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Abstract. A word is called Petri net solvable if it is isomorphic to the
reachability graph of an unlabelled Petri net. In this paper, the class
of finite, two-letter, Petri net solvable, words is studied. Two conjec-
tures providing different characterisations of this class of words are moti-
vated and proposed. One conjecture characterises the class in terms of
pattern-matching, the other in terms of letter-counting. Several results
are described which amount to a partial proof of these conjectures.
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1 Introduction

The relationship between a Petri net and its reachability graph can be viewed
from a system analysis or from a system synthesis viewpoint. In system analysis,
a system could, for instance, be modelled by a marked Petri net whose (unique)
reachability graph serves to facilitate its behavioural analysis [14]. We may get
various kinds of interesting structural results for special classes of Petri nets. For
example, if the given system is described by a marked graph, then its reachability
graph enjoys a long list of useful properties (see, e.g., [7]). In system synthesis,
a behavioural specification is typically given, and a system implementing it is
sought. For example, one may try to find a Petri net whose reachability graph
is isomorphic to a given labelled transition system [1]. We may get structural
results of a different nature in this case. For example, [4] describes a structural
characterisation of the class of marked graph reachability graphs in terms of a
carefully chosen list of graph-theoretical properties.

In this paper, we investigate labelled transition systems which are finite and
acyclic. The ultimate aim is to characterise, graph-theoretically, exactly which
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ones of them are synthesisable into an unlabelled place/transition Petri net
[11]. To our knowledge, such a characterisation is difficult and has not yet been
achieved in general. We begin to study the problem by restricting attention to a
limited special case: non-branching, linearly ordered, transition systems having
at most two edge labels. That is, we study the class of binary words, and our
aim is to characterise the Petri net synthesisable ones amongst them.

Region theory [1] provides an indirect characterisation of this class by means
of an algorithm based on solving systems of linear inequations and synthesising
a Petri net if possible. In this paper, we describe two alternative, more direct,
characterisations, and provide partial proofs in support of their validity. The
first condition characterises the class of Petri net synthesisable binary words
in terms of a pseudo-regular expression. The second condition characterises the
same class in terms of a letter-counting relationship. Both conditions seem to be
more efficient to check than by using the general synthesis algorithm.

In Sect. 2 we briefly recapitulate some basic definitions about labelled tran-
sition systems, Petri nets, and regions. Sections 3 and 4 describe our two conjec-
tures and contain proofs that they are necessary for synthesisability. In Sect. 5, we
provide sufficiency proofs for special cases of these conjectures. Section 6 reduces
the problem to words of a special form, and Sect. 7 describes some pertinent
results about words of such forms. Section 8 concludes the paper.

2 Basic Concepts, and Region-Based Synthesis

2.1 Transition Systems, Words, and Petri Nets

A finite labelled transition system with initial state is a tuple TS = (S,→, T, s0)
with nodes S (a finite set of states), edge labels T (a finite set of letters), edges →
⊆ (S×T×S), and an initial state s0 ∈ S. A label t is enabled at s ∈ S, denoted by
s[t〉, if ∃s′ ∈ S : (s, t, s′) ∈→. A state s′ is reachable from s through the execution
of σ ∈ T ∗, denoted by s[σ〉s′, if there is a directed path from s to s′ whose edges
are labelled consecutively by σ. The set of states reachable from s is denoted by
[s〉. A sequence σ ∈ T ∗ is allowed, or firable, from a state s, denoted by s[σ〉,
if there is some state s′ such that s[σ〉s′. For clarity, in case of long formulas
we write |r α |s β |q instead of r [α〉 s [β〉 q. Two labelled transition systems
TS1 = (S1,→1, T, s01) and TS2 = (S2,→2, T, s02) are isomorphic if there is a
bijection ζ : S1 → S2 with ζ(s01) = s02 and (s, t, s′) ∈→1 ⇔ (ζ(s), t, ζ(s′)) ∈→2,
for all s, s′ ∈ S1.

A word over T is a sequence w ∈ T ∗, and it is binary if |T | = 2. For a word w
and a letter t, #t(w) denotes the number of times t occurs in w. A word w′ ∈ T ∗

is called a subword (or factor) of w ∈ T ∗ if ∃u1, u2 ∈ T ∗ : w = u1w
′u2. A word

w = t1t2 . . . tn of length n ∈ N uniquely corresponds to a finite transition system
TS(w) = ({0, . . . , n}, {(i − 1, ti, i) | 0 < i ≤ n ∧ ti ∈ T}, T, 0).

An initially marked Petri net is denoted as N = (P, T, F,M0) where P is
a finite set of places, T is a finite set of transitions, F is the flow function
F : ((P × T ) ∪ (T × P )) → N specifying the arc weights, and M0 is the initial
marking (where a marking is a mapping M : P → N, indicating the number of
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tokens in each place). A side-place is a place p with p•∩•p �= ∅, where p• = {t ∈
T | F (p, t)>0} and •p = {t ∈ T | F (t, p)>0}. N is pure or side-place free if it
has no side-places. A transition t ∈ T is enabled at a marking M , denoted by
M [t〉, if ∀p ∈ P : M(p) ≥ F (p, t). The firing of t leads from M to M ′, denoted
by M [t〉M ′, if M [t〉 and M ′(p) = M(p)−F (p, t)+F (t, p). This can be extended,
as usual, to M [σ〉M ′ for sequences σ ∈ T ∗, and [M〉 denotes the set of markings
reachable from M . The reachability graph RG(N) of a bounded (such that the
number of tokens in each place does not exceed a certain finite number) Petri net
N is the labelled transition system with the set of vertices [M0〉, initial state M0,
label set T , and set of edges {(M, t,M ′) | M,M ′ ∈ [M0〉∧M [t〉M ′}. If a labelled
transition system TS is isomorphic to the reachability graph of a Petri net N ,
we say that N PN-solves (or simply solves) TS, and that TS is synthesisable to
N . We say that N solves a word w if it solves TS(w).

2.2 Basic Region Theory, and an Example

Let a finite labelled transition system TS = (S,→, T, s0) be given. In order to
synthesise – if possible – a Petri net with isomorphic reachability graph, T must,
of course (since we do not consider any transition labels), be used directly as the
set of transitions. For the places, 1

2 ·(|S|·(|S|−1)) state separation problems and
up to |S|·|T | event/state separation problems have to be solved, as follows:

• A state separation problem consists of a set of states {s, s′} with s �= s′, and
for every such set, one needs a place that distinguishes them. Such problems
are always solvable if TS = TS(w) originates from a word w; for instance, we
might simply introduce a counting place which has j tokens in state j.

• An event/state separation problem consists of a pair (s, t) ∈ S×T with ¬(s[t〉).
For every such problem, one needs a place p such that M(p) < F (p, t) for
the marking M corresponding to state s, where F refers to the arcs of the
hoped-for net.

0 1 2 3a a b

TS1 w = aab

a b
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w = abbaa

Fig. 1. TS1 and TS2 correspond to aab and abbaa, respectively. N1 solves TS1.
No Petri net solution of TS2 exists.

For example, in Fig. 1, TS1 is PN-solvable, since the reachability graph of
N1 is isomorphic to TS1. Note that N1 has exactly two transitions a and b,
which is true for any net solving a binary word over {a, b}. By contrast, TS2 is
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not PN-solvable. The word abbaa, from which TS2 is derived, is actually one of
the two shortest non-solvable binary words (the other one being baabb, its dual
under swapping a and b).

To see that abbaa is not PN-solvable, we may use the following argument.
State s = 2 generates an event/state separation problem ¬(s[a〉), for which we
need a place q whose number of tokens in the marking corresponding to state
2 is less than necessary for transition a to be enabled. Such a place q has the
general form shown in Fig. 2. We now show that such a place does not exist.

m

q

p

a b

a−

a+

b−

b+

Fig. 2. A place with four arc weights a−, a+, b−, b+ and initial marking m. It is named
p if used for preventing b and named q if used for preventing a.

In order to present this proof succinctly, it is useful to define the effect E(τ)
of a sequence τ ∈ T ∗ on place q. The effect of the empty sequence is E(ε) = 0.
The effect of a sequence aτ is defined as E(aτ) = (a+−a−)+E(τ), and similarly,
E(bτ) = (b+ − b−) + E(τ). For instance, E(abbaa) = 3·(a+ − a−) + 2·(b+ − b−).
In general, E(τ) = #a(τ) · E(a) + #b(τ) · E(b).

If q (as in Fig. 2) prevents a at the marking corresponding to state 2 in abbaa
(cf. Fig. 1), then it must satisfy the following inequalities: a− ≤ m, since state
0 enables a; a− ≤ m + E(abba), since state 4 enables a; m + E(ab) < a−, since
q prevents a at state 2. This set of inequalities cannot be solved in the natural
numbers. Combine (0) and (2) to obtain 0 < −E(ab); combine (4) and (2) to
obtain 0 < E(abba) − E(ab) = E(ab); contradiction.

2.3 Brief Estimation of the Complexity of the General Algorithm

In a word of length n, the equation system for a single event/state separation
problem comprises n + 1 inequations, n for the states 0, . . . , n − 1, which guar-
antee that the corresponding transition is enabled, and one for the event/state
separation itself. In binary words, we have n + 2 such problems, one for every
state 0, . . . , n−1 and two for the last state. A word w of length n is PN-solvable
if and only if all n+2 systems, each having n+1 inequalities and five unknowns
a−, a+, b−, b+,m, are solvable in N.

Suppose that we solve this special case (with five unknowns) by Karmarkar’s
algorithm [10]. It seems that, solving O(n) systems of inequalitites, we may
roughly expect a running time of O(n3 · L(n)), i.e., cubic with a logarithmic
factor L(n) = log(n) · log(log(n)).

For the remainder of the paper, we fix T = {a, b}.
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3 A Pattern-Matching Condition

3.1 Minimal Unsolvable Words

If w is PN-solvable, then of all its subwords w′ are. To see this, let the Petri
net solving w be executed up to the state before w′, take this as the new initial
marking, and add a pre-place with #a(w′) tokens to a and a pre-place with
#b(w′) tokens to b. Thus, the unsolvability of any proper subword of w entails
the unsolvability of w. For this reason, the notion of a minimal unsolvable word
is well-defined, namely, as an unsolvable word all of whose proper subwords are
solvable. A complete list of minimal unsolvable words up to length 110 can be
found, amongst some other lists, in [13]. Observe that in this list, every word
starts and ends with the same letter. This is a consequence of (the contraposition
of) the next proposition.

Proposition 1. Solvability of aw and wb implies solvability of awb
If both aw and wb are solvable, then awb is also solvable.

Proof: Assume that aw and wb are PN-solvable words over {a, b}. If w = bk (for
k ∈ N) then awb = abk+1 is obviously solvable, hence we assume that w contains
at least one a. Let N1 = (P1, {a, b}, F1,M01) and N2 = (P2, {a, b}, F2,M02) be
Petri nets such that N1 solves aw and N2 solves wb. We can assume that N1

and N2 are disjoint, except for their transitions a and b. Forming the union of
N1 and N2 gives a net which is synchronised at a and b, and which allows all
(and only) sequences allowed by both N1 and N2. We modify N1 and N2 before
forming their union, as follows:

(i) In N1, for each place p in •b ∩ P1, add another F1(p, b) tokens; and if p
in •a ∩ P1, then add the quantity F1(p, b) both to F1(p, a) and to F1(a, p);
otherwise, keep the arc weights unchanged. This allows an additional b in the
end of the word awb. Since the last b in awb could have enabled a at the final
state, we add a counting place qa which is an input place for a with a unit
arc weight and has #a(aw) tokens on it initially. Thus, a remains disabled
in awb exactly at states in which it was disabled before the modification and
becomes permanently disabled after aw.

(ii) Modify N2 by adding to each place q in •a∩P2 another F2(q, a) tokens (this
allows an additional a). Further, for each place p in a• ∩ P2 ∩ •b, add the
quantity F2(a, p) both to F2(p, b) and to F2(b, p). The new arc weights lead
to the same effect of b on p but prevent premature occurrences of b in the
part wb (which could have been allowed by adding the tokens in front of
b in the previous step). Moreover, if there is a place p in •a ∩ •b ∩ P2, b
could have been allowed at the very beginning of awb. To prevent this, add
a new place p′ to N2, such that F2(a, p′) = F2(b, p′) = F2(p′, b) = 1 and
F2(p′, a) = M0(p′) = 0. This place disables b at the beginning of awb and
does not influence the behaviour of N2 after the first a.

Define N as the union of the two nets thus modified, and see Fig. 3 for an
example. (The added tokens are drawn as hollow circles.) In general, N solves
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Fig. 3.N1 (black tokens) solves aw=abab. N2 (black tokens) solves wb=babb. N (redun-
dant places omitted) solves awb=ababb. Arc weight change due to p∈a•∩P2∩•b.

awb in the following way: The initial a is allowed in N1 by definition and in N2

by the additional tokens. The subsequent w is allowed in both nets, and hence
in their synchronisation. The final b is allowed in N2 by definition and in N1 by
the additional tokens. No premature b is allowed by the arc weight increase, and
no final additional a is allowed because N1 does not allow it. All intermediate
occurrences of a are regulated by the modification of N1, and the same of b by
the modification of N2. ��
This proposition can be used for a remark on word reversal. If both aw, wb and
their reversals are solvable, then both awb and its reversal are solvable. This
follows directly from the previous proof. If one of the reversals of aw and wb
is not solvable, however, then the reversal of awb is not necessarily solvable.
Consider, for instance, w = abba, aw = aabba, wb = abbab, and awb = aabbab.
Here, aw is solvable, but its reversal is abbaa, which is a subword of the reversal
of awb.

3.2 A Pseudo-regular Expression for Unsolvable Words

Studying the list [13], it can first be observed that all words starting and ending
with b are just mirror images of those starting and ending with a under swapping
letters. More interestingly, all minimal unsolvable words starting and ending with
the letter a happen to be of the following general form:

( a b α ) b∗ ( b a α )+ a , with α ∈ T ∗ (1)

with a not being separated at the state between the b∗ and the second bracket
(and thus, before the first b in the second bracket, which exists because the
bracket contains at least one instance of baα). For example, abbaa satisfies (1)
with α = ε, the star ∗ being repeated zero times, and the plus + being repeated
once. Such words are generally PN-unsolvable:

Proposition 2. Sufficient condition for the unsolvability of a word
If a word over {a, b} has a subword of the form (1), then it is not PN-solvable.

Proof: Let s0 be the state before the first a in (1), s the state before the first b
in the second bracket, s′ the state after this b, and r the state before the final a:

( |s0 a b α ) b∗ ( |s b |s′ a α )+ |r a
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For a word w having a subword of this form, we prove that such a subword
cannot be solved (implying that w cannot be solved either). Because baα occurs
at least once in the second bracket, s �= r, b is enabled at state s, and a is
not enabled at s. Suppose that some place q as in Fig. 2 exists which separates
a at s. Abbreviate E(abα) to E and E(b) to Eb. For q, we have the following
inequalities:

(0) a− ≤ m
(s′) a− ≤ m + E + k·Eb + Eb for some fixed k ≥ 0
(r) a− ≤ m + E + k·Eb + �·E for the same k and some fixed � > 0
(s) 0 ≤ −m − E − k·Eb + a− − 1 for the same k

(0) is true because s0 enables a. (s′) is true because s′ enables a. (r) is true
because r enables a; and � > 0 because of the +. Finally, (s) is true because
q disables a at state s. Adding (s′)+(s) gives 1 ≤ Eb. Adding (0)+(s) gives
1 ≤ −E − k·Eb, and using also 1 ≤ Eb gives 1 ≤ −E − k·Eb ≤ −E. Adding
(r)+(s) gives 1 ≤ �·E, contradicting 1 ≤ −E because of � > 0. The system
cannot be solved, and no place q separating a at s exists. ��

3.3 Converses of Proposition 2, and Complexity Estimation

All words of the form (1) are unsolvable, but there exist unsolvable words which
are not of this form. Nevertheless, it turns out that all minimal unsolvable words
not only conform to (1), but are of an even simpler shape, as expressed in the
following conjectures (and as will be elaborated in later parts of this paper; the
facts from Sects. 5 and 6 are the justification of their partial correctness).

Conjecture 1. First converse of Proposition 2
Suppose a word over {a, b} is non-PN-solvable and minimal with that property.
Then it is (modulo swapping a and b) of the form given in (1). ��
Basing on computer experiments partially supported by Proposition 5 (the fact
on the existence of subwords aa and bb inside solvable words proven in Sub-
sect. 6.2) we also feel that, without loss of generality, one can restrict (1) to α
containing only letters b if the b∗ part is not empty. More precisely:

Conjecture 1a. Strengthened converse of Proposition 2
Each minimal unsolvable word over {a, b} conforms to one of the forms

[
ab bj

︸︷︷︸
α

bkba bj
︸︷︷︸

α

a with j ≥ 0, k ≥ 1
]

or
[

abα(baα)�a with � ≥ 1
]

(2)

(again, modulo swapping a and b). ��
Using Conjecture 1, the problem of deciding the PN-solvability of a word v of
length n can be reduced to a pattern-matching problem. Namely, we need to
verify whether v contains a subword w of the form (1). Using an algorithm
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based on the Knuth-Morris-Pratt algorithm [8] (utilizing strict border arrays to
search for the repetitions by processing all suffixes of v), this can be done in time
O(n2 log n). Using Conjecture 1a, subwords of the form abα(baα)�awith � ≥ 1 can
be recognised using the same technique (KMP-like algorithm). Let us notice that
in this case the partial matched subword u1 and the repeating subword (u2)�

are not separated by a block of the form bk. Subwords of the form abbjbkbabja
(j ≥ 0, k ≥ 1) can be recognised in time O(n) by counting distances between
consecutive occurrences of a (at any moment we have to remember only the
positions of two preceding occurrences of a). In contrast to the general case,
using Conjecture 1a do not need any additional preprocessing or memory, and
the solution takes time at most O(n2).

4 A Counting Condition

4.1 An Arithmetic Criterion for Unsolvable Words

Proposition 3. Another sufficient condition for unsolvability
Suppose α, β ∈ {a, b}+ and w = αβa, where α starts with a, β starts with b, and

#a(β)·#b(α) ≥ #a(α)·#b(β) (3)

Then w is unsolvable.

Proof: Let s0 be the state before α, s the state before β, and r the state before
the final a:

w = |s0 α |s β |r a

If a place q separates a at s and has marking m at s0, then for Eα = E(α) =
#a(α)·Ea + #b(α)·Eb and Eβ = E(β) = #a(β)·Ea + #b(β)·Eb we have:

(0) a− ≤ m (since α starts with a)
(r) a− ≤ m + Eα + Eβ (since r enables a)
(s) 0 ≤ −m − Eα + a− − 1 (since ¬ s[a〉)

Adding (0)+(s) yields 1 ≤ −Eα, hence (A): −(#a(α)Ea + #b(α)Eb) ≥ 1.
Adding (r)+(s) yields 1 ≤ Eβ , hence (B): (#a(β)Ea + #b(β)Eb) ≥ 1.
Also, Eb ≥ 1 because q prevents a at s, but a becomes enabled after one or more
firings of b. Then,

−#a(β) ≥ #a(β)#a(α)Ea + #a(β)#b(α)Eb (multiplying (A) by #a(β))
≥ #a(β)#a(α)Ea + #a(α)#b(β)Eb (using (3) andEb ≥ 1)
≥ #a(α) (multiplying (B) by #a(α))

However, −#a(β) ≥ #a(α) implies #a(β) = #a(α) = 0, and this is a con-
tradiction since α contains at least one a. Thus, such a place q does not
exist. ��
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4.2 Converses of Proposition 3, and complexity estimation

Conjecture 2. First converse of Proposition 3
If a word is of the form w = αβa where α starts with a and β starts with b, and
if w is minimal non-PN-solvable, then inequation (3) holds. ��

We also believe that for sufficiently long words that are of a special (as it
turns out, interesting) shape, the ≥ in (3) can be strengthened to equality. More
precisely,

Conjecture 2a. Strengthened converse of Proposition 3
If w = αβa is of the form

w = abx1a . . . abxk−1
︸ ︷︷ ︸

α

|s ba . . . abxn

︸ ︷︷ ︸
β

a with n ≥ 3 and xi ≥ 1 (4)

then a is not separable at state s iff #a(β)·#b(α) = #a(α)·#b(β). ��
The arithmetic criterion in Conjecture 2a tells us nothing about minimality. The
word to be checked is assumed to start and end with the same letter. In a bad
case, e.g., for w = ab . . . ab, checking needs to be repeated two times. Each
maximal subword, starting and ending with the same letter, can be divided into
α and β at most in n − 3 different ways. For every such devision we need to go
through the subword of length n − 2 once, in order to check the criterion. This
amounts to time approximately 2(n− 3)(n− 2) and thus, time O(n2) in total. A
solvability algorithm based on Conjecture 2 was recently (end of October 2015)
implemented by Harro Wimmel and compared with the general synthesis APT
algorithm [6,15]. It was briefly tested on 1024 words of length 1990. The special
algorithm took about a minute to check solvability, while the general algorithm
takes much longer (being general-purpose and actually constructing a solution if
one exists). To our knowledge, testing only solvability with the general algorithm,
without necessarily finding a solution, is only faster in the degree of the number
of variables, which is constant for the separation problems.

A reasonable and possibly beneficial approach could be to use the algorithms
described in Sects. 2.3, 3.3 and 4.2 in combination, depending on a particular
task: The general algorithm yielding a Petri net solution if the given word is
solvable; the pattern-matching algorithm checking minimal unsolvability (and
possibly combinable with other efficient methods); and the counting algorithm
checking solvability or unsolvability (but requiring, for minimality, several repe-
titions for subwords).

5 Special Cases of the Two Conjectures

In this section, we substantiate Conjectures 1 and 2 by providing partial proofs
for the converses of Propositions 2 and 3. First, we prove the minimal unsolv-
ability of words corresponding to the following two patterns, as special instances
of (1):

abbxbkbabxa and abbxb(abxb)dabxa with x ≥ 0, k ≥ 1, d ≥ 0 (5)
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The first pattern satisfies (1) with α = bx, the star ∗ being repeated k times,
and the plus + being repeated only once, while the second pattern satisfies (1)
with α = bx, the star ∗ being repeated zero times, and the plus + being repeated
d + 1 times. Due to Proposition 2, all binary words of one of the forms in (5)
are unsolvable. To prove that they are minimal with this property, we provide
Petri nets (with initial markings) solving maximal proper prefixes and maximal
proper suffixes of these words.

The Petri net N1 on the left-hand side of Fig. 4, with appropriate values of
parameters in the arc weights and initial marking, is a possible solution for a
maximal prefix abbxbkbabx of the first form in (5). Place p1 prevents b at the
beginning, and p2 restricts the total number of b’s. Place q prevents a when it is
necessary. This place has enough tokens on it for the initial a and for one more
a after the block bbxbkb, and it does not enable a afterwards.

The maximal proper suffix bbxbkbabxa can be executed by the net N2 on the
right-hand side of Fig. 4. Initially only x + k + 2 firings of b are possible, which
brings enough tokens on place q for a to occur. This first a adds x tokens on
place p1, which enables b again. The total number of b’s is controlled by place p2.
When there is no tokens on p2, a is enabled once more, and this last occurrence
of a ends the execution of the suffix. Hence, words of the first form in (5) are
minimally unsolvable.

Fig. 4. N1 solves the prefix abbxbkbabx. N2 solves the suffix bbxbkbabxa.

The maximal proper prefix abbxb(abxb)dabx of the second form in (5) can be
solved by the net N1 in Fig. 5. Place q in this net enables the initial a, and then
disables it unless b has been fired x + 2 times. After the execution of block bbxb
there are d tokens more than a needs to fire on place q. These surplus tokens
allow a to be fired after each sequence bxb, but not earlier. Place p1 has initially
1 token on it, which is necessary for block bbxb after the first a, and this place has
only x + 1 tokens after each next a, preventing b at states where a must occur.
Places p2 and p3 prevent undesirable occurrences of b at the very beginning and
at the very end of the prefix, respectively.

For the general form of suffix bbxb(abxb)dabxa of the second form in (5),
one can consider the Petri net N2 on the right-hand side of Fig. 5 as a possible
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solution. Indeed, place q1 prevents premature occurrences of a in the first block
bbxb, and enables a only after this and each next block bxb. Doing so, it collects
one additional token after each bxb, which allows this place to enable the very
last a after sequence bx. The initial marking allows to execute the sequence bbxb
in the beginning, and at most x + 1 b’s in a row after that, thanks to place p1.
Place p2 restricts the total number of b’s allowing only block bx at the end. Place
q2 serves for bounding the total number of occurrences of a, and it is necessary
if x = 0 and d = 0. Thus we deduce that any word of the form abbxb(abxb)dabxa
with x, d ≥ 0 is minimally unsolvable.

Fig. 5. N1 solves the prefix abbxb(abxb)dabx. N2 solves the suffix bbxb(abxb)dabxa.

Words of two forms in (5) correspond to two classes of minimally unsolvable
words that were described in Conjecture 1a, the strengthened variant of Conjec-
ture 1. Moreover, while the form abbxb(abxb)dabxa is only a partial instance (for
α = bx) of the more general form abα(baα)�a with � ≥ 1 (see Conjecture 1a),
pattern abbxbkbabxa coincides entirely with abbjbkbabja, where j ≥ 0, k ≥ 1
(cf. (2)).

In support of Conjectures 2 and 2a, assume a minimally unsolvable word

w1 = abbx |s1 b . . . bx |sj
b . . . bx |sd+1 babxa

of the second form in (5) to be given, with some fixed non-negative x and d. For
any 1 ≤ j ≤ d + 1 and state sj , in w1 = ab . . . bx

︸ ︷︷ ︸
α

|sj
b . . . abx
︸ ︷︷ ︸

β

a we have

#a(β)·#b(α) = (d+2−j)·((x+1)·j) = j·((d+1−j)·(x+1)+1+x) = #a(α)·#b(β)

By Proposition 3, a is not separated at such states sj . On the other hand, expres-
sion (3) is fulfilled in w1 as an equality, which corresponds to the strong variant
of Conjecture 2.

The requirement n ≥ 3 in (4) is important. In a minimally unsolvable word
w2 = abbxbk

︸ ︷︷ ︸
α

|r babx
︸︷︷︸

β

a of the first form in (5), with x ≥ 0 and k ≥ 1, we have

#a(β) · #b(α) = 1 · (x + k + 1) > 1 · (x + 1) = #a(α) · #b(β)
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According to Proposition 3, a is not separated at r, but (3) is satisfied as a strict
inequality.

6 Limiting the Occurrence of Factors aa or bb

In this section, we show that the problem of characterising minimal unsolvable
words w can be reduced to two cases, w = bx1a . . . abxn or w = abx1a . . . abxna
(both with x1 ≥ 1). Observe that Conjecture 2a concerns the second case.

Since words in which a and b strictly alternate are easy to solve, it stands to
reason to investigate the situations in which a letter occurs twice in a row. We
show that in a minimal unsolvable word, the factors aa and bb are essentially
limited to occur in some particular ways.

6.1 Factors aa or bb Starting an Unsolvable Word

If a word av is unsolvable and if av is minimal unsolvable, then, as a consequence
of the next proposition, v definitely starts with a letter b. That is, no minimal
unsolvable word can start with aa (nor with bb, for that matter).

Proposition 4. Solvable words starting with a can be prefixed by a
If a word av is PN-solvable then aav is, too.

Proof: Let N = (P, {a, b}, F,M0) be a net solving av. We shall construct a net
which solves aav. The idea is to obtain such a net by “unfiring” a once from the
initial marking of N . Since this may lead to a non-semipositive marking which
we would like to avoid, we will first normalise and modify the net N , obtaining
another solution N ′ of av, and then construct a solution N ′′ for aav (cf. Fig. 6).

For normalisation, we assume that there are two places pb and qa; the first
prevents b explicitly in the initial phase, and the second prevents a after the last
occurrence of a. They are defined by M0(pb) = 1, F (a, pb) = 1, F (b, pb) = �+1 =
F (pb, b), where � is the number of a before the first b in av, and M0(qa) = k,
F (qa, a) = 1, where k is the number of a in av. (All other F values = 0.)

Let NUF (a) = {p ∈ a• |M0(p) < F (a, p)} be the set of places which do not
allow the “unfiring” of a at M0. Note that neither pb nor qa are in NUF (a). Note
also that for every p ∈ NUF (a), F (p, a) ≤ M0(p) < F (a, p) – the first because a
is initially enabled, the second by p ∈ NUF (a). That is, a has a positive effect
on p. Without loss of generality, b has a negative effect on p (otherwise, thanks
to the normalising place pb, p could be deleted without changing the behaviour
of N).

For every p ∈ NUF (a) we add the quantity F (a, p) uniformly to M0(p),
to F (p, b), and to F (b, p), eventually obtaining N ′ = (P ′, {a, b}, F ′,M ′

0), and we
show that N ′ also solves av. First, both M0[a〉∧¬M0[b〉 and M ′

0[a〉∧¬M ′
0[b〉 (the

former by definition, the latter by construction). For an inductive proof, suppose
that M0[a〉M1[τ〉M and M ′

0[a〉M ′
1[τ〉M ′. We have M [b〉 iff M ′[b〉 by construction.

If M [a〉, then also M ′[a〉, since M ≤ M ′. Next, suppose that ¬M [a〉; then there is
some place q such that M(q) < F (q, a). We show that, without loss of generality,
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Fig. 6. N is normalised and solves abab. N ′ solves abab as well. N ′′ solves aabab.

q /∈ NUF (a), so that q also disables a at M ′ in N ′. If M disables a after the last
a in av, we can take q = qa /∈ NUF (a). If M disables a before its last occurrence
in av, then q cannot be in NUF (a), since b acts negatively on such places.

Now, we construct a net N ′′ = (P ′, {a, b}, F ′,M ′′
0 ) from N ′ by defining

M ′′
0 (p) = M ′

0(p) − F ′(a, p) + F ′(p, a) for every place p. By construction, aav
is a firing sequence of N ′′. Furthermore, M ′′

0 does not enable b because of pb. ��

6.2 Factors aa or bb Inside a Minimal Unsolvable Word

There can be factors aa or bb inside a minimal unsolvable word. However, the
next proposition (together with the previous proposition) implies that we cannot
have both – unless one of them is at the very end of the word, as in abbaa.

Proposition 5. No aa and bb inside a minimal unsolvable word
If a minimal non-PN-solvable word is of the form u = aαa, then either α does
not contain the factor aa or α does not contain the factor bb.

Proof: By contraposition. Assume that α contains a factor aa and a factor bb.
Two cases are possible:

Case 1:There is a group of a’s which goes after a group of b’s. Let am and bn

be such groups, assume that am goes after bn and that there are no groups of a
or of b between them. Then u is of the following form

|s0 . . . |q abn(ab)kam |r . . .

where n,m ≥ 2, k ≥ 0. Recombine the letters in u to the following form:

|s0 . . . |q (ab)bn−2(ba)k+1aam−2 |r . . .

Since u ends with a, (ab)bn−2(ba)k+1a is a proper subword of u. But it has the
form (abw)b∗(baw)+a, with w = ε, which implies its unsolvability by Proposi-
tion 2, contradicting the minimality of u.
Case 2: All groups of a precede all groups of b. In this case u is of the form

aax0bax1 . . . baxnby0aby1aby2 . . . abyma
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where at least one of xi and one of yj is greater than 1. Consider � = max{i |
xi > 1}. If � = 0, we get a contradiction to Proposition 4. Hence, � > 0. Let
t = min{j | yj > 1}. Then u has the form

|s0 a . . . |q bax�(ba)n−�(ba)tbyt |r . . . a

Recombine the letters in u to the form

|s0 a . . . |q (ba)ax�−2(ab)n−�+t+1bbyt−2 |r . . . a

Hence, u has a proper subword (ba)ax�−2(ab)n−�+t+1b, which is of the form
(baw)a∗(abw)+b with w = ε, implying its non-PN -solvability, due to Proposi-
tion 2 with inverted a and b. This again contradicts the minimality of u. ��

For these reasons, we are particularly interested in words of the following
form:

either abx1a . . . abxna or bx1a . . . abxn where xi ≥ 1 and n > 1 (6)

In the first form, there are no factors aa. If factors bb are excluded and the word
starts and ends with an a, then we get words that are of the second form, except
for swapping a and b.

7 Some Results About Words of the Form bx1a . . . abxn

Let w = bx1a . . . abxn be a word with n > 1 and xi ≥ 1 for every 1 ≤ i ≤ n,
consisting of groups of letters b separated by single a’s, and starting and ending
with b. With a view to (6), it seems important to understand conditions

• for transforming solutions of w into solutions of aw,
• and for transforming solutions of w (or aw) into solutions of wa (or awa).

In the present section, we address the first of these tasks. The aim is to modify
an existing solution of w to yield a solution of aw. Similar constructions in the
previous sections were typically done by transforming the places of an existing
Petri net into places of a new net. The proof technique employed in this section
allows to create new regions from old ones by transforming a given solution
involving quantities such as m, a−, etc., into new quantities such as m′, a′

−, etc.
This is useful as there is not always a direct intuitive (pictorial) relationship
between the new and the old places.

7.1 Side-Places in Words of the Form bx1a . . . abxn

If a word w = bx1a . . . abxn can be solved, then side-places may be necessary
to do it. For instance, bbabbababab cannot be solved side-place-freely. (More
precisely: a side-place is needed in order to separate a at state 6.) However, we
will show that in the worst case, only some side-places q around a, preventing a
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at some state, are necessary. Also, such side-places are unnecessary if x1 is small
enough, in the sense that x1 ≤ min{x2, . . . , xn−1}. For example, babbababab can
be solved without any side-places. The “smallness” of x1 is sufficient but not
necessary. For instance, bbabbabab has a side-place-free solution, even though
x1 �≤ min{x2, . . . , xn−1}.

In the following, we assume w to be of the following form (7). The states si

(1 ≤ i ≤ n − 1) denote the important states at which b has to be prevented, and
the states rk (1 ≤ k ≤ n − 1) denote the important states at which a has to be
prevented. At or after the last group of b’s, a can be prevented by a counting
place, and at the final state, b can similarly be prevented by a counting place.

w = bx1−1 |r1 b |s1 a bx2−1 |r2 b |s2 a . . . |sk−1 a bxk−1 |rk
b |sk

a . . . |sn−1 a bxn (7)

Proposition 6. Side-place-free solvability with few initial b’s
If w = bx1abx2a . . . abxn is solvable, then side-places are necessary, at worst,
between a and q, where q is some place preventing a at one of the states rk with
1 ≤ k < n − 1. If w = bx1abx2a . . . abxn is solvable and x1 ≤ min{x2, . . . , xn−1},
then w is solvable side-place-freely.

Proof: The first claim follows from Lemmata 1 and 2 below. The second claim
follows from Lemma 3. ��
Lemma 1. side-place-freeness around b
If w = bx1a . . . abxn is solvable, then w is solvable without side-place around b.

Proof: We show that side-places around b are necessary neither for preventing
any b (cf. (A) below), nor for preventing any a (cf. (B) below).

(A): Suppose some place p prevents b at some state sk, for 1 ≤ k ≤ n − 1. (The
only other state at which b must be prevented is state sn, but that can clearly
be done by a non-side-place, e.g. by an incoming place of transition b that has
#b(w) =

∑n
i=1 xi tokens initially.) Note that b− > b+, because place p allows

b to be enabled at the state preceding sk but not at sk. Similarly, a− < a+,
because b is not enabled at state sk but at the immediately following state,
which is reached after firing a. From the form (7) of w, we have

b+ ≤ m + x1(b+ − b−)
b+ ≤ m + (x1 + x2)(b+ − b−) + (a+ − a−)
· · ·
b+ ≤ m + (x1 + . . . + xn)(b+ − b−) + (n − 1)(a+ − a−)
0 ≤ −m − (x1 + . . . + xk)(b+ − b−) − (k − 1)(a+ − a−) + b− − 1

(8)

The first n inequations assert the semipositivity of the marking of place p (more
precisely, its boundedness from below by b+, since p may be a side-place) at the
n states s1, . . . , sn. In our context, if these inequalities are fullfilled, then the
marking is ≥ b+ at all states, as a consequence of b− ≥ b+, a− ≤ a+, and the
special form of the word. The last inequality comes from ¬(sk[b〉).
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We certainly have 0 ≤ b+ < b− ≤ m, because of b− > b+ as noted above, and
because b is initially enabled. If b+ = 0, then p is not a side-place around b, and
there is nothing more to prove (for p). If b+ ≥ 1, we consider the transformation

b′
+ = b+ − 1 and b′

− = b− − 1 and m′ = m − 1

The relation 0 ≤ b′
+ < b′

− ≤ m′ still holds for the new values. Also, all inequalities
in (8) remain true for the new values: in the first n lines, 1 is subtracted on each
side, and on the last line, the increase in −m is offset by the decrease in b−.

We have thus shown that subtracting one arc from b to p, one arc from p to
b, and removing one initial token from p, leaves the region inequalities invariant.
Thus, we get a solution preventing b with a ‘smaller’ side-place, and we can
continue until eventually b+ becomes zero. This finishes part (A) of the proof.

(B): A side-place around b might still be necessary to prevent a at some state.
We show next that such side-places are also unnecessary. Suppose some place
q as in Fig. 2 prevents a at state rk, for 1 ≤ k ≤ n − 1. Symmetrically to the
previous case, we have b+ > b−. This is true because, while q does not have
enough tokens to enable a at state rk, it must have enough tokens to enable a at
the directly following state (which we may continue to call sk). But we also have
(w.l.o.g.) a+ < a−. For k ≥ 2, this follows from the fact that if the previous a
(enabled at the state sk−1 just after rk−1) acts positively on q, then q also has
sufficiently many tokens to enable a at state rk. For k = 1, it is possible to argue
that a+ < a− is valid without loss of generality. For suppose that q disables a
only at r1 and nowhere else. (This is no loss of generality because for the other
states rk, k ≥ 2, copies of q can be used.) Then we may consider q′ which is an
exact copy of q, except that a+ = a− − 1 for q′. This place q′ also disables a at
state r1 (because it has the same marking as q). Moreover, it does not disable a
at any other state after r1 because it always has ≥ a− − 1 tokens, and after the
next b, ≥ a− tokens, since b+ > b−.

Because of b+ > b− and a+ < a−, place q also prevents a at all prior states in
the same group of b’s. Moreover, in the last (i.e. n’th) group of b’s, a can easily
be prevented side-place-freely. For place q with initial marking m, we have

a+ ≤ m + x1(b+ − b−) + (a+ − a−)
a+ ≤ m + (x1 + x2)(b+ − b−) + 2(a+ − a−)
· · ·
a+ ≤ m + (x1 + . . . + xn−1)(b+ − b−) + (n − 1)(a+ − a−)
0 ≤ −m − (x1 + . . . + xk − 1)(b+ − b−) − (k − 1)(a+ − a−) + a− − 1

(9)

The first n − 1 inequations assert the semipositivity of the marking of place q
(more precisely, its boundedness from below by a+, since q may be a side-place
of a) at the n − 1 states just after the a’s in (7). If they are fullfilled, then the
marking is ≥ a+ at all states after the first a, as a consequence of b+ > b− and
the special form of the word. The last inequality asserts that place q prevents
transition a at state rk, hence effects the event/state separation of a at rk.
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If b− is already zero, place q is not a side-place of b. Otherwise, we may
perform the transformation

b′
+ = b+ − 1 and b′

− = b− − 1 and m′ = m

because of b+ > b− as noted above. The left-hand sides of the first n−1 inequal-
ities in (9) do not decrease, and neither do the right-hand sides. The same is
true for the last inequality. This finishes part (B) of the proof. ��
Lemma 2. Side-place-freeness around a, preventing b
Suppose w = bx1abx2a . . . abxn . If w is solvable by a net in which some place p
separates b, then we may w.l.o.g. assume that p is not a side-place around a.

Proof: The equation system (8) is invariant under the transformation

a′
+ = a+ − 1 and a′

− = a− − 1 and m′ = m

as neither left-hand sides nor right-hand sides change their values. ��
If some place q prevents transition a, then it may be a side-place between q and a.
It may not always be possible to remove such a side-place. For instance, the word
w = bbabbababab is of the form (7), and any net solving it necessarily contains
a side-place around transition a. The next lemma shows that the presence of a
side-place around a may be due to there being “many” initial b’s.

Lemma 3. Side-place-freeness around a, preventing a
Suppose w = bx1abx2a . . . abxn . If x1 ≤ min{x2, . . . , xn−1} and if w is solvable
by a net in which some place q prevents transition a at state rk with 1 ≤ k ≤ n,
then we may w.l.o.g. assume that q is not a side-place around a.

Proof: For preventing a at state rn, we only need a place with no input and a
single output transition a (weight 1) which has n − 1 tokens initially.

Suppose q prevents a at state rk, with 1 ≤ k ≤ n−1. From previous consider-
ations, we know a+ ≤ a− and b+ > b−, and we may assume, from Lemma 1, that
q is not a side-place around b, i.e., that b− = 0. The initial marking m of q and
the remaining arc weights a+, a−, b+ satisfy the following system of inequations
(which is the same as (9), except that it is simplified by b− = 0):

a+ ≤ m + x1(b+) + (a+ − a−)
a+ ≤ m + (x1 + x2)(b+) + 2(a+ − a−)
· · ·
a+ ≤ m + (x1 + . . . + xn−1)(b+) + (n − 1)(a+ − a−)
0 ≤ −m − (x1 + . . . + xk − 1)(b+) − (k − 1)(a+ − a−) + a− − 1

(10)

If a+ = 0, then q is already of the required form. For a+ > 0, we have two cases.

Case 1: m > 0 and a+ > 0. Then consider the transformation

m′ = m − 1 and a′
+ = a+ − 1 and a′

− = a− − 1
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By m > 0 and a− ≥ a+ > 0, we get new values m′, a′
+, a′

− ≥ 0. Moreover, (10)
remains invariant under this transformation. So, q′ serves the same purpose as
q, and it has one incoming arc from a less than q. By repeating this procedure,
we either get a place which serves the same purpose as q, or we hit Case 2.
Case 2: m = 0 and a+ > 0. In this case, we consider the transformation

m′ = m = 0 and a′
+ = 0 and a′

− = a−

Such a transformation also guarantees m′, a′
+, a′

− ≥ 0. Also, the last line of (10)
is clearly satisfied with these new values, since the value of its right-hand stays
the same (for k = 1) or increases (for k > 1). To see that the first n − 1 lines of
(10) are also true with the new values, and that we can, therefore, replace q by
q′, we may argue as follows. At any marking m̃ reached along the execution of
w, we have the following:

m̃(q) ≥ m̃(q′) ≥ 0 (11)

These inequalities imply that the new place q′ prevents a at rk, whenever the
old one, q, does, and that, moreover, no occurrences of a are excluded by the
place q′ where they should not be prohibited.

The first of the inequalities (11) holds because it holds initially (when m̃ =
m, then m̃(q) = m = m′ = m̃(q′)), and because the effect of a before the
transformation is (a+ − a−), and after the transformation, it is (−a−). In other
words, a reduces the token count on q′ more than it does so on q, while b
has the same effect on q′ as on q. To see the second inequality in (11), let
x = min{x2, . . . , xn−1}. Then

a− ≤ x1 · b+ ≤ x · b+

The first inequality follows because m = 0 and q has enough tokens after the
first x1 occurrences of b in order to enable a. The second inequality follows from
x1 ≤ x. But then, since a only removes a− tokens from q′ and the subsequent
block of b’s puts at least x · b+ tokens back on q′, the marking on q′ is always
≥ 0, up to and including the last block of b’s. ��

7.2 Solving Words aw from Words of the Form w = bx1a . . . abxn

Solving a word of the form w = bx1a . . . abxn side-place-freely allows us to draw
some conclusion about prepending a letter a to it. In fact, we have:

Proposition 7. Side-place-free solvability of bx1abx2a . . . abxn

w = bx1abx2a . . . abxn is solvable side-place-freely iff aw is solvable.

Proof: Lemmata 4 and 5 for (⇒), and Lemma 6 for (⇐). ��
Lemma 4. Preventing a in aw
Suppose w = bx1abx2a . . . abxn is solvable side-place-freely. Then in aw, all occur-
rences of a can be separated side-place-freely.
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Proof: Because a can be prevented side-place-freely in w at any state rk, the
system (9) has a solution with a+ = 0 and b− = 0 for any fixed 1 ≤ k ≤ n − 1.
This refers to a pure input place q of a, which may or may not be an output place
of b. In order to prevent a in aw side-place-freely, we need to consider the states
rk as before (but shifted to the right by one index position, still just before the
last b of the k’th group of b’s) and a correspondingly modified system as follows:

0 ≤ m′ + (x1 + . . . + xi) · (b′
+) + (i + 1) · (−a′

−) for all 0 ≤ i ≤ n − 1
0 ≤ −m′ − (x1 + . . . + xk − 1) · (b′

+) − k · (−a′
−) + a′

− − 1
(12)

where m′, b′
+ and a′

− refer to a new pure place q′ preventing a at state rk in aw.
The line with i = 0 was added because a must be enabled initially. Consider the
transformation

m′ = m + a− and b′
+ = b+ and a′

− = a−

These values satisfy (12), provided m, b+ and a− (together with a+ = 0 and
b− = 0) satisfy (9). The line with i = 0 follows from m′ = m + a− ≥ 0. The
other lines corresponding to i ≥ 1 reduce to the corresponding lines in (9), since
the additional (−a−) at the end of each line is offset by the additional (+a−)
at the beginning of the line. The last line (which belongs to state rk at which
a is separated) corresponds to the last line of (9), because the decrease by a−
at the beginning of the line is offset by an increase by a− in the term k · (−a′

−)
(compared with (k − 1) · (−a−) as in (9)). ��
Note 1: In order to disable a at rk, q could be replaced by a place q′ obtained
by duplicating q and changing the initial marking m to m′ = m+a−. Intuitively,
this means that m′ is computed from m by “unfiring” a once.
Note 2: Place q should not be removed as soon as q′ is added, because q could
also be preventing a at some other rk. In that case, a new place q′′ must be
computed from q for this different value of k. We may forget about q only after
all the relevant indices k have been processed.

Lemma 4 does not, by itself, imply that aw is solvable. We still need to
consider the separations of b. Thus, consider an input place p of b in a side-
place-free solution of w and suppose that p prevents b at state sk. Suppose that
we want to solve aw. If p is not also an output place of a, then it can simply
be retained unchanged, and with the same marking, prevent b at corresponding
states in aw and in w. However, if p is also an output place of a, “unfiring” a
in the initial marking may lead to negative tokens on p. This is illustrated by
the word babbabb which has a side-place-free solution, as shown on the left-hand
side of Fig. 7.

The places q1, q2 can be treated as in the above proof, that is, by chang-
ing their markings by “unfiring” a, yielding new places q′

1, q
′
2 with marking

{(q′
1, 3), (q′

2, 3)}. If we allowed negative markings, then a new place p′ with ini-
tial marking (p′,−1) (and otherwise duplicating p) would do the job of solving
ababbabb (as in the middle of the figure). However, we shall need a more delicate
argument in order to avoid negative markings.
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a b

•
p

•
q1
q2

••

2

2
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a b
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Fig. 7. Solving babbabb (l.h.s.), (almost) ababbabb (middle), and ababbabb (r.h.s.).

Let p′ be a general new place which is supposed to prevent b at state sk

in aw. In order to check the general solvability of aw if w is side-place-freely
solvable, we consider a general transformation

m′ = m+μ , b′
+ = b+ +β+ , b′

− = b− +β− , a′
+ = a+ +α+ , a′

− = a− +α−

where μ ≥ −m, β+ ≥ −b+, β− ≥ −b−, α+ ≥ −a+ and α− ≥ −a−, as well as a
new inequation system:

b′
+ ≤ m′ + (x1 + . . . + xi) · (b′

+ − b′
−) + i · (a′

+ − a′
−) for 1 ≤ i ≤ n

0 ≤ −m′ − (x1 + . . . + xk) · (b′
+ − b′

−) − k · (a′
+ − a′

−) + b′
− − 1

This system has to be compared with a restricted form of (8) (setting b+ = a− =
0, since the solution of w is pure). Doing this by line-wise comparison, we get
the following inequation system for the new value differences:

μ ≥ −m, β+ ≥ −b+, β− ≥ −b−, α+ ≥ −a+, α− ≥ −a−
β+ ≤ μ + (x1 + . . . + xi) · (β+ − β−) + i · (α+ − α−) + a+

0 ≤ −μ − (x1 + . . . + xk) · (β+ − β−) − k · (α+ − α−) − a+ + β−

(13)

The lines with i must be solved simultaneously for every 1 ≤ i ≤ n while the
line with k must be solved individually for every 1 ≤ k ≤ n − 1, in order to get
a place preventing b at state sk. This leads to the following lemma.

Lemma 5. Solving aw from w
Suppose w = bx1abx2a . . . abxn is solvable side-place-freely. Then aw is solvable.

Proof: Suppose that a pure place p with parameters b− (arc into b), a+ (arc
from a) and m (initial marking) is given and suppose it separates b from sk in
w. This place solves (8) for that particular k. We distinguish two cases:

Case 1: a+ ≤ m. In this case, the place p can essentially be re-used for the
same purpose in the solution (that we construct in this way) for aw, since (13)
is solved by putting

μ = −a+ , β+ = β− = 0 , α+ = α− = 0
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Hence, a place p′ which differs from p only by its initial marking (m′ = m − a+

instead of m) separates b at sk in aw.
Case 2: a+ > m. In this case, (13) can be solved by

μ = −m , β+ = β− = a+ − m , α+ = α− = 0

That is, we may replace p by a place p′ with zero initial marking and adding
uniformly the value a+ − m to the incoming and outgoing arcs of b, creating a
side-place around b. ��
For instance, in the solution of babbabb shown on the left-hand side of Fig. 7,
the place p from a to b satisfies m=1, b−=1, b+=0, a−=0 and a+=2. (13) is
solved by μ = −1, β− = 2, β+ = 0, α− = 0 and α+ = 3. Hence with m′=m − 1,
b′
−=b−+2, b′

+=b+, a′
−=a− and a′

+=a++3, the net shown on the right-hand side
of Fig. 7 is a pure solution of ababbabb. (Place p′ prevents b not only in states s1
and s2 but also in the initial state and in the final state.) There exist words such
as bbabbababab, however, which can be solved but for which aw is not solvable.
We have a converse of Lemma 5:

Lemma 6. Solving w side-place-freely from aw
If w=bx1abx2a . . . abxn and aw can be solved, then w has a side-place-free

solution.

Proof: Suppose that aw has a solution in which some place q′, preventing a, is
a side-place around a. Because q′ prevents a, a′

− > a′
+ (unless it is the first a,

but then we don’t need q′ in solving w). Because a is enabled initially, m′ ≥ a′
−.

But then, the transformation a′′
− = a′

− − a′
+, a′′

+ = 0, m′′ = m′ − a′
+ yields

another place q′′ which is not a side-place around a but serves the same purpose
as q′. The rest of the proof follows because the above transformations (removing
side-places around b, or side-places around a which prevent b) do not introduce
any new side-places around a. ��

8 Concluding Remarks

In this paper, the class of Petri net synthesisable binary words has been stud-
ied in depth. We have motivated, presented, and substantiated two conditions
stating how such words could be characterised and how different algorithms
could be devised for them. These algorithms can check solvability considerably
more quickly than a general synthesis algorithm could. This has been confirmed
both by the theoretical estimates contained in this paper and by experimental
validation.

Several other facts are known about the class of two-letter PN-synthesisable
words. It is easily seen that if a word is solvable side-place-freely, then so
is the reverse word. Also, if a binary word is solvable, then it is solvable
using places having exactly one outgoing transition. (This property is not
shared by words with three or more letters, a counterexample being abcbaa.)
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Moreover, PN-solvable words are balanced in the following sense. Referring to
w = bx1abx2a . . . abxn , call w balanced if there is some x such that xi ∈ {x, x+1}
for all 2 ≤ i ≤ n − 1. We can prove that if w = bx1abx2a . . . abxn is PN-solvable,
then w is balanced, and moreover, xn ≤ x + 1. Presenting these, and other,
properties of PN-solvability must however be left to future publications.

Once the conjectures are (hopefully) proved, it would be interesting to con-
sider extensions and ramifications. For example, we know of no results char-
acterising PN-solvable simple cycles, or PN-solvable acyclic labelled transition
systems with few branching points, or with some other regular structure. The
work described in [4] is an exception, a reason being that the cyclic structure of
marked graph reachability graphs is particularly harmonious.

The present work could well be of interest in a wider context, as it might
entail nontrivial necessary conditions for the solvability of an arbitrary labelled
transition system. If the latter is solvable, then finding a PN-unsolvable struc-
ture in it may have a strong impact on its structure or shape. Also, words are
persistent in the sense of [12] and tractable by the method described in [3].
However, they form (in some sense) a worst case and still lead to many region
inequalities. It could therefore be interesting to check more closely whether the
work described here can be of any benefit in enhancing the method described
in [3].

Acknowledgments. We would like to thank Raymond Devillers, Thomas Hujsa, Uli
Schlachter and Harro Wimmel for valuable comments. We also thank the anonymous
reviewers for their remarks which allowed to improve the presentation of the paper.

Note added in proof. This paper extends [2] by Sect. 5 and a few other enhancements.
At the time of revision (May 2016), the conjectures stated in Sects. 3.3 and 4.2 have
been proved correct. These proofs are contained in [5,9].
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