H
Rem,Γ (g) =

{0}, then g is indeed a solution of the postcondition problem.
Completeness of �c��H

Rem,Γ is obtained as a corollary of the following lemma.

Generalized Homogeneous Polynomials 291

Lemma 1. Suppose Γ � c, g′
1, . . . , g

′
m ∈ K[x1, . . . , xn], and gi is a homogeneous

component of g′
i (i.e., gi = g′

iτi
for some τi). If h ∈ �c��H

Rem,Γ ({g1, . . . , gm}), then
there exists h′ ∈ �c��

Rem({g′
1, . . . , g

′
m}) such that h is a homogeneous component

of h′.

Proof. Let us say G is a homogeneous component of G′ under Γ if, for any p ∈ G,
there exists p′ ∈ G′ such that p = p′

τ for some τ . By induction on c, we can prove
that if G is a homogeneous component of G′ under Γ , then �c��H

Rem,Γ (G) is a
homogeneous component of �c��H

Rem,Γ (G′) under Γ .

Theorem 3 (Completeness). Let gi and g′
i be the same as in Lemma 1. If

Γ � c and �c��
Rem({g′

1, . . . , g
′
m}) = {0}, then �c��H

Rem,Γ ({g1, . . . , gm}) = {0}.

Proof. Take h ∈ �c��H
Rem,Γ ({g1, . . . , gm}). Then there exists h′ ∈ �c��

Rem

({ g′
1, . . . , g

′
m }) such that h′

gdeg(h) = h. By assumption, we have h′ = 0; therefore
h = 0.

Hence, if g = 0 is a solution of the postcondition problem, then so is g′ = 0 for
every homogeneous component g′ of g.

Example 7. Recall Example 3. Theorem 3 and �cfall�
�
Rem({p}) = {0} guarantee

�cfall�
�H
Rem,Γ ({p1}) = {0} and �cfall�

�H
Rem,Γ ({p2}) = {0} since p1 and p2 are

homogeneous components of p.

6 Template-Based Algorithm

This section applies our idea to Cachera’s template-based invariant-synthesis
algorithm [4]. We hereafter use metavariable a for a parameter that represents
an unknown value. We use metavariable A for a set of parameters. A template on
A is an expression of the form a1p1 + · · · + anpn where a1, . . . , an ∈ A; we abuse
the metavariable G for a set of templates. We denote the set of templates on A
by T (A). A valuation v on A is a map from A to K. We can regard v as a map
from T (A) to K[x1, . . . , xn] by v(a1p1 + · · ·+ampm) = v(a1)p1 + · · ·+ v(am)pm.

6.1 Algorithm Proposed by Cachera et al.

Cachera et al. proposed a sound template-based algorithm for the postcondi-
tion problem. Their basic idea is to express a fixed point by constraints on the
parameters in a template in order to avoid fixed-point iteration.

To recall the algorithm of Cachera et al., we establish several definitions.

Definition 5. An equality constraint on A is an expression of the form 〈G ≡
G′〉, where G,G′ ⊆ T (A). A constraint set on A, or simply constraints, is a set of
equality constraints on A; a constraint set is represented by the metavariable C.
We may write (A,C) for a constraint set C on A to make A explicit. A valuation
v on A satisfies an equality constraint 〈G ≡ G′〉 on A, written v |= 〈G ≡ G′〉, if

292 K. Kojima et al.

Algorithm 1. Inference of polynomial invariants.
1: procedure InvInf(c, d)
2: g ← the most general template of degree d
3: A0 ← the set of the parameters occurring in g
4: (A, G, C) ← �c��c

Rempar(A0, {g}, ∅)
5: return v(g) where v is a solution of C ∪ {〈G ≡ {0}〉}
6: end procedure

v(G) and v(G′) generate the same ideal. A solution of a constraint set (A,C) is
a valuation on A that satisfies all constraints in C. If v is a solution of (A,C),
we write v |= (A,C), or simply v |= C. A template a1p1 + · · · + ampm is a GH
template of g-degree τ under Γ if p1, . . . , pm are GH polynomials of g-degree τ .

We extend the definition of the remainder computation to operate on tem-
plates.

Definition 6. Rempar(A, f, p) is a pair (A′, f −pq) where q is the most general
template of degree deg(f) − deg(p), the parameters of which are fresh; A′ is
the set of the parameters appearing in q. We write Rempar(A, {p1, . . . , pm}, p)
for (A′, G′), where (Ai, ri) = Rempar(A, pi, p) and A′ =

⋃
Ai and G′ =

{r1, . . . , rm}.
For example, if the set of variables is {x}, then Rempar(∅, x2, x + 1) =
({a1, a2}, x2 − (a1x+a2)(x+1)); the most general template of degree deg(x2)−
deg(x + 1) = 1 with variable x is a1x + a2. By expressing a remainder using a
template, we can postpone the choice of a remainder operator to a later stage;
for example, if we instantiate (a1, a2) with (1,−1), then we have the standard
remainder operator on R[x].

We recall the constraint generation algorithm proposed by Cachera et al. We
write (Ai, Gi, Ci) for �ci�

�c
Rempar(A,G,C) in each case of the following definition.

�skip��c
Rempar(A,G,C) = (A,G,C)

�x:=p��c
Rempar(A,G,C) = (A,G[x := p], C)

�c1; c2�
�c
Rempar(A,G,C) = �c1�

�c
Rempar(�c2�

�c
Rempar(A,G,C))

�if p = 0 then c1 else c2�
�c
Rempar(A,G,C) = (A3, p · G2 ∪ G3, C1 ∪ C2)

where (A3, G3) = Rempar(A1 ∪ A2, G1, p)
�while p �� 0 do c1�

�c
Rempar(A,G,C) = (A1, G,C1 ∪ {〈G ≡ G1〉})

�c��c
Rempar(A,G,C) accumulates the generated parameters to A and the generated

constraints to C. A is augmented by fresh parameters at the if statement where
Rempar is called. At a while statement, 〈G ≡ G1〉 is added to the constraint
set to express the loop-invariant condition.

Algorithm 1 solves the postcondition problem with the constraint-generating
subprocedure �c��c

Rempar . This algorithm, given a program c and degree d, returns
a set of postconditions that can be expressed by an algebraic condition with
degree d or lower. The algorithm generates the most general template g of

Generalized Homogeneous Polynomials 293

degree d for the postcondition and applies �c��c
Rempar to g. For the returned set

of polynomials G and the constraint set C, the algorithm computes a solution
of C ∪ 〈G ≡ {0}〉; the equality constraint 〈G ≡ {0}〉 states that v(g) = 0, where
v is a solution of the constraint set C ∪ 〈G ≡ {0}〉, has to hold at the end of c
regardless of the initial state.

This algorithm is proved to be sound: If p ∈ InvInf(c, d), then p = 0 holds
at the end of c for any initial states [4]. Completeness was not mentioned in their
paper.

Remark 1. The algorithm requires a solver for the constraints of the form 〈G ≡
G′〉. This is the problem of finding v that equates 〈G〉 and 〈G′〉; therefore, it
can be solved using a solver for the ideal membership problems [5]. To avoid
high-cost computation, Cachera et al. proposed heuristics to solve an equality
constraint.

Example 8. We explain how InvInf(cfall , 3) works. The algorithm generates a
degree-3 template q(x, v, t, x0, v0, t0, a, dt , g, ρ) over {x, v, t, x0, v0, t0, a, dt , g, ρ}.
The algorithm then generates the following constraints by
�cfall�

�cH
Rempar : 〈{ q(x, v, t, x0, v0, t0, a, dt , g, ρ) } ≡ { q(x + vdt , v − gdt −

ρvdt , t + dt , x0, v0, t0, a, dt , g, ρ) }〉 (from the body of the loop) and
〈{ q(x0, v0, t0, x0, v0, t0, a, dt , g, ρ) } ≡ { 0 }〉. By solving these constraints with
a solver for ideal membership problems [5] or with the heuristics proposed by
Cachera et al. [4], and by applying the solution to q(x, v, t, x0, v0, t0, a, dt , g, ρ),
we obtain p in Example 2.

6.2 Restriction to GH Templates

We define a variation �c��cH

Rem
parH

Γ ,Γ
of the constraint generation algorithm in which

we use only GH polynomial templates. �c��cH

Rem
parH

Γ ,Γ
differs from �c��c

Rempar in
that it is parameterized also over Γ , not only over the remainder operation
used in the algorithm. The remainder operator RemparH

Γ HΓ (A, f, p) returns a
pair (A ∪ A′, f − pq) where q is the most general GH template with g-degree
gdeg(f)gdeg(p)−1, with degree deg(f) − deg(p), and with fresh parameters;
A′ is the set of the parameters that appear in q. RemparH

Γ (A,G, p) is defined
in the same way as Definition 6 for a set G of polynomials. We again write
(Ai, Gi, Ci) for �ci�

�c

Rem
parH

Γ

(A,G,C) in each case of the following definition.

�skip��cH

Rem
parH
Γ

,Γ
(A, G, C) = (A, G, C)

�x:=p��cH

Rem
parH
Γ

,Γ
(A, G, C) = (A, G[x := p], C)

�c1; c2��cH

Rem
parH
Γ

,Γ
(A, G, C) = �c1��cH

Rem
parH
Γ

,Γ
(�c2��cH

Rem
parH
Γ

,Γ
(A, G, C))

�if p = 0 then c1 else c2��cH

Rem
parH
Γ

,Γ
(A, G, C) = (A3, p · G2 ∪ G3, C1 ∪ C2)

where (A3, G3) = Rem
parH
Γ HΓ (A1 ∪ A2, G1, p)

�while p �� 0 do c1��cH

Rem
parH
Γ

,Γ
(A, G, C) = (A1, G, C1 ∪ {〈G ≡ G1〉})

294 K. Kojima et al.

Algorithm 2. Inference of polynomial invariants (homogeneous version).
1: procedure InvInfH(c, d, Γ , τ)
2: g ← the most general template of g-degree τ and degree d
3: A0 ← the set of the parameters occurring in g
4: (A, G, C) ← �c��cH

Rem
parH
Γ

,Γ
(A0, {g}, ∅)

5: return v(g) where v is a solution of C ∪ {〈G ≡ {0}〉}
6: end procedure

Algorithm 2 is a variant of Algorithm 1, in which we restrict a template to
GH one.

The algorithm InvInfH takes the input τ that specifies the g-degree of the
invariant at the end of the program c. We have not obtained a theoretical result
for τ to be passed to InvInfH so that it generates a good invariant. However,
during the experiments in Sect. 7, we found that the following strategy often
works: Pass the g-degree of the monomial of interest. For example, if we are
interested in a property related to x, then pass Γ (x) (i.e., L) to InvInfH for the
invariant −gt2 + gt20 − 2tv + 2t0v0 + 2x − 2x0 = 0. How to help a user to find
such “monomial of her interest” is left as an interesting future direction.

The revised version of the invariant inference algorithm is sound; at the point
of writing, completeness of InvInfH with respect to InvInf is open despite the
completeness of �c��H

Rem,Γ with respect to �c��
Rem.

Theorem 4. (Soundness). Suppose Γ � c, d ∈ N, and τ ∈ GDeg. Set P1 to
the set of polynomials that can be returned by InvInfH(c, d, τ); set P2 to those
by InvInf(c, d). Then, P1 ⊆ P2.

7 Experiment

We implemented Algorithm 2 and conducted experiments. Our implementation
Fastinddim takes a program c, a maximum degree d of the template g in the
algorithm, and a monomial w. It conducts type inference of c to generate Γ and
calls InvInfH(c, d, Γ,gdegΓ (w)). The type inference algorithm is implemented
with OCaml; the other parts (e.g., a solver for ideal-equality constraints) are
implemented with Mathematica.

To demonstrate the merit of our approach, we applied this implementation
to the benchmark used in the experiment by Cachera et al. [4] and compared
our result with that of their implementation, which is called Fastind. The entire
experiment was conducted on a MacBook Air 13-inch Mid 2013 model with a
1.7 GHz Intel Core i7 (with two cores, each of which has 256 KB of L2 cache) and
8 GB of RAM (1600 MHz DDR3). The modules written in OCaml were compiled
with ocamlopt. The version of OCaml is 4.02.1. The version of Mathematica is
10.0.1.0. We refer the reader to [4,18,19] for detailed descriptions of each pro-
gram in the benchmark. Each program contains a nested loop with a conditional
branch (e.g., dijkstra), a sequential composition of loops (e.g., divbin), and

Generalized Homogeneous Polynomials 295

nonlinear expressions (e.g., petter(n).) We generated a nonlinear invariant in
each program.

Table 1 shows the result. The column deg shows the degree of the generated
polynomial, tsol shows the time spent by the ideal-equality solver (ms), #m
shows the number of monomials in the generated template, tinf shows the time
spent by the dimension-type inference algorithm (ms), and tinf + tsol shows the
sum of tinf and tsol . By comparing #m for Fastind with that of Fastinddim,
we can observe the effect of the use of GH polynomials on the template sizes.
Comparison of tsol for Fastind with that of Fastinddim suggests the effect on
the constraint reduction phase; comparison of tsol for Fastind with tinf + tsol for
Fastinddim suggests the overhead incurred by g-degree inference.

Table 1. Experimental result.

Name Fastind Fastinddim

deg tsol #m tinf tsol tinf + tsol #m

dijkstra 2 9.29 21 0.456 8.83 9.29 21

divbin 2 0.674 21 0.388 0.362 0.750 8

freire1 2 0.267 10 0.252 0.258 0.510 10

freire2 3 2.51 35 0.463 2.60 3.06 35

cohencu 3 1.74 35 0.434 0.668 1.10 20

fermat 2 0.669 21 0.583 0.669 1.25 21

wensley 2 104 21 0.436 28.5 28.9 9

euclidex 2 1.85 45 1.55 1.39 2.94 36

lcm 2 0.811 28 0.513 0.538 1.05 21

prod4 3 31.6 84 0.149 2.78 2.93 35

knuth 3 137 220 4.59 136 141 220

mannadiv 2 0.749 21 0.515 0.700 1.22 18

petter1 2 0.132 6 0.200 0.132 0.332 6

petter2 3 0.520 20 0.226 0.278 0.504 6

petter3 4 1.56 35 0.226 0.279 0.505 7

petter4 5 7.15 56 0.240 0.441 0.681 8

petter5 6 17.2 84 0.228 0.326 0.554 9

petter10 11 485 364 0.225 0.354 0.579 14

sumpower1 3 2.20 35 0.489 2.31 2.80 35

sumpower5 7 670 330 0.469 89.1 89.6 140

Discussion. The size of the tem-
plates, measured as the number of
monomials (#m), was reduced in 13
out of 20 programs by using GH poly-
nomials. The value of tsol decreased
for these 13 programs; it is almost
the same for the other programs. #m
did not decrease for the other seven
programs because the extension of
the type inference procedure men-
tioned above introduced useless aux-
iliary variables. We expect that such
variables can be eliminated by using
a more elaborate program analysis.

By comparing tsol for Fastind and
tinf + tsol for Fastinddim , we can
observe that the inference of the g-
degree assignment sometimes incurs
an overhead for the entire execution

time if the template generated by Fastind is sufficiently small; therefore, Fastind
is already efficient. However, this overhead is compensated in the programs for
which Fastind requires more computation time.

To summarize, our current approach is especially effective for a program
for which (1) the existing invariant-synthesis algorithm is less efficient owing
to the large size of the template and (2) a nontrivial g-degree assignment can
be inferred. We expect that our approach will be effective for a wider range of
programs if we find a more competent g-degree inference algorithm.

8 Related Work

The template-based algebraic invariant synthesis proposed to date [4,20] has
focused on reducing the problem to constraint solving and solving the generated
constraints efficiently; strategies for generating a template have not been the

296 K. Kojima et al.

main issue. A popular strategy for template synthesis is to iteratively increase
the degree of a template. This strategy suffers from an increase in the size of a
template in the iterations when the degree is high.

Our claim is that prior analysis of a program effectively reduces the size of
a template; we used the dimension type system for this purpose in this paper
inspired by the principle of quantity dimensions in the area of physics. Of course,
there is a tradeoff between the cost of the analysis and its effect on the template-
size reduction; our experiments suggest that the cost of dimension type inference
is reasonable.

Semialgebraic invariants (i.e., invariants written using inequalities on poly-
nomials) are often useful for program verification. The template-based approach
is also popular in semialgebraic invariant synthesis. One popular strategy in
template-based semialgebraic invariant synthesis is to reduce this problem to
one of semidefinite programming, for which many efficient solvers are widely
available.

As of this writing, it is an open problem whether our idea regarding GH poly-
nomials also applies to semialgebraic invariant synthesis; for physically mean-
ingful programs, at least, we guess that it is reasonable to use GH polynomials
because of the success of the quantity dimension principle in the area of physics.
A possible approach to this problem would be to investigate the relationship
between GH polynomials and Stengle’s Postivstellensatz [22], which is the theo-
retical foundation of the semidefinite-programming approach mentioned above.
There is a homogeneous version of the Stengle’s Positivstellensatz [8, Theo-
rem II.2]; because the notion of homogeneity considered there is equivalent to
generalized homogeneity introduced in this paper, we conjecture that this theo-
rem provides a theoretical foundation of an approach to semialgebraic invariant
synthesis using GH polynomials.

Although the application of the quantity dimension principle to program
verification is novel, this principle has been a handy tool for discovering hid-
den knowledge about a physical system. A well-known example in the field of
hydrodynamics is the motion of a fluid in a pipe [2]. One fundamental result in
this regard is that of Buckingham [3], who stated that any physically meaningful
relationship among n quantities can be rewritten as one among n − r indepen-
dent dimensionless quantities, where r is the number of the quantities of the base
dimension. Investigating the implications of this theorem in the context of our
work is an important direction for future work.

The term “generalized homogeneity” appears in various areas; according to
Hankey et al. [10], a function f(x1, . . . , xn) is said to be generalized homogeneous
if there are a1, . . . , an and af such that, for any positive λ, f(λa1x1, . . . , λ

anxn) =
λaf f(x1, . . . , xn). Barenblatt [2] points out that the essence of the quantity
dimension principle is generalized homogeneity. Although we believe our GH
polynomials are related to the standard definition, we have not fully investi-
gated the relationship at the time of writing.

Our idea (and the quantity dimension principle) seems to be related to invari-
ant theory [17] in mathematics. Invariant theory studies various mathematical

Generalized Homogeneous Polynomials 297

structures using invariant polynomials. A well-known fact is that a ring of invari-
ants is generated by homogeneous polynomials [5, Chap. 7]; GH polynomials can
be seen as a generalization of the notion of degree.

The structure of K[x1, . . . , xn] resulting from the notion of the generalized
degrees is an instance of graded rings from ring theory. Concretely, R is said to be
graded over an Abelian group G if R is decomposed into the direct sum of a family
of additive subgroups {Rg | g ∈ G} and these subgroups satisfy Rg · Rh ⊆ Rgh

for all g, h ∈ G. Then, an element x ∈ R is said to be homogeneous of degree g
if x ∈ Rg. We leave an investigation of how our method can be viewed in this
abstract setting as future work.

9 Conclusion

We presented a technique to reduce the size of a template used in template-based
invariant-synthesis algorithms. Our technique is based on the finding that, if an
algebraic invariant of a program c exists, then there is a GH invariant of c; hence,
we can reduce the size of a template by synthesizing only a GH polynomial.
We presented the theoretical development as a modification of the framework
proposed by Cachera et al. and empirically confirmed the effect of our approach
using the benchmark used by Cachera et al. Although we used the framework of
Cachera et al. as a baseline, we believe that we can apply our idea to the other
template-based methods [1,4,7,16,19–21].

Our motivation behind the current work is safety verification of hybrid sys-
tems, in which the template method is a popular strategy. For example, Gulwani
et al. [9] proposed a method of reducing the safety condition of a hybrid sys-
tem to constraints on the parameters of a template by using Lie derivatives. We
expect our idea to be useful for expediting these verification procedures.

In this regard, Suenaga et al. [11,23,24] have recently proposed a frame-
work called nonstandard static analysis, in which one models the continuous
behavior of a system as an imperative or a stream-processing program using an
infinitesimal value. An advantage of modeling in this framework is that we can
apply program verification tools without an extension for dealing with continu-
ous dynamics. However, their approach requires highly nonlinear invariants for
verification. This makes it difficult to apply existing tools, which do not handle
nonlinear expressions well. We expect that the current technique will address
this difficulty with their framework.

We are also interested in applying our idea to decision procedures and sat-
isfiability modulo theories (SMT) solvers. Support of nonlinear predicates is an
emerging trend in many SMT solvers (e.g., Z3 [15]). Dai et al. [6] proposed an
algorithm for generating a semialgebraic Craig interpolant using semidefinite
programming [6]. Application of our approach to these method is an interesting
direction for future work.

Acknowledgment. We appreciate annonymous reviewers, Toshimitsu Ushio, Naoki
Kobayashi and Atsushi Igarashi for their comments. This work is partially supported
by JST PRESTO, JST CREST, KAKENHI 70633692, and in collaboration with the
Toyota Motor Corporation.

298 K. Kojima et al.

A Proof of Theorem 4

To prove Theorem 4, we define renaming of parameters and constraints.

Definition 7. For an injection ι : A → A′, we write ι : (A,G,C) � (A′, G′, C ′)
if G′ = ι∗(G) and C ′ = ι∗(C) where ι∗ maps a′ ∈ ι(A) to ι−1(a′) and a′ ∈
ι(A′\ι(A)) to 0.

The injection ι gives a renaming of parameters. The relation ι : (A,G,C) �
(A′, G′, C ′) reads G and C are obtained from G′ and C ′ by renaming the para-
meters in ι(A) using ι and substituting 0 to those not in ι(A).

Lemma 2. If ι : (A,G,C) � (A′, G′, C ′), then there exists κ such that (1)
κ : �c��cH

Rempar,Γ (A,G,C) � �c��c
Rempar(A′, G′, C ′) and (2) κ is an extension of ι.

Proof. Induction on the structure of c. ��
Proof of Theorem 4. Let g ∈ T (A0) be the most general template of gen-
eralized degree τ and degree d and g′ ∈ T (A′

0) be the most general tem-
plate of degree d. Without loss of generality, we assume A0 ⊆ A′

0 and g′ =
g + g1 for some g1 ∈ T (A′

0\A0). Let (A,G,C) = �c��cH
Rempar,Γ (A0, {g}, ∅) and

(A′, G′, C ′) = �c��c
Rempar(A′

0, {g′}, ∅). Then, from Lemma 2, there exists κ such
that κ : (A,G,C) � (A′, G′, C ′) and κ is an extension of the inclusion mapping
ι : A0 → A′

0. Suppose v(g) is a result of InvInfH(c, d, τ) where v is a solution to
C ∪ {〈G ≡ {0}〉}. Define a valuation v′ on A′ by

v′(a′) =
{

v(a) a′ = κ(a) for some a ∈ A
0 Otherwise.

Then, v′(g′) = v′(g + g1) = v′(g); the second equation holds because v′(a′)
is constantly 0 on any a′ ∈ A′\A. All the parameters in g are in A0 and κ
is an identity on A0. Therefore, v′(g) = v(g). It suffices to show that v′ |=
C ′ ∪ {〈G′ ≡ {0}〉}, which indeed holds from the definition of v′ since v |= C ∪
{〈G ≡ {0}〉} and C and G are renaming of C ′ and G′. ��

References

1. Adjé, A., Garoche, P.-L., Magron, V.: Property-based polynomial invariant gen-
eration using sums-of-squares optimization. In: Blazy, S., Jensen, T. (eds.) SAS
2015. LNCS, vol. 9291, pp. 235–251. Springer, Heidelberg (2015)

2. Barenblatt, G.I.: Scaling, Self-Similarity, and Intermediate Asymptotics: Dimen-
sional Analysis and Intermediate Asymptotics, vol. 14. Cambridge University
Press, Cambridge (1996)

3. Buckingham, E.: On physically similar systems; illustrations of the use of dimen-
sional equations. Phys. Rev. 4, 345–376 (1914)

4. Cachera, D., Jensen, T.P., Jobin, A., Kirchner, F.: Inference of polynomial invari-
ants for imperative programs: a farewell to Gröbner bases. Sci. Comput. Program.
93, 89–109 (2014)

Generalized Homogeneous Polynomials 299

5. Cox, D.A., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms: An Introduction
to Computational Algebraic Geometry and Commutative Algebra. Undergraduate
Texts in Mathematics, 3rd edn. Springer, New York (2007)

6. Dai, L., Xia, B., Zhan, N.: Generating non-linear interpolants by semidefinite pro-
gramming. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp.
364–380. Springer, Heidelberg (2013)

7. Garg, P., Löding, C., Madhusudan, P., Neider, D.: ICE: a robust framework for
learning invariants. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559,
pp. 69–87. Springer, Heidelberg (2014)

8. Gonzalez-Vega, L., Lombardi, H.: Smooth parametrizations for several cases
of the Positivstellensatz. Mathematische Zeitschrift 225(3), 427–451 (1997).
http://dx.doi.org/10.1007/PL00004620

9. Gulwani, S., Tiwari, A.: Constraint-based approach for analysis of hybrid systems.
In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 190–203. Springer,
Heidelberg (2008)

10. Hankey, A., Stanley, H.E.: Systematic application of generalized homogeneous func-
tions to static scaling, dynamic scaling, and universality. Phys. Rev. B 6(9), 3515
(1972)

11. Hasuo, I., Suenaga, K.: Exercises in nonstandard static analysis of hybrid systems.
In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 462–478.
Springer, Heidelberg (2012)

12. Kennedy, A.: Dimension types. In: ESOP 1994, pp. 348–362 (1994)
13. Kennedy, A.: Programming languages and dimensions. Ph.D. thesis, St.

Catharine’s College, March 1996
14. Lankford, D., Butler, G., Brady, B.: Abelian group unification algorithms for ele-

mentary terms. Contemp. Math. 29, 193–199 (1984)
15. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,

Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

16. Müller-Olm, M., Seidl, H.: Computing polynomial program invariants. Inf. Process.
Lett. 91(5), 233–244 (2004)

17. Neusel, M.D.: Invariant theory. The American Mathematical Society (2000)
18. Rodŕıguez-Carbonell, E.: Some programs that need polynomial invariants in order

to be verified. http://www.cs.upc.edu/erodri/webpage/polynomial invariants/list.
html. Accessed 25 January 2016

19. Rodŕıguez-Carbonell, E., Kapur, D.: Generating all polynomial invariants in simple
loops. J. Symb. Comput. 42(4), 443–476 (2007)

20. Sankaranarayanan, S., Sipma, H., Manna, Z.: Non-linear loop invariant generation
using Gröbner bases. In: POPL 2004, pp. 318–329 (2004)

21. Somenzi, F., Bradley, A.R.: IC3: where monolithic and incremental meet. In:
FMCAD 2011, pp. 3–8 (2011)

22. Stengle, G.: A nullstellensatz and a positivstellensatz in semialgebraic geometry.
Mathematische Annalen 207(2), 87–97 (1974)

23. Suenaga, K., Hasuo, I.: Programming with infinitesimals: a while-language for
hybrid system modeling. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011,
Part II. LNCS, vol. 6756, pp. 392–403. Springer, Heidelberg (2011)

24. Suenaga, K., Sekine, H., Hasuo, I.: Hyperstream processing systems: nonstandard
modeling of continuous-time signals. In: Giacobazzi, R., Cousot, R. (eds.) POPL
2013, pp. 417–430. ACM (2013)

http://dx.doi.org/10.1007/PL00004620
http://www.cs.upc.edu/erodri/webpage/polynomial_invariants/list.html
http://www.cs.upc.edu/erodri/webpage/polynomial_invariants/list.html

	Generalized Homogeneous Polynomials for Efficient Template-Based Nonlinear Invariant Synthesis
	1 Introduction
	2 Preliminaries
	3 Language
	4 Generalized Homogeneous Polynomials
	4.1 Definition
	4.2 Automated Inference of the G-Degree Assignment

	5 Abstract Semantics Restricted to GH Polynomials
	6 Template-Based Algorithm
	6.1 Algorithm Proposed by Cachera et al.
	6.2 Restriction to GH Templates

	7 Experiment
	8 Related Work
	9 Conclusion
	A Proof of Theorem 4
	References

