
Exploiting Sparsity
in Difference-Bound Matrices

Graeme Gange1(B), Jorge A. Navas2, Peter Schachte1,
Harald Søndergaard1, and Peter J. Stuckey1

1 Department of Computing and Information Systems,
The University of Melbourne, Melbourne, VIC 3010, Australia

gkgange@unimelb.edu.au
2 NASA Ames Research Center, Moffett Field, CA 94035, USA

Abstract. Relational numeric abstract domains are very important in
program analysis. Common domains, such as Zones and Octagons, are
usually conceptualised with weighted digraphs and implemented using
difference-bound matrices (DBMs). Unfortunately, though conceptually
simple, direct implementations of graph-based domains tend to perform
poorly in practice, and are impractical for analyzing large code-bases. We
propose new DBM algorithms that exploit sparsity and closed operands.
In particular, a new representation which we call split normal form
reduces graph density on typical abstract states. We compare the result-
ing implementation with several existing DBM-based abstract domains,
and show that we can substantially reduce the time to perform full DBM
analysis, without sacrificing precision.

1 Introduction

Relational numeric abstract domains are an important and large class, ranging
from the highly precise polyhedral domain [9] to cheaper but less expressive
variants, such as Octagons [18], Zones (or difference-bound matrices, DBMs) [17],
and others. They share the advantage over “non-relational” domains that they
support the extraction of important runtime relationships between variables.
However, for large code bases, even the cheaper relational domains tend to be
too expensive to use [10,21], so the usual compromise is to use less expressive
(and cheaper) non-relational domains or if possible weakly relational domains
tailored to specific applications (e.g., pentagons [16]).

During program analysis there are, however, characteristics of typical pro-
gram states that we would hope to take advantage of. For example, the relations
among variables are often quite sparse, variables tend to settle into disjoint clus-
ters, and many operations in the analysis change only a small subset of the over-
all set of relations. Moreover, knowledge about typical analysis workflow, which
analysis operations are more frequent, which normally succeed which, and so
on, can be exploited. Indeed, there have been previous attempts to capitalize on
such observations. We discuss related work in Sect. 7.

c© Springer-Verlag GmbH Germany 2016
X. Rival (Ed.): SAS 2016, LNCS 9837, pp. 189–211, 2016.
DOI: 10.1007/978-3-662-53413-7 10

190 G. Gange et al.

We propose a better Zones implementation. With zones, program state
descriptions take the form of conjunctions of constraints y − x ≤ k where x
and y are variables and k is some constant. Our implementation is optimized
for the commonly occurring case of sparse systems of constraints. We follow a
well-established tradition of representing the constraints as weighted directed
graphs, and so the analysis operations are reduced to various graph operations.

We assume the reader is familiar with abstract interpretation [6,7] and with
graph concepts and algorithms, including the classical shortest-path algorithms.
This paper offers the following novel contributions:

– We design new data structures and algorithms for Zones. These are based
on refined shortest-path graph algorithms, including a specialised incremental
variant of Dijkstra’s algorithm, which we call Chromatic Dijkstra (Sect. 3).

– We identify an important source of waste inherent in the standard graph
representations of difference constraints (namely, non-relational properties are
treated on a par with relational properties, contributing unnecessary density).
To fix this we introduce a split normal form for weighted digraphs, which
preserves many of the properties of transitive closure while avoiding unwanted
“densification”. We show how to modify the previous algorithms to operate
on this form (Sect. 4).

– We propose a graph representation that uses “sparse sets” [2], tailored for
efficient implementation across all the abstract operations (Sect. 5).

– We present an experimental evaluation of our implementation of Zones
(Sect. 6) and conclude that scalable relational analysis is achievable.

2 Zones, DBMs and Difference Logic

Much of what follows deals with weighted directed graphs. We use x
k−→ y to

denote a directed edge from x to y with weight k, and E(x) the set of outgoing
edges from x in E. wtE(x, y) denotes the weight of the edge x −→ y in E (or

∞ if absent). This is generalized for a directed path x1
k1−→ . . .

kn−1−−−→ xk as
wtE(x1, . . . , xk) denoting its path length (i.e.,

∑n−1
i=0 ki). We may write a graph

as its set of edges.1 When we take the union of two sets of edges E1 and E2, we
take only the minimum-weight edge for each pair of end-points.

In many cases it will be useful to operate on a transformed view of a graph.
rev(E) denotes the graph obtained by reversing the direction of each edge in E

(so x
k−→ y becomes y

k−→ x). E \ {v} is the graph obtained by removing from E
all edges incident to v. Note that these graphs are never explicitly constructed;
they merely define different interpretations of an existing graph.

Difference-bound matrices or Zones [17] approximate concrete states by pred-
icates of the forms x ≤ k, x ≥ k, and y − x ≤ k, where x and y are variables,

1 For presentation purposes, we assume all program states share a fixed set V of
variables. In practice, this is unnecessarily expensive—we instead maintain vertices
for only the variables that are in scope, and add or remove vertices as needed.

Exploiting Sparsity in Difference-Bound Matrices 191

and k some constant. Constraints y − x ≥ k can be translated to the ≤ form,
and, assuming variables range over the integers2, so can strict inequality.

The abstract states (systems of constraints) are typically represented as a
weighted graph, where v ∈ V ∪ {v0} is associated with a vertex, and a con-
straint y − x ≤ k is encoded as an edge x

k−→ y. The added vertex v0 represents
the constant 0. Relations are composed by adding lengths along directed paths;
transitive closure is obtained by computing all pairs of shortest paths in the
graph. In the rest of the paper, the terms closure and closed will refer to tran-
sitive closure. G∗ denotes the closure of some graph G.

Example 1. Consider the system of constraints {x ∈ [0, 1], y ∈ [1, 2], y−z ≤ −3}.
The corresponding constraint graph is shown in Fig. 1(a). Note that interval
constraints x ∈ [lo, hi] can be encoded as edges v0

hi−→x and x
−lo−−→v0. �

We shall use E1 ⊕ E2 and E1 ⊗ E2 to denote the pointwise maximum and
minimum over a pair of graphs. That is:

E1 ⊕ E2 = {x
k−→y | x

k1−→y ∈ E1 ∧ x
k2−→y ∈ E2 ∧ k = max(k1, k2)}

E1 ⊗ E2 =

{

x
k−→y

∣
∣
∣
∣
∣

(x k−→y ∈ E1 ∧ k ≤ wtE2(x, y)) ∨
(x k−→y ∈ E2 ∧ k < wtE1(x, y))

}

In typical implementations of difference bound-based domains, the system of
relations is encoded as a dense matrix, and closure is obtained by running the
Floyd-Warshall algorithm.

The language of “difference logic” also appears in an SMT context: SMT(DL)
problems query satisfiability over Boolean combinations of difference constraints.
The problem of solving SMT(DL) instances is rather different to the problem of
static analysis using DBMs, since the former does not compute joins—a major
issue in the latter. Nevertheless, we take inspiration from SMT(DL) algorithms,
in particular Cotton and Maler’s approach to dealing with sparse systems of
difference constraints [5]. In this approach the graph is augmented with a poten-
tial function π—a model of the constraint system. When an edge is added, π is
revised to find a model of the augmented system. Given a valid potential func-
tion, the corresponding concrete state is {x �→ π(x)−π(v0) | x ∈ V }. We extend
π naturally: π(e) denotes the value of expression e under assignment π.

Maintaining the potential function π allows the graph to be reformulated—for
any constraint y −x ≤ k, the slack (or reduced cost [5]) is given by slack(y, x) =
π(x) + k − π(y). As π is a model, this is non-negative; so shortest paths in the
reformulated graph may be computed using Dijkstra’s algorithm.

Example 2. Consider again the constraints captured in Fig. 1. Let the potential
function π = {v0 �→ 2, x �→ 3, y �→ 3, z �→ 9}. This corresponds to the concrete
assignment {x �→ 1, y �→ 1, z �→ 7} (as v0 is adjusted to 0). The slack graph

2 Our approach works for rational numbers as well. The implementation assumes 64-
bit integers and does not currently take over-/under-flow into account.

192 G. Gange et al.

v0

x

yz

10

2

−1

−3

π(v0) = 2

π(x) = 3

π(y) = 3
π(z) = 9

01

1

0

3
(a) (b)

Fig. 1. (a) A graph representing the set of difference constraints {x ∈ [0, 1], y ∈
[1, 2], y −z ≤ −3}. (b) The slack graph (with all non-negative weights) under potential
function π = {v0 �→ 2, x �→ 3, y �→ 3, z �→ 9}.

under π is given in Fig. 1(b). As every constraint is satisfied by π, all weights in
the reformulated graph are non-negative.

If we follow the shortest path from z to y in (b), we find the slack between
z and y is 3. We can then invert the original transformation to find the corre-
sponding constraint; in this case, we get y − z ≤ π(y) − π(z) + slack(z, y) = −3,
which matches the original corresponding path in (a). �

3 Zones Implemented with Sparse DBMs

A critical step for precise relational analysis is computing the closure of a sys-
tem of relations, that is, finding all implied relations and making them explicit.
Unfortunately, this also vastly dominates DBM runtimes [16,20,21]. Closure
using Floyd-Warshall is Θ(|V |3). In a sparse graph we can use Johnson’s algo-
rithm [13] to reduce this to O(|V ||E| + |V |2 log |V |), but this is still not ideal.

Typical manipulations during abstract interpretation are far from random.
The operations we perform most frequently are assigning a fresh variable, for-
getting a variable, adding a relation between two variables, and taking the dis-
junction of two states. Each of these exhibits some structure we can exploit to
maintain closure more efficiently. On occasion we also need to perform conjunc-
tion or widening on abstract states; we discuss these at the end of this section.

In the following, an abstract state ϕ consists of a pair 〈π,E〉 of a potential
function π, and a sparse graph of difference constraints E over vertices V ∪{v0}.
Potentials are initially 0. We assume the representation of E supports cheap
initialization, and constant time insertion, lookup, removal and iteration; we
discuss a suitable representation in Sect. 5.

3.1 Join

For 〈π1, E1〉 �〈π2, E2〉, both π1 and π2 are valid potentials, so we can choose
either. We then collect the pointwise maximum E1 ⊕E2. If E1 and E2 are closed

Exploiting Sparsity in Difference-Bound Matrices 193

then so is E1⊕E2, and the overall result is simply 〈π1, E1⊕E2〉. Assuming we can
lookup a specific edge in constant time, this takes worst case O(min(|E1|, |E2|)).

3.2 Variable Elimination

To eliminate a variable, we simply remove all edges incident to it. Assuming a
specific edge is removed in constant time, this takes O(|V |) worst case time.

3.3 Constraint Addition

To add a single edge x
k−→ y, we exploit an observation made by Cotton and

Maler [5]: Any newly introduced shortest path must include x−→y. The potential
repair step is unchanged, but our need to maintain closure means the rest of the
algorithm differs somewhat. The closure process is given in Fig. 2.

The potential repair step has worst-case complexity O(|V | log |V |+ |E|), and
restoring closure is O(|V |2). This worst-case behaviour can be expected to be
rare—in a sparse graph, a single edge addition usually affects few shortest paths.

add-edge(〈π, E〉, e)
E′ := E ∪ {e}
π′ := restore-potential(π, e, E′)
if π′ = inconsistent

return ⊥
return 〈π′, E′ ∪ close-edge(e, E′)〉

close-edge(x
k−→y, E)

S := D := ∅
δ := ∅
for (s

k′−→x ∈ E)
if k′ + k < wt ′

E(s, y)

δ := δ ∪ {s
k′+k−−−→y}

S := S ∪ {s}
for (y

k′−→d ∈ E)
if k + k′ < wt ′

E(y, d)

δ := δ ∪ {x
k+k′−−−→d}

D := D ∪ {d}
for (s ∈ S, d ∈ D)

if wt ′
E(s, x, y, d) < wt ′

E(s, d)

δ := δ ∪ {s
wt′

E(s,x,y,d)−−−−−−−−→d}
return δ

Fig. 2. Algorithm for restoring closure after addition of x
k−→y.

194 G. Gange et al.

3.4 Assignment

The key to efficient assignment is the observation that executing [[x := S]] can
only introduce relationships between x and other variables; it cannot tighten any
existing relation.3 From the current state ϕ = 〈π,G〉, we can compute a valid
potential for x simply by evaluating S under π.

We then need to compute the shortest distances to and from x (after adding
edges corresponding to the assignment). As π is a valid potential function, we
could simply run two passes of Dijkstra’s algorithm to collect the consequences.

Example 3. Consider again the state shown in Fig. 1(a). Its closure is shown
in Fig. 3(a). To evaluate [[w := x + z]] we compute a valid potential for w from
potentials for x and z: π(w) = π(v0) + (π(x) − π(v0)) + (π(z) − π(v0)) = 10.
Replacing x and z with their bounds, we derive these difference constraints:
{w ≥ 4, x − w ≤ −4, z − w ≤ 0, w − z ≤ 1}. These edges are shown in Fig. 3(b).
Running a Dijkstra’s algorithm to/from w, we also find the transitive w

−3−−→ y
edge (corresponding to y − w ≤ −3). �

v0

x

yz

10

2

−1

−3

2
0

−4

−3

v0

x

yz

w

−4
01

−4

−3

v0

x

yz

w

4
10

3

(a) (b) (c)

Fig. 3. (a) Closure of the state from Fig. 1(a). (b) Edges after evaluating [[w := z + y]].
(c) Edges introduced in Example 4, re-cast in terms of slack.

But as G is closed we can do better. Assume a shortest path from x to z
passes through [x, u1, . . . , uk, z]. As G is closed there must be some edge (u1, z)
such that wtG(u1, z) ≤ wtG(u1, . . . , uk, z); thus, we never need to expand grand-
children of x. The only problem is if we expand immediate children of x in the
wrong order, and later discover a shorter path to a child we’ve already expanded.

However, recall that π allows us to reframe G in terms of slack, which is non-
negative. If we expand children of x in order of increasing slack, we will never find
a shorter path to an already expanded child. Thus we can abandon the priority
queue entirely, simply expanding children of x by increasing slack, and collecting
the minimum distance to each grandchild. The algorithm for restoring closure

3 This assumes π(S) is total. For a partial function like integer division we first close
with respect to x, then enforce the remaining invariants.

Exploiting Sparsity in Difference-Bound Matrices 195

after an assignment is given in Fig. 4. Its worst-case complexity is O(|S| log |S|+
|E|). The assignment [[x := S]] generates at most 2|S| immediate edges, which
we must sort. We then perform a single pass over the grandchildren of x. In the
common case where |S| is bounded by a small constant, this collapses to O(|E|)
(recall that rev(E) is not explicitly computed).

close-assignment-fwd(〈π, E〉, x)
reach(v) := 0 for all v
reach(x) := 1; Dist(x) := 0; adj := ∅
for each x

k−→y ∈ E(x) by increasing k − π(y)
if reach(y)

Dist(y) := min(Dist(y), k)
else

adj := adj ∪ {y}
reach(y) := 1; Dist(y) := k

for (y
k′−→z ∈ E(y))

if reach(z)
Dist(z) = min(Dist(z),Dist(y) + k′)

else
adj := adj ∪ {z}
reach(z) := 1; Dist(z) := Dist(y) + k′

return {x
Dist(y)−−−−→y | y ∈ adj ,Dist(y) < wtE(x, y)}

close-assignment(〈π, E〉, x)
δf := close-assignment-fwd(〈π, E〉, x)
δr := close-assignment-fwd(〈−π, rev(E)〉, x)
return δf ∪ rev(δr)

eval-expr(π, S)
match S with

c: return c + π(v0) % constant
x: return π(x) − π(v0) % variable
f(s1, . . . , sk): % arithmetic expression

for (i ∈ {1, . . . , k})
ei := eval-expr(π, si)

return f(e1, . . . , ek)

assign(〈π, E〉, [[x := S]])
π′ := π[x �→ π(v0) + eval-expr(π, S)]
E′ := E ∪ edges-of-assign(E, [[x := S]])
δ := close-assignment(〈π′, E′〉, x)
return 〈π′, E′ ⊗ δ〉

Fig. 4. Updating the abstract state under an assignment

196 G. Gange et al.

Example 4. Recall the assignment in Example 3. The slack graph, with respect
to π = {v0 �→ 2, x �→ 3, y �→ 3, z �→ 9, w �→ 10}, is shown in Fig. 3(c). Processing
outgoing edges of w in order of increasing slack, we first reach z, marking v0, x
and y as reached, with Dist(v0) = −4,Dist(x) = −3 and Dist(y) = −3. We
then process x, which is directly reachable at distance Dist(x) = −4, but find
no other improved distances. After finding no improved distances through v0,
we walk through the vertices that have been touched and collect any improved
edges, returning {y − w ≤ −3} as expected. �

3.5 Meet

The meet operation 〈π1, E1〉 �〈π2, E2〉 is more involved. We first collect each
relation from E1∪E2, but we must then compute an updated potential function,
and restore closure. The algorithm is outlined in Fig. 5.

meet(〈π1, E1〉, 〈π2, E2〉)
E′ := E1 ⊗ E2

π := compute-potential(E′, π1)
if π = inconsistent

return ⊥
δ := close-meet(π, E′, E1, E2)
return 〈π, E′ ⊗ δ〉

Fig. 5. Meet on sparse DBMs

The classic approach to computing valid potential functions is the Bellman-
Ford [12] algorithm. Many refinements and variants have been described [4], any
of which we could apply. We use the basic algorithm, with three refinements:

– π′ is initialized from π1 or π2.
– Bellman-Ford is run separately on each strongly-connected component.
– We maintain separate queues for the current and next iteration.

Fig. 6 shows the modified algorithm. Note that if π′(x) changes but x is still
in Q, we do not need to add it to Q′—its successors will already have been
updated at the end of the current iteration.

The direct approach to restoring closure of E′ is to run Dijkstra’s algorithm
from each vertex (essentially running Johnson’s algorithm). However, we can
exploit the fact that E1 and E2 are already closed. When we collect the pointwise
minimum E1 ⊗ E2, we mark each edge as 1, 2 or both, according to its origin.
Observe that if all edges reachable from some vertex v have the same mark, the
subgraph from v is already closed.

Critically, consider the behaviour of Dijkstra’s algorithm. We expand some
vertex v, adding v

k−→ x to the queue. Assume the edge v
k−→ x originated from

Exploiting Sparsity in Difference-Bound Matrices 197

compute-potential(E, π)
π′ := π
for (scc ∈ components(E))

Q := scc
for (iter ∈ [1, |scc|])

Q′ := ∅
while (Q �= ∅)

x := Q.pop()

for (x
k−→y ∈ E(x))

if π′(x) + k − π′(y) < 0
π′(y) := π′(x) + k
if (y ∈ scc ∧ y /∈ Q ∪ Q′)

Q′ := Q′ ∪ {y}
if Q′ = ∅

return π′

Q := Q′

while (Q �= ∅)
x := Q.pop()

for (x
k−→y ∈ E(x))

if π′(x) + k − π′(y) < 0
return inconsistent

return π′

Fig. 6. Warm-started Bellman-Ford; SCCs assumed to be ordered topologically.

the set E1. At some point, we remove v
k−→x from the queue. Let x

k′
−→y be some

child of x. If x
k′
−→ y also originated from E1, we know that E1 also contained

some edge v
c−→y with c ≤ k + k′ which will already be in the queue; thus there

is no point exploring any outgoing E1-edges from x.
We thus derive a specialized variant of Dijkstra’s algorithm. The following

assumes we can freely iterate through edges of specific colours—this index can be
maintained during construction, or partitioning edges via bucket-sort between
construction and closure.4 This “chromatic” variant is given in Fig. 7. We run
Dijkstra’s algorithm as usual, except any time we find a minimum-length path
to some node y, we mark y with the colour of the edge through which it was
reached. Then, when we remove y from the priority queue we only explore edges
where none of its colours are already on the vertex. Note that nodes in Q are
ordered by slack (π(x) + Dist(x) − π(y)), rather than raw distance Dist(x). The
initialization of Dist and edge-col is performed only once and preserved between
calls, rather than performed explicitly for each call.

Example 5. Consider the conjunction of closed states in Fig. 8(a). Running the
closure-aware Dijkstra’s algorithm from each vertex restores closure. Now taking

4 It is not immediately clear how to extend this efficiently to an n-way meet, as a
vertex may be reachable from some arbitrary subset of the operands.

198 G. Gange et al.

chromatic-Dijkstra(〈π, E〉, x)
Dist(v) := ∞ for all v
δ := ∅
for each x

k−→y ∈ E(x)
Dist(y) := k
Q.add(y)
reach-col(y) := edge-col(x, y)

while (Q �= ∅)
y := Q.remove-min()
if Dist(y) < wtE(x, y))

δ := δ ∪ {x
Dist(y)−−−−→y }

% Iterate through edges of the other colour
for (c ∈ {1, 2} \ reach-col(y))

for each y
k−→z in Ec(y)

dxyz := Dist(y) + k
if dxyz = Dist(z)

reach-col(z) := reach-col(z) ∪ edge-col(y, z)
if dxyz < Dist(z)

Dist(z) := dxyz

Q.update(z)
reach-col(z) := edge-col(y, z)

return δ

close-meet(π, E, E1, E2)
edge-col(x, y) := ∅ for all x, y

for each i ∈ {1, 2}, x
k−→y ∈ Ei

if wtE(x, y) = k
edge-col(x, y) := edge-col(x, y) ∪ {i}

δ := ∅
for each vertex x

δ := δ ∪ chromatic-Dijkstra(〈π, E〉, x)
return δ

Fig. 7. Pseudo-code for Dijkstra’s algorithm, modified to exploit closed operands.

w x

y z0 1 1

2

2

w x

y z0 1 1

2

1

2
(a) (b)

Fig. 8. (a) The conjunction of two closed graphs, E1 = {x − w ≤ 0, y − w ≤ 2} and
E2 = {y − x ≤ 1, z − y ≤ 1, z − x ≤ 2}, and (b) the closure (E1 ⊗ E2)

∗. (Color figure
online)

Exploiting Sparsity in Difference-Bound Matrices 199

x as the source, we add x
1−→y and x

2−→z to the priority queue, and mark y and
z as reachable via blue (solid) edges. We then pop y from the queue. Variable y
is marked as reachable via blue so we need only check purple (dashed) children,
of which there are none. We finally pop z, finding the same.

Selecting w as source, we add w
0−→x and w

2−→y to the queue, both marked as
reachable via purple (dashed) edges. We then process x. It is reachable via purple,
so we must expand its blue children. The edges x

1−→y and x
2−→z respectively give

an improved path to y and a path to z, so we update the distances and mark
both y and z as reachable instead by blue. This places us in the same state we
had before; we finish processing y and z as above. The resulting graph is shown
in Fig. 8(b). �

3.6 Widening

For widening we follow the usual practice of discarding unstable edges—any
edges that were weakened in two successive iterates E1 and E2. (Note that for
each edge x

k2−→y ∈ E2 there is an edge x
k1−→y ∈ E1 with k1 ≤ k2.)

To obtain the result E = E1 � E2, widening starts from an empty set E.
It then considers each edge x

k2−→ y ∈ E2 in turn and adds x
k1−→ y to E iff

x
k1−→ y ∈ E1 and k2 ≤ k1. In the pseudo-code of Fig. 9, this is performed by

remove-unstable-edges(E1, E2), which also returns a set is-stable containing
those vertices which have lost no outgoing edges.

Figure 9 presents the complete pseudo-code for widening. The algorithm is,
however, more complex than just removal of edges. The reason is that, unlike the
join operation, the removal of edges may fail to preserve closure. Hence closure
must be restored before subsequent operations, but at the same time, subsequent
widenings must use the un-closed result. For this reason, widen produces both.
The function close-after-widen is responsible for the restoration of closure. It
uses a short-cut similar to the chromatic Dijkstra algorithm. Recall that E(x)
denotes the set E′ ⊆ E of edges that emanate from x. Consider again running
Dijkstra’s algorithm from v on A� B. At some point, we reach a vertex w with
A∗(w) = (A� B)(w)—that is, all outgoing edges from w are stable in A∗. But
since A�(A� B), we have (A� B)(w) = A∗(w)�(A� B)∗(w). Thus we do not
need to further expand any children reached via w, as any such path is already in
the queue. As such, we augment the left operand of the widening (the previous
iterate) with a set SE , threaded through successive widening steps, to indicate
which vertices remain stable under closure. Details are provided in Fig. 9.

200 G. Gange et al.

Dijkstra-restore-unstable(〈π, E〉, x, is-stable)
δ := ∅, Dist(v) := ∞ for all v

for each x
k−→y ∈ E(x)

Dist(y) := k
Q.add(y)
closed(y) := false

while Q �= ∅
y := Q.remove-min()
if Dist(y) < wtE(x, y)

δ := δ ∪ {x
Dist(y)−−−−→y }

if not closed(y)
% Iterate through unstable successors

for each y
k−→z in E(y)

dxyz := Dist(y) + k
if dxyz = Dist(z)

closed(z) := closed(z) ∨ is-stable(y)
if dxyz < Dist(z)

Dist(z) := dxyz

Q.update(z)
closed(z) := is-stable(y)

return δ

close-after-widen(〈π, E〉, is-stable)
δ := ∅, SE′ := is-stable
for each vertex x

if not is-stable(x)
δx := Dijkstra-restore-unstable(〈π, E〉, x, is-stable)
if deltax = ∅ then SE′ := SE′ ∪ {x}
δ := δ ∪ δx

return δ, SE′

widen(〈π1, E1〉|SE
, 〈π2, E2〉)

〈E′, is-stable〉 := remove-unstable-edges(E1, E2)
un-closed := 〈π2, E

′〉
δ, SE′ := close-after-widen(un-closed, SE ∩ is-stable)
closed := 〈π2, E

′ ⊗ δ〉
return 〈un-closed|SE′ , closed〉

Fig. 9. Widening on sparse DBMs

4 Zones as Sparse DBMs in Split Normal Form

So far we made the key assumption that abstract states are sparse. During the
later stages of analysis, this is typically the case. However, abstract states in early
iterations are often very dense; Singh, Püschel and Vechev [20] observed (in the
context of Octagon analysis) that the first 50 % of iterations were extremely

Exploiting Sparsity in Difference-Bound Matrices 201

dense, with sparsity only appearing after widening. However, at a closer look
this density turns out to be a mirage.

Recall the discussion in Sect. 2 on the handling of variable bounds: an artifi-
cial vertex v0 is introduced, and bounds on x are encoded as relations between
x and v0. Unfortunately, this interacts badly with closure - if variables are given
initial bounds, our abstract state becomes complete.

0 : x1, . . . , xk := 1, . . . , k
1 : if(∗)
2 : x1 := x1 + 1
3 : x2 := x2 + 1
4 :

Fig. 10. Small code fragment

This is regrettable, as it erodes the sparsity we want to exploit. It is only after
widening that unstable variable bounds are discarded and sparsity arises, reveal-
ing the underlying structure of relations. Also, all these invariants are trivial—we
only really care about relations not already implied by variable bounds.

Example 6. Consider the program fragment in Fig. 10. Variables x1, . . . , xk are
initialised to constants at point 0. A direct implementation of DBM or Octagons
will compute all k(k −1) pairwise relations implied by these bounds. During the
execution of lines 2 and 3, all these relations are updated, despite all inferred
relations being simply the consequences of variable bounds.

At point 4 we take the join of the two sets of relations. In a direct implemen-
tation, this graph is complete, even though there is only one relation that is not
already implied by bounds, namely x2 = x1 + 1. �

One can avoid this phantom density by storing the abstract state in a (possi-
bly weakly) transitively reduced form, an approach that has been used to improve
performance in SMT and constraint programming [5,11], and to reduce space
consumption in model checking [14].5 But we are hindered by the need to perform
join operations. The join of two closed graphs is simply E1⊕E2. For transitively
reduced graphs, we are forced to first compute the closure, perform the point-
wise maximum, then restore the result to transitively reduced form. Algorithms
exist to efficiently compute the transitive reduction and closure together, but we
would still need to restore the reduction after joins.

Instead, we construct a modified normal form which distinguishes indepen-
dent properties (edges to/from v0) from strictly relational properties (edges

5 This terminology may be confusing. The transitive reduction computes the greatest
(by �) equivalent representation of R, whereas the usual abstract-domain reduction
corresponds to the transitive closure.

202 G. Gange et al.

between program variable). An important property of this normal form is that
it preserves strongest invariants involving v0.

A graph G = 〈V,E〉 is in split normal form iff:

– G \ {v0} is closed, and
– for each edge v0

k−→ x (or x
k−→ v0) in G, the shortest path in G from v0 to x

(resp. x to v0) has length k.

If G is in split normal form then any shortest path from x to y in G occurs
either as an edge x

k−→ y, or the path x
k1−→ v0, v0

k2−→ y. We have E1 � E2 iff, for
every x

k−→y ∈ E2, min(wtE1(x, y),wtE1(x, v0, y)) ≤ k. Assuming constant-time
lookups, this test takes O(|E2|) time.

Note that split normal form is not canonical: the graphs {x
1−→ v0, v0

1−→ y}
and {x

1−→v0, v0
1−→y, x

2−→y} are both in split normal form, and denote the same
set of relations. We could establish a canonical form by removing edges implied
by variable bounds, then re-closing G \ {v0}. But we gain nothing by doing so,
as we already have an efficient entailment test.

An abstract state in the domain of split DBMs consists of a pair 〈π,G〉 of a
graph G in split normal form, and a potential function π for G. We must now
modify each abstract operation to deal with graphs in split normal form.

4.1 Abstract Operations for Split Normal Form

Variable elimination is unchanged—we simply discard edges touching x.
The modifications for variable assignment, constraint addition and meet are

mostly straightforward. The construction of the initial (non-normalized) result
and computation of potential function are performed exactly as in Sect. 3.

We then restore closure as before, but only over G \ {v0}, yielding the set δ
of changed edges. We then finish by walking over δ to restore variable bounds.

Widening is also straightforward. The construction of the un-closed compo-
nent by removing unstable edges is done as in Sect. 3.6. For the closed result
used in subsequent iterations, we restore closure as before but only over G\{v0}
and compute separately the closure for v0.

Pseudo-code for constraint addition, assignment, meet, and widening are
given in Fig. 11.

Computation of E1 � E2 for split normal graphs is more intricate. As before,
either potential may be retained, and edges v0

k−→x and x
k−→ v0 need no special

handling. But direct application of the join used in Sect. 3 may lose precision.

Example 7. Consider the join at point 4 in Fig. 10. In split normal form, the
abstract states are:

E1 = {x1
−1−−→v0, v0

1−→x1, x2
−2−−→v0, v0

2−→x2, . . .}
E2 = {x1

−2−−→v0, v0
2−→x1, x2

−3−−→v0, v0
3−→x2, . . .}

Exploiting Sparsity in Difference-Bound Matrices 203

update-boundsF(E, δ)

lb := {v0
k0+ke−−−−→d | v0

k0−→s ∈ E ∧ s
ke−→d ∈ δ ∧ k0 + ke < wtE(v0, d)}

ub := {s
k0+ke−−−−→v0 | s

ke−→d ∈ δ ∧ d
k0−→v0 ∈ E ∧ k0 + ke ≤ wtE(s, v0)}

return δ ∪ lb ∪ ub

add-edgeF(〈π, E〉, e)
E′ := E ∪ {e}
π′ := restore-potential(π, e, E′)
if π′ = inconsistent

return ⊥
δ := close-edge(e, E′ \ {v0})
return 〈π′, E′ ⊗ update-boundsF(E, δ)〉

assignF(〈π, E〉, [[x := S]])
π′ := π[x �→ eval-potential(π, S)]
E′ := E ∪ edges-of-assign(E, [[x := S]])
δ := close-assign(〈π′, E′ \ {v0}〉, x)
return 〈π′, E′ ⊗ δ〉

meetF(〈π1, E1〉, 〈π2, E2〉)
E′ := E1 ⊗ E2

π′ := compute-potential(E′, π1)
if π′ = inconsistent

return ⊥
δ := close-meet(π′, E′ \ {v0}, E1, E2)
return 〈π, E′ ⊗ update-boundsF(E

′, δ)〉

widenF(〈π1, E1〉|SE
, 〈π2, E2〉)

〈E′, is-stable〉 := remove-unstable-edges(E1, E2)
un-closed := 〈π2, E

′〉
δ, SE′ := close-after-widen(〈π2, E

′ \ {v0}〉, is-stable)
δ := δ ∪ close-assignment(un-closed, v0)
closed := 〈π2, E

′ ⊗ δ〉
return 〈un-closed|SE′ , closed〉

Fig. 11. Modified algorithms for split normal graphs

In each case the relation x2 − x1 = 1 is implied by the paths x1
−1−−→v0, v0

2−→x2

and x2
−2−−→v0, v0

1−→x1. If we apply the join from Sect. 3, we obtain:

E′ = {x1
−1−−→v0, v0

2−→x1, x2
−2−−→v0, v0

3−→x2, . . .}
This only supports the weaker relation 0 ≤ x2 − x1 ≤ 2. �

We could find the missing relations by computing the closures of E1 and E2;
but this rather undermines our objective. Instead, consider the ways a relation
might arise in E1 � E2:

204 G. Gange et al.

1. x
k−→y ∈ E1, x

k′
−→y ∈ E2

2. x
k−→y ∈ E1, {x

k′
−→v0, v0

k′′
−−→y} ⊆ E2 (or the converse)

3. {x
k1−→v0, v0

k2−→y} ⊆ E1, {x
k′
1−→v0, v0

k′
2−→y} ⊆ E2, where

max(k1 + k2, k
′
1 + k′

2) < max(k1, k′
1) + max(k2, k′

2)

The join of Sect. 3 will collect only those relations which are explicit in both E1

and E2 (case 1). We can find relations of the second form by walking through
E1 and collecting any edges which are implicit in E2. The final case is that
illustrated in Example 7, where some invariant is implicit in both operands, but
is no longer maintained in the result. The restriction on case 3 can only hold
when wtE1(x, v0) < wtE2(x, v0) and wtE2(v0, y) < wtE1(v0, y) (or the converse).

We can collect suitable pairs by collecting the variables into buckets accord-
ing to sign(wtE1(v0, x) − wtE2(v0, x)) and sign(wtE1(x, v0) − wtE2(x, v0)). We
then walk through the compatible buckets and instantiate the resulting relations.

split-rels(EI , ER)
EIR := ∅
for (x

k−→y ∈ (ER − v0))
if(wtEI (x, v0, y) < wtEI (x, y))

EIR := EIR ∪ {x
wtEI

(x,v0,y)−−−−−−−−→y}
return EIR

bound-rels(src, dest)
EII := ∅
for ((x, k1, k

′
1) ∈ src, (y, k2, k

′
2) ∈ dest, x �= y)

kxy := max(k1 + k2, k
′
1 + k′

2)

EII := EII ∪ {x
kxy−−→y}

return EII

split-join(〈π1, E1〉, 〈π2, E2〉)
π′ := π1

EI1 := split-rels(E1, E2)
EI2 := split-rels(E2, E1)
E1+ := close-meet(π1, EI1 ⊗ E1, EI1 , E1)
E2+ := close-meet(π2, EI2 ⊗ E2, EI2 , E2)
for (s ∈ {+, −})

srcs := {(x,wtE1(x, v0),wtE2(x, v0)) | sign(wtE1(x, v0) − wtE2(x, v0)) = s}
dests := {(y,wtE1(v0, y),wtE2(v0, y)) | sign(wtE1(v0, y) − wtE2(v0, y)) = s}

EI12 := bound-rels(src+, dest−) ∪ bound-rels(src−, dest+)
return 〈π′, EI12 ⊗ (E1+ ⊕ E2+)〉

Fig. 12. Pseudo-code for join of abstract states in split normal form. split-rels collects
edges which are implicit in EI but explicit in ER. bound-rels collects relations implied
by compatible bound changes.

Exploiting Sparsity in Difference-Bound Matrices 205

This yields the join algorithm given in Fig. 12. Note the order of construction for
E′. Each of the initial components E1, EI1 , E2, EI2 and EI12 are split-normal.
Augmenting E1 with implied properties EI1 allows us to use the chromatic Dijk-
stra algorithm for normalization. There is no need to normalize when computing
E1+ ⊕ E2+, as relations in classes (1) and (2) will be preserved, relations with
v0 are fully closed, and relations of class (3) will be imposed later.

Due to the construction of EI12 , normalization of the result again comes for
free. Assume EI12 ⊗ (E1+ ⊕ E2+) is not closed. Then there must be some path

x
k−→y ∈ EI12 , y

k′
−→z ∈ (E1+ ⊕ E2+) such that x

k+k′
−−−→z is not in either operand.

But that means there must be some path x
c1−→v0, v0

c2−→y, y
c3−→z ∈ E1 such that

c1 + c2 ≤ k, c3 ≤ k′, so there must also be a path x
c1−→ v0, v0

c′
−→ z ∈ E1, with

c′ ≤ c2+c3. The same holds for E2. Thus x
k+k′
−−−→z must be in EI12 ⊗(E1+⊕E2+).

5 Sparse Graph Representations

So far we avoided discussing the underlying graph representation. The choice
is critical for performance. For � or �, we must walk pointwise across the two
graphs; during closure, it is useful to iterate over edges incident to a vertex, and
to examine and update relations between arbitrary pairs of variables. On variable
elimination, we must remove all edges to or from v. Conventional representations
support only some of these operations efficiently. Dense matrices are convenient
for updating specific entries but cannot iterate over only the non-trivial entries.
� and � must walk across the entire matrix—even copying an abstract state
is always a O(|V |2) operation. Adjacency lists support efficient iteration and
handle sparsity gracefully, but we lose efficiency of insertion and lookup.

A representation which supports all the required operations is the adjacency
hash-table, consisting of a hash-table mapping successors to weights for each
vertex, and a hash-set of the predecessors of each vertex. This offers the asymp-
totic behaviour we want but is rather heavy-weight, with substantial overheads
on operations. Instead we adopt a hybrid representation; weights are stored in
a dense but uninitialized matrix, and adjacencies are stored using a “sparse-
set” structure [2]. This improves the efficiency of primitive operations, for a
reasonable space cost. It introduces an overhead of roughly 8 bytes per matrix
element6—two bytes each for the sparse and dense entry for both predecessors
and successors. For 64-bit weights, this doubles the overall memory requirements
relative to the direct dense matrix.

A sparse-set structure consists of a triple (dense, sparse, sz) where dense is
an array containing the elements currently in the set, sparse is an array mapping
elements to the corresponding indices in dense, and sz the number of elements
in the set. We can iterate through the set using {dense[0], . . . , dense[sz − 1]}.

Fig. 13 shows the sparse-set operations. We preserve the invariant ∀i ∈
[0, sz). sparse[dense[i]] = i. This means for any element k′ outside the set,
6 This assumes 16-bit vertex identifiers; if more than 216 variables are in scope at a

program point, any dense-matrix approach is already impractical.

206 G. Gange et al.

elem((dense, sparse, sz), k)
return sparse[k] < sz ∧ dense[sparse[k]] = k

add((dense, sparse, sz), k)
sparse[k] := sz
dense[sz] := k
sz := sz + 1

remove((dense, sparse, sz), k)
sz := sz − 1
k′ := dense[sz]
dense[sparse[k]] := k′

sparse[k′] := sparse[k]

Fig. 13. Sparse-set operations

either sz ≤ sparse[i], or dense[sparse[k′]] points to some element other than
k′—without making any assumptions about the values in sparse or dense. So we
only need to allocate memory for sparse and dense, and initialize sz .

The result is a representation with O(1) addition, removal, lookup and enu-
meration (with low constant factors) and O(|V | + |E|) time to initialize/copy
(we can reduce this to O(|E|) by including an index of non-empty rows, but this
adds an additional cost to each lookup).

While the sparse set incurs only a modest overhead (vs a dense matrix), this
is still wasteful for extremely sparse graphs. So we choose an adaptive representa-
tion. Adjacency lists are initially allocated as unsorted vectors. When the length
of a list exceeds a small constant (viz. 8) we allocate the sparse array, turning the
list into a sparse set. This yields equivalent performance (both asymptotically
and in practice), with considerably smaller memory footprint for very sparse
graphs.

6 Experimental Results

We have implemented the Zones abstract domain using both sparse DBMs and
sparse DBMs in Split Normal Form. We now compare their performance, and
we evaluate the major algorithmic choices discussed in Sects. 3, 4 and 5. All
the DBM-based alternatives have been implemented and integrated in crab,
a language-agnostic static analyzer based on abstract interpretation7. For the
experiments we use 3753 programs from SV-COMP 2016 [1]. We focus on seven
program categories that challenge numerical reasoning: Simple, ControlFlowIn-
teger, Loops, Sequentialized, DeviceDrivers64, ECA, and ProductLines. Since

7 Code is available from the authors upon request.

Exploiting Sparsity in Difference-Bound Matrices 207

all programs are written in C they have first been translated8 to LLVM [15] bit-
code and then to a simple language consisting of assume, assignments, arithmetic
operations, and goto statements understood by crab using the crab-llvm tool.
The ultimate goal of the analyzer is to infer inductive invariants at each basic
block. All the experiments were carried out on a 2.1 GHz AMD Opteron proces-
sor 6172 with 32 cores and 64 GB on a Linux machine.

We first compare DBM-based implementations of Zones: dense-dbm [17] uses
a dense matrix with incremental Floyd-Warshall ([3], Fig. 7, Incremental-
DifferenceV2) for both constraint addition and assignment; sparse-dbm uses
sparse DBMs (Sect. 3); and split-dbm uses sparse DBMs but splits independent
and relational invariants as described in Sect. 4. As performance baseline, we also
compare with intervals, a classical implementation of intervals. Finally we add
dense-dbm+pack which enhances dense-dbm with dynamic variable packing [21].
Note that dense-dbm, sparse-dbm, and split-dbm have the same expressiveness, so
they infer the same invariants. The performance results of dense-dbm+pack are
not really comparable with the other DBM implementations: the analysis is less
precise since it only preserves relationships between variables in the same pack.
For our benchmark suite, intervals inferred the same invariants as dense-dbm+
pack in 19% of the cases, whereas dense-dbm+pack infers the same as split-dbm
in only 29% of the cases.

Figure 14 shows the results, using an 8 GB memory limit and various timeouts
ranging from 1 to 5 min. Five implementations are compared. Figure 14(a) shows,
for each, the accumulated time in minutes. Figure 14(b) shows how many pro-
grams were analyzed without exceeding the timeout. If the analyzer exhausted
the resources then the timeout value has been counted as analysis time. The
comparison shows that sparse-dbm is significantly faster than dense-dbm (4.3x)

)b()a(

Fig. 14. Performance of several DBM-based implementations of Zones over 3753 SV-
COMP’16 benchmarks with 8GB memory limit.

8 We tried to stress test the DBM implementations by increasing the number of vari-
ables in scope through inlining. We inlined all function calls unless a called function
was recursive or could not be resolved at compile time.

208 G. Gange et al.

while being able to analyze many more programs (> 500). Moreover, split-dbm
outperforms sparse-dbm both in the number of analyzed programs (100 more)
and analysis times (2x). Note that compared to the far less precise dense-dbm
+pack, split-dbm can analyze almost the same number of programs while at the
same time being faster (1.1x).

Table 1. Performance of different versions of split-dbm, applied to SV-COMP’16 pro-
grams, with a timeout of 60 s and a memory limit of 8 GB.

Graph Representation Assign Meet

Total: 3753 Total: 3753 Total: 4079

hash trie ss adapt-ss close-edge close-assign johnson chromatic

Analyzed 3637 3545 3632 3662 3659 3662 4020 4028

TOs 116 208 68 91 91 91 91 48

MOs 0 0 53 0 3 0 0 3

Time 318 479 252 265 269 265 160 151

In another three experiments we have evaluated the major algorithmic
and representation choices for split-dbm. Table 1 shows the results. Analyzed is
the number of programs for which the analyzer converged without exhausting
resources. TOs is the number of time-outs, MOs is the number of cases where
memory limits were exceeded, and Time is the accumulated analysis time in
minutes. Again, MOs instances were counted as time-outs for the computation
of overall time. (We do not repeat these experiments with sparse-dbm since it
differs from split-dbm only in how independent properties are treated separately
from relational ones—hence similar results should be expected for sparse-dbm.)

1. Representation impact: hash uses hash tables and sets as described in
Sect. 5; trie is similar but uses Patricia trees [19] instead of hash tables and
sets; (adapt-) ss is the (adaptive) hybrid representation using dense matrices
for weights and sparse sets, also described in Sect. 5.

2. Algorithms for abstract assign x:=e: close-edge implements the assign-
ment as a sequence of edge additions (Fig. 2). close-assign implements the
algorithm described in Fig. 4. We evaluated both options using the adapt-ss
graph representation.

3. Algorithms for meet: johnson uses Johnson’s algorithm for closure while
chromatic uses our Chromatic Dijkstra (Fig. 7). We evaluated the two after
committing to the best previous options, that is, adapt-ss and close-assign.
NB: To increase the number of meets we did not inline programs here. This
is the reason why the total number of programs has increased—LLVM can
compile more programs in reasonable time when inlining is disabled.

These last three experiments justify the choices (adapt-ss, close-assign, and chro-
matic) used in the implementation whose performance is reported in Fig. 14.

Exploiting Sparsity in Difference-Bound Matrices 209

7 Related Work

Much research has been motivated by the appeal, but ultimately lacking scal-
ability, of program analyses based on relational domains. Attempts to improve
the state of the art fall in three rough classes.

Approaches based on dimensionality restriction attempt to decrease the
dimension k of the program abstract state by replacing the full space with a set of
subspaces of lower-dimensional sub-spaces. Variables are separated into “buck-
ets” or packs according to some criterion. Variable packing was first utilised in
the Astree analyser [8]. A dynamic variant is used in the C Global Surveyor [21].

Others choose to sacrifice precision, establishing a new trade-off between per-
formance and expressiveness. Some abandon the systematic transitive closure of
relations (and work around the resulting lack a normal form for constraints).
Constraints implied by closure may be discovered lazily, or not at all. Used with
their Pentagon domain, Logozzo and Fähndrich [16] found that this approach
established a happy balance between cost and precision. The Gauge domain pro-
posed by Venet [22] can be seen as a combination of this approach and dimen-
sionality restriction. In the Gauge domain, relations are only maintained between
program variables and specially introduced “loop counter” variables.

Finally, one can focus on algorithmic aspects of classical abstract domains
and attempt to improve performance without modifying the domain (as in
this paper). Here the closest related work targets Octagons rather than Zones.
Chawdhary, Robbins and King [3] present algorithmic improvements for the
Octagon domain, assuming a standard matrix-based implementation (built on
DBMs). They focus on the common use case where a single constraint is
added/changed, that is, their goal is an improved algorithm for incremental
closure.

8 Conclusion and Future Work

We have developed new algorithms for the Zones abstract domain and described
a graph representation which is tailored for efficient implementation across the
set of needed abstract operations. We have introduced split normal form, a new
graph representation that permits separate handling of independent and rela-
tional properties. We have provided detailed descriptions of how to implement
the necessary abstract operations for this representation. Performance results
show that, despite having more involved operations (particularly the join oper-
ation), the resulting reduction in density is clearly worth the effort.

Evaluation on SV-COMP’16 instances shows that sparse-dbm and split-dbm
are efficient, performing full relational analysis while being no more expensive
than less expressive variable packing methods.

Standard implementations of Octagons are also based on DBMs [3,18]. A
natural application of the algorithmic insights of the present paper is to adapt
our ideas to Octagon implementation. This should be particularly interesting

210 G. Gange et al.

in the light of recent implementation progress based on entirely different ideas.
For their improved Octagon implementation, Singh, Püschel and Vechev [20]
commit to a (costly) dense matrix representation in order to enable abstract
operations that are cleverly based on vectorization technology. (They also check
for disconnected subgraphs, and decompose the matrix into smaller, packing-
style, sub-components when this occurs.) In contrast we see Zone/Octagon types
of program analysis as essentially-sparse graph problems. In Sect. 4 we have
argued that the density observed elsewhere (including [20]) is artificial—it stems
from a failure to separate independent properties from truly relational properties.
Our approach is therefore almost diametrically opposite that of [20] as we choose
to exploit the innate sparsity as best we can. A comparison should be interesting.

Acknowledgments. We acknowledge the support from the Australian Research
Council through grant DP140102194. We would like to thank Maxime Arthaud for
implementing the non-incremental version of dense difference-bound matrices as well
as the variable packing technique.

References

1. Competition on software verification (SV-COMP) (2016). http://sv-comp.
sosy-lab.org/2016/. Benchmarks https://github.com/sosy-lab/sv-benchmarks/c.
Accessed 30 Mar 2016

2. Briggs, P., Torczon, L.: An efficient representation for sparse sets. ACM Lett.
Program. Lang. Syst. 2(1–4), 59–69 (1993)

3. Chawdhary, A., Robbins, E., King, A.: Simple and efficient algorithms for octagons.
In: Garrigue, J. (ed.) APLAS 2014. LNCS, vol. 8858, pp. 296–313. Springer,
Heidelberg (2014)

4. Cherkassky, B.V., Goldberg, A.V.: Negative-cycle detection algorithms. Math. Pro-
gram. 85(2), 277–311 (1999)

5. Cotton, S., Maler, O.: Fast and flexible difference constraint propagation for
DPLL(T). In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 170–
183. Springer, Heidelberg (2006)

6. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of the Fourth ACM Symposium Principles of Programming Languages, pp. 238–
252. ACM Press (1977)

7. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
Proceedings of the Sixth ACM Symposium Principles of Programming Languages,
pp. 269–282. ACM Press (1979)

8. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Rival, X.: Why does
Astrée scale up? Formal Methods Syst. Des. 35(3), 229–264 (2009)

9. Cousot, P., Halbwachs, N.: Automatic discovery of linear constraints among vari-
ables of a program. In: Proceedings of the Fifth ACM Symposium Principles of
Programming Languages, pp. 84–97. ACM Press (1978)

10. Fähndrich, M., Logozzo, F.: Static contract checking with abstract interpretation.
In: Beckert, B., Marché, C. (eds.) FoVeOOS 2010. LNCS, vol. 6528, pp. 10–30.
Springer, Heidelberg (2011)

http://sv-comp.sosy-lab.org/2016/
http://sv-comp.sosy-lab.org/2016/
https://github.com/sosy-lab/sv-benchmarks/c

Exploiting Sparsity in Difference-Bound Matrices 211

11. Feydy, T., Schutt, A., Stuckey, P.J.: Global difference constraint propagation for
finite domain solvers. In: Proceedings of the 10th International ACM SIGPLAN
Conference Principles and Practice of Declarative Programming, pp. 226–235.
ACM Press (2008)

12. Ford, L.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press,
Princeton (1962)

13. Johnson, D.B.: Efficient algorithms for shortest paths in sparse networks. J. ACM
24(1), 1–13 (1977)

14. Larsen, K.G., Larsson, F., Pettersson, P., Yi, W.: Efficient verification of real-time
systems: compact data structure and state-space reduction. In: Proceedings of the
18th International Symposium Real-Time Systems, pp. 14–24. IEEE Computer
Society (1997)

15. Lattner, C., Adve, V.: LLVM: a compilation framework for lifelong program analy-
sis and transformation. In: Proceedings of the International Symposium Code Gen-
eration and Optimization (CGO 2004), pp. 75–86. IEEE Computer Society (2004)

16. Logozzo, F., Fähndrich, M.: Pentagons: a weakly relational abstract domain for the
efficient validation of array accesses. In: Proceedings of the 2008 ACM Symposium
Applied Computing, pp. 184–188. ACM Press (2008)

17. Miné, A.: A new numerical abstract domain based on difference-bound matrices. In:
Danvy, O., Filinski, A. (eds.) PADO 2001. LNCS, vol. 2053, pp. 155–172. Springer,
Heidelberg (2001)

18. Miné, A.: The octagon abstract domain. High. Ord. Symbolic Comput. 19(1),
31–100 (2006)

19. Okasaki, C., Gill, A.: Fast mergeable integer maps. In: Notes of the ACM SIGPLAN
Workshop on ML, pp. 77–86, September 1998

20. Singh, G., Püschel, M., Vechev, M.: Making numerical program analysis fast.
In: Proceedings of the 36th ACM SIGPLAN Conference Programming Language
Design and Implementation, pp. 303–313. ACM (2015)

21. Venet, A., Brat, G.: Precise and efficient static array bound checking for large
embedded C programs. In: Proceedings of the 25th ACM SIGPLAN Conference
Programming Language Design and Implementation, pp. 231–242. ACM Press
(2004)

22. Venet, A.J.: The gauge domain: scalable analysis of linear inequality invariants.
In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 139–154.
Springer, Heidelberg (2012)

	Exploiting Sparsity in Difference-Bound Matrices
	1 Introduction
	2 Zones, DBMs and Difference Logic
	3 Zones Implemented with Sparse DBMs
	3.1 Join
	3.2 Variable Elimination
	3.3 Constraint Addition
	3.4 Assignment
	3.5 Meet
	3.6 Widening

	4 Zones as Sparse DBMs in Split Normal Form
	4.1 Abstract Operations for Split Normal Form

	5 Sparse Graph Representations
	6 Experimental Results
	7 Related Work
	8 Conclusion and Future Work
	References

