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Preface by Editor-in-Chief

The 11th Issue of LNCS Transactions on Petri Nets and Other Models of Concurrency
(ToPNoC) contains revised and extended versions of a selection of the best papers from
the workshops held at the 36th International Conference on Application and Theory of
Petri Nets and Concurrency (Petri Nets 2015, Brussels, Belgium, June 22–26, 2015)
and the 15th International Conference on Application of Concurrency to System
Design (ACSD 2015, Brussels, Belgium, June 22–26, 2015). It also contains one paper
submitted directly to ToPNoC.

I would like to thank the two guest editors of this special issue: Jörg Desel and Jetty
Kleijn. Moreover, I would like to thank all the authors, reviewers, and organizers of the
Petri Nets 2015 and ACSD 2015 satellite workshops, without whom this issue of
ToPNoC would not have been possible.

July 2016 Maciej Koutny



LNCS Transactions on Petri Nets and Other Models
of Concurrency: Aims and Scope

ToPNoC aims to publish papers from all areas of Petri nets and other models of
concurrency ranging from theoretical work to tool support and industrial applications.
The foundations of Petri nets were laid by the pioneering work of Carl Adam Petri and
his colleagues in the early 1960s. Since then, a huge volume of material has been
developed and published in journals and books as well as presented at workshops and
conferences.

The annual International Conference on Application and Theory of Petri Nets and
Concurrency started in 1980. The International Petri Net Bibliography maintained by
the Petri Net Newsletter contains over 10,000 entries, and the International Petri Net
Mailing List has close to 2,000 subscribers. For more information on the International
Petri Net community, see: http://www.informatik.uni-hamburg.de/TGI/PetriNets/

All issues of ToPNoC are LNCS volumes. Hence they appear in all main libraries
and are also accessible on SpringerLink (electronically). It is possible to subscribe to
ToPNoC without subscribing to the rest of the LNCS series.

ToPNoC contains:

• Revised versions of a selection of the best papers from workshops and tutorials
concerned with Petri nets and concurrency

• Special issues related to particular subareas (similar to those published in the
Advances in Petri Nets series)

• Other papers invited for publication in ToPNoC
• Papers submitted directly to ToPNoC by their authors

Like all other journals, ToPNoC has an Editorial Board, which is responsible for the
quality of the journal. The members of the board assist in the reviewing of papers
submitted or invited for publication in ToPNoC. Moreover, they may make recom-
mendations concerning collections of papers for special issues. The Editorial Board
consists of prominent researchers within the Petri net community and in related fields.

Topics

The topics covered include system design and verification using nets; analysis and
synthesis, structure and behavior of nets; relationships between net theory and other
approaches; causality/partial order theory of concurrency; net-based semantical, logi-
cal, and algebraic calculi; symbolic net representation (graphical or textual); computer
tools for nets; experience with using nets, case studies; educational issues related to
nets; higher-level net models; timed and stochastic nets; and standardization of nets.

Applications of nets to: biological systems; defence systems; e-commerce and
trading; embedded systems; environmental systems; flexible manufacturing systems;

http://www.informatik.uni-hamburg.de/TGI/PetriNets/


hardware structures; health and medical systems; office automation; operations
research; performance evaluation; programming languages; protocols and networks;
railway networks; real-time systems; supervisory control; telecommunications; cyber
physical systems; and workflow.

For more information about ToPNoC see: http://www.springer.com/lncs/topnoc

Submission of Manuscripts

Manuscripts should follow LNCS formatting guidelines, and should be submitted as
PDF or zipped PostScript files to ToPNoC@ncl.ac.uk. All queries should be addressed
to the same e-mail address.
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Preface by Guest Editors

This volume of ToPNoC contains revised versions of a selection of the best workshop
papers presented at the 36th International Conference on Application and Theory of Petri
Nets and Other Models of Concurrency (Petri Nets 2015) and the 15th International
Conference on Application of Concurrency to System Design (ACSD 2015), and papers
describing winning contributions from the model checking contest.

We, Jörg Desel and Jetty Kleijn, are indebted to the Program Committees of the
workshops and the model checking contest and in particular to their chairs. Without their
enthusiastic work, this volume would not have been possible. Many members of the
Program Committees participated in reviewing the new versions of the papers selected
for this issue. We asked for the strongest contributions to the following satellite events:

– ATAED 2015: Workshop on Algorithms & Theories for the Analysis of Event Data
(chairs: Wil van der Aalst, Robin Bergenthum, Josep Carmona)

– PNSE 2015: International Workshop on Petri Nets and Software Engineering
(chairs: Daniel Moldt, Heiko Rölke, Harald Störrle)

– Model Checking Contest @ Petri Nets 2015 (chairs: Fabrice Kordon, Didier Buchs)

The best papers of the workshops were selected in close cooperation with their
chairs. The authors were invited to improve and extend their results where possible,
based on the comments received before and during the workshops. The resulting revised
submissions were reviewed by two referees. We followed the principle of asking for
fresh reviews of the revised papers, also from referees not involved initially in the
reviewing of the original workshop contributions. All papers went through the standard
two-stage journal reviewing process, and eventually nine were accepted after rigorous
reviewing and revising. In addition to these first nine papers, two papers were submitted
directly to the editor-in-chief of the ToPNoC series and handled by him as is usual for
journal submissions. The papers describing the best tools of the model checking contest
were evaluated and revised based on remarks and suggestions from several reviewers.
They are summarized by the introductory contribution of Fabrice Kordon et al.

The paper “Pragmatics Annotated Coloured Petri Nets for Protocol Software
Generation and Verification” by Kent Inge Fagerland Simonsen, Lars M. Kristensen,
and Ekkart Kindler provides a formal definition of Pragmatics Annotated Coloured
Petri Nets (PA-CPN), a class of Petri nets that can automatically be transformed into
protocol software. The paper, moreover, demonstrates how to exploit the structure of
PA-CPNs for verification.

The paper “A Petri Net-Based Approach to Model and Analyze the Management of
Cloud Applications” by Antonio Brogi, Andrea Canciani, Jacopo Soldani, and
PengWei Wang extends the TOSCA standard for specifying the topology and
orchestration of cloud applications to behavioral aspects of management operations and
their relations with states, requirements, and capabilities. This behavior is modelled by
Open Petri Nets, thus supporting automated analysis of deployment plans.

The paper “Non-Interference Notions Based on Reveals and Excludes Relations for
Petri Nets” by Luca Bernardinello, Görkem Kılınç, and Lucia Pomello introduces a



variety of non-interference notions for Petri nets that indicate that some internal
behavior of a Petri net component cannot be inferred from its interface behavior. The
notions are based on the previously known reveals relation (whenever a certain event
occurs in a maximal occurrence net, the related one occurs, too) and a newly
introduced, converse excludes relation.

The paper “Validating DCCP Simultaneous Feature Negotiation Procedure” by
Somsak Vanit-Anunchai investigates the feature negotiation procedure of the Datagram
Congestion Control Protocol in RFC 4340 using Coloured Petri Nets and state space
analysis. The analysis result shows that the protocol can fail to an undesired state,
which has the property that the feature values of both sides do not match and both sides
are not aware of the mismatch. Simultaneous negotiation could be broken on even a
simple lossless FIFO channel.

The paper “Integrating Petri Net Semantics in a Model-Driven Approach: The
Renew Meta-Modeling and Transformation Framework” by David Mosteller,
Lawrence Cabac, and Michael Haustermann deals with the development of modeling
languages and automated generation of according tools for model-driven development
on the basis of ontology-based meta-models. The approach is based on Petri nets;
high-level Petri nets and low-level Petri nets in various forms can be used as target
models. The RMT framework provides the generation of modeling tools and the
transformation into executable and analyzable models, based on the respective Petri net
semantics.

The paper “Mining Conditional Partial Order Graphs from Event Logs” by Andrey
Mokhov, Josep Carmona, and Jonathan Beaumont uses Conditional Partial Order
Graphs (CPOGs) for compact representation of families of partial orders for process
mining. In particular, the representation problem of event logs with data is addressed.
The paper provides algorithms for extracting both the control flow and the relevant data
parameters from a given event log. Moreover, it shows how CPOGs can be used for
efficient and effective visualization of the obtained results, which also can be used to
reveal the hidden interplay between the control and data flows of a process.

The paper “Conditions for Petri Net Solvable Binary Words” by Kamila Barylska,
Eike Best, Evgeny Erofeev, Łukasz Mikulski, and Marcin Piątkowski studies finite
words with two letters that can be viewed as behavioral descriptions of place/transition
Petri nets, which necessarily neither exhibit concurrency nor choices and possess only
two transitions. Two conjectures providing different characterizations of this class of
words are motivated and proposed. Several results are described, which amount to a
partial proof of these conjectures.

The paper “Self-Tracking Reloaded: Applying Process Mining to Personalized
Health Care from Labeled Sensor Data” by Timo Sztyler, Josep Carmona, Johanna
Völker, and Heiner Stuckenschmidt provides ideas on how process-mining techniques
can be used as a fine-grained evolution of traditional self-tracking, applied for
personalized health care and based on daily live data recorded on smart devices. These
ideas are applied to data of a set of people, yielding interesting conclusions and
challenges.

The paper “A Method for Assessing Parameter Impact on Control-Flow Discovery
Algorithms” by Joel Ribeiro and Josep Carmona tackles the problem of identifying
parameters in control-flow discovery algorithms that are important for the applicability
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of the algorithm to a given log, according to a given quality metric. The suggested
solution is based on sensitivity analysis. The paper also presents a first, promising
evaluation of this approach.

The paper “Negotiations and Petri Nets” by Jörg Desel and Javier Esparza was
originally a contribution to the PNSE 2015 workshop and suggested for this issue by
the workshop chairs. Since one of the authors, Jörg Desel, is involved as a guest editor
of this issue, it was submitted directly to the editor-in-chief and handled by him
independently. This paper studies the relation between negotiations, a previously
introduced model of concurrency with multi-party negotiation atoms as primitive, and
Petri nets. In particular, translations in either directions are considered as well as the
resulting relative size of the respective models. The paper shows that sound and
deterministic negotiations are closely related to live and safe free-choice Petri nets.

The paper “A Formal Framework for Diagnostic Analysis for Errors of Business
Processes” by Suman Roy and A.S.M. Sajeev was submitted directly to ToPNoC
through the regular submission track. This article develops a formal framework of
diagnosing errors by locating their occurrence nodes in business process models at the
level of sub-processes and swim-lanes. Graph-theoretic techniques and Petri net-based
analyses are used to detect syntactic and control flow-related errors, respectively. The
authors discover how error frequencies change with error depth, how they correlate
with the size of the sub-processes and swim-lane interactions in the models, and how
they can be predicted in terms of process metrics.

The book ends with contributions from the model checking contest, held at the
2015 Petri Net conference. In the article “MCC 2015 — The Fifth Model Checking
Contest,” the authors introduce the event itself, but also the algorithms and tools that
were successful at the contest. Therefore, this paper can be viewed as an introduction to
the remaining four papers, in which the authors of successful tools describe their
respective approaches and experiences.

As guest editors, we would like to thank all authors and referees who contributed to
this issue. The quality of this volume is the result of the high scientific value of their
work. Moreover, we would like to acknowledge the excellent cooperation throughout
the whole process that has made our work a pleasant task. We are also grateful to the
Springer/ToPNoC team for the final production of this issue.

June 2016 Jörg Desel
Jetty Kleijn
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Pragmatics Annotated Coloured
Petri Nets for Protocol Software

Generation and Verification

Kent Inge Fagerland Simonsen1,2(B), Lars M. Kristensen1, and Ekkart Kindler2

1 Department of Computing, Bergen University College, Bergen, Norway
{kifs,lmkr}@hib.no

2 DTU Compute, Technical University of Denmark, Kgs. Lyngby, Denmark
{kisi,ekki}@dtu.dk

Abstract. Pragmatics Annotated Coloured Petri Nets (PA-CPNs) are
a restricted class of Coloured Petri Nets (CPNs) developed to support
automated generation of protocol software. The practical application of
PA-CPNs and the supporting PetriCode software tool have been dis-
cussed and evaluated in earlier papers already. The contribution of this
paper is to give a formal definition of PA-CPNs, motivate the defini-
tions, and demonstrate how the structure of PA-CPNs can be exploited
for more efficient verification.

1 Introduction

Coloured Petri Nets (CPNs) [1] have been widely used for modelling and veri-
fying protocols. Examples include application layer protocols such as IOTP and
SIP, transport layer protocols such as DCCP and SCTP, and network layer
protocols such as DYMO and ERDP [2,3]. Formal modelling and verification
have been useful in gaining insight into the operation of the protocols and have
resulted in improved protocol specifications. However, this work did not fully
leverage the investment in making CPN models: the models were used for better
understanding and verifying protocols, but not for actually creating implemen-
tations of these protocols from the constructed models. There exist only very
limited approaches that support the automatic generation of protocol imple-
mentations from CPN models that were made for verification purposes. Existing
approaches have either restricted the target platform for code generation to the
Standard ML language used by the CPN Tools simulator or have considered a
specific target language based on platform-specific additions to the CPN models.

This has motivated us to develop an approach and an accompanying tool
called PetriCode that supports the automated generation of protocol software
from CPN models, which was presented [3–7] and evaluated [8] in earlier work. At
the core of the PetriCode approach is a slightly restricted subclass of CPNs called
Pragmatic Annotated CPNs (PA-CPNs). The restrictions of PA-CPNs make the
structure of the protocol system, its principals, channels, and services explicit.
A key feature of PA-CPNs are code generation pragmatics, which are syntactical
c© Springer-Verlag Berlin Heidelberg 2016
M. Koutny et al. (Eds.): ToPNoC XI, LNCS 9930, pp. 1–27, 2016.
DOI: 10.1007/978-3-662-53401-4 1



2 K.I.F. Simonsen et al.

annotations to certain elements of the PA-CPNs. These pragmatics represent
concepts from the domain of communication protocols and protocol software,
and are used to indicate the purpose of the respective modelling element. The
role of the pragmatics is to extend the CPN modelling language with domain-
specific elements and make implicit knowledge of the modeller explicit in the
CPN model such that it can be exploited for code generation. Even though we
have used PA-CPNs in our earlier work, a precise formal definition of PA-CPNs
was still missing1.

The contribution of this paper compared to our earlier work is threefold.
Firstly, motivated by the practical relevance of the net class demonstrated in
earlier work, we give a formal definition of PA-CPNs here. Secondly, we discuss
the concepts of PA-CPNs and how they are used for modelling and developing
protocol software. Thirdly, we show that PA-CPNs are amenable to verification.
Specifically, we show how the structural restrictions allow us to add service
testers to the model of the protocol, which reduce the state space of the model.
Furthermore, we discuss how the structural restrictions of PA-CPNs can be used
to automatically compute a progress measure for the sweep-line method [10].

For the rest of the paper, we assume that the reader is familiar with the
basic concepts of Petri nets and high-level Petri nets. The paper is organised as
follows: Sect. 2 introduces the protocol example used throughout this paper and
provides the definitions of CPNs needed for defining PA-CPNs. Section 3 gives
the formal definition of PA-CPNs. Section 4 discusses the modelling concepts
and process of PA-CPNs from an application perspective. Section 5 formalises
control flow decomposability, which is central in generating code for the protocol
services. Section 6 introduces and formalises service testers. Section 7 shows how
to define progress measures for the sweep-line method based on service level and
service tester modules of PA-CPNs, and presents results from an experimental
evaluation. Finally, in Sect. 8, we discuss related work and, in Sect. 9, we draw
the overall conclusions concerning the PetriCode approach.

2 Protocol Example and Coloured Petri Nets

The definition of PA-CPNs is based on the standard definition of hierarchical
CPNs [1]. Therefore, we include the definitions and notations for hierarchical
CPNs here as far as they are needed for the definition of PA-CPNs. For bet-
ter understandability, we discuss an example of a hierarchical CPN first before
presenting the definitions of CPNs. Note that, in this paper, we give the formal
definitions for the syntax of hierarchical CPNs only; we do not give a definition
of their semantics. The reason is that PA-CPNs constitute a syntactical restric-
tion of CPNs, so that we do not need to change the semantics of CPNs at all.
PA-CPNs have exactly the same semantics as ordinary hierarchical CPNs [1].

Protocol Example. As a running example, we use a protocol consisting of a
sender and a receiver communicating over an unreliable channel which may both
1 Note, that this paper is a revised and extended version of the workshop paper [9].
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Fig. 1. The system level CPN module (left) and sender principal level module (right).

re-order and loose messages. The sender sends messages tagged with sequence
numbers to the receiver and waits for an acknowledgement for each message
to be returned from the receiver before sending the next message. Hence, the
protocol operates according to the stop-and-wait principle.

The CPN model of this protocol consists of eight hierarchically organised
modules. Below, we present selected modules of the CPN model2 in order to
illustrate the concepts, the definitions, and the verification techniques in this
paper. Figure 1 (left) shows the top-level module consisting of three substitu-
tion transitions (drawn as double-bordered rectangles) representing the Sender,
the Receiver, and the Channel connecting them. The two places SenderChannel
and ReceiverChannel represent buffering communication endpoints connecting
the sender and the receiver to the communication channel. The definition of
the colour set (type) Endpoint, which determines the kind of tokens that can
reside on these two places, is provided in Fig. 2. Each of the three substitution
transitions has an associated submodule indicated by the rectangular tag posi-
tioned next to the substitution transition. These submodules define the behav-
iour associated with the substitution transitions. The annotations written in 〈〈〉〉
are pragmatic annotations, which are formally introduced in the next section
when defining PA-CPNs. These pragmatics indicate the role of certain CPN
model elements in the protocol; for now, they can be ignored or considered to
be comments.

Figure 1 (right) shows the Sender module, which is the submodule associated
with the Sender substitution transition in Fig. 1 (left). It defines the protocol for
the Sender principal. The module has two substitution transitions modelling the
main operations of the sender which are sending messages (substitution transi-
tion Send) and receiving acknowledgements (substitution transition receiveAck).
The places ready, runAck, and nextSend are used to model the internal state of
the sender. The place ready has an initial marking consisting of a token with
the colour () (unit), which is the single value contained in the predefined colour
set UNIT; this is the CPN equivalent of a “black token” in classical low-level
Petri nets. This token indicates that initially the sender is ready to perform a
send operation. For a place with colour set UNIT, we omit (by convention) the

2 The complete model is available at http://www.petricode.org/examples/.

http://www.petricode.org/examples/
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specification of the colour set in the graphical representation. The place runAck,
which has a boolean colour set, initially contains a token with the value false
indicating that the sender initially cannot receive acknowledgements. The place
nextSend is used to keep track of the sequence number of the message that the
sender is currently sending. The place SenderChannel is a port place (indicated by
the double border) and is used by the module to exchange tokens with its upper
level module in Fig. 1 (left). In this case, SenderChannel is an input-output port
place as specified by the In/Out tag positioned next to the place. The place is
associated with the SenderChannel socket place in Fig. 1 (left), which means that
any token removed from (added to) this place in the Sender module will also be
removed from (added to) the place SenderChannel of the Protocol module.

Figure 3 shows the Send module, which is the submodule associated with the
Send substitution transition in Fig. 1 (right). This submodule models the sending
of a list of messages from the sender to the receiver. The port places ready,
SenderChannel, nextSend, and runAck are associated with the accordingly named
socket places in the module shown in Fig. 1 (right). The list of messages to be sent
is provided via the place message (at the top of the module) annotated with the
driver pragmatic. This place is a fusion place as indicated by the rectangular
tag positioned next to the place. The name inside the tag specifies the fusion set
that the place belongs to. A fusion set is a set of places with the property that
when tokens are removed from (added to) one place in the set, then the token
will be removed from (added to) all members. Conceptually, all the places of a
fusion set are merged into a single compound place. The place endSend (at the
bottom) annotated with a driver pragmatic is also a member of a fusion set.
These fusion sets are used to connect PA-CPNs to service tester modules, which
we introduce later; these places are, formally, not part of the service level module
or the complete protocol. The places annotated by the driver pragmatic are
used by the service tester module to control the order and the parameters of the
invocation of the services of the protocol during the verification of the protocol
(see Sects. 6 and 7). The code generator ignores these places since, in the actual

Fig. 2. Colour set (type) declarations used in Fig. 1
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Fig. 3. The send module (service level)

Fig. 4. Colour set (type) declarations used in Fig. 3

protocol software, the services of the protocol are invoked externally; the order
in which the services are invoked and the concrete parameters are determined
by the protocol’s environment.

Sending a list of messages starts with the occurrence of the transition send,
which places the messages to be sent on place messageToSend, puts a token on
nextSend corresponding to the first sequence number, and a token on runAck
to indicate that acknowledgements can now be received. The place limit is used
to bound the number of retransmissions of a message. After an occurrence of
transition send, transition sendMsg may occur sending a message by putting it in
the output buffer modelled by the place SenderChannel. The guard on the tran-
sition sendMsg (by convention written in square brackets next to the transition)
ensures that the data being sent matches the sequence number of the message
currently being sent. If the retransmission limit is reached, the sender will stop
as modelled by the transition return putting a token on place endSend. If the
retransmission limit is not reached for the current message, the transition loop
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will put a token back on startSending such that the next message can be sent.
The colour set definitions and variables used in Fig. 3 are provided in Fig. 4.

Formal Definitions of Hierarchical CPNs. Above, we have presented the example
CPN model that will be used as a running example throughout this paper, and
we have informally introduced the constructs of hierarchical CPNs in the form
of modules, substitution transitions, port and socket places, and fusion places.

Next, we formally define hierarchical CPNs. These definitions are later
extended when formally defining PA-CPNs. As usual, we use N = (P, T,A)
to denote the net structure of a Petri net, where P denotes the set of places, T
the set of transitions, and A the set of arcs, respectively. Definition 1 provides the
formal definition of CPN modules. In this definition, we use Type[v] to denote
the type of a variable v, and we use EXPRV to denote the set of expressions
with free variables contained in a set of variables V . For an expression e con-
taining a set of free variables V , we denote by e〈b〉 the result of evaluating e in a
binding b that assigns a value to each variable in V . Moreover, Type[e] denotes
the type of an expression e. For a non-empty set S, we use SMS to denote the
type corresponding to the set of all multi-sets over S.

Definition 1. A Coloured Petri Net Module (Definition 6.1 in [1]) is a
tuple CPNM = (CPN, Tsub, Pport, PT ), such that:

1. CPN = (P, T,A,Σ, V, C,G,E, I) is a CPN (Definition 4.2 in [1]) where:
(a) P is a finite set of places and T is a finite set of transitions such that

P ∩ T = ∅.
(b) A ⊆ (P × T ) ∪ (T × P ) is a set of directed arcs.
(c) Σ is a finite set of non-empty colour sets and V is a finite set of typed

variables such that Type[v] ∈ Σ for all variables v ∈ V .
(d) C : P → Σ is a colour set function assigning a colour set to each place.
(e) E : A → EXPRV is an arc expression function that assigns an arc

expression to each arc a such that Type[E(a)] = C(p)MS, where p is the
place connected to the arc a.

(f) G : T → EXPRV is a guard function that assigns a guard to each
transition t such that Type[G(t)] = Bool.

(g) I : P → EXPR∅ is an initialisation function that assigns an initiali-
sation expression to each place p such that Type[I(p)] = C(p)MS.

2. Tsub ⊆ T is a set of substitution transitions.
3. Pport ⊆ P is a set of port places.
4. PT : Pport → {IN,OUT, I/O} is a port type function that assigns a port

type to each port place.

Socket places of a CPN are not defined explicitly in the above definition,
since that information can be derived from the information available in a CPN:
if a place has an arc connecting it with a substitution transition, it is a socket
place of this transition. For a substitution transition t, the set of its socket places
is denoted by Psock(t). Furthermore, ST (t) denotes a mapping that maps each
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socket place p into its type, i.e., ST (t)(p) = IN if p is an input socket, ST (t)(p) =
OUT if p is an output socket, and ST (t)(p) = I/O if p is an input/output socket.

Technically, the arc expression function E(a) is defined for arcs a ∈ A of the
CPN only. For convenience, however, we assume that E(a) = empty, whenever
a 
∈ A, where the expression empty evaluates to the empty multiset of tokens.

A hierarchical CPN consists of a set of disjoint CPN modules, a submodule
function assigning a (sub)module to each substitution transition, and a port-
socket relation that associates port places in a submodule to the socket places
of its upper layer module. Furthermore, port and socket places can only be
associated with each other, if they have the same colour set and the same initial
marking. Definition 2 formalises these requirements where Tsub denotes the union
of all substitution transitions in the modules of the hierarchical CPN.

Definition 2. A hierarchical Coloured Petri Net (Definition 6.2 in [1]) is
a four-tuple CPNH = (S, SM,PS, FS) where:

1. S is a finite set of modules. Each module is a Coloured Petri Net Module
s = ((P s, T s, As,Σs, V s, Cs, Gs, Es, Is), T s

sub, P
s
port, PT s). It is required that

(P s1 ∪ T s1) ∩ (P s2 ∪ T s2) = ∅ for all s1, s2 ∈ S with s1 
= s2.
2. SM : Tsub → S is a submodule function that assigns a submodule to each

substitution transition. It is required that the module hierarchy (see below) is
acyclic.

3. PS is a port–socket relation function that assigns a port–socket rela-

tion PS (t) ⊆ Psock(t) × P
SM (t)
port to each substitution transition t. It is

required that ST (t)(p) = PT (p′), C(p) = C(p′), and I(p)〈〉 = I(p′)〈〉 for
all (p, p′) ∈ PS (t) and all t ∈ Tsub.

4. FS ⊆ 2P is a set of non-empty and disjoint fusion sets such that C(p) =
C(p′) and I(p)〈〉 = I(p′)〈〉 for all p, p′ ∈ fs and all fs ∈ FS.

The module hierarchy of a hierarchical CPN model is a directed graph with
a node for each module and an arc leading from one module to another module
if the latter module is a submodule of one of the substitution transitions of the
former module. The module hierarchy is required to be acyclic and the root
nodes of the module hierarchy are referred to as prime modules.

3 Pragmatic Annotated CPNs

PA-CPNs mandate a particular structure of the CPN models and allow the CPN
elements to be annotated with additional pragmatics. In a PA-CPN, the modules
of the CPN model are required to be organised into three levels referred to as
the protocol system level , the principal level , and the service level . We have seen
examples for modules on each of these levels in Sect. 2 already.

In a PA-CPN, it is required that there exists exactly one prime module.
This prime module represents the protocol system level. The Protocol module
shown in Fig. 1 (left) comprises the protocol system level of the PA-CPN model
of our example protocol; it specifies the protocol principals in the system and the
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channels connecting them. The substitution transitions representing principals
are specified using the principal pragmatic, and the substitution transitions
representing channels are specified using the channel pragmatic. As mentioned
already, all pragmatics annotations of a CPN are included between guillemets:
〈〈〉〉. Some of the pragmatics can have additional attributes or parameters, which
give more detailed information. In our example of Fig. 1 (left), the channel
pragmatic has attributes, which specify that the communication channel is bidi-
rectional, unreliable, and does not preserve the order of messages.

On the principal level, there is one module for each principal of the protocol
as defined on the protocol system level. Our example protocol has two modules
at the principal level: one for the sender and one for the receiver. Figure 1 (right)
shows the principal level module for the sender. A principal level module models
the services that the principal is providing, and the internal states and life-
cycle of the respective principal. For the sender in our example, there are two
services: send and receiveAck. Substitution transitions representing services that
can be externally invoked are specified using the service pragmatic, whereas
services that are to be invoked only internally are specified using the internal
pragmatic. The service level modules model the behaviour of the individual
services of the principals. The module shown in Fig. 3 is an example of a module
at the service level modelling the send service provided by the sender.

We formally define PA-CPNs as a tuple consisting of a hierarchical CPN, a
protocol system module (PSM), a set of principal level modules (PLMs), a set
of service level modules (SLMs), a set of channel modules (CHMs), and a struc-
tural pragmatics mapping (SP) that maps substitution transitions into structural
pragmatics and capturing the annotation of the substitution transitions.

Definition 3. A Pragmatics Annotated Coloured Petri Net (PA-CPN)
is a tuple CPNPA = (CPNH , PSM,PLM,SLM,CHM,SP ), where:

1. CPNH = (S, SM,PS, FS) is a hierarchical CPN with PSM ∈ S being
a protocol system module (Definition 4) and the only prime module of
CPNH .

2. PLM ⊆ S is a set of principal level modules (Definition 5); SLM ⊆ S
is a set of service level modules (Definition 6) and CHM ⊆ S is a set of
channel modules s.t {{PSM}, PLM,SLM,CHM} constitute a partition-
ing of S.

3. SP : Tsub → {principal,service,internal,channel} is a struc-
tural pragmatics mapping such that:
(a) Substitution transitions with 〈〈principal〉〉 have an associated principal

level module: ∀t ∈ Tsub : SP (t) = principal ⇒ SM(t) ∈ PLM .
(b) Substitution transitions with 〈〈service〉〉 or 〈〈internal〉〉 are associated

with a service level module:
∀t ∈ Tsub : SP (t) ∈ {service,internal} ⇒ SM(t) ∈ SLM .

(c) Substitution transitions with 〈〈channel〉〉 are associated with a channel
module: ∀t ∈ Tsub : SP (t) = channel ⇒ SM(t) ∈ CHM .
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It should be noted that channel modules do not play a role in the code gen-
eration; they constitute a CPN model artifact used to connect the principals for
verification purposes. Therefore, we do not impose any specific requirements on
the internal structure of channel modules. The behaviour of the channel mod-
ule must match the characteristics specified by the attributes of the channel
pragmatics, though. But this is not part of the formal definition of PA-CPNs.

Protocol System Module (PSM). The module shown in Fig. 1 (left) comprises
the protocol system level of the example PA-CPN model. It specifies the two
protocol principals in the system and the channels connecting them. The sub-
stitution transitions representing principals are specified using the principal
pragmatic, and the substitution transitions representing channels are specified
using the channel pragmatic. The PSM module is defined as a tuple consisting
of a CPN module and a pragmatic mapping PM that associates a pragmatic
with each substitution transition. The requirement on a protocol system module
is that all substitution transitions are annotated with either a principal or
a channel pragmatic. Furthermore, two substitution transitions representing
principals cannot be directly connected via a place: there must be a substitu-
tion transition representing a channel in between reflecting that principals can
communicate via channels only.

Definition 4. A Protocol System Module of a PA-CPN with a structural
pragmatics mapping SP is a tuple CPNPSM = (CPNPSM , PM), where:

1. CPNPSM = ((PPSM , TPSM , APSM ,ΣPSM , V PSM , CPSM , GPSM , EPSM ,
IPSM ), TPSM

sub , PPSM
port , PTPSM ) is a CPN module such that all transitions

are substitution transitions: TPSM = TPSM
sub .

2. PM : TPSM
sub → {principal,channel} is a pragmatics mapping s.t.:

(a) All substitution transitions are annotated with either a principal or
channel pragmatic: ∀t ∈ TPSM

sub : PM(t) ∈ {principal,channel}.
(b) The pragmatics mapping PM must coincide with the structural pragmatic

mapping SP of PA-CPN: ∀t ∈ TPSM
sub : PM(t) = SP (t).

(c) All places are connected to at most one substitution transition with
〈〈principal〉〉 and at most one substitution transition with 〈〈channel〉〉:
∀p ∈ PPSM : ∀t1, t2 ∈ X(p) : PM(t1) = PM(t2) ⇒ t1 = t2.

Principal Level Module (PLM). On the principal level, there is one module for
each principal of the protocol as defined by the principal pragmatic on the
protocol system level. Our example protocol has two modules at the principal
level corresponding to the sender and the receiver. Figure 1 (right) shows the
principal level module for the sender. The principal level module represents the
services that the principal is providing, and the internal state and life-cycle of the
principal. For the sender, there are two services as indicated by the service
and internal pragmatics on send and receiveAck. The non-port places of a
principal level module (places drawn without a double border) can be annotated
with either a state or an LCV (life-cycle variable) pragmatic. Places annotated
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with a state pragmatic represent internal states of the principal. In Fig. 1
(right), there are two places with 〈〈state〉〉 used to enforce the stop-and-wait
pattern when sending data messages and receiving acknowledgements. Places
annotated with an LCV pragmatic represent the life-cycle of the principal and
restrict the order in which services can be invoked. As an example, the place
ready in Fig. 1 (right) ensures that only one message at a time is sent using the
send service.

A principal level module is defined as a tuple consisting of a CPN module and
a principal level pragmatic mapping. Each service is represented by a substitution
transition which can be annotated with either a service or an internal
pragmatic depending on whether the service is visible externally or not.

Definition 5. A Principal Level Module of a PA-CPN is a tuple
CPNPLM = (CPNPLM , TPLM

sub , PPLM
port , PTPLM , PLP ) where:

1. CPNPLM = ((PPLM , TPLM , APLM ,ΣPLM , V PLM , CPLM , GPLM , EPLM ,
IPLM ), TPLM

sub , PPLM
port , PTPLM ) is a CPN module with only substitution tran-

sitions: TPLM = TPLM
sub .

2. PLP : TPLM
sub ∪ PPLM\PPLM

port → {service,internal,state,LCV} is a
principal level pragmatics mapping satisfying:
(a) All non-port places are annotated with either a state or a LCV prag-

matic: ∀p ∈ PPLM\PPLM
port ⇒ PLP (p) ∈ {state,LCV}

(b) All substitution transitions are annotated with a service or internal
pragmatic: ∀t ∈ TPSM

sub : PLP (t) ∈ {service,internal}.
It should be noted that we do not associate pragmatics with the port places

as it follows from the definition of the protocol system module that a port place
in a principal level module can only be associated with a socket place connected
to a substitution transition with a channel pragmatic.

Service Level Module (SLM). The service level modules specify the behaviour of
the respective services of the principals. They constitute the lowest level mod-
ules in a PA-CPN model. In particular, there are no substitution transitions
in modules at this level. The module in Fig. 3 is an example of a module at
the service level. It models the behaviour of the send service in a control flow
oriented manner. The control flow path, which defines the control flow of the
service, is made explicit via the use of the Id pragmatics. The entry point of
the service is indicated by annotating a single transition with a service prag-
matic, and the exit (termination) point of the service is indicated by annotating
a single transition with a return pragmatic. In addition, non-port places can
be annotated with a state pragmatic to indicate that this place models a local
state of the service. The driver pragmatic is used by service tester modules
(see Sect. 6) to facilitate verification. The places associated with Id pragmatic
determine a subnet of the module, which we call the underlying control flow
net : it is obtained by removing all CPN annotations and considering only places
with Id pragmatic and transitions connected to these places, which in Fig. 3, are



Pragmatics Annotated Coloured Petri Nets 11

indicated by places, transitions, and arcs with thick border. This control flow
net must follow a certain structure so that there is a one-to-one correspondence
to control flow constructs of typical programming languages. This requirement
is called control flow decomposability and is formally defined in Sect. 5.

A service level module is defined as consisting of a CPN module without
substitution transitions and with service level pragmatics as described above. In
the definition, we use the notation ∃!x ∈ X : p(x) to denote that there exists
exactly one element x in a set X satisfying a predicate p.

Definition 6. A Service Level Module of a PA-CPN is a tuple CPNSLM =
(CPNSLM , TSLM

sub , PSLM
port , PTSLM , SLP ) where:

1. CPNSLM = ((PSLM , TSLM , ASLM ,ΣSLM , V SLM , CSLM , GSLM , ESLM ,
ISLM ), TSLM

sub , PSLM
port , PTSLM ) is a CPN module without substitution tran-

sitions: TSLM
sub = ∅.

2. SLP : TSLM ∪ PSLM\PSLM
port → {Id,state,service,return,driver}

is a service level pragmatic mapping satisfying:
(a) Each place is either annotated with Id, state, driver or is a port

place: ∀p ∈ PSLM\PSLM
port : SLP (p) ∈ {Id,state,driver}.

(b) There is exactly one 〈〈service〉〉 transition and one 〈〈return〉〉 transi-
tion: ∃!t ∈ TSLM : SLP (t) = service and ∃!t ∈ TSLM : SLP (t) =
return.

(c) All non 〈〈service〉〉 transitions have exactly one 〈〈Id〉〉 input place: ∀t ∈
TSLM such that SLP (t) 
= service : ∃!p ∈ PSLM : (p, t) ∈ ASLM ∧
SLP (p) = Id.

(d) All non 〈〈return〉〉 transitions have exactly one 〈〈Id〉〉 output place: ∀t ∈
TSLM such that SLP (t) 
= return : ∃!p ∈ PSLM : (t, p) ∈ ASLM ∧
SLP (p) = Id.

3. For all t ∈ TSLM and p ∈ PSLM we have:
(a) Transitions consume one token from their 〈〈Id〉〉 input place (if any):

(p, t) ∈ ASLM ∧ SLP (p) = Id ⇒ |E(p, t)〈b〉| = 1 for all bindings b of t.
(b) Transitions produce one token on their 〈〈Id〉〉 output place (if any): (t, p) ∈

ASLM ∧ SLP (p) = Id ⇒ |E(t, p)〈b〉| = 1 for all bindings b of t.
(c) The 〈〈service〉〉 and 〈〈return〉〉 transitions are connected to exactly one

〈〈driver〉〉 place: ∀t ∈ TSLM with SLP (t) ∈ {service,return}
∃!p ∈ PSLM : SLP (p) = driver ∧ ((p, t) ∈ ASLM ∨ (t, p) ∈ ASLM ).

(d) A 〈〈driver〉〉 place can be connected as an input place only to the
〈〈service〉〉 transition and as an output place only to the 〈〈return〉〉
transition: ∀p ∈ PSLM ,∀t ∈ TSLM with SLP (p) = driver : ((p, t) ∈
ASLM ⇒ SLP (t) = service) ∧ ((t, p) ∈ ASLM ⇒ SLP (t) = return).

(e) Exactly one token is produced on/consumed from 〈〈driver〉〉 places:
∀p ∈ PSLM ,∀t ∈ TSLM with SLP (p) = driver : ((p, t) ∈ ASLM ⇒
|E(p, t)〈b〉| = 1) ∧ ((t, p) ∈ ASLM ⇒ |E(t, p)〈b〉| = 1) for all bindings b.

4. The underlying control flow net of CPNSLM is control flow decomposable
(Definitions 8 and 10).
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4 Protocol Modelling Process

In the previous sections, we have formalised the structural restrictions of CPNs
and the pragmatics extensions that make them Pragmatic Annotated CPNs (PA-
CPNs), where some of the restrictions on the control flow structure and the
service testers will be formalized only later in Sects. 5 and 6. In order to help
modellers coming up with a model meeting these requirements, we briefly discuss
the choices underlying the definition of PA-CPNs and how to use the pragmatics
in the modelling process.

The structural requirements of PA-CPNs have been distilled from the expe-
rience with earlier CPN models of protocols. The structure and annotations of
PA-CPNs are designed to help the modeller come up with a clear model and to
give clear guidelines for creating a model that – at the same time – can be used
for both code generation and verification. As such, the structure of PA-CPNs
should be driven by the protocol and its purpose rather than by the artifacts
of Petri nets. This is, in particular, reflected by structuring the model in three
layers: protocol system module, principal level modules, and service layer modules.

The top layer, the protocol system module (PSM), identifies the overall struc-
ture of the protocol, which are the principals of the protocol and how the princi-
pals are connected by channels (see Fig. 1 (left) for an example). Each principal
and each channel is represented by a substitution transition with a respective
annotation, and places connecting the respective principals with channels. The
behaviour of each principal is represented by a principal level module (PLM),
which identifies the services of the respective principal (see Fig. 1 (right) for an
example) along with the states of the protocol and its life-cycle. The services are
represented by substitution transitions annotated with the service pragmat-
ics, the state and the life-cycle of the principal are represented by places with
state and LCV pragmatics. The behaviour of each service is then modelled by
a service level module (SLM), which is associated with the service substitution
transitions on the principal level module (see Fig. 3 for an example). The ser-
vice level module has access to the channels that the principal is connected to
and the principal’s state and life-cycle variables. The most prominent structure
(indicated by thick arcs and thick bordered places and transitions) of the service
module is the control flow structure, which is identified by the Id pragmatics
and which needs to follow very specific rules (Sect. 5) so that it can be trans-
formed to control flow constructs of typical programming languages in order to
generate human-readable code.

Below, we give an overview of the pragmatics that are at the core of PA-
CPNs, as well as their purpose and role in PA-CPNs. Note, however, that
the PetriCode approach and the tool [5,6] allow adding new pragmatics. In
the top-level module, the protocol system, there are principal and channel
pragmatics which are used to annotate substitution transitions, which represent
the principals and the channels of a communication protocol (see Fig. 1 (left)).
The channel pragmatics can have some attributes or parameters, which define
the characteristics of the channel (in our example the channels are unreliable,
do not preserve the order of messages, and are bidirectional). Actually, the
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modules associated with the channel pragmatics are not used for code gen-
eration. Instead, the generated code will use implementations of channels from
the underlying platform based on the characteristics defined by the attributes.
But, for verifying the protocol with standard CPN mechanisms, we need a CPN
module for each channel, which however does not have any further structural
restrictions, in PA-CPNs.

For principal level modules there are mainly three pragmatics: service,
state, and LCV. The service pragmatics indicates all services of a princi-
pal that are externally visible (i. e. part of the protocols API in the code). It
annotates substitution transitions; a module associated with such a substitu-
tion transition defines the service in detail. The state pragmatics attached to
places of principal level modules define the state of the protocol; these might
be used and changed inside services. The LCV pragmatic (for life-cycle variable)
annotates places that define the life-cycle of the protocol (indicating when which
services can be invoked). The LCV pragmatic is similar to the state pragmatic;
the main difference is that the value of places with an LCV pragmatic are typi-
cally not changed inside the service, but only when a service is started or finished
(but this condition is not mandated and formalised in our definition). There is
one other pragmatic called internal; it indicates a service of a principal, which
is not externally visible and used only by the principal itself. Except for that,
the internal pragmatic and the service pragmatic are the same.

For service level modules, there are three main pragmatics: service,
return, and Id. The service pragmatic indicates the start transition of a
service, when the service is invoked. The return pragmatic indicates the tran-
sition terminating the service. The control flow from the service transition to
the Id transition is indicated by places annotated with Id pragmatics. Actually,
the structure defined by these places needs to correspond to control flow con-
structs, which we define in Sect. 5. Note that the Id pragmatics and the return
pragmatics can have expressions as parameters; indicating which value should
be returned, or which alternative path in the control flow should be taken. This
expression could, in principle, be derived from the CPN and its Standard ML
expressions; but for easing code generation, PetriCode comes with a very simple
language for that purpose, which make it easier to generate code for different tar-
get languages. At last, places in a service level module can have state and LCV
pragmatics some of which will be port places with the same annotation on the
associated socket places in the principal level modules. PA-CPNs and PetriCode
have some additional pragmatics, which, in principle, could be derived from the
net structure. But, for easing code generation for different target language, they
can be explicitly added to the model. But, we do not discuss these derived prag-
matics here. Note also that service and return transitions are attached to
places with driver pragmatics. These are not part of the protocol model at all,
but indicate how the services are driven by tests (discussed in Sect. 6).

Any model that meets the requirements of PA-CPNs can be used for code
generation as well as for verification – irrespective of the way it was produced.
The typical modelling process of protocols with PA-CPN starts at the top-level
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by identifying the principals of the protocol and how they are connected by
channels. Then, the services of each principal are identified on the principal level,
and then each service is modelled. So the general modelling direction is top-down.
Of course, additional services and even additional principals could be added later,
when need should be. We believe that for most protocols, the respective modules
would fit on a single page and would not need any substructure. For some more
complex services, additional submodule structure might be needed. In that case,
the requirement would be that the flattened substructure of such a service level
module meets the requirements of our formal definition. We therefore do not
formalise this possibility here, as it can be considered syntactic sugar.

5 Control Flow Nets and Control Flow Decomposability

As discussed earlier, the control flow structure of a service level module, called
the underlying control flow net, must correspond one-to-one to control flow con-
structs of programming languages. The main purpose of this requirement is to
generate readable code.

Fig. 5. Decomposition of
the service level module
in Fig. 3

In this section, we formally define the underlying
control flow net of a service level module and its one-
to-one correspondence to control flow constructs. This
is achieved by inductively decomposing the control flow
net into a tree of sub-blocks, each of which corresponds
to a control flow construct: atomic step, sequence,
choice and loop.

Figure 5 shows the underlying control flow net of the
service level module from Fig. 3. All places and transi-
tions in the rounded rectangle (representing the block
border) are part of the block; an arrow from the block
border to a place indicates the entry place of the block;
an arrow from a place to the block border indicates the
exit place of the block. The control flow net in Fig. 5
can be decomposed in a loop block, which in turn con-
sists of an atomic block.

First, we define blocks: these are Petri nets with a fixed entry and exit place.

Definition 7. Let N = (P, T,A) be a Petri net, s, e ∈ P . Then B =
(P, T,A, s, e) is called a block with entry s and exit e. The block is atomic, if
P = {s, e}, s 
= e, |T | = 1 and for t ∈ T , we have •t = {s} and t• = {e}. The
block has a safe entry, if s 
= e and •s = ∅. The block has a safe exit, if s 
= e
and e• = ∅.

An atomic block consists of a single transition (see Fig. 6). For visualising
blocks with safe entry and safe exit, we introduce an additional graphical nota-
tion, which is also shown in Fig. 6. A crossed out arc from within the block to
the start place of that block indicates that the block itself does not return a
token to the entry place (safe entry); a crossed out arc from the end place to the
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interior of the block indicates that the block itself does not remove a token from
its exit place (safe exit).

For easing the following definitions, we introduce an additional notation:
For a block Bi, we refer to its constituents by Bi = (Pi, Ti, Ai, si, ei) without
explicitly naming them every time. The block that is underlying a service level
module is determined by all the places with Id pragmatics and the transitions
in their pre- and postsets. The unique transition with 〈〈service〉〉 defines the
entry place, and the unique transition with 〈〈return〉〉 defines the exit place of
this block; note that for technical reasons, these two transitions are not part
of the block. Therefore, these transitions are shown by dashed lines in Fig. 5.
Formally, the control flow net underlying a service level module is defined as:

Definition 8. Let CPNSLM be a service level module (Definition 6). The
underlying control flow net of CPNSLM is the block N = (P, T,A, s, e)
where:

– P = {p ∈ PSLM\PSLM
port |SLP (p) = Id}.

– T = TSLM ∩ •P ∩ P •.
– A = ASLM ∩ ((T × P ) ∪ (P × T ))}.
– s ∈ P is the unique place such that there exists a transition t ∈ TSLM with

(t, s) ∈ ASLM and SLP (t) = service.
– e ∈ P is the unique place e such that there exists a transition t ∈ TSLM with

(e, t) ∈ ASLM and SLP (t) = return.

The control flow of the code that is being generated is obtained by decom-
posing the underlying control flow net of a service level module into sub-blocks
representing the control flow constructs. We define the decomposition in a very
general way at first, which does not yet restrict the possible control flow con-
structs. The decomposition into blocks, just makes sure that all parts of the block
are covered by sub-blocks (item 2) and that they overlap on entry and exit places
only (item 3). In a second step, the decomposition is restricted in such a way
that the decomposition captures certain control flow constructs (Definition 10).

Definition 9. Let B = (P, T,A, s, e) be a block. A set of blocks B1, . . . , Bn is a
decomposition of B if the following conditions hold:

1. The sub-blocks contain only elements from B, i. e. for each i ∈ {1, . . . , n}, we
have Pi ⊆ P , Ti ⊆ T , and Fi ⊆ F ∩ ((Pi × Ti) ∪ (Ti × Pi)).

2. The sub-blocks contain all elements of B, i. e. P =
⋃n

i=1 Pi, T =
⋃n

i=1 Ti,
and F =

⋃n
i=1 Fi.

3. The inner structure of all sub-blocks are disjoint, i. e. for each i, j ∈ {1, . . . , n}
with i 
= j, we have Ti ∩ Tj = ∅ and Pi ∩ Pj = {si, ei} ∩ {sj , ej}.
As the final step, we define when a decomposition of a block reflects some

control flow construct. The definition does not only define decomposability into
control flow constructs; it also defines a tree structure which reflects the control
flow structure of the block; the type of each node reflects the construct. The
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Fig. 6. Inductive definition of block trees

definition is illustrated in Fig. 6. The top right part of Fig. 6 shows the inductive
definition of a loop construct: the assumptions are that two blocks B1 and B2
are identified already. B1 is any kind of block (represented by X) with a safe
entry place s and a safe exit place e; B2 is an atomic block with entry place e
and exit place s. Thus, block B1 represents the loop body, and block B2 the
iteration. Then, the union of both blocks and entry place s and exit place e,
form a block B, which is a loop consisting of the loop body B1 and the atomic
block B2 for the iteration. The definitions of choices and sequences are similar.
Definition 10 below formally defines the block tree as illustrated in Fig. 6.

Definition 10. A block tree associated with a block is inductively defined as:

Atomic If B is an atomic block, then the tree with the single node B:atomic
is a block tree associated with B.

Loop If B is a block and B1 and B2 is a decomposition of B, and for some
X, B1 : X is a block tree associated with B1, and B2 : atomic is a block tree
associated with B2, and if B1 has a safe entry and a safe exit such that s1 = s,
e1 = e, s2 = e, e2 = s, then the tree with root B:loop and the sequence of
subtrees B1 : X and B2 : atomic is a block tree associated with B.

Choice If B is a block and for some n with n ≥ 2 the set of blocks B1, . . . , Bn

is a decomposition of B, and have a safe entry and a safe exit, and
B1 : X1, . . . , Bn : Xn for some X1, . . . , Xn are block trees associated with
B1, . . . , Bn, and if for all i ∈ {1, . . . , n}: si = s and ei = e, then the tree
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with top node B:choice with the sequence of subtrees Bi : Xi is a block tree
associated with B.

Sequence If B is a block and for some n ≥ 2 the set of blocks B1, . . . , Bn is a
decomposition of B, and, for some X1, . . . , Xn, the trees B1 : X1, . . . , Bn : Xn

are block trees associated with B1, . . . , Bn, and if there exist different places
p0, . . . , pn ∈ P such that s = p0, e = pn, and for each i ∈ {0, . . . , n − 1} we
have si = pi, ei = pi+1, and Bi has a safe exit or Bi+1 has a safe entry, then
the tree with root B:sequence and the sequence of subtrees Bi : Xi is a block
tree associated with B.

A block for which a block tree exists is said to be control flow decomposable.

Note that in order to simplify the definition of control flow decomposability,
the block tree of a block is not necessarily unique according to our definition. For
example, a longer sequence of atomic blocks could be decomposed in different
ways. In the PetriCode tool, such ambiguities are resolved by making sequences
as large as possible. Note also that for two consecutive constructs in a sequence,
it should not be possible to go back from the second to the first; therefore, the
above definition requires that consecutive blocks have a safe entry or a safe exit.
And there are some similar requirements for loops and choices.

6 Service Testers

The service level modules constitute the active part of a PA-CPN model. The
execution of a service provided by a principal starts at the transition with a
service pragmatic. The transitions annotated with a service pragmatic typi-
cally have a number of parameters which need to be bound to values in order for
the transition to occur. An example of this is the Send service transition in Fig. 3,
which has the variable dataList as a parameter. This means that there often is
an infinite number of bindings for a service transition. To control the execution
of a PA-CPN model, we introduce the concept of service tester modules which
represent a user invoking the services. Service testers are also exploited for veri-
fication (Sect. 7): by invoking the services in a specific order and with some fixed
parameters only, they can be used to guarantee that the overall model has a finite
state space. The service tester modules are connected to the rest of the PA-CPN
model via driver fusion places belonging to fusion sets. Fusion sets and fusion
places are standard constructs of hierarchical CPNs (see Defintion 2). A fusion
set consists of a set of fusion places such that removing (adding) tokens from
(to) a fusion place is reflected on the markings of all members of the fusion set.

A service tester module can invoke a service provided by the principal by
adding tokens to the driver place in the preset of the service’s service tran-
sition; and obtain the result of the service by accessing the driver place in the
postset of the service’s return transition. In addition to driver fusion places,
the service testers have places with Id pragmatics, which make the control flow
of the service tester explicit in a similar manner as for service level modules.
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Figure 7 shows an example of a service tester module for the PA-CPN model
from Sect. 2. A service tester module can have many places with Id pragmatics;
but only one of them may contain a token initially (place d0 in Fig. 7).

Fig. 7. Service tester
module

In our example, the service tester first invokes the
send service by putting a token to the driver place mes-
sage of the send service (see Fig. 3). Next, the service
tester invokes the receive service in the receiver prin-
cipal (which has a driver place callReceive not shown
in this paper). In the end, the service tester waits for
both services to terminate, indicated by tokens on the
driver places endReceive and endSend.

Service tester modules are formalised below. Note
that we allow service testers to connect to LCV places
of the principals of the protocol, so that the services
can be called dependent on the state of the life-cycle
of the protocol. But, the service testers are not allowed
to change the marking of LCV places.

Definition 11. A Service Tester Module is a tuple CPNSTM =
(CPNSTM , TSTM

sub , PSTM
port , PTSTM , TPM) where:

1. CPNSTM = ((PSTM , TSTM , ASTM ,ΣSTM , V STM , CSTM , GSTM , ESTM ,
ISTM ), TSTM

sub , PSTM
port , PTSTM ) is a CPN module with no substitution transi-

tions: TSTM
sub = ∅.

2. TPM : PSTM → {Id,driver,LCV} is a tester pragmatic mapping.
3. All transitions have exactly one 〈〈Id〉〉 input place and exactly one 〈〈Id〉〉 ouput

place:
(a) ∀t ∈ TSTM∃!p ∈ PSTM : (p, t) ∈ ASTM ∧ TPM(p) = Id.
(b) ∀t ∈ TSTM∃!p ∈ PSLM : (t, p) ∈ ASTM ∧ TPM(p) = Id.

4. In the initial marking there is a single token present on the 〈〈Id〉〉 places:∑
{p∈PSTM |TPM(p)=Id} |ISTM (p)〈〉| = 1

5. Transitions consume one token from 〈〈Id〉〉 input places and produces one
token on 〈〈Id〉〉 output places:
(a) ∀t ∈ TSTM and p ∈ PSTM : (p, t) ∈ ASTM ∧ TPM(p) = Id ⇒

|E(p, t)〈b〉| = 1 for all bindings b of t.
(b) ∀t ∈ TSTM and p ∈ PSTM : (t, p) ∈ ASTM ∧ TPM(p) = Id ⇒

|E(t, p)〈b〉| = 1 for all bindings b of t.
6. Places annotated with 〈〈LCV〉〉 can only be connected to transitions via double

arcs with identical arc expressions:
∀p ∈ PSTM , t ∈ TSTM such that TPM(p) = LCV : E(t, p) = E(p, t).

7. The underlying control flow net of CPNSTM is control flow decomposable
(Definitions 8, and 10).
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The modeller must construct the service tester modules such that they satisfy
the formal requirements. Service tester modules are connected to a PA-CPN by
driver places (fused to the driver places of the services) in order to control
the execution of the services. We therefore define a PA-CPN equipped with
service tester modules as a hierarchical CPN consisting of a set of modules
that constitute a PA-CPN (Definition 3) and a set of service tester modules
which are all prime modules. We require that all places belonging to the same
fusion set are annotated with identical pragmatics. Furthermore, we require that
fusion places are connecting the service level and service tester modules so that
they correspond to the invocation of services and collecting results of service
execution.

7 Verification and Experimental Results

In this section, we discuss how the sweep-line method can be applied to exhaus-
tively explore the state space of a PA-CPN model equipped with service testers.
Exhaustive state space exploration can be used to check that the protocol sat-
isfies certain invariants, to detect unexpected deadlocks, and to check whether
the states upon termination are correct, which could for example be that the
sent message is identical to the received one. Here, we do not go into specific
properties to be verified, but we discuss how to apply the sweep-line method
to exhaustively explore the state space. In particular, we show that in addition
to restricting the state space of the model and making it finite, the structure
of the service testers and the structural requirements imposed by PA-CPNs can
be exploited by the sweep-line method [10] to further reduce the peak memory
usage during verification by automatically deriving a progress measure.

The Sweep-Line Method and Progress Expressions. The sweep-line method
addresses the state explosion problem by exploiting a notion of progress exhib-
ited by many systems. This notion of progress makes it possible to store only
a (small) subset of all the reachable states at any given time during the state
space exploration. To apply the sweep-line method, a progress measure must be
provided for the model as formalised below, where S denotes the set of all states
(markings), →∗ the reachability relation on the markings of the CPN model,
and R(M0) denotes the states reachable from the initial marking M0.

Definition 12. A progress measure is a tuple P = (O,�, ψ) such that O is a
set of progress values, � is a total order on O, and ψ : S → O is a progress
mapping. P is monotonic if ∀s, s′ ∈ R(M0) : s →∗ s′ ⇒ ψ(s) � ψ(s′).
Otherwise, P is non-monotonic.

The subsets of states that need to be stored at the same time while exploring
the state space are determined via a progress value assigned to each state, and the
method explores the states in a least-progress-first order. The sweep-line method
explores states with a given progress value before progressing to the states with a
higher progress value. When the method proceeds to consider states with a higher
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progress value, all the states with a lower progress values can be discarded from
memory. If it should turn out during the exploration that the system regresses (a
non-monotonic progress measure), then the method will mark states at the end
of such regress edges as persistent (i. e., stores them permanently in memory) in
order to ensure termination of the exploration. In the presence of regression, the
sweep-line method may visit the same state multiple times (for details, see [10]).

The structure of PA-CPNs and services testers can be exploited in different
ways for defining progress measures. The control flow in the service modules is
one source of progress as there is a natural progression from the entry point
of the service towards the exit point. The life-cycle of a principal is another
potential source of progress as there will often be an overall intended order in
which the services are to be invoked, and this will be reflected in the life-cycle
variables of the principal. Finally, the service testers are also a source of progress
as they will inherently progress from the start towards the end of the test.

The progress measure for a CPN can be defined by a progress expression,
which has places of the CPN in it as variables. The progress value of a concrete
marking is then defined by evaluating the progress expression where each place
takes the value of that place in that concrete marking. We will show how to
define such progress expressions for a PA-CPN with service testers. First, we
show how to define progress expressions for service testers and service modules
based on the block tree of their underlying control flow nets. We then show how
to augment a progress expression for a service level module to take into account
also the 〈〈driver〉〉 places, and finally we show how to combine the progress
expressions of the individual modules to obtain a progress expression for the
complete PA-CPN model with the service testers.

The basic idea is that evaluating a progress expression in a given state (mark-
ing) will result in a progress value quantifying how far the model has progressed
in the given state. For the example service tester in Fig. 7, the progress expres-
sion can be defined as a place-wise sequence of expressions reflecting that the
token initially on d0 moves towards place d3 as the execution of the test pro-
gresses. This can be captured by the progress expression below, where DriverBT
denotes a block tree of the underlying control flow net of the module Driver:

PME (DriverBT) = (|d3|, |d2|, |d1|, |d0|) (1)

Evaluating this expression (i.e., replacing each place with its multi-set of
tokens) in a state s with a token on d1 results in the progress value (0, 0, 1, 0)
while evaluating the expression in a state s′ with a token on d2 results in the
progress value (0, 1, 0, 0). Two such progress values (sequences) can be compared
via lexicographic ordering, meaning that the position of the elements represents
their significance. In this case, s′ is larger than s reflecting that s′ represents a
state in which the driver has progressed further than in s.

Consider now the Send service module in Fig. 3 and the underlying control
flow net (highlighted with thick lines). Here, we may consider a state in which
there is a token on place next to be a state in which the module has progressed
further than in a state in which there is a token in place startSending – even if the
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service module may later regress by putting a token back on place startSending
to send the next message. In this case, the progress expression becomes:

PME la(SendBT) = (|next|, |startSending|) (2)

We can eliminate regression when going back to the start of a loop by viewing
the loop-block as one unit and only record if the service level module is executing
somewhere inside the loop. In this case, the progress expression becomes:

PME lu(SendBT) = (|next| + |startSending|) (3)

The difference between Eqs. 2 and 3 lies in how loops are handled. The expres-
sion in Eq. 2 is loop-aware (la) as it takes the loop structure into account by
treating each place within the loop as a separate element in the sequence. In
contrast, Eq. 3 is loop-unaware (lu) as it does not explicitly record on which
place the token is present - only that a token is somewhere in the loop.

We generalise the above idea by inductively defining progress measure expres-
sions on the block tree of the underlying control flow net of service tester and
service level modules. We use a · b = (a1, . . . , an, b1, . . . , bm) to denote the con-
catenation of two sequences a = (a1, . . . , an) and b = (b1, . . . , bm). Basically, we
can define a progress expression for each block based on the progress expressions
of its sub-blocks. The non-trivial part of this definition is that the entry and
exit places can be shared among different blocks, since this is where blocks are
glued together; each place should be accounted for in the progress expression
exactly once and at the right position in order to avoid unnecessary regression.
In the following definition, we take care of an entry or exit place in the progress
expression only when it is not safe in a block; if it is safe, it is accounted for
outside the block. When chaining blocks to a sequence, however, some entry and
exit places might not be accounted for at all: if the exit place of some block and
the entry place of the subsequent block would be a safe exit in the first and a
safe entry in the subsequent block, this place would not occur in the progress
measure at all; so we need to insert such places between the progress measures of
such blocks. To this end, we define the following expressions: For a block Bi with
exit place x and a block Bi+1 with entry place x, we define S(Bi, Bi+1) = (|x|)
if x is a safe exit place of Bi and a safe entry place of Bi+1; otherwise we define
S(Bi, Bi+1) = () (the empty sequence). Likewise for a block B with entry place
x we define Ss(B) = (|x|) if x is a safe entry place of B, and Ss(B) = () other-
wise; and for a block B with exit place x we define Se(B) = (|x|) if x is a safe
exit place of B, and Ss(B) = () otherwise. This allows us to define the progress
measure expressions for blocks and service level modules as follows.

Definition 13. Let B be a block tree for the underlying control flow net of a
module CPN . The loop-aware PME la(B) and loop-unaware PME lu(B) progress
measure expressions are defined inductively over the block tree B by:

Case B:atomic For an atomic block B, PME la(B) = PME lu(B) = ().
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Case B:sequence Let B1, B2 . . . Bn be the subblocks of B and lx ∈ {la, lu},
then: PME lx(B) = PME lx(Bn) · S(Bn−1, Bn) · PME lx(Bn−1) . . .PME lx(B2) ·
S(B1, B2) · PME lx(B1)

Case B:choice Let B1, B2 . . . Bn be the subblocks of B and lx ∈ {la, lu}, then:
PME lx(B) = PME lx(B1) · PME lx(B2) · · ·PME lx(Bn)

Case B:loop Let B1 and B2 be the sub-blocks of a loop block B with entry place
s and exit place e and places P = {p1, . . . , pm}

PME la(B) = (|e|) · PME la(B1) · (|s|) (4)
PME lu(B) = (|p1| + |p2| + . . . + |pm|) (5)

Let CPNSLM be a service level module with block tree B and with the unique
input driver place ds and the unique output driver place de. The progress measure
expression for CPNSLM is defined as:

PME lx(CPNSLM ) = (|de|) · Se(B) · PME lx(B) · Ss(B) · (|ds|) (6)

Note that for the service level modules we also take the 〈〈driver〉〉 places
connected to the 〈〈service〉〉 and the 〈〈return〉〉 transition into account. For
the service level module in Fig. 3 this results in the following progress expression:

PME la(Send) = (|endSend|, |next|, |startSending|, |message|) (7)
PME lu(Send) = (|endSend|, |next| + |startSending|, |message|) (8)

The place endSend is at the beginning of the progress expression since most
progress has been made when the execution of the service has terminated in
comparison to a state in which the service is to be started.

A progress expression for the complete PA-CPN model can be obtained by
concatenating the progress expressions for the service tester and the service
level modules. The exact order of the progress expressions for the modules in
the concatenation is arbitrary, but the progress expressions for the service testers
come first since they drive the execution and make the most significant progress.

If the service testers do not contain any loop constructs and when using
loop-unaware progress expressions for all service modules, the combined progress
expression obtained in the above way is monotonic. When the service testers have
loops or when using loop-aware progress expressions, however, the combined
progress expression for the complete system might not be monotonic.

Experimental Results. Table 1 shows experimental results on the protocol exam-
ple for different configurations (number of transmitted messages) and chan-
nel characteristics (lossy/non-lossy) with the loop-aware and the loop-unaware
progress measures. We consider exploration of the complete state space since the
sweep-line method in the worst-case explores all states in order to check a prop-
erty. The loop-unaware progress measure is monotonic which means that the
number of explored states (in this case) equals the number of reachable states
of the respective example (for completeness, it is listed in the second column).
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Table 1. Verification using loop-aware and loop-unaware progress measure

Config loop-unaware PM loop-aware PM

Reachable Explored Peak Ratio Time Explored Peak Ratio Time

1:noloss 156 156 77 49.3 <1 s 165 63 40.3 <1 s

1:lossy 186 186 99 53.2 <1 s 196 78 41.9 <1 s

3:noloss 2, 222 2, 222 2, 014 90.6 <1 s 2, 790 1, 582 71.2 <1 s

3:lossy 2, 928 2, 928 2, 700 92.2 <1 s 4, 037 2, 187 75.7 <1 s

7:noloss 117, 584 117, 584 115, 373 98.1 216 s 143, 531 86, 636 73.6 32 s

7:lossy 160, 620 160, 620 158, 888 98.1 532 s 263, 608 124, 661 77.6 80 s

The loop-aware progress measure is not monotonic and hence some states might
be visited (explored) multiple times. Therefore, the number of explored states is
higher than the reachable states of the respective example. The ratio columns
give the ratio in percent between the peak number of states stored (with the
respective progress measure) and the number of reachable states. It can be seen
that the runtime as well the peak memory use are better when using the loop-
aware progress measure. The loop-aware measure provides better performance
since the send service has a loop as the top-level control flow construct and, in
this case, the peak memory use is reduced to between 40 and 77%.

8 Related Work

PetriCode and PA-CPNs have been designed and developed with four main
requirements on the code generation in mind: platform independence, code
integration, readability , and scalability . PetriCode was evaluated against these
requirements in [7,8]. A fifth requirement was verifiability , which means that the
model used for code generation can be used also for verifying the correctness of
the protocol itself, which was demonstrated in [7,11] and in this paper. We do
not discuss the requirements on PetriCode in detail here, but use them to guide
the comparison of our approach to related work.

Even though CPNs have been primarily used for modelling and verifying
protocols, there exist approaches supporting code generation from CPNs – and
more generally from high-level Petri Nets (HLPNs). Kaim et al. [12] discuss gen-
eral aspects of generating code from low-level and high-level Petri nets with the
purpose of executing the code outside the simulation environment where it was
created. Kaim et al. discuss both centralised and parallel approaches to interpre-
tation of models. A main aspect of the parallel approach is a structural analysis
of the model in order to identify subnets that can be mapped to processes. In
the PetriCode approach, the structural pragmatics provided by the modeller and
the structural restrictions of PA-CPNs provide similar information. In contrast
to PetriCode, Kaim et al. do not consider code integration and readability of
the generated code.
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The approach of Philippi [13] is a hybrid of a simulation-based and a struc-
tural analysis approach to code generation for HLPNs. The motivation for the
hybrid approach is to produce more readable code than a pure simulation app-
roach would because fewer checks are needed in the code. Philippi targets the
Java platform only and is therefore not platform independent in its basic form.
The generated code can be integrated into third party code in that the API of
the generated code is defined by UML class diagrams. Philippi does not discuss
the scaling to large applications. Lassen et al. [14] aim to generate readable code
by creating code with constructs that are similar to what human programmers
would have created. Since the approach of Lassen is based on Java annotations,
the approach is tailored to the Java programming language and does not provide
a generic infrastructure that supports code generation for different platforms.

Reinke [15] studies, in the context of the functional programming language
Haskell, how to use language embedding for mapping constructs from HLPNs
into Haskell code. The focus of Reinke is on generating code for a HLPN simu-
lator and is not aimed at providing a general mechanism for generating readable
code and on integrating the code into a larger application. Kummer et al. [16]
are concerned with the execution of reference nets in the context of the Renew
tool, which is based on the Java platform. Reference nets as supported by Renew
are known to be verifiable [17], but the approach is specifically tailored to the
Java platform. The work does not focus on integration at the code level but rely
on service-oriented means for integrating the code into larger applications [18].

Mortensen [19] explores a simulation-based approach extracting the gener-
ated simulation code from CPN Tools. As such, the work of Mortensen is aimed
at making a Standard ML implementation of the modelled system and not on
conducting verification of the models or to target multiple platforms. Further-
more, being a simulation-based approach, the goal from the outset is not to gen-
erate code that is intended for humans to read. The use of a simulation-based
approach also means that there is a considerable performance overhead due to
enabling checks in the code. The approach of Kristensen et al. [20] is similar to
the approach in [19]. PP-CPNs are used in [21] for code generation targeting the
Erlang language but the approach is not designed to address readability of the
generated code. Furthermore, the approach is tailored to the Erlang platform
and is not easily adapted to other platforms even though PP-CPNs and the
intermediary representation of control flow graphs are independent of the target
language. Jørgensen et al. [22] propose an approach for generating BPEL code.
The approach is targeted at BPEL and does not support multiple platforms or
address verifyability, code integration, readability and scalability.

9 Conclusions and Future Work

PA-CPNs are at the core of the PetriCode approach, which has been discussed
and evaluated in earlier work [3–8,11]. This paper completes the development of
the PetriCode approach by providing a formal definition of PA-CPNs and hence
establishing the formal foundation of our approach. By carefully restricting the



Pragmatics Annotated Coloured Petri Nets 25

class of CPNs and adding annotations, we have shown that it is possible to gener-
ate the code for the software and to verify the protocol based on the same model.
PA-CPNs have been designed specifically for the domain of protocol software.
The structure of PA-CPNs could probably be adjusted to other domains than
protocol software: these domains might need a slightly different structure and
possibly a different or not fixed number of levels of modules and some additional
pragmatics. But, before defining such a more general class of annotated CPNs,
we would need to have a look at more examples from other domains.

PetriCode aims at generating code from verified models, where verification is
done by standard techniques for CPNs. PetriCode did not aim at developing new
verification techniques itself. In future work, it might be interesting to look at
results on workflow nets and controllability or operability [23,24] for protocols.
In this paper, we demonstrated, however, that the same model can be used
for code generation and verification; and, we have shown that the structure of
PA-CPNs can be exploited to improve the performance of existing verification
techniques by automatically computing a progress measure for the sweep-line
state space exploration method.

Note that the PetriCode code generator itself is not verified yet. Techniques
such as the one presented by Blech et al. [25] could be explored for verifying
the code generators for the different target languages of PetriCode. But due to
the template-based approach and the platform independence of PetriCode, this
would be an ambitious project in its own right. Another option to guaranteeing
the correctness of the generated code would be, not to verify the code generator
itself, but to apply model-based testing [26]: we could use the service testers
not only for the verification of the protocol system; we could use them also for
generating code for these tests (if the testers do not access the LCV places of
the services). The generated tests could then be run with the generated protocol
software and the results compared to the outcome in the model. In this way, it
would be guaranteed that the result of these tests are the same in the model and
the generated code.
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D., Rölke, H., Valk, R.: An extensible editor and simulation engine for Petri Nets:
Renew. In: Cortadella, J., Reisig, W. (eds.) ICATPN 2004. LNCS, vol. 3099, pp.
484–493. Springer, Heidelberg (2004)

17. Mascheroni, M., Wagner, T., Wüstenberg, L.: Verifying reference nets by means
of hypernets: a plugin for renew. In: Proceedings of PNSE 2010. Berichte des
Fachbereichs Informatik. Universität Hamburg, pp. 39–54 (2010)

18. Betz, T., et al.: Integrating web services in Petri Net-Based agent applications. In:
Proceedings of PNSE 2013, vol. 989. CEUR Workshop Proceedings, pp. 97–116
(2013)

19. Mortensen, K.H.: Automatic code generation method based on Coloured Petri Net
models applied on an access control system. In: Nielsen, M., Simpson, D. (eds.)
ICATPN 2000. LNCS, vol. 1825, pp. 367–386. Springer, Heidelberg (2000)

20. Kristensen, L.M., Mechlenborg, P., Zhang, L., Mitchell, B., Gallasch, G.E.: Model-
based development of a course of action scheduling tool. Int. J. Softw. Tools Tech-
nol. Transf. 10, 5–14 (2008)

21. Kristensen, L.M., Westergaard, M.: Automatic structure-based code generation
from Coloured Petri Nets: a proof of concept. In: Kowalewski, S., Roveri, M. (eds.)
FMICS 2010. LNCS, vol. 6371, pp. 215–230. Springer, Heidelberg (2010)



Pragmatics Annotated Coloured Petri Nets 27

22. van der Aalst, W.M.P., Jørgensen, J.B., Lassen, K.B.: Let’s go all the way: from
requirements via Colored Workflow Nets to a BPEL implementation of a new bank
system. In: Meersman, R., Tari, Z. (eds.) OTM 2005. LNCS, vol. 3760, pp. 22–39.
Springer, Heidelberg (2005)

23. Schmidt, K.: Controllability of open workflow nets. In: Enterprise Modelling and
Information Systems Architectures, Proceedings of the Workshop in Klagenfurt,
24–25 October 2005, pp. 236–249 (2005)

24. Massuthe, P., et al.: Can i find a partner? undecidability of partner existence for
open nets. Inf. Process. Lett. 108(6), 374–378 (2008)

25. Blech, J., Glesner, S., Leitner, J.: Formal verification of Java code generation from
UML models. In: Fujaba Days 2005, pp. 49–56 (2005)

26. Utting, M., Pretschner, A., Legeard, B.: A taxonomy of model-based testing
approaches. Softw. Test. Verification Reliab. 22(5), 297–312 (2012)



A Petri Net-Based Approach to Model
and Analyze the Management

of Cloud Applications

Antonio Brogi1, Andrea Canciani1, Jacopo Soldani1(B), and PengWei Wang2

1 Department of Computer Science, University of Pisa, Pisa, Italy
soldani@di.unipi.it

2 School of Computer Science and Technology,

Donghua University, Shanghai, China

Abstract. How to flexibly manage complex applications over
heterogeneous clouds is one of the emerging problems in the cloud era.
The OASIS Topology and Orchestration Specification for Cloud Applica-
tions (TOSCA) aims at solving this problem by providing a language to
describe and manage complex cloud applications in a portable, vendor-
agnostic way. TOSCA permits to define an application as an orchestra-
tion of nodes, whose types can specify states, requirements, capabilities
and management operations — but not how they interact each another.
In this paper we first propose how to extend TOSCA to specify the
behaviour of management operations and their relations with states,
requirements, and capabilities. We then illustrate how such behaviour
can be naturally modelled, in a compositional way, by means of open
Petri nets. The proposed modelling permits to automate different analy-
ses, such as determining whether a deployment plan is valid, which are
its effects, or which plans allow to reach certain system configurations.

1 Introduction

Available cloud technologies permit to run on-demand distributed software sys-
tems at a fraction of the cost which was necessary just a few years ago. On the
other hand, how to flexibly deploy and manage such applications over heteroge-
neous clouds is one of the emerging problems in the cloud era.

In this perspective, OASIS recently released the Topology and Orchestration
Specification for Cloud Applications (TOSCA [24,25]), a standard to support
the automation of the deployment and management of complex cloud-based
applications. TOSCA provides a modelling language to specify, in a portable and
vendor-agnostic way, a cloud application and its deployment and management.
An application can be specified in TOSCA by instantiating component types, by
connecting a component’s requirements to the capabilities of other components,
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and by orchestrating components’ operations into plans defining the deployment
and management of the whole application.

Unfortunately, the current specification of TOSCA [24] does not permit to
describe the behaviour of the management operations of an application. Namely,
it is not possible to describe the order in which the management operations of
a component must be invoked, nor how those operations depend on the require-
ments and affect the capabilities of that component. As a consequence, the ver-
ification of whether a plan to deploy an application is valid must be performed
manually, with a time-consuming and error-prone process.

In this paper, we first propose a way to extend TOSCA to specify the behav-
iour of management operations and their relations with states, requirements, and
capabilities. We define how to specify the management protocol of a TOSCA
component by means of finite state machines whose states and transitions are
associated with conditions on (some of) the component’s requirements and capa-
bilities. Intuitively speaking, those conditions define the consistency of compo-
nent’s states and constrain the executability of component’s operations to the
satisfaction of requirements.

We then illustrate how the management protocols of TOSCA components can
be naturally modelled, in a compositional way, by means of open Petri nets [2,18].
This allows us to obtain the management protocol of an arbitrarily complex cloud
application by combining the management protocols of its components. The
proposed modelling permits to automate different analyses, such as determining
whether a deployment plan is valid, which are its effects, or which plans allow
to reach certain system configurations.

The rest of the paper is organized as follows. Section 2 introduces the needed
background (TOSCA and open Petri nets), while Sect. 3 illustrates a scenario
motivating the need for an explicit, machine-readable representation of man-
agement protocols. Section 4 describes how TOSCA can be extended to specify
the behaviour of management operations, how such behaviour can be naturally
and compositionally modelled by means of open Petri nets, and how the pro-
posed modelling permits to automate different types of analysis. Related work
is discussed in Sect. 5, while some concluding remarks are drawn in Sect. 6.

2 Background

2.1 TOSCA

TOSCA [24] is an emerging standard whose main goals are to enable (i) the spec-
ification of portable cloud applications and (ii) the automation of their deploy-
ment and management. In this perspective, TOSCA provides an XML-based
modelling language which allows to specify the structure of a cloud application
as a typed topology graph, and deployment/management tasks as plans. More
precisely, each cloud application is represented as a ServiceTemplate (Fig. 1),
which consists of a TopologyTemplate and (optionally) of management Plans.

The TopologyTemplate is a typed directed graph that describes the topo-
logical structure of the composite cloud application. Its nodes (NodeTemplates)
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Fig. 1. TOSCA ServiceTemplate.

model the application components, while its edges (RelationshipTemplates)
model the relations between those application components. NodeTemplates
and RelationshipTemplates are typed by means of NodeTypes and
RelationshipTypes, respectively. A NodeType defines (i) the observable prop-
erties of an application component C, (ii) the possible states of its instances,
(iii) the requirements needed by C, (iv) the capabilities offered by C to sat-
isfy other components’ requirements, and (v) the management operations of C.
RelationshipTypes describe the properties of relationships occurring among
components.

On the other hand, Plans enable the description of application deployment
and/or management aspects. Each Plan is a workflow that orchestrates the oper-
ations offered by the application components (i.e., NodeTemplates) to address
(part of) the management of the whole cloud application1.

2.2 (Open) Petri Nets

Before providing a formal definition of open Petri nets (Definition 2), we recall
the definition of Petri nets just to introduce the employed notation. We instead
omit to recall other very basic notions about Petri nets (e.g., marking of a net,
firing of transitions, etc.) as they are well-know and easy to find in literature [23].

Definition 1. A Petri net is a tuple P = 〈P, T, •·, ·•,M0〉 where P is a set of
places, T is a set of transitions (with P ∩ T = ∅), •·, ·• : T → 2P are functions
assigning to each transition its input and output places, and M0 : P → N is the
initial marking of P.

According to [2], an open Petri net is an ordinary Petri net with a distin-
guished set of (open) places that are intended to represent the interface of the
net towards the external environment, meaning that the environment can put or
remove tokens from those places. In this paper, we will employ a subset of open
1 A more detailed and self-contained introduction to TOSCA can be found in [10].
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Petri nets, where transitions consume at most one token from each place, and
where the environment can both add/remove tokens to/from all open places.

Definition 2. An open Petri net is a pair Z = 〈P, I〉, where P = 〈P, T, •·, ·•,
M0〉 is an ordinary Petri net, and I ⊆ P is the set of open places. The places in
P\I will be referred to as internal places.

3 Motivating Scenario

Consider a developer who wants to deploy and manage the web services Send-
SMS and Forex on a TOSCA-compliant cloud platform. She first describes
her services in TOSCA, and then selects the third-party components (i.e.
NodeTypes) needed to run them. For instance, she indicates that her services
will run on a Tomcat server installed on an Ubuntu operating system, which
in turn runs on an AmazonEC2 virtual machine. Figure 2 illustrates the result-
ing TopologyTemplate, according to the Winery graphical notation [19]. For
the sake of simplicity, and without loss of generality, in the following we focus
only on the lifecycle interface [10] of each NodeType instantiated in the topology
(i.e., the interface containing the operations to install, configure, start, stop, and
uninstall a component).

Fig. 2. Motivating scenario.

Suppose that the developer wants to describe the automation of the deploy-
ment of the SendSMS and Forex services by writing a TOSCA Plan. Since
TOSCA does not include any representation of the management protocols of
(third-party) NodeTypes, developers may produce invalid Plans. For instance,
while Fig. 3 illustrates three seemingly valid Plans, only the third is a valid
plan. The other Plans cannot be considered valid since (a) Tomcat’s Configure
operation cannot be executed before Tomcat is running, and (b) Tomcat cannot
be installed when the Ubuntu operating system is not running.

While the validity of Plans can be manually verified, this is a time-consuming
and error-prone process. In order to enable the automated verification of the
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(a) An invalid BPMN plan.

(b) Another invalid BPMN plan.

(c) A valid BPMN plan.

Fig. 3. Deployment Plans.

validity of Plans, TOSCA should be extended so as to permit specifying the
behaviour of and the relations among NodeTypes’ management operations.

4 Modelling Management Protocols

While a TOSCA NodeType can be described by means of its states, requirements,
capabilities, and management operations, there is currently no way to specify
how management operations affect states, how operations or states depend on
requirements, or which capabilities are concretely provided in a certain state.

The objective of the next section is precisely to propose a way to extend
TOSCA to specify the behavior of management operations and their relations
with states, requirements, and capabilities.

4.1 Management Protocols in TOSCA

Let N be a TOSCA NodeType, and let us denote its states, requirements, capa-
bilities, and management operations with SN , RN , CN , and ON , respectively.

We want to permit describing whether and how the management operations
of N depend on other operations of the same node as well as on operations of
the other nodes providing the capabilities that satisfy the requirements of N .

– The first type of dependencies can be easily described by specifying the rela-
tionship between states and management operations of N . More precisely, the
order with which the operations of N can be executed can be described by
means of a transition relation τ , that specifies whether an operation o can be
executed in a state s, and which state is reached by executing o in s.

– The second type of dependencies can be described by associating transitions
and states with (possibly empty) sets of requirements to indicate that the
corresponding capabilities are assumed to be provided. More precisely, the
requirements associated with a transition t specify which are the capabili-
ties that must be offered by other nodes to allow the execution of t. The
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requirements associated with a state of a NodeType N specify which are the
capabilities that must (continue to) be offered by other nodes in order for N
to (continue to) work properly.

To complete the description, each state s of a NodeType N also specifies the
capabilities provided by N in s.

Definition 3. Let N = 〈SN , RN , CN , ON ,MN 〉 be a NodeType, where
SN , RN , CN , and ON are the sets of its states, requirements, capabilities, and
management operations. MN = 〈s, ρ, γ, τ〉 is the management protocol of N ,
where

– s ∈ SN is the initial state,
– ρ is a function indicating, for each state s ∈ SN , which conditions on require-

ments must hold (i.e., ρ(s) ⊆ RN , with ρ(s) = ∅)2,
– γ is a function indicating which capabilities of N are concretely offered in a

state s ∈ SN (i.e., γ(s) ⊆ CN , with γ(s) = ∅), and
– τ ⊆ SN × 2RN × ON × SN is a set of quadruples modelling the transition

relation (i.e., 〈s,H, o, s′〉 ∈ τ means that in state s, and if condition H holds,
o is executable and leads to state s′).

Syntactically, to describe MN we slightly extend the syntax3 for describing a
TOSCA NodeType. Namely, we enrich the description of an instance state by
introducing the nested elements ReliesOn and Offers. ReliesOn defines ρ (of
Definition 3) by enabling the association between states and assumed require-
ments, while Offers defines γ by indicating the capabilities offered in a state.
Furthermore, we introduce the element ManagementProtocol, which allows to
specify the InitialState s of the protocol, as well as the Transitions defining
the transition relation τ .

The management protocols of the NodeTypes in the motivating sce-
nario of Sect. 3 are shown in Fig. 4, where MWS is the management pro-
tocol for WebServices, MS for Server, MOS for OperatingSystem, and
MVM for VirtualMachine. Consider for instance the management proto-
col MS of NodeType Server defining the Tomcat server. Its states SN are
Unavailable (initial state), Stopped, and Working, the only requirement in RN

is ServerContainer, the only capability in CN is WebAppRuntime, and its man-
agement operations are Setup, Uninstall, Run, Stop, and Configure. States
Unavailable and Stopped are not associated with any requirement or capa-
bility. State Working instead specifies that the capability corresponding to the
ServerContainer requirement must be provided (by some other node) in order
for Server to (continue to) work properly. State Working also specifies that
Server provides the WebAppRuntime capability when in such state. Finally, all
transitions (but those involving operations Stop and Configure) constrain their
firability by requiring the capability that satisfies ServerContainer to be offered
(by some other node).
2 Without loss of generality, we assume that the initial state of a management protocol

has no requirements and does not provide any capability.
3 A more detailed syntax for extended NodeTypes can be found in [7].
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MWS MOS

MS MVM

Fig. 4. Management protocols of the NodeTypes in our motivating scenario.

Note that Definition 3 permits to define operations that have non-
deterministic effects when applied in a state (e.g., a state can have two outgoing
transitions corresponding to the same operation and leading to different states).
This form of non-determinism is not acceptable in the management of a TOSCA
application [10]. We will thus focus on deterministic management protocols, i.e.
protocols ensuring deterministic effects when performing an operation in a state.

Definition 4. Let N = 〈SN , RN , CN , ON ,MN 〉 be a NodeType. The manage-
ment protocol MN = 〈s, ρ, γ, τ〉 is deterministic if and only if

∀〈s1,H1, o1, s
′
1〉, 〈s2,H2, o2, s

′
2〉 ∈ T : s1 = s2 ∧ o1 = o2 ⇒ s′

1 = s′
2

4.2 Encoding Management Protocols in Petri Nets

A (deterministic) management protocol MN of a NodeType N can be easily
encoded by an open Petri net. Each state of MN is mapped into an internal
place of the Petri net, and each capability and requirement of N is mapped into
an open place of the same net. Furthermore, each transition 〈s,H, o, s′〉 of MN

is mapped into a Petri net transition t with the following inputs and outputs:

(i) The input places of t are the places denoting s, the requirements that are
needed but not already available in s (i.e., (ρ(s′) ∪ H) − ρ(s)), and the
capabilities that are provided in s but not in s′ (i.e., γ(s) − γ(s′)).

(ii) The output places of t are the places denoting s′, the requirements that were
needed but are no more assumed to hold in s′ (i.e., (ρ(s) ∪ H) − ρ(s′)), and
the capabilities that are provided in s′ but not in s (i.e., γ(s′) − γ(s)).

The initial marking of the obtained net prescribes that the only place initially
containing a token is that corresponding to the initial state s of MN .
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Fig. 5. Example of Petri net translation.

Definition 5. Let N = 〈SN , RN , CN , ON ,MN 〉 be a NodeType, with MN =
〈s, ρ, γ, τ〉. The management protocol MN is encoded into an open Petri net
ZN = 〈PN , IN 〉, with PN = 〈PN , TN , •·, ·•,M0〉 and IN ⊆ PN , as follows.

– PN = SN ∪ RN ∪ CN , i.e. the set PN of places contains a separate place for
each state in SN , for each requirement in RN , and for each capability in CN .

– IN = RN ∪ CN , i.e. the set IN ⊂ PN of open places contains the places
denoting the requirements in RN and the capabilities in CN .

– TN = τ (i.e., the set TN contains a net transition t for each transition
〈s,H, o, s′〉 ∈ τ), and ∀t = 〈s,H, o, s′〉 ∈ TN

(i) •t = {s}∪((ρ(s′)∪H)−ρ(s))∪(γ(s)−γ(s′)), i.e. the set •t of input places
contains the place s, the places denoting the requirements in (ρ(s′)∪H)−
ρ(s), and those denoting the capabilities in γ(s) − γ(s′).

(ii) t• = {s′} ∪ ((ρ(s) ∪ H) − ρ(s′)) ∪ (γ(s′) − γ(s)), i.e. the set t• of output
places contains the place s′, the places denoting the requirements in (ρ(s)∪
H) − ρ(s′), and those denoting the capabilities in γ(s′) − γ(s).

– The initial marking M0 of ZN is defined as follows:

∀p ∈ PN .M0(p) =

{
1 if p denotes s

0 otherwise

The above definition ensures that the Petri net encoding of a management pro-
tocol satisfies the following properties:

– There is a one-to-one correspondence between the marking of the internal
places of the Petri net and the states of a management protocol. Namely,
there is exactly one token in the internal place denoting the current state, and
no tokens in the other internal places.

– Each operation can be performed if and only if all the necessary requirements
are available in the source state, and no capability required by any connected
component is disabled in the target state.

Consider for instance the management protocol MS (Fig. 4), whose correspond-
ing Petri net is shown in Fig. 5. Each state in MS is translated into an internal
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place (represented as a circle), while the ServerContainer requirement and
the WebAppRuntime capability are translated into open places (represented as
dashed circles). Additionally, protocol transitions are translated into net transi-
tions. For example, the transition 〈Stopped,{ServerContainer}, Run, Working〉
is translated into a Petri net transition, whose inputs places are Stopped and
ServerContainer, and whose outputs places are Working and WebAppRuntime.

4.3 Modelling the Management of a ServiceTemplate

We now show how the Petri net modelling the management protocol of a
TOSCA TopologyTemplate (specifying a whole cloud-based application) can
be obtained, in a compositional way, from the Petri nets modelling the manage-
ment protocols of the NodeTypes in such TopologyTemplate.

We first need to model (by open Petri nets working as a capability con-
trollers) the Relationship-Templates that define in a TopologyTemplate the
association between the requirements of a NodeTypes and the capabilities of other
NodeTypes. To do that, we first define an utility binding function that returns
the set of requirements with which a capability is associated.

Definition 6. Let S be a ServiceTemplate, and let c be a capability offered
by a NodeType in S. We define b(c, S) = {r1, . . . , rn}, where r1, . . . , rn are the
requirements connected to c in S by means of RelationshipTemplates.

We now exploit function b to define capability controllers. On the one hand, the
controller must ensure that once a capability c is available, the nodes exposing
the connected requirements r1, . . . , rn are able to simultaneously exploit it. This
is obtained by adding a transition c↑ able to propagate the token from place
c to places r1, . . . , rn (i.e., the input place of c↑ is c, and its output places
are r1, . . . , rn). On the other hand, the controller has also to ensure that the
capability is not removed while at least another node is actively assuming its
availability (with a condition on a connected requirement). Thus, we introduce
a transition c↓ whose input places are r1, . . . , rn and whose output place is c.

Definition 7. Let S be a ServiceTemplate, and let c be a capability offered by
a NodeType instantiated in S. Let r1, . . . , rn be the requirements exposed by the
nodes in S such that b(c, S) = {r1, . . . , rn}. The controller of c is an open Petri
net Zc = 〈Pc, Ic〉, with Pc = 〈Pc, Tc, •·, ·•,M0〉, defined as follows.

– The set Pc of places contains a separate place for the capability c and for each
requirement r1, . . . , rn. It also contains a place rc that witnesses the availability
of the capability c.

– The set Ic coincides with Pc.
– The set Tc contains only two Petri net transitions c↑ and c↓.

• The input and output places of c↑ are the place c, and the places r1, . . . , rn
and rc, respectively (i.e., •c↑ = {c} and c↑• = {r1, . . . , rn} ∪ {rc}).

• The input and output places of c↓ are the places r1, . . . , rn and rc, and the
place c, respectively (i.e., •c↑ = {r1, . . . , rn} ∪ {rc} and c↑• = {c}).

– The initial marking M0 of Zc is ∀p ∈ Pc.M0(p) = 0.
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Fig. 6. Example of capability controller.

An example of controller (for a capability c connected to two requirements r1
and r2) is illustrated in Fig. 6.

We can now compose the nets modelling the management protocols of
the NodeTypes instantiated in a ServiceTemplate’s topology by interconnect-
ing them with the above introduced controllers. The composition is quite
simple: We just collapse the open places corresponding to the same require-
ments/capabilities.

Definition 8. Let S be a ServiceTemplate. We encode S with an open Petri
net ZS = 〈PS , IS〉, where PS = 〈PS , TS , •·, ·•,M0〉, as follows.

– For each node N in the topology of S, we encode its management protocol with
an open Petri net ZN obtained as shown in Definition 5.

– For each capability c exposed by a NodeTemplate in S, we create an open Petri
net Zc (acting as its controller) as shown in Definition 7.

– We then compose the above mentioned nets by taking their disjoint union and
merging the places denoting the same requirement r or capability c.

– The initial marking M0 is the union of the markings of the collapsed nets.

For example, Fig. 7 shows the net obtained for the motivating scenario in Sect. 3.
For the sake of readability, in the figure we omit, for each capability c, the place
rc of its controller.

A very convenient property of the obtained encoding is that it is safe (i.e., the
number of tokens in each place does not exceed one, for any marking M that
is reachable from the initial marking M0 [23]). To prove it, we need to further
characterize the Petri net encoding we provided through Definitions 5, 7 and 8.

Property 1. Let S be a ServiceTemplate, and let ZS be its Petri net encoding.

ZS is safe.

Proof. The property follows from the properties (i), (ii), and (iii) shown in
Lemma 1 (see Appendix). More precisely, (i) proves that the internal places
denoting node states can contain at most one token, (ii) proves that each open
place denoting a capability c (as well as the corresponding place rc) can contain
at most one token, and (iii) proves that each open place denoting a requirement
can contain at most one token. Therefore, all places in ZS can contain at most
one token (in any reachable marking), thus making the whole net safe [23]. �
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4.4 Analyzing the Management of a ServiceTemplate

The Petri net encoding of the management of a ServiceTemplate S permits
us defining what is a valid plan according to such management. Essentially,
thanks to the encoding of capability controllers and to the way we compose
these controllers with management protocol encodings, the obtained net ensures
that no requirement can be assumed to hold if the corresponding capability
is not provided, and that no capability can be removed if at least one of the
corresponding requirements is assumed to hold. This permits to consider a plan
valid if and only if it corresponds to a firing sequence in the net encoding of S.

Definition 9. Let S be a ServiceTemplate and let ZS = 〈PS , IS〉, with
PS = 〈PS , TS , •·, ·•,M0〉, be the Petri net encoding of S. A sequence o1o2...om
of management operations is a valid sequential plan for S if and only if there is
a firing sequence t1t2 . . . tn (with ti ∈ TS) from the initial marking M0 such that

o1 · o2 · . . . · om = λ(t1) · λ(t2) · . . . · λ(tn),

where · indicates the concatenation operator4 and:

λ(t) =

{
ε if t denotes a c↑ or c↓transition
o if t denotes a management protocol transition 〈s,H, o, s′〉

It is easy to see now that plan (c) of Fig. 3 is valid since, for instance,

AmazonEC2:Start Container↑ Ubuntu:Install Ubuntu:Start SoftwareContainer↑
Tomcat:Setup Tomcat:Run Tomcat:Configure WebAppRuntime↑ SendSMS:Deploy
SendSMS:Start Forex:Deploy Forex:Start

is a corresponding firing sequence for the Petri net in Fig. 7. Conversely, plans
(a) and (b) in Fig. 3 are not valid as there are no corresponding firing sequences.
Intuitively speaking, (a) is not valid since after firing, for instance,

AmazonEC2:Start Container↑ Ubuntu:Install Ubuntu:Start SoftwareContainer↑
Tomcat:Setup

transition Tomcat:Configure cannot be fired. It indeed requires a token in the
Working place, but that place is empty and it is not possible to add tokens to it
without firing Tomcat:Run. On the other hand, (b) is not valid since after firing

AmazonEC2:Start Container↑ Ubuntu:Install

transition Tomcat:Setup cannot fire. It requires a token in the place denoting the
ServerContainer requirement, but that place is empty and it is not possible to
add tokens to it without firing SoftwareContainer↑, which in turn cannot fire as
it misses a token in the place denoting the Ubuntu’s SoftwareContainer capa-
bility (and no token can be added to such place without firing Ubuntu:Start).

We can easily extend the definition of validity from sequential plans to generic
workflow Plans, by constraining all their sequential traces to be valid.
4 The empty string ε is the neutral element of ·, hence controllers’ net transitions are

ignored (as λ(t) = ε when t denotes a c↑ or c↓ transition).
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Fig. 7. Petri net encoding for the motivating scenario in Sect. 3.

Definition 10. Let S be a ServiceTemplate, and let ZS be its Petri net encod-
ing. A workflow Plan P is valid for S if and only if all its sequential traces are
valid sequential plans for S (see Definition 9).

However, the above Definition 10 does not ensure that all traces end up in the
same setting of the ServiceTemplate. Two different traces can reach two dif-
ferent markings with a different token assignment for the internal places. This
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would mean that, by differently inter-leaving the activities in a workflow Plan,
the nodes in a ServiceTemplate can end up in different states (thus potentially
activating different capabilities and assuming different requirements). This is
not acceptable in the management of a TOSCA application, as we would expect
a Plan to have deterministic effects (independently of the inter-leaving of the
activities that compose such Plan). We thus define the notion of deterministic
Plans, after introducing that of internally equivalent markings.

Definition 11. Let Z = 〈P, I〉, with P = 〈P, T, •·, ·•,M0〉, be an open Petri
net. Two markings M1,M2 : P → N are internally equivalent (M1 ≡M M2) if
and only if

∀p ∈ P\I.M1(p) = M2(p)

Definition 12. Let S be a ServiceTemplate, and let ZS = 〈PS , IS〉, with
PS = 〈PS , TS , •·, ·•,M0〉, be the Petri net encoding of S. Let also P be a valid
workflow Plan for S. P is also deterministic if and only if for each pair M1,M2

of markings reached by executing two finite, complete5 sequential traces of P

M1 ≡M M2.

The effects of a plan on the states of the components of a TOSCA
ServiceTemplate, as well as on the requirements that are satisfied and the
capabilities that are available, can then be directly determined from the mark-
ing that is reached performing the corresponding firing sequence. We thus first
characterize the states, requirements, and capabilities that are active in a mark-
ing (Definition 13), and we then employ such characterization to list the effects
of a deterministic Plan (Remark 1).

Definition 13. Let S be a ServiceTemplate, and let ZS = 〈PS , IS〉, with PS =
〈PS , TS , •·, ·•,M0〉, be the Petri net encoding of S. Let also Ni = 〈SNi

, RNi
, CNi

,
ONi

,MNi
〉, with MNi

= 〈s, ρ, γ, τ〉, be a node in S. Finally, let M be a marking.

– The active states in M are

AM
S = {s | s ∈ PS \ IS ∧ M(s) = 1}.

– The assumed requirements in M are

AM
R = {r | M(r) = 0 ∧ r ∈ b(c, S) ∧ M(rc) = 1}.

– The offered capabilities in M are

AM
C = {c | M(c) = 1 ∨ M(rc) = 1}.

Remark 1. Let S be a ServiceTemplate and let ZS be its Petri net encoding.
Let also P be a deterministic Plan, and let M0 and M be the initial marking
and a marking equivalent to the markings reached by performing the (complete)
sequential traces of P in M0.
5 A sequential trace for a Plan P is complete if and only if its first and last operation

correspond to an initial and to a final activity of P .
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– The requirements that are assumed after P are AM
R (where the newly assumed

ones are AM
R \AM0

R ), while those that are no more assumed are AM0
R \AM

R .
– The capabilities that are offered after P are AM

C (where the newly added ones
are AM

C \AM0
C ), while those that are no more offered are AM0

C \AM
C .

Please note that it is possible to consider as initial marking any other (reach-
able) marking so as to analyze maintenance plans (starting from non-initial
states) besides deployment plans. Obviously, the very same properties and tech-
niques also apply in this case.

Additionally, various classical notions in the Petri net context assume a spe-
cific meaning in the context of TOSCA applications. For example the problem of
finding whether there is a plan which achieves a specific goal (e.g., bringing some
components of an application to specific states or making some capabilities avail-
able) can be reduced in a straightforward way to the coverability problem [23]
on the associated Petri net. To show it, we first define the notion of goal, that
is a marking putting exactly one token in the places denoting the states and
capabilities that have to be active.

Definition 14. Let S be a ServiceTemplate, and let Ni = 〈SNi
, RNi

, CNi
,

ONi
,MNi

〉, with MNi
= 〈s, ρ, γ, τ〉, be a node in S. A goal for planning in ZS

is a pair G = 〈SG, CG〉 such that

(a) SG ⊆ ⋃
i SNi

is the set of states to be reached, and
(b) CG ⊆ ⋃

i CNi
is the set of capabilities to be offered.

A valid sequential plan P for S reaches the goal G = 〈SG, CG〉 if and only if

(a) ∀s ∈ SG.s ∈ SNi
⇒ s is the current state of Ni, and

(b) ∀c ∈ CG.c ∈ CNi
∧ s is the current state of Ni ⇒ c ∈ γ(s).

Theorem 1. Let S be a ServiceTemplate, and let ZS be the Petri net encoding
of S. Finding a valid sequential plan for S that reaches a goal G corresponds to
solving a coverability problem in ZS.

Proof. Let G = 〈SG, CG〉. We can easily build a marking MG : PS → {0, 1} as
follows:

∀p ∈ PS .MG(p) =

⎧
⎪⎨

⎪⎩

1 if p ∈ SG

1 if p = rc ∧ c ∈ CG

0 otherwise

From the above, it follows that finding a sequential plan that reaches the goal
G corresponds to solving the coverability problem for the marking MG. �
Theorem 2. Let S be a ServiceTemplate, and let G be a goal. Finding a valid
sequential plan for S that reaches G can be solved with polynomial space.

Proof. The proof follows from the facts that the Petri net encoding ZS of S is
safe, that finding a sequential plan in ZS that reaches G corresponds to solving
a coverability problem, and that coverability in safe Petri nets is PSPACE-
complete [12]. �
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Another classical notion in the Petri net context that assumes a specific mean-
ing is that of reversibility [23]: The Petri net encoding of a ServiceTemplate S is
reversible if and only if it is always possible to softly reset the application, i.e. if
whatever (valid) sequence of operations we perform, we can always get back to
the initial state of S by performing another (valid) sequence of operations. This
is a very convenient property, because it guarantees that it is always possible to
generate a sequential plan for any reachable goal from any application state.

Definition 15. Let S be a ServiceTemplate, and let sS be its initial configu-
ration (i.e., the configuration in which all the management protocols of its nodes
are in their initial state). We say that S is softly resettable if and only if for
each valid sequential plan for S

o1o2...om

there exists a continuation

om+1om+2...om+n

such that
o1o2...omom+1om+2...om+n

is a valid sequential plan for S such that the firing of o1o2...omom+1om+2...om+n

from sS leads to sS.

Theorem 3. Let S be a ServiceTemplate, and let ZS be the Petri net encoding
of S.

S is softly resettable ⇔ ZS is reversible.

Proof. By Definition 15, S is softly resettable if and only if the following con-
dition holds: (C) For each valid sequence o1o2...on, we can always determine a
longer valid sequence o1o2...omom+1...om+n such that by firing it in the initial
configuration sS we end up in the same configuration sS .

Notice that sS corresponds to the initial marking of the Petri net encoding
ZS , and that a valid sequence of operations corresponds to a firing sequence in
ZS . Thus, condition C corresponds to saying that whatever firing sequence we
can perform in the initial marking, we can always find a longer firing sequence
that (starts and) ends up in the initial marking. This in turn corresponds to say-
ing that ZS is reversible (since whatever marking we can reach with a sequence
of firings, we can always come back to the initial marking). �

5 Related Work

Automating application management is a well-known problem in computer sci-
ence. With the advent of cloud computing, it has become even more prominent
because of the complexity of both applications and platforms [11]. This is wit-
nessed by the proliferation of so-called configuration management systems, like
Chef (https://www.chef.io/chef/) or Puppet (https://puppetlabs.com/). These

https://www.chef.io/chef/
https://puppetlabs.com/
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systems provide a domain-specific language to model the desired configuration
for a machine and employ a client-server model in which a server holds the
model and the client ensures this configuration is met. However, the lack of a
machine readable representation of management protocols of application com-
ponents inhibits the possibility of automating verification on components’ con-
figurations and dependencies.

A large body of research has been devoted to model interacting systems
by means of finite state machines, Petri nets, and other formal models (e.g.,
[5,16]). Our approach to protocol specification and analysis brings some similar-
ities for instance with [3,14,22,26], that employ high-level Petri nets for protocol
specification, and exploit notions like firability, reachability, and coverability, to
analyse such protocols. For instance, [3] employs “numeric” Petri nets to model
and analyse communication protocols. Such nets generalize tokens into tuples
of variables to model fields in protocol messages, introduce net data variables
to store “global values”, and associate conditions and operations with transi-
tions to permit checking and editing net variables. As the problem we address is
simpler, we do not need a complex system like [3] since we just need to synchro-
nize the management of connected components, by allowing each component to
determine whether a needed capability is actually offered. Similar considerations
apply to [14,22,26].

A detailed comparison with other existing approaches is beyond the scope of
this paper6. We focus next on the subset of approaches more closely related to
ours, tailored to model the behaviour of cloud application management.

A first attempt to master the complexity of the cloud is given by the Aeo-
lus component model [15]. The Aeolus model is specifically designed to describe
several characteristics of cloud application components (e.g., dependencies, non-
functional requirements, etc.), as well as the fact that component interfaces
might vary depending on the internal component state. However, the model only
allows to specify what is offered and required in a state. Our approach instead
allows developers to clearly separate the requirements ensuring the consistency
of a state from those constraining the applicability of a management opera-
tion. This allows developers to easily express transitions where requirements are
affecting only the applicability of an operation and not the consistency of a state
(e.g., the transition 〈Unavailable, {ServerContainer}, Setup, Stopped〉 of the
management protocol MS in Fig. 4). Such a kind of transitions cannot be eas-
ily modelled in Aelous. Furthermore, Aelous and other emerging solutions like
Juju (https://jujucharms.com/) and Engage [17], differ from our approach since
they are geared towards the deployment of cloud applications, thus not including
also their maintenance. Additionally, Aelous, Juju, and Engage are currently not
integrated with any cloud interoperability standard, thus limiting their applica-
bility to only some supported cloud platforms. Our approach, instead, intends to
model the entire lifecycle of a cloud application component, and achieves cloud
interoperability by relying on the TOSCA standard [24].

6 A more detailed discussion on existing approaches exploiting Petri nets for protocol
engineering can be found in [13].

https://jujucharms.com/
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To this end, TOSCA offers a rich type system permitting to match, adapt
and reuse existing solutions [10]. Since our proposal extends this type system,
it can also be exploited to refine existing reuse techniques, like [9,27]. Cur-
rently, these techniques are matchmaking and adapting (fragments of) existing
ServiceTemplates to implement a desired NodeType by checking whether the
features of the latter are all offered by the former. To overcome syntactic dif-
ferences, ontologies may be employed to check whether two different names are
denoting the same concept. However, these techniques are behaviour-unaware:
There is no way to determine whether the behaviour of the identified (fragment
of) ServiceTemplate is coherent with that of the desired Node-Type. Since our
approach permits describing the behaviour of management operations, it can be
exploited to extend the aforementioned techniques to become behaviour-aware.

It is also worth highlighting that we could directly compose the finite state
machines specifying management protocols, and model valid plans as the lan-
guage accepted by the composite finite state machine [6]. However, the size
of the latter grows exponentially with the number of application components.
This results in a high computational complexity, even if we exploit composition-
oriented automata (e.g., interface automata [1]). On the other hand, with open
Petri nets [2,18], we have a very simple composition approach, and the exponen-
tial growth only affects the amount of reachable markings (instead of the size of
the net). A simpler composition approach is even more convenient since cloud
applications can change over time. For instance, to add another web service to
our motivating scenario, our approach just requires to add the open Petri net
encoding its management protocol, and to connect the open places denoting its
requirement with the corresponding c↑ and c↓ transitions. On the other hand,
with an automata based approach, the composition would be much harder, as it
requires to compute the Cartesian product of the automatons’ states.

6 Conclusions

In this paper we have proposed an extension of TOSCA that permits to specify
the behaviour of management operations of cloud-based applications, and their
relations with states, requirements, and capabilities. We have then shown how
the management protocols of TOSCA components can be naturally modelled, in
a compositional way, by means of open Petri nets, and that such modelling per-
mits to automate different analyses, such as determining whether a plan is valid,
which are its effects, or which plans allow to reach certain system configurations.

Please note that, while some of those Petri-net analyses have an exponential
time complexity in the worst case, they still constitute a significant improvement
with respect to the state of the art, where the validity of deployment plans can be
verified only manually, after delving through the documentation of application
components. Please also note that our approach builds on top of, but is not
limited to, TOSCA. It can be easily adapted to other stateful behaviour models
of systems that describe states, requirements, capabilities, and operations.

We see different possible extensions of our work. We are currently working
on a prototype implementation of our approach, which includes a graphical user
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interface to support the definition of valid TOSCA specifications that include
management protocols. The graphical user interface will compile the manage-
ment protocols of a TOSCA application into a PNML file [4], hence enabling to
plug-in different PNML processing environments (e.g., LoLa, ProM, or WoPeD,
just to mention some) to implement the analyses described in Sect. 4.4. Another
interesting direction for future work is to investigate the applicability of more
sophisticated fault diagnosis analyses (like [20,21]) to identify the reasons why
a plan may not be valid (besides just showing the points in which a plan may
get stuck, as we currently do). Finally, we want to extend the matchmaking and
adaptation techniques we previously proposed [9,27] by including the behaviour
information coming from management protocols.

Appendix

The objective of this appendix is to provide the properties of the Petri net
encoding of a ServiceTemplate (see Definition 8) that are needed to prove its
safeness (see Proposition 1). First, since each node Ni in a ServiceTemplate S
can be in a unique state, exactly one of the internal places denoting its states
contains one token, while the others contain no token. This holds at any given
time, and thus in any marking that can be reached from the initial marking of the
Petri net encoding of ZS . In short, (i) each internal place of the net encoding a
ServiceTemplate contains at most one token. The same holds also for the open
places modeling (ii) capabilities and (iii) requirements.

Lemma 1. Let S be a ServiceTemplate and let ZS = 〈PS , IS〉, with PS =
〈PS , TS , •·, ·•,M0〉, be the Petri net encoding of S. Let also M be a mark-
ing reachable from the initial marking M0 of ZS. For each node Ni =
〈SNi

, RNi
, CNi

, ONi
,MNi

〉 (with MNi
= 〈s, ρ, γ, τ〉) in S, the following prop-

erties hold:

(i) ∃s′ ∈ SNi
.M(s′) = 1 ∧ ∀s ∈ SNi

.s �= s′ ⇒ M(s) = 0 or, equivalently:

Σs∈SNi
M(s) = 1

(ii) Let s be the current state of a node Ni (i.e. s ∈ SNi
∧ M(s) = 1). For any

capability c ∈ CNi
, the number of tokens in the open places rc and c is:

c /∈ γ(s) ⇔ M(c) + M(rc) = 0
c ∈ γ(s) ⇔ M(c) + M(rc) = 1

(iii) Let s be the current state of a node Ni (i.e. s ∈ SNi
∧ M(s) = 1). For any

requirement r ∈ RNi
bound to a capability c (i.e., r ∈ b(c, S)), the number

of tokens in the open places r and rc is:

r /∈ ρ(s) ⇔ (M(r) = M(rc) = 0) ∨ (M(r) = M(rc) = 1)
r ∈ ρ(s) ⇔ M(r) = 0 ∧ M(rc) = 1
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Proof. The proofs for (i), (ii), and (iii) are listed below.

(i) For each node Ni, the places denoting its states are internal to ZS . Hence,
their input and output transitions are not changed by the merge process,
which in turn means that only the net transitions (encoding the protocol
transitions) of the same node Ni can add/remove tokens to/from them.
By construction, the above mentioned transitions always input exactly one
token from an internal place and output exactly one token to an inter-
nal place (potentially the same). This guarantees that the total number of
tokens in the internal places of a single node cannot change:

Σs∈SNi
M(s) = Σs∈SNi

M ′(s),

where M ′ is a marking reached by firing a transition in M .
The above, along with the fact that the initial marking M0 of ZS includes

a token only in the places denoting the initial states of the nodes in S
(i.e., for each node Ni, Σs∈SNi

M0(s) = 1), implies that any sequence of
firings starting from the initial marking will preserve exactly one token in
the internal places denoting the states of each node.

(ii) First, we show that the property holds in the initial marking M0 of ZS .
According to the definition of management protocols (Definition 3), γ(s) =
∅, which means that (in order for the property to hold) the initial marking
M0 of the open places must be empty (i.e., for each capability c, M(c) +
M(rc) = 0). This follows from the construction of ZS (Definition 8), thus
the property holds for M0.

Since the property holds for the initial marking, we can prove that it
holds for every reachable marking, by showing that no transition can inval-
idate the property. We will thus consider it as invariant.
Consider the capability c of a node Ni. The places mentioned in the prop-
erty (i.e., c and rc) are connected to the c↑ and c↓ transitions, and to the
transitions of Ni that input/output a token to/from c. These are the only
transitions that might affect the invariant, since the transitions connected to
the requirements managed by the controller of c cannot change the marking
of c nor that of rc.

The c↑ and c↓ transitions cannot affect the invariant, since they do not
change the total number of tokens in c and rc. This is because, whenever
c↑ fires, it removes one token from c, but it also adds one token to rc (and
to all of the other ri places). Symmetrically, whenever c↓ fires, it removes
one token from rc (and from each of the other ri places), but it also adds
one token to c.

Thus, the only transitions that might invalidate the invariant are the
transitions of the node Ni that input/output one token to/from c. Since
all these transitions move a token from a state s to a state s′, they can be
classified as follows:

(a) c is either provided in both s and s′ or in neither of them (i.e., c ∈
γ(s) ∩ γ(s′) ∨ c /∈ γ(s) ∪ γ(s′));

(b) c is provided in s′, but it is not provided in s (i.e., c ∈ γ(s′) − γ(s));
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(c) c is provided in s, but it is not provided in s′ (i.e., c ∈ γ(s) − γ(s′)).
Each of these cases is consistent with the property that we want to prove.

(a) In the first case, transitions do not affect c at all, as (by construction) they
are not even connected to c. They thus preserve the sum M(c) + M(rc),
as well as the truth value of c ∈ γ(·).

(b) In the second case, transitions lead to a state s′ such that c ∈ γ(s′), but
they also add a token to c. If the invariant held before the transition
(i.e., M(c) + M(rc) = 0 with M(s) = 1 ∧ c /∈ γ(s)), it also holds after the
transition, because the sum becomes M(c) + M(rc) = 1 with M(s′) =
1 ∧ c ∈ γ(s).

(c) The third case is precisely the opposite of the second one, since transitions
lead to a state s′ such that c /∈ γ(s′) and they remove a token from c.
If the invariant held before the transition (i.e., M(c) + M(rc) = 1 with
M(s) = 1 ∧ c ∈ γ(s)), then it also holds after the transition. The sum
indeed becomes M(c) + M(rc) = 1 with M(s′) = 1 ∧ c /∈ γ(s).

In conclusion, since the invariant holds for M0 and none of the transitions
can invalidate it, by induction (over the length of a firing sequence) it holds
for any reachable marking.

(iii) The proof of the property follows the same line as the one for (ii). Namely,
the property can be proved to hold for any reachable marking by induction
over the length of a firing sequence, by showing that it holds for the initial
marking M0, and that none of the transitions can invalidate such property.

�
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19. Kopp, O., Binz, T., Breitenbücher, U., Leymann, F.: Winery - modeling tool for
TOSCA-based cloud applications. In: Basu, S., Pautasso, C., Zhang, L., Fu, X.
(eds.) ICSOC 2013. LNCS, vol. 8274, pp. 700–704. Springer, Heidelberg (2013)

20. Lohmann, N.: Why does my service have no partners? In: Bruni, R., Wolf, K. (eds.)
WS-FM 2008. LNCS, vol. 5387, pp. 191–206. Springer, Heidelberg (2009)

21. Lohmann, N., Fahland, D.: Where did i go wrong? In: Sadiq, S., Soffer, P., Völzer,
H. (eds.) BPM 2014. LNCS, vol. 8659, pp. 283–300. Springer, Heidelberg (2014)

22. Morgan, E.T., Razouk, R.R.: Interactive state-space analysis of concurrent sys-
tems. IEEE Trans. Software Eng. 10, 1080–1091 (1987)

23. Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4),
541–580 (1989)

24. OASIS: Topology and Orchestration Specification for Cloud Applications (2013).
http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.pdf

25. OASIS: TOSCA Simple Profile in YAML (2014). http://docs.oasis-open.org/
tosca/TOSCA-Simple-Profile-YAML/v1.0/TOSCA-Simple-Profile-YAML-v1.0.
pdf

26. Paule, C., Eckert, H.: The NEt Simulation SYstem NESSY: Summary and Exam-
ple. Ges. fur Mathematik u, Datenverarbeitung (1985)

27. Soldani, J., Binz, T., Breitenbcher, U., Leymann, F., Brogi, A.: ToscaMart: a
method for adapting and reusing cloud applications. J. Syst. Softw. 113, 395–406
(2016)

http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.pdf
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/TOSCA-Simple-Profile-YAML-v1.0.pdf
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/TOSCA-Simple-Profile-YAML-v1.0.pdf
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/TOSCA-Simple-Profile-YAML-v1.0.pdf


Non-interference Notions Based on Reveals
and Excludes Relations for Petri Nets

Luca Bernardinello(B), Görkem Kılınç, and Lucia Pomello
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Abstract. We introduce two families of relations on the transitions of
a Petri net. The first one is an adaptation of the “reveals” relation pre-
viously defined on occurrence nets for fault diagnosis applications. Here,
this relation is considered for modeling positive information flow, which
arises when the occurrence of a transition gives the information that
another transition already occurred or will occur. The second one, called
“excludes”, is presented for modeling negative information flow, which
arises when the occurrence of a transition gives information on the non-
occurrence of another transition, in the past or in the future. We consider
the notion of non-interference proposed in the literature for formalizing
security in distributed systems. On the basis of reveals and excludes
relations we propose a collection of new notions of non-interference for
ordinary Petri nets and compare them with notions already proposed in
the literature.

Keywords: Information flow · Non-interference · Reveals · Excludes ·
Petri nets · Unfolding

1 Introduction

Information flow is the transfer of a piece of information from an entity to
another in a system. It can occur, for example, among variables of a program
or among components of a distributed system. Information flow can be used to
rule the behavior of a system, to guarantee the correct synchronization of tasks,
to implement a communication protocol, and so on. However, information flow
can be undesirable when it unintentionally leaks a piece of information to some
unauthorized entities.

In this paper, we distinguish two kinds of information flow in Petri nets. The
first one arises when the occurrence of a transition gives the information that
another transition has already occurred or will inevitably occur in the future.
We call this positive information flow. The second one is based on deducing
information about non-occurrence of a transition. More specifically, this kind of
information flow arises when the occurrence of a transition means that another
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transition did not occur or cannot occur in the future. We call this negative
information flow.

We introduce two families of relations on the transitions of Petri nets which
model the two kinds of information flow that are mentioned above. The reveals
relation, with its variants, models positive information flow. The reveals relation
was originally defined on the events of an occurrence net for the aim of fault
diagnosis in [17]. In this paper, we redefine it on the transitions of a Petri net.
Informally, a transition reveals another transition if its occurrence implies that
the other one has already occurred or will occur inevitably in the future. We
also present two parametric variants. The first one, called extended-reveals, is
defined between sets of transitions. The second one is called repeated reveals and
it considers the repeated occurrences of transitions. Excludes is a new relation
which models negative information flow in Petri nets. Informally, two transitions
exclude each other if they never appear together in the same run. We also dis-
tinguish future/past excludes with respect to the future and past occurrences of
transitions.

In the literature there are several formal notions concerning information
flow such as non-deducibility [26], opacity [7,8,20], anonymity [25] and non-
interference. Here, we apply the newly introduced relations to study formal
notions of unwanted information flow, based on non-interference notion within
the theory of Petri nets, and compare our approach with existing approaches.

Non-interference was first defined for deterministic programs [15]. Later, sev-
eral adaptations were proposed for more abstract settings, like transition sys-
tems, usually related to observational semantics [12,13,21,23,24].

Broadly speaking, these approaches assume that the actions performed in a
system belong to two types, conventionally called high (hidden) and low (observ-
able). A system is then said to be free from interference if a user, which knows
the structure of the system, by interacting only via low actions, cannot deduce
information about which high actions have been performed. This approach was
formalized in terms of 1-safe Petri nets in [9], relying on known observational
equivalences, including bisimulation.

In [22] a special kind of non-interference, called intransitive non-interference,
is introduced in which there are not only two kinds of actions but also an inter-
mediate kind called downgrading. The idea of having downgrading actions is
that whenever one of such actions occurs it declassifies the high actions exe-
cuted before it. Intransitive non-interference has been formalized in elementary
net systems in [16] and studied in [5,6] on Place/Transition nets.

Similarly to Busi and Gorrieri [9], in this paper we analyze systems that can
perform high and low level actions without considering downgrading actions. We
rely on a progress assumption which was ignored in non-interference notions in
the literature.

We propose a collection of new non-interference notions for ordinary Petri
nets among which a system analyzer or designer can choose with respect to secu-
rity needs. The new non-interference notions deal with positive information flow
as well as negative information flow, regarding both past and future occurrences
and are based on unfoldings and on reveals and excludes relations which are
formally defined in Sect. 3.
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The first non-interference notion we introduce is called Reveals based Non-
Interference (RNI) and states that a net is secure if no low transition reveals
any high transition (Sect. 4.1). We also propose more restrictive notions called
k-Extended-Reveals based Non-Interference (k-ERNI) and n-Repeated-Reveals
based Non-Interference (n-ReRNI); these are based on observation of multi-
ple occurrences of low transitions (Sects. 4.2 and 4.3). In Sect. 4.4, Improved-
Positive/Negative Non-Interference (I-PNNI) is introduced on the basis of both
reveals and future/past-excludes relations between low and high transitions, cap-
turing both positive and negative information flow. The new notions are dis-
cussed and compared with each other while they are introduced. In Sect. 5, we
compare, on the basis of examples, the new introduced notions with the ones
already introduced in the literature and mentioned at the beginning of Sect. 4.
Finally, Sect. 6 concludes the paper and discusses some possible developments.

2 Basic Definitions

Let R ⊆ I × I be a binary relation, the transitive closure of R is denoted by R+;
the reflexive and transitive closure of R is denoted by R∗.

A net is a triple N = (B,E, F ), where B and E are disjoint sets, and F ⊆
(B×E)∪(E×B) is called the flow relation. The pre-set of an element x ∈ B∪E
is the set •x = {y ∈ B ∪ E : (y, x) ∈ F}. The post-set of x is the set x• = {y ∈
B ∪ E : (x, y) ∈ F}.

An (ordinary) Petri net N = (P, T, F,m0) is defined by a net (P, T, F ), and
an initial marking m0 : P → N. The elements of P are called places, the elements
of T are called transitions. A net is finite if the sets of places and of transitions
are finite.

A marking is a map m : P → N. A marking m is safe if m(p) ∈ {0, 1} for all
p ∈ P . Markings represent global states of a net.

A transition t is enabled at a marking m, denoted m[t〉, if, for each p ∈ •t,
m(p) > 0. Let t be enabled at m; then, t can fire in m producing the new marking
m′, denoted m[t〉m′ and defined as follows:

m′(p) =

⎧
⎪⎨

⎪⎩

m(p) − 1 for all p ∈ •t \ t•

m(p) + 1 for all p ∈ t• \ •t
m(p) in all other cases

A marking q is reachable from a marking m if there exist transitions t1 . . . tk+1

and intermediate markings m1 . . . mk such that: m[t1〉m1[t2〉m2 . . . mk[tk+1〉q.
The set of markings reachable from m will be denoted by [m〉. If all the markings
in [m0〉 are safe, then N = (P, T, F,m0) is said to be 1-safe (or, shortly, safe).
N is called 1-live iff ∀t ∈ T ∃m ∈ [m0〉 such that m[t〉. Let t1, t2 ∈ T and
m ∈ [m0〉, t1 is in conflict with t2 at m if they are both enabled at m and the
firing of one of them disables the other one.

In the rest of the paper, we will consider systems modeled by 1-live Petri
nets, in which the underlying nets are finite and all transitions have non-empty
presets, i.e., all have input places.
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Let N = (B,E, F ) be a net, and x, y ∈ B ∪ E. If there exist e1, e2 ∈ E, such
that e1 	= e2, e1F

∗x, e2F
∗y, and there is b ∈ •e1 ∩ •e2, then we write x#y.

A net N = (B,E, F ), possibly infinite, is an occurrence net if the following
restrictions hold:

1. ∀x ∈ B ∪ E : ¬(xF+x)
2. ∀x ∈ B ∪ E : ¬(x#x)
3. ∀e ∈ E : {x ∈ B ∪ E | xF ∗e} is finite
4. ∀b ∈ B : |•b| ≤ 1

The set of minimal elements of an occurrence net N with respect to F ∗ will be
denoted by ◦N . The elements of B are called conditions and the elements of E
are called events. If x#y in an occurrence net, then we say that x and y are in
conflict. Let e ∈ E be an event in an occurrence net; then the past of e is the
set of events preceding e in the partial order given by F ∗: ↑ e = {t ∈ E | tF ∗e}.
An occurrence net represents the alternative histories of a process; therefore its
underlying graph is acyclic, and paths branching from a condition, corresponding
to a choice between alternative behaviors, never converge. A run of an occurrence
net N = (B,E, F ) is a set R of events which is closed with respect to the past,
and free of conflicts: (1) for each e ∈ R, ↑ e ⊆ R; (2) for each e1, e2 ∈ R,
¬(e1#e2). A run is maximal if it is maximal with respect to set inclusion.

Let Ni = (Pi, Ti, Fi) be a net for i = 1, 2. A map π : P1 ∪ T1 → P2 ∪ T2 is a
morphism from N1 to N2 if:

1. π(P1) ⊆ P2; π(T1) ⊆ T2

2. ∀t ∈ T1 the restriction of π to •t is a bijection from •t to •π(t)
3. ∀t ∈ T1 the restriction of π to t• is a bijection from t• to π(t)•

Fig. 1. A Petri net and its unfolding
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A branching process of a Petri net N = (P, T, F,m0) is a pair (O, π), where
O = (B,E,G) is an occurrence net, and π is a morphism from O to N such that:

1. ∀p ∈ P m0(p) = |π−1(p) ∩ ◦O|
2. ∀x, y ∈ E, if •x = •y and π(x) = π(y), then x = y

A branching process Π1 = (O1, π1) is a prefix of Π2 = (O2, π2) if there is an
injective morphism f from O1 to O2 which is a bijection when restricted to ◦O1,
and such that π1 = π2f .

Any finite Petri net N has a unique branching process which is maximal
with respect to the prefix relation. This maximal process, called the unfolding of
N , will be denoted by Unf(N) = ((B,E, F ), λ), where λ is the morphism from
(B,E, F ) to N [11]. In Fig. 1, a Petri net with its infinite unfolding is illustrated.

The set of events of an unfolding Unf(N) = ((B,E, F ), λ) corresponding to
a specific transition t of a given Petri net N = (P, T, F,m0) will be denoted
Et = {e ∈ E : λ(e) = t}.

The following definitions concern the reveals relations, originally introduced
for occurrence nets in [17] and applied to diagnostics problems. These notions
have been further studied in [1,2].

Definition 1 [17]. Let O = (B,E, F ) be an occurrence net, Ω ⊆ 2E be the set
of its maximal runs, and e1, e2 be two of its events. Event e1 reveals e2, denoted
e1�e2, iff ∀σ ∈ Ω, e1 ∈ σ =⇒ e2 ∈ σ.

Definition 2 [1]. Let O = (B,E, F ) be an occurrence net, Ω ⊆ 2E be the set of
its maximal runs, and A,B two sets of events. A extended-reveals B, A � B,
iff ∀ω ∈ Ω,A ⊆ ω =⇒ B ∩ ω 	= ∅.
The reveals relation can be expressed as extended-reveals relation between sin-
gletons: a � b can be written as {a} � {b}.

Example 1. In the occurrence net given in Fig. 2, e2�e4 and e4�e2. e6�e4 but
e4 	� e6 since after e4, e7 can occur instead of e6.

In the same occurrence net, the occurrence of e1 does not necessarily mean
that e5 will occur, however e1 together with e2 extended-reveals e5, denoted
{e1, e2} � {e5}. The occurrence of e4 reveals neither e6 nor e7. However, it
reveals that either e6 or e7 will occur, denoted {e4} � {e6, e7}.

Fig. 2. An occurrence net.
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3 Reveals and Excludes Relations on Petri Nets

In this section, we first introduce a reveals and an extended-reveals relation on
the set of transitions of a Petri net, relying on the corresponding relations on
occurrence nets as recalled in Sect. 2. We then define a parametric relation, called
repeated-reveals, again on the set of transitions of a Petri net. Reveals, extended-
reveals and repeated-reveals will be used here to model positive information flow.

We then define a relation between transitions, called excludes, which will be
used to model negative information flow.

We will assume progress in the behavior of nets, which means that a con-
stantly enabled transition occurs if it is not disabled by another transition. In
other words, we consider only maximal runs in the unfolding.

In the rest of this section, N = (P, T, F,m0) will denote a 1-live Petri net,
Unf(N) = ((B,E, F ), λ) its unfolding and Ω the set of all its maximal runs.

Definition 3. Let t1, t2 ∈ T be two transitions. Then t1 reveals t2, denoted
t1 �tr t2, iff ∀ ω ∈ Ω Et1 ∩ ω 	= ∅ =⇒ Et2 ∩ ω 	= ∅.
We say transition t1 reveals transition t2 if each maximal run which contains an
occurrence of t1 also contains at least one occurrence of t2. This means that for
each observation of t1, t2 has been already observed or will be observed.

The reveals relation on transitions is reflexive and transitive.

Example 2. In the net N1, in Fig. 1, t3 reveals both t2 and t1. In order to fire t3
we must first fire t1 and t2. In fact, in the unfolding, Unf(N1), given in Fig. 1,
for each occurrence of t3 there is at least one occurrence of t2 and similarly, for
each occurrence of t3 there is at least one occurrence of t1. However, t1 does
not reveal t2 or t3, since there is a run in which t1 occurs and neither t2 nor t3
occurs.

Transition t1 also reveals transition t6 because when t1 fires, t5 cannot fire
anymore and, since the net progresses, t6 must eventually fire. Since we do not
assume strong fairness, t1 	�tr t4, after the occurrence of t1, t2 and t3 can loop
forever. Reveals relation is not only about past occurrences. Observing t1 does
not tell us when t6 fires. It might have fired already or it will fire in the future.
t1 �tr t6 tells us that when t1 occurs, an occurrence of t6 is inevitable.

When one transition alone does not give much information about the behavior
of the net, a set of transitions together could do. Extended-reveals deals with
this.

Definition 4. Let W,Z ⊆ T . Then W extended-reveals Z, denoted W�tr Z,
iff ∀ ω ∈ Ω ∧

t∈W

(ω ∩ Et 	= ∅) =⇒
∨

t∈Z

(ω ∩ Et 	= ∅)

A set of transitions W extended-reveals another set of transitions Z, if each
maximal run, which contains at least an occurrence of each transition in W , also
contains at least an occurrence of a transition in Z.
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Fig. 3. Examples of extended reveals

The reveals relation on transitions, t1 �tr t2, corresponds to the extended-
reveals relation between singletons, {t1}�tr {t2}.

Example 3. In the net shown in Fig. 3, t2 alone does not reveal t5, whereas
t2 and t3 together tell us that t5 will fire, denoted as {t2, t3}�tr {t5}. In the
same net, the occurrence of t5 tells us that either t8 or t9 will fire, denoted as
{t5}�tr {t8, t9}. Similarly, {t7, t8}�tr {t10}, i.e., there is no maximal run which
includes occurrences of t7, t8 and not t10.

Proposition 1. Let t1, t2 ∈ T . t1�tr t2 ⇐⇒ ∀e1 ∈ Et1 : {e1} � Et2 .

Proof. Suppose first that ∀e1 ∈ Et1 : {e1} � Et2 . By using Definition 2
(extended-reveals between events), we rewrite ∀e1 ∈ Et1 : {e1} � Et2 into

∀ e1 ∈ Et1 , ∀ω ∈ Ω : {e1} ⊆ ω =⇒ Et2 ∩ ω 	= ∅.

By moving the universal quantifier ∀ω ∈ Ω to the beginning of the statement.
∀e1 ∈ Et1 : {e1} ⊆ ω =⇒ Et1 ∩ ω 	= ∅, we get

∀ω ∈ Ω : Et1 ∩ ω 	= ∅ =⇒ Et2 ∩ ω 	= ∅.

With this, we have achieved the definition of t1 �tr t2.
Suppose now that t1 �tr t2. From Definition 3, we can rewrite t1 �tr t2 as

∀ω ∈ Ω : Et1 ∩ ω 	= ∅ =⇒ Et2 ∩ ω 	= ∅.

The above statement can be rewritten equivalently as:

∀ω ∈ Ω,∀e1 ∈ Et1 : {e1} ∩ ω 	= ∅ =⇒ ∃e2 ∈ Et2 : {e2} ∩ ω 	= ∅.
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This means that each occurrence of t1 appears together with at least one occur-
rence of t2 in the same maximal run. So the statement becomes:

∀ω ∈ Ω,∀e1 ∈ Et1 : {e1} ∩ ω 	= ∅ =⇒ Et2 ∩ ω 	= ∅.

Note that for each e1 ∈ Et1 it is possible to have different occurrences of t2
for different runs. This is in accordance with the definition of extended-reveals
between events. Consequently we can write: ∀e1 ∈ Et1 : {e1} � Et2 . ��

Repeated occurrences of the same transition can give more information about
the behavior of a net than only one occurrence.

Definition 5. Let R be the set of all runs of N , t1, t2 ∈ T be two transitions,
and n be a positive integer. Let Rn

ti = {ω ∈ R : |ω ∩ Eti | = n} and Ωn
ti denote

the set of maximal runs in Rn
ti with respect to set inclusion (i.e., Ωn

ti ⊆ Rn
ti such

that if u, v ∈ Ωn
ti ∧ u ⊆ v then u = v).

If Ωn
t1 	= ∅ then t1 n − repeated reveals t2, denoted t1 �n

tr t2, iff ∀ω ∈
Ωn

t1 Et2 ∩ ω 	= ∅.
If Ωn

t1 = ∅ then t1 �n
tr t2 is not defined.

Notation. t1 	�n
tr t2 will denote that there is at least one run in Ωn

t1 such that
t1 appears n times and t2 does not appear. ¬(t1 �n

tr t2) will denote that either
t1 �n

tr t2 is not defined, or t1 	�n
tr t2.

Example 4. Let us consider N3 in Fig. 3. Transition t11 does not reveal t12; how-
ever if two occurrences of t11 are observed, then t12 must have occurred, therefore
t11 2-Repeated reveals t12, denoted t11 �2

tr t12, whereas t11 	�1
tr t12 since after

the first occurrence of t11, t14 can fire instead of t12.
Since t11 can fire at most twice, neither t11 �3

tr t12 nor t11 	�3
tr t12 is defined;

therefore ¬(t11 �3
tr t12).

Proposition 2. Let R be the set of all runs of N and t1, t2 ∈ T .

t1 �1
tr t2 =⇒ t1 �tr t2.

Proof. Let R1
t1 = {ω ∈ R : |ω ∩Et1 | = 1} and Ω1

t1 be the set of maximal runs in
R1

t1 . If t1 �1
tr t2, then Ω1

t1 	= ∅ and ∀ω ∈ Ω1
t1 ω ∩ Et2 	= ∅. Let σ be an arbitrary

maximal run of Unf(N). Suppose that σ∩Et1 	= ∅ then we can always take a run
ω ∈ Ω1

t1 such that ω ⊆ σ. Then we know that σ contains at least one occurrence
of t2 and so t1�trt2. ��
The implication of the previous proposition does not hold in the other direction.
In fact, consider the net in Fig. 4, t1�trt2, t1�trt3, t1 	�1

tr t2 and t1 	�1
tr t3. The

main difference is that we consider only maximal runs for reveals relation. For
this net there is only one maximal run which contains t1 (twice), t2 and t3.
However, there is a run in Ω1

t1 in which t1 appears and t2 does not appear, as
well as a run in which t1 appears and t3 does not appear. All runs in Ω2

t1 , i.e.,
including t1 twice, contain both t2 and t3, i.e., t1 �2

tr t2 and t1 �2
tr t3.
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Fig. 4. Examples of reveals on transitions

Proposition 3. Let t1, t2 ∈ T . If t1 �n
tr t2 and Ωn+1

t1 	= ∅ then t1 �n+1
tr t2.

Proof. Let R be the set of all runs of N , Rn
t1 = {ω ∈ R : |ω ∩ Et1 | = n}

and Ωn
t1 be the set of maximal runs in Rn

t1 . If t1 �n
tr t2, then Ωn

t1 	= ∅ and
∀ω ∈ Ωn

t1 ω ∩ Et2 	= ∅. Let σ ∈ Ωn+1
t1 , we can always choose a run ω ∈ Ωn

t1 such
that ω ⊆ σ. Then we know that σ ∩ Et2 	= ∅, so t1 �n+1

tr t2. ��
The next relation we introduce is called excludes and it models what we call
negative information flow. Two transitions exclude each other if they never occur
in the same run. This means that the occurrence of one implies non-occurrence
of the other one.

Definition 6. Let t1, t2 ∈ T . t1 excludes t2, denoted t1 ex t2, iff ∀ω ∈ Ω
Et1 ∩ ω 	= ∅ =⇒ Et2 ∩ ω = ∅.
By definition, excludes is a symmetric relation. Moreover, it does not coincide
with conflict relation. Transitions which are in conflict at a reachable marking
can still appear in the same maximal run, so they may not exclude each other.

Example 5. Transitions t2 and t4 of N1 in Fig. 1 are in conflict whereas ¬(t2 ex
t4). In the unfolding in the same figure, it is possible to see a maximal run
including occurrences of both.

t5 ex t4 although they are not in conflict.
t7 ex t5, t5 ex t1 but ¬(t7 ex t1), indeed the relation is not transitive.

Excludes relation is not the opposite of reveals. Clearly, if t1 ex t2 then t1 	�tr t2,
but the implication does not hold in the other direction. For example, in N1 of
Fig. 1, t1 	�trt2 and ¬(t1 ex t2). However, there is an interesting relation between
excludes and extended-reveals relations.

Proposition 4. Let t1, t2 ∈ T . t1 ex t2 ⇐⇒ {t1, t2} �tr ∅.
Proof. Suppose {t1, t2} �tr ∅. By Definition 4, we have ∀ω ∈ Ω : (ω ∩ Et1 	=
∅ ∧ ω ∩ Et2 	= ∅) =⇒ ω ∩ ∅ 	= ∅. Since the consequent is false, we have ∀ω ∈ Ω :
ω ∩ Et1 = ∅ ∨ ω ∩ Et2 = ∅ which is equivalent to t1 ex t2. ��
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Existence of excludes relation between two transitions tells that they can never
appear in the same maximal run together. This refers to all past and future
occurrences of the two transitions. However, we are not only interested in two
transitions excluding each other in general, but also in cases in which the occur-
rence of a transition guarantees that another transition will never appear in the
future, although it might have occurred in the past, or that it might occur in the
future but did not occur in the past. We then define future-excludes and past-
excludes. The former focuses on the future occurrences while the latter focuses
on the past occurrences.

Definition 7. Let e ∈ E, ↓ e = {e′ ∈ E : e < e′}. Let t1, t2 ∈ T ; t1 future-
excludes t2, denoted t1 exf t2, iff ∀e ∈ Et1 ,∀e′ ∈ Et2 : ↓ e ∩ Et2 = ∅ ∧
¬(e co e′), i.e., t2 never occurs after t1 or concurrently with t1.

Example 6. In Fig. 5, t2 exf t3 since occurrence of t2 disables t3 forever, how-
ever after occurrence of t3, t2 can still fire in the future, therefore ¬(t3 exf t2).
Similarly, in this net, t2 exf t1. It is easy to see that t1 can occur many times
until t2 occurs, and after the occurrence of t2, it can never occur again.

Note that, unlike excludes, future-excludes is not symmetric.

Definition 8. Let e ∈ E, ↑ e = {e′ ∈ E : e′ < e}. Let t1, t2 ∈ T ; t1 past-
excludes t2, denoted t1 exp t2, iff ∀e ∈ Et1 ,∀e′ ∈ Et2 : ↑ e ∩ Et2 = ∅ ∧
¬(e co e′), i.e., t2 never occurs before t1 or concurrently with t1.

Example 7. In Fig. 5, t3 exp t2 since an occurrence of t3 means that t2 did
not fire in the past (after t2, t3 can never fire again). However ¬(t2 exp t3).
Similarly, in this net, t1 exp t2. It is easy to see that t1 and t3 can occur many
times before t2 occurs, so ¬(t2 exp t1); however after the occurrence of t2, they
can never occur again, thus t2 cannot appear in the past of t1 or t3.

Proposition 5. Let t1, t2 ∈ T . t1 exf t2 ⇐⇒ t2 exp t1.

Fig. 5. Examples of excludes
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Proof. We first prove that t1 exf t2 =⇒ t2 exp t1 by contradiction. Assume
t1 exf t2 and ¬(t2 exp t1). So, ∀e1 ∈ Et1 : ↓ e1 ∩ Et2 = ∅ and ∀e1 ∈ Et1 ,∀e2 ∈
Et2 : ¬(e1 co e2). Since t1 exf t2 implies that ¬(e1 co e2) for all occurrences of
t1 and t2, the unsatisfied requirement for t2 exp t1 is that there exists e2 ∈ Et2

such that ↑ e2 ∩ Et1 	= ∅. This means that: ∃e′
1 ∈ Et1 , ∃e′

2 ∈ Et2 : e′
1 < e′

2,
i.e., there is an occurrence of t1 in the past of an occurrence of t2, which is in
contradiction with: ∀e1 ∈ Et1 : ↓ e1 ∩ Et2 = ∅, which means that t2 cannot
occur after t1. Hence t1 exf t2 =⇒ t2 exp t1.

In the other direction, assume that t2 exp t1 and ¬(t1 exf t2). So,
∀e2 ∈ Et2 : ↑ e2 ∩ Et1 = ∅ and ∀e2 ∈ Et2 , ∀e1 ∈ Et1 : ¬(e2 co e1). Since
t2 exp t1 implies that ¬(e2 co e1) for all occurrences of t1 and t2, the unsatisfied
requirement for t1 exf t2 is that there exists e1 ∈ Et1 such that ↓ e1 ∩ Et2 	= ∅.
This means that:

∃e′
1 ∈ Et1 , ∃e′

2 ∈ Et2 : e′
1 < e′

2,

i.e., there is an occurrence of t1 in the past of an occurrence of t2, which is in
contradiction with:

∀e2 ∈ Et2 : ↑ e2 ∩ Et1 = ∅,

which means that t1 cannot occur before t2. Hence t2 exp t1 =⇒ t1 exf t2. ��
Proposition 6. Let t1, t2 ∈ T . t1 ex t2 ⇐⇒ (t1 exf t2 ∧ t1 exp t2).

Proof. By Definition 6, t1 ex t2 means

∀ω ∈ Ω : Et1 ∩ ω 	= ∅ =⇒ Et2 ∩ ω = ∅.

This means that t1 can never be in the same run with t2. So,

∀e1 ∈ Et1 , ∀e2 ∈ Et2 : ¬(e1 co e2) ∧ ¬(e1 < e2) ∧ ¬(e2 < e1).

By using Proposition 5, we can rewrite the above statement as: t2 exp t1 ∧
t1 exp t2 or, equivalently, t1 exf t1 ∧ t2 exf t1. Both formulas mean that
t1 and t2 cannot occur concurrently or one after the other. So the statements
t1 ex t2 and (t1 exf t2 ∧ t1 exp t2) are equivalent. ��

4 Non-interference with Petri Nets

In dealing with non-interference, one usually starts by classifying actions into
high and low, and assumes that an “ordinary” user, who knows the structure of
the system, can observe only the latter.

We will distinguish two kinds of information flow: positive and negative. As
discussed in Sect. 1, the former arises when the occurrence of a high level transi-
tion can be deduced from the low level behavior of the system, whereas a negative
information flow is concerned with the non-occurrence of a high transition.

Several non-interference notions have been proposed for Petri nets. The less
restrictive notion, introduced in [12,13], and also studied on 1-safe Petri nets
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in [9], is Strong Nondeterministic Non-Interference (SNNI), a trace-based prop-
erty (trace as sequence of event occurrences), that intuitively says that a sys-
tem is secure if produces the same sequences of low transitions even when high
transitions are prevented from occurring. More restrictive notions are based on
bisimulation [9,12,13].

Place Based Non-Interference (PBNI), introduced in [9], and other variants of
it [10], are based on the absence of some kinds of specific places in the net, called
causal and conflict places. A causal place is a place such that a low transition
consumes from it a token produced by a high transition. A conflict place is a
place such that at least one low transition and one high transition consume a
token from it. A net is considered to be PBNI secure in the absence of such
places. PBNI is one of the strongest among the known non-interference notions
for Petri nets.

In [9] the authors provide a survey and a comparison of non-interference
notions for 1-safe Petri nets. In the next section we will compare SNNI and
PBNI with the alternatives introduced in this paper.

Non-interference has been studied also in unbounded P/T nets [6] both for
systems with only high and low transitions and for systems with downgrading
transitions.

All these notions seem to aim mainly at deducing past occurrences of high
transitions: for example they all consider system N6 in Fig. 7 secure, whereas,
assuming progress, after the occurrence of l, a low user can deduce that h is
inevitable.

The notions we propose not only capture information flow about past occur-
rences of high transitions, but also about inevitable or impossible future occur-
rences of them. The mere ability to deduce that some high transition has occurred
is not always a security threat, provided the low user cannot know which one
occurred.

Fig. 6. A net modeling paper submission and evaluation.
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Let us illustrate this issue by an example. The net in Fig. 6 represents a
system in which a user can repeatedly submit a paper to a committee, each
time receiving a judgment (accept or reject). From now on, the black squares
represent high transitions. The review process can follow either of two paths,
and we do not want the user to know which one was chosen. When the user
receives an answer, he knows that some high transition occurred, but he cannot
infer which one.

For this reason, the new notions we are going to introduce in the following
will consider such a system secure, whereas it is not secure with respect to SNNI,
and the other above recalled notions.

In the sequel, N = (P, T, F,m0) will denote a 1-live Petri net such that
T = H ∪L, H ∩L = ∅, L,H 	= ∅, where H is the set of high transitions and L is
the set of low transitions. Unf(N) = ((B,E, F ), λ) will denote the unfolding of
N . R will denote the set of all runs of N whereas Ω the set of all maximal runs.
For all t ∈ T , Et = {e ∈ E : λ(e) = t}.

4.1 Non-interference Based on Reveals

Reveals-based Non-Interference requires that no low transition reveals any high
transition.

Definition 9. N is secure with respect to Reveals-based Non-Interference (RNI)
iff ∀l ∈ L, ∀h ∈ H: l 	�tr h.

Example 8. N4 in Fig. 6 is RNI secure. N5 and N6 in Fig. 7 are not since in both
nets a low transition reveals a high transition: l �tr h. An observer who knows
the net can deduce that h has already fired in N5 by observing l. For N6, again
by observing l, he can deduce that h will fire inevitably. N7 in Fig. 7 is also not
secure because the observation of l1 tells that h has already fired or will fire
inevitably, since l2 cannot fire anymore.

RNI does not capture negative information flow. N8 in Fig. 7 is secure with
respect to RNI since it cannot capture the negative information flow between h

Fig. 7. Reveals based Non Interference (RNI)
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and l, i.e., an observer can deduce that h has not fired and will not fire in the
future by observing the occurrence of l. In Sect. 4.4, we will introduce a notion
which deals with this kind of information flow.

4.2 Non-interference Based on Extended-Reveals

As explained in Sect. 3, a transition may not tell much about the behavior of
the net, whereas a set of transitions together can give some more information.
Extended-reveals deals with this relation. We propose to use this relation in
order to define a new non-interference notion in which the occurrences of a set
of low transitions together give information about some high transitions.

Definition 10. Let k be a positive integer such that 1 ≤ k ≤ |L|. N is secure
with respect to k-Extended-Reveals based Non-Interference (k-ERNI) iff ∀h ∈
H, ∀A ⊆ L such that |A| ≤ k ∧ ∃ω ∈ Ω : A ⊆ λ(ω), it holds A 	�tr {h}.

N is ERNI secure if it satisfies the above condition for k = |L|.
Intuitively, we say that a net is k-ERNI secure, if an attacker is not able to
deduce information about the hidden part of the net by observing occurrences
of k low transitions. If a net is k-ERNI secure then it is secure with respect to
all n-ERNI where 1 ≤ n ≤ k.

Example 9. N9 in Fig. 8 is not secure with respect to 2-ERNI. When l2 and l3
occur, an observer can deduce that h will occur, i.e., {l2, l3}�tr {h}. In the net
in Fig. 9, no low transition alone reveals a high transition as well as no pair
of low transitions reveals a high transition. However, {l2, l4, l6}�tr {h1}, i.e.,
by observing that all these three transitions occurred, an observer can deduce
that h1 will inevitably occur. Thus, this net is 2-ERNI secure whereas it is not
3-ERNI secure.

Obviously, 1-ERNI coincides with RNI, where no low transition alone reveals a
high transition. Moreover, k-ERNI ⊆ RNI, for k ≥ 1. N9 is RNI secure since
none of the low transitions reveals a high transition alone.

Fig. 8. Extended Reveals based Non Interference (ERNI)
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Fig. 9. ERNI and k-ERNI

4.3 Non-interference Based on Repeated-Reveals

Another case can be the one in which an attacker is not able to deduce informa-
tion by observing low transitions and this is because only repeated occurrence
of a low transition gives information about the hidden part of the net. Thus, we
assume that the attacker can count the occurrences of low transitions and so he
can deduce information about the high transitions.

Definition 11. Let n > 0. N is secure with respect to n-Repeated-Reveals based
Non-Interference (n-ReRNI) iff ∀l ∈ L, ∀h ∈ H, ∀m ≤ n such that Ωm

l 	= ∅:
¬(l �m

tr h).
N is ReRNI iff it is n-ReRNI for all n > 0.

Proposition 7. n − ReRNI =⇒ (n − 1)-ReRNI

The proof follows from the definition.

Example 10. N10 in Fig. 8 is not 2-ReRNI secure. Although the first occurrence
of l1 does not reveal a high transition, by observing its second occurrence an
observer can deduce that h2 occurred. However, the net is RNI secure as well
as ERNI secure. In the net in Fig. 10 l1�3

trh2 therefore the net is not 3-ReRNI
secure. If the transition h3 was absent, then every maximal run would include at
least one occurrence of h2 and then, even without observing l1, the occurrence
of h2 would be inevitable.

The following proposition is directly derived from Proposition 2.

Proposition 8. If a net is RNI secure then it is 1-ReRNI secure.

However, the previous implication does not hold in the opposite direction. Con-
sider the net in Fig. 4 and let t1 be a low transition, t2 and t3 be high transitions.
This net is 1-ReRNI secure since the first occurrence of t1 does not reveal infor-
mation about t2 and t3, as discussed in Example 4. However the net is not RNI
secure since t1 �tr t2 and t1 �tr t3. Note that this net is not secure with respect
to 2-ReRNI since the second occurrence of t1 reveals both t2 and t3, i.e. t1 �2

tr t2
and t1 �2

tr t3.
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Fig. 10. Repeated Reveals based Non Interference (ReRNI)

In general, k-ERNI and n-ReRNI are not comparable since they are para-
metric notions which are based on observing different aspects: k-ERNI considers
occurrences of different low transitions together whereas n-ReRNI considers mul-
tiple occurrences of the same low transition. Both k-ERNI and n-ReRNI catch
positive information flow about the past or future occurrences of high transi-
tions, whereas they allow negative information flow. In the following, we will
introduce a notion considering both positive and negative information flow.

4.4 Improved-Positive/Negative Non-interference Based on Reveals
and Excludes

Until now we have explored positive information flow on Petri nets. In order to
catch negative information flow, related to non-occurrence of high transitions,
we need to consider the excludes relation, as introduced in Definition 6. In [4], we
have defined Positive/Negative Non-interference (PNNI), on the basis of reveals
and excludes relations, which catches both positive and negative information
flow. Here, we propose a stronger version. The intuition is explained on the
example below.

Example 11. Let us consider the net in Fig. 5. If t1, t2 ∈ L and t3 ∈ H, then
the net is PNNI secure since none of the low transitions reveals or excludes t3.
In fact, a transition excludes another transition only if they can never occur
together in the same run. In this example, both low transitions t1 and t2 can
occur together with the high transition t3. However, a transition might exclude
another in the future (resp. past) and not in the past (resp. future).

In Fig. 5, t3 can occur in the past of t2 but not in its future. Consequently,
an observer can deduce that t3 will never occur in the future once t2 occurs:
t2 exf t3 whereas ¬(t2 ex t3).



Non-interference Notions Based on Reveals and Excludes 65

PNNI does not catch this kind of flow because “not excludes” does not mean
“not excludes in the future and in the past”. So we will require the negation of
both exf and exp between high and low transitions instead of only ex.

Definition 12. N is secure with respect to Improved-Positive/Negative Non-
Interference (I-PNNI) iff ∀l ∈ L, ∀h ∈ H : l 	�tr h ∧ ¬(l exf h) ∧ ¬(l exp h).

Example 12. Let us consider the net in Fig. 5 and let t1, t2 ∈ L and t3 ∈ H.
Then the net is not secure with respect to I-PNNI because t2 exf t3, whereas it
is PNNI secure.

Obviously I-PNNI is stronger than RNI.

Fig. 11. Improved Positive/Negative Non Interference (I-PNNI)

Example 13. Both N11 and N12 in Fig. 11 are not I-PNNI secure since a low
transition l1 excludes a high transition h (both in the future and in the past).
Thus, by observing an occurrence of l1, one can deduce that h did not occur and
will not occur. N13 in Fig. 12 is not secure with respect to I-PNNI because of
negative information flow: l2 excludes h1, as well as h2. An observer can deduce
that none of the high transitions occurred and they will not occur in the future
by observing l2 or l3. This net is RNI, ERNI and ReRNI secure.

In the same figure, N14 is I-PNNI secure. No low transition reveals a high
transition, as well as no low transition excludes a high transition in the past or
in the future. However, an observer can deduce that h1 will inevitably occur by
observing the occurrences of both l2 and l3, i.e., {l2, l3}�tr {h1}. In other words,
this net is not 2-ERNI while it is RNI and ReRNI secure.

Neither I-PNNI nor k-ERNI is stronger than the other for any k. The net N15

in Fig. 13 is both ERNI and I-PNNI secure, whereas N16 in Fig. 13 is not I-PNNI
secure, however it is ERNI secure. N14 of Fig. 12 is I-PNNI secure, whereas it
is not secure with respect to 2-ERNI as it is discussed in Example 13.

Similarly, neither I-PNNI nor n-ReRNI is stronger than the other one for
any n. A net which is both I-PNNI and ReRNI secure is the one in Fig. 6. The
net in Fig. 10 is not secure with respect to 3-ReRNI whereas it is I-PNNI secure.
If we add to the net another low transition l2 which consumes a token from p5,
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Fig. 12. A comparison among notions of non interference

the net becomes not secure with respect to I-PNNI as well as with respect to
RNI, since l2 reveals h1. N13 in Fig. 12 is not I-PNNI secure whereas it is ReRNI
secure.

5 Comparison of Non-interference Notions

We have introduced new notions of non-interference for Petri nets. These notions
are based on the reveals and the excludes relations and on the progress assump-
tion.

One major difference between these notions with the existing ones, recalled
in Sect. 4, is that the new notions explicitly consider the information flow both
about the past and the future occurrences of high transitions. For example, if
a low user can tell that the occurrence of a high transition is inevitable in the
future, such a system is considered to be not secure according to the notions
we have here introduced, whereas it is considered secure by SNNI and PBNI.

Fig. 13. A comparison among notions of non interference
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Fig. 14. Relations among notions of non interference

Similarly, for the negative information flow, we consider both past and future
non-occurrences of high transitions.

Another important difference is shown by N4 in Fig. 6. This net is not secure
according to SNNI even if a low user cannot infer which high transitions actu-
ally occurred. On the other hand, it is secure with respect to all non-interference
notions based on reveals and excludes, since these require the capability of differ-
entiating among the high transitions. Figure 14 illustrates the relation between
our notions and the other notions we have discussed so far. For the sake of sim-
plicity, we only consider the weakest (SNNI ) and the strongest (PBNI ) notions
from the ones recalled in Sect. 4 and compare them with the weakest of the new
notions, i.e., RNI, and with the intersection set, denoted R-E in Fig. 14, of the
new notions RNI, k-ERNI, n-ReRNI, PNNI and I-PNNI.

We will examine three examples to discuss the differences of these classes.
A net which is secure with respect to all notions based on reveals and excludes

and which is not secure with respect to SNNI is denoted by X in Fig. 14 and
it is the one in Fig. 6. We consider this net secure since an observer cannot
differentiate among the high transitions even if he can know some high actions
have been performed (or will be performed). However, this net is not secure with
respect to SNNI.

The net denoted by Y in Fig. 14 is secure with respect to all non-interference
notions based on reveals and excludes as well as with respect to PBNI. This
net can be N15 in Fig. 13. This net is secure since no low transition reveals a
high transition (alone or together with another transition) as well as no low
transition excludes a high transition. Thus there is neither positive nor negative
information flow. It is also secure with respect to PBNI due to the fact that
there is no active causal or active conflict place.

Two nets which are secure with respect to PBNI but not secure with respect
to any of the non-interference notions based on reveals and excludes, denoted
by Z in Fig. 14, are for example N6 in Fig. 7 and N12 in Fig. 11.

6 Conclusion

In this paper, we have introduced two new relations with their variants and
applied them into the formal notion of non-interference in Petri nets. The first
one is an adaptation to Petri nets of the reveals relation, previously defined on
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occurrence nets and applied in fault diagnosis. In particular, we have introduced
a class of parametrized reveals relations for modeling positive information flow
in Petri nets. The second relation is called excludes and it has been introduced
here with the aim of modeling negative information flow.

On the basis of the new relations, we have proposed a collection of new
notions of non-interference for Petri nets, and compared them with notions
already proposed in the literature. In this approach, the transitions of a sys-
tem net are partitioned into two disjoint sets: the low and the high transitions.
A system net is considered secure, or free from interference, if, from the obser-
vation of the occurrence of a low transition, or a set of low transitions, it is not
possible to infer information on the occurrence of a high transition. Our new
non-interference notions rely on net unfolding and on reveals and excludes.

The notion of RNI states that a net is secure if no low transition reveals any
high transition. We have shown that this notion captures some situations which
were not captured by the existing notions. We also propose more restrictive
notions: k-ERNI based on observing occurrences of multiple low transitions
and n-ReRNI based on the ability of the low user to count the occurrences of a
low transition.

By adding the excludes relation to the picture, we allow one to infer negative
information, namely the fact that a high transition has not occurred and will not
occur. This is the basis of I-PNNI. The paper includes a comparison between
the notions introduced here and those found in the literature on the subject.

The notions proposed in this paper, and further variants of them, should now
be tested on more realistic cases. Our aim is to build a collection of different
non-interference properties, so that a system designer, or a system analyzer, can
choose those more appropriate to a specific case. A generalization could be a non-
interference notion based on a parametric reveals relation between multisets of
transitions.

We are currently exploring algorithms to check non-interference. In particu-
lar, we consider using finite prefixes of net unfoldings, similarly to [3]. In [19], a
method based on finite prefixes of net unfoldings has been proposed by adapting
the diagnosis algorithm introduced in [18] to the problem of checking reveals and
excludes relations. We are also interested in further investigating the excludes
relation and the possibility to apply it in different contexts.
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20. Mazaré, L.: Using unification for opacity properties. In: Proceedings of WITS, pp.
165–176 (2004)

21. Roscoe, A.W.: CSP and determinism in security modelling. In: IEEE Symposium
on Security and Privacy, pp. 114–127. IEEE Computer Society (1995)

22. Rushby, J.: Noninterference, transitivity, and channel-control security policies.
Technical report. http://www.csl.sri.com/papers/csl-92-2/

23. Ryan, P.Y.A.: Mathematical models of computer security. In: Focardi, R., Gorrieri,
R. (eds.) [14], pp. 1–62

24. Ryan, P.Y.A., Schneider, S.A.: Process algebra and non-interference. In: CSFW,
pp. 214–227. IEEE Computer Society (1999)

25. Schneider, S., Sidiropoulous, A.: CSP and anonymity. In: Martella, G., Kurth, H.,
Montolivo, E., Bertino, E. (eds.) ESORICS 1996. LNCS, vol. 1146, pp. 198–218.
Springer, Heidelberg (1996)

26. Sutherland, D.: A model of information. In: Proceedings of National Computer
Security Conference, pp. 175–183 (1986)

http://www.csl.sri.com/papers/csl-92-2/


Validating DCCP Simultaneous Feature
Negotiation Procedure

Somsak Vanit-Anunchai(B)

School of Telecommunication Engineering, Institute of Engineering,
Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand

somsav@sut.ac.th

Abstract. This paper investigates the feature negotiation procedure of
the Datagram Congestion Control Protocol (DCCP) in RFC 4340 using
Coloured Petri Nets (CPNs). After obtaining a formal executable CPN
model of DCCP feature negotiation, we analyse it using state spaces.
The experimental result reveals that simultaneous negotiation may be
incorrect and broken on even a lossless FIFO channel. In the undesired
terminal states, the confirmed feature values of the client and the server
do not match. To fix this problem we suggest two solutions. Firstly, send-
ing a Change option when an endpoint changes its preference. Secondly,
an endpoint in STABLE does not discard non-reordered Confirm options.
We have applied our suggested changes to the constructed CPN models.
The formal verification of the revised models shows that the undesired
terminal states have been eliminated.

Keywords: Datagram Congestion Control Protocol · Feature negotia-
tion · Coloured Petri Nets · State space analysis

1 Introduction

In 2006, the Internet Engineering Task Force (IETF) published a set of stan-
dards for the Datagram Congestion Control Protocol (DCCP) [15] comprising
RFC 4336 [7]; RFC 4340 [16]; RFC 4341 [8] and RFC 4342 [10]. RFC 4336 dis-
cusses problems and disadvantages of existing transport protocols and the moti-
vation for designing a new transport protocol for unreliable datagrams. RFC
4340 specifies reliable connection management procedures; reliable negotiation
of options; acknowledgement and optional mechanisms used by the congestion
control mechanisms. RFC 4340 also provides the extension for modular conges-
tion control, called Congestion Control Identification (CCID) but the congestion
control mechanisms themselves are specified in other RFCs. Currently there are
three published standards, RFC 4341, CCID2: TCP-like congestion control [8],
RFC 4342, CCID3: TCP-Friendly Rate Control [10] and CCID4: RFC 5622
TCP-Friendly Rate Control for Small Packets [9].
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Unlike TCP, DCCP does not impose flow control on the data transfer. But
state information such as the sequence number sent and received is still used
in order to trace packet loss which is crucial for congestion control. From the
sequence number variables, a sequence number validity window is set up [16]
to protect against attacks. Thus connection management procedures specified
in RFC 4340 are used to set up and clear the state information. Apart from
the reliable connection management, both sides must choose congestion control
mechanisms and agree upon the same CCID. This requires a reliable negotiation
procedure called Feature Negotiation which is also specified in RFC4340. If both
sides are not aware of reaching an agreement with different CCIDs, the situation
will be very harmful1 and currently there is no recovery mechanisms. Hence it
is vital to verify that the DCCP feature negotiation procedure works correctly.
In this paper we use Coloured Petri Nets (CPNs) [13,14] to formally model and
analyse DCCP feature negotiation procedures.

Formal methods [1] are techniques based on mathematically defined syntax
and semantics for the specification, development and verification of software and
hardware systems. They remove ambiguities and are indispensable for checking
correctness of high-integrity systems. Coloured Petri Net (CPN) [13,14] is a
formal method which is widely used [2,3,6,18] to model and analyse concurrent
and complex systems. An important advantage of CPNs is its graphical notation
with abstract data types providing a high level of expressive modelling power.
CPNs and their analysis techniques have been used to verify many industrial
scale protocols such as the Wireless Application Protocol (WAP) [11], TCP [12],
DCCP [22] and SCTP [24]. The application of CPNs and related techniques for
validation of the protocol design were illustrated in [17]. In addition to focus-
ing on the four projects: the DYMO routing protocol, Generic Access Network
(GAN) Architecture, Routing Interoperability protocol (RIP) and Edge Router
Discovery Protocol (ERDP), they reviewed various work related to validation of
the protocol design.

DCCP connection management operating over reordering channels with no
loss was studied in [22] using Coloured Petri Nets. Later, the work [22] was
extended by including DCCP simultaneous open procedure (RFC 5596) and
Network Address Translators (NAT) in [23]. However, regarding DCCP feature
negotiation procedure, there are very few articles [20,21] investigating it. The
background information on feature negotiation was summarized and the algo-
rithms for processing the feature negotiation options were illustrated in [20].
Interaction between the DCCP feature negotiation and the protocol procedures
was discussed in [21]. As far as we are aware of, DCCP feature negotiation has
not been formally modelled and analysed before.

The contribution of this paper is threefold. First, as far as we are aware of
this paper presents the first formal executable model of DCCP feature negotia-
tion. Second, the formal analysis helps us identify an error in the specification.

1 It is difficult to justify the consequence when the CCIDs of both side do not match
because it depends on the applications. However, we envisage that the receiver could
submit garbage to the application while no one realizes the problem.



Validating DCCP Simultaneous Feature Negotiation Procedure 73

Third, conducting the state space analysis provides us insight as to the causes
the error. We suggest two solutions to fix the error. After incorporating the
suggested changes, our analysis shows the absence of undesired terminal states.

This paper is organised as follows. Section 2 provides an overview of the proto-
col and packet format. Section 3 briefly describes the DCCP feature negotiation
procedure. The description of the CPN model of DCCP feature negotiation is
described in Sect. 4, which starts with modelling assumptions and specification
interpretation. Section 5 discusses analysis result and insight. Section 6 discusses
the lessons learned and perspectives. Section 7 presents the conclusion of this
paper and future work. We assume that the readers have knowledge of Coloured
Petri Nets [13,14] and CPN Tools [5].

2 DCCP Overview

The Internet protocol architecture is organized into five layers known as the
TCP/IP reference model. While TCP is a transport protocol that provides the
reliable delivery of a byte stream, DCCP is a transport protocol for the timely but
unreliable delivery of datagrams. DCCP can be viewed as an upgraded version
of UDP equipped with new facilities for connection management, acknowledge-
ment, feature negotiation and congestion control.

DCCP exchange packets over the Internet Protocol between a client and
a server. The protocol uses 11 packets to setup and release connections and

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
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. . .
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. . .

Fig. 1. DCCP packet format.
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transfer data. RFC 4340 [16] defines a DCCP packet as a sequence of 32 bit
words comprised of a DCCP Header and an Application Data area as shown in
Fig. 1. The header comprises a generic header (applicable to all packets), followed
by an acknowledgement number (if any) and then the options field. The length
of the Option and Application Data fields can vary.

The DCCP header contains source and destination port numbers, and a
checksum. A data offset indicates the length in 32-bit words from the begin-
ning of the Header to the beginning of the Application data. CCVal is a value
used by the congestion control mechanisms [10]. Checksum Coverage (CsCov)
specifies the part of the packet being protected by the checksum. The Packet
Type field specifies the type of the packet: Request, Response, Data, DataAck,
Ack, CloseReq, Close, Reset, Sync, SyncAck and Listen. Request and Data pack-
ets do not include acknowledgement numbers. The sequence numbers of Data
packets and the sequence numbers and acknowledgement numbers of Ack and
DataAck packets can be reduced to 24-bit short sequence numbers when setting
the Extend Sequence Number (X) field to 0.

The Options field contains state information or commands for applications
to negotiate various features such as the Congestion Control Identifier (CCID)
and the width of the Sequence Number validity window [16].

3 Feature Negotiation Procedure

DCCP allows both the client and the server to negotiate their parameters called
features using the options field. The option field shown in Fig. 1 is a multiple of
32-bit words which may contain more than one option. Because each option con-
sists of a multiple of 8 bits, the field may need to be padded to the word boundary.
The first byte is an option type. The second byte is the length in bytes of each
option including the option type field, the length and data of the option. The
data part comprises a feature number and feature values. The feature negotia-
tion can happen any time but is typically done during connection establishment.
Each entity can initiate the negotiation of two kinds of feature numbers: local
features (L)-the initiator’s features and remote features (R)-the other side’s fea-
tures. Four particular options are dedicated to feature negotiations; Change L,
Confirm L, Change R and Confirm R. The option types have values of 32, 33,
34 and 35, respectively. The format of Confirm or Change Options including a
feature number and feature values are shown in Fig. 2(a). Figure 2(b) shows the
six 8-bit values representing a Change L option when negotiating CCID. The
meaning of each 8-bit value is shown in Fig. 2(c).

The feature number identifies the feature. For instance, 1 refers to CCID and
2 means short sequence numbers are allowed. The complete list of features is
given in [16]. To reach agreement on a feature value, a reconciliation rule known
to both sides is required. Currently, RFC 4340 defines two reconciliation rules:
server priority and non-negotiable. Figure 3 shows a typical message sequence
chart of each rule.
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a) Option Length Feature Feature values
Type Number

b) 3 2 6 1 2 3 4

c) (Change L,  6,   CCID,  [2, 3, 4])

Fig. 2. Option format in DCCP header and an example of a Change L option.

(a) (b)

Fig. 3. Examples of the feature negotiation: (a) the server priority (b) the non-
negotiable.

The server priority rule: This rule is applied when the feature value is a fixed-
length byte string. During negotiation, DCCP entity keeps an ordered preference
list of the feature values. The initiator sends a Change option containing its
preference list. The receiver responds with the Confirm option containing an
agreed value followed by its preference list. Thus the agreed value will appear
twice in the Confirm option. The agreed value is defined as the first element in
the server’s list that matches any element in the client’s list. If there is no match,
the agreed value remains the existing feature value.

For example, the client sends 32,6,1,2,3,4 corresponding to Change L(32),
length(6), CCID(1), the client’s preference list(2,3,4). This means the client pro-
poses to change its CCID and the preferred CCIDs are CCID#2, CCID#3 and
CCID#4 respectively. The server responds 35,7,1,3,3,4,2 corresponding to Con-
firm R(35), length(7), CCID (1), agreed value (3) and the server’s preference list
(3,4,2). According to the client’s and server’s preference lists in this example,
the client must use CCID#3.

Non-negotiable rule: The Change and Confirm options under this rule contain
only one feature value which is a byte string. After receiving the Change L from
the feature local, the feature remote must accept the valid value and reply with
Confirm R containing this value. If the received feature value is invalid, the
feature remote must send an empty Confirm R. This non-negotiable rule must
not be used with Change R and Confirm L options.

For example the client sends 32,9,3,0,0,0,0,4,0 corresponding to Change
L(32), length(9), Sequence number window (3), value of window size(1024). The
server replies with 35,9,3,0,0,0,0,4,0.
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3.1 Finite State Machines

The feature negotiation procedures are represented by state diagrams. Figure 4
shows the state diagram for feature local. It comprises three states: STABLE;
CHANGING; and UNSTABLE. The entity in the STABLE state always knows
its feature value and expects the other to agree on the same value. When the
local receives Change R, it calculates a new agreed value and replies Confirm L.
On the other hand the Confirm R received will be discarded.

After the entity in STABLE sends the first Change L command, it enters
the CHANGING state and goes back to the STABLE state upon receiving a
Confirm R or a empty Confirm R. If the local in CHANGING does not get a
reply from the other side, it keeps retransmitting the Change L option.

When the preference list is changed by its user while the entity is in the
CHANGING state, it enters the UNSTABLE state. Here it ignores the on-going
negotiation but starts a new negotiation by sending a Change command with
the new preference list before going back to the CHANGING state.

The state diagram for feature remote can be obtained by interchanging Ls and
Rs in Fig. 4. Thus each entity consists of three state machines working together:
connection management, feature local and feature remote. It is possible that
one side initiates Change L while the other side initiates Change R of the same
feature. According to Fig. 4 when the local in CHANGING receives Change R,
it computes a new agreed value and replies with a Confirm L. This situation is
called simultaneous negotiation. The specification also allows the preferences to
be changed any time.

STABLE 

rcv Confirm R or 
rcv Change R 

rcv Change R 
calculate a new feature value 
snd Confirm L 

1. rcv Confirm R 
    accept the new feature value or 
2. rcv Change R 
    Calculate a new feature value 
    snd Confirm L or 
3. rcv Empty Confirm R 
    use the exisitng feature value 

CHANGING 

UNSTABLE 

snd Change L preference list 
changes 

rcv Confirm R 
application or protocol event 
snd Change L

time out or 
rcv non-ack packet 
retransmit Change L 

Fig. 4. DCCP feature negotiation state diagram - redrawn from [16].
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3.2 Important Rules of Feature Negotiation

Although the feature negotiation procedures explained in the previous section
sound simple, the real situation may be very complex when packets are reordered
and lost. Moreover, the negotiation for the same feature can be simultaneously
initiated by both sides and the preference lists can be changed any time. To cope
with this, the RFC specifies some rules intended to provide reliable signalling so
that both sides reach agreement on the feature value.

Non-reordered Change and Confirm Options. The RFC specifies that any
Change and Confirm options in packets that do not arrive in strictly increasing
order must be ignored. According to the related pseudo-code and algorithms,
the strictly increasing order rule is only enforced for packets that contain the
Change and Confirm options. An ordered packet with the Change and/or Con-
firm options may have a sequence number less than GSR if the later packets do
not contain any Change or Confirm options.

In order to check the order of arrival, the RFC specifies another two vari-
ables: Feature Greatest Sequence Number Received (FGSR) and Feature Great-
est Sequence Number Sent (FGSS). If the received packet’s sequence number
is less than or equal to FGSR, Change or Confirm options received must be
ignored. If the acknowledgement number is less than FGSS or the packet con-
tains no acknowledgement, the Confirm option received must be ignored.

Because DCCP-Data with short sequence numbers is vulnerable to attack,
any option attached to DCCP-Data that might cause the connection to be reset
shall be ignored. Thus both Change and Confirm options received in DCCP-
Data must be ignored in all circumstances. FGSR is updated when the entity
receives a valid packet containing non-reordered Change or Confirm options.
FGSS is updated when the entity sends a Change Option during a transition
from STABLE or UNSTABLE to CHANGING.

Retransmission. Change options must be retransmitted when the sender does
not receive a non-reordered Confirm option within a specific period. The Confirm
option must be generated only when a non-reordered Change option is received.
Retransmission of options may be achieved by either generating a new packet
(DCCP-Ack or DCCP-Sync) or by including the appropriate option field in a
packet that is about to be transmitted. Retransmission continues until a non-
reordered Confirm option is received or the connection is closed.

4 CPN Model of DCCP Feature Negotiation (DCCP-FN)

4.1 Modelling Assumptions and Specification Interpretation

We make the following assumptions regarding DCCP feature negotiation when
creating our model.
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1. We assume the medium to be First-in First-out (FIFO) channels with no
loss. There are three reasons supporting this assumption. Firstly, RFC 4340
requires that the reordered Change and Confirm Options are ignored. This
requirement is fulfilled by the two checking algorithms specified in RFC4340.
It implies that actually DCCP feature negotiation protocol operates over
FIFO channels. Secondly, the assumption of FIFO channel makes the model
simpler. We can abstract away irrelevant details such as sequence number,
acknowledgement number, state variables FGSS and FGSR. Thirdly, reorder-
ing and/or lossy channels can mask out inherent errors such as unspecified
receptions which could appear when protocol operates over FIFO channels
with no loss. Thus, protocol validation shall be started from operating over
the FIFO channels with no loss; FIFO channels with loss; reordering chan-
nels with no loss; and reordering channels with loss, respectively. Our current
analysis considers only FIFO channels with no loss.

2. According to [21], RFC 4340 separated the feature negotiation and protocol
state machines as independent but they are not actually separate from each
other. We agree with [21] that they are not independent but this paper models
and analyses only the state machines of the feature negotiation. Without
loss of generality, instead of modelling three FSMs (connection management,
feature local and feature remote) at each side, only one FSM (Fig. 4) (either
the feature local’s or the feature remote’s FSM) is required. In particular we
assign the feature local’s FSM to the client and the feature remote’s FSM
to the server. This assumption makes the CPN model readable and easy to
understand.

3. A DCCP packet is modelled by an option type and a list of feature
values (preference list). Other fields such as packet type and sequence-
acknowledgement numbers are omitted because they do not affect the oper-
ation of the feature negotiation.

4. RFC4340 allows many options to be sent in one packet and many features
to be negotiated at the same time. Following an incremental approach [3], as
a first step we consider the negotiation of Congestion Control Identification
(CCID) that uses the server-priority reconciliation rule because the ability to
negotiate the suitable congestion control mechanism is the main objective of
DCCP.

5. Our model does not include the mandatory options, invalid options and
unknown feature numbers.

6. RFC 4340 specifies that the preference list can be changed any time. It is
unclear what should happen if the preference list is changed while the end-
point is in STABLE. However according to [20], the endpoint can remain
in STABLE if it changes the preference list without changing the preferred
value. Thus we assume that the endpoint remains in STABLE after it changes
the preference list. However we investigate the scenario when the endpoint
changes the preference list without changing the preferred value.
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4.2 Model Structure

Our model structure is inspired by [22,26] which model and analyse DCCP
connection management. However, the feature negotiation procedure was not
included in [22,26]. Our DCCP feature negotiation model comprises three hier-
archical levels as shown in Fig. 5(a). The first level page is Main FN. This page
is linked to the second level pages named FN Local and FN Remote. The third
level has six pages. Each one is named by a DCCP feature negotiation state.
Figure 6 shows declarations which define the data associated with the model.
The CPN diagram in the first level page, Fig. 5(b), comprises two substitution
transitions (represented by double-line rectangles), four places (represented by
ellipses) and arcs connecting places and transitions. The substitution transi-
tion on the left models the client (Local) and the one on the right models the
server (Remote). Both communicate via two places named Remote2Local and
Local2Remote in the middle of Fig. 5(b). Each place models a unidirectional and
First-in First-out channel typed by List Option Field. List Option Field is
a list of product sets named Option Field defined in Fig. 6. Option Field com-
prises Option Type and Preference List sets also defined in Fig. 6. Through
these places, tokens (which are values taken from the type of the place) are
transferred between Local and Remote.

Places FN State Local and FN State Remote, typed by FN CB, model the
states of the feature negotiation procedure. The FN CB is defined as a product
comprising colour sets FN State, Confirmed Value and Preference List.

The substitution transitions Local and Remote in Fig. 5(b) are linked to the
second level pages named FN Local in Fig. 7 and FN Remote in Fig. 11. Each of
the second level CPN pages comprises three substitution transitions, named by

(a) (b)

Fig. 5. (a) The DCCP-FN hierarchy page (b)The Main FN overview page.
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Fig. 6. Declarations for the CPN model.

Fig. 7. The FN Local page.

the feature negotiation states and linked to the CPN pages in the third level.
Each CPN page of the third level corresponds to states in FSMs (Fig. 4). We
can directly map each state transition in Fig. 4 onto each transition on the third
level CPN page.

Stable Local Page. Figure 8 captures the behaviour when Local is in the STA-
BLE state. Transition ApplicationEvent models when the protocol receives a
command to start the negotiation. It sends a ChangeL option and enters the
CHANGING state. When receiving a ChanngeR option, transition Rcv ChangeR
computes the new confirmed feature value. Local sends a ConfirmL option con-
taining this new confirmed value and remains in STABLE. Note that the prefer-
ence list in the received ChangeR has a higher priority than the one kept in the
client’s state. Transition Rcv ConfirmR discards any received ConfirmR option.
The last transition PreferenceChanges replaces a new preference list in the
client’s state and Local remains in the STABLE state.
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Fig. 8. The Stable Local page.

Changing Local Page. The transitions of the CHANGING state in FSMs (Fig. 4)
are mapped to the transitions in Fig. 9. Transition PreferenceChanges puts a
new preference list into the client’s state and Local enters the UNSTABLE state.
Transition Retransmission keeps retransmitting the ChangeL option. Because
the retransmission is not used in this paper, MaxRetransLocal is set to 0. After
receiving a ChangeR option, transition Rcv ChangeR computes the new con-
firmed feature value, returns a ConfirmL option containing the new confirmed
value and changes Local’s state to STABLE. The preference list in the received
ChangeR has a higher priority than the one kept in the client’s state. When
receiving the ConfirmR option that does not contain any confirmed feature value,
transition Rcv EmptyConfirmR keeps the existing confirmed value in the client’s
state and enters the STABLE state. After receiving a ConfirmR option, transi-
tion Rcv ConfirmR not only changes Local’s state to STABLE but also checks if
the received confirmed feature value is correct. If it is incorrect, the Local uses
the default feature value. If the new value is correct, the Local replaces the new
value into its state variables.
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Fig. 9. The Changing Local page.

Fig. 10. The Unstable Local page.
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Fig. 11. The FN Remote page.

Unstable Local Page. The transitions of the UNSTABLE state in FSMs (Fig. 4)
are mapped to the transitions in Fig. 10. Transition Snd ChangeL sends the
ChangeL option containing the new preference list and changes Local’s state
to CHANGING. When receiving any ChangeR option, transition Rcv ChangeR
keeps ignoring it. Similarly, if any ConfirmR option is received, transition
Rcv Co-nfirmR discards it.

Fig. 12. The Stable Remote page.
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Fig. 13. The Changing Remote page.

Fig. 14. The Unstable Remote page.

Figures 12, 13 and 14 are the third level CPN pages representing the behav-
iour of Remote in the STABLE, CHANGING and UNSTABLE states, respec-
tively. It behaves similar to Local but with two differences. First, “L”s (Local)
interchanges with “R”s (Remote). Second, the preference list in Remote has a
higher priority than the one in the received option because we assign Remote’s
FSM to the server.
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5 Analysis of DCCP-FN CPN Model

5.1 Initial Configurations

Our DCCP feature negotiation model is analysed using CPN Tools [5,14] ver-
sion 4.0 on an Intel i5-4300U 1.90 GHZ with 4 GB RAM. To analyse a particular
scenario, the CPN model needs to be initialised by distributing initial tokens
to the places FN State Local and FN State Remote in Fig. 5(b); the places
FN Command and NewPreference in Stable Local (Fig. 8) as well as the places
FN Command and NewPreference in Stable Remote (Fig. 12). The channel places
Remote2Local and Local2Remote initially contain an empty list. The presence
of an e-token in the place FN Command allows the entity to start the feature
negotiation procedure. The analysis in this paper assumes no retransmission.

With reference to assumption 4 in Sect. 4.1, we choose to model and analyse
the negotiation of the feature CCID. This feature uses the reconciliation rule
based on server priority. The default feature value is 2 which represents TCP-
like congestion control. Although currently the standard specifies only CCID2
(RFC4341), CCID3 (RFC4342) and CCID4 (RFC5622), we make up CCID num-
bers in each preference list for the purpose of validating the feature negotia-
tion procedure. Table 1 shows the preference lists we used in our experiments
before and after the preference has been changed. The resolved values before
and after the preference changed under the server-priority reconciliation rule are
also shown in Table 1. According to [20] the endpoint can remain in the STA-
BLE state if it changes the preference list without changing the preferred value.
Therefore at the client (Local) we keep the old preference list but add the new
feature value (4) at the end of the list.

Table 1. An agreed feature value before and after preference lists have been changed.

Client (Local)

before after

[8, 7, 6, 5] [8, 7, 6, 5, 4]

Server (Remote) before [3,4,8] 8 4

after [4, 5] 5 4

5.2 Analysis Result

Table 2 shows the initial configurations and analysis results of twelve possible
scenarios. The scenarios (cases) are classified according to which sides are allowed
to initiate the negotiation and which sides change their preference lists. Our CPN
model allows simultaneous negotiation and both sides can change their preference
lists in Case 12. The total number of states, arcs in each case are shown in the
sixth and seventh columns. Columns 8, 9 and 10 show the terminal markings of
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Table 2. Initial configurations of twelve possible scenarios and analysis result.

Initial markings Terminal markings

FN Command Change of preference list Nodes Arcs Type I Type II Type III

Case (1) Local (2) Remote (3) Local (4) Remote (5) (6) (7) (8) (9) (10)

1 1’e empty disable disable 4 3 1 0 0

2 empty 1’e disable disable 4 3 1 0 0

3 1’e 1’e disable disable 20 26 1 0 0

4 1’e empty enable disable 19 22 2 1 0

5 empty 1’e enable disable 10 11 2 0 0

6 1’e 1’e enable disable 106 169 2 1 0

7 1’e empty disable enable 10 11 2 0 0

8 empty 1’e disable enable 19 22 2 1 0

9 1’e 1’e disable enable 106 169 2 1 0

10 1’e empty enable enable 50 77 3 1 0

11 empty 1’e enable enable 52 78 3 2 0

12 1’e 1’e enable enable 553 1,043 3 3 1

each scenario. All terminal markings have both sides in STABLE and no packets
left in the channels and hence there is no unspecified reception. The terminal
markings are classified into 3 types. Type-I is the desired terminal state, where
both client and server reach the same feature value. Type-II is the undesired
terminal state, where both sides reach different feature values but an endpoint
knows that the agreed value is wrong. Type-III is also the undesired terminal
state, where both sides reach different feature values and both endpoints do not
know that their feature values do not match.

5.3 Discussion

Figure 15 shows a scenario leading to a Type-II terminal state in which after
sending the first Change L Option, the client changes its preference list and sends
the second Change L in the UNSTABLE state. When receiving the Confirm R of
the first Change L in the CHANGING state, the client enters the STABLE state
and then ignores the Confirm R of the second Change L. The agreed feature
value in the first Confirm R is outdated and different from the feature value in
the server. However when comparing the preference list in the first Confirm R
option with the preference list in the client’s state information, the client is able
to know that the agreed value is wrong. Obviously in this case the client should
resend the Change option or reset the connection.

Figure 16 illustrates a scenario leading to an undesired Type-III terminal
state. This is the center of our attention in this paper. This scenario can happen
when both sides initiate the negotiation simultaneously and both sides change
their preference list (Case 12). We notice that all Confirm options in Fig. 16
are discarded. It becomes one way communication with no acknowledgement.
Figure 16 can be viewed as three attempts of negotiation. Two attempts are
simultaneously initiated from both sides. This can happen during DCCP simul-
taneous open procedure. Preference list changed in the CHANGING state causes



Validating DCCP Simultaneous Feature Negotiation Procedure 87

Fig. 15. A scenario leading to an undesired terminal marking Type-II.

Fig. 16. A scenario leading to an undesired terminal marking Type-III.

the third attempt of negotiation. All three calls do not receive any reply. The
root of the problem is that the new preference list from the other side cannot
pass through. In our opinion the main objective of the DCCP feature negotiation
protocol is to exchange the preference lists. After the preference list of the other
side is known, the agreed feature value can be correctly computed. Because both
entities in Fig. 16 are not aware that their agreed feature values are different,
Type-III terminal state is worse than Type-II.
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Table 3. Analysis results of the revised CPN models (solution A and B).

Solution A Solution B

Terminal markings Terminal markings

Case nodes arcs Type I Type II Type III nodes arcs Type I Type II Type III

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

1 10 11 2 0 0 4 3 1 0 0

2 10 11 2 0 0 4 3 1 0 0

3 131 218 4 0 0 20 26 1 0 0

4 83 124 2 2 0 18 22 2 0 0

5 131 218 4 0 0 10 11 2 0 0

6 1,170 2,255 4 4 0 106 170 2 1 0

7 131 218 4 0 0 10 11 2 0 0

8 83 124 2 2 0 18 22 2 0 0

9 1,170 2,255 4 4 0 106 170 2 1 0

10 1,170 2,255 4 4 0 48 76 3 0 0

11 1,032 2,047 4 0 0 49 77 3 0 0

12 9,539 2,117 4 4 0 553 1,046 4 4 0

We suggest two solutions to fix this problem. Solution A is when the pref-
erence list is changed (either major or minor change), the endpoint shall send
a Change option to inform the other side. If the preference list is changed in
the STABLE state, the endpoint shall send a Change option and enter the
CHANGING state. Solution B is that the endpoint does not discard non-
reordered Confirm options in the STABLE state. Table 3 shows the analysis
results of the revised CPN models that incorporate solutions A and B. Accord-
ing to Table 3, both solutions can rectify the problem of the Type-III terminal
state (Column 6 and 11) but the Type-II terminal states (Column 5 and 10)
persist. Although Solution B seems to alleviate the problem of the Type-II ter-
minal states, we prefer Solution A. Solution B requires changing the endpoint’s
behaviour in the STABLE state which is the essence of the protocol. We still do
not know its side effect2 when the protocol operates in a different environment
such as working together with connection management procedures and operating
over reordering and/or lossy channels. On the other hand, Solution A involves
only re-initiate the negotiation in which case there should be no side effect.

6 Lessons Learned and Perspectives

We created the first version (unpublished) of the feature negotiation CPN model
similar to the one presented in this paper. The CPN model and analysis result

2 The solution that fixes errors in an environment may cause other errors in a different
environment.
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were limited because the protocol simply operated on the FIFO lossless chan-
nel and did not include the algorithm for checking the non-reordered options
specified in RFC4340. Because we found that the feature negotiation and con-
nection management state machines were not independent, the CPN model of
DCCP connection management [25] was extended to include the feature nego-
tiation procedure. We also combined FIFO/Reordering/Lossy channels into a
single model [4] so that we were able to select the channel type and conduct the
analysis without switching to different models.

To combine the feature negotiation with DCCP connection management,
we considered two modelling approaches. First, to avoid the state explosion we
maintained the existing transitions of DCCP connection management but mod-
ified the arc inscriptions. The feature negotiation state machines and related
algorithms were modelled using ML functions embedded in the arc inscriptions.
Second, we added new transitions to represent the feature negotiation state
machines. The option fields were extracted and transferred between the connec-
tion management and the feature negotiation procedures via two buffer places.
Because the second approach induced a huge number of states, we chose the
first approach to keep the state space analyzable. The sweep-line analysis [19]
revealed not only the errors we discussed in this paper but also an error caused
by the interaction between connection management and feature negotiation.

Although we were able to analyse the CPN model using the sweep-line, the
first approach had an important drawback. The model was too complex and too
difficult to understand. Despite of the model complexity, we could determine
whether the errors are genuine or not by tracing and investigating the counter
examples. We divided the errors into two groups. The first group contains the
errors caused by the protocols themselves. These errors appear even when the
protocol operates over an ideal (FIFO without loss) channel. The second group
has the errors caused by the imperfection (reordering, lossy, duplicated packets)
of the channel. We argue that the error of the first group is more severe than
those of the second group. When we revised the CPN model of the feature
negotiation without connection management, a similar error that we discovered
using the sweep-line analysis persisted. In our view, the simplified FIFO model
has the advantages of readability and less modelling mistakes. Nevertheless, the
simple model and simple analysis technique can reveal the error.

7 Conclusion and Future Work

This paper presented a Coloured Petri Net model and analysis of DCCP feature
negotiation procedure operating over FIFO with no loss channels. The analysis
result show that the protocol could fail in an undesired state (Type-III) where
the feature values of both sides do not match and both sides are not aware of
the mismatch. Usually when the protocol operates over reordering and/or lossy
channels, it is possible that the protocol fails due to the channel imperfection.
However if the protocol operates over the ideal channels (FIFO with no loss),
the error indicates the flaw in the protocol itself. We proposed and validated two
solutions that can rectify the problem.
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The terminal state (Type-III) occurs when both sides change their preference
lists during the simultaneous feature negotiation. Although the odds of this
scenario is low, given the large number of potential connections in the Internet,
we consider that this defect could be a serious threat.

This paper presented the abstract model with a lot of assumptions. In the
future we would like to present the refined models which relax some of these
assumptions. In particular we are interested to continue analysing the combined
model which includes both connection management and feature negotiation pro-
cedures operating over reordering and lossy channels.

Acknowledgements. This work is supported by Research Grant no. TRG5380023
from the Thai Network Information Center Foundation and the Thailand Research
Fund. The author is thankful to anonymous reviewers. Their constructive feedback has
helped the author improve the quality of this paper.

References

1. Babich, F., Deotto, L.: Formal methods for the specification, analysis of commu-
nication protocols. IEEE Commun. Surv. 4(1), 2–20 (2002). Third Quarter

2. Billington, J., Diaz, M., Rozenberg, G. (eds.): Application of Petri Nets to Com-
munication Networks. LNCS, vol. 1605. Springer, Heidelberg (1999)

3. Billington, J., Gallasch, G.E., Han, B.: A Coloured Petri Net approach to protocol
verification. In: Desel, J., Reisig, W., Rozenberg, G. (eds.) Lectures on Concurrency
and Petri Nets. LNCS, vol. 3098, pp. 210–290. Springer, Heidelberg (2004)

4. Billington, J., Vanit-Anunchai, S., Gallasch, G.E.: Parameterised Coloured Petri
Net channel models. Trans. Petri Nets Other Models Concurrency 3, 71–97 (2009)

5. CPN Tools home page. http://cpntools.org
6. Figueiredo, J.C.A., Kristensen, L.M.: Using Coloured Petri Nets to investigate

behavioural and performance issues of TCP protocols. In: Second Workshop and
Tutorial on Practical Use of Coloured Petri Nets and Design/CPN, DAIMI PB-541,
pp. 21–40. Department of Computer Science, University of Aarhus, 11–15 October
1999

7. Floyd, S., Handley, M., Kohler, E.: Problem statement for the Datagram Conges-
tion Control Protocol (DCCP), RFC 4336, March 2006. http://www.rfc-editor.
org/rfc/rfc4336.txt

8. Floyd, S., Kohler, E., Profile for Datagram Congestion Control Protocol (DCCP)
congestion control ID 2: TCP-like congestion control, RFC 4341, March 2006.
http://www.rfc-editor.org/rfc/rfc4341.txt

9. Floyd, S., Kohler, E.: Profile for Datagram Congestion Control Protocol (DCCP)
congestion control ID 4: TCP-Friendly Rate Control for Small Packets (TFRC-SP),
RFC 5622, August 2009. http://www.rfc-editor.org/rfc/rfc5622.txt

10. Floyd, S., Kohler, E., Padhye, J., Profile for Datagram Congestion Control Protocol
(DCCP) congestion control ID 3: TCP-Friendly Rate Control (TFRC), RFC 4342,
March 2006. http://www.rfc-editor.org/rfc/rfc4342.txt

11. Gordon, S.: Verification of the WAP transaction layer using Coloured Petri Nets.
Ph.D. thesis, Institute for Telecommunications Research and Computer Systems
Engineering Centre, School of Electrical and Information Engineering, University
of South Australia, Adelaide, Australia, November 2001

http://cpntools.org
http://www.rfc-editor.org/rfc/rfc4336.txt
http://www.rfc-editor.org/rfc/rfc4336.txt
http://www.rfc-editor.org/rfc/rfc4341.txt
http://www.rfc-editor.org/rfc/rfc5622.txt
http://www.rfc-editor.org/rfc/rfc4342.txt


Validating DCCP Simultaneous Feature Negotiation Procedure 91

12. Han, B.: Formal specification of the TCP service and verification of TCP connec-
tion management. Ph.D. thesis, Computer Systems Engineering Centre, School of
Electrical and Information Engineering, University of South Australia, Adelaide,
Australia, December 2004

13. Jensen, K., Kristensen, L.M.: Colored Petri Nets: a graphical language for for-
mal modeling and validation of concurrent systems. Commun. ACM 58(6), 61–70
(2015)

14. Jensen, K., Kristensen, L.M.: Coloured Petri Nets: Modelling and Validation of
Concurrent Systems. Springer, Heidelberg (2009)

15. Kohler, E., Handley, M., Floyd, S.: Designing DCCP: congestion control without
reliability. In: Proceedings of the 2006 ACM Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer Communications (SIGCOMM
2006), pp. 27–38, Pisa, Italy, 11–15 September 2006

16. Kohler, E., Handley, M., Floyd, S.: Datagram Congestion Control Protocol, RFC
4340, March 2006. http://www.rfc-editor.org/rfc/rfc4340.txt

17. Kristensen, L.M., Inge, K., Simonsen, F.: Applications of Coloured Petri Nets for
functional validation of protocol designs. Trans. Petri Nets Other Models Concur-
rency 7, 56–115 (2013)

18. Kristensen, L.M., Jørgensen, J.B., Jensen, K.: Application of Coloured Petri Nets
in system development. In: Desel, J., Reisig, W., Rozenberg, G. (eds.) Lectures on
Concurrency and Petri Nets. LNCS, vol. 3098, pp. 626–685. Springer, Heidelberg
(2004)

19. Kristensen, L.M., Mailund, T.: A generalised sweep-line method for safety prop-
erties. In: Eriksson, L.-H., Lindsay, P.A. (eds.) FME 2002. LNCS, vol. 2391, pp.
549–567. Springer, Heidelberg (2002)

20. University of Aberdeen, Electronics Research Group, School of Engineering: Back-
ground on Feature Negotiation. http://www.erg.abdn.ac.uk/users/gerrit/dccp/
notes/feature negotiation/background.html

21. University of Aberdeen, Electronics Research Group, School of Engineering: Why
feature negotiation and protocol state machine are not independent. http://www.
erg.abdn.ac.uk/users/gerrit/dccp/notes/feature negotiation/dependencies.html

22. Vanit-Anunchai, S.: An investigation of the datagram congestion control protocol’s
connection management and synchronisation procedures. Ph.D. thesis, Computer
Systems Engineering Centre, School of Electrical and Information Engineering,
University of South Australia, Adelaide, Australia, November 2007

23. Vanit-Anunchai, S.: Analysis of two-layer protocols: DCCP simultaneous-open and
hole punching procedures. In: Choppy, C., Sun, J. (eds.) 1st French Singaporean
Workshop on Formal Methods and Applications (FSFMA 2013). OpenAccess Series
in Informatics (OASIcs), vol. 31, pp. 3–17. Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, Dagstuhl, Germany (2013)

24. Vanit-Anunchai, S.: Validating SCTP simultaneous open procedure. In: Arbab, F.,
Sirjani, M. (eds.) FSEN 2013. LNCS, vol. 8161, pp. 233–249. Springer, Heidelberg
(2013)

25. Vanit-Anunchai, S., Billington, J., Gallasch, G.E.: Analysis of the datagram
congestion control protocol’s connection management procedures using the
sweep-line method. Int. J. Softw. Tools Technol. Transfer 10(1), 29–56 (2008).
http://dx.doi.org/10.1007/s10009-007-0050-1

26. Vanit-Anunchai, S., Billington, J., Kongprakaiwoot, T.: Discovering chatter and
incompleteness in the datagram congestion control protocol. In: Wang, F. (ed.)
FORTE 2005. LNCS, vol. 3731, pp. 143–158. Springer, Heidelberg (2005)

http://www.rfc-editor.org/rfc/rfc4340.txt
http://www.erg.abdn.ac.uk/users/gerrit/dccp/notes/feature_negotiation/background.html
http://www.erg.abdn.ac.uk/users/gerrit/dccp/notes/feature_negotiation/background.html
http://www.erg.abdn.ac.uk/users/gerrit/dccp/notes/feature_negotiation/dependencies.html
http://www.erg.abdn.ac.uk/users/gerrit/dccp/notes/feature_negotiation/dependencies.html
http://dx.doi.org/10.1007/s10009-007-0050-1


Integrating Petri Net Semantics
in a Model-Driven Approach: The Renew

Meta-Modeling and Transformation Framework

David Mosteller(B), Lawrence Cabac(B), and Michael Haustermann(B)

Faculty of Mathematics, Informatics and Natural Sciences,
Department of Informatics, University of Hamburg, Hamburg, Germany

{mosteller,cabac,haustermann}@informatik.uni-hamburg.de

Abstract. This paper presents an approach to the development of mod-
eling languages and automated generation of specific modeling tools
based on meta-models. Modeling is one of the main tasks in engineering.
Graphical modeling helps the engineer not only to understand the sys-
tem but also to communicate with engineers and with other stakeholders
that participate in the development (or analytic) process.

In order to be able to provide adequately adapted modeling techniques
for a given domain, it is useful to support the development of techniques
that are designed for their special purpose, i.e. domain-specific model-
ing languages (DSML). For this purpose meta-modeling comes in handy.
Meta-models provide a clear abstract syntax and model-driven design
approaches allow for rapid prototyping of modeling languages. However,
the transformation and also the original (source model) as well as the
transformed (target) model often do not provide a clear semantics.

We present an approach to model-driven development that is based
on Petri nets: high- and low-level Petri nets in various formalisms can
be used as target models. The presented approach uses ontology-based
meta-models, code and graphical templates, as well as custom and pre-
defined transformation engines. The RMT framework provides the gen-
eration of modeling tools and the transformation into executable and/or
analyzable models based on the defined Petri net semantics.

Keywords: Renew · Petri nets · Model-Driven development · Meta-
modeling

1 Introduction

Meta-modeling enables us to build models in a more abstract way than we are
used to today. For many purposes we prefer languages that solve a specific mod-
eling quest. While there are several well-established modeling techniques with a
clear semantics, the purpose of the incorporated languages is more or less fixed.
In UML annotations can, in combination with profiles, enhance the expressive-
ness. However, it is difficult to build lean languages that cover exactly those
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domain aspects that are required in a certain context. In addition, normally no
tool exists that directly supports those languages with specific language con-
structs. To make a language easy to use, one usually needs direct tool support.
The development of tools for building graphical models was a challenge some
years ago. Nowadays it is relatively easy within environments such as Eclipse and
its meta-modeling plugins1. Even extensions that allow a simulation of models
built with those languages are available. However, these execution environments
are usually relatively restricted and do not scale. This is due to the fact that the
execution engine has to be built separately.

The development of a DSML and a corresponding modeling tool includes
a whole range of tasks. In this contribution we will address: (1) providing the
possibility to define an abstract syntax to allow users to build a special purpose
language, (2) providing a graphical environment to allow users to build special
language constructs for their specific language concepts (based on textual and
graphical representations), (3) providing a tool set that allows practitioners to
build models based on the previously defined languages and (4) providing a
simulation environment (more specifically an environment based on the reference
net formalism [15]) that allows users to execute and simulate their models. The
presented approach to developing modeling languages and tools (RMT approach)
is extensively applied within our approach to developing agent-oriented software
based on Petri nets (P∗aose approach, [3,18,22]), in which the mutual interplay
of modeling languages is omnipresent. It is, however, equally applicable to other
domains.

The P∗aose approach is an agile model-based approach for the development
of multi-agent systems. Various aspects of the system are modeled using multi-
ple modeling techniques, which in turn are transformed into Petri net models.
The resulting agent-oriented application is composed of these Petri net models,
which are executed using our agent framework Mulan/Capa [8,24] running on
the Renew simulator [5,16]. The approach to software development requires
specialized techniques and transformations to allow adequate modeling of the
different aspects of agent-oriented software. This requirement is addressed with
the RMT approach.

We provide a prototype, which offers the possibility to develop modeling
languages and to generate corresponding modeling tools. The Renew Meta-
Modeling Framework (RMT framework)2 was applied in several settings. The
RMT framework constitutes a further development step of the model-driven app-
roach, which has already been envisioned and partly applied during the develop-
ment of the Agent Role Modeler (ARM, [6]). The ARM tool, which was devel-
oped without appropriate meta-modeling tool support, provides the modeling
facility for agent organizations and knowledge bases.

In contrast to other approaches we concentrate on the definition of the seman-
tics of the models by providing a mapping to Petri net models; i.e. we provide

1 Eclipse Modeling Framework, EMF, https://www.eclipse.org/modeling/emf/.
2 RMT: Renew Meta-Modeling and Transformation Framework, tools and examples:
http://www.paose.net/wiki/Metamodeling.

https://www.eclipse.org/modeling/emf/
http://www.paose.net/wiki/Metamodeling
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a transformational Petri net semantics for the specialized modeling techniques
(DSML). While the semantics of models are provided by the transformation to
Petri nets, the syntax is inspired by the agent-oriented approach. The abstract
syntax is defined by the agent ontologies that are applied here as meta-models.
The Semantic Language (SL, [10]) defines the meta-language for all meta-models
that are applied: the abstract syntax, the concrete syntax and the tool configu-
rations as well as style-sheets.

The remainder of this paper is structured as follows: Sect. 2 briefly intro-
duces the P∗aose approach (Petri net-based, Agent- and Organization-
oriented Software Engineering). The conceptual background, which com-
prises the model-driven tool development, encompassing meta-modeling, graph-
ical modeling, transformations and semantical issues, is discussed with respect
to the requirements and specification of our solution in Sect. 3. The example
presented in Sect. 4 demonstrates the approach and the applications of Petri
nets as well as the application of other techniques during DSML development.
Section 5 elaborates on the wider context of model-driven development and the
approach of providing transformational semantics for modeling languages with
Petri nets. In Sect. 6 we will summarize our results and give an outlook on our
further research directions opened by these results.

2 Petri Net-Based, Agent- and Organization-oriented
Software Engineering

The P∗aose [3] is a conceptual approach to the development of Petri net-based
multi-agent applications (MAA). It combines concepts from agent-orientation
and organizational modeling with well-grounded techniques from Petri net the-
ory. The P∗aose provides a system decomposition based on agents and inter-
actions. Beyond the fundamental properties commonly associated with object-
oriented systems, such as states and encapsulation, agents feature additional
capabilities, such as adaptivity and also intelligence to a certain extent. They
interact with their environment only through message communication and cap-
ture knowledge about their environments using ontologies, which is shared among
the agents throughout conversations.

The technical framework of the P∗aose – the Mulan framework [24] – is
implemented with Java Reference nets, which is a Petri net formalism that fea-
tures Java inscriptions, net instantiation as well as synchronous channels. The
main objective of the framework is to provide a means of designing multi-agent
systems focusing on distributed and concurrent execution using the Reference
net formalism as a graphical programming language. Execution is provided by
Renew’s simulation environment. Concurrency is an intrinsic feature of the
Petri net processes implemented in Reference nets, while bidirectional exchange
of information is provided by synchronous channels. Cross platform communi-
cation is enabled by the Mulan/Capa framework [8].

Beyond Java Reference nets the P∗aose provides specific models to capture
different facets of a MAS in development. It offers various modeling techniques
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to model all dimensions of the application (compare with [4]). For the system
overview we provide the Coarse Design Diagram (CDD), for the agent interac-
tions we use Agent Interaction Protocol Diagrams (AIP, a variant of Sequence
Diagrams). The agent roles are defined using Agent Role Models (ARM), which
also include an application setup. Ontologies are modeled through Concept Dia-
grams (CD, simplified Class Diagrams). All diagrams are supported by model-
ing tools that are accompanied by generators, which transform the declarative
models into application (source code) artifacts. The Coarse Design Diagrams
are used to generate complete folder structures of plugins that are compilation-
ready. These folders provide - among configuration files and build scripts - also
the skeletons for the ARMs, AIPs and CDs. Refined Agent Role Models are
transformed into the initial Agents’ knowledge bases, which are used to instan-
tiate agents – implemented as high-level Petri nets. Agent Interaction Diagrams
are used to generate the agent protocols as Petri net skeletons. The Concept
Diagrams are also used to generate Java classes (and other languages such as
JavaScript), which are used for a convenient implementation of the agent com-
munication.

Fig. 1. Design artifacts of the Export Agent.

Figure 1 shows all four models for the Export Agent application. This exam-
ple is a rather minimalist one. It contains only one agent and one interaction.
The agent offers the export services as agent services and in conjunction with
the WebGateway [1] also as Web services. The ontology only consists in the
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four agent-actions that trigger different services. The Agent Role Model actu-
ally shows that only two services3 are offered as agent services (ExportPng and
ExportDiff ). This model also contains the specification of the ExportAgent, which
consists of two roles: the Agentlet role and Export role.

All presented models are supported by modeling tools – implemented as
Renew plugins – that are accompanied by generators (or transformers) of source
code artifacts. All tools have been developed as individual tools with individual
approaches and each technique can be regarded as domain-specific modeling
language. In this context the RMT framework provides a systematic and model-
based approach to the engineering of modeling languages and thus simplifies the
development of DSML. Some of the modeling techniques already use means that
are available in the RMT framework. For instance, the Coarse Design Diagram
uses graphical components for the concrete syntax and the Agent Role Model
already applies the meta-model based approach for the definition of the abstract
syntax.

3 Conceptual Approach

As our approach to software development is based on the model-driven construc-
tion of software systems our aim is to provide a tool chain using model-driven
techniques. We want to support the agile development of graphical modeling lan-
guages. Therefore, we rely on the concepts of software language engineering [14]
and apply model-driven techniques to generate tools from abstract models. In the
following we elaborate on the techniques required to realize a framework based
on generating modeling tools. Renew provides the basis for our meta-modeling
framework. It serves as a graphical framework for the flexible construction of
graphical models and at the same time provides the execution and simulation
environment of Petri net models, which serve as target languages that provide
the transformational semantics for the designed languages. This approach facili-
tates the analysis of Petri net models and the validation of model properties. Our
conceptual approach is based on the idea of bootstrapping the required modeling
tools using model-driven techniques. Following the concepts of software language
engineering the development of modeling languages encompasses three aspects:
abstract syntax, concrete syntax and semantics. Translating these concepts into
the area of generative tool development leads to a set of descriptions defining the
different aspects of software languages [20]: structure, constraints, representation
and behavior. The structure (abstract syntax) and the representation (concrete
syntax) of modeling languages will be addressed in the following section. The
behavior (semantics) is covered in Sect. 3.2.

3.1 Meta-modeling and Tool Generation

In this section we elaborate on the first part of the DSML development process.
First we need to define the syntax of the new language (or technique). The
3 Note that the diagram elements are partly collapsed, i.e. the role and the services.
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abstract syntax of a language is specified by a meta-model, which defines the
structure of the language. Our tool set, which is based on Renew, supports
the modeling of the abstract syntax directly through the technique of Concept
Diagrams (cf. [3, Chap. 12]). Concept Diagrams are simplified Class Diagrams,
which are usually used to design type hierarchies or agent ontologies (in the
context of P∗aose). In the context of this work the type hierarchies of Concept
Diagrams are utilized to model the meta-models of the designed DSML, i.e. the
abstract syntax.

Additionally, in order to define the representation of the elements we also
need to define the concrete syntax. The concrete syntax, i.e. the representation of
the syntactic elements, is defined through a mapping from the syntactic element
to its graphical representation (representational mapping). The representational
mapping includes concrete graphical or textual syntax as well as serialization
representations. Typically, if the language should not be restricted to graphical
standard figures, the layout, concrete form, etc. has to be defined in a way that is
close to the implementation language. However, we also provide the possibility
that the syntactic elements may be defined directly within the Renew envi-
ronment using the graphical user interface. Each provided artifact that specifies
the graphical representation is stored as a template drawing and the represen-
tational mapping refers not to an implementation but to a template (graphical
component). Alternatively, some standard elements are provided. These can be
configured in terms of style sheets to define the representation for the language
constructs.

In addition to the abstract and the concrete syntax, we need to configure the
user interface of the modeling tool that provides the modeling facility. In the
Renew environment the modeling tool is integrated as a plugin. The configu-
ration is done by defining another mapping for task bar tool buttons and their
design together with some general information about the modeling tool, such as
the file extension or the ordering of tool buttons in the task bar.

The Renew plugins that provide the modeling facility for the style sheets
and the tool configurations are themselves meta-model based. They have been
generated – in a bootstrapping fashion – using the RMT approach.

Figure 2 shows the defining artifacts of a modeling language’s syntax at the
top. These artifacts are expressed within the scope of the meta-meta-model –
the RMT meta-model – and can thus be used to generate a domain-specific
modeling tool, which then provides the possibility to design a model, using the
technique; e.g. a (domain-specific) modeling language.

A modeler may use the generated tool to model, store and retrieve graphi-
cal models (diagrams) in the syntax of the newly developed modeling language4.
For operational or analytic models, however, it is not enough to be able to pro-
vide graphical descriptions of the models. In these cases we need to define a clear
semantics. Following the idea of the model-driven architecture (MDA) the seman-
tic interpretation of a source model can be defined through a transformation into

4 In the following we will address these models as domain models or source models.
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Fig. 2. An abstract view of the models of a meta-modeling project.

specific target models using a generator as shown in the lowermost part of Fig. 2,
which refers to the schematic view of Petrasch et al. [23, p. 107].

We elaborate on this in the following section. But before we present the app-
roach to the definition of the semantics, we stress the flexibility of the given app-
roach, up to this point. The meta-modeling approach in itself offers a high degree
of flexibility. By changing (augmenting, modifying or restricting) the meta-model
we are able to quickly produce variations of modeling techniques, which may sub-
sequently be compared with each other (cf. Sect. 4.2). Additionally, we are able
to change the representation of the modeling language by either changing the
representational mapping or by editing the graphical components. Especially the
latter can be done by someone without profound knowledge of the development
details, who can thus create his own representation.

3.2 Transforming Source Models to Target Models

The semantics of a modeling language is defined – as semantic mapping, cf. [11]
– either through formalization, through an operationalization or through the
transformation into other models that already have a formal or an operational
semantics. As we use the Renew environment as a basis for our approach, we
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transform given source models to Petri net models, i.e. our target languages are
Petri net formalisms. Nevertheless, the RMT approach is not restricted to behav-
ioral modeling languages. By choosing the proper target languages, modeling
structural properties can be performed by applying the same approach. The focus
here, however, lies on the specification of the behavioral properties of modeling
languages. Renew has the ability to simulate Java Reference nets [15], which
combine the modeling power of Petri nets with concepts from the object-oriented
programming language Java, such as states, encapsulation etc. We present an
example of generated Java Reference net code in Sect. 4.2.

In Figs. 2 and 3 we can identify the domain specific model (source model),
which is transformed into a target model (Platform Specific Model, PSM) within
the application domain layer (M1). The Renew environment together with its
provided Petri net formalisms serves as Platform Model (PM, compare with
Fig. 2). In the context of model-driven development, the source model is often
described as Platform Independent Model (PIM).

The transformation process is depicted in Fig. 3 as a schematic Petri net.
Transitions represent actions provided by either the RMT tool set (generation,
transformation, execution or analysis) or by the source model developer (mod-
eling). Reserve arcs in presets of transitions indicate that artifacts are not being

Fig. 3. Artifacts and process within the RMT usage workflow.
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consumed by the actions. Artifacts that are necessary for the development of
the modeling language are provided by the language developer using the RMT
framework. These artifacts comprise the syntax meta-models, the transformer
and the semantic elements provided as net components [3, Chap. 5]. Net com-
ponents are Petri net snippets that are used as patterns to be mapped by a
generator and combined to constitute the target models. In this sense the model
transformation process can be characterized as a pattern-oriented transforma-
tion following the categorization of Petrasch et al. [23, p. 132].

Besides supporting the agile development of graphical languages, the RMT
approach also provides a high level of flexibility regarding the semantic trans-
formation. The semantic targets for the syntactic elements are defined as net
components, which can be easily modified or exchanged. We are even able to
provide several target mapping sets of net components, which can be expressed
using distinct formalisms. Thus, we are able to transform one source model into
multiple forms of target models. For instance, a transformation of a workflow
description into a PT net model is desirable for analytic examination, while a
transformation into a colored Petri net can be included for simulation/execution
within a real world application.

Table 1. Applied techniques in the RMT framework.

Objective Technique/Artifact

Abstract syntax Concept diagram

Concrete syntax Standard figurea

Custom figure

Component/Template

SL figure (default)

Tool configuration SL model

Stylesheet SL model

Semantic transformation Transformer/Net components
a Standard figures may be customized through style sheets.

Table 1 summarizes the techniques applied (or artifacts used) for each objec-
tive. There are four possible ways to define the elements of the concrete syntax.
With the exception of the Custom Figure and the Transformer all objectives are
satisfied through model-based means.

4 Developing a Prototype for BPMN

In the previous section we introduced a conceptual approach to developing mod-
eling languages. We now show the concept in practice and demonstrate the
concrete models, which are utilized in the development process. We have chosen



Integrating Petri Net Semantics in a Model-Driven Approach 101

to present as an example, the well-known modeling technique BPMN (Business
Process Model and Notation, [21]), in order to demonstrate the approach.

In Sect. 4.1 we develop a (rather simple) modeling language that implements
a subset of BPMN. We show how model transformations can be used to generate
Petri net models, which provide formal semantics to the abstract BPMN models.
The generated Petri net models can be referred to for analyzing a BPMN process.

In a subsequent step a more specific modeling language is developed in
Sect. 4.2. This second language – the BPMNAIP formalism – enriches concepts
from BPMN with domain-specific elements from the context of P∗aose (see
Sect. 2). The intention is to demonstrate the flexibility of the RMT approach
and the appropriateness for agile, rapid and prototypical model-driven language
development.

4.1 BPMN

We start with a simple subset of BPMN. Since BPMN has been described exten-
sively in the context of modeling, meta-modeling and also in the context of Petri
nets, we do not need to go into detail about the underlying semantics. A map-
ping of syntactic elements of BPMN to PT net components has been proposed by
Dijkman et al. [7]. Using these Petri net mappings, we can focus on the aspects
of agile language development instead. We concluded in Sect. 3.1 that a model-
ing language is based on the specifications of abstract and concrete (graphical)
syntax.

Fig. 4. A meta-model for a subset of BPMN language constructs.

Figure 4 shows a meta-model for the chosen fragment of BPMN. All concepts
defined in this meta-model are instances of three basic concepts from the RMT
meta-model: model, classifier, relation. In Fig. 4 it is also shown that the three
basic concepts are themselves instances of the single core concept (concept). The
developed BPMN language defines a model type, the business-process-model.
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Events, activities and two different gateways, one for parallel processing and
one with exclusive alternatives are also defined. The concepts can be connected
through the sequence-flow relation. These concepts alone define the abstract
syntax of the simplified BPMN formalism.

Fig. 5. The tool configuration model for the BPMN modeling tool (with partly col-
lapsed tool mappings).

In order to complete the modeling language and generate the respective sup-
porting modeling tool, the RMT approach requires additional information. One
part is the visual representation of graphical constructs. These are developed
using the built-in graphical constructs of the Renew drawing framework. Each
graphical figure is stored in a separate drawing file (template) and can be used
as syntactic element for modeling later on. Other information required is a spec-
ification of properties for the modeling tool. An example of a tool configuration
as SL Model is shown in Fig. 5. This model contains basic properties such as
a model name and a file extension as well as a set of tool mappings. The lat-
ter define mappings from concepts of the meta-model (target-type) to graphical
constructs (net components). Connectors of the constructs are specified as ports,
relative to their position. All elements of the tool configuration are expressed in
Semantic Language (SL), which can be compared to Yaml or JSON Tool con-
figurations are defined using the SLEditor plugin for Renew, which provides a
UML-like representation as well as editing support for the modeler.

Figure 6 shows the graphical components representing the syntactic elements
of the BPMN language alongside with the Renew UI, which presents the loaded
palette for the BPMN drawing tools. The graphical components are defined in
separate template drawings. The templates define the concrete syntax for the
BPMN technique. This concludes the specifications for the modeling language
and enables us to generate the plugin for the modeling tool. During the gen-
eration process the RMT generator (automatically) prepares the images that
are used for the tool buttons on the basis of the graphical templates. The icon
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Fig. 6. The Renew UI with the tool palette providing BPMN elements.

images of parallel and alternative gateways were slightly modified as shown in
the encircled part of Fig. 6 to better distinguish the complementary constructs
of split and join figures.

Using the generated BPMN plugin we are now able to model with this new
technique using the Renew editor. Figure 7 shows a ticket workflow described
in BPMN. The process reflects the lifecycle of support tickets in a conventional
issue tracking system. Issues are created and at some point assigned to the
holder of a certain role. They can be either rejected or accepted, in which case
the corresponding task will be carried out by the assignee. Later on, the task
may be discontinued (unassigned) or completed (finish).

With the mapping of Dijkman et al. [7] for the transformation to Petri nets
we are able to transform the given workflow to a PT net model. The generated
Petri net is displayed in Fig. 8. It constitutes the transformational semantics of
the BPMN process in the context of the Renew simulation environment. In

Fig. 7. The lifecycle of tickets in a issue tracking system, modeled as BPMN.

Fig. 8. The target model of the lifecycle of tickets as PT net.
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consequence, the resulting model can now be executed or analyzed using, for
instance, the Renew simulator.

4.2 BPMNAIP

The example presented in the preceding section describes the development of a
modeling language together with a corresponding modeling tool (as Renew plu-
gin) following the RMT approach. Based on meta-models, the approach provides
a high level of flexibility in all stages of the development of modeling languages.
This enables language developers to rapidly prototype specific languages, evalu-
ate them and adapt them according to their needs. To further illustrate this flex-
ibility, we now present a domain-specific variation of BPMN, called BPMNAIP ,
which is used within the P∗aose approach.

We use BPMNAIP to model agent interaction protocols. In contrast to Agent
Interaction Protocol Diagrams (a variation of Sequence Diagrams [3, Chap. 13]),
the BPMNAIP formalism allows shifting the focus to the internal agent processes.
The presented agent-specific extensions have been proposed by Haustermann [12]
in order to augment a subset of BPMN for the use within the P∗aose approach.
With the RMT approach it is possible to refine the BPMN language in an agile
process and develop a corresponding modeling language (BPMNAIP ), which
satisfies the demands of a given domain-specific context.

BPMNAIP extends the BPMN subset in the previous section by incoming
(drawn as white envelopes) and outgoing (black envelopes) message events and
special tasks for agent-specific operations. The dc-exchange-task represents the
synchronous or asynchronous call of an internal service. The kb-access-task serves
for accessing the agent’s internal knowledge base. To use these constructs in the
modeling tool, they have to be added to the meta-model. Figure 9 shows the
extensions of the meta-model in Fig. 45. With these extensions the modeling
tool can already be used with the added constructs. The generated modeling
tool uses a standard representation and standard task bar tool buttons to allow
the running of early tests if the developer provides none. In order to define a
customized concrete syntax, analogous to the previous example, a representation
template drawn with the Renew tool, a button icon generated from the template
image and a tool mapping entry in the tool configuration as shown in Fig. 5 are
sufficient.

In addition to the agent-specific constructs, BPMNAIP also has a domain-
specific semantics. The semantics is based on the Mulan/Capa agent framework
that is applied in the P∗aose approach, which uses Petri nets to implement
agents and the agents’ behavior. Therefore, the semantic net components for the
target models are tailored to fit within the framework used.

In order to obtain another semantics it is possible to provide a different set of
net components. The RMT framework is able to handle multiple transformation
engines and multiple sets of net components. For the BPMNAIP formalism a
variation of the Mulan net components by Cabac are used [3, Chap. 5]. Table 2

5 Elements already defined in the BPNM meta-model are depicted in gray.
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Fig. 9. BPMNAIP extensions to the BPMN meta-model (cf. Fig. 4).

visualizes the mapping from BPMNAIP elements to Petri net components. Basi-
cally, the mapping is very similar to the one proposed by Dijkman [7] although
the target model’s underlying formalism is the Java Reference net formalism.
Additionally, some well-established agent-related elements have been added.

Figure 10 shows an adaptation of the ticket service example using BPMNAIP .
The Ticket Agent provides the management of the ticket status. It can delegate
tasks to other agents (see Fig. 10a). In this example the task of exporting some
drawing to an image is assigned to an Export Agent (as described by Cabac
et al. [1]), which is informed about the assignment by a message. This message
results in an instantiation of the process depicted in Fig. 10b. The Export Agent
checks its knowledge base if it can export the drawing and delegates the task to

Fig. 10. The ticket workflow.
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Table 2. Semantic mapping for BPMNAIP elements
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an internal service if possible. The Ticket Agent changes the status of the ticket
according to the messages it receives as a response from the Export Agent.

Using the described semantics, the two agent processes in Fig. 10 are trans-
formed by the RMT-based BPMNAIP modeling tool into the Petri nets shown in
Fig. 11. These nets are protocol net skeletons, which have to be completed with
additional implementation details in order to be runnable with the framework
used. The figure illustrates the structure of the generated nets. The nets have
been beautified and inscriptions have been enlarged for improved readability.

5 Related Work

The proper design of a modeling language presents many challenges. Harel and
Rumpe [11] are concerned about the common misunderstandings that are wide-
spread among the users and developers of modern modeling languages, such as
UML. The authors point out that there is often no clear distinction between
syntax and semantics while this distinction is crucial to obtain a rigid definition
of a language’s semantics. The authors express that “. . . a language consists of
a syntactic notation (syntax), which is a possibly infinite set of legal elements,
together with the meaning of those elements, which is expressed by relating the
syntax to a semantic domain” [11, p. 65]. We agree on the need for a clear distinc-
tion between syntactic and semantic domain. The RMT approach emphasizes
the explication of each domain by covering abstract syntax, concrete syntax and
semantic mappings, each in separate models (cf. Sect. 3). Our description of the
semantic domain profits from the expressive power of Petri nets, which provides
the formal specification and the operational behavior of the models. Harel and
Rumpe advise against mistaking behavior for semantics. “The semantic domain
is not to be taken lightly: It specifies the very concepts that exist in the universe
of discourse. As such, it serves as an abstraction of reality, capturing the deci-
sions about the kinds of things the language should express” [11, p. 67]. They
see no principal difference between textual and graphical modeling languages
but the latter require more effort to obtaining a rigid definition. They see little
hope for developing formal semantics that cover the full UML standard in its
whole complexity. With the RMT framework we take a different approach. We
focus on the prototypical development of specific modeling languages, which can
be experimentally investigated and refined, yet, in each stage provide a rigid
specification. We rely on the expressiveness and the formal semantics of various
Petri net formalisms. This enables us to study the semantics of existing modeling
languages and those that are yet to be developed (i.e. DSML). Alongside a rigid
and clear definition of the semantics of a modeling language, we aim for an agile,
incremental approach.

In this publication we motivate the rapid and prototypical development of
domain-specific modeling languages. There are a number of related publica-
tions on prototyping domain-specific languages (DSL), each focusing on dif-
ferent aspects or application domains. Blunk et al. [2] see the best gain for
prototyping DSL as an extension of a general purpose programming language.



108 D. Mosteller et al.

F
ig
.
1
1
.
G
en

er
a
te
d
p
ro
to
co
l
n
et

sk
el
et
o
n
s.



Integrating Petri Net Semantics in a Model-Driven Approach 109

Sadilek et al. [26] stress the increasing demand for supporting agile approaches
to the development of DSML. They “argue that for prototyping a DSML on
the platform independent level, its semantics should not only be described in a
transformational but also in an operational fashion” [26, p. 63]. However, they
use the Query View Transformation (QVT) language to implement operational
semantics of Petri nets rather than exploiting their operational semantics to
formalize the semantics of a second modeling language, as done here. Rouvoy
et al. [25] specialize on the domain of architecture description languages (ADLs)
and develop a modular framework for prototyping ADLs based on the Scala
language. The method presented here emphasizes the high degree of automation
through generative methods, the automated generation of modeling tools and
also the automated transformation of abstract models to Petri nets.

Nytun et al. [20] provide a categorization of different approaches to auto-
mated tool generation in the context of meta-modeling and DSML. The authors
examine various meta-modeling approaches according to the four categories:
structure, constraints, representation and behavior. With the RMT approach
we cover most of these aspects by utilizing concept diagrams, representational
mappings and Petri net-based target models. At the current time we do not
provide any means to define constraints, but we plan to introduce constraints in
the future.

Fill and Karagiannis examine the conceptualization of modeling methods
using as an example the ADOxx platform [9]. ADOxx is an enterprise level meta-
modeling platform. Their analysis focuses especially on four aspects of modeling
languages regarding their conceptualization: visualization, transformation, simu-
lation and querying. Concerning visualization the authors distinguish approaches
that make no implications on the representation of constructed modeling lan-
guages from other approaches that provide pre-defined representations. For the
RMT approach there are - besides using the default SL Figures or customized
implementations - two ways of assigning representations to a modeling language,
either by using the graphical drawing capabilities of Renew or by the applica-
tion of style sheets to standard constructs. Following Fill and Karagiannis trans-
formation refers to import and export formats, e.g. XML. “The transformation
of model contents to specific data formats is often needed to exchange models
between different tools, feed the information contained in models to other sys-
tems, or create reports about model contents via document formats.” [9, p. 14].
In the context of P∗aose various types of target models are applied (cf. Sect. 2).
The main focus in our approach is on providing Petri net transformations that
enable the simulation of models within Renew. Concerning serialization, the
RMT approach features SL import and export6. The term simulation in the
context of ADOxx is extended to algorithms for the purpose of model evalua-
tion (e.g. path analysis), while in the context of the RMT framework an interac-
tive simulation is supported directly within the Renew environment. Addition-
ally, plugins can be used to perform analysis of the transformed target models.

6 A plugin to support the exchange of models through XMI serializations is currently
in development.



110 D. Mosteller et al.

Through the definition of customized analyzers, queries on models could be per-
formed but, currently, we do not focus on this aspect in the development of the
RMT framework.

With the claim of addressing general problems of defining DSML semantics,
our goal is to develop a Petri net-based framework by combining techniques of
meta-modeling with Petri nets engineering. With the Event Coordination Nota-
tion (ECNO), Kindler [13] takes a model-driven approach that uses Petri net
models to implement local components behavior. The collaboration of compo-
nents is defined in abstract coordination diagrams. The implementation is based
on the wide-spread Eclipse Modeling Framework (EMF). In combination with
the EMF, the graphical modeling framework (GMF) can be used to automati-
cally generate specific modeling tools from meta-models. The idea of generating
domain-specific tools from models was adopted for this work, but we try to
take a minimalist approach instead of overcharging the tool with features, thus
increasing complexity. The intrinsic complexity is a point of criticism concerning
meta-modeling frameworks [25, p. 14].

Dijkman et al. [7] show a mapping of BPMN constructs to Petri nets and
elaborate on the semantics of such transformations. On the basis of that work
a tool exists for converting BPMN models to PNML and a tool for converting
BPMN to YAWL. With the flexible tool presented in this work the languages can
be quickly adopted and the concerns about problems in evaluating BPMN models
using Petri net semantics can be empirically investigated. Lohmann et al. [17]
provide a basis for analyzing different business process modeling languages with
respect to their realizability using Petri net semantics for BPEL, BPMN, EPC,
YAWL. This can be a good starting point for further research using our approach.
The RMT framework has been applied by Möllers [19] for the development of a
modeling tool for the design and execution of Deployment Diagrams. Möllers has
also implemented and applied an XMI (XML Metadata Interchange) exchange
format for Deployment Diagrams.

6 Conclusion

In this contribution we present the RMT approach, which enables us to develop
modeling languages and modeling tools by applying concepts of model-driven
development. The key aspects of this approach are the use of meta-models for
automatic tool generation and transformation of models by exploiting the formal
semantics of Petri nets. In the context of P∗aose the transformation of abstract
models to Petri net implementation artifacts is applied in order to develop multi-
agent applications (cf. Sect. 2). Based on our continuously developed graphical
modeling tool and Petri net simulation environment Renew [5,16] we provide
the technical realization of the RMT approach. The RMT framework provides
the means to describe modeling languages building on the concepts of software
language engineering (cf. Sect. 3). The abstract syntax, concrete syntax and tool
configurations are provided as model-based specifications of the desired mod-
eling languages and tool behavior. The semantics is defined as transformation-
based operational semantics using Petri net formalisms as target models. With
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this environment we are able to provide the representation directly within our
graphical framework, leading to appropriate language constructs, which can be
designed for special purposes that fit the needs and expectations of its users.
With the RMT approach the users are able to develop and adapt their own
languages/modeling techniques, define constructs based on graphical represen-
tations and finally generate modeling tools, which empower them to draw models
in domain-specific languages.

Depending on the chosen and intended formalism, we could even go one
step further. We are able to simulate the transformed models directly, if an
operational semantics exists that can be mapped to the formalisms we already
have implemented within the Renew context. For experimental environments
where users want to define a special purpose language that suits exactly their
current needs, we can provide a powerful tool set.

While the prototypical development of languages is already quite fast, we
now have to address the question of sustainable meta-modeling-based tools. We
have already successfully applied the RMT framework several times within our
P∗aose approach. In this context we expect that further new modeling lan-
guages can be developed in a prototyping approach. In the future we wish to
provide the means to support hierarchical modeling within the RMT framework.
With the Nets-within-Nets paradigm [27] the concepts to support hierarchical
target models already exist. Since the whole P∗aose approach is Petri net-based,
the direct support by simulation of target models within Renew is implicitly
given. The prototyping approach of languages empowers us to evaluate several
languages in order to improve specific frameworks that are already at hand.
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Abstract. Process mining techniques rely on event logs: the extraction
of a process model (discovery) takes an event log as the input, the ade-
quacy of a process model (conformance) is checked against an event log,
and the enhancement of a process model is performed by using available
data in the log. Several notations and formalisms for event log represen-
tation have been proposed in the recent years to enable efficient algo-
rithms for the aforementioned process mining problems. In this paper
we show how Conditional Partial Order Graphs (CPOGs), a recently
introduced formalism for compact representation of families of partial
orders, can be used in the process mining field, in particular for address-
ing the problem of compact and easy-to-comprehend representation of
event logs with data. We present algorithms for extracting both the con-
trol flow as well as the relevant data parameters from a given event log
and show how CPOGs can be used for efficient and effective visualisation
of the obtained results. We demonstrate that the resulting representa-
tion can be used to reveal the hidden interplay between the control and
data flows of a process, thereby opening way for new process mining
techniques capable of exploiting this interplay. Finally, we present open-
source software support and discuss current limitations of the proposed
approach.

1 Introduction

Event logs are ubiquitous sources of process information that enabled the rise
of the process mining field, which stands at the interface between formal meth-
ods, concurrency theory, machine learning, and data visualisation [1]. A process
is a central notion in process mining and in computing science in general, and
the ability to automatically discover and analyse evidence-based process mod-
els is of utmost importance for many government and business organisations.
Furthermore, this ability is gradually becoming a necessity as the digital rev-
olution marches forward and traditional process analysis techniques based on
the explicit construction of precise process models are no longer adequate for
continuously evolving large-scale real-life processes, because our understanding
of them is often incomplete and/or inconsistent.
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At present, the process mining field is mainly focused on three research
directions: (i) the discovery of a process model, typically, a Petri Net or a
BPMN (Business Process Model and Notation); (ii) the conformance analysis of
a process model with respect to a given event log; and (iii) the enhancement of
a process model using additional information (i.e., data) contained in an event
log. The bulk of research in these directions has been dedicated to the design
of the algorithmic foundation and associated software tools with many notable
successes, such as, e.g. the ProM framework [2].

However, a more basic problem of event log representation and visualisation
received little attention to date, despite the fact that effective visualisation is
essential for achieving a good understanding of the information contained in an
event log. Indeed, even basic dotted charts prove very useful for describing many
aspects of event logs even though they are just simple views of event log traces
plotted over time [3].

In this paper we discuss the application of Conditional Partial Order Graphs
(CPOGs) for event log representation and visualisation. The CPOG model has
been introduced in [4] as a compact graph-based formalism for complex concur-
rent systems, whose behaviour could be thought of as a collection of multiple
partial order scenarios (see a formal definition in Sect. 4). The key idea behind
our approach is to convert a given event log into a collection of partial orders,
which can then be compactly described and visualised as a CPOG, as explained
in the motivating example in Sect. 2. CPOGs are less expressive than Petri Nets
and have important limitations, such as the inability to represent cyclic behav-
iour, but they are well-suited for representing inherently acyclic event logs.

We see CPOGs not as the end product of process mining, but as a conve-
nient intermediate representation of event logs that provides much better clarity
of visualisation as well as better compactness, which is important for the effi-
ciency of algorithms further in the process mining pipeline. Furthermore, CPOGs
can be manipulated using algorithmically efficient operations such as overlay
(combining several event logs into one), projection (extracting a subset of inter-
esting traces from an event log), equivalence checking (verifying if two event logs
describe the same behaviour) and others, as formalised in [5].

The contributions of this paper1 are:

– We propose two methods for mining compact CPOG representations from
event logs, see Sect. 5. The methods are based on the previous research in
CPOG synthesis [4], and on a novel concurrency oracle introduced in Sect. 5.2.

– We propose techniques for extracting data parameters from the information
typically contained in event labels of a log and for using these parameters for
annotating derived CPOG models, thereby providing a direct link between
the control and data aspects of a system under observation, see Sect. 6.

– We present an opensource implementation of the CPOG mining methods as a
Workcraft plugin [7] and as a command line tool PGminer [8], see Sect. 7.

1 This paper is an extended version of [6].
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– We evaluate our implementation on several event logs known to the process
mining community, see Sect. 7.3. The experimental results show that the cur-
rent implementation is capable of handling large real-life logs in reasonable
time and highlight the areas where future research work is needed. We review
and discuss related work in Sect. 8.

2 Motivating Example

We start by illustrating the reasons that motivate us to study the application
of CPOGs in process mining, namely: (i) the ability of CPOGs to compactly
represent complex event logs and clearly illustrate their high-level properties,
and (ii) the possibility of capturing event log meta data as part of a CPOG
representation, thereby taking advantage of the meta data for the purpose of
explaining the process under observation.

Consider an event log L = {abcd, cdab, badc, dcba}. One can notice that the
order between events a and b always coincides with the order between events
c and d. This is an important piece of information about the process, which
however may not be immediately obvious when looking at the log in the text
form. To visualise the log one may attempt to use existing process mining tech-
niques and discover a graphical representation for the log, for example in the
form of a Petri Net or a BPMN. However, an exact Petri Net representation of
event log L is cumbersome and difficult to understand. Furthermore, existing
Petri Net based process mining techniques perform very poorly on this log. To
compare the models discovered from this log by several popular process mining
methods, we will describe the discovered behaviour by regular expressions, where
operators || and ∪ denote interleaving and union, respectively.

The α-algorithm [9] applied to L produces a Petri Net accepting the behav-
iour a ∪ b ∪ c ∪ d, which clearly cannot reproduce any of the traces in L.
Methods aimed at deriving block-structured process models [10,11] produce
a connected Petri Net that with the help of silent transitions reproduces the
behaviour a || b || c || d, which is a very imprecise model accepting all possible
interleavings of the four events. The region-based techniques [12] discover the
same behaviour as the block-structured miners, but the derived models are not
connected. One can use classical synthesis techniques to exclude wrong continu-
ations (such as acbd, acdb, etc.), from the resulting Petri Net [13], however, this
process is hard to automate and still leads to inadequately complex models.

CPOGs, however, can represent L exactly and in a very compact form, as
shown in Fig. 1(a). Informally, a CPOG is an overlay of several partial orders
that can be extracted from it by assigning values to variables that appear in the
conditions of the CPOG vertices and arcs. For example, the upper-left graph
shown in Fig. 1(b) (assignment x = 1, y = 1) corresponds to the partial order
containing the causalities a ≺ b, a ≺ d, b ≺ c, c ≺ d. One can easily verify that
the model is precise by trying all possible assignments of variables x and y and
checking that they generate the traces {abcd, cdab, badc, dcba} as desired, and
nothing else. See Fig. 1(b) for the corresponding illustration. The compactness
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Fig. 1. Exact CPOG representation of log L = {abcd, cdab, badc, dcba}

of the CPOG representation is due to the fact that several event orderings are
overlayed on top of each other taking advantage of the similarities between them.
See Sects. 4 and 5 for a formal introduction to CPOGs and synthesis algorithms
that can be used for mining CPOGs from event logs.

It is worth mentioning that CPOGs allow us to recognise second-order rela-
tions between events. These are relations that are not relating events themselves,
but are relating relations between events: indeed, the CPOG in Fig. 1(a) clearly
shows that the relation between a and b is equal to the relation between c and d,
and the same holds for pairs (a, d) and (b, c). In principle, one can go even fur-
ther and consider third-order relations and so forth. The practical use of such a
relation hierarchy is that it may help to extract an event hierarchy from event
logs, thereby simplifying the resulting representation even further.

One may be unsatisfied by the CPOG representation in Fig. 1(a) due to the
use of ‘artificial’ variables x and y. Where do these variables come from and what
exactly do they correspond to in the process? We found out that additional data
which is often present in event logs can be used to answer such questions. In
fact, as we will show in Sect. 6, it may be possible to use easy-to-understand
predicates constructed from the data instead of ‘opaque’ Boolean variables.

For example, consider the same event log L but augmented with temperature
data attached to the traces:

– abcd, t = 25◦

– cdab, t = 30◦

– badc, t = 22◦

– dcba, t = 23◦

With this information at hand we can now explain what variable x means. In
other words, we can open the previously opaque variable x by expressing it as a
predicate on temperature t: x = t ≥ 25◦
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Fig. 2. Using event log data to explain CPOG variables

One can subsequently drop x completely from the CPOG by using conditions
t ≥ 25◦ and t < 25◦ in place of x and x, respectively, as shown in Fig. 2.

In summary, we believe that CPOGs bring unique event log visualisation
capabilities to the process mining field. One can use CPOGs as an intermediate
representation of event logs, which can be exact as well as more comprehensible
both for humans and for software tools further in the process mining pipeline.

3 Event Logs

In this section we introduce the notion of an event log, which is central for this
paper and for the process mining field. We also discuss important quality metrics
that are typically used to compare methods for event log based process mining.

Table 1 shows a simple event log, which contains not only event information
but also data in the form of event attributes. The underlying traces of the log
are {abcd, cdab, badc, dcba}, just as in the previous section, and they correspond
to ‘case IDs’ 1, 2, 3 and 4, respectively. We assume that the set of attributes
is fixed and the function attr maps pairs of events and attribute names to the
corresponding values. For each event e the log contains the case ID case(e), the
activity name act(e), and a set of attributes, e.g. attr(e, timestamp). As an exam-
ple, case(e7) = 2, act(e7) = a, attr(e7, timestamp) = “10-04-2015 10:28pm”, and
attr(e7, cost) = 19 in Table 1. Given a set of events E, an event log is a multiset
of traces E∗ of events, where events are identified by the activities act.

Process mining techniques use event logs containing footprints of real process
executions for discovering, analysing and extending formal process models, which
reveal real processes in a system [1]. The process mining field has risen around
a decade ago, and since then it has evolved in several directions, with process
discovery being perhaps the most difficult challenge, as demonstrated by a large
number of existing techniques. Discovered process models are typically ranked
across the following quality metrics, some of which are mutually exclusive:

– fitness: the ability of the model to reproduce the traces in the event log (in
other words, not too many traces are lost);
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Table 1. An example event log

Event Case ID Activity Timestamp Temperature Cost Risk

1 1 a 10-04-2015 9:08am 25.0 17 Low

2 2 c 10-04-2015 10:03am 28.7 29 Low

3 2 d 10-04-2015 11:32am 29.8 16 Medium

4 1 b 10-04-2015 2:01pm 25.5 15 Low

5 1 c 10-04-2015 7:06pm 25.7 14 Low

6 1 d 10-04-2015 9:08pm 25.3 17 Medium

7 2 a 10-04-2015 10:28pm 30.0 19 Low

8 2 b 10-04-2015 10:40pm 29.5 22 Low

9 3 b 11-04-2015 9:08am 22.5 31 High

10 4 d 11-04-2015 10:03am 22.0 33 High

11 4 c 11-04-2015 11:32am 23.2 35 High

12 3 a 11-04-2015 2:01pm 23.5 40 Medium

13 3 d 11-04-2015 7:06pm 28.8 43 High

14 3 c 11-04-2015 9:08pm 22.9 45 Medium

15 4 b 11-04-2015 10:28pm 23.0 50 High

16 4 a 11-04-2015 10:40pm 23.1 35 Medium

– precision of the representation of the event log by the model (the opposite of
fitness, i.e. not too many new traces are introduced);

– generalisation: the ability of the model to generalise the behaviour covered by
the event log;

– simplicity: the Occam’s Razor principle that advocates for simpler models.

We present new methods for CPOG mining from event logs and analyse their
performance. A qualitative study with respect to the above metrics is beyond
the scope of this paper and is left for future research.

4 Conditional Partial Order Graphs

Conditional Partial Order Graphs (CPOGs) were introduced for the compact
specification of concurrent systems comprised from multiple behavioural sce-
narios [4]. CPOGs are particularly effective when scenarios of the system share
common patterns, which can be exploited for the automated derivation of a com-
pact combined representation of the system’s behaviour. CPOGs have been used
for the design of asynchronous circuits [14] and processor microcontrollers [15].
In this paper we demonstrate how CPOGs can be employed in process mining.
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4.1 Basic Definitions

A CPOG is a directed graph (V,E), whose vertices V and arcs E ⊆ V × V are
labelled with Boolean functions, or conditions, φ : V ∪ E → ({0, 1}X → {0, 1}),
where {0, 1}X → {0, 1} is a Boolean function on a set of Boolean variables X.

Figure 3 (the top left box) shows an example of a CPOG H containing
4 vertices V = {a, b, c, d}, 6 arcs and 2 variables X = {x, y}. Vertex d is labelled
with condition x + y (i.e. ‘x OR y’), arcs (b, c) and (c, b) are labelled with con-
ditions x and y, respectively. All other vertices and arcs have trivial conditions
1 (trivial conditions are not shown for clarity); we call such vertices and arcs
unconditional.

Fig. 3. A CPOG and the associated family of graphs

There are 2|X| possible assignments of variables X, called codes. Each code
induces a subgraph of the CPOG, whereby all the vertices and arcs, whose
conditions evaluate to 0 are removed. For example, by assigning x = y = 0
one obtains graph H00 shown in the bottom right box in Fig. 3; vertex d and
arcs (b, c) and (c, b) have been removed from the graph, because their conditions
are equal to 0 when x = y = 0. Different codes can produce different graphs,
therefore a CPOG with |X| variables can potentially specify a family of 2|X|

graphs. Figure 3 shows two other members of the family specified by CPOG H:
H01 and H10, corresponding to codes 01 and 10, respectively, which differ only
in the direction of the arc between vertices b and c. Codes will be denoted in a
bold font, e.g. x = 01, to distinguish them from vertices and variables.
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It is often useful to focus only on a subset C ⊆ {0, 1}X of codes, which are
meaningful in some sense. For example, code 11 applied to CPOG H in Fig. 3
produces a graph with a loop between vertices b and c, which is undesirable if arcs
are interpreted as causality. A Boolean restriction function ρ : {0, 1}X → {0, 1}
can be used to compactly specify the set C = {x | ρ(x) = 1} and its complement
DC = {x | ρ(x) = 0}, which are often referred to as the care and don’t care
sets [16]. By setting ρ = xy one can disallow the code x = 11 as ρ(11) = 0,
thereby restricting the family of graphs specified by CPOG H to three members
only, which are all shown in Fig. 3.

The size |H| of a CPOG H = (V,E,X, φ, ρ) is defined as:

|H| = |V | + |E| + |X| +

∣
∣
∣
∣
∣

⋃

z∈V ∪E

φ(z) ∪ ρ

∣
∣
∣
∣
∣
,

where |{f1, f2, . . . , fn}| stands for the size of the smallest circuit [17] that com-
putes all Boolean functions in the set {f1, f2, . . . , fn}.

4.2 Families of Partial Orders

A CPOG H = (V,E,X, φ, ρ) is well-formed if every allowed code x produces
an acyclic graph Hx. By computing the transitive closure H∗

x one can obtain
a strict partial order, an irreflexive and transitive relation on the set of events
corresponding to vertices of Hx.

We can therefore interpret a well-formed CPOG as a specification of a family
of partial orders. We use the term family instead of the more general term set to
emphasise the fact that partial orders are encoded, that is each partial order H∗

x is
paired with the corresponding code x. For example, the CPOG shown in Fig. 3
specifies the family comprising the partial order H∗

00, where event a precedes
concurrent events b and c, and two total orders H∗

01 and H∗
10 corresponding to

sequences acbd and abcd, respectively.
The language L(H) of a CPOG H is the set of all possible linearisations of

partial orders contained in it. For example, the language of the CPOG shown
in Fig. 3 is L(H) = {abc, acb, abcd, acbd}. One of the limitations of the CPOG
model is that it can only describe finite languages. However, this limitation is
irrelevant for the purposes of this paper since event logs are always finite.

It has been demonstrated in [18] that CPOGs are a very efficient model for
representing families of partial orders. In particular, they can be exponentially
more compact than Labelled Event Structures [19] and Petri Net unfoldings [20].
Furthermore, for some applications CPOGs provide more comprehensible models
than other widely used formalisms, such as Finite State Machines and Petri
Nets, as has been shown in [4,5]. This motivated the authors to investigate the
applicability of CPOGs to process mining.

4.3 Synthesis

In the previous sections we have demonstrated how one can extract partial orders
from a given CPOG. However, the opposite problem is more interesting: derive
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the smallest CPOG description for a given a set of partial orders. This problem
is called CPOG synthesis and it is an essential step in the proposed CPOG-based
approach to process mining.

A number of CPOG synthesis methods have been proposed to date. The
simplest method is based on graph colouring [4] and produces CPOGs with all
conditions having at most one literal. Having at most one literal per condition is
a serious limitation for many applications, but we found that the method works
well for process mining. A more sophisticated approach, which produces CPOGs
with more complex conditions has been proposed in [21], however, it has poor
scalability and cannot be applied to large process mining instances. The most
scalable approach to date, as confirmed by the experiments in Sect. 7.3, has been
developed in [22] and is based on simulated annealing. All encoding methods are
supported by open-source modelling framework Workcraft [7], which we used
in our experiments. In general, the CPOG synthesis problem is still in active
research phase and new approximate methods are currently being developed.
A promising direction for overcoming this challenge is based on reducing the
CPOG synthesis problem to the problem of Finite State Machine synthesis [23].

5 From Event Logs to CPOGs

When visualising behaviour of an event log, it is difficult to identify a single
technique that performs well for any given log due to the representational bias
exhibited by existing process discovery algorithms. For example, if the event log
describes a simple workflow behaviour, then the α-algorithm [9] is usually the
best choice. However, if non-local dependencies are present in the behaviour,
the α-algorithm will not be able to find them, and then other approaches, e.g.
based on the theory of regions [12,24,25], may deliver best results. The latter
techniques in turn are not robust when dealing with noisy event logs, for which
other approaches may be more suitable [26,27]. There are many event logs for
which none of the existing process discovery techniques seem to provide a satis-
factory result according to the quality metrics presented in Sect. 3; for instance,
see our simple motivating example in Sect. 2.

In this section we describe two approaches for translating a given event log L
into a compact CPOG representation H. The first approach, which we call the
exact CPOG mining, treats each trace as a totally ordered sequence of events
and produces a CPOG H such that L = L(H). This approach does not introduce
any new behaviours, hence the discovered models are precise.

The second approach attempts to exploit the concurrency between the events
in order to discover simpler and more general models, hence we call it the
concurrency-aware CPOG mining. This approach may in fact introduce new
behaviours, which could be interpreted as new possible interleavings of the traces
contained in the given event log L, hence producing a CPOG H that overap-
proximates the log, i.e. L ⊆ L(H). Both approaches satisfy the fitness criteria,
that is, the discovered models cover all traces of the event log.
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5.1 Exact CPOG Mining

The exact CPOG mining problem is stated as follows: given an event log L,
derive a CPOG H such that L = L(H). This can be trivially reduced to the
CPOG synthesis problem. Indeed, each trace t = e1e2 · · · em can be considered a
total order of events e1 ≺ e2 ≺ · · · ≺ em. Therefore, a log L = {t1, t2, · · · , tn} can
be considered a set of n total orders and its CPOG representation can be readily
obtained via CPOG synthesis. The solution always exists, but it is usually not
unique. If uniqueness is desirable one can fix the assignment of codes to traces,
in which case the result of synthesis can be presented in the canonical form [5].

For example, given event log L = {abcd, cdab, badc, dcba} described in Sect. 2,
the exact mining approach produces the CPOG shown in Fig. 1. As has already
been discussed in Sect. 2, the resulting CPOG is very compact and provides a
more comprehensible representation of the event log compared to conventional
models used in process mining, such as Petri Nets or BPMNs.

When a given event log contains concurrency, the exact CPOG mining app-
roach may lead to suboptimal results. For example, consider a simple event log
L = {abcd, acbd}. If we directly synthesise a CPOG by treating each trace of
this log as a total order, we will obtain the CPOG H shown in Fig. 4 (left).
Although L = L(H) as desired, the CPOG uses a redundant variable x to dis-
tinguish between the two total orders even though they are just two possible
linearisations of the same partial order, where a ≺ b, a ≺ c, b ≺ d, and c ≺ d.
It is desirable to recognise and extract the concurrency between events b and c,
and use the information for simplifying the derived CPOG, as shown in Fig. 4
(right). Note that the simplified CPOG H ′ still preserves the language equality:
L = L(H ′).

Fig. 4. CPOG mining from event log L = {abcd, acbd}

Since exact CPOG mining is a special case of the general CPOG synthe-
sis problem (all given partial orders are in fact total orders), it is reasonable
to expect that more efficient methods exist. The authors are unaware of such
methods at present, but believe that this may be an interesting topic for research.
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5.2 Concurrency-Aware CPOG Mining

This section presents an algorithm for extracting concurrency from a given event
log and using this information for simplifying the result of the CPOG mining.
Classic process mining techniques based on Petri Nets generally rely on the
α-algorithm for concurrency extraction [1]. We introduce a new concurrency
extraction algorithm, which differs from the classic α-algorithm in two aspects.
On the one hand, it is more conservative when declaring two given events con-
current, which may lead to the discovery of more precise process models. On the
other hand, it considers not only adjacent events in a trace as candidates for
the concurrency relation but all event pairs, and therefore can find concurrent
events even when the distance between them in traces is always greater than
one, as we demonstrate below by an example. This method works particularly
well in combination with CPOGs due to their compactness, however, we believe
that it can also be useful in combination with other formalisms.

First, let us introduce convenient operations for extracting subsets of traces
from a given event log L. Given an event e, the subset of L’s traces containing e
will be denoted as Le, while the subset of L’s traces not containing e will be
denoted as Le. Clearly, Le ∪ Le = L. Similarly, given events e and f , the subset
of L’s traces containing both of them with e occurring before f will be denoted
as Le→f . Note that Le ∩ Lf = Le→f ∪ Lf→e, i.e. if two events appear in a trace,
they must be ordered one way or another. For instance, if L = {abcd, acbd, abce}
then Le = {abce}, La = ∅, La→b = L, and La→d = {abcd, acbd}. An event e is
conditional if Le 	= ∅ and Le 	= L, otherwise it is unconditional. A conditional
event will necessarily have a non-trivial condition (neither 0 nor 1) in the mined
CPOG. Similarly, a pair of events e and f is conditionally ordered if Le→f 	= ∅
and Le→f 	= Le ∩ Lf . Otherwise, e and f are unconditionally ordered.

We say that a conditional event r indicates the order between events e and f
in an event log L if one of the following holds:

– Lr ⊆ Le→f

– Lr ⊆ Lf→e

– Lr ⊆ Le→f

– Lr ⊆ Lf→e

In other words, the existence or non-existence of the event r can be used
as an indicator of the order between the events e and f . For example, if
L = {abcd, acbd, abce}, then e indicates the order between b and c. Indeed,
whenever we observe event e in a trace we can be sure that b occurs before c in
that trace: Le ⊆ Lb→c. This notion leads to a simple concurrency oracle.

Definition 1 (Concurrency oracle). Two events e and f are concurrent if
they are conditionally ordered and no event r indicates their order.

Intuitively, the order between two truly concurrent events should not be
indicated by anything, i.e. it should have no side effects. Indeed, if one of the
orderings is in any sense special and there is an indicator of this, then the events
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are not really concurrent, or at least they are not always concurrent. CPOGs
are capable of expressing such conditional concurrency in a compact form. The
indicates relation has been inspired by and is similar to the reveals relation
from [28].

The above concurrency oracle is built on the simplest possible indicator –
a single event whose occurrence happens to distinguish the order between two
other events. We found this oracle to be very useful and efficient in practice, but
it may be too weak in certain cases, in particular, similarly to the α-algorithm it
declares all events concurrent in the motivation example from Sect. 2, resulting
in a very imprecise process model a || b || c || d. Fortunately, we can strengthen
the oracle by using second-order relations between events as indicators.

We say that a pair of events (r, s) indicates the order between events e and
f in an event log L if one of the following holds:

– Lr→s ⊆ Le→f

– Lr→s ⊆ Lf→e

In other words, the order between the events r and s can be used as
an indicator of the order between the events e and f . For example, if
L = {abcd, cdab, badc, dcba}, then the order between events a and b indicates
the order between events c and d (and vice versa). Indeed, whenever a occurs
before b in a trace, we know that c occurs before d: La→b = Lc→d. We can use
such second-order indicates relation for defining a more conservative concurrency
oracle.

Definition 2 (Rank-2 concurrency oracle). Two conditionally ordered
events e and f are concurrent if (i) no event r indicates their order, and (ii) no
pair of events (r, s) indicates their order.

One can consider more sophisticated combinations of events and the order
between them in the definition of the concurrency oracle, hence leading to a
hierarhcy of rank-N oracles. Indeed, the order can be indicated by a triple {r, s, t}
of events, or a combination of an event r and an ordering s → t, etc. A detailed
investigation of the hierarchy of concurrency oracles is beyond the scope of this
paper, but we believe that the hierarchy may be useful for choosing the right
precision of the obtained models during process discovery.

The following example, suggested by an anonymous reviewer, highlights the
difference between the proposed concurrency oracles and the α-algorithm.

Consider event log L = {xay1y2y3bz, xby1y2y3az, xy1y2y3abz, xy1y2y3baz}.
The α-algorithm does not declare events a and y2 concurrent, because they
never appear adjacent in a trace (i.e. they are not in the so-called directly-follows
relation). The proposed simple oracle however does declare them concurrent; in
fact the whole chain y1 ≺ y2 ≺ y3 is declared concurrent to both a and b, hence
compressing the event log into one partial order x ≺ (a || b || y1 ≺ y2 ≺ y3) ≺ z.
The rank-2 oracle is very conservative in this example and does not declare any
events concurrent; indeed, the ordering a → y1 is very rare (it appears only in
the first trace) and can therefore be used as an indicator of a → b, etc. The
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sensitivity of rank-N oracles to such rare combinations may be a disadvantage
in some cases. To deal with this problem one can set a threshold for discarding
rare indicators, a common approach when dealing with noisy event logs.

We are now ready to describe the algorithm for concurrency-aware CPOG
mining. The algorithm takes an event log L as input and produces a CPOG H
such that L ⊆ L(H).

1. Extract the concurrency: find all conditionally ordered pairs of events e and f ,
such that the order between them is not indicated by any events or pairs of
events (when using the rank-2 oracle). Call the resulting set of concurrent
pairs of events C.

2. Convert each trace t ∈ L into a partial order p by relaxing the corresponding
total order according to the set C. Call the resulting set of partial orders P .

3. Perform the exact CPOG synthesis on the obtained set of partial orders P to
produce the resulting CPOG H.

Note that the resulting CPOG H indeed satisfies the condition L ⊆ L(H),
since we can only add new linearisations into H in step (2) of the algorithm,
when we relax a total order corresponding to a particular trace by discarding
some of the order relations.

Let us now apply the algorithm to the previous examples. Given log L =
{abcd, cdab, badc, dcba} from Sect. 2, the algorithm does not find any concurrent
pairs, because the order between each pair of events is indicated by the order
between the complementary pair of events (e.g. La→b = Lc→d). Hence, C = ∅
and the result of the algorithm coincides with the exact CPOG mining, as shown
in Sect. 2. Given log L = {abcd, acbd} from Sect. 5.1, the algorithm finds one pair
of concurrent events, namely (b, c), which results in collapsing of both traces of
L into the same partial order with trivial CPOG representation shown in Fig. 4
(right).

6 From Control Flow to Data

As demonstrated in the previous section, one can derive a compact CPOG rep-
resentation from a given event log using CPOG mining techniques. The obtained
representations however rely on opaque Boolean variables, which make the result
difficult to comprehend. For example, Fig. 1(a) provides no intuition on how a
particular variable assignment can be interpreted with respect to the process
under observation. The goal of this section is to present a method for the auto-
mated extraction of useful data labels from a given event log (in particular
from available event attributes) and using these labels for constructing ‘trans-
parent’ and easy-to-comprehend predicates, which can substitute the opaque
Boolean variables. This is similar to the application of conventional machine
learning techniques for learning ‘decision points’ in process models or in general
for the automated enhancement of a given model by leveraging the available
data present in the event log [1].
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More formally, given an event log L and the corresponding CPOG H our goal
is to explain how a particular condition f can be interpreted using data available
in L. Note that f can be as simple as just a single literal x ∈ X (e.g. the arc
a → b in Fig. 1(a)), in which case our goal is to explain a particular Boolean
variable; however, the technique introduced in this section is applicable to any
Boolean function of the CPOG variables f : {0, 1}X → {0, 1}, in particular, one
can use the technique for explaining what the restriction function ρ corresponds
to in the process, effectively discovering the process invariants. We achieve the
goal by constructing an appropriate instance of the classification problem [29].

Let n = |E| be the number of different events in L, and k be the number of
different event attributes available in L. Remember that attributes of an event
e can be accessed via function attr(e), see Sect. 3. Hence, every event e in the
log defines a feature vector ê of dimension k where the value at i-th position
corresponds to the value of the i-th attribute2 of e. For instance, the feature
vector ê1 corresponding to the event e1 in Table 1 is (“10-04-2015 9:08am”, 25.0,
17, Low). Some features may need to be abstracted before applying the technique
described below to produce better results, e.g. timestamps may be mapped to
five discrete classes: morning, noon, afternoon, evening and night.

Table 2. Binary classification problem for function f and event log L.

Feature vectors Class

{ê | e ∈ σ ∧ σ ∈ Lf} True

{ê | e ∈ σ ∧ σ ∈ Lf} False

The key observation for the proposed method is that all traces in the log L
can be split into two disjoint sets, or classes, with respect to the given function f :
(i) set Lf , containing the traces where f evaluates to 1, and (ii) set Lf containing
the traces where f evaluates to 0. This immediately leads to an instance of the
binary classification problem on n feature vectors, as illustrated in Table 2. In
other words, every event belonging to a trace where the function f evaluates to
1 is considered to belong to the class we learn, that is, the class labelled as True
in Table 2 (the remaining events do not belong to this class). Several methods
can be applied to solve this problem, including decision trees [30], support vector
machines [31], and others. In this work we focus on decision trees as they provide
a convenient way to extract predicates defined on event attributes, which can
be directly used for substituting opaque CPOG conditions. The method is best
explained by way of an example.

Consider the event log in Table 1, which contains a few data attributes for
each event. The traces underlying the log are {abcd, cdab, badc, dcba}. Figure 1(a)
shows the corresponding CPOG produced by the CPOG mining techniques pre-
sented in the previous section. Let us try to find an interpretation of the variable

2 We assume a total order on the set of event attributes.
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Fig. 5. Decision tree built for function f = x in the CPOG of Fig. 1(a).

x by applying the above procedure with f = x. The set Lf equals to La→b, i.e.
it contains traces 1 and 2, wherein event a occurs before event b and therefore
f = 1. Therefore, feature vectors ê1–ê8 provide the positive instances of the class
to learn (the first eight events of the log belong to traces 1 and 2), while feature
vectors ê9–ê16 provide the negative ones. The decision tree shown in Fig. 5 is a
possible classifier for this function, which has been derived automatically using
machine learning software Weka [32]. By combining the paths in the tree that
lead to positively classified instances, one can derive the following predicate for
f : risk = low ∨ (risk = medium ∧ temperature > 23.5). This predicate can be
used to substitute the opaque variable x in the mined CPOG.

One can use the same procedure for deriving the explanation for all variables
and/or conditions in a CPOG, thereby providing a much more comprehensible
representation for the event log. Note that for complementary functions, taking
the negation of the classification description will suffice, e.g. x in Fig. 1(a) can be
substituted with predicate risk 	= low ∧ (risk 	= medium ∨ temperature ≤ 23.5).
Alternatively, one can derive the predicate for a complementary function by
combining paths leading to the negative instances; for example, for f = x the
resulting predicate is risk = high ∨ (risk = medium ∧ temperature ≤ 23.5).

The learned classifier can be tested for evaluating the quality of representa-
tion of the learned concept. If the quality is unacceptable then the corresponding
condition may be left unexplained in the CPOG. Therefore in general the data
extraction procedure may lead to partial results when the process contains con-
cepts which are ‘difficult to learn’. For example, in the discussed case study the
condition f = y could not be classified exactly.

A coarse-grain alternative to the technique discussed in this section is to
focus on case attributes instead of event attributes. Case attributes are attributes
associated with a case (i.e., a trace) as a whole instead to individual events [1].
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Furthermore, the two approaches can be combined with the aim of improving
the quality of obtained classifiers.

7 Tool Support and Experiments

The techniques presented in this paper have been implemented as a plugin for
the Workcraft framework [7,33], which is a collection of opensource tools
for design, verification and analysis of concurrent systems. In this section we
will describe our backend tools, frontend capabilities, and will analyse the per-
formance of the current implementation on a set of realistic process mining
benchmarks.

7.1 Backend Tools

We rely on three backend tools: PGminer [8], Scenco [34] and Weka [35].
PGminer is a contribution of this paper, developed specifically for the

efficient concurrency-aware mining of CPOGs from event logs as described in
Sect. 5.2. It can handle event logs with multiple occurrences of an event in a trace,
by splitting such traces into scenarios that are free from event repetitions, which
is essential for our current implementation (this is further discussed in Sect. 7.2).
An important feature of the tool is that the results are represented in an alge-
braic form using the algebra of Parameterised Graphs introduced in [5] (hence
the name, PGminer). This avoids the quadratic explosion of the representation
due to transitive arcs appearing after the concurrency extraction step. PGminer
has been implemented as a process mining library written in Haskell [36] and
can be run as a standalone command line tool or via the Workcraft frontend.

Scenco is a collection of CPOG synthesis algorithms that have been devel-
oped in a series of publications and integrated in Workcraft: graph colouring
based single literal synthesis [4], SAT-based synthesis [21], and heuristic synthe-
sis [22]. We use Scenco for encoding collections of partial orders produced by
PGminer. As discussed in Sect. 7.3, CPOG synthesis is the main bottleneck of
the current process mining implementation. Our future work will be dedicated
to the development of a custom CPOG synthesis algorithm specialised for collec-
tions of partial orders obtained from process logs after concurrency extraction.

Weka is a collection of opensource machine learning and data mining algo-
rithms. In the current workflow Weka is used for extracting meaningful con-
ditions from event log data, as discussed in Sect. 6. Our future work includes
integration of Weka into Workcraft for better interoperability with other
methods.

7.2 Details of Current Implementation

Workcraft [7,33] is a collection of software tools united by a common mod-
elling infrastructure and a graphical user interface. Workcraft suppors several
interpreted graph models: Petri Nets, Finite State Machines, digital circuits,
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dataflow structures, xMAS communication networks, and CPOGs, the latter
being particularly important for this work. It provides a unified frontend for
visual editing and simulation of interpreted graph models, as well as facilities
for processing these models by established model-checking and synthesis tools.

Workcraft features a plugin for CPOGs, providing an interface which
allows a user to create and edit CPOGs by using a graphical editor, or by
describing graphs algebraically using the algebra of parameterised graphs [5].
It is possible to convert between the graphical and algebraic representations
automatically.

The authors developed a process mining plugin for Workcraft that pro-
vides the functionality for importing event logs, manipulating them in the graph-
ical editor, performing concurrency extraction using PGminer, and synthesising
compact CPOG models using Scenco.

An event log can be imported either directly, in which case each trace is
treated as a total order of events, or indirectly via PGminer, in which case the
log undergoes the concurrency extraction procedure leading to a more compact
representation and allowing for handling bigger event logs. The current imple-
mentation treats multiple occurrences of the same event as different events,
e.g., trace (a, b, a, b, c, b, c) is interpreted as (a1, b1, a2, b2, c1, b3, c2). This can
have a negative impact on the concurrency extraction procedure; to avoid this
PGminer provides a method for spliting traces into scenarios which are free
from repeated events. For the example at hand this leads to splitting the trace
into three sub-traces (a, b), (a, b, c), and (b, c), i.e. whenever a current sub-trace
cannot be extended without repeating an event, a new sub-trace is started.

A collection of partial orders can be synthesised into a compact CPOG
model using the Scenco plugin. Our experiments have shown that only heuris-
tic CPOG synthesis [22] can cope with event logs of realistic sizes. Other, more
sophisticated encoding methods are not scalable enough. Once a CPOG repre-
sentation of an event log is obtained, the user can analyse it visually and investi-
gate the meaning of encoding variables using the CPOG projection functionality
provided in Workcraft or by performing data mining in Weka.

7.3 Experiments

Table 3 summarises the experimental results. All benchmark logs come from the
process mining community: artificial logs derived from the simulation of a process
model (Caise2014, BigLog1, Log1, Log2), a real-life log containing the jobs sent to
a copy machine (DigitalCopier), a software log (softwarelog), and real-life logs in
different other contexts [37] (documentflow, incidenttelco, purchasetopay, svn log,
telecom). Some of the logs are challenging even for prominent process mining
software, and they were therefore chosen as a realistic challenge for testing the
capabilities of the developed tools. Note that the ‘# events’ column reports the
number of different events after cyclic traces are split by PGminer.

As can be seen from the table, there are normally a lot more traces than
partial orders, thanks to the successful concurrency extraction by PGminer.
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Table 3. Summary of experimental results

Log parameters Tool runtime CPOG size
Benchmark File # # # partial Direct Indirect Concurrency CPOG # # #

size traces events orders import import extraction encoding arcs vars gates

BigLog1-100 21Kb 100 22 16 <1 sec <1 sec <1 sec 1 sec 33 5 103

BigLog1-500 102Kb 500 22 27 3 sec <1 sec <1 sec 1 sec 37 5 174

BigLog1-1000 204Kb 1000 22 26 6 sec <1 sec <1 sec 2 sec 37 5 149

Caise2014 25Kb 100 40 401 2 sec 88 sec 1 sec - - - -

softwarelog 4Kb 5 210 167 <1 sec 1 sec <1 sec 19 sec 464 8 1751

DigitalCopier-300 70Kb 300 33 15 9 sec <1 sec <1 sec 2 sec 37 4 56

DigitalCopier 173Kb 750 33 9 35 sec <1 sec <1 sec 1 sec 45 4 78

DigitalCopierMod 116Kb 1000 15 6 4 sec <1 sec <1 sec 1 sec 18 3 1

documentflow 208Kb 12391 70 651 2 min 11 sec 1 sec - - - -

incidenttelco-100 17Kb 100 20 25 <1 sec <1 sec <1 sec 4 sec 61 5 225

incidenttelco 161Kb 956 22 77 8 sec 1 sec <1 sec 8 sec 97 7 641

Log1-filtered 3.6Mb 5000 47 402 - 3 min 13 sec - - - -

Log2 2Mb 10000 22 32 8.25 min 1 sec 1 sec 1 sec 38 5 194

purchasetopay 232Kb 10487 21 20 3.7 min 1 sec <1 sec 1 sec 34 5 140

svn log 24Kb 765 13 92 3 sec 1 sec <1 sec 2 sec 69 7 581

telecom 15Kb 1000 38 122 2 sec 1 sec <1 sec 4 sec 194 7 937

However, two cases, namely Caise2014 and softwarelog, are exceptions: they con-
tain traces with particularly many event repetitions which leads to a significant
increase of the logs due to the log splitting heuristic described in Sect. 7.2.

The experiments show that PGminer, when used as a standalone com-
mand line tool, is very scalable and can efficiently handle most logs (see column
‘Concurrency extraction’). Indeed, most execution times are below or around 1 s,
and only Log1-filtered (a 3.6 Mb log) takes 13 s to be processed.

Workcraft is less scalable, as one would expect from a feature-rich graph-
ical editor. Direct import of some logs takes minutes and Log1-filtered cannot be
directly imported at all. Indirect import of logs, which is performed by invoking
PGminer first, is more scalable: all logs can be imported this way with most
execution times being around 1 s.

CPOG synthesis is the bottleneck of the presented process mining approach.
It is a hard computational problem and even heuristic solutions do not currently
scale well; in particular, cases with more than 200 partial orders could not be
handled. Note that synthesised CPOGs are typically sparse; the number of ver-
tices |V | coincides with the number of events in a log, and as can be seen from
the table, the number of arcs |E| in resulting CPOGs is often close to |V |. The
sparseness of synthesised CPOGs should be exploited by future synthesis tools.

Figure 6 shows an example of a mined model for the DigitalCopierMod log,
which is a modified version of DigitalCopier: a new event BackupImage was
added to demonstrate concurrency extraction, while multiple occurrences of
other events were eliminated. The CPOG model was produced by Workcraft
from a log containing 1000 traces in under 1 s; note that we manually improved
the layout and added colours to enhance the readability. The bottom subfigure
shows a projection obtained by setting x = 0 and y = 1. One can easily compute
CPOG projections with Workcraft when exploring CPOG process models.
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8 Related Work and Discussion

Process mining is a vibrant research field and there are a few relevant research
works that are worth discussing and comparing with the proposed CPOG-based
representation of event logs. [38] is very close to our work in spirit: it convincingly
advocates for using event structures as a unified representation of process models
and event logs. As has been recently shown in [18], CPOGs can be exponentially
more compact than event structures, therefore we believe that the approach
presented in [38] can benefit from the extra compactness provided by CPOGs.

The authors of [39] introduce trace alignment, a technique for aligning traces
of an event log thereby producing a better visual representation. It uses a matrix
representation where rows correspond to traces and columns correspond to posi-
tions within each trace. Trace alignment is a powerful visualisation technique
that aims to maximise the consensus of the event positions across different
traces. In contrast to CPOGs, trace alignment does not compress the information
encountered in the traces, nor does it provide a bridge between the control flow
and data as proposed in this paper. Furthermore, the trace alignment matrix is
a final process mining representation, whilst CPOGs are intended as an inter-
mediate representation and can be used to algebraically operate on event logs.

Another relevant research direction [40,41] relies on the notion of partially-
ordered event data and introduces techniques for conformance checking of this
type of event representations. In particular, [40] presents the notion of partially-
ordered trace (p-trace). As in the case of CPOGs, a p-trace allows for explicit
concurrency between events of the same trace. P-traces can be computed by
careful inspection of the event timestamps. The techniques to extract p-traces are
extended in [41] in order to deal with data. However, the use of data attributes
is narrower compared to the approach presented in this paper: data attributes
are split into read/write accesses to data values, and simple rules to extract
concurrency and dependency are introduced to take into account the role of a
data access within a trace. We believe that the techniques for relating control
flow and data presented in this paper may be applied in the scope of [40,41].

As discussed in the previous section, several challenges need to be faced before
the presented techniques can be adopted in industrial process mining solutions,
e.g. the complexity of CPOG synthesis algorithms, the fine-tuning of parameters
of the data mining techniques, and some others. Due to the inability of CPOGs
to directly represent cyclic behavior, we currently only focus on using CPOGs
for visualisation and as an intermediate representation of event logs, which can
be further transformed into an appropriate process mining formalism, such as
Petri Nets or BPMNs. Although some syntactic transformations already exist to
transform CPOGs into contextual Petri Nets [33], we believe that finding new
methods for discovery of process mining models from CPOGs is an interesting
direction for future research.

Another future research direction is to consider CPOGs as compact algebraic
objects that can be used to efficiently manipulate and compare event logs [5].
Since a CPOG corresponding to an event log can be exponentially smaller, this
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may help to alleviate the memory requirements bottleneck for current process
mining tools that store ‘unpacked’ event logs in memory.

Event logs are not the only suitable input for the techniques presented in this
paper: we see an interesting link with the work on discovery of frequent episodes,
e.g. as reported recently in [42]. Episodes are partially ordered collections of
events (not activities), and as such they can also be represented by CPOGs. This
may help to compress the information provided by frequent episodes, especially
if one takes into account the fact that current algorithms may extract a large
number of episodes, which then need to be visualised for human understanding.

9 Conclusions

This paper describes the first steps towards the use of CPOGs in the field of
process mining. In particular, the paper presented the automatic derivation of
the control flow part of the CPOG representation from a given event log, and
then the incorporation of meta data contained in the log as conditions of the
CPOG vertices and arcs. We have implemented most of the reported techniques
and some preliminary experiments have been carried out.

The future work includes addressing the challenges described in the previous
section, as well as an evaluation of how derived CPOGs can be useful in practice
for understanding event data.
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Abstract. A word is called Petri net solvable if it is isomorphic to the
reachability graph of an unlabelled Petri net. In this paper, the class
of finite, two-letter, Petri net solvable, words is studied. Two conjec-
tures providing different characterisations of this class of words are moti-
vated and proposed. One conjecture characterises the class in terms of
pattern-matching, the other in terms of letter-counting. Several results
are described which amount to a partial proof of these conjectures.
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1 Introduction

The relationship between a Petri net and its reachability graph can be viewed
from a system analysis or from a system synthesis viewpoint. In system analysis,
a system could, for instance, be modelled by a marked Petri net whose (unique)
reachability graph serves to facilitate its behavioural analysis [14]. We may get
various kinds of interesting structural results for special classes of Petri nets. For
example, if the given system is described by a marked graph, then its reachability
graph enjoys a long list of useful properties (see, e.g., [7]). In system synthesis,
a behavioural specification is typically given, and a system implementing it is
sought. For example, one may try to find a Petri net whose reachability graph
is isomorphic to a given labelled transition system [1]. We may get structural
results of a different nature in this case. For example, [4] describes a structural
characterisation of the class of marked graph reachability graphs in terms of a
carefully chosen list of graph-theoretical properties.

In this paper, we investigate labelled transition systems which are finite and
acyclic. The ultimate aim is to characterise, graph-theoretically, exactly which
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ones of them are synthesisable into an unlabelled place/transition Petri net
[11]. To our knowledge, such a characterisation is difficult and has not yet been
achieved in general. We begin to study the problem by restricting attention to a
limited special case: non-branching, linearly ordered, transition systems having
at most two edge labels. That is, we study the class of binary words, and our
aim is to characterise the Petri net synthesisable ones amongst them.

Region theory [1] provides an indirect characterisation of this class by means
of an algorithm based on solving systems of linear inequations and synthesising
a Petri net if possible. In this paper, we describe two alternative, more direct,
characterisations, and provide partial proofs in support of their validity. The
first condition characterises the class of Petri net synthesisable binary words
in terms of a pseudo-regular expression. The second condition characterises the
same class in terms of a letter-counting relationship. Both conditions seem to be
more efficient to check than by using the general synthesis algorithm.

In Sect. 2 we briefly recapitulate some basic definitions about labelled tran-
sition systems, Petri nets, and regions. Sections 3 and 4 describe our two conjec-
tures and contain proofs that they are necessary for synthesisability. In Sect. 5, we
provide sufficiency proofs for special cases of these conjectures. Section 6 reduces
the problem to words of a special form, and Sect. 7 describes some pertinent
results about words of such forms. Section 8 concludes the paper.

2 Basic Concepts, and Region-Based Synthesis

2.1 Transition Systems, Words, and Petri Nets

A finite labelled transition system with initial state is a tuple TS = (S,→, T, s0)
with nodes S (a finite set of states), edge labels T (a finite set of letters), edges →
⊆ (S×T×S), and an initial state s0 ∈ S. A label t is enabled at s ∈ S, denoted by
s[t〉, if ∃s′ ∈ S : (s, t, s′) ∈→. A state s′ is reachable from s through the execution
of σ ∈ T ∗, denoted by s[σ〉s′, if there is a directed path from s to s′ whose edges
are labelled consecutively by σ. The set of states reachable from s is denoted by
[s〉. A sequence σ ∈ T ∗ is allowed, or firable, from a state s, denoted by s[σ〉,
if there is some state s′ such that s[σ〉s′. For clarity, in case of long formulas
we write |r α |s β |q instead of r [α〉 s [β〉 q. Two labelled transition systems
TS1 = (S1,→1, T, s01) and TS2 = (S2,→2, T, s02) are isomorphic if there is a
bijection ζ : S1 → S2 with ζ(s01) = s02 and (s, t, s′) ∈→1 ⇔ (ζ(s), t, ζ(s′)) ∈→2,
for all s, s′ ∈ S1.

A word over T is a sequence w ∈ T ∗, and it is binary if |T | = 2. For a word w
and a letter t, #t(w) denotes the number of times t occurs in w. A word w′ ∈ T ∗

is called a subword (or factor) of w ∈ T ∗ if ∃u1, u2 ∈ T ∗ : w = u1w
′u2. A word

w = t1t2 . . . tn of length n ∈ N uniquely corresponds to a finite transition system
TS(w) = ({0, . . . , n}, {(i − 1, ti, i) | 0 < i ≤ n ∧ ti ∈ T}, T, 0).

An initially marked Petri net is denoted as N = (P, T, F,M0) where P is
a finite set of places, T is a finite set of transitions, F is the flow function
F : ((P × T ) ∪ (T × P )) → N specifying the arc weights, and M0 is the initial
marking (where a marking is a mapping M : P → N, indicating the number of
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tokens in each place). A side-place is a place p with p•∩•p �= ∅, where p• = {t ∈
T | F (p, t)>0} and •p = {t ∈ T | F (t, p)>0}. N is pure or side-place free if it
has no side-places. A transition t ∈ T is enabled at a marking M , denoted by
M [t〉, if ∀p ∈ P : M(p) ≥ F (p, t). The firing of t leads from M to M ′, denoted
by M [t〉M ′, if M [t〉 and M ′(p) = M(p)−F (p, t)+F (t, p). This can be extended,
as usual, to M [σ〉M ′ for sequences σ ∈ T ∗, and [M〉 denotes the set of markings
reachable from M . The reachability graph RG(N) of a bounded (such that the
number of tokens in each place does not exceed a certain finite number) Petri net
N is the labelled transition system with the set of vertices [M0〉, initial state M0,
label set T , and set of edges {(M, t,M ′) | M,M ′ ∈ [M0〉∧M [t〉M ′}. If a labelled
transition system TS is isomorphic to the reachability graph of a Petri net N ,
we say that N PN-solves (or simply solves) TS, and that TS is synthesisable to
N . We say that N solves a word w if it solves TS(w).

2.2 Basic Region Theory, and an Example

Let a finite labelled transition system TS = (S,→, T, s0) be given. In order to
synthesise – if possible – a Petri net with isomorphic reachability graph, T must,
of course (since we do not consider any transition labels), be used directly as the
set of transitions. For the places, 1

2 ·(|S|·(|S|−1)) state separation problems and
up to |S|·|T | event/state separation problems have to be solved, as follows:

• A state separation problem consists of a set of states {s, s′} with s �= s′, and
for every such set, one needs a place that distinguishes them. Such problems
are always solvable if TS = TS(w) originates from a word w; for instance, we
might simply introduce a counting place which has j tokens in state j.

• An event/state separation problem consists of a pair (s, t) ∈ S×T with ¬(s[t〉).
For every such problem, one needs a place p such that M(p) < F (p, t) for
the marking M corresponding to state s, where F refers to the arcs of the
hoped-for net.

0 1 2 3a a b

TS1 w = aab

a b

q p
2

N1

0

1

2 3

4

5

a

b

b

a

a

TS2

w = abbaa

Fig. 1. TS1 and TS2 correspond to aab and abbaa, respectively. N1 solves TS1.
No Petri net solution of TS2 exists.

For example, in Fig. 1, TS1 is PN-solvable, since the reachability graph of
N1 is isomorphic to TS1. Note that N1 has exactly two transitions a and b,
which is true for any net solving a binary word over {a, b}. By contrast, TS2 is
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not PN-solvable. The word abbaa, from which TS2 is derived, is actually one of
the two shortest non-solvable binary words (the other one being baabb, its dual
under swapping a and b).

To see that abbaa is not PN-solvable, we may use the following argument.
State s = 2 generates an event/state separation problem ¬(s[a〉), for which we
need a place q whose number of tokens in the marking corresponding to state
2 is less than necessary for transition a to be enabled. Such a place q has the
general form shown in Fig. 2. We now show that such a place does not exist.

m

q

p

a b

a−

a+

b−

b+

Fig. 2. A place with four arc weights a−, a+, b−, b+ and initial marking m. It is named
p if used for preventing b and named q if used for preventing a.

In order to present this proof succinctly, it is useful to define the effect E(τ)
of a sequence τ ∈ T ∗ on place q. The effect of the empty sequence is E(ε) = 0.
The effect of a sequence aτ is defined as E(aτ) = (a+−a−)+E(τ), and similarly,
E(bτ) = (b+ − b−) + E(τ). For instance, E(abbaa) = 3·(a+ − a−) + 2·(b+ − b−).
In general, E(τ) = #a(τ) · E(a) + #b(τ) · E(b).

If q (as in Fig. 2) prevents a at the marking corresponding to state 2 in abbaa
(cf. Fig. 1), then it must satisfy the following inequalities: a− ≤ m, since state
0 enables a; a− ≤ m + E(abba), since state 4 enables a; m + E(ab) < a−, since
q prevents a at state 2. This set of inequalities cannot be solved in the natural
numbers. Combine (0) and (2) to obtain 0 < −E(ab); combine (4) and (2) to
obtain 0 < E(abba) − E(ab) = E(ab); contradiction.

2.3 Brief Estimation of the Complexity of the General Algorithm

In a word of length n, the equation system for a single event/state separation
problem comprises n + 1 inequations, n for the states 0, . . . , n − 1, which guar-
antee that the corresponding transition is enabled, and one for the event/state
separation itself. In binary words, we have n + 2 such problems, one for every
state 0, . . . , n−1 and two for the last state. A word w of length n is PN-solvable
if and only if all n+2 systems, each having n+1 inequalities and five unknowns
a−, a+, b−, b+,m, are solvable in N.

Suppose that we solve this special case (with five unknowns) by Karmarkar’s
algorithm [10]. It seems that, solving O(n) systems of inequalitites, we may
roughly expect a running time of O(n3 · L(n)), i.e., cubic with a logarithmic
factor L(n) = log(n) · log(log(n)).

For the remainder of the paper, we fix T = {a, b}.
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3 A Pattern-Matching Condition

3.1 Minimal Unsolvable Words

If w is PN-solvable, then of all its subwords w′ are. To see this, let the Petri
net solving w be executed up to the state before w′, take this as the new initial
marking, and add a pre-place with #a(w′) tokens to a and a pre-place with
#b(w′) tokens to b. Thus, the unsolvability of any proper subword of w entails
the unsolvability of w. For this reason, the notion of a minimal unsolvable word
is well-defined, namely, as an unsolvable word all of whose proper subwords are
solvable. A complete list of minimal unsolvable words up to length 110 can be
found, amongst some other lists, in [13]. Observe that in this list, every word
starts and ends with the same letter. This is a consequence of (the contraposition
of) the next proposition.

Proposition 1. Solvability of aw and wb implies solvability of awb
If both aw and wb are solvable, then awb is also solvable.

Proof: Assume that aw and wb are PN-solvable words over {a, b}. If w = bk (for
k ∈ N) then awb = abk+1 is obviously solvable, hence we assume that w contains
at least one a. Let N1 = (P1, {a, b}, F1,M01) and N2 = (P2, {a, b}, F2,M02) be
Petri nets such that N1 solves aw and N2 solves wb. We can assume that N1

and N2 are disjoint, except for their transitions a and b. Forming the union of
N1 and N2 gives a net which is synchronised at a and b, and which allows all
(and only) sequences allowed by both N1 and N2. We modify N1 and N2 before
forming their union, as follows:

(i) In N1, for each place p in •b ∩ P1, add another F1(p, b) tokens; and if p
in •a ∩ P1, then add the quantity F1(p, b) both to F1(p, a) and to F1(a, p);
otherwise, keep the arc weights unchanged. This allows an additional b in the
end of the word awb. Since the last b in awb could have enabled a at the final
state, we add a counting place qa which is an input place for a with a unit
arc weight and has #a(aw) tokens on it initially. Thus, a remains disabled
in awb exactly at states in which it was disabled before the modification and
becomes permanently disabled after aw.

(ii) Modify N2 by adding to each place q in •a∩P2 another F2(q, a) tokens (this
allows an additional a). Further, for each place p in a• ∩ P2 ∩ •b, add the
quantity F2(a, p) both to F2(p, b) and to F2(b, p). The new arc weights lead
to the same effect of b on p but prevent premature occurrences of b in the
part wb (which could have been allowed by adding the tokens in front of
b in the previous step). Moreover, if there is a place p in •a ∩ •b ∩ P2, b
could have been allowed at the very beginning of awb. To prevent this, add
a new place p′ to N2, such that F2(a, p′) = F2(b, p′) = F2(p′, b) = 1 and
F2(p′, a) = M0(p′) = 0. This place disables b at the beginning of awb and
does not influence the behaviour of N2 after the first a.

Define N as the union of the two nets thus modified, and see Fig. 3 for an
example. (The added tokens are drawn as hollow circles.) In general, N solves



142 K. Barylska et al.

a b

◦

•

••
N1

a b

p
•

◦

•◦

2

N2

a b

p
•

•

••

2
3

2

N

Fig. 3.N1 (black tokens) solves aw=abab. N2 (black tokens) solves wb=babb. N (redun-
dant places omitted) solves awb=ababb. Arc weight change due to p∈a•∩P2∩•b.

awb in the following way: The initial a is allowed in N1 by definition and in N2

by the additional tokens. The subsequent w is allowed in both nets, and hence
in their synchronisation. The final b is allowed in N2 by definition and in N1 by
the additional tokens. No premature b is allowed by the arc weight increase, and
no final additional a is allowed because N1 does not allow it. All intermediate
occurrences of a are regulated by the modification of N1, and the same of b by
the modification of N2. ��
This proposition can be used for a remark on word reversal. If both aw, wb and
their reversals are solvable, then both awb and its reversal are solvable. This
follows directly from the previous proof. If one of the reversals of aw and wb
is not solvable, however, then the reversal of awb is not necessarily solvable.
Consider, for instance, w = abba, aw = aabba, wb = abbab, and awb = aabbab.
Here, aw is solvable, but its reversal is abbaa, which is a subword of the reversal
of awb.

3.2 A Pseudo-regular Expression for Unsolvable Words

Studying the list [13], it can first be observed that all words starting and ending
with b are just mirror images of those starting and ending with a under swapping
letters. More interestingly, all minimal unsolvable words starting and ending with
the letter a happen to be of the following general form:

( a b α ) b∗ ( b a α )+ a , with α ∈ T ∗ (1)

with a not being separated at the state between the b∗ and the second bracket
(and thus, before the first b in the second bracket, which exists because the
bracket contains at least one instance of baα). For example, abbaa satisfies (1)
with α = ε, the star ∗ being repeated zero times, and the plus + being repeated
once. Such words are generally PN-unsolvable:

Proposition 2. Sufficient condition for the unsolvability of a word
If a word over {a, b} has a subword of the form (1), then it is not PN-solvable.

Proof: Let s0 be the state before the first a in (1), s the state before the first b
in the second bracket, s′ the state after this b, and r the state before the final a:

( |s0 a b α ) b∗ ( |s b |s′ a α )+ |r a
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For a word w having a subword of this form, we prove that such a subword
cannot be solved (implying that w cannot be solved either). Because baα occurs
at least once in the second bracket, s �= r, b is enabled at state s, and a is
not enabled at s. Suppose that some place q as in Fig. 2 exists which separates
a at s. Abbreviate E(abα) to E and E(b) to Eb. For q, we have the following
inequalities:

(0) a− ≤ m
(s′) a− ≤ m + E + k·Eb + Eb for some fixed k ≥ 0
(r) a− ≤ m + E + k·Eb + �·E for the same k and some fixed � > 0
(s) 0 ≤ −m − E − k·Eb + a− − 1 for the same k

(0) is true because s0 enables a. (s′) is true because s′ enables a. (r) is true
because r enables a; and � > 0 because of the +. Finally, (s) is true because
q disables a at state s. Adding (s′)+(s) gives 1 ≤ Eb. Adding (0)+(s) gives
1 ≤ −E − k·Eb, and using also 1 ≤ Eb gives 1 ≤ −E − k·Eb ≤ −E. Adding
(r)+(s) gives 1 ≤ �·E, contradicting 1 ≤ −E because of � > 0. The system
cannot be solved, and no place q separating a at s exists. ��

3.3 Converses of Proposition 2, and Complexity Estimation

All words of the form (1) are unsolvable, but there exist unsolvable words which
are not of this form. Nevertheless, it turns out that all minimal unsolvable words
not only conform to (1), but are of an even simpler shape, as expressed in the
following conjectures (and as will be elaborated in later parts of this paper; the
facts from Sects. 5 and 6 are the justification of their partial correctness).

Conjecture 1. First converse of Proposition 2
Suppose a word over {a, b} is non-PN-solvable and minimal with that property.
Then it is (modulo swapping a and b) of the form given in (1). ��
Basing on computer experiments partially supported by Proposition 5 (the fact
on the existence of subwords aa and bb inside solvable words proven in Sub-
sect. 6.2) we also feel that, without loss of generality, one can restrict (1) to α
containing only letters b if the b∗ part is not empty. More precisely:

Conjecture 1a. Strengthened converse of Proposition 2
Each minimal unsolvable word over {a, b} conforms to one of the forms

[
ab bj

︸︷︷︸
α

bkba bj
︸︷︷︸

α

a with j ≥ 0, k ≥ 1
]

or
[

abα(baα)�a with � ≥ 1
]

(2)

(again, modulo swapping a and b). ��
Using Conjecture 1, the problem of deciding the PN-solvability of a word v of
length n can be reduced to a pattern-matching problem. Namely, we need to
verify whether v contains a subword w of the form (1). Using an algorithm
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based on the Knuth-Morris-Pratt algorithm [8] (utilizing strict border arrays to
search for the repetitions by processing all suffixes of v), this can be done in time
O(n2 log n). Using Conjecture 1a, subwords of the form abα(baα)�awith � ≥ 1 can
be recognised using the same technique (KMP-like algorithm). Let us notice that
in this case the partial matched subword u1 and the repeating subword (u2)�

are not separated by a block of the form bk. Subwords of the form abbjbkbabja
(j ≥ 0, k ≥ 1) can be recognised in time O(n) by counting distances between
consecutive occurrences of a (at any moment we have to remember only the
positions of two preceding occurrences of a). In contrast to the general case,
using Conjecture 1a do not need any additional preprocessing or memory, and
the solution takes time at most O(n2).

4 A Counting Condition

4.1 An Arithmetic Criterion for Unsolvable Words

Proposition 3. Another sufficient condition for unsolvability
Suppose α, β ∈ {a, b}+ and w = αβa, where α starts with a, β starts with b, and

#a(β)·#b(α) ≥ #a(α)·#b(β) (3)

Then w is unsolvable.

Proof: Let s0 be the state before α, s the state before β, and r the state before
the final a:

w = |s0 α |s β |r a

If a place q separates a at s and has marking m at s0, then for Eα = E(α) =
#a(α)·Ea + #b(α)·Eb and Eβ = E(β) = #a(β)·Ea + #b(β)·Eb we have:

(0) a− ≤ m (since α starts with a)
(r) a− ≤ m + Eα + Eβ (since r enables a)
(s) 0 ≤ −m − Eα + a− − 1 (since ¬ s[a〉)

Adding (0)+(s) yields 1 ≤ −Eα, hence (A): −(#a(α)Ea + #b(α)Eb) ≥ 1.
Adding (r)+(s) yields 1 ≤ Eβ , hence (B): (#a(β)Ea + #b(β)Eb) ≥ 1.
Also, Eb ≥ 1 because q prevents a at s, but a becomes enabled after one or more
firings of b. Then,

−#a(β) ≥ #a(β)#a(α)Ea + #a(β)#b(α)Eb (multiplying (A) by #a(β))
≥ #a(β)#a(α)Ea + #a(α)#b(β)Eb (using (3) andEb ≥ 1)
≥ #a(α) (multiplying (B) by #a(α))

However, −#a(β) ≥ #a(α) implies #a(β) = #a(α) = 0, and this is a con-
tradiction since α contains at least one a. Thus, such a place q does not
exist. ��
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4.2 Converses of Proposition 3, and complexity estimation

Conjecture 2. First converse of Proposition 3
If a word is of the form w = αβa where α starts with a and β starts with b, and
if w is minimal non-PN-solvable, then inequation (3) holds. ��

We also believe that for sufficiently long words that are of a special (as it
turns out, interesting) shape, the ≥ in (3) can be strengthened to equality. More
precisely,

Conjecture 2a. Strengthened converse of Proposition 3
If w = αβa is of the form

w = abx1a . . . abxk−1
︸ ︷︷ ︸

α

|s ba . . . abxn

︸ ︷︷ ︸
β

a with n ≥ 3 and xi ≥ 1 (4)

then a is not separable at state s iff #a(β)·#b(α) = #a(α)·#b(β). ��
The arithmetic criterion in Conjecture 2a tells us nothing about minimality. The
word to be checked is assumed to start and end with the same letter. In a bad
case, e.g., for w = ab . . . ab, checking needs to be repeated two times. Each
maximal subword, starting and ending with the same letter, can be divided into
α and β at most in n − 3 different ways. For every such devision we need to go
through the subword of length n − 2 once, in order to check the criterion. This
amounts to time approximately 2(n− 3)(n− 2) and thus, time O(n2) in total. A
solvability algorithm based on Conjecture 2 was recently (end of October 2015)
implemented by Harro Wimmel and compared with the general synthesis APT
algorithm [6,15]. It was briefly tested on 1024 words of length 1990. The special
algorithm took about a minute to check solvability, while the general algorithm
takes much longer (being general-purpose and actually constructing a solution if
one exists). To our knowledge, testing only solvability with the general algorithm,
without necessarily finding a solution, is only faster in the degree of the number
of variables, which is constant for the separation problems.

A reasonable and possibly beneficial approach could be to use the algorithms
described in Sects. 2.3, 3.3 and 4.2 in combination, depending on a particular
task: The general algorithm yielding a Petri net solution if the given word is
solvable; the pattern-matching algorithm checking minimal unsolvability (and
possibly combinable with other efficient methods); and the counting algorithm
checking solvability or unsolvability (but requiring, for minimality, several repe-
titions for subwords).

5 Special Cases of the Two Conjectures

In this section, we substantiate Conjectures 1 and 2 by providing partial proofs
for the converses of Propositions 2 and 3. First, we prove the minimal unsolv-
ability of words corresponding to the following two patterns, as special instances
of (1):

abbxbkbabxa and abbxb(abxb)dabxa with x ≥ 0, k ≥ 1, d ≥ 0 (5)
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The first pattern satisfies (1) with α = bx, the star ∗ being repeated k times,
and the plus + being repeated only once, while the second pattern satisfies (1)
with α = bx, the star ∗ being repeated zero times, and the plus + being repeated
d + 1 times. Due to Proposition 2, all binary words of one of the forms in (5)
are unsolvable. To prove that they are minimal with this property, we provide
Petri nets (with initial markings) solving maximal proper prefixes and maximal
proper suffixes of these words.

The Petri net N1 on the left-hand side of Fig. 4, with appropriate values of
parameters in the arc weights and initial marking, is a possible solution for a
maximal prefix abbxbkbabx of the first form in (5). Place p1 prevents b at the
beginning, and p2 restricts the total number of b’s. Place q prevents a when it is
necessary. This place has enough tokens on it for the initial a and for one more
a after the block bbxbkb, and it does not enable a afterwards.

The maximal proper suffix bbxbkbabxa can be executed by the net N2 on the
right-hand side of Fig. 4. Initially only x + k + 2 firings of b are possible, which
brings enough tokens on place q for a to occur. This first a adds x tokens on
place p1, which enables b again. The total number of b’s is controlled by place p2.
When there is no tokens on p2, a is enabled once more, and this last occurrence
of a ends the execution of the suffix. Hence, words of the first form in (5) are
minimally unsolvable.

Fig. 4. N1 solves the prefix abbxbkbabx. N2 solves the suffix bbxbkbabxa.

The maximal proper prefix abbxb(abxb)dabx of the second form in (5) can be
solved by the net N1 in Fig. 5. Place q in this net enables the initial a, and then
disables it unless b has been fired x + 2 times. After the execution of block bbxb
there are d tokens more than a needs to fire on place q. These surplus tokens
allow a to be fired after each sequence bxb, but not earlier. Place p1 has initially
1 token on it, which is necessary for block bbxb after the first a, and this place has
only x + 1 tokens after each next a, preventing b at states where a must occur.
Places p2 and p3 prevent undesirable occurrences of b at the very beginning and
at the very end of the prefix, respectively.

For the general form of suffix bbxb(abxb)dabxa of the second form in (5),
one can consider the Petri net N2 on the right-hand side of Fig. 5 as a possible
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solution. Indeed, place q1 prevents premature occurrences of a in the first block
bbxb, and enables a only after this and each next block bxb. Doing so, it collects
one additional token after each bxb, which allows this place to enable the very
last a after sequence bx. The initial marking allows to execute the sequence bbxb
in the beginning, and at most x + 1 b’s in a row after that, thanks to place p1.
Place p2 restricts the total number of b’s allowing only block bx at the end. Place
q2 serves for bounding the total number of occurrences of a, and it is necessary
if x = 0 and d = 0. Thus we deduce that any word of the form abbxb(abxb)dabxa
with x, d ≥ 0 is minimally unsolvable.

Fig. 5. N1 solves the prefix abbxb(abxb)dabx. N2 solves the suffix bbxb(abxb)dabxa.

Words of two forms in (5) correspond to two classes of minimally unsolvable
words that were described in Conjecture 1a, the strengthened variant of Conjec-
ture 1. Moreover, while the form abbxb(abxb)dabxa is only a partial instance (for
α = bx) of the more general form abα(baα)�a with � ≥ 1 (see Conjecture 1a),
pattern abbxbkbabxa coincides entirely with abbjbkbabja, where j ≥ 0, k ≥ 1
(cf. (2)).

In support of Conjectures 2 and 2a, assume a minimally unsolvable word

w1 = abbx |s1 b . . . bx |sj
b . . . bx |sd+1 babxa

of the second form in (5) to be given, with some fixed non-negative x and d. For
any 1 ≤ j ≤ d + 1 and state sj , in w1 = ab . . . bx

︸ ︷︷ ︸
α

|sj
b . . . abx
︸ ︷︷ ︸

β

a we have

#a(β)·#b(α) = (d+2−j)·((x+1)·j) = j·((d+1−j)·(x+1)+1+x) = #a(α)·#b(β)

By Proposition 3, a is not separated at such states sj . On the other hand, expres-
sion (3) is fulfilled in w1 as an equality, which corresponds to the strong variant
of Conjecture 2.

The requirement n ≥ 3 in (4) is important. In a minimally unsolvable word
w2 = abbxbk

︸ ︷︷ ︸
α

|r babx
︸︷︷︸

β

a of the first form in (5), with x ≥ 0 and k ≥ 1, we have

#a(β) · #b(α) = 1 · (x + k + 1) > 1 · (x + 1) = #a(α) · #b(β)
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According to Proposition 3, a is not separated at r, but (3) is satisfied as a strict
inequality.

6 Limiting the Occurrence of Factors aa or bb

In this section, we show that the problem of characterising minimal unsolvable
words w can be reduced to two cases, w = bx1a . . . abxn or w = abx1a . . . abxna
(both with x1 ≥ 1). Observe that Conjecture 2a concerns the second case.

Since words in which a and b strictly alternate are easy to solve, it stands to
reason to investigate the situations in which a letter occurs twice in a row. We
show that in a minimal unsolvable word, the factors aa and bb are essentially
limited to occur in some particular ways.

6.1 Factors aa or bb Starting an Unsolvable Word

If a word av is unsolvable and if av is minimal unsolvable, then, as a consequence
of the next proposition, v definitely starts with a letter b. That is, no minimal
unsolvable word can start with aa (nor with bb, for that matter).

Proposition 4. Solvable words starting with a can be prefixed by a
If a word av is PN-solvable then aav is, too.

Proof: Let N = (P, {a, b}, F,M0) be a net solving av. We shall construct a net
which solves aav. The idea is to obtain such a net by “unfiring” a once from the
initial marking of N . Since this may lead to a non-semipositive marking which
we would like to avoid, we will first normalise and modify the net N , obtaining
another solution N ′ of av, and then construct a solution N ′′ for aav (cf. Fig. 6).

For normalisation, we assume that there are two places pb and qa; the first
prevents b explicitly in the initial phase, and the second prevents a after the last
occurrence of a. They are defined by M0(pb) = 1, F (a, pb) = 1, F (b, pb) = �+1 =
F (pb, b), where � is the number of a before the first b in av, and M0(qa) = k,
F (qa, a) = 1, where k is the number of a in av. (All other F values = 0.)

Let NUF (a) = {p ∈ a• |M0(p) < F (a, p)} be the set of places which do not
allow the “unfiring” of a at M0. Note that neither pb nor qa are in NUF (a). Note
also that for every p ∈ NUF (a), F (p, a) ≤ M0(p) < F (a, p) – the first because a
is initially enabled, the second by p ∈ NUF (a). That is, a has a positive effect
on p. Without loss of generality, b has a negative effect on p (otherwise, thanks
to the normalising place pb, p could be deleted without changing the behaviour
of N).

For every p ∈ NUF (a) we add the quantity F (a, p) uniformly to M0(p),
to F (p, b), and to F (b, p), eventually obtaining N ′ = (P ′, {a, b}, F ′,M ′

0), and we
show that N ′ also solves av. First, both M0[a〉∧¬M0[b〉 and M ′

0[a〉∧¬M ′
0[b〉 (the

former by definition, the latter by construction). For an inductive proof, suppose
that M0[a〉M1[τ〉M and M ′

0[a〉M ′
1[τ〉M ′. We have M [b〉 iff M ′[b〉 by construction.

If M [a〉, then also M ′[a〉, since M ≤ M ′. Next, suppose that ¬M [a〉; then there is
some place q such that M(q) < F (q, a). We show that, without loss of generality,
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a b

p

•

qa
••

pb
• 2

2

N

a b

•
p

•

qa
••

pb
• 2

2

2

N ′

a b

p

••

qa
•••

pb
2

2

2

N ′′

Fig. 6. N is normalised and solves abab. N ′ solves abab as well. N ′′ solves aabab.

q /∈ NUF (a), so that q also disables a at M ′ in N ′. If M disables a after the last
a in av, we can take q = qa /∈ NUF (a). If M disables a before its last occurrence
in av, then q cannot be in NUF (a), since b acts negatively on such places.

Now, we construct a net N ′′ = (P ′, {a, b}, F ′,M ′′
0 ) from N ′ by defining

M ′′
0 (p) = M ′

0(p) − F ′(a, p) + F ′(p, a) for every place p. By construction, aav
is a firing sequence of N ′′. Furthermore, M ′′

0 does not enable b because of pb. ��

6.2 Factors aa or bb Inside a Minimal Unsolvable Word

There can be factors aa or bb inside a minimal unsolvable word. However, the
next proposition (together with the previous proposition) implies that we cannot
have both – unless one of them is at the very end of the word, as in abbaa.

Proposition 5. No aa and bb inside a minimal unsolvable word
If a minimal non-PN-solvable word is of the form u = aαa, then either α does
not contain the factor aa or α does not contain the factor bb.

Proof: By contraposition. Assume that α contains a factor aa and a factor bb.
Two cases are possible:

Case 1:There is a group of a’s which goes after a group of b’s. Let am and bn

be such groups, assume that am goes after bn and that there are no groups of a
or of b between them. Then u is of the following form

|s0 . . . |q abn(ab)kam |r . . .

where n,m ≥ 2, k ≥ 0. Recombine the letters in u to the following form:

|s0 . . . |q (ab)bn−2(ba)k+1aam−2 |r . . .

Since u ends with a, (ab)bn−2(ba)k+1a is a proper subword of u. But it has the
form (abw)b∗(baw)+a, with w = ε, which implies its unsolvability by Proposi-
tion 2, contradicting the minimality of u.
Case 2: All groups of a precede all groups of b. In this case u is of the form

aax0bax1 . . . baxnby0aby1aby2 . . . abyma
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where at least one of xi and one of yj is greater than 1. Consider � = max{i |
xi > 1}. If � = 0, we get a contradiction to Proposition 4. Hence, � > 0. Let
t = min{j | yj > 1}. Then u has the form

|s0 a . . . |q bax�(ba)n−�(ba)tbyt |r . . . a

Recombine the letters in u to the form

|s0 a . . . |q (ba)ax�−2(ab)n−�+t+1bbyt−2 |r . . . a

Hence, u has a proper subword (ba)ax�−2(ab)n−�+t+1b, which is of the form
(baw)a∗(abw)+b with w = ε, implying its non-PN -solvability, due to Proposi-
tion 2 with inverted a and b. This again contradicts the minimality of u. ��

For these reasons, we are particularly interested in words of the following
form:

either abx1a . . . abxna or bx1a . . . abxn where xi ≥ 1 and n > 1 (6)

In the first form, there are no factors aa. If factors bb are excluded and the word
starts and ends with an a, then we get words that are of the second form, except
for swapping a and b.

7 Some Results About Words of the Form bx1a . . . abxn

Let w = bx1a . . . abxn be a word with n > 1 and xi ≥ 1 for every 1 ≤ i ≤ n,
consisting of groups of letters b separated by single a’s, and starting and ending
with b. With a view to (6), it seems important to understand conditions

• for transforming solutions of w into solutions of aw,
• and for transforming solutions of w (or aw) into solutions of wa (or awa).

In the present section, we address the first of these tasks. The aim is to modify
an existing solution of w to yield a solution of aw. Similar constructions in the
previous sections were typically done by transforming the places of an existing
Petri net into places of a new net. The proof technique employed in this section
allows to create new regions from old ones by transforming a given solution
involving quantities such as m, a−, etc., into new quantities such as m′, a′

−, etc.
This is useful as there is not always a direct intuitive (pictorial) relationship
between the new and the old places.

7.1 Side-Places in Words of the Form bx1a . . . abxn

If a word w = bx1a . . . abxn can be solved, then side-places may be necessary
to do it. For instance, bbabbababab cannot be solved side-place-freely. (More
precisely: a side-place is needed in order to separate a at state 6.) However, we
will show that in the worst case, only some side-places q around a, preventing a
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at some state, are necessary. Also, such side-places are unnecessary if x1 is small
enough, in the sense that x1 ≤ min{x2, . . . , xn−1}. For example, babbababab can
be solved without any side-places. The “smallness” of x1 is sufficient but not
necessary. For instance, bbabbabab has a side-place-free solution, even though
x1 �≤ min{x2, . . . , xn−1}.

In the following, we assume w to be of the following form (7). The states si

(1 ≤ i ≤ n − 1) denote the important states at which b has to be prevented, and
the states rk (1 ≤ k ≤ n − 1) denote the important states at which a has to be
prevented. At or after the last group of b’s, a can be prevented by a counting
place, and at the final state, b can similarly be prevented by a counting place.

w = bx1−1 |r1 b |s1 a bx2−1 |r2 b |s2 a . . . |sk−1 a bxk−1 |rk
b |sk

a . . . |sn−1 a bxn (7)

Proposition 6. Side-place-free solvability with few initial b’s
If w = bx1abx2a . . . abxn is solvable, then side-places are necessary, at worst,
between a and q, where q is some place preventing a at one of the states rk with
1 ≤ k < n − 1. If w = bx1abx2a . . . abxn is solvable and x1 ≤ min{x2, . . . , xn−1},
then w is solvable side-place-freely.

Proof: The first claim follows from Lemmata 1 and 2 below. The second claim
follows from Lemma 3. ��
Lemma 1. side-place-freeness around b
If w = bx1a . . . abxn is solvable, then w is solvable without side-place around b.

Proof: We show that side-places around b are necessary neither for preventing
any b (cf. (A) below), nor for preventing any a (cf. (B) below).

(A): Suppose some place p prevents b at some state sk, for 1 ≤ k ≤ n − 1. (The
only other state at which b must be prevented is state sn, but that can clearly
be done by a non-side-place, e.g. by an incoming place of transition b that has
#b(w) =

∑n
i=1 xi tokens initially.) Note that b− > b+, because place p allows

b to be enabled at the state preceding sk but not at sk. Similarly, a− < a+,
because b is not enabled at state sk but at the immediately following state,
which is reached after firing a. From the form (7) of w, we have

b+ ≤ m + x1(b+ − b−)
b+ ≤ m + (x1 + x2)(b+ − b−) + (a+ − a−)
· · ·
b+ ≤ m + (x1 + . . . + xn)(b+ − b−) + (n − 1)(a+ − a−)
0 ≤ −m − (x1 + . . . + xk)(b+ − b−) − (k − 1)(a+ − a−) + b− − 1

(8)

The first n inequations assert the semipositivity of the marking of place p (more
precisely, its boundedness from below by b+, since p may be a side-place) at the
n states s1, . . . , sn. In our context, if these inequalities are fullfilled, then the
marking is ≥ b+ at all states, as a consequence of b− ≥ b+, a− ≤ a+, and the
special form of the word. The last inequality comes from ¬(sk[b〉).
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We certainly have 0 ≤ b+ < b− ≤ m, because of b− > b+ as noted above, and
because b is initially enabled. If b+ = 0, then p is not a side-place around b, and
there is nothing more to prove (for p). If b+ ≥ 1, we consider the transformation

b′
+ = b+ − 1 and b′

− = b− − 1 and m′ = m − 1

The relation 0 ≤ b′
+ < b′

− ≤ m′ still holds for the new values. Also, all inequalities
in (8) remain true for the new values: in the first n lines, 1 is subtracted on each
side, and on the last line, the increase in −m is offset by the decrease in b−.

We have thus shown that subtracting one arc from b to p, one arc from p to
b, and removing one initial token from p, leaves the region inequalities invariant.
Thus, we get a solution preventing b with a ‘smaller’ side-place, and we can
continue until eventually b+ becomes zero. This finishes part (A) of the proof.

(B): A side-place around b might still be necessary to prevent a at some state.
We show next that such side-places are also unnecessary. Suppose some place
q as in Fig. 2 prevents a at state rk, for 1 ≤ k ≤ n − 1. Symmetrically to the
previous case, we have b+ > b−. This is true because, while q does not have
enough tokens to enable a at state rk, it must have enough tokens to enable a at
the directly following state (which we may continue to call sk). But we also have
(w.l.o.g.) a+ < a−. For k ≥ 2, this follows from the fact that if the previous a
(enabled at the state sk−1 just after rk−1) acts positively on q, then q also has
sufficiently many tokens to enable a at state rk. For k = 1, it is possible to argue
that a+ < a− is valid without loss of generality. For suppose that q disables a
only at r1 and nowhere else. (This is no loss of generality because for the other
states rk, k ≥ 2, copies of q can be used.) Then we may consider q′ which is an
exact copy of q, except that a+ = a− − 1 for q′. This place q′ also disables a at
state r1 (because it has the same marking as q). Moreover, it does not disable a
at any other state after r1 because it always has ≥ a− − 1 tokens, and after the
next b, ≥ a− tokens, since b+ > b−.

Because of b+ > b− and a+ < a−, place q also prevents a at all prior states in
the same group of b’s. Moreover, in the last (i.e. n’th) group of b’s, a can easily
be prevented side-place-freely. For place q with initial marking m, we have

a+ ≤ m + x1(b+ − b−) + (a+ − a−)
a+ ≤ m + (x1 + x2)(b+ − b−) + 2(a+ − a−)
· · ·
a+ ≤ m + (x1 + . . . + xn−1)(b+ − b−) + (n − 1)(a+ − a−)
0 ≤ −m − (x1 + . . . + xk − 1)(b+ − b−) − (k − 1)(a+ − a−) + a− − 1

(9)

The first n − 1 inequations assert the semipositivity of the marking of place q
(more precisely, its boundedness from below by a+, since q may be a side-place
of a) at the n − 1 states just after the a’s in (7). If they are fullfilled, then the
marking is ≥ a+ at all states after the first a, as a consequence of b+ > b− and
the special form of the word. The last inequality asserts that place q prevents
transition a at state rk, hence effects the event/state separation of a at rk.
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If b− is already zero, place q is not a side-place of b. Otherwise, we may
perform the transformation

b′
+ = b+ − 1 and b′

− = b− − 1 and m′ = m

because of b+ > b− as noted above. The left-hand sides of the first n−1 inequal-
ities in (9) do not decrease, and neither do the right-hand sides. The same is
true for the last inequality. This finishes part (B) of the proof. ��
Lemma 2. Side-place-freeness around a, preventing b
Suppose w = bx1abx2a . . . abxn . If w is solvable by a net in which some place p
separates b, then we may w.l.o.g. assume that p is not a side-place around a.

Proof: The equation system (8) is invariant under the transformation

a′
+ = a+ − 1 and a′

− = a− − 1 and m′ = m

as neither left-hand sides nor right-hand sides change their values. ��
If some place q prevents transition a, then it may be a side-place between q and a.
It may not always be possible to remove such a side-place. For instance, the word
w = bbabbababab is of the form (7), and any net solving it necessarily contains
a side-place around transition a. The next lemma shows that the presence of a
side-place around a may be due to there being “many” initial b’s.

Lemma 3. Side-place-freeness around a, preventing a
Suppose w = bx1abx2a . . . abxn . If x1 ≤ min{x2, . . . , xn−1} and if w is solvable
by a net in which some place q prevents transition a at state rk with 1 ≤ k ≤ n,
then we may w.l.o.g. assume that q is not a side-place around a.

Proof: For preventing a at state rn, we only need a place with no input and a
single output transition a (weight 1) which has n − 1 tokens initially.

Suppose q prevents a at state rk, with 1 ≤ k ≤ n−1. From previous consider-
ations, we know a+ ≤ a− and b+ > b−, and we may assume, from Lemma 1, that
q is not a side-place around b, i.e., that b− = 0. The initial marking m of q and
the remaining arc weights a+, a−, b+ satisfy the following system of inequations
(which is the same as (9), except that it is simplified by b− = 0):

a+ ≤ m + x1(b+) + (a+ − a−)
a+ ≤ m + (x1 + x2)(b+) + 2(a+ − a−)
· · ·
a+ ≤ m + (x1 + . . . + xn−1)(b+) + (n − 1)(a+ − a−)
0 ≤ −m − (x1 + . . . + xk − 1)(b+) − (k − 1)(a+ − a−) + a− − 1

(10)

If a+ = 0, then q is already of the required form. For a+ > 0, we have two cases.

Case 1: m > 0 and a+ > 0. Then consider the transformation

m′ = m − 1 and a′
+ = a+ − 1 and a′

− = a− − 1
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By m > 0 and a− ≥ a+ > 0, we get new values m′, a′
+, a′

− ≥ 0. Moreover, (10)
remains invariant under this transformation. So, q′ serves the same purpose as
q, and it has one incoming arc from a less than q. By repeating this procedure,
we either get a place which serves the same purpose as q, or we hit Case 2.
Case 2: m = 0 and a+ > 0. In this case, we consider the transformation

m′ = m = 0 and a′
+ = 0 and a′

− = a−

Such a transformation also guarantees m′, a′
+, a′

− ≥ 0. Also, the last line of (10)
is clearly satisfied with these new values, since the value of its right-hand stays
the same (for k = 1) or increases (for k > 1). To see that the first n − 1 lines of
(10) are also true with the new values, and that we can, therefore, replace q by
q′, we may argue as follows. At any marking m̃ reached along the execution of
w, we have the following:

m̃(q) ≥ m̃(q′) ≥ 0 (11)

These inequalities imply that the new place q′ prevents a at rk, whenever the
old one, q, does, and that, moreover, no occurrences of a are excluded by the
place q′ where they should not be prohibited.

The first of the inequalities (11) holds because it holds initially (when m̃ =
m, then m̃(q) = m = m′ = m̃(q′)), and because the effect of a before the
transformation is (a+ − a−), and after the transformation, it is (−a−). In other
words, a reduces the token count on q′ more than it does so on q, while b
has the same effect on q′ as on q. To see the second inequality in (11), let
x = min{x2, . . . , xn−1}. Then

a− ≤ x1 · b+ ≤ x · b+

The first inequality follows because m = 0 and q has enough tokens after the
first x1 occurrences of b in order to enable a. The second inequality follows from
x1 ≤ x. But then, since a only removes a− tokens from q′ and the subsequent
block of b’s puts at least x · b+ tokens back on q′, the marking on q′ is always
≥ 0, up to and including the last block of b’s. ��

7.2 Solving Words aw from Words of the Form w = bx1a . . . abxn

Solving a word of the form w = bx1a . . . abxn side-place-freely allows us to draw
some conclusion about prepending a letter a to it. In fact, we have:

Proposition 7. Side-place-free solvability of bx1abx2a . . . abxn

w = bx1abx2a . . . abxn is solvable side-place-freely iff aw is solvable.

Proof: Lemmata 4 and 5 for (⇒), and Lemma 6 for (⇐). ��
Lemma 4. Preventing a in aw
Suppose w = bx1abx2a . . . abxn is solvable side-place-freely. Then in aw, all occur-
rences of a can be separated side-place-freely.
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Proof: Because a can be prevented side-place-freely in w at any state rk, the
system (9) has a solution with a+ = 0 and b− = 0 for any fixed 1 ≤ k ≤ n − 1.
This refers to a pure input place q of a, which may or may not be an output place
of b. In order to prevent a in aw side-place-freely, we need to consider the states
rk as before (but shifted to the right by one index position, still just before the
last b of the k’th group of b’s) and a correspondingly modified system as follows:

0 ≤ m′ + (x1 + . . . + xi) · (b′
+) + (i + 1) · (−a′

−) for all 0 ≤ i ≤ n − 1
0 ≤ −m′ − (x1 + . . . + xk − 1) · (b′

+) − k · (−a′
−) + a′

− − 1
(12)

where m′, b′
+ and a′

− refer to a new pure place q′ preventing a at state rk in aw.
The line with i = 0 was added because a must be enabled initially. Consider the
transformation

m′ = m + a− and b′
+ = b+ and a′

− = a−

These values satisfy (12), provided m, b+ and a− (together with a+ = 0 and
b− = 0) satisfy (9). The line with i = 0 follows from m′ = m + a− ≥ 0. The
other lines corresponding to i ≥ 1 reduce to the corresponding lines in (9), since
the additional (−a−) at the end of each line is offset by the additional (+a−)
at the beginning of the line. The last line (which belongs to state rk at which
a is separated) corresponds to the last line of (9), because the decrease by a−
at the beginning of the line is offset by an increase by a− in the term k · (−a′

−)
(compared with (k − 1) · (−a−) as in (9)). ��
Note 1: In order to disable a at rk, q could be replaced by a place q′ obtained
by duplicating q and changing the initial marking m to m′ = m+a−. Intuitively,
this means that m′ is computed from m by “unfiring” a once.
Note 2: Place q should not be removed as soon as q′ is added, because q could
also be preventing a at some other rk. In that case, a new place q′′ must be
computed from q for this different value of k. We may forget about q only after
all the relevant indices k have been processed.

Lemma 4 does not, by itself, imply that aw is solvable. We still need to
consider the separations of b. Thus, consider an input place p of b in a side-
place-free solution of w and suppose that p prevents b at state sk. Suppose that
we want to solve aw. If p is not also an output place of a, then it can simply
be retained unchanged, and with the same marking, prevent b at corresponding
states in aw and in w. However, if p is also an output place of a, “unfiring” a
in the initial marking may lead to negative tokens on p. This is illustrated by
the word babbabb which has a side-place-free solution, as shown on the left-hand
side of Fig. 7.

The places q1, q2 can be treated as in the above proof, that is, by chang-
ing their markings by “unfiring” a, yielding new places q′

1, q
′
2 with marking

{(q′
1, 3), (q′

2, 3)}. If we allowed negative markings, then a new place p′ with ini-
tial marking (p′,−1) (and otherwise duplicating p) would do the job of solving
ababbabb (as in the middle of the figure). However, we shall need a more delicate
argument in order to avoid negative markings.
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Fig. 7. Solving babbabb (l.h.s.), (almost) ababbabb (middle), and ababbabb (r.h.s.).

Let p′ be a general new place which is supposed to prevent b at state sk

in aw. In order to check the general solvability of aw if w is side-place-freely
solvable, we consider a general transformation

m′ = m+μ , b′
+ = b+ +β+ , b′

− = b− +β− , a′
+ = a+ +α+ , a′

− = a− +α−

where μ ≥ −m, β+ ≥ −b+, β− ≥ −b−, α+ ≥ −a+ and α− ≥ −a−, as well as a
new inequation system:

b′
+ ≤ m′ + (x1 + . . . + xi) · (b′

+ − b′
−) + i · (a′

+ − a′
−) for 1 ≤ i ≤ n

0 ≤ −m′ − (x1 + . . . + xk) · (b′
+ − b′

−) − k · (a′
+ − a′

−) + b′
− − 1

This system has to be compared with a restricted form of (8) (setting b+ = a− =
0, since the solution of w is pure). Doing this by line-wise comparison, we get
the following inequation system for the new value differences:

μ ≥ −m, β+ ≥ −b+, β− ≥ −b−, α+ ≥ −a+, α− ≥ −a−
β+ ≤ μ + (x1 + . . . + xi) · (β+ − β−) + i · (α+ − α−) + a+

0 ≤ −μ − (x1 + . . . + xk) · (β+ − β−) − k · (α+ − α−) − a+ + β−

(13)

The lines with i must be solved simultaneously for every 1 ≤ i ≤ n while the
line with k must be solved individually for every 1 ≤ k ≤ n − 1, in order to get
a place preventing b at state sk. This leads to the following lemma.

Lemma 5. Solving aw from w
Suppose w = bx1abx2a . . . abxn is solvable side-place-freely. Then aw is solvable.

Proof: Suppose that a pure place p with parameters b− (arc into b), a+ (arc
from a) and m (initial marking) is given and suppose it separates b from sk in
w. This place solves (8) for that particular k. We distinguish two cases:

Case 1: a+ ≤ m. In this case, the place p can essentially be re-used for the
same purpose in the solution (that we construct in this way) for aw, since (13)
is solved by putting

μ = −a+ , β+ = β− = 0 , α+ = α− = 0
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Hence, a place p′ which differs from p only by its initial marking (m′ = m − a+

instead of m) separates b at sk in aw.
Case 2: a+ > m. In this case, (13) can be solved by

μ = −m , β+ = β− = a+ − m , α+ = α− = 0

That is, we may replace p by a place p′ with zero initial marking and adding
uniformly the value a+ − m to the incoming and outgoing arcs of b, creating a
side-place around b. ��
For instance, in the solution of babbabb shown on the left-hand side of Fig. 7,
the place p from a to b satisfies m=1, b−=1, b+=0, a−=0 and a+=2. (13) is
solved by μ = −1, β− = 2, β+ = 0, α− = 0 and α+ = 3. Hence with m′=m − 1,
b′
−=b−+2, b′

+=b+, a′
−=a− and a′

+=a++3, the net shown on the right-hand side
of Fig. 7 is a pure solution of ababbabb. (Place p′ prevents b not only in states s1
and s2 but also in the initial state and in the final state.) There exist words such
as bbabbababab, however, which can be solved but for which aw is not solvable.
We have a converse of Lemma 5:

Lemma 6. Solving w side-place-freely from aw
If w=bx1abx2a . . . abxn and aw can be solved, then w has a side-place-free

solution.

Proof: Suppose that aw has a solution in which some place q′, preventing a, is
a side-place around a. Because q′ prevents a, a′

− > a′
+ (unless it is the first a,

but then we don’t need q′ in solving w). Because a is enabled initially, m′ ≥ a′
−.

But then, the transformation a′′
− = a′

− − a′
+, a′′

+ = 0, m′′ = m′ − a′
+ yields

another place q′′ which is not a side-place around a but serves the same purpose
as q′. The rest of the proof follows because the above transformations (removing
side-places around b, or side-places around a which prevent b) do not introduce
any new side-places around a. ��

8 Concluding Remarks

In this paper, the class of Petri net synthesisable binary words has been stud-
ied in depth. We have motivated, presented, and substantiated two conditions
stating how such words could be characterised and how different algorithms
could be devised for them. These algorithms can check solvability considerably
more quickly than a general synthesis algorithm could. This has been confirmed
both by the theoretical estimates contained in this paper and by experimental
validation.

Several other facts are known about the class of two-letter PN-synthesisable
words. It is easily seen that if a word is solvable side-place-freely, then so
is the reverse word. Also, if a binary word is solvable, then it is solvable
using places having exactly one outgoing transition. (This property is not
shared by words with three or more letters, a counterexample being abcbaa.)
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Moreover, PN-solvable words are balanced in the following sense. Referring to
w = bx1abx2a . . . abxn , call w balanced if there is some x such that xi ∈ {x, x+1}
for all 2 ≤ i ≤ n − 1. We can prove that if w = bx1abx2a . . . abxn is PN-solvable,
then w is balanced, and moreover, xn ≤ x + 1. Presenting these, and other,
properties of PN-solvability must however be left to future publications.

Once the conjectures are (hopefully) proved, it would be interesting to con-
sider extensions and ramifications. For example, we know of no results char-
acterising PN-solvable simple cycles, or PN-solvable acyclic labelled transition
systems with few branching points, or with some other regular structure. The
work described in [4] is an exception, a reason being that the cyclic structure of
marked graph reachability graphs is particularly harmonious.

The present work could well be of interest in a wider context, as it might
entail nontrivial necessary conditions for the solvability of an arbitrary labelled
transition system. If the latter is solvable, then finding a PN-unsolvable struc-
ture in it may have a strong impact on its structure or shape. Also, words are
persistent in the sense of [12] and tractable by the method described in [3].
However, they form (in some sense) a worst case and still lead to many region
inequalities. It could therefore be interesting to check more closely whether the
work described here can be of any benefit in enhancing the method described
in [3].

Acknowledgments. We would like to thank Raymond Devillers, Thomas Hujsa, Uli
Schlachter and Harro Wimmel for valuable comments. We also thank the anonymous
reviewers for their remarks which allowed to improve the presentation of the paper.

Note added in proof. This paper extends [2] by Sect. 5 and a few other enhancements.
At the time of revision (May 2016), the conjectures stated in Sects. 3.3 and 4.2 have
been proved correct. These proofs are contained in [5,9].
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Abstract. Currently, there is a trend to promote personalized health
care in order to prevent diseases or to have a healthier life. Using current
devices such as smart-phones and smart-watches, an individual can easily
record detailed data from her daily life. Yet, this data has been mainly
used for self-tracking in order to enable personalized health care. In this
paper, we provide ideas on how process mining can be used as a fine-
grained evolution of traditional self-tracking. We have applied the ideas
of the paper on recorded data from a set of individuals, and present
conclusions and challenges.

1 Introduction

Physical inactivity is a major risk factor for certain types of diseases. Indeed,
physical activity does not only prevent or relieve diseases, but also improves
public health and well being [6]. In this context, personalized health solutions
and lifestyle monitoring can help to ensure that individuals are doing the right
activity at the right time. However, the regular use of such methods is critical
to achieve the desired result. Barriers for the adoption must be low, and using
both software and devices should be as comfortable as possible.

Wearable devices such as smart-phones, smart-watches, and wristbands
which do not affect people during their daily routine allow to setup a body
sensor network. The provided sensor technology allows to monitor people all
day long. In contrast, most of the available software requires substantial user
input to specify, e.g., the current activity or even vital parameters like the heart
rate or blood pressure.

The goal of our work is the development of an environment that monitors
and analyzes the personal lifestyle of users and the provision of insightful visu-
alizations. In this paper, we focus on deriving and analyzing personal process
models through process mining [33] techniques as a central part of the system.
The general goal will only be achievable if the recognition of a person’s daily
activities (such as different types of sports and desk work) can be automated.
c© Springer-Verlag Berlin Heidelberg 2016
M. Koutny et al. (Eds.): ToPNoC XI, LNCS 9930, pp. 160–180, 2016.
DOI: 10.1007/978-3-662-53401-4 8
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Fig. 1. Framework to optimize the daily routine and to achieve a healthier live. The
framework illustrates the interaction of the individual and considered components of the
activity recognition (left) and the process mining (right) domains. The latter comprises
Behavior Analyses, Conformance Checking and Operational Support. In this paper, we
focus on the first two aspects and consider Operational Support as future work.

In the following, we assume that this step is already addressed, i.e., with state
of the art activity recognition techniques [18,31].

Figure 1 illustrates the main components of our framework in detail. The
left part covers the activity recognition system that recognizes the performed
physical activity based on data of on-body sensors. For that purpose, it collects
context-related information, i.e., the current geographical location, local time,
and vital parameter of the patient. Hence, this data represents a sequence of
activities which can be considered as event log. The event log denotes the daily
routine of an individual and can be transformed into a personal process model.
Consequently, the process model enables to examine the daily routine regarding
specific patterns, discrepancies, or to predict the next activity using common
process mining techniques. This allows to reveal anomalous behavior and non-
conformance regarding doctor’s prescription. As a result, the daily routine can
be optimized by recommendations and feedback or a caregiver can be informed.
In this paper, we focus on the latter part of this problem: The mining of suitable
process models from activity and location labels that have been extracted from
an event log.

In the following, we consider different process formalisms when illustrating
the techniques of this paper. The reason for this decision is twofold: On the one
hand, we aim to present the process mining field in general terms. Thus, we want
to use the best notation which is available to address our problem. On the other
hand, the current situation of the process mining field enforces this decision, by
not having a unified process notation that is superior in every dimension. For
instance, it is well-known that fuzzy models are a good visualization aid. However,
due to the lack of formal semantics, they cannot be used for the analysis of an
underlying process, for which Petri nets are better suited.
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The paper is structured as follows: In Sect. 2, the related work concerning
health care, activity recognition, and process mining is summarized. Section 3
introduces background knowledge regarding process mining that is considered in
the following sections. Section 4 describes the possibilities of discovering personal
processes and extracting meaningful patterns and rules. Based on this, Sect. 5
outlines how to analyze and compare these processes to detect deviations and
optimize the behavior of the related person. Section 6 describes the experiments
of the introduced ideas concerning several different data sets. Finally, Sect. 7
covers the future work of this paper.

2 Related Work

In this paper, we aim to explore spatio-temporal data with process mining tech-
niques to extract knowledge that facilitates personalized health care. Patients are
often required to follow a well-defined exercise routine or have to be monitored as
part of their treatment. Therefore, detecting wrong behavior or abnormal activi-
ties may help to prevent undesirable consequences [16,37]. Accurate information
on people’s behavior and their daily routine allows to support them [6].

The event log which results from common activity recognition techniques,
describes the daily routine and can be transformed to a process model [35].
Research on Human Activity Recognition has shown that it is possible to deter-
mine common activities such as preparing food or going to work by relying on
wearable and external sensors [18]. The wearable sensors are attached to the
patient and are used to determine the physical activity by sensing the body
movement [4]. In addition, external sensors are attached, e.g., to doors and items
to recognize with which objects the patient interacts. Commonly, this is the case
in a smart-home environment [30]. The result is a sequence of activities including
the duration, location [22], and vital parameter [19].

We focus on wearable devices, i.e., smart-phones and smart-watches, because
they provide variety of sensors and are carried all day long by many people [5].
Besides, the accelerometer which is very suitable enables continuous sensing over
a complete day due to low power consumption.

Commonly, probabilistic approaches such as Markov Logic Networks or
Hidden Markov Models are used to determine the performed activity or to pre-
dict an unobserved state, e.g., the next activity [17]. In this context, researchers
also focus on pattern detection, i.e., analyzing a specific sequence of activities
[17,27] to verify given references. In contrast, process mining enables to infer
and extract routines that occur during the daily routine of a patient from a
hidden structure. The techniques allow to perform a more analytical discussion
regarding the performed healthcare process [23]. This means that the mentioned
approaches do not exclude but can complement each other.

Several researchers of the processes mining area already addressed similar
problems and developed techniques that are suitable for sequences of events and
spatio-temporal data. For instance, Aztiria et al. showed that learning a habit
is very similar to mine a process [3] and Agrawal et al. introduced algorithms
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that enable to mine sequential patterns that allow identifying common behavior
[2,24]. However, these approaches focus only on the performed activities where
we want also to consider the location and time of day. The combination of these
dimensions may lead to valuable knowledge.

Concerning the dimensions, trajectory pattern mining enables to consider
chronologically ordered geographical locations and the duration of movements
between them. This facilitates to examine movement behavior but also the rela-
tion between time, location, and activity. Thus, the techniques discover highly
frequented places as well as underlying patterns which might be related to other
persons due to semantic relations [21]. However, current methods do not address
rare cases and noise which is important concerning our scenario. So, behavior
that occurs rarely may be a strong evidence for a specific diseases.

Considering the discrepancies between the daily routine of a patient and
the desired behavior. Rozinat et al. [28] developed a fitness measure to expose
the distinctions between a predefined model and the real behavior. Due to the
limitations of this measure, Leoni et al. enhanced this approach by considering
further dimensions. In detail, they describe costs and quantities for additional
event data that allows to quantify conformance and analyze differences between
model and reality [12].

However, a general problem is the handling of unstructured or flexible
processes, as it is the case for the daily routine of an individual. In this con-
text, Leotta identified that the human habits are flexible in their nature and
addressed this problem by considering declarative models [20]. As a result, they
developed a technique that enables to perform mining on declarative models of
human habits. The work of this paper can be seen as an extension of Leotta’s
work where other formalisms like fuzzy maps are considered and the posterior
analysis of the derived process is taken into account.

Finally, related to incorporating the modeling of context information like
location in the process, Zhu et al. [39] presented a promising direction. In
this work Petri nets are enriched with location constraints, and the semantic
is extended to cope with this new dimension. For tool support, location-aware
Petri nets are mapped to colored Petri nets so that the analysis can be done in
CPN Tools [15]. Hence, it can be integrated with a Geographical Information
System (GPS) at runtime. Unfortunately, so far there is no discovery technique
for a location-aware Petri nets. A general framework to incorporate also other
types of context in process models is presented by Serral et al. [29].

3 Preliminaries: Process Mining Techniques

In this section we provide the necessary background to understand the techniques
which we consider in the following sections. We will focus on two main process
mining disciplines: process discovery and conformance checking, which represent
the core of process mining [33].

A log L is a finite set of traces over an alphabet A representing the footprints
of the real process executions of a system S that is only (partially) visible through
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these runs. Process discovery techniques aim at extracting from a log L a process
model M (e.g., a Petri net) with the goal to elicit the process underlying in S.
By relating the behaviors of L, M and S, particular concepts can be defined [9].
A log is incomplete if S\L �= ∅. A model M fits log L if L ⊆ B(M), where
B(M) denotes the behavior underlying M . A model is precise in describing a
log L if B(M)\L is small. A model M represents a generalization of log L with
respect to system S if some behavior in S\L exists in B(M). Finally, a model
M is simple when it has the minimal complexity in representing B(M), i.e., the
well-known Occam’s razor principle.

Process discovery is challenging because the derived model has to be fitting,
precise, general, and simple. Conformance checking techniques are meant to ver-
ify these criteria to assess the quality of a model in representing the information
contained in a log. We focus on the cost-based fitness analysis [1] which allows
to score deviations between log and model. An optimal alignment between a log
trace and a model is a pair of traces denoting what is the best way for the log
trace to be reproduced by the model. An alignment can be seen as a two-row
matrix where the top row corresponds to “moves in the log” and the bottom
row corresponds to “moves in the model”. If a move in the model cannot be
mimicked by a move in the log, or vice versa (denoted by the symbol � in the
corresponding matrix cell), then a fitness problem between the model and the
log is revealed. In contrast, when log and model can execute the same activity,
it denotes a fitting step. Considering an alignment, if only fitting steps appear
then the trace can be reproduced by the model, otherwise a fitting problem is
encountered. An example of alignment can be found below:

a � b d e
a c b � e

The first, third, and fifth column are fitting steps while the others denote fitting
problems, also called misalignments. If unitary costs are assigned to misalign-
ments, while fitting steps have cost zero, the previous example will have cost 2. In
general, arbitrary costs can be assigned to the different types of misalignments.
Considering the example, the misalignments (�, c) and (d,�) might have been
the costs 1 and 2, respectively, whereas the rest of fitting steps have costs of
zero. This will play a crucial role in the context of this paper. Techniques for
computing alignments of imperative or declarative models with respect to logs
exist in the literature [1,11].

4 The Discovery of Personal Processes

In this section we provide intuitive descriptions of what type of representations
can be obtained through process discovery (Sect. 4.1) and how these representa-
tions can be enhanced to incorporate the information in the context of personal
process behavior (Sect. 4.2).



Self-tracking Reloaded: Applying Process Mining 165

4.1 Imperative and Declarative Representations of Personal
Processes

Since a picture is worth a thousand words, the deployment of graphical repre-
sentations of event data may lead to a precise awareness of the activities carried
out by an individual. We believe that graphs are a strong visualization aid to
understand aggregated behavior. Thus, we consider this direction as the first
use case for understanding personal activity data. This deviates from the typical
information that is provided by current tools for self-tracking individuals. In gen-
eral, such tools focus only on showing numeric correlations between the tracked
variables (e.g., eating vs. sport) or the evolution of single variables (weight over
the week).

Interesting information a user can get periodically (every day or week) is the
personal process model that describes the main activities and their dependencies.
As introduced in a previous section, there exist two options for modeling process
behavior: Imperative and declarative models.

Imperative process models tend to be well-suited for simple personal behav-
ior, i.e., behavior that only denotes a reduced number of variants. This is espe-
cially true for elderly people where the number of performed activities is reduced
and also the behavior is limited. However, even if the underlying process is less
structured, this model still enables to discover frequent paths of activities. In
this context, fuzzy models [14] or heuristic nets [36] may be good alternatives.
Figure 2(a) illustrates an example of a fuzzy model showing the main behavior
of a group of individuals during the working days. In this process model, nodes
(representing the occurrence of activities) and arcs (denoting the activity order-
ing) are drawn in a way that frequent behavior is highlighted: the darker the
background of a node (the thicker the arc), the more frequent was the related
activity (arc) performed. Thus, it can be observed that particular patterns (sub-
traces) like MealPreparation → EatingDrinking → HouseWork → DeskWork
are dominant in this model. In previous work, we have already used these mod-
els to infer interesting conclusions on the behavior of individuals, thus, the dis-
tinctions between working days and weekend behavior, across different type of
users [32].

In contrast, declarative process models are adequate regarding flexible or
unstructured behavior. Intuitively, declarative process models are denoted by a
set of temporal constraints that relate pairs of activities [26]. Those constraints
can be partitioned into existence, relation, negation, choice and branching tem-
plates, establishing the boundaries between observed and unobserved behavior.
For the case of personal processes, declarative constraints seem to be very ade-
quate representations, as it has been already acknowledged in recent work [20].
Figure 2(b) illustrates a declarative process model that results from the same
log as Fig. 2(a). Considering both models, it is remarkable that the declarative
model simplifies the information in a way which emphasizes meaningful rules.
Thus, the declarative model covers three types of information. First, any pair
of activities in the group {EatingDrinking, Movement, Transportation} is in
choice relation, i.e., meaning that at least one of them should be present in any
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Fig. 2. Main personal activities of a set of users during the week.
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trace of the log. Second, the activity DeskWork has an existence constraint of
2 or more. Hence, in case of a workday this activity is repeated at least twice.
Finally, the relation constraint not chain succession establishes nonexistence of
immediate succession between activities, e.g., no trace exists where DeskWork
directly follows Sport.

4.2 Model Enhancement Using Context-Related Information

The model of a personal process can also incorporate a geographical description
of the process, i.e., the locations where the activities were performed, the fre-
quency, and the relations between them. We focus on the chronological order and
the relation between the location and the duration of the activity. Thus, it must
be considered that the same activity can be performed in different locations and
varying duration. This means that it is not possible to adjust easily the trajectory
patterns [38]. Instead, it would be necessary to enhance the expressiveness of the
trajectory patterns, so that it becomes possible to describe relations between the
spatio-temporal data and activities. As a result, the enhanced models could help
to optimize the daily routine concerning a healthier life by addressing, e.g., the
type of movement between locations or providing beneficial locations for certain
activities.

Fig. 3. Main personal activities for an individual including geographical position data:
Numbers correspond to different activities, and arcs denote control-flow relations
extracted from the activity data.
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Algorithm 1. Personal activity-position map
Input: AH : location-enhanced event log
Input: TG : maximum geographical distance for the same activity
Input: TF : minimum number of elements in a cluster
Output: a personal activity-position map

1: AH ← {〈(act1,1, lat1,1, long1,1, t1,1), ..., (act1,n, lat1,n, long1,n, t1,n)〉...
2: AH ← 〈(actm,1, latm,1, longm,1, tm,1), ..., (actm,k, latm,k, longm,k, tm,k)〉}

{enhanced event log description as a set of enhanced traces}
3: C ← [ ] {empty list of clusters}
4: for each trace in AH do {initialize a cluster for each event in each trace}
5: for each (acti, lati, longi, ti) in trace do
6: cnew ← newCluster(ai, lati, longi)
7: add cnew to C
8: end for
9: end for

10: D ← ( ) {geographical distance matrix of all clusters}
11: for each ci,cj ∈ C: (∀x ∈ D : D(ci, cj) ≤ x) ∧ D(ci, cj) < TG do {merge clusters

that are close to each other and represent the same activity}
12: D(ci, cj) ← ∞ {forces to inspect each pair only once}
13: if label(ci) = label(cj) then
14: C ← C \ {ci, cj} ∪ {ci ∪ cj}
15: recompute centroid of the new cluster {ci ∪ cj}
16: D ← update geographical distances matrix
17: end if
18: end for
19: for each ci ∈ C do {remove clusters that cover an insufficient number of ele-

ments}
20: if |ci| ≤ TF then
21: C ← C\{ci}
22: end if
23: end for
24: L ← ProjectAndRelabel(AH , C) {an event log is obtained from AH with the activ-

ities from C}
25: (nodes, edges) ← FuzzyMap(L) {a fuzzy miner is invoked on L}

We combine the presented process model and a geographical map to arrange
the performed activities with the related context information. As an example, we
explain how to combine the imperative control-flow process models (see Fig. 2(a))
with the geographical position data to derive a personal activity-position map.
This map illustrates geographically the control-flow with respect to the real
geographical position of the activities. Compared with a trajectory-based graph,
this map can be considered as a set of connected sub-graphs where each sub-
graph represents the activities for a specific location.

The computation of personal activity-position maps can be done by aligning
the timing information (start, end) of an event with the corresponding time of
the related geographical position. As a result, the locations that correspond to a
specific activity can be extracted and analyzed. For instance, in Fig. 3, activity 2
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Algorithm 2. ProjectAndRelabel Method
Input: AH : location-enhanced event log
Input: C : set of clusters
Output: an event log

1: L ← {} {empty event log}
2: for each trace in AH do {traverse the traces of the enhanced log}
3: σ ← empty trace
4: for each (acti, lati, longi, ti) in trace do
5: c ← a cluster x ∈ C originated from acti and (longi, ti) ∈ x
6: if |c| > 0 then
7: σ ← σ · (label(c), ti)
8: end if
9: end for

10: if σ �= ε then
11: L ← L ∪ {σ}
12: end if
13: end for
14: return L

(Socializing) was performed in four different locations (nodes). Ideally, to
have a simpler graph, the number of locations per activity should be small.
Therefore, the locations for an activity can be computed by clustering a set of
geographic coordinates and considering a fixed radius of k meters. The centroids
as well as the frequency of the performed activities can be used to optimize the
clusters. Finally, the nodes which correspond to activities in certain locations are
displayed on top of a real map. Arcs from the control-flow are then routed from
the corresponding locations in the map. Algorithm 1 describes this procedure in
detail.

This algorithm needs as input the introduced enhanced event log AH as well
as the threshold values TF and TG. The thresholds specify the maximum geo-
graphical distance between the same activity for the same location (TG), and
the minimal cluster size that has to be considered (TF ). Then, the algorithm
computes a set of clusters which contain events that share the same label and
that are close enough in terms of their geographical position (lines 1–23). Subse-
quently, the ProjectAndRelabel method is applied (see Algorithm 2) where an
event log is extracted. In general, this method simply traverses the traces in AH ,
computing a normal trace (built of events with activity name and timestamp)
that results from: (i) projecting only events that are covered by a cluster, and
(ii) relabeling the events to guarantee that different clusters originated from the
same activity will be represented by different activities in the derived event log.
Then, in line 25 of Algorithm 1, a fuzzy miner is invoked, which returns the
corresponding fuzzy model. Alternatively, since the input is a traditional event
log, any other miner could also be used. Finally, the model is rendered by taking
also the geographical position of labels into consideration.
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5 The Analysis of Personal Processes

Self-tracking is a meaningful way to verify if certain requirements with respect
to reference quantities are accomplished. Concerning a healthier life, many asso-
ciations advise to do at least 30 min of moderate physical activity per day or
eat fish at least twice a week. Those guidelines for a good lifestyle offer a rough
description for individuals, mainly concerning about quantities and frequencies.
However, some ways of satisfying these guidelines are probably less healthy than
others, e.g., it may not be the best decision to eat fish while doing physical
activity. Hence, a reference model that describes precisely how certain activities
should be carried out in order to satisfy a guideline is required. If reference mod-
els are not available, simple rules can be used which should be satisfied by individ-
uals on their daily routine. These rules may describe patterns that should satisfy
an individual, e.g., takingMedicines should be followed by EatingDrinking.
This can be formally specified with Linear Temporal Logic (LTL) formulas to
be satisfied by the event log of activities [34]. Checking (temporal) rules on the
event log may suffice in many situations. However, in this section we go one step
further and try to use reference models for the analysis of personal processes,
with the aim of providing a fine-grained analysis.

Fig. 4. Example of fitness analysis in ProM (http://www.promtools.org) of an individ-
ual with respect to a reference model (Petri net): places with yellow background (X)
represent situations where the individual deviates from the process model. Transitions
without a label denote silent events not appearing in the event log. (Color figure online)

The reference model has to provide the opportunity to describe certain
actions in a specific order (e.g., Sport should be followed by PersonalGrooming),
should allow explicit choices (e.g., after DeskWork only EatingDrinking,
Socializing, or Transportation are expected actions) and should also con-
sider concurrency actions. (e.g., Transportation and Movement may be over-
lapping activities). In general, reference models can be obtained in several ways.

http://www.promtools.org
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One possibility would be to consult a domain expert for the creation of a desired
reference model. A second option would be to collect event logs from successful
individuals. These logs can be combined with the introduced techniques of the
previous section to discover a reference model. Finally, a third option would be
to translate the textual guidelines into process models, using recent techniques
that apply Natural Language Processing to elicit process models [13].

The resulting reference model enables to apply conformance checking tech-
niques to assess the adequacy of the reference process model in representing the
traces of individuals [33]. Since the reference model describes the ideal behavior,
it is meaningful to focus on analysis of the fitness of the reference model with
respect to the traces of individuals. As already mentioned, a process model fits
a given trace if it can reproduce it. An example of such analysis can be seen in
Fig. 4 where an individual is analyzed with respect to an invented process model
meant to represent a healthy behavior.

For the case of cost-based fitness analysis (see Sect. 3) of personal processes,
an important part is the determination of costs for certain deviations. The selec-
tion influences the score that represents the deviation of model traces with
respect to the observed behavior. In order to avoid to interfere the search for
model traces that must be as much similar as possible to the observed ones,
unitary cost will be assigned when computing an alignment. However, once
the alignment is computed, the misalignment costs will be reassigned to detect
important misalignments, if they exist. Thus, the majority of deviations from
reference models may be not penalized. Instead, only certain deviations should
be penalized by assigning a-posteriori high costs to particular misalignments. For
instance, given the following partial alignment between a log trace (first row)
and a reference model (second row):

� � EatingDrinking � EatingDrinking �
Sport MealPreparation EatingDrinking Movement � Relaxing

Deviations like (�, Sport) have high costs since the individual reached a sit-
uation where it was expected to do sport. Further, deviations that represent
missing activities from the user perspective like (�, MealPreparation) or (�
, Movement) are assigned with lower costs whereas deviations like (�, Relaxing)
have costs near to zero. Symmetrically, the cost of misalignments denoting activ-
ities observed in reality but not expected in the model must also be consid-
ered, e.g., (EatingDrinking,�). Groups of misalignments can be considered
to improve or correct the costs of the whole alignment. For instance, looking
at the misalignment of the example (�, MealPreparation), which may have
a low penalization since it does not represent a serious issue (denoting situa-
tions where the individual did not prepared a meal but the model requires this
action), can be penalized only if it goes next to a synchronous step for the
activity EatingDrinking.

There are techniques for deriving cost-based fitness analysis of imperative
or declarative models [1,11]. These techniques can also be extended to consider
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other perspectives, i.e., costs or quantities for additional event data [12]. A typi-
cal advice on dietary guidelines is to eat as many calories as one burn [8]. These
kinds of checks can be incorporated into the reference model by using the data
conformance approach from van der Aalst et al. [12]. Therefore, deviations on
quantities can also be verified with respect to the reference model.

6 Experiments

In this section, we present our own data set1 as well as the experiments that
address the introduced usage scenarios. Table 1 summarizes the considered data
sets for the experiments and outlines the characteristics of them. In general,
they describe the activities of daily living of individuals, e.g., at home and
were manually created. Concerning the activity analysis, we focus on the dis-
tinction between working and weekend days. Further, we do not compare the
results across the different data sets but expose that they support our intro-
duced use cases.

Table 1. Overview of the considered data sets.

Reference Scenario Sensors Name Events Description

Sztylera [32] daily
routine

GPS, ACC,
ORI

DailyR 1, 386 data set that describes
the daily routine of
seven individuals

Cook [10] smart
apart-
ment

Movement hh102 736 daily routine of different
people in an
apartment for one
month

hh104 2, 842

hh110 837

Ordónez [25] life at
home

MAG, PRE,
PIR,
ELE

uniS 691 simple daily routine of
two persons for several
days at home

uniD 870 detailed daily routine of
two persons for several
days at home

ahttp://sensor.informatik.uni-mannheim.de

6.1 Data Sets

Originally, the authors of these data sets created them for different purposes.
Therefore, the data sets cover different aspects and provide also a different gran-
ularity concerning the considered labels. In the following, we describe these pur-
poses and also present our own data set in more detail. Besides, these different
purposes are also the reason that we created our own data set. Hence, the avail-
able data sets do not satisfy our entire introduced requirements.
1 http://sensor.informatik.uni-mannheim.de.

http://sensor.informatik.uni-mannheim.de
http://sensor.informatik.uni-mannheim.de
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Sztyler. Our data set (see footnote 1) covers seven subjects (age 23.1 ± 1.81)
that recorded their daily routine for several days. In detail, the group covers
five students, a worker, and a researcher which collected GPS data and recorded
manually their current location, posture, and activity for the whole day. The
subjects were not supervised but got an introduction and guidelines, e.g., we
explained the meaning of the predefined labels to avoid that they choose different
labels for the same situation. The data was collected using a regular smart-
phone and smart-watch combined with a self-developed sensor data collector
and labeling framework (see Fig. 5). Besides, we also recorded the on-body device
position and the acceleration and orientations sensor but do not consider this
data during the experiments.

Fig. 5. Collector and labeling framework: Wear App (smart-watch, 1) and Hand App
(smart-phone, 2). Our app is online available. (https://play.google.com/store/apps/
details?id=de.unima.ar.collector&hl=en)

The framework consists of two parts, namely Wear and Hand. The Wear
application allows to update the parameters (location, posture, and activity)
immediately where the Hand application manages the settings and the storing
of the data. The labels for the mentioned parameters were predefined and could
not be changed or extended (see Table 2).

Concerning the activity labels, we focused on food intake, sport, different
type of movements, but also (house) work so that we can compare the daily
routine of several individuals to detect common activity patterns but also to
analyze the different behaviors. The set of activity labels was minimized and
structured to decrease the time which the individual needs to choose a suitable
label. There are 12 activities and 33 sub-activities where an activity could be
EatingDrinking and a corresponding sub-activity Breakfast2. It was possible
to select several activity labels at the same time to record the current situation
with a high accuracy (e.g., Movement/gotoWork, Transportation/Train, and

2 So far, we do not consider the sub-activities in the presented use cases.

https://play.google.com/store/apps/details?id=de.unima.ar.collector&hl=en
https://play.google.com/store/apps/details?id=de.unima.ar.collector&hl=en
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Table 2. Labeling parameters that have to be updated immediately when they had
changed. The subjects had to select at least one of these activity labels to specify their
current action. The selection of a sub-activity was optional.

Parameter Labels

Device position Chest, Hand, Head, Hip, Forearm, Shin, Thigh, Upper Arm,
Waist

Environment Building, Home, Office, Street, Transportation

Posture Climbing, Jumping, Lay, Running, Sitting, Standing,
Walking

Activity Desk Work,

Eating/Drinking – (Breakfast, Brunch, Coffee Break, Dinner,
Lunch, Snack),

Housework – (Cleaning, Tidying Up),

Meal Preparation,

Movement – (Go for a Walk, Go Home, Go to Work),

Personal Grooming,

Relaxing – (Playing, Listen to Music, Watching TV),

Shopping,

Socializing – (Bar/Disco, Cinema, at Home),

Sport – (Basketball, Bicycling, Dancing, Gym, Gymnastics,
Ice Hockey, Jogging, Soccer),

Transportation – (Bicycle, Bus, Char, Motorcycle, Scooter,
Skateboard, Train, Tram)

Sleeping). Thus, the individual could describe the current situation from several
points of view. To keep the set of activity labels as small as possible, we provided
some generic labels such as DeskWork. This label should be used if the individual
works in an office (worker), attends a lecture or class room (student), or visits a
school (pupil).

Summarizing, we recorded 74 cases which cover 1, 386 events. A case is rep-
resented by one individual in one particular day and has an average duration of
12.1 h. Tables 3 and 4 illustrate the recorded data. The high standard deviation
of the numbers of postures results from the different movement behavior.

Cook and Ordónez. Their data sets were recorded for different purpose. Cook
et al. [10] created the data sets to evaluate a lightweight smart homes design
to avoid customization and training. Originally, they considered primarily only
movement sensors that record the movement pattern of one or several persons
in an apartment. Afterwards, they labeled the record sensor data with the cor-
responding activity. In contrast, Ordónez et al. [25] investigated the possibility
to derive activities of daily living from binary sensor streams in a home setting
considering machine learning techniques.
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Table 3. Annotated labels
per day and individual.

Labels Records (avg± sd)

Activities 20 ± 7

Postures 80 ± 62

Environment 16 ± 4

Dev. position 8 ± 6

Table 4. Number of recorded val-
ues per day and individual.

Raw data Records (avg.)

Acceleration 2.7 ∗ 106

Orientation 2.3 ∗ 106

Geo. location 70

Compared to our data set, Cook and Ordónez only represent the home envi-
ronment of the daily routine. However, they considered a broader set of activity
labels which results in a more precise description of the behavior.

6.2 Results

In the following, we outline the results of our experiments based on the intro-
duced data sets. The created personal process models from these data sets are
available3. Based on the derived models, we just inspect them without addi-
tional tools. We distinguish between Workdays and the Weekends and focus on
common activity patterns across several days and persons. In this context, we
examined the differences between personal processes that consider more general
activities (e.g., grooming) and such that breakdown the activities (e.g., washing,
showering). As a result, we detected that the personal processes of several peo-
ple that only describe the behavior at home are more similar than those that
illustrates the whole day.

Table 5 illustrates the characteristics of the derived personal process mod-
els. The Density value represents the degree of connectedness, i.e., number of
existing edges in proportion to number of possible edges. A lower value indi-
cates that the personal process has fewer direct transitions between activities,
i.e., it is simpler. Considering the models of the data sets uniD, hh102, hh104,
and hh110 it points out that they have the lowest density values but cover the
largest set of activities (nodes). This shows that zooming into the daily routine
of an individual does not lead to a complex structure but uncover common pat-
terns and sequences of specific activities (e.g., MealPrep. → EatingDrinking →
Cleaning). Besides, the density of the second model makes clear that the clus-
tering of similar activities leads to a higher density (e.g., grooming vs. toilet,
wash, and shower).

Further, we identified common patterns that occur in personal processes of
different persons (see Patterns 1–4)4. For instance, for most people it is very

3 http://sensor.informatik.uni-mannheim.de/#results.
4 Sequence mining techniques may in principle extract similar patterns. One difference

is the inability for these techniques to present process view of the extracted patterns.

http://sensor.informatik.uni-mannheim.de/#results
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Table 5. Characteristics of the derived imperative personal process models.

Weekday Weekend

Data set Nodes Edges Density Duration Nodes Edges Density Duration

DailyR1 12 19 0.144 18.62 12 20 0.152 22.70

uniS2 10 15 0.167 25.23 10 15 0.167 24.33

uniD3 14 22 0.121 25.23 13 17 0.109 24.33

hh1024 16 24 0.100 28.73 16 27 0.110 19.70

hh1045 17 25 0.092 14.06 17 26 0.096 12.88

hh1106 15 20 0.095 30.44 14 17 0.093 18.68

Table 6. Characteristics of the derived declarative personal process models.

Weekday Weekend

Data set Nodes Edges Density Nodes Edges Density

DailyR1 6/0 7/0 0.233/- 10/0 11/0 0.122/-

uniS2 12/4 81/3 0.614/0.250 12/5 100/4 0.758/0.200

uniD3 16/5 144/6 0.600/0.300 15/5 158/9 0.752/0.450

hh1024 18/4 160/6 0.523/0.500 18/5 197/12 0.644/0.600

hh1045 19/3 128/4 0.374/0.667 19/5 157/12 0.459/0.600

hh1106 17/4 158/5 0.581/0.417 14/10 156/18 0.857/0.200

common to go to the bathroom after the turn out. However, there are also pat-
terns that depend on work or weekend days as it is the case for Pattern 3.
The activity Outdoors has different meanings, i.e., during the week it repre-
sents working whereas in context of the weekend it is associated with free time
activities. In this context, we detected that Relax is the usual activity which is
performed after Outdoor for workdays. Considering the weekend, the behavior
differs, i.e., also MealPreperation is a common activity.

(Medication →) MealPrep. → EatingDrinking → Cleaning (1)

Sleep → Toilet/Bath (2)

Outdoors → Relax (3)

PersonalHygiene/Washing → (Medication →) Sleep (4)

We also noticed that the spend time on specific activities differs across differ-
ent people but also different days and daytimes. The data sets which distinguish
between breakfast, lunch, and dinner, showed that typically the used time for
preparing the breakfast is significant lower than for lunch. Moreover, for activ-
ities such as sleeping, grooming (showering, toileting), and relaxing (spare
time/TV), we observed that the spend time increased during the weekend.
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Concerning declarative models, similar conclusions can be reached as it is
illustrated in Table 6 where two experiments are reported: The models obtained
with and without simplification. For simplification, we have filtered the process
models obtained by using simple heuristics (e.g., removing negative constraints,
or fake start/end nodes). For the DailyR benchmark, the obtained models are
already simplified but only filtered constraints are derived, which implies to
empty the model after manual simplification.

The results show that the personal process models lead to a better under-
standing of the personal activity data. Further, the resulting graphs, patterns,
and features allow to verify certain requirements, e.g., regarding health care or
a good lifestyle. As a result, the detected procedures and duration of certain
activities can be used to determine the fitness of the derived model.

7 Future Work

So far, we only considered manually created event logs describing personal behav-
ior. However, the automatic creation of them from personal data may enable full
automation of the presented techniques. This entails a lot of unsolved problems
such as the correct recognition of the activities as well as how granular they need
to be. Hence, it may be easy to recognize that a person interacts with something
in a living room, but it is more difficult to distinguish between watching TV and
reading a book. In this context, the granularity of the recognized personal behav-
ior may differ depending on the available indoor or outdoor activity recognition
technology. Further, semi-supervised or unsupervised approaches may not allow
to consider a predefined set of labels which may result in problems regarding the
interpretation and evaluation.

When process mining is applied on personal data, different challenges and
directions can be considered that will be explored in the future. First, the aggre-
gation of collected data on different levels of abstraction (e.g., activities like
Reading, WatchingTV, or Gaming into Entertainment) may enable the simplifi-
cation of the derived process models. Another challenge is to deal with uncertain
data. In particular, the data generated by classification-based methods for activ-
ity recognition will most probably be uncertain, since these methods are never
a hundred percent accurate. However, provenance information such as explicit
uncertain values will be available in most cases, and might serve as an additional
input to process mining methods. Hence, process mining methods may need to
be adapted in such new context.

With respect to future directions, we focus on two main aspects. On the
one hand, the derived process models may be used for something more than
just visualization or analysis, i.e., to support the activity of individuals on their
daily routine. Notice that historical data of an individual is a rich source of
information which may be crucial to influence the daily routine in order to reach
a particular goal. In this context, process models can be enhanced and used
at each decision point to assess the influence of the next step in satisfying the
targeted goal. For instance, following the guideline of the previous section that
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Fig. 6. Example of discovered trace cluster: letters in the bottom denote activities with
high consensus. The Y-axis represents seven different traces where the X-axis illustrates
the different events per traces.

advice to eat as many calories as one burn, activities can be annotated with
respect to calorie levels (e.g., EatingDrinking produces an amount of calories
while Movement takes an amount of calories). Then, historical activity data can
be aggregated with this information to learn for all decision points the impact
of the decision regarding the likelihood of satisfying the targeted goal, e.g., the
balanced consumption of calories.

Thus, when an individual is about to start a new activity, recommendations
can be provided based on the model’s aggregated data corresponding to the cur-
rent state. This deviates from current prediction and recommendation practices
that do not consider the current state of the model explicitly.

Finally, another research line will be to preprocess the log with the goal of
extracting patterns, and then transform the log accordingly, either by introduc-
ing hierarchy, or by ignoring outlier activities not following the learned patterns.
For this purpose, Trace alignment techniques from van der Aalst et al. [7] can be
applied. As an example, in Fig. 6 seven traces have been aligned resulting from
one of our logs.

8 Conclusions

This paper discusses challenges and opportunities for process mining in the area
of personalized health care. It represents the first step towards providing a fine-
grained analysis and monitoring of personal processes, which may have very
important applications in some domains (e.g., elderly care).
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Abstract. Given a log L, a control-flow discovery algorithm f , and a
quality metric m, this paper faces the following problem: what are the
parameters in f that mostly influence its application in terms of m when
applied to L? This paper proposes a method to face this problem, based
on sensitivity analysis, a theory which has been successfully applied in
other areas. Clearly, a satisfactory solution to this problem will be cru-
cial to bridge the gap between process discovery algorithms and final
users. Additionally, recommendation techniques and meta-techniques
like determining the representational bias of an algorithm may benefit
from solutions to the problem considered in this paper. The method has
been evaluated over a set of logs and two different miners: the inductive
miner and the flexible heuristic miner, and the experimental results wit-
ness the applicability of the general framework described in this paper.

1 Introduction

Control-flow discovery is considered as one of the crucial features of Process Min-
ing [16]. Intuitively, discovering the control-flow of a process requires to analyze
its executions and extract the causality relations between activities which, taken
together, illustrate the structure and ordering of the process under consideration.

There are many factors that may hamper the applicability of a control-flow
discovery algorithm. On the one hand, the log characteristics may induce the
use of particular algorithms, e.g., in the presence of noise it may be advisable to
consider a noise-aware algorithm. On the other hand, the representational bias
of an algorithm may hinder its applicability for eliciting the process underlying
in a log [15].

Even in the ideal case where the most suitable control-flow discovery algo-
rithm is used for tackling the discovery task, it may be the case that the default
algorithm’s parameters (designed to perform well over different scenarios) are
not appropriate for the log at hand. In that case, the user is left alone in the
task of configuring the best parameter values, a task which requires a knowledge
of both the algorithm and the log at hand.

In this paper, a method to automatically assess the impact of parameters
of control-flow discovery algorithms is presented. In our approach, we use an
efficient technique from sensitivity analysis for exploring the parameter search
space. In the next section, we characterize this sensitivity analysis technique and
c© Springer-Verlag Berlin Heidelberg 2016
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relate it with other approaches known in the literature that were used for similar
purposes in other application areas.

We consider three direct applications of the method presented in this paper1:

(A) As an aid to users of control-flow discovery algorithms: given a log, an
algorithm and a particular quality metric the user is interested in, a method
like the one presented in this paper will indicate the parameters to consider.
Then the user will be able to influence (by assigning meaningful values to
these parameters) the discovery experiment.

(B) As an aid for recommending control-flow discovery algorithms: current rec-
ommendation systems for control-flow process discovery (e.g., [11]) do not
consider the parameters of the algorithms. Using the methodology of this
paper, one may determine classes of parameters whose impact refer to the
same quality metric, and those can be offered as modes of the same algo-
rithm tailored to specific metrics. Hence the recommendation task (i.e., the
selection of a discovery algorithm) may then be guided towards a better use
of a control-flow technique.

(C) As a new form of assessing the representational bias of an algorithm: given
a log and an algorithm, it may well be the case that the impact of most of
the algorithm’s parameters is negligible. In that case, if the result obtained
is not satisfactory, one may conclude that this is not the right algorithm for
the log at hand.

The rest of the paper is organized as follows: Sect. 2 summarizes the contri-
bution and discusses related work. Section 3 provides the necessary background
and main definitions. Then Sect. 4 presents the main methodology of this paper,
while Sect. 5 provides a general discussion on its complexity. Experimental results
obtained through a prototype implementation are provided in Sect. 6. In Sect. 7
we provide further discussions on the positioning of the current contribution for
its use in practice. Finally, Sect. 8 concludes the paper.

2 Related Work and Contribution

The selection of parameters for executing control-flow algorithms is usually a
challenging issue. The uncertainty of the inputs, the lack of information about
parameters, the diversity of outputs (i.e., the different process model types), and
the difficulty of choosing a comprehensive quality measurement for assessing the
output of a control-flow algorithm make the selection of parameters a difficult
task.

The parameter optimization is one of the most effective approaches for para-
meter selection. In this approach, the parameter space is searched in order to find
the best parameters setting with respect to a specific quality measure. Besides
the aforementioned challenges, the main challenge of this approach is to select
a robust strategy to search the parameter space. Grid (or exhaustive) search,

1 This paper is an improved and extended version of [10].
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random search [2], gradient descent based search [1] and evolutionary computa-
tion [8] are typical strategies, which have proven to be effective in optimization
problems, but they are usually computationally costly. [3,7,19] are examples of
parameter optimization applications on a control-flow algorithm. Besides the fact
that only a single control-flow algorithm is considered in these approaches, all
solutions rely on quality measurements that are designed to work with a specific
type of process model.

A different approach, which may also be used to facilitate the parameter
optimization, is known as sensitivity analysis [13] and consists of assessing the
influence of the inputs of a mathematical model (or system) on the model’s
output. This information may help understanding the relationship between the
inputs and the output of the model, or identifying redundant inputs in specific
contexts. Sensitivity methods range from variance-based methods to screening
techniques [13]. One of the advantages of screening is that it requires a relatively
low number of evaluations when compared to other approaches. The Elementary
Effect (EE) method [4,5,9] is a screening technique for sensitivity analysis that
can be applied to identify non-influential parameters of computationally costly
algorithms. In this paper, the EE method is applied to assess the impact of the
parameters of control-flow algorithms.

3 Preliminaries

This section contains the main definitions used in this paper.

3.1 Event Log and Process Model

Process data describe the execution of the different process events of a business
process over time. An event log organizes process data into a set of process
instances, where a process instance represents a sequence of events describing
the execution of activities (or tasks).

Definition 1 (Event Log). Let T be a set of events, T ∗ the set of all sequences
(i.e., process instances) that are composed of zero or more events of T , and
δ ∈ T ∗ a process instance. An event log L is a set of process instances, i.e.,
L ∈ P(T ∗)2.

A process model is an activity-centric model that describes the business
process in terms of activities and their dependency relations. Petri nets, Causal
nets, BPMN, and EPCs are examples of notations for describing these models.
For an overview of process notations see [16]. A process model can be seen as an
abstraction of how work is done in a specific business. A process model can be
discovered from process data by applying some control-flow algorithm.

2 P(X) denotes the powerset of some set X.
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3.2 Control-Flow Algorithm

A control-flow algorithm is a process discovery technique that can be used for
translating the process behavior given by an event log into a process model.
These algorithms may be driven by different discovery strategies and provide
different functionalities. Also, the execution of a control-flow algorithm may be
constrained (controlled) by some parameters.

Definition 2 (Algorithm). Let L be an event log, P a list of parameters,
and R a process model. An (control-flow) algorithm A is defined as a function
fA : (L,P ) = R that represents in R the process behavior described in L and
is constrained by P . The execution of fA is designated as a discovery experi-
ment.

3.3 Quality Measure

A measure can be defined as a measurement that evaluates the quality of the
result of an (control-flow) algorithm. A measure can be categorized as fol-
lows [16].

Simplicity measure: quantifies the results of an algorithm (i.e., a process
model mined from a specific event log) in terms of readability and compre-
hension. The number of elements in the model is an example of a simplicity
measure.

Fitness measure: quantifies how much behavior described in the log complies
with the behavior represented in the process model. The fitness is 100% if
the model can describe every trace in the log.

Precision measure: quantifies how much behavior represented in the process
model is described in the log. The precision is 100% if the log contains every
possible trace represented in the model.

Generalization measure: quantifies the degree of abstraction beyond
observed behavior, i.e., a general model will accept not only traces in the
log, but also some other traces that generalize them.

Definition 3 (Measure). Let R be a process model and L an event log. A
measure M is defined by

– a function gM (R) = x ∈ R that quantifies the quality of R, or
– a function gM (R,L) = x ∈ R that quantifies the quality of R according

to L.

The execution of gM is designated as a conformance experiment.

3.4 Problem Definition

Given an event log L, a control-flow algorithm A constrained by the list of
parameters P = [p1 = v1, ..., pk = vk], and a quality measure M : Assess the
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impact of each parameter pi (i = 1, ..., k) on the result of the execution of A
over L, according to M3.

4 The Elementary Effect Method

The Elementary Effect (EE) method [4,5,9] is a technique for sensitivity analysis
that can be applied to identify non-influential parameters of control-flow algo-
rithms, which usually are computationally costly for estimating other sensitivity
analysis measures (e.g., variance-based measures). Rather than quantifying the
exact importance of parameters, the EE method provides insight into the con-
tribution of parameters to the results quality.

One of the most efficient EE methods is based on Sobol quasi-random num-
bers [14] and a radial OAT strategy [5].4 The main idea is to analyze the para-
meter space by performing experiments and assessing the impact of changing
parameters with respect to the results quality. A Sobol quasi-random generator
is used to determine a uniformly distributed set of points in the parameter space.
Radial OAT experiments [5] are executed over the generated points to measure
the impact of the parameters. This information can be used either (i) to guide
on the parameters setup by prioritizing the parameters to be tuned, or (ii) as a
first step towards parameter optimization. The different steps of the EE method
are described in Algorithm 1.

4.1 Radial OAT Experiments

In this paper, an OAT experiment consists of a benchmark of some control-flow
algorithm where the algorithm’s parameters are assessed one at a time accord-
ing to some quality measure. This means that k + 1 discovery and conformance
experiments are conducted, the first one to set a reference and the next k to com-
pare the impact of changing one of the k algorithm’s parameters. The parameter
settings for establishing the reference and changing the parameter’s values are
defined by a pair of points from the parameter space.5 OAT experiments can use
different strategies to explore these points. Figure 1 presents the most common
strategies for performing OAT experiments. In the trajectory design, the para-
meter change compares the results for the point of the current experiment with
the results for the point of the previous experiment. In the radial design, the
parameter change compares the results for the point of the current experiment
with the results for the initial point. From these two, the radial design has been
proven to outperform the trajectory one [12].

Radial OAT experiments can be defined as follows (cf. Step 2 in Algorithm1).
First, a pair of points (α, β) is selected in the parameter space. Point α, the
base point (point (1, 1, 2) in Fig. 1), is used as the reference parameter setting
3 Depending on the context, we will consider P either as a parameter list [pi, ..., pk]

or its concrete instantiation [vi, ..., vk].
4 OAT stands for One (factor) At a Time.
5 A point in the parameter space is the result of assigning specific values to the para-

meters in the parameter list P: p1=v1,..., pk=vk.
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Algorithm 1. The EE Method For Control-Flow Mining Algorithms
Input : a control-flow algorithm A for which P = [p1 = v1, ..., pk = vk] is its

parameter list (cf. Definition 2), a measurement M (cf. Definition 3),
and an event log L.

Output: The elementary effects of every parameter in P.

Init
k ⇐ number of parameters in P ;
r ⇐ 30 (number of radial OAT experiments);

Step 1 – Generating Sobol points (cf. Sect. 4.2)
S ⇐ matrix of quasi-random Sobol numbers of dimensions (r + 4, 2k);
for j=1 to r do

reference[j] ⇐ (S[j, 1], S[j, 2], ..., S[j, k]);
auxiliary[j] ⇐ (S[j + 4, k + 1], S[j + 4, k + 2], ..., S[j + 4, 2k]);

end

Step 2 – Radial OAT Experiments (cf. Sect. 4.1)
for j=1 to r do

setting ⇐ [p1 = v1, ..., pk = vk] (parameter setting of P);
for i=1 to k do vi ⇐ normalize(reference[j], pi);

valueR ⇐ fA·M(L, setting) (cf. Eq. 1);
for i=1 to k do

w ⇐ vi;
vi ⇐ normalize(auxiliary[j], pi);

valueA ⇐ fA·M(L, setting);

EE[i][j] ⇐ valueR−valueA
w−vi

(cf. Eq. 2);

vi ⇐ w;

end

end

Step 3 – Computing the Elementary Effects (cf. Eq. 3)
for i=1 to k do

μ�
i =

∑r
j=1 |EE[i][j]|

r
;

end
return μ�;

function normalize(Value x ∈ [0, 1], Parameter p)
consists of a normalization process that maps x to a value of p;

of the experiment. A discovery and conformance experiment is executed with
this parameters setting to set the reference quality value. Point β, the auxiliary
point (point (2, 2, 0) in Fig. 1), is used to compare the impact of changing the
parameters, one at a time, from α to β. For each parameter pi of P , a discovery
and conformance experiment is executed using the parameter values defined by
α for a parameter pj of P (j �= i) and the parameter value defined by β for pi (see
the example in Fig. 1b). Insight into the impact of each parameter is provided
by aggregating the results of the radial OAT experiments.



Assessing Parameter Impact on Control-Flow Discovery Algorithms 187

Fig. 1. Comparison between radial and trajectory samplings for OAT experiments over
3 parameters, using the points (1, 1, 2) and (2, 2, 0). The underlined values identify the
parameter being assessed.

Let A be a control-flow algorithm, M a given measure, and L an event log.
The function fA·M (L,P ) computes the quality of the result of A over L with
respect to M , where P = [p1 = v1, ..., pk = vk] is the list of parameters of A.

fA·M (L,P ) =

⎧
⎨

⎩

gM (fA(L,P )) ifM does not depend on a log

gM (fA(L,P ), L) otherwise
(1)

The elementary effect of a parameter pi of P on a radial OAT experiment is
defined by

EEi =
fA·M (L,α) − fA·M (L,α ←↩ αi · βi)

αi − βi
, (2)

where α, β are parameter settings of P (the base and auxiliary points), αi and βi

are the ith elements of α and β, and fA·M (L,α ←↩ αi ·βi) is the value fA·M (L,α′)
where α′ is α with βi replacing αi. The measure μ� for pi is defined by

μ�
i =

∑r
j=1 |EEj

i |
r

, (3)

where EEj
i is the elementary effect EEi for jth radial OAT experiment, and r

the number of radial OAT experiments to be executed – typically between 10
and 50 [4]. In Algorithm 1, the measure μ� is computed in Step 3. The total
number of discovery and conformance experiments is r(k + 1), where k is the
number of parameters of A.
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The impact of a parameter pi of P is given as the relative value of μ�
i com-

pared to that for the other parameters of P . A parameter pj of P (j �= i) is
considered to have more impact on the results quality than pi if μ�

j > μ�
i . The

parameters pj and pi are considered to have equal impact on the results quality
if μ�

j = μ�
i . The parameter pi is considered to have no impact on the results

quality if μ�
i = 0. This measure is sufficient to provide a reliable ranking of the

parameters [4,5].

4.2 Sobol Numbers

To apply the EE method as shown in the previous section, Sobol numbers are
used in order to guarantee a good coverage of the parameter space. Sobol quasi-
random numbers (or sequences) are low-discrepancy sequences that can be used
to distribute uniformly a set of points over a multidimensional space. These
sequences are defined by n points with m dimensions. Table 1 presents an exam-
ple of a Sobol sequence containing ten points with ten dimensions.

Table 1. The first ten points of a ten-dimensional Sobol quasi-random sequence.

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

x1 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000

x2 0.7500 0.2500 0.2500 0.2500 0.7500 0.7500 0.2500 0.7500 0.7500 0.7500

x3 0.2500 0.7500 0.7500 0.7500 0.2500 0.2500 0.7500 0.2500 0.2500 0.2500

x4 0.3750 0.3750 0.6250 0.8750 0.3750 0.1250 0.3750 0.8750 0.8750 0.6250

x5 0.8750 0.8750 0.1250 0.3750 0.8750 0.6250 0.8750 0.3750 0.3750 0.1250

x6 0.6250 0.1250 0.8750 0.6250 0.6250 0.8750 0.1250 0.1250 0.1250 0.3750

x7 0.1250 0.6250 0.3750 0.1250 0.1250 0.3750 0.6250 0.6250 0.6250 0.8750

x8 0.1875 0.3125 0.9375 0.4375 0.5625 0.3125 0.4375 0.9375 0.9375 0.3125

x9 0.6875 0.8125 0.4375 0.9375 0.0625 0.8125 0.9375 0.4375 0.4375 0.8125

x10 0.9375 0.0625 0.6875 0.1875 0.3125 0.5625 0.1875 0.1875 0.1875 0.5625

Each element of a point of a Sobol sequence consists of a numerical value
between zero and one (e.g., the element representing the second dimension (d2)
of point x5 is 0.8750). A collection of these values (the entire point or part of
it) may be used to identify a specific point in a parameter space. An element
of a point of a Sobol sequence can be converted into a parameter value by
some normalization process. For instance, a possible normalization process for
an element e ∈ [0, 1] to one of the n distinct values of some discrete parameter p
can be defined by �e × n�, which identifies the index of the parameter value in p
corresponding to e. Notice that the parameter space must be uniformly mapped
by the normalization process (e.g., each value of a Boolean parameter must be
represented by 50 % of all possible elements).
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Using the approach proposed in [5], a matrix of quasi-random Sobol numbers
of dimensions (r + 4, 2k) can be used to analyze the elementary effects of the k
parameters of a control-flow algorithm by executing r radial OAT experiments
(cf. Step 1 in Algorithm1). The first k dimensions of the matrix’s points define
the base points, while the last k dimensions define the auxiliary points. Given
that the first points of a Sobol sequence have the tendency to provide similar
base and auxiliary points, it is identified in [5] the need of discarding the first
four points of the sequence for the auxiliary points (i.e., the k rightmost columns
should be shifted upward). Therefore, the base and auxiliary points can be com-
puted from a Sobol sequence as follows. Let ej

i be the element corresponding to
the jth dimension (dj) of the ith point (xi) of the sequence. The ith base (αi)
and auxiliary (βi) points are defined as follows.

αi = (e1i , e
2
i , ..., e

j
i ) and βi = (ej+1

i+4 , ej+2
i+4 , ..., e2j

i+4). (4)

4.3 Example: The FHM

The following example is used to illustrate the analysis of the parameter space
of an algorithm in order to assess the impact of the algorithm’s parameters on
the results quality. Let us consider an event log that is characterized by two
distinct traces: ABDEG and ACDFG. The frequency of any of these traces
is high enough to not be considered as noise. The behavior described by these
traces does not contain any kind of loop or parallelism, but it does contain
two long-distance dependencies: B ⇒ E and C ⇒ F . Let us also consider the
Flexible Heuristics Miner (FHM) [20] as the control-flow algorithm to explore
the parameter space in order to assess the impact of the FHM’s parameters
on the results quality. The parameters of the FHM are summarized in Table 2.
Notice that every parameter of the FHM is continuous, with a range between
zero and one. The relative-to-best and the long-distance thresholds are optional.
The former is only considered with the all-tasks-connected heuristic. The latter is
only taken into account when the long-distance dependencies option is activated.

Table 2. The parameters of the Flexible Heuristics Miner [20]. The dependency and
relative-to-best thresholds are used to select causal relations between process events.
The loops thresholds are used to identify length-one and -two loops, while the long-
distance threshold identify non-free-choice behavior.

Parameter Domain Optional?

Relative-to-best threshold [0, 1] Yes

Dependency threshold [0, 1] No

Length-one-loops threshold [0, 1] No

Length-two-loops threshold [0, 1] No

Long-distance threshold [0, 1] Yes
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Figure 2 presents the two possible process models that can be mined with the
FHM on the aforementioned event log, using all combinations of parameter val-
ues. Figure 2a shows the resulting Causal net where long-distance dependencies
are not taken into account. Figure 2b shows the resulting Causal net with the
long-distance dependencies. Notice that, depending on the quality measure, the
quality of these process models may differ (e.g., the precision of the model with
long-distance dependencies is higher than the other one). One may be interested
in the exploration of the FHM’s parameter space to get the process model that
fulfills best some quality requirements.

Fig. 2. The process models that can be mined with the FHM.

The analysis of the parameter space of the FHM starts with the generation of
the Sobol numbers. Suppose that, for this analysis, one wants to execute r = 30
radial OAT experiments for assessing the elementary effects of the k = 5 FHM’s
parameters. So, a matrix of Sobol numbers of dimensions (30 + 4; 2 × 5) has
to be generated (cf. Sect. 4.2). Table 1 shows the first ten points of this matrix.
Table 3 presents the first five base and auxiliary points as well as the parameter
values corresponding to these points. Notice that the parameters are represented
in the points according to the ordering given in Table 2 (i.e., the first element of
a point represents the first parameter and so on). The normalization process in
this example is defined as follows. For the non-optional parameters (cf. Table 2),
an element e ∈ [0, 1] of a point of a Sobol sequence can be directly used to
represent the value of the parameter. For the optional parameters, an element
e ∈ [0, 1] of a point of a Sobol sequence is normalized to a value e′ ∈ [0, 2],
which maps the parameter space uniformly (i.e., the value of the parameter and
whether or not the parameter is enabled). If e′ ≤ 1 then e′ is assigned as the
value of the parameter; the parameter is disabled otherwise.

Table 4 presents the radial sampling for the first radial OAT experiment (first
point in Table 3) as well as the result of the execution of fA·M (L,P ) and the
elementary effect EE for each parameter. For executing fA·M (L,P ), A is the
FHM, M the Node Arc Degree measure6, and L the aforementioned event log.

6 The Node Arc Degree measure consists of the average of incoming and outgoing arcs
of every node of the process model.
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Table 3. The first five points of the Sobol numbers.

yrailixuAesaBtnioP

1 (.5000, .5000, .5000, .5000, .5000) (.6250, .8750, .3750, .3750, .1250)
2 (.7500, .2500, .2500, .2500, .7500) (.8750, .1250, .1250, .1250, .3750)
3 (.2500, .7500, .7500, .7500, .2500) (.3750, .6250, .6250, .6250, .8750)
4 (.3750, .3750, .6250, .8750, .3750) (.3125, .4375, .9375, .9375, .3125)
5 (.8750, .8750, .1250, .3750, .8750) (.8125, .9375, .4375, .4375, .8125)

.........

(a) The first five base and auxiliary points.

yrailixuAesaBtnioP

1 (–, 0.50, 0.50, 0.50, –) (–, 0.88, 0.38, 0.38, 0.25)
2 (–, 0.25, 0.25, 0.25, –) (–, 0.13, 0.13, 0.13, 0.75)
3 (0.50, 0.75, 0.75, 0.75, 0.50) (0.75, 0.63, 0.63, 0.63, –)
4 (0.75, 0.38, 0.63, 0.88, 0.75) (0.63, 0.44, 0.94, 0.94, 0.63)
5 (–, 0.88, 0.13, 0.38, –) (–, 0.94, 0.44, 0.44, –)

.........

(b) The parameter values for the first five base and auxiliary points. The wildcard
value ‘–’ identifies that the parameter is disabled.

The elementary effects are computed as described in Sect. 4.1.7 Notice that the
elementary effect of a parameter can only be computed when the base and auxil-
iary points provide distinct parameter values (e.g., in Table 4, the first parameter
is not assessed because it is disabled in both base and auxiliary points).

Table 4. Radial sampling for the first radial OAT experiment. The first line cor-
responds to the base point, while the others consist of the base point in which the
element regarding a specific parameter is replaced by that from the auxiliary point;
the underlined values identify the replaced element and the parameter being assessed.

Parameter values P Result Elementary effect

fA·M (L, P ) EEi

(–, 0.50, 0.50, 0.50, –) 2.154

(–, 0.50, 0.50, 0.50, –)

(–, 0.88, 0.50, 0.50, –) 2.154 0.0

(–, 0.50, 0.38, 0.50, –) 2.154 0.0

(–, 0.50, 0.50, 0.38, –) 2.154 0.0

(–, 0.50, 0.50, 0.50, 0.25) 2.316 0.162

7 For computing EEi, αi − βi is considered to be 1 when the parameter is changed
from a disabled to an enabled state, or the other way around (e.g., the last parameter
in Table 4).



192 J. Ribeiro and J. Carmona

Table 5. The μ� values of the FHM’s parameters.

Parameter μ�

Dependency threshold 0.0

Relative-to-best threshold 0.0

Length-one-loops threshold 0.0

Length-two-loops threshold 0.0

Long-distance threshold 0.113

Table 5 presents the results of the analysis of the FHM’s parameter space.
The results identify the long-distance threshold as the only parameter to take
into account for the parameter exploration. As expected, all other parameters
have no impact on the results quality. This is explained by the fact that the log
does not contain any kind of loop or noise. Notice that the μ� absolute value does
not provide any insight into how much a parameter influences the results quality.
Instead, the μ� measurement provides insight into the impact of a parameter on
the results quality, compared to others.

5 Application

The EE method presented in the previous section can be applied to any control-
flow algorithm constrained by many parameters, using some event log and a
measure capable of quantifying the quality of the result of the algorithm. The
presented method can be easily implemented on some framework capable of exe-
cuting discovery and conformance experiments (e.g., ProM [18] or CoBeFra [17]).
Several open-source generators of Sobol numbers are available on the web.

The computational cost of our approach can be defined as follows. Let L be
an event log, A a control-flow algorithm constrained by the list of parameters
P = [p1 = v1, ..., pk = vk], and M a quality measure. The computational cost
of a discovery experiment using A (with some parameter setting) over L is given
by CD. Considering R as the result of a discovery experiment, the computational
cost of a conformance experiment over R and L (or just R) with regard to M is
given by CC . Therefore, the computational cost of a radial OAT experiment is
given by CE = (k+1)(CD+CC), where k is the number of parameters of A. The
computational cost of the EE method based on r radial OAT experiments is given
by C = r(k+1)(CD+CC). Assuming that, for the example given in Sect. 4.3, CD

is 0.1 s (i.e., the FHM takes 0.1 s on average to process the given log) and CC is
0.025 s (i.e., it takes 0.025 s on average to compute the Node Arc Degree measure),
the computational cost of the experiments is C = 30(5+1)(0.1+0.025) = 22.5 s.

5.1 Performance Optimization

Considering that both discovery and conformance experiments may be compu-
tationally costly, performance may become a critical issue for the application



Assessing Parameter Impact on Control-Flow Discovery Algorithms 193

of this method. This issue can be partially addressed by identifying a set of
potentially irrelevant parameters, and considering those parameters as a group.
Then, by adjusting the μ� measurement to work with groups of two or more
parameters [4], the group of parameters can be analyzed together using radial
experiments that iterate over all elements of the same group simultaneously.

Suppose, for instance, that it is known that a given log does not have loops.
So, for the FHM’s parameters, the length-one-loops and length-two-loops thresh-
olds may be grouped in order to avoid the execution of discovery and confor-
mance experiments that are not relevant for the analysis. Recalling the example
presented in Sect. 4.3, the radial experiments will iterate over one group of two
parameters and three independent parameters (i.e., the dependency, the relative-
to-best, and the long-distance thresholds). This means that, for the group of
parameters, all elements of the same group are replaced simultaneously by the
corresponding elements from the auxiliary point. Table 6 presents the adjusted
radial sampling presented in Table 4. The first line corresponds to the base point,
while the others consist of the base point in which the element(s) regarding a
specific parameter (or group of parameters) is replaced by that from the auxiliary
point; the underlined values identify the replaced element(s) and the parameter
(or group of parameters) being assessed.

Table 6. Radial sampling for the first radial experiment considering a group of para-
meters.

Parameter values

(–, 0.50, 0.50, 0.50, –)

(–, 0.50, 0.50, 0.50, –)

(–, 0.88, 0.50, 0.50, –)

(–, 0.50, 0.38, 0.38, –)

(–, 0.50, 0.50, 0.50, 0.25)

The elementary effect of a group of parameters G from P on a radial exper-
iment is defined by

EEG =
fA·M (L,α) − fA·M (L,α ←↩ αG · βG)

dist(αG, βG)
, (5)

where α, β are parameter settings of P (the base and auxiliary points), αG

and βG are the elements of G in α and β, and fA·M (L,α ←↩ αG · βG) is the
value fA·M (L,α′) where α′ is α with βG replacing αG. The function dist(A,B)
computes the distance between A and B (e.g., the Euclidean distance). The
measure μ� for G is defined by

μ�
G =

∑r
j=1 |EEj

G|
r

, (6)
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where EEj
G is the elementary effect EEG for jth radial OAT experiment, and r

the number of radial experiments to be executed. The total number of discovery
and conformance experiments depends on the number of groups.

6 Experiments and Tool Support

The theory of this paper has been implemented as a prototype tool. Source code
and binaries can be accessed in the following link:

http://www.cs.upc.edu/∼jcarmona/ee.zip

The tool is implemented in Java and, given an input log, provides the analysis
of this paper for either the FHM or the Inductive Miner (IM) [6]. The tool is
built on top of the CoBeFra framework [17].

A set of experiments using the FHM and the IM algorithms was conducted
in order to evaluate the method proposed in this paper. The parameters of the
FHM are summarized in Table 2, while the IM ones are in Table 7. It is important
to mention that, for each parameter, we had to implement a function to map a
point of a Sobol sequence to a point of the parameter space (e.g., see Table 3).

Table 7. The parameters of the Inductive Miner [6].

Parameter Domain Optional?

Noise threshold [0, 1] No

Incomplete threshold [0, 1] Yes

For these experiments, 5 reference models characterized by different behav-
ior (i.e., containing both sequential and parallel activities, loops, and/or non-free
choices) were selected for generating 11 synthetic event logs with different char-
acteristics, including noise. A characterization of these generated logs is provided
in Table 8. Besides the synthetic logs, 8 real-life logs were considered in the exper-
iments as well. A characterization of the real-life logs is provided in Table 9, while
Fig. 3 shows their underlying process models.

Figures 4 and 5 summarize the results of the impact analysis of the parame-
ters of the FHM. The number of elements of the mined model, which can be
considered as a simplicity measurement, is used to assess and compare the out-
comes of the FHM. The results suggest that the Dependency Threshold and the
Relative-to-Best Threshold are the parameters with more impact on the results;
on average, these parameters together represent about 75 % of the impact of the
FHM parameters. The Dependency and Relative-to-best thresholds have more
influence in noisy or low structured processes. This observation is confirmed by
the results described by Fig. 5a, with the Dependency Threshold playing a bigger
role in noisier (or lower structured) processes. The results in Fig. 5b show the
impact of the loop thresholds in processes with loops (length-one or -two), even

http://www.cs.upc.edu/~jcarmona/ee.zip
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Table 8. Characterization of the synthetic logs used in the experiments. L1L, L2L and
NFC stand for length-one loops, length-two loops and non-free choice constructs in the
log, respectively.

Model Log Noise L1L L2L NFC

M1 L1 0%

M1 L2 5%

M1 L3 10%

M1 L4 20%

M2 L5 0% � �
M2 L6 5% � �
M2 L7 10% � �
M2 L8 20% � �
M3 L9 0% �
M4 L10 0% �
M5 L11 0% �

thought their impact is not significant. The results in Fig. 5c highlight the impact
of the Long-distance Threshold in processes with non-free choice constructs.

Figures 6 and 7 summarize the results of the impact analysis of the parame-
ters of the IM. As for the FHM, the number of elements of the mined model
is used to assess and compare the outcomes of the IM. The absence of bars in
the chart means that both Noise and Incomplete thresholds have no influence
in the results. The absence of results for L17, L18 and L19 is explained by the
fact that, due to its highly unstructured nature, these logs require too much
memory to be processed by the IM. The results suggest the Noise Threshold
is the parameter with more impact on the results; on average, this parameter
represents about 80 % of the impact of the IM parameters. As its name suggests,

Table 9. Characterization of the real-life logs used in the experiments.

Log Process instances Process events Activities

L12 10487 76899 21

L13 6905 50884 8

L14 23941 191536 8

L15 956 11218 22

L16 956 11218 22

L17 17812 83286 42

L18 12391 65653 70

L19 12391 65653 70
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(a) L12 (b) L13 (c) L14 (d) L15

(e) L16 (f) L17 (g) L18 (h) L19

Fig. 3. The underlying process models of the real-life event logs.

the Noise Threshold have more influence in noisy or low structured processes.
This observation is confirmed by the results provided in Fig. 7.

The main conclusion that can be drawn from this set of experiments is that
the method proposed in this paper can be used to analyze the impact of para-
meters of control-flow discovery algorithms, on either synthetic or real-life event
logs. With a few exceptions, the results obtained in these experiments are in line
with our expectations. The execution of the method is constrained by the capa-
bility of the control-flow algorithm to handle the event log at hand, especially
when using odd parameter settings. The results of the method can be used not
only to identify influent parameters but also to get some insight into the char-
acteristics of event logs. For example, if a loop-related parameter is identified as
influent then one may assume that there is some kind of loop behavior in the log.

7 Discussion

The method’s accuracy directly depends on how well the parameter space is
explored and on how well this exploration reaches the different outcomes of the
algorithm. Hence, it is crucial that all possible parameter settings8 are repre-
sented in the parameter space, including dependencies among parameters. The
premise is if the user can choose some parameter setting then that setting must
be taken it into account, and the other way around. So, it is important to stress
that there is the assumption that the control-flow algorithm will compute a
valid result from any possible parameter setting, independently of the event log
at hand.

In the following subsections we identify two issues that may arise in practice,
even for well-defined parameter spaces. The occurrence of these issues may be

8 All possible parameter settings the control-flow algorithm allows.
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Fig. 4. The impact of the FHM parameters by event log. DT stands for Dependency
Threshold, RBT for Relative-to-best Threshold, L1LT for Length-one-loops Threshold,
L2LT for Length-two-loops Threshold, and LDT for Long-distance Threshold.

sporadic, and depends on either the characteristics of the event log or some
implicit behavior of the control-flow algorithm. For both issues, we acknowledge
that the methodology present in this paper is not suffice for detecting these
cases, but the development of such functionalities goes beyond the scope of this
work.

7.1 Dependencies Among Parameters

The method presented in this paper assesses the impact of each parameter of a
control-flow discovery algorithm in the algorithm’s execution on a given event
log. In order to do so, the method executes a number of experiments and mea-
sures how parameters influenced the results, one by one. This means that every
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Fig. 5. The impact of the FHM parameters by noise, loops, and non-free choice.

parameter is considered as an independent parameter. Therefore, any depen-
dency that may exist among parameters (i.e., parameters that influence the
behavior of other parameters) has no influence in the parameter analysis, nei-
ther in exploration of the parameter space nor in the computation of the impact
measurement. An obvious example of parameter dependency is when a boolean
parameter X is used to enable a parameter Y , i.e., Y is an optional parameter.
As mentioned before, X and Y should be considered as a single parameter with
a domain that represents uniformly both X and Y . A more complex example is
the dependency between the FHM’s Dependency and Relative-to-best thresholds
(DT and RBT). The RBT is not considered if the DT fulfilled some condition; low
DT values tendentially disables the RBT. Unlike the optional parameters, this
later case requires a deep understanding of the algorithm to be identified. The
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Fig. 6. The impact of the IM parameters by event log. NT stands for Noise Threshold,
while IT is for Incomplete Threshold.

same can happen with other dependencies that may exist among parameters. We
believe that, as long as the parameter space is well defined (i.e., the domain of all
parameters is uniformly represented in the parameter space), any dependency
that may exist among parameters will not affect negatively the results of our
method. This should happen because the parameter space is explored uniformly,
so most of the parameter values should be taken into account in the analysis,
including dependency effects.

7.2 Unbalanced Parameter Domains

Due to unbalanced parameter domains or even to the nature of the event logs,
it is not uncommon to find cases in which algorithms produce the same outcome
in most of the parameter space, but having different outcomes in rather small
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Fig. 7. The impact of the IM parameters by noise. The dark gray bar (bottom) rep-
resents the incomplete threshold, while the light gray bar (top) represents the noise
threshold.

regions – usually next to the domain boundaries. A good example of this issue is
provided in Fig. 8a. Suppose that there is an algorithm A that is constrained by
two numerical parameters. The domain of these parameters is [0, 1], and both
parameters are not optional. The outcome of A is represented by regions with
different colors (from white to dark gray). The dots represent the points to be
assessed in order to analyze the impact of the parameters of A. As Fig. 8a depicts,
the distribution of the points does not reach any gray region. So, as a result, the
parameters of A will be identified as non-influential because no change can be
detected by changing its values.

Fig. 8. Example of a two-dimensional parameter space.
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A solution for this issue may be using a higher number of points for assessing
the parameters at the expense of the method’s performance. Another solution
is constraining the parameter space, i.e., the exploration of the parameter space
may be constrained to focus on specific areas. Using the same example of Fig. 8,
the exploration can be constrained to parameter values from 0.6 to 1.0. Doing so,
the distribution of the points would overlap with the gray regions (cf. Fig. 8b).
As a result, the parameters of A would be identified as influential.

8 Conclusions and Future Work

To the best of our knowledge, this work is the first in presenting a methodol-
ogy to assess the impact of parameters in control-flow discovery algorithms. The
method relies on a modern sensitivity analysis technique that requires consider-
ably less exploration than traditional ones such as techniques relying on genetic
algorithms or variance-based methods.

In this work, we have applied the methodology on two of the most popu-
lar miners on a set of event logs. The results suggest the effectiveness of the
method. We have noticed that simple conformance measures (and, thus, less
computationally costly) are as good as any other complex measure for assessing
the parameters influence. Nevertheless, we acknowledge that more experiments
are necessary to get a better insight.

In the future, we plan to investigate the following four subjects by applying
the method introduced in this paper to a wide range o control-flow algorithms.
First, we would like to study the implication of having dependencies among
parameters and unbalanced parameter domains on the quality of the method’s
results. Second, we are interested in the algorithmic perspective in order to
study the most efficient form of assessing the impact of a parameter, with the
method presented in this paper as a baseline. Third, we will try to incorporate
the methodology described in this paper in the RS4PD, a recommender system
for process discovery [11]. Finally, we are planning to explore the possibility of
using the methodology presented in this paper to estimate the representation
bias of control-flow algorithms.
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Abstract. Negotiations have recently been introduced as a model of
concurrency with multi-party negotiation atoms as primitive. This paper
studies the relation between negotiations and Petri nets. In particular,
we show that each negotiation can be translated into a 1-safe labelled
Petri net with equivalent behaviour. In the general case, this Petri net
is exponentially larger than the negotiation. For deterministic negotia-
tions, however, the corresponding Petri has linear size compared to the
negotiation, and it enjoys the free-choice property. We show that for this
class the negotiation is sound if and only if the corresponding Petri net
is sound. Finally, we have a look at the converse direction: given a Petri
net, can we find a corresponding negotiation?

Keywords: Negotiations · Petri nets · Soundness · Free-choice nets

1 Introduction

Distributed negotiations have been identified as a paradigm for process interac-
tion since some decades, in particular in the context of multi-agent systems [5].
This paradigm has been applied to various problems (see e.g. [2,17]), and it has
also been studied in its own [13].

A distributed negotiation is based on a set of agents that communicate with
each other to eventually reach a common decision. It can be viewed as a proto-
col with atomic negotiations as smallest elements. Multiparty negotiations can
employ more than two agents, both in the entire negotiation and in its atoms.
A natural way to formally model distributed multiparty negotiations is to model
the behaviour of the agents separately and then to model the communication
between agents by composition of these agent models. Petri nets and related
process languages have been used with this aim, see e.g. [4,16,18].

In [8,9] we have introduced a novel approach to formally model negotiations.
We argue that this model is sometimes more intuitive than Petri nets for nego-
tiations, but it can also be applied to other application areas which are based
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on the same communication principles. Like Petri nets, our formalism has a
graphical representation. Atomic negotiations are represented as nodes, with a
specific representation of the participating agents. Roughly speaking, the seman-
tics of an atomic negotiation is that these agents come together (and are thus
not distributed and do not need any communication means during the atomic
negotiation) to agree on one of some possible outcomes. Given an outcome, the
model specifies, for each participating agent, the next possible atomic negotia-
tions in which it can participate. Agents have local states which are only changed
when an agent participates in an atomic negotiation.

Atomic negotiations are combined into distributed negotiations. The state of
a distributed negotiation is determined by the atomic negotiations which the
agents can participate in next and by all local states. As in Petri nets, these
two aspects are carefully distinguished; the current next possible atomic nego-
tiations are represented as markings of negotiations. A distributed negotiation
is deterministic if, in each state, no agent is ready to engage in more than one
atomic negotiation.

In [8,9] we introduced negotiations and concentrated on their analysis. In par-
ticular, we studied the efficient analysis of soundness, a kind of well-behavedness,
of negotiations by means of structural reduction rules. Our work was inspired
by known reduction rules of Petri nets, but we did not show how to translate
distributed negotiations to Petri nets. The present paper makes the relation to
Petri nets explicit, providing a translation rule from distributed negotiations to
Petri nets. In the general case, the Petri net associated with a negotiation by this
translation can be exponentially larger than the negotiation; therefore analysis
of negotiations via translation to Petri nets is not a feasible option (unless a more
efficient translation exists). For restricted classes of negotiations, however, the
corresponding Petri nets are smaller and enjoy nice properties, and in this case
the converse direction is possible, too. Therefore, for these negotiations, transla-
tion to Petri nets opens additional feasible analysis options, beyond soundness.

The translation to Petri nets is implicitly used in a recent paper on the analy-
sis of Coloured Workflow Nets [11]. The paper presents a reduction procedure
for free-choice Coloured Workflow Nets, obtained by “translating” the reduction
procedure of [8] for deterministic negotiations. The translation is non-trivial,
because Petri nets lack the notion of “agent” at the core of the negotiation
model. It is possible because of the intimate connection between the two models
explained in this paper. The reduction procedure has been implemented and
benchmarked on industrial examples [11].

Connection to Other Models. Negotiations are also related to other models of
concurrency, like choreographies (see e.g. [3,14,15]) or message sequence charts
and message sequence graphs (see e.g. [12]). The essential difference is the choice
of the communication primitive: atomic negotiations in our model, multiparty
rendez-vous for Petri nets, message-passing for choreographies. While these prim-
itives can simulate each other, they exhibit different trade-offs between imple-
mentability (how difficult is it to realize them in hardware or software?) and
analyzability. For example, the message-passing model is easy to implement,
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but the so-called realizability problem (does a global specification of the behav-
iour of a system admit an implementation in terms of sequential machines com-
municating through message passing?) has a high complexity. The negotiation
primitive is, like rendezvous, more difficult to implement reliably1, but our work
in [10] shows that, at least for the special class of deterministic negotiations,
the realizability problem can be solved in a more efficient way. Indeed, in [10]
we introduce negotiation programs, a programming language for the global and
structured description of negotiations. Our results show that every negotiation
program admits a distributed implementation as a negotiation.

Organization. The paper is organised as follows. Section 2 repeats the syntax
and semantics of negotiations. Section 3 provides the translation to Petri nets
with the same behaviour. Section 4 discusses properties of these Petri nets. In
Section 5 we show that Petri nets enjoying these properties can be translated
back to negotiations, this way characterizing a class of Petri nets representable
by negotiations. Section 6 is the conclusion.

2 Negotiations: Syntax and Semantics

We recall the main definitions of [8,9] for syntax and semantics of negotia-
tions. Let A be a finite set of agents, representing potential participants of
a negotiation. Each agent a ∈ A has a (possibly infinite) nonempty set Qa

of internal states with a distinguished subset Q0a ⊆ Qa of initial states. We
denote by QA the cartesian product

∏
a∈A Qa; a state is represented by a tuple

(qa1 , . . . , qa|A|) ∈ QA. A transformer is a left-total relation τ ⊆ QA × QA, rep-
resenting a nondeterministic state transforming function. Given S ⊆ A, we say
that a transformer τ is an S-transformer if, for each ai /∈ S,

((qa1 , . . . , qai
, . . . , qa|A|), (q

′
a1

, . . . , q′
ai

, . . . , q′
a|A|)) ∈ τ

implies qai
= q′

ai
. So an S-transformer only transforms internal states of agents

in S or in a subset of S.
Internal states of agents and their transformers won’t play an important role

in this contribution. As will become clear later, states do not influence behaviour
in negotiations, i.e., we can consider the control flow and data aspects separately.
For the Petri net translation to be defined, local states and their transformers
can be modelled by means of token colours and transition modes, respectively,
i.e. by means of Coloured Petri nets. These Coloured Petri nets are without
guards, because guards restrict transition occurrences by regarding data values.

2.1 Atomic Negotiations

Definition 1. An atomic negotiation, or just an atom, over a set of agents A
is a triple n = (P,R, δ), where P ⊆ A is a nonempty set of participants of n, R

1 But by no means impossible. The literature also uses far stronger primitives, like
reliable broadcasts [7].
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is a finite, nonempty set of results, and δ is a mapping assigning to each result
r ∈ R a P -transformer δ(r).

In the sequel, Pn, Rn and δn will denote the components of an atom n. For each
result r ∈ Rn, the pair (n, r) is called an outcome. The difference between results
and outcomes is that the same result can belong to different atoms whereas the
sets of outcomes are pairwise disjoint. If we choose disjoint sets of results then
we do not have to distinguish results and outcomes.

If the states of the agents before an atomic negotiation n are given by a tuple
q and the result of the negotiation is r, then the agents change their states to
q′ for some (q, q′) ∈ δn(r). Only the participants of n can change their internal
states. However, it is not required that a Pn-transformer δn(r) actually changes
the states of all agents in Pn. Each result r ∈ Rn is possible, independent of the
previous internal states of the participants of n.

As a simple example, consider an atomic negotiation nFD with participants
F (Father) and D (teenage Daughter). The goal of the negotiation is to determine
whether D can go to a party, and, if she can go, the time at which she must return
home. This time is a number between 8 and 12, thus avoiding that a smaller
number, such as 1 am, represents a later point in time than, e.g., 12 pm.

The possible results are {yes, no, ask mother}, whereas the agreed time is
encoded in the internal states of the two participants: Both sets QF and QD

contain a state angry plus a state t for every time T1 ≤ t ≤ T2 in a given interval
[T1, T2]. The transformer δnFD

includes

δnFD
(yes) = { ((tf , td), (t, t)) | tf ≤ t ≤ td ∨ td ≤ t ≤ tf }

δnFD
(no) = { ((tf , td), (angry , angry)) }

δnFD
(ask mother) = { ((tf , td), (tf , td)) }

where tf and td are variables used to denote that F is in state tf �= angry and
D in state td �= angry before engaging in the negotiation atom nFD. That is, if
both participants are not angry and the result is yes, then F and D agree on a
time t which is not earlier and not later than both suggested times; if it is no,
then there is a quarrel and both participants get angry; if it is ask mother, then
the participants keep their previous times.

If one of the local states before the negotiation atom was angry, then the
transformer δnFD

determines for each result that both agents will be angry after
executing the atom.

2.2 Combining Atomic Negotiations

If the result of the atomic negotiation above is ask mother, then nFD is followed
by a second atomic negotiation nDM between D and M (Mother). The combined
negotiation is the composition of nFD and nDM, where the possible internal states
of M are the same as those of F and D, and nDM is a “copy” of nFD, but with-
out the ask mother result. In order to compose atomic negotiations, we add a
transition function X that assigns to every triple (n, a, r) consisting of an atom n,
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Fig. 1. An acyclic negotiation and the ping-pong negotiation.

a participant a of n, and a result r of n a set X(n, a, r) of atoms. Intuitively, this
is the set of atomic negotiations agent a is ready to engage in after the atom n,
if the result of n is r.

Definition 2. Given a finite set of agents A and a finite set of atoms N over A,
let T (N) denote the set of triples (n, a, r) such that n ∈ N , a ∈ Pn, and r ∈ Rn.
A (distributed) negotiation is a tuple N = (N,n0, nf ,X), where n0, nf ∈ N are
the initial and final atoms, and

X : T (N) → 2(N\{n0})

is the transition function.
Further, we demand that N satisfies the following properties:

(1) every agent of A participates in both n0 and nf ;
(2) for every (n, a, r) ∈ T (N): X(n, a, r) = ∅ iff n = nf .

The graph associated with N has vertices N and edges

{(n, n′) ∈ N × N | ∃ (n, a, r) ∈ T (N) : n′ ∈ X(n, a, r)}.

The initial and final atoms mark the beginning and the end of the negotiation
(and sometimes this is their only role). We may have n0 = nf . By definition of
the transition function X, the initial atom n0 does not belong to any X(n, a, r).
Notice that nf has, as all other atoms, at least one result end ∈ Rnf

.

2.3 Graphical Representation of Negotiations

Negotiations are graphically represented as shown in Fig. 1. For each atom n ∈ N
we draw a bar; for each participant a of Pn we draw a circle on the bar, called
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a port. For each (n, a, r) ∈ T (N) with n �= nf , a hyperarc labelled by the result
r leads from the port of a in n to all the ports of a in the atoms of X(n, a, r).
If X(n, a, r) contains only one atom, this hyperarc is actually an arc. Instead of
multiple (hyper)arcs connecting the same input port to the same output ports
we draw a single (hyper)arc with multiple labels.

Figure 1 shows on the left the graphical representation of a negotiation where
Father (F), Daughter (D) and Mother (M) are the involved agents. After the initial
atom n0, which has only one possible result st (start), the negotiation atoms
described above take place. Notice that possibly Father and Daughter come to an
agreement without involving Mother. So each agent of a distributed negotiation
can be viewed as a potential participant, which necessarily participates only in
the initial atom and in the final atom. In the figure, we write y for yes, n for no,
and am for ask mother. Since nf has no outgoing arc, the results of nf do not
appear in the graphical representation.

The negotiation on the right of Fig. 1 (ignore the black dots on the arcs for
the moment) is the ping-pong negotiation, well-known in many families. The
nDM atom has now an extra result ask father (af), and Daughter can be sent
back and forth between Mother and Father. After each round, D “negotiates with
herself” (atom nD) with possible results continue (c) and give up (gu).

2.4 Semantics

A marking of a negotiation N = (N,n0, nf ,X) is a mapping x : A → 2N . Intu-
itively, x (a) is the set of atoms that agent a is currently ready to engage in next.
The initial and final markings, denoted by x 0 and x f , are given by x 0(a) = {n0}
and x f (a) = ∅ for every a ∈ A. By definition, the set of markings is finite.

A marking x enables an atom n if n ∈ x (a) for every a ∈ Pn, i.e., if every
agent that participates in n is currently ready to engage in n. If x enables n,
then n can take place and its participants eventually agree on a result r; we
say that the outcome (n, r) occurs. The occurrence of (n, r) produces a next
marking x ′ given by x ′(a) = X(n, a, r) for every a ∈ Pn, and x ′(a) = x (a) for

every a ∈ A \ Pn. We write x
(n,r)−−−−→ x ′ to denote this, and call it a small step.

We write x 1
σ−→ to denote that there is a sequence

x 1
(n1,r1)−−−−−→ x 2

(n2,r2)−−−−−→ · · · (nk−1,rk−1)−−−−−−−−→ xk
(nk,rk)−−−−−→ xk+1 · · ·

of small steps such that σ = (n1, r1) . . . (nk, rk) . . .. If x 1
σ−→ , then σ is an

occurrence sequence from the marking x 1, and x 1 enables σ. If σ is finite, then
we write x 1

σ−→ xk+1 and say that xk+1 is reachable from x 1. If x 1 is the
initial marking then we call σ initial occurrence sequence. If moreover xk+1 is
the final marking x f , then σ is a large step.

As a consequence of this definition, for each agent a, x (a) is always either
{n0} or equals X(n, a, r) for some outcome (n, r). The marking x f can only be
reached by the occurrence of (nf , end) (end being a possible result of nf ), and
it does not enable any atom.
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Reachable markings can be graphically represented by placing tokens (black
dots) on the forking points of the hyperarcs (or in the middle of an arc). Thus,
both the initial marking and the final marking are represented by no tokens, and
all other reachable markings are represented by exactly one token per agent.

Figure 1 shows on the right the marking in which Father is ready to engage
in the atomic negotiations nFD and nf , Daughter is only ready to engage in nFD,
and Mother is ready to engage in both nDM and nf .

As mentioned before, the enabledness of an atom does not depend on the
internal states of the agents involved; it suffices that all agents are ready to
engage in this atom, no matter which internal states they have. Moreover, each
result of the atom is possible, independent of the internal states. A given result
then determines a state transformer and thus possible next states.

2.5 Reachability Graphs

An occurrence sequence of a negotiation can be arbitrarily long (see the
ping-pong negotiation above). Therefore, the set of possible occurrence sequences
can be infinite. Since we have markings and steps, an obvious way to describe
behaviour with finite means is by reachability graphs:

Definition 3. The reachability graph of a negotiation N has all markings reach-
able from x0 as vertices, and an arc leading from x to x′ and annotated by (n, r)

whenever x
(n,r)−−−−→ x′. The initial marking x0 is the distinguished initial vertex.

Generally, enabled atoms with disjoint sets of participants can proceed con-
currently, whereas atoms sharing a participating agent cannot. Formally, if
two outcomes (n1, r1) and (n2, r2) are enabled by a reachable marking x and
Pn1 ∩ Pn2 = ∅ then the two outcomes can occur concurrently. The condition
Pn1 ∩ Pn2 = ∅ is also necessary for concurrent occurrences of outcomes because,
in our model, a single agent cannot be engaged concurrently in two different
atoms, and because two state transformers cannot operate concurrently on the
local state of an agent. Thus concurrency between outcomes depends only on
the involved atoms (and their participants) and not on the results.

Concurrency is formally captured by the concurrent step reachability graph,
defined next. A concurrent step enabled at a reachable marking x is a nonempty
set of pairwise concurrent outcomes, each of them enabled by x . It is immediate
to see that all the outcomes of a concurrent step can be executed subsequently
in arbitrary order and that the marking finally reached does not depend on the
chosen order. We call this marking reached by the concurrent step.

Definition 4. The concurrent step reachability graph of a negotiation N has
all markings reachable from x0 as vertices. An arc, annotated by a nonempty
set of outcomes, leads from x to x′ whenever any two distinct outcomes of this
set are concurrent and the concurrent step leads from x to x′. Again, x0 is the
distinguished initial vertex.
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Fig. 2. Petri net semantics of the negotiation of Fig. 1.

3 From Negotiations to Petri Nets

We assume that the reader is acquainted with (low-level) initially marked Petri
nets, the occurrence rule, reachable markings, liveness, and the graphical repre-
sentation of Petri nets as directed graphs. For each place, there are directed arcs
from all input transitions to the place and directed arcs from the place to all
output transitions. Input places and output places of transitions are defined anal-
ogously. A labelled Petri net is a Petri net with a labelling function λ, mapping
the transitions to some set of labels. Graphically, the label λ(t) of a transition t
is depicted as an annotation of t.

The semantics of negotiations uses many notions from Petri net theory. In
this section, we provide a translation and begin with examples.

3.1 Examples

Figure 2 shows on the right the Petri net for the negotiation shown on the left
(which was already shown in Fig. 1). Since the number of places of the Petri net
equals the number of ports of the atoms of the negotiation, one might assume
that the relation between ports and places is a simple one-to-one mapping. More-
over, the transitions of the Petri net have an obvious relation to the outcomes
of the negotiations, if the two end-transitions are ignored.
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Now we have a look at the two end-transitions of the Petri net. The left
transition refers to the last result of the negotiation’s occurrence sequence

(n0, st), (nFD, am), (nDM, y), (nf , end),

where end is a result of nf . The right transition refers to the last result of the
occurrence sequence

(n0, st), (nFD, y), (nf , end) .

Hence, roughly speaking, the left transition refers to the left branch of the (only)
proper hyperarc of the graphical representation of the negotiation, and the right
transition refers to the right branch.

For a negotiation with more than one proper hyperarc, each occurrence
sequence can involve a particular branching of a hyperarc (moreover, an atom
can occur more than once, leading to different branches of the same hyperarc).
For k hyperarcs with binary branching, this results in 2k possible patterns. As
can be seen in the following example, this can result in exponentially many
transitions of the associated Petri net.

Figure 3 shows a class of negotiations with parameter k, involving agents
a1, . . . , ak. These negotiations represent a distributed voting process. Each agent
votes with possible outcome yes (y) or no (n) (one-participant-negotiations). For
each yes-outcome there are two possible next atoms, naccept and nreject, whereas
for each no-outcome nreject is the only possibility. So the atom naccept is only
enabled if all agents vote yes, while the atom nreject is always enabled when all
agents have voted.

A Petri net representing this behaviour necessarily has to distinguish the k
possible yes-outcomes and no-outcomes, because final acceptance is only pos-
sible if all agents have accepted. So we need 2 · k corresponding places, k for
acceptance and k for rejection. When all agents came to a result, one of 2k pos-
sible markings is reached. Only for one of these markings (all agents accepted),
final acceptance is possible, and this will be represented by one transition. For
the same constellation and for each of the 2k − 1 alternative constellations, we
need a separate transition to remove the tokens and come to final rejection. So
we end up with 2k + 1 transitions.

3.2 Formal Translation of Negotiations

We associate with a negotiation N = (N,n0, nf ,X) over a set of agents A a
labelled Petri net. The places of this net are, for each atom n except nf , the
pairs [a, S] such that a ∈ Pn, r ∈ Rn, and X(n, a, r) = S, plus, for each a ∈ A,
the pair [a, {n0}]. Observe that the number of places is linear in the size of N
(which might exceed |N | significantly, because, for each n in N , for each a in Pn

and for each result r ∈ Rn we have a set of possible successor negotiations in X).
In the sequel (and in the figures) we write [a, n] instead of [a, {n}]. The initial
marking assigns one token to each place [a, n0] and no token to all other places.

The net has a set of transitions T (n, r) for each outcome (n, r). An input
place of a transition in T (n, r) reflects that a participant of negotiation n is
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Fig. 3. A (not yet completely correct) negotiation for unanimous vote.

actually ready to engage in n (and possibly in other atoms as well). For a single
agent, there might be more than one such place, resulting in several transitions.
Each transition in T (n, r) has input places referring to all involved participants,
which results in a transition for each combination of respective input places.

Formally, let Pn = {a1, . . . , ak}. T (n, r) contains a transition [n, r, L] for
every tuple L = ([a1, S1], . . . , [ak, Sk]) such that n ∈ S1 ∩ . . . ∩ Sk. The set
of input places of [n, r, L] is {[a1, S1], . . . , [ak, Sk]}, and its set of output places
is {[a1,X(n, a1, r)], . . . , [ak,X(n, ak, r)]}. All transitions of the set T (n, r) are
labelled by the outcome (n, r). They all have the same output places. Moreover,
they have the same number of input and output places, both of them equal to
the number of participants of n.

For the negotiation on the left of Fig. 2, we get seven sets of transitions:
T (n0, st), T (nFD, y), T (nFD, n), T (nFD, am), T (nDM, y), T (nDM, n), and T (nf , end).
All of them are singletons, with the exception of T (nf , end), which contains the
two transitions shown at the bottom of the figure. We annotate transitions only
by results r instead of outcomes (n, r) in the figure. Notice that here we assume
a unique result end of nf .

Proposition 1. For each atom n �= nf , each transition labelled by (n, r) has
exactly one input place [a,X] for each agent a ∈ Pn, and exactly one output
place [a, Y ] for each agent a ∈ Pn. Transitions labelled by (nf , end) have no
output places.

Proof. Follows immediately from the construction of the Petri net. ��
Corollary 1. For each agent a, the number of tokens on places [a,X] never
increases. Since this number is one initially, it is at most one for each reachable
marking. ��
Corollary 2. The Petri net associated with a negotiation is 1-safe, i.e., no
reachable marking assigns more than one token to a place. ��
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Lemma 1. The Petri net associated with a negotiation is deterministic, i.e., no
reachable marking enables two distinct transitions with the same label.

Proof. A transition labelled by (n, r) has an input place for each participant of
n. Two equally labelled transitions cannot have identical sets of input places by
construction. Hence, for at least one agent a there is a place [a,X] which is input
place of one of the transitions and a distinct place [a, Y ] which is input place
of the other transition. Since, by Corollary 1, each reachable marking marks at
most one of these two places, each reachable marking enables at most one of the
transitions. ��

The (sequential) behaviour of a labelled Petri net is represented by its reach-
ability graph:

Definition 5. The reachability graph of a Petri net has all reachable markings
m as vertices, an arc annotated by t leading from m to m′ when m enables
transition t and the occurrence of t leads to m′, and a distinguished initial mark-
ing m0. The label reachability graph of a labelled Petri net is obtained from its
reachability graph by replacing each transition by its label.

In terms of reachability graphs, a labelled Petri net is deterministic if and
only if its label reachability graph has no vertex with two outgoing edges which
carry the same label. An occurrence sequence of a deterministic labelled Petri
net is fully determined by the sequence of transition labels, as shown in the
following proposition, and so is the sequence of markings reached.

For a labelling function λ and an occurrence sequence σ = t1 t2 t3 . . ., we
write λ(σ) for the sequence of labels λ(t1) λ(t2) λ(t3) . . . in the sequel.

Proposition 2. Let σ1 and σ2 be two finite, initially enabled occurrence
sequences of a deterministic labelled Petri net with labelling function λ. Let
m1 be the marking reached by σ1, and let m2 be the marking reached by σ2.
If λ(σ1) = λ(σ2) then m1 = m2.

Proof. Since the labelled Petri net is deterministic, λ(σ1) = λ(σ2) implies
σ1 = σ2 ��

3.3 Behavioural Equivalence Between Negotiations and Nets

In this subsection, we will employ the usual notion of isomorphism between
reachability graphs:

Definition 6. Two reachability graphs are isomorphic if there exists a bijective
mapping ϕ between their sets of vertices, mapping the initial vertex of the first
graph to the initial vertex of the second graph, such that there is an edge from
u to v labelled by some t in the first graph if and only if there is an edge from
λ(u) to λ(v) labelled by t in the second graph.
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Reachability graph isomorphism is a very strong behavioural equivalence notion
for sequential behaviour. If moreover the concurrent step reachability graphs of
two models are isomorphic, then also the concurrent behaviour of the systems
coincide. We will show the existence of both isomorphisms between negotiations
and associated Petri nets.

Proposition 3. The reachability graph of a negotiation and the label reachabil-
ity graph of the associated labelled Petri net are isomorphic.

Proof. We interpret a token on a place [a, {n1, . . . , nk}] on the negotiation side as
“agent a is ready to engage in the atoms of the set {n1, . . . , nk}”. It is immediate
to see that this holds initially. By construction of the Petri net, a small step
(n, r) of the negotiation is mimicked by an occurrence of a transition of the set
T (n, r), and hence by a transition labelled by (n, r). Moreover, the marking of
the negotiation reached by the occurrence of the outcome corresponds to the
marking of the net reached by the occurrence of the transition. ��

For comparing the concurrent behaviour of negotiations and associated
labelled Petri nets, we have to define concurrent enabledness of transitions. This
is easy in our setting, because the considered nets are 1-safe.

Definition 7. Two transitions t and t′ of a 1-safe Petri net are concurrently
enabled at a reachable marking m if m enables both t and t′ and if moreover t
and t′ have no common input place.

Concurrent behaviour is captured by the concurrent step reachability graph
and, for labelled Petri nets, by its label version. In the following definition, a set
of transitions is said to be concurrently enabled if any two distinct transitions in
this set are concurrently enabled.

Definition 8. The concurrent step reachability graph of a Petri net has all
reachable markings m as vertices, with a distinguished initial marking m0. An
arc, labelled by U , leads from m to m′ if m concurrently enables a nonempty set
U of transitions and the occurrence of all transitions of U (in any order) leads
from m to m′.

The label concurrent step reachability graph of a labelled Petri net is obtained
from its concurrent step reachability graph by replacing each set of transitions
by the multiset of its labels.

Fortunately, in our setting two equally labelled transitions are never enabled con-
currently. Therefore the labels of concurrent steps will never be proper multisets,
but just sets.

Lemma 2. If two outcomes (n, r) and (n′, r′) of a negotiation are concurrently
enabled at a marking reached by an initial occurrence sequence σ, then there is an
initially enabled occurrence sequence μ of the associated labelled Petri net such
that λ(μ) = σ and the marking reached by μ concurrently enables two transitions
labelled by (n, r) and (n′, r′) respectively.
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Conversely, if a marking of the (λ-) labelled Petri net reached by an occur-
rence sequence μ concurrently enables two transitions t and t′, then the marking
of the negotiation reached by λ(μ) concurrently enables the two outcomes λ(t)
and λ(t′).

Proof. By construction of the Petri net, a transition t has an input place [a,X]
only if λ(t) = (n, r) for an agent a ∈ Pn. Assume that two enabled transitions are
not concurrent. Then they share an input place [a,X] only if their labels refer to
two outcomes (n, r) and (n′, r′) such that a ∈ Pn and a ∈ Pn′ . So Pn ∩ Pn′ �= ∅,
and thus the two outcomes are not concurrent.

Conversely, if two outcomes (n, r) and (n′, r′) are enabled but not concurrent,
then some agent a belongs to both Pn and Pn′ . In the Petri net, each transition
labelled by (n, r) or by (n′, r′) has an input place [a,X]. Since each reachable
marking marks only one place [a,X] by Corollary 1, two distinct enabled transi-
tions labelled by (n, r) or by (n′, r′) share this marked input place, whence they
are not concurrent. ��
Corollary 3. The concurrent step reachability graph of a negotiation and
the label concurrent step reachability graph of its associated Petri net are
isomorphic. ��

3.4 Excursion: On the Voting Example

The reader possibly finds unsatisfactory that the negotiation given in Fig. 3 can
reject even when all parties vote yes. This results in 2k respective rejecting
transitions of the Petri net. If we want to avoid this possibility in the Petri net,
we just remove the single transition that removes tokens from all accept-places
and enables overall rejection.

There also exists a negotiation with corresponding behaviour: we replace the
atom nreject by k rejecting atoms rejecti, for 1 ≤ i ≤ k. If agent ai votes
yes, then this agent is ready to engage in accept and in all rejectj such that
j �= i. Any of the rejectj-atoms have a single result that leads to final rejection.
When all agents vote yes then none of the rejecti-atoms are enabled, whence
only overall acceptance can take place. Notice that this construction is a bit
clumsy (see Fig. 4), but still does not require exponentially many elements, as
the associated Petri net does.

As mentioned before, the Petri net obtained by translating the voting negoti-
ation of Fig. 3 has exponentially many transitions. This does, however, not imply
that every Petri net exhibiting the same behaviour as the voting example grows
exponentially with the number of agents.

Consider e.g. the Petri net with an acceptance transition and a rejection
transition for each agent, as before. Instead of 2 · k places for acceptance and
rejection, we define a single acceptance place such that each of the k accepting
transitions adds a token to this place. Similarly, all rejecting transitions add a
token to a single rejection place. After all agents have finished their voting, there
are k tokens on the two places for acceptance and rejection. A final acceptance
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Fig. 4. A corrected negotiation for unanimous vote.

transition is enabled if the acceptance place carries all k tokens, whereas for each
possible distribution of k tokens on the two places we define a separate rejecting
transition. As above, we might exclude the rejecting transition consuming k
tokens from the acceptance place. Formally, we define a place/transition Petri
net with arc weights. Apparently this net has linear size with respect to k, the
number of agents. The net is k-bounded, i.e., no reachable marking assigns more
than k tokens to a place.

Another possibility of modelling the same behaviour is to provide k places for
acceptance, one for each agent, and k places for rejection, as in our first Petri net.
Now we add, for each agent, a transition moving a token from the corresponding
acceptance place to the rejection place. This transition is labelled by the empty
word τ . No matter how the agents voted, we can reach the marking with all tokens
on the reject places by firing these τ -labelled transitions. Therefore, it suffices to
have one acceptance transition that removes tokens from all acceptance places
and one rejection transition that removes tokens from all rejection places. Firing
a τ -labelled transition does not contribute to the observed behaviour of the Petri
net. So this net is at least language equivalent to the negotiation of Fig. 3.

Summarizing, we have provided a systematic way to construct a 1-safe Petri
net corresponding to a negotiation, which can be exponentially larger than the
negotiation. For the voting example, this Petri net has exponentially many tran-
sitions. For this example we also provided a linear-sized Petri net with the same
behaviour, which is, however, not 1-safe but k-bounded. Another Petri net with
this behaviour is 1-safe, but has τ -labelled transitions. We actually do not know
if, for negotiations in general, there always exist polynomial-sized Petri nets
with the same behaviour which are 1-safe, which are bounded, which have no
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τ -labelled transitions etc., i.e. all these problems are open. For the voting exam-
ple, we did not find a polynomial-sized equivalent 1-safe Petri net without τ -
labelled transitions.

4 Properties of the Net Associated with a Negotiation

4.1 S-components

An S-component of a Petri net is a subnet such that, for each place of the
subnet, all input- and output-transitions belong to the subnet as well, and such
that each transition of the subnet has exactly one input- and exactly one output-
place of the subnet [6]. It is immediate to see that the number of tokens in an
S-component never changes. A net is covered by S-components if each place
and each transition belongs to an S-component. Nets covered by S-components
carrying exactly one token are necessarily 1-safe. For example, every live and
1-safe free-choice net enjoys this nice property [6].

Petri nets associated with negotiations are not covered by S-components,
only because the end-transitions have no output places. However, if we add an
arc from each end-transition to each initially marked place, then the resulting
net is covered by S-components:

Proposition 4. The Petri net associated with a negotiation, with additional
arcs from each end-transition to each initially marked place, is covered by S-
components.

Proof. We consider the Petri net with the additional arcs. For each agent a, the
subnet generated by all places [a,X] and all transitions labelled by (n, r) where
a ∈ Pn, is an S-component (being generated implies that the arcs of the subnet
are all arcs of the original net connecting nodes of the subnet). An arbitrary place
of the net belongs to one such subnet, because it corresponds to an agent. Each
transition has a label (n, r), and each atom n has a nonempty set of participants,
whence the transition belongs to the subnet of some agent. ��

4.2 Soundness

The following notion of sound negotiations was inspired by van der Aalst’s sound-
ness of workflow nets [1]. It was first defined in [8].

Definition 9. A negotiation is sound if each outcome occurs in some initial
occurrence sequence and if, moreover, each finite occurrence sequence is a large
step or can be extended to a large step.

All the negotiations shown in the figures of this paper are sound. For an
example of an unsound negotiation, consider again the ping-pong negotiation
shown in Fig. 1 on the right hand side. Imagine that Daughter could choose to
start negotiating with Father or with Mother. This would formally be expressed
by replacing the arc from port D of n0 to port D of nFD by a hyperarc from port D
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of n0 to ports D of both nFD and nDM. If, in this modified distributed negotiation,
Daughter first negotiates successfully with Mother, a marking is reached where
both Daughter and Mother can only engage in the final atom nf , whereas Father
is still only able to participate in nFD. So the distributed negotiation has reached
a marking which is neither final nor enables any outcome. We call such a marking
a deadlock. Clearly, sound negotiations have no reachable deadlocks.

Since the Petri nets associated with negotiations are not workflow nets, we
cannot immediately compare the soundness notions of workflow nets and of nego-
tiations. Instead we define additionally in/out-nets associated with negotiations,
which are obtained by a minor transformation from the originally constructed
Petri nets. These in/out-nets are a generalisation of workflow nets, as defined in
[1]. Soundness, as defined for workflow nets in [1], is generalized to in/out-nets
in the following definitions.

Definition 10. An in/out-net is a Petri net with two distinguished places pin

and pout such that pin has no input transition and pout has no output transition.
The initial marking of an in/out-net assigns one token to the place pin and

no token to all other places. In/out-nets also have a final marking, assigning one
token to pout and no token to all other places.

An in/out-net net is sound if it has no dead transitions (i.e., each transition
belongs to an initially enabled occurrence sequence) and, moreover, each initially
enabled occurrence sequence is a prefix of an occurrence sequence leading to the
final marking.

A workflow net is an in/out-net such that, for each place or transition x,
there are directed paths from pin to x and from x to pout.

Now we associate in/out-nets with negotiations.

Definition 11. The in/out-net associated with a negotiation is obtained from
the Petri net associated with the negotiation by the following transformations:

1. The Petri net associated with the negotiation has, for each participating agent,
an initially marked place. We delete all except one of these places and adjacent
arcs and rename the remaining initially marked place to pin.

2. We add an initially unmarked place pout and arcs from all transitions labelled
by outcomes of the final atom nf (which we called end before) to this place.

In/out-nets associated with negotiations are not necessarily workflow nets
because not every element is necessarily on a path from the initial place to the
final place. However, this condition holds if the negotiation is sound, as the
following proposition shows.

Proposition 5. The in/out-net associated with a sound negotiation is a work-
flow net.

Proof. By construction, the in/out-net has distinguished places pin and pout.
By definition of a distributed negotiation, the initial atom is not a possible

next atom for any atom and any agent, i.e., it does not belong to any X(n, a, r).
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Hence, by construction, the initially marked places of the Petri net associated
with the negotiation have no ingoing arcs. Since pin is one of these places, it has
no ingoing arc.

The new place pout has no outgoing arc.
Since, by soundness of the negotiation, every atom (and therefore every out-

come) can be enabled, a token can be moved from the initial atom to any other
atom. Therefore, there is a directed path from the initial atom to any other
atom (more precisely, there is a path in the graph of the negotiation). By the
construction of the Petri net (and of the in/out-net), there are according paths
from the place pin to arbitrary places and transitions of the net.

Again by soundness of the negotiation, every occurrence sequence can be
extended to a large step, i.e., the final atom can eventually be enabled and the
final marking reached. So every token can be led to the final atom, and therefore
there are paths in the graph of the negotiation from every atom to the final
atom. By construction of the Petri net (and of the in/out-net), there are thus
paths from any element to an end-transition, where end is an outcome of nf ,
and – in the in/out-net – to the place pout. ��

Next we show that, for sound negotiations, the associated Petri net and
the associated in/out-net are behaviourally equivalent. To this end, we formally
introduce an equivalence relation on the set of Petri nets:

Definition 12. Two Petri nets N and N ′ are in the relation R if

– N ′ is obtained from N by the deletion of a place p and adjacent arcs and
– the reachability graphs of N and N ′ are isomorphic.

The symmetrical, reflexive and transitive closure of R is called place equivalence.

Places p satisfying the condition of this definition are often called implicit.
Clearly, by construction place equivalence is an equivalence relation.

Lemma 3.

(a) Let N be a Petri net with two places p and p′ with identical sets of input
transitions, identical sets of output transitions and identical initial marking.
Then deletion of p′ together with adjacent arcs leads to a place-equivalent
net.

(b) Let N be a Petri net with a place p with no output transition. Assume that
there are no two distinct reachable markings m and m′ that disagree only
with respect to p, i.e., that satisfy

m(p) �= m′(p) and m(p′) = m′(p′) for p �= p′ .

Then deletion of p and adjacent arcs leads to a place-equivalent net.2

2 Without the second condition, i.e., assuming only that p has no output transitions,
the derived net is a bisimular net. It has in particular identical occurrence sequences
as the original one, but it can have a smaller reachability graph because distinct
reachable markings might differ only with respect to the place p.
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Proof.

(a) The nets N and N ′ are obviously in the relation R as defined in Definition 12.
(b) Clearly, removing p does not change the behaviour in terms of occurrence

sequences because a place can only restrict the enabledness of its output
transitions, but p has no output transitions. The second assumption implies
moreover that, for each reachable marking m, the number m(p) follows
uniquely from all m(p′), p �= p′. So we have a bijective mapping from reach-
able markings of the Petri net N to reachable markings of the reduced net,
which is formally given by the projection of markings to the set of places
without p. It is easy to see that this bijection actually induces an isomor-
phism between the two reachability graphs. ��
Using this lemma we now show that, at least for sound negotiations, the

associated Petri net and the associated in/out-net have the same behaviour.

Proposition 6. Let N be a sound negotiation. The reachability graph of its asso-
ciated Petri net is isomorphic to the reachability graph of its associated in/out-
net.

Proof. As argued in the proof of Proposition 5, the initially marked places of
the Petri net associated with the negotiation have no ingoing arcs. Since the
initial atom of the negotiation has all agents as participants, the transitions cor-
responding to its outcomes consume the tokens from all initially marked places.
Therefore, all these places have the same (empty) set of input transitions and
the same set of output transitions. So Lemma 3(a) applies and proves that the
transformation leads to a net with identical reachability graph.

Next we show that adding the place pout also does not change behaviour. We
argue considering the in/out-net with the place pout and show that removing
this place leads to a net with isomorphic reachability graph. We aim at applying
Lemma 3(b), and thus have to show that no two distinct reachable markings of
the in/out-net differ only with respect to the marking of pout.

By construction of the Petri net and of the corresponding in/out-net associ-
ated to the negotiation, firing a transition labelled with an outcome of the final
atom removes all tokens from the net. This is because all agents participate in
the final atom. Conversely, these transitions are the only transitions which do
not produce tokens on some places. Therefore, there are tokens in the Petri net
before one of these transitions occurs and there are no tokens in the Petri net
afterwords. In particular, there can only be one occurrence of such a transition.
In the in/out-net, occurrences of transitions representing final outcomes add a
token to the place pout and no other transition changes the marking of this
place. Therefore, before the occurrence of a transition labelled by a final out-
come there are marked places (one for each participant) and pout is unmarked.
After the occurrence of a transition labelled by a final outcome, pout is the only
marked place. So no two reachable markings differ only with respect to pout, and
Lemma 3(b) applies. ��
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Unfortunately, soundness of a negotiation does not necessarily imply sound-
ness of the associated in/out-net (which is, by Proposition 5, a workflow net).
The reason is that soundness requires that every atom can occur but not that
every branch of a hyperarc is actually used. If, for example, there was an addi-
tional hyperarc in Fig. 1 from the port F in n0 to the ports F in nFD and nf instead
of the arc from n0 to nFD, then the resulting negotiation would still be sound;
actually, the behaviour does not change at all. The associated in/out-net, how-
ever, would have an additional transition end with new input place [F, {nFD, nf}]
(and other input places) which is never enabled. This net is therefore not sound.

4.3 Deterministic Negotiations

In [9], we concentrate on deterministic negotiations, which are negotiations with-
out proper hyperarcs.

Definition 13. A negotiation is deterministic if, for each atom n, agent a ∈ Pn

and result r ∈ Rn, X(n, a, r) contains at most one atom (and no atom only if
n = nf ).

The term deterministic is justified because there is no choice for an agent
with respect to the next possible atoms.

Since both, the exponential blow-up and the problem of useless arcs (branches
of hyperarcs) stem from proper hyperarcs, we can expect that deterministic
negotiations allow for better results. Actually, the Petri net associated with a
deterministic negotiation is in fact much smaller, because all its places have the
form [a,X], where a is an agent and X is a singleton set of atoms. So the set of
places is linear in agents and in atoms.

Before discussing soundness of deterministic negotiations, we make a struc-
tural observation. For the definition of free-choice nets used here, see [6].

Proposition 7. The Petri net associated with a deterministic negotiation is a
free-choice net, i.e., every two places either share no output transitions, or they
share all their output transitions. The same holds for the in/out-net associated
with a deterministic negotiation.

Proof. Since, in a net associated with a deterministic negotiation, each place
has the form [a,X], where X is a singleton set {n}, all its output transitions are
labelled by (n, r), r being a possible result of n. By construction, every other
place [b, {n}] has exactly the same output transitions as [a, {n}] whereas all other
places have no common output transition with [a, {n}].

The transformations of Definition 11 do not destroy the free-choice
property. ��
Proposition 8. A deterministic negotiation is sound if and only if its associated
in/out-net is sound.

Proof. The translation from a negotiation to its associated Petri net can be
rephrased in a much simpler way if the negotiation is deterministic, as follows:
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– For each atom n and each a in Pn, we add a place [a, n].
– For each atom n and result r ∈ Rn, we add a transition (n, r) (no two transi-

tions correspond to the same outcome (n, r), so transitions can be identified
with their previously used labels).

– Arcs connect all places [a, n] with all transitions (n, r).
– For each transition (n, r) with n �= nf and each a ∈ Pn there is an arc from

(n, r) to [a, n′], where n′ is the unique atom in X(n, a, r).
– All places [a, n0] carry one token initially; all other places are initially

unmarked.

It is immediate that to see that the behaviour of the negotiation is precisely
mimicked by this Petri net. So the negotiation is sound if and only if the net has
no dead transitions and moreover can reach the final (empty) marking from any
reachable marking.

The result follows since the Petri net can, as above, be transformed into a
behaviourally equivalent in/out-net. ��

Combining Propositions 5 and 8 yields:

Corollary 4. If a negotiation is deterministic and sound then its associated
in/out-net is a sound workflow net. ��

5 From Petri Nets to Negotiations

In this section we study the converse direction: Given a labelled Petri net, is there
a negotiation such that the net is associated with the negotiation? Obviously,
for a positive answer the net has to enjoy all the properties derived before. In
particular, it must have disjoint S-components and initially marked input places.
However, in the general case it appears to be difficult to characterise nets that
have corresponding negotiations.

We will provide an answer for the case of sound deterministic negotiations
and sound free-choice workflow nets.

Proposition 9. Every sound free-choice workflow net is place equivalent to a
net which is associated with a sound deterministic negotiation.

Proof. A workflow net is sound if and only if the net with an additional feed-
back transition moving the token from pout back to pin is live and 1-safe [1]. Live
and 1-safe free-choice nets are covered by S-components [6]. Therefore a sound
free-choice workflow net is covered by S-components as well. However, these
S-components have not necessarily disjoint sets of places. Consequently, we
cannot easily find candidates for agents involved in the negotiation to be con-
structed.

Instead we proceed as follows: We choose a minimal set of S-components
that cover the net. Since each S-component of a live net has to carry a token, all
these S-components contain the place pin. Each S-component corresponds to an
agent of the net to be constructed. Each conflict cluster, i.e., each set of places



Negotiations and Petri Nets 223

sharing the same output transitions, corresponds a negotiation atom (remember
that the net is free-choice and therefore any two places either share all output
transitions or do not share any).

Each place p of the net is contained in at least one S-component of the cover.
Let Cp be the set of all S-components of the derived minimal cover containing
p. If Cp contains more than one S-component, we duplicate the place p, getting
a new place p′ with input and output transitions like p.

The new net still has a cover by S-components, where one of the
S-components containing p now contains p′ instead. Repetition of this procedure
eventually leads to a net where each place p belongs to exactly one S-component
Cp of the cover. Finally we delete the place pout. Both operations, duplication
of places and deletion of pout, lead to place-equivalent nets by Lemma 3.

The resulting net is associated with the following negotiation: The set of
agents is the set of S-components of the minimal cover. The atoms are the
conflict clusters of the net. The results of an atom are the transitions of the
corresponding conflict cluster. The X-function can be derived from the arcs of
the Petri net leading from transitions to places. ��

6 Conclusions

This contribution presented a translation from a distributed negotiation to a
behaviourally equivalent Petri net. The chosen notion of behavioural equivalence
is very strong, namely isomorphism of the reachability graphs.

In the worst case, the translation yields a Petri net exponentially larger than
the negotiation. We conjecture that this exponential blow-up is unavoidable, but
currently we do not have a proof. The problem of the succinctness of negotiations
with respect to weaker equivalence notions like bisimulation or language equiv-
alence is also open. On the other hand, we have shown that for deterministic
negotiations the translation only causes a linear growth. Further, for determinis-
tic negotiations soundness and non-soundness is respected by the transformation
to workflow-like Petri nets, whence in this case the reverse translation is possible
as well.

The translation to Petri nets is implicitly used in [8,9], and in a recent paper
on the analysis of Coloured Workflow Nets [11]. On the one hand, the fact that
deterministic negotiations are so closed to workflow free-choice nets guided our
efforts to obtain a reduction algorithm for the analysis of soundness and the
input/output relation of negotiations. On the other hand, in [11] we transferred
the reduction procedure back to Petri nets. The resulting reduction procedure
has been successfully applied to a collection of industrial workflows.

Since we do not currently have a large suite of negotiation models, while such
suites exist for workflow Petri nets, we have used negotiations mostly as a theo-
retical formalism to design new analysis techniques that can be later translated
to workflow nets. In future work we plan to analyze the connection between
negotiations and languages for the description of business processes. Negotia-
tions could become an intermediate language between business processes and
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Petri nets, offering more compact descriptions and cleaner analysis procedures
and the possibility to apply the highly developed tool support for Petri net
analysis. This includes in particular model checking tools that can verify prop-
erties formulated in an appropriate Temporal Logic. Application of such tools to
negotiations requires not only prior transformation of the model but also of the
formula. So we are interested in appropriate languages for formalizing relevant
behavioural properties of negotiations.
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Abstract. Business process models expressed in languages such as
BPMN (Business Process Model and Notation), play a critical role in
implementing the workflows in modern enterprises. However, control
flow errors such as deadlocks and lack of synchronization, and syntactic
errors arising out of poor modeling practices often occur in industrial
process models. A major challenge is to provide the means and methods
to detect such errors and more importantly, to identify the location of
each error. In this work, we develop a formal framework of diagnosing
errors by locating their occurrence nodes in business process models at
the level of sub-processes and swim-lanes. We use graph-theoretic tech-
niques and Petri net-based analyses to detect syntactic and control flow-
related errors respectively. While syntactic errors can be easily located on
the processes themselves, we project control-related errors on processes
using a mapping from Petri nets to processes. We use this framework to
analyze a sample of 174 industrial BPMN process models having 1262
sub-processes in which we identify more than 2000 errors. We are fur-
ther able to discover how error frequencies change with error depth, how
they correlate with the size of the sub-processes and swim-lane interac-
tions in the models, and how they can be predicted in terms of process
metrics like sub-process size, coefficient of connectivity, sequentiality and
structuredness.

Keywords: Verification · Formal methods · Processes · BPM Notation ·
Errors · Soundness · Petri nets · Workflow nets · Woflan · Diagnosis ·
Metrics

1 Introduction

Modern-day enterprises rely on streamlined business processes for implementing
the workflows in the operation. This is particularly important for internet-based
businesses where on-line processes such as accepting orders need to be seamlessly
integrated with physical processes like delivery of products. Correct implemen-
tation of process models can result in significant cost savings in industry. For
example, Hammer [Ham10] reports a computer manufacturer reducing time to
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market by 75 % and a consumer goods manufacturer eliminating out of stock
scenarios by 50 % through properly managing their business processes. Spec-
ification and verification of such business processes have assumed importance
as ISO 9000 certification and compliance force companies to create extensive
documentation of business processes and to meet self-imposed goals [IC96].

Among the languages that have been developed for specifying business
processes, BPMN (Business Process Model and Notation) [Obj11] seems to be
quite popular. Its standardization body, the Object Management Group, lists
a large number of vendors that provide tool support for BPMN (www.bpmn.
org). BPMN also provides mappings to executable languages such as WS-BPEL
(Web Services Business Process Execution Language) from the OASIS consor-
tium [Aosftis07]; this particularly assists on-line businesses since almost every
aspect of their processes are software enabled.

A major challenge in implementing business processes, however, is providing
the means and methods to detect errors in process models and be able to locate
the nodes where an errors occurs. In our previous work [RSBR14], we analyzed
the occurrence of errors by considering process models as a whole. From a mod-
eler’s point of view, it is not sufficient to know if a model as a whole is erroneous;
it is equally important to learn the locations in the model where errors occur,
or which parts of a model have higher probabilities of being prone to errors in
comparison to other parts. This knowledge will assist the modeler to spot errors
at a finer granularity and make changes to the model accordingly. Further, in
the absence of general modeling guidelines, poor modeling practices can lead to
the use of erroneous constructs irrespective of the complexity of the problem. In
programming, compilation is a necessary step that detects syntactic errors; on
the other hand, modeling does not have such a mandatory error-checking phase.
Therefore, diagnosing models to identify the locations of errors is critical for the
validation of process models.

In this paper we develop a formal model for detecting and diagnosing errors
for business processes. Our diagnosis method is largely automated as it requires
almost no user intervention. Our data set originates from commercial business
process models made available in a repository of Infosys Ltd., one of the largest
IT enterprises of India with a global footprint. The models come from a num-
ber of business domains including banking, retail and healthcare. For business
requirements modelling, Infosys uses BPMN through an in-house tool called
InFlux. Thus, our method of diagnosing errors in commercial BPM processes
and the results of our empirical analysis will be useful for an increasing number
of organizations that use BPMN for their modelling.

In particular, we have formally verified and analyzed 174 industry models
containing 1262 sub-processes (which exhibited 2428 errors) to develop a statis-
tical model of error probabilities at sub-process levels. These errors are syntactic
and control flow related. Syntactic errors can be detected using simple graph
search algorithms. Control flow errors occur due to lack of soundness in the
process model. Our diagnostic method hinges on soundness checking of processes
using Petri net-based techniques. Towards that we force our process model to be

www.bpmn.org
www.bpmn.org


228 S. Roy and A.S.M. Sajeev

in a well-formed form (after removing syntactic errors). Subsequently, we convert
it to a free-choice Petri net preserving the soundness of the process. This Petri
net can be reduced to a simplified version, viz. free-choice WorkFlow net (WF-
net) for which polynomial time algorithm for soundness checking exists. Next,
we use the Woflan tool [VBvdA01] for checking soundness of generated WF-
nets. Woflan produces necessary diagnostic information for the nets from which
the location of errors can be identified. These locations can be mapped back to
processes so that we can locate the errors in them at the level of sub-processes
and swim-lanes, thus providing microscopic diagnostic information through our
analysis. Finally we report our experience on the diagnostic information of these
commercial models to illustrate the usefulness of our method. This paper is a
significantly extended version of our preliminary work reported in [RSS14] where
we initially proposed the framework for diagnosing errors based on formal verifi-
cation; here we expand the work with rigorous proof of the results and extensive
empirical analysis of diagnosis of errors including logistic regression.

The rest of the paper is organized as follows. A discussion on related work
is undertaken in Sect. 2. In Sect. 3 we discuss preliminaries of business processes
including a graph-based definition of syntax and semantics of a process. In Sect. 4
we show how a process model can be converted to a Petri net, preserving sound-
ness properties in two formalisms. WF-nets are introduced as a sub-class of Petri
nets in Sect. 5 and their connection to processes in terms of soundness check-
ing is established through results mentioned in Sect. 4. We describe Woflan, the
tool for checking soundness of workflow models in Sect. 6 and briefly sketch its
diagnostic functionalities. In Sect. 7 we discuss our method for checking and
diagnosing errors, thus locating their position in the process through the use of
Woflan tool. We provide an experience report of our diagnostic framework for
real-life industry models in Sect. 8. We provide remarks on expressive power of
our proposed framework, and more explicit evaluation of the originality of the
results in Sect. 9. Finally, we provide concluding remarks in Sect. 10.

2 Related Work

Even though there is considerable literature on error modeling of business process
models (which are reviewed below), not much work has been reported on diag-
nostic analyses of business processes. However, checking for soundness during the
modeling phase of processes can lead to useful diagnostic information. Vanhatalo
et al. have proposed a technique for control flow analysis of a process by modeling
it as a workflow graph [VVL07]. In this technique, a process model is decom-
posed into single-entry-single-exit fragments [VVK08] in linear time, which are
of much smaller size than the original process. As each error is contained in a
fragment it can be reflected in a small context, thus making the job of error
fixing easier. Each such fragment is separately checked for control-flow related
errors using a fast heuristic. The authors have provided such heuristics for both
sound and unsound fragments. The heuristics are proposed by observing that
many of these fragments in real-life processes have a simple structure that can
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be quickly recognized. A drawback of this work, as pointed out by the authors,
is that the rest of the fragments which could not be covered by the heuristic
have to be analyzed by other techniques. Moreover, employing the appropriate
heuristic for complex fragments may be beyond the realm of practitioners and
thus can be an obstacle for automating the diagnosis analysis. In contrast, in
our work, the aim is to provide an automated way of detecting diagnostic errors
with very little user intervention so that a common practitioner can easily use it.

Fahland et al. [FFJ+11] carry out a major work on soundness checking of
industrial business process models, - the authors show that modeling can be
tightly coupled with control flow analysis. They use Petri net-based tool LoLA,
Worflow analyzer Woflan and IBM Web-Sphere Business Modeler to detect errors
in the processes. The authors talk about three challenges of soundness checking
for making it acceptable to verification engineers, - coverage, immediacy and
consumability. Under consumability they mention the importance of developing
a user interface that should be capable of producing diagnostic information to
users. As a part of this, they provide a visualization editor, which allows the user
to click on an error message in the view and then locate the error in the model.
In the process, the fragment containing the error would get highlighted along
with the node causing the error. However, they do not formalize this diagnostic
framework, nor do they perform statistical analysis of their sample data.

Researchers have worked on diagnosing workflow processes using Woflan
tool [vdA97,VBvdA01]. Woflan was built to verify the correctness of process
definitions of a Workflow Management System [vdA97]. It checks whether a
process definition conforms to a workflow process definition and whether it is
free of control flow-related errors such as deadlock and lack of synchronization
(corresponding to a sound workflow definition). Woflan also produces useful diag-
nostic information for workflow processes [VBvdA01]. Specifically, the tool ana-
lyzes workflow process definitions incorporated from commercial products using
Petri net-based analysis techniques and locates the source of a design error. This
analysis can help the developer in finding and correcting the errors by provid-
ing to-the-point diagnostic information. However, Woflan cannot directly accept
business processes as input models, hence one needs to convert such processes
into WF-nets before they can be used as input to the Woflan tool, and the diag-
nostic information on nets have to be suitably mapped back onto the processes
for highlighting the location of errors. With this in mind, we use a mapping
algorithm to convert well-formed processes to free-choice WF-nets and identify
the location of errors on these nets. The location of errors are mapped back
to the process models using the inverse mapping (as the original mapping was
bijective) so that we can pinpoint the location of errors in the original process
models.

Although there is not much literature on empirical studies of errors for
processes using diagnostic information, as mentioned before, there is consid-
erable amount of work on error modeling for different kinds of process models,
viz. BPM processes, EPC models, SAP models etc. Mendling et al. judge the
quality aspects of models by studying the connection between errors such as
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deadlock and a set of metrics capturing various structural and behavioral aspects
of process models [MNA07]. In another piece of work [MVvD+08], Mendling
et al. consider a set of 604 sample EPC business process models from the SAP
reference to check if the errors introduced due to the non-soundness of the models
can be statistically explained by complexity metrics. These results are analyzed
in detail in the thesis report of Mendling [Men07]. Cardoso et al. [CMNR06] sur-
vey complexities of metrics in various fields ranging from software engineering to
cognitive science, and to graph theory, and later relate them to business process
modeling. They use metrics which are analogous to the Line-of-Code, McCabe’s
Cyclomatic Complexity (called Control-Flow Complexity), Halstead Complexity
Metric, and Information Flow Complexity. A connection between metrics and
understanding of personal factors is established in [MRC07,MS08]. We refer the
reader to [Men08] for an overview on the study of bottom-up metrics related to
quality aspects. In another survey work [LG06], Gruhn and Laue explain how
existing research results on the complexity of software can be extended to facil-
itate the analysis of the complexity of business process models by considering
metrics such as size, control flow complexity, structure, comprehensiveness and
modularization of the model. The authors conclude that most of the metrics
related to business process models are mere adaptations of software complexity
metrics.

Contributions of this Paper

In this paper we provide a rigorous and formal framework for analysis of sound-
ness checking of business processes. In particular, we consider a specification
formalism for processes using BPMN, viz. well-formed processes. We adopt a
(soundness preserving) mapping which always produces free-choice Petri nets
corresponding to these well-formed processes. Then we investigate the proper-
ties for a free-choice Petri net corresponding to soundness of the original process.
Further, we propose a method for soundness checking of processes based on
analyses of free-choice Workflow nets which is exploited by the Woflan tool as
it produces useful diagnostic information for Workflow nets. Using the above
results we show that the soundness of processes can be decided in polynomial
time although such a result was already known in view of the work on decom-
position of processes in [VVL07] and workflow-related analysis in [VVK08]. A
significant work on soundness of business processes was carried out in [FFJ+11].
Although the authors therein stated equivalent characterizations of soundness
of free-choice Petri nets and Workflow graphs (processes) they did not supply
any proof. We supply rigorous arguments in developing our framework for error
detection of processes thus unifying the notions of soundness in all the three
formalisms – processes, Petri nets and Workflow nets. Our comprehensive
analysis can be seen as a one-step improvement in rigorous analysis of soundness
checking of processes.

Supplementing our earlier work on error detection for business processes
[RSBR14] we provide a diagnostic analysis of errors occurring in processes in
this work. Our diagnostic analysis is based on the in-depth analysis of soundness
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checking of business processes mentioned above and the useful diagnostic infor-
mation provided by the Woflan tool. The tool verifies soundness for Workflow
nets and pinpoints the occurrence location of such an error. As Woflan cannot
accept business processes as input models the processes are required to be trans-
lated to WF-nets before they can be passed onto Woflan tool. Subsequently, we
translate the diagnostic information back to the processes from WF-nets using
a suitable mapping algorithm. This knowledge can aid the developer in locating
the errors and taking appropriate remedial actions. Such a theoretical analysis
is complemented by an experience report, in which we carry out an empirical
analysis on diagnosis of errors for a sample of commercial process models at the
sub-process level. Our analysis throws interesting highlights on the occurrence
of errors at sub-process and swim-lane levels in business process models which
will be useful to business houses dealing with process modeling. As there are
very few work on diagnostic analysis of errors on business processes our work
can certainly aid in future diagnostic initiatives for business processes.

Finally, we highlight our contribution in regard to the challenges listed
in [FFJ+11] for adopting soundness checking techniques into mainstream indus-
try. Three challenges were mentioned, coverage, immediacy and consumability.
By coverage one has to ensure the error checker can handle all or most of the
models. Immediacy poses the challenge of returning the results instantly. To meet
the challenge of consumability one must develop a user interface for conveying
the diagnostic information about the errors that could be easily consumed by
verification engineers. In this work we have addressed all these challenges. For
example, our tool is able to detect errors on all the industrial process models
that we consider, it can also detect errors almost instantly and further, the tool
provide useful diagnostic information to the practitioners by highlighting errors
on the models on which they can take remedial actions.

3 Preliminaries on Business Processes

In this section we briefly describe how business processes are captured using Busi-
ness Process Modeling Notation (BPMN), and discuss its syntax and semantics.
Subsequently, we define the notion of soundness of a business process.

BPMN defines a Business Process Diagram (BPD) (also called a BPM
process) which is based on flowchart related ideas, and provides a graphical
notation for business process modeling using objects like nodes and edges. A
node can be a task (also called an activity), an event or a split/join gateway
(also called control node). By an activity/task we mean the work required to
achieve an objective. In a BPD, we consider two types of events: start and end
events. Start events denote the beginning of a process, and end events the end
of a process. In a flow graph, the control flow relation linking two nodes is rep-
resented by a directed edge capturing the execution order between tasks of a
BPD. A sequence is made of a collection of nodes connected serially through
directed edges, each such node has an incoming and an outgoing arc. A gateway
is meant for separating flows (called split), and combining flows (called join);
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there are two kinds of gateways: AND-gateways (represented by a diamond with
a “+” sign inside) and XOR-gateways (represented with a diamond having a
“×” sign inside). An AND-split gateway (also called a fork) separates two con-
current paths and allows independent execution between them within a BPD.
For synchronizing concurrent paths, an AND-join (also called a synchronizer)
is used, it links all the incoming edges to it. A synchronizer delays its comple-
tion until all flows leading into the gateway complete their executions. From a
XOR-split gateway (also called a choice), two or more outgoing control flow
relations diverge resulting in mutually exclusive paths. A XOR-join gateway
(also called a merge) is the counterpart of the XOR-split node and connects
incoming mutually exclusive alternative paths into one path. A process can be
decomposed into a (or more) child diagram(s), and each child diagram can be
further decomposed into one or more child diagrams, and so forth. Each such
child diagram is called a sub-process. The lowest-level process, which cannot be
further decomposed, is labeled as a task. A sub-process acts like an independent
process which can be invoked by a sub-process invocation activity. It is possible
to define swim-lanes/roles for these processes just like partitions for activity dia-
grams; swim-lanes reflect those actors/agents that are responsible for execution
of particular tasks/gateways assigned to them. The above elements constitute
the basic set of constructs of BPMN. BPMN has additional advanced constructs
such as exception event (which includes intermediate message, timer and error
event) and message flow for denoting transmission of messages between two
interacting processes (through send/receive task or message event), data-based
decision or XOR gateways, OR-joins, priorities or cancellations etc., but we shall
not consider them for our work, the reason being the industrial process models
(in possession of Infosys Ltd.) that we consider can be modeled by this basic set
of constructs. From now on, by a process we shall mean a BPM process with the
set of basic constructs discussed above.

The lack of an unambiguous definition of the notation are hindrance to
semantic analysis of BPM process models. This necessitates a proper formal
modeling of BPM processes. There are many formalizations of BPM processes
available. We use one which bears a close resemblance to those described
in [ADW08,DDO08] and that of work-flows [LK05].

3.1 Syntax of BPM Process

A BPM process is a graph (also called a process model graph) P = (N ,F) where

– N is a finite set of nodes which is partitioned into the set of tasks T , the set
of gateways G, and the set of events E , i.e.,

N =̂ T � G � E

– G can be further partitioned into disjoint sets of decision merges, GM (Gand
M

(synchronizer) and Gxor
M (merge)) and decision splits, GS (Gand

S (fork) and Gxor
S

(choice)),
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– A set E of events which is a disjoint union of two sets of events Es and Ef ,
where
• Es is the set of start events (also called start nodes) with no incoming edges.
• Ef is the set of end events (also called end/final nodes) with no outgoing

edges.
– F ⊆ (N \ E × N \ E)

⋃
(Es × N \ E)

⋃
(N \ E × Ef ) corresponds to sequence

flows connecting tasks with tasks, tasks with gateways, gateways with tasks,
start nodes with other nodes and other nodes with end nodes.

Further we can add swim-lanes to a BPM process. A BPM Process with
swim-lanes is PS = (N ,F ,S, f), where additionally, S is a set of swim-lanes
which is finite, and f : (E ∪ A)→S is a mapping from the set of events and
activities to the set of swim-lanes S. A process QP = (N ′,F ′) is said to be a
sub-process of process P = (N ,F), if N ′ ⊆ N and F ′ ⊆ F ∩ (N × N ).

The size of a process is simply |N |. Using graph-theoretic notion, we can
define a path ρ as a finite sequence of nodes, n0, n1, . . ., where (ni, ni+1) ∈
F , i = 0, 1, . . .. A path ρ begins at a start event n0 if n0 = e0 ∈ Es.

We can define the pre-set and post-set of a node n ∈ N respectively as
•n = {n′ | (n′, n) ∈ F} and n• = {n′′ | (n, n′′) ∈ F}. Let in(n) (out(n)) be the
set of incoming (outgoing) edges to (out of) node n ∈ N . A BPM process is
well-formed [HFKV06] if and only if it has the following properties.

1. Start nodes have no incoming edges, however only one outgoing edge emanates
from them. That is ∀ns ∈ Es, |in(ns)| = 0, and |out(ns)| = 1.

2. Similarly, end nodes have no outgoing edges, however only one incoming edge
leads into them. Again, ∀nf ∈ Ef , |in(nf )| = 1, and |out(nf )| = 0.

3. There is only one incoming edge to a task and exactly one outgoing edge from
a task. That is, for every n ∈ T , |in(n)| = |out(n)| = 1.

4. Each fork and choice has exactly one incoming edge and at least two outgoing
edges. That is, for every n ∈ GS , |in(n)| = 1 and |out(n)| > 1.

5. Each synchronizer and merge has at least two incoming edges and exactly
one outgoing edge. That is, for every n ∈ GM , |in(n)| > 1 and |out(n)| = 1.

6. Every node is on a path from some start node to some end node.

Let us now introduce a fragment of a process, known as a SESE fragment which
will be required for subsequent discussions. Given a process model graph P =
(N ,F) a Single Entry Single Exit fragment (SESE fragment, in short) [VVL07]
P′ = (N ′,F ′) is a non-empty subgraph of P such that N ′ ⊆ N and F ′ = F ∩
(N ′ × N ′) and there exist flow edges e, e′ ∈ F with {e} = F ∩ (N \ N ′ × N ′)
and {e′} = F ∩ (N ′ × N \ N ′); e and e′ are called the entry and the exit edges
respectively. A SESE fragment is called a SESE block if there are two disjoint paths
from the node from which the source edge originates to the node to which the sink
edge leads to (source and sink edges to be defined later).

3.2 Semantics of BPM Process

Let us now specify the semantics of control elements of a BPM process, which
is similar to that of Petri nets. We follow the definition from [VVL07,WHM10],
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where a state of a process is represented by tokens on the edges of the control
flow graph. Given a process P = (N ,F), a state of P is a mapping μ : F→ N,
also called a token mapping. At any time an edge contains zero or more tokens.
The number of tokens may change during the execution of the process, when
the transitions are taken. A source edge es connects a start event with some
other node. If the latter node is an activity then it is called an initial activity.
Similarly, a sink edge ef is an edge which connects a node with an end event.
Again, if the former node is an activity then it is called a final activity. A state
μ′ is reached from state μ via node n, written as μ

n→ μ′, if and only if one of
the following is true.

1. Tasks, AND-splits and AND-joins: if n ∈ T ∪ Gand
S ∪ Gand

M then, μ′(e) =
μ(e) − 1 when e ∈ in(n), and μ′(e) = μ(e) + 1 when e ∈ out(n), otherwise
μ′(e) = μ(e).

2. Choices/XOR-splits: if n ∈ Gxor
S then there exists e′ ∈ out(n) such that the

following is true: μ′(e) = μ(e) − 1 when in(n) = {e}, and μ′(e) = μ(e) + 1
when e = e′, otherwise μ′(e) = μ(e).

3. Merges/XOR joins: if n ∈ Gxor
M then there exists e′ ∈ in(n) such that the

following is true: μ′(e) = μ(e) − 1 when e = e′, and μ′(e) = μ(e) + 1 when
out(n) = {e}, otherwise μ′(e) = μ(e).

The initial state is given by a marking μ0 where μ0(es) = 1, for all es ∈ Es,
and μ0(e) = 0 for all other edges e. A node n is said to be activated in a state μ

if there exists state μ′ such that μ
n→ μ′. A state μ′ is reachable from a state μ,

denoted as μ
∗→ μ′, if there exists a (possibly finite) path, ρ : ns, n1, . . . , nf (∈ N )

and a finite sequence of markings μ1, . . . μk such that μ
ns→ μ1

n1→ · · · nf→ μk and
μ′ = μk. The notion also includes the empty sequence ε, i.e., we have μ

ε→ μ
for every marking μ. A state is reachable in the process P if it is reachable from
the initial state μ0. A marking/state μ is called unsafe if there is an edge e ∈ F
such that μ(e) > 1.

3.3 Soundness of BPM Processes

van der Aalst first introduced the criteria for checking correctness of business
processes, called soundness in [vdA97]. Subsequently, other researchers have pro-
vided different definitions of soundness for business processes. Our definition is
close to the one adopted by Fahland et al. [FFJ+11].

A terminated marking is a reachable marking where no node can be activated.
A deadlock is a terminated marking in which at least one non-sink edge is marked.
For instance, a deadlock occurs when two edges out of a choice split are merged
by a synchronizer (see Fig. 6(c)), or if a synchronizer node occurs as an entry to
a cycle. A BPM process contains a lack of synchronization (multiple instances
of the same activity) if an edge can have multiple tokens in any reachable state.
A lack of synchronization arises, for example, if two parallel paths emanating
from of a fork are joined by a merge (see Fig. 6(d)) or if the exit of a cycle
corresponds to an fork. A BPM process is sound if it does not contain a lack of
synchronization and it is deadlock-free.
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4 Soundness Checking of Process Using Petri
Nets-Based Techniques

There have been a number of formal models proposed for BPM processes: Petri
net, automaton, process calculus, to name a few. These formal models can be
used for proving the correctness of processes through powerful techniques like
model checking. We shall use Petri nets (PN) and its subclass Workflow nets
(WF-nets) as the underlying formal models of BPM processes for they are easily
amenable to soundness analysis through model checking.

4.1 Syntax and Semantics of Petri Nets

We briefly introduce some basic notions of Petri nets. For a more elaborate
description the reader is referred to [Rei85,RT86,vdA98,AAH98]. A Petri net
is a directed bipartite graph with two kinds of nodes: places and transitions.
Formally, a Petri net (or simply, a net) is a tuple N = (P, T, F ), where

– P is a finite non-empty set of places,
– T is a finite non-empty set of transitions such that P ∩ T = ∅, and
– F ⊆ (P × T ) ∪ (T × P ) is a set of directed arcs, called the flow relation.

A bag over some alphabet Σ is a function from Σ to the natural numbers that
assigns only a finite number of elements from Σ a positive value. If X is a bag
over an alphabet Σ and a ∈ Σ, then X(a) denotes the number of occurrences
of a in X. A bag X is a sub-bag of bag Y , denoted by X ≤ Y , if X(a) ≤ Y (a)
for all a ∈ Σ. The set of all bags over Σ is denoted as B(Σ). A bag M ∈ B(P )
is called a marking or configuration or state of net N = (P, T, F ). Moreover,
there is a designated marking MN : P→N, called the initial marking which is
associated with the net. The associated Petri net is denoted as (N,MN ).

An input place of a transition t is a place p iff there exists a directed arc from
p to t, whereas an output place of a transition t is a place p iff there is a directed
arc from t to p. •t and t• denote the input and output places of a transition t
respectively (they can be as well referred to as bags over the alphabet Σ). We
use dual notations •p and p• for place p. A place is called final (also called sink)
if p• = ∅. Denote the set of final places as Γ . Similarly, a place p is called a
source/start place if •p = ∅. The set of all start places is denoted as Λ.

At any time a place contains zero, or more tokens. A marking M of N enables
a transition t in T iff •t ≤ M . An enabled transition can fire. When a transition t
fires, it consumes one token from each of its input place p and produces one token
for each of its output place p. By M

t→ M ′ we mean that marking M ′ is reached
from marking M by firing t. For a finite sequence of transitions σ ∈ T ∗, we say
M1

σ→ Mk, if there is a transition sequence σ = t1t2 . . . tk−1 and a firing sequence

as follows: M1
t1→ M2

t2→ · · · tk−1→ Mk. A state Mk is said to be reachable from
state M1 iff there is a transition sequence σ = t1t2 . . . tk−1 such that M1

σ→ Mk.
As before, one can talk about an empty transition sequence also. A state M is
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said to be reachable if M is reachable from the initial marking MN . A Transition
t ∈ T is dead iff there is no marking reachable from MN enabling t.

A Petri net is live if and only if for every reachable state M1 from MN and
every transition t one can find a state M2 reachable from M1 that enables t.
A place p is called unbounded if for any ρ ∈ N there is a marking M reachable
from an initial marking MN such that M(p) > ρ. A net is unbounded if it has an
unbounded place. Otherwise, it is bounded. It is possible to detect the unbounded
places of a Petri net, and thus decide whether the net is bounded or not, i.e.,
it exhibits a finite behavior or not. A Petri net is strongly connected if and
only if for every pair of nodes n1 and n2 there is a directed path from n1 to
n2. Normally, a restricted class of Petri nets is used for modeling and analyzing
workflow procedures; they are called free-choice. A Petri net is free-choice if and
only if, for every two transitions t1 and t2, if •t1 ∩ •t2 �= ∅, then •t1 = •t2.

A Petri net is a state machine if and only if all transitions have exactly
one input and output place, formally, ∀t ∈ T : | • t| = |t • | = 1. A Petri
net N ′ = (P ′, T ′, F ′) is a subnet of Petri net N = (P, T, F ) if and only if
P ′ ⊆ P, T ′ ⊆ T , and F ′ = F ∩ ((P ′ × T ′) ∪ (T ′ × P ′)). Further, a subnet N ′

is an S-component of N if and only if N ′ is a strongly connected state machine
such that ∀p ∈ P ′, •p∪p• ⊆ T ′. A Petri net N is S-coverable if and only ∀p ∈ P
there exists an S-component N ′ = (P ′, T ′, F ′) of N such that p ∈ P ′.

Given a Petri net N = (P, T, F ) we define a PT-handle as a place-transition
pair (p, t) ∈ P × T iff there exist two elementary (without repetition of nodes)
directed paths from p to t sharing only two nodes p and t. Similarly, a transition-
place pair (t, p) ∈ T × P is called a TP-handle iff there exist two elementary
directed paths from t to p sharing only nodes p and t.

Let us now provide a definition of a p-sound Petri net. A Petri net is 1-safe if
for each place p ∈ P and for any reachable marking M , M(p) ≤ 1. A marking is
called final if only final places contain tokens and all the other places are empty.
A Petri net is free of deadlock if from any reachable marking, a final marking
can be reached. This can be expressed as an “ALMOST EVERYWHERE” CTL
formula [CGP99] AGEF (

∧
p�∈Γ (M(p) = 0) ∧ ∨

p∈Γ (M(p) > 0)). A Petri net is
p-sound if it is free of deadlock and is safe.

4.2 Mapping BPM Processes to Petri Nets

There are a few techniques available [DDO08,KtHvdA03] for mapping BPMN
process models to Petri nets, preserving behaviors. We discuss one such mapping
originally proposed in [vdAHV02]. Let us call this mapping “pertriconvert”,
which is shown in Fig. 1. A task in the process is mapped to a corresponding
transition, for example, a task A is mapped to transition tA (see Fig. 1(b)). This
mapping creates many new places and transition nodes, including dummy places
(drawn in dashed borders in Fig. 1(b)), which act like dummy nodes and used
for composing two patterns and silent transitions (without labels)1. There are

1 We mark a silent transition as tAB , which connects place A to place B, for notational
convenience.
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two kinds of transitions used in the mapping. One of them is a regular transition
which corresponds to an activity in the original process. The other one is called
a silent transition and is generated during the mapping of start/end nodes and
forks and synchronizers (see Fig. 1). Each pattern in a BPM process is mapped
to a corresponding Petri net module preserving behavior. During conversion a
(well-formed) business process is decomposed into patterns shown in the figure,
and the corresponding Petri net module is generated for each of the patterns.
Then using the connectivity information of the BPM patterns, these Petri net
modules are connected (by identifying the adjacent dummy places) and finally,
the whole Petri net is created. In the figure, dummy places are not specific to one
particular module; they are basically used for connecting two modules. Below
are the rules for mapping.

1. A start node is mapped to a pattern with two places and one silent transition
in between.

2. An end node is mapped to a similar pattern with two places and one silent
transition in between.

3. An activity node is mapped to a regular transition with one input place and
one output place.

4. A fork (AND-split) node is mapped to a silent transition with one input place
and two output places.

5. A synchronizer (AND-join) node is mapped to a silent transition with two
input places and one output place.

6. A choice (XOR-split) is mapped to a place with two output (silent) transi-
tions.

7. A merge (XOR-join) is mapped to a place with two input (silent) transitions.

The sub-process invocation activities are treated as simple activity nodes and
these nodes are mapped likewise. In this work as mentioned before we do not
consider message passing in the BPM process models, so we choose to ignore
this aspect. Thus, given a BPM process P = (N ,F) the corresponding Petri net
is NP = (P, T, F ), generated by the mapping “pertriconvert” for a well-formed
process. With this correspondence one can establish the connection between a
BPM process and the mapped Petri net.

Proposition 1. This mapping “petriconvert” always produces a free-choice
Petri net.

Proof. Notice that only transitions with multiple inputs correspond to AND-
join and their inputs can only be other merges or tasks and the only place where
a place can feed two transitions is at an XOR-split. Let us consider one such
situation in a BPM process where an XOR-split forces one outgoing edge to
an AND-join and another edge to an arbitrary activity as shown in Fig. 2(a).
However, using the mapping petriconvert this fragment of BPM process will be
mapped to a fragment of Petri net as shown in Fig. 1 which cannot be non-free-
choice. Hence. �
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Fig. 1. Mapping of BPM patterns to Petri Net modules

Fig. 2. Fragment of free-choice Petri net and the corresponding BPM process
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Theorem 1. A BPM process P = (N ,F) is sound if and only if the corre-
sponding Petri net NP = (P, T, F ) is p-sound. Further, the Petri net is at most
linear in size of the original BPM process.

Proof. We shall set up a bijection ‘h’ between the edges F of the process P and
the places P of the mapped Petri net NP. A source edge in P is mapped to a
start place in NP. Similarly, a sink edge is mapped to a final place. In P any edge
(other than sink or source edge) can either lead into an activity or a gateway.
In the former case the edge is mapped to a place leading to the appropriate
transition in the mapped Petri net, in the later case the edge is mapped to a
place which leads to an appropriate transition. Further when an edge leads to
a gateway in the process, it is mapped to a place leading to transition/s in the
Petri net depending on the type of gateway. Similar argument holds good for an
outgoing edge from an activity or a gateway node. So, we have seen that for every
edge e ∈ F in P there is a mapped place h(e) in NP and vice-versa, see Fig. 1.
Define for any state μ in P a marking g(·) in NP such that μ(e) = g(μ)(h(e))
for any e ∈ F . Now we establish a connection between a state μ in P and the
mapped marking g(μ) in NP. We claim μ

n→ μ′ if and only if g(μ) t→ g(μ′) for
some node n in P and some transition t in NP. †

We consider the following three cases of a node n being activated in P. For
n being tasks, AND-splits and AND-joins, μ′(e) = μ(e) − 1 when e ∈ in(n).
As this edge e is mapped to a corresponding place leading to an appropriate
transition t in Petri net, g(μ′)(h(e)) = g(μ)(h(e)) − 1. In case when e ∈ out(n),
μ′(e) = μ(e) + 1. Hence g(μ′)(h(e)) = g(μ)(h(e)) + 1. Therefore, g(μ) t→ g(μ′).

If n is a choice (XOR-split), then there exists e′ ∈ out(n) such that μ′(e) =
μ(e) − 1 when in(n) = {e}, which implies g(μ′)(h(e)) = g(μ)(h(e)) − 1. And
μ′(e) = μ(e) + 1 when e = e′, that is, g(μ′)(h(e)) = g(μ)(h(e)) + 1. Otherwise
μ′(e) = μ(e), implying g(μ′)(h(e)) = g(μ)(h(e)). As n will be mapped to an
appropriate transition t in the mapped Petri net g(μ) t→ g(μ′).

If n is a merge (XOR-join) we can handle the situation similarly.
Next we prove the claim in the other direction. Now it is given g(μ) t→ g(μ′)

for some t. We consider the following cases utilizing the free-choice property of
nets. Suppose p is the place that feeds to a single transition t which again leads
to another place p′. Then, h−1(p) leads to an activity and this activity feeds into
h−1(p′). Let this activity node be n. If transition t is fired under the marking
g(μ) then g(μ′)(p) = g(μ)(p)−1 which implies μ′(h−1(p)) = μ(h−1(p))−1. That
is μ

n→ μ′.
If t is a transition which is fed from only the place p and leads to two places p1

and p2 (wlog), then it is like an AND-split. If t is fired then g(μ′)(p) = g(μ)(p)−
1, g(μ′)(pi) = g(μ)(pi) + 1, i = 1, 2. This implies μ′(h−1(p)) = μ(h−1(p)) −
1, μ′(h−1(pi)) = μ(h−1(pi)) + 1, for i = 1, 2. That is μ

n→ μ′, where n is the
parallel split node coming out of the edge h−1(p). An AND-join in the mapped
Petri net can be handled in a similar fashion.

If p feeds into two transitions t1 and t2 which leads to two places p1
and p2 respectively (wlog), then it is like a XOR-split. If ti is fired then
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g(μ′)(p) = g(μ)(p) − 1, g(μ′)(pi) = g(μ)(pi) + 1, g(μ′)(pj) = g(μ)(pj), j �= i. This
implies μ′(h−1(p)) = μ(h−1(p)) − 1, μ′(h−1(pi)) = μ(h−1(pi)) + 1, μ′(h−1(pj)) =
μ(h−1(pj)), j �= i. That is μ

n→ μ′, where n is the choice node outgoing from the
edge h−1(p). A XOR-join in the mapped Petri net can be handled in a similar
fashion.

Thus we showed μ
n→ μ′ if and only g(μ) t→ g(μ′). Using this, μ

∗→ μ′ if and
only g(μ) σ→ g(μ′), for some transition sequence σ.

Now we prove that P = (N ,F) is sound if and only if the mapped Petri
net NP = (P, T, F ) is p-sound. Suppose P contains a lack of synchronization.
Then there is a reachable marking μ and an edge e in P which will contain
k (k > 1) tokens under μ. By the claim (†) there will be a reachable marking
g(μ) in NP which will assign k tokens to the place h(e). That is, the Petri net
NP is not safe. Now suppose the Petri net NP is not safe. Then there will be
a reachable marking M from an initial marking MN and a place p such that
M(p) = k (> 1). By the result proven above, there will be a reachable marking
μ from an initial marking in P and an edge e such that μ(e) = k,M = g(μ) and
e = h−1(p). Hence e will be executed k number of times. That is, P contains a
lack of synchronization.

Suppose P contains a deadlock. That is, it contains a terminated marking
μ which assigns some token on a non-sink edge e. Using the claim (†), NP also
contains a reachable making M such that it assigns the same number of tokens
on the place h(e) and M = g(μ). As μ cannot proceed to any other marking
(through reachability) in P no other marking can be reached from M in NP.
Hence NP is not free of deadlock.

Now to prove in the other direction, assume that P does not contain a dead-
lock. To show that NP is free of deadlock. Consider an arbitrary reachable mark-
ing M in NP. Let Pm be the set of all places for which there is a path of length
m to a final place. Pick a place with at least one token that can be moved (the
corresponding transition has tokens in all its incoming positions), and which is
also the least distant away the final place. Fire the corresponding transition.
Suppose this sequence terminates after a finite number of steps. Then there are
two possibilities:

1. the resulting configuration has only tokens at only the final places and no
other places,

2. the resulting configuration has tokens in other places. A deadlock is found, but
using our mapping with process (claim (†)) we would have found a deadlock
in the process, a contradiction.

Otherwise, the sequence is infinite. But as our process (and the mapped Petri net)
is free of lack of synchronization (1-safe), it follows that the set of configurations
visited is finite. So, there must be a cycle. The infinite sequence will look like

M = M1,M2, . . . ,Mj ,Mj+1, . . . ,Mk = Mj

Consider the tuples associated with Mj ,Mj+1, . . . ,Mk. Let κ be the lowest index
among j, . . . , k for which a transition with a token on its pre-set was fired.
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If this number is 1, then we have a put a token in a final place and hence found
a deadlock in the Petri net as well as in the process. Otherwise, suppose κ > 1.
Note that when a transition is fired corresponding to a token with index j, a new
token is inserted into a place whose index is j − 1 as we always fire a transition
to reduce the distance of the token to the final place. Then a count at place
κ − 1 is increased as we fire the cycle, but the count at position κ − 1 is never
decreased. Therefore this cannot be a cycle, a contradiction.

From the mapping shown in Fig. 1, it can be seen there is only the addi-
tion of constant number of places for each of the patterns of the BPM process.
Hence the generated Petri Net is at most linear in the size of the original BPM
process. �
Corollary 1. The mapping “petriconvert” maps a SESE block to either a TP-
handle or a PT-handle. Conversely, for a handle which is guaranteed to have
been created out of a well-formed process, an inverse mapping of “petriconvert”
will ensure the creation of a SESE block of the original process.

Proof. Let PS = (N ′,F ′) be a SESE fragment of a process with e1 and e2 being
the entry and exit edges respectively. The mapping petriconvert will produce
a net NPS

= (P ′, T ′, F ′). Consider bijection ‘h’ between the edges F ′ of the
process PS and the places P ′ of the mapped Petri net NP, which will yield:
h(e1) = pin, h(e2) = pout. As e1 does not come out of any node in PS , pre-set
of pin will have nothing in common with T ′, and post-set of pin will not be
contained in T ′. Hence pin is the entry place for NPS

. Similar argument says
that pout is the exit place for NPS

.
Moreover, for a SESE net which is guaranteed to have been created out

of well-formed process, a converse mapping of “petriconvert” will ensure the
creation of SESE fragment of the original process. This is because the mapping
h, between the edges of the process P and the places of the mapped Petri net
is bijective, and an inverse mapping h−1 can be employed to produce the SESE
block. �

Although LoLA [Wol07] can be employed to verify soundness of processes
there are a couple of reasons for not using this tool in our work. LoLA produces
a counter-example in case of violation of properties and further analysis has to be
carried out to retrieve diagnostic information on processes. Also LoLA is mainly
used in the Linux environment and we are looking for windows-based tool for
soundness checking in order to integrate the analysis with our in-house process
modeling tool InFlux. Woflan, the Workflow net analyzer [VBvdA01] offers this
option. Woflan is mainly used for verifying properties of Workflow nets which is
introduced next.

5 Workflow Net

In this section we discuss how soundness checking of processes can be performed
through soundness checking of Workflow nets.
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5.1 Soundness of WF-nets

In practice we often use Workflow nets (WF-nets) [vdA97,KtHvdA03] which are
a subclass of Petri nets. Formally, a Petri net is a WorkFlow net (or WF-net) if
and only if, there is only one source place i with •i = ∅, there is only one sink
place o with o• = ∅ and if a transition t∗ is added to the net connecting the
place o with the place i then the resulting Petri net becomes strongly connected.

Let us consider the usual notion of soundness of WF-nets. For any place i,
state [i] denotes a marking which assigns a token to place i and no token to other
places. A WF-net PN = (P, T, F ) is sound if and only if a state M is reachable
from the state [i], then the state [o] can be reached from M , state [o] is the only
state reachable from state [i] with at least one token in place o and no other
token in other places, and there is no dead transition in (PN, [i]).

For a complex WF-net it is not easy to check the soundness property using
this definition. An alternate way to check soundness of a WF-net is by extending
the notion of WF-net and linking it to liveness and boundedness. An extended
WF-net PN is obtained by short-circuiting o to i with a new transition t∗. For
a WF-net PN it is natural to have [i] as the initial marking as it corresponds
to the creation of a new case, so much so, we restrict our attention to WF-net
(PN, [i]). The following result holds [vdA97,VBvdA01] (Fig. 4 depicts such an
equivalence).

Theorem 2. A WF-net PN is sound if and only if (PN, [i]) is live and bounded.

Soundness checking is intractable for arbitrary WF-nets. However, soundness
checking for free choice WF-nets can be decided in polynomial time [vdAHV02].
It can be indeed shown that the soundness of a BPM process would actually
coincide with the usual notion of soundness of WF-nets, and it can be performed
in polynomial time.

Theorem 3. Suppose PN = (P, T, F ) is a free-choice WF-net. Then the fol-
lowing are equivalent.

1. (PN, [i]) is 1-safe and free of deadlock (satisfies the CTL formula).
2. (PN, [i]) is live and 1-bounded.

Proof. (1) ⇒ (2): As (PN, [i]) is free of deadlock and 1-safe, it is possible to
reach a marking M which assigns a single token only to place o and no token to
any other place. Now fire the transition t∗ from this marking. In the new marking
place i contains a single token, from where the original net can be simulated,
which generates only safe markings as (PN, [i]) is 1-safe. Hence (PN, [i]) is 1-
bounded. Now to prove (PN, [i]) is live. Let t be the first transition (traversing
the underlying graph in a breadth-first manner) which cannot be fired under
a marking M ′ reachable from [i]. Without loss of generality, suppose there are
two places (not final) p1, p2 ∈ •t where M ′(p1) > 0,M ′(p2) = 0. As the net is
free-choice both these places cannot simultaneously feed tokens into any other
transition. We can still reach other configurations from this marking, specifically
a marking M which assigns a single token only to place o as before. However, p1
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will continue to hold tokens under M also, which is a contradiction. Therefore,
(PN, [i]) is live.

Now to prove (2) ⇒ (1): If (PN, [i]) is 1-bounded then the original net is
safe. Suppose (PN, [i]) is live. It implies that for every reachable state M from
[i] there is a reachable state in which t∗ will be enabled. In particular, from any
state M which is reachable from state [i], one can reach a state Mf + o2 where
•t∗ = {o}. In this state t∗ can be enabled. If t∗ is fired, a new state, say Mf + i
is reached. As (PN, [i]) is 1-bounded, Mf has to be equal to the empty state.
It is easy to see that Mf + o is the desired final state, hence (PN, [i]) is free of
deadlock, that is, it satisfies the CTL formula. �

Now we establish the connection between p-soundness and soundness of free-
choice WF-nets.

Theorem 4. Let PN be a sound free-choice WF-net. Then the short-circuited
PN is S-coverable.

Proof. By hypothesis PN is free-choice, live and bounded. By a result (Theorem
5.6 in [DE95]) every Petri net which is free-choice, live and bounded must be
S-coverable. �
The following theorem says that S-coverability of a short-circuited WF-net is a
sufficient condition for 1-boundedness of the net.

Theorem 5 (Theorem 4.4 of [VBvdA01]). Let PN be a WF-net and its short-
circuited WF-net PN S-coverable. Then (PN, [i]) is 1-bounded.

Theorem 6. Let PN be a free-choice WF-net. Then PN is sound if and only
if PN is p-sound.

Proof. Suppose PN is sound. Then (PN, [i]) is live and bounded. By
Theorem 4 PN is S-coverable. So, by Theorem 5, (PN, [i]) is 1-bounded. Hence
PN is p-sound by Theorem 3. The other side also follows from Theorem 3. �
Theorem 7. Let P is a well-formed process model having a unique start node
and a unique final node. Assume pertriconvert(P) = PN , then

1. PN is a free-choice WF-net.
2. PN is sound if and only if P is sound.

Proof. Use Theorems 1 and 6. �

5.2 Multi-terminal Petri Nets to WF-nets

We have seen that soundness of processes can be checked using the results on
soundness of WF-nets, the crux of the proof lies in mapping processes to Petri
nets preserving soundness/p-soundness. However, one needs to check whether all

2 The notation M + p stands for a marking which assigns exactly one token to place p.
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the Petri nets which are created through the mapping are WF-nets. If a process
has multiple start nodes then we put a fork (AND-split) to connect them which
results in a process having one single start node, which in turn, gets mapped
into a Petri net with a unique start place. For Petri nets having multiple final
places, we adopt an algorithm due to Kiepuszewski et al. [KtHvdA03]) in which
a p-sound Petri net with multiple end/final places can be converted into a net
with a single final place. New edges are added to the net so that every end
node is marked in every run. Finally, all the end nodes of the original node are
joined with a dummy end node by using a synchronizer. This algorithm preserves
the p-soundness of the original multi-terminal Petri net. We call this mapping
“extend”.

Let the original Petri Net be a tuple N = (P, T, F ) and the Petri net obtained
after applying the construction be N ′ = extend(N) = (P ′, T ′, F ′). We formally
describe the construction along the lines described in [FFJ+11].

– Γ ⊆ P is defined as the set of final places of N
– For each p ∈ Γ let Back(p) ⊆ P ∪T be the set of all nodes having a path to p.
– For each place q ∈ Back(p), Tq is defined as the set of transitions connected

from q but not belonging to Tq, i.e., Tq = {t ∈ T | q ∈ Back(p) ∧ q ∈
P s.t. (q, t) ∈ F, for t ∈ T, but t �∈ Back(p)}.

The extended Petri net N ′ = (P ′, T ′, F ′) is defined as:

– P ′ = P ∪ {pf}, where pf is the new unique final place.
– T ′ = T ∪ {tf}, where tf is a new transition.
– F ′ = F ∪ {(t, p) | p ∈ Γ ∧ t ∈ Tp} ∪ {(p, tf ) |p ∈ Γ} ∪ {(tf , pf )}
Let us now take an example of a Petri net N (originally from [KtHvdA03]) shown
in Fig. 3(a) to illustrate the construction above. In N , we have

Γ = {p8, p9, p10},

Back(p8) = {p1, t1, p2, t2, p3, t3, p8},

Back(p9) = {p1, t1, p2, t4, p4, t5, p5, t6, p6, t8, p9},

Back(p10) = {p1, t1, p2, t4, p4, t5, p5, t7, p7, t9, p10},

Tp8 = {t4}, Tp9 = {t2, t7}, Tp10 = {t2, t6}.

The extended net N ′ is shown in Fig. 3(b) which has a unique final place. The
following theorem holds.

Theorem 8 [KtHvdA03]. Let N be a p-sound free-choice Petri Net. Let N ′ be
the Petri net obtained by using the construction above, i.e., N ′ = extend(N).
Then N ′ is also free choice and the nets N and N ′ are bi-similar. Also N ′ is
p-sound. Moreover, N ′ is linear in the size of N .

Proof. The first part of the theorem follows from Theorem 5.1 in [KtHvdA03].
As p-soundness checking implies verification of CTL properties (see Sect. 4) and
bi-similarity preserves CTL formulas, N ′ is also p-sound.
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Fig. 3. Illustration of the construction Extend

In the constructed Petri net extend(N) only a new transition tf and a place
pf are introduced. Hence the size of N ′ is linear in size of the N . �

In fact, bi-similarity also preserves p-soundness in the other direction, i.e., if
extend(N) is p-sound then so is N . In fact, as a by-product we arrive at the result
that the soundness checking of a BPM process can be decided in polynomial time
in the size of the process. For that we use the equivalent conditions of soundness
for the three formalisms in Fig. 4.

Corollary 2. The soundness checking of a BPM process can be decided in poly-
nomial time.

Proof. Suppose the BPM process P contains only one start event and a final
event. Then mapping petriconvert will produce a WF-net NP preserving the
soundness, which is linear in size of P (Theorem 7 and Proposition 1). The
soundness of NP can be decided in polynomial time, this uses time that is cubic
in the size of the process model, by using the rank theorem for Petri nets [DE95].
Hence the claim follows. If P contains multiple start events then we can add a
new start event which would connect all the old start events through a AND-
split. In case of P having multiple end events, it is converted to extend(P) which
is linear in size of P (Theorem 8). Then repeat the step as before to conclude
that soundness of P can be checked in polynomial time. �

Notice that such a result was already known in view of the work on decom-
position of processes in [VVL07] and workflow related analysis in [vdAHV02].
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Fig. 4. Equivalent conditions for soundness for three models

However, we emphasize that we can also arrive at this result through our
analysis.

We remark that the construction involving the extension of the Petri net
(referred to in Theorem 8) may generate spurious errors, as illustrated by the
example in Fig. 5. While the original net with multiple end nodes shown in
Fig. 5(a) contains only a deadlock error (a marking under which t2 is enabled,
and places p2 and p3 contain tokens), and is 1-safe, extend(N) contains the same
deadlock and is not 1-safe (a marking which puts 2 tokens in places p4 and p7).

Fig. 5. An example of extended Petri Net with spurious error
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6 Checking Soundness of WF-nets with Woflan

A process is verified for soundness by looking for the absence of control-flow
related errors such as, deadlock and lack of synchronization. As observed before,
in this work, we convert processes to Petri nets (preserving behaviors due to
soundness) and use the tools available for the analysis of Petri nets for soundness
checking. There has been some work on soundness checking of industrial process
models in [FFJ+11] where the authors chose to work with both LoLA and Woflan
tools. These tools are robust and produce reliable results with useful diagnostic
information. However for reasons mentioned earlier, we choose to work only with
Woflan for checking soundness, thus obtaining useful diagnostic information, and
further integrate these results with our in-house modeling tool InFlux under
windows environment.

Woflan (WOrkFLow ANalyzer) [VBvdA01], is a tool used for checking the
soundness of work flow models. This tool uses a combination of Petri net analysis
techniques such as structural Petri net reduction and S-coverability, and a form of
state space exploration. It analyzes the process model specified in terms of WF-
net for syntactic correctness and qualitative properties like soundness. Woflan
takes an input a model in the form of a WF-net. It reports an error if the input
is not in the specified form of a WF-net. Then it checks if the short-circuited net
(with an additional transition connecting the sink place with the source place)
is bounded (also called proper Workflow). It also verifies whether the short-
circuited net is live, thus verifying if the original net is sound. It can generate
diagnostic report on unsound processes indicating the exact nature of the errors
and location of their occurrences.

The diagnosis analysis of Woflan is carried out by detecting errors at differ-
ent stages (executed in a step-by-step manner) [VvdA00,VBvdA01]. The diag-
nosis process is started by importing the WF-net from some modeling tool. As
mentioned above, Woflan checks whether the imported net corresponds to the
definition of a WF-net. If it does not, the tool supplies the diagnostic infor-
mation such as, the list of tasks that are not connected to the source place,
and/or absence of a sink place etc. At this stage the diagnosis process should
stop, and the designer must make the necessary modifications to the WF-net.
In the next step, Woflan checks if any thread of control cover exists. A thread
of control cover is reflected by an S-component in the short-circuited WF-net.
The tool returns the list of S-components in the short-circuited WF-net, as well
the list of places not contained in any of these S-components. A place that does
not belong to a thread of control (i.e. a S-component) is a suspicious place
which can potentially lead to un-soundness. Nevertheless, it is possible to con-
struct an unsound net which becomes S-coverable on short-circuiting. If there
are no uncovered places then the net is 1-bounded. Moreover, if the WF-net
is free-choice then the net is sound. Woflan provides another diagnostic infor-
mation on the free-choice property in terms of the set of so-called confusions.
A confusion corresponds to a non-free-choice cluster, where a cluster is a con-
nected component of a net obtained by removing all arcs from transitions to
places. A non-free choice cluster normally is a combination of XOR-split and
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AND-join (see Fig. 2(b)). Woflan also searches for mismatches along with con-
fusions. There are two kinds of mismatches, AND-OR mismatch and OR-AND
mismatch which correspond to TP-handle and PT-handle respectively. A mis-
match occurs, for example, when two parallel flows created by an AND-split
are joined by a XOR-join (AND-OR mismatch), or two alternate flows created a
XOR-split are synchronized by an AND-join (OR-AND mistmatch). Woflan pro-
vides the diagnostic information by reporting all the TP-handles and PT-handles
in the short-circuited net. The subset of these handles in the non-circuited nets
(i.e., both the paths between two nodes of the pair do not contain the short-
circuited transition) produce the useful information, they often reflect AND-OR
and OR-AND mismatches. These information will be exploited for soundness
checking method that we would employ. The tool further detects uniform invari-
ant cover, weighted invariant cover, improper conditions etc [VBvdA01] which
will not be of much relevance to our work. The tool also looks for absence of
dead tasks and live tasks even if each place belongs to a thread of control cover
as the WF-net may still be unsound (e.g. when it is non-free-choice). If there
are none, it can be concluded that the net is sound.

The diagnosis view exhibits all properties of the WF-net in a tree-like man-
ner. The root corresponds to the name of WF-net. It has two child nodes: the
top one shows the diagnosis results, and the other one captures the diagnostic
properties as depicted in Fig. 8. The diagnosis result reflects the results gener-
ated because of main properties (workflow properness, thread of control cover,
confusion, mismatches etc.). Each of these results is captured by a dialog box
supplied by the tool (see Figs. 8(b) and (c)). Again the node for diagnostic prop-
erties puts together all the diagnostic information provided by all dialogs (see
Fig. 8(d)).

7 Error Detection and Diagnosis Report for Process
Models

In this section we discuss the steps we follow for checking and diagnosing errors
for BPM processes. First, we discuss different kinds of errors that occur in
processes.

7.1 Errors Occurring in Processes

As described in [RSBR14], we associate two kinds of errors associated with
process models: syntactic errors and control-flow related errors. Syntactic errors
are often caused by poor modeling practices leading to non-conformance to well-
formedness of processes [RSBR14]). The syntactic errors are listed in the first
part of Table 1. Note that the list is complete with respect to the definition of
a well-formed process and as such a well formed process does not contain any
syntactic error. Figure 6(a) gives an example of a process with no error and
Fig. 6(b) an example of a process with syntactic errors. There are two typical
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Table 1. Errors in processes

Nature of error Accumulation node

Syntactic error

1. Start node with multiple outgoing Start node

edges [Multi start]

2. End node with multiple incoming End node

edges [Multi end]

3. Task node with multiple incoming/ Task node

outgoing edges [Multi task]

4. Hanging node [Hanging] Hanging node itself

5. Gateway with multiple incoming/ Gateway node itself

outgoing edges [Multi gateway]

Control flow-related errors

6. Deadlock [Deadlock] The gateway in the associated SESE

fragment where token gets stuck

7. Lack of synchronization [Lack of synch] The gateway in the associated SESE

fragment where multiple tokens can pass

control flow related errors that can take place in processes as mentioned in
Sect. 3: deadlock (Fig. 6(c)) and lack of synchronization (Fig. 6(d)).

With each error ε we associate an accumulation node εα, which indicates the
exact location of error occurrence; this will be needed later to calculate the depth
of an error. For example, for the error Multi start (in Table 1) the accumulation
node is the corresponding start node, while for Multi end it is the appropriate
end node. The accumulation points for other syntactic errors are listed in Table 1.
Finding out the accumulation point for control flow related errors is somewhat
tricky. Recall that a deadlock occurs when a token gets stuck on a non-sink
edge which would be an incoming edge of gateway node, an AND-join. This
node is the accumulation node for this deadlock error, (e.g., the gateway G2 in
Fig. 6(c)). A lack of synchronization occurs when an edge has got multiple tokens
in a reachable state. The node from which this edge emanates is a gateway node.
(e.g., the gateway XOR-join G2 in Fig. 6(d)). This join node is the accumulation
point for this lack of synchronization error. The method of identification of these
accumulation points through our diganostic analysis is discussed later.

7.2 Preprocessing to Find Syntactic Errors

For error detection purposes, we abstract out the control flow graph of the
process and carry out a depth-first search of this graph. The reason for detecting
syntactic errors in the beginning is many-fold. Although an off-the-shelf model
checking tool such as Woflan [VBvdA01,VvdA00] can detect syntactic errors
like hanging nodes or dead tasks (tasks that do not lead to a final place) there
is no need to feed models with syntactic errors to these verification tools, when
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Fig. 6. Different kinds of errors occurring in InFlux Processes

they can be filtered using a pre-processor. These errors can create various prob-
lems. A start node with multiple outgoing edges causes ambiguity, whereas an
end event with multiple incoming edges can cause the process to terminate more
than once. An activity with multiple incoming edges can be executed twice while
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Fig. 7. Detection and Diagnosis of errors: schematic view

it is difficult to provide semantics for an activity with multiple outgoing edges. A
hanging node does not lead to a successful termination of the process. A gateway
with multiple incoming and outgoing edges can behave simultaneously as a split
and merge node. If a BPM process does not contain any such error we move to
the second level of error checking by performing soundness analysis with the aid
of formal verification. The different steps taken for detecting errors for processes
are shown in Fig. 7(a).

7.3 Verifying Soundness with Woflan

As the mapped WF-net is provided as an input to Woflan tool it checks if
this net corresponds to the definition of a WF-net, which is always the case
because of the preprocessing steps. Next we verify the soundness of a WF-net
by exploiting its free-choice property. The tool checks for the presence of any
thread of control cover of the input WF-net, which boils down to checking if the
short-circuited net is S-coverable. If each of the places belongs to some thread of
control cover, then the net is S-coverable and hence 1-bounded by Theorem 5,
and the original process does not contain any lack of synchronization. However,
the net might still not be sound. In the next step, the tool searches for non-
live or dead transition in the short-circuited net by exploring state space, which
would correspond to deadlock in the original process. If it fails to find one such
transition it decides that the net is sound (from Theorem 6) and so is the original
process (by Theorem 7). In case a dead transition or a non-live transition is found
we choose the one which appears first in the list, then we look for the pre-set or
post set of this transition. As we have the original process at our disposal we use
the inverse of mapping petriconvert shown in Fig. 1 to find out the corresponding
edge in the process and subsequently, the gateway that is causing the deadlock.

If the short-circuited net is not S-coverable, that is, there are some places
which are not covered by some threads of control, then the (free-chioce) WF-net
is not sound and hence the original BPM process is not sound. This follows from



252 S. Roy and A.S.M. Sajeev

Theorem 4. The places detected thus are suspicious places and possible sources of
unsound behavior. However, we get the useful diagnostic information in the next
step where the tool catches mismatches (confusions are non-existent as the net is
free-choice). A mismatch is actually a TP-handle or a PT-handle. The tool clearly
marks out two disjoint paths in the handle detected with source place/transition
and sink transition/place properly identified. By Corollary 1 we can find out the
corresponding SESE block which contains the relevant error. Further the inverse
of mapping “petriconvert” will map the pre-set of sink transition/sink place to
the appropriate edge on the process, from which the accumulation node of the
error (that will correspond to pre-set/post-set of this edge as the case may be)
can be found. A schematic view of our diagnostic analysis is shown in Fig. 7(b).

There are situations when spurious (control flow related) errors will be gen-
erated for the mapped WF-nets as observed in Sect. 5 and shown in Fig. 5. How-
ever, these errors are eliminated at the net level itself and are not reflected on the
original process. Let N = (P, T, F ) be the original net and N ′ = extend(N) =
(P ′, T ′, F ′) be the net obtained after applying the construction discussed in
Sect. 5. Let ε be an error detected on N ′ and N ′

ε = (P ′
ε , T

′
ε , F

′
ε) be the mismatch

generated by Woflan tool corresponding to this error. If P ′
ε ∩ (P ′ \ P ) = ∅ and

T ′
ε ∩ (T ′ \ T ) = ∅ then ε is not a spurious error, otherwise it is spurious and is

not reported.

7.4 Diagnostic Information

In the end, our tool will print diagnostic information on the process under con-
sideration. In the case of syntactic errors it highlights the accumulation node for
each of the errors along with incident edges. For control-flow related errors we
can identify the SESE block containing the error as discussed before and high-
light the block along with the corresponding accumulation node on the process.
In the end, we generate a text report for all the errors detected through our
tool. Our method seems to scale well as we have been able to detect and report
all the errors of a process model having 1154 nodes and 102 sub-processes. This
model contains 254 errors, one such error (Multi task) is nested as deep as the
7th sub-process level.

As an example let us consider a process shown in Fig. 8(a). Its correspond-
ing mapped Petri net is also shown. The diagnosis views due to lack of thread
of control cover and PT-handle (OR-AND mismatch) are shown in Figs. 8(b)
and (c) respectively. The diagnosis report appears in Fig. 8(d) and the errors are
highlighted in Fig. 8(e).

8 An Experience with Diagnosis of Industrial Models

In this section we use our diagnostic framework to locate errors in industrial
process models and report our experience to analyse the efficacy of this frame-
work on industrial BPM models. One hundred and seventy four models were
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Fig. 8. An example process and Diagnostic information provided by Woflan
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Table 2. Sub-processes and swim-lanes statistics (total no. of processes = 174)

Minimum Maximum Mean Std. Dev.

Sub-processes in a process model 0 124 6.59 20.23

Swim-lanes in a process model 0 202 11.75 26.86

Table 3. Descriptive statistics of sub-processes (total no. of 1262 sub-processes)

Minimum Maximum Mean Std. Dev.

Sub-process size 0 118 11.6 10.38

Swim-lane interactions 0 57 2.27 4.72

Coefficient of connectivity 0 2.5 0.99 0.28

Sequentiality 0 1 0.58 0.33

made available to us from a repository of Infosys. They were from seven differ-
ent business domains ranging from banking to communication, to healthcare and
energy. The models are checked for syntactic errors, followed by soundness. The
input models were captured using the graphical editor built within the InFlux
tool. The steps in the diagnostics analysis are shown in Fig. 7(b)3.

Descriptive Statistics. The number of sub-processes in the sample models varied
from 0 to 124, and the number of swim-lanes from 0 to 202 (See Table 2). Table 3
gives the descriptive statistics of the different metrics [RSBR14] of the sub-
processes in the models. The tool detected 2428 errors in the sub-processes.
Our method seems to scale well as we have been able to detect and report all
the errors of a process model having 1154 nodes, 102 subprocesses; this model
contained 254 errors with one of the errors nested as deep as 7th subprocess level.
Table 4 captures the proportion of different types of errors found (See Sect. 7.1
for an explanation of each error type).

We analyzed the errors further to understand at what depth the errors fre-
quently occur and how they correlate with the size of the subprocesses and the
interaction between swim-lanes in the models. Here the size of a subprocess
denotes the number of nodes appearing in it and the interaction between swim-
lanes is the total number of flow-edges which pass from one swim-lane to another.
Finally, the depth of an error is the shortest distance between the start node of
the process and the accumulation node of the error.

Error Depth versus Error Frequency. We study the shape of the curve of error
frequency vs error depth in process models. As more than one error may occur in
a process model we consider the error depth of a process as the depth of the error
which is maximum of all depths of errors in that process. The original hypothesis
is that there is a non-linear relation between these two variables in process models

3 WPD stands for Worflow Process Definition [VBvdA01], it is actually a proper
WF-net.
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Table 4. Error percentages

Error type Number Percent

Multi start 20 0.8

Multi end 300 12.4

Multi task 1211 49.9

Hanging 499 20.5

Multi gateway 389 16

Deadlock 9 0.4

Lack of Synchronization 0 0

Total 2428 100

Fig. 9. Relation between Error Frequency and Error Depth

across all the domains. The scatter diagram (Fig. 9(a)) supports this hypothesis.
The correlation co-efficient between these two variables is ρ = 0.585 and in the
hypothesis testing p-value is turns out to be less than 0.001 which again re-
confirms the hypothesis. Further investigation is needed to understand why this
behavior is observed.

Further we fit the data into some regression model by the method of curve
fitting. It is impossible to build regression model of exponential and logarithmic
fitting. We produce the curve fitting of error frequency with error depth excluding
the models with zero errors in Fig. 9(b). The goodness of fitting can be measured
by R2 values depicted in the Table 5, in which logarithmic and power models
cannot be computed. It shows the highest R2-value is attained for quadratic
curve fitting.

Correlation of Errors with Subprocess Structures. We performed correlation
analyses to test the following hypotheses. For a sub-process its error occurrence
is defined as the number of errors occurring within the sub-process divided by
the total number of errors in the process, while error occurrence for a process
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Table 5. Parameter estimates for fitting curve between error depth (indep variable)
and error frequency (dep variable)

Model summary Parameter estimates

R2 F df1 df2 Sig Const b1 b2

Linear 0.473 117.664 1 131 0.000 −4.980 1.000 -

Logarithmic - - - - - - - -

Quadratic 0.486 61.495 2 130 0.000 0.448 0.572 0.003

Compound 0.468 115.470 1 131 0.000 2.772 1.029 -

Exponential 0.468 115.470 1 131 0.000 2.772 0.028 -

with no sub-process is always 1. We do not consider sound processes (with no
error) for this analysis.

– Error occurrence is positively correlated with number of swim-line interactions
of a sub process. This hypothesis is based on the observation that swim-lane
interactions increase the coupling between sub-processes. Prior research in
software engineering has shown that coupling increases error occurrences (for
example, see [SB91]). This hypothesis is supported by a statistically significant
correlation (p < 0.001) for the total number of errors and also the fact that
the higher value of the correlation (measured as Pearson ρ = 0.579) indicates
that there is strong influence of swim-line interactions on sub-process errors.

– Error occurrence is positively correlated with the size of sub-processes. The
reason is that as size increases, the chances of modelers committing design
errors increase. This hypothesis is also supported by a moderate and positive
correlation (ρ = 0.497, p < 0.001) for total number of errors. Thus the size of
sub-processes and swim-line interactions could be better determinants of error
probability.

The correlation is significant and strong for syntactic errors with Interaction
between swim-lanes and size of sub-processes (ρ = 0.82, 0.98 respectively). This
is statistically significant by hypothesis also (p < 0.001).

Table 6 shows the correlations (Spearman’s ρ) and their statistical signifi-
cance. We used Cohen’s criteria to test the strength of correlations whereby a
value of ρ being 0.5 or above is considered to be strong, between 0.3 and 0.5
moderate and between 0.1 and 0.3 weak. We do not consider deadlock errors as
there is no significant correlation between error occurrence and deadlock errors.

Logistic Regression Analysis. In our previous work [RSBR14], we looked at the
relationship between error occurrence in a process and several associated metrics.
In addition to size, three metrics were used to derive a predictive statistical model
for error probability; coefficient of connectivity, sequentiality and structuredness.
Here we repeat the analysis to see how these metrics would relate to error prob-
ability at the sub-process level. The dependent variable is a boolean variable
‘hasError’, which assumes a value of 1 if the sub-process has an error, otherwise
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it is 0. The independent variables considered are sub-process Size, Coefficient of
Connectivity, Sequentiality and Structuredness (for definitions see [RSBR14]).
All variables make statistically significant contributions to the model.

The model fit is very good with χ2(4, N = 1261) = 720.68 (p < 0.001),
indicating that the model is able to distinguish between cases those have errors
and those have not. The Cox & Snell R Squared and Nagelkerke R squared values
show that variations between 43.5 % and 58.8 % in the dependent variable are
explained by the model.

The following equation predicts the presence of an error if p(es) > 0.5 where:
p(es) = ex/(1 + ex) and

x(QP) = 0.268 ∗ SN (QP) + 1.191 ∗ CNC(QP)
− 4.601 ∗ Ξ(QP) − 1.05 ∗ Φ(QP)

which is parameterized by the sub-process QP occurring in a process P. As the
Size and Coefficient of Connectivity of the sub-process increase, the probability
of the sub-process having error(s) increase, whereas sub-processes with higher
Sequentiality and Structuredness have lower probability of error occurrence.

Sensitivity (i.e., the percentage of cases with errors that are correctly pre-
dicted) and specificity (i.e., the percentage of cases without errors that are cor-
rectly predicted) of the regression model are 90.6 % and 77 % respectively.

9 Discussion

The aim of the work is to bring forth a cleaner representation of soundness
properties of (a subset of) business processes and soundness properties of Work-
flow nets (WF-nets), and a connection between them. We start by defining the
syntax and semantics of business processes and go on to define the soundness
of them. We also introduce WF-nets, and define their syntax and semantics.
Then we define soundness of WF-nets. We establish that the soundness of busi-
ness processes coincide with that of WF-nets that are obtained from business
processes through a (previously introduced) mapping. We have shown the equiv-
alence between soundness of two formalisms through some intermediate results
for which we provide rigorous proofs. We admit that in the process we borrow
some results which were proven elsewhere (for example Theorems 2, 4 and 5
etc.), the other theorems may have used them. Some of these results were not
explicitly stated before, e.g., Theorems 3 and 6, we provided proof for them

Table 6. Results related to correlations for error occurrence

No of errors Syntactic error

ρ p ρ p

Interaction between Swim-lanes 0.579 <0.0001 0.832 <0.0001

Size of Sub-processes 0.497 <0.0001 0.981 <0.0001
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also. Also we have stated and proved a direct result - Theorem 7, which links
the soundness of a process and a WF-net as depicted in Fig. 4. Theorem 1 is
stated differently in a different context in [vdAHV02]. We have chalked out a
clean proof of it in our setting which is one of the major contributions of our
work. Also we make use of the correspondence between a SESE fragment of a
process and a TP-handle or a PT-handle of the mapped WF-net (as captured
by Corollary 1) in our diagnostic framework, which is a novelty of our approach.

The equivalence result stated above (e.g., see Fig. 4) helps us to use the
efficient algorithm available for soundness checking of WF-nets for verification
of the soundness of business processes. As we are considering only well-formed
processes that can be mapped to free-choice Petri nets (Proposition 1) our frame-
work is capable of handling only a subset of free-choice Petri nets, though can
be extended to deal with non free-choice nets with some modifications. We
have shown that (proved elsewhere also [VVL07] using a different technique)
the soundness of this subset of Petri nets can be decided in polynomial time
in their sizes. However we use Woflan for supplying diagnostic information on
WF-nets which can be mapped onto the processes, and this tool uses state space
search for which the soundness checking can take up exponential time for the
industrial process models that we consider for our experiment.

10 Conclusion

In this paper we have provided a formal framework for a cleaner representation
of results on soundness of processes and its connection to Petri nets and WF-nets
with formal proofs (using some previously known results). These results nicely
tie the soundness of processes with that of WF-nets which can be verified with
the Woflan tool. Based on this analysis we propose a diagnostic procedure for
errors occurring in business processes using the relevant diagnostic information
provided by Woflan tools for WF-nets. We acknowledge that the Woflan tool
adopts state space search which can take exponential time, whereas the authors
in [VVL07] claim that they can perform soundness checking of business processes
(and provide some diagnostic information) in linear time using a decomposi-
tion technique in which the processes are broken down into smaller Single-
entry-single-exit components [VVK08]. Each such component is then checked
for soundness by employing heuristics. However, heuristics for some complex
fragments might be difficult to figure out and would need expert intervention.
This can be a major hindrance to automate diagnosis of processes. On the other
hand, our method is automated, and our experimentation with 174 commercial
BPMN models having 2428 errors has discovered that error detection in practical
commercial situations are not affected by the algorithmic complexity.

Further we have conducted an empirical analysis of diagnosis of errors in
BPMN-based business process models and their relationships with metrics. In
particular, this work has helped enhance the understanding of occurrence of
error at the sub-process and swimlane level which would be of help to modelers
for modifying the processes based on this information. Moreover, this will aid in
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predicting error probability based on the structural characteristics at the sub-
process level too.

The results of our study add to the knowledge of BPMN modeling community
in the following ways: (a) it provides a method to locate errors at exact locations
of the business process models, (b) it assists developers to make appropriate
changes to models once the errors are detected in any business process and
(c) it makes available a predictive model that the community can use to assess
error probability based on easy to measure metrics such as size, coefficient of
connectivity and structuredness computed at the level of sub-processes.
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In: Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS,
vol. 4749, pp. 43–55. Springer, Heidelberg (2007)

[WHM10] Weber, I., Hoffman, J., Mendling, J.: Beyond soundness: on the verifica-
tion of semantic business process models. Distrib. Parallel Databases 27,
271–343 (2010)

[Wol07] Wolf, K.: Generating petri net state spaces. In: Kleijn, J., Yakovlev, A.
(eds.) ICATPN 2007. LNCS, vol. 4546, pp. 29–42. Springer, Heidelberg
(2007)



MCC’2015 – The Fifth Model Checking Contest

Fabrice Kordon1(B), Hubert Garavel2, Lom Messan Hillah3,
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Abstract. The Model Checking Contest (MCC) is an annual com-
petition between software tools that verify concurrent systems using
state-space exploration techniques, either explicit-state or symbolic. The
present article provides a comprehensive account of the 2015 edition of
the MCC. The principles of the contest are described, together with its
underlying software infrastructure. The tools that competed in 2015 are
listed and the results of the contest are summarized.

1 Goals and Scope of the Model Checking Contest

For more than a decade, one has seen the emergence of software contests that
assess the capabilities of verification tools on complex benchmarks, so as to iden-
tify which theoretical approaches are the most fruitful ones in practice, when
applied to realistic examples. Notable events that have significant impact on the
involved communities include: the SAT competition (nine editions since 2002),
the Satisfiability Modulo Theories Competition (ten editions since 2005), the
Hardware Model Checking Contest (eight editions since 2007), the Verified Soft-
ware Competition (four editions since 2010), the Rigorous Examination of Reac-
tive Systems Challenge (five editions since 2010), the Timing Analysis Contest
(one edition in 2011), and the Competition on Software Verification (four edi-
tions since 2012). The existence of long-lasting events is a clear indication of
interest and usefulness.

The Model Checking Contest (MCC for short — five editions since 2011)
belongs to this family of scientific contests. It aims at evaluating model-checking
tools that analyze formal descriptions of concurrent systems, i.e., systems in
which several processes run simultaneously, communicating and synchronizing
together. Examples of such systems include hardware, software, communication
protocols, and biological models. So far, all editions of the MCC used Petri nets
c© Springer-Verlag Berlin Heidelberg 2016
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to describe such systems, but there is a long-term goal to open the contest to
other model-checking tools not primarily based on Petri nets.

Since the first edition MCC’2011 within the context of a workshop associated
to the Petri Nets conference, the contest team has attracted key people with
diverse knowledge, who are actively contributing to the selection of benchmark
models, the automated generation of temporal-logic formulas, and all technical
aspects related to performance measurements and tool assessment. Today, the
MCC team gathers scientists from CNRS, Inria, Université Pierre & Marie Curie,
Université Paris Ouest Nanterre La Défense, Université Paris 13, and Université
de Nantes.

The present paper reports about the fifth edition MCC’2015, which was orga-
nized in Brussels as a satellite event of the 36th International Conference on
Application and Theory of Petri Nets and Concurrency. This is the first publi-
cation devoted to the MCC since its origins, and it will be followed by detailed
presentations of the tools that reached the top-three podiums in June 2015. The
paper is organized as follows. Section 2 presents the collection of benchmarks on
which the participating tools are assessed. Section 3 explains how temporal-logic
formulas are automatically generated for the contest examinations. Section 4
details how tools are executed and how information is retrieved from their exe-
cution. Section 5 lists the participating tools, and Sect. 6 summarizes the results
of the contest. Finally, Sect. 7 gives some concluding remarks and suggests desir-
able enhancements for future MCC editions.

2 Collected Benchmarks

All tools participating in a given edition of the MCC are evaluated on the
same benchmark suite, which is updated every year. The yearly edition of the
MCC starts with a call for models inviting the scientific community at large
(i.e., beyond the developers of the participating tools) to propose novel bench-
marks that will be used for the MCC. The benchmarks obtained this way are
merged with those of the former years to form a growing collection (contin-
uously expanded since 2011) that gathers systems from diverse academic and
industrial fields: software, hardware, networking, biology, etc. This collection of
benchmarks1 is a perennial result of the MCC organization work — should the
contest halt, the collection would remain available to the scientific community.
The usefulness of this collection is already witnessed by over thirty scientific
publications2.

Models and Instances. The collection of MCC benchmarks consists of mod-
els, each corresponding to a particular academic or industrial problem, e.g., a
distributed algorithm, a hardware protocol in a circuit, a biological process, etc.
Models may be parameterized by one or a few variables representing quantities
such as the number of agents in a concurrent system, the number of message

1 The collection of benchmarks is available from http://mcc.lip6.fr/models.php.
2 The list of publications is available from http://mcc.lip6.fr.

http://mcc.lip6.fr/models.php
http://mcc.lip6.fr
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Table 1. Accumulation of models and instances over the years (supplemented with
the 2016 data)

Year 2011 2012 2013 2014 2015 2016

New models 7 12 9 15 13 11

All models 7 19 28 43 56 67

New instances, among which: 95 101 70 138 121 139

– new colored nets 43 37 24 33 27 9

– new P/T nets 52 64 46 105 94 130

– new NUPNs (among P/T nets) 0 0 1 5 15 62

All instances 95 196 266 404 525 664

exchanged and the like. To each parameterized model are associated as many
instances (typically, between 2 and 30) as there are different combinations of val-
ues considered for the parameters of this model; each non-parameterized model
has a single associated instance. Each instance corresponds to a Petri net that
will actually be submitted to all participating tools.

Models come from diverse sources: 34 % of the models originate from high-
level colored Petri nets, which are then automatically unfolded to P/T nets; 14 %
of the models have been produced from formal descriptions written in LOTOS
[18] or more recent process-calculi languages that translate to LOTOS, from
which Petri nets can be automatically generated using the CADP toolbox [17];
the remaining 52 % have been manually specified as genuine P/T nets, e.g., using
a graphical editor. Table 1 illustrates the growth of the collection since the first
edition of the MCC; the notion of NUPN (Nested-Unit Petri Net) is discussed
below.

All instances in the MCC benchmark collection are provided as PNML files
[19]. After each annual call for models, the MCC model team examines all
the files received to check their conformance to the PNML standard and, if
needed, normalize their contents to avoid some known ambiguities of PNML
— for instance, to give the same value to the id and name attributes of each
place and each transition (thus ensuring unique naming conventions across all
the participating tools), and to replace multiple occurrences of arcs between the
same place and the same transition by a unique arc with multiplicity greater
than one.

Forms and Properties. Each MCC model is described in a form, which is a
two- or three-page PDF document giving a high-level description of the model:
origin, functionality, bibliographic references, and graphical representation (if
available). The form defines the model parameters, if any, and their correspond-
ing values, as well as the size (number of places, transitions, and arcs) of each
instance of the model. The form also lists essential properties of the model,
both structural (e.g., strongly connected, loop free, etc.) and behavioural ones
(e.g., safeness, liveness, reversibility, etc.) — the truth value of a property being
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unknown for those instances too complex to be analyzed. Finally, the form gives
information about the size of the reachable marking graph of each instance (num-
ber of markings, number of transition firings, maximal number of tokens per
place and per marking) — possibly with unknown or approximate answers. The
contents of the model forms evolve regularly, as new information and properties
are added every year.

Basically, each form is a LATEX file to be manually written by the person who
submitted the model. This approach raises practical issues, as the numerical and
Boolean answers provided for sizes and properties are sometimes incomplete or
erroneous. Moreover, the annual addition of new models in the collection and
of new properties in the forms makes manual handling cumbersome and error-
prone. To address this issue, an automated tool chain has been progressively
developed by the MCC model team: each P/T net instance is processed in
sequence by two tools, PNML2NUPN [10] and CÆSAR.BDD [1], to produce
a LATEX file containing numerical and Boolean answers that help checking and
completing manually-written model forms. This tool chain works satisfactorily,
although with three limitations: (i) it does not handle colored-net instances —
but their structural and behavioural properties, as well as the size of their mark-
ing graphs, are expected to be the same as for the corresponding unfolded P/T-
net instances; (ii) for P/T nets that are not one-safe, answers given for behav-
ioural properties may be approximate; (iii) for large and/or complex instances,
behavioural properties also get approximate answers, as the symbolic (BDD-
based) marking-graph exploration (done using the CUDD library [2]) is halted
by a timeout after a few minutes.

Nested-Unit Petri Nets. A large proportion (43 %) of the MCC models are
one-safe P/T nets (also called elementary nets or condition-event systems). Even
if such nets are simpler than colored nets or general P/T nets, most related
verification problems are computationally hard, namely PSPACE-complete [15];
indeed, there are many one-safe P/T-net instances that no participating tool has
been able to entirely analyze so far.

A plausible explanation for such difficulties is that verification is made harder
because relevant information about the real systems to be modelled has been lost
when formalizing these systems as low-level Petri nets: preserving such informa-
tion all along the modelling and analysis steps would hopefully make verification
easier. This is the motivation behind Nested-Unit Petri Nets (NUPN for short)
[16], a P/T-net extension that retains structural and hierarchical information by
recursively expressing a net in terms of parallel and sequential compositions.

In 2015, the NUPN paradigm was adopted by the MCC team to foster
progress in the analysis of large models. A PNML tool-specific extension3 has
been defined to incorporate NUPN information in PNML files, and 8 models
(totalling 21 instances) have been enriched with NUPN information. At present,
4 model checkers (CÆSAR.BDD, ITS-Tools, LTSmin, and pnmc) are already
able to exploit the NUPN information.

3 See http://mcc.lip6.fr/nupn.php.

http://mcc.lip6.fr/nupn.php
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3 Formulas

Tools competing in the MCC are evaluated over four categories of verifica-
tion tasks: state-space generation, reachability analysis, LTL analysis, and CTL
analysis. To maximize tool participation, we further divided the three latter
categories into subcategories containing only formulas with a restricted syntax.
In 2015, we progressed in the consolidation of these formula languages and pro-
vided simplified BNF grammars for each (sub)category, still preserving backward
compatibility with previous MCC editions.

Each tool developer may choose in which categories/sub-categories the tool
participates. For each model instance and each subcategory, 16 formulas are
automatically generated and stored into a single XML file (of which a textual
version is also provided for the convenience of tool developers). Each tool par-
ticipating in the corresponding subcategory is requested to evaluate, on the
corresponding instance, all or part of the formulas contained in the XML file.

One of the main criticisms about the formulas generated for MCC’2014 was
that many of these formulas were trivially true or false, or could be decided
immediately by examining only the initial state or a small fragment of the state
space. Generating formulas that are “harder” to model check (not to say realistic
verification goals) is a difficult problem, at least because: (i) we need a large
amount of formulas (in 2014, we used about 40 000 formulas), and (ii) we usually
have little knowledge about the expected properties of the MCC models gathered
over the years (namely, only a few models come with associated “meaningful”
properties).

To improve the quality of formulas, in 2015 we adopted a new strategy for
their generation. Using the grammar of each category, we generated random for-
mulas of up to certain depth (7 operators). We subsequently filtered all generated
formulas, in two steps. First, we used SAT solving to filter out formulas being
equivalent to true or false independently of the model. Each formula passing
the SAT filter was then submitted to SMC [12], a CTL bounded model checker
that we developed ad-hoc for the competition. If SMC was able to decide the
satisfiability of the formula by examining only the first 1000 reachable states
(computed using BFS exploration), then we discarded the formula. Otherwise,
we considered the formula to be hard enough and included it in the XML file.
The process continued until either we found 16 hard formulas or we had exam-
ined 320 (= 20 × 16) random formulas. In the latter case, we completed the file
with (up to 16) random formulas, which might be fairly easy to solve; such a
situation mainly happened for small nets having less than 1000 reachable states,
or when the formula syntax in a given category made it difficult to find hard
formulas — the particular grammar chosen for formula has an impact in this
respect, and this is indeed something to work on for the next editions of the
MCC.

Among the formulas submitted to SMC, 33.0 % were declared satisfiable,
57.4 % unsatisfiable, and 9.6 % hard. In other words, less than 10 % of the gen-
erated random formulas were actually retained. About 11.3 % of the XML files
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had to be completed with at least one random formula, leading to a proportion
of 8.7 % non-hard formulas.

The generation-and-filtering strategy took about two days of CPU to pro-
duce the 65 490 formulas used in the 2015 edition. The higher quality of this
generation process is confirmed by the increase of CPU time required to process
all examinations on all models for all tools. Compared to MCC’2014 (157 days
of CPU time), we observed a ten-time increase for MCC’2015 (1541 days of CPU
time) where only a two-time increase was expected, based on the new models and
larger set of formulas introduced in 2015. Such a larger increase, which actually
matches the aforementioned filtering rate (9.6 %), clearly indicates that the new
strategy produces more demanding formulas that better exercise the capabilities
of model checkers.

4 Monitoring Environment and Experimental Conditions

Due to, at least, the growth of the MCC collection of benchmarks, the number
of required executions to evaluate tools is increasing every year. From 54 293
in 2013, it grew to 83 308 in 2014, and to 169 078 in 2015. Such a number of
executions thus requires a dedicated software environment that can take benefits
from recent multi-core machines and powerful clusters. Moreover, we need to
measure key aspects of computation, such as CPU or peak memory consumption,
in the least intrusive way.

Since the second edition of the Model Checking Contest in 2012, we have
been confident that relying on virtual machines to operate tools is a suitable
solution. To achieve this in an automated way, we developed BenchK it [20], a
software technology (based on QEMU) for measuring time and memory dur-
ing tool execution. First used during MCC’2013, BenchK it was then enhanced
for MCC’2014 with new management facilities to ease its operation and, for
MCC’2015, with the possibility to assign several cores to virtual machines.

BenchK it is operated using configuration files that define consistent sets of
runs. Each run represents an execution, i.e., one tool performing one examination
on one (instance of a) model. To cope with the ever-increasing need for CPU,
we used several machines in 2015, namely:

– bluewhale03 (Univ. Geneva), a 40-core, 2.8-GHz machine with 512 GB of
RAM,

– ebro (Univ. Rostock), a 64-core, 2.7-GHz machine with 1024 GB of RAM,
– quadhexa-2 (Univ. Paris Ouest Nanterre), a 24-core, 2.66-GHz machine with

128 GB of RAM,
– small (Sorbonne Univ., UPMC), a portion of a cluster consisting of five 24-

core, 2.4-GHz nodes with 64 GB of RAM each.

These powerful computing machinery (152 cores in total) enabled each tool
to be run in a 64-bit virtual machine with 16 GB of memory and either one core
(for sequential tools) or four cores (for parallel tools).
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Fig. 1. Example of comparison chart between Tool1 and Tool2. Each point repre-
sents an execution and, if below (resp. above) the diagonal, indicates that Tool1 (resp.
Tool2) has won. Faulty executions are displayed on the top and right lines. The grey
color means the missing tool did not compete, and the red color means the tool was
disagreeing with the majority of other tools. (Color figure online)

To enable relevant comparison of executions between tools, we divided the
set of runs into several consistent subsets. Within each subset, all the exami-
nations related to a given model have been executed on the same machine for
all the tools. Then, from the raw data produced by BenchK it (execution time,
total CPU, memory peak, sampling of memory and CPU usage), we automati-
cally generated summary charts in HTML format. Figure 1 provides an example
of such a chart comparing two tools in a given examination. Such charts are
produced for all the possible tool comparisons and tell how well the verification
techniques implemented in the tools scale with the benchmarks under study.

The post-analysis scripts that aggregate data, generate summary HTML
pages, and compute scores for the contest are implemented using 15 kLOC of
Ada and a bit of bash. BenchK it itself consists in approximatively 1 kLOC
of bash.
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5 Participating Tools

Ten tools were submitted in 2015: Cunf [3], GreatSPN-Meddly [4], ITS-Tools [5],
LoLA 2.0 [6], LTSmin [7], Marcie [8], pnmc [9], PNXDD [11], StrataGEM
0.5.0 [13], and TAPAAL [14] (four variants, two of them using parallel com-
puting).

Table 2. List of participating tools in 2015 and the techniques they implement.
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Cunf Univ. Paris 13

(FR)

� � �

GreatSPN-

Meddly

Univ. Torino

(IT)

� � � �

ITS-Tools UPMC (FR) � � � � � � � �
LoLA 2.0 Univ. Rostock

(DE)

� � � � � �

LTSmin Univ. Twente

(NL)

� � � � �

Marcie Univ. Cottbus

(DE)

� � � �

pnmc IRT St-Exupery

(FR)

� � �

PNXDD UPMC (FR) � � �
StrataGEM Univ. Geneva

(CH)

� � � �

TAPAAL Univ. Aalborg

(DK)

� � � � �

Table 2 lists the participating tools, and indicates which classes of Petri nets
and which verification techniques are supported by each tool: parallel computing,
CEGAR, use of decision diagrams (symbolic approaches), explicit model check-
ing, unfolding, use of SAT/SMT solvers, use of state-compression techniques
(other than decision diagrams), exploitation of state equations, static variable
reordering, use of structural reductions, use of stubborn sets, exploitation of
symmetries, use of topological or structural information, unfolding transforma-
tion into equivalent P/T nets (for colored nets), and use of Nested-Unit Petri
Net (NUPN) information when available.

6 Results

All examinations on the models were processed in the following way. First, tools
were invoked on the “known” models (i.e. those of past years). Then, they were
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confronted with the “scrambled” models that are the “known” ones but pre-
sented as new ones. Finally, they had to process the new “surprise” models
(those submitted by the community in 2015). This led to 169 078 runs, from
which we extracted a much larger number of computed values (e.g., size of the
state space, maximum number of tokens per marking, result of a given formula)
that were stored and compiled in order to: (i) evaluate the reliability of the tools,
and then (ii) compute an overall score.

Computation of the Reliability of the Tools. Ensuring the reliability of
a verification tool is important. We thus decided to use the Model Checking
Contest for this purpose too. However, determining if the answers issued by
tools are correct is a difficult question, due to the lack of a reference verified
result. So, we compare the results of each tool to those of other tools, relying
upon a majority-based approach to compute the scores. This is done in three
steps: (i) identifying the set of values for which a majority of tools agree; we
need at least three agreeing tools to select such a value, (ii) identifying, for each
tool, the c computed values that are produced within this set, and (iii) checking,
within these c values, the n ones that are correct by the identified majority.

Table 3 (central part) summarizes the reliability rate we computed for each
tool. The four columns provide the following data: the computed rate, the num-
ber of correct values (C), the number of values in the selected set for the tool
(S), and, as an indication, the number of examinations the tool participates in
(i.e. provides at least an answer for one instance of a model). Then, the reliability
is trivially the ratio C/S.

Some outcomes need an explanation. There are tools with a lower reliability
rate such as GreatSPN-Meddly, ITS-Tools, LTSmin, or one of the TAPAAL
variants. In fact, these tools exhibited bugs introduced in recent development
(TAPAAL), or translation mistakes (in formulas for GreatSPN-Meddly and ITS-
Tools, in the PNML import for LTSmin). Such bugs could not be identified by
their developers before the full benchmark was passed and compared to other
tools outputs. We believe this is a valuable information for tool developers,
helping them to increase the confidence when implementing new algorithms.

In some cases, we also have tools for which the reliability rate was computed
on a very small dataset. Usually, these tools only participate in one examina-
tion. For PNXDD, we discovered too late a configuration problem in the virtual
machine that was only standing for scrambled and surprise models. We regret
this problem was not detected during the qualification procedure. StrataGEM,
and pnmc also participated in only one examination, which probably makes the
tool simpler, and thus easier to be more reliable.

We think the procedure is fair, even if rare cases where the majority of tools
might be wrong cannot be excluded. Some tool developers have reported that
they included the outputs of the MCC in their own built system to increase the
reliability of their tool, which will most probably lead, next year, to a better
reliability rate.

Computation of the Overall Score for Each Tool. All computed values
were then used to elaborate scores. Only correct values were considered and one
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Table 3. Summary of results — grey cells mean that the tool was among the top-three
winners. When there are several variants for a tool, only the best variant is considered
for the podium.

Reliability informations Examinations scores
Tool Rate Correct Selected Nb State Reach. CTL LTL

Cunf 96.96% 4728 4876 3 – 17894 – –
GreatSPN-Meddly 62.30% 11966 19206 10 6434 43686 withdrawn –

ITS-Tools 64.05% 10890 17003 4 10696 3rd 31279 – –
LoLA 2.0 97.80% 25796 26378 6 – 111869 1st – –
LTSmin 79.13% 13995 17687 5 7806 45060 – –
Marcie 92.52% 18443 19934 10 14714 1st 66579 3rd 33381 1st –
pnmc 99.59% 741 744 1 12554 2nd – – –

PNXDD 88.89% 56 63 1 562 – – –
STrataGEM 100.00% 243 243 1 5600 – – –

TAPAAL (SEQ) 99.88% 22880 22907 7 6132 79579 2nd – –
TAPAAL (MC) 99.75% 23247 23306 7 5966 76256 – –

TAPAAL-OTF (SEQ) 96.19% 19001 19733 7 3872 66316 – –
TAPAAL-OTF (PAR) 88.43% 15253 17248 7 3650 48129 – –

wrong value disqualifies the tool for the considered examination on the instance
of the model. When results were uncertain (i.e., only two distinct answers), the
respective reliabilities of the tools were compared to decide which tool was right.
We also discarded lonely answers from tools whose reliability was less than 0.9.
Then, outputs were weighted: ×1 for “known” models, ×2 for “scrambled” ones
and ×3 for “surprise” ones. Finally, points were summed up for each tool and for
each examination category: state-space generation, reachability formulas, CTL
formulas, and LTL formulas.

The right part of Table 3 summarizes this result. First, no tool did compete on
the LTL formulas, which is unfortunate. Marcie won the state-space generation,
followed by pnmc and ITS-Tools, which scaled well but exhibited low reliability
in many cases. LoLA won the reachability examination, followed by TAPAAL
(the “classical” sequential version), and Marcie. For CTL formulas, Marcie is
the only participant (and winner) because a bug was signaled too late by the
GreatSPN developers in the CTL translation; they preferred to withdraw the
tool from this competition.

We are aware that a single table cannot express all details4 found in the
hundreds of thousands charts and tables generated automatically from execu-
tion runs. However, we believe such results are useful for the community to:
(i) recognize the great effort of building prototype tools and use them for the
verification of real systems, (ii) identify the forces and weaknesses of these tools,
and (iii) participate in their improvement. In particular, we note that most of the
winning tools share a particularity: they combine several techniques, as shown
in Table 2.

4 See http://mcc.lip6.fr/2015/results.php.

http://mcc.lip6.fr/2015/results.php
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7 Conclusion — Future Evolutions

All in one, the fifth edition of the Model Checking Contest was successful and ran
smoothly, despite the many novelties introduced in 2015: support of Nested-Unit
Petri Nets (to open the contest to verification tools operating on concurrent state
machines), new XML syntax for temporal-logic formulas, enhanced techniques to
automatically generate non-trivial formulas, and virtual machines with multiple
cores in BenchK it. The main disappointment for the MCC team was the absence
of submitted tools participating in the LTL category: this could perhaps be
interpreted as a sign of decreasing academic interest in linear-time formulas
and, if confirmed over the coming years, a pragmatic answer to the longstanding
linear-time vs branching-time dilemma.

The following developments are planned for the next editions of the Model
Checking Contest:

– Concerning the models: future calls will enrich the collection with new models;
the forms will be made more detailed by adding a few missing model properties
(e.g., extended free choice); an online repository is being developed, which
will offer easy access (using web browsing or programming interfaces) to the
collection of models; the proportion of NUPN models is expected to grow,
as work is going on to automatically synthesize a NUPN structure for “flat”
1-safe nets.

– Concerning the formulas: the community will be actively encouraged to sub-
mit properties together with the surprise models, so as to have more “seman-
tically meaningful” formulas associated to each model; the grammar used to
describing the syntax of certain categories of formulas will be improved; the
generation algorithms will be improved to produce “higher-quality” formulas,
even at the cost of discarding some contest categories if necessary.

– Concerning the contest itself: new procedures will be added for an early detec-
tion of issues similar to that discovered too late with the PNXDD tool (see
Sect. 6); also, if tool developers agree, negative scores could be introduced to
penalize tools giving incorrect verdicts.
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are also due to the Universities of Rostock, Geneva, Paris Ouest Nanterre La Défense,
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Abstract. We report on the performance of the tool LoLA 2.0 in the
model checking contest (MCC) 2015. As in the years before, LoLA ranked
first in the reachability category of the contest. We identify critical suc-
cess factors and discuss the impact of the contest design. Conclusions
include further improvements for the tool as well as suggestions concern-
ing the setup of future contests.

1 Introduction

LoLA [27] (a Low Level Petri net Analyzer) is a tool for explicit traversal of the
state space of a place/transition net. Development started in 1997. The original
purpose was the validation of state-of-the-art state space reduction techniques
which now serve as the core set of verification techniques. LoLA is implemented
in the C++ programming language and available under an open-source licence
at www.service-technology.org. In 2014, version 2.0 was released. It can evalu-
ate arbitrary queries specified in temporal logic (LTL or CTL). Its particular
strength, however, is checking reachability of deadlocks or reachability of states
satisfying a given property. Several case studies [7,10,14,18,23,24] appreciate
the capabilities of LoLA to check reachability.

Consequently, LoLA has participated with constant success in the reachabil-
ity categories of the Petri net model checking contests (MCC) which have been
organized since 2011 [9]. The last competition taken into consideration for this
paper took place in 2015. Our main contribution here is the identification of
major factors for the sustaining success of LoLA.

We shall proceed as follows. First, we briefly elaborate on the design of the
MCC. This way, we can use data from the MCC for illustrating subsequent
observations. Then we analyse the impact of the explicit state space traversal
used by LoLA. Related to this topic, we go through available state space reduc-
tion techniques and their contribution to the overall performance. We continue
with looking at selected implementation details of LoLA. Finally we report on
design decisions that directly respond to challenges in the design of the MCC.

2 The Model Checking Contest

For a general introduction to the contest, we refer to the paper on MCC 2015
also in this volume. Here, we discuss only a few details that are relevant to our
subsequent discussion and that have not been reported there.
c© Springer-Verlag Berlin Heidelberg 2016
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In all subsequent numerical analyses, we shall ignore the “scrambled” models,
as the corresponding results are roughly the same as for “known” models. The
only difference is that there is slightly less time available for scrambled models
as their translation from the PNML [1] format into the input language of the
tool may require some of the available time.

We only reflect on the reachability category as this is the only one where
LoLA participated. This category was further divided into six subcategories:
deadlock, fireability, fireability-simple, cardinality, bounds, and compute-bounds.
In the deadlock subcategory, reachability of a deadlock (a marking that does not
enable any transition) in a given net instance is investigated. In the compute-
bounds subcategory, an arithmetic expression E referring to the number of
tokens on places is given. The task is to determine max{E(m) | m reachable}. In
all other categories, tools decide reachability or invariance of a given state pred-
icate. A state predicate is a Boolean combination of propositions. The subcate-
gories use different atomic propositions. The reachability competition comprised
a total of 3150 examinations containing 42525 individual queries for each tool.
34125 queries (all but the compute-bounds subcategory) have a Boolean result
and shall be the basis for subsequent analysis. This analysis considers only the
number of completed queries. We ignore the “honour” points that were issued
but had no significant impact on the ranking of tools.

In 2013, scores were calculated separately for each subcategory and each net
class (coloured, place/transition). That is, there was a winner for, e.g., deadlocks
in place/transition nets and another winner for fireability-simple in coloured
nets. In 2014, all subcategories were aggregated but net classes were kept sep-
arate (that is, there was just one winner for the whole reachability category
in place/transition nets, but a second one for reachability in coloured nets). In
2015, both subcategories and net classes were aggregated (that is, there was
only a single winner for the whole reachability category). None of the changes
was announced in the corresponding call for participation. Consequently, partic-
ipants were in the very unfortunate situation that they could not anticipate the
impact of their decisions (concerning participation in a category or subcategory)
w.r.t. the final scoring.

Supporting coloured net input and all types of atomic propositions requires
tremendous programming efforts and a deep understanding of semantic subtili-
ties of the particular input language concerning the arc inscriptions. In the past,
several tools attempted to support coloured nets but failed to integrate them
correctly. In 2015, this was one of the reasons for LoLA to win the reachability
competition despite rejection of any coloured net input. The substantial effort
for supporting coloured nets is even more problematic for newcomers to the
contest. Consequently, we would suggest to return to a separate scoring for the
two net classes, or to let tools choose whether to read a net instance either in
place/transition or in coloured net format, but to score the instance only once.
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3 Explicit Versus Symbolic Model Checking

Some participants in the MCC use symbolic verification techniques. Others,
including LoLA, do explicit state space verification.

An explicit model checker generates and evaluates states one by one. Its
main strategy for alleviating state explosion is to apply state space reduction.
That is, it traverses a subset of the reachable states that is as small as possible
yet, by construction, sufficiently large for evaluating the given query. Different
queries require different subsets to be traversed. Building a state space that
preserves several queries at once is not recommendable since it easily grows
beyond any limit. Consequently, LoLA processes a single examination (16 queries
for the same net instance) by generating 16 separate reduced state spaces. It must
carefully schedule the individual queries w.r.t. the available run time.

In symbolic model checking, an implicit representation of the set of reachable
states, or the set of paths through the system is generated. Here, we focus on
decision diagrams [3,4] for representing sets of states (other symbolic techniques
such as SAT based model checking [6] have not been used in the MCC). A
reachability check consists of generating a decision diagram that represents the
set of all reachable states, and then evaluating all queries in an examination.
The main strategy for alleviating state explosion consists of modifying the data
structure such that the representation of the set of states becomes as small as
possible. The representation depends on the net instance but not on the query.
Hence, most time is spent on generating the decision diagram while subsequent
evaluation of the queries is easy.

Reachability checkers based on decision diagrams and explicit reachability
checkers respond very differently to the size of an examination. Increasing the
size of an examination causes a proportional increase of run time for an explicit
tool since additional (reduced) state spaces need to be traversed. For a sym-
bolic model checker, the decision diagram still needs to be generated only once.
Evaluation of additional queries requires only little additional time. In fact, the
result sheets of MCC 2015 show that symbolic tools (e.g. Marcie [11]) return
either all answers (decision diagram generated in time) or no answer (timeout at
diagram generation) for a given examination in most of the cases. In contrast,
explicit tools more frequently return incomplete lists of answers to an exami-
nation. Hence, the size of an examination may create a substantial bias for or
against classes of participating tools and thus it should be chosen with care.

Call a query positive if it is a reachability query (EFφ in the temporal logic
CTL) returning true (reachable) or an invariance query (AGφ) returning false
(not invariant). Dually, call a query negative if it is a reachability query return-
ing false (unreachable) or an invariance query returning true (invariant). All
these kinds of queries appeared in the reachability competition (excluding the
compute-bounds subcategory where the result is an integer number).

An explicit tool, such as LoLA, typically applies on-the-fly verification. This
means that, as soon as a witness or counterexample marking is found, state
space generation for a positive query is stopped. In many cases, significantly
less time and space is needed than for full state space generation. In principle,
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Fig. 1. Final scores in the reachability category of MCC 2014 [15]

on-the-fly verification can be applied to a symbolic model checker as well. The
effect, however, is not as significant as for explicit state space tools. On negative
queries, on-the-fly verification has to generate the whole (reduced) state space.

The difference between explicit and symbolic model checkers could be
observed in MCC 2014 (see Fig. 1). Due to a less sophisticated procedure of
generating queries, more than 90 % of the queries were positive. Consequently,
LoLA and TAPAAL [8] (the other participant in 2014 that used explicit state
space methods) ranked a long way ahead of the symbolic tools. We conclude that
the proportion between positive and negative queries is another design parame-
ter in the contest that needs to be chosen with care. Explicit tools benefit from
a larger number of positive queries while symbolic tools will show better per-
formance on negative queries. After MCC 2014, we reported this insight to the
organizers. In response, the queries were balanced between positive and negative
in MCC 2015. In effect, the gap between explicit and symbolic tools was much
smaller in the reachability category.

The following numerical evaluation adds evidence to the thesis that explicit
tools greatly benefit from positive queries. In 2015, LoLA solved 12284 positive
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Fig. 2. Final scores in the reachability category of MCC 2015 [16].

queries and 6330 negative queries1. In comparison, the most successful symbolic
tool in MCC 2015, Marcie, solved 6250 positive and 4460 negative queries. The
numbers show that the performance of LoLA on positive queries, benefitting
from the on-the-fly principle, is the decisive strength of LoLA. The silver medal-
ist of the 2015 reachability competition, TAPAAL, solved 7720 positive and 5308
negative queries. Although TAPAAL does not benefit from the on-the-fly princi-
ple as broadly as LoLA, its performance on positive queries is clearly better than

1 Based on the result sheets of the MCC 2015. Not included are 290 queries that
LoLA found to be equivalent to a formula without temporal operators. Such formulas
could be evaluated by just inspecting the initial marking. Also not included are 603
extremely long formulas where a time limit was reached while parsing the query.
Also not included is the compute-bounds subcategory.
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its performance on negative queries, and the gap between positive and negative
ones is larger than for the symbolic tool Marcie (Fig. 2).

Another direct comparison between LoLA and Marcie underpins this finding:
There were 6425 positive queries solved by LoLA but not by Marcie while there
were only 191 positive queries that were solved by Marcie but not by LoLA.
These include cases where, on some large net instances, the preprocessing of
LoLA consumed all the available run time as well as cases where a witness
state was reachable but could not be found early enough to benefit from the
on-the-fly effect. Looking at the negative queries, there were 2544 solved by
LoLA but not by Marcie and 1377 solved by Marcie but not by LoLA. Here, we
cannot conclude that the techniques of LoLA are superior to the ones used by
Marcie. There are net instances that are “explicit-friendly” and others that are
“symbolic-friendly”. In MCC 2015, the explicit-friendly queries just happened
to outnumber the symbolic-friendly ones.

4 LoLA Versus Other Explicit Tools

For explicit state space tools, several reduction techniques are available for alle-
viating the state explosion problem. To our best knowledge, LoLA is the tool
with the largest collection of such techniques (even beyond the participants of
the MCC). In recent contests, we applied the stubborn set method [25] and the
symmetry method [12].

The stubborn set method has an excellent cost/benefit ratio in the realm of
distributed systems. That is, the overhead required for computing a stubborn
set of transitions in every marking m (which are the transitions to be explored
in m) is more than compensated by the much smaller number of markings to
be explored at all. Thanks to the stubborn set method, we can manage many
state spaces which originally have 1020 or even more reachable markings. Such
state spaces can otherwise be handled only by symbolic tools or tools applying
abstraction.

For reachability, there exist several different stubborn set approaches. They
substantially differ in their performance on positive resp. negative queries. For
the contest, we applied a version of goal-oriented stubborn sets [17] that per-
forms extremely well on positive queries while its performance is not very impres-
sive on negative queries. The way stubborn sets are computed in this version,
implements a heuristics that steers the state space exploration directly to the
witness state in many examples and produces very short witness paths (which
has been observed by other users of LoLA as well [24]). The average witness path
length using stubborn sets in LoLA is 7264. Repeating all experiments of the
contest without using stubborn sets, LoLA produced witness paths of average
length 567630 (numbers only concern those positive instances where both exper-
iments succeeded). The explored state space often consists of little more than
the states on the witness path. With this strategy, we can solve more positive
queries than any other tool. Additionally, we spend less time on positive queries
than other tools including explicit ones. Hence, we get the maximum effect out
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of the on-the-fly principle. This explains LoLA’s lead of 12284 solved positive
queries over TAPAAL with 7720 solved positive queries. There were 4963 posi-
tive queries solved by LoLA but not by TAPAAL compared to 399 queries solved
by TAPAAL but not by LoLA.

The resulting penalty on negative queries is limited, for three reasons. First,
the time saved on the positive queries generates additional time available on the
negative queries in the same examination. Second, stubborn sets can be com-
puted extremely quickly in the chosen version. That is, we can explore many
more states in a certain time than using other versions of stubborn sets that
show better reduction on negative queries. In fact, the most limiting resource in
the contest is time, not space: The available time has to be shared out between
the queries within an examination while each query can use all of the avail-
able memory. This is an artifact of the contest conditions as usually memory
consumption is seen as the limiting factor for model checking. Third, at least
those other explicit state space tools that do not use the partial order reduction
will have trouble with negative queries as well. In 2013, we submitted several
configurations of LoLA as individual participants. The configuration using goal-
oriented stubborn sets clearly outperformed the other configurations. Hence,
there is experimental evidence supporting the decision to use goal-oriented stub-
born sets. For explaining the performance of LoLA on negative queries, however,
another reduction technique needs to be investigated.

About half of the net instances of MCC 2015 exhibit a substantial amount
of symmetry. The main source of symmetry is the fact that many net instances
are created from high level net schemes. The regularities in the arc inscriptions
translate into symmetry in the resulting place/transition nets. LoLA is able to
apply the symmetry method based on graph automorphisms [20,21]. It com-
putes a generating set for the set of graph automorphisms of the net and uses
it to transform every computed marking into an approximation of its canoni-
cal representative w.r.t. symmetry. The resulting state space is not necessarily
the smallest one obtainable by the symmetry method but the balance between
run-time and reduction is better than for many other versions of the symmetry
method [13]. In LoLA1, the symmetry method could only be applied for deadlock
verification. With LoLA2, we are able to apply the method for arbitrary reacha-
bility queries. The reason is that an asymmetric query can break the symmetry
present in the net. Hence, LoLA2 computes the automorphisms in a graph that
joins the net and the formula tree of the property. This way, only automorphisms
that preserve both the net structure and the query are computed.

Applying the symmetry method under contest conditions requires some prag-
matism. First, computation of the generating set of the symmetries may be quite
time-consuming. If we reach the time limit while still computing symmetries, we
may miss quite some low hanging fruits concerning on-the-fly verification. For
this reason, we implemented an optional time limit for symmetry calculation.
When this limit is reached, we stop searching for further symmetries and use
those symmetries for state space reduction that we have found so far. That is,
we trade preprocessing time for reduction power but make sure that enough time
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is left for exploring significantly many states. Second, reduced graph generation
slows down when the net has many symmetries. On the other hand, the use of the
symmetry method significantly increases the number of solved negative queries
as the state space obtained by applying both the symmetry and the stubborn set
method is more likely to fit into the available memory. Hence, we are able to solve
6330 negative queries, that is, more than our strongest competitors. LoLA solved
1551 negative queries that were not solved by TAPAAL and TAPAAL solved
529 negative queries that were not solved by LoLA. These include instances with
timeouts during pre-processing as well as instances where the overhead induced
by the symmetry method slowed down calculation of an otherwise doable state
space. We do not know whether these arguments fully explain the gap between
LoLA and TAPAAL as we have only incomplete information about the reduction
techniques implemented there.

In general, we observe that the numbers on negative queries do not vary as
much as the numbers for positive queries. For negative queries, all tools need to
explore the whole (reduced) state space. This state space grows with increasing
scaling factors (size of color sets or number of tokens) in net instances that stem
from the same net scheme. For several net schemes, the used scaling factors form
a sequence like 2 - 5 - 10 - 20 - 50 - 100 and so on, that is a non-linearly growing
sequence. The related state spaces may exponentially depend on the scaling fac-
tor. A list of net instances can be roughly partitioned into three categories: “easy
enough for everybody”, “making the difference”, and “too hard for everybody”.
Clearly, the second category is the relevant one for ranking tools. We analysed
that, for some nets, this category is quite small or even empty, especially for net
schemes with the mentioned scaling sequence. In other words, a state space that
is “easy enough for everybody” in one instance generated from a net scheme
may be “too hard for everybody” in the next one. This observation is supported
by additional experiments. After the contest, we repeated the examinations of
the contest with much more generous time and space limits. We solved only very
few additionally negative queries. Hence, the small difference between tools on
negative queries may be well explained by the small number of net instances in
the “making the difference” category.

5 Design Decisions in LoLA Related to the Contest

Besides the stubborn set method and the symmetry method, LoLA offers addi-
tional reduction techniques that we decided not to apply. First, we would like
to mention the sweep-line method [5,22]. This method is useful when memory
is the limiting resource as used memory can be freed to make room for new
states, at the price of additional run-time. Due to the setup of the contest, espe-
cially the structure of examinations, we found time to be the limiting factor
(as explained earlier). Hence, the sweep-line method is not useful in the MCC.
A second interesting method is Bloom-filtering [2]. Here, only hash values of
markings are recorded. In case of hash collisions, state space exploration may
be incomplete. This means that we would need to return “unknown” to all
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negative queries, or to deliberately return a value that may be incorrect (with
low probability). We found none of the alternatives to be satisfying.

Some features have been implemented in LoLA for MCC 2015 in response to
our analysis of MCC 2014. In 2014, a single call of LoLA yielded a result to a
single query. That is, for processing an examination of 10 queries, we would call
LoLA 10 times, including 10 times parsing and preprocessing the net instance.
Additionally, we were not able to process queries like “EF φ1 AND AG φ2” that
used to be offered as reachability problems in past contests. We did so for a good
reason: releasing the memory for all data structures that internally represent the
state space (for stepping from one state space to another) takes more time that
quitting the program and re-starting it with a new query. For 2015, we found the
following solution. We parse the net only once and perform all the pre-processing
that we need for efficient state space exploration. As soon as we are ready to
start the actual exploration, we apply the UNIX fork() command that creates a
child process that is identical to its parent. State space exploration is done in the
child process and its result communicated to the parent process. Then the child
process is killed. This way, the whole process of releasing memory is delegated
to the (much more efficient) process management of the operating system. The
next query is applied by forking a new child, inheriting all data structures from
the initial parsing and preprocessing. Hence, in MCC 2015 we processed a whole
examination with just one call to LoLA that sequentially forked 16 children.
Much more time for actual state space exploration was available than in 2014.

When processing an examination, our main problem is to organise the avail-
able run time w.r.t. the individual queries. Spending all time on a hard negative
query, we would possibly miss some low hanging fruits, that is positive queries
appearing in the end of the list of queries in an examination. Unfortunately, the
classification into positive and negative queries can only be done after they have
been processed. Hence, we have no strategy for solving first the positive queries
(to earn points) and then the negative queries (to see whether additional points
can be collected). Responding to this problem, we have introduced a time limit
for each individual state space exploration. As positive queries may require much
less run time, we set the individual time limit not to 1

16 of the time limit for the
whole examination of 16 qeuries, but to a much higher value. That is, we placed
a bet that at least some of the queries require less than 1

16 of the time given
for processing the examination. The chosen value is not necessarily the optimal
setting but quite easy to implement.

In 2014, LoLA could not participate in the compute-bounds subcategory.
Such a query does not yield a Boolean value but a number. Such queries could
not be translated into anything offered by LoLA. In MCC 2014 we learned that
this subcategory was no longer scored separately. Additionally, LoLA ranked only
few points ahead of TAPAAL (see above for explanations). Hence, we decided
that we had to collect at least the low-hanging fruits in this sub-category. We
implemented a procedure for evaluating bound expressions and were able to
apply the symmetry method and a dedicated variant of the stubborn set method,
both preserving the maximum value of the given expression. This way, we were



Running LoLA 2.0 in a Model Checking Competition 283

able to solve 2571 queries and to rank fourth in the sub-category, less than 1000
solved queries short of the winner. For computing bounds, every query requires
computation of the whole (reduced) state space. This way, there is no benefit at
all from on-the-fly verification. Consequently, the thesis that the main advantage
of LoLA is its performance on positive queries, is supported once more.

6 Further Development of LoLA

As far as the contest is concerned, not much room is left for improvements
on positive queries. Hence, we are focussing on negative queries. We do not
believe that minor improvements to our state space reduction methods will
enable us to enlarge the “making the difference” category. Consequently, we
are looking for completely different solutions. For deadlock checking, we plan to
check the siphon/trap property (Commoner/Hack property). We have already
implemented an evaluation of the property based on SAT-checking [19] but not
yet used in the contest, for lack of stability of this feature. If the siphon/trap
property holds (and is applicable to a net instance), the net is deadlock-free.
Hence, we hope that this method will help us to answer some negative deadlock
queries where state space calculation does not terminate.

A related method for reachability queries is the Petri net state equation. If it
does not have a solution (with a constraint added to describe the target states),
we can assert unreachability. With Sara [26], we have a tool where this method
is augmented with abstraction refinement such that it is able to process both
positive and negative queries. In several cases, Sara is able to outperform LoLA.
Consequently, we aim at integrating Sara as part of the LoLA tool such that
the state equation based algorithms of Sara run in parallel to the state space
exploration of LoLA. In 2015, this would have made sense for the first time, as
the organisers offered the possibility to use four cores by each tool. This means
that running Sara would not slow down parallel execution of LoLA anymore.

As the organisers decided in 2015 that results for place/transition nets and
coloured nets are aggregated to a single result, we shall work on a coloured net
input for LoLA2. Nevertheless, we would suggest to return to a separate scoring
just to make it easier for new participants to connect their tool to the contest
environment.

Last but not least, we intend to add state space reduction to the general LTL
and CTL model checking routines in LoLA, and to participate in the respective
categories in MCC 2016.

7 Conclusion

The model checking contest is an interesting arena for comparing tools that
use very different technologies. Through the competition, an enourmous amount
of data is available for analysis. In this paper, we gave an example of such an
analysis by evaluating the effect of on-the-fly verification. Additionally, as the
previous sections show, the MCC is a beautiful incentive to add features to tools.
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We argued that some design decisions in the structure of the contest neces-
sarily create a bias, in particular between symbolic and explicit tools. We would
thus suggest that such decisions should be carefully supervised by the contest
committee. We further observed that aggregation of categories in the final scor-
ing may create severe obstacles for new participants to enter the MCC.

Considering our plans for further improvements to LoLA, we are confident
that our tool will remain a strong contestant in the reachability category of
the MCC. At the same time, the additional power will pay off in even better
applicability of LoLA in real-life case studies.
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Abstract. MARCIE is a Petri net analysis tool supporting qualitative
and quantitative analyses including model checking facilities. Particular
features are symbolic state space analysis including efficient saturation-
based state space generation, evaluation of standard Petri net properties,
and CTL model checking. Most of MARCIE’s features build on Interval
Decision Diagrams (IDDs) to efficiently encode interval logic functions
representing marking sets of bounded Petri nets. This allows the efficient
support of qualitative state space based analysis techniques. Among oth-
ers, MARCIE applies heuristics for the computation of static variable
orders to obtain concise IDD representations. In this paper we focus on
those aspects which are crucial for MARCIE’s regular success in the
annual Model Checking Contest of the Petri net community.

Keywords: Petri nets · Interval decision diagrams · Reachability
analysis · Model checking · CTL

1 Introduction

MARCIE is a tool for the analysis of Petri nets extended by special arcs (read,
inhibitory, equal and reset arcs) and Generalised Stochastic Petri nets (GSPN).
For qualitative analysis it supports the efficient symbolic generation of the state
space, the symbolic analysis of general behavioural properties, and symbolic
CTL model checking [19]. For quantitative analysis it offers symbolic CS(R)L
model checking and the computation of reward expectations [16]. Addition-
ally, MARCIE provides simulative and explicit approximative numerical analysis
techniques [5].

MARCIE has proven its efficiency, performance and reliability for various qual-
itative analyses in the four Model Checking Contests (MCC) held so far in con-
junction with the annual International Conference on Application and Theory of
Petri Nets and Concurrency; since 2012 it regularly reached excellent and award-
winning results [9–12]. In this paper we focus on the most important aspects
crucial for MARCIE’s accomplishments – symbolic encoding of marking sets by
Interval Decision Diagrams (IDDs), saturation-based state space generation, and
approved heuristics for the structure-based computation of static variable orders.
c© Springer-Verlag Berlin Heidelberg 2016
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2 Interval Decision Diagrams

In this section we recall Interval Decision Diagrams (IDDs) as defined in [19].
They can be seen as a generalisation of Binary Decision Diagrams (BDDs).
An IDD is a Directed Acyclic Graph (DAG) with two terminal nodes labelled
with 0 and 1. Non-terminal nodes have an arbitrary number of outgoing arcs
labelled with intervals of natural numbers (including zero) partitioning the set
of natural numbers. IDDs represent interval logic functions [13], and Reduced
Ordered Interval Decision Diagrams (ROIDDs) provide a canonical representa-
tion of interval logic functions. Remarkably, ROIDD are often able to concisely
describe huge sets of Petri net markings, and there are efficient algorithms for
the manipulation of interval logic functions using ROIDDs.

From now on, when talking about IDDs, we actually refer to ROIDDs.

Definitions. An interval decision diagram for the variables X = {x1, . . . , xn}
is a tuple [V,E, v0], where V is a finite set of nodes, E ⊆ V × I × V is a finite
set of arcs labelled with intervals on N0, [V,E] forms a DAG, and v0 is the root
of the IDD.

Furthermore, the following conditions must hold. V has to include two ter-
minal nodes (leaves); i.e., nodes without outgoing arcs. One node is labelled with
0, the other one with 1. All other nodes v are called non-terminal nodes. Every
non-terminal node v is labelled with a variable var(v), where var : V → X is
surjective, and v has kv > 0 outgoing arcs with intervals Ij ∈ I. The intervals
form a partition over N0. A variable may appear only once as label of a node on
every path from the root to a terminal node, and all variables appear always in
the same order on all paths (as usual in Ordered Decision Diagrams).

Every interval logic function can be represented by an IDD by help of the
Boole-Shannon expansion. The decomposition is applied recursively until leaves
are reached.

Shared IDDs are an extension of IDDs: a single multi-rooted DAG permits
to represent a collection of interval logic functions. All functions in the collection
must be defined over the same set of variables using the same variable ordering.
Thanks to the canonicity of IDDs, two functions in the collection are identical,
if and only if the IDDs representing these functions have the same root in the
Shared IDD. The following interval logic functions are encoded in the Shared
IDD shown in Fig. 1:

– f0 = 0,
– f1 = 1,
– f2 = x2 > 0,
– f3 = (x1 ∈ [4, 9) ∧ x2 > 0) ∨ (x1 ≥ 9),
– f4 = (x1 = 0 ∧ x2 > 0) ∨ x1 ≥ 1.

Notice that all nodes of the Shared IDD in Fig. 1 are numbered (the numbers
given in parentheses next to the non-terminal nodes). The terminal nodes get
the numbers 0 and 1. We use these numbers to address nodes, and in the given
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0 1

x2(2)

x1(3) x1(4)

[0,1)

[1,∞)

[4,9)

[0,1)

[1,∞)

[0,4)
[9,∞)

Fig. 1. A shared IDD example.

case, the node numbers correspond to the function indices. To simplify the IDD
algorithms we assume that the function var labels terminal nodes with a special
variable x such that x >π var(v) for all non-terminal nodes v ∈ V .

Operations. We use Shared IDDs in all algorithms for operations on IDDs. The
following interval logic operations (given by their signatures) are implemented
in MARCIE:

Equivalence check : IDD × IDD → B

Apply operation : IDD × IDD → IDD
Negation : IDD → IDD
Cofactors : IDD × N0 → IDD

Reasoning in terms of sets of markings is isomorphic to reasoning in terms
of interval logic functions [19]. Thus, the logic operations we presented so far
allow an efficient manipulation of sets of markings. Additionally, we introduce
specific symbolic operators taking into account the Petri net dynamics, which
are required for an efficient reachability analysis.

Petri net related operations (given by their signatures):

Pick : IDD → M

Fire : IDD × T → IDD
RevFire : IDD × T → IDD

Img : IDD → IDD
PreImg : IDD → IDD

A detailed description of the implemented operations on IDDs is given in [17].
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Implementation. MARCIE is implemented in C++, available for Linux and
Mac OSX (Windows version on request), and is free of charge for non-commercial
use. We take advantage of a couple of approved implementation techniques dis-
cussed in [3], and additionally address some IDD-specific problems.

We use a global hash table UniqueTable to find a node in a Shared IDD, and
we merge the data structures of the hash table and IDDs forming a Shared IDD.

1 struct SharedIDD {
2 array<Node> nodes;
3 array<unsigned> uniqueTable;
4 list<RefCount> extRefs;
5 unsigned firstFree;
6 };

1 struct Node {
2 unsigned var;
3 list<unsigned> children;
4 list<unsigned> arcs;
5 unsigned nextFree;
6 unsigned nextInUTable;
7 bool mark;
8 };

All IDD nodes are saved in the array nodes. For every IDD node v we store
an index of a variable var(v), a list of children, and a list of labels of outgoing
arcs. firstFree is the index of the first free IDD node, free nodes are linked using
the member nextFree. A node in the Shared IDD is located by help of a hash
function. uniqueTable[k] contains the index of the first IDD node with the hash
value k, all IDD nodes with the same hash key are linked using the member
nextInUTable.

We denote the IDDs representing functions of a user of the IDD package as
externally referenced. The member extRefs counts the references to the roots of
externally referenced IDDs. The garbage collection is triggered automatically if
all free nodes are exhausted during an IDD operation. The garbage collection
first marks all nodes reachable from the roots of externally referenced IDDs
using a simple recursive function and the member mark. Afterwards, all not
marked nodes are linked in the free list, and the IDD operation is repeated,
which triggered the garbage collection.

The hash table ResultTable stores the results of already calculated subprob-
lems and thus prevents the IDD algorithms from being exponential. Because
of the use of Shared IDDs, the results saved in the hash table remain valid
even across top-level calls to IDD operations. Hence, the hash table has to be
initialised only with the initialisation of the IDD package and after garbage
collections, but not for each call of an IDD operation.

In [3], it was proposed to implement ResultTable as a hash-based cache.
In hash-based caches, a more recent entry overwrites the previous one when a
collision occurs. Obviously, a hash-based cache requires less memory and is faster,
as no collision management is needed. Each hash-based cache entry stores the
key and the result of an operation. The use of hash-based caches introduces the
possibility of recalculating previous results and leads in the worst case to the
exponential complexity of IDD operations. However, appropriate hash functions
and cache sizes generally come along with a gain both in terms of average memory
usage and runtime.
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For further efficiency improvement we do not deploy the function Apply
for the most frequently used operations, i.e. intersection, union and difference.
Instead, these operations are implemented as dedicated IDD operations.

A specific IDD issue is the handling of intervals and lists of children. Obvi-
ously, every partition P = {[0, a1), [a1, a2), . . . , [an,∞)} of N0 can be uniquely
represented by a sequence of natural numbers a1, a2, . . . , an. Thus, we store an
IDD node’s children and the labels of its outgoing arcs as lists of unsigned inte-
gers. The list implementation must be, of course, memory efficient, and permit
fast operations required by IDD algorithms. The most frequently used operations
are:

– creation and deletion of lists,
– copying and comparison of lists,
– appending and removing list elements,
– functions like compute the intersection of partitions.

All IDD algorithms can be written without loss of efficiency in such a way
that they access the list elements sequentially. We exploit this fact and use single
linked lists. The data structure is sketched in the following listing.

1 struct ListNode {
2 unsigned data;
3 ListNode* next;
4 };

1 struct UList {
2 ListNode* first;
3 ListNode* last;
4 };

Lists storing labels of outgoing arcs of a node are always sorted. Hence, the
function to compute the intersection of partitions is implemented as a simple
merge operation of two sorted lists. References to the first and last element
of a list are stored in the next field of nodes referenced by the members first
and last. This allows fast appending of elements at the beginning and at the
end of the list. Moreover, last.data stores the length of the list, while first.data
is used for the reference counting. We implement a lazy copy and shared list
nodes. If a copy operation creates a list, then elements of the old list are not
copied to the new one; instead, the new list shares all its nodes with the old list.
Frequent allocations and deletions of small objects like list nodes lead to high
memory fragmentation, its inefficient usage, and in the long run to very high
memory requirements. To avoid this problem, we use a pool of list nodes. The
pool allocates large chunks of memory and undertakes the management of free
nodes. When a list operation needs a new node, it is requested from the pool.
Nodes not needed anymore are returned back to the pool. The use of shared
lists and a pool of nodes substantially decreased the memory requirements of
the IDD package.

3 Variable Ordering

The variable ordering (i.e. place ordering in the Petri net terminology) is known
to have a strong influence on a decision diagram’s size and, thus, on the runtime.
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A bad choice may even totally preclude the state space’s constructability. In
general, finding an optimal ordering is infeasible, even checking if a particular
ordering is optimal is NP-complete.

Let f = f(a1, . . . , an, b1, . . . , bn) be an interval logic function defined as

f =
∧

1≤i≤n

((ai = 0 ∧ bi = 0) ∨ (ai > 0 ∧ bi > 0)) .

The number of nodes in the IDD representing f will be

– 3n + 2, if we use the variable ordering π1 defined as

a1 <π1 b1 <π1 a2 <π1 b2 <π1 · · · <π1 an <π1<π1 bn.

– 3 · 2n − 1, if we use the variable ordering π2 defined as

a1 <π2 a2 <π2 · · · <π2 an <π2 b1 <π2 b2 <π2 · · · <π2 bn.

Two IDDs representing f for n = 2 are shown in Fig. 2. The variable ordering
π1 is used for the left IDD, π2 for the right.

We decided to use static variable ordering, because the analysis time can not
be improved by dynamic variable ordering, if a good variable ordering is defined
heuristically [20]. There is no general rule for the best method, but heuristics
arranging related variables closely together in the ordering bring often good
results. MARCIE incorporates two heuristics taking this into account.

Heuristic 1. It is certainly safe to assume that pre- and post-places of a tran-
sition depend on each other. Thus, our saturation algorithm suggests that vari-
ables corresponding to adjacent places of a transition should be close to each

a1

b1 b1

a2

b2 b2

a1

a2 a2

b1 b1 b1 b1

b2 b2

1 0 1 0

[0,1) [1,oo)

[0,1)

[0,1)

[0,1)

[1,oo)

[1,oo)

[0,1)
[1,oo)

[1,oo)

[0,1)
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Fig. 2. Two IDDs for the same function with different variable orderings.
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other in the applied ordering. The simple greedy algorithm proposed in [14] for
the computation of a zero-suppressed BDD’s variable ordering benefits from
this idea. The ordering π is constructed in a bottom-up manner. Assuming
x1 <π x2 <π . . . <π x|P |, we assign places to the variables starting from the
variable x|P |. To select a place for a variable xi, we compute weights W(p) for
all places p ∈ P \ S, where S denotes the set of places already assigned to some
variable. Then, the place p with the highest weight W(p) is assigned to the
variable xi. This is repeated until all places are assigned to some variable.

S =
⋃

i<j≤|P |
Pl(xj) , W(p) =

f(p)
|•p ∪ p•|

f(p) =
∑

t ∈ •p,
|•t| > 0,
|t•| > 0

(
g(t)
|•t| +

2 · |t • ∩S|
|t•|

)

+
∑

t ∈ p•,
|•t| > 0,
|t•| > 0

(
h(t)
|t•| +

|•t ∩ S| + 1
|•t|

)

g(t) =

{
0.1 if |•t ∩ S| = ∅
|•t ∩ S| otherwise

, h(t) =

{
0.2 if |t • ∩S| = ∅
2 · |t • ∩S| otherwise.

We notice also that moving those variables down in the ordering which have
a large number of different values (token numbers on places) can decrease the
breadth of an IDD and thus reduce its size. P-invariants and traps can help to
find places that potentially induce such variables worth moving down. Moreover,
it is safe to assume that places belonging to the same P-invariant depend on each
other. These facts can be deployed to adjust the weight function W.

Heuristic 2. The second heuristic, introduced in [19], is an adaptation of the
previous one. The two summands of f(p) were split into two parts each. This
increases W(p) for pre-/post-places of transitions having many of its adjacent
places already selected.

S =
⋃

i<j≤|P |
Pl(xj) , W(p) =

f(p)

|•p ∪ p•|

f(p) =
∑

t ∈ •p,
|•t| > 0

(
g1(t)

|•t|
)

+
∑

t ∈ •p,
|t•| > 0

(
g2(t)

|t•|
)

+
∑

t ∈ p•,
|•t| > 0

( |•t ∩ S| + 1

|•t|
)

+
∑

t ∈ p•,
|t•| > 0

(
h(t)

|t•|
)

g1(t) =

{
0.1 if |•t ∩ S| = ∅
|•t ∩ S| otherwise

, g2(t) =

{
0.1 if |t • ∩S| = ∅
2 · |t • ∩S| otherwise

h(t) =

{
0.2 if |t • ∩S| = ∅
2 · |t • ∩S| otherwise .

Both heuristics allow us to compute automatically reasonable good IDD vari-
able orderings for most of the Petri nets, we encountered so far. For exceptional
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cases, MARCIE provides the option to manually fine-tune the computed
ordering.

– plain order – in the order as read from the file,
– reverse order – in the reverse order as read from the file,
– random order – according to a discrete uniform distribution,
– read from file – read from a user-specified file,
– lexicographical order – according to the names in a lexicographical way.

Likewise, the transition ordering may have a crucial impact on the perfor-
mance of the chaining and the saturation algorithms. There are several options
to chose from: plain, random, read from file, and three heuristics derived from
the net structure (one of those heuristics is the default).

The dramatic effect which different variable orderings may have on the state
space construction is illustrated in [15].

4 Qualitative Analysis

State Space Generation. The traditional symbolic approach employing BDDs
to encode transition relations builds on characteristic functions to represent
binary relations between sets. The function Img (see Sect. 2) is then imple-
mented using standard BDD operations. This technique is not very well suited
for Petri nets. The transition relation becomes too large and firing becomes a
prohibitively inefficient operation. Notice that we also would have to introduce
an upper bound to keep the relation finite.

To avoid these problems, we use action lists which encode single transitions
and implement the function Fire as a special IDD operation. Action lists nat-
urally support enabling and firing rules of Petri nets with extended arcs. They
allow a more flexible implementation of the function Fire compared to simple
lists of places. This data structure is used in the function RevFire, too. Replac-
ing the general purpose function Img by a special IDD operation Fire allows
the application of different traversal techniques, all along with the in most cases
well-suited variable orderings, the efficient hash-based cache, the use of shared
lists and a memory pool, which can enormously speed up the construction and
exploration of state spaces.

There are three categories of symbolic state space generation algorithms.

1. Breadth-First Search (BFS): an iteration fires sequentially all transitions
(according to the transition ordering) before adding the new states to the
state space.

2. Transitions chaining: like BFS, but the state space is updated after the firing
of each single transition.

3. Saturation algorithm (SAT): Transitions are fired in conformance with the
decision diagram, i.e. according to an ordering, which is defined by the vari-
able ordering. A transition is saturated if its firing does not add new states
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to the current state space. Transitions are bottom-up saturated (i.e. start-
ing at the terminal nodes and going towards the root). Having fired a given
transition, all preceding transitions have to be saturated again, either after a
single firing (single) or the exhausted firing (fixpoint) of the current transi-
tion; see [7,19] for details.

It is worth mentioning that these strategies do not require a priori knowledge
of the boundedness degree to construct the finite state space for a given bounded
Petri net. The algorithm terminates if the state space is finite and the IDD fits
into the available memory. Actually, IDDs permit also the encoding of infinite
sets of states.

Reachability Analysis. The constructed state space can be efficiently evalu-
ated by the following options, making use of Shared IDDs, the dedicated IDD
operations intersection, union and difference, and the hash-based cache. The
boundedness of each individual place as determined by the state space construc-
tion can be written to a file. Symbolic algorithms for the computation and enu-
meration of the terminal strongly connected components determine efficiently
liveness and reversibility. Before checking reversibility or liveness, we first make
a cheaper test for any reachable dead markings. If this is the case, the net can
not be reversible and has no live transitions.

On request, all live/not live transitions are written to a file. The dead state
analysis with trace generation determines all reachable dead states, which can be
written to a file as an interval logic expression, i.e., as an expression containing
only atomic propositions over integer variables combined by logic operators. All
empty places do not appear in this expression. A transition sequence producing
one of the reachable dead states can be written to a file as well (witness).

CTL Model Checking. The Computation Tree Logic (CTL) [4] is a widely
used branching time logic. It permits to specify properties over states and paths
of a labelled transition system (LTS), the Kripke structure. Path quantifiers
specify whether path formulas, which can be written by means of temporal
operators, should be fulfilled on all paths or at least on one path starting in
some state. One can interpret the reachability graph of a Petri net as a Kripke
structure and thus apply CTL model checking algorithms.

Conventional symbolic CTL algorithms build on a breath-first order explo-
ration of the state space. Diverting from this strategy can improve significantly
the efficiency of symbolic algorithms for Petri nets. We observed that the per-
formance of the symbolic state space exploration depends strongly on the model
structure. Sometimes, forward state traversals are quite efficient, whereas inter-
mediate IDDs created during the backward state space exploration become too
large and can not be handled efficiently. A CTL model checking algorithm based
mainly on forward state traversals was suggested in [8]. This algorithm is imple-
mented in MARCIE using the functions presented in Sect. 2. Thus, it benefits
from the saturation technique, too.
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An important feature of a model checker is the ability to generate coun-
terexamples or witnesses. When this feature is enabled and the model checker
determines that a formula with a universal path quantifier is not satisfied, it can
find a computation which demonstrates why the negation of the formula is true.
Likewise, when the model checker determines that a formula with an existential
path quantifier is satisfied, it can find a computation that demonstrates why
it is so. A counterexample for a universally quantified formula is a witness for
the dual existentially quantified formula. Thus, it is enough to consider how to
generate witnesses for the operators EX, EU, and EG. A single computation
of EX can be considered as a cheap operation. Our saturation-based implemen-
tation allows to improve significantly the efficiency of EU. Unfortunately, we
could not employ the saturation technique to improve the computation of EG.

A detailed description of the implemented algorithms is given in [19].

5 Conclusions

In this paper, we have presented selective implementation issues of MARCIE – a
Petri net analysis tool that supports, among others, the efficient generation of
the state space, the analysis of general behavioural and reachability properties,
and CTL model checking. The models have to be bounded. However, no a priori
knowledge of the boundedness degree is required. Crucial points for the tools
performance are the data structures used for the symbolic state space repre-
sentation, the ordering of places (DD variables) and the ordering of transitions
(chaining and saturation algorithms), and the algorithms, which exploit strongly
connected components and the saturation principle.

Additionally, but beyond the scope of this paper are MARCIE’s skills of
quantitative analysis techniques for Generalised Stochastic Petri nets based on
the underlying continuous-time Markov chain (CTMC). Among others, it pro-
vides a multi-threaded on-the-fly computation of the CTMC [18]. It is thus less
sensitive to the number of distinct rate values than approaches based on, e.g.,
Multi-Terminal Decision Diagrams. Further, it offers symbolic CS(R)L model
checking and permits to compute reward expectations [16]. Finally, MARCIE
provides simulative and explicit approximative numerical analysis techniques [5].

A couple of comparative performance studies can be found in [1,2,6].
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Abstract. Symbolic model checking with decision diagrams is a very
efficient technique for handling large models. However, even when using
advanced algorithms, model checking tools still need to be carefully writ-
ten. Indeed, they are both CPU and memory bounded: in addition to
the algorithms complexity, the limiting factors are the available memory
and how fast computations are performed. Thus, each saved CPU cycle
or byte can make the difference between a successful model checker and
a failing one.

We present pnmc, a symbolic model checker for Petri Nets, and libsdd,
its associated library which implements Hierarchical Set Decision Dia-
grams and automatic saturation. Reliability aside, choices were always
made to favour performance.

The combination of advanced algorithms for symbolic model checking
and advanced coding techniques offer very good results as shown in the
Model Checking Contest 2015, which is used as a background to present
pnmc and libsdd.

Keywords: Tool · Petri nets · Symbolic model checking · Decision
diagrams

1 Introduction

Model checking [9] suffers from the well-known state space explosion problem:
realistic (industrial-size) models often yield state spaces too large to be computed
or stored in memory. Over the years, many techniques have been devised to tackle
this problem.

The introduction of symbolic model checking [6], using Reduced Ordered
Binary Decision Diagrams (BDDs) [5], made it possible to handle larger models.
State spaces and transition relations are encoded using BDDs, which provides
two benefits: (1) common parts of states are shared, using less memory; (2) the
transition relation is applied symbolically, resulting in the computation of several
states at a time, using less computation time. The combination of these benefits
often allows improvements of several orders of magnitude.

Since the advent of BDDs, various kinds of decision diagrams have been
devised. Data Decision Diagrams [10] and Hierarchical Set Decision Diagrams
(SDDs) [11] are among the most successful versions since then. Using structural
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information [18] and automatization [13] of the saturation technique [8], they
can provide another order of magnitude improvement.

libsdd is a C++ library that provides an implementation of SDDs and a
framework to manipulate them, using automatic saturation. pnmc is a model
checker for Petri nets, built on top of libsdd, implementing symbolic state
space generation, as well as symbolic reachability analysis.

The Model Checking Contest [15] is a yearly event dedicated to the evalua-
tion of model checkers. Its objective is to “compare the efficiency of techniques
according to characteristics of models”. It offers a way to evaluate the perfor-
mances and the reliability of pnmc and libsdd, providing a huge set of Petri
nets models with various characteristics.

pnmc was quite successful as it ranked second out of 11 tools in the 2015
edition of MCC. We attribute this to the combination of a good theory (SDD
and automatic saturation) and a carefully crafted implementation with no com-
promises when performance is concerned.

This paper is organized as follows. Section 2 offers a brief presentation of
Hierarchical Set Decision Diagrams and Symbolic Model Checking, Sects. 3 and
4 present respectively libsdd and pnmc. Section 5 details the technical choices
in libsdd optimization. Section 6 analyses the Model Checking Contest results,
and Sect. 7 discusses future works.

2 Symbolic Model Checking with Hierarchical Set
Decision Diagrams

Hierarchical Set Decision Diagrams. SDDs [11] are shared decision dia-
grams in which arcs are labelled by a set of values, instead of a single value. As
ordinary decision diagrams, they have the same distinctive features: canonical
node representation, dynamic programming and variable ordering issues.

As SDDs encode sets of values and support standard set operations (∪,∩, \),
they can be used as labels, making hierarchical encoding possible. This unique
feature enables recursive encoding of regular models (e.g., a protocol using a
ring architecture), potentially yielding an exponential reduction in state space
size [18].

Symbolic Model Checking. Usually, when performing symbolic model check-
ing, a system’s next state function is encoded using one or more decision dia-
grams, with two variables per state signature variable.

In the case of SDDs, however, a mechanism called inductive homomorphisms
makes the definition of user operations possible. These homomorphisms are
mappings that transform SDDs into other SDDs. Basic homomorphisms (e.g.
fixpoint, composition, etc.) are available enabling the construction of complex
firing rules.

An important feature provided by these homomorphisms is a set of rewriting
rules for homomorphisms [13] allowing to automatically make use of saturation
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algorithms (originally devised in [8]): when computing the least fixpoint of a
transition relation over a set of states, this algorithm offers gains of one to three
orders of magnitude over classical BFS fixpoint algorithms. These rewriting rules
are transparent, thus users need only to express their firing rule, the homomor-
phism evaluation takes care of applying the saturation dynamically.

3 A Generic Library for SDD: libsdd

We briefly present in this section the salient features of the libsdd library, the
backbone of pnmc.

Generic Design. The goal of libsdd is to provide a generic framework to
create and manipulate SDDs. To do so, we use the C++ template facility: users
can specify what type of set of values they wish to store on arcs.

The default type is a set of discrete integers, but any type that supports set
union, intersection and difference can be used, including continuous domains.
Even other decision diagrams, such as BDDs, could be used as they describe set
of values.

Variable Order. Symbolic techniques based on decision diagrams can suffer
from the variable order problem [4]. To mitigate this problem, libsdd offers
three ways to specify variable ordering:

– Use model natural order: as naive as it may seem, models are often specified
in such a way that related places are close to each other, which is a key point
to ensure a good variable ordering;

– Use FORCE ordering heuristic [2], which often provides good results when
nothing is known about models to analyse;

– Use a hand-crafted order: obviously, this must be performed by someone with
insights on both decision diagrams and models.

Related Work. libDDD [1] is the first library that implemented SDDs (it also
provides an implementation of Data Decision Diagrams).

Being older, libDDD provides more functionalities than libsdd, especially in
regard to the number of rewriting rules used to perform automatic saturation.
For instance, it is able to permute commutative operands, which in turns make
grouping related operands more likely. This often has a very beneficial impact
on performances.

libsdd provides fewer rewriting rules, but it has been written with an empha-
sis on performances from the ground up.
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4 A Petri Net Symbolic Model Checker: pnmc

The pnmc model checker is built on top of libsdd. However it’s more than a
frontend for this library. SDDs and homomorphisms are just a framework to
manipulate states in a symbolic way. The role of pnmc is to create and optimise
the transition relation for Petri nets.

For instance, pnmc reorders operations using the variable order to optimize
the firing rule. It can also use the fact that a Petri net is safe to optimize some
operations (for Time Petri nets).

pnmc supports state space generation and verification of dead states and
transitions for P/T Petri nets with a few extensions (inhibitors, reset and test
arcs are supported). pnmc also supports the state space generation of Time Petri
nets, using discrete time semantics.

File formats supported by pnmc are: Tina’s .net and .ndr, NUPN and PNML
(P/T Petri nets only). In the case of .net files, we added an extension to express
modules1, that is, how some places are related to each other. This information
is used to create a hierarchical encoding.

Time Petri Nets. pnmc can symbolically generate the state space of Time Petri
Nets, using discrete time semantics. It implements the same algorithm used by
Tina [3], with the difference that pnmc uses a symbolic approach and Tina an
enumerative one.

It has been found, comparing Tina and pnmc that symbolic generation per-
forms often better for small time intervals. However, as soon as time intervals
become larger, the enumerative approach is very often more competitive.

Comparable work is presented in [16], although with a few differences regard-
ing the time discretisation.

NUPN. This particular Petri net format [12] has the advantage of clearly iden-
tifying components (units) by grouping related places. Hierarchy is also captured
by describing how units contain each other, starting from a root unit. Moreover,
the Petri net is guaranteed to be safe. Combined with this structural information,
place invariants can be automatically deduced.

pnmc leverages these structural informations. First, this hierarchy can be
directly mapped onto the SDD hierarchy. Second, the presence of invariants make
it possible to use only one variable per unit (to describe which place is marked
in the unit), rather than one variable per place as it’s the case for standard Petri
nets. This usually has a very beneficial impact on performances as the number
of SDDs stored in memory is often much smaller.

However, the firing rule is completely different. This is why this particular
case is handled by a different tool, caesar.sdd (also built on top of libsdd),
which originally started as a fork of pnmc. Work is ongoing to merge it back.

1 This extension remains backward compatible with Tina.



A Symbolic Model Checker for Petri Nets: pnmc 301

However, it shows that libsdd is versatile and can easily be used in different con-
texts. During the MCC, caesar.sdd was used for all models that were provided
with a NUPN specification.

Related Work. The Smart model checker [7] is the first tool to implement
saturation, using Multi-Valued Decision Diagrams. However, the firing rule had
to be manually modified which is a tedious process.

ITS tools [17] and PNXDD, participated in the Model Checking Contest 2015,
both use libddd as a backend, and as such, automatic saturation.

5 Technical Choices

In this section, we present technical choices that made libsdd, and, by extrap-
olation, pnmc (and caesar.sdd) efficient. These optimisation tips should prove
useful for most model checking tools’ authors.

The key property of an efficient model checker is obviously the algorithms
and heuristics it uses. However, even the most efficient algorithm could be spoilt
by a poorly and hastily written implementation.

The rationale for choosing what to optimise was as follows: we first used
available libraries (e.g., for hash tables or memory management) to make a fast
implementation of algorithms possible; and as soon as a performance bottleneck
was identified when profiling, we rolled out a custom version tailored to our
needs.

Language. Choosing the right language for the right job is a very important
point that is often overlooked (and arguably controversial). On the one hand,
using “easy” languages like Java and Python or “expressive” ones like OCaml let
us write new algorithms quickly. On the other hand, languages like C or C++
offer all the tools to manage memory manually and to optimize algorithms,
exactly the way we want, but at the cost of a much larger code base (and often
harder to write and to test).

In this regard, we chose C++ 14 to implement libsdd and pnmc in order to
be able to fine-tune all memory or CPU intensive parts, as well as to provide
easily portable code.

For instance, the C++ template mechanism allows us to choose at compile
time the best fitted algorithm when building a new SDD. Using the type of the
values that an SDD stores on arcs, and if this type fulfills some requirements,
we can switch from a O(n2) algorithm to a O(n) one at compile-time, thus with
no runtime overhead.

Memory. Model checking is a CPU and memory bound process. Obviously,
optimizing algorithms should be done in a first step. But once this is done,
optimizing memory access should not be overlooked as using memory is not
cheap: not only allocating memory is costly, but also how to allocate it matters.
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Furthermore, over the years, the main memory has been slower to access from
the CPU (from up to a thousands of CPU cycles).

For instance, when inserting a new value in a sorted container, the complexity
is logarithmic when using a binary tree and linear when using a sorted array.
However on modern hardware, memory access is so slow compared to the CPU
speed that, in practice, one should often use a contiguous array when storing
up to thousands values. The key here is contiguous memory : a tool should be
written in such a way that, when fetching memory to perform some computation,
all data needed by this computation are in contiguous memory locations.

Unrolled SDD Nodes. A way to apply this idea to decision diagrams is to avoid
memory indirection (accessing a value via a pointer). Let’s take the case of an
SDD node: it is basically just a variable associated to a set of labels leading
to SDD successors. As this set’s size is unknown at compile-time, we need to
allocate the list of successors dynamically. Thus, each node contains a pointer
to this list. This memory indirection causes several problems: the memory is
fragmented and CPU cache misses occur more often.

A very simple optimisation is to remove this memory indirection by stor-
ing successors directly into the SDD node, very much like unrolled linked lists.
This simple trick brought an improvement of 20% in our benchmarks, for both
memory and CPU2.

Linear Allocation for Recursive Algorithms. Evaluation of homomorphisms on
SDDs is a highly recursive process. However, each recursive call incurs dynamic
memory allocations as the size of temporary memory placeholders cannot be
predicted ahead of time.

To optimise this scheme, we rolled out our own memory allocator to simulate
a stack on a pre-allocated buffer. So, allocating or deallocating memory is only
a matter of moving a pointer up or down in said buffer, which is a constant-time
operation, rather than a costly call to allocate memory (which possibly involves
a system call).

Custom Reference Counting Garbage Collector. All decision diagrams imple-
mentations need some kind of garbage collector, whether it’s provided by the
language, like Java, or implemented in the decision diagram library.

To minimize memory footprint, we implemented a deterministic reference-
counting garbage collector: as soon as a SDD node is no longer needed (by
caches or ongoing computations), it’s discarded.

Pre-allocation of Buffers. As dynamic allocations are unavoidable (new SDDs
and homomorphism operations are created all the time), we chose to pre-allocate
big buffers at startup for operations’ caches. Thus, most of the time, pnmc won’t
need to request new memory chunks from the OS too frequently. It presents a

2 Due to memory alignment requirements, this trick may not be used on some CPU or
platforms. However, it’s not a problem on “standard” configurations like Linux/x86.
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minor drawback for the Model Checking Contest: pnmc always start with 2 GB
of memory, whatever the model is. So, pnmc may seem to be a memory hog for
small models, even though it’s a strategy to make it faster.

Other Optimisations. Many other optimisation techniques were imple-
mented. For instance: a custom algebraic data type to store SDDs for fast run-
time dispatch and small memory footprint; an intrusive custom hash table; a
continuation-based hash function; memory pools.

6 Model Checking Contest 2015

The Model Checking Contest [15] is a yearly event dedicated to the evaluation
of model checkers. This contest is a great opportunity to evaluate performance.
Indeed, it benchmarks different model checkers against a comprehensive set of
models on the same hardware. There are 370 models with scaling parameters,
totalling a number of 525 models. It is maintained by other people than the
tools’ authors, providing a fair and unbiased comparison.

More than comparing tools performances against each other, it’s also an
excellent opportunity to validate results, and thus to assess tools’ reliability.
Furthermore, it also permits to compare different techniques (symbolic, SAT,
explicit, etc.) to identify which one performs better for which type of model (for
instance, asynchronous vs. synchronous specifications).

The models are partitioned in 3 sets:

– Known. This set is known by model checker authors before the contest and
thus can be optimized for ahead of time (for instance, for model checkers using
decision diagrams, a variable order can be pre-computed);

– Stripped. This set is a subset of the first one, except that the models are
given under a new name, making impossible to optimize them beforehand
(reproducing the case where the user is not the tool’s author, so with possibly
less experience on how to use the tool with the optimal settings);

– Surprise. It regroups all models that are unknown to tools’ authors, with the
same limitations on possibly pre-computed optimizations.

Because some models are given twice (in Known and Stripped categories),
model checkers are handed a total of 929 instances, 628 of them being P/T Petri
nets.

pnmc only participated in the StateSpace category, as the parsing and process-
ing of accessibility formulae wasn’t ready in time. Furthermore, it only processed
P/T Petri nets, as coloured nets are not handled. When a model was provided
with a NUPN specification, pnmc handed over this model to caesar.sdd in order
to use a dedicated firing rule.

Variable Order. For Known models, we chose to manually create variable
orders for most models. The strategy was simply to identify and group places
that seem to belong to the same component. For both Stripped and Surprise
models, we used the FORCE heuristic.
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Analysis of MCC 2015 Results. For its second appearance at MCC, pnmc
finished second in the State Space category3. It processed correctly4 385 out of
628 instances (61.3 %). This makes pnmc the tool which processed the largest
number of specifications in the StateSpace category for P/T Petri nets.

It should be noted that pnmc is reported having incorrect results for three
models (Parking-PT-832, Raft-PT-03 and Raft-PT-05). This was, however, not
a state space generation failure: it’s an error due to a rounding issue by the
MCC benchmark scripts5. Thus, pnmc should be considered 100% reliable in
this contest.

Finally, as explained in Sect. 5, pnmc may seem to use a lot of memory, even
for small specifications. This is due to a pre-allocation scheme minimizing the
amount of memory allocations, which makes the state space generation faster.

7 Future Work

The participation of pnmc in the Model Checking Contest showed that the vari-
able order still remains a major problem for decision diagrams. Orders deduced
manually often performed better than the ones produced by heuristics. This is a
major problem as we can’t expect users to produce good orders by themselves.
Our future works will therefore mostly focus on this topic.

Producing manually orders, we observed that a trend often emerges: we
always first looked for regular patterns, like state machines of processes or shared
resources. Thus, we think that using Petri nets structural properties, like invari-
ants, is a promising path for computing variable orders. We also plan to add the
heuristics introduced in [14] which provide good orders for large models.

Also, we’ll focus on providing the possibility to verify more reachability prop-
erties.

8 Conclusion

We presented both pnmc, a symbolic model checker for Petri nets, and libsdd,
a library that implements Hierarchical Set Decision Diagrams.

We showed how carefully writing a model checker, using appropriate para-
digms and technical choices, can produce a very efficient tool. However we cannot
stress enough the fact that writing an optimized code is only second to designing
efficient algorithms, which in the case of pnmc is automatic saturation associated
to Hierarchical Set Decision Diagrams.

The results of the Model Checking Contest 2015 were used to assess the
performances and reliability of pnmc, proving that it’s an efficient tool that
can be used with confidence for state space generation and simple reachability
analysis.
3 pnmc also ranked second on its first appearance at the 2014 edition.
4 Which means that more than one tool agreed on the result.
5 MCC organizers fixed this issue by requiring a normalized output and by using more

significant digits when comparing results.
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Availability. Both libsdd and pnmc are released under the BSD license and are
freely available (respectively at https://github.com/ahamez/libsdd and https://
ahamez.github.io/pnmc). They have been successfully compiled and tested on
Linux and Mac OS X, with GCC ≥ 5.1 and Clang ≥ 3.4, on x86 64 bits archi-
tectures.

Both have been exhaustively tested: unit tests for libsdd cover more than
90% of the code base; pnmc is tested against a set of Petri nets that represent
all corner cases that have been encountered so far. It’s also regularly tested
against all models of the Model Checking Contest to ensure that new features
and optimizations don’t introduce any regressions.
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Abstract. We discuss selected model checking techniques used in the
tool TAPAAL for the reachability analysis of weighted Petri nets with
inhibitor arcs. We focus on techniques that had the most significant effect
at the 2015 Model Checking Contest (MCC). While the techniques are
mostly well known, our contribution lies in their adaptation to the MCC
reachability queries, their efficient implementation and the evaluation of
their performance on a large variety of nets from MCC’15.

1 Introduction

Petri nets [15] are a popular formalism for a high level modelling of distributed
systems. Currently, there are more than 80 tools registered in the database of
Petri net tools [8] and an annual model checking contest aiming at comparing
the performance of the different tools has been running since 2011. In the last
two editions of the contest, MCC’14 [10] and MCC’15 [11], our model checker
TAPAAL [4] won a second place in the reachability category. In this paper, we
report on the main verification techniques implemented in our tool and demon-
strate their performance on the class of Petri nets from the latest edition of the
model checking contest.

TAPAAL is a tool suite that apart from the verification engine for P/T nets
supports also the modelling and analysis of a timed extension of the Petri net
formalism called timed-arc Petri nets (for more details see [9]). The tool sup-
ports both continuous and discrete time verification and while the details about
the continuous-time engine [5] and the discrete-time engine [1] were previously
published, the untimed verification engine has not been presented yet.

We focus here solely on the TAPAAL verification techniques directly related
to our participation in the model checking contest. The details about the other
participating tools and a report on the competition results can be found in [11].
In what follows, we first describe an efficient heuristic search technique for
explicit exploration of the Petri net state-space, then we discuss the adapta-
tion of the state-equation approach to the case of cardinality queries and finally
we demonstrate the applicability of the sequential and parallel structural reduc-
tion rules into the context of checking cardinality queries on weighted nets with
inhibitor arcs.

TAPAAL is open-source and publicly available at www.tapaal.net. Citations
to the related work connected to the techniques used in our tool are given at
c© Springer-Verlag Berlin Heidelberg 2016
M. Koutny et al. (Eds.): ToPNoC XI, LNCS 9930, pp. 307–318, 2016.
DOI: 10.1007/978-3-662-53401-4 16

www.tapaal.net
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the respective sections of the paper. All experiments reported in this paper use
the competition nets and queries from MCC’15 but the verification was rerun
locally as we needed to compare the different options and techniques (the data
for the different combinations of these parameters is not available at the MCC’15
web-page as we submitted there only the best working configuration of our tool).

2 Definitions

Let N0 denote the set of natural numbers including zero. A Petri net (PN) with
inhibitor arcs is a tuple N = (P, T, F, I) where

– P is a finite, nonempty set of places,
– T is a finite set of transitions such that P ∩ T = ∅,
– F : (P × T ) ∪ (T × P ) → N0 is the flow function, and
– I ⊆ P × T is the set of inhibitor arcs such that (p, t) ∈ I implies F (p, t) = 0.

Let N = (P, T, F, I) be a PN. A marking is a mapping M : P → N0 that
assigns tokens to places. The set M(N) denotes the infinite set of all markings
on N . A marked PN is a pair (N,M0) where M0 ∈ M(N) is an initial marking.

The preset of a place/transition y is defined as •y
def
= {z ∈ P ∪ T | F (z, y) >

0}. Likewise, the postset is y• def
= {z ∈ P ∪ T | F (y, z) > 0}. We denote the set

of inhibitor places of a transition t as I(t)
def
= {p ∈ P | (p, t) ∈ I} and transitions

that a place p inhibits as I(p)
def
= {t ∈ T | (p, t) ∈ I}.

A transition t ∈ T is enabled in a marking M if for all p ∈ •t we have
F (p, t) ≤ M(p) and M(p) = 0 for all p ∈ I(t). A transition t enabled in a marking
M can fire and produce a marking M ′ such that M ′(p) = M(p)−F (p, t)+F (t, p)
for all p ∈ P , written as M

t→ M ′. This firing relation is in a natural way
extended to a sequence of transitions w ∈ T ∗ so that M

ε→ M and for w = tw′

we write M
w→ M ′ if M

t→ M ′′ and M ′′ w′
→ M ′. We also write M → M ′ if

M
t→ M ′ for some t ∈ T . The reflexive and transitive closure of → is denoted

by →∗. Finally, let R(M) = {M ′ | M →∗ M ′} be the set of markings reachable
from M .

As usual, Petri net places are denoted by circles and can contain dots rep-
resenting tokens, transitions are drawn as rectangles, input and output arcs are
depicted as arrows labelled with their weights (if a label is missing we assume
the default weight 1) and inhibitor arcs are denoted by circle-headed arrows.

After having introduced the standard syntax and semantics of Petri nets, we
shall now define the reachability problem for cardinality queries, as the main
MCC’15 competition category in the reachability analysis.

A cardinality formula is given by the abstract syntax

ϕ ::= e �� e | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ
e ::= n | p | e + e | e − e | n · e

where �� ∈ {≤, <,=, �=, >,≥}, n ∈ N0 and p ∈ P .
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The satisfaction relation M |= ϕ for a given marking is defined in the natural
way such that M |= e1 �� e2 iff eval(M, e1) �� eval(M, e2) where eval(M, e) is
the evaluation of the arithmetical expression e into a number, assuming that
eval(M,p) = M(p) for p ∈ P (in other words, a place p evaluates to the number
of tokens currently present in it).

For a marked Petri net (N,M0), we write (N,M0) |= EF ϕ if there is a
marking M such that M0 →∗ M and M |= ϕ. As an example, the query EF p ≥
5 ∧ q �= 3 asks whether we can reach a marking where the place p contains at
least 5 tokens and the number of tokens in the place q is different from 3.

Note that the MCC’15 verification queries [11] also contain other types of
reachability questions: (i) reachability fireability where we consider the atomic
proposition fire(t) that is true in a given marking iff the transition t is fireable,
(ii) reachability compute bounds where the expression bounds(X) for X ⊆ P
is added as an atomic expression of e and it reports the maximum number
of tokens in the places from X in any reachable marking and (iii) reachability
deadlock where we ask if there is a reachable marking M such that there is no
t ∈ T and no M ′ where M

t→ M ′.
We notice that fireability can be encoded as a cardinality query

fire(t) ≡
∧

p∈•t

p ≥ F (p, t) ∧
∧

p∈I(t)

p = 0

and deadlock can be encoded as the cardinality query

deadlock ≡
∧

t∈T

¬fire(t) .

In TAPAAL, we indeed encode reachability fireability queries into the cardi-
nality queries but we use a dedicated deadlock proposition in order to be able to
apply structural reductions (see Sect. 5). The computation of bounds for a given
set of places X is done by exploring the whole state-space while still being able
to apply some structural reduction rules. Details are discussed in Sect. 5.

3 Explicit Search Algorithm with Heuristic Distance

We shall now describe the explicit search algorithm used in TAPAAL for answer-
ing reachability cardinality queries. The search is based on the standard search
algorithm using passed/waiting sets (see e.g. [3]) as given in Algorithm 1 but
with the important addition of exploring first the markings with the shortest
distance to a given cardinality query ϕ. The distance Distance(M,ϕ) is com-
puted in Algorithm 2 and it returns a nonnegative integer. If M |= ϕ then the
distance function returns 0, otherwise the distance tries to estimate how far away
is the marking M from satisfying the query ϕ.

This is achieved by first estimating the distance between two integer val-
ues w.r.t. a given comparison operator ��, as defined by the Δ function in
Algorithm 2. Intuitively, the function Δ(v1, ��, v2) returns the smallest number
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Algorithm 1. Best-First Reachability Search
1: function Best-First-Reachability-Search(N, M0, ϕ)
2: if M0 |= ϕ then
3: return true
4: end if
5: Waiting := {M0} � Priority queue
6: Passed := {M0} � Set of passed markings
7: while Waiting �= ∅ do
8: M := arg min

M∈Waiting
Distance(M, ϕ) � A shortest distance marking

9: Waiting := Waiting � {M}
10: for M ′ such that M

t→ M ′ where t ∈ T do � For each successor marking
11: if M ′ �∈ Passed then
12: Passed := Passed ∪ {M ′}
13: if M ′ |= ϕ then
14: return true � Output true and terminate
15: end if
16: Waiting := Waiting ∪ {M ′} � Marking M ′ should be explored
17: end if
18: end for
19: end while
20: return false � No reachable marking satisfying ϕ was found
21: end function

by which either v1 or v2 must be changed in order to make the predicate v1 �� v2
valid. The basic distance Δ is then extended to the logical connectives: for con-
junction both conjuncts have to hold and hence we add the distances of the
conjuncts together, and for disjunction where only one of the disjuncts needs
to hold, we take the minimum. The negation is simply propagated down to the
atomic predicates using De Morgan’s laws.

The heuristics operates very satisfactory in many scenarios as it relies on the
assumption that similar markings are likely to be just a few firings away from
each other. Nevertheless, in some scenarios the heuristic estimate may degrade
the search performance.

We performed a number of experiments comparing the heuristic search strat-
egy against breadth-first-search (BFS) and depth-first-search (DFS) on the com-
petition nets and queries from MCC’15 [11]. We selected a number of hard
border-line instances of problems where we still expected to get a reasonable
number of conclusive answers for positive reachability queries, resulting in 1296
executions (432 executions for each search strategy). Out of those, we selected
models and queries where at least one search strategy found a reachable marking
satisfying the given cardinality query and where at least one search strategy took
more than 3 s (in order to filter out the trivial instances). This resulted in 492
executions (164 for each search strategy) and the results are presented in Fig. 1.

The table shows that the heuristic search was the fastest one in 89 instances,
which is more than the sum of cases where BFS or DFS won (75 instances
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Algorithm 2. Distance Heuristics
1: function Distance(M, ϕ)
2: if ϕ = e1 �� e2 then
3: return Δ(eval(M, e1), ��, eval(M, e2))
4: else if ϕ = ϕ1 ∧ ϕ2 then
5: return Distance(M, ϕ1) + Distance(M, ϕ2)
6: else if ϕ = ϕ1 ∨ ϕ2 then
7: return min{Distance(M, ϕ1),Distance(M, ϕ2)}
8: else if ϕ = ¬(e1 �� e2) then
9: return Δ(eval(M, e1), ��, eval(M, e2))

10: else if ϕ = ¬(ϕ1 ∧ ϕ2) then
11: return min{Distance(M, ¬ϕ1),Distance(M, ¬ϕ2)}
12: else if ϕ = ¬(ϕ1 ∨ ϕ2) then
13: return Distance(M, ¬ϕ1) + Distance(M, ¬ϕ2)
14: else if ϕ = ¬(¬ϕ1) then
15: return Distance(M, ϕ1)
16: end if
17: end function

where �� is the dual arithmetical operation of �� (for example < is the notation for ≥)
and where

Δ(v1, =, v2) = |v1 − v2|
Δ(v1, �=, v2) =

{
1 if v1 = v2

0 otherwise

Δ(v1, <, v2) = max{v1 − v2 + 1, 0} Δ(v1, >, v2) = Δ(v2, <, v1)
Δ(v1, ≤, v2) = max{v1 − v2, 0} Δ(v1, ≥, v2) = Δ(v2, ≤, v1)

in total). The heuristic strategy timed out in only 19 cases (where either BFS or
DFS provided an answer) compared to the large number of runs where BFS and
DFS did not find the answer. Finally, the heuristic strategy was in 17 cases the
only one that found a marking satisfying the given cardinality query, whereas
BFS provided a solo answer in 9 cases and DFS in only 2 cases.

In conclusion, if we use only a single-core for the verification, the heuristic
search is preferable, however, in case of more available cores, it may be a good
idea to run all three different search strategies independently.

4 State Equations for Cardinality Queries

In this section we present an adaptation of the technique based on integer pro-
gramming (state-equations [12,13]) which can be in some cases used to efficiently
disprove reachability by over-approximating the state-space, hence avoiding the
full state-space exploration. Let N = (P, T, F, I) be a PN and let M0,M ∈ M(N)
be markings on N . If there is a sequence of transitions w such that M0

w→ M
then a well-known fact (see e.g. [13]) says that there is a nonnegative solution
to the following system of equations over the variables {xt | t ∈ T}:
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Search Strategy Winner No. of Timeouts Solo Answer

Heuristic 89 19 17

BFS 26 70 9

DFS 49 53 2

Fig. 1. Heuristic, BFS and DFS search strategies (timeout at 5 min)

M0(p) +
∑

t∈T

(F (t, p) − F (p, t)) · xt = M(p) for all p ∈ P .

Clearly, if we set xt to be the number of times t was fired in the sequence w,
then this gives us the requested solution. Conversely, if there is no solution to the
state-equations then M is not reachable from M0. On the other hand, a solution
to the state-equations does not in general imply that M is reachable from the
marking M0.

Esparza and Melzer [7] proposed to use integer linear programming in order to
solve the state-equations, ensuring that xt ∈ N0 for all t ∈ T and thus providing
a more accurate approximation. We shall generalize this approach to cardinality
queries which may require several calls to a linear program solver. A restriction
is a function r : P → N0 × (N0 ∪ {∞}) from places to right-open intervals rep-
resenting the allowed number of tokens in each of the places (if r(p) = [0,∞]
then there is no restriction on the number of tokens in p). Given two restric-
tions r1 and r2, we introduce the combined restriction combine(r1, r2) defined
as combine(r1, r2)(p) = r1(p) ∩ r2(p) where we assume here the standard inter-
val intersection operator. We use the notation 〈p1 �→ [a1, b1], . . . pn �→ [an, bn]〉
to represent a restriction r such that r(p1) = [a1, b1], . . . , r(pn) = [an, bn] and
r(p) = [0,∞] for all p ∈ P �{p1, . . . , pn}. For example, combine(〈p �→ [2,∞], q �→
[2, 10]〉, 〈p �→ [0, 7]〉) = 〈p �→ [2, 7], q �→ [2, 10]〉.

Let us now define the function constraints that for a given cardinality query
ϕ returns a set of restrictions. For simplicity, we assume that the negation has
already been pushed (using De Morgan rules) all the way to the atomic propo-
sitions where the negation can be replaced by the dual atomic propositions.

constr(p = n) = {〈p �→ [n, n]〉}
constr(p �= n) = {〈p �→ [0, n − 1]〉, 〈p �→ [n + 1,∞]〉}
constr(p ≤ n) = {〈p �→ [0, n]〉}
constr(p ≥ n) = {〈p �→ [n,∞]〉}
constr(p < n) = {〈p �→ [0, n − 1]〉}
constr(p > n) = {〈p �→ [n + 1,∞]〉}
constr(ϕ1 ∨ ϕ2) = constr(ϕ1) ∪ constr(ϕ2)
constr(ϕ1 ∧ ϕ2) = {combine(r1, r2) | r1 ∈ constr(ϕ1), r2 ∈ constr(ϕ2)}

The actual use of state-equations in the setting of cardinality queries is now
described in Algorithm 3.
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Algorithm 3. Disproving Reachability Using Integer Programming
1: function Disprove-Reachability(N, M0, ϕ)
2: Let N = (P, T, F, I).
3: for all r ∈ constr(ϕ) do
4: LP := ∅ � Let LP be an empty system of inequations
5: for all p ∈ P do
6: Let [min, max] = r(p).
7: LP := LP ∪ {M0(p) +

∑
t∈T (F (t, p) − F (p, t)) · xt ≥ min}

8: LP := LP ∪ {M0(p) +
∑

t∈T (F (t, p) − F (p, t)) · xt ≤ max}
9: end for

10: if LP has an integer solution then
11: return “Inconclusive”
12: end if
13: end for
14: return “M �|= EF ϕ”
15: end function

Our implementation of the algorithm uses lpsolve [2] for the linear program-
ming part and performs fast on most of the competition nets. We have selected
two smallest instances of each scalable model from the known models used in
MCC’15 in order to be able to make a full state-space search on most of these
models for the purpose of our analysis. Then we ran the state-equation test
for all cardinality queries, resulting in the total number of 1024 executions. If
the over-approximation using state-equations succeeded (disproved reachability),
we report this and terminate, otherwise we continue with the state-space search
using the heuristic strategy with 5 min timeout. In 125 runs we did not get a
conclusive answer and reached the timeout, in 405 runs the answer was negative
(cardinality query was not reachable) and in the remaining 494 cases the query
was reachable. Out of the 405 runs where the cardinality query was disproved,
the state-equation technique succeeded in 118 cases (and hence the expensive
state-space search was completely avoided). Moreover, it took on average only
0.15 s to perform the state-equation check, with only four tests exceeding 2 s. The
most expensive over-approximation test was for the model PolyORBNT-S05J30
where it took 4.25 s.

The over-approximation using state-equations is a fast and efficient method
to disprove the reachability of cardinality queries and it manages in almost 30 %
of cases to provide a conclusive answer. In order to further increase the percent-
age of cases with conclusive answers, we plan to experiment with trap reduc-
tion [7] and other techniques in order to make the technique applicable to even
more cardinality queries.
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p

p′

t

1

1

Conditions on p, t and p′:

1. p �= p′

2. p• = {t}, •t = {p}, t• = {p′}
3. F (p, t) = F (t, p′) = 1
4. M0(p) = 0 or M0(p

′) = 0
5. I(t) = I(p) = I(p′) = ∅
6. p, p′ �∈ places(ϕ)

⇒ p′′

p′′ :=
p if M0(p

′) = 0
p′ otherwise

Remove t and p′ (if M0(p
′) = 0)

resp. p (otherwise).

For all t′ ∈ T � {t}:
F (t′, p′′) := F (t′, p) + F (t′, p′)
F (p′′, t′) := F (p, t′) + F (p′, t′)

(a) Sequential transition removal

t

t′

p

w

w

Conditions on t, p and t′:

1. t �= t′

2. •p = {t}, p• = {t′}, •t′ = {p}
3. F (t, p) = F (p, t′) = w > 0
4. M0(p) = 0
5. I(p) = I(t) = I(t′) = ∅
6. p �∈ places(ϕ)
7. I(p′) = ∅ for all p′ ∈ t′•

8. p′ �∈ places(ϕ) for all p′ ∈ t′•

⇒ t

Remove p and t′.

For all p′ ∈ P :
F (t, p′) := F (t, p′) + F (t′, p′)

(b) Sequential place removal

Fig. 2. Sequential rules for a cardinality formula ϕ and initial marking M0

5 Structural Reductions

We shall now present a set of structural reduction rules that allow us to reduce
the net structure and decrease the size of the state-space, while preserving the
answers to cardinality queries. The classical reduction rules for preserving live-
ness, safeness and boundedness were introduced in [13,14]. We extend them to
weighted nets with inhibitor arcs and specialize to the use for cardinality queries.
The extension is not completely straightforward as a number of side conditions
must be satisfied in order to preserve correctness—in fact TAPAAL was the
only tool at MCC’15 that used structural reduction techniques. The rules are
presented in Figs. 2 and 3 and they are relative to a given initial marking M0

and a cardinality query ϕ, where places(ϕ) is the set of all places that occur in
the query ϕ.
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t

t′

p

w1

w2

p′

w1

w2

Conditions on t, t′, p and p′:

1. p �= p′, t �= t′

2. •p = •p′ = {t}
3. p• = p′• = {t′}
4. F (t, p) = F (t, p′) > 0
5. F (p, t′) = F (p′, t′) > 0
6. M0(p) = M0(p

′)
7. I(p) = ∅ or I(p) = I(p′)
8. p �∈ places(ϕ)

⇒

t

t′

p′

w1

w2

Remove p.

(a) Parallel place removal

p1 p2

p3 p4

. . .

. . .

t

w1 w2

w3
w4

t ′

w1
w2

w3 w4

Conditions on t and t′:

1. t �= t′

2. F (p, t) = F (p, t′)
for all p ∈ P

3. F (t, p) = F (t′, p)
for all p ∈ P

4. I(t) = I(t′)

⇒

p1 p2

p3 p4

. . .

. . .

t ′

w1
w2

w3 w4

Remove t.

(b) Parallel transition removal

Fig. 3. Parallel rules for a cardinality formula ϕ and initial marking M0

Theorem 1. Let (N,M0) be a marked Petri net and let ϕ be a cardinality query.
Let N ′ be the net N after the application of some reduction rules from Figs. 2
and 3. Then (N,M0) |= EF ϕ if and only if (N ′,M0) |= EF ϕ.

Proof. As cardinality queries are only concerned about the number of tokens in
places, it is easy to see that the parallel transition rule in Fig. 3b is harmless as
the transitions t and t′ are enabled at the same time and they have the same
firing effect, so we can easily remove one of them without affecting the reachable
markings. Similarly, the parallel places rule in Fig. 3a ensures that the number
of tokens in p and p′ remain the same in any reachable marking (ensured by
the assumption that p and p′ contain the same number of tokens already in the
initial marking). Now we can remove the place p, provided that p is not used in
the cardinality query ϕ and either there are no inhibitor arcs connected to p or
the places p and p′ inhibit exactly the same set of transitions.

For a given net N , let N ′ be a net after one application of the sequential
transition rule in Fig. 2a that removed the transition t. We shall first argue that
if (N,M0) |= EF ϕ, meaning that M0

w→ M for some sequence of transitions
w such that M |= ϕ, then also (N ′,M0) |= EF ϕ. To show this, let w′ be the
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transition sequence obtained from w by removing all occurrences of the transition
t. Observe now that due to the fact that no inhibitor arcs are connected to p
and p′ (condition 5), we can execute from M0 in N ′ the sequence w′ (M0 is a
valid marking also in N ′ due to condition 4 requiring that the place we removed
in N ′ has no tokens in M0) and obtain a marking M ′ such that M ′(p) = M(p)
for all p ∈ P � {p, p′} and M ′(p′′) = M(p) + M(p′). As the query ϕ does not
contain the places p and p′ (condition 6), we can conclude that also M ′ |= ϕ and
hence (N ′,M0) |= EF ϕ. For the opposite direction, assume that M0

w→ M ′ in
the net N ′ such that M ′ |= ϕ. We shall now fire this transition sequence w in
the original net N such that whenever the transition t that was removed in N ′ is
enabled, we insert its firing into the sequence w as long as it is enabled. This will
guarantee that all tokens from p are moved to p′ due to the requirement that the
single input and output arcs of t have weight 1 (conditions 2 and 3) and that t is
not connected with any inhibitor arcs (condition 5). As p is not an input place
for any other transition than t (condition 2), moving the tokens from p to p′ does
not influence the firing of other transitions in N . Similarly, the configuration of
tokens in p and p′ cannot influence the firing of other transitions in N ′ due to
the absence of inhibitor arcs connected to p and p′ (condition 5). Now, let M
be the marking reached in N after firing the sequence of transitions described
above. Clearly, M(p) = M ′(p) for all p ∈ P � {p, p′} and as ϕ is not referring to
the places p and p′ (condition 6), we get M |= ϕ implying that (N,M0) |= EF ϕ.

The arguments for the rule in Fig. 2b, omitted due to space limitations, are
analogous to the sequential transition removal rule discussed above. ��

Note that the more places occur in the query ϕ, the fewer reduction rules
are in general applicable. The reachability of a deadlock can be expressed using
a cardinality query but then all places connected to some transition will be
mentioned in the query and hence the structural reduction rules will not be
applicable. However, for deadlock we can reduce the net w.r.t. some trivial query
that does not contain any places (e.g. EF 2 < 1) and now (N,M0) is deadlock-
free if and only if (N ′,M0) is deadlock-free.

Theorem 2. Let (N,M0) be a marked Petri net. Let N ′ be the net N after the
application of some reduction rules from Figs. 2 and 3 for a query ϕ = 2 < 1.
Then (N,M0) has a deadlock if and only if (N ′,M0) has a deadlock.

Proof. The proof is very similar to the proof of Theorem 1 but some of the addi-
tional conditions like the requirement p �= p′ in the rule from Fig. 2a (condition
1) are important as removing the transition t in case of p = p′ can create a new
deadlock in N ′ that is not present in N . ��

For the competition queries that ask to compute the maximum number of
tokens in the net, we may only use reduction rules from Figs. 2b and 3b as the
other two rules possibly decrease the maximum number of reachable tokens.

We have conducted experiments on the same nets as in Sect. 4 in order to
see how many nets can be reduced and to what degree. The reductions were
performed relative to a query that does not contain any places (as e.g. deadlock)



TAPAAL and Reachability Analysis of P/T Nets 317

in order to see the maximal possible reduction. If a query contains many places,
the number of applications of the reduction rules may be possibly lower. The
data show that out of the 261 nets, 118 of them were reducible, with an average
reduction of 35 % of the net size (measured as the number of places plus the
number of transitions). Some nets are reducible by only a few percent while
others allow a reduction of up to 95 % (e.g. the house construction net). As
reducing the size of a net can imply up to an exponential decrease in the size
of the state-space, the effect of the reductions significantly contributes to the
performance of our verification engine.

6 Tool Implementation

The verification engine for P/T nets, employing the techniques described in
earlier sections, has been efficiently implemented in C++ and made publicly
available as a part of the tool suite TAPAAL [4]. It includes a GUI for drawing
the nets, graphical query creation dialog and advanced debugging (simulation)
options. The tool allows us to import the MCC competition nets in PNML
format as well as the cardinality and deadlock queries, and process them either
individually or in a batch processing mode.

Regarding the implementation details, our experiments showed that the inci-
dence matrix representation of a Petri net is preferred over the linked list repre-
sentation as even though on larger nets the linked list representation preserves
some space, it is remarkably slower [6] (likely due to the cache coherence issues).
Finally, it is important to remark that for larger nets with several hundreds
of places and transitions, an efficient implementation of the structural reduction
rules is of great importance as a naive coding of the rules using up to four nested
loops (like the rule in Fig. 3a) will use too much of the preprocessing time.

7 Conclusion

We described the most essential verification techniques used in the P/T net
engine of TAPAAL. Each of the techniques has a significant performance effect,
as documented by a number of experiments run on the nets and queries from
MCC’15. We believe that it is the combination of these techniques and a rela-
tively simple explicit search engine that contributed to the second place of our
tool in the years 2014 and 2015. We are currently working on optimizing the
performance of the successor generator, space optimizations and extending the
reachability analysis to the full CTL model checking.

Acknowledgments. The fourth author is partially affiliated with FI MU, Brno, Czech
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