
Jeremy Clark · Sarah Meiklejohn
Peter Y.A. Ryan · Dan Wallach
Michael Brenner · Kurt Rohloff (Eds.)

 123

LN
CS

 9
60

4

FC 2016 International Workshops, BITCOIN, VOTING, and WAHC
Christ Church, Barbados, February 26, 2016
Revised Selected Papers

Financial Cryptography
and Data Security

Lecture Notes in Computer Science 9604

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Jeremy Clark • Sarah Meiklejohn
Peter Y.A. Ryan • Dan Wallach
Michael Brenner • Kurt Rohloff (Eds.)

Financial Cryptography
and Data Security
FC 2016 International Workshops
BITCOIN, VOTING, and WAHC
Christ Church, Barbados, February 26, 2016
Revised Selected Papers

123

Editors
Jeremy Clark
Concordia University
Montreal, QC
Canada

Sarah Meiklejohn
University College London
London
UK

Peter Y.A. Ryan
Université du Luxembourg
Luxembourg
Luxembourg

Dan Wallach
Rice University
Houston, TX
USA

Michael Brenner
Leibniz Universität Hannover
Hannover
Germany

Kurt Rohloff
New Jersey Institute of Technology
Newark, NJ
USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-662-53356-7 ISBN 978-3-662-53357-4 (eBook)
DOI 10.1007/978-3-662-53357-4

Library of Congress Control Number: 2016949126

LNCS Sublibrary: SL4 – Security and Cryptology

© International Financial Cryptography Association 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer-Verlag GmbH Berlin Heidelberg

BITCOIN 2016: Third Workshop on Bitcoin
and Blockchain Research

We were pleased to once again hold a Bitcoin Workshop at Financial Cryptography
and Data Security 2016. In the year leading up to our third workshop, many financial
institutes—including banks, insurance companies, and security exchanges—began
demonstrating interest in adapting Bitcoin’s blockchain data structure for applications
relevant to them. To capitalize on this expanding focus, we tweaked the name of the
workshop to include “Blockchain Research” that utilizes Bitcoin’s flagship component
for broader or competing applications.

After completing the peer-review process, with gratitude to our outstanding Program
Committee (listed herein), we selected ten papers for the workshop out of the 25
submissions we received. In addition to our program, we note that Financial Cryp-
tography itself accepted six papers on Bitcoin; thus our joint conference remains a
strong venue with a high concentration of new academic research into Bitcoin. Our
programs contained a range of subjects but particular attention was paid to scalability
issues in Bitcoin, as well as to the Ethereum platform.

We were pleased to have an insightful keynote presentation from Nathaniel Popper
of the New York Times and author of Digital Gold touching on the history of Bitcoin
and the people involved early in its development. We also had a rich security expo-
sition of the Ethereum protocol and client by Gustav Simonsson of the Ethereum
project. Finally, we witnessed a small sliver of Bitcoin history when Sean Bowe from
zcash received the first zero-knowledge contingent payment live on the Bitcoin net-
work from Gregory Maxwell in California.

We again extend our gratitude to our Program Committee for doing the hard work of
selecting a strong set of papers for the workshop. Thanks in particular to Nicolas
Christin for setting us up with a HotCRP server that made all of our lives easier, and to
Joseph Bonneau for being the first PC member to complete all their reviews (his award
is to be chair next year). We thank each of our invited speakers for taking the time to
attend, interact, and give compelling talks. We thank all the attendees for their interest,
questions, and interactions during the reception and breaks. We thank the organizers of
Financial Cryptography, in particular the general chair, Ray Hirschfeld, for guiding us
through the process and executing a flawless conference in a beautiful location. Finally
we thank all of the sponsors of Financial Cryptography and, by extension, ourselves.

July 2016 Sarah Meiklejohn
Jeremy Clark

Program Committee

Gavin Andresen MIT Media Lab, USA
Elli Androulaki IBM Research Zurich, Switzerland
Foteini Baldimtsi Boston University, USA
Iddo Bentov Technion, Israel
Alex Biryukov University of Luxembourg, Luxembourg
Joseph Bonneau Stanford University and EFF, USA
Rainer Böhme University of Innsbruck, Austria
Srdjan Capkun ETH Zurich, Switzerland
Nicolas Christin Carnegie Mellon University, USA
Christian Decker ETH Zurich, Switzerland
Stefan Dziembowski University of Warsaw, Poland
Ittay Eyal Cornell University, USA
Christina Garman Johns Hopkins University, USA
Matthew Green Johns Hopkins University, USA
Jens Grossklags Penn State University, USA
Feng Hao Newcastle University, UK
Ethan Heilman Boston University, USA
Garrick Hileman London School of Economics, UK
Aquinas Hobor National University of Singapore, Singapore
Aniket Kate Purdue University, USA
Aggelos Kiayias National Kapodistrian University of Athens, Greece
Gregory Maxwell Blockstream/Bitcoin Core, USA
Tyler Moore University of Tulsa, USA
Andrew Miller University of Maryland, USA
Arvind Narayanan Princeton University, USA
abhi shelat University of Virginia, USA
Elaine Shi Cornell University, USA
Aviv Zohar The Hebrew University of Jerusalem, Israel

VI BITCOIN 2016: Third Workshop on Bitcoin and Blockchain Research

VOTING 2016: First Workshop on Advances in Secure
Electronic Voting Schemes

In the summer of 2015 we were approached by the organizers of Financial Crypto with
the suggestion to submit a proposal for a workshop on secure voting systems to
contribute to marking the 20th anniversary of FC. We took up the invitation and the
resulting proposal was duly accepted. This led to a rather shorter lead time for
advertisement etc. than we would ideally have liked, but nonetheless the workshop was
a success in terms of the number and quality of submissions, attendance, and the
quality of presentations and the discussions.

Voting forms the foundation of democracy and as such voting systems constitute
part of a democratic nation’s critical infrastructure, albeit one that is only deployed
periodically. Moves to use digital technologies in voting introduce a whole raft of new,
poorly understood threats, especially when it comes to voting over the Internet. This
has prompted the security and crypto communities to address the challenges of making
voting technologies and systems that are really secure, principally ensuring that the
outcome is demonstrably correct while guaranteeing the secrecy of votes.

We received 13 submissions, all of which had at least three reviews and several of
which provoked lively debate among the reviewers. Six paper were accepted, leaving
space for a keynote talk and a panel. We invited Glen Weyl of Microsoft Research New
England and the University of Chicago to present his idea of quadratic voting and
discuss the security aspects. The panel was organized by Mark Ryan of the University
of Birmingham: “On the Possibility of Ever Deploying Internet-Based Voting,” a
discussion of the challenges and obstructions to developing secure and usable Internet
voting systems.

We should like to thank the organizers of FC for inviting us to organize the
workshop in association with the conference and for all their support throughout the
process. We also thank all the authors who submitted papers but especially those who
came to present the accepted papers. We also thank the PC for their sterling efforts,
especially those who performed shepherding duties.

April 2015
Peter Y.A. Ryan

Dan Wallach

Program Committee

Michael Alvarez California Institute of Technology, USA
Roberto Araujo Universidade Federal do Pará, Brazil
Jeremy Clark Concordia University, USA
Veronique Cortier LORIA, CNRS, France
Jeremy Epstein SRI, USA
Aleksander Essex Western University
Kristian Gjosteen Norwegian University of Science and Technology,

Norway
Rajeev Gore The Australian National University, Australia
Jeroen van de Graaf Universidade Federal de Minas Gerais, Brazil
Rolf Haenni Bern University of Applied Sciences, Switzerland
Reto König Bern University of Applied Sciences, Switzerland
Steve Kremer Inria Nancy, France
Robert Krimmer Tallinn University of Technology, Estonia
Olivier Pereira Universite Catholique de Louvain, Belgium
Ron L. Rivest MIT, USA
Alon Rosen IDC Herzliya, Israel
Mark Ryan University of Birmingham, UK
Steve Schneider University of Surrey, UK
Berry Schoenmakers Eindhoven University of Technology, The Netherlands
Carsten Schuermann IT University of Copenhagen, Denmark
Philip B. Stark University of California, Berkeley, USA
Vanessa Teague The University of Melbourne, Australia
Melanie Volkamer TU Darmstadt, Germany
Poorvi Vora The George Washington University, USA

VIII VOTING 2016: First Workshop on Advances in Secure Electronic Voting Schemes

WAHC 2016: 4th Workshop on Encrypted Computing
and Applied Homomorphic Cryptography

Cloud hype and the recent leakage of private information show there is a demand for
secure and practical computing technologies. The WAHC workshop addresses the
challenge in safely outsourcing data processing onto remote computing resources by
protecting programs and data even during processing. This allows users to outsource
computation over confidential information independently from the trustworthiness or
the security level of the remote delegate. The workshop serviced these research needs
by collecting and bringing together some of the top researchers and practitioners from
academia, government, and industry to present, discuss, and share the latest progress in
the field relevant to real-world problems with practical approaches and solutions.

The workshop was uniformly attended by academia, government, and industry,
with attendees both from prior years with experience in the domain and new attendees
learning from the community. Specific encrypted computing technologies focused on
homomorphic encryption and secure multiparty computation. The technologies and
techniques discussed in this workshop are key to extending the range of applications
that can be securely and practically outsourced.

Presentations and discussions at the workshop were of the high quality and deep
insight we have come to expect from our community. Topics of conversation included
insights and lessons learned from experience implementing encrypted computing
schemes, and experience reports on applying these technologies. Special thanks to the
invited speaker: Erman Ayday from Bilkent University, who shared experience from a
recent encrypted computing projects applied to genetic testing.

This year we accepted demo papers for consideration. We had a strong inaugural
demo paper presentation from Mamadou Diallo of SPAWAR System Center Pacific,
who discussed applying homomorphic encryption technologies to support use cases for
the US Navy.

All of the 11 submission contained unique and interesting results. Each was
reviewed by at least three Program Committee members. While all the papers were of
high quality, only five papers were accepted for the workshop. We thank the authors for
their submissions, the members of the Program Committee for their effort, the
workshop participants for attending, and the FC organizers for supporting us.

February 2016
Michael Brenner

Kurt Rohloff

Program Committee

Dan Bogdanov Cybernetica, Estonia
Marten van Dijk UConn, USA
Joan Feigenbaum Yale, USA
Rosario Gennaro CCNY, USA
Sergey Gorbunov MIT, USA
Aggelos Kiayias UConn, USA
Vlad Kolesnikov Bell Labs, USA
Kim Laine Microsoft, USA
Tancrède Lepoint CryptoExperts, France
David Naccache ENS, Paris, France
Michael Naehrig Microsoft, USA
Pascal Paillier CryptoExperts, France
Benny Pinkas Bar-Ilan University, Israel
Yuriy Polyakov NJIT, USA
Berk Sunar WPI, USA
Mehdi Tibouchi NTT, Japan
Yevgeniy Vahlis Amazon, USA
Fré Vercauteren KU Leuven, Belgium
Adrian Waller Thales, UK

X WAHC 2016: 4th Workshop on Encrypted Computing

Contents

Third Workshop on Bitcoin and Blockchain Research, BITCOIN 2016

Stressing Out: Bitcoin “Stress Testing” . 3
Khaled Baqer, Danny Yuxing Huang, Damon McCoy,
and Nicholas Weaver

Why Buy When You Can Rent? Bribery Attacks on Bitcoin-Style
Consensus . 19

Joseph Bonneau

Automated Verification of Electrum Wallet . 27
Mathieu Turuani, Thomas Voegtlin, and Michael Rusinowitch

Blindly Signed Contracts: Anonymous On-Blockchain and Off-Blockchain
Bitcoin Transactions . 43

Ethan Heilman, Foteini Baldimtsi, and Sharon Goldberg

Proofs of Proofs of Work with Sublinear Complexity 61
Aggelos Kiayias, Nikolaos Lamprou, and Aikaterini-Panagiota Stouka

Step by Step Towards Creating a Safe Smart Contract: Lessons and Insights
from a Cryptocurrency Lab . 79

Kevin Delmolino, Mitchell Arnett, Ahmed Kosba, Andrew Miller,
and Elaine Shi

EthIKS: Using Ethereum to Audit a CONIKS Key Transparency Log 95
Joseph Bonneau

On Scaling Decentralized Blockchains: (A Position Paper) 106
Kyle Croman, Christian Decker, Ittay Eyal, Adem Efe Gencer, Ari Juels,
Ahmed Kosba, Andrew Miller, Prateek Saxena, Elaine Shi,
Emin Gün Sirer, Dawn Song, and Roger Wattenhofer

Bitcoin Covenants . 126
Malte Möser, Ittay Eyal, and Emin Gün Sirer

Cryptocurrencies Without Proof of Work . 142
Iddo Bentov, Ariel Gabizon, and Alex Mizrahi

First Workshop on Secure Voting Systems, VOTING 2016

Coercion-Resistant Internet Voting with Everlasting Privacy 161
Philipp Locher, Rolf Haenni, and Reto E. Koenig

http://dx.doi.org/10.1007/978-3-662-53357-4_1
http://dx.doi.org/10.1007/978-3-662-53357-4_2
http://dx.doi.org/10.1007/978-3-662-53357-4_2
http://dx.doi.org/10.1007/978-3-662-53357-4_3
http://dx.doi.org/10.1007/978-3-662-53357-4_4
http://dx.doi.org/10.1007/978-3-662-53357-4_4
http://dx.doi.org/10.1007/978-3-662-53357-4_5
http://dx.doi.org/10.1007/978-3-662-53357-4_6
http://dx.doi.org/10.1007/978-3-662-53357-4_6
http://dx.doi.org/10.1007/978-3-662-53357-4_7
http://dx.doi.org/10.1007/978-3-662-53357-4_8
http://dx.doi.org/10.1007/978-3-662-53357-4_9
http://dx.doi.org/10.1007/978-3-662-53357-4_10
http://dx.doi.org/10.1007/978-3-662-53357-4_11

Selene: Voting with Transparent Verifiability and Coercion-Mitigation 176
Peter Y.A. Ryan, Peter B. Rønne, and Vincenzo Iovino

On the Possibility of Non-interactive E-Voting in the Public-Key Setting 193
Rosario Giustolisi, Vincenzo Iovino, and Peter B. Rønne

Efficiency Comparison of Various Approaches in E-Voting Protocols 209
Oksana Kulyk and Melanie Volkamer

Remote Electronic Voting Can Be Efficient, Verifiable and
Coercion-Resistant . 224

Roberto Araújo, Amira Barki, Solenn Brunet, and Jacques Traoré

Universal Cast-as-Intended Verifiability . 233
Alex Escala, Sandra Guasch, Javier Herranz, and Paz Morillo

4th Workshop on Encrypted Computing and Applied Homomorphic
Cryptography, WAHC 2016

Hiding Access Patterns in Range Queries Using Private Information
Retrieval and ORAM. 253

Gamze Tillem, Ömer Mert Candan, Erkay Savaş, and Kamer Kaya

Optimizing MPC for Robust and Scalable Integer and Floating-Point
Arithmetic . 271

Liisi Kerik, Peeter Laud, and Jaak Randmets

On-the-fly Homomorphic Batching/Unbatching . 288
Yarkın Doröz, Gizem S. Çetin, and Berk Sunar

Using Intel Software Guard Extensions for Efficient Two-Party Secure
Function Evaluation. 302

Debayan Gupta, Benjamin Mood, Joan Feigenbaum, Kevin Butler,
and Patrick Traynor

CallForFire: A Mission-Critical Cloud-Based Application Built Using the
Nomad Framework . 319

Mamadou H. Diallo, Michael August, Roger Hallman, Megan Kline,
Henry Au, and Vic Beach

Cryptographic Solutions for Genomic Privacy. 328
Erman Ayday

Author Index . 343

XII Contents

http://dx.doi.org/10.1007/978-3-662-53357-4_12
http://dx.doi.org/10.1007/978-3-662-53357-4_13
http://dx.doi.org/10.1007/978-3-662-53357-4_14
http://dx.doi.org/10.1007/978-3-662-53357-4_15
http://dx.doi.org/10.1007/978-3-662-53357-4_15
http://dx.doi.org/10.1007/978-3-662-53357-4_16
http://dx.doi.org/10.1007/978-3-662-53357-4_17
http://dx.doi.org/10.1007/978-3-662-53357-4_17
http://dx.doi.org/10.1007/978-3-662-53357-4_18
http://dx.doi.org/10.1007/978-3-662-53357-4_18
http://dx.doi.org/10.1007/978-3-662-53357-4_19
http://dx.doi.org/10.1007/978-3-662-53357-4_20
http://dx.doi.org/10.1007/978-3-662-53357-4_20
http://dx.doi.org/10.1007/978-3-662-53357-4_21
http://dx.doi.org/10.1007/978-3-662-53357-4_21
http://dx.doi.org/10.1007/978-3-662-53357-4_22

Third Workshop on Bitcoin and
Blockchain Research, BITCOIN 2016

Stressing Out: Bitcoin “Stress Testing”

Khaled Baqer1(B), Danny Yuxing Huang2, Damon McCoy3,
and Nicholas Weaver4

1 Computer Laboratory, University of Cambridge, Cambridge, UK
khaled.baqer@cl.cam.ac.uk

2 University of California, San Diego, La Jolla, USA
3 New York University, New York, USA

4 International Computer Science Institute, Berkeley, USA

Abstract. In this paper, we present an empirical study of a recent spam
campaign (a “stress test”) that resulted in a DoS attack on Bitcoin. The
goal of our investigation being to understand the methods spammers
used and impact on Bitcoin users. To this end, we used a clustering
based method to detect spam transactions. We then validate the cluster-
ing results and generate a conservative estimate that 385,256 (23.41 %)
out of 1,645,667 total transactions were spam during the 10 day period
at the peak of the campaign. We show the impact of increasing non-
spam transaction fees from 45 to 68 Satoshis/byte (from $0.11 to $0.17
USD per kilobyte of transaction) on average, and increasing delays in
processing non-spam transactions from 0.33 to 2.67 h on average, as well
as estimate the cost of this spam attack at 201 BTC (or $49,000 USD).
We conclude by pointing out changes that could be made to Bitcoin
transaction fees that would mitigate some of the spam techniques used
to effectively DoS Bitcoin.

1 Introduction

The Bitcoin network [9] was subjected to a major spam campaign during the
summer of 2015 that caused degraded performance of Bitcoin. The likely intent
of the incident (advertised as a “stress test”) was to Denial of Service (DoS)
Bitcoin with spam transactions, in order to expose the vulnerability of Bit-
coin to spam attacks and to garner support for a proposed change to increase
the number of transactions that the Bitcoin network can verify, which is cur-
rently approximately 3 transactions per second. DoS attacks against Bitcoin
have been theorized. However, to date there has been little empirical analysis of
DoS attacks launched directly against Bitcoin.

In this paper, we conduct an empirical analysis of this spam based DoS attack
launched against Bitcoin. To enable our analysis, we use k-means clustering and
a set of features we identified to differentiate spam from non-spam transactions.
We validate the results of our clustering technique and are able to identify that
385,256 (23.41 %) out of 1,645,667 total transactions were spam between July
7th and July 17th, which corresponds to the peak of the spam based DoS attack.

c© International Financial Cryptography Association 2016
J. Clark et al. (Eds.): FC 2016 Workshops, LNCS 9604, pp. 3–18, 2016.
DOI: 10.1007/978-3-662-53357-4 1

4 K. Baqer et al.

Further analysis of transactions in these clusters allowed us to identify four
distinct motifs of spam transactions. Based on our identification of spam and
non-spam transactions we are able to measure the cost of this spam campaign
and impact on non-spam transactions in terms of delay and increased fees.

Our study makes several contributions, including proposing and empirically
validating a method to identify spam transactions, characterizing the spam trans-
actions, and measuring the impact of this spam campaign on Bitcoin. Finally, in
our discussion section we propose changes to transaction fees that would miti-
gate the effectiveness of DoS attacks that use spam motifs similar to those used
in this attack.

2 Background

Bitcoin transactions are chained signed receipts, consisting of one or more signed
inputs to spend, and one or more outputs. The outputs of the transaction are
normally assigned to Bitcoin addresses; the hash of a public key that has the
authority to use the particular output as an input to another transaction. Trans-
actions are included in blocks, with each block also including the hash of the
previous block to create a blockchain. A block results from verifying all included
transactions, with a hash of the data creating a digest with a network-determined
prefix of zeros. The latter constitutes the difficulty of the network which is auto-
matically tuned to ensure that the network expects that each block takes 10 min
to create, and the effort exerted to create the correct digests is Bitcoin’s Proof-
of-Work (PoW). The blockchain represents Bitcoin’s global ledger, and miners
compete to create blocks and broadcast them to the network to claim their
rewards. Currently the network only creates and accepts blocks of 1 MB or less,
limiting global transaction rate to less than 3 transactions per second.

The main components of a transaction, relevant to our analysis, are the trans-
action ID (txid), the inputs to the transaction (vin), and the outputs (vout). A
transaction includes inputs that reference outputs of one or more older transac-
tions. That is, each input includes, inter alia, a reference to an older transaction
and the index in the list of outputs (of the referenced transactions) to be used.
Bitcoin transactions vary in their inputs and outputs, which determine the size
of a transaction.

Transactions are broadcasted to other peers in the Bitcoin P2P network,
who perform local verifications to prevent DoS attacks, and the transaction
propagates the entire network within a few seconds [3]. Received transactions
are maintained in a node’s own local memory pool (Mempool). Here, transactions
remain in limbo until confirmed and included in a block; once a transaction is
included in a block, a node removes the transaction from its Mempool. Although
a node tends to maintain unconfirmed transactions for a very long period of time,
memory pressure may cause a node to evict old entries from the Mempool if it
grows sufficiently large.

Nodes also maintain an unspent transaction output set (UTXO) to easily
verify inputs to newly received transactions. Therefore, an increase in the UTXO

Stressing Out: Bitcoin “Stress Testing” 5

adds memory pressure on nodes which currently hold the UTXO set in RAM.
Unlike the Mempool, memory pressure on the UTXO set cannot be relieved by
eviction, but requires changing the node’s implementation.

In the reference implementation, a Bitcoin miner calculates a priority and
uses this to determine which transactions to include in the block. To calculate
transaction priority (P), the node considers all inputs to the transaction as
well as its size. P is defined in Bitcoin as

∑n
i=0(valuei × agei) ÷ S, where n

is the number of inputs to the transaction, value is the value of input i (in
Satoshis1), age is defined as the difference between the current block’s height
and the input’s block height, and S is the transaction’s size. The value of P
determines a transaction’s fate; there are three possibilities:

1. Include transactions in the high-priority section of a block (50 KB); no trans-
action fee is necessary. The following conditions must be satisfied, the trans-
action must be:

– smaller than 1 KB
– all output values are at least 0.01 BTC
– P is high as determined by valuei and agei

2. Transactions that pay fees are prioritized by highest mBTC per KB.
3. The remaining transactions are maintained in the Mempool until one of the

two conditions above is satisfied.

In the latter case, age is the determining factor for P since everything else is
constant. It’s of particular note that miners prioritize for higher fees.

2.1 DoS Targets Inherent in Bitcoin

Spam can be detrimental to the Bitcoin network by outcompeting legitimate
transactions for inclusion in a block, delaying other transactions. We define the
following types of spam:

1. Fan-out: Transactions that split a few inputs into many outputs occupy
space in the blocks and also increase the UTXO set.

2. Fan-in: Transactions which absorb a large number of inputs reduce the
UTXO set but still occupy substantial space in the blocks.

3. Dust output: Transactions that create very small “dust” outputs convey a
trivially small amount of value but occupy the same amount of resources in
the Bitcoin network.

The spam campaigns in the “stress test” target one or more aspects of the
Bitcoin environment, including the block size limit, the UTXO set, and the com-
putational cost for verification. All these limited resources represent potential
targets.

The primary publicly stated motivation behind the stress test campaign was
to provide a justification for raising the Bitcoin block size limit before organic
1 1 Satoshi = 10−8 bitcoins. We follow the convention of referring to the protocol as
Bitcoin, the currency and its units as bitcoin or BTC.

6 K. Baqer et al.

demand limits the ability of Bitcoin to process payments. The current Bitcoin
block size of 1 MB globally supports less than 3 Bitcoin transactions per sec-
ond. Since this is three orders of magnitude lower than Visa’s sustained rate of
150M transactions per day (and peak processing ability of 24,000 transactions
per second) [10], it’s clear that the current Bitcoin payment processing is insuf-
ficient to meet the ambitions of the Bitcoin community. The public intent was
to demonstrate the impact of this limit by squeezing out normal transactions.

Raising the block size, however, opens up a different DoS vulnerability: a
long term growth DoS on the Blockchain itself. Since the Blockchain records all
previous transactions, an attacker could perform low fee transactions simply to
consume space. Thus if Bitcoin raised the block limit to 20 MB, and an attacker
can cheaply consume 10 MB of data per block, this causes the Blockchain to
increase in size by half a terabyte a year.

Since valid transactions can only spend unspent outputs, most full Bitcoin
nodes keep the UTXO set in memory to speed transaction validation. The mem-
ory requirements for the UTXO set are solely based on the number of unspent
outputs, so the inclusion of dust outputs in the stress test adds memory pres-
sure to the UTXO set. A better designed Bitcoin node should not have this
vulnerability.

Another DoS attack occurred on October 7th and 8th, which also put a sig-
nificant amount of pressure on the Mempool memory, raising the Mempool to
nearly a GB, with a transaction backlog of nearly a week. Since there are a large
number of nodes running on Raspberry Pi and other constrained systems, this
large Mempool managed to crash over 10 % of all Bitcoin nodes2. Most of the
spam itself, however, was of low priority. Such spam does not put pressure on
block inclusion, but neither does it cost the spammer any bitcoins; transactions
that are never confirmed do not incur a cost for the sender.

An inadvertent CPU DoS occurred due to a mining-pool’s “cleanup” block,
a single 1 MB transaction that served to remove a massive number of unspent
transactions sent to crackable “Brain wallet” addresses (which use a passphrase,
instead of private keys, to create Bitcoin addresses and spend bitcoins). Other
nodes required substantial CPU time to validate this block, as the current imple-
mentation required O(n2) time to validate a transaction. There may be other
CPU DoS possibilities inherent in the Bitcoin protocol that attackers can exploit.

Another DoS is inherent in “transaction malleability”. Someone can take a
valid transaction, permute it so it has a different txid, and broadcast that mod-
ified transaction to the network. If the attacker’s transaction is accepted into
the blockchain, this can disrupt wallet services, hardware wallets, and other sys-
tems tracking txids to determine when a transaction commits to the blockchain.
Recently, an attacker performed this DoS “because I am able to do it.”3

Finally, a later (failed) spam campaign attempted to flood the network with
invalid transactions, perhaps intending either a traffic DoS or a CPU DoS. The

2 https://www.reddit.com/r/Bitcoin/comments/3ny3tw/with a 1gb mempool 1000 n
odes are now down.

3 https://bitcointalk.org/index.php?topic=1198032.msg12579271.

https://www.reddit.com/r/Bitcoin/comments/3ny3tw/with_a_1gb_mempool_1000_nodes_are_now_down
https://www.reddit.com/r/Bitcoin/comments/3ny3tw/with_a_1gb_mempool_1000_nodes_are_now_down
https://bitcointalk.org/index.php?topic=1198032.msg12579271

Stressing Out: Bitcoin “Stress Testing” 7

“money drop”, a public release of private keys by one of the purported instiga-
tors of the stress test, seems intended to cause a big race which would cause a
large number of “double-spend” transactions. This did not produce a meaning-
ful disruption of the network, although it was probably intended to introduce
computational load.

One aspect not encountered during the stress test was the effect of filtering
valid but spammy transactions. The introduction of spam filters, if an unknown
attacker continued a longer term DoS attempt, could in itself be a DoS. If the
attacker adapts to the filters, eventually the filters will either fail to stop the spam
or incur false positives. Even a small false positive rate might be disruptive: could
a payment network tolerate a 1–2 % transaction failure rate due to spam filters?

3 Data Collection

In our study, we set up a server connected to a public-facing network. We
installed Bitcoin Core 0.11 and kept it running between June 19 and September
23, 2015. We collected three main data sets using Bitcoin daemon’s JSON-RPC
interface.

1. Bitcoin Blockchain: On September 23, we downloaded the entire blockchain
using the getblock and getrawtransaction methods. This returned details
for all blocks and transactions, such as the timestamps of blocks, the
timestamps at which we received the transactions, the number of trans-
action inputs and outputs, as well as the input and output amount. We
stored the data as plain-text JSON strings. As a result, the total data size
is 350 GB.

2. Mempool: Between June 19 and September 23, the getrawMempool method
was invoked every minute. This returned a list of unconfirmed txids currently
in the Mempool. These would be either committed to the blockchain or later
discarded by the P2P network. We saved this list of txids, along with the
timestamp of the RPC call, on the Hadoop file system. During this period,
we captured 12 million distinct txids in the Mempool, which amounts to 250
GB of plain-text data.

3. Unconfirmed transactions: For every unconfirmed transaction that we had
obtained above, we immediately looked up the transaction details using the
getrawtransaction method, since the Mempool could discard the transac-
tion any moment. To optimize for speed and storage, we ignored transactions
that we had previously seen. Finally, we saved all the transaction details,
along with the data collection timestamp, on Hadoop. Between June 19 and
September 23, we captured 1.3 TB of unconfirmed transactions in plain text.

The total size of the data collected is 2 TB, which we saved as plain-text
JSON strings on the Hadoop file system and analyzed with Spark. We summarize
our data sets in Table 1.

As we collected data using only a single node, our perspective of the P2P
network—and thus the transactions in the Mempool—is potentially biased. In

8 K. Baqer et al.

Table 1. Data sets. All data sets cover a period between June 19 and September 23.

Data Period Size

Blockchain Between Jan 9, 2009 and Sept 23, 2015 350 GB

Memory pool Between June 19 and Sept 23, 2015 250 GB

Unconfirmed transactions Between June 19 and Sept 23, 2015 1.3 TB

particular, network propagation takes time. For transactions in the Mempool,
the timestamps that we observed may be later than the originating timestamps.
Furthermore, whether a transaction is relayed is up to individual nodes. A trans-
action created a few hops away is not guaranteed to reach our node. It is, how-
ever, beyond the scope of this paper to adjust for such biases. We assume that
our observation of the network is largely consistent with the rest of the network.

4 Spam Clustering

We use an unsupervised machine learning method, k-means clustering, to find
similarities and evaluate our findings. This is not necessarily a perfect filter, but
as we manually verify, this does efficiently detect the spam transactions in the
“stress test”.

To use k -means clustering, we create a multi-dimensional vector representing
features of a Bitcoin transaction. We include in Table 2 the list of features and
follow up with defining features that were not previously discussed.

Table 2. Transaction features

Feature Notation Description

Inputs I Number of inputs

Outputs O Number of outputs

Ratio R I ÷ O

Priority P Value-weighted measurement

Size S Size (bytes)

Size and ratio S × R Emphasize fan-in and fan-out

Fees F Value of unclaimed outputs

Coin days destroyed CDD Coin age and spending velocity

Value V Total output value

Fees to values ratio F ÷ V Emphasize fee differences

R is necessary to highlight the difference between fan-in and fan-out transactions.
We further highlight this difference by multiplying the size of the transaction
by its ratio (otherwise, transactions with clear differences in R are clustered

Stressing Out: Bitcoin “Stress Testing” 9

together based on similarities in S). We include another property to highlight
the velocity of spending bitcoins represented as CDD4. This feature gives more
weight to older coins, and can be calculated as

∑n
i=0(valuei × agei). Unlike P ,

CDD does not consider S, age is measured in number of days rather than blocks
(an estimate of 144 blocks are produced each day), and value is in bitcoins.

4.1 Methodology

Since spam campaigns may not link transactions and addresses together, parsing
the blockchain to look for linked transactions might be a futile process. Our
approach is different: we cluster transactions based on their motifs (trends in
the Bitcoin network), and disregard transactions’ identifying information (output
addresses, txid, etc.). Our main assumptions at this stage echo those required for
machine learning algorithms: a pattern exists, we cannot mathematically point
out differences in patterns (without data visibility), and we have a large trove
of data to show the patterns exist. We assume motifs do exist because spam
requires construction in-bulk to have a measurable effect on the network. Thus
spammers naturally create large numbers of transactions that “look similar”. We
also expect that such groups of transactions may have different motifs compared
with normal Bitcoin behavior, since spammers want to minimize the cost and
maximize the impact, producing different types of transactions (e.g. very high
fan-out or dust output) that particularly stress the network.

What we seek is a high-level interpretation of the data into distinct clusters
that we can then use to label transactions as spam and validate our results. Thus,
to investigate our main goal of identifying spam motifs, we consider the entire
Bitcoin network as an entity, rather than analyzing features of a transaction
independently from network norms. The latter process relies heavily on what
features should be considered to identify spam, which might assign more weight
to some features while disregarding others that are more influential.

We use k -means clustering, as provided in Spark’s machine learning library
(MLlib). k -means clustering is a type of machine learning algorithm for unsu-
pervised learning. This algorithm is particularly useful to cluster similar data
together when it is non-trivial to define similarity using the unlabeled data. Sim-
ilarity of vectorized data is determined using k -means by minimizing the Within-
Cluster Sum of Squares (WCSS); the data is matched to the cluster centroid with
the closest mean. The following equation is used to iterate over the data to get
optimal cluster centroids in order to minimize WCSS: min

∑k
i=1

∑n
x∈Si

‖x−µi‖2,
where k is the number of clusters, x is the data element (in vector form), Si is
the set containing n elements, and µi is the mean of Si (i.e. the mean of all the
elements in vector form that are contained in Si).

To reproduce the results discussed in this paper, the following properties of
k-means must be considered: the number of clusters k was set to 10, the number
of maxIterations was set to 100, and initializationMode was set to random.
The silhouette coefficient measures the homogeneity of the data in a cluster.

4 This feature is used by Bitcoin block explorers, see for example: https://blockr.io.

https://blockr.io

10 K. Baqer et al.

This is performed by measuring the average dissimilarity (defined in terms of
distance between data elements) between a given element within its cluster, and
comparing the result with the average dissimilarity between that same element
and elements of another cluster considered to be the next best-fit. However, in
our case, our aim is to show general transaction motifs, rather than to show
detailed transaction differences or find anomalies. We arrive at k = 10 after
testing multiple values for k to show enough visibility of transaction patterns.
If we choose k = 11 for example, we obtain a new cluster where the average of
transaction outputs is 8 rather than 11 (as shown in cluster 9 in Table 3). Instead,
we accept that the clustering algorithm groups these transactions together in
cluster 9, given that they are similar in other features. Conversely, with k <
10, clusters contain transactions that differ in most of their features; this does
not enable us to inspect the clusters to easily determine which of them fit our
definitions of spam. With k = 10, we see the “outliers” visible in a dedicated
cluster (cluster 8 in Table 3), whereas with k < 10 these outliers are included in
other clusters that do not match well.

The initial step for processing data was weeding out some transactions that
alter the clustering results. To set a starting point, we create two checks to filter
transactions. First, we check if the transaction creates dust output (we explain
this check in details later). The second check determines if the transaction’s
fan-out ratio is unusual (a threshold is set at 0.3). The rationale for these two
checks is as follows: If a fan-in transaction creates dust output, then it qualifies
as spam, otherwise it is minimizing the set of UTXOs that must be maintained
to verify transactions. Moreover, if a fan-out is unusual, this is enough to qualify
a transaction for clustering, and we later determine if the transaction is spam
by inspecting clustering results, and checking for dust outputs in clusters that
seem to contain normal transactions.

We analyze confirmed transactions that occurred between June 24th and
July 17th, 2015. The total number of transactions in this epoch is 3,321,429. To
obtain k-means clusters, we perform k-means training on all transactions that
were confirmed during the July spam campaign epoch, that occurred between
July 7th and 17th, the total number of transactions in this training epoch is
1,645,667. Using the cluster centroids from the spam epoch, we analyze the pre-
spam epoch to validate our results.

4.2 Results and Motifs

We now discuss motifs found in more than 1.6M transactions that occurred dur-
ing the spam epoch. Table 3 shows each cluster centroid’s features. As discussed
earlier, these centroids are the result of optimizing WCSS, and are represented as
the means of the values of all transactions in the corresponding cluster. Table 4
shows the standard deviation of the cluster centroids5.
5 The notation used in the tables corresponds to the notation used for the transac-

tion features defined earlier. Note that both tables include rounded values, while
attempting to maintain distinctions for small values with the minimum amount of
rounding necessary. For better presentation, we omit some features.

Stressing Out: Bitcoin “Stress Testing” 11

Table 3. Cluster centroids (confirmed transactions)

C TXs I O R P S F CDD V

0 48K 1.35 46 0.06 0.74 1.8K 0.0004 0.195 4.06

1 28 4.4K 1 4.4K 0.001 645K 0.04 0.06 0.0

2 896 106 1 103 0.17 16K 0.001 0.34 0.13

3 20 1.1K 1 1.1K 0.0008 162K 0.01 0.012 0.0

4 13.5K 31 1 31 0.04 4.7K 0.0002 0.02 0.006

5 16 1.4 13 0.15 535K 668 0.0004 25K 1K

6 9.5K 20 17 19 0.4 3.5K 0.0004 0.14 1.4

7 425K 1.1 2 0.8 1 224 0.0001 0.022 1.43

8 2 1 19 0.05 136M 787 0.0002 740K 3K

9 117K 1.2 11 0.14 72.43 561 0.0002 2.7 6.5

Table 4. Standard deviation of selected features (confirmed transactions)

C I O R P S F CDD V

0 4 104 0.77 27 3.6 0.002 17 40

1 1.2K 0 1.2K 0 176 0.012 0.05 0

2 43 0.2 35 2 6 0.0005 4 1.8

3 403 0 403 0 60 0.004 0.02 0

4 8 0.1 8 0.8 1.2 0.0002 0.5 0.24

5 1 7 0.1 0.35M 0.38 0.0001 26K 1.2K

6 2 0.4 2 1.65 0.35 0.0002 0.5 4

7 0.4 0.9 0.4 9 0.1 0.0002 0.2 15

8 0.0 0.5 0 3M 0.02 0 0.2M 748

9 0.5 6 0.2 2K 0.2 0.9µ 177 70

1. Fan-in. Clusters 2 and 4 include about 14K fan-in transactions. The pat-
tern is distinct: large I and one O (in rare cases O is for two addresses). The
transactions vary in S due to variations in I, and a notable distinction is
in CDD. Cluster 2 includes larger values for CDD, which indicates that the
inputs are not used for rapid transfer of value. Moreover, these transactions
may not have been used as spam per se, but are rather part of tumblers or
mixers where a large number of inputs are collated into single outputs and
the chain continues, in order to mix coins together and obtain relatively bet-
ter privacy. These transactions involve long chains of many inputs to a single
address, the last address then transfers funds to multiple outputs in fan-out
transactions, and so on. A large number of fan-in transactions impact the
Mempool, but minimize the UTXO set.

12 K. Baqer et al.

2. Fan-out. The fan-out pattern involves one or two addresses sending funds to
many addresses, as shown in Clusters 0, 5, 8 and 9; the total number of
transactions in these clusters is about 165K. These transactions increase the
UTXO set. This pattern was dominant in the clustering results; it resulted in
multiple clusters for fan-out transactions that differ in features other than R.
A low value for CDD indicates a fast movement of coins. Note that Cluster
0 includes transactions that have a single address sending small amounts to
more than 3K addresses.

3. Unable-to-decode. With 425K transactions, Cluster 7 includes the largest
number of transactions. The distinct feature of most of these transactions is
a one-to-one mapping: one address sending to a single output that cannot be
decoded. Moreover, the fees paid for these transactions (which are collected
by miners since the output cannot be decoded) equal the default fee value of
0.1 mBTC per KB. Another feature of this cluster is the zero value for CDD
(and low P), which indicates rapid movement of bitcoins.

4. Dust. The final motif of the analyzed spam campaign is the dust transactions
we had previously discussed. Cluster 7 contains non-spam transactions; nor-
mal transactions are matched to this cluster since they look similar to unable-
to-decode transactions (low values for most features). It is not straightforward
to visually inspect the cluster samples and determine if they are indeed spam.
Therefore, we parse the transactions in this cluster to determine which of them
fit our definition of dust spam. We explain in a later section how we parse
the results to find dust spam transactions.

5. UTXO cleanup. Clusters 1 and 3 include ‘clean-up’ transactions, cre-
ated by miners to collate spam transactions to minimize the UTXO, thereby
decreasing the spam impact on the network. The output addresses value of
these transactions may be zero, meaning that all the inputs are collected as
fees by the miner who includes the transaction in a block. Clean-up transac-
tions include ‘Brain wallet’ addresses (discussed earlier). These two clusters
are not categorized as spam, and the transactions are a consequence of the
spam campaign. The number of inputs to these transactions range between
1K and 5K (resulting in a large standard deviation).

Note that clusters 5 and 8 contain few transactions due to their unusually
high P . Cluster 8, which contains only two transactions, is indeed interesting
and earns its unique cluster: along with high P , the values of these transactions
are around 2,500 and 3,995 bitcoins (that is almost $0.6M and $0.96M in USD
respectively). Both transactions include a generous fee of 0.002 BTC.

In summary Clusters 0, 2, 4, 6, 7, and 9 correspond to our definition of
Bitcoin spam, including dust transactions and unusual ratios, while clusters 1
and 3 are a consequence of spam and not spam motifs.

4.3 Validation

It is important to note that we lack an external source to create ground truth
for our results. Without a labeled data set, or a third-party spam list, we cannot

Stressing Out: Bitcoin “Stress Testing” 13

measure the clustering results to be spam more accurately than matching the
results to our definitions of spam.

In order to find dust transactions, we check if P is low (less than 57M) and
whether the transaction creates any outputs of 0.1 mBTC (about $0.02), which
is the default fee value. We consider this a conservative estimate of the dust
transactions involved in the spam campaign, and at the same time we consider
the 0.01 BTC normally involved in dust checks to be too large.

We also applied clustering to transactions that occurred in the pre-spam
epoch, between June 24th and July 7th (after filtering for dust and unusual
ratios). The results are discussed in the next section, where we see a difference
in the intensity of motifs before and during the spam epoch. This validates our
clustering results: we find that the centroids obtained from training k-means,
using the spam epoch data, can also detect spam patterns in non-spam epochs.

5 Impact on Bitcoin

We now describe the effects of spam campaigns on the Bitcoin network—
especially on users who send non-spam transactions, as well as the miners. For
the users, we measure the change in transaction fees and transaction delays (i.e.
the time between when we first observe a transaction in the Mempool and when
the transaction is committed to the blockchain). A large amount of spam is likely
to increase the backlog of unconfirmed transactions. As a result, transactions
are delayed for longer time periods. With more intense competition, senders pay
higher fees, in the hope that their transactions will be included in blocks sooner.
For the miners, we measure the corresponding increase in the block reward.

Fig. 1. A stacked bar chart that shows the number of transactions per day in the
blockchain. Note that the spam period is from July 7th to 17th.

Figure 1 shows the clustering results in the non-spam and spam epochs.
Note that in the pre-spam epoch (before July 7th), clustering results show

14 K. Baqer et al.

Cluster 1 transactions (UTXO-cleanup motif). This does not mean that min-
ers were cleaning up spam; these transactions are similar to UTXO-cleanup
transactions in terms of high I and low O, and similar P values.

To highlight periods of the spam campaign, we measure the number of uncon-
firmed transactions in the Mempool, which indicates the amount of backlog in
the network. Every minute, we take a snapshot of the Mempool and count the
number of unconfirmed transactions. We take the average on a daily basis and
plot the result in Fig. 2.

Each major spike in the graph refers to a period of significant backlog. The
first spike, which happened between July 7th and 17th, corresponds to the spam
campaign in our study. There are sporadic spikes between July and August, but
we do not have sufficient insight on the cause. Finally, a spike appeared around
September 13, when an anonymous group conducted another stress-test on the
network with their “money drop” (as discussed earlier). As a result, a large
number of transactions were created to compete for the free bitcoins, although
only a few of them would be included in the blockchain eventually. Such a deluge
of transactions caused the second backlog in Fig. 2. We do not, however, consider
these transactions as spam.

Fig. 2. The average number of uncon-
firmed transactions in the memory pool
every day.

Fig. 3. A stacked bar chart showing the
total amount of transaction fees every
day.

Focusing on the mid-July spam period, we next examine the number of
transactions that were committed to the blockchain. We are interested in how
each block allocates its scarce 1 MB of real-estate space to spammers and non-
spammers. As shown in Fig. 3, the number of transactions surged during the
spam epoch. Between a quarter to half of the daily transactions have been iden-
tified as spam. As a baseline comparison, we also show that the number of spam
transactions before the spam period is significantly lower, with the exception of
June 30. Based on anecdotal evidence, some users were attempting to stress-test
the Bitcoin network on a small scale, which resulted in a brief rise in spam.6

6 http://motherboard.vice.com/read/wikileaks-is-now-a-target-in-the-massive-spam-
attack-on-bitcoin.

http://motherboard.vice.com/read/wikileaks-is-now-a-target-in-the-massive-spam-attack-on-bitcoin
http://motherboard.vice.com/read/wikileaks-is-now-a-target-in-the-massive-spam-attack-on-bitcoin

Stressing Out: Bitcoin “Stress Testing” 15

For the non-spammers, the spam period was a time when both transaction fees
and delays were higher than normal. We show the comparison in Figs. 4 and 5. On
average, the delays in processing non-spam transactions increases by 7 times, from
0.33 to 2.67 hours. Likewise, the average non-spam transaction fees also surged,
increasing from 45 to 68 Satoshis for every byte of transactions (or from $0.11 to
$0.17 USD per kilobyte of transactions)—an uptick of 51 %.

While non-spammers suffered, miners slightly benefit from the fee hike. As
shown in Fig. 3, miners were earning twice their normal fee-based revenue during
the mid-July spam period, as compared with the non-spam period. However, even
on days with maximum fees, the amount of extra mining income from fees was
less than 1 % of the block reward (which is 25 BTC per block, and about 3,600
BTC per day). The total transaction fees that spam transactions paid amounted
to 201 BTC (or about $49,000 USD) over a 10 day time period—a modest sum
that caused a rather noticeable disruption to the network.

Fig. 4. Average transaction delay
between when a transaction appears in
the Mempool and when it is committed
to the blockchain.

Fig. 5. Average transaction fees per
transaction per day. Note that the fees
are normalized against the size of each
transaction.

6 Discussion

The spam campaign happened when the Bitcoin network is divided regarding a
critical component of the protocol: the block size limit of 1 MB. The result was a
recent fork between two camps: some want to raise the limit while others refuse
to alter the rules set by Satoshi Nakamoto (Bitcoin’s creator). We can specu-
late that the spammer was motivated to launch a DoS attack to demonstrate
the fragility of Bitcoin’s resilience if the block size limit is not raised. This is
supported by an earlier spam campaign, where an online Bitcoin wallet service
claimed responsibility under the pretext of “stress testing”.

With regards to the methodology proposed in this paper, we do not suggest
that this model can be used to prevent Bitcoin spam completely, nor should it

16 K. Baqer et al.

be used as such. It was used to measure and analyze spam after the fact, without
the spammers being aware that they are being measured. Spammers can learn
from this paper what heuristics and features we used, to alter their motifs and
adapt accordingly.

Although we used dust checks to validate our results, this is not a fool-proof
measurement to accurately validate spam in Bitcoin. It is trivial to create a
transaction that does not generate any dust outputs. However, if a transaction
does not create dust, then the clustering algorithm matches that transaction to
a cluster that highlights other features, particularly differences in ratio. We use
dust validation when there is a possibility a cluster contains normal transactions.
Since we defined unusual fan-out ratios to constitute spam transactions (and they
are gathered in distinct clusters), along with our conservative measurement of
dust, we believe that the results we had shown earlier provide a good estimate
of the July spam campaign.

It is important to note that the July spam campaign on Bitcoin would be
infeasible on altcoins since some deploy a different model for transaction fees.
For example, Litecoin charges the mintxfee for each small output. Bitcoin can
adopt a similar model, or a dynamic model for fees, possibly using clustering
results to observe spam patterns, and change mintxfee accordingly.

7 Related Work

In their recent Bitcoin SoK paper [2], Bonneau et al. highlight open research
questions and discuss issues with Bitcoin regarding stability and scalability, rang-
ing from Bitcoin forks and network analysis to incentivizing correct behavior and
adding resilience with proposed changes. The authors highlight penny flooding,
as discussed in [8], which is related to our discussion of dust transactions. In
the Appendix of the extended version of their SoK paper, the authors discuss in
more details Bitcoin’s stability and transaction validity. The extended version
includes a discussion outlining options to overcome the drawbacks of maintaining
the entire UTXO to process new transactions: using a statefile, updated incre-
mentally with new data, it is possible to more efficiently retrieve transactions
for verification using a transaction’s hash in O(log M), where M is the number
of unspent transactions. It also possible to further minimize the data structure
required to validate transactions using hash-based authenticated data structures
as proposed in [5].

Becker et al. [1] discuss the possibility of denying service to the Bitcoin net-
work using a virtual protest: protestors join forces to collectively execute a DoS
attack by overwhelming the network and depleting precious block space (these
transactions are much larger than normal Bitcoin transactions). If a protest is
ongoing, this can frustrate non-protestors and decrease faith in the resilience
of Bitcoin to process transactions in a timely manner (Bitcoin’s main features
include processing payments in minutes, as well as low transaction fees). This
virtual protest attack was labeled ‘Occupy Bitcoin’ by Kroll et al. [4].

Our clustering approach is different than previous work aiming to find pat-
terns in Bitcoin: we strip away identifying information (such as txid, addresses,

Stressing Out: Bitcoin “Stress Testing” 17

etc.), and cluster transaction features in order to determine patterns, rather
than linking transactions together to de-anonymize users. For example, in [6],
researchers cluster transactions based on determining shared authority proper-
ties, while using similar transaction features used in this research.

Other empirical research determining detrimental affects on the Bitcoin net-
work measure the lifetime of Bitcoin exchanges [7], through analyzing daily
transaction volumes and how exchange breaches affect survival time. Running a
profitable exchange logically results in a more lucrative target, hence a breach
is more likely which leads to the eventual shutdown of an exchange. Another
approach is to parse online forums to obtain data indicators of possible attacks
on the network, as was done in [11].

8 Conclusion

We have presented an empirical study of a spam based “stress test” DoS attack
against Bitcoin. Using our clustering based approach we find that 385,256
(23.41 %) out of 1,645,667 total Bitcoin transactions were spam during a 10 day
period at the peak of the spam campaign. We also show that this attack had
a negative impact on non-spam transactions, increasing average fees by 51 %
(from 45 to 68 Satoshis/byte) and processing delay by 7 times (from 0.33 to 2.67
hours). This shows that an adversary who is willing to expand modest amounts
of bitcoin (at least $49,000 USD), to pay higher fees, can DoS Bitcoin. Follow up
DoS attacks against Bitcoin have used other methods, such as “money drops”,
and transaction malleability to degrade the operation of Bitcoin. We point out
that changes to Bitcoin’s minimum fees could mitigate some of the spam motifs
we witnessed. Our results show that exploration into Bitcoin transaction spam
filtering techniques, and other Bitcoin DoS mitigation approaches, merit further
investigation.

Acknowledgements. This work was supported by US National Science Foundation
grant CNS-1619620.

References

1. Becker, J., Breuker, D., Heide, T., Holler, J., Rauer, H.P., Böhme, R.: Can we
afford integrity by proof-of-work? Scenarios inspired by the Bitcoin currency. In:
Böhme, R. (ed.) The Economics of Information Security and Privacy, pp. 135–156.
Springer, Heidelberg (2013)

2. Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J.A., Felten, E.W.: SoK:
Research perspectives and challenges for Bitcoin and cryptocurrencies. In: IEEE
Symposium on Security and Privacy (2015)

3. Decker, C., Wattenhofer, R.: Information propagation in the Bitcoin network. In:
IEEE Thirteenth International Conference on Peer-to-Peer Computing (P2P), pp.
1–10 (2013)

4. Kroll, J.A., Davey, I.C., Felten, E.W.: The economics of Bitcoin mining, or Bitcoin
in the presence of adversaries. In: Proceedings of WEIS 2013 (2013)

18 K. Baqer et al.

5. Maxwell, G.: Merkle tree of open transactions for lite mode? bitcointalk.org (2011)
6. Meiklejohn, S., Pomarole, M., Jordan, G., Levchenko, K., McCoy, D., Voelker,

G.M., Savage, S.: A fistful of Bitcoins: characterizing payments among men with
no names. In: Proceedings of the Conference on Internet Measurement Conference,
pp. 127–140. ACM (2013)

7. Moore, T., Christin, N.: Beware the middleman: empirical analysis of Bitcoin-
exchange risk. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 25–33.
Springer, Heidelberg (2013)

8. Möser, M., Böhme, R.: Trends, tips, tolls: a longitudinal study of Bitcoin transac-
tion fees. In: Brenner, M., Christin, N., Johnson, B., Rohloff, K. (eds.) FC 2015
Workshops. LNCS, vol. 8976, pp. 19–33. Springer, Heidelberg (2015)

9. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. Consulted 1(2012),
28 (2008)

10. Trillo, M.: Stress Test Prepares VisaNet for the Most Wonderful Time of the Year
(2013). http://www.visa.com/blogarchives/us/2013/10/10/stress-test-prepares-
visanet-for-the-most-wonderful-time-of-the-year/index.html

11. Vasek, M., Thornton, M., Moore, T.: Empirical analysis of denial-of-service attacks
in the Bitcoin ecosystem. In: Böhme, R., Brenner, M., Moore, T., Smith, M. (eds.)
FC 2014 Workshops. LNCS, vol. 8438, pp. 57–71. Springer, Heidelberg (2014)

https://bitcointalk.org/
http://www.visa.com/blogarchives/us/2013/10/10/stress-test-prepares-visanet-for-the-most-wonderful-time-of-the-year/index.html
http://www.visa.com/blogarchives/us/2013/10/10/stress-test-prepares-visanet-for-the-most-wonderful-time-of-the-year/index.html

Why Buy When You Can Rent?

Bribery Attacks on Bitcoin-Style Consensus

Joseph Bonneau(B)

Stanford University and Electronic Frontier Foundation, Stanford, USA
jbonneau@gmail.com

Abstract. The Bitcoin cryptocurrency introduced a novel distributed
consensus mechanism relying on economic incentives. While a coalition
controlling a majority of computational power may undermine the sys-
tem, for example by double-spending funds, it is often assumed it would
be incentivized not to attack to protect its long-term stake in the health
of the currency. We show how an attacker might purchase mining power
(perhaps at a cost premium) for a short duration via bribery. Indeed,
bribery can even be performed in-band with the system itself enforcing
the bribe. A bribing attacker would not have the same concerns about
the long-term health of the system, as their majority control is inherently
short-lived. New modeling assumptions are needed to explain why such
attacks have not been observed in practice. The need for all miners to
avoid short-term profits by accepting bribes further suggests a potential
tragedy of the commons which has not yet been analyzed.

1 Introduction

Bitcoin [6], launched as a cryptocurrency in 2009, has rocketed to popularity
with a monetary base nominally worth over US$6 billion at the time of this
writing. Any cryptocurrency must prevent double-spending. Bitcoin relies on a
public, distributed ledger called the blockchain which logs all transactions to
ensure that funds may only be spent once. Bitcoin uses a computational puzzle
system (often called “proof-of-work”1) to maintain consensus on this ledger and
continually add new blocks of transactions.

The scheme is frequently claimed to be incentive-compatible in that stability
is maintained assuming miners behave “rationally”, though this was not for-
mally defined (let alone proved) in the system’s original design [6] and does
not have a consistently agreed-upon definition [1]. A key assumption, dating to
Nakamoto’s original white paper [6], is that any party controlling a majority of
mining capacity is likely to maintain significant capacity and hence has a large
expected future revenue stream. The risk of compromising this earning potential
is believed to discourage any attacks which may harm Bitcoin’s exchange rate.
Our contribution is to show that this assumption might fail in the case that a
miner temporarily obtains a majority of mining power through bribery. Such a

1 Bitcoin’s mining puzzle is not a strict proof-of-work scheme but a probabilistic one.

c© International Financial Cryptography Association 2016
J. Clark et al. (Eds.): FC 2016 Workshops, LNCS 9604, pp. 19–26, 2016.
DOI: 10.1007/978-3-662-53357-4 2

20 J. Bonneau

miner would know this majority to be fleeting and hence would not have future
earnings to protect. There are plausible assumptions under which this attack is
still not feasible or at least not lucrative, but they are much stronger than those
used thus far to argue that Bitcoin is incentive compatible.

2 Renting Mining Capacity

There are multiple ways in which an attacker might obtain a temporary major-
ity of mining capacity not through the traditional route of buying and owning
mining power, but by renting this capacity from the nominal owners. We will
discuss three such scenarios in turn, some are known in Bitcoin folklore but none
has been explicitly discussed in formal Bitcoin research. Note that in every sce-
nario, the attacker will have to pay some premium ε to rent mining capacity;
the attacker would expect to recoup this through double-spending profits.

2.1 Out-of-Band Payment

The simplest mechanism is to directly pay the owners of mining capacity to work
on blocks of the attacker’s choosing. This payment may be in bitcoins or any
outside (state) currency. Multiple online “cloud mining exchange” services have
arisen in the past year which allow exactly that, including cex.io, pow88.com,
and bitfinex.com. Relatively little has been published on the extent or efficacy
of such mining exchange services, although they typically charge a premium of
up to ε = 3% over the expected earning capacity of rented mining power.

The downside of this arrangement is it lacks enforcement: a miner can accept
payment and then mine independently for its own benefit. Both sides need to
trust each other or a third-party exchange to enforce their agreement. Because of
the lack of built-in trust, it is also difficult for the attacker to bribe anonymously.

2.2 Negative-Fee Mining Pool

A second approach is to establish a mining pool paying an above-market return.
Mining pools exist to allow miners to share risk. Participants try to find blocks
paying rewards to the pool manager, who then disburses the profits amongst
members. Accounting is done by reporting shares or near-blocks. For example,
if the current probability of finding a Bitcoin block is 2−d (that is, the block’s
hash must begin with at least d zero bits), participants will report any blocks
found with a hash starting with s < d zero bits, drastically lowering the variance
in earnings by the participants as many more shares will be found than blocks.

Popular mining pools now offer a “0 % fee” meaning that participants earn
as much on expectation as they would by mining solo. That is, for a block
reward is B miners in a 0 %-fee pool will earn B · 2s−d per share. There is no
technical reason why an attacker can’t start a pool offering a negative fee, that
is, (1 + ε)B · 2s−d per share reported. Because such a pool would lose money on

https://cex.io/
http://pow88.com/
https://www.bitfinex.com/

Why Buy When You Can Rent? 21

expectation, no honest pool should be able to match this reward. The larger the
negative fee, the greater the interest such a pool should attract.

This setup has the advantage for the attacker of reducing trust-the account-
ing mechanism ensures they will only pay for legitimate mining work.2 Alert
miners would still have to trust the attacker to pay. However, this trust can be
incrementally established as the attacker pays for valid shares, making the setup
relatively low-risk for miners. Miners would of course know they were joining an
attack pool attempting to double-spend which could harm them via an exchange
rate crash, though as we will discuss this would require coordinated action by
the miners to ensure no miners are tempted to defect and profit from the attack.

An open question is how “sticky” miner preferences are or how quickly they
would move in practice to a pool offering a better return.

2.3 In-Band Payment via Forking

Finally, an attacker could attempt to bribe through Bitcoin itself by creating
a fork containing bribe money freely available to any miners adopting the fork.
Such an attacker would begin with a large pool of funds in address K0 as of block
Bi−1. The attacker would then broadcast a transaction moving all of these funds
to address K1 and wait for it to be included in block Bi. The attacker would
then try to introduce a fork3 by finding an alternate block B′

i (possibly using
another bribery method), in which they would include a transaction moving the
funds from K0 into another address K ′

1 �= K1. Note that this transaction would
conflict with the transaction in block Bi moving the same funds to K0.

Once this fork occurs, the attacker broadcasts a transaction sending the funds
from K ′

1 to a series of m addresses K1
2 , . . . ,Km

2 . Each address Kj
m is a script

enabling anybody to claim the funds as of block4 i + j, ensuring that miner
finding the jth block in the fork can claim the funds in address Kj

m.
The attacker’s fork of the blockchain now contains freely available bribe

money as desired, incentivizing miners to forgo mining on the current longest
branch in exchange for potentially higher rewards. There are several variants of
this attack, for example simply broadcasting a stream of time-locked transac-
tions paying a high fee on the attacker’s branch, but this version is probably
best as it commits the attacker to a fixed sequence of bribes in advance.

Note that if the attacker’s fork never overtakes the main branch, this bribe
money will not be valid and the miners will be left with nothing. Put another
way, the attacker only pays if the attack succeeds. Thus, this method inherently
transfers risk from the attacker to the miners accepting bribes.
2 An issue remains that pool participants could report shares but withhold valid

blocks. This is an issue for all mining pools and has been analyzed in the context of
attacks between mining pools [2–4], however it is not profitable for individuals.

3 If the attacker’s attempt to introduce a fork fails and another block is found on the
main chain, they can move the funds from address K1 again. By cycling these funds
every block they can ensure their fork is arbitrarily close to the longest chain.

4 This script would be achieved using a single OP CHECK LOCK TIME VERIFY command,
which has been standard in Bitcoin since mid-2015.

22 J. Bonneau

In practice, most miners today run default node software which would ignore
any such attack branch completely. Even if all miners were able to spot the
attempted branch and detect the additional available bribe money, they would
still be taking a risk by participating in the attack. Unlike the mining pool
approach or direct payment, participating miners would not be paid if the attack
fails. The attacker could try to accommodate this by making a larger proportion
of the bribery money available in earlier blocks when it is less clear the attack
will succeed. Still, it remains unclear how much of a risk premium the attacker
would have to pay with this method to attract significant interest.

3 Bribery Attacks

Given the above methods for renting mining capacity, we can assume our attacker
is able to rent an arbitrary amount of capacity at a cost of ≈ ε · B per block
mined, where B is the mining reward for one block. Note that ε might vary based
on the attack method and how deep the attempted fork is.

Given this capability, a bribery attack is straightforward: the attacker pub-
lishes a transaction T in block Bi, waits until k follow-up blocks have been
published so that some irreversible action is taken as a result of T , introduces a
new block B′

i with a conflicting transaction T ′, and then rents sufficient capac-
ity (at least a majority of the network) to extend the branch containing B′

i

until it becomes the longest branch. The attacker has double-spent the funds in
transactions T and can potentially earn a profit equal to the entire value of T .

In a very simple model, such an attack would offer profits bound only by
the quantity of currency in circulation. Assuming there is no inherent limit on
the size of transactions or special security restrictions for large transactions,
the size of T is unbounded. The attacker’s cost is k · ε · B, but with perfectly
rational miners ε should trend towards zero as accepting any bribe would be more
profitable for miners than mining directly. Therefore, in the simplest model the
attacker’s benefits could be unbounded and costs would a small constant, making
the attack infinitely profitable.

3.1 Counter-Bribing by Miners

In the simple model above, there is no inherent lower limit to the amount the
attacker must pay. If miners detect that this attack is occurring, however, min-
ers who have already mined (and tentatively received mining rewards) for the
current longest branch would be incentivized to oppose the attacker by counter-
bribing to encourage miners to continue building on the current longest chain to
ensure their mining rewards don’t disappear.

If the attacker is attempting to institute a k-block fork, this would mean
some miners are poised to lose (at least) k ·B if the attack succeeds. They might
be willing to spend nearly all of this money to oppose the attacker, as it would
disappear if the attack succeeds. In this scenario, the attacker would need to pay
at least k · B in bribes (instead of k · ε · B in the case of no counter-bribing).
The attack may still be infinitely profitable as long as the amount T which the
attacker stands to gain is unbounded while mining rewards are capped.

Why Buy When You Can Rent? 23

Limiting the attack requires offering larger mining rewards to ensure a high-
incentive for counter-bribing, but this is likely impractical. Preventing the attack
would require that the block reward B for each block was at least V , where V
is the total amount transacted in each block (all of which could be funds the
attacker is attempting to double spend). This would effectively mean a transac-
tion fee rate of 50 % (paid through inflation), making the currency impractical.

4 Analysis of Mitigating Factors

Despite the apparently lucrative opportunity to perform a bribery attack, there is
no evidence that this has ever been seriously attempted. We rule out explanations
based on “good will” or lack of motivation given the track record of significant
thefts of Bitcoin in practice [5]. We instead consider a number of factors which
may hinder this attack in practice, which we will outline in rough order from
least to most plausible. None of these explanations is completely satisfactory and
all represent stronger assumptions than have previous been made when arguing
that Bitcoin-style consensus is incentive-compatible.

4.1 Miners May Be Too Simplistic to Recognize or Accept Bribes

Today, it might not be possible to rent any significant mining capacity through
bribes as a potentially large portion of miners are not technically capable of
running any algorithm besides the default. They may be unwilling or unable to
change pools even at the promise of higher fees, unable to rent their capacity
on a mining exchange, or unable to detect in-band bribes. This mitigation goes
against the very notion of incentive compatibility, which ensures the system is
stable assuming miners behave rationally. Furthermore, as miners become more
professional and technically capable this is likely to be less true in practice.

4.2 The Attack Requires Significant Capital and Risk-Tolerance

Profiting from the attack requires creating a very large transaction T . The
attacker needs this capital available up front and, while the attacker won’t nec-
essarily lose the value of T if the attack fails, the bribes may not be recovered if
the attack fails.5 While this may be a practical limitation for many attackers, it
appears to be a poor assumption to build into a mathematical model of Bitcoin.

4.3 Profit from Double-Spends May Not Be Frictionless
or Boundless

Our analysis assumed the attacker could turn the opportunity to double-spend
into “pure” profit of an unlimited amount. Double-spending in Bitcoin doesn’t

5 As mentioned in Sect. 2.3, bribers placed in band will not be at risk if the attack
fails, though this method may be the most difficult to execute.

24 J. Bonneau

actually create additional currency, it simply gives an attacker the opportu-
nity to temporarily deceive some other party into believing they have received
funds which will later be taken back. Profiting from this capability requires a
counterparty the attacker can swindle that will immediately (after k blocks of
confirmation) transfer something of equal value to the attacker. In some scenar-
ios (e.g. exchanges, mixing services), this might be an equal value of Bitcoin. In
other cases, it might be physical goods whose shipment may be reversed.

Either way, in practice the attacker might not be able to double-spend with-
out paying transaction fees to the counterparty, or may not be able to double-
spend a sufficient amount to make the relative cost of bribes negligible. This
seems a poor mitigation as it is relatively fragile and difficult to analyze. In any
case, it probably only adds a small constant amount of overhead to the attack.

More practically, infinitely-sized double spends are of course not possible.
Bounds exist both due to the limited amount of Bitcoin currency in existence
and the amount that victims are willing to exchange. Thus, the profit potential
is not infinite, although this is also an inadequate mitigation as in practice it is
likely that profits from a double spend will be orders of magnitude higher than
mining rewards (and hence the volume of bribes required).

4.4 Extra Confirmations for Large Transactions

Recipients may require more confirmations for larger transactions. This makes
the attack more difficult because as the number of blocks in the attempted
fork k increases, the attacker’s bribery costs increase linearly. Unfortunately,
the attack may make many smaller transactions simultaneously and attempt to
double-spend all of them. Thus it appears impractical for this approach to have
much impact. Furthermore it would require the confirmation time would need
to grow linearly with the value of the transaction.

4.5 Counter-Bribing by the Intended Victim

In addition to counter-bribing by miners, the attacker’s victim may be willing to
counter-bribe to prevent the attack. Note that the attacker’s profit is completely
derived from the losses incurred by one or more specific parties. Assuming they
detect the attack, they may be willing to spend significant money to fight back.

In general, any party receiving funds on the main chain but not on the
attacker’s branch may counter-bribe, but the attack can easily neutralize all
non-targeted recipients by including their transactions on the attack branch as
well. Therefore we only need to consider counter-bribing by the intended victim.

In the limit, they should be willing to spend up to the entire value of transaction
T in counter-bribes, because if the attack succeeds they will lose this entire value.
The attacker would then have to spend this same amount in bribes (plus ε), making
the attack unprofitable.

This mitigation is undesirable as it significantly changes the security model
of Bitcoin, with all parties receiving funds needing to scan for potential bribery

Why Buy When You Can Rent? 25

attacks and be prepared to fight them off. It also implies recipients must be
willing to effectively spend protection money (which miners would ultimately
pocket) to protect their transactions’ integrity.

4.6 Miners May Refuse to Help an Attack Against Bitcoin

The purpose of a bribery attack would be visible to any miners participating
in it. It would also invariably damage the reputation of Bitcoin if successful.
This is a very similar argument to the general argument that a 51 % attacker
would be unwise to actually attack the network in practice: miners should be
incentivized against accepting short-term bribery if it damages their long-term
earning potential.

While this is the most plausible explanation, this suggests a looming tragedy
of the commons, particularly in the case of a negative-fee mining pool. The
security and reputation of Bitcoin (which maintain the strength of its exchange
rate by attracting users) can be viewed as a common good shared by miners.
All miners might recognize their long-term shared incentive is to resist join-
ing the attacker’s negative-fee pool which might damage Bitcoin’s reputation.
However, any miners who joined would immediately see their profits rise in this
scenario, even if the attack failed, providing a direct incentive for miners to
defect by accepting bribes to attack. SMiners generally have the capability to
mine anonymously (by using new addresses in the coinbase transaction of any
block they find), making it impractical to punish miners who defect and accept
bribes without radically changing the protocol. This tragedy of the commons
suggests it might be hard for small miners without effective political organiza-
tion to prevent successful bribery attacks, whereas a monolithic majority miner
is protecting its own self-interest by not attacking.

5 Concluding Remarks

We have outlined the possibility of a bribery attack on Bitcoin and discussed
the potential implications. Bribery is possible in Bitcoin and indeed it can be
facilitated in several surprising ways by the Bitcoin protocol, namely negative-
fee mining pools and anybody-can-spend transactions. Requiring all miners to
avoid short-term profits to protect the long-term health of the system appears
to introduce a tragedy of the commons.

We do not claim this is currently a practical attack. Our aim was merely
to demonstrate that, assuming this attack is not being observed because it is
not practical, any model attempting to show that Bitcoin-style consensus is
incentive-compatible must be strong enough to rule out such bribery attacks.
From our initial analysis of possible new modeling assumptions, none seem highly
desirable. This may put the security of Bitcoin’s consensus protocol on weaker
footing than previously believed.

26 J. Bonneau

References

1. Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J.A., Felten, E.W.: Research
perspectives and challenges for bitcoin and cryptocurrencies. In: 2015 IEEE Sym-
posium on Security and Privacy, May 2015

2. Courtois, N.T., Bahack, L.: On subversive miner strategies and block withholding
attack in bitcoin digital currency. arXiv preprint arXiv:1402.1718 (2014)

3. Eyal, I.: The Miner’s Dilemma. In: IEEE Symposium on Security and Privacy (2015)
4. Luu, L., Saha, R., Parameshwaran, I., Saxena, P., Hobor, A.: On power splitting

games in distributed computation: the case of bitcoin pooled mining. Technical
report, Cryptology ePrint Archive, Report 2015/155 (2015). http://eprint.iacr.org

5. Moore, T., Christin, N.: Beware the middleman: empirical analysis of bitcoin-
exchange risk. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 25–33.
Springer, Heidelberg (2013)

6. Nakamoto, S.: Bitcoin: a peer-to-peer electionic cash system (2008)

http://arxiv.org/abs/1402.1718
http://arXiv.org/abs/1402.1718
http://eprint.iacr.org

Automated Verification of Electrum Wallet

Mathieu Turuani1(B), Thomas Voegtlin2, and Michael Rusinowitch1

1 INRIA Nancy–Grand Est, Villers-lès-Nancy, France
mathieu.turuani@inria.fr, rusi@loria.fr

2 Electrum Technologies GmbH, Berlin, Germany
thomasv@electrum.org

Abstract. We introduce a formal modeling in ASLan++ of the two-
factor authentication protocol used by the Electrum Bitcoin wallet. This
allows us to perform an automatic analysis of the wallet and show that
it is secure for standard scenarios in Dolev Yao model [Dolev 1981]. The
result could be derived thanks to some advanced features of the protocol
analyzer such as the possibility to specify (i) new intruder deduction
rules with clauses and (ii) non-deducibility constraints.

1 Context

Electrum is a popular Bitcoin Wallet. Thanks to a deterministic key derivation
algorithm (BIP32), users can regenerate their wallet from a secret seed phrase,
which protects them in case of loss or computer failure. It is a lightweight client,
which means that it does not need to download the whole Bitcoin blockchain.
Instead, the client communicates with a set of servers, and retrieves only needed
information. The private keys used to sign Bitcoin transactions are never com-
municated to the servers, and servers do not store users accounts.

In order to protect users from Bitcoin theft, Electrum provides two-factor
authentication, implemented using multi-signature addresses (P2SH) and an
external co-signer (TrustedCoin). Our objective is to initiate the verification
of Electrum’s two-factor authentication protocol in order to increase user confi-
dence or detect potential weaknesses and rise warnings.

Several tools have been recently developed to perform fully automated analy-
sis of cryptographic protocols (e.g. [Proverif]). Some have been able to discover
new flaws and most of them rely on symbolic models where messages are con-
sidered as terms in some abstract algebra as opposed to sequences of bits in
more concrete models. In these tools generally no properties are assumed (and
exploited) about cryptographic primitives besides the fact that when a message
has been encrypted by some key, it can be recovered by applying the inverse key
to the ciphered text. Although symbolic analysis relies on high-level protocol
abstractions it has been able to discover important flaws in real-world protocols
[Armando 2008]. Moreover, under some suitable hypothesis these analyses are
cryptographically sound, i.e. from the absence of flaws at the symbolic level we
can derive the correctness of the protocol w.r.t. cryptographic models too.

This work has received funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation program (grant agree-
ment No. 645865-SPOOC).

c© International Financial Cryptography Association 2016
J. Clark et al. (Eds.): FC 2016 Workshops, LNCS 9604, pp. 27–42, 2016.
DOI: 10.1007/978-3-662-53357-4 3

28 M. Turuani et al.

For this analysis we have employed Cl-Atse, a state-of-the-art protocol ana-
lyzer efficient and complete for bounded number of sessions [Turuani 2006]. It
is compliant with ASLan++ specification language [von Oheim 2010], which
allowed us to model relevant properties of the BIP32 key-derivation functions.
Moreover, Cl-Atse’s unique ability to handle so-called non-deducibility con-
straints over the agent’s knowledge was fundamental in this analysis.

There exists a huge number of works on formal verification of security proto-
cols. For instance, Bitcoin contracts have been modeled and verified using timed
automata [Andrychowicz 2014]. However, to our knowledge previous verification
works have not considered Bitcoin wallets.

2 Electrum Wallet

Electrum users may decide to enable two-factor authentication on their wallet.
In that case, transactions will be signed by both the Electrum client and a
cosigning server (TrustedCoin), if the user authenticates himself using a one-time
password generated by Google Authenticator. The user (the human who owns
the electronic wallet) keeps an offline copy of the wallet initialization data (seed
phrase), in order to regenerate their wallet in case of data loss or disappearance
of the cosigning service. A key feature of Electrum’s two-factor authentication
protocol is that the wallet regeneration procedure only requires the seed phrase,
and does not need the cosigning server.

The cosigning server, however, has no way to use the wallet without the
client’s signature. Electrum’s two factor authentication uses Bitcoin Pay-to-
Script-Hash addresses (P2SH), and the BIP32 standard for deterministic gener-
ations of keys. BIP32 allows the cosigning server to deterministically generate
new private keys - following a ‘path’ from a root key - which is needed to sign
Bitcoin transactions, while the client alone is able to generate the corresponding
public keys, which are needed in order to create new P2SH addresses.

The interactions between agents are described by four sequences of actions:
initialisation (user/client), registration and confirmation (client/server), and
(recurring) transaction phase. Authentication is carried out via the Google OTP
function using a secret and the current time. BIP32 extended keys are denoted
by k, K, C for private/public keys and the associated chain parameter. Personal
data are denoted by: email for the client’s e-mail (public); time for the current
time (public); database for the server’s database (private); and a, b, c, d, ... for
some paths (public) used to build child keys in the BIP32 structure.

User and Client’s Initialization.
Initial knowledge : Both knows Ks, Cs;
User generates two fresh seeds : Seed1 and Seed2; -secret-
User extracts the priv./public : k1,K1,C1 from Seed1; -secret-

keys and chain parameters k2,K2,C2 from Seed2; -secret-
User ∗ → ∗ Client : email.k1.C1.K1.C2.K2
Client computes the user IDs : LongUserID from K1,C1,K2,C2; -secret-

UserID prefix of LongUserID;

Automated Verification of Electrum Wallet 29

This sequence of actions simulates an exchange between a user and his client
to model initialization. In practice, the Electrum client generates and shows to
the user a sequence of English words called the seed phrase. Two independent
BIP32 seeds are derived from this phrase, and only one of the private keys
derived from them is stored by the client. To avoid the trivial case of a client
already compromised when the seed phrase is generated, we model a user who
generates both BIP32 seeds and sends only one of the corresponding extended
private keys to the client. Let A → B : M denote a message M sent from A to
B. This is decorated by stars when the channel is secured, i.e. protected against
eavesdropping or modification. The concatenation of messages is written with a
dot, as in email.k1. Finally, the long user ID is a hash of the public keys and
parameters, and the (short) user ID is built from its first-10 characters.

New User Registration.
Initial knowledge : Client was initialized; Server knows ks, Ks, Cs;
Client opens a channel : Session key Sk shared with Server; -secret-
Client → Server : {|register.{email.K1.C1.K2.C2} Ks|} Sk;
Server gets the user IDs : LongUserID from K1, C1, K2, C2; -secret-

UserID prefix of LongUserID;
Server builds the secret : Sec from UserID, ks and Cs; -secret-
Server adds to database : UserID.email.K1.C1.K2.C2.false
Server → Client : {|{Sec} K1|} Sk;

This describes how a new client registers to the server, with new data later
confirmed. The client uses the (known) server’s public key to open a secure chan-
nel with a fresh symmetric key Sk. We denote the symmetric and asymmetric
encryptions of M by {|M |} Sk and {M} Ks respectively. Then the client sends
its registration query, allowing the server to rebuild its IDs and fill the database.
Finally, for future authentications a secret data is returned to the client.

New User Confirmation.
Initial knowledge : Client was registered; Server knows ks, Ks, Cs;
Client opens a channel : Session key Sk shared with Server; -secret-
Client builds the OTP : OTP = googleOTP(Sec,time) -secret-
Client → Server : {|confirm.UserID.OTP|} Sk;
Server reads database : UserID.email.K1.C1.K2.C2.false
Server builds the Secret : Sec from UserID, Ks and Cs; -secret-
Server tests the OTP : OTP ?= googleOTP(Sec,time)
if data not found
Server → Client : {|false|} Sk; exit ;
if OTP differ
Server del. from database : UserID.email.K1.C1.K2.C2.false
Server → Client : {|false|} Sk; exit ;
otherwise
Server updates database : UserID.email.K1.C1.K2.C2.true
Server → Client : {|true|} Sk;

30 M. Turuani et al.

Now, the client must confirm his registration before signing transactions.
The Electrum client does not store the OTP secret, but displays it to the user
who stores it on an external device with Google Authenticator. However, this
cannot be modeled directly since the D.Y. intruder rather concentrates on inter-
net communications between the client and the server. Therefore, this step is
abstracted by a client who generates the OTP himself. The confirmation phase
starts with the client opening a secure channel as before to send his request
and OTP. Depending on server’s agreement, true or false is returned and the
client data is either confirmed or deleted from the database. The exit keyword
indicates procedure termination for both parties when the server disagrees.

Signing a Transaction with the Server.
Initial knowledge : Client was confirmed; Server knows ks, Ks, Cs;
Client opens a channel : Session key Sk shared with Server; -secret-
Client creates a list : SigList = empty list of signature requests;
Client iterates

choose a path : Path = sequence of a, b, c, d, ...
create a script : Script using key from K1,C1 following Path;
add to the list : Add Path.Script to SigList;

Client builds the OTP : OTP = googleOTP(Sec,time); -secret-
Client → Server : {|sign.UserID.tx data.SigList.OTP|} Sk;
Server reads database : UserID.email.K1.C1.K2.C2.true
Server builds the Secret : Sec from UserID, Ks and Cs; -secret-
Server tests the OTP : OTP ?= googleOTP(Sec,time);
if data not found or OTP differs
Server → Client : {|false|} Sk; exit ;
otherwise Server iterates

select element : pick-up Path.Script from SigList;
derive new key : k4 from ks,Cs following LongUserID.Path;
sign the transaction : Sign tx data and Script with k4 in signed tx;

Server → Client : {|signed tx|} Sk;

Once the client is registered, it is allowed to request transaction signatures.
As before, this is done by opening a secure channel with the server, and sending a
transaction request containing the one-time password generated with the current
time. The request also includes the transaction data tx data to be signed, along
with a list SigList of signature requests. Each element in this lists consists in
a Bitcoin script using a key derived from the client’s root key K1 (plus C1)
using the BIP32’s CKD pub (and CKD priv) method. The path used to derive
this key is also included in the list, so that the server can use it to derive his
own key too. This method allows the client and the server to forget all the keys
locally used in each transaction, as long as the root keys are safely stored along
with the paths used to derive new keys. Moreover, the two keys used to sign
transactions - client side and server side - are generated using the same, unique,
path. On the server side, this path is extended with the long user ID so that
all the keys used for all the clients are generated from one, single, root key pair

Automated Verification of Electrum Wallet 31

ks,Ks. Moreover, the server has no need to store key paths: the responsibility
to keep these is left to the client. In practice, these paths are of length two and
sequentially generated, so that a fast sieve allows the user to recover his keys in
case of client loss. Once successful, the server returns the signed transaction to
the client. While not modeled here, the Electrum server can also push the signed
transaction to the Bitcoin network for the client.

3 Modeling BIP32

The BIP32 standard describes a hierarchy of keys derived from a single seed
and by following paths, i.e. a sequences of integers. The master key generation
function is a hash and does not require any specific construction. The Child Key
Derivation (CKD) functions admit two variants: CKD pub for deriving public
keys and CKD priv for private keys. Each one takes a public (resp. private)
key, a chain parameter, and a path to follow, and produces the child public
(resp. private) key. Consequently the algebraic relation linking CKD pub and
CKD priv is: CKD priv(inv(K), C, S) = inv(CKD pub(K,C, S)) where inv is
the key inversion function, used here to specify the private key associated to
the public key K or to CKD pub(..). For simplicity we have omitted the chain
parameter in our description: it will be modeled by a function called cCKD in
our ASLan++ specification. In our model, each public key is either the root
public key pk(A) of some agent A, or a child public key derived with BIP32.
Note that pk already exists in ASLan++ syntax and thus will not be redefined.
The two CKD functions can be modeled by declaring a single pCKD function
which takes a private key (as would CKD priv) but computes the corresponding
public child key (as would CKD pub):

noninvertible pCKD(private_key ,message ,message): public_key;

where message is the generic type (used for a chain parameter and a path here),
and noninvertible ensures that this function can be freely used but the intruder
cannot retrieve the arguments from the result.

In our protocol model every occurrence of CKD pub(K,C, S) from the ini-
tial specification is represented by pCKD(inv(K), C, S) and every occurrence
of CKD priv(K,C, S) is represented by inv(pCKD(K,C, S)). This modeling
ensures the validity of the above algebraic relation since for all K, C, S:

CKD priv(inv(K), C, S) = inv(pCKD(inv(K), C, S)) = inv(CKD pub(K,C, S))

The intruder deduction ability should be extended to take into account the
CKD functions from BIP32. Therefore we define these two new intruder deduc-
tion rules expressed by Horn Clauses in ASLan++:

iknows(pCKD(inv(K),C,S)) :- iknows(K.C.S); \% for CKD_pub

iknows(inv(pCKD(K,C,S))) :- iknows(K.C.S); \% for CKD_priv

The ability for the intruder to deduce a public key from its inverse (private) key
is expressed using two Horn Clauses:

32 M. Turuani et al.

CKD priv

pCKD

CKD pub

inv(pk(A))

pk(A) pCKD(inv(pk(A)), ..)

inv(pCKD(inv(pk(A)), ..))

Pub. keyPub. key

Fig. 1. Example of key derivations with fixed chain and path

iknows(pk(A)) :- iknows(inv(pk(A)));

iknows(pCKD(K,C,S)) :- iknows(inv(pCKD(K,C,S)));

These functions are summarized in Fig. 1, where each arrow represents an oper-
ator over keys, where both the chain parameter and the path are fixed.

4 ASLan++ Wallet Model

The ASLan++ model for the Electrum wallet is detailed here. It specifies the user
agent and his client software (separately), plus the three server agents described
previously. It also specifies the security properties to be preserved in any run,
plus the intruder capabilities. Conforming to BIP32’s modeling from Sect. 3, the
CKD priv and CKD pub function are replaced by combining pCKD and inv.
Note that pCKD is universally known and thus can be used by the intruder. The
list containing the elements that the client want to be signed, and the list of these
elements once they are signed by the server, are represented with concatenation
of pairings. While the model contains variants for choosing Input info (the list of
signature requests), only the most general one where the intruder has full control
over it is used for the analysis. Moreover, the ASLan++ syntax uses names
starting with a non-capital letter to denote constants, e.g. atoms/nonces/..., and
names starting with a capital letter for variables. Therefore, a key pair denoted
by Ks, ks (public/private) in the description of the protocol will now be written
Ks/inv(Ks) instead, with Ks a variable of type public key and inv(Ks) the
inverse of its value, thus the associated private key.

4.1 Attacker Model and Assumptions

Our analysis relies on the perfect cryptography hypothesis: no information about
the content of a ciphertext can be derived by agents that do not possess the
decryption key. Fresh random numbers used in a ciphering algorithm cannot
be derived either. Random numbers cannot be predicted by the intruder. A
ciphertext is in general not malleable and therefore cannot be used to generate
a different ciphertext without being decrypted first. This can be slightly relaxed

Automated Verification of Electrum Wallet 33

when the protocol uses specific operators (Xor, exponentiation, ..): the alge-
braic properties of these operators that can be exploited are made explicit. Horn
Clauses are also used to express agent capabilities to modify or learn messages
that goes beyond the perfect cryptography hypothesis.

A honest agent follows the protocol specification and is assumed to be pru-
dent, that is, the agent decrypts as soon as possible every part of a received
message, checks the content by relating it to its known data. In the same way
signatures are verified by agents whenever possible.

4.2 Security Properties

While the built-in ASLan++ security properties are fine for protecting objects
with scope larger than just one session, they were not adequate for protecting
local objects inside sessions where one agent (e.g., the server) has no idea, and
do not truly care, if he is speaking to a honest client or not. The server has
to serve any client, honest or not, and he has no idea which one will contact
him. Therefore, instead of tweaking the built-in properties, we have designed
new specific ones for this kind of model:

uSecret(message ,message) : fact;

uChecks(agent ,message ,message ,message ,message) : fact;

which associated security properties are:

uSecret: [](forall M K. (! uSecret(M,K) |

!iknows(M) | iknows(K)));

uChecks: [](forall A M K U V. (! uChecks(A,M,K,U,V) | A=i

| K=M | !U=V));

where [] means ‘in every trace at any moment’ and ! denotes the negation. The
first one, uSecret(M,K), ensures that the message M remains unknown for the
intruder, unless he can build or deduce K. This is widely used to preserve the
security of some data inside a session, where K will be the session key. This way,
an attack is raised on a local data, or a data transmitted during a session, only
if the intruder has no access to the main key protecting it. Naturally, the session
key itself has its own security property, to check whether it can be captured
by the intruder. This method builds an interesting hierarchical structure among
security properties reflecting the dependencies between data and the means used
to protect them. This was made possible only thanks to the recent extension of
Cl-Atse (the analysis backend used for this study) that allows it to check for
non-deducibility constraints over the intruder knowledge. Indeed, this does not
simply require that the key K was received by the intruder, but that among the
infinite set of possible intruder knowledge solutions of some set of constraints,
only those where he is unable to deduce that key, or to rebuild it from pieces,
are kept.

The second property, uChecks(A,M,K,U, V), ensures that if the agent A is
not played by the intruder, then either the message M and K are equal, or the
messages U and V differ. This is widely used to check the server’s responses to

34 M. Turuani et al.

the client’s requests. Therefore, in this context an attack is conservatively raised
iff: (i) the agent A was an honest agent; (ii) the response M from the server
differs from the expected result K; (iii) the request (list of) parameter U was
correct, i.e. identical to its expected value V .

4.3 User Role

The ASLan++ User role models human owner(s) of an Electrum wallet to be
distinguished from a role played by software client(s), that owns only a subset
of User’s knowledge. The User role appears only during the initialization phase
as described in Sect. 2. Thus, he will first generate two seeds using the fresh()
nonce generator, and declares them as secrets:

secret_Seed1 :(Seed1) := fresh();

secret_Seed2 :(Seed2) := fresh();

Then, he derives two key pairs K1/inv(K1) and K2/inv(K2) from the seeds,
plus their associated chain parameters C1 and C2, and declares the private keys
as secrets. The chain parameters (or the public keys) being sent to the server,
they can also be declared as secrets (for testing, as they are not critical) but under
the assumption that the server was not compromised (actively or passively), i.e.
that its root key remains private:

K1 := pk(Seed1); uSecret(inv(K1),Seed1);

K2 := pk(Seed2); uSecret(inv(K2),Seed2);

C1 := cp(Seed1); C2 := cp(Seed2);

uSecret(C2 ,inv(pk(server)));

Finally, he gives these initialization data to his client, necessarily through a
secure channel:

Actor *->* Client : email.inv(K1).C1.K1.C2.K2;

The secure channel is specified in ASLan++ syntax by arrow decorations: left
star for origin authenticity, and right-star for read-protection and guaranty of
delivery to the correct recipient.

4.4 Client Role

The Client role is played by Electrum software client on behalf of the user. After
a first initialization phase:

User *->* Actor : ?Email.inv(?K1).?C1.?K1.?C2.?K2;

where it receives its parameters from the User role, it computes the long user
ID (Long ID) and declares it as secret, truncates it to UID, and deduces the
main server’s public key K3 and chain parameter C3 devoted to this user. Also
non essential or obviously public data are leaked to the intruder, in case some
real user would do so involuntarily:

Automated Verification of Electrum Wallet 35

K3 := pCKD(inv(pk(server)),cp(server),Long_ID);

C3 := cCKD(pk(server) ,cp(server),Long_ID);

Actor -> ? : Email.K1.C1.K2.K3.C3;

Then, the clients starts a registration process to the server. To do so, it first
generates a fresh session key Sk and declares it as secret, then transmits it to
the server through a read-protected channel followed by the registration request
protected by that key:

secret_Sk :(Sk) := fresh(); Actor ->* Server : Sk;

Actor -> Server :

{| register .{Email.K1.C1.K2.C2}_pk(server)|}_Sk;

After processing the request, the servers gives its answer protected by the session
key too:

Server -> Actor : {|{? Secret}_K1|}_Sk; uSecret(Secret ,Sk);

This answer contains the Secret that will be used for further authentication
using the google OTP function. Naturally Secret is declared as a secret w.r.t.
the session key Sk. This goal is made inactive if the intruder can deduce or
compute Sk, namely if the session officially involves an intruder (but this is not
an attack) or if the session was compromised (but the goal associated to Sk must
trigger instead). Then, following the same method and using an OTP declared
as secret and generated through google otp(Secret, T ime) with Time being the
current time of the client (correct or not), it casts the confirmation request (with
a new session key) and gets the server Result, that could be true or false. This
response is checked for validity:

uChecks(Server ,true ,Result ,ctime ,Time);

i.e. the Result must be true unless the client did not use the current time
properly. This may generate an attack, see Sect. 5.2. Finally, the client casts a
signature request. This request uses a Raw transaction which is some fresh data
leaked to the intruder, plus a list of signature requests called Input info which
must be as general as possible, and thus, directly provided by the intruder at its
own discretion. This way, the intruder can choose the most dangerous values for
the client. At the end, the client checks the server’s response similarly as before.

4.5 Server Registration Role

The registration role is the first of the three server roles. Its goal is to record new
user’s registration data. The model does not even need to check if a previous
user was already registered with the same ID, since the probability to find hash
collisions by chance is considered to be negligible. Therefore, this role first opens
a new connection to a client by receiving a session key, though a read-only
channel, followed by the request itself:

Client ->* Actor : ?Sk;

Client -> Actor :

{| register .{? Email .?K1.?C1.?K2.?C2}_pk(server)|}_Sk;

36 M. Turuani et al.

This allows him to rebuild the long and short user ID in the same way as the
client did on his side, along with the OTP’s secret which is an hash over the
user’s short ID, the private server’s key, and the server’s chain parameter:

Secret := hash(UID.inv(pk(server)).cp(server));

uSecret(Long_ID ,Sk); uSecret(Secret ,Sk); uSecret(Long_ID ,C2);

Naturally these data are also declared as secrets, w.r.t. the session key Sk since
the data allowing to rebuild Long ID, and Secret, are both transmitted in a
channel protected by Sk. However, we can notice that losing the session key Sk
here does not necessarily implies losing the long user ID, since the data building
it are also protected by the server’s public key. Therefore, it is declared as secret
a second time, but w.r.t. one of its element that was already declared as secret by
the User (c.f. Sect. 4.3), i.e. C2. We note here that this study does not consider
cryptographic attacks on the primitives. In particular, the server and the hashing
method must be resistant by other means to an intruder performing e.g. huge
series of (fake) client/server registrations to retrieve many pairs of UID and
Secret with the objective of rebuilding the secret associated to a known, honest,
user ID. Finally, the server adds the client’s data to its database, and sends the
Secret back for further authentication:

database ->add(UID.Email.K1.C1.K2.C2.false);

Actor -> Client : {|{ Secret}_K1|}_Sk;

where false refers to the unconfirmed status, and the secret is protected by both
the session key and an encryption with the public key K1.

4.6 Server Confirmation Role

The confirmation role is mandatory to allow the client to send further requests.
It ensures that Google OTP can be used for authentication and if so, switch its
status from unconfirmed to confirmed. The server starts this role as before, by
receiving a new session key though a read-only channel, followed by the request
itself containing the user ID from which the secret can be rebuilt:

Client ->* Actor : ?Sk;

Client -> Actor : {| confirm .?UID.?OTP|}_Sk;

Secret := hash(UID.inv(pk(server)).cp(server));

This way, the server does not need to store each user’s secret in the database.
Then, the server has three choices, depending on the validity of the one-time
password and the content of the database for this user ID:

– Either the database contains a non-confirmed user under that ID, and the pro-
vided password was correct. Then the server validates the request by switch-
ing the user status to confirmed in the database, and sending back the true
response:

database ->remove(UID.Email.K1.C1.K2.C2.false);

database ->add(UID.Email.K1.C1.K2.C2.true);

Actor -> Client : {| response.true|}_Sk;

Automated Verification of Electrum Wallet 37

– Or the database contains a non-confirmed user under that ID, but the pro-
vided password was not correct. Then the server deletes (yes, it does!) the
unregistered user account from the database, and sends back a false response.
Whatever the reason was, a user mistake or an intruder trying to interfere
with a wrong password, in both cases the client has to register again:

database ->remove(UID.Email.K1.C1.K2.C2.false);

Actor -> Client : {| response.false|}_Sk;

– Or the database does not contains any non-confirmed user under that ID. If
there exists some user registered and already confirmed under that ID, it is
not seen here and thus it remains unchanged. Then the server simply sends
back a false answer:

Actor -> Client : {| response.false|}_Sk;

Moreover, in all three cases above, the server also declares the local data as
secrets within the session, i.e.:

uSecret(Secret ,Sk); uSecret(OTP ,Sk);

Other cases than these three could be introduced in future protocol variants. For
example, the server could send an adequate response when the user is already
registered. Depending of these future improvements on the server’s tests and
actions on data, a new analysis would be necessary.

4.7 Server Signature Role

The signature role is the master piece of the Electrum two factor authentication
protocol. It allows the client to cast Bitcoin transactions signed both by him
and the server. This is the most complex part of the protocol since the number
of signatures to perform for one single request is not fixed, and thus requires
an iterative process. The server starts this role as usual by receiving the session
key followed by the request and uses it to rebuild the user secret and query the
database:

Client ->* Actor : ?Sk;

Client -> Actor :

{|sign.?UID.? Raw_transaction .? Input_info .?OTP|}_Sk;

Secret := hash(UID.inv(pk(server)).cp(server));

if (database ->contains(UID.?Email .?K1.?C1.?K2.?C2.true)

& OTP = google_otp(Secret ,ctime)) { ...

Similarly to the confirmation role, the server tests the database content and
one-time password for user authentication. If this test is positive then the server
processes Input info, i.e. the list of objects that must be signed, by the server for
some of them, and not for some others. This list is modeled by right-parenthesised
pairings, and the server iterates the process until no more pairing is found (the
last element in the list is supposed to be end):

38 M. Turuani et al.

while (Input_info = ?Elem.?Next) {

if (Elem = mustSign (?A.?B.? Script)) { ...

The list elements of the form mustSign(..) are objects that the server is asked to
sign. Others are objects that can be simply ignored. For each object of this kind
found in the list, thus for each elementary signature request A.B.Script found
inside, the server computes the key pair K3/inv(K3) derived from his private
root key using BIP32 and following the long user ID plus A and B as path. For
readability, this is decomposed in two steps here:

K3 := pCKD(inv(pk(server)),cp(server),Long_ID);

C3 := cCKD(pk(server) ,cp(server),Long_ID);

K4 := pCKD(inv(pCKD(inv(K3),C3 ,A)),cCKD(K3,C3,A),B);

C4 := cCKD(pCKD(inv(K3),C3 ,A) ,cCKD(K3,C3,A),B);

An implementation of the server would certainly build K3/inv(K3) before the
loop, but this has no impact on the analysis. The server can now use inv(K4)
to sign the requested element, and add it to the list of signatures that he is
building, and proceed to the next element:

Signatures := Signatures .{ Raw_transaction.Script}_inv(K4);

Input_info := Next; secret_K4p :(K4p) := inv(K4);

Empty := false;

The private key inv(K4) is also declared as secret, but this time, for the server:
it is used for signing, so it must remain perfectly private to the server even if
this one communicates with a compromised client. The Empty variable records
the information that the signature list is not empty anymore. This is used right
after the end of the iterative process, to declare the final signature list as a secret
w.r.t. the session key (since it is transmitted during the session):

if (Empty=false) { uSecret(Signatures ,Sk); }

Note that this secrecy goal would be trivially invalidated without the condition.
Finally, the server can send back the signed list to the client:

Actor -> Client : {| response.Signatures |}_Sk;

If the password is incorrect or if the database does not contain a confirmed used
of that ID, then the server simply replies false instead of the signature list. In
both cases (correct or not), the secrecy of the local data (such as the user IDs
or the OTP secret) is ensured w.r.t. the session key, in the same way as in the
previous roles.

5 Results

We have performed several analyses using our ASLan++ model of Electrum’s
two factor authentication protocol. We first tested the executability of the pro-
tocol, i.e. to make sure that participants can truly run their parts as expected.
Second we present a replay attack on the confirmation message that was unveiled
by the tools. This attack does not threaten private data but makes the client

Automated Verification of Electrum Wallet 39

erroneously believe that it is in some state with the server and this may block him
in future actions. Finally we evaluate the protocol security according to several
scenarios and show that no attack is possible for these configurations (beside the
previously mentioned one). The investigated scenarios cover standard uses of the
protocol (with honest server and client) but also critical cases where the client
or the server is dishonest. We have employed a computer cluster for increasing
the number of protocol sessions considered during our experiments.

5.1 Executability Checking

To check the absence of blocking during protocol execution and therefore that the
protocol can reach a successful final state, we have considered several scenarios
too. We consider here the case of a single honest client and a single honest server.
Hence the body section contains:

newSession(alice ,client1 ,server ,inv(pk(server)));

Moreover the fact that a client role receives a correct final answer from the server
is encoded with an ASLan property added at the end of the client role.

uChecks(Actor ,true ,false ,Signatures ,

start .{ Raw_transaction.Script2}_inv(SerKey2).

none.{ Raw_transaction.Script1}_inv(SerKey1));

This property requires that the signature Signature sent by the server is
exactly data. For the server to provide this signature, the client request must be
properly constructed. Cl-Atse generates this request. Signatures are built from
paths a, b and c, d that have been used to compute the public keys SerKey1 and
SerKey2 with the corresponding scripts, i.e.:

K3 := pCKD(inv(pk(server)),cp(server),Long_ID);

C3 := cCKD(pk(server) ,cp(server),Long_ID);

SerKey1 := pCKD(inv(pCKD(inv(K3),C3 ,a)),cCKD(K3,C3,a),b);

SerKey2 := pCKD(inv(pCKD(inv(K3),C3 ,c)),cCKD(K3,C3,c),d);

5.2 Attack by Confirmation Replay

In a scenario where the client and the intruder have each one an open session
with the server, the intruder has the possibility to replay the registration confir-
mation sequence of the client towards the server. This is possible since the server
authenticates the client solely by its transmitted information, basically UserID
and OTP . The fact that the same session key is reused is neither detected by
the server in our modeling, nor in real implementations. The fact that the OTP
password used in a first request does not expire instantaneously and therefore
remains valid for a second immediately following a session is not exploited here.
However if an already confirmed client send a new confirmation request then
according to the technical documentation the server will check whether the client
is already recorded with not confirmed tag in the database. Hence the test will

40 M. Turuani et al.

fail since the client is recorded with another tag. By consequence the second
session fails and the server returns false. Then the intruder needs only to replace
the positive answer to the first request by the negative answer to the second one
to deceive the client into thinking that its confirmation was denied. Moreover,
by believing so the client will probably not emit signature requests. If he tries
again to get a confirmation he will be rejected again without any action from the
intruder. This forces the client to initiate a new registration. In order to correct
this protocol behavior the server should check after a confirmation request if the
client is already confirmed and reply positively in that case.

Cl-Atse has generated automatically the following attack trace that corre-
sponds. Agents between brackets < and > are controlled by the intruder. We
note that client1 sends a request to the server that is duplicated, and he only
receives the second answer.

client1 -> <server > : _msg

<client1 > ->* server : n19(Sk)

<client1 > -> server : _msg

server -> <client1 > : {| response.true|}_n19(Sk)

<i> ->* server : n19(Sk)

<i> -> server : _msg

server -> <i> : {| response.false|}_n19(Sk)

<server > -> client1 : {| response.false|}_n19(Sk)

where for readability msg (and uid) are shortened forms of:

_msg: {| confirm._uid.googleOTP(hash(_uid.inv(pk(server)).

cp(server)),time)|}_n19(Sk)

_uid: first10(hash(pk(n17(Seed1)).cp(n17(Seed1)).

pk(n17(Seed2)).cp(n17(Seed2))))

Suggestion: the server’s answer could be more explicit to let the client understand
that it is under attack. Also, the client must not accept a server’s response if
it arrives after the end of validity for the OTP, to prevent replay. The non-
confirmed data deletion is acceptable if the client understands that he must
restart from registration because an intruder interfered.

5.3 Security Analysis

Case of Dishonest Server: With a compromised server only few security prop-
erties can be preserved for the client. In particular, secrecy of C2, LongUserID,
Secret, OTP is lost. However, the client’s master private keys and their children
should remain secret even with a compromised server. This includes K1 priv
stored by the client and K2 priv stored by Human role and the seeds that have
been used for generating keys.

The model features a server that is compromised and thus, whose private root
key is provided to the intruder. Therefore, its security properties are ignored and
the intruder forces the server to follow or not the specification. The analysis of
this specification by Cl-Atse shows that the client’s security properties that are
not related to data shared with the server are preserved.

Automated Verification of Electrum Wallet 41

Case of Honest Server: This is the main case. The number of honest clients
running in parallel is a source of combinatorial explosion of the number of traces
to analyze. To perform the analysis we have employed 50 nodes of a computation
cluster. It appears that the limit was reached when analyzing this model for 2
to 3 concurrent sessions, each one being sequentially iterated 3 to 4 times. Each
session is a block specifying one human owner and his software client, plus each
of the three server’s roles.

Finally, the scenarios containing two sessions featuring either two honest
clients or one honest and one dishonest were found to be secure for up to four
iterations (option ‘--nb 4’ of the tool). We have tried to speed-up analysis by
‘branching’ the client sessions to specific server sessions (these are perfectly inter-
changeable anyway) since this eliminates a large number of equivalent executions,
but a scenario without this ‘branching’ was also tried and appeared to be truly
difficult, when running on 30 nodes of the cluster for a week.

6 Conclusion

In this paper we have modeled Electrum’s two factor authentication protocol
using the ASLan++ language advanced features. Conditional security goals allow
us to model several scenarios in one shot, without knowing beforehand which
agent will be compromised. Horn Clauses allow us to model intruder capabilities
(e.g. exploiting BIP32 related properties) in a flexible way and beyond standard
Dolev Yao deduction rules. Our computer experiments have pointed a potential
problem in the user registration process, and have shown that, assuming perfect
cryptography, the protocol offers good security guarantees in standard scenarios.
We have not studied privacy properties in this paper. In particular, a further
analysis could check if an intruder is able to relate transactions that belong to
the same user.

References

[Andrychowicz 2014] Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek,
�L.: Modeling bitcoin contracts by timed automata. In: Legay, A.,
Bozga, M. (eds.) FORMATS 2014. LNCS, vol. 8711, pp. 7–22.
Springer, Heidelberg (2014)

[Armando 2008] Armando, A., et al.: Formal analysis of SAML 2.0 web browser
single sign-on: breaking the SAML-based single sign-on for
Google apps

[Dolev 1981] Dolev, D., Yao, A.: On the Security of Public Key Protocols
(Extended Abstract). In: FOCS, pp. 350–357 (1981)

[von Oheim 2010] von Oheimb, D., Mödersheim, S.: ASLan++ — a formal secu-
rity specification language for distributed systems. In: Aichernig,
B.K., Boer, F.S., Bonsangue, M.M. (eds.) Formal Methods for
Components and Objects. LNCS, vol. 6957, pp. 1–22. Springer,
Heidelberg (2011)

42 M. Turuani et al.

[Proverif] Proverif. http://prosecco.gforge.inria.fr/personal/bblanche/
proverif/

[Turuani 2006] Turuani, M.: The CL-Atse protocol analyser. In: Pfenning,
F. (ed.) RTA 2006. LNCS, vol. 4098, pp. 277–286. Springer,
Heidelberg (2006)

[Wuille 2012] Wuille, P.: Hierarchical Deterministic Wallets. Online specifica-
tion for BIP32. https://github.com/bitcoin/bips/blob/master/
bip-0032.mediawiki

http://prosecco.gforge.inria.fr/personal/bblanche/proverif/
http://prosecco.gforge.inria.fr/personal/bblanche/proverif/
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki

Blindly Signed Contracts: Anonymous
On-Blockchain and Off-Blockchain Bitcoin

Transactions

Ethan Heilman(B), Foteini Baldimtsi, and Sharon Goldberg

Boston University, Boston, USA
{heilman,foteini}@bu.edu, goldbe@cs.bu.edu

Abstract. Although Bitcoin is often perceived to be an anonymous
currency, research has shown that a user’s Bitcoin transactions can be
linked to compromise the user’s anonymity. We present solutions to the
anonymity problem for both transactions on Bitcoin’s blockchain and off
the blockchain (in so called micropayment channel networks). We use an
untrusted third party to issue anonymous vouchers which users redeem
for Bitcoin. Blind signatures and Bitcoin transaction contracts (aka smart
contracts) ensure the anonymity and fairness during the bitcoin ↔ voucher
exchange. Our schemes are practical, secure and anonymous.

Keywords: Bitcoin · Blockchain · Smart contracts · Blind signatures ·
Anonymity

1 Introduction

When Bitcoin was first introduced in 2008, one of its key selling points was
anonymity— users should be able to spend bitcoins “without information linking
the transaction to anyone” [15]. In the last few years, however, researchers have
shown that Bitcoin offers much weaker anonymity than was initially expected [12,
17], by demonstrating that they could follow the movement of funds on the
Bitcoin blockchain. The community has reacted to this by proposing two key
approaches to improve the anonymity of Bitcoin: (1) new anonymity schemes
that are compatible with Bitcoin [1–3,7,11,18,19,23,24], and (2) new anonymous
cryptocurrencies that are independent of Bitcoin [2,14]. In this paper we take the
former approach by developing new anonymity schemes that are compatible with
Bitcoin via a soft fork. Our schemes offer a new trade-off between practicality
(i.e., transaction speed), security (i.e., resistance to double-spending, denial of
service (DoS) and Sybil attacks) and anonymity (i.e., unlinkable transactions).
As we will see below, previous work either provided schemes that are efficient but
achieve limited security or anonymity [7,18,19,23,24] or schemes that provide
strong anonymity but are slow and require large numbers of transactions [1,3,11].

Our first scheme is an “on-blockchain” scheme providing anonymity at rea-
sonable speed, i.e., requiring four transactions to be confirmed in three blocks
(≈30 mins). Our protocol runs in epochs, and provides set-anonymity within each
epoch. That is, while the blockchain publicly displays the set of payers and pay-
ees during an epoch, no one can tell which payer paid which payee. To do this,
c© International Financial Cryptography Association 2016
J. Clark et al. (Eds.): FC 2016 Workshops, LNCS 9604, pp. 43–60, 2016.
DOI: 10.1007/978-3-662-53357-4 4

44 E. Heilman et al.

we introduce an untrusted (possibly malicious) intermediary I between all payers
and payees.

Our second “off-blockchain” scheme uses a new payment technology called
micropayment channel networks [9,16]. Micropayment channel networks use Bit-
coin as a platform to confirm transactions within seconds, rather than minutes,
and already provide a degree of anonymity—most of the transactions are made
outside of the blockchain, and thus not shown to the public—but this anonymity
is incomplete. Critically, because micropayment channel networks chain pay-
ments through pre-established paths of connected users (explained in Sect. 5.1),
these users that participate in the path learn transaction details, including
the cryptographic identities of the sending and receiving party. We provide
anonymity against malicious users by using an honest-but-curious intermedi-
ary I (Sect. 5.3); set-anonymity within an epoch is preserved as long as I does
not abort or deny service to payers or payees.

Our technique, inspired by eCash [8], works as follows. For a user A to anony-
mously pay another user B, she would first exchange a bitcoin for an anonymous
voucher through intermediary I. B could then redeem the anonymous voucher
with I to receive a bitcoin back. Our scheme overcomes two main challenges: (i)
Ensuring that the vouchers are unlinkable (i.e., hiding the link between the
issuance and the redemption of a voucher), and (ii) enforcing fair exchange
between participants (i.e., users can redeem issued vouchers even against an
uncooperative or malicious I, and no party can steal or double-spend vouchers
and bitcoins). We use blind signatures to achieve unlinkability, and the script-
ing functionality of Bitcoin transactions to achieve fair exchange via transaction
contracts (aka smart contracts [20]).

We provide an overview of our scheme in Sect. 2 and define the required
properties. We discuss our use of transaction contracts in Sect. 3. Our scheme for
on-blockchain anonymous transactions is in Sect. 4. Our off-blockchain scheme
which uses micropayment channel networks is in Sect. 5. Finally, we analyze the
anonymity of our schemes in Sects. 4.2 and 5.3 and their security in Sect. 6.

1.1 Related Work

We now review some of the most representative related works in the literature.

Anonymous Payment Schemes. Zerocash [2] and Zerocoin [14] provide
anonymous payments through the use of a novel type of cryptographic proofs (ZK-
SNARKs). Unlike our schemes, they are “stand-alone” cryptocurrencies and can
not be integrated with Bitcoin. Meanwhile, [19] is an anonymous payment scheme
that can offer anonymity protections to Bitcoin that provides excellent blockchain
privacy and is very fast. However, the parties entrusted to anonymize transactions
in [19] can still violate users’ anonymity, even if they are honest-but-curious.

Mixing Services. A bitcoin mixing service provides anonymity by transfer-
ring payments from an input set of bitcoin addresses to an output set of bitcoin
addresses, such that is it hard to trace which input address paid which output
address. Mixcoin [7] uses a trusted third party to mix Bitcoin addresses, but this

Blindly Signed Contracts 45

third party can violate users privacy and steal users’ bitcoins; theft is detected
but not prevented. Blindcoin [23] improves on Mixcoin by preserving users pri-
vacy against the mixing service, as with Mixcoin, theft is still not prevented.
CoinParty [24] is secure if 2/3 of the mixing parties are honest. CoinJoin [10]
and CoinShuffle [18] improve on prior work by preventing theft. [13] shows a
rigorous proof of anonymity for a scheme “almost identical” to CoinShuffle.

CoinShuffle’s anonymity set is thought to be small due to coordination
costs [3,6]; meanwhile, our schemes are not limited to small anonymity sets.
Moreover, both CoinShuffle and CoinJoin run an entire mix in a single bitcoin
transaction. Thus, a single aborting user disrupts the mix for all other users.
Moreover, mix users cannot be forced to pay fees upfront, so that these schemes
are vulnerable to DoS attacks [6,22] (where users join the mix and then abort)
and Sybil attacks (where an adversary deanonymizes a user by forcing it to mix
with Sybil identities secretly under her control) [3].

XIM [3] is a decentralized protocol which builds on the fair-exchange mixer
in [1] and prevents bitcoin theft and resists DoS and Sybil attacks via fees. We
also prevent bitcoin theft resist DoS and Sybil attacks with fees (Sect. 4.1). One
of XIM’s key innovations is a secure method for partnering mix users. Unfor-
tunately, this partnering method adds several hours to the protocol execution
because users have to advertise themselves as mix partners on the blockchain.
Our schemes are faster because they do not require a partnering service.

CoinSwap [11] is a fair-exchange mixer that allows two parties to anony-
mously send Bitcoins through an intermediary. Like our schemes, the CoinSwap
intermediary is prevented from stealing funds by the use of fair exchange. Unlike
our schemes, however, CoinSwap does not provide anonymity against even a hon-
est but curious intermediary. Our on-blockchain scheme takes ≈30 mins, slower
than Coinshuffle’s ≈10 mins. Off-blockchain however, our scheme is faster than
CoinShuffle, since it only runs in seconds [16]; however, our off-blockchain only
supports anonymity against a honest-but-curious intermediary1.

2 Overview and Security Properties

We introduce two schemes: (a) on-blockchain anonymous payments and coin mix-
ing, and (b) off-blockchain anonymous payments. By on-blockchain we denote
the standard method of transferring bitcoins i.e., using the Bitcoin blockchain,
as opposed to the newly proposed “off-blockchain” methods that utilize micro-
payment channel networks.

On-Blockchain Anonymous Payments. We first consider the scenario where
a user A, the payer wants to anonymously send 1 bitcoin, BTC , to another user
B, the payee2. If A were to perform a standard Bitcoin transaction, sending
1 Our off-blockchain scheme is fast because it uses micropayment channel networks.

It’s unclear how to retrofit prior work onto these networks, e.g., mapping Coinshuf-
fle’s single atomic transaction onto the arbitrary graph topology of a micropayment
channel network.

2 We assume that all transactions in our schemes are of 1 bitcoin value.

46 E. Heilman et al.

1 bitcoin from an address AddrA (owned by A) to a fresh ephemeral address
AddrB (owned by B) there would be a record of this transaction on Bitcoin’s
blockchain linking AddrA to AddrB . Even if A and B always create a fresh
address for each payment they receive, the links between addresses can be used to
de-anonymize users if, at some point, they “non-anonymously” spend a payment
(e.g., buying goods from third party that learns their mailing address) or receive
a payment (e.g., a Bitcoin payment processor like BitPay) [12].

One idea A and B could use to protect their privacy is to employ an inter-
mediary party I that breaks the link between them. A would first send one
bitcoin to I, and then I would send a different bitcoin to B. Assuming that a
sufficient number of users make payments through I, it becomes more difficult
for an outsider to link A to B by looking at the blockchain (more on this below).
The downside of this idea, however, is that the intermediary I knows everything
about all users’ payments, violating their anonymity.

Fig. 1. Strawman eCash protocol.

We could apply techniques used in online
anonymous eCash schemes [8] to prevent I
from learning who A wants to pay. The pro-
tocol is in Fig. 1. A pays one bitcoin to I, and
obtains an anonymous voucher V = (sn, σ)
in return. (A chooses a random serial num-
ber sn, blinds it to sn and asks I to compute
a blind signature σ on sn. A unblinds these
values to obtain V = (sn, σ). The blind signature requires only a minor change
to Bitcoin and can be implemented using a soft fork (Sect. 3). Then A pays B
using V , and finally B redeems V with I to obtain one bitcoin.

How do we ensure that I does not know who A wants to pay? This fol-
lows from the blindness of blind signatures—namely, that the signer (I) can-
not read the blinded serial number sn that it signs, and also cannot link a
message/signature (sn, σ) pair to its blinded value (sn, σ). Blindness therefore
ensures that even a malicious I cannot link a voucher it redeems with a voucher
it issues. Blind signatures are also unforgeable, which ensures that a malicious
user cannot issue a valid voucher to itself.

Fig. 2. Our protocol: circles (step
numbers from Sect. 4), black arrows
(objects transferred via transaction),
grey arrows (messages).

While this eCash-based approach
solves our anonymity problem, it fails
when I is malicious since it could just
refuse to issue a voucher to A after receiv-
ing her bitcoin. To solve this, we use
Bitcoin transaction contracts to achieve
blockchain-enforced fair exchange (as in
prior work, fair-exchange denotes an
atomic swap). The key idea is that A
transfers a bitcoin to I if and only if
it receives a valid voucher V in return.
Figure 2 presents the high-level idea, and
full description is in Sect. 4.

Blindly Signed Contracts 47

At a high-level, our scheme consists of four blockchain transactions that are
confirmed in three blocks on the blockchain, as shown in Figs. 2 and 3. The
protocol involves two blockchain-enforced fair exchanges. The first is V→BTC ,
which exchanges a voucher from B for a bitcoin from I, and is realized using
the following two transaction contracts: (1) Toffer(V→BTC), which is created by
I, confirmed in the first block on the blockchain and offers a fair exchange of
one bitcoin (from I) for one voucher (from B), and (2) Tfulfill(V→BTC), which
is created by B to fulfill the offer by I and is confirmed in the third block on
the blockchain. These transaction contracts ensure that a malicious I cannot
redeem B’s voucher without providing B with a bitcoin in return (see Sects. 3
and 4). The second fair exchange is BTC→V and works in a similar fashion,
fairly exchanging a bitcoin from A for a voucher from I via two transaction
contracts: (1) Toffer(BTC→V), created by A and confirmed on the second block,
and (2) Tfulfill(BTC→V), created by I and confirmed in the third block. These
two fair exchanges are arranged to realize the anonymity protocol shown on the
previous page; the fair exchange BTC→V stands in for the interaction between
A and I, while the fair exchange V→BTC stands in for the interaction between
B and I.

Mixing Service. A mixing service allows a user to move bitcoins from one
address it controls to a fresh ephemeral (thus anonymous) address, without
directly linking the two addresses on the blockchain. To use our on-blockchain
anonymous payments as a mixing service, users can just anonymously pay them-
selves from one address to another fresh ephemeral address, thus playing the role
of both A and B in the protocol above.

Off-Blockchain Payments. We also adapt our scheme to the recently pro-
posed off-blockchain micropayment channel networks. Our off-blockchain scheme
uses the same four transactions described above, but confirms them on a micro-
payment channel network. See Sect. 5 for details.

2.1 Anonymity Properties

Fig. 3. Payment epoch

In the strawman eCash protocol of Fig. 1, the
anonymity level of users depends on the total
number of payments using I as users can
obtain or redeem vouchers at arbitrary times.
However, our anonymous fair-exchange pro-
tocol of Fig. 2 provides anonymity only for
payments starting and completing within an
epoch (Fig. 3) i.e., a three block window.

Assumptions. We make the following assumptions for our schemes:

48 E. Heilman et al.

1. We assume that all users coordinate on epochs (by e.g., choosing the starting
block to have a block height that is divisible by three).

2. As with traditional eCash schemes, we assume that if A pays B, then A
and B trust each other. (A malicious A or B could easily conspire with I to
reveal the other party of the transaction; for instance, A could just tell I the
serial number the voucher she was issued, and then I can identity B when he
redeems that voucher.) This is a reasonable assumption in cases where A is
purchasing goods from B, since A is likely already trusting B with far more
personal and identifying information including e.g., her shipping address or
IP address.

3. For our on-blockchain scheme only, payees B always receive payments in a
fresh ephemeral Bitcoin address AddrB controlled by them. Any communica-
tion between AddrB and I is done anonymously (e.g., using Tor). The payee
can transfer the payment from AddrB to his long-lived Bitcoin address if the
protocol successfully completes.

4. Payers only make one anonymous payment per epoch. Similarly, payees only
accept one payment per epoch (i.e., we assume they do not create multiple
ephemeral addresses to receive multiple payments in one epoch).3

Given these assumptions, the anonymity properties of our on-blockchain scheme
are:

Set-Anonymity Within an Epoch. Our assumptions imply that in every
epoch there are exactly n addresses making payments (playing the role of payer
A) and n receiving addresses (playing the role of B). All these Bitcoin addresses
should belong to different users. Anyone looking at the blockchain can see the
participating addresses of payers and payees, but should not be able to dis-
tinguish which payer paid which payee within a specific epoch. Thus, for all
successfully completed payments within an epoch, the offered anonymity set has
size n. In other words, the probability of successfully linking any chosen payer
A to a payee should not be more than 1/n plus some negligible function. This
means that an adversary (or a potentially malicious I) can do no better than
randomly guessing who paid whom during an epoch.

Resilient Anonymity. All payments should be totally anonymous until the
recipient, B, chooses to transfer them to an address linkable to B. Even if a
party aborts our protocol before it completes in an epoch, the intended recipient
of a payment should remain totally anonymous.

Transparency of Anonymity Set. Users in our on-blockchain scheme learn
the membership of their anonymity set after a transaction completes, just like

3 We could allow users to perform multiple payments (by using multiple Bitcoin
addresses that belong to them) but this would reduce their anonymity and make
our analysis more complex.

Blindly Signed Contracts 49

anyone else who might be looking at the blockchain. This property is unusual
for eCash schemes, but quite common for bitcoin mixes. Thus, if a particular B
feels his anonymity set is too small in one epoch, he can increase the size of his
anonymity set by remixing in a subsequent epoch. For instance, if AddrB gets
paid in an epoch with n = 4, he can create a fresh ephemeral address Addr ′

B

and have AddrB pay Addr ′
B in a subsequent epoch. If the subsequent epoch has

a n = 100, then B increases the size of his anonymity set.

Our on-blockchain protocol achieves all the above anonymity properties, which
also generalize to our mixing service (Sect. 4.2). Our mixing service has the addi-
tional advantage that A does not need to trust B since they are the same user.
Our off-blockchain scheme only offers set-anonymity against I when I is honest-
but-curious, rather than malicious (Sect. 5.3). Additionally, our off-blockchain
scheme does not achieve the anonymity-set transparency or the anonymity
resilience property.

Remark: Intersection Attacks. Anyone observing the anonymity-set mem-
bership in each epoch can attempt intersection attacks that de-anonymize users
across epochs (e.g., frequency analysis). This follows because we are compos-
ing set-anonymity across multiple epochs, and is a downside of any mix-based
service that composes across epochs. ([3] has a detailed description of intersec-
tion attacks.) By anonymity transparency, anyone looking at the blockchain can
attempt an intersection attack on our on-blockchain scheme. Our off-blockchain
scheme (roughly) only allows I to do this (Sect. 5.3).

2.2 Security Properties

Fair-Exchange. There will always be a fair-exchange between V ↔ BTC . Our
property ensures that: (i) malicious intermediary I cannot obtain a bitcoin from
A unless it honestly creates a voucher for her, and (ii) malicious intermediary
I cannot obtain a voucher V from B and refuse to pay a bitcoin back. This
property is also true against malicious users: (iii) malicious A cannot refuse to
give a bitcoin to I when receiving V , and (iv) malicious B cannot receive a
bitcoin from I without presenting a (valid) V .

Unforgeability. A user cannot create a valid V without interacting with I.

Double-Spending Security. A user can not redeem the same V more than
once.

DoS Resistance. The intermediary I should be resistant to Denial of Service
(DoS) attacks where a malicious user starts but never finishes many parallel fair
exchanges (redemptions) of a V for a BTC .

50 E. Heilman et al.

Sybil Resistance. The protocol should be resistant to a Sybils (i.e., identities
that are under the control of single user) that attempt to de-anonymize a target
user.

3 Implementing Fair Exchange via Scripts and Blind
Signatures

We explain how the transaction contracts Toffer(BTC→V) and Tfulfill(BTC→V)

implement the fair exchange BTC→V used in our protocol (V→BTC is anal-
ogous).

We start with some background on transaction contracts. Recall that Bitcoin
has no inherent notion of an “account”; instead, users merely move bitcoins from
old transactions to new transactions, with the blockchain providing a public
record of all valid moves. To do this, each transaction contains a list of outputs.
These outputs hold a portion of that transaction’s bitcoins and a set of rules
describing the conditions under which the portioned bitcoins in that output
can be transferred to a new transaction. The rules for spending outputs are
written in a non-Turing-complete language called Script. One transaction spends
another transaction when it successfully satisfies the rules in a script. Transaction
contracts (aka smart contracts [20]) are written as scripts, e.g., A will only pay
B if some condition is met. Using the CHECKLOCKTIMEVERIFY feature [21]
of scripts, we can timelock a transaction, so that funds can be reclaimed if a
contract has not been spent within a given time window tw .

We use timelocking to implement the BTC→V fair exchange. The fair
exchange begins when a user A generates (and the blockchain confirms) a trans-
action contract Toffer(BTC→V) which says that A offers one bitcoin to I under
the condition “I must compute a valid blind signature on the blinded serial
number sn within time window tw”; if the condition is not satisfied, the bitcoin
reverts to A. More precisely, A first chooses a random serial number sn, blinds
it to sn, and then uses sn to create a transaction contract Toffer(BTC→V) with
an output of one bitcoin that is spendable in a future transaction Tf if one of
the following conditions is satisfied:

1. Tf is signed by I and contains a valid blind signature σ on sn4, or
2. Tf is signed by A and the time window tw has expired.

The contract Toffer(BTC→V) is fulfilled if I posts a transaction Tf =
Tfulfill(BTC→V) that contains a valid blind signature σ on sn. This would satisfy
the first condition of Toffer(BTC→V) and so the offered bitcoin is transferred
from A to I. If I does not fulfill the contract within the time window tw , then
A signs and posts a transaction Tf that returns the offered bitcoin back to A,
thus satisfying the second condition of Toffer(BTC→V).

4 I signs Tf to stop a malicious miner that learns σ from stealing the bitcoin A gives I.

Blindly Signed Contracts 51

Blind Signature Scheme. Our fair exchange requires blind signatures with
exactly two rounds of interaction. We use Boldyreva’s [4] scheme, instantiated
with elliptic curves for which the Weil or Tate pairing are efficiently computable
and the computational Diffie-Hellman problem is sufficiently hard. While bitcoin
supports elliptic curve operations, it uses a curve (Secp256k1) that does not
support the required bilinear pairings. Thus, we need a soft fork to add an opcode
that supports elliptic curves with efficient bilinear pairings (i.e., supersingular
curves of the type y2 = x3 + 2x ± 1 over Fe�).

We use standard multiplicative notation and overlines to denote blinded val-
ues. Let G be a cyclic additive group of prime order p in which the gap Diffie-
Hellman problem [5] is hard and G

′ a cyclic multiplicative group of prime order
q. By e we denote the bilinear pairing map: e : G×G → G

′. Let g be a generator
of the group and H be a hash function mapping arbitrary strings to elements
of G\{1}. Let (p, g,H) be public parameters and (sk , pk = gsk) be the signer’s
secret/public key pair.

– To blind sn, user A picks random r ∈ Z
∗
p and sets sn = H(sn)gr.

– To sign sn, signer I computes σ = snsk .
– To unblind the blind signature σ, user A computes σ = σpk−r.
– To verify the signature σ on sn, anyone holding pk checks that the bilinear

pairing e(pk ,H(sn)) is equal to e(g, σ).
– To verify that the blinded signature σ on the blinded sn, anyone holding pk

can verify that this is valid (intermediate) signature by checking if e(pk ,m) =
e(g, σ).

4 On-Blockchain Anonymous Protocols

We now discuss the details of on-blockchain protocol depicted in Figs. 2 and 3.
As shown in Fig. 2, our protocol interleaves two fair exchanges BTC→V

(implemented using Toffer(V→BTC) and Tfulfill(V→BTC)) and V→BTC (imple-
mented using Toffer(BTC→V) and Tfulfill(BTC→V)). The interleaving is designed
to ensure that a malicious I cannot issue a voucher V to A and then subse-
quently refuse to redeem V from B. The key idea is that it is in the interest of
both A and B to force I to commit to redeeming the voucher V = (sn, σ). To
do this A starts by choosing the serial number sn for the voucher and sending
its hash h = H(sn) to B; notice that h hides the value of sn and thus does not
harm anonymity. Then, B uses h to force I to commit to redeeming a voucher
with serial number sn. Specifically, B asks I to create the transaction contract
Toffer(V→BTC) that offers one bitcoin to B under the condition “B must pro-
vide a valid voucher V with serial number sn such that h = H(sn) within time
window tw”. To prevent double-spending, I agrees to create Toffer(V→BTC) iff
the hash value h does not match the h of any prior transaction contract that
I has signed. Once Toffer(V→BTC) is on the blockchain, committing that I will
redeem the voucher with serial number sn, our two fair exchanges proceed as in
Fig. 2.

52 E. Heilman et al.

The details of the scheme are as follows. Let k be the security parameter.
We assume that I performs a one-time setup by posting public parameters on
the blockchain. These parameters include the public parameters for the blind
signature scheme, the fee value f and reward value w, and the time windows
(tw1, tw2). (We define f , w below.)

1. B creates a fresh ephemeral Bitcoin address to receive the payment.
2. A randomly chooses sn r←− {0, 1}k, computes h ← H(sn) and sends h to B.
3. B sends h to I and asks I to create transaction contract Toffer(V→BTC)

offering one bitcoin to B under condition: “B must provide a valid voucher
V with serial number whose hash is equal to h within time window tw2”.

4. If h does not match any h from prior transaction contracts signed by I, then I
creates the requested contract Toffer(V→BTC) and posts it to the blockchain.

5. A blinds sn to obtain sn and waits for Toffer(V→BTC) to be confirmed on the
blockchain. Then A creates transaction Toffer(BTC→V), offering a 1 + w bit-
coins to I under the condition “I must provide a valid blind signature on the
blinded serial number sn within time window tw1” (where tw1 > tw2 so that
I cannot cheat by waiting until Toffer(BTC→V) expires but Toffer(V→BTC)

has not).
6. To prevent A from double-spending the bitcoin offered in Toffer(BTC→V),

I waits until the blockchain confirms Toffer(BTC→V). I then fulfills the
BTC→V fair exchange by creating transaction Tfulfill(BTC→V) which con-
tains the blinded signature σ on sn. Tfulfill(BTC→V) is posted to the
blockchain, and transfers (1 + w) bitcoins from Toffer(BTC→V) to I.

7. A learns σ from Tfulfill(BTC→V), unblinds σ to σ and sends V = (sn, σ)
to B.

8. B creates a transaction Tfulfill(V→BTC) which contains the voucher
V = (sn, σ), and thus transfers the bitcoin in Toffer(V→BTC) to B.
Tfulfill(V→BTC) is posted to the blockchain and confirmed in the same block
as Tfulfill(BTC→V).

Rewards. A offers 1 + w bitcoins to I in Toffer(BTC→V), but I only offers B 1
bitcoin in Toffer(V→BTC). The remaining w bitcoin is kept by I as a “reward”
for completing its role in the protocol. I cannot steal w because w is paid via a
fair exchange.

4.1 Anonymous Fee Vouchers

Bitcoin transactions include a transaction fee that is paid to the miner who
confirms the transaction in the blockchain; if this transaction fee is not paid
or is too low, it is extremely unlikely that this transaction will be confirmed.
Since I can not trust B or A, I should not be required to cover the cost of the
transaction fee for first transaction contract Toffer(V→BTC) that I posts to the
blockchain.

Following ideas from [3], we have A buy a special anonymous fee voucher
V ′ of value f bitcoin from I. The value f � 1 should be very small and is set

Blindly Signed Contracts 53

as a public parameter. Since fee vouchers are anonymous and have low value, A
should buy them out-of-band in bulk with cash, credit or bitcoin. Then, whenever
A wishes to mix or make an anonymous payment, A sends an anonymous fee
voucher V ′ to B, who in turn sends it to I with a request that I initiate the
protocol. All this happens out-of-band. Note though, that the fee voucher V ′ is
not created with a fair exchange, and thus I could steal f bitcoin by accepting
V ′ but refusing to initiate the protocol. However, we argue that I has very little
incentive to do this if, upon completing the protocol, I obtains a reward w that
is significantly larger than f .

DoS Resistance. Fees raise the cost of an DoS attack where B starts and aborts
many parallel sessions, locking I’s bitcoins in many Toffer(V→BTC) transaction
contracts. This is because B must forward an anonymous fee voucher V ′ from A
to I every time B wishes to initiate our protocol. This method also works for our
mixing service, where A and B are the same user. Moreover, if a party aborts
a run of our protocol during an epoch, this has no affect on other runs in that
epoch. This is in contrast to [10,18] where a single aborting player terminates
the protocol for all parties in that mix.

Sybil Resistance. In a sybil attack, the adversary creates many sybil identities
secretly under her control, and deanonymizes a target user by forcing the target
to mix only with sybils [3,22]. To launch this attack on our protocol, the attacker
could create m runs of our protocol (i.e., m payers and payees) that occupy most
of the intermediary I’s resources, leaving only a single slot available for the
targeted payer and payee. Again, we use fees to raise the cost of this attack, by
requiring each of the m Sybil runs to pay a fee voucher of value f . If I performs
a sybil attack, I avoids paying f but must pay all four transaction fees.

4.2 Anonymity Analysis

Before discussing the anonymity properties of our scheme we start by noting that
in the first step of our protocol, B is always required to create a fresh ephemeral
Bitcoin address Addr0. Upon creation, this address is completely anonymous, in
the sense that there is no way to link it to B’s identity; this is a much stronger
notion than the set anonymity defined in Sect. 2.1. Now suppose that A uses our
protocol to pay a bitcoin to Addr0. Then, as we will argue below, Addr0 is now
linkable to A with probability 1/n (if n payments happened in that epoch). How-
ever Addr0 is still completely anonymous with respect to B’s “Bitcoin identity”,
i.e., the long-lived Bitcoin address that B uses to send and receive payments. If
the funds from Addr0 were paid into another fresh ephemeral Bitcoin address
Addr1 controlled by B, these funds would still be unlinkable to B. Indeed, the
funds in Addr0 only become linkable to B if they are transferred to an address
controlled by B that already contains some bitcoins.

54 E. Heilman et al.

Set-Anonymity Within an Epoch. Our on-blockchain payment scheme
achieves an anonymity set of size n within an epoch, as defined in Sect. 2.1.
Suppose that n payments successfully complete during an epoch, and recall
that each payer may only perform one payment per epoch and each pay-
ment is made to a fresh ephemeral address. It follows that there are n pay-
ers and n payees during the epoch. Any adversary (including I) observing the
blockchain can see the following: n payers’ addresses, n payees’ addresses, and n
sets of transactions of the type Toffer(BTC→V),Tfulfill(BTC→V), Toffer(V→BTC),
Tfulfill(V→BTC). For the adversary to link a payer to a payee, it would need
to link a Toffer(BTC→V), Tfulfill(BTC→V) pair (BTC→V) to a Toffer(V→BTC),
Tfulfill(V→BTC) pair (V→BTC). Let us first examine what do these pairs of
transaction contracts reveal on the blockchain. The BTC→V pair reveals a
blinded serial number sn and the corresponding intermediate (blinded) blind
signature σ. Meanwhile, the V→BTC pair reveals a serial number sn and the
corresponding signature σ. As long as the blinding factor of sn is not revealed,
the blind signature ensures that no one can link an sn to an sn. The signatures
σ and σ are similarly unlinkable (except with some negligible probability ν(k)).
Thus, the adversary’s best strategy is to randomly link a payer to a payee, which
succeeds with probability 1/n + ν(k).

The same analysis applies to our mixing service. Moreover, mix users can
repeatedly rerun the mix over several epochs, thus boosting the size of their
anonymity set beyond what could be provided during a single epoch.

Resilient Anonymity and Transparency of Anonymity Set. Ephemeral
addresses prevent I from de-anonymizing a payment from A to B by aborting
or denying service. Suppose I aborts by refusing to issue Tfulfill(BTC→V) to A
(Fig. 2). If this happens, A does not obtain voucher V = (sn, σ) and cannot
pass V on to B. By the unforgeability of vouchers, it follows that B will not
be able to issue a valid Tfulfill(V→BTC) that fulfills Toffer(V→BTC). Thus, I can
de-anonymize the payment between A and B by matching the aborted exchange
with A with the incomplete exchange with B. As another possible attack, mali-
cious I could instead refuse service to all payers apart from a target A, and
then identify B by finding the single V→BTC exchange that completes during
the epoch. Fortunately, however, anonymity-set transparency allows B to detect
these attacks. B can recover by discarding the ephemeral address it used in the
attacked epoch, and chose a fresh ephemeral address in a subsequent epoch.

Note that for both our payment and mixing service one could attempt an
intersection attack as discussed in Sect. 2.1.

5 Off-Blockchain Anonymous Payments over
Micropayment Channel Networks

We start by reviewing off-blockchain transactions via micropayment channel
networks and then describe how to make our protocol faster by adapting it to
work with them.

Blindly Signed Contracts 55

5.1 Micropayment Channel Networks

Micropayment Channels. To establish a pairwise micropayment channel, A
and B each pay some amount of bitcoins into an escrow transaction Te which is
posted to the blockchain. This escrow transaction is on-blockchain and therefore
slow (≈10 mins), but all subsequent transactions are off-blockchain and therefore
fast (≈seconds). Te ensures that no party reneges on an off-blockchain transac-
tion. Suppose x bitcoins are paid into Te. Te offers these x bitcoins to be spent
under condition: “The spending transaction is signed by both A and B”. Then,
the spending transaction Tr has the form: “a bitcoins are paid to A and b bit-
coins are paid to B” where a and b reflect the agreed-upon balance of bitcoins
between A and B.

Once Te is confirmed on the blockchain, A and B can transfer funds between
themselves off-blockchain by signing a spending transaction Tr. Importantly, Tr

is not posted to the blockchain. Instead, the existence of Tr creates a credible
threat that either party can claim their allocated bitcoins by posting Tr to the
blockchain; this prevents either party from reneging on the allocation reflected
in Tr. To continue to make off-blockchain payments, A and B just need to sign
a new transaction T ′

r that reflects the new balance of bitcoins a′ and b′. Micro-
payment channels have mechanisms that ensure that this later transaction T ′

r

always supersedes an earlier transaction Tr. Our protocol applies generically to
any micropayment channel with such a mechanism, e.g., Lightning Network [16],
Duplex Micropayment Channels (DMC) [9].

Micropayment Channel Networks. Micropayment channel networks are
designed to avoid requiring each pair of parties to pre-establish a pairwise micro-
payment channel between them. Indeed, such a requirement would be infeasible,
since it requires each pair of users to lock funds into many different escrow
transactions Te on the blockchain. Instead, suppose a pair of users A and B
are connected by a path of users with established pairwise micropayment chan-
nels (i.e., A has a channel with A1, A1 has a channel with A2, ..., Am−1 has a
channel with Am, Am has a channel with B). Then, the path of users can run
a protocol to transfer funds from A to B. However, it will not suffice to simply
have each user Ai create a transaction paying the next user Ai+1 in the path,
since a malicious user Ak could steal funds by failing to create a a transaction for
Ak+1. Instead, the Lightning Network and DMC use a protocol based on hash
timelocked contracts or HTLCs. A transaction T is an HTLC if it offers bitcoins
under the condition: “The spending transaction must contain the preimage of y
and be confirmed within timewindow tw”, where y = H(x) and x is a random
value, i.e., the preimage. We say that T is locked under the preimage of y.

Micropayment channels use HTLCs as follows. Suppose the existing balance
between A and B is a bitcoin for A and b bitcoin for B. Now suppose that A
wants to transfer ε bitcoin to B, updating the balances to a − ε and b + ε. First,
B chooses a random value x, computes y = H(x), and announces y to everyone
in the path. Then, A asks each pair of parties (Ai,Ai+1) on the path to transfer
ε bitcoin locked under the preimage of y using the micropayment channel from

56 E. Heilman et al.

Ai to Ai+1. The mechanics of the transfer between Ai and Ai+1 are as follows.
Suppose the existing balance between Ai and Ai+1 is c bitcoin for Ai and d
bitcoin for Ai+1. Then Ai and Ai+1 jointly sign a new spending transaction
T ′

r of the form “c − ε bitcoins are paid to Ai and d + ε bitcoins are paid to
Ai+1”under the condition “the spending transaction contains the preimage of
y within timewindow tw”. Once A sees that all the transactions on the path
have been signed, it releases the preimage x to the path and the funds flow from
Ai to Aj . If any user refuses to sign a transaction, the timelock tw allows all
signing users to reclaim their funds. The timelock is decremented along the path
to prevent race conditions. This entire protocol occurs off-blockchain, with x and
the HTLCs creating a credible threat that users can reclaim their funds if they
are posted to the blockchain.

5.2 Anonymizing Micropayment Channel Networks

As a strawman for anonymous transactions in micropayment channel networks,
we can replace the hash lock with the transaction contracts conditions in that
we use in Toffer(V→BTC) and Toffer(BTC→V) (see Sect. 4). The protocol assumes
paths of intermediate channels (path1, path2) connecting A to I and I to B
respectively, and has Setup phase as in our original on-blockchain protocol.

1. A chooses a random serial number sn, hashes it to h = H(sn) and sends h
to B.

2. B uses h to lock a path of micropayment channels (path2) to I under the
condition: “The spending transaction must provide a valid voucher V with
serial number whose hash is equal to h within time window tw2.”

3. A blinds the serial number sn to obtain sn. A asks B to confirm that each
party on path2 from A to I has properly locked the path. Then, A asks I
to lock a path path1 of micropayment channels between Ai and I under the
condition: “The spending transaction must provide a valid blind signature on
the blinded serial number sn within time window tw1” where tw1 > tw2.

4. I then reveals σ to every party on path1, unlocking the path from I to A. A
obtains σ, unblinds it to σ and thus obtains the voucher V = (σ, sn). A sends
V = (σ, sn) to B who releases it to every party on path path2, unlocking the
path from I to B.

We again need the notion of an epoch. Since we do not have blocks to coordinate
these epochs, we instead use synchronized clocks. We break an epoch of q seconds
into three equal divisions of q

3 seconds long. path2 is set up in first division, path1

is set up second and path1 and path2 are resolved in third division. Also, we can
add anonymous fee vouchers to this protocol, since fee vouchers are redeemed
out of band (Sect. 4.1).

5.3 Anonymity Analysis

Of the properties in Sect. 2.1, our off-blockchain scheme only supports set
anonymity within an epoch (as discussed in Sect. 4.2) when I is honest-but-
curious. That is, I follows the protocol without aborting or denying services to

Blindly Signed Contracts 57

other payers and payees, but is still curious to learn which payer is paying which
payee. However, we still support fair-exchange against a malicious I (Sect. 6) as
well as set-anonymity within an epoch against malicious third parties.

We only support anonymity against honest-but-curious I because we can-
not use fresh ephemeral addresses in this off-blockchain context. This follows
because choosing a fresh address amounts to establishing a fresh micropayment
channel. Because this requires a fresh escrow transaction Te to be posted on the
blockchain (taking ≈10 mins), it obviates the speed benefits of the off-blockchain
scheme. Recall that B discards its ephemeral address in order to recover from an
epoch where a malicious I de-anonymized the payment from A to B by aborting
or denying service (Sect. 4.2).

We have also given up on anonymity transparency. Because transactions are
no longer posted on the blockchain, even users that participate in the protocol
cannot learn the size or membership of their anonymity set.

Proxy Addresses. We need the notion of proxy addresses to ensure that no
parties (other than I) can break anonymity by behaving maliciously. Notice
that in a micropayment channel network, a malicious user Ai along the path
path1 from A to I can abort the protocol by refusing to create the appropriate
transactions. Now if Ai is also on the path path2 from I to B, then Ai can
abort the protocol and de-anonymize A and B in the same way that I can. To
prevent this attack, we need to make sure that I is the only party that is on both
path1 and path2. The idea is that every user B of our system has an additional
proxy address Addrpx

B , and uses this address to establish, just once, a (reusable)
micropayment channel directly to I. This ensures that path2 consists of only I
and Addrpx

B . Then, B will receive payments to its proxy address Addrpx
B using

the strawman protocol of Sect. 5.2 in a one epoch. In the subsequent epoch, B
will rerun the strawman protocol to transfer funds from Addrpx

B (acting as user
A) to its long-lived address AddrB (acting as user B).

Intersection Attacks. The lack of anonymity set transparency and the use
of proxy addresses implies that only I can observe the full membership of
the anonymity set during each epoch. As payments between proxy Addrpx

B and
identity AddrB addresses occur in contiguous epochs, I could use an intersec-
tion attack [3] to infer their relationship. Other adversaries only observe off-
blackchain transactions flowing through them.

6 Security Analysis

Fair-Exchange. Our schemes prevent parties from stealing from each other.

1. The BTC→V fair exchange (Sect. 3) ensures that (1) I cannot steal A’s
bitcoin without issuing her a valid voucher V , and (2) A cannot refuse to pay
I a bitcoin upon receiving a V . (Fair exchange properties (i) and (iii) from
Sect. 2.2.)

58 E. Heilman et al.

2. The V→BTC fair exchange ensures that B cannot steal I’s bitcoins without
actually redeeming V . Also, I cannot refuse to redeem a V = (sn, σ) that
it issued to A. This follows because, as discussed in Sect. 4, I commits to
the redemption of V when it posts Toffer(V→BTC) (which contains h, where
h = H(sn)). Moreover, recall that Tfulfill(BTC→V) is transaction where (a)
1 + w bitcoin are transferred from A to I, and (b) I issues V by providing
the blind signature σ. Since Toffer(V→BTC) is posted to the blockchain before
Toffer(V→BTC), it follows that A does not pay I for V until I has committed
to redeeming V . (Fair exchange properties (ii) and (iv) from Sect. 2.2.)

3. I cannot prevent B from redeeming V by issuing V just before Toffer(V→BTC)

expires. This follows because A choose tw1 such that tw1 > tw2 which ensures
that Toffer(BTC→V) expires earlier that Toffer(V→BTC). This way, if I takes
too long to issue Toffer(BTC→V), A will have already reclaimed her refunds.
(Fair exchange property (ii) from Sect. 2.2.)

Unforgeability and Double-Spending. Unforgeability follows from the
underlying blind signature scheme, which ensures that only the intermediary
I can issue vouchers V = (sn, σ). Moreover, vouchers cannot be double-spent
because if I has previously seen h = H(sn), I will refuse to post Toffer(V→BTC).

DoS and Sybil Resistance. Both our on- and off-blockchain schemes support
anonymous fee vouchers, and thus resist DoS and sybil attacks (Sect. 4.1).

7 Conclusion

In this work we developed an eCash inspired technique that can be used to
enhance anonymity in Bitcoin transactions that happen on the blockchain or via
micropayment channel networks (off-blockchain). Both our schemes provide fair-
exchange security, forgery and double-spending security and moreover are resis-
tant to DoS and Sybil attacks. Regarding anonymity, our on-blockchain scheme
is anonymous against malicious users or a malicious intermediary I. Our off-
blockchain scheme is still anonymous against malicious users but is only anony-
mous against an honest-but-curious I. Achieving anonymity against a malicious
intermediary for off-blockchain schemes is left as an interesting open problem.

Acknowledgments. We thank Dimitris Papadopoulos, Ann Ming Samborski and the
anonymous reviewers for comments on this draft. This work was funded by the National
Science Foundation under grants 1012910 and 1350733.

References

1. Barber, S., Boyen, X., Shi, E., Uzun, E.: Bitter to better — how to make bitcoin a
better currency. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 399–414.
Springer, Heidelberg (2012)

Blindly Signed Contracts 59

2. Sasson, E.B., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza, M.:
Zerocash: decentralized anonymous payments from bitcoin. In: IEEE Security and
Privacy (SP), pp. 459–474 (2014)

3. Bissias, G., Ozisik, A.P., Levine, B.N., Liberatore, M.: Sybil-resistant mixing for
bitcoin. In: Workshop on Privacy in the Electronic Society, pp. 149–158. ACM
(2014)

4. Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based
on the gap-diffie-hellman-group signature scheme. In: PKC, vol. 2567, pp. 31–46
(2003)

5. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. In:
Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, p. 514. Springer, Heidelberg
(2001)

6. Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J.A., Felten, E.W.: Sok:
research perspectives and challenges for bitcoin and cryptocurrencies. In: IEEE
Security and Privacy (SP) (2015)

7. Bonneau, J., Narayanan, A., Miller, A., Clark, J., Kroll, J.A., Felten, E.W.:
Mixcoin: anonymity for bitcoin with accountable mixes. In: Christin, N.,
Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 481–499. Springer,
Heidelberg (2014)

8. Chaum, D.: Blind signature system. In: Chaum, D. (ed.) CRYPTO. Springer, New
York (1983)

9. Decker, C., Wattenhofer, R.: A fast and scalable payment network with bitcoin
duplex micropayment channels. In: Pelc, A., Schwarzmann, A.A. (eds.) SSS 2015.
LNCS, vol. 9212, pp. 3–18. Springer, Heidelberg (2015)

10. Maxwell, G.: Coinjoin: bitcoin privacy for the real world (2013)
11. Maxwell, G.: Coinswap: transaction graph disjoint trustless trading (2013)
12. Meiklejohn, S., Pomarole, M., Jordan, G., Levchenko, K., Voelker, G.M., Savage, S.,

McCoy, D.: A fistful of bitcoins: characterizing payments among men with no
names. In: Proceedings of the ACM SIGCOMM Internet Measurement Conference,
IMC, pp. 127–139 (2013)

13. Meiklejohn, S., Orlandi, C.: Privacy-enhancing overlays in bitcoin. In: Brenner, M.,
Christin, N., Johnson, B., Rohloff, K. (eds.) FC 2015 Workshops. LNCS, vol. 8976,
pp. 127–141. Springer, Heidelberg (2015)

14. Miers, I., Garman, C., Green, M., Rubin, A.D.: Zerocoin: anonymous distributed
e-cash from bitcoin. In: IEEE Security and Privacy (SP), pp. 397–411 (2013)

15. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. Consulted 1(2012),
28 (2008)

16. Poon, J., Dryja, T.: The bitcoin lightning network: scalable off-chain instant pay-
ments. Technical report (2015). https://lightning.network

17. Ron, D., Shamir, A.: Quantitative analysis of the full bitcoin transaction graph.
In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 6–24. Springer, Heidelberg
(2013)

18. Ruffing, T., Moreno-Sanchez, P., Kate, A.: Coinshuffle: practical decentralized coin
mixing for bitcoin. In: Kuty�lowski, M., Vaidya, J. (eds.) ICAIS 2014, Part II. LNCS,
vol. 8713, pp. 345–364. Springer, Heidelberg (2014)

19. Saxena, A., Misra, J., Dhar, A.: Increasing anonymity in bitcoin. In: Böhme, R.,
Brenner, M., Moore, T., Smith, M. (eds.) FC 2014 Workshops. LNCS, vol. 8438,
pp. 122–139. Springer, Heidelberg (2014)

20. Szabo, N.: Formalizing and securing relationships on public networks. First Monday
2(9) (1997)

https://lightning.network

60 E. Heilman et al.

21. Todd, P.: BIP 65: OP CHECKLOCKTIMEVERIFY. Bitcoin improvement pro-
posal (2014)

22. Tschorsch, F., Scheuermann, B.: Bitcoin and beyond: a technical survey on decen-
tralized digital currencies

23. Valenta, L., Rowan, B.: Blindcoin: blinded, accountable mixes for bitcoin. In:
Brenner, M., Christin, N., Johnson, B., Rohloff, K. (eds.) FC 2015 Workshops.
LNCS, vol. 8976, pp. 112–126. Springer, Heidelberg (2015)

24. Ziegeldorf, J.H., Grossmann, F., Henze, M., Inden, N., Wehrle, K. Coinparty: secure
multi-party mixing of bitcoins. In: Proceedings of the 5th ACM Conference on Data
and Application Security and Privacy, pp. 75–86. ACM (2015)

Proofs of Proofs of Work with Sublinear
Complexity

Aggelos Kiayias, Nikolaos Lamprou(B), and Aikaterini-Panagiota Stouka

National and Kapodistrian University of Athens, Athens, Greece
aggelos@di.uoa.gr, nikolaoslabrou@yahoo.gr, katerinastou21@yahoo.gr

Abstract. In the setting of blockchain based transaction ledgers we
study the problem of “simplified payment verification” (SPV) which
refers to the setting of a transaction verifier that wishes to examine
the last k blocks of the blockchain (e.g., for the purpose of verification
of a certain transaction) using as only advice the genesis block (or some
“checkpoint” block that is known to it).

The straightforward solution to this task requires the delivery of the
blockchain, the verification of the proof of work it contains, and subse-
quently the examination of the last k blocks. It follows that the commu-
nication required to complete this task is linear in the length of the chain.

At first thought the above seems the best one can hope: a sublinear
in the length of the chain solution to the problem will be susceptible to
an attacker that, using precomputation, can fool the verifier.

Contrary to this intuition, we show that with a suitable modifica-
tion to the current Bitcoin blockchain protocol (that incurs a single hash
expansion in each block and gives rise to the notion of an interconnected
blockchain) we can produce proofs of proof of work with sublinear com-
plexity in the length of the chain hence enabling SPV to be performed
much more efficiently.

1 Introduction

Bitcoin, introduced by Nakamoto [10], and other numerous decentralized cryp-
tocurrencies that were developed using the same codebase, have at their core
a blockchain-based ledger of transactions. In these systems the ledger is a dis-
tributed data structure where transactions are organized into blocks. The blocks
themselves form a hash chain so that each block is associated with a proof of work
puzzle [1,4,7,11] and it points to a single previous block. A valid blockchain is
rooted at a genesis block that is hard-coded into the client software that supports
the distributed ledger.

The blockchain is maintained by a dynamically changing set of players that
are called miners. The main task of each miner is to solve a proof of work and
thus produce the next block. A transaction is validated when it is added to
the blockchain. The certainty placed upon a certain transaction is associated to

This research was supported by ERC project CODAMODA, # 259152.

c© International Financial Cryptography Association 2016
J. Clark et al. (Eds.): FC 2016 Workshops, LNCS 9604, pp. 61–78, 2016.
DOI: 10.1007/978-3-662-53357-4 5

62 A. Kiayias et al.

the depth that is found in the blockchain. The deeper a transaction is placed
in the blockchain the more certain it becomes that it will remain there. This
was originally argued in [10] in a simplified model where the honest players are
assumed to act in unison and the adversary follows a specific strategy. Security
in the setting where the honest players are distributed and the adversary may
exploit this was subsequently formally considered and proven in [6]. In this latter
work two properties are introduced: common prefix and chain quality, and it is
shown that with overwhelming probability in a parameter k, honest players will
agree on the same prefix of the blockchain (after k blocks are pruned) and such
chain will contain a certain percentage of blocks produced by honest players.
These two properties were shown to imply that transactions in the ledger are
“persistent” and that the ledger itself has “liveness” i.e., it is impossible for the
adversary to stifle new transactions indefinitely.

In this work we study the problem of simplified payment verification or SPV.
Introduced in [10], this problem considers a verifier that wishes to examine the
ledger for a recent transaction. The verifier has as input a transaction identifier,
say tx as well as the genesis block.1 The verifier, with only this information,
wishes to verify with high probability that the transaction has been included
in the ledger and be sure that it will remain there with high probability. Based
on the results stated above it is simple to implement such SPV verification
as follows: the verifier will query the network and receive various blockchains
(possibly some generated by an adversary that wishes to fool him) containing
only the block headers for most blocks except the last k ones that are provided
with all transactions (such communications have been referred as “SPV proofs”);
the verifier will verify the integrity of the received chains and will select the one
with the most proof of work. Finally, if the transaction with identifier tx is found
at a depth say k it will conclude that the transaction is valid (with a probability
of error as detailed by the persistence property of [6]). This SPV operation is
more efficient than running a “full node” since not all transaction history needs
to be received and verified.

An important observation regarding the above solution is that it is seemingly
impossible to improve to below linear complexity in the length of the blockchain.
Indeed, if a verifier is only allowed sublinear complexity it will not be able to
verify that all the proofs of work in the received blockchains are valid. In this
way it will only be able to verify fragments of given blockchains at best and this
may open the door to potential attacks by an adversary that prepares ahead of
time suitable blockchain fragments that are unrelated to the genesis block but
are otherwise seemingly valid portions of the main blockchain.

Our Results. In this work, we present a method to construct proofs of proof of
work that have sublinear complexity in the blockchain length. These proofs are
capable of enabling “lite” SPV verification that is substantially more efficient
compared to the full SPV verification described above. Our solution requires
a modification in the current Bitcoin codebase that incurs a small overhead
per each block that never exceeds a logarithmic function in the length of the
1 Or a checkpoint block, if the verifier is in possession of such a block.

Proofs of Proofs of Work with Sublinear Complexity 63

blockchain and can be compressed to a single hash value; this gives rise to a
special type of blockchain that we call an interconnected blockchain.

In our solution the lite verifier receives a pair (X , π), where X is a blockchain
fragment corresponding to the rightmost k blocks of the senders’ chain and π is
a proof of the proof of work that the pruned chain (denoted by C�k) represents.
Constructing the proof π is achieved via the following mechanism.

Recall that each block in a blockchain is associated with a proof of work which
corresponds to a suitably formed value w that satisfies the inequality H(w) < T
where H is a hash function (e.g., SHA-256 in the case of Bitcoin) and T is a
target value which is determined via a target calculation function (this function
takes into account the rate of growth of the blockchain and reflects the size of
the set of miners that participate in the protocol).

Our new mechanism operates as follows: whenever a block with a lower than
usual hash is created we mark this in the next block as a continuation of a
“deeper” chain that we call the inner chain of depth i where i is the greatest
integer for which it holds H(w) < T/2i. Specifically, each block carries a vector of
pointers (which can be thought of expanding the standard reverse pointing link
in a blockchain across multiple levels). In this way, in our modified blockchain, a
block will have a vector of pointers denoted as interlink = 〈s0, . . . , sl〉 such that
s0 points to the genesis block and for i = 1, . . . , l, si points to the previous block
with hash value smaller than T/2i. Note that l would be the largest integer for
which a hash in the blockchain is less than T/2l (and sl is a pointer to the most
recent such hash).

The construction of the proof π is as follows: the sender will remove the
k-suffix from its local chain C and denote it as X . Then, in the remaining prefix
denoted as C�k, he will attempt to find the deepest inner chain π that is of length
at least m (the value m is a security parameter). The pair (X , π) will be the
proof and will be transmitted to the lite verifier. In the optimistic scenario where
the adversary does not actively interfere there is no further interaction between
the lite verifier and the prover. In the general case, the adversary may invest
hashing power in order to produce blocks with very low target, with the only
purpose to increase the communication complexity between a lite verifier and
a prover. In such case, the lite verifier engages in further interaction with the
provers in order to be fully convinced.

Finally, we present a formal treatment of security for lite SPV proofs. Our
argument is a simulation-based one. Security for a lite verifier is captured by the
following statement: for any adversary that produces an SPV proof directed to
a lite verifier there is an adversary producing an SPV proof directed to a regular
SPV verifier that produces the same outcome. We establish the above security
condition with overwhelming probability in m where m is a parameter of the
lite verification protocol.

In our construction the complexity of the lite verifier will be shown to be
O(m log n) in the optimistic case which can be improved in a straightforward
manner to be O(m log log n) where n is the blockchain length using Merkle trees.

64 A. Kiayias et al.

Related Work. The first suggestion we are aware of2 regarding the use of low
hash values that appear naturally in the blockchain as an indicator of total proof
of work was in a post in the Bitcoin forum [9]. A suggestion for a modification
of the Bitcoin protocol was made in this post to include in each block a single
“back-link” to the most recent block with a hash value less than half that of the
previous block. Potential benefits of this modification were discussed including
the possibility of using such pointers in SPV proofs.

In a short article posted in the Bitcoin-development list [5] this idea was taken
further by suggesting to include a data structure containing various such back-
links to previous blocks. An exact form of the data structure was not described
and it was suggested that further research would be required to determine the
most suitable data structure. A number of use-cases were discussed including the
possibility of constructing compact SPV proofs as well as the design of “sym-
metrical two-way pegging schemes” between Bitcoin and side-chains. This latter
concept, formulated in [2], enables the transfer of ledger assets from one main
chain (say Bitcoin) to pegged side-chains. It is argued that such side-chains
enable experimentation with new features in blockchain design and hence peg-
ging them to, say, the Bitcoin blockchain enables the fluid transition of assets
to these alternative blockchains (that potentially offer enhanced functionality or
robustness features that are difficult to be assessed ahead of time). The pegging
operation itself requires the main blockchain to enable transactions that move
assets to special outputs that can only be “unlocked by an SPV proof of posses-
sion in the side-chain.” This effectively enables the transfer of assets from the
main chain to the side-chain as well as their return to the main chain in case
the owner of the assets wishes to do that. Building efficient SPV proofs is an
important aspect of this mechanism and a suggestion along the lines of [5] is
presented in [2]. The possibility of exploiting the SPV proof mechanism by an
adversary is recognized and some countermeasures are briefly discussed however
without any formal analysis or the conclusion to an explicit data structure and
a proof construction algorithm.

Finally, we note that the Bitcoin modifications related to SPV node verifica-
tion do not affect the operation of the full nodes of the blockchain protocol and
thus are of a different nature to chain selection and reward mechanism modifi-
cations such as those suggested in the GHOST rule for blockchain selection [12]
or the inclusive blockchain protocols of [8].

2 Preliminaries

We follow the same notation as the Bitcoin backbone protocol, [6]. Below we
introduce some basic notation and terminology.

– G(.),H(.) are cryptographic hash functions with output in {0, 1}κ.
– A block B has the following form: B = 〈s, x, ctr〉 where s ∈ {0, 1}κ

, x ∈
{0, 1}∗

, ctr ∈ N.
2 We thank the anonymous reviewers of the 3rd Workshop on Bitcoin and Blockchain

Research for providing pointers to the relevant forum posts.

Proofs of Proofs of Work with Sublinear Complexity 65

– A round is the period during which all the parties in the network are able to
synchronize and obtain each other’s messages. The scheduling of messages is
controlled by the adversary. Furthermore, in each round, the adversary is able
to introduce arbitrary number of messages and deliver them selectively to the
parties.

– The rightmost block of the chain C is the head (C) and C�k is the chain C
without the rightmost k blocks. If we suppose that head (C) = 〈s, x, ctr〉 and
the previous block is 〈s′, x′, ctr′〉 then it holds s = H(ctr′, G(s′, x′)); in general
every block has a reference to the previous block and thus all the blocks form
a chain.

– The block header can be defined as 〈ctr,G(s, x)〉.
– A proof of work is finding a value ctr : 0 ≤ ctr < 232 so that H(ctr,G(s, x)) <

T where T ∈ {0, 1}κ is the target of the block.
– The value x is the information is stored in the a block. In the case of the

Bitcoin protocol this information is a sequence of transactions (organized in
the form of a Merkle tree).

3 Interconnected Blockchains

In order to produce a proof of proof of work, the prover with local chain C will
produce the pair (X , π) by setting the X to be the k-suffix of its local chain C
and computing the proof π. The proof π constitutes a collection of blocks that
are part of chain C�k and are collected in a specific way detailed below.

A proof π is associated with an integer i ∈ N which is the depth of the proof.
The blocks contained in the proof are determined by a special type of chain that
we will call innerchaini.

Definition 1. An innerchaini parameterized by an index i > 0 is a valid chain
derived from a chain C that has the feature that each block B = 〈s, x, ctr〉 satisfies
H(ctr,G(s, x)) < T/2i.

In an innerchaini we observe that, intuitively, each block represents as much
proof of work as 2i blocks with target T of the parent chain C. As a result, if
the proof π consists of m blocks, then the innerchaini represents proof of work
as much as m · 2i blocks of target T .

In our system, in order to produce the proof, provers should extract
innerchaini for some i > 0 from C�k. This means that for every i ∈ N all blocks
with hash value smaller than T/2i should form a chain. This leads to the notion
of an interconnected blockchain.

Every block with hash value smaller than T/2i needs a pointer to the pre-
vious block with hash value smaller than T/2i. This does not exist in regular
blockchains of Bitcoin, so a suitable modification with a sequence of pointers in
each block in C is needed. The addition of this data structure inside each block,
that we will call interlink[] will give rise to an “interconnected blockchain.” A
graphical description of an interconnected chain is shown in Fig. 1.

66 A. Kiayias et al.

Fig. 1. A graphical depiction of an interconnected blockchain of 11 blocks that contains
an inner chain of depth 1 (comprised of blocks (1, 4, 7, 9)) and an inner chain of depth
2 (comprised of blocks (1, 7). The value of the interlink vector for each block is also
shown.

The interlink data structure which should be included in each block B is
dynamic and we formally define it below. Note that a block will be defined as
B = 〈s, x, ctr, interlink〉 and the blockheader as 〈ctr,G(s, x, interlink)〉.
Definition 2. interlink is a vector, which is included in each block B and for
which it holds that, for all i > 0, interlink[i] is the hash of the previous block of
B in chain C with hash value smaller than T/2i. interlink[0] is the hash of the
genesis block.

Note that the length of the vector depends on the type of blocks that exist in
chain C. Suppose that B = 〈s, x, ctr, interlink〉 is the head of the chain and B′ =
〈s′, x′, ctr′, interlink′〉 is the previous block; then interlink is equal to interlink′

after being updated with the algorithm we describe next.

3.1 Description of the Interlink-Update Algorithm

The purpose of this algorithm is to determine the operation that is needed in
order to properly form an interconnected chain. When mining a new block, we
must determine the appropriate set of pointers that will be used. Given the hash
of the previous block denoted by s, the algorithm performs the following.

– Finds max i, so that s = H(ctr′, G(s′, x′, interlink′)) < T/2i.
– Extends the size of interlink′ by adding i−i′ elements where the value i′ equals

sizeof(interlink′) (only if i′ < i).
– Assign H(ctr′, G(s′, x′, interlink′)) = s to interlink[1], . . . , interlink[i].

Proofs of Proofs of Work with Sublinear Complexity 67

Algorithm 1. Interlink-Update
Input : B′ = 〈s′, x′, ctr′, interlink′〉
Output: interlink

1 dynamic data structure interlink;
2 int entry, i = 0;
3 interlink = interlink′;

4 while (H(ctr′, G(s′, x′, interlink′)) <
T

2i
) do ; // finds vector’s max

length

5

6 entry = i;
7 i = i + 1;

8 if entry = 0 then
9 return interlink;

10 else
11 for (i = 1, i ≤ entry, i + +) do
12 if i > sizeof(interlink) then
13 sizeof(interlink)+ = 1;

14 interlink[i] = H(ctr′, G(s′, x′, interlink′));

15 return interlink;

4 Proving Proof of Work with Sublinear Complexity

4.1 Description of the Prover

When a prover with a local chain C receives a request from a lite verifier that
asks for the rightmost k blocks, then it constructs a proof π of the proof of work
in C�k using the algorithm ConstructProof.

This algorithm’s input is C�k−1 and its output is innerchaini = π, where i
is the max i so that there are at least m (security parameter) blocks with hash
value smaller than T/2i in C�k. The algorithm ConstructProof (which we will
describe below) calls the next algorithm, which is ConstructInChain.

This algorithm uses a hash table, which is a data structure that stores (key,
value) pairs. In our case, the hash table stores blocks with their hash values.

The algorithm ConstructInChain has as input a chain C and an i. Its output
is a chain with all the blocks with hash value smaller than T/2i in C�1.

4.2 Description of the Lite Verifier

We consider the case when a lite verifier has received (XA, πA) and (XB , πB) from
provers A,B respectively that supposedly hold chains CA and CB . Its purpose is
to find which proof represents the chain with the most proof of work.

68 A. Kiayias et al.

– Without loss of generality, let πA = innerchainμ, so its blocks have hash value
smaller than T ′ = T/2μ and πB = innerchaini+μ, so its blocks have hash value
smaller than T/2i+μ = T ′/2i with i ≥ 0.

Algorithm 2. ConstructInChain
Input : C,i
Output: InnerChain[]

1 data structure hashtable;
2 int x, y = 0;
3 int j = C.length;
4 int inner = 0;
5 block B ; // as it is defined above

6 B = C[j];
7 x = B.interlink[i] ; // B.interlink is interlink in block B

8 y = B.interlink[i];
9 initialize hashtable(·) with all pairs (s,B) from C;

10 while (x!= 0) do
11 x = B.interlink[i];
12 if x!= 0 then
13 B = hashtable(x);
14 inner = inner + 1;

15 int c = inner;
16 chain InnerChain[c] ; // data structure which stores blocks

17 while (y!= 0) do
18 y = B.interlink[i];
19 if y!= 0 then
20 B = hashtable(y);
21 InnerChain[c] = B;
22 c = c − 1;

23 return InnerChain;

Firstly the lite verifier examines whether the length of πA and πB is more than
m without the genesis and whether the length of the suffixes is k respectively. If
a proof does not satisfy the above properties, it is rejected.

Next, the lite verifier examines whether there is a common block x in XA and
XB, because in this case the lite verifier can find which chain represents more
proof of work easily. Specifically this means that there is a fork between CA and
CB in the last k blocks. So the lite verifier chooses the suffix that represents the
most proof of work (more blocks after x since we assume the same T).

If there is no common block in the suffixes then the lite verifier will exe-
cute the algorithm MaxChain[πA, πB] which will decide which proof represents
the chain with the most proof of work. This algorithm may require additional
interaction with A,B and operates as follows.

MaxChain uses two sub-procedures called RemoveCPhigh and RemoveCPlow.
The RemoveCPlow algorithm with input (πA, πB) just prunes the common blocks,

Proofs of Proofs of Work with Sublinear Complexity 69

sets π′
A, π′

B to be the proofs without these common blocks and sets b to be the
most recent common block in πA, πB .

Algorithm 3. ConstructProof

Input : C�k−1

Output: Proof []
1 int size = C�k−1.length;
2 int maxtarget = 0;
3 chain Proof [];
4 while (C[size].interlink[maxtarget + 1] != 0) do
5 maxtarget = maxtarget + 1 ;

6 int i = maxtarget;
7 if maxtarget > 0 then
8 Proof [] = ConstructInChain [C�k−1, i];
9 while (Proof.length < m ∧i > 0) do

10 i = i − 1;
11 Proof [] = ConstructInChain [C�k−1, i];

12 if (i > 0) then
13 return genesis‖Proof ;
14 else
15 return C�k−1;

16 return C�k−1;

The RemoveCPhigh on input (πA, πB) will actively query B for the chain with
blocks with hash value smaller than T/2μ that is omitted in πB . Formally, it will
return (π′

A, π′
B , b), where π′

A, π′
B are the proofs without the common prefix and

b is the most recent common block with hash value smaller than T/2μ in CA and
CB . In more detail, it operates as follows:

– We suppose that the proofs are stored in two arrays respectively. The algo-
rithm looks for block πB [1] in πA and it continues until it finds a πB [i′] that it is
not in πA. As πB[i′−1] is included in πA, there is a j, so that πA[j] = πB [i′−1].

– It asks B for an array V with blocks with hash value smaller than T/2μ

between πB [i′ − 1] and πB [i′]. RemoveCPhigh will fail in case the array V is
not returned by B.

– It finds min j′ ≥ j + 1 so that πA[j′] differs from V [j′ − j].
– πB′ is πB without the first i′ − 1 blocks and πA′ is πA without the first j′ − 1

blocks.
– b = πA[j′ − 1].
– Return (b, π′

A, π′
B).

Next we describe the algorithm MaxChain. Given diverging πA, πB , the algo-
rithm will select the proof with the most proof of work as long as the diverging
suffix is long enough (as determined by a parameter m). In case the algorithm

70 A. Kiayias et al.

cannot make a decision it will recurse, requesting proofs with lower depths from
A,B as needed, until it reaches level 0 where a decision will be made indepen-
dently of the parameter m. During these recursion steps if one of the communi-
cating nodes, A,B, fails to support its proof (by providing the extra blocks that
the lite node requests) the MaxChain algorithm will conclude that the opposing
chain is the correct one (or it will inevitably fail in case no node is responding
to its requests). In more detail the algorithm operates as follows:

– Firstly, the algorithm calls RemoveCPlow to obtain the pruned suffixes (this
does not require interaction). Then, it checks whether i > 0. In this case,
the proofs have different depths and the algorithm checks whether π′

B .pow ≥
π′

A.pow and simultaneously π′
B .length ≥ m. If these two conditions hold, the

lite verifier will choose πB . Otherwise the algorithm uses RemoveCPhigh in
order to discover the common prefix from the proofs πA, πB (this will require
interacting with B).

– Secondly the algorithm checks which of the proofs represents the most proof
of work. The proof with the most proof of work is returned if it has length
at least m for π′

B and 2im for π′
A. Note that in this case a decision is made

whose security hinges on the parameter m.
– If the proof with the most proof of work is not long enough the algorithm

asks B or both A,B for a proof with a lower depth of the part of the chain
(C�k

A or C�k
B) without the common prefix and continues recursively. We use

RequestB[b, y] to denote a request from B for a proof with hash value smaller
than T/2y of the chain C�k

B that is rooted at block b. Similarly, RequestA[b, y]
functions in the same way for player A.3

Eventually, the algorithm will either obtain diverging suffixes that are long
enough or will reach the depth 0 (where the actual target T is used) where
a decision will be made based solely on the amount of proof of work. This will
determine the winning proof and the lite verifier may proceed to execute another
comparison or conclude the process.

5 Efficiency Analysis

In this section we present the efficiency analysis of the proof system: first we
discuss space complexity, i.e., the expansion that is required in the local storage
of the full nodes due to the data structure of the interconnected blockchain.
Then, we analyze the communication that is required to send the proof and the
verification complexity of the lite verifier.

5.1 Space Complexity

We first show a suitable upper bound on the vector interlink that is the only
addition in each block of the interconnected blockchain.
3 We note that there is no provision for authenticated channels in the Bitcoin setting;

hence when we refer to a request for information from a certain player this is not
performed in an authenticated fashion.

Proofs of Proofs of Work with Sublinear Complexity 71

Algorithm 4. MaxChain

Input : πA, πB chains consisted of blocks with hash value smaller than
T/2μ, T/2i+μ resp., s.t. i ≥ 0, or fail

Output: Max[]
1 chain Max[],ProofA[], ProofB[];
2 block b;
3 if either of πA, πB equals fail then
4 return the other one ;
5 else
6 (b, π′

A, π′
B) = RemoveCPlow[πA, πB];

7 if (i > 0) then
8 if ((π′

B .pow ≥ π′
A.pow) ∧(π′

B .length ≥ m)) then
9 return πB

10 else
11 response:= RemoveCPhigh[πA, πB];
12 if response = fail then
13 return πA

14 else
15 parse response as (b, π′

A, π′
B);

16 if (π′
B .pow ≥ π′

A.pow) then
17 if ((π′

B .length ≥ m) ∨ (i + μ = 0)) then
18 return πB

19 else
20 if (i > 0) then
21 ProofB = RequestB[b, μ];
22 ProofA = b‖π′

A;
23 else
24 ProofA = RequestA[b, μ − 1];
25 ProofB = RequestB[b, μ − 1];

26 else
27 if ((π′

A.length ≥ 2i · m) ∨ (i + μ = 0)) then
28 return π′

A

29 else
30 if (i > 0) then
31 ProofB = RequestB[b, μ];
32 ProofA = b‖π′

A;
33 else
34 ProofA = RequestA[b, μ − 1];
35 ProofB = RequestB[b, μ − 1];

36 return MaxChain[ProofA, P roofB];

72 A. Kiayias et al.

Theorem 1. Let n be the length of a chain C that is consisted of blocks with
hash value smaller than T = 2f . Then the expected size of the dynamic vector

interlink, is f − ∑f
i=1(1 − 1

2i
)n.

Proof. We define a discrete random variable Xj ∈ {0, . . . , f} associated with
each block C[j] so that

Xj = i ⇐⇒ T

2i+1
≤ HB <

T

2i
, i ∈ {0, . . . , f − 1}

Xj = f ⇐⇒ 0 ≤ HB <
T

2f

(HB is the hash value of C[j]).
The hash value of each chain’s block HB follows the uniform discrete distri-

bution on {0, . . . , T − 1}. So

Pr(Xj = i) = Pr(
T

2i+1
≤ HB <

T

2i
) =

1
2i+1

, i ∈ {0, . . . , f − 1}

Pr(Xj = f) = Pr(0 ≤ HB <
T

2f
) =

1
2f

It holds:
f∑

i=0

Pr(Xj = i) = 1

Then the size of the interlink follows Y = max{X1, . . . , Xn} distribution.
If 0 ≤ y < f then:

Pr(Y ≤ y) =(Pr(Xj ≤ y))n = (
y∑

i=0

1
2i+1

)n = (1 − 1
2y+1

)n

Pr(Y = y) =Pr(Y ≤ y) − Pr(Y ≤ y − 1) = (1 − 1
2y+1

)n − (1 − 1
2y

)n

It also holds: Pr(Y ≤ f) = 1 and Pr(Y = f) = 1 − (1 − 1
2f

)n

We have:

E(Y) =
f−1∑

y=0

y · [(1 − 1
2y+1

)n − (1 − 1
2y

)n] + f · [1 − (1 − 1
2f

)n]

=(f − 1) · (1 − 1
2f

)n −
f−1∑

i=1

(1 − 1
2i

)n + f · [1 − (1 − 1
2f

)n]

=f −
f∑

i=1

(1 − 1
2i

)n

�

In Fig. 2 we demonstrate a graph that shows that the size of interlink is

logarithmic in n when n ranges in the current Bitcoin blockchain length and the
target is kept stable at 2200.

Proofs of Proofs of Work with Sublinear Complexity 73

100000 200000 300000 400000

14

15

16

17

18

19

200 1
200 1 2

log1.95

Fig. 2. Size of interlink as a function of blockchain length when target is T = 2200.

Compressing the Interlink Vector Using Merkle Trees. To reduce the
storage per block it is possible to compress the interlink vector using a Merkle
tree. In more detail, instead of storing the whole interlink in each block we
can organize the vector in a Merkle tree and store only the root hash in each
blockheader. This demands the addition of only a hash value in each block
instead of the sequence of hash values in interlink. The modifications needed in
the ConstructProof algorithm are straightforward and we omit them.

5.2 Communication and Time Complexity

We will analyze now the size of the proof π. We will focus in the optimistic
scenario, where the adversary does not create deep forks that cut into the proofs
of the honest parties, i.e., when the k-suffix that the adversary sends has a
common block with the suffix of the proofs sent by the honest provers. Note that
the honest parties will not fork in the part of the chain before the k-suffix with
overwhelming probability in k [6]. In such case the lite verifier chooses the chain
with the most proof of work without having to perform any extra interaction with
the provers (performing the Request steps in the MaxChain algorithm). Therefore
the size of the proof will be the output of the ConstructProof algorithm.

Let C�k be the pruned local chain without the k-suffix of a prover that a
lite verifier has asked, n the length of the chain and m the security parameter.
Firstly we will prove that the probability with which a block of C�k has hash

value smaller than
T

2i
is

1
2i

.

If HB is the hash value of a block B and j ∈ N, j < T then Pr(HB = j |
HB < T) = 1/T . It follows,

Pr(HB < T/2i | HB < T) =
T/2i−1∑

j=0

Pr(HB = j | HB < T) =
T/2i

T
=

1
2i

74 A. Kiayias et al.

The number of blocks in C�k with hash value smaller than T/2i is a discrete
random variable Di that follows the Binomial distribution with parameters (n,
pi = 1/2i) and its expected value is E(Di) = n · pi.

Recall that the ConstructProof algorithm has output the innerchaini0 = π,
where i0 is the maximum i so that there are at least m blocks with hash value
smaller than T/2i in C�k. As a result we must examine what is the depth i0 of
the proof that the algorithm returns and how many blocks (denoted by Di0) the
proof π will contain.

In the next lemma we establish that the depth of the inner chain that the
ConstructProof algorithm returns is quite close to the optimal value (which is
roughly log(n/m)).

Lemma 1. Let n be the size of the local pruned chain C�k of the prover. Assume
that n < Tm and define i so that 2im ≤ n < 2i+1m. Then it holds Pr(Di−1 ≤
m − 1) ≤ exp(−Ω(m)).

Proof. Observe that n · pi−1 = n/2i−1 ≥ 2im/2i−1 = 2m > m − 1. So according
to the Chernoff bound4 for the Binomial distribution it holds that:

Pr(Di−1 ≤ m − 1) ≤ exp(−(npi−1 − (m − 1))2/2npi−1)

≤ exp(−1/(2/(2i−1)) · (n(1/(2i−1)) − (m − 1))2/n))

≤ exp(−(2m − m + 1)2/23m) ≤ exp(−Ω(m))

This completes the proof. �

Armed with this lemma we next observe that the length of the inner chain

for the suitable index is not going to be substantially larger than m.

Lemma 2. Let n < Tm and define i so that 2im ≤ n < 2i+1m. It holds that
Pr(Di−1 ≥ 5m) ≤ exp(−Ω(m)).

Proof. Observe first that 2m/n ≤ pi−1 = 1/2i−1 < 4m/n. Consider the Chernoff
bound on the upper tail that states Pr[X ≥ (1 + δ)μ] ≤ exp(−δ2μ/3) when X
is a Binomial distribution with mean μ and δ ∈ (0, 1]. It follows that Pr[Di−1 ≥
5m] ≤ Pr[Di−1 ≥ (1 + 1/4)pi−1n] ≤ exp(−pi−1n/48) ≤ exp(−m/24). �

We are now ready to state the theorem that establishes the efficiency of the
proof that is constructed and communicated to the lite verifier.

Theorem 2. The size of the proof π that the prover sends in response to a lite
verifier in the optimistic case is O(m) with overwhelming probability in m.

Proof. In the optimistic case the proof π that the prover sends to the lite verifier
is the output of the ConstructProof algorithm. If n is the length of the local
chain from which the prover constructs the proof and we have 2im ≤ n <
2i+1m for an i ≥ 1 then it holds that: The ConstructProof algorithm will return
4 Here we use the following variant: Pr(X ≤ k) ≤ exp(−(np−k)2/2np), where k ≤ np.

Proofs of Proofs of Work with Sublinear Complexity 75

a proof of depth i − 1 with overwhelming probability in m, as we proved in
Lemma 1. Furthermore, the size Di−1 of the proof π will be bounded by 5m
with overwhelming probability in m, as we proved in Lemma 2. This completes
the proof. �

The above completes the argument for the optimistic case, where the adver-
sary does not explicitly interfere and attempts to increase the complexity of the
lite verifier. We note that in the case that the adversary interferes and makes the
lite node to engage in extra communication by issuing the Request commands, he
can only succeed in this with significant effort (by mining very low target blocks)
and with bounded, albeit non-negligible, probability. It seems unlikely that an
adversary will engage in this effort for the sole purpose of delaying a lite veri-
fier and for this reason, we consider the optimistic efficiency analysis performed
above to be quite indicative of the actual performance of the protocol.

Finally with respect to time complexity observe that in the optimistic case,
the verifier will have to perform a number of verification steps that are propor-
tional to the size of the proof that is received. It follows that the complexity of
the verifier is also O(m log n).

Complexity When Using a Compressed Interlink Vector. The commu-
nication and time complexity in this case can be improved since in each block
from the interlink vector committed in the Merkle root hash only a path in the
tree needs to be transmitted. It follows easily that the complexity of the lite
verifier in the optimistic case will be O(m log log n).

6 Security Analysis

A successful attack against our lite verification mechanism suggests that a lite
verifier reaches a different conclusion about a certain transaction compared to a
full verifier. The proof argument for security is as follows: given an adversary A
that responds to a lite verifier we construct an adversary A∗ that responds to a
full verifier. We will argue that with high probability the full verifier operating
with A∗ reaches the same conclusion as the lite verifier operating with A.

Intuitively the above means that for any proof that a lite verifier accepts and
processes there exists a full chain that can be recovered and produces the same
output behavior for a regular SPV verifier.

The description of A∗ is as follows:

1. A∗ simulates the operation of A while additionally in each round acts as a
full verifier and requests the chains from all the honest nodes denoted by
C1, . . . , Ce for some integer e. It maintains a “block tree” BT containing all
blockchains and adds there any blocks that are produced by the adversary.
Note that it is possible to A∗ to perform this since in the random oracle
model (that we adopt from [6]) it is possible for A∗ to monitor all queries of
A to the hash function H(·). Any queries made by A that do not correspond
to valid blocks are ignored.

76 A. Kiayias et al.

2. When A responds to a lite verifier with a pair (X , π), A∗ searches in BT for
a chain C that is consistent with (X , π), i.e., X is the suffix of C and π is a
sub-chain of C. If such a chain is found, then A∗ response to a full verifier
with C. If no chain is found then A∗ returns no response to the full verifier.

We perform our analysis in the model of [6]. Recall that in their model, there
are n parties maintaining the blockchain, each allowed q queries to the hash
function (thought of as a random oracle) and t of the parties are controlled by
the adversary. The probability of finding a proof of work with a single hash query
is T/2κ (recall that the target is T and is stable). We use the same notation as
[6] and we denote α = (n − t)pq, β = pqt and γ = α − α2. Intuitively, the
parameter α represents the hashing power of the honest parties; it is also an
upper bound on the expected number of solutions that the honest parties will
obtain in one round; on the other hand β is the expected number of solutions
that the adversary may produce in one round. Finally, γ is a lower bound on the
expectation of a uniquely successful round, i.e., a round where a single honest
party finds a proof of work solution.

We are now ready to formulate the theorem that establishes the security of
lite verification. The theorem is conditioned on γ > (1 + δ)β which roughly5

corresponds to the setting where the honest parties command the majority of
the hashing power.

Theorem 3. (Security of lite verification) Let γ > (1 + δ)β for some δ > 0. A
full verifier interacting with A∗ reaches the same conclusion as the lite verifier
operating with A with probability 1 − exp(−Ω(δ2m)).

Proof. (Sketch). We compare any execution with A where a lite verifier requests
a proof to an execution where a full verifier requests a proof from A∗. We define
an event BAD to be the event that the two verifiers report a different conclusion.
An event BAD would necessarily correspond to the case 2 above in the definition
of A∗ when the latter fails to reconstruct a chain C from BT that corresponds
to the proof (X , π) that the adversary A produces. Let NOWIT be this latter
event and observe BAD ⊆ NOWIT. We will argue that whenever NOWIT happens
then with overwhelming probability in m it holds that a proof originating from
an honest party will win the comparison performed by the MaxChain. Let this
event be HWIN. In more detail we will prove that Pr(¬HWIN ∧ NOWIT) drops
exponentially in m. Observe that this is sufficient since BAD ⊆ ¬HWIN and
hence it will follow that Pr(BAD) drops exponentially in m.

The event ¬HWIN suggests that the adversary A has managed to produce a
proof for which no honest party could outperform in the view of the MaxChain
procedure. Furthermore, if NOWIT happens also, it follows that it is impossi-
ble for A∗ to reconstruct a chain that corresponds to the proof that wins the
MaxChain algorithm. This suggests that the winning proof (X , π) contains blocks
that were impossible to attach to the blockchain tree BT by A∗, due to the fact

5 Roughly because γ = α − α2 and thus this condition approximates the “honest
majority” condition only if α2 is close to 0. See [6] for more details.

Proofs of Proofs of Work with Sublinear Complexity 77

of not being valid extensions of a (level-0) chain. It follows that in the response
(X , π), the proof π should diverge from all chains that belong to an honest party
(otherwise all the blocks in X would have been attached to BT and a witness
for (X , π) would be reconstructed by A∗). Let b be the most recent common
honestly generated block of π with the longest chain C from BT that belongs to
an honest party. Given that MaxChain elected (X , π) over the proof provided by
the owner of C it holds that π contains a sequence of at least m blocks starting
from b (or later) that are of target T/2i where i > 0 is the depth of π. Let r be
the round that block b was created. We will next show that the probability that
A obtains m blocks with hashes less than T/2i faster than the honest parties’
chains advance by 2im blocks is negligible in m. It follows that it will be with
negligible in m probability that A can produce a proof that will be selected by
MaxChain.

Let Xr be the random variable that is equal to 1 if r is a successul round
(following the terminology of [6]). In [6] it is shown that in any s rounds following
round r it holds that the length of the honest parties’ chains will be at least
� +

∑s
l=r Xl where � is the length of an honest parties’ chain at round r.

The number of rounds that will be required for the adversary to compute m
blocks with hash less than T/2i follows a negative binomial distribution. The
expectation for the number of rounds is 2iβ−1m where p = T/2κ and β = pqt. By
applying a tail bound for the negative binomial distribution we obtain that the
probability the number of rounds is less than (1−δ/4)2iβ−1m is exp(−Ω(δ2m)).

On the other hand, in (1−δ/4)2iβ−1m rounds, by applying a Chernoff bound,
the probability that the honest parties will produce less than (1−δ/4)2γ2iβ−1m
blocks is bounded by exp(−Ω(δ2m)).

Observe now that γ > (1 + δ)β implies γ(1 − δ/4)2β−1 > 1 and thus the
probability that the proof of work of the chains owned by the honest parties will
exceed that of the adversary is 1 − exp(−Ω(δ2m)). �

On the Feasibility and Infeasibility of Non-interactive and/or Con-
stant Size Proofs. Observe that our security parameter for the proof is m
and the size of the proof in the optimistic case is O(m). In our construction,
the lite verifier may require further interaction with the provers if it discovers
forks in the inner chains that it receives. This leaves open the question whether
shorter proofs can be achieved (e.g., constant size) or whether it is possible to
obtain non-interactive proofs, i.e., proofs that require always a single message
from the full nodes to the lite verifier. With respect to constant size proofs it is
unlikely that the techniques like the ones we consider here would provide such
an improvement: for instance, if a single block of exceptionally low hash value
is transmitted as a proof of many proofs of work of proportional length, con-
centration bounds will not be able to provide a sufficiently low probability of
attack. In other words, such short proofs might be exploitable by an attacker
in very much the same way that the difficulty raising attack of [3] operates and
hence they will not be secure. Similarly, given any non-interactive proof that
goes arbitrarily low in terms of the inner chain it selects, one can always imagine

78 A. Kiayias et al.

an attacker that attempts to fork in the very last block of the inner chain and
thus gain an unfair advantage compared to the honest parties even in the honest
majority setting. However this may be countered by requiring sufficient number
of blocks following such low hash blocks; we leave for future work the feasibility
of investigatng the design of short and secure non-interactive SPV proofs.

The Dynamic Setting. To account for a dynamically changing population of
miners, in Bitcoin and related blockchain protocols, the target is recalculated
at regular intervals. It is possible to build our interconnected blockchains in the
dynamic setting as well; some care needs to be applied during verification of
proofs however since target recalculation will need to be performed over the
inner chains. We leave the analysis in the dynamic setting for future work.

Acknowledgement. The authors wish to thank Giorgos Panagiotakos for helpful
discussions as well as the anonymous referees of the 3rd Workshop on Bitcoin and
Blockchain Research for their valuable comments.

References

1. Back, A.: Hashcash (1997). http://www.cypherspace.org/hashcash
2. Back, A., Corallo, M., Dashjr, L., Friedenbach, M., Maxwell, G., Miller, A.,

Poelstra, A., Timn, J., Wuille, P.: Enabling Blockchain Innovations with Pegged
Sidechains (2014). https://blockstream.com/sidechains.pdf

3. Bahack, L.: Theoretical bitcoin attacks with less than half of the computational
power (draft). Cryptology ePrint Archive, Report 2013/868 (2013). http://eprint.
iacr.org/

4. Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In:
Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 139–147. Springer,
Heidelberg (1993)

5. Friedenbach, M.: Compact SPV proofs via block header commitments, Bitcoin-
development mailing list post (2014). https://lists.linuxfoundation.org/pipermail/
bitcoin-dev/2014-March/004727.html

6. Garay, J., Kiayias, A., Leonardos, N.: The Bitcoin backbone protocol: analysis and
applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol.
9057, pp. 281–310. Springer, Heidelberg (2015)

7. Juels, A., Brainard, J.G.: Client puzzles: a cryptographic countermeasure against
connection depletion attacks. In: NDSS. The Internet Society (1999)

8. Lewenberg, Y., Sompolinsky, Y., Zohar, A.: Inclusive block chain protocols. In:
Böhme, R., Okamoto, T. (eds.) FC 2015. LNCS, vol. 8975, pp. 528–547. Springer,
Heidelberg (2015)

9. Miller, A.: The high-value-hash highway, Bitcoin forum post (2012). https://
bitcointalk.org/index.php?topic=98986.0

10. Nakamoto, S.: Bitcoin: a peer to peer electronic cash system (2008). http://bitcoin.
org/bitcoin.pdf

11. Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release
crypto. Technical report, Cambridge, MA, USA (1996)

12. Sompolinsky, Y., Zohar, A.: Secure high-rate transaction processing in bitcoin. In:
Böhme, R., Okamoto, T. (eds.) FC 2015. LNCS, vol. 8975, pp. 507–527. Springer,
Heidelberg (2015)

http://www.cypherspace.org/hashcash
https://blockstream.com/sidechains.pdf
http://eprint.iacr.org/
http://eprint.iacr.org/
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2014-March/004727.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2014-March/004727.html
https://bitcointalk.org/index.php?topic=98986.0
https://bitcointalk.org/index.php?topic=98986.0
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf

Step by Step Towards Creating a Safe Smart
Contract: Lessons and Insights
from a Cryptocurrency Lab

Kevin Delmolino1(B), Mitchell Arnett1, Ahmed Kosba1, Andrew Miller1,2,
and Elaine Shi2

1 Department of Computer Science, University of Maryland, College Park,
College Park, USA

del@terpmail.umd.edu, marnett@umd.edu, {akosba,amiller}@cs.umd.edu
2 Initiative for Cryptocurrencies and Contracts (IC3),

Department of Computer Science, Cornell University, Ithaca, USA
elaine@cs.cornell.edu

Abstract. We document our experiences in teaching smart contract
programming to undergraduate students at the University of Maryland,
the first pedagogical attempt of its kind. Since smart contracts deal
directly with the movement of valuable currency units between contrac-
tual parties, security of a contract program is of paramount importance.

Our lab exposed numerous common pitfalls in designing safe and
secure smart contracts. We document several typical classes of mistakes
students made, suggest ways to fix/avoid them, and advocate best prac-
tices for programming smart contracts. Finally, our pedagogical efforts
have also resulted in online open course materials for programming smart
contracts, which may be of independent interest to the community.

1 Introduction

Completely decentralized cryptocurrencies like Bitcoin [18] and other altcoins [5]
have captured the public’s attention and interest, and have been much more
successful than any prior incarnations of electronic cash. Many would call the
rise of these electronic currencies a technological revolution, and the “wave of
the future” [3]. Emerging altcoins such as Ethereum [23] and Counterparty [14]
extend Bitcoin’s design by offering a rich programming language for writing
“smart contracts.” Smart contracts are user-defined programs that specify rules
governing transactions, and that are enforced by a network of peers (assuming
the underlying cryptocurrency is secure). In comparison with traditional finan-
cial contracts, smart contracts carry the promise of low legal and transaction
costs, and can lower the bar of entry for users.

In Fall 2014, at the University of Maryland, we organized a new, hands-on
smart contract programming lab in our undergraduate-level security class – the
first of its kind that has ever been attempted.

c© International Financial Cryptography Association 2016
J. Clark et al. (Eds.): FC 2016 Workshops, LNCS 9604, pp. 79–94, 2016.
DOI: 10.1007/978-3-662-53357-4 6

80 K. Delmolino et al.

Smart Contract Programming: Unique Challenges and Opportunities.
Although smart contract programming in many ways resembles traditional pro-
gramming, it raises important new security challenges. Contracts are “play-for-
keeps”, since virtual currencies have real value. If you load money into a buggy
smart contract, you will likely lose it. Further, smart contract programming
requires an “economic thinking” perspective that traditional programmers may
not have acquired. Contracts must be written to ensure fairness even when coun-
terparties may attempt to cheat in arbitrary ways that maximize their economic
gains.

As an outcome of our lab, we observed several classes of typical mistakes
students made. In contrast to traditional software development tasks where bugs
such as buffer overflows are often benign (except in rare or contrived scenarios),
in our lab, we observed several bugs and pitfalls that arise due to the unique
nature of smart contract programs and lead to clear and immediate exploits
(e.g., theft or loss of money).

Our lab experiences show that even for very simple smart contracts (e.g.,
a “Rock, Paper, Scissors” game), designing and implementing them correctly
was highly non-trivial. This suggests that extra precautions and scrutiny are
necessary when programming smart contracts.

In this paper, although we adopt Ethereum’s Serpent language, most of the
the insights we gain are not language-specific, but can be generalized to smart
contract programming under a broad model.

Open-Source Course and Lab Materials. Based on lessons and insights
drawn through this experimental lab, we have designed new, open course mate-
rials and lab designs for smart contract programming [4]. We hope that these
open-source course materials and labs will aid both instructors who wish to
teach smart contract programming and students/developers who wish to teach
themselves smart contract programming.

Broader Insights Gained. Inspired by our experimental smart contract lab,
we argue why cryptocurrency and smart contracts will serve as a great pedagog-
ical platform for Cybersecurity education. We also draw from our experiences
why the “build, break, and amend your own program” approach is beneficial
to instructing adversarial thinking and incentivizing a student-driven learning
atmosphere.

Roadmap. In the remainder of this paper, we will first give more background
on cryptocurrency and smart contracts (Sect. 2). We will then detail experi-
ences with our lab (Sect. 3), the typical pitfalls we observed in smart contract
programming (Sect. 4), and the insights and lessons learned.

2 Background

In this section, we provide some background on cryptocurrencies and the pro-
gramming model of smart contracts.

Step by Step Towards Creating a Safe Smart Contract 81

2.1 Background on Decentralized Cryptocurrencies

Smart contracts are built on top of an underlying cryptocurrency platform. A
cryptocurrency is a decentralized system for interacting with virtual money in
a shared global ledger. Users transfer money and interact with contracts by
publishing signed data called transactions to the cryptocurrency network. The
network consists of nodes (called miners) who propagate information, store data,
and update the data by applying transactions. A high-level schematic is shown
in Fig. 1.

Fig. 1. Schematic of a decentralized cryptocurrency system with smart contracts. A
smart contract’s state is stored on the public blockchain. A smart contract program is
executed by a network of miners who reach consensus on the outcome of the execution,
and update the contract’s state on the blockchain accordingly. Users can send money
or data to a contract; or receive money or data from a contract.

Although the ideas behind cryptocurrencies date back at least twenty-five
years (e.g., cryptographic e-cash [13]), a recent surge of interest in this technology
has been incited by the success of Bitcoin [18]. For a comprehensive survey on
Bitcoin and other cryptocurrencies, see [7,9].

The main interface provided by the underlying cryptocurrency is an append-
only log called a blockchain, which imposes a partial or total ordering on trans-
actions submitted by users. The data in the blockchain is guaranteed to be valid
according to certain predefined rules of the system (e.g., there are no double-
spends or invalid signatures). All of the data in the blockchain is public, and
every user can access a copy of it. No one can be prevented from submitting
transactions and getting them included in the blockchain (with at most some
small delay). There is global agreement among all nodes and users about the
contents of the blockchain, except for the most recent handful of blocks which
have not yet settled.

82 K. Delmolino et al.

For simplicity, we also assume that the built-in currency has a stable monetary
value. Users therefore have an incentive to gain more of (and avoid losing) units of
this currency. Anyone can acquire the virtual currency by purchasing or trading
for it using other fiat currencies (e.g., US dollars) or virtual currencies. The cur-
rency is assumed to be fungible; one unit of Ether (the currency unit of Ethereum)
is exactly as valuable as any other, regardless of the currency’s “history.”

The system keeps track of “ownership” of the currency by associating each
unit of currency to an “address”. A user address is a hash of a public key;
whoever knows the corresponding private key can spend the money associated to
that address. Users can create as many accounts as they want, and the accounts
need not be linked to their real identity.

2.2 Background on Smart Contracts

Need for General Smart Contracts. Bitcoin offers a rudimentary scripting
system that is neither expressive nor user-friendly. A line of work in both acad-
emia and industry has attempted to design various smart contract applications
in a way that retrofits Bitcoin’s scripting language [6,8,19,20]. Due to funda-
mental limits of the expressiveness of Bitcoin’s scripting language, retrofitting
the language is not only time consuming, but can also result in asymptotically
more costly implementations in terms of number of rounds or on-chain cost.
In comparison, many of the same tasks would be easier to program and more
efficient, if they were built atop a general purpose smart contract language (of
which Ethereum [23] is the first incarnation).

Smart Contract Model. A contract is an instance of a computer program that
runs on the blockchain, i.e., executed by all consensus nodes. A smart contract
consists of program code, a storage file, and an account balance. Any user can
create a contract by posting a transaction to the blockchain. The program code
of a contract is fixed when the contract is created, and cannot be changed.

As shown in Fig. 1, a contract’s storage file is stored on the public blockchain.
A contract’s program logic is executed by the network of miners who reach con-
sensus on the outcome of the execution and update the blockchain accordingly.
The contract’s code is executed whenever it receives a message, either from a
user or from another contract. (A user can sends a message to a contract by
including the message data and the address of the contract in her transaction;
one contract can send a message to another using a special instruction in its
program code.) While executing its code, the contract may read from or write
to its storage file. A contract can also receive money into its account balance,
and send money to other contracts or users.

Conceptually, one can think of a contract as a special “trusted third party” –
however, this party is trusted only for correctness and availability but not for pri-
vacy. In particular, a contract’s entire state is visible to the public.

Contract Invocation. A contract’s code will be invoked whenever it receives a
message. A contract can define multiple entry points of execution – in Ethereum’s

Step by Step Towards Creating a Safe Smart Contract 83

Serpent language, each entry point is defined as a function. A message contents
will specify the entry point at which the contract’s code will be invoked. There-
fore, messages act like function calls in ordinary programming languages. After
a contract finishes processing a message it receives, it can pass a return value
back to the sender.

Gas. Ethereum uses the concept of “gas” to discourage over-consumption of
resources (e.g., a contract program that causes miners to loop forever). The
user who creates a transaction must spend currency to purchase gas. During the
execution of a transaction, every program instruction consumes some amount
of gas. If the gas runs out before the transaction reaches an ordinary stopping
point, it is treated as an exception: the state is reverted as though the transaction
had no effect, but the Ether used to purchase the gas is not refunded! When one
contract sends a message to another, the sender can offer only a portion of its
available gas to the recipient. If the recipient runs out of gas, control returns to
the sender, who can use its remaining gas to handle the exception and tidy up.

Ethereum Specifics. Our lab employs Ethereum’s Serpent language to illus-
trate smart contract programming, although the lessons apply more generally
to other cryptocurrencies and smart contract systems as well. We only define as
much Ethereum-specific terminology as needed to understand our examples. In
particular, the built-in currency of Ethereum is called Ether, and an Ether can
be divided into smaller currency units such as “wei”.

2.3 A Taste of Smart Contract Design

In this section, we will give the reader a brief overview of smart contract design
by describing the Ethereum implementation of a simple, yet useful, motivating
example – the financial swap instrument. This contract allows two parties, Alice
and Bob, to take opposing bets about the price of a stock at some future time.
Both parties initially deposit equal amounts of money (as units of Ether cur-
rency). After a deadline has passed, the current price of the stock is queried by
interacting with a designated stock price authority (which would itself be imple-
mented as a smart contract - we refer to this contract as StockPriceAuthority).
Depending on the price at that time, the entire combined deposit is awarded to
either Alice or Bob.

The contract’s storage allocates space for the following data on lines 1 and 2:
(1) the public keys of Alice and Bob; and (2) the deadline and threshold of the
swap contract. The contract also defines a function determine outcome, which
any party may invoke. This example serves as motivation of the useful aspects
of smart contracts as financial instruments. In our other examples, we will tend
to focus on gambling games. It also serves to illustrate several low level aspects
of Serpent programming.

84 K. Delmolino et al.

3 A Recount of Our Smart Contract Programming Lab

In our undergraduate security class at the University of Maryland, students were
asked to develop smart contract applications of their choice atop Ethereum [23],
using its expressive Serpent [22] programming language for composing smart
contracts (Fig. 2).

1 data Alice, Bob

2 data deadline, threshold

3

4 # Not shown: collect equal deposits from Alice and Bob
5 # We assume StockPriceAuthority is a trusted third party contract

that can give us the price of the stock↪→

6

7 def determine_outcome():

8 if block.timestamp > deadline:

9 price = StockPriceAuthority.price()

10 if price > threshold:

11 send(Alice, self.balance)

12 else:

13 send(Bob, self.balance)

Fig. 2. This Serpent program implements a simple financial “swap” instrument, illus-
trating that smart contracts are a powerful and useful tool for programming with
money.

Students were divided into groups of four. Due to the experimental nature
of the lab, the instructor assigned one of her Ph.D. students to closely super-
vise each group, to ensure that students could obtain hands-on help. The lab
proceeded in two phases.

Creation Phase. The first phase is a creation phase where each group created
a smart contract application of their own choice. The students created a variety
of applications, including games (e.g., Rock-Paper-Scissors, Russian Roulette,
custom-designed games), escrow services, auctions (e.g., sealed auctions, silent
auctions), a parking meter service, and stock market applications.

At the end of the first phase, each group made a short presentation of
their contract application in class. The instructor, TAs, and students jointly
observed numerous issues with the programs that students created (see Sect. 4
for a detailed discussion).

Amendment Phase. Therefore, we extended the project to a second phase,
called an amendment phase. The goal of this phase was for students to critique
their programs, find bugs, and amend their designs. The instructor and TAs had
in-person meetings with each project group to help them amend their smart
contract programs. Students also formed pair groups to critique and help the
other group.

Step by Step Towards Creating a Safe Smart Contract 85

4 Pitfalls of Smart Contract Programming

In this section, we will demonstrate some of the typical pitfalls we observed for
smart contract programming. For ease of exposition, we will use a simple “Rock,
Paper, Scissors” example to illustrate three classes of typical mistakes. Similar
mistakes were commonly observed in various other applications developed by
the students.

Quick Overview of Our Running Example. We will first give a quick
overview of the structure of our buggy “Rock, Paper, Scissors” program before
we go on to diagnose the bugs. In this contract, two players will play a simple
“Rock, Paper, Scissors” for money. The contract program consists of two main
functions:

– player input: The players register with the contract and deposit money to
play. Each player also provides input to the contract in the form of their
choice of rock, paper, or scissors.

– finalize: The contract decides a winner and sends the proceeds to the
winner.

As we show below, surprisingly, even for a very simple smart contract it is
difficult to create it correctly!

4.1 Errors in Encoding State Machines

Programming smart contracts typically involves encoding complex state
machines. Logical errors in encoding state machines were commonly observed.
The simplest type of logical error is a contract that leaks money in corner cases.

To illustrate this, let us look at our buggy “Rock, Paper, Scissors” exam-
ple. Figure 3 shows the player input function where players register with the
contract and deposit money to play. The contract would then store the players’
public keys, inputs, and coins deposited (Lines 14–17). This contract exhibits
several mistakes:

– If a third player attempts to join and sends money to the contract, that money
becomes inaccessible (Line 20). Neither the player nor anyone else can ever
recover it.

– Similarly, if a player sends an amount of money that is not exactly 1000 wei,
the contract also leaks the money.

Note that while a careful player can protect herself from the second problem
by never sending the incorrect amount, she cannot always protect herself from
the first problem. In a decentralized cryptocurrency like Bitcoin or Ethereum,
multiple parties may be sending inputs to the contract simultaneously. In this
case, it is up to the miner who mines this block to decide how to order these
transactions.

To fix these bugs, the contract should refund the money back to a player
unless the player is successfully registered in the game. This approach is taken
in our improved contract (Fig. 4, Lines 17 and 20).

86 K. Delmolino et al.

1 # A two-player game with a 1000 wei prize
2

3 data player[2](address, choice)

4 data num_players

5 data reward

6 data check_winner[3][3] # a ternary matrix that captures the rules
of rock-paper-scissors game↪→

7

8 def init():

9 num_players = 0

10 # code omitted: initialize check_winner according to the game
rules↪→

11

12 def player_input(choice):

13 if num_players < 2 and msg.value == 1000:

14 reward += 1000

15 player[num_players].address = msg.sender

16 player[num_players].choice = choice

17 num_players = num_players + 1

18 return(0)

19 else:

20 return(-1)

21 def finalize():

22 p0 = player[0].choice

23 p1 = player[1].choice

24 # If player 0 wins
25 if check_winner[p0][p1] == 0:

26 send(0,player[0].address, reward)

27 return(0)

28 # If player 1 wins
29 elif check_winner[p0][p1] == 1:

30 send(0,player[1].address, reward)

31 return(1)

32 # If no one wins
33 else:

34 send(0,player[0].address, reward/2)

35 send(0,player[1].address, reward/2)

36 return(2)

Fig. 3. Pitfalls in smart contract design. This buggy contract illustrates a few pitfalls:
Pitfall 1 (Lines 19 and 20): If a third player attempts to join the contract, his money
effectively vanishes into a blackhole.
Pitfall 2 (Line 16): Players send their inputs in plaintext to the contract. A malicious
player can wait to see his opponents choice before deciding on his own input.

Step by Step Towards Creating a Safe Smart Contract 87

What is shown here is merely the simplest example of a logical error when
encoding the state machine. In our lab, students created contracts that are far
more sophisticated (e.g., stock market applications, various flavors of auctions)
that required the design of much more complex state machines. Failure to encode
the correct state machine (e.g., omitting certain transitions, neglecting to check
the current state) was among the most commonly observed pitfalls.

4.2 Failing to Use Cryptography

Another mistake is more subtle: Players send their inputs in cleartext. Since
transactions are broadcast across the entire cryptocurrency network, a cheating
player may wait to see what his opponent chooses before providing his own input.

Players in a smart contract are typically anonymous, and can be reason-
ably expected to act selfishly to maximize their financial gains, even if it means
deviating from the default or “honest” behavior.

Cryptography is often the first line of defense against potentially malicious
parties. Here, the obvious remedy is to use cryptographic commitments. Both
players can commit to their inputs in one time epoch, and then in a later epoch
open the commitments and reveal their inputs. A standard commitment satis-
fies two properties, binding and hiding. Binding ensures that a player cannot
change their input after committing to it. Hiding ensures that a party learns
nothing about the others input choice even after observing the commitment.
In our application, the commitment must also be non-malleable, i.e., a player
should not be able to maul a previous player’s commitment into a related value
(e.g., one that will allow her to win). In general, for secure composition of com-
putationally sound primitives, we would recommend the usage of universally
composable commitments [10–12]. In this paper, we will use a simple, hash-
based commitment that is secure under the random oracle model. To commit a
message m, first pick a random nonce that is sufficiently long, and then com-
pute the commitment H(m, nonce). The opening and verification algorithms are
obvious.

In Fig. 4, we show a fixed contract that properly uses commitments. The
previous player input function is broken up into two phases: in the new
player input function, each player provides a commitment; after both commit-
ments are received, the open function is used to reveal their commited inputs.

Opportunity to Teach Cryptography. As students realized and sought to fix
bugs in their own programs, the opportunity arose to teach them cryptography
as a well-motivated solution to their immediate practical problems. The instruc-
tor seized this opportunity, and the amendment phase of the project, students
were indeed able to implement cryptographic commitments to secure their smart
contracts!

4.3 Misaligned Incentives

More subtle bugs remain, even for the improved contract in Fig. 4.

88 K. Delmolino et al.

1 data player[2](address, commit, choice, has_revealed)

2 data num_players

3 data reward

4 data check_winner[3][3]

5

6 def init():

7 num_players = 0

8 # code omitted: initialize check_winner according to the game
rules↪→

9

10 def player_input(commitment):

11 if num_players < 2 and msg.value >= 1000:

12 reward += msg.value

13 player[num_players].address = msg.sender

14 player[num_players].commit = commitment

15 num_players = num_players + 1

16 if msg.value - 1000 > 0:

17 send(msg.sender, msg.value-1000)

18 return(0)

19 else:

20 send(msg.sender, msg.value)

21 return(-1)

22

23 def open(choice, nonce):

24 if not num_players == 2: return(-1)

25 # Determine which player is opening
26 if msg.sender == player[0].address:

27 player_num = 0

28 elif msg.sender == player[1].address:

29 player_num = 1

30 else:

31 return(-1)

32 # Check the commitment is not yet opened
33 if sha3([msg.sender, choice, nonce], items=3) ==

player[player_num].commit and not

player[player_num].has_revealed:

↪→

↪→

34 # Store opened value in plaintext
35 player[player_num].choice = choice

36 player[player_num].has_revealed = 1

37 return(0)

38 else:

39 return(-1)

Fig. 4. An improved but nonetheless buggy contract. This contract fixes a subset of
the problems identified in the original (Fig. 3). When an edge case occurs, the contract
refunds the players rather than leaking money (Lines 17 and 20). A cryptographic
commitment scheme is used to offer privacy of users’ inputs before they are revealed
for the winner determination (Line 14 and 33–36). As mentioned in Sect. 4.3, this
improved contract is still not safe due to misaligned incentives.

Step by Step Towards Creating a Safe Smart Contract 89

44 def finalize():

45 #check to see if both players have revealed answer
46 if player[0].has_revealed and player[1].has_revealed:

47 p0 = player[0].choice

48 p1 = player[1].choice

49 #If player 0 wins
50 if check_winner[p0][p1] == 0:

51 send(player[0].address, reward)

52 return(0)

53 #If player 1 wins
54 elif check_winner[p0][p1] == 1:

55 send(player[1].address, reward)

56 return(1)

57 #If no one wins
58 else:

59 send(player[0].address, reward/2)

60 send(player[1].address, reward/2)

61 return(2)

62 else:

63 return(-1)

Fig. 4. (continued)

For example, one party can wait for the other to open its commitment. Upon
seeing that he will lose, that party may elect to abort (i.e., not to send any further
messages) – thus denying payment to the other player as well. It may seem at
first glance like the losing party should be indifferent to revealing his committed
input or not (regardless, we would prefer to have a clear positive preference for
revealing it); however, the reality is slightly worse, since that party must incur
a gas cost to even submit a transaction that opens his commitment.

This generalizes to a broader question of how to ensure the incentive com-
patibility of a contract. Can any player profit by deviating from the intended
behavior? Does the intended behavior have hidden costs?

In this specific example, we can remedy the problem by setting a deadline
before which the second player has to reveal, otherwise the player who revealed
first will be able to get the reward. This will protect the first player when the
second player aborts. The modifications needed to protect against that case are
shown in Fig. 5. Furthermore, we can have both players include an additional
security deposit in the first stage, which they forfeit unless they open their
commitments in a timely manner. This way, even the losing player has a stronger
motivation to open his bid, but this change is not included here for simplicity.

90 K. Delmolino et al.

Declare a timer variable in the beginning
data timer_start

< Code omitted. Same as Figure 4 lines (1-22) >

def open(choice, nonce):

< Code omitted. Same as Figure 4 lines (24-32)>
if sha3([msg.sender, choice, nonce], items=3) ==

player[player_num].commit and not

player[player_num].has_revealed:

↪→

↪→

player[player_num].choice = choice

player[player_num].has_revealed = 1

Keep track of the first reveal time. The other player should
reveal before 10 blocks are mined.↪→

if not timer_start:

timer_start = block.number

return(0)

else:

return(-1)

def finalize():

Check timer: Wait 10 blocks for both players to open
if block.number - timer_start < 10:

return(-2)

if player[0].has_revealed and player[1].has_revealed:

< Code omitted. Same as Figure 4 lines (47-61)>
Check for abort: If p1 opens but not p2, send money to p1
elif player[0].has_revealed and not player[1].has_revealed:

send(player[0].address, reward)

return(0)

If p2 opens but not p1, send money to p2
elif not player[0].has_revealed and player[1].has_revealed:

send(player[1].address, reward)

return(1)

else:

return(-1)

Fig. 5. Modifications required to the contract of Fig. 4 to protect against an aborting
player.

4.4 Ethereum-Specific Mistakes

Several subtle details about Ethereum’s implementation make smart contract
programming prone to error.

Call-Stack Bug. Without going into too much detail, contracts must be writ-
ten “defensively” to avoid exceptions that can occur when multiple contracts
interact. One Ethereum contract can send a message to another contract, which

Step by Step Towards Creating a Safe Smart Contract 91

can in turn send a message to another. However, Ethereum limits the resulting
call-stack to a fixed size of 1024. For example, if the callstack depth is already
at this limit when the send instruction on Line 59 of Fig. 4 is reached, then
that instruction will be skipped and the player will not get paid. Furthermore,
a send instruction sends by default the maximum available gas to the recipient.
If the recipient of the send instruction on Line 59, for example, is a contract
with buggy code that raises an exception, then Line 60 is never executed and
the other player loses out. We stress that the same bug was later manifested
in Etherpot [2], a lottery application built atop Ethereum and released to the
public. In our online course materials [4] we offer guidance on how to avoid this
call-stack bug in Ethereum.

Blockhash Bug. Another Ethereum-specific quirk is that the block.prevhash
instruction supports only the 256 most recent blocks, presumably for efficiency
reasons. This limitation also affected Etherpot [2] and potentially other contracts
that went into production. Miller proposed one potential fix to this problem by
implementing a global “blockhash service” contract that allows other contracts
to retrieve block hashes beyond 256 blocks [1].

Incentive Bugs. Ethereum’s underlying mining protocol can introduce subtle,
incentive-related bugs. We again use Etherpot [2] as an example. Etherpot uses
the hash of a block in the blockchain (e.g., at height T) as a random beacon value
to pick the lottery winner. However, by selectively withholding blocks, miners
can bias this value, gaining an unfair advantage in the lottery - the miner who
first finds a block at height T can check whether this results in them winning
the lottery – if not, they can withhold the block until another block is found,
gaining a “second chance” to win. To combat this, Etherpot makes sure the prize
value of each lottery is less than the base block reward. Thus a miner who with-
holds a block must sacrifice the block reward they would have earned. However,
Ethereum implements a protocol variation called GHOST [17,21], which allows
miners who temporarily withhold blocks to still get a (discounted) reward for
their block, even if the block is revealed later. Thus Etherpot’s reward limit is
set too loose.

4.5 Complete, Fixed Contract

Due to space constraints, we provide a fully working, incentive compatible, and
secure contract for the “Rock, Paper, Scissors” game in our online course mate-
rials [4].

5 Conclusion

5.1 Open-Source Course and Lab Materials

Our smart contract programming lab was an audacious, original attempt at
instructing a technology of in-development nature. Ethereum and its Serpent
language have only recently emerged, and are rapidly undergoing changes.

92 K. Delmolino et al.

The Serpent language is not well documented and development environment
support (e.g., debugging tools) is also rudimentary. Therefore, several students
struggled in installing the simulation environment and getting up to speed. To
facilitate future pedagogical endeavors on smart contract programming, we have
released open course materials on smart contract programming [4]. The course
materials comprise the following:

– A detailed language reference guide for Ethereum’s Serpent programming
language.

– A virtual machine image with a snapshot of pyethereum and serpent
compiler installed, providing a simulator environment for experimentation.
Since the Ethereum’s Serpent language is constantly under development, our
Serpent language reference matches the snapshot installed in this VM.

– A tutorial that builds on our “Rock, Paper, Scissors” example, intended to
walk the student through the typical pitfalls in programming safe smart con-
tracts. The student is presented with the buggy version of the contract and
asked to fix the bugs in a step-by-step, guided manner.

These materials are available at https://mc2-umd.github.io/ethereumlab/.

5.2 Cryptocurrency and Smart Contracts as a Cybersecurity
Pedagogical Platform

Our experiences also led us to conclude that cryptocurrency and smart con-
tracts are a great platform for cybersecurity pedagogy. First, cryptocurrency
and smart contracts, like other interesting emerging technologies, could easily
capture the students’ attention and imagination. Second, cybersecurity is a sci-
ence that is interdisciplinary in nature; and cryptocurrency is a platform that
captures multiple core cybersecurity notions, e.g., cryptography, programming
languages, and game theory. Third, cryptocurrency and smart contracts easily
motivate “adversarial thinking.” For example, in our lab, students had to ana-
lyze their own smart contracts and reason how other selfish players can harm
honest participants and maximize their own financial gains.

5.3 The “Build, Break, and Amend Your Own Programs”
Approach to Cybersecurity Education

Inspired by our smart contract programming lab, we also feel that the “Build,
break, and amend your own programs” approach is very helpful for cybersecurity
education. In our labs, students learned why security is difficult and learned
adversarial thinking by analyzing and breaking their own programs. Students
initially failed to make proper use of cryptography in their smart contracts (see
Sect. 4). But then, by realizing why their smart contracts are not safe, they
become self-driven in learning cryptographic building blocks.

In future work, we plan to further extend these pedagogical ideas, such that
students can learn through hands-on, creative experiences, and learn adversarial
thinking through attacking and amending their own code.

https://mc2-umd.github.io/ethereumlab/

Step by Step Towards Creating a Safe Smart Contract 93

5.4 Subsequent Pedagogical Efforts and Research

Based on insights gained through our experiences, one of the co-authors of this
paper, Miller, gave a smart contract programming tutorial at 1st Cyberport
FinTech Programming Workshop. This lab has also inspired later research on
cryptocurrencies and smart contracts. Juels et al. [15] recently demonstrated
how smart contracts can be leveraged to facilitate criminal activities and create
incentive compatible underground eco-systems. They then discuss countermea-
sures and advocate the responsible deployment of technology. Their paper would
be the criminal counterpart of our “step by step” paper. Finally, Kosba et al.
propose a general formal model for the “blockchain model of computation” which
captures the formal abstraction of smart contract programming [16].

Acknowledgements. We thank the anonymous reviewers for their insightful feed-
back. This work is funded in part by NSF grants CNS-1314857, CNS-1453634, CNS-
1518765, CNS-1514261, a Packard Fellowship, a Sloan Fellowship, two Google Fac-
ulty Research Awards, a VMWare Research Award, and by Maryland Procurement
Office contract H98230-14-C-0137, ARO grants W911NF11103, W911NF1410358, and
W911NF09102.

References

1. Blockhash Contract. https://github.com/amiller/ethereum-blockhashes
2. Etherpot. https://etherpot.github.io/
3. The rise and rise of bitcoin. Documentary. http://bitcoindoc.com/
4. Smart Contract Programming Open Course Materials. http://mc2-umd.github.io/

ethereumlab/
5. Ahamad, S., Nair, M., Varghese, B.: A survey on crypto currencies. In: Interna-

tional Conference on Advances in Civil Engineering (2013)
6. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Secure mul-

tiparty computations on bitcoin. In: IEEE Symposium on Security and Privacy
(2013)

7. Barber, S., Boyen, X., Shi, E., Uzun, E.: Bitter to better — how to make bitcoin a
better currency. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 399–414.
Springer, Heidelberg (2012)

8. Bentov, I., Kumaresan, R.: How to use bitcoin to design fair protocols. In:
Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp.
421–439. Springer, Heidelberg (2014)

9. Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J.A., Felten, E.W.: SoK:
research perspectives and challenges for bitcoin and cryptocurrencies. In: IEEE
Symposium on Security and Privacy, SP, San Jose, CA, USA, pp. 104–121, 17–21
May 2015

10. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: IEEE Symposium on Foundations of Computer Science (FOCS)
(2001)

11. Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security
with global setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 61–
85. Springer, Heidelberg (2007)

https://github.com/amiller/ethereum-blockhashes
https://etherpot.github.io/
http://bitcoindoc.com/
http://mc2-umd.github.io/ethereumlab/
http://mc2-umd.github.io/ethereumlab/

94 K. Delmolino et al.

12. Canetti, R., Rabin, T.: Universal composition with joint state. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 265–281. Springer, Heidelberg (2003)

13. Chaum, D., Fiat, A., Naor, M.: Untraceable electronic cash. In: Goldwasser, S.
(ed.) CRYPTO 1988. LNCS, vol. 403, pp. 319–327. Springer, New York (1990)

14. Dermody, A.K.R., Slama, O.: Counterparty Announcement, January 2014. https://
bitcointalk.org/index.php?topic=395761.0

15. Juels, A., Kosba, A., Shi, E.: Rings of gyges: using smart contractsfor crime. Man-
uscript (2015)

16. Kosba, A., Miller, A., Papamanthou, C., Shi, E., Wen, Z.: Hawk: the blockchain
model of cryptography and privacy-preserving smart contracts. https://eprint.iacr.
org/2015/675.pdf

17. Lewenberg, Y., Sompolinsky, Y., Zohar, A.: Inclusive block chain protocols. In:
Financial Cryptography and Data Security (FC) (2015)

18. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)
19. Pass, R., Shelat, A.: Micropayments for decentralized currencies. In: Proceedings

of 22nd ACM SIGSAC Conference on Computer and Communications Security,
CCS 2015, pp. 207–218 (2015)

20. Ruffing, T., Kate, A., Schröder, D.: Liar, liar, coins on fire! Penalizing equivocation
by loss of bitcoins. In: Proceedings of 22nd ACM SIGSAC Conference on Computer
and Communications Security, CCS 2015 (2015)

21. Sompolinsky, Y., Zohar, A.: Accelerating bitcoin’s transaction processing. Fast
money grows on trees, not chains. IACR Cryptology ePrint Archive 2013:881 (2013)

22. Etheruem Wiki: Serpent (2015). https://github.com/ethereum/wiki/wiki/Serpent
23. Wood, G.: Ethereum: a secure decentralized transaction ledger (2014). http://

gavwood.com/paper.pdf

https://bitcointalk.org/index.php?topic=395761.0
https://bitcointalk.org/index.php?topic=395761.0
https://eprint.iacr.org/2015/675.pdf
https://eprint.iacr.org/2015/675.pdf
https://github.com/ethereum/wiki/wiki/Serpent
http://gavwood.com/paper.pdf
http://gavwood.com/paper.pdf

EthIKS: Using Ethereum to Audit a CONIKS
Key Transparency Log

Joseph Bonneau(B)

Electronic Frontier Foundation, Stanford University, Stanford, USA
jbonneau@gmail.com

Abstract. CONIKS is a proposed key transparency system which
enables a centralized service provider to maintain an auditable yet
privacy-preserving directory of users’ public keys. In the original CONIKS
design, users must monitor that their data is correctly included in every
published snapshot of the directory, necessitating either slow updates or
trust in an unspecified third-party to audit that the data structure has
stayed consistent. We demonstrate that the data structures for CONIKS
are very similar to those used in Ethereum, a consensus computation plat-
form with a Turing-complete programming environment. We can take
advantage of this to embed the core CONIKS data structures into an
Ethereum contract with only minor modifications. Users may then trust
the Ethereum network to audit the data structure for consistency and
non-equivocation. Users who do not trust (or are unaware of) Ethereum
can self-audit the CONIKS data structure as before. We have imple-
mented a prototype contract for our hybrid EthIKS scheme, demonstrat-
ing that it adds only modest bandwidth overhead to CONIKS proofs and
costs hundredths of pennies per key update in fees at today’s rates.

1 Introduction

Distribution and verification of public keys for end-to-end encrypted communica-
tion remains a challenging problem. In terms of deployment, the most successful
model has been centralized services which serve as trusted public key directo-
ries [10], such as those used by iMessage and WhatsApp. This model is also
employed by security-focused messaging applications such as Signal (TextSe-
cure), Silent Circle, Telegram or Threema. These apps additionally allow users
to verify public keys manually, although experience suggests few actually do so.

These services might try to launch a man-in-the-middle attack by serving
keys maliciously. That is, instead of serving Alice’s true public key PKA to Bob,
the server might serve a public key PKS for which it knows the private key. Such
attacks are facilitated in centralized applications since the server typically routes
and/or stores all communication for efficiency, making it is straightforward to
decrypt traffic if the keys are known. Many applications also enable users to
register multiple public keys to support multiple devices, making it easy to add
an “interception key” which simply looks like an extra device.

An essential requirement of this attack is that the key directory interacts
inconsistently between Alice and Bob. If Alice queries her own public key, it
c© International Financial Cryptography Association 2016
J. Clark et al. (Eds.): FC 2016 Workshops, LNCS 9604, pp. 95–105, 2016.
DOI: 10.1007/978-3-662-53357-4 7

96 J. Bonneau

should respond with the correct result or else Alice’s device may automatically
detect the attack (since it knows which public keys it has uploaded). A key server
with global consistency would therefore be a significant security upgrade: as long
as Alice verifies that her own entry in the directory is correct, she can be sure
that she is not being attacked. Furthermore, if Bob trusts that Alice is regularly
monitoring her own entry, Bob can accept whatever public keys the directory
returns for Alice and trust that she will detect if an attack has taken place.
While this setup will only detect attacks (without preventing them), it is far
more lightweight for users than manually verifying all public keys out-of-band.

CONIKS [7] (CONsistent Identity Key Service) is a concrete proposal for a
key server with consistency while also protecting users’ privacy. This approach
is currently being adapted by Google and Yahoo! for use in their prototype end-
to-end encrypted email systems. The key data structure in CONIKS is a signed
hash chain of roots of Merkle prefix trees.

Ethereum [11] is a “secure decentralized transaction ledger.” Inspired by
Bitcoin [9], Ethereum adds support for long-lived, stateful “contracts” with a
Turing-complete scripting language. Under the hood, Ethereum uses data struc-
tures similar to CONIKS, including a blockchain with snapshots of the entire
Ethereum system using Merkle Patricia trees to store the state of each contract.

These similarities are not coincidental. While the two systems were designed
for very different purposes, both require a globally consistent data structure
supporting efficient updates and proofs of inclusion. In this paper we show that,
with minor modifications, a CONIKS directory can be “wrapped” inside an
Ethereum contract in a hybrid scheme we call EthIKS. This allows it to pig-
gyback on Ethereum’s consensus protocol to prevent equivocation, potentially
obviating the need for a separate gossip protocol to ensure consistency. It also
enables increased efficiency for clients willing to trust the Ethereum network.

We have implemented a prototype Ethereum contract to measure the cost of
EthIKS both in terms of transaction fees paid to the Ethereum network (“gas”)
and bandwidth overhead compared to the original CONIKS design.

2 CONIKS Overview

We provide a brief overview of CONIKS here [7]. The key data structure in
CONIKS is a chain of directory snapshots, or signed tree roots (STRs). Each STR
commits to the entire directory, which is a binary Merkle prefix tree containing
the current mapping from users to public keys.

Merkle Prefix Trees. The tree in CONIKS maps arbitrary indices1 to data. It is
a radix tree; each branch of the tree represents either a “0” or “1” in the binary
representation of an index. Each leaf of the tree stores data mapped to the index
represented by its complete path from the root. To reduce the length of paths
in the tree, subtrees with only one non-null leaf are collapsed into a single leaf
marked with the unique suffix of this single non-null index. The data structure
1 The term “key” is avoided to prevent confusion with cryptographic keys.

EthIKS: Using Ethereum to Audit a CONIKS Key Transparency Log 97

is authenticated in that each non-leaf node includes the hash of its children. The
root of the tree thus uniquely commits to the entire data structure, assuming
the hash used is collision-resistant [8].

Private Bindings. To ensure privacy, CONIKS generates the index for each user’s
data using a verifiable unpredictable function (VUF). The CONIKS provider
generates a VUF private key which can be used to deterministically derive the
index for any username and provide a publicly-verifiable proof that this index
was generated correctly. Furthermore, each leaf in the CONIKS tree stores a
commitment to a user’s data rather than the data itself. Thus, to verify a (user-
name, data) binding in the CONIKS tree, one must verify both that the index
produced by the VUF for that username is present in the tree and that the
commitment at that leaf commits to the claimed data. Without the VUF proofs
or commitment randomness, the CONIKS tree reveals no information about any
usernames or their data beyond the number of users in the tree.2

Key Binding Proofs. To communicate in CONIKS, Alice requests Bob’s key
binding from the CONIKS provider as of the latest STR. The provider responds
with Bob’s key data, a Merkle proof of inclusion in the STR’s tree root, the VUF
proof of Bob’s index and the randomness to open the commitment to Bob’s data.

Non-equivocation. To assure that all users see a consistent version of the
CONIKS tree, the root is included in a chained sequence of STRs. Each STR
commits to the hash of the previous version of the tree (and hence the entire
history of the directory) as well as a timestamp and other metadata, and is
signed by the CONIKS provider. While the CONIKS provider is able to sign
two inconsistent versions of the tree, if they are ever discovered this will pro-
vide non-repudiable proof that the provider is malicious. To discourage such
equivocation, the original CONIKS proposal assumes that users will participate
in a gossip protocol to share STRs they have observed. It also suggests that
STRs might be embedded in an external append-only log such as the Bitcoin
blockchain.

Key Updates and Revocation. By default, the CONIKS provider can change a
user’s key binding at any time. This enables recovery from lost or stolen keys
by traditional backup authentication means such as password reset questions or
telephone helplines. Optionally, CONIKS users may request that their leaf be
marked with a strict flag meaning that updates must be signed by a designated
user-controlled key. This option enables preventive (rather than purely detective)
defense against unauthorized key changes, at the price of burning the username
forever if the update key is lost. There is no special notion of revocation of
CONIKS: the old key is simply replaced in the next version of the tree.

2 The number of valid users in the system can be obscured by adding dummy users at
random indices with random data, which will be indistinguishable from real users.

98 J. Bonneau

Auditing and Monitoring. Each CONIKS user audits the provider for consis-
tency, checking that each STR forms a chain and potentially checking for equiv-
ocation with third parties (i.e. gossip). Auditing can also be done by any third-
party. Each user also monitors their own entry in the tree for correctness based
on the key changes they have actually requested from the server. If an unexpected
key change occurs, the user’s software should show a warning message.3

Efficiency Considerations. In the process of auditing and monitoring, each user
must download every STR from the server and check that their binding is cor-
rectly included. While these checks are all logarithmic in the number of users,
if STRs are issued frequently users must download and verify a large number of
signatures. However, if STRs are issued slowly, the time to add a new key binding
(or equivalently, revoke an old one) will be long. The original CONIKS proposal
suggested STRs being issued on the order of hours, with a secondary system of
auditable “promises” to include data in the next STR to enable faster enrollment
(similar to signed certificate timestamps in Certificate Transparency [4]).

In development at Google and Yahoo!, promises were scrapped in favor of
faster STR updating times. To mitigate the cost of verifying that a user’s bind-
ing has stayed consistent in n consecutive STRs, an update count is added to
each leaf, enabling users to simply verify that their update count was not incre-
mented at in the most recent STR. However, this assumes the existence of third
party auditors to verify that update counts are incremented if and only if the
committed data is actually changed.

Our goal in wrapping CONIKS in an Ethereum contract is to maintain the
advantages of frequent STRs, while relying on the Ethereum network to audit
that update counts are incremented correctly. We also use Ethereum to gain
confidence in non-equivocation.

3 Ethereum Overview

While it is often described as being “like Bitcoin with a Turing-complete script-
ing language,” Ethereum [11] is perhaps more accurately described as a con-
sensus computer. Unlike Bitcoin, in which each block contains a set of transac-
tions updating an implicit global state, each block in the Ethereum blockchain
explicitly commits to the complete state of the system which includes both user
accounts and contracts, which represent a running process in the system with
code, memory state and a monetary balance. Each contract’s code describes an
API which users of the system can call to cause the contract to execute some
code which may update its state and/or transmit money to other contracts or
users. An API call is called a transaction. Transactions must be signed by a
specific sender and may contain a payment and an arbitrary amount of data.

3 Note that in CONIKS, warning messages are only intended when the user’s own key
has changed unexpectedly at the server. If their peer’s keys change, this is ignored
as it is assumed the peer will monitor this change themselves.

EthIKS: Using Ethereum to Audit a CONIKS Key Transparency Log 99

A simple example is a game of chess between strangers with a binding mon-
etary bet. A contract representing a chess game can be sent to the network.
Its code should initialize the contract state to represent an empty board and
no players. Two players may then join by sending a message to the contract
along with a deposit equal to the betting stake. While the game is underway,
the deposits will be owned by the contract itself. Each player will then submit
moves in turn, with the contract updating the board after each move and reject-
ing any invalid moves. When one player wins the game, the contract would then
send its entire value to the winner and close.4

Programming Ethereum contracts correctly has already proven quite sub-
tle [2], requiring defensive programming and extensive sanity checks to ensure
no API calls can corrupt the contract state. For example, in the chess game, the
contract must implement a timeout rule where players lose by default if they
don’t submit a move within a required time, to avoid simply stalling a lost game
forever (sometimes called a “rage quit”).

Contract Fees. The state of every contract in the system (as well as each user
account) must be tracked by every miner. Every miner must also validate all
transactions in every block to see that they execute each contract’s code cor-
rectly and update the global state accordingly. This presents an obvious denial-
of-service avenue as contracts may contain infinite loops, allocate an arbitrary
amount of storage, or perform other resource-intensive computations. Thus,
every instruction executed requires a fee, referred to as gas. Gas is the same
currency used for sending value between users and/or contracts in the system;
it is simply called gas when it is being used to pay for executing a transaction.

At prices planned for the “Homestead” Ethereum release, simple instructions
(e.g. addition) cost 2–10 gas whereas more complex instructions may cost signif-
icantly more (e.g. computing a SHA-3 hash costs 30 gas). Writing to storage is
particularly costly, at 20,000 gas per 256-bit word. Any transaction must send
sufficient gas to pay for all of the instructions executes. If a contract runs out of
gas while executing a transaction, execution halts with all changes to the state
undone and the gas being kept by the miners. Thus it is critical both to write
programs which are efficient in their gas costs and to ensure transactions contain
sufficient gas to pay for the instructions they execute.

Storage Model. Each block in the Ethereum blockchain contains a “Merkle Patri-
cia tree” with the state of each contract and user account stored in the leaves.
Each contract or user account is represented by a unique 160-bit address (either
the hash of the user’s public key or a hash of the contract’s code plus a nonce).
Unlike the prefix tree used in CONIKS, in Ethereum the Patricia tree is 16-ary
(hexary), although the suffix-compression is similarly applied.

Each leaf contains a hash of that addresses state, including its current balance
within the system. For addresses representing contracts (as opposed to simply

4 In Ethereum parlance, the contract closes by calling a special SUICIDE opcode which
enables the network to permanently delete its storage.

100 J. Bonneau

user accounts) the state also includes the root of a Merkle Patricia tree repre-
senting that contract’s persistent storage. The storage model is very simple: each
contract has a memory space of 2256 256-bit words, each representing a 256-bit
address. The contract’s storage is thus a function {0, 1}256 → {0, 1}256. Leaves
are inserted into the tree for any address with a non-zero word stored; addresses
which are not in the storage tree are interpreted to have a value of 0.

This storage model makes implementing hash tables extremely simple in
Ethereum: the value v associated to a key k is simply stored at the memory
address H(k), with the storage tree handling this efficiently under the hood.
Most high-level Ethereum languages (including Solidity) expose this {0, 1}256 →
{0, 1}256 map as a built-in type.

4 EthIKS

Given the contract execution model of Ethereum, we can implement a close
variant of CONIKS. The goal will be to ensure EthIKS is as secure as CONIKS
for clients which ignore Ethereum completely and interact directly with the
EthIKS log, while Ethereum-aware clients will gain greater trust and efficiency.

Core Data Structure. EthIKS implements the core data structure of CONIKS,
the tree mapping user indices to user data, in the persistent storage of a single
Ethereum contract. This contract allows the service provider to update the tree
by sending messages from a designated address. The service provider can send the
contract an index i and a commitment c, which will then be stored (or updated)
in the tree by simply writing the value c to memory address i. These values
will be the VUF-derived private index for a given user and the commitment
to the user’s public-key data. A side-effect of this design is that the Ethereum
blockchain will contain a record of each update to the tree, something that is
not normally published in CONIKS.

Key Bindings. As in plain CONIKS, a key binding will include the VUF proof
that an index i corresponds to a username u, as well as the randomness required
to open the commitment c to the user’s data. Because these values are now stored
in an Ethereum contract rather than a separate CONIKS-specific prefix tree,
the key binding must include the proof that the address c has the value i in the
contract’s persistent storage. This is simply a proof-of-inclusion for the contract’s
storage tree plus a proof-of-inclusion that this storage tree is currently mapped
to the contract as of the most recent block in the Ethereum block chain. Notice
that each Ethereum block is effectively a signed tree root (STR) in EthIKS.

Backwards-Compatible Proofs. To maintain the normal CONIKS interface for
clients which wish to ignore Ethereum, the provider still publishes signed tree
roots after every update to the tree. In EthIKS the tree root to be signed is the
root of the Merkle Patricia tree representing its EthIKS contract’s storage after
each update. These tree roots are implicitly “signed” by the Ethereum network

EthIKS: Using Ethereum to Audit a CONIKS Key Transparency Log 101

through their inclusion in a block. The provider additionally signs the tree root,
combined with a pointer to the previous version of the tree and publishes this
chain of signatures separately. For non-Ethereum-aware clients, this chain of
signed roots functions exactly as in plain CONIKS.

Update Frequency. In CONIKS, the tree is updated (by publishing a new STR)
at a provider-chosen frequency. In EthIKS, the tree can be updated in every
Ethereum block. The Ethereum block frequency, targeted currently at one block
per 13 s, is a lower-bound on the epoch length.5 The provider may choose to sign
the tree less frequently than once per block to reduce the length of its owned
chain of signed tree roots. Legacy clients would only see updated versions at this
slower rate. However, Ethereum-aware clients would see new updates rapidly
(and may rapidly update their own entries).

Update Counts. The EthIKS contract maintains an update counter for each
index in the tree. Any update to this index’s data must increments the counter;
the contract’s code which allows no other API for updating the tree. The benefit
of this counter is that Ethereum-aware clients can be sure that their data in the
tree has not changed if their counter has not changed, allowing them to skip
monitoring every version of the tree and simply check the counter value in the
most recent version of the tree.

User-Controlled Addresses. EthIKS supports a comparable feature to CONIK’s
strict mode: each leaf in the tree has an associated owner (by default the ser-
vice provider) which is the only address allowed to send updates to this leaf in
the tree. Updates may include changing the owner; the provider must do this
initially to create a new leaf and then transfer control to its owner if requested.
Security-conscious users may request the service provider change their leaf’s
owner address to a public key of their choosing.

Unlike in CONIKS, users who opt for control of their own leaf can then
update it directly by communicating with the Ethereum contract themselves,
they no longer need to route updates through the service provider. However,
if they update their data and don’t send the commitment randomness to the
provider, the provider can no longer answer queries about this user’s public key.

Revoked Usernames. EthIKS also retains CONIKS’ ability to permanently
remove a user’s data by replacing it with a special tombstone value. In EthIKS,
tombstoned users simply have their owner set to a dummy address for which the
private key clearly does not exist (e.g. the public key whose hash equals zero).
Note that this is not the same as setting a user’s data to be zero; this removes
their data from the tree but enables this username to be later reincarnated.

5 Currently, the mean time between blocks is about 50% higher due to network latency.

102 J. Bonneau

5 Implementation and Costs

We have implemented a prototype of EthIKS by modifying the prototype
CONIKS implementation [7] and writing an Ethereum contract to handle the core
tree updates. The EthIKS contract is contains fewer than 100 SLOC in Solidity,
Ethereum’s most popular high-level language for writing smart contracts. The
contract exposes only a single API call (besides the constructor), updateMappings
which takes a list of indices, data values, and (possibly null) addresses. Each index
is updated to the new data value and its counter incremented after checking that
the owner of this index is the party sending the message.

Table 1. Transaction fees (gas costs) for different update types in EthIKS, along with
the current price in ether (the base currency of Ethereum), millibitcoin (mBTC), and
US dollars as of January 2016 exchange rates and the default gas price of 1 gas =
5 · 10−8 ether. Ethereum transactions also incur an overhead cost of 21,000 gas, but
this can be amortized by batching multiple updates in a single transaction so we ignore
it here.

Operation Gas cost

Gas Ether mBTC US dollar

Create tree 367535 3.675 1.838 0.0036

Insert new user 42042 0.420 0.210 0.0004

Update mapping 12042 0.120 0.060 0.0001

Delete user data 12042 0.120 0.060 0.0001

Change ownership 17382 0.174 0.087 0.0002

Tombstone user 17382 0.174 0.087 0.0002

Gas Costs. The transaction costs (in gas) of updating the EthIKS tree through
the EthIKS contract are listed in Table 1. These are based on our Solidity imple-
mentation, a hand-coded byte code might achieve better efficiency. The main
cost in all operations is writing to permanent storage; the current implementa-
tion of Solidity invokes several writes at 100 gas each for every update to the
tree. Still, the contract costs on the order of hundredths of pennies per update
to the tree. At current rates, these costs would be significant for a large provider,
which might be required to handle millions of key updates per day (costing tens
of thousands of dollars in gas). However, we note that the future value of gas
(and ether) is very difficult to project. The current Ethereum network (Frontier)
would not handle a provider with billions of users due to limits on the size and
number of transactions per block, but these limits are expected to be increased
in the future as Ethereum scalability improves.

Bandwidth Costs. EthIKS re-uses the same construction for the VUF and hash
commitment as plain CONIKS does. In our prototype implementation, we use
the elliptic-curve based VUF and signature scheme (EC-Schnorr) proposed with
CONIKS (CONIKS also can be implemented with RSA or BLS, but we ignore

EthIKS: Using Ethereum to Audit a CONIKS Key Transparency Log 103

these to match the cryptography used in Ethereum). We consider two cases for
EthIKS: clients which trust the Ethereum network and clients which ignore the
Ethereum network (legacy clients). We simulated the same scenario used as a
benchmark in CONIKS: N = 232 total users, n = 221 user updates per epoch
and k epochs per day.

For legacy clients, the performance is asymptotically equivalent to that of
plain CONIKS. Each binding proof requires verifying one path in the tree, one
VUF, one commitment opening and one signature on the root which require a
constant 192 bytes. However, Ethereum’s Merkle tree structure is known to be
slightly inefficient in being hexary. Assuming N total users and n updates per
epoch (n ≤ N), the binary prefix tree in CONIKS requires a path of length
lg2 N with 256 bits of data per node to reconstruct the path. By contrast, the
Ethereum tree requires a path of length lg16 N = lg2 N

4 , but each node requires
up to (N − 1) · 256 bits of data per node. At our simulated size, this increases
the path representation from 1024 bytes to 3840 bytes, and the overall binding
proof size from 1216 bytes to 4032 bytes.

Ethereum-aware clients can save greatly on monitoring costs by only receiv-
ing updated paths when their data actually changes (or at a sampling frequency
of their choice). If clients are tracking all of the block headers in Ethereum,
this requires downloading at least 220 bytes per 13 s or 1.4 MB per day.6 They
might also get this data for selected blocks only by querying one or more trusted
sources. The complete proof will also require proof that the EthIKS tree is cor-
rectly included in the current block, the size of which will depend on the number
of contracts in existence. Currently this is less than 1000 so this proof is relatively
short, but it might be considerably larger in the future. To be conservative, we
assume 232 Ethereum contracts exist, requiring an additional 3840 bytes of data.

We combine these numbers in Table 2 comparing a user in a plain CONIKS
system, a legacy user in an EthIKS system, an Ethereum-aware user in EthIKS

Table 2. Client bandwidth requirements, in kB, assuming a ≈232 total users, ≈221

changes per epoch, 24 epochs per day, and ≈232 total Ethereum addresses. A legacy
client ignores Ethereum completely and simply uses the EthIKS provider’s signed tree
roots. A light client trusts Ethereum and relies on a third party to give it the latest
Ethereum block header when needed. A full client trusts Ethereum but downloads all
Ethereum block headers locally.

CONIKS EthIKS

Default Legacy client Light client Full client

Lookup (per binding) 1.2 4.0 7.9 7.9

Monitor (per epoch) 0.7 2.6 5.0 5.2

Monitor (daily) 17.6 62.4 7.9 1401

Audit (per epoch) 0.1 0.1 0 60

Audit (daily) 2.3 2.3 0 1394

6 This lower bound does not include block’s timestamp and difficulty (which can be
compressed), or the bloom filter whose size will vary based on usage.

104 J. Bonneau

willing to trust a third party to deliver the current Ethereum block header (a
light client) and an EthIKS client which downloads all Ethereum block headers
locally. Note that this requires a large amount of bandwidth (1.4 MB per day)
but might be useful for other purposes.

6 Concluding Discussion

Our analysis shows that EthIKS is a natural extension of CONIKS: it is simple
to implement and can be used by legacy clients with minor modifications and
only a small performance overhead compared with CONIKS. This performance
overhead would be reduced to near-zero by the adoption of a more efficient binary
Merkle prefix tree by Ethereum; the adoption of a hexary tree has already been
recognized as a regrettable design error [1] that may be fixed in future versions.

For Ethereum-aware clients, superficially additional bandwidth must be used
to track the chain of Ethereum block headers. However, this might be useful
on its own or be outsourced to a third party. These clients gain a significant
advantage over plain CONIKS: keys can be updated very rapidly (bound only
by Ethereum’s 13 s block generation time). These updates are also independent
of the service provider for user-controlled bindings. Furthermore, these clients
gain the full security of the Ethereum consensus protocol against equivocation
of the provider’s state or corruption of the update counters. Overall, this greatly
simplifies the service as promises to update are no longer needed (due to the fast
update time) and a separate gossip protocol can be eliminated.

The idea of building a naming system on top of Ethereum or other cryptocur-
rencies is not new. Namecoin [5] was the first formal fork of Bitcoin, designed to
provide a distributed naming system, and the simplicity of implementing Name-
coin in Ethereum (requiring only a few lines of code in the simplest form) has
even been used as a “Hello world!” teaching example of Ethereum programming.
However, Namecoin has struggled to gain any significant use, with nearly all reg-
istered names currently held by squatters [3] and no clear economic model for
assigning valuable names. It also offers no privacy for users, making it difficult
to retrofit to existing communication services. CONIKS (and in turn EthIKS)
addresses these problems by assuming a centralized service, which controls the
assignment of names and maintains privacy by managing a secret VUF key to
obscure name-key bindings. However, the central provider in CONIKS is not
fully trusted to avoid inserting spurious keys or equivocating about the state of
the system. This is prevented by public monitoring and auditing.

Our contribution is EthIKS, which improves on this design by leveraging
the Ethereum network to do this checking. Assuming Ethereum proves to be a
secure consensus computer in practice [6], EthIKS can enable greatly improved
efficiency for clients willing to trust the integrity of Ethereum, while enabling
normal CONIKS-like operation for legacy clients. We have implemented this
and shown that it is possible today for small providers, costing hundredths of
pennies per update to the tree. While the current network may not scale to large
providers requiring millions of updates, our work shows that it is asymptotically
efficient and therefore possible as the Ethereum network itself scales.

EthIKS: Using Ethereum to Audit a CONIKS Key Transparency Log 105

References

1. Ethereum Design Rationale (2016). https://github.com/ethereum/wiki/wiki/
Design-Rationale

2. Delmolino, K., Arnett, M., Kosba, A., Miller, A., Shi, E.: A Programmers Guide
to Ethereum and Serpent, May 2015

3. Kalodner, H., Carlsten, M., Ellenbogen, P., Bonneau, J., Narayanan, A.: An empir-
ical study of Namecoin and lessons for decentralized namespace design. In: Work-
shop on the Economics of Information Security (WEIS), June 2015

4. Laurie, B., Langley, A., Kasper, E.: Google Inc. RFC 6962 Certificate Trans-
parency, June 2013

5. Loibl, A.: Namecoin (2014). namecoin.info
6. Luu, L., Teutsch, J., Kulkarni, R., Saxena, P.: Demystifying incentives in the con-

sensus computer. In: ACM Conference on Computer and Communications Security
(CCS) (2015)

7. Melara, M.S., Blankstein, A., Bonneau, J., Freedman, M.J., Felten, E.W.:
CONIKS: bringing key transparency to end users. In: USENIX Security, August
2015

8. Miller, A., Hicks, M., Katz, J., Shi, E.: Authenticated data structures, generically.
In: ACM Conference on Principles of Programming Languages (POPL), January
2014

9. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System (2008). http://
bitcoin.org/bitcoin.pdf

10. Unger, N., Dechand, S., Bonneau, J., Fahl, S., Perl, H., Goldberg, I., Smith, M.:
SoK: secure messaging. In: IEEE Symposium on Security and Privacy, May 2015

11. Wood, G.: Ethereum: a secure decentralized transaction ledger (2014). http://
gavwood.com/paper.pdf

https://github.com/ethereum/wiki/wiki/Design-Rationale
https://github.com/ethereum/wiki/wiki/Design-Rationale
https://namecoin.info/
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
http://gavwood.com/paper.pdf
http://gavwood.com/paper.pdf

On Scaling Decentralized Blockchains

(A Position Paper)

Kyle Croman1,2, Christian Decker5(B), Ittay Eyal1,2, Adem Efe Gencer1,2,
Ari Juels1,3, Ahmed Kosba1,4, Andrew Miller1,4, Prateek Saxena7,

Elaine Shi1,2, Emin Gün Sirer1,2, Dawn Song1,6, and Roger Wattenhofer5

1 Initiative for CryptoCurrencies and Contracts (IC3), Ithaca, USA
2 Cornell University, Ithaca, USA

3 Jacobs, Cornell Tech, New York, USA
4 UMD, College Park, USA
5 ETH, Zürich, Switzerland
cdecker@tik.ee.ethz.ch

6 UC Berkeley, Berkeley, USA
7 NUS, Singapore, Singapore

Abstract. The increasing popularity of blockchain-based cryptocurren-
cies has made scalability a primary and urgent concern. We analyze how
fundamental and circumstantial bottlenecks in Bitcoin limit the abil-
ity of its current peer-to-peer overlay network to support substantially
higher throughputs and lower latencies. Our results suggest that repara-
meterization of block size and intervals should be viewed only as a first
increment toward achieving next-generation, high-load blockchain pro-
tocols, and major advances will additionally require a basic rethinking
of technical approaches. We offer a structured perspective on the design
space for such approaches. Within this perspective, we enumerate and
briefly discuss a number of recently proposed protocol ideas and offer
several new ideas and open challenges.

1 Introduction

Increasing adoption of cryptocurrencies has raised concerns about their ability to
scale. Since Bitcoin is a self-regulating system that works by discovering blocks at
approximate intervals, its highest transaction throughput is effectively capped
at maximum block size divided by block interval. The current trend of ever
increasing block sizes on Bitcoin portends a potential problem where the system
will reach its maximum capacity to clear transactions, probably by 2017 [46].
As a result, the cryptocurrency community has been discussing techniques for
improving scalability of blockchains in general, and Bitcoin in particular, for
some time. These debates have been vigorous, and at times acrimonous, and led
to splits within the community, without a clear path forward on which technical
measures ought to be deployed to address the scalability problem.

Today’s representative blockchain such as Bitcoin takes 10 min or longer to
confirm transactions, achieves 7 transactions/sec maximum throughput. In
c© International Financial Cryptography Association 2016
J. Clark et al. (Eds.): FC 2016 Workshops, LNCS 9604, pp. 106–125, 2016.
DOI: 10.1007/978-3-662-53357-4 8

On Scaling Decentralized Blockchains 107

comparison, a mainstream payment processor such as Visa credit card confirms a
transaction within seconds, and processes 2000 transactions/sec on average, with
a peak rate of 56,000 transactions/sec [10]. Clearly, a large gap exists between
where Bitcoin is today, and the scalability of a mainstream payment processor.
Therefore, the key questions are,

Can decentralized blockchains be scaled up to match the performance of a
mainstream payment processor? What does it take to get there?

This paper aims to place exploration of blockchain scalability on a scientific
footing. We note that “scalability” is not a well-defined, singular property of a
system, but a term that relates several quantitative metrics to each other.

We offer three contributions that illuminate the problem of scaling Bitcoin
and blockchains generally to achieve high-performance, decentralized systems:

Measurement Study and Exploration of Reparametrization. We present
experimental measurements of a range of metrics that characterize the resource
costs and performance of today’s operational Bitcoin network. As a first step
toward better scalability in Bitcoin, the community has put forth various propos-
als to modify the key system parameters of block size and block interval. Through
further experimental investigation, we show that such scaling by reparametriza-
tion can achieve only limited benefits given the network performance induced
by Bitcoin’s current peer-to-peer overlay network protocol while maintaining its
current degree of decentralization, as measured by number of functioning peers
in the overlay network.

Our results hinge on the key metric of effective throughput in the overlay
network, which we define here as which blocks propagate within an average
block interval period the percentage of nodes to. If the transaction rate exceeds
the 90 % effective throughput, then 10 % of the nodes in the network would be
unable to keep up, potentially resulting in denied services to users and reducing
the network’s effective mining power. To ensure at least 90 % of the nodes in the
current overlay network have sufficient throughput, we offer the following two
guidelines:

– [Throughput limit.] The block size should not exceed 4 MB, given today’s
10 min. average block interval (or a reduction in block-interval time). A 4 MB
block size corresponds to a maximum throughput of at most 27 transac-
tions/sec.

– [Latency limit.] The block interval should not be smaller than 12 s, if full
utilization of the network’s bandwidth is to be achieved.

We stress that the above guidelines seem somewhat intuitive (especially in
hindsight). The community has thus also proposed radically different scaling
approaches, and introduced mechanisms such as Corallo’s relay network, a cen-
tralized block-propagation mechanism. One of our contributions, however, is to
quantify Bitcoin’s current scalability limits within its decentralized components.

108 K. Croman et al.

Note that as we consider only a subset of possible metrics (due to difficulty in
accurately measuring others), our results on reparametrization may be viewed
as upper bounds: additional metrics could reveal even stricter limits.

Painting a Broad Design Space for Scalable Blockchains. Our find-
ings lead us to the position that fundamental protocol redesign is needed for
blockchains to scale significantly while retaining their decentralization. We com-
pile and review various technical approaches that can help blockchains scale. We
lay out a broad design space that encompasses not just incremental improve-
ments, but also radical rearchitecture. We frame a structured discussion of new
protocol design strategies in terms of a partitioning blockchain systems into
distinct planes, namely: Network, Consensus, Storage, View, and Side Planes.
We discuss the properties of each plane and both recent and new proposals to
improve each; we also discuss open research challenges.

Posing Open Challenges. Another goal of our paper is to articulate open
challenges in the service of (i) better understanding of scalability bottlenecks;
and (ii) the design of more scalable blockchains. As mentioned earlier, scalability
is not a singular metric, but captures the tension between various performance
and security metrics. So far, measurement and understanding of many impor-
tant metrics (e.g., fairness and mining power utilization [25]) are lacking —
partly because monitoring and measuring a decentralized blockchain from only
a few vantage points poses significant challenges. We call for better measurement
techniques such that we could continuously monitor the health of decentralized
system such as Bitcoin, and answer key questions such as “To what extent can
we push system parameters without sacrificing security?” “How robust is the sys-
tem when under attack?” Finally, although we paint the broader design space
for a scalable blockchain, instantiating and combining these ideas to build a
full-fledged system with formally provable security is a non-trivial challenge.

2 Bitcoin Scalability Today: A Reality Check

We analyze some of the key metrics of the Bitcoin system as it exists today.

Maximum Throughput. The maximum throughput is the maximum rate
at which the blockchain can confirm transactions. Today, Bitcoin’s maximum
throughput is 3.3–7 transactions/sec [1]. This number is constrained by the max-
imum block size and the inter-block time.

Latency. Time for a transaction to confirm. A transaction is considered con-
firmed when it is included in a block, roughly 10 minutes in expectation.1

1 Although we define latency in Bitcoin as the time to obtain a single confirmation,
some payment processors accept “zero-confirmation” transactions, while others fol-
low common advice to wait for 6 confirmations before accepting a payment.

On Scaling Decentralized Blockchains 109

Bootstrap Time. The time it takes a new node to download and process the
history necessary to validate the current system state. Presently in Bitcoin, the
bootstrap time is linear in the size of the blockchain history, and is roughly four
days (averaged over five fresh t2.medium Amazon EC2 nodes that we connected
to the network running the most recent master software).

Cost per Confirmed Transaction (CPCT). The cost in USD of resources
consumed by the entire Bitcoin system to confirm a single transaction. The
CPCT encompasses several distinct resources, all of which can be further decom-
posed into operational costs (mainly electricity) and capital equipment costs:

1. Mining: Expended by miners in generating the proof of work for each block.
2. Transaction validation: The cost of computation necessary to validate that

a transaction can spend the outputs referenced by its inputs, dominated by
cryptographic verifications.

3. Bandwidth: The cost of network resources required to receive and transmit
transactions, blocks, and metadata.

4. Storage: The cost (1) of storing all currently spendable transactions, which is
necessary for miners and full nodes to perform transaction validation, and (2)
of storing the blockchain’s (much larger) historical data, which is necessary
to bootstrap new nodes that join the network.

Table 1 presents our estimates of these various costs. As the table shows, the
majority of the cost is attributable to mining. Our calculation suggests that, at
the maximum throughput, the cost per confirmed transaction is $1.4 – $2.9,
where 57 % is electricity consumption for mining. If the de facto Bitcoin through-
put is assumed, the CPCT is as high as $6.2. We proceed to explain our cost-
estimation methodology.

To measure the cost per transaction for Bitcoin, we perform a back-of-the-
envelope calculation by summing up the electricity consumed by the network
as a whole, as well as the hardware cost of mining equipment. We project our
estimates based on the AntMiner S5+ mining hardware [8], which is the currently
available hardware that has the highest hash rate per joule, and the highest hash
rate per dollar according to this comparison as of October 2015 [2]. We assume
a 1 year effective lifetime for the hardware, and that the average hashing rate
of the network is 450,000,000 GH/s based on statistics from October 2015 [3].
Based on the power consumption of the selected hardware (0.445 W/GH), the
total power consumed by the network will be about 200 MegaWatt. Furthermore,
we assume the average price per KWh is $0.1 [48].

There are two interesting scenarios: The first scenario is when the Bitcoin
network is operating at maximum throughput, namely 3.3–7 transactions/sec.
This maximum throughput is mainly constrained by Bitcoin’s 1 MB maximum
block size and the variable transaction size. The lower bound of the maximum
throughput is inferred from the current average transaction size, about 500 bytes,
while the upper bound is based on an oft-cited estimate from [1] which corre-
sponds to unusually small (250 byte) transactions. The second scenario is the

110 K. Croman et al.

de facto average throughput for the Bitcoin network, which is, based on statistics
collected in October 2015, 1.57 transactions/sec [4].

Table 1 shows ballpark estimates for the transaction validation, storage, and
bandwidth costs. These estimates are attained assuming that the entire network
contains 5400 full nodes — a coarse-grained estimate obtained from https://
bitnodes.21.co/. We assume that each full node incurs roughly the running cost
of an EC2 micro-instance (∼ $0.01/h) to validate transactions; alternatively,
assuming a $500 processor with a 5-year life-time would yield the same ballpark
estimate. We assume that transactions are stored on an SSD drive with a 5-year
lifetime, costing about $0.3/GB today. We also assume all nodes store the entire
history, to maintain the system’s security. We assume each node maintains a
home-grade Internet connection (about $100/month) whose cost is amortized
over all transactions. We stress that an EC2 micro instance and a home-grade
Internet connection provide sufficiently large computation/network bandwidth
at the operating scale of today’s Bitcoin.

Table 1. Bitcoin cost breakdown. Includes cost incurred by all nodes.

At max throughput At de facto throughput

Cost/tx Percentage Cost/tx Percentage

Mining: proof-of-work ∼$0.8–$1.7 ∼56 % ∼$3.6 ∼56 %

Mining: hardware ∼$0.6–$1.3 ∼42 % ∼$2.7 ∼42 %

Transaction validation ∼$0.002 ∼0.2 % ∼$0.008 ∼0.2 %

Bandwidth ∼$0.02 ∼2 % ∼$0.08 ∼2%

Storage (running cost) ∼$0.0008/5years

We note that it is a fallacy to assume that transaction costs necessarily have
to be offset by transaction fees. In particular, the operational costs of running full
nodes may be offset by financial externalities, such as being able to confirm one’s
own transactions without trusting third parties, or by network effects, such as
selling items whose costs factor in the cost of operating a node. Miners, however,
are bereft of these two factors and need to be compensated in the steady state,
especially as the block subsidy is reduced over time.

Other Metrics. The above is of course not an exhaustive list of potentially
interesting metrics. For example, while we have focused on Bitcoin’s role as a
transaction medium, it also serves as a store of value. We might therefore consider
the cost per stored dollar as an alternative to CPCT. Many other metrics are of
interest and it is an open research question which can best inform technical and
policy decisions.

https://bitnodes.21.co/
https://bitnodes.21.co/

On Scaling Decentralized Blockchains 111

3 Scaling by Parameter Tuning and Fundamental Limits

The Bitcoin community has several propositions under discussion for increas-
ing the maximum block size (or to remove the limit altogether [42]). Bit-
coin Improvement Proposals (BIPs) 100, 101, 102, and 103, all involve a
fork, triggered by a combination of time and miner buy-in as reflected in the
blockchain [13,23,26,27,50]. These proposals differ primarily on the initial date
of the first increase, the block size change strategy (none vs. linear vs repeated
doublings vs optional reductions), and the percent of miner buy-in to trigger a
change. The segregated witness proposal [23] amends the blocksize by less than
a factor of 2 through a “soft fork” implementation, wherein legacy nodes do not
need to upgrade, but end up implicitly trusting the miners with transaction vali-
dation. The developer community has been further fragmented into various pro-
posals (Core, XT, Classic and Unlimited) that embody different combinations of
features and rollout schedules. There is, as of yet, no clear winner, partly because
it is difficult to determine, a priori, which change schedule will best fit future
changes in node provisioning. It is an open question whether reparametrization
alone can adequately address the growth needs of a medium-to-large transaction
processing system. In the rest of this section, we explore its limitations.

3.1 Measurement Study

A critical reference point for Bitcoin’s performance is Decker and Wattenhofer’s
2012 measurement study of the Bitcoin network’s block propagation [20]. At the
time, the median and 90-percentile time for Bitcoin nodes to receive a block was
6.5 s and 26 s respectively. This study also showed that for small blocks, less than
roughly 20 KB in size, latency was a significant factor in block propagation times.
Beyond this size, throughput was the dominating factor, and was invariant in
block size; thus they found that for large enough blocks the block propagation
times grew linearly with respect to the block size.

At the time of their measurement, the average block size was 87 KB. This
means that back in 2012, it would have taken 5 min for 90 % of the nodes to
receive a full 1 MB block — a significant fraction of the block interval.

Since nodes’ bandwidth provisioning and the network topology have evolved
since 2012, we repeated their measurement recently in 2014 and 2015. Our mea-
surement indicates that the 10 %, median, and 90 % block propagation times are
0.8 s, 8.7 s, and 79 s respectively. Further, the average block size is now roughly
540 KB. Projecting to a 1 MB block size, the 90 %, median, and 10 % block prop-
agation times would be 2.4 min, 15.7 s, and 1.5 s respectively.

X% Effective Throughput. We define the metric “X% effective throughput”
as X% effective throughput := (block size)/(X% block propagation delay).

Our measurement study suggests the following X% effective throughputs for
the network (with translation to transactions/sec for 250-byte transactions):

112 K. Croman et al.

X% X% effective throughput Translated to transactions/sec c.f. Visa

50% 496 Kbps 248 tx/sec 2000 tx/sec

90% 55 Kbps 26 tx/sec

We additionally performed experiments to determine the minimum block size
for throughput to dominate over latency, similarly mirroring the 2012 study by
Decker and Wattenhofer [20]. The results are depicted in Fig. 1. That figure
shows the overall rate (“network propagation rate”) at which blocks propagated
to 50 %, 75 %, and 90 % of nodes, capturing the combined effects of latency
plus throughput. As block sizes grow from zero, the network propagation rate
increases until it levels off at roughly 80 KB, suggesting that when the block size
is above 80 KB, throughput dominates over latency. At this point, the propaga-
tion rate for 90 % of nodes is about 55 Kbps, which is consistent with the 90 %
effective throughput observed in the table above for the current overlay network.

As the data are noisy, we do not provide an estimate of the latency. As it is
negligible for blocks of size above 80 KB, we disregard it elsewhere in the paper.

Fig. 1. Network propagation rate (capturing both latency and throughput) vs. block
size.

3.2 Limits of Scalability by Reparametrization

We now explore the potential of reparametrization to scale Bitcoin. If the aver-
age block size reaches the X%-effective capacity during a block interval, then
(100-X)% of the nodes on the network would be unable even to receive blocks
as they arrive, and thus would be effectively disabled.

We assume that it is desired to maintain nearly the current degree of decen-
tralization, as measured by the number of properly functioning nodes in the
peer-to-peer overlay network. For the purpose of our study, we take 90 % to be
our target. It is difficult to quantify what each node contributes towards the
overall virtue implied by decentralization. Not all nodes are necessarily miners;
and while some nodes can be associated with service providers and individual
users, there is no absolute measure of the economic significance of each node.
Our definition reflects an equal weighting of each node.

On Scaling Decentralized Blockchains 113

We also stress that our results assume the use of Bitcoin’s current peer-to-
peer overlay network. If the size or properties of the network change, that would
affect the X% effective throughput. We note, however, that Bitcoin’s overlay
network has remained stable in size from Nov. 2014 to Nov. 2015 at between
∼4500 to ∼6300 full nodes [5]. For brevity, we use the term “current overlay
network” to refer to these assumed conditions.

Throughput Limit. We observe that the block size and interval must satisfy:

block size
X % effective throughput

< block interval.

Consequently, for a 10 min (or shorter) block interval, the block size should
not exceed 4 MB for X = 90 %; and 38 MB for X= 50 %.

Observation 1 (Throughput Limit). Given the current overlay network and
today’s 10min average block interval, the block size should not exceed 4MB.
A 4MB block size corresponds to a throughput of at most 27 transactions/sec.

Latency Limit. To improve the system’s latency, we can in principle sim-
ply reduce the block interval. To do so while retaining high effective through-
put, however, would also require a reduction in the block size. Our experiments
reflected in Fig. 1

Propagating a block of size smaller than 80 KB would not make full use of the
network’s bandwidth, as latency would still be a significant factor in the block’s
propagation time. To propagate a 80 KB block to 90 % of the nodes would take
roughly 12 s, given that the 90 % effective throughput of the network today is
55 Kbps. Thus the following guideline.

Observation 2 (Latency Limit). Given today’s overlay network, to retain at
least 90% effective throughput and fully utilize the bandwidth of the network, the
block interval should not be significantly smaller than 12 s.

How to Interpret/Use These Numbers. We stress that the above are con-
servative bounds on the extent to which reparametrization alone can scale Bit-
coin’s peer-to-peer overlay network given its current size and underlying proto-
cols. Other, more difficult-to-measure metrics could also reveal scaling limita-
tions. One example is fairness. Our measurement results (see Sect. 3.1) suggest
that in today’s Bitcoin overlay network, when nodes are ordered by block prop-
agation time, the top 10 % of nodes receive a 1 MB block 2.4 min earlier than
the bottom 10 % — meaning that depending on their access to nodes, some
miners could obtain a significant and unfair lead over others in solving hash
puzzles. Due to complicating factors, e.g., the fact that many miners today do
not rely on a single overlay node to obtain transactions (and indeed often rely
on a separate, faster mining backbone to propagate blocks), we believe that this

114 K. Croman et al.

figure cannot directly inform reparametrization discussions. It is illustrative of
other metrics, however, that may be important but difficult to measure. Con-
sequently, until the Bitcoin system undergoes fundamental protocol changes,
gradual or conservative parameter changes may be prudent. Finally, note that
our throughput guidelines apply whether parameters are determined by market
outcome or enforced by hard-coded limit.

3.3 Bottleneck Analysis

While scaling the blockchain protocol by parameter tuning is possible, we find
that best achievable throughput is significantly smaller than the limit posed by
the underlying infrastructure.

In Table 2a, we show results from our measurement study where we perform
a per-node bandwidth measurement to more than 4000 Bitcoin nodes. Table 2a
suggests that individual nodes are provisioned with significantly higher network
bandwidth than the overall network throughput attained by Bitcoin today —
recall that the 90 % effective throughput today is 55 Kbps (see Sect. 3.1). The
reason why Bitcoin’s network stack cannot reach the per-node link bandwidth is
likely due to the combination of several factors. For example, each transaction
is transmitted twice, first for gossiping the transaction; and then after a block is
mined, the newly mined block will be propagated again including all transactions
it contains. Moreover, due to lack of pipelining, propagation over multiple overlay
hops introduce delay proportional to the length of the path. Finally, Table 2b
shows that the cryptographic overheads associated with transaction verification,
and disk I/O are unlikely the bottleneck.

Table 2. Per-node resource and bottleneck analysis.

%
Max. BW Tx thruput

Mbps tx/sec

90% 3.03 758
50% 33.03 8.3K
10% 186.10 46K

(a) Lower bound on per-node provi-
sioned bandwidth: measuring 4565 Bit-
coin nodes.

Resource
Max. thruput
[1000 tx/sec]

Tx validation on a modern
rossecorperoc-dauq 4

(2 signatures per Tx)

Disk I/O
Rotational 100MB/sec 200
SSD 300MB/sec 600

(b) Maximum throughput analysis.

4 Rethinking the Design of a Scalable Blockchain

We discuss techniques that will allow blockchains to scale beyond the parameters
of today’s Bitcoin. They range from incremental changes atop today’s decentral-
ized blockchain to more radical redesigns. The goal of this section is not to

On Scaling Decentralized Blockchains 115

propose an end-to-end system, but rather to paint the design space, suggest
promising approaches, and pose open challenges to the community.

We organize our discussion around a decomposition of the Bitcoin system
into a set of abstraction layers that we call planes. Ordered in a hierarchy of
dependency from bottom to top, the five planes we consider are the Network,
Consensus, Storage, View, and Side Planes.

In our exposition here, the ledger is the full history of the system, the complete
output of the Consensus Plane, as we define it below. A more precise definition
is possible that also specifies a particular confirmation policy, as ledger contents
may be subject to change, as in decentralized cryptocurrencies. For simplicity,
we do not model this feature of decentralized cryptocurrencies and instead treat
writes to the ledger as confirmed.

4.1 Network Plane

The function of the Network Plane is to propagate transaction messages. It
supports a broadcast abstraction in which a transaction message from any player
is transmitted to all (full) nodes in the Bitcoin network. The Network Plane
in Bitcoin is not a pure broadcast medium, however. Nodes only propagate
messages that represent valid transactions and thus the abstraction only accepts
valid transactions as inputs.

Our measurements have shown that Bitcoin’s network protocol and imple-
mentation do not fully utilize underlying network bandwidth, making Bitcoin’s
Network Plane the bottleneck in transaction processing. A natural direction to
improve scaling in Bitcoin is thus to improve the design of its Network Plane.

Two inefficiencies in Bitcoin’s Network Plane stand out. First, to avoid denial-
of-service by propagation of invalid transactions, a node must fully receive and
validate a transaction before further propagating it. (To be deemed valid, a trans-
action must ingest and produce legitimate transaction outputs and not conflict
with previous transactions.) This local validation of transactions contributes
significantly to the overall propagation time. Second, Bitcoin’s network-layer
protocol first propagates all transactions, and then propagates a block (contain-
ing previously propagated transactions) again when it is mined. This effectively
requires each transaction to be transmitted twice.

There have been several proposals to improve Bitcoin’s network-layer proto-
col. One possibility, to avoid transferring each transaction twice, is to rely on
a set reconciliation protocol in which nodes only fetch transactions that they
do not possess in a newly mined block [6,31,38,47]. Another option, in use by
miners today, is to use a dedicated, centralized, high-speed relay network for
inter-miner communication [19].

A different direction is to improve the network layer’s function as a broadcast
channel. The Network Plane could be designed as a robust P2P overlay topology,
with strong connectivity between honest nodes and a low diameter. Such overlay
topologies are usually expander graphs, which have known low-latency broad-
cast protocols [28,32]. To limit influence of adversarial nodes, the overlay could
randomize the location of all peers (outside of their control). Several previous

116 K. Croman et al.

distributed systems have adopted this approach [14,43]. To further limit denial-
of-service, nodes could rate-limit transmissions from their peers. Designing such
an overlay which maintains a strong connectivity between honest nodes (in the
presence of byzantine adversaries) is well-known for static networks [22,35], but
for highly dynamic networks is an active area of research [30].

A longstanding issue involving the Network Plane is the incentivization of
the participants. Researchers have noted that Network Plane lacks an incentive
structure for the dissemination of transactions, and have proposed a modified
fee splitting structure to provide robust incentives. Many other aspects of the
network protocol rely on voluntary participation and require ad hoc defenses to
stem flooding and denial of service attacks.

4.2 Consensus Plane

The function of the Consensus Plane is to designate a globally accepted set of
transactions for processing, as well as a total or partial order on these transac-
tions. As a general abstraction, this plane ingests messages from the Network
Plane and outputs transactions for insertion into the system ledger. In Bitcoin,
the Consensus Plane is the functionality that mines blocks and reaches consensus
on their integration into the blockchain.

Improving Proof-of-Work Protocols. Bitcoin’s blockchain protocol intro-
duces a tradeoff among consensus speed, bandwidth, and security. By improving
the former two, one introduces an increased number of forks, leading to a loss
of the mining power that secures the system and to reduced fairness [25]. Many
cryptocurrencies (e.g. [9]) favor consensus speed over security, employing a stan-
dard Bitcoin blockchain with a high block-generation frequency.

This three-way tradeoff, however, is not inherent in decentralized cryptocur-
rencies. The GHOST protocol [45] of Sompolinsky et al. as well as Lewen-
berg et al. [36] demonstrate that fairness and mining power utilization can be
improved by changing the chain selection rule, in particular, by being inclusive
to forks outside the main chain as well. In more recent work, Bitcoin-NG [25]
demonstrates that the inherent tradeoffs in Bitcoin can be eliminated with an
alternative blockchain protocol, offering a consensus delay and bandwidth lim-
ited only by the Network Plane.

Proof of Stake. Various proposals (e.g. [11,33]) use proof of stake to achieve
consensus, eliminating the computational expense of proofs of work. In proof of
stake, principals gain the right to create blocks by depositing funds they own.
These techniques, however, lack formal guarantees of system convergence [18].

Consortium Consensus. Decentralization carries a performance cost. A trust
model with stronger assumptions than those in Bitcoin can support a more
efficient consensus protocol, achieving better latency and throughput with less

On Scaling Decentralized Blockchains 117

computation, bandwidth, and storage. Specifically, using a standard Byzantine
Fault Tolerant (BFT) replication protocol with a small number of pre-designated
trusted entities removes many of the scaling obstacles in Bitcoin.

Settings involving BFT protocols executed by small sets of trusted entities
have received little treatment in the academic literature, but are of considerable
interest in practice, and mainstream financial institutions are actively exploring
their use [44]. They are sometimes referred to as “consortium blockchains.”

Consortium blockchains are worth investigation both as an alternative to
decentralized cryptocurrencies and to characterize the performance cost that
decentralized blockchains incur by distributing trust. In Appendix A, we present
performance figures and microbenchmarking results on experiments with a popu-
lar BFT protocol (PBFT) across a range of different system parametrizations and
with nodes dispersed across eight geographies worldwide. Our results illustrate
the attractiveness of BFT as a basis for the consensus layer in a cryptocurrency
(given acceptance of its strong trust assumptions). Even with dozens of nodes,
PBFT greatly outperforms Bitcoin in both transaction latency and throughput.
For example, 64 nodes processing batches of 8192 transactions can achieve a
throughput of 4.5 K tx/sec, average transaction latency of 1.79 s, and an esti-
mated resource cost per transaction of just $3.95 × 10−7.2 Scaling to hundreds
of nodes, however, would greatly degrade the performance of the system. As we
now explain, a promising approach to scaling and an open research direction is
how to shard a BFT protocol.

Sharding. One possible technique for improving the scalability of the Consensus
Plane is to shard it, that is, split up the task of consensus among concurrently
operating sets of nodes, with the aim of improving throughput and reducing
per-node processing and storage requirements. Sharding is commonly employed
in distributed databases, such as Dynamo, MongoDB, MySQL, and BigTable,
although performance typically does not grow linearly with shard count. This
is due to the need to reach consensus among the shards when operations span
multiple shards. One possibility, explored in a non-Byzantine environment in
past work [24,29,51], is to use a separate consensus protocol, such as Paxos, to
achieve agreement among the shards. Such schemes, however, can incur substan-
tial overhead when cross-shard coordination is required in a Byzantine setting,
so sharding protocols for blockchains are an open area of research.

Delegation of Trust and a Hierarchy of Sidechains. Another technique for
scaling is to create a hierarchy of lower-tier “consensus instances,” commonly
referred to as “sidechains.” Sidechains can potentially have a lower degree of
decentralization than the top-level blockchain. Sidechains may also run non-proof-
of-work consensus protocols, such as BFT. One sidechain structure, proposed by
Back et al. [15], permits transactions to move funds among independent chains.
2 Transactions in our experiments are 190 bytes long, all that is needed for a basic

money transfer; given the roughly 500 byte average size of Bitcoin transactions, the
system would achieve 1.7 k tx/sec.

118 K. Croman et al.

The introduction of sidechains raises three technical challenges. First, the
sidechains must be secured independently of the main blockchain. Merged min-
ing techniques [15] allow separate chains to share their mining power, but require
miner coordination. Without such coordination, the maintenance of sidechains
dilutes the mining power in the system, rendering the individual chains vulner-
able. Second, if sidechains are widely adopted, the chances that a given source
of funds and a desired destination are on the same sidechain are small, requir-
ing inter-chain transactions. Inter-chain transactions will have to go through the
main blockchain, possibly requiring two separate transactions, and therefore may
place more of a burden on the main blockchain and thus have an adverse impact
on scalability. Finally, transactions involving more than one decentralized chain
may incur high latency. Decentralized blockchains require the accumulation of
a number of blocks to ensure that a transaction will remain in the blockchain
with high probability. Transactions among chains will require a sequence of such
block accumulations, one per chain.

4.3 Storage Plane

The Storage Plane functions as a global memory that stores and provides
availability for authenticated data produced by the Consensus Plane. It
may be regarded as an abstraction with two interfaces: (1) It ingests and
processes memory-modification instructions—write and (potentially) delete
operations—from the Consensus Plane and (2) It services read requests from
any entity in the system. The storage plane contains the ledger of the system
but may also contain other state produced by consensus, such as smart contract
state or “views” supported by the View Plane.

There are several ways to implement the Storage Plane in a cryptocurrency.
In Bitcoin, the Storage Plane may be regarded as storing the Bitcoin ledger. The
Bitcoin reference implementation today by default stores the entire ledger; as a
result, the system stores many duplicates of the entire ledger. The Storage Plane
in Bitcoin accepts only writes that append data, namely newly mined blocks,
and does not support delete operations. The only generally supported read
operation for the Bitcoin Storage Plane downloads the contents of the entire
ledger, a process that requires four days (see Sect. 2). (Given the current height
of the blockchain, a downloaded ledger may be authenticated by reference to the
genesis block.) Thus, Bitcoin’s Storage Plane has notable inefficiencies.

Other implementations of and interfaces for the Storage Plane are possible.
The community has proposed interesting ideas that can essentially shard the
storage of a UTXO data structure [37] (see below). It is not clear how these
ideas would generalize to other forms of state that might go into the Storage
Plane, e.g., the state associated with smart contracts. How to shard a general-
purpose Storage Plane such that not all consensus nodes have to store it in its
entirety and such that its contents can be authenticated during read operations
is an open research challenge. Distributed Hash Tables (DHT) are a possible
start, coupled with suitable data authentication techniques.

On Scaling Decentralized Blockchains 119

4.4 View Plane

For Bitcoin miners, it is unnecessary to operate on the full ledger that stores
the entire transaction history. Thus miners and nodes in Bitcoin locally com-
pute and operate on a view of the ledger called the unspent transaction outputs
(UTXO) set, which in effect specifies the current balance of all entities in the sys-
tem. Similarly, in Ethereum smart contracts can define state that resides in the
ledger. Parties to a smart contract may wish to access and authenticate this state
without reading other parts of the ledger. For this reason, a key performance
requirement in cryptocurrencies (both decentralized and probably centralized)
is support for views.3

A view is a data structure derived from the full ledger whose state is obtained
by applying all transactions. For performance reasons, a view may be stored in
the Storage Plane and distributed in an authenticated fashion — Bitcoin did
not implement this optimization, and therefore new miners would now need four
days to reconstruct the UTXO set (which can be considered as a view) from the
beginning of time. In general, the view can be an arbitrary function of the full
ledger, not necessarily the UTXO set. As a piece of data in the Storage Plane, a
view must be determined either implicitly or explicitly by the Consensus Plane
and must be authenticable by any entity executing a Read operation against it.
There are a number of options for implementing a view, including the following.

Views via Replication. Bitcoin [39], Ethereum [49], and other popular decen-
tralized cryptocurrencies require all consensus nodes to verify all transactions
(and/or smart contracts), and based on the result of the computation, update
their respective views, e.g., UTXO sets, locally. In this case, the view is an
implicit output of the Consensus Plane and may be regarded as residing in the
Storage output: provided that it is correctly computed, it represents the com-
putation that an honest set of consensus nodes would produce, and of course it
has high availability.

Outsourcing Views via Cryptography. It is possible to outsource the com-
putation of a view to a third-party service provider. This provider may release
a cryptographic digest (e.g., Merkle-tree root) of this view along with a proof
of its correctness. By relying on verifiable computation techniques such as suc-
cinct non-interactive arguments of knowledge (SNARKs) [17,40], the provider
can produce a proof of correctness for the digest, supporting authentication of
the view. The view may then be inserted into the Storage Plane. If availability
is not essential, the view can alternatively be stored within some other part of
the system, e.g., by the provider itself, rather than in the Storage Plane.

One advantage of this approach is that consensus nodes now need not
store the entire ledger. They can instead operate over suitably chosen views.
A key question that must be answered, however, is whether cryptographic tech-
niques such as SNARKs are practically viable. In the Appendix, we present
3 We adapt the term “view” from its meaning in database theory, where it refers to

the result set of a stored query.

120 K. Croman et al.

experimental results showing that the amortized cost of employing SNARKs
can be as low as $0.0154 per transaction for computing a simple view that
essentially stores all users’ balances.

4.5 Side Plane

Much as sidechains allow off-the-main-chain consensus, we can consider off-chain
functionalities. Off-chain transactions have been demonstrated in payment net-
works [12,21,41], in which payments are routed along paths of pre-established
“collateral” channels. Each such channel represents a quantity of bitcoin reserves
set aside, such that parties can repeatedly adjust their relative stake by exchang-
ing out-of-band messages until the channel is finalized (and the reserves paid out).
While payment networks have been heralded as a solution to Bitcoin’s inherent
limitations, much of their operation, and the guarantees they can offer, rely criti-
cally on the nature of the links formed between parties. Even when payment net-
works use the same underlying transaction format as Bitcoin, as do the Lightning
Network [41] and full duplex channels [21], they essentially form a separate Net-
work Plane as well as an independent, peer-to-peer Consensus Plane, backed by
Bitcoin. As a result, their capacity, ability to find routes, achieved throughput,
latency, and privacy guarantees depend fundamentally on emergent properties of
the payment network graph, such as the value capacity of peer-to-peer channels,
the discoverability of routes, the online status of nodes involved, and so on. Fur-
ther, payment channels may embody a similar tradeoff between performance and
centralization in the payment network; a centralized hub-and-spoke topology that
simplifies routing embodies inherent problems with centralization, such as loss of
privacy. The design of protocols for efficient, scalable, privacy-preserving payment
networks is an ongoing area of research: it is far from a given that they can out-
perform Bitcoin’s Network and Consensus layers overall.

5 Conclusion

This paper explored the challenges in scaling Bitcoin and blockchains in gen-
eral. Supported by measurement studies, we showed that reparametrization of
the block size and interval in Bitcoin is only a first step toward substantial
throughput and latency improvements while retaining significant system decen-
tralization. More aggressive scaling will in the longer term require fundamen-
tal protocol redesign. Through a structured presentation of the design land-
scape for blockchain protocols, we illustrated the variety of potentially success-
ful approaches to such scaling, categorized a range of recently proposed and
new ideas, and framed a number of important open technical challenges for the
community.

Acknowledgements. This work is supported in part by NSF grants CNS-1314857,
CNS-1453634, CNS-1518765, CNS-1514261, CNS-1518899, a Packard Fellowship, a
Sloan Fellowship, two Google Faculty Research Awards, and a VMWare Research
Award.

On Scaling Decentralized Blockchains 121

Appendix

A BFT Experiments (Consortium Consensus)

Table 3. Consortium blockchain scalability. Results of running PBFT over geograph-
ically distributed EC2 nodes for some representative (n, k) parameterizations. As for
any BFT protocol, the throughput drops as the number n of nodes increases. Con-
versely, in this small experiment, enlarging the batch size k may be seen to increase
throughput at the cost of a small increase in latency.

of Nodes (n) Batch size (k) Latency Throughput Price per tx 500 byte tx

4 nodes (1 region) 32768 288 ms 113 K tx/sec $9.83 ×10−10 42.9 K tx/sec

8 nodes 8192 0.58 s 14.0 K tx/sec $1.59 ×10−8 5.3 K tx/sec

8 nodes 32768 1.48 s 22.2 K tx/sec $1.00 ×10−8 8.4 K tx/sec

16 nodes 8192 0.69 s 11.9 K tx/sec $3.73 ×10−8 4.5 K tx/sec

16 nodes 16384 1.04 s 15.8 K tx/sec $2.81 ×10−8 6.0 K tx/sec

32 nodes 2048 0.48 s 4.3 K tx/sec $2.07 ×10−7 1.6 K tx/sec

32 nodes 8192 0.925 s 8.8 K tx/sec $1.01 ×10−7 3.3 K tx/sec

64 nodes 2048 0.824 s 2.4 K tx/sec $7.40 ×10−7 0.9 K tx/sec

64 nodes 8192 1.79 s 4.5 K tx/sec $3.95 ×10−7 1.7 K tx/sec

Here we report on our experiments on BFT performance. Table 3 illustrates the
attractiveness of BFT as a basis for the consensus layer in a cryptocurrency
(given acceptance of its strong trust assumptions). Even with dozens of nodes,
PBFT greatly outperforms Bitcoin in both transaction latency and throughput.
Scaling to hundreds of nodes, however, would greatly degrade the performance
of the system.

Experiments were conducted using t2.medium Amazon EC2 instances. The
results are displayed in Table 3. The 4 node experiment represents a best-case
setting; all nodes were located in the US East N. Virginia region. In all other
experiments the nodes, plus a client furnishing transaction inputs but not par-
ticipating in the consensus protocol, were evenly distributed across 8 geographi-
cal regions: Northern Virginia, Oregon, Northern California, Ireland, Frankfurt,
Tokyo, Sydney, Sao Paulo. As instance costs vary by region, we conservatively
assume each node incurs the highest observed fee of $0.10 per hour. We experi-
mented with several batch sizes in order to locate the point at which each con-
figuration becomes bandwidth bound. Here, a transaction message is 190 bytes
in length and is modeled after a Bitcoin transaction, including a pay-to-public-
key-hash scheme and a digital signature.

We observed that configurations with a larger number of nodes became band-
width bound at smaller batch sizes. This is due to the primary node broadcast-
ing each batch to every other node participating in the protocol. Increasing the
batch size beyond this bound for a given configuration increases latency while
leaving throughput relatively unchanged. For smaller batch sizes the bottleneck

122 K. Croman et al.

was local processing, primarily signature verification for the batch as a whole.
Once an ordering of batches has been agreed upon and committed, individual
transactions may be processed and verified independently from the consensus
protocol. However, we expect to see a much larger slowdown when scaling to
hundreds of nodes, as the number of messages in standard BFT protocols grows
quadratically in the number of nodes.

B Use of SNARKs for Outsourcing View Computation

We now explain how SNARKs may be used to support computation of views
by a service provider, rather than individually by every node in the network (as
happens today). In our experiment, we assume that a simple view is adopted
containing all users’ account balances.

To support the secure outsourcing of view derivation, the provider (or prover,
as we might call it) must store the balance for each Bitcoin address used in the
transactions so far. As in Bitcoin, we assume 2160 possible public addresses.
The prover will maintain a Merkle tree of height 160, where each leaf stores
the balance of the public address identified by the path to the leaf. (Unused
zero-balance leaves do not have to be stored explicitly.) Computing the initial
digest of the tree when all balances are zero can be done by utilizing the similarity
across levels. Later, when a transaction is received, the system checks the balance
of the sender address, and if it is sufficient, transfers the desired amount to the
receiver’s balance. (In case of a mining reward, the initial check is not necessary.)
The prover then updates the ledger digests accordingly.

Using SNARKs, the service provider will be able to prove the correct appli-
cation of a set of transactions, and the correct update of digests. We evaluated
a SNARK circuit that checks and applies 25 1-sender 1-receiver transactions to
the ledger. Each transaction in that case specifies the desired amount of money
to be transferred. This is equivalent to 1-input 2-output transactions in Bitcoin,
where one of the outputs is a remainder going back to the sender’s address, but
the remainder does not have to be specified explicitly in our setting. The prover
then outputs the modified digest with a vector representing which transactions
were valid, and possibly the modified balances. To make the circuit efficient, we
used a SNARK-friendly collision resistant function based on subset sum [16], at
80-bit of security as in [34]. To experiment at higher transaction rate, multiple
circuits can be run in a nearly-parallel mode, by computing and feeding the next
digest quickly from one circuit to the next one without waiting for the proof to
complete.

Table 4 shows the estimated cost incurred by the prover (provider) and the
verifiers (relying miners or consensus nodes) to produce the proof at multiple set-
tings. We ran the experiment for the first case using an Amazon EC2 r3.8xlarge
instance [7] (using 32-cores for the proof computation, and single core for verifica-
tion) and using libsnark [17] as a backend, and estimated the overall performance
and cost accordingly assuming throughputs of 7 tx/sec, and 10 tx/sec. The table
shows that the computation cost for applying one transaction to the ledger is

On Scaling Decentralized Blockchains 123

Table 4. Verifiable outsourcing of ledger storage and maintenance using SNARKs

Rate Total proof Verification Proof # of Total cost Cost per tx

tx/block time (prover) time (verifiers) Size EC2s (prover) (prover)

25 496 s 0.01 s 288 bytes 1 $0.385 $0.0154

4200 (7tx/sec) 588 s 1.68 s 48 kbytes 168 $64.68

6000 (10tx/sec) 628 s 2.4 s 68 kbytes 240 $92.40

about $0.0154, but at high throughput, the waiting time for proof computation
is about or more than 10 min (implying a higher delay if higher security level is
used).

By adopting SNARKs, miners no longer need to store the full ledger nor the
necessary views to validate transactions. In this way, decentralized storage and
replication of the ledger and views can be decomposed from the consensus pro-
tocol and the view computation. Additionally, in our current experiments, we
assume that the consensus nodes are validating the signatures on the transac-
tions, and this signature validation is not performed within SNARKs (otherwise
the cost of SNARKs would be more expensive).

References

1. https://en.bitcoin.it/wiki/Scalability
2. https://en.bitcoin.it/wiki/Mining hardware comparison
3. https://blockchain.info/charts/hash-rate
4. https://blockchain.info/charts/n-transactions-per-block
5. https://bitnodes.21.co/dashboard/?days=365
6. https://gist.github.com/gavinandresen/e20c3b5a1d4b97f79ac2
7. Amazon EC2 pricing. http://aws.amazon.com/ec2/pricing/. Accessed 30 Oct 2015
8. Antminer S5+ hardware. https://bitmaintech.com/productDetail.htm?

pid=0002015081407532655504JMKzsM067B. Accessed 30 Oct 2015
9. Litecoin, open source P2P digital currency. https://litecoin.org

10. How a Visa transaction works (2015). http://web.archive.org/web/20160121231
718/http://apps.usa.visa.com/merchants/become-a-merchant/how-a-visa-transac
tion-works.jsp

11. NXT.org, Decentralized Financial Ecosystem (2015). http://nxt.org/
12. Shelat, A., Pass, R.: Micropayments for peer-to-peer currencies. In: CCS (2015)
13. Andresen, G.: Increase maximum block size (BIP 101). https://github.com/

bitcoin/bips/blob/master/bip-0101.mediawiki. Accessed Oct 2015
14. Awerbuch, B., Scheideler, C.: Towards a scalable and robust DHT. In: SPAA (2006)
15. Back, A., Corallo, M., Dashjr, L., Friedenbach, M., Maxwell, G., Miller, A.,

Poelstra, A., Timón, J., Wuille, P.: Enabling blockchain innovations with pegged
sidechains. https://www.blockstream.com/sidechains.pdf. Accessed 26 Nov 2015

16. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Scalable zero knowledge via
cycles of elliptic curves. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part
II. LNCS, vol. 8617, pp. 276–294. Springer, Heidelberg (2014)

https://en.bitcoin.it/wiki/Scalability
https://en.bitcoin.it/wiki/Mining_hardware_comparison
https://blockchain.info/charts/hash-rate
https://blockchain.info/charts/n-transactions-per-block
https://bitnodes.21.co/dashboard/?days=365
https://gist.github.com/gavinandresen/e20c3b5a1d4b97f79ac2
http://aws.amazon.com/ec2/pricing/
https://bitmaintech.com/productDetail.htm?pid=0002015081407532655504JMKzsM067B
https://bitmaintech.com/productDetail.htm?pid=0002015081407532655504JMKzsM067B
https://litecoin.org
http://web.archive.org/web/20160121231718/http://apps.usa.visa.com/merchants/become-a-merchant/how-a-visa-transaction-works.jsp
http://web.archive.org/web/20160121231718/http://apps.usa.visa.com/merchants/become-a-merchant/how-a-visa-transaction-works.jsp
http://web.archive.org/web/20160121231718/http://apps.usa.visa.com/merchants/become-a-merchant/how-a-visa-transaction-works.jsp
http://nxt.org/
https://github.com/bitcoin/bips/blob/master/bip-0101.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0101.mediawiki
https://www.blockstream.com/sidechains.pdf

124 K. Croman et al.

17. Ben-Sasson, E., Chiesa, A., Tromer, E. Virza, M.: Succinct non-interactive zero
knowledge for a von neumann architecture. In: Security (2014)

18. Bentov, I., Lee, C., Mizrahi, A., Rosenfeld, M.: Proof of activity: extending bitcoin’s
proof of work via proof of stake. https://eprint.iacr.org/2014/452/

19. Corallo, M.: High-speed Bitcoin relay network, December 2015. https://github.
com/TheBlueMatt/RelayNode

20. Decker, C., Wattenhofer, R.: Information propagation in the Bitcoin network. In:
IEEE P2P, pp. 1–10. IEEE (2013)

21. Decker, C., Wattenhofer, R.: A fast and scalable payment network with bitcoin
duplex micropayment channels. In: Pelc, A., Schwarzmann, A.A. (eds.) SSS 2015.
LNCS, vol. 9212, pp. 3–18. Springer, Heidelberg (2015)

22. Dolev, S., Tzachar, N.: Spanders: distributed spanning expanders. Sci. Comput.
Prog

23. Eric Lombrozo, P.W., Lau, J.: Segregated witness (consensus layer). https://
github.com/CodeShark/bips/blob/segwit/bip-codeshark-jl2012-segwit.mediawiki

24. Escriva, R., Wong, B., Sirer, E.G.: Warp: Lightweight Multi-Key Transactions for
Key-Value Stores. http://arxiv.org/abs/1509.07815

25. Eyal, I., Gencer, A.E., Sirer, E.G., van Renesse, R.: Bitcoin-NG: a scalable
blockchain protocol. Technical report, CoRR (2015)

26. Garzik, J.: Block size increase to 2MB (BIP 102). https://github.com/bitcoin/
bips/blob/master/bip-0102.mediawiki. Accessed Oct 2015

27. Garzik, J.: Making decentralized economic policy. http://gtf.org/garzik/bitcoin/
BIP100-blocksizechangeproposal.pdf. Accessed Oct 2015

28. Georgiou, C., Gilbert, S., Guerraoui, R., Kowalski, D.R.: Asynchronous gossip. J.
ACM 60(2) (2013)

29. Glendenning, L., Beschastnikh, I., Krishnamurthy, A., Anderson, T.: Scalable con-
sistency in Scatter. In: SOSP (2011)

30. Guerraoui, R., Huc, F., Kermarrec, A.-M.: Highly dynamic distributed computing
with byzantine failures. In: PODC (2013)

31. Johansen, H.D., Renesse, R.V., Vigfusson, Y., Johansen, D.: Fireflies: a secure and
scalable membership and gossip service. ACM Trans. Comput. Syst. (2015)

32. Karp, R., Schindelhauer, C., Shenker, S., Vocking, B.: Randomized rumor spread-
ing. In: FOCS (2000)

33. King, S., Nadal, S.: PPCoin: Peer-to-Peer Crypto-Currency with Proof-of-Stake,
August 2012

34. Kosba, A., Zhao, Z., Miller, A., Qian, Y., Chan, H., Papamanthou, C., Pass, R.,
Shelat, A., Shi, E.: How to use snarks in universally composable protocols. Cryp-
tology ePrint Archive, Report 2015/1093 (2015). http://eprint.iacr.org/

35. Law, C., Siu, K.-Y.: Distributed construction of random expander networks. In:
IEEE INFOCOM, pp. 2133–2143 (2003)

36. Lewenberg, Y., Sompolinsky, Y., Zohar, A.: Inclusive block chain protocols. In: FC
(2015)

37. Maxwell, G.: https://bitcointalk.org/index.php?topic=314467#msg3371194
38. Minsky, Y., Trachtenberg, A., Zippel, R.: Set reconciliation with nearly optimal

communication complexity. IEEE Trans. Inf. Theory (2003)
39. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System (2009). http://

bitcoin.org/bitcoin.pdf
40. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical verifi-

able computation. In: S&P (2013)
41. Poon, J., Dryja, T.: The bitcoin lightning network. https://lightning.network/

lightning-network-paper.pdf. Accessed 26 Nov 2015

https://eprint.iacr.org/2014/452/
https://github.com/TheBlueMatt/RelayNode
https://github.com/TheBlueMatt/RelayNode
https://github.com/CodeShark/bips/blob/segwit/bip-codeshark-jl2012-segwit.mediawiki
https://github.com/CodeShark/bips/blob/segwit/bip-codeshark-jl2012-segwit.mediawiki
http://arxiv.org/abs/1509.07815
https://github.com/bitcoin/bips/blob/master/bip-0102.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0102.mediawiki
http://gtf.org/garzik/bitcoin/BIP100-blocksizechangeproposal.pdf
http://gtf.org/garzik/bitcoin/BIP100-blocksizechangeproposal.pdf
http://eprint.iacr.org/
https://bitcointalk.org/index.php?topic=314467#msg3371194
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
https://lightning.network/lightning-network-paper.pdf
https://lightning.network/lightning-network-paper.pdf

On Scaling Decentralized Blockchains 125

42. Rizun, P.: A transaction fee market exists without a block size limit (2015)
43. Sen, S., Freedman, M.J.: Commensal cuckoo: secure group partitioning for large-

scale services. SIGOPS Oper. Syst. Rev. (2012)
44. Shin, L.: Bitcoin blockchain technology in financial services: how the disruption

will play out. Forbes, 14 September 2015
45. Sompolinsky, Y., Zohar, A.: Secure high-rate transaction processing in bitcoin. In:

FC (2015)
46. TradeBlock. Bitcoin network capacity analysis. https://tradeblock.com/blog/

bitcoin-network-capacity-analysis-part-1-macro-block-trends
47. van Renesse, R., Dumitriu, D., Gough, V., Thomas, C.: Efficient reconciliation and

flow control for anti-entropy protocols. In: LADIS (2008)
48. Wilson, L.: Average electricity prices around the world. http://shrinkthatfootprint.

com/average-electricity-prices-kwh
49. Wood, G.: Ethereum: a secure decentralized transaction ledger (2014). http://

gavwood.com/paper.pdf
50. Wuille, P.: Block size following technological growth (BIP 103). https://github.

com/bitcoin/bips/blob/master/bip-0103.mediawiki. Accessed Nov 2015
51. Xie, C., Su, C., Littley, C., Alvisi, L., Kapritsos, M., Wang, Y.: High-performance

ACID via modular concurrency control. In: SOSP (2015)

https://tradeblock.com/blog/bitcoin-network-capacity-analysis-part-1-macro-block-trends
https://tradeblock.com/blog/bitcoin-network-capacity-analysis-part-1-macro-block-trends
http://shrinkthatfootprint.com/average-electricity-prices-kwh
http://shrinkthatfootprint.com/average-electricity-prices-kwh
http://gavwood.com/paper.pdf
http://gavwood.com/paper.pdf
https://github.com/bitcoin/bips/blob/master/bip-0103.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0103.mediawiki

Bitcoin Covenants

Malte Möser1(B), Ittay Eyal2, and Emin Gün Sirer2

1 Department of Information Systems, University of Münster, Münster, Germany
malte.moeser@uni-muenster.de

2 Initiative for Cryptocurrencies and Contracts (IC3),

Computer Science Department, Cornell University, Ithaca, USA

Abstract. This paper presents an extension to Bitcoin’s script language
enabling covenants, a primitive that allows transactions to restrict how
the value they transfer is used in the future. Covenants expand the set
of financial instruments expressible in Bitcoin, and enable new power-
ful and novel use cases. We illustrate two novel security constructs built
using covenants.

The first, vaults, focuses on improving the security of private crypto-
graphic keys. Historically, maintaining these keys securely and reliably
has been a critical vulnerability for Bitcoin users. We show how covenants
enable vaults, which disincentivize key theft by preventing an attacker
from gaining full access to stolen funds.

The second construct, poison transactions, is a generally useful mecha-
nism for penalizing double-spending attacks. Bitcoin-NG, a protocol that
has been recently proposed to improve Bitcoin’s throughput, latency and
overall scalability, requires this feature. We show how covenants enable
poison transactions, and detail how Bitcoin-NG can be implemented pro-
gressively as an overlay on top of the Bitcoin blockchain.

1 Introduction

Bitcoin is an innovative payment system built to enable a wide variety of finan-
cial contracts that are executed in a decentralized manner. Part of its power and
expressiveness derives from the way transactions use a flexible script language
to specify redemption criteria. The system ensures that subsequent transactions
must fulfill the redemption criteria in order to unlock the embedded value. While
traditional financial contracts rely on trust and after-the-fact enforcement, Bit-
coin’s scripting mechanism allows to enforce contracts within the currency sys-
tem itself.

Yet, the functionality provided by the scripting language is characterized by
an inherent trade-off between security, efficiency, and expressiveness. Currently,
the expressiveness of the script language is limited, not only by the constricted
operations of the language, but also by the information that can be accessed in
or checked by a script program.

c© International Financial Cryptography Association 2016
J. Clark et al. (Eds.): FC 2016 Workshops, LNCS 9604, pp. 126–141, 2016.
DOI: 10.1007/978-3-662-53357-4 9

Bitcoin Covenants 127

To extend the capabilities of the system, we propose an extension to Bit-
coin’s script language that enables covenants1: transactions that are able to
enforce restrictions on the composition of subsequent transactions (cf. Sect. 3).
Covenants enable multiple novel and powerful use cases. We first illustrate the
power of covenants by describing how colored coins, a well-established but ill-
supported idea to attach meaning beyond nominal value to bitcoins, would ben-
efit from the ability to prevent such coins from accidentally mixing into general
circulation. We then focus on two new use cases.

First, we use covenants to implement secure vaults, which addresses one
of the biggest problems of cryptocurrency security: the difficulty of secure key
management. Vaults improve end-user security by disincentivizing theft of coins
using a mechanism that prevents an attacker from gaining full control over funds
despite stealing the private keys used to secure them (cf. Sect. 4).

Then, we describe how covenant functionality enables new overlays to be
placed on top of the Bitcoin blockchain. Making changes to the consensus pro-
tocol of a cryptocurrency is a difficult process as it requires agreement by par-
ticipants and stakeholders. Bitcoin-NG [16] is an alternative blockchain protocol
that promises significant improvement in transaction throughput and confir-
mation delay. However, changing Bitcoin’s blockchain protocol would require a
change to Bitcoin’s consensus protocol, a daunting task.

We use covenants to implement poison transactions, which invalidate a
deposit using fraud proof. With poison transactions, we detail the implementa-
tion of Bitcoin-NG as an overlay on top of Bitcoin. This implementation can be
progressively adopted, not requiring a change of the consensus rules (cf. Sect. 5)
beyond the general functionality of covenants.

In summary, this paper makes the following contributions:

1. Covenants, a new script operation that enables novel security constructs,
2. Vaults, a construct that reduces private key theft incentives by prohibiting

an attacker from gaining control of funds, and
3. An implementation of Bitcoin-NG as an overlay using covenant-enabled poi-

son transactions.

We review related work in Sect. 6 and conclude in Sect. 7.

2 Preliminaries

Bitcoin is a distributed, decentralized cryptocurrency [23] that uses a probabilis-
tic consensus protocol to serialize transactions of the currency among its users.
We describe the elements of Bitcoin’s design relevant to this work, a detailed
description of the system can be found in [4,26].

The novel data structure used in Bitcoin, and many other derived altcoins
[14,21], is the blockchain, an append-only log used to track and store currency
1 A covenant is a special contract in property law that restricts the use of an object,

typically restricting the use of land for certain purposes. We adopt the term from
earlier discussions on related ideas [22], which are discussed in Sect. 6.

128 M. Möser et al.

transactions. To serialize new transactions, miners aggregate transactions in a
block and append the block to the ledger by solving a proof of work crypto
puzzle. This process is financially rewarded by allowing the successful miner to
mint new coins in a special coinbase transaction.

Rather than having a notion of accounts and transactions among accounts,
as in earlier cryptocurrency systems [9,27], Bitcoin tracks the individual coins,
or, more accurately, fractions of coins. Each transaction in Bitcoin describes the
movement of coins from one logical location to another. Cryptographic tools
allow only designated principals to move coins out of a location.

Transaction Structure. The logical locations are called transaction outputs. Each
transaction contains an array of such outputs and specifies the amount of cur-
rency it places in each. A location is uniquely defined by the unique transaction
identifier and the index of the output. The coins placed are moved, or spent,
from their previous locations, namely transaction outputs of previous transac-
tions. The sources are listed in the transaction in an array of transaction inputs.
We note that there is no notion of individual coin tracking — there is no mean-
ingful way to connect specific inputs to specific outputs.

The sum of values in the outputs referenced by a transaction’s input array
is the total input value of the transaction. The total output value, given by the
sum of values in the transaction’s output array, cannot be larger than the total
input value. Any value not accounted for is transacted to an output specified by
the miner who generated the block in the block’s coinbase transaction.

Each transaction furthermore has a locktime field that determines the mini-
mal time (block number or unix time) after which it can be placed.

Script. To make sure that funds can only be spent by designated principals,
spending an output requires satisfying a predicate. Such a predicate is included
in each output as a program written in a stack-based language called Script [23].
Inputs redeeming an output have to provide data to the output’s program. A
transaction is valid if its inputs yield true for all corresponding outputs.

In the common case, transactions are secured with public-key cryptography.
The logical location of a coin is defined by the public key supplied in the output’s
script program. The owner, and only this owner, can move the coins by proving
her control of the matching private key in the input.

Typical output script programs require the ownership of one or more private
keys for successful validation by including public keys or hashes thereof. To
validate signatures corresponding to the keys listed, the script language contains
a CheckSig operation that accepts a signature and a public key, and then verifies
the validity of the signature computed over the spending transaction. A detailed
step-by-step execution of a script program can be found in [26].

The Bitcoin script language is intentionally restricted to a small set of
opcodes, prioritizing security and efficiency over expressiveness and feature-
completeness. A key limitation is that the scope of Bitcoin’s script operations is
restricted to the data provided in the output program and the data provided in
the input script. This rule will, however, soon have an exception in the form of

Bitcoin Covenants 129

two new opcodes (which we will use) called CheckLockTimeVerify (CLTV) [25]
and CheckSequenceVerify (CSV) [6]. These allow to make an output unspend-
able until a certain point in time is reached. This extends the awareness of the
script to the current position of the transaction in the blockchain.

Algorithm 1. Specification of CheckOutputVerify
1 On CheckOutputVerify(index, value, pattern)
2 if not exists output at output index then
3 return False
4 if value �= 0 then (Check value)
5 if (value at output index) �= value then
6 return False

7 if pattern �= 0 then (Check pattern)
8 sanitizedPattern ← pattern, replacing pattern-placeholders with

pattern, then replacing key placeholders with 0’s
9 map ← 1’s of length sanitizedPattern, but 0’s at key placeholders

10 if (script at output index bitwise-and map) �= sanitizedPattern
then

11 return False

12 return True

3 Covenants

Our main contribution is an extension of Bitcoin’s script language to enable
covenants: restrictions on future use of coins. Covenants enable a transaction
output to restrict the outputs in its spending transaction. Using a form of reflec-
tion, a covenant can be specified recursively. This enables the enforcement of
covenants across a potentially unlimited number of subsequent transactions.

In this section, we describe the operation of single-use covenants (Sect. 3.1)
and show how to extend them into the future by applying them recursively
(Sect. 3.2). As a running example, we use distinguished coins (Sect. 3.3). Inspired
by colored coins [11], distinguished coins are tokens that correspond to real-world
assets that should not be mixed or merged with others.

3.1 Basic Covenants

Each transaction output consists of an amount and an output script program.
We enable covenants by adding a new operation to the scripting language that
restricts both of these fields. Specifically, the operation takes an output index,
an amount and a pattern. It verifies that the output at the given index exists,
that it carries the required amount and that its script matches a given pattern.
Algorithm 1 shows the formal specification.

We implement this operation as a patch of Bitcoin Core, the standard Bitcoin
client, as an opcode, CheckOutputVerify. The opcode expects the index as the

130 M. Möser et al.

first parameter, allowing to place it in the input of the spending transaction.
The creator of the spending transaction can therefore determine the output’s
position.

The script pattern is simply a script program with placeholders for variable
parts. We make use of two placeholder opcodes that are already used internally
by the client, namely PubKey and PubKeyHash, to represent arbitrary public keys
or hashes of public keys within the pattern.

Both placeholders represent fields of static size. The script interpreter
replaces each placeholder with the appropriate number of zero-bits. Separately,
it creates a bitmask with the program’s size that masks out these placeholder
locations. A bitwise comparison of both programs sanitized with the bitmask
then yields the verification results.

There may exist scenarios in which it is only necessary to check the value or
the script program, but not both. In this case, either of those values can be set
to 0. This prevents one from requiring that an output script is actually equal to
False, which prevents any future spending of the output. It also prevents one
from requiring that an output carries 0 value, which is not a useful notion either.

A toy example will lead us to the construction of the distinguished coins
covenant. Here, we will let a specific 1 BTC stand in for the ownership of a real-
world asset. The transaction output requires that the subsequent output sends
exactly 1 BTC to an arbitrary public key. We supply CheckOutputVerify with
(1) an output index of 0, (2) an amount of 1 BTC (specified as 100,000,000 units
of 10−8 Bitcoin, called Satoshis) and (3) a pattern that contains a placeholder
for a public key (PubKey) followed by the CheckSig opcode:

0 <100000000 > <PubKey CheckSig > CheckOutputVerify.

This covenant ensures that the bitcoin corresponding to the asset can only
be transferred in whole and cannot be mixed with other coins. This particular
covenant, however, only holds for one transaction.

3.2 Recursive Covenants

It is critical to be able to apply covenants to an entire chain of transactions that
derive from a covenant-bearing transfer. This section describes how this can be
accomplished with recursive covenants.

We start by enforcing our example covenant over two subsequent transactions
by including the covenant for the second output in the covenant for the first
output. Modifying our example, the following script program not only enforces
the first output in the next transaction to have a value of 1 BTC, but also puts
the same restriction on the first output in the subsequent transaction (we omit
the output’s index hereinafter as they can be supplied in the input script).

<100000000 > < <100000000 > <PubKey CheckSig > CheckOutputVerify

PubKey CheckSig > CheckOutputVerify <keyDest > CheckSig

To extend the sequence of outputs further, we could again include another
CheckOutputVerify command in the innermost script pattern. Since we cannot

Bitcoin Covenants 131

repeat this infinitely, and instead of creating a self-reproducing script (a Quine),
we use the interpreter to replace a dedicated keyword with the pattern itself.

We therefore add a new placeholder opcode called Pattern that allows to
specify the occurrence of the pattern within itself. When evaluating a pattern,
the Pattern opcode will be replaced by the pattern itself, thereby resolving the
recursion one step at a time. The following example demonstrates the basic use
of the Pattern opcode.

<100000000 > < <100000000 > Pattern CheckOutputVerify PubKey

CheckSig > CheckOutputVerify <keyDest > CheckSig

When evaluating the pattern in this script program, the Pattern opcode will be
replaced by the full pattern itself, yielding the exact same script as a pattern for
comparison with the script program of the spending output.

3.3 Distinguished Coins

Many (most notably [11]) have noted that Bitcoin can be used as a digital
asset exchange mechanism by associating a physical asset to a certain coin. For
example, one could attach an arbitrary amount of bitcoins to a certain amount
of gold, deposited with a trusted party. This coin could then be used to represent
ownership of the gold and be easily traded.

However, as we noted above, bitcoin amounts are not separately tracked
by the system, as every Bitcoin transaction inherently mixes all of its inputs’
values. In contrast, covenants are carried from one input to a distinct set of
outputs, thereby making it possible to meaningfully link currency flows. Our
running example constructs distinguished coins by enforcing the coin to retain
its distinguished status in all subsequent transactions.

A small security issue inherent to the script used so far is that a user can
have multiple distinguished coins with the same value. When the output index
is explicitly provided in the input, a user could reuse the same index for multiple
covenants and thereby invalidate all but one of the distinguished coins. Solving
this problem is straightforward as each distinguished coin can include a unique
identifier in the script that prevents mapping multiple inputs to the same output,
as in the following example. First, we define patternDistinguishedWithId as

<assetId > Drop <value > Pattern CheckOutputVerify PubKey

CheckSig ,

and the distinguished coin covenant is

<assetId > Drop <value > <patternDistinguishedWithId >
CheckOutputVerify <keyDest > CheckSig .

3.4 Overhead

The CheckOutputVerify opcode maintains Script’s simplicity, and does not
introduce excessive overhead. While CheckOutputVerify does not enable loops,

132 M. Möser et al.

a näıve implementation (verbatim following the specification of Algorithm 1)
could cause the interpreter to form an excessively large final script program
with repeated use of the Pattern opcode. To mitigate this concern, instead
of first replacing all Pattern placeholder with the script itself, the interpreter
incrementally expands the pattern and compares the prefix, thereby bounding
the overhead to the parsing time of the output to be matched.

3.5 Discussion

Variants. There are a few design choices in our implementation of covenants.
For instance, the covenant opcode could be made more flexible than a simple
match. One option is that the opcode can return true or false on the stack,
indicating the verification result. This would allow for elaborate combinations of
validity conditions. Similarly, an opcode can return the output value, allowing
arithmetic operations for validation.

Our current implementation allows covenants in different transaction inputs
to refer to the same outputs, which requires some diligence of covenant pro-
grammers. This behavior can be removed by enforcing a one-to-one mapping
of output checks to transaction outputs. Each transaction input can check any
number of the outputs and map these outputs in order, according to the transac-
tion input order and the access order with CheckOutputVerify. This alternative
implementation introduces slightly more complexity, but is also more resilient
to human error.

Covenant Termination. As part of the covenant programmer’s responsibility, we
note that in various cases covenants should enable an exit strategy, allowing to
repurpose a coin, for example after a set time or with a specific private key.

4 Vault Transactions

Bitcoin funds are, by and large, protected by sets of cryptographic secret keys.
Whoever knows those keys can instantly, anonymously, and irrevocably move
the funds by spending the transaction outputs in which they are represented.

This makes Bitcoin private key theft an attractive target for thieves. A long
list of thefts has been curated by the Bitcoin community [20], illustrating that
attackers have been able to steal bitcoins worth millions of USD. Even major
Bitcoin companies frequently fall prey to such attacks (e. g., [19]).

Correctly managing private keys is therefore one of the central challenges
for client-side security in Bitcoin in order to protect users from both accidental
loss and deliberate theft. A recent study by Eskandari et al. evaluated different
methods of key management and concluded that each of them is vulnerable to
a range of attacks [15].

A common approach for storing bitcoins in a secure manner is to put them into
“cold storage”, which means that their keys are stored on a device not connected

Bitcoin Covenants 133

to the Internet. However, in order to retrieve the coins, one must regularly (albeit
infrequently) interact with those keys, which makes them vulnerable as well.

We now introduce recoverable vaults, which reduce the incentive for Bitcoin
private key theft. Vaults provide two mechanisms to increase security. First,
funds stored in a vault can be recovered using a recovery key in case the vault
key is compromised. Second, in case the recovery key is compromised as well,
the owner can still prevent the attacker from moving the coins; the worst the
attacker can do is to prevent the owner from regaining full control over the funds.
As this reduces the motivation for key theft, users can be more permissive in
their storage of the private keys, reducing the chances of key loss.

Note. As explained below, vault transactions use a delay mechanism. We note
that vault transactions cannot be implemented with existing timing mechanisms
such as the CheckLockTimeVerify opcode or transaction locktime.

4.1 Overview

Vault transactions prevent an attacker from instantly moving funds from a vic-
tim’s wallet by enforcing a delay for the transfer of those bitcoins. Coins placed
in a vault transaction cannot be released immediately. The key idea of vaults is
that the spending transaction has to be placed publicly on the blockchain, with
its output locked for a specified amount of time. During this period, the owner
of the coins can abort the release of the coins using a recovery key (preferably
placed in cold storage) to send them to a different address in a new spending
transaction, thereby denying the payout from the attacker. When the attacker
also gains access to the recovery key, she can use the same recovery mecha-
nism to again try to send the funds to her address. However, as the covenant is
enforced recursively, the legitimate owner can again cancel the payout. Using a
long locktime, it is cheap for the legitimate owner to maintain the block.

While ultimately the attacker can blackmail an owner, promising a share of
the funds once they are released, this increases both the cost and the exposure
of the attacker due to the need to communicate with the victim and provides a
lead for criminal investigations.

4.2 Architecture

To secure an amount with a vault, a user sends it to a vault fund transaction. The
output of this transaction requires a signature corresponding to the vault key
and contains a covenant script program that enforces that the output cannot be
spent directly, but must be spent through a vault spend transaction. The vault
spend offers two possibilities to redeem its funds. First, the funds can be spent
to a standard output, but only after a certain time has passed, e. g., 100 blocks
using a locktime. This is the timer on the vault. When there is no attack, this
simply delays the payout from a vault.

Alternatively, the funds can be spent at any time (without having to wait for
the locktime to expire) using the recovery key in another vault spend, identical
to the first one (cf. Fig. 1). This effectively resets the locktime of the funds.

134 M. Möser et al.

Vault
Fund

Vault
Spend

Regular
Spend

Vault
Recovery

Regular
Spend

//
100 blocks

//
100 blocks

Fig. 1. The attackers spending attempt (red) is interrupted by a vault recovery issued
by the legitimate owner, followed by a regular spend of the legitimate owner (green)
(Color figure online)

4.3 Script Programs

In the following we provide the script programs implementing vault transactions.
Beside our CheckOutputVerify, we assume the availability of another opcode
that is currently being developed called CheckSequenceVerify (CSV) [6], which
allows outputs to specify a locktime relative to the block height (or timestamp)
when their containing transaction is committed to the blockchain.2

Vault Spend. Assume that 1 BTC has been locked in a vault. To spend this
bitcoin, the payout transaction has to specify a relative locktime (using CSV)
after which the coin can be redeemed with the signature belonging to a certain
public key. Before the locktime expires, the funds can be moved to an output that
retains the value and adheres to the vault pattern (which we describe below).
This new output must be accompanied with a signature corresponding to the
recovery key.

If

<100> CheckSequenceVerify <keyDest > CheckSig

Else

<100000000 > <patternVault > CheckOutputVerify <keyRecovery >
CheckSig

EndIf

Pattern. To enforce the above script program structure, we use the following
pattern. Coins can be spent with an arbitrary public key (specified by the PubKey
placeholder) after a relative locktime of 100 blocks has passed, or immediately
respent in an output that adheres to the same pattern (enforced through the
Pattern placeholder) and provides a valid signature with the recovery key.

If

<100> CheckSequenceVerify PubKey CheckSig

Else

<100000000 > Pattern CheckOutputVerify <keyRecovery >
CheckSig

EndIf

2 We abstract from opcode behavior specific to Bitcoin’s soft-fork upgrade mechanism,
namely the need to drop items from the stack afterwards.

Bitcoin Covenants 135

Vault Fund. To initially lock funds in a vault, we use a script program which
specifies that an output in the redeeming transaction must adhere to the
patternVault, have the same value (otherwise it would be possible to retrieve
the money through another output) and that the transaction has to provide a
valid signature corresponding to the vault key.

<100000000 > <patternVault > CheckOutputVerify <keyVault >
CheckSig

5 Bitcoin-NG Overlay

Bitcoin-NG is a blockchain protocol that offers major improvements of trans-
action bandwidth and latency in comparison to Bitcoin [16]. We explain how
we can use covenants to deploy Bitcoin-NG’s core features on top of Bitcoin,
so users can benefit from improved efficiency. This allows to gradually deploy
Bitcoin-NG, with nodes gradually adopting it.

In the following, we overview the Bitcoin-NG protocol (Sect. 5.1) demonstrate
how such a deployment can be carried out (Sect. 5.2) and how covenants allow
to implement Bitcoin-NG on top of Bitcoin by providing a mechanism to realize
poison transactions (Sect. 5.3).

5.1 Preliminaries: Bitcoin-NG Operation

Bitcoin-NG’s blockchain has two types of blocks. Key-blocks are generated with
proof of work, like in Bitcoin, but contain no transactions. They serve as a leader
election mechanism and contain a public key that identifies the chosen leader.
Once a leader is elected, she publishes microblocks that contain transactions.

In order to motivate participants to follow the protocol, Bitcoin-NG uses
the following mechanisms. As in Bitcoin, proof-of-work is motivated by a sub-
sidy — a prize for mining. As in Bitcoin, each transaction pays a fee to the
system, but unlike Bitcoin, this fee is distributed, with 40 % to the leader, and
60 % to the subsequent leader. Finally, if a leader forks the chain by generating
two microblocks with the same parent, she is punished by revoking her subsidy
revenue; whoever detects the fraud wins a nominal fee.

5.2 Overlaying Bitcoin-NG on Top of Bitcoin

Our goal is to have Bitcoin-NG nodes use the Bitcoin protocol when communi-
cating with other Bitcoin nodes, but use the Bitcoin-NG protocol when talking
to Bitcoin-NG nodes.

To achieve this, all the information in Bitcoin-NG blocks — both key-blocks
and microblocks — must be translated into standard Bitcoin blocks for compat-
ibility. Specifically, key-blocks are mapped to standard Bitcoin blocks. We start
with the case where consecutive key-blocks are found by Bitcoin-NG miners.
The second miner puts all transactions placed in microblocks by the previous

136 M. Möser et al.

miner into the mapped Bitcoin block. When Bitcoin-NG nodes communicate
with each other, they exchange key-block and microblock data structures. A
Bitcoin-NG node can reconstruct the standard Bitcoin blocks on demand. How-
ever, if a Bitcoin-NG node communicates with a standard Bitcoin node, it sends
the standard blocks, which contain all the transactions. For both Bitcoin and
Bitcoin-NG nodes, mining is performed on the standard Bitcoin blocks, again,
for backward compatibility.

Recall that in Bitcoin-NG the transaction fees are distributed among the
current and next leaders. In the overlay implementation, the microblock trans-
actions are actually placed in the subsequent key-block, and their fees go to the
subsequent leader. This key-block must therefore redistribute those fees. If the
fees are not distributed correctly, the block is not a valid Bitcoin-NG key-block,
and it is considered a standard block by the protocol.

However, if not all miners are running the Bitcoin-NG client, some blocks
are found by non-NG miners. These do not respect the microblock chain of the
current leader, and do not distribute the fees correctly. If a Bitcoin-NG key-
block (and its microblocks) is followed by a standard block, Bitcoin-NG-miners
discard the current microblock chain; the leader, previously chosen, remains
leader and starts a new microblock chain on top of the standard block. This is
illustrated in Fig. 2. A new leader will thus pay 40 % of the fees in the latest
microblock chain to the previous leader, no matter how many standard block
separate its key-block from the previous leader’s key-block. Keeping the leader
across standard blocks has two objectives. First, the Bitcoin-NG fast transaction
commitment can be used even after standard blocks. Second, it increases the
incentive to run a Bitcoin-NG node, as the leader is guaranteed to win 40 % of
a subsequent epoch, even if not the immediate next one.

NG NG BTC NG

60% 60 %40% 100% 60%

40 %

discarded as fork

Fig. 2. Structure of a mixed Bitcoin and Bitcoin-NG blockchain

5.3 Poison Transactions

The missing piece towards deploying Bitcoin-NG on top of Bitcoin are poison
transactions. Leaders commit to destroying a large share of their own coinbase
reward if they produce a fork in their microblock chain. Destroying the value of
the coinbase is enforced by a covenant. Without this commitment, the blocks
are not accepted as valid Bitcoin-NG blocks.

Bitcoin Covenants 137

Poison Structure. Bitcoin-NG’s coinbase transactions need a time frame in which
they are unspendable by the miner, but destroyable by a poison transaction. In
Bitcoin, a consensus rule enforces that normal coinbase outputs can be spent
after 100 confirmations [3]. Bitcoin-NG’s coinbase transactions must therefore
delay the ability to spend the coinbase output by an additional number of
blocks t. We implement this using CLTV:

If

<height +100+t> CheckLockTimeVerify <pkLeader > CheckSig

Else

<90% of value > <Return > CheckOutputVerify

<10% of value > 0 CheckOutputVerify

<pkPoison > CheckSig

EndIf

Within these t blocks a poison transaction can destroy a significant share of
the coinbase’s value and reward the reporting user with the remainder of the
funds. This mechanism is enforced by a covenant that ensures that most of the
value is destroyed in an unspendable Return output and the rest of the funds
can be claimed by the user reporting the misbehavior, who can choose her own
output script program.

Fraud Detection. The crux of the fraud detection mechanism is to construct every
microblock such that if the leader creates a fork with more than one microblock
succeeding any block it is possible to extract the private poison key.

To achieve this, we use a property of the ECDSA signature scheme used
for Bitcoin transaction signing. Each ECDSA signature created with a secret
key d requires the signer to select an ephemeral key k, that is, a secret random
number used in the signing process. This ephemeral key must not be reused with
the same private key to sign another message as this allows to calculate d from
the two signatures [18]. In fact, such operational security mistakes have led to
theft of bitcoins [5].

Every ECDSA signature contains a value r that is computed based on k and
otherwise fixed parameters. Computing k from r is believed to computationally
infeasible [18]. We utilize this fact as follows.

Each key-block and microblock are published with a bundled value r, thereby
committing to a certain ephemeral key for the next microblock. Each microblock
is signed with the leader’s poison key using the ephemeral key previously selected;
if the r value of a microblock does not match the commitment in the previous
block, it is considered invalid.

If the leader creates a microblock fork, she is forced to reuse the ephemeral
key to sign the microblocks. This allows any party with access to both messages
to calculate the private poison key. The leader can only profit from such forking
by making one microblock public, as part of the main chain, and one microblock
known to some defrauded party. Once this defrauded party learns about the
fork, she can find the poison private key and expose the fraud.

138 M. Möser et al.

Note that we use two different keys in the scheme as the leaked key should
only enable the poison mechanism, but not to be useful to produce arbitrary
microblocks on behalf of the leader.

6 Related Work

Covenants. The first mention of covenants in Bitcoin is due to Maxwell [22],
who coined the term. Maxwell proposed using zero-knowledge succinct non-
interactive arguments of knowledge (SNARKs) to place, and discharge, arbi-
trarily complicated constraints on any data in the blockchain. However, even
assuming SNARKs can be implemented efficiently, the generality of this app-
roach makes it difficult to reason about the system’s security. Consequently,
this idea was immediately dismissed by Maxwell himself. Ethereum [7] is a
blockchain-based protocol that provides a Turing-complete programming lan-
guage for writing arbitrary programs. The power of the scripts is limited in
Ethereum through utility pricing to limit malicious use and to maintain fair-
ness. While the programming language is universally expressive and can thus
implement covenants, it offers no formal security guarantees. In contrast, the
covenants implementation we propose requires only limited changes to Bitcoin’s
limited script language, accesses only designated outputs, and incurs nominal
overhead.

Further discussion on the concept of covenants [2] focuses mostly on risks,
such as potential impact on fungibility and the possibility to use covenants to
enforce anti-money laundering (AML) regulation upon Bitcoin. Covenants do not
necessarily impact fungibility if programmed properly, and it is the responsibility
of the covenant programmer to lift a covenant when it makes sense to do so. In
general, most general-purpose extensions, including the presence of unconfirmed
transactions [13] as well as extensions such as CLTV, can pose problems for
fungibility if not properly used. Overall, the political consequences of general-
purpose technical features are beyond the scope of this paper.

Vault Transactions. In [10], a Bitcoin forum participant outlines a 4-line proposal
to deter theft using restrictions on expenditures. This scheme uses a recursive
covenant that allows the owner of funds to abort a theft transaction within
a bounded time, and send the funds to a new output, secured by a different
private key. While this scheme may be useful in certain scenarios, in essence,
it simply secures the funds by an additional key. Multisignature transactions,
which require m out of n keys to be used to sign a valid transaction, provide
similar protections. Eskandari et al. [15] evaluate the usability of different key
management schemes, and conclude that there is no silver bullet for private
key storage. And while others have suggested more efficient threshold signature
schemes based on ECDSA [17], with better privacy and smaller transaction size
in comparison to standard multisignature transactions, these schemes all rely on
the secrecy of the signing keys. In contrast, vaults prohibit a thief from taking
possession of the funds even if she learns all the secret keys.

Bitcoin Covenants 139

Fraud Proof. Fraud-proofs have gained attention with the introduction of cryp-
tocurrencies due to the ability to use them against a security deposit. Fraud
proofs similar to the one we use were suggested in the context of generic
covenants by d’aniel and Todd [12]. Other instances are in the context of
pegged sidechains [1], and proof-of-stake [8]. Ruffing, Kate, and Schröder [24]
propose a general scheme for double-attestation proof, using a cryptocurrency
as a primitive.

7 Conclusions

We showed how Bitcoin covenants can be added to the existing scripting lan-
guage with a single simple opcode with nominal overhead. Overall, covenants
introduce a novel functionality that opens the door to a wide range of secu-
rity constructs and financial contracts. We demonstrate this with two novel and
useful constructs.

The first, vault transactions, tackles cryptocurrency key security. Vault trans-
actions significantly reduce theft in Bitcoin by removing the ability of a thief to
keep the proceeds.

The second, poison transactions, enable automatic fraud-proof-based penaliz-
ing, a generally useful construct. We showed how covenant-enabled fraud-proofs
can be used to progressively deploy Bitcoin-NG as an overlay on top of the
Bitcoin blockchain, thereby enabling significant improvements in throughput,
confirmation time and scalability.

Acknowledgments. The authors thank Glenn Willen for useful conversations, Tim
Ruffing and Dominique Schröder for their advice on cryptographic primitives, and the
anonymous reviewers for their valuable feedback.

This material is based upon work supported by a fellowship within the FITweltweit
programme of the German Academic Exchange Service (DAAD), the German Bun-
desministerium für Bildung und Forschung (BMBF) under grant agreement No.
13N13505, and the National Science Foundation under Grant No. CNS-1518779 and
Grant No. CNS-1561209. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the
views of the funding organizations.

References

1. Back, A., Corallo, M., Dashjr, L., Friedenbach, M., Maxwell, G., Miller, A., Poel-
stra, A., Timón, J., Wuille, P.: Enabling Blockchain Innovations with Pegged
Sidechains. https://blockstream.com/sidechains.pdf. Accessed 03 Nov 2015

2. #Bitcoin-Wizard IRC log. https://download.wpsoftware.net/bitcoin/wizards/
2014/01/14-01-15.log. Accessed 28 Oct 2015

3. Block chain. https://en.bitcoin.it/w/index.php?title=Block chain&oldid=59033.
Accessed 19 Oct 2015

4. Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J.A., Felten, E.W.:
Research perspectives on bitcoin and second-generation cryptocurrencies. In: IEEE
Symposium on Security and Privacy. IEEE, San Jose (2015)

https://blockstream.com/sidechains.pdf
https://download.wpsoftware.net/bitcoin/wizards/2014/01/14-01-15.log
https://download.wpsoftware.net/bitcoin/wizards/2014/01/14-01-15.log
https://en.bitcoin.it/w/index.php?title=Block_chain&oldid=59033

140 M. Möser et al.

5. Bos, J.W., Halderman, J.A., Heninger, N., Moore, J., Naehrig, M., Wustrow, E.:
Elliptic curve cryptography in practice. In: Christin, N., Safavi-Naini, R. (eds.) FC
2014. LNCS, vol. 8437, pp. 156–174. Springer, Heidelberg (2014)

6. BtcDrak, Friedenbach, M., Lombrozo, E.: BIP 112: CHECKSEQUENCEVER-
IFY (2015). https://github.com/bitcoin/bips/blob/master/bip-0112.mediawiki.
Accessed 08 Oct 2015

7. Buterin, V.: A Next Generation Smart Contract and Decentralized Appli-
cation Platform (2013). https://www.ethereum.org/pdfs/EthereumWhitePaper.
pdf/. Accessed Feb 2015

8. Buterin, V.: Slasher: A Punitive Proof-of-Stake Algorithm, January 2015. https://
blog.ethereum.org/2014/01/15/slasher-a-punitive-proof-of-stake-algorithm/

9. Chaum, D., Fiat, A., Naor, M.: Untraceable electronic cash. In: Goldwasser, S.
(ed.) CRYPTO 1988. LNCS, vol. 403, pp. 319–327. Springer, Heidelberg (1990)

10. Coastermonger: Thief’s downfall covenant. https://bitcointalk.org/index.php?
topic=278122.msg3164726#msg3164726. Accessed 16 Sept 2013

11. Colored Coins Project. Colored Coins. http://coloredcoins.org/. Accessed Sept
2015

12. d’aniel, Todd, P.: Security deposits (2013). https://bitcointalk.org/index.php?
topic=278122.msg2973895#msg2973895. Accessed 20 Aug 2013

13. Decker, C.: [bitcoin-dev] [BIP] Normalized transaction IDs. https://lists.
linuxfoundation.org/pipermail/bitcoin-dev/2015-November/011657.html.
Accessed 03 Nov 2015

14. Dogecoin Project. Dogecoin. http://dogecoin.com/. Accessed Nov 2014
15. Eskandari, S., Barrera, D., Stobert, E., Clark, J.: A first look at the usability of

bitcoin key management. In: NDSS Workshop on Usable Security (USEC) (2015)
16. Eyal, I., Gencer, A.E., Sirer, E.G., van Renesse, R.: Bitcoin-NG: a scalable

blockchain protocol. In: Proceedings of the 6th USENIX Symposium on Networked
Systems Design and Implementation, NSDI 16–18, 2016, Santa Clara, CA, USA,
March 2016

17. Goldfeder, S., Gennaro, R., Kalodner, H., Bonneau, J., Kroll, J.A., Felten, E.W.,
Narayanan, A.: Securing Bitcoin Wallets Via a New DSA/ECDSA Threshold Sig-
nature Scheme (2015)

18. Hankerson, D., Menezes, A., Vanstone, S.: Guide to Elliptic Curve Cryptography
(2004)

19. Higgins, S.: Bitstamp Claims $5 Million Lost in Hot Wallet Hack (2015). http://
www.coindesk.com/bitstamp-claims-roughly-19000-btc-lost-hot-wallet-hack/.
Accessed 16 Oct 2015

20. List of Major Bitcoin Heists, Thefts, Hacks, Scams, Losses. https://bitcointalk.
org/index.php?topic=576337. Accessed 16 Oct 2015

21. Litecoin Project. Litecoin, open source P2P digital currency. https://litecoin.org.
Accessed Nov 2014

22. Maxwell, G.: CoinCovenants Using SCIP Signatures, an Amusingly Bad Idea.
https://bitcointalk.org/index.php?topic=278122.0. Accessed 25 Oct 2015

23. Nakamoto, S., Bitcoin: A Peer-to-Peer Electronic Cash System (2008). http://
www.bitcoin.org/bitcoin.pdf

24. Ruffing, T., Kate, A., Schröder, D.: Liar, liar, coins on fire! — penalizing equivoca-
tion by loss of bitcoins. In: Proceedings of the 22nd Conference on Computer and
Communications Security, CCS 2015, Denver, CO, USA. ACM, New York (2015)

25. Todd, P.: BIP 65: OP CHECKLOCKTIMEVERIFY (2014). https://github.com/
bitcoin/bips/blob/master/bip-0065.mediawiki. Accessed 08 Oct 2015

https://github.com/bitcoin/bips/blob/master/bip-0112.mediawiki
https://www.ethereum.org/pdfs/EthereumWhitePaper.pdf/
https://www.ethereum.org/pdfs/EthereumWhitePaper.pdf/
https://blog.ethereum.org/2014/01/15/slasher-a-punitive-proof-of-stake-algorithm/
https://blog.ethereum.org/2014/01/15/slasher-a-punitive-proof-of-stake-algorithm/
https://bitcointalk.org/index.php?topic=278122.msg3164726#msg3164726
https://bitcointalk.org/index.php?topic=278122.msg3164726#msg3164726
http://coloredcoins.org/
https://bitcointalk.org/index.php?topic=278122.msg2973895#msg2973895
https://bitcointalk.org/index.php?topic=278122.msg2973895#msg2973895
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2015-November/011657.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2015-November/011657.html
http://dogecoin.com/
http://www.coindesk.com/bitstamp-claims-roughly-19000-btc-lost-hot-wallet-hack/
http://www.coindesk.com/bitstamp-claims-roughly-19000-btc-lost-hot-wallet-hack/
https://bitcointalk.org/index.php?topic=576337
https://bitcointalk.org/index.php?topic=576337
https://litecoin.org
https://bitcointalk.org/index.php?topic=278122.0
http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf
https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki

Bitcoin Covenants 141

26. Tschorsch, F., Scheuermann, B.: Bitcoin and Beyond: A Technical Survey on
Decentralized Digital Currencies. Cryptology ePrint Archive. Report 2015/464
(2015)

27. Vishnumurthy, V., Chandrakumar, S., Sirer, E.G.: Karma: a secure economic
framework for peer-to-peer resource sharing. In: Workshop on the Economics of
Peer-to-Peer Systems, Berkeley, California, vol. 35 (2003)

Cryptocurrencies Without Proof of Work

Iddo Bentov1(B), Ariel Gabizon1, and Alex Mizrahi2

1 Department of Computer Science, Technion, Haifa, Israel
idddo@cs.technion.ac.il, ariel.gabizon@gmail.com

2 Chromaway.com, Stockholm, Sweden
alex.mizrahi@gmail.com

Abstract. We study decentralized cryptocurrency protocols in which
the participants do not deplete physical scarce resources. Such protocols
commonly rely on Proof of Stake, i.e., on mechanisms that extend voting
power to the stakeholders of the system. We offer analysis of existing
protocols that have a substantial amount of popularity. We then present
our novel pure Proof of Stake protocols, and argue that they help in
mitigating problems that the existing protocols exhibit.

1 Introduction1

The decentralized nature of Bitcoin [7,12] means that anyone can become a
“miner” at any point in time, and thus participate in the security maintenance
of the Bitcoin system and be compensated for this work. The miners continuously
perform Proof of Work (PoW) computations, meaning that they attempt to solve
difficult computational tasks. The purpose of the PoW element in the Bitcoin
system is to reach consensus regarding the ledger history, thereby synchronizing
the transactions and making the users secure against double-spending attacks.

The miners who carry out PoW computations can be viewed as entities who
vote on blocks of transactions that the users recently broadcasted to the network,
so that the decision-making power of each miner is in proportion to the amount of
computational power that she has. Thus, an individual miner who has a fraction
p of the total mining power can create each new block with probability ≈ p,
though other factors such as “selfish mining” [1,5,6] can influence p.

Under the assumption that the majority of the PoW mining power follows the
Bitcoin protocol, the users can become increasingly confident that the payment
transactions that they receive will not be reversed [7,12,15].

By means of the PoW mechanism, each miner depletes physical scarce
resources in the form of electricity and mining equipment erosion, and thereby
earns cryptographic scarce resources in the form of coins that can be spent within
the Bitcoin system.

Hence the following question is of interest: can a decentralized cryptocurrency
system be as secure as Bitcoin even if the entities who maintain its security do
not deplete physical scarce resources?

1 The full version of this work includes extra material such as a section on the initial
issuance of the money supply, and is available at http://arxiv.org/abs/1406.5694.

c© International Financial Cryptography Association 2016
J. Clark et al. (Eds.): FC 2016 Workshops, LNCS 9604, pp. 142–157, 2016.
DOI: 10.1007/978-3-662-53357-4 10

http://arxiv.org/abs/1406.5694

Cryptocurrencies Without Proof of Work 143

Cryptocurrency protocols that attempt to avoid wasting physical scarce
resources commonly rely on Proof of Stake, i.e., on mechanisms that give the
decision-making power regarding the continuation of the ledger history to enti-
ties who possess coins within the system. The rationale behind Proof of Stake is
that entities who hold stake in the system are well-suited to maintain its security,
since their stake will diminish in value when the security of the system erodes.
Therefore, in an analogous manner to Bitcoin, an individual stakeholder who
possesses p fraction of the total amount of coins in circulation becomes eligible
to create the next extension of the ledger with probability ≈ p.

We use the terminology “pure” Proof of Stake to refer to a cryptocurrency
system that relies on Proof of Stake and does not make any use of PoW. To the
best of our knowledge, the idea of Proof of Stake in the context of cryptocur-
rencies was first introduced in [17], though that discussion focused on non-pure
Proof of Stake variants (cf. [3]).

PoW based cryptocurrencies become insecure when a significant enough por-
tion of the total mining power colludes in an attack. Likewise, the security of
pure Proof of Stake cryptocurrencies deteriorates when enough stakeholders wish
to collude in an attack. If the majority of the stake wishes to participate in
attacks on a pure Proof of Stake system, it can be argued that there is no longer
enough interest that this system should continue to exist, hence assuming that
the majority of the stake will not participate in an (overt) attack is sensible. The
same does not necessarily hold in a PoW based system, i.e., the majority of the
mining power might be under the control of an external adversary during some
time period, while the majority of the participants in this system still wish for
it to remain sound. See [3] and Sect. 3 for additional considerations.

2 Pure Proof of Stake

There are two apparent hurdles with decentralized pure Proof of Stake systems:
fair initial distribution of the money supply to the interested parties, and network
fragility if the nodes are rational rather than altruistic. PoW offers an elegant
solution to the first hurdle, by converting physical scarce resources into coins in
the system. We provide here an analysis of the second hurdle in an existing pure
Proof of Stake system, and also describe our novel CoA and Dense-CoA pure
Proof of Stake systems that seek to mitigate this problem. Let us note that the
second hurdle is less severe in PoW systems, though bribe attacks on Bitcoin
have indeed been considered, for example in [16].

2.1 The PPCoin System

PPCoin is a pure Proof of Stake system, in the sense that PoW is used only2 for
distributing the initial money supply. Stakeholders in the PPCoin network can
create the next block according to the following type of condition:

hash(prev blocks data, time in seconds, txoutA) ≤ d0 ·coins(txoutA) ·timeweight(txoutA) (*)
2 See http://peercoin.net/assets/paper/peercoin-paper.pdf.

http://peercoin.net/assets/paper/peercoin-paper.pdf

144 I. Bentov et al.

In the inequality (*), time in seconds should correspond to the current time
(with some leniency bounds), thus restricting hash attempts to 1 per second and
preventing PoW use at creating the next block, because nodes will regard a new
block as invalid unless the difference between its time and their local time is
within the bounds. The notation coins(txoutA) refers to the amount of coins of
some unspent transaction output txoutA, hence if stakeholder A has the private
key skA that controls txoutA then she can create a valid block by signing the
block with skA and attaching the signature as evidence that condition (*) holds.
This means that a stakeholder who controls an output of e.g. 50 coins is 10
times more likely to create a block than a stakeholder who controls an output of
5 coins. See footnote 1 regarding timeweight(txoutA), and Sect. 2.1.3 regarding
prev blocks data. The constant d0 is readjusted according to a protocol rule
that dictates that blocks should be created in intervals of 10 min on average,
i.e., if fewer stakeholders are online during a certain time period then d0 gets
increased. The winning blockchain is the one with the largest cumulative stake,
i.e., the blockchain with the most blocks such that stake blocks are weighted
according to their d0 difficulties, and PoW blocks have a negligible weight.

Although the PPCoin cryptocurrency had a market cap of over $100 million
in 2014, the PPCoin protocol has the following problems:

2.1.1 Rational Forks. On every second we have that Pr[{some block is
solved}] ≈ 1

600 , therefore multiple blocks will be solved simultaneously every
≈ 360000 s ≈ 4 days. Rational stakeholders can increase their expected reward
by maintaining and trying to solve blocks on the multiple forked chains that
were transmitted to them, which would lead to a divergent network. An indi-
vidual stakeholder can either tie her hands behind her back by ignoring all the
forked chains except for one, or opt to gain more rewards by keeping all the
forked chains, which may render her entire stake worthless in case the network
becomes divergent. The strategy of tying your hands behind your back is not
a Nash equilibrium: if all the stakeholders follow this strategy then it is better
for an individual stakeholder to deviate and maintain all the forked chains, as
her influence on the overall convergence of the network is minor. Network prop-
agation lag implies an even greater frequency of forks, as a stakeholder will get
competing blocks sent to her even if those blocks were honestly solved a few
seconds apart from one another. Worse still, when a rational stakeholder who
currently tries to extend the block Bi receives Bi+1 from her peers, she may
opt to increase her expected reward by attempting to extend both the chain
. . . , Bi, Bi+1 and the chain . . . , Bi simultaneously. Rational stakeholders may
thus prefer to reject blocks whose timestamp is later than another block that
they currently try to extend, though an attempt to extend both . . . , Bi, Bi+1

and . . . , Bi can still be possible if the rule that the stakeholders deploy does not
retrace to an earlier chain that is received late due to propagation lag.

Cryptocurrencies Without Proof of Work 145

2.1.2 Bribe Attacks on PPCoin. An attacker can double-spend quite eas-
ily. After the merchant waits for e.g. 6 block confirmations and sends the goods,
the attacker can publicly announce her intent to create a fork that reverses the
last 6 blocks, and offer bribes to stakeholders who would sign blocks of her com-
peting branch that starts 6 blocks earlier. The attacker may offer a larger bribe
to stakeholders who sign only her branch, and may commit to giving bribes even
after her competing branch wins, to encourage more stakeholders to participate
in the attack. Notice that the stakeholders who collude with the attacker will
not lose anything in case the attack fails. As long as the value of the goods is
greater than the total value of the bribes, this attack will be profitable. Let us
note that a bribe attack in a pure PoW network has to surmount far greater
obstacles: miners who join the attack would deplete their resources while working
on a fork with a 6 blocks deficit, and it is a nontrivial task to assess the success
probability by measuring how many other miners participate in the attack. See
also [3, Sect. 5.3].

2.1.3 Opportunistic Attacks in Relation to the Need to Disallow
PoW. A stakeholder who holds a significant fraction of all the coins is able
to generate a significant fraction of the blocks, as the probability to generate a
block is proportional to the amount of coins that a stakeholder holds. Therefore,
from time to time a stakeholder will be able to generate chains of consecutive
blocks.

We can analyze this event by using a simplified model where stakeholders who
own 1

M of all coins can generate a block with probability 1
M , and the probability

to generate k sequential blocks is (1
M)k. This approximation is accurate under

the assumption that the stakeholder holds a number of unspent transaction
outputs significantly larger than k, so that timeweight will have no impact. We
can estimate the average number of blocks between groups of k sequential blocks
generated by one stakeholder as a mean of exponential distribution, which would
be equal to 1/(1/M)k = Mk.

If merchants wait for k confirmations before sending their goods, the stake-
holder has a chance to attack the merchant when she is able to generate k
sequential blocks, thus the mean number of blocks between such attacks is Mk.
For example, a stakeholder who holds 1

4 of all coins participating in stake mining
will be able to carry out a 6-block reorganization each 46 = 4096 blocks, i.e.,
approximately once per month if one block is generated every 10 min.

An attacker who is able to create k sequential blocks would prefer to know
about it as early as possible, so that she has enough time to send the pay-
ment transaction (that she intends to reverse) to the merchant. If the possi-
ble stakeholders’ identities who may create the next blocks are derived from
a low entropy process that only takes into account the identities who created
the previous blocks, then the attacker can “look into the future” by carrying
out brute-force computations to assess the probabilities that she will be able to
create the k consecutive blocks at certain points in time. In order to gain a mea-
sure of unpredictability, PPCoin re-calculates once every 6 h a “stake modifier”

146 I. Bentov et al.

value that depends on the transactions that the previous blocks included, i.e.,
this stake modifier is part of prev blocks data in condition (*). Therefore, a
stakeholder who obtains an opportunity to generate k blocks in a row can know
about this approximately 6 h in advance, so she has plenty of time to mount an
attack. If the protocol required the stake modifier to be re-calculated at a shorter
time interval, this would open the door for a stakeholder to do PoW attempts
at deriving herself as being able to create future blocks more frequently.

2.2 The CoA Pure Proof of Stake System

The Chains of Activity (CoA) system that we hereby present is a pure Proof
of Stake protocol that aims to overcome the problem of rational forks (cf.
Sect. 2.1.1) by dictating that only a single stakeholder identity may create the
next block, and solidifying the random choices for these identities in the earlier
ledger history via an interleaving mechanism.

The CoA protocol is based in part on the core element of PoA [3], i.e., on a
lottery among the online stakeholders via the follow-the-satoshi procedure. This
procedure takes as input an index of a satoshi (smallest unit of the cryptocur-
rency) between zero and the total number of satoshis in circulation, fetches the
block of ledger data in which this satoshi was minted, and tracks the transactions
that moved this satoshi to subsequent addresses until finding the stakeholder who
can currently spend this satoshi (cf. [3, Sect. 3 and Appendix A]). Note that if for
example Alice has 6 coins and Bob has 2 coins then Alice is 3 times more likely
to be picked by follow-the-satoshi, regardless of how their coins are fragmented.
This implies that a stakeholder who holds her coins in many Sybil addresses do
not obtain any advantage with regard to follow-the-satoshi.

The CoA protocol is parameterized by an amount of minted satoshis 2κ, a
subgroup length w ≥ 1, a group length � = κ · w, a function comb : {0, 1}� →
{0, 1}κ, a minimal block interval time G0, a minimal stake amount C0, an award
amount C1 where 0 ≤ C1 < C0, and a double-spending safety bound T0.

The blocks creation process of CoA assembles a blockchain that is comprised
of groups of � consecutive blocks:

�
︷ ︸︸ ︷
�� · · ·�,

�
︷ ︸︸ ︷
�� · · ·�,

�
︷ ︸︸ ︷
�� · · ·�, · · ·

The rules of the CoA protocol are specified as follows:

The CoA Protocol

1. Each block is generated by a single stakeholder, whose identity is fixed and
publicly known (as will be explained in the next steps). This stakeholder
collects transactions that are broadcasted over the CoA network as she sees
fit, and then creates a block Bi that consists of these transactions, the hash
of the previous block, the current timestamp, the index i, and a signature of
these pieces of data as computed with her private key.

Cryptocurrencies Without Proof of Work 147

2. Every newly created block Bi is associated with a supposedly uniformly dis-
tributed bit bi that is derived in a deterministic fashion, for example by taking
the first bit of hash(Bi).

3. The time gap between Bi and Bj must be at least |j − i− 1| ·G0. This means
that if for example the next four blocks Bi, Bi+1, Bi+2, Bi+3 were supposed
to be generated by the four stakeholders Ai, Ai+1, Ai+2, Ai+3 but Ai+1 and
Ai+2 were inactive, then the difference between the timestamp of Bi+3 and
Bi must be at least 2G0. Nodes in the network will consider a newly created
block to be invalid if its timestamp is too far into the future relative to their
local time.

4. After a group of � valid blocks Bi1 , Bi2 , . . . , Bi�
is created, the network nodes

will form a κ-bit seed SBi� = comb(bi1 , . . . , bi�
). The function comb can

simply concatenate its inputs (if w = 1), and several other alternatives are
explored in Sect. 2.2.1.

5. The seed SBi� is then used in an interleaved fashion to derive the identities
of the after next � stakeholders, via follow-the-satoshi . That is, if the next
� valid blocks are Bi�+j1 , Bi�+j2 , . . . , Bi�+j�

, then the nodes who follow the
protocol will derive the identity of the stakeholder who should create the
block Bi�+j�+z by invoking follow-the-satoshi with hash(i�, z, SBi�) as input,
for z ∈ {1, 2, . . .}.

6. If the derived satoshi is part of an unspent output of c < C0 coins, the stake-
holder must also attach an auxiliary signature that proves that she controls
another output of at least C0 − c coins, or else she will not be able to create a
valid block. Neither the derived output nor this auxiliary output may be spent
in the first T0 blocks that extend the newly created block. In case the stake-
holder Ai who should create the ith block signs two different blocks Bi, B

′
i,

any stakeholder Aj among the next T0 derived stakeholders can include it as
evidence in the block that she creates, in order to confiscate at least C0 coins
that Ai possessed. The stakeholder Aj is awarded with C1 of the confiscated
coins, and the rest of the confiscated coins are destroyed.

7. If the network nodes see multiple competing blockchains, they consider the
blockchain that consists of the largest number of blocks to be the winning
blockchain.

The interleaving in step 5 is crucial as a cementing mechanism. Otherwise,
competing last stakeholders may extend the chain with seeds that derive different
� next identities, introducing divergence risk because it is rational for the next
identities to extend the different forks. This cementing process ensures that
unless ≈ � stakeholders collude by bypassing their turn on the honest chain and
creating a hidden fork instead, only a single stakeholder will be eligible to create
each next block. Thus the rational forks hazard is avoided.

The punishment scheme in step 6 expires after T0 blocks, because honest
stakeholder must eventually regain control over their security deposit (see also
Sect. 3). Note that a stakeholder can divide her coins among multiple outputs,
so that only one of the outputs would become unspendable for T0 blocks. If

148 I. Bentov et al.

C1 ≈ C0, an attacker might double-sign and publish the double-signing evidence
in a next block to recover her security deposit, so C1 ≤ C0

2 is a better choice.
If � is very large (in the extreme � = ∞, i.e., practically equivalent to selecting

the identities of the stakeholders via a round-robin), then an attacker may try
to gain possession of future consecutive satoshis to mount a double-spending
attack (cf. Sect. 2.2.3). On the other hand, small � makes it easier for coalitions
to influence the future identities (cf. Sect. 2.2.1). Moreover, if the range of comb
were κ′ < κ, an attacker could more easily see into the future, e.g. with κ′ = 10
the attacker could buy satoshis of consecutive identities in one possible next
group and succeed with probability 1/1024 to carry out a double-spending attack.
A sensible recommendation for the CoA parameters can be κ = 51 (for ≈ 21
million coins of 108 satoshis each), w = 9 with comb as the iterated majority
function (see Sect. 2.2.1), � = 459, G0 = 5 min, and T0 = 5000.

2.2.1 Using Low-Influence Functions to Improve Chain Selection. To
give an intuitive illustration of the advantages of different choices, we focus on the
prominent case of analyzing the probability that the last stakeholder in the chain,
A�, can choose herself again as one of the first possible stakeholders A′

1, . . . , A
′
�

of the next round (see Fig. 1). Denote this probability by μ. We also make the
simplifying assumptions that the previous players have indeed picked their bits
bi randomly, and that the function hash is a random oracle. Let us assume that
A� has a q-fraction of the coins in the system, and denote p = 1− (1− q)�. Thus,
μ = p in case A� picks a random bit.

Simple Concatenation: We let comb(b1, b2, . . . , b�) � b1 ◦ b2 ◦ · · · ◦ b�, where
bi is the supposedly random bit that stakeholder Ai provided. The probability
μ that A� can choose herself in the next round is the probability that ∃b′ ∈
{0, 1}, i ∈ {1, . . . , �} such that hash(i0 + i, comb(b1, . . . , b�−1, b

′)) maps to a
coin of A� under follow-the-satoshi . Using the simplifying assumption that these
are random independent values we have μ = 1 − (1 − p)2 = 2p − p2 ≈ 2p.

Combining Majority with Concatenation: Assume now that � = κ · w for
positive integer w. We now split the � stakeholders into groups of size w:
A1, . . . , Aw, Aw+1, . . . , A2w, . . . , A(κ−1)·w+1, . . . , Aκ·w = A�. Each group will
determine a bit of the seed using the majority function. That is, the ith bit
of the seed, denoted si, will be the majority of the bits b(i−1)·w+1, . . . , biw. And
s = comb(b1, . . . , b�) � s1 ◦ s2 · · · ◦ sκ. Note first that when the bits bi are all
chosen randomly, s is random – as the majority of random inputs is a random
bit. Now, we analyze again the probability μ that A� can choose herself in the
next round. It can be shown, using Stirling’s approximation, that with probabil-
ity roughly3 1 − √

2/πw the last bit of the seed, sκ, will already be determined
by the bits of the previous stakeholders. This is because when w players choose

3 More precisely, as w goes to infinity this is the limit of the probability of the event.

Cryptocurrencies Without Proof of Work 149

a bit randomly, the probability that exactly half of the bits came out one tends
to (w

w/2)/2w ≈ 2w+1/2√
πw /2w =

√
2/πw. In the absence of this event we have μ = p,

“as it should be”. When this event happens, as before A� can get to probability
≈ 2p. In total we have μ ≈ p · (1−√

2/πw)+2p ·√2/πw. Taking a large enough
w, this is much closer to the “correct” p than in the previous choice of comb.

Protection Against Larger Coalitions: Let us use the terminology that a
function comb : {0, 1}� → {0, 1}κ is an ε-extractor if for any choice of the
coalition C of size c, and any strategy of C to choose their input bits after
seeing the bits of the honest players, comb(b1, . . . , b�) produces an output that
is ε-close to uniform.

[9], using the analysis of [2], give the following construction of an ε-extractor –
that is in fact the same one we described earlier when replacing the majority
function with iterated majority (defined in [2] and illustrated in Fig. 1).
KZ(b1, . . . , b�) :

• Choose w = 3 · (c/ε)1/α, where α = log3 2. Set � = w · κ.
• Output κ bits via iterated majority of consecutive groups of w inputs.

Upon fixing ε as the desired statistical error, κ as the desired output length,
and � as the total number of players in a chain, KZ can handle a coalition of
size c ≤ ε · (1/3 · �/κ)α. On the other hand, [9] show that any such ε-extractor can
handle coalitions of size at most c ≤ ε · 10 · �/(κ − 1).

Since α > 1/2, it follows that this choice of comb is less than quadratically
worse than the optimal choice. Notice that this assumes that stakeholders who
are not honest are non-oblivious, i.e., that they see the choices of the honest
stakeholders before they play. This conservative assumption makes a certain
sense in our context, as it easier for stakeholders who play in the last locations
to try to collude in order to influence the seed.

0 1 1 0 1 1 0 0 1 0 1 0 0 1 0

c
1

d

1

a
0

b

Pr[last player can influence] = Pr[a
= b] · Pr[c
= d] = 1/2 · 1/2 = 0.25

Iterated MajorityMajority

Pr[last player can influence] = (84)/28 = 0.273

Fig. 1. Majority versus iterated majority.

150 I. Bentov et al.

2.2.2 Rational Collusions. Stakeholders may wish to collude and skip the
last several blocks as if they did not exist, i.e., to extend the blockchain from
an earlier block, in order to gain the fees that went to previous stakeholders.
This can be mitigated by including in each transaction the index of the latest
block that the user who made this transaction is aware of. For example, if the
last block of the chain is Bi and it contains a transaction tx0 that specifies that
block i − 1 exists, and a new transaction tx1 that specifies that block i exists is
broadcasted, then the stakeholder who creates Bi+1 cannot reverse Bi to collect
the fees of both tx0 and tx1, because Bi must exist in the chain that contains
tx1. The user can even specify in her transaction the index of the block that is
currently being created, but this implies that the user will need to send another
transaction in the case that the current stakeholder is offline. The colluding
stakeholders diminish the overall value of their stake when they participate in
such attacks, hence this strategy is not necessarily rational. It is also possible
to reward stakeholders via monetary inflation and have the transaction fees
destroyed to provide a counterbalance, though bribe attacks may then become
more likely (see Sect. 2.2.3).

·↓
(payment) ↓(merchant sends goods)

To demonstrate how a successful double-spending attack on the CoA protocol
looks like: in this example the colluding stakeholders create an alternative history
of 5 blocks, by extending the previous block with a chain that includes a conflicting
transaction:

· ×
↓(conflicting transaction)

Fig. 2. Illustration of a double-spending attack in the CoA system.

2.2.3 Bribe Attacks on CoA. Suppose that the number of blocks that
merchants consider to be secure against double-spending attacks is d, i.e., a
merchant will send the goods after she sees that the payment transaction that
she received in block Bi1 has been extended by Bi2 , Bi3 , . . . , Bid

extra blocks.
An attacker can now offer bribes to d + 1 or more stakeholders, for example to
the next id + 1, id + 2, . . . , id + d + 1 stakeholders so that they would extend the
blockchain starting from the block that preceded Bi1 and exclude that payment
transaction. The attacker will need to bribe more than d+1 stakeholders if some
of them refuse the bribe. Since rational stakeholders will not participate in the
attack without an incentive, the cost of the attack is at least μ(d + 1) where μ
is the average bribe amount that is given to each stakeholder.

Cryptocurrencies Without Proof of Work 151

Observe that Pr[{successful attack}] < 1 since some of the stakeholders might
be altruistic, some of the rational stakeholders may think that it would be unprof-
itable to participate in such attacks, and the attacker’s funds are not unlimited.
Hence, a rational stakeholder will choose to accept the bribe by weighing whether
(μ+F ′) ·Pr[{successful attack}] > F ·(1−Pr[{successful attack}]), where F and
F ′ are the fee amounts that this stakeholder will collect on the honest chain
and the attacker’s chain, respectively. Note that F ′ = 0 is likely when the safety
mechanisms of Sect. 2.2.2 are deployed, since it is rational for users to continue
to transact on the honest chain as long as the attacker’s chain is inferior. Overall,
the attacker may need to spend substantially more than μ(d + 1) coins for the
attack to succeed.

In Fig. 2 we illustrate the nature of a double-spending bribe attack.
The above stands in stark contrast to Sect. 2.1.2, as the short-term dominant

strategy of the PPCoin stakeholders is to participate in the attack, while the
CoA stakeholders will forfeit their reward F if the attack fails. In our setting,
the premise of a short-term strategy can be regarded to be that the utility per
coin is constant, while the premise of a long-term strategy can be regarded to
be that the utility per coin may change due to actions taken by the player.

Notice that the attacker cannot simply bribe the stakeholders who generated
the blocks Bi1 , Bi2 , Bi3 , . . . , Bid

to create an alternative history of length d in a
risk-free manner, as their coins will be confiscated if they double-sign.

Formally, let us restrict ourselves to a limited strategy space (cf. [10]) in
which players have to choose one of only these two actions (**),

1. Follow the protocol honestly by signing a block that extends the longest
known chain.

2. Accept bribe and sign the attacker’s block which extends the secretive chain
that the attacker builds.

This restriction can be justified under plausible assumptions. In particular,
the C0 penalty can be assumed to be high enough to make the action of double-
signing unappealing. This requires the presupposition that the double-signing
punishment mechanism is effective in the sense that the evidence of double-
signing will be recorded on every fork, and hence the utility of a player is the
value of attacker’s bribe minus the loss of her C0 security deposit. This also
implies that our analysis here only covers forks that are shorter than the T0

deposit duration, in Sect. 3 we discuss attacks that involve longer forks.
Our objective is to show that the honest strategy is dominant. In fact, we

will show that under further assumptions no attack will be initiated, thus only
the honest action will be available to the players.

To analyse what merchants can consider to be an appropriate confidence level
for security against double-spending in the CoA system, let us make a reasonable
assumption regarding the participation rate of stakeholders in the CoA network.

Density Assumption. Let ρ > 1/2. In the longest blockchain, for every segment
of K or more potential blocks, at least ρK of those blocks were created.

152 I. Bentov et al.

While this is a simplifying assumption, it is indeed reasonable, as our presup-
position for the CoA network is that its security is derived from stakeholders’
participation. Notice that we do not assume that the majority of stakeholders
are altruistic (i.e., follow the CoA protocol even if it is against their self-interest).
Although an altruistic majority would facilitate a system with better security, a
rational majority is far more likely to capture reality.

Let B0 be a block in which some particular payment transactions resides.
Let δ denote the amount missing blocks in largest segment with participation
rate ≤ 1/2 prior to B0, and let ρ′ denote the density of the longest segment that
follows B0. In the illustration below, δ = 3 and ρ′ = 10/14.

B0· · ·�� �����

δ=4−1
︷ ︸︸ ︷

� �

density: ρ′≥ρ
︷ ︸︸ ︷
�� ��� � ���� · · ·

Claim 1. Let ε be the average fee amount that a stakeholder earns for creating
a block. Assume that stakeholders are restricted to the strategy space (**).
Assume that reversing B0 has a value of V coins to the attacker. If the attacker
is rational in the sense that she does not wish to lose coins, then the merchant
is safe by waiting until S blocks extend B0 before sending the merchandise, for
S that satisfies V < ε(ρ′S − δ + 1).

Proof. By using the safety extension that is described in Sect. 2.2.2, we may
consider the blocks in a hostile competing fork to be void of transactions, and
therefore it is rational of each colluding stakeholder who could otherwise earn
ε coins to demand a bribe of more than this amount. There exist (1 − ρ′)S + δ
stakeholders who can contribute to the attack and have already forfeited their
turn to create a block, thus the merchant may assume that in the worst case
they will collude with the attacker for free. As the other S +1 stakeholders need
to be bribed with ε coins each, V < ε(S − (1 − ρ′)S − δ + 1) = ε(ρ′S − δ + 1)
implies that the attack is unprofitable. �

The above argument gives only a crude bound, since it does not capture all
the relevant aspects w.r.t. the attack. In particular, the coins that the attacker
recovers (in the case of a successful attack) may have less purchasing power,
because the cryptocurrency system becomes less valuable whenever double-
spending attacks take place.

Claim 2. If the density assumption holds in addition to the assumptions of
Claim 1, then the merchant can be confident that it is irrational to carry out
a double-spending attack after B0 has been extended by S blocks, for S that
satisfies V < ε(ρS − K + 1).

Proof. According to the density assumption, it holds that K > δ, and since the
merchant waited until more than K blocks extend B0 it also holds that ρ′ ≥ ρ.
Therefore, (1 − ρ)S + K ≥ (1 − ρ′)S + δ, and the result follows from Claim 1.�

Cryptocurrencies Without Proof of Work 153

To get a better sense of things, let us substitute concrete numbers for the
above parameters. Suppose for example that ρ = 7/10, K = 20, ε = 10 coins,
and V = 100 coins. Hence 10 · (7/10 · S − 19) > 100 implies that S = 42 blocks
are sufficient. This means that the merchant will need to wait ≤ 42 · 5 min or
3.5 h before sending the merchandise, in case CoA is parameterized according to
G0 = 5 min.

2.2.4 Majority Takeover. Consider some stakeholders A1, A2, . . . , Am who
control all of the first � locations in the current round. Suppose that these m
stakeholders possess p-fraction of the total stake, and they wish to collude and
control all the locations in all of the next rounds, thereby creating a winning
chain that consists of only their blocks. While this strategy may be irrational
as it diminishes the value of their stake, perhaps the m stakeholders prefer a
competing system and wish to destroy CoA.

Due to interleaving (cf. Sect. 2.2), the starting condition for this attack is
more difficult to achieve, as these m stakeholders need to control 2� locations.

Suppose that q-fraction of the honest stake is offline, hence the m stakeholders
can give on average a head start of (1

(1−p)(1−q) −1)� blocks to a competing group

in each round. Denote q̂ � (1
(1−p)(1−q) − 1). Let Y be the random variable that

counts how many of the first (2+q̂)� locations of the next round will be controlled
by the m stakeholders, so E[Y] = (2 + q̂)�p. Using tail inequality, it holds that

Pr(Y > �) = Pr(Y >
1

(2 + q̂)p
E[Y]) ≤ exp{−(

1
(2 + q̂)p

− 1)2 · (2 + q̂)�p
1
3
}.

Thus, the amount of hash invocations that these m stakeholders need to
compute tends toward infeasibility when p is smaller or when � is larger. For
example, with � = 459, p = 1/10, q = 1/5, the m stakeholders will need more than
e371 ≈ 2535 hash attempts on average.

Compared with Bitcoin, in a Proof of Stake based system such as CoA it
is less reasonable to assume that a large combined stake is an hostile external
attacker (see [3, Sect. 2.1]), hence p is likely to be small.

2.3 The Dense-CoA Pure Proof of Stake Variant

The Dense-CoA pure proof of stake protocol is an alternative variant of CoA in
which the identities of stakeholders who should create the next blocks are not
known far in advance, with the objective of making collusions and bribe attacks
more difficult. Another plus point of Dense-CoA is that it makes it more difficult
for rational stakeholders to obtain disproportional rewards. The disadvantages of
the Dense-CoA protocol are susceptibility to DoS attacks by large stakeholders,
and greater communication and space complexities.

In Dense-CoA, each block is created by a group of � stakeholders, rather than
by a single stakeholder:

154 I. Bentov et al.

The blockchain:

�

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

...
...

...
· · ·

⇓ ⇓ ⇓
� � � · · ·

Let h : {0, 1}n → {0, 1}n be a one-way permutation. Let us assume for a
moment that the block Bi−1 is associated with a seed SBi−1 that was formed
by the � stakeholders who created Bi−1. Now, the identity of the stakeholder
A� who determines which transactions to include in a block Bi is derived by
invoking follow-the-satoshi with hash(i, �, SBi−1) as input, and the identities
of the rest of the stakeholders A1, A2, . . . , A�−1 who must participate in the
creation of Bi are derived by invoking follow-the-satoshi with hash(i, j, SBi−1)
for j ∈ {1, 2, . . . , � − 1}. These � stakeholders engage in a two-round protocol to
create the current block Bi:

• In round 1, for every j ∈ {1, 2, . . . , �}, the stakeholder Aj picks a random
secret Rj ∈ {0, 1}n, and broadcasts h(Rj) to the network.

• In round 2, for every j ∈ {1, 2, . . . , �−1}, the stakeholder Aj signs the message
M � h(R1)◦h(R2)◦ · · · ◦h(R�), and broadcasts her signature signskj

(M) and
her preimage Rj to the network.

We require Dense-CoA to use a signature scheme with multisignature [4,8,
11,13] support, therefore A� can aggregate the signatures {signskj

(M)}�
j=1 into

a single signature ŝ(M). Note that the size of ŝ(M) depends only on the security
parameter of the signature scheme (and not on �), and the verification time is
faster than verifying � ordinary (ECDSA) signatures.

Hence, the stakeholder A� signs and broadcasts a block Bi that consists
of the (Merkle root of the) transactions that she wishes to include, the hash
of the previous block Bi−1, the current timestamp, the index i, the � preimages
R1, R2, . . . , R�, and ŝ(M). To verify that the block Bi is valid, the network nodes
invoke h to compute the images h(R1), h(R2), . . . , h(R�), then concatenate these
images to form M , and then check that ŝ(M) is a valid signature of M with
respect to the public keys pk1, pk2, . . . , pk� that control the winning satoshis of
the stakeholders A1, A2, . . . , A�.

The seed SBi is defined as hash(R1 ◦ R2 ◦ · · · ◦ R�). Notice that SBi is
computationally indistinguishable from random even if only a single stakeholder
Aj picked a random Rj , under the assumption that n is sufficiently large so that
the OWP h is resistant to preimage attacks.

If some of the � stakeholders are offline or otherwise withhold their signatures,
then after G0 time the nodes who follow the protocol will set t = 1 and derive
alternative � identities from the previous block Bi−1, by invoking follow-the-
satoshi with inputs hash(i, t�+ j, SBi−1) for j ∈ {1, 2, . . . , �}. The starting index

Cryptocurrencies Without Proof of Work 155

t� + j should be specified in the new block Bi so that the verification of blocks
will be simpler, and the gap between the timestamps of Bi−1 and Bi must be
at least tG0. As with CoA, the honest nodes consider the blockchain with the
largest amount of valid blocks to be the winning blockchain, and disregard blocks
with a timestamp that is too far into the future relative to their local clock.

The parameters C0, C1, T0 of the CoA protocol (cf. Sect. 2.2) are utilized by
the Dense-CoA protocol in exactly the same way.

The parameter � should be big enough in order to resist large stakeholders
from controlling consecutive seeds {SBi , SBi+1 , . . .} and re-deriving themselves.
For example, to force a stakeholder who holds 5% or 10% of the total stake into
making ≈ 2100 hash invocations on average until re-deriving herself as all of the
� identities of the next block, we need � = 23 or � = 30, respectively. However,
if we set G0 = 5 min and � = 23, a malicious stakeholder with e.g. 10% of the
total stake will have 1 − (90/100)23 ≈ 91% probability to be one of the derived
stakeholders A1, A2, . . . , A� and then refuse to participate in creating the next
block, hence it will take 5 · (1− 91%)−1 ≈ 56 min on average to create each next
valid block while this attack is taking place (actually less than 56 min because
chains that extend blocks prior to the last block can also become the longest
valid chain).

Overall, the main difference between the Dense-CoA and CoA protocols is
that Dense-CoA offers improved security over CoA in terms of double-spending
attacks, but weaker security against DoS attacks by large stakeholders who wish
to harm the cryptocurrency. Also, Dense-CoA prevents a rational stakeholder
from influencing the seed in an attempt to earn more rewards than her fair
share, unless she colludes with all the other �−1 stakeholders who create the next
block. The Dense-CoA protocol is less efficient than CoA due to the preimages
R1, R2, . . . , R� that need to be stored in each valid block, and the two-round
protocol that requires a greater amount of network communication to create
each successive block.

3 Solidification of the Ledger History

Any decentralized cryptocurrency system in which extending the ledger history
requires no effort entails the danger of costless simulation [14], meaning that an
alternative history that starts from an earlier point of the ledger can be prepared
without depleting physical resources and hence without a cost. This is a problem
because a rational adversary who has little or no stake in the system may try to
attack by replacing an arbitrarily long suffix of the current ledger history with
an alternative continuation that benefits her. Further, a malicious adversary who
does not operate out of self-interest is also more likely to attempt this kind of
an attack, as she would not incur a monetary loss for executing the attack.

In the case of pure Proof of Stake systems, this danger can manifest itself in
the following form. Consider participants who held coins in the system a long
time ago and have since traded those coins in exchange for other goods, so they
are no longer stakeholders of this system. These participants can now collude to

156 I. Bentov et al.

extend the ledger from the point at which they had control over the system, and
it may indeed be rational for them to mount this attack because it is costless
and would have no detrimental outcome from their standpoint, as they have no
stake in the current system.

More specifically, let us examine how this attack looks like in the CoA or
Dense-CoA systems. Even a single stakeholder with few coins can fork the
blockchain and create an alternative branch with large enough time gaps as she
re-derives herself to create subsequent blocks, but according to the timestamp
rules for valid blocks, the other participants will reject this alternative branch
(even though it contains more blocks) because the timestamps will be too far
ahead in the future relative to their local time. Therefore, if the average partici-
pation level among current stakeholders is p%, and the stakeholders who collude
to carry out this attack have had control at the earlier history over q% of the
coins, then q > p implies that the attack will succeed. Because p% = 1 is highly
unlikely, and collusion among participants who held q% > p% stake at an earlier
point is costless and rational, this attack vector appears to be quite dangerous.

To mitigate this attack, we propose periodic checkpointing as a rigid protocol
rule that extends the CoA and Dense-CoA protocols, as follows:

• Denote by T0 = 2T1 the double-spending safety bound of Sect. 2.2.
• The blocks at gaps of T1 are designated as checkpoint blocks: the genesis

block is a checkpoint block, and any block that extends a checkpoint block
by exactly T1 additional blocks is a candidate checkpoint block.

• When a node that follows the protocol receives for the first time a candidate
checkpoint block Bj that extends the candidate checkpoint block Bi such
that j = i + T1 (or j > i + T1 if stakeholders were inactive), she solidifies Bi

meaning that she disallows any changes to the history from the genesis block
until Bi, though Bj can still be discarded as a result of a competing fork.

Since the double-spending safety bound is T0, a stakeholder who creates a
block can spend the coins only after an intermediate checkpoint block is already
solidified, so the costless simulation threat is mitigated (if C0 is substantial).

This can be seen in the following illustration:

c
↓Ai signs Bi

c
↓solidified checkpoint

c
↓Ai can spend

T1 T1

However, this checkpointing mechanism presents two significant problems:

1. New nodes who enter the decentralized network for the first time cannot tell
whether the checkpoint blocks that they receive are trustworthy.

2. Due to propagation lag, adversarial stakeholders can collude by preparing an
alternative branch of length T1 +1, and broadcast the competing forks at the
same time, thus creating an irreversible split among the network nodes.

The first problem needs to be handled by utilizing a “Web of Trust” type
of mechanism that is external to the cryptocurrency system. This means that

Cryptocurrencies Without Proof of Work 157

participants who are unaware of the current state of the system should rely on
reputable sources to fetch the blockchain data up to the latest checkpoint.

The second problem should also be resolved manually, meaning that partici-
pants who become aware of a network split can decide to instruct their node to
switch to the other faction, e.g. if they see that they are in the minority. Note,
however, that the second problem becomes increasingly unlikely for larger T1

values. The exemplary parameters that we proposed in Sect. 2.2 imply that a
fork of T1 + 1 blocks represents more than one week of ledger history.

4 Conclusion

It is challenging to design sustainable decentralized cryptocurrency protocols
that do not rely on depletion of physical scarce resources for their security
maintenance. Our analysis argues that the security of existing such protocols
is lacking. We offer novel constructions of pure Proof of Stake protocols that
avoid depletion of physical scarce resources, and argue that our protocols offer
better security than existing protocols. Future work could extend the scope of
our analysis to broader strategy spaces.

References

1. Bahack, L., Courtois, N.: (2014). http://arxiv.org/abs/1402.1718
2. Ben-Or, M., Linial, N.: Collective coin flipping. In: Micali, S. (ed.) Randomness

and Computation, pp. 91–115. Academic Press, New York (1990)
3. Bentov, I., Lee, C., Mizrahi, A., Rosenfeld, M.: Proof of activity. In: ACM SIG-

METRICS Workshop - NetEcon (2014). http://eprint.iacr.org/2014/452
4. Boldyreva, A.: Efficient threshold signature, multisignature and blind signature

schemes based on the gap-Diffie-Hellman-group signature scheme. In: PKC2003
(2003)

5. Eyal, I.: The miner’s dilemma. In: 36th IEEE S&P (2015)
6. Eyal, I., Sirer, E.G.: Majority is not enough: bitcoin mining is vulnerable. In:

Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 431–449.
Springer, Heidelberg (2014)

7. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis and
applications. In: Eurocryppt 2015 (2015)

8. Itakura, K., Nakamura, K.: A public key cryptosystem suitable for digital multisig-
natures. NEC Res. Dev. 71, 1–8 (1983)

9. Kamp, J., Zuckerman, D.: Deterministic extractors for bit-fixing sources and
exposure-resilient cryptography. In: SICOMP, vol. 36 (2007)

10. Kroll, J., Davey, I., Felten, E.: The economics of bitcoin mining, or bitcoin in the
presence of adversaries. In: 12th WEIS (2013)

11. Lu, S., Ostrovsky, R., Sahai, A., Shacham, H., Waters, B.: Sequential aggregate
signatures. J. Cryptology 26(2), 340–373 (2013)

12. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. Bitcoin.org
13. Micali, S., Ohta K., Reyzin, L.: Accountable-subgroup multisignatures (extended

abstract). In: Proceedings of CCS 2001, pp. 245–254. ACM Press (2001)
14. Poelstra, A.: (2014). https://download.wpsoftware.net/bitcoin/pos.pdf
15. Rosenfeld, M.: (2012). http://arxiv.org/abs/1402.2009
16. User “cunicula” (2012). https://bitcointalk.org/index.php?topic=122291
17. User “QuantumM...” (2011). https://bitcointalk.org/index.php?topic=27787

http://arxiv.org/abs/1402.1718
http://eprint.iacr.org/2014/452
https://bitcoin.org/en/
https://download.wpsoftware.net/bitcoin/pos.pdf
http://arxiv.org/abs/1402.2009
https://bitcointalk.org/index.php?topic=122291
https://bitcointalk.org/index.php?topic=27787

First Workshop on Secure Voting
Systems, VOTING 2016

Coercion-Resistant Internet Voting
with Everlasting Privacy

Philipp Locher1,2(B), Rolf Haenni1, and Reto E. Koenig1

1 Bern University of Applied Sciences, 2501 Biel, Switzerland
{philipp.locher,rolf.haenni,reto.koenig}@bfh.ch
2 University of Fribourg, 1700 Fribourg, Switzerland

philipp.locher@unifr.ch

Abstract. The cryptographic voting protocol presented in this paper
offers public verifiability, everlasting privacy, and coercion-resistance
simultaneously. Voters are authenticated anonymously based on perfectly
hiding commitments and zero-knowledge proofs. Their vote and partic-
ipation secrecy is therefore protected independently of computational
intractability assumptions or trusted authorities. Coercion-resistance is
achieved based on a new mechanism for deniable vote updating. To evade
coercion by submitting a final secret vote update, the voter needs not to
remember the history of all precedent votes. The protocol uses two types
of mix networks to guarantee that vote updating cannot be detected by
the coercer. The input sizes and running times of the mix networks are
quadratic with respect to the number of submitted ballots.

1 Introduction

Publishing the list of submitted ballots is a prerequisite for introducing public
verifiability in electronic voting systems. Since the encrypted votes included in
the ballots are protected by cryptographic techniques available today, there is
no guarantee that the protection will withstand future advances in cryptanalysis
and computational abilities. The secrecy of a vote submitted today is therefore
not guaranteed to last forever. As a consequence, election organizers are often
concerned about handing over the election data to everyone, even if this results
in limiting the scope of public verifiability. Another serious concern for election
organizers is the increased scalability of vote buying, bribery, or coercion attacks
in an entirely digitalized environment. Providing a receipt to allow individual
verifiability and not providing a receipt to disallow vote buying is a strong conflict
in the design of electronic voting protocols.

1.1 Related Work

To the best of our knowledge, everlasting privacy and coercion-resistance have
never been addressed together in a single cryptographic voting protocol. As each
of them is a highly challenging problem on its own, offering them together seems
to be nearly impossible. In the existing literature on everlasting privacy, the
c© International Financial Cryptography Association 2016
J. Clark et al. (Eds.): FC 2016 Workshops, LNCS 9604, pp. 161–175, 2016.
DOI: 10.1007/978-3-662-53357-4 11

162 P. Locher et al.

adversary is assumed to possess unlimited computational power and an infinite
amount of time to break the privacy of the votes. Some of the proposed solu-
tions are designed for the traditional setting, in which ballots are cast in a private
polling booth, whereas other protocols offer everlasting privacy for Internet elec-
tions with the aid of trusted authorities. In each of these proposals, a subset of
colluding authorities could potentially break the privacy of the votes. The first
protocol not relying on trusted authorities has been proposed recently by Locher
and Haenni (LH15) [8]. They use an efficient set membership proof and a proof
of knowledge of the representation of a committed value to achieve everlasting
privacy. Their protocol is a direct predecessor of the protocol presented in this
paper.

In the literature on coercion-resistance, there are two complementary strate-
gies for a voter to evade coercion. In the protocol of Juels et al. (JCJ05) [7], the
voter under coercion presents a fake credential to the adversary. The system is
designed in a way that ballots submitted with a fake credential are silently elim-
inated during tallying using a quadratic number of plaintext equivalence tests
(PET). The adversary model of JCJ05 allows voters to escape from adversarial
control for a short moment during the voting period, which they can use for
submitting a ballot using their true credentials. The second principal strategy
against coercion is to let voters update their votes arbitrarily many times. In
some protocols implementing this strategy, voters need to remember the history
of all precedent votes when submitting the final ballot, which implies that simula-
tion attacks cannot be prevented. In a more recent protocol by Achenbach et al.
(AKLM15) [1], voters can submit a final ballot without remembering any previ-
ous votes and such that no coercer can learn whether vote updating has taken
place or not. To achieve what they call deniable vote updating, they need trusted
authorities performing jointly a quadratic number of encrypted plaintext equiv-
alence tests (EPET). The adversary model of AKLM15 allows voters to escape
from adversarial control at the end of the voting period, which is a slightly
stronger assumption than in JCJ05. On the other hand, voters under coercion
can follow the adversary’s instructions without lying or concealing something.

1.2 Contribution

The contribution of this paper is a new cryptographic protocol for remote elec-
tronic voting. For voters not observed by an adversary before or during vote
casting, it provides everlasting privacy without relying on trusted authorities or
computational intractability assumptions. This means that no one will ever be
able to break the secrecy of the vote or the secrecy of the voter’s participation.
The protocol also offers adequate protection against vote buying, bribery, and
coercion attacks by polynomially bounded adversaries. As far as we know, this
protocol is the first to offer everlasting privacy and coercion-resistance simulta-
neously.

The core of the protocol is composed of a set membership proof, a proof
of known representation of a committed value, and a new tallying process that
guarantees that no adversary can learn if particular votes have been updated

Coercion-Resistant Internet Voting with Everlasting Privacy 163

or not. The proposed mechanism is based on two types of mix networks, which
are applied to a quadratic number of input encryptions. The shuffling destroys
any link to the original list of submitted ballots, but at the same time preserves
the information whether a given vote has been updated or not. The quadratic
running time of the tallying procedure leads to a performance comparable to
JCJ05 and AKLM15. Our approach is therefore not an efficient solution for
large elections.

1.3 Paper Overview

We present our new protocol on two different levels of technical abstraction. In
Sect. 2, we give a high-level overview of the approach by specifying the underlying
adversary and trust model, and by discussing the resulting protocol properties.
In Sect. 3, we introduce the cryptographic primitives, present the cryptographic
details of the protocol, and provide a more precise discussion of the security
properties. We summarize the findings of this paper in Sect. 4.

2 Coercion-Resistant Internet Voting with Everlasting
Privacy

The approach presented in this paper is the first cryptographic voting protocol
that offers verifiability, coercion-resistance, and everlasting privacy simultane-
ously. Three types of parties are involved in the protocol: an election adminis-
tration, a group of trusted authorities, and the voters. They communicate over
different communication channels. During registration, the protocol requires an
authentic channel between voters and the election administration. Furthermore,
a broadcast channel with memory—in the form of a robust append-only pub-
lic bulletin board—is needed for collecting the election data. We assume that
the election administration and the trusted authorities have their own designated
areas on the bulletin board. Finally, for sending their votes to the bulletin board,
voters need access to an anonymous channel. We assume that it is impossible
to intercept and record the complete traffic over this channel during an election
and storing the intercepted data for future use [2].

2.1 Adversary Model and Trust Assumptions

The general adversarial goals are to break the integrity or secrecy of the votes
or to influence the election outcome via bribery or coercion. We consider active
adversaries, which may interfere with the voting process at any point to reach
their goals. To achieve coercion-resistance, we assume that a threshold number of
authorities not colluding with the adversary is available for the tallying process.
We also assume that no adversary can control the machines used during the
voting process.1

1 We are aware that requiring a secure platform is a strong and probably unrealistic
assumption. We do not explicitly address this problem in this paper.

164 P. Locher et al.

To discuss the aspect of everlasting privacy, we consider two types of adver-
saries with very different computational capabilities.

Present adversaries act before, during, or shortly after an election, i.e., within
the cryptoperiod of the involved cryptographic keys. We assume present
adversaries to be polynomially bounded and thus incapable of solving sup-
posedly hard problems such as computing discrete logarithms in some large
groups or breaking cryptographic primitives such as contemporary hash func-
tions. Therefore, they cannot efficiently open computationally binding com-
mitments or generate valid proof transcripts for zero-knowledge proofs with-
out knowing the secret inputs. On the other hand, present adversaries may
have the power and resources to bribe or coerce a large number of voters.
A present adversary in our model is therefore equivalent to the adversary in
JCJ05, except for the additional assumption that voters can escape adversar-
ial control for submitting a final vote update. As discussed in AKLM15, this
is a necessary pre-condition for offering coercion-resistance based on deniable
vote updating.

Future adversaries may become active at any point in the future, i.e., strictly
after the tallying phase of the election under attack. We assume that future
adversaries cannot collude with present adversaries, for example by shar-
ing information. On the other hand, we assume them to possess unlimited
resources in terms of computational power and time. Clearly, contemporary
cryptography will be completely useless in the presence of such an adver-
sary, and any private keying material used in an election today will be
revealed. However, the secrets hidden in perfectly hiding commitments or
zero-knowledge proofs will never be revealed, even if they were generated
today.

2.2 Protocol Overview

The protocol is a continuation of LH15. Trusted authorities are needed to guar-
antee fairness and to add coercion-resistance in form of deniable vote updating,
but not for privacy. The same applies to computational intractability assump-
tions. They are only needed to prevent the creation of invalid ballots during vote
casting and to allow voters to deny the submission of an updated vote, but not
to protect privacy in the long run.

Like in LH15, the core of the protocol is a combination of a set membership
proof and a proof of known representation of a committed value [3,5]. When
casting a vote, the voter provides a zero-knowledge proof of knowledge of the
representation of one of the registered public voter credentials. The same voter
may submit multiple ballots, but the tallying procedure guarantees that only
the last vote counts. In this way, precedent votes can be overridden without
remembering their history. To guarantee that vote updating is deniable, we use
two different types of mix networks to unlink the votes of a given voter from
the voter’s public credential. The main challenge in this step is to detect and
exclude updated votes in a verifiable way without leaking any information to a

Coercion-Resistant Internet Voting with Everlasting Privacy 165

potential coercer. The entire voting procedure consists of four consecutive steps
(the first two steps are identical and the third step is very similar to LH15):

Registration. The voter creates a pair of private and public credentials and
sends the public credential over an authentic channel to the election admin-
istration.

Election Preparation. The election administration publishes the list of pub-
lic voter credentials—one for every registered voter—on the public bulletin
board.

Vote Casting. The voter creates an electronic ballot and sends it over an
anonymous channel to the public bulletin board. The ballot consists of the
encrypted vote, a commitment to the public credential, a homomorphic
encryption of an election credential, and the above-mentioned composition
of zero-knowledge proofs. The voter’s public credential and the election cre-
dential are derived from the same private credential.

Tallying. The trusted authorities verify the proofs included in the submitted
ballots and eliminate ballots with invalid proofs. For each remaining ballot,
the authorities compute a list of ciphertexts with the following property:
whenever the ballot has been updated, at least one of its plaintexts is equal
to 1. The construction of this list is similar to AKLM15, but to sort out
updated ballots, we first shuffle the list in a verifiable mix network. The
shuffle applies under encryption a one-way function to all plaintexts different
from 1. In this way, the shuffled list is unlinked from the original list, but
the above property that an encryption of 1 is an indicator for an updated
ballot is preserved. By attaching the encrypted vote to the resulting shuffled
list, we obtain an intermediate ballot containing all necessary information to
conclude the tallying process. The list of all intermediate ballots is shuffled
in a verifiable re-encryption mix network to unlink them from the original
ballots on the bulletin board. For each output ballot of this shuffle, the trusted
authorities need to decide about including the ballot in the final tally. For this,
they start decrypting the ciphertexts until a plaintext equal to 1 is revealed.
If this happens, the ballot is sorted out. The encrypted votes included in the
remaining ballots are decrypted and counted. To enable public verification,
all steps performed by a trusted authority must be accompanied by non-
interactive zero-knowledge proofs.

This protocol provides everlasting privacy for the same reasons as its predecessor
protocol LH15. All the identifying information contained in a ballot is either a
perfectly hiding commitment or a zero-knowledge proof. To provide coercion-
resistance, a relatively complex tallying phase is necessary to sort out updated
votes in a verifiable way, but such that no coercer can learn if a ballot has been
updated or not. Further aspects of coercion-resistance are discussed in the next
subsection. Note that the tallying procedure requires two mix networks, which
are both applied to a quadratic number of input encryptions. The performance
of the tallying procedure is therefore comparable to AKLM15.

166 P. Locher et al.

2.3 Discussion of Coercion-Resistance

To protect an electronic voting system from adversaries trying to bribe or coerce
voters, receipt-freeness is a necessary precondition. Intuitively, a receipt consists
of some auxiliary non-public information, which is sufficient for voters to prove
towards a passive adversary how they voted. According to JCJ05, there are
at least three additional coercive attacks, which receipt-freeness alone can not
prevent. Voters could be forced to cast a random vote (randomization attack),
to abstain from voting (forced-abstention attack), or to hand the private keying
material over to the coercer (simulation attack).

Deniable vote updating as implemented in our protocol is an adequate
counter-measure to coercion in general. Whatever a present adversary forces the
voter into, the voter can extinguish the demands of the adversary by submitting
secretly a final vote. Other than JCJ05, deniable vote updating is convincing by
the fact that a voter can act exactly as demanded by the coercer without lying
or pretending. In addition, as casting the last vote is independent of the history
of votes submitted previously, the voter must not memorize any state. In other
words, submitting a final vote will always erase any previous votes, even if they
had been cast by the adversary. Erasing votes in this way remains undetected by
the adversary, because the election credential added to the ballot is encrypted
and obfuscated during the tallying phase. As a result, a present adversary will
never succeed with a randomization, forced-abstention, or simulation attack.

A general problem of coercion-resistant systems such as JCJ, which are based
the voter’s ability to lie about some secret credential in the presence of the
coercer, is the unintended use of a wrong credential. The resulting ballot will
appear on the bulletin board and the voter can check its inclusion, but the
vote will not be taken into account in the final tally. Since the system cannot
respond with a warning in such a case, voters are unable to detect using a wrong
credential. In a protocol based on deniable vote updating, the system can issue
such a warning when votes are cast with a wrong credential. This is a remarkable
difference when considering individual verifiability.

The everlasting privacy property of our protocol even prevents an additional
coercive attack not discussed in JCJ05. A future adversary may try to coerce a
voter by claiming to know how the voter has voted in the past and by threatening
the voter with making it public (“I know how you voted and I am going to tell
everyone, unless...”). In a protocol that offers everlasting privacy, this claim
cannot be justified whatsoever.

3 Detailed Cryptographic Protocol

In this section, we present the cryptographic details of our new coercion-resistant
protocol for electronic elections with everlasting privacy. We start with a short
discussion of cryptographic preliminaries. Then we provide a detailed formal
description of the protocol and analyse its security properties.

Coercion-Resistant Internet Voting with Everlasting Privacy 167

3.1 Cryptographic Preliminaries

Let Gp be a multiplicative cyclic group of prime order p, for which the DL
assumption is believed to hold. Furthermore, let Gq ⊂ Z

∗
p, be a large prime-order

subgroup of the group of integers modulo p. Finally, suppose that independent
generators g0, g1 ∈ Gp and h, h0, h1, . . . ∈ Gq are publicly known. Independence
with respect to generators of a cyclic group means that their relative discrete
logarithms are not known to anyone.

Homomorphic Commitments and Encryptions. In our protocol, we use
two instances of the perfectly hiding Pedersen commitment scheme, one over
Gp and one over Gq. We distinguish them by comp(u, r) = gr

0g
u
1 for a com-

mitment to u ∈ Zp with randomization r ∈ Zp and comq(v, s) = hs
0h

v
1 for a

commitment to v ∈ Zq with randomization s ∈ Zq. In the case of Gq, we write
comq(v1, . . . , vn, s) = hs

0h
v1
1 · · · hvn

n for a commitment to n values v1, . . . , vn ∈ Zq.
The protocol also requires an instance of an ElGamal encryption scheme over

Gq, where x ∈ Zq is a shared private key and y = hx ∈ Gq a public key. We
write E = ency(m, r) = (hr,myr) ∈ Gq × Gq for encrypting a message m ∈ Gq

with randomization r ∈ Zq and m = decx(E) = ba−x for decrypting a ciphertext
E = (a, b) in a distributed way using the private key shares of x. We write M =
decx(E) = (m1, . . . ,mn) for decrypting a list of ciphertexts E = (E1, . . . , En).
To re-encrypt a ciphertext E with a new randomization r′ ∈ Zq, we use the
standard procedure E′ = reEncy(E, r′) = E · ency(1, r′) of multiplying E with
an encryption of 1. We write E′ = reEncy(E, r′) = (E′

1, . . . , E
′
n) to re-encrypt a

list of ciphertexts E = (E1, . . . , En) with new randomizations r′ = (r′
1, . . . , r

′
n).

Zero-Knowledge Proofs. Our protocol relies strongly on various non-
interactive zero-knowledge proofs of knowledge. A fundamental proof is the
preimage proof NIZKP [(a) : b = φ(a)] for a one-way group homomorphism
φ : X → Y , where a = φ−1(b) ∈ X is the secret preimage of a public value b ∈ Y .
Examples of such preimage proofs result from the above homomorphic commit-
ment and encryption schemes, for example NIZKP [(u, r) : C = comp(u, r)] for
proving knowledge of the opening of a Pedersen commitment, NIZKP [(m, r) :
E = ency(m, r)] for proving knowledge of the plaintext and randomization of
an ElGamal ciphertext, or NIZKP [(x) : M = decx(E) ∧ y = hx] for proving
knowledge of the private key used in the decryption of a list of ciphertexts.

The most common construction of a non-interactive preimage proof is the
Σ-protocol in combination with the Fiat-Shamir heuristic. Proofs constructed
in this way are perfect zero-knowledge in the random oracle model. Their tran-
script consists of one or multiple commitments and one or multiple responses to
a challenge obtained from querying the random oracle with the public inputs and
the commitments. In practice, the random oracle is implemented with a crypto-
graphic hash function. In the protocol description, we will write π = NIZKP [·]
for the transcripts of non-interactive proofs.

168 P. Locher et al.

Set Membership Proof. Let U = {u1 . . . , uN} be a finite set of values ui ∈ Zp

and C = comp(u, r) a commitment to an element u ∈ U . Both U and C are
publicly known. With a set membership proof, denoted by

NIZKP [(u, r) : C = comp(u, r) ∧ u ∈ U],

the prover demonstrates knowledge of corresponding values u ∈ U and r ∈ Zp.
A general way of constructing a set membership proof is to demonstrate that
P (u) = 0 for the polynomial P (X) =

∏N
i=1(X − ui). This proof, denoted by

NIZKP [(u, r) : C = comp(u, r) ∧ P (u) = 0],

is a particular case of a polynomial evaluation proof. In a recent publication,
Bayer and Groth proposed a polynomial evaluation proof with a logarithmic
size, which is the current state-of-the-art [5].

Proof of Known Representation. In a cyclic group such as Gq with generators
h1, . . . , hn, a tuple (v1, . . . , vn) ∈ Z

n
q is called DL-representation (or simply rep-

resentation) of u ∈ Gq, if u = hv1
1 · · · hvn

n [6]. For such a value u ∈ Gq ⊂ Zp, let
C = comp(u, r) and D = comq(v1, . . . , vn, s) be publicly known commitments.
Following Au et al. [3], a proof of known representation of a committed value (or
simply representation proof), denoted by

NIZKP [(u, r, v1, . . . , vn, s) : C = comp(u, r) ∧
D = comq(v1, . . . , vn, s) ∧ u = hv1

1 · · · hvn
n],

demonstrates that the tuple of committed values in D is a DL-representation of
the committed value in C.

Cryptographic Shuffle. The input of a cryptographic shuffle is a list Z =
(z1, . . . , zn) of input values zi ∈ Z. The mixer applies a keyed one-way function
f : Z × K → Z to each input value zi and permutes the results by picking a
random permutation φ : [1, n] → [1, n] from the set Φn of permutations of length
n. The output of a cryptographic shuffle is therefore a list Z′ = (z′

1, . . . , z
′
n) of

values z′
j = f(zi, ki) for indices j = φ(i) and keys ki ∈ K. Additionally, the

mixer proves the correctness of the shuffle using one of the existing techniques
[4,9]. We denote the two steps of this procedure by

(Z′, πZ) = shuffleφ
f (Z, k1, . . . , kn),

where πZ is the transcript of the non-interactive zero-knowledge proof. To prevent
that a single mixer must be fully trusted, the shuffling needs to be performed by
multiple independent mixers in a mix network. The unlinkability between input
and output is guaranteed as long as at least one permutation remains secret.

In our protocol, we need two instances of a cryptographic shuffle. In the first
case, the input is a list E = (E1, . . . , En) of ElGamal ciphertexts Ei ∈ Gq ×Gq.
For random values γi ∈R Zq\{0}, the function exp(Ei, γi) = Eγi

i is applied to

Coercion-Resistant Internet Voting with Everlasting Privacy 169

each input ciphertext Ei, which gives us (E′, πE) = shuffleφ
exp(E, γ1, . . . , γn).2

In this particular shuffle, both the ciphertexts and the plaintexts are unlinked
from their original values in E. There is only one exception: an encryption of 1
remains an encryption of 1.

In the second case, the input list EE = (E1, . . . ,En) contains n individual
lists Ei = {Ei,1, . . . , Ei,n} of ElGamal ciphertexts, i.e., EE contains a total of
n2 ciphertexts Ei,j ∈ Gq × Gq. For random values r′

i = (r′
i,1, . . . , r

′
i,n) ∈R Z

n
q ,

the function reEncy(Ei, r′
i) is applied to each input list Ei. In other words,

(EE′, πEE) = shuffleφ
reEncy

(EE, r′
1, . . . , r

′
n) re-encrypts all n2 ciphertexts, but

only the rows of the input EE are permuted, not the columns.

3.2 Protocol Description

As outlined in Sect. 2.2, the protocol consists of four consecutive phases. We
will now present the details of each phase using the cryptographic primitives
and formal notation introduced in the previous section. Summaries of all phases
are included in corresponding figures at the end of each subsection. Note that
the registration and election preparation phase are identical to the predecessor
protocol in LH15, and vote casting is very similar. To achieve coercion-resistance,
complexity has been added mainly to the tallying phase.

Registration. The first step of the protocol is the registration of voters before
an election. To register, the voter picks a private credential (α, β) ∈R Zq × Zq

at random and computes the public credential u = hα
1 hβ

2 ∈ Gq. Note that the
private credential is a DL-representation of the public credential. Finally, the
voter sends u over an authentic channel to the election administration (Fig. 1).

Registration (Voter):

1. Pick private credential (α, β) ∈R Zq × Zq.
2. Compute public credential u = hα

1 hβ
2 ∈ Gq .

3. Send u over an authentic channel to the election administration.

Fig. 1. Summary of the registration phase.

Election Preparation. After the registration phase, the election administra-
tion defines the list U = ((V1, u1), . . . , (VN , uN)) based on the electoral roll.
Each pair (Vi, ui) ∈ U links a public credential ui to the corresponding voter
identity Vi. Next, the list A = (a0, . . . , aN) of coefficients ai ∈ Zp of the polyno-
mial P (X) =

∏N
i=1(X − ui) ∈ Zp[X] is computed to allow voters the creation of

2 Note that γi �= 0 is a crucial pre-condition to avoid trivial output ciphertexts (1, 1).
The verifier of πE must therefore check Ei �= (1, 1) for every Ei ∈ E and reject the
proof if one of the checks fails.

170 P. Locher et al.

the set membership proof during vote casting.3 Finally, an independent election
generator ĥ ∈ Gq is defined in some publicly reproducible way and (U,A, ĥ)
is posted into the administration’s designated area of the public bulletin board
(Fig. 2).

Election Preparation (Election Administration):

1. Define U = ((V1, u1), ... , (VN , uN)) based on the electoral roll.
2. Compute coefficients A = (a0, ... , aN) of P (X) = N

i=1(X − ui) ∈ Zp[X].

3. Define election generator ĥ ∈ Gq.
4. Post (U,A, ĥ) into the designated area of the bulletin board.

Fig. 2. Summary of the election preparation phase.

Vote Casting. During the election, voters select their vote by choosing their
preferred election options and encoding them by an element of the set V ⊂ Gq

of valid votes. We assume that the election options, their encoding in V, and the
public key y of the trusted authorities are publicly known.

To cast a vote, the voter computes a commitment C = comp(u, r) of the
public credential and a commitment D = comq(α, β, s) of the private credentials.
Next, the voter computes an encryption E = ency(ĥβ , ρ) of the election credential
ĥβ ∈ Gq and an encryption F = ency(v, σ) of the encoded vote v ∈ V. Finally,
the voter generates three non-interactive zero-knowledge proofs. The first proof,

π1 = NIZKP [(u, r) : C = comp(u, r) ∧ P (u) = 0],

is a set membership proof proving that C is indeed a commitment to the public
credential of one of the eligible voters listed in U. The second proof,

π2 = NIZKP [(u, r, α, β, s) : C = comp(u, r) ∧ D = comq(α, β, s) ∧ u = hα
1 hβ

2],

is a proof of known representation of the committed value in C. It prevents
voters from taking someone else’s credential from U. Finally, the third proof,

π3 = NIZKP [(α, β, s, ρ, v, σ) : D = comq(α, β, s) ∧ E = ency(ĥβ , ρ) ∧ F = ency(v, σ)],

demonstrates that D and E have been generated using the same value β and
that the vote contained in F is known to the voter. The two commitments, the
two ciphertexts, and the three proofs form the ballot B = (C,D,E, F, π1, π2, π3),
3 As the computation of the coefficients is quite expensive (1

2
N2 multiplications in

Zp), it is performed by the election administration, possibly already during the reg-
istration phase in an incremental way. Note that the coefficients can be re-computed
and verified by anyone, and voters can efficiently verify the inclusion of their public
credential u by checking P (u) = 0.

Coercion-Resistant Internet Voting with Everlasting Privacy 171

which is posted to the bulletin board over an anonymous channel. The voter may
submit multiple such ballots during the election period. If multiple identical
copies of the same ballot are posted to the bulletin board, we assume that only
one of them is stored (Fig. 3).4

Vote Casting (Voter):

1. Select vote v ∈ V.
2. Pick r ∈R Zp and compute C = comp(u, r) ∈ Gp.
3. Pick s ∈R Zq and compute D = comq(α, β, s) ∈ Gq .
4. Pick ρ ∈R Zq and compute E = ency(ĥβ, ρ) ∈ Gq × Gq .
5. Pick σ ∈R Zq and compute F = ency(v, σ) ∈ Gq × Gq .
6. Compute non-interactive proofs:

π1 = NIZKP [(u, r) : C = comp(u, r) ∧ P (u) = 0],

π2 = NIZKP [(u, r, α, β, s) : C = comp(u, r) ∧ D = comq(α, β, s) ∧ u = hα
1 hβ

2],

π3 = NIZKP [(α, β, s, ρ, v, σ) : D = comq(α, β, s)∧
E = ency(ĥβ , ρ) ∧ F = ency(v, σ)].

7. Post B = (C, D, E, F, π1, π2, π3) to the bulletin board over an anonymous
channel.

Fig. 3. Summary of the vote casting phase.

Tallying. At the end of the election period, the ballots submitted to the bul-
letin board need to be processed by the trusted authorities. We present this
process by looking at the group of trusted authorities as a single entity per-
forming the necessary shuffling and decryption tasks jointly. In reality, different
trusted authorities will perform respective tasks using their own secret inputs
and random values. The cryptographic shuffling is a serial and the distributed
decryption (usually) a parallel process.

To initiate the tallying process, the trusted authority retrieves the list B
of all ballots from the bulletin board. We assume that the ballots in B are
ordered according to their submission. The authority verifies the non-interactive
proofs π1, π2, π3 for each ballot (C,D,E, F, π1, π2, π3) ∈ B, and ballots with
invalid proofs are eliminated. From all ballots with valid proofs, the two cipher-
texts (E,F) are selected. We denote the resulting ordered list of such pairs by
E = ((E1, F1), . . . , (En, Fn)) and assume that E is ordered according to B. This
implies for all j > i that (Ej , Fj) has been cast after (Ei, Fi). Furthermore, the
validity of the proofs guarantees that each (Ei, Fi) ∈ E originates from a person

4 The bulletin board could also accept multiple copies of the same ballot, which then
need to be eliminated in the tallying phase. But this makes preventing replay and
board flooding attacks more complicated.

172 P. Locher et al.

in possession of valid private credentials. Finally, we know that two distinct pairs
(Ei, Fi), (Ej , Fj) ∈ E belong to the same private credentials, whenever Ei and
Ej contain the same plaintext.

In the next step, the trusted authority computes for each Ei a list Ei =
(Ei,1, . . . , . . . , Ei,n−1) of ciphertexts

Ei,j =

{
Ej for j < i,

Ej+1/Ei for j ≥ i.

Note that Ei may contain one or multiple encryptions of 1, but only if some Ej ∈
{Ei+1, . . . , En} contain the same plaintext as Ei. If this is the case, then (Ei, Fi)
has been updated and needs to drop out at some point. To determine the updated
votes without decrypting Ei, the authority first performs a cryptographic shuffle

(E′
i, πEi

) = shuffleφi
exp(Ei, γi,1, . . . , γi,n−1)

on each Ei, where φi ∈R Φn−1 is a random permutation and γi,j ∈R Zq\{0}
are random exponents. The goal of this shuffle is to conceal any plaintext dif-
ferent from 1. Let E′

i = (E′
i,1, . . . , E

′
i,n−1) be the result of this shuffle and

Fi = (Fi, E
′
i,1, . . . , E

′
i,n−1) the extension of this list by inserting Fi at the front.

For FF = (F1, . . . ,Fn), the authority performs an additional cryptographic
shuffle

(FF′, πFF) = shuffleφ
reEncy

(FF, r′
1, . . . , r

′
n),

for a random permutation φ ∈R Φn and re-encryption randomizations r′
i =

(r′
i,1, . . . , r

′
i,n) ∈ Z

n
q . The purpose of this shuffle is to remove the link to the

original ballots. Let FF′ = (F′
1, . . . ,F

′
n) be the result of this shuffle and F′

i =
(F ′

i , E
′′
i,1, . . . , E

′′
i,n−1) a single entry of FF′. To determine whether F ′

i must be
excluded from the final tally, the authority checks if decx(E′′

i,j) = 1 holds for
some j ∈ [1, n − 1]. Let U ⊆ [1, n] be the subset of indices i for which this is the
case, and V = [1, n − 1]\U the subset of indices for which this is not the case.5

For every i ∈ U , the authority selects from F′
i = (F ′

i , E
′′
i,1, . . . , E

′′
i,n−1) one of the

encryptions E′′
i,j containing 1 as plaintext and computes a non-interactive proof

π̃i = NIZKP [(x) : 1 = decx(E′′
i,j) ∧ y = hx].

For every i ∈ V , the authority computes Vi = decx(F′
i) along with a non-

interactive proof

π̂i = NIZKP [(x) : Vi = decx(F′
i) ∧ y = hx].

The final tally is obtained by checking if the plaintext votes at the first position
in every Vi are elements of V and by summing them up if this is the case. To
complete the tallying process, the trusted authority posts

(E, {Ei,E′
i, πEi

}n
i=1,FF,FF′, πFF, U, {E′′

i,j , π̃i}i∈U , V, {Vi, π̂i}i∈V)

to the designated area of the public bulletin board (Fig. 4).
5 Think of U and V as the indices of the updated and valid votes, respectively.

Coercion-Resistant Internet Voting with Everlasting Privacy 173

Tallying (Trusted Authority):

1. Retrieve the list B of all ballots from the bulletin board.
2. For each (C, D, E, F, π1, π2, π3) ∈ B, verify π1, π2, π3. Select the pairs (E,F)

from ballots with valid proofs. Let E = ((E1, F1), ... , (En, Fn)) denote the list
of such pairs.

3. Compute FF = (F1, ... ,Fn) by applying to following steps to 1 ≤ i ≤ n:
(a) Compute Ei = (E1, ... , Ei−1, Ei+1/Ei, ... , En/Ei).
(b) Pick φi ∈R Φn−1 and γi,j ∈R Zq \ {0}.
(c) Compute (Ei, πEi) = shuffleφi

exp(Ei, γi,1, ... , γi,n−1).
(d) For Ei = (Ei,1, ... , Ei,n−1), let Fi = (Fi, Ei,1, ... , Ei,n−1).

4. Pick φ ∈R Φe and ri = (ri,1, ... , ri,n) ∈R Z
n
q .

5. Compute (FF , πFF) = shuffleφ
reEncy

(FF, r1, ... , rn).

6. Let U = {i ∈ [1, n] : ∃j ∈ [1, n − 1] s.t. decx(Ei,j) = 1}.
7. For every i ∈ U :

(a) Select Ei,j from Fi = (Fi , Ei,1, ... , Ei,n−1) such that decx(Ei,j) = 1.
(b) Compute π̃i = NIZKP [(x) : 1 = decx(Ei,j) ∧ y = hx].

8. For every i ∈ V = [1, n] \ U :
(a) Compute Vi = decx(Fi).
(b) Compute π̂i = NIZKP [(x) : Vi = decx(Fi) ∧ y = hx].

9. Post (E, {Ei,Ei, πEi}n
i=1,FF,FF , πFF, U, {Ei,j , π̃i}i∈U , V, {Vi, π̂i}i∈V) into

the designated area of the bulletin board.

Fig. 4. Summary of the tallying phase with a single trusted authority.

3.3 Security Properties

We will now look at our protocol from the perspective of its security proper-
ties. We provide an informal discussion of how correctness, everlasting privacy,
and coercion-resistance are achieved. Fairness is achieved in a trivial way by
submitting votes encrypted.

Correctness. For a present adversary not colluding with any of the trusted
authorities and not in possession of a private credential, there are two prin-
ciple ways of creating a ballot that will be accepted in the final tally. First, the
adversary may try to find (α′, β′) such that u = hα′

1 hβ′
2 for some u in U , which

is equivalent to solving the discrete logarithm problem. Second, the adversary
may try to fake a proof transcript without knowing such a pair (α′, β′), but this
is prevented by the computational soundness of π1, π2, and π3.

If the present adversary is an eligible voter in possession of a valid private
credential, then using it for submitting more than one ballot is explicitly allowed
by the protocol, but only the last ballot is considered in the final tally. The
malicious voter could try to submit ballots with different election credentials,
but the soundness of π3 does not allow this. Without using the private credential,
the voter is not more powerful than any other present adversary.

174 P. Locher et al.

A present adversary colluding with one or several trusted authorities—or even
the authorities themselves—may try to delete, modify, or add votes in the mixing
or decryption steps of the protocol, but this is prevented by the computational
soundness of πEi

, πFF, π̃i, and π̂i. Their correctness can be verified by anyone.

Everlasting Privacy. A ballot posted over an anonymous channel to the bul-
letin board contains no information for identifying the voter. Clearly, the future
adversary will be able to determine the private key x, use it to decrypt Ei into
ĥβ , and finally obtain β. As u can be regarded as a perfectly hiding commitment
to β, a suitable value α′ can be found for every credential u′ in U such that
u′ = hα′

1 hβ
2 . Thus, knowing β and x does not link Ei = ency(ĥβ , ρ) to u. Since

the proofs π1, π2, and π3 are zero-knowledge and therefore of no additional help,
even a future adversary is unable to break vote or participation secrecy.

Coercion-Resistance. A voter—either voluntarily or under coercion—may prove
the authorship of a ballot by disclosing the randomizations used in the encryp-
tions Ei and Fi. From this, the coercer learns the values ĥβ and v of a submitted
ballot. To issue a conclusive receipt, the voter must also prove that the ballot is
indeed included in the final tally, for example by proving that every subsequent
ballot has been cast by somebody else. But this is impossible as the voter cannot
prove not to know corresponding randomizations. Alternatively, the voter may
try to show that {Ei+1, . . . , En} does not contain an encryption of ĥβ (or equiva-
lently that Ei does not contain an encryption of 1) or to establish a link between
Fi ∈ FF and F′

φ(i) ∈ FF′. Both tasks either require corrupting a majority of
trusted authorities or solving the DDH or DL problem. Hence, the protocol is
receipt-free under ordinary trust or computational intractability assumptions.

Attacks by an active coercer can be countered by the fact that voters cannot
be urged to prove or disprove having cast a final vote in privacy (see reasoning
above). A voter under a randomization attack will therefore follow the coercer’s
instructions and cast a random vote, but then the voter will submit a final vote in
privacy and deny the vote update towards the coercer. For a voter under a forced-
abstention attack, who will simply submit a final vote in privacy, everlasting
participation secrecy is a perfect protection towards the coercer trying to check
the voter’s compliance. Finally, even if the private credentials α and β are handed
over to the coercer in a simulation attack, the voter will always be able use the
credentials for submitting a final vote in privacy and deny it towards the coercer.
The coercer may try to check if vote updating using the same credentials has
taken place, but this is impossible for the reasons explained above and because
the commitments are perfectly hiding.

4 Conclusion

In this paper, we introduced the first cryptographic voting protocol offering
everlasting privacy and coercion-resistance simultaneously. Everlasting privacy
is realized with perfectly hiding commitments and zero-knowledge proofs of
knowledge, and hence does not depend on trusted authorities or computational
intractability assumptions. To achieve coercion-resistance, we propose a new

Coercion-Resistant Internet Voting with Everlasting Privacy 175

deniable updating mechanism based on a combination of cryptographic mixing
procedures. Computational intractability assumptions are obviously required for
cryptographic mixing, but this is only problematical if the extent of a coercion
attack exceeds the cryptoperiod of the chosen cryptographic setting. Attacks
against vote or participation secrecy will always remain impossible.

The main drawback of our protocol is the quadratic running time of the
tallying procedure. Compared to LH15, which requires O(n log N) exponentia-
tions and O(nN) multiplications in Gp to verify all submitted ballots, we require
O(n2) additional exponentiations in Gq. The performance is therefore similar to
AKLM15, i.e., the applicability of our approach is restricted to relatively small
electorates. Implementing our new protocol and analysing its performance to
estimate the maximal possible electorate size is subject of further research.

Some problems remain unsolved in the current version of our protocol. An
open issue is the problem of flooding the bulletin board with a very large number
of valid ballots. This problem is a direct consequence of deniable vote updating.
Another open issue is the problem of a malicious voting platform.

Acknowledgments. We thank the anonymous reviewers for their thorough reviews
and appreciate their comments and suggestions. This research has been supported by
the Swiss National Science Foundation (project No. 200021L 140650).

References

1. Achenbach, D., Kempka, C., Löwe, B., Müller-Quade, J.: Improved coercion-
resistant electronic elections through deniable re-voting. USENIX J. Election Tech-
nol. Syst. (JETS) 2, 26–45 (2015)

2. Arapinis, M., Cortier, V., Kremer, S., Ryan, M.: Practical everlasting privacy. In:
Basin, D., Mitchell, J.C. (eds.) POST 2013 (ETAPS 2013). LNCS, vol. 7796, pp.
21–40. Springer, Heidelberg (2013)

3. Au, M.H., Susilo, W., Mu, Y.: Proof-of-knowledge of representation of committed
value and its applications. In: Steinfeld, R., Hawkes, P. (eds.) ACISP 2010. LNCS,
vol. 6168, pp. 352–369. Springer, Heidelberg (2010)

4. Bayer, S., Groth, J.: Efficient zero-knowledge argument for correctness of a shuffle.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 263–280. Springer, Heidelberg (2012)

5. Bayer, S., Groth, J.: Zero-knowledge argument for polynomial evaluation with
application to blacklists. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT
2013. LNCS, vol. 7881, pp. 646–663. Springer, Heidelberg (2013)

6. Brands, S.: Rethinking Public Key Infrastructures and Digital Certificates: Build-
ing in Privacy. MIT Press, Cambridge (2000)

7. Juels, A., Catalano, D., Jakobsson, M.: Coercion-resistant electronic elections. In:
4th Workshop on Privacy in the Electronic Society, WPES 2005, pp. 61–70 (2005)

8. Locher, P., Haenni, R.: Verifiable internet elections with everlasting privacy and
minimal trust. In: Haenni, R., Koenig, R.E., Wikström, D. (eds.) VoteID 2015.
LNCS, vol. 9269, pp. 74–91. Springer, Heidelberg (2015)

9. Terelius, B., Wikström, D.: Proofs of restricted shuffles. In: Bernstein, D.J.,
Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp. 100–113. Springer,
Heidelberg (2010)

Selene: Voting with Transparent Verifiability
and Coercion-Mitigation

Peter Y.A. Ryan1(B), Peter B. Rønne1,2, and Vincenzo Iovino1

1 University of Luxembourg, Esch-sur-Alzette, Luxembourg
peter.ryan@uni.lu, vinciovino@gmail.com
2 INRIA Nancy, Villers-làs-Nancy, France

peter.roenne@inria.fr

Abstract. End-to-end verifiable voting schemes typically involve voters
handling an encrypted ballot in order to confirm that their vote is accu-
rately included in the tally. While this may be technically valid, from a
public acceptance standpoint it may be problematic: many voters may
not really understand the purpose of the encrypted ballot and the various
checks that they can perform. In this paper we take a different approach
and revisit an old idea: to provide each voter with a private tracking
number. Votes are posted on a bulletin board in the clear along with
their associated tracking number. This is appealing in that it provides
voters with a very simple, intuitive way to verify their vote, in the clear.
However, there are obvious drawbacks: we must ensure that no two vot-
ers are assigned the same tracker and we need to keep the link between
voters and trackers private.

We propose a scheme that addresses both of these problems: we ensure
that voters get unique trackers and we close off coercion opportunities
by ensuring that the voters only learn their tracking numbers after the
votes have been posted. The resulting scheme provides receipt-freeness,
and indeed a good level of coercion-resistance while also providing a more
immediately understandable form of verifiability.

1 Introduction

The challenge with voting systems is to provide sufficient evidence to render
the outcome beyond dispute while at the same time ensuring ballot secrecy and
coercion resistance. Furthermore, the system has to be very easy to use and
easily understandable. The response from the crypto community has been to
develop the notion of End-to-End (E2E) Verifiability. A number of schemes have
been proposed and some even implemented and deployed, for example, Prêt à
Voter [25] Wombat [2] and Scantegrity II [26], Helios https://vote.heliosvoting.
org/, Civitas [7], Pretty Good Democracy [24].

Typically these schemes involve the creation of an encrypted version of the
vote at the time of casting. The voter gets to retain a copy of the encrypted
vote which she can later confirm is correctly posted to a secure, append-only

c© International Financial Cryptography Association 2016
J. Clark et al. (Eds.): FC 2016 Workshops, LNCS 9604, pp. 176–192, 2016.
DOI: 10.1007/978-3-662-53357-4 12

https://vote.heliosvoting.org/
https://vote.heliosvoting.org/

Selene: Voting with Transparent Verifiability and Coercion-Mitigation 177

Web Bulletin Board (WBB). All the posted, encrypted ballots are then anony-
mously tabulated, either using mixes and decryption or exploiting homomorphic
properties of the encryption to tabulate under encryption and then decrypt the
result.

The assurance arguments are rather subtle though, and some people object
to the use of crypto in voting on the grounds that the majority of the electorate
will not really understand it and its role. Indeed, German Federal law, according
to some interpretations, rules out the use of cryptography on the grounds that
anyone should be able to understand the mechanisms without requiring any spe-
cial knowledge. It is interesting therefore to explore the possibility of achieving
some form of verifiability without the use of crypto. An early example of this is
the article of Randell and Ryan [21] that uses scratch strips as an analogue of
crypto. Another fine example is Rivest’s ThreeBallot system [22].

Another approach is to have private ballot identifiers that allow voters to look
up their vote in the clear on the WBB. Schneier in his book [27] for example
suggests such an approach: voters are invited to invent their own random code
and submit it with their vote. A slightly more sophisticated approach, in which
the system and/or the voter’s devices generates the numbers is presented in [1].

Introducing ballot identifiers has the appeal that it provides voters with a
very simple, direct and easy-to-understand way to confirm that their vote is
present and correct in the tally. There are however two significant drawbacks:
care has to be taken to ensure that voters get distinct trackers and there is a
danger of coercion. The first is an issue if, for example the system could identify
two voters likely to vote the same way and assign them the same tracker. In
this case it just posts one vote against this tracker and is free to stuff another
vote of its own choice. The second danger is that a coercer requires the voter
to hand over her tracker to allow him to check how she voted. Notice though
that in this style of attack the coercer has a limited window of opportunity: he
must request that the tracker be handed over before the results are published.
It is this observation that we exploit to counter this threat: we arrange for the
voters to learn their tracker numbers only after the vote/tracker number pairs
have been posted to the WBB.

This paper presents a scheme that addresses both of these shortcomings by:

– Guaranteeing that voters get unique trackers.
– Arranging for voters to learn their tracker only after the votes and correspond-

ing tracking numbers have been posted (in the clear).

We hope that by putting all the crypto under the bonnet, voters, election
officials etc. may find such a scheme more acceptable that conventional E2E
verifiable schemes that require voters to handle encrypted ballots. Here the voters
just have to handle tracking numbers and votes in the clear. The scheme is also
interesting in that it appears to shift the trust model for voter devices: in usual
E2E schemes we need to worry about the voter’s device encrypting the vote
correctly. This typically necessitates complicating the protocol with Benaloh
challenges, [3], or similar ballot assurance mechanisms. Now that voters get to

178 P.Y.A. Ryan et al.

check their vote in the clear, a misbehaving device can be detected more readily,
resulting in a simpler voting ceremony.

A possible problem with the basic scheme, pointed out by Bill Roscoe, is that
a coerced voter might by mis-chance choose the coercer’s tracking number when
she is deploying her coercion evasion strategy. Perhaps even more worrying is the
possibility that the coercer will simply claim, falsely, that the tracker revealed
by the voter is his and hence he “knows” that voter has not revealed her true
tracker. This puts the voter in a very difficult situation. It seems that her best
strategy is to stick to her guns and insist that she has revealed her true tracker.
She does not know whether or not the coercer is telling the truth and indeed,
ironically, the coercer does not have any means to prove to her that it is his
tracker.

In large elections with a small number of candidates the odds of lighting
on the coercer’s tracker will typically be small (unless the coercer is backing a
serious loser), but even the remote possibility may be worrying to some voters.
If the coercer is not himself a voter the problem does not arise, but even here
there may be an issue if many voters are being coerced. And, as remarked above,
the coercer might claim, falsely, that the tracker is his.

It is not immediately obvious how to counter this danger, but in the full
version [23] we present an enhancement to the basic scheme which counters this
possibility, but where the tally is less transparent. An alternative version of the
basic scheme which also counters the possibility of choosing the coercer’s tracker
is described in Sect. 8; however the cost is that coerced voters can no longer
verify their cast vote.

The Selene scheme is in any case targeted at low coercion threat environ-
ments and so in such a context this problem could be regarded as minor. We
suggest that, in some contexts, the benefits arising from the greater degree of
transparency outweigh the rather remote threat. In any event, we show that the
basic scheme still provides receipt-freeness.

It is worth noting that the constructions presented here could be thought of
as a possible add-on to other schemes to provide a transparent form of verifi-
ability. Indeed we could start with a simple, un-verifiable scheme that simply
delivers (encrypted) votes to the server and render it verifiable by adding Selene
constructs.

2 Background

Coercion can come in many flavours, from implicit, the coercer does not have to
say anything, folk just know how they are expected to vote, to full-on: your
personal coercer is on hand 24/7 to assist you in making the right voting
choice. Making a voting system resistant to the latter form is extremely dif-
ficult, arguably impossible if the coercer really is observing the voter throughout
the voting period. The Selene scheme is aimed at contexts where the coercion
threat is closer to the former end of the spectrum: the coercer will issue some
instructions and ask some awkward questions. Selene will mitigate such coercion

Selene: Voting with Transparent Verifiability and Coercion-Mitigation 179

attacks and at the same time allow the voters to directly verify that their vote
is counted as intended.

3 Cryptographic Primitives

In this paper we will assume that the reader is familiar with signature schemes
[13], threshold encryption [11], plaintext equivalence tests (PET), non-interactive
zero-knowledge proofs of knowledge (NIZKPoK) [13] and verifiable shuffle pro-
tocols [20]. We further assume the existence of a secure Web Bullettin Board
(WBB) [16]. We defer detailed descriptions of these to the the full version [23].

4 Related Work

E2E verifiable voting now has quite a long and rich literature, with many schemes
having been proposed, both for in-person and remote, e.g. internet voting. Here
we just mention some of the most closely related schemes. Note, Selene as pre-
sented here is intended for internet voting, but it would doubtless be straigfor-
ward to adapt it to in-person voting.

The most notable verifiable internet voting scheme is Adida’s Helios, https://
vote.heliosvoting.org/. Helios is not receipt-free, but recently the Belenios RF
scheme, [8], has been proposed to provide receipt freeness.

Juels et al. [17] proposed a formal definition of coercion resistance and a
credential-based mechanism to achieve this. The Civitas system, [7], http://
www.cs.cornell.edu/projects/civitas/, implements this approach, with some
enhancements.

The idea of voters having a private tracking number with which they can look
up their vote in the clear on a bulletin board appears to go back the Schneier’s
“Applied Cryptography” book in which he suggests that voters choose a pass-
word to identify their vote. Much later the idea is revived for use in voting during
ANR (Agence National de la Recherche) funding committee meetings. A scheme
that has some similarities to Selene in that votes appear in the clear alongside
identifying number, is Trivitas, [6]. Here, however, the clear-text votes appear
on the bulletin board at an intermediate step, followed by further mixing and
filtering. Hence the voters do not verify their vote directly in the tally. The goal
is rather to allow voters to test the system by submitting dummy ballots.

5 The Set-Up Phase

The EA creates the threshold election key and keys share. Ideally this should be
in a distributed, dealerless fashion [11]. We assume that any voter already has
a PK/SK pair for an El Gamal encryption scheme and thus the PK of voter i
has the form pki = gxi , where xi is her corresponding secret-key. When voters
register for the election we assume that they, or more precisely their devices,
create a fresh, ephemeral trapdoor key pair.

https://vote.heliosvoting.org/
https://vote.heliosvoting.org/
http://www.cs.cornell.edu/projects/civitas/
http://www.cs.cornell.edu/projects/civitas/

180 P.Y.A. Ryan et al.

We now describe a distributed construction whose goal is to assign unique
tracker numbers to the voters and inform them of their tracking numbers in
a way that provides them with high confidence that it is correct but allowing
them to deny it if coerced. We do this by generating trapdoor, Pedersen-style
commitments to the tracking numbers. The tracking numbers could be rather
sparse to be easily distinguishable, but can also be consecutive numbers 1, 2,

Distributed Generation of the Encrypted Tracker Numbers. The Elec-
tion Authority publicly creates the tracking numbers ni and computes gni (to
ensure that the resulting values fall in the appropriate subgroup) as well as the
(trivial) ElGamal encryptions of the gni : {gni}PKT

and posts these terms to the
WBB:

ni, g
ni , {gni}pkT

The (Mix) Tellers now put the last, encrypted terms through a sequence of
verifiable, re-encryption mixes to yield:

{gnπ(i)}′
pkT

These are now assigned to the voters’ PKs

(pki, {gnπ(i)}′
pkT

)

Note that, thanks to the mixing, the assignment of these numbers to the
voters is not known to any party, aside from a collusion of all the mix Tellers.
Note also that as this is a verified mix, as long as all the input numbers are
unique it is guaranteed that each voter will be assigned a unique (encrypted)
number. We still need to ensure that the number revealed to each voter is the
number assigned to them in the above construction; we will see this next.

5.1 Distributed Generation of the Tracker Number Commitments

Now, each Teller is required to produce n pairs of terms of the form:

({h
ri,j

i }pkT
, {gri,j }pkT

)

Here and in the following we have set hi := gxi = pki for notational conve-
nience.

We have to provide NIZKPoK proofs that these terms are well-formed, i.e.
that the ri,j exponents in the two terms are indeed identical and known and
that the Teller knows such value, we present these in the full version [23]. In
addition we will have to assume that such proofs be non-malleable as we will
explain later. Alternatively, one could also let the Tellers produce extra terms
and perform a cut-and-choose audit.

Thus we now have a n × t array of such pairs, the columns corresponding
to the Tellers and the rows to the voter ids. Now, for each voter, we form the
product across the columns of the first elements to give:

Selene: Voting with Transparent Verifiability and Coercion-Mitigation 181

{hri
i }pkT

=
t∏

j=1

{h
ri,j

i }pkT

Where, due to the multiplicative homomorphic properties of ElGamal,

ri :=
t∑

j=1

ri,j

Now we form the product of the {hri
i }pkT

and the {gnπ(i)}pkT
:

{hri
i · gnπ(i)}pkT

= {hri
i }pkT

· {gnπ(i)}pkT

This gives us the encryption under the Teller’s PK of the trapdoor com-
mitments to the tracking numbers: (hri

i · gnπ(i)). We can now have a threshold
set of Tellers perform verified, partial decryptions of these terms to reveal the
commitments:

Ci := hri
i · gnπ(i)

All of these steps are posted, along with NIZKPoK proofs and audits, to the
WBB.

It seems that the Tellers cannot cheat in any effective way here aside from
injecting invalid randoms which will result eventually in the voters being unable
to open their commitment to a valid tracking number. But in any case, any such
cheating will be detected by checks on the NIZKPoK proofs or random audits.

Now, for each voter there will be a tuple of terms posted to the WBB:

(pki, {gnπ(i)}pkT
, hri

i · gnπ(i))

5.2 Voting

Voter Vi casts her vote in the form:

(SignVi({Votei}pkT),Πi),

where the ballot is signed either with the voter’s true PK, or with her pseudo-PK
if this has been configured (see the full version [23]), and Πi is a non-interactive
proof of knowledge of the plaintext. The signature is to avoid ballot stuffing,
see e.g. [9]. The proofs of knowledge are needed to ensure ballot independence
[10,12,29], by preventing an attacker copying, re-encrypting a previously cast
vote as his own.1 Note that in conjunction with Selene such a copying attack

1 As Bernhard et al. [5] showed, it is possible to tweak the so called Enc+PoK par-
adigm (where one adds a proof of knowledge to an ElGamal ciphertext) to achieve
non-malleable encryption that is sufficient for ballot independence. Another possi-
bility is to resort to threshold Cramer and Shoup [28]. Note that any change will
be completely transparent in Selene where the vote cast system can be essentially
arbitrary.

182 P.Y.A. Ryan et al.

would be particularly virulent: the attacker copies the victim’s vote and casts it
as his own. When the votes and trackers are revealed he sees exactly how the
victim voted.

It is important that the server check for duplication of encrypted votes. It is
also advisable to post the votes only once voting is closed. The signatures and
proofs are checked for validity and, if valid, the encrypted votes are now paired
off with the PK (and encrypted tracking number) with which they were signed.
Double votes are handled according to the policy in operation, e.g. only the last
vote cast by Vi is retained. Thus we get a list of tuples on the WBB:

(pki, {gnπ(i)}pkT
, (hri

i · gnπ(i)),SignVi({Votei}pkT ,Πi))

5.3 Mixing and Decryption

Now, for each row on the WBB, the second and fourth terms of these tuples are
extracted and the signature and proofs striped off the fourth term. This gives
pairs of the form:

({gnπ(i)}pkT
, {Votei}pkT)

These are now put through a verifiable, parallel shuffle, e.g. [20]. Once this
is done, a threshold set of the Tellers perform a verifiable decryption of these
shuffled pairs. All of these steps along with the proofs are posted to the WBB.
Thus, finally we have a list of pairs: tracking number, vote:

(gnπ(i) ,Votei)

from which the tracker/vote pair can immediately be derived: (nπ(i),Votei).

5.4 Notification of Tracker Numbers

For the notification of tracking numbers we will think of the Pedersen commit-
ments whose construction we described earlier as forming the β component, i.e.
the hr · m, of an ElGamal encryption under the voter’s PK, but with the α
component, i.e. the gr, kept hidden. Thus we think of an ElGamal encryption
as being represented:

(α, β) := (gr, hr · m)

The goal then is to reveal the α term to the voter in a deniable fashion.
Once the trackers and votes have been made available on the WBB for a

sufficient period for the voters to note any alternative trackers as may be required
to parry any attempted coercion, the Tellers send the voter Vj their share of the
grj,i over a private channel:

Tj → Vi : grj,i

Once Vi’s device has received these from all the Tellers it combines them to
form gri , the α term which along with the β term of the commitment hri

i · gnπ(i)

to give the ElGamal encryption of gnπ(i) w.r.t. the voter’s PK hi:

(gri , hri
i · gnπ(i))

Selene: Voting with Transparent Verifiability and Coercion-Mitigation 183

The voter can now decrypt this in the usual fashion using her secret key xi,
thus revealing gnπ(i) and hence nπ(i).

The advantage of this construction is that it is unnecessary to authenti-
cate the message notifying the voter of the α term. Authenticating these terms
naively would introduce coercion threats. Designated Verifier Signatures or simi-
lar would be a way to sidestep such coercion threats, but they would significantly
complicate the ceremony.

The point is that an adversary, even if colluding with all the Tellers, can
only construct an α term that opens up to a valid tracker different from the true
tracker of the voter with negligible probability. Stated formally:

Theorem 1. If the 1-DHI assumption [19] holds, then there exists no PPT
algorithm A which takes as inputs a description of a DH-group G along with
a generator g for it, a set T of tracker number of polynomial size, two values
C = gnhr, h = gx ∈ G and outputs with non-negligible probability a term α such
that C/αx is of the form gn′

where n′ �= n is a valid tracker, n′ ∈ T . Further,
this holds true even if the algorithm is given n and r.

A deeper discussion and a proof of the theorem can be found in the full
version [23].

By contrast, the voter, or more precisely her device, with knowledge of the
trapdoor, can compute an alternative gri ′ term that will decrypt to an alter-
native, valid tracker of her choice. Suppose that she wants her commitment to
decrypt to the tracker value m∗ := gn∗

, she inputs this to her device along with
the commitment value βi and the device computes the fake α term α′:

α′ =
(

βi

m∗

)x−1
i

Note also that for the privacy of the tracking numbers we do not really need
to encrypt the gri terms as the trackers are still protected by the encryption
under the voter’s PK. However, it is still important to send these terms to the
voter over a private channel to ensure that they are deniable.

Another potential attack lies in the fact that a Teller could create his grj term
with knowledge of the gri ’s terms of the other Tellers so that the product of all
ri’s be known to him. This would be possible if the NIZKPoK proofs be malleable
and in fact this is the case if care is not taken when applying the Fiat-Shamir
heuristic. In the full version [23] we discuss how it is possible to use standard
techniques to make a NIZKPoK non-malleable. We stress that by assuming that
the NIZKPoK is non-malleable, the aforementioned attack is nullified.

6 The Voter Experience

A goal of the design of this protocol is to make the voter experience as simple and
intuitive as possible. We assume that the voters already possess public (signing)
keys and will create trapdoor keys during a registration phase. First we describe
the ceremony in the case that the voter does not experience any coercion. Then
we describe the steps needed to counter a coercer.

184 P.Y.A. Ryan et al.

6.1 The Core Ceremony

– The voter receives an invitation to vote along with a ballot.
– The voter inputs her choice and her device encrypts this under the Election

PK and signs this. The device sends this to the Election Server.

After a suitable period the tracking number/vote pairs are anonymised and
decrypted and displayed on the WBB. The voters receive an invite to visit the
WBB, but will only be necessary at this stage if the voter is being been coerced.

– After a suitable delay, the voter receives a notification of the α term, which
she inputs to her device to allow it to extract her tracking number. Once she
has this she can visit the WBB and confirm that her vote appears correctly
against this tracker.

The last step is optional, to enable to voter to check that her vote was
correctly recorded and entered into the tally. She can skip this if she is not
interested in performing such a check.

6.2 The Ceremony in the Event of Coercion

If the voter is being coerced she needs to take some additional, coercion evasion
steps, shown in italics:

– The voter receives an invitation to vote along with a ballot.
– The voter inputs her choice and her device encrypts this under the Election

PK and signs this. The device sends this to the Election Server.
– Once the (tracker, vote) pairs are displayed on the WBB she visits the WBB
and notes down a tracking number that appears against the vote demanded by
the coercer.

– The voter inputs this fake tracking number into her device and it outputs a
fake α′ term that coupled with her commitment, the β term of the ElGamal
encryption of her tracker, will decrypt to the fake tracker.

– After a suitable delay, the voter receives a notification of her “true” α term,
which she inputs to her device to allow it to extract her tracking number from
the commitment.

– If the coercer demands that she reveal her tracking number she “reveals” the
fake one. If he further demands that she reveals the alpha notification value,
she reveals the fake α′ she computed earlier.

– Once she has her tracker she can visit the WBB and confirm that her vote
appears correctly against this tracker.

Of course, she should also notify the appropriate authorities that coercion
was attempted.

Selene: Voting with Transparent Verifiability and Coercion-Mitigation 185

6.3 Selene as an Add-On

It is, however, interesting to note that the constructions described above could
in many cases be added to an existing scheme, one without any verification fea-
tures or perhaps one having conventional E2E verification involving encrypted
receipts. Indeed, in some cases it could even be retro-fitted to an election that
had already taken place. Suppose that a Helios vote had been conducted and
contested. The trapdoor commitments to the trackers could be generated and
associated to the voters as described above and the mixes and decryptions per-
formed afresh. For this to work, the base scheme must use encryption such that
we can run a parallel shuffle with the corresponding encrypted trackers.

In the full version [23] we discuess more enhancements to the basic scheme
such as the use of re-encryptable signatures [8].

7 Analysis

In this section we give a brief, informal analysis of the security properties of
Selene. A full, formal security analysis is postponed for future research.

7.1 Verifiability and Verification

If we think of Selene as an add-on to a base scheme, the universal verifiability of
Selene is at least as strong as the base vote casting. In Sect. 5.2 this is a Helios
like scheme, but as mentioned in Sect. 6.3 it could also be a more general scheme.
Such schemes most often provide tallied-as-stored security, i.e. that the vote is
tallied as cast by the device of the voter.

However, Selene could aso be added to a vote casting scheme without univer-
sal verifiability. Indeed, the strength of Selene is to provide additional individual
direct verification that the vote is tallied as intended by the voter.

The security of the tracker construction relies on interested parties checking
the proofs and calculations done on WBB as follows, but these are universally
verifiable:

– Check that the trackers, ni, written in plain on the WBB are indeed unique
and their exponentiations gni and the trivial encryptions thereof are correct
(Sect. 5).

– Check the ZK proofs for the mix of the encrypted trackers (Sect. 5). This
is to ensure both privacy and verifiability. We will elaborate on this in next
subsection.

– Check the ZK proofs from the Tellers that the terms {h
ri,j

i }pkT
, {gri,j }pkT

are
well-formed. Further, it is checked that these are correctly multiplied together
to give a commitment to the tracking number (Sect. 5.1). It can be shown
(see the full version [23]) that an adversary with overwhelming probability
cannot fake the α term, which the voter receives and uses together with the
commitment to decrypt the tracker. This of course assumes that the voter’s
secret key xi = logg hi is not known to the adversary. We will comment on
this below.

186 P.Y.A. Ryan et al.

– Check the proofs in the verifiable parallel shuffle of the voter/tracker pairs and
their decryption (Sect. 5.3). As in a standard voting scheme using mixing for
tallying this ensures that the tally is correct and in this case it further means
that the tracker in the commitment is indeed the one shown next to the vote
in the tally.

We conclude that if these checks are performed then a voter, who decrypts to
a valid tracker, can be confident that this is the unique tracker assigned to her
and the corresponding vote on the tally board is the vote stored encrypted on
WBB.

More elaborate schemes also provide some security for the vote being stored
as intended, even when the voter’s device is malicious e.g. via Benaloh challenges
[3] or by employing hardware tokens [15]. Selene, can however also provide ver-
ifiability in this respect. Checking the vote in the tally can reveal if a malicious
device altered the intended vote. This requires that the voter checks her vote on
an app or another device not controlled by the adversary. Further, the signature
key used to cast the vote can also be different from the secret key xi used to
retrieve the tracker. In this case the device used to cast the vote does not even
need to know xi. This means that the adversary cannot calculate an alternative
value for the α term and it will be more difficult to launch an attack. A voter
can then even use the same device to receive the α term, then store it and then
reveal the secret key to get the tracker. Later the voter can then check if it gives
the same tracker on another device.

7.2 Ballot Privacy

The Selene scheme requires that the underlying ballot casting mechanism pro-
vides good privacy. Thus the encryption algorithm and its implementation used
to encrypt the vote should ensure the secrecy of the vote. The first mix of the
encrypted trackers means that only an adversary controlling all the mix servers
would know the association of the tracking numbers to the voters, assuming
that the proofs of the mixing have been checked. The posted commitments to
the tracking numbers are perfectly hiding unless the adversary colludes with all
the Tellers. Finally the parallel mix preserve ballot privacy for both the vote
and the tracker just like in a standard vote scheme using tallying via mix nets.
Finally, the α term, if this should come into the possession of an adversary,
does not reveal the tracker since it just a part of an ElGamal encryption of the
tracker.

7.3 Receipt-Freeness

In their seminal paper Benaloh and Tuinstra [4] defines receipt-free (which they
call uncoercibility) informally as “no voter should be able to convince any other
participant of the value of its vote”.

If the vote casting scheme is receipt-free, e.g. by employing the model of
BeleniosRF [8] for the vote casting, then Selene is receipt-free. Basically the

Selene: Voting with Transparent Verifiability and Coercion-Mitigation 187

extra information that the voter has in Selene is the unique tracking number.
However, the voter can simply fake this (and importantly the corresponding
α term) since the tally board is presented before the tracker retrieval. We do
need to assume that he attacker cannot monitor the communication of the α
terms to the voters. As mentioned before, it can happen that the voter chooses
a fake tracker which coincide the tracker of the coercer, however, this does not
constitute a proof of how she voted, it just undermines her claim to that tracker
and associated vote.

To which extent this makes Selene vote buyer resistant is a subject of future
research. The point is that even though the voter cannot prove her vote, she
does have extra information, namely the tracker which is unique to her.

We also mention that Italian style (aka signature) attacks may be possible
here when we are dealing with complex ballots. For some voting methods we may
be able to counter this by splitting up the ballot into components and mixing
separately.

7.4 Coercion: Threats and Mitigation

For Selene to be coercion resistant, we firstly need that this is true for the vote
casting part. Some degree of coercion resistance can be obtained by combining
BeleniosRF [8] with vote updating. Another possibility for partial coercion resis-
tance is to use the scheme by Kulyk et al. [18] where each voter can cast several
vote values and only the sum of these will count in the end. The total number
of votes are hidden in a cloud of null votes which any participant can cast for
the voter.

For Selene the extra tracker verification step however also opens up a coercion
possibility: the coercer can demand to observe the receipt of the grj,i . Of course
the voter can always create a fake term gr′

j,i and pretend to the coercer that
this is the term that was sent to her, see Sect. 5.4. Further, the terms are sent at
randomized times and the coercer will thus have to intensively follow the voter.
However, the possibility of receiving a wrong term while the coercer is present,
might be discouraging for the voter. A possibility to circumvent this is to allow
voters to secretly contact the voting authorities to request that only the fake
grj,i term that the voter has calculated be communicated back to her. They are
now safe from the coercion threat, but a coerced voter have lost the individual
verifiability. This suggests a novel form of coercion resistance, distinct from the
conventional one in which the voter gets to cast her intended vote and to verify
it, or coercion evidence, [14], in which she gets to verify her vote but it might
be nullified. Here she gets to cast her intended vote but if coerced may lose the
possibility to verify it.

The coercion problem might escalate if the coercer is colluding (or pretends
to be) with one of the Tellers. The voter then has to guess which grj,i to fake
(this is incidentally also a problem in Civitas [7]). In the BeleniosRF construction
there is a voting authority which is trusted for the receipt-freeness, and in this
case we can circumvent this danger by letting this authority receive the grj,i

terms and only forward the gri to the voter.

188 P.Y.A. Ryan et al.

True coercion-resistant vote schemes often work with credentials, e.g. Civitas
[7]. The voter knows the true credential and can provide the coercer(s) with fake
credential(s). Where Civitas is not directly compatible with Selene, one can
imagine to combine its credential construction and the extra null votes of [18] to
create a true coercion-resistant scheme compatible with the tracker construction.
In this case the extra credentials can also be used to make the tracker retrieval
coercion-resistant. A scheme could be as follows. After the tally board is created
we allow a certain time for the voters to note the trackers, construct fake α-terms
and contact the voting authorities privately with these terms. After this time the
voter can log in to the voting system to get the α term, however the credential
is also used in this process. The voting authority provide the true α term if the
correct credential is used. If a fake credential is used, the system outputs the
corresponding faked α-term which has been provided by the voter.

7.5 Dispute Resolution

Dispute resolution, the ability to determine the cheating or malfunctioning com-
ponent or party when an error is reported, is quite hard to achieve, especially in
the internet voting context. In Selene this appears to be tricky. If a voter claims
that the vote corresponding to their tracker is not what they cast, it is hard to
determine if it is the voter who is lying or mis-remembering, or the device or the
system that cheated. But this is a problem with the tracking number approach
anyway.

If a voter insists that the vote on the WBB is wrong, we could resolve this
if the voter is prepared to sacrifice their ballot privacy by allowing threshold
decryptions of their ballot for example. This has to be performed with great
care and suitable controls, and presumably in camera to avoid introducing coer-
cion opportunities. The use of voting codes may help here, but this necessitates
mechanisms to distribute these to the voters in a secure fashion and complicates
the scheme.

8 Alternative Selene Scheme

We will now briefly describe an alternative version of the scheme which dispels
the chance of being caught lying about a faked tracker, but where the coerced
voters loose their ability to verify their vote. The idea is that the voting authority
adds f · c extra fake trackers, where f is a number greater than the expected
number of coerced voters. These trackers are added in the clear before the mixing
of the trackers and we thus in total have v + f · c trackers. All the trackers are
sent through a first mixing giving the anonymised encrypted tracking numbers
on the BB

{gnπ(a)}′
PKT

, a = 1, . . . , v + f · c

The first v trackers are used as in the basic Selene construction. The remain-
ing f · c trackers are collected into f sets {gn′

s,k}′
PKT

where s = 1, . . . , f and

Selene: Voting with Transparent Verifiability and Coercion-Mitigation 189

k = 1, . . . , c. For each set, the c trackers are on the BB assigned to a vote for
each candidate in a public fashion using trivial encryptions

({gn′
s,1}PKT

, {Cand1}PKT
), . . . , ({gn

′
s,c}PKT

, {Candc}PKT
).

In the final construction of the tally board on BB, the extra trackers are added to
the ones which have gone through the basic Selene construction and are mixed
along with these. This means that the resulting tally board contains f extra
votes for each candidate corresponding to the f · c fake trackers. Due to the first
and final mixing nobody at this stage knows which trackers are the fake ones.

After revealing the trackers, coerced voters can now contact the voting
authority via an anonymous channel. The voting authority will then request
a fake set of c trackers to be jointly decrypted by the Tellers, and it will send
these trackers to the voter. Further it will instruct the Tellers not to inform the
corresponding voter of the real α term. It will use a unique fake set for each
coerced voter. The coerced voter can now use the unique tracker of choice to
show to the coercer, and she can also compute the corresponding fake α term.
The voter gets c trackers to sidestep an anonymity issue: if a voter asks for a fake
tracker for a specific candidate, she probably did not vote for that candidate.

The coerced voter cannot get her real tracking number. The reason is that the
coercer would then demand to see two unique tracking numbers for the candidate
of his choice. This means that we have a new type of weak coercion-resistance
where the un-coerced voters can verify, but coerced voters can cast the vote of
their choice, but loose the ability to directly verify this vote. In the construction
above each Teller is trusted for coercion-resistance, however, with a bit more
elaborate construction this trust could be moved to the voting authority alone.

9 Conclusions

We present a new voting protocol, based on the idea of tracking numbers but with
the twist that voters do not learn their number until after voting has finished
and the tracker/vote pairs have been posted to the bulletin board. This counters
the usual coercer attack on such tracking number systems: the coercer demands
that the voter hand over her tracking number before the results are posted. We
also provide a mix net construction that ensures that each voter gets a unique
tracking number, preventing the attack of assigning the same tracker to voters
likely to vote the same way. The construction ensures a high level of assurance
that the voter receives the correct tracker while ensuring that this is deniable to
a third party.

The resulting scheme provides a good level of verifiability and coercion resis-
tance while at the same time providing a very direct and simple to understand
mechanism for voter verification. The protocol is not crypto free, but the crypto
is kept under the bonnet for ordinary voters, and in particular the voter ver-
ification step involves just tracking numbers and votes in the clear. Voters do
not have to handle encrypted ballots as is the case for previous E2E verifiable
schemes. A further advantage appears to be that we avoid the need to audit the

190 P.Y.A. Ryan et al.

ballots created by the voter’s device. Typically this necessitates the introduction
of some kind of cut-and-chose protocol into the voting ceremony, significantly
complicating the voter experience. Now, because the voter gets to check her
vote in the clear we can sidestep this complication, but at the cost of incurring
dispute resolution issues.

For future research, it would be interesting to perform a usability experiment
on the Selene protocol to gauge the user experience compared to other e-voting
schemes. We also plan to investigate mechanisms to provide cleaner dispute
resolution.

In is interesting to note that the Selene construction can be thought of as
an add-on to an existing non-verifiable scheme, or indeed a conventional E2E
verifiable scheme for which people want a greater degree of transparency in the
verification. Indeed Selene could even be retrofitted to a cryptographic election
that has been contested. Note further that an option is to run the basic Selene
scheme, but if a significant level of coercion is reported before and during the
vote casting period, the Selene II constructions (presented in the full version of
the paper) could be dynamically added to the WBB give the higher degree of
coercion resistance.

Acknowledgements. We would like to thank Sunoo Park, Bill Roscoe, Mark Ryan
and Richard Stallman for interesting discussions and suggestions. Further, Vincenzo
Iovino is supported by the National Research Fund, Luxembourg, and Peter B. Rønne
is supported by the ANR/FNR project Sequoia ANR-14-CE28-0030-01.

References

1. Arnaud, M., Cortier, V., Wiedling, C.: Analysis of an electronic boardroom voting
system. In: Heather, J., Schneider, S., Teague, V. (eds.) Vote-ID 2013. LNCS, vol.
7985, pp. 109–126. Springer, Heidelberg (2013)

2. Ben-Nun, J., Fahri, N., Llewellyn, M., Riva, B., Rosen, A., Ta-Shma, A.,
Wikström, D.: A new implementation of a dual (paper and cryptographic) vot-
ing system. In: 5th International Conference on Electronic Votin (eVOTE) (2012)

3. Benaloh, J.: Simple verifiable elections. In: Wallach, D.S., Rivest, R.L. (eds.)
USENIX/ACCURATE Electronic Voting Technology Workshop, EVT 2006,
Vancouver, BC, Canada, 1 August 2006. USENIX Association (2006)

4. Benaloh, J.C., Tuinstra, D.: Receipt-free secret-ballot elections (extended
abstract). In: Leighton, F.T., Goodrich, M.T. (eds.) Proceedings of the Twenty-
Sixth Annual ACM Symposium on Theory of Computing, 23–25 May 1994,
Montréal, Québec, Canada, pp. 544–553. ACM (1994)

5. Bernhard, D., Pereira, O., Warinschi, B.: How not to prove yourself: pitfalls of
the Fiat-Shamir heuristic and applications to Helios. In: Wang, X., Sako, K. (eds.)
ASIACRYPT 2012. LNCS, vol. 7658, pp. 626–643. Springer, Heidelberg (2012)

6. Bursuc, S., Grewal, G.S., Ryan, M.D.: Trivitas: voters directly verifying votes.
In: Kiayias, A., Lipmaa, H. (eds.) VoteID 2011. LNCS, vol. 7187, pp. 190–207.
Springer, Heidelberg (2012)

7. Clarkson, M.R., Chong, S., Myers, A.C.: Civitas: a secure voting system. In: IEEE
Symposium on Security and Privacy (2008)

Selene: Voting with Transparent Verifiability and Coercion-Mitigation 191

8. Cortier, V., Fuchsbauer, G., Galindo, D.: Beleniosrf: a strongly receipt-free elec-
tronic voting scheme. IACR Cryptology ePrint Archive 2015:629 (2015)

9. Cortier, V., Galindo, D., Glondu, S., Izabachène, M.: Election verifiability for Helios
under weaker trust assumptions. In: Kuty�lowski, M., Vaidya, J. (eds.) ICAIS 2014,
Part II. LNCS, vol. 8713, pp. 327–344. Springer, Heidelberg (2014)

10. Cortier, V., Smyth, B.: Attacking and fixing Helios: an analysis of ballot secrecy.
In: Proceedings of the 24th IEEE Computer Security Foundations Symposium,
CSF 2011, Cernay-la-Ville, France, pp. 297–311, 27–29 June 2011

11. Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient multi-
authority election scheme. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol.
1233, pp. 103–118. Springer, Heidelberg (1997)

12. Gennaro, R.: Achieving independence efficiently and securely. In: Anderson, J.H.
(ed.) 14th ACM Symposium Annual on Principles of Distributed Computing, pp.
130–136. Association for Computing Machinery, August 1995

13. Goldreich, O.: Foundations of Cryptography: Basic Applications, vol. 2. Cambridge
University Press, Cambridge (2004)

14. Grewal, G.S., Ryan, M.D., Bursuc, S., Ryan, P.Y.A.: Caveat coercitor: coercion-
evidence in electronic voting. In: 2013 IEEE Symposium on Security and Privacy,
SP 2013, Berkeley, CA, USA, 19–22 May 2013, pp. 367–381. IEEE Computer Soci-
ety (2013)

15. Grewal, G.S., Ryan, M.D., Chen, L., Clarkson, M.R.: Du-vote: remote electronic
voting with untrusted computers. In: Fournet, C., Hicks, M.W., Viganò, L. (eds.)
IEEE 28th Computer Security Foundations Symposium, CSF 2015, Verona, Italy,
13–17 July 2015, pp. 155–169. IEEE (2015)

16. Heather, J., Lundin, D.: The append-only web bulletin board. In: Degano, P.,
Guttman, J., Martinelli, F. (eds.) FAST 2008. LNCS, vol. 5491, pp. 242–256.
Springer, Heidelberg (2009)

17. Juels, A., Catalano, D., Jakobsson, M.: Coercion-resistant electronic elections. In:
Proceedings of the 2005 ACM Workshop on Privacy in the Electronic Society,
WPES 2005, Alexandria, VA, USA, pp. 61–70, 7 November 2005

18. Kulyk, O., Teague, V., Volkamer, M.: Extending Helios towards private eligibility
verifiability. In: Haenni, R., Koenig, R.E., Wikström, D. (eds.) VoteID 2015. LNCS,
vol. 9269, pp. 57–73. Springer, Heidelberg (2015)

19. Pfitzmann, B., Sadeghi, A.-R.: Anonymous fingerprinting with direct non-
repudiation. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 401–
414. Springer, Heidelberg (2000)

20. Ramchen, K., Teague, V.: Parallel shuffling and its application to prêt à voter. In:
2010 Electronic Voting Technology Workshop/Workshop on Trustworthy Elections,
EVT/WOTE 2010, Washington, D.C., USA, 9–10 August 2010

21. Randell, B., Ryan, P.Y.A.: Voting technologies and trust. In: IEEE Symposium on
Security and Privacy, pp. 50–56 (2006)

22. Rivest, R.L.: The ThreeBallot Voting System. https://people.csail.mit.edu/rivest/
Rivest-TheThreeBallotVotingSystem.pdf

23. Ryan, P.Y.A., Rønne, P.B., Iovino, V.: Selene: voting with transparent verifiability
and coercion-mitigation. IACR Cryptology ePrint Archive, 2015:1105 (2015)

24. Ryan, P.Y.A., Teague, V.: Pretty good democracy. In: Workshop on Security Pro-
tocols (2009)

25. Ryan, P.Y.A., Schneider, S.A.: Prêt à voter with re-encryption mixes. Technical
report CS-TR-956, University of Newcastle (2006)

26. Scantegrity Team. Scantegrity. http://www.scantegrity.org/papers/whitepaper.
pdf

https://people.csail.mit.edu/rivest/Rivest-TheThreeBallotVotingSystem.pdf
https://people.csail.mit.edu/rivest/Rivest-TheThreeBallotVotingSystem.pdf
http://www.scantegrity.org/papers/whitepaper.pdf
http://www.scantegrity.org/papers/whitepaper.pdf

192 P.Y.A. Ryan et al.

27. Schneier, B.: Applied Cryptography - Protocols, Algorithms, and Source Code in
C, 2nd edn. Wiley, Hoboken (1996)

28. Shoup, V., Gennaro, R.: Securing threshold cryptosystems against chosen cipher-
text attack. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 1–16.
Springer, Heidelberg (1998)

29. Wikström, D.: Simplified submission of inputs to protocols. In: Ostrovsky, R.,
De Prisco, R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 293–308. Springer,
Heidelberg (2008)

On the Possibility of Non-interactive E-Voting
in the Public-Key Setting

Rosario Giustolisi1, Vincenzo Iovino2, and Peter B. Rønne2,3(B)

1 SICS Swedish ICT, Kista, Sweden
fgiustol@gmail.com

2 University of Luxembourg, Luxembourg City, Luxembourg
vinciovino@gmail.com, peter.roenne@inria.fr

3 INRIA Nancy, Villers-lès-nancy, France

Abstract. In 2010 Hao, Ryan and Zielinski proposed a simple decen-
tralized e-voting protocol that only requires 2 rounds of communication.
Thus, for k elections their protocol needs 2k rounds of communication.
Observing that the first round of their protocol is aimed to establish
the public-keys of the voters, we propose an extension of the protocol
as a non-interactive e-voting scheme in the public-key setting (NIVS) in
which the voters, after having published their public-keys, can use the
corresponding secret-keys to participate in an arbitrary number of one-
round elections.

We first construct a NIVS with a standard tally function where the
number of votes for each candidate is counted.

Further, we present constructions for two alternative types of elec-
tions. Specifically in the first type (dead or alive elections) the tally
shows if at least one voter cast a vote for the candidate. In the second
one (elections by unanimity), the tally shows if all voters cast a vote for
the candidate.

Our constructions are based on bilinear groups of prime order.
As definitional contribution we provide formal computational defin-

itions for privacy and verifiability of NIVSs. We conclude by showing
intriguing relations between our results, secure computation, electronic
exams and conference management systems.

Keywords: E-voting · Bilinear maps · Secure computation · Electronic
exams · Conference management systems

1 Introduction

Background. In 2010 Hao, Ryan and Zielinski [HRZ10] (see also [KSRH12])
designed a simple decentralized e-voting protocol that only needs 2 rounds of
communication and is (publicly) verifiable. Their protocol for n participants can
be summarized as follows. Let us assume that a trusted authority sets up a Diffie-
Hellman [DH76] group G of prime order p with generator g. In the first round,
each voter j chooses a secret element xj ← Zp and forwards gxj to the public
c© International Financial Cryptography Association 2016
J. Clark et al. (Eds.): FC 2016 Workshops, LNCS 9604, pp. 193–208, 2016.
DOI: 10.1007/978-3-662-53357-4 13

194 R. Giustolisi et al.

bulletin-board. Now, each voter j computes the value gyj
�
= g

∑
k<j xk−∑k>j xk

and in the second round sends her ballot Bltj
�
= gvjgxjyj , where vj ∈ {0, 1} is

her vote.
From the values Bltj ’s the tally can be computed as the product, in fact it

is easy to see that
∏

j∈[n] g
xjyj = 1 and thus r

�
=

∏
j∈[n] Bltj = g

∑
vj .

Assuming that the result is small it can be computed by computing the
discrete log of r in base g. The previous explanation is an oversimplification that
skips some aspects, like zero-knowledge proofs for verifiability, that we will take
into consideration later.

1.1 Multiple Non-interactive Elections in the PK Setting

The Public-Key Setting. The first round of the protocol outlined above can
be viewed as the publication of the public-key (PK, henceforth) of the users.
That is, we can imagine the element gxj as the PK of user j and xj as her
secret-key (SK, henceforth). After establishing these pairs of PKs/SKs the voter
can cast her vote non-interactively (i.e., in a single round of interaction).

Note also that non-interactive e-voting is provable impossible to achieve with-
out the PK setting because it clashes with any reasonable notion of privacy. In
fact, if it was possible to compute the result of a YES/NO election from a tuple
S of n ballots computed in a non-interactive way, then it would be possible to
perform the following attack: discard the first n − 1 ballots in S and replace
them with another tuple of ballots that all encode the vote for 0, and compute
the tally to learn the vote of the n-th voter in S.

We thus raise the following question:

In a PK setting, can we achieve a protocol that allows the voters to partic-
ipate in an unbounded number of non-interactive elections? That is, after
the users make public their PKs, while retaining the corresponding SKs,
is it possible for them to engage in an unbounded number of one-round
voting protocols?

The protocol of Hao et al. fails to satisfy this property. In fact, even if we
consider the first round in their scheme as the establishment of the PKs/SKs
and the voters make two non-interactive elections then the privacy is completely
broken. The reason is that two ballots belonging to the same voter leak the
difference of the votes.

We solve this issue by resorting to bilinear maps [BF01,Jou04]. Our new
protocol extends the one of Hao et al. as follows. First of all, we will associate
a unique identifier id ∈ {0, 1}λ to each election. These identifiers could be con-
secutive numbers, 1, 2, . . . or some other unique identifiers announced for each
election, e.g. containing the election date. That is, voters will associate an iden-
tifier id to their ballots and only ballots for the same identifier (i.e. for the same
election) can be put together to compute the tally.

Let us assume a bilinear instance I �
= (p,G,GT , e) (see Sect. 2.2) in which

G is a group of prime order p and e is a bilinear function mapping elements of

On the Possibility of Non-interactive E-Voting in the Public-Key Setting 195

G to elements of GT satisfying non-degeneracy and bilinearity, and let Hash be
a hash function taking as input I, an identifier of an election id and outputs
elements of G. In our analysis Hash will be modeled as a Random Oracle (RO,
in short) model [BR93]. Our protocol in the PK setting is described next.

All voters randomly choose their secret-key xj ← Zp and publish their public-
key Pkj = gxj . Each voter computes a random value Hash(I, id) ∈ G to be used
in the election associated with identifier id.

In election id each voter j will cast her vote1 vj as

Bltj
�
= e(gyj ,Hash(I, id))xj · e(gvj ,Hash(I, id)),

where gyj is computed from the PKs gxj ’s exactly as in the Hao et al.’s protocol
described above. As will be explained below, the ballot is cast with a proof of
well-formedness.

If we define gid
�
= e(g,Hash(I, id)), the ballot can be written as Bltj =

g
vj

id g
xjyj

id and the relation to Hao et al.’s approach becomes clear. In the tar-
get group of the bilinear map, we have constructed a hash function creating new
generators for each election in such a way that the PK for any participant, in the
new generator, can be calculated by any other participant, but the corresponding
SKs stay unchanged and secret.

Privacy Game. This new model calls for new security definitions. We define
the privacy for non-interactive e-voting schemes in the PK setting (NIVS, in
short) by means of the following game.

The challenger computes a pair of PK/SK for each voter and feeds the adver-
sary with the PKs. Then a random bit b is chosen and the adversary can adap-
tively make an unbounded number of queries to an oracle invoking it with two
sets of votes, S0 and S1 with the same sum and receiving back the ballots com-
puted with Sb by means of the SKs. At any point the adversary can output its
guess b′ and it wins the game iff b′ = b.

A formal definition that also takes in account an adversary that corrupts a
set of voters seeing their SKs, and allows for non-standard tally functions, is
given in Sect. 2.1.

We will prove the following theorem.

Theorem 1. If the Bilinear Decision Diffie-Hellman Assumption [Boy08]
defined in Sect. 2.2 holds, then in the RO model no non-uniform PPT adver-
sary can break the privacy (see Definition 2) of the scheme of Sect. 3 with non-
negligible probability.

The proof is given in Sect. 3.1. Note that the privacy definition does not capture
e.g. vote copying attacks. In fact, it implicitly assumes a perfect synchronous
broadcast channel. We postpone a stronger ballot privacy definition for future
work.
1 In the following the term e(gvj ,Hash(I, id)) could be replaced without loss of gen-

erality by e(gvj , g).

196 R. Giustolisi et al.

Verifiability. As a further definitional contribution we provide a formal defin-
ition for verifiability. Verifiability for NIVSs is somewhat different from schemes
with trusted authorities. For example everybody, also third parties, can perform
the tally. Further we will think of being in a setting where the ballots and proofs
are cast using authenticated channels using the PK structure. Alternatively sig-
natures can be added. This prevents attacks where an adversary votes on behalf
of another voter. Intuitively verifiability should then guarantee the ability of ver-
ifying that a voter cast a ballot according to the vote rules and that the tally has
ideal functionality. First of all, let us analyze how a well-formed ballot look like.

We expect that a well-formed ballot gives consistent results with other hon-
estly computed ballots. That is, a ballot Blt should uniquely determine a vote v
that, along with any other set of valid ballots, results in a consistent computation.
Our definition of verifiability given in Sect. 2.1 is divided in two parts (that have
to hold together). The first part states that a ballot uniquely determines a vote
v such that for any other set of ballots corresponding to another vector of votes
v, the output of the algorithm that computes the tally will be equal either to
the output of the functionality with inputs v and v or to an error ⊥.

The second part states that there exists an algorithm VerifyBallot whose aim
is to verify the well-formedness of a ballot Blt such that if the verification passes
for Blt then for any other set B of honestly computed ballots, the result of the
tally with respect to the set of ballots B ∪ {Blt} will not result in an error ⊥.

In order to guarantee verifiability of the above sketched NIVS, like in Hao
et al., we add proofs of well-formedness of the ballot. Specifically we add a proof
that the vote in the ballot is 0 or 1 using the Cramer et al. technique adapted
to the bilinear setting. We discuss this in Sect. 2.3.

We stress that the proof of well-formedness of the ballot is sufficient to satisfy
our notion of verifiability. Unlike Hao et al. we do not add proofs of knowledge
to the public-keys as in our model we do not capture malleability or copying
attacks, however, it straightforward to add these proofs of knowledge.

We note that this protocol is not fair, e.g. the last to cast a ballot can compute
the result before casting her own vote. As explained in [KSRH12] this can be
mitigated by an extra commitment round. Also the protocol is not robust, i.e.
we cannot tally if someone fails to vote. This was also considered in [KSRH12]
and in this event it is enough to run an extra round for the remaining voters to
recover the tally result of the votes that has been cast.

Beyond YES/NO Elections. The drawback of the previous scheme is that
it only supports YES/NO elections. We can extend our scheme to support more
complex elections and multiple candidates but due to space constraints we defer
it to the full version [GIR15].

1.2 Relation to Secure Computation

Our results relate to secure computation [Yao82,Gol04] of specific functionali-
ties. A recent result of Garg et al. [GGHR14] showed the first 2-rounds secure
computation protocol in the CRS model for any functionality.

On the Possibility of Non-interactive E-Voting in the Public-Key Setting 197

However, even if we wish to use the protocol of Garg et al. to execute k secure
evaluations of the functions described in this paper, we would need 2k rounds
of communication. Instead, using our NIVSs we only need k + 1 rounds, one for
establishing the PKs and one for each non-interactive secure function evaluation
(of the functions supported by our schemes) in the PK setting.

Another related cryptographic notion is Input-Indistinguishable Computa-
tion proposed by Micali et al. [MPR06] that shares the indistinguishability-based
flavor of NIVS but was implemented with more rounds than ours (though the
main focus of the authors was on general functionalities and security under con-
current executions).

It seems that Multi-input Functional Encryption (MIFE, in short) [GGG+14]
could be also used to obtain a form of a NIVS in the CRS model (setting the
CRS to a token for the desired function). However, this is not straightforward
since MIFE would have to be likely combined with signature schemes and, as the
indistinguishability-security of MIFE only holds when the two challenge vectors
of inputs are not ‘splittable’ under the functionality,2 it would offer no security
guarantee because in this case there exist many values splitting the challenge
vectors.3 A generalization of MIFE studied by Iovino and Żebrowski [IZ15] could
be useful in this context.

It is an intriguing research direction to investigate the class of functionalities
we can compute in our setting.

Applications to Secure Conference Management Systems and
E-Exams. In the full version [GIR15] we also show relations and applications
of our work to conference management systems and e-exams.

1.3 Our Results in a Nutshell

Our contributions can be summarized as follows.

– A New Model. We introduce the novel concept of non-interactive voting
schemes in the PK setting that extends the two-rounds elections of Hao et al.
In this model, n voters publish their public-keys retaining the corresponding
secret-keys, and each voter using her secret-key can compute her ballot and
send it to a public bulletin board. Then, the n ballots can be put together to
compute the result of the election.

Therefore, in this model k elections can be executed with k + 1 rounds of
communications whereas using Hao et al.’s schemes would result in 2k rounds.

2 For instance a value z splits two vectors (x1, x2) and (y1, y2) under a function f if
f(x1, z) �= f(y1, z) or f(z, x2) �= f(z, y2). Two vectors are splittable if there exists a
value z that splits them.

3 Precisely, whereas it would be difficult to find an input that splits the two challenge
vectors under the functionality (as it accounts to forge a signature), such splitting
inputs exist and thus the security of MIFE is vacuous.

198 R. Giustolisi et al.

– Formal Definitions. In Sect. 2.1 we provide formal definitions for non-
interactive voting schemes in the PK setting, in particular for privacy and
verifiability, for which a formal treatment was missing.

– Scheme for YES/NO Elections. In Sect. 3 we present a non-interactive
voting scheme in the PK setting for YES/NO elections (i.e., in which each
voter can cast 0 or 1 and the tally computes the sum of all votes) that is
provably secure from the Bilinear Decision Diffie-Hellman assumption.

– Alternative Types of Elections. In Sect. 1.1 we presented schemes for alter-
native types of (YES/NO) elections that could be of independent interest. In
particular we can support a dead or alive election in which n voters can choose
1 candidate and the result shows for if at least one voter cast a vote for him.
Another type of election we support is election by unanimity, in which the
result shows if all voters cast a vote for the candidate.

We implemented our NIVSs for YES/NO, dead or alive and unanimity
elections using the pbc library [Lyn] and we tested them on a laptop equipped
with an Intel Core i7 getting quite good performances.

– Relation to Secure Computation. In Sect. 1.2 we show relations between
our results and secure computation.

– Applications to Secure Electronic Exams and Conference Systems.
In Sect. 1.2 we show that our results have direct applications to secure elec-
tronic exams and conference management systems.

2 Definitions

Notation. A negligible function negl(k) is a function that is smaller than the
inverse of any polynomial in k (from a certain point and on). We denote by [n]
the set of numbers {1, . . . , n}, and we shorten Probabilistic Polynomial-Time as
PPT. If g and A are elements of the same cyclic group, we denote by dloggA
the discrete log of A in base g. If S is a finite set we denote by a ← S the process
of setting a equal to a uniformly chosen element of S.

2.1 Non-interactive Voting Scheme in the PK Setting

A non-interactive voting scheme in the PK setting (NIVS, in short) is associated
with a natural number n > 0, the number of voters, a set D, the domain of valid
votes, a set Σ, the range of possible results, and a count function F : Dn → Σ.
After that an authority sets-up the public parameters pp, each voter generates
a pair of public- and secret-keys. By means of an algorithm Cast and of her own
secret-key each voter can cast her vote v ∈ D generating a ballot Blt and, using
the public-keys of all voters, the tally can be publicly computed by means of an
algorithm EvalTally. A single ballot can be verified to be the output of the Cast
algorithm with input a valid vote v ∈ D and with respect to a public-key of a
voter by means of the algorithm VerifyBallot.

On the Possibility of Non-interactive E-Voting in the Public-Key Setting 199

Definition 1 (Non-interactive Voting Scheme). A (n,D,Σ, F)-non-
interactive voting scheme in the PK setting NIVS for number of voters n, domain
of valid votes D, range of possible results Σ and count function F is a tuple.

NIVS
�
= (Setup,KeyGen,Cast,VerifyBallot,EvalTally) of 5 PPT algorithms

with the following syntax:

1. Setup(1λ), on input the security parameter in unary, outputs public parame-
ters pp.

2. KeyGen(pp), on input the public parameters pp outputs a public-key Pk and
a secret-key Sk.

3. Cast(pp, j, id,Skj , (Pk)i∈[n]−{j}, v), on input the public parameters pp, the
secret-key Sk of voter j, the identifier id ∈ {0, 1}λ of the election, the public
keys (Pki)i∈[v]−{j} of the other voters, and a vote v ∈ D, outputs a ballot Blt;

4. VerifyBallot(pp,Pk, id,Blt), on input the public parameters pp, a public-key Pk
of a voter, the identifier id ∈ {0, 1}λ of the election and a ballot Blt, outputs
a value in {⊥,OK};

5. EvalTally(pp,Pk1, . . . ,Pkn, id,Blt1, . . . ,Bltn), on input the public parameters
pp, the public-keys of all voters, the identifier id ∈ {0, 1}λ of the election, and
the ballots cast by all voter, outputs y ∈ Σ ∪ {⊥}.

Correctness and Verifiability. In addition we require the following properties
for a NIVS.

1. Correctness or self-tallying for NIVS. For all pp ← Setup(1λ), for all
(Pk1,Sk1), . . . , (Pkn,Skn) such that for all i ∈ [n] (Pki,Ski) ← KeyGen(pp),
all v1, . . . , vn ∈ D, for all identifiers id ∈ {0, 1}λ, for all Blt1, . . . ,Bltn such
that for all i ∈ [n] Blti ← Cast(pp, j, id,Sk, (Pk)i∈[n]−{j}, v), we have that
EvalTally(pp,Pk1, . . . ,Pkn, id,Blt1, . . . ,Bltn) = F (v1, . . . , vn).

2. Verifiability or dispute-freeness for NIVS. We present two versions of verifia-
bility, one statistical and one computational.

– Statistical verifiability for NIVS. To not overburden the presentation, we
first present a simplified notion of verifiability against one malicious voter
and then we will discuss how to extend it to withstand any number of mali-
cious voters. The definition of statistical verifiability against one malicious
voter consists of the following two conditions (that have to hold both).

(1) For all except negligible fraction of pp ← Setup(1λ),4 all j ∈ [n],
all Pk, all Blt, there exists a vote v ∈ D such that: for all identi-
fiers id ∈ {0, 1}λ, all except negligible fraction of (Pki,Ski)i∈[n]−{j} such

4 In the sequel, we use the expression “all except negligible fraction of...” to mean that
the statement holds for all except negligible fraction of the randomness values which
the object is computed from. For instance, by “for all except negligible fraction of
(Pki, Ski)i∈[n]−{j} such that for all i ∈ [n] − {j} (Pki, Ski) ← KeyGen(pp)...” we
mean that for all except negligible fraction of the randomness values r ∈ {0, 1}λ, for
(Pki, Ski)i∈[n]−{j} such that for all i ∈ [n] − {j} (Pki, Ski) ← KeyGen(pp; r)...

200 R. Giustolisi et al.

that for all i ∈ [n] − {j} (Pki,Ski) ← KeyGen(pp), and all vi ∈ D
with i ∈ [n] − {j} and all except negligible fraction of (Blti)i∈[n]−{j}
satisfying Blti ← Cast(pp, i, id,Sk, (Pk)j∈[n]−{i}, vi), it holds that
EvalTally(pp,Pk1, . . . ,Pkj−1,Pk,Pkj+1, . . . ,Pkn, id,Blt1, . . . ,Bltj−1,Blt,
Bltj+1, . . . ,Bltn) outputs either F (v1, . . . , vj−1, v, vj+1, . . . , vn) or ⊥.

(2) In addition, we require the following to hold. For all except neg-
ligible fraction of pp ← Setup(1λ), for all j ∈ [n], all Pk, all Blt, if
VerifyBallot(pp,Pk, id,Blt) = OK then: for all identifiers id ∈ {0, 1}λ,
all except negligible fraction of (Pki,Ski)i∈[n]−{j} such that for all
i ∈ [n] − {j} (Pki,Ski) ← KeyGen(pp), all vi ∈ D with i ∈ [n] −
{j}, all except negligible fraction of (Blti)i∈[n]−{j} such that for all
i ∈ [n] − {j} Blti ← Cast(pp, j, id,Sk, (Pk)i∈[n]−{j}, vi), it holds that
EvalTally(pp,Pk1, . . . ,Pkj−1,Pk,Pkj+1, . . . ,Pkn, id,Blt1, . . . ,Bltj−1,Blt,
Bltj+1, . . . ,Bltn) �=⊥.

As mentioned before, the above definition only takes in account a single
malicious voter because we quantify over a single, possibly malicious, voter
j, a single, possibly maliciously computed, PK Pk of voter j and a single,
possibly maliciously computed, ballot Blt of voter j. By quantifying over
all sets of up to n voters and changing it in the obvious way we get the
actual definition.

Finally, we mention that for the RO model the above definition has to
be adapted in the obvious way so as to hold in probability over the choices
of the RO and giving the adversaries oracle access to the RO.

– Computational verifiability for NIVS. Computational verifiability for
NIVS is identical to statistical verifiability for NIVS except that we quan-
tify for all non-uniform PPT adversaries A and we require that both con-
ditions (1) and (2) do not have to hold for all Pk and Blt but only for
strings Pk and Blt output by A executed on input the security parameter
λ and the public parameters pp.

Also here, as mentioned before, the actual definition has to quantify
over multiple malicious voters.

Privacy. Now we formalize the notion of privacy (also called maximal bal-
lot privacy in Hao et al.) in the style of indistinguishability-based security
for encryption and related primitives. The privacy for a (n,D,Σ, F)-NIVS

NIVS
�
= (Setup,KeyGen,Cast,VerifyBallot,EvalTally) is formalized by means of

the following game Privn,D,Σ,F,NIVS
A between an adversary (with access to an

oracle) A �
= (A0,A1) and a challenger C.

On the Possibility of Non-interactive E-Voting in the Public-Key Setting 201

Privn,D,Σ,F,NIVS
A (1λ)

– Setup phase. C generates pp ← Setup(1λ), choose a random bit b ← {0, 1} and
runs A0 on input pp;

– Corruption phase. A0, on input pp, outputs a set S ⊂ [n] of indices of voters it
wants to corrupt.

– Key Generation Phase. For all i ∈ [n] the challenger generates n pairs of public-

and secret-keys (Pki, Ski) ← KeyGen(pp), and runs AVote(·)
1 on input (Pki, Ski)i∈S

and (Pki)i∈[n]−S .
– Query phase. The adversary A1 has access to a stateful oracle Vote. The

oracle Vote on input an identifier id ∈ {0, 1}λ and a pair of vectors

v0
�
= (v0,1, . . . , v0,n) and v1

�
= (v1,1, . . . , v1,n) outputs the set of ballots

(Cast(pp, 1, id, Sk1, (Pki)i∈[n]−{1}, vb,1), . . . ,Cast(pp, n, id, Skn, (Pki)i∈[n]−{n}, vb,n).
– Output. At some point the adversary outputs its guess b′.
– Winning condition. The adversary wins the game if the following conditions hold:

1. b′ = b.
2. v0,i = v1,i for any i ∈ S.
3. for any pair of vectors (v0, v1) for which A asked a query to the oracle Vote

it holds that: for any vector v, F (v′
0) = F (v′

1) where for b = 0, 1 v′
b is the

vector equal to v in all indices in S and equal to vb elsewhere.
4. S has cardinality < n, v0 and v1 are vectors of n values in D and id ∈ {0, 1}λ.

The advantage of adversary A in the above game is defined as

AdvNIVS,Priv
A (1λ)

�
= |Prob[Privn,DΣ,F,NIVS

A (1λ) = 1] − 1/2|
Definition 2. We say that NIVS for parameters (n,D,Σ, F) is private if all

PPT adversaries A �
= (A0,A1) have at most negligible advantage in the above

game.

Remark 1. We make some remarks on the previous definitions.

– Perfect Synchronous Broadcast Channel. Our security definition implic-
itly assumes a synchronous broadcast channel and as such does not model e.g.
malleability and copying attacks.

– Parameterization. A (n,D,Σ, F)-NIVS is fully specified only for the 4 para-
meters n,D,Σ and F , but often for simplicity we will drop the parameters
and we will talk about a NIVS when it is clear from the context.

– Supporting Multiple Functions. It is possible to extend the definition of
a (n,D,Σ, F)-NIVS by replacing the function F with a set of functions F
so as to have a system that in each election can allow to evaluate the tally
according to any function f ∈ F. In this case, the setup algorithm has to take
as additional input a finite description of the set and the other algorithms
have to take as additional input a certain function f ∈ F. The correctness,
verifiability and privacy have to be changed accordingly. We point out that
our NIVSs for YES/NO elections, for dead or alive elections and for elections
by unanimity can be easily unified in a single NIVS for the set of the three
corresponding functions.

202 R. Giustolisi et al.

– Verifiability. Note that the first part of the verifiability, let us say statistical,
states that a ballot uniquely determines a single vote v that is compatible
with any other correctly computed set of ballots. The second part guarantees
that the VerifyBallot algorithm can discover whether a ballot is cast correctly.
Thus, if the check is satisfies (i.e., with output OK), it means that for a given
ballot Blt, any set of n − 1 correctly computed ballots, will give consistent
results.

– Constant or Polynomial Number of Voters. The reader may have noticed
that we leave unspecified the relation between the parameter n and the security
parameter. In more cases, setting n to a constant is enough. However one could
set n to be any polynomial in the security parameter.

– Programmable RO. Actually we will assume a definition of privacy identical
to the one we formulated except that it is in the (programmable) RO model.
In this case the adversary will have, in addition, oracle access to a function
O drawn at random from the space of functions O that map {0, 1}λ to some
space Σ, but possibly modified by a PPT simulator in a polynomial (in λ)
number of points. We skip the details of the formal definitions.

In our schemes we assume that the adversary has access to more than
one oracle, but using standard techniques this could be changed into a single
oracle, but we refrain from doing it here since it complicates the description.

We also require a definition of verifiability that holds in probability over
the choices of the RO.

– CRS vs Public-Coin Model. The public parameters can be seen as a CRS,
so one can wonder whether there is difference between the public-coin model
and the CRS model. The difference is that in the CRS model the party that
generates the public parameters is not trusted (though we mention that the
trust could be distributed among a set of trusted parties in a threshold way),
whereas in the standard model the security should hold even with respect to
the party who generated the parameters.

The above definition of privacy only takes in account the CRS model but
can be changed to the standard model by allowing the adversary to see the
random coins with which the public parameters are generated. We stress that
our construction of Sect. 3 satisfies this stronger definition assuming a variant
of BDDH (see Sect. 2.2).

2.2 Bilinear Maps

In this section we describe the bilinear setting with groups of prime order and
the assumption that we will use to prove the privacy of the NIVSs presented in
Sects. 3 and 1.1.

Prime Order Bilinear Groups. Prime order bilinear groups were first used
in Cryptography by Boneh and Franklin [BF01], and Joux [Jou04]. We suppose
the existence of an efficient group generator algorithm G which takes as input the
security parameter λ and outputs a description I �

= (p,G,GT , e) of a bilinear

On the Possibility of Non-interactive E-Voting in the Public-Key Setting 203

instance of prime order, where G and GT are cyclic groups of prime order p, and
e : G × G → GT is a map with the following properties:

1. (Bilinearity): ∀ g, h ∈ G and a, b ∈ Zp it holds that e(ga, hb) = e(g, h)ab.
2. (Non-degeneracy): ∃ g ∈ G such that e(g, g) has order p in GT .

Bilinear Decision Diffie-Hellman Assumption. More formally, we have the
following definition. First pick a random bilinear instance I �

= (p,G,GT , e) ←
G(1λ) and then pick g ← G, a, b, c, z ← Zp, and set D

�
= (I, g, ga, gb, gc), T0

�
=

e(g, g)abc and T1
�
= e(g, g)z. We define the advantage of any A in breaking the

BDDH Assumption (with respect to G) to be

AdvA,G
BDDH(λ)

�
= |Prob[A(D,T0) = 1] − Prob[A(D,T1) = 1]|.

We say that Assumption BDDH holds for generator G if for all non-uniform
PPT algorithms A, AdvA(λ),G

BDDH is a negligible function of λ.
We mention that if we wish that our NIVS of Sect. 3 satisfy privacy in the

public-coin model, we need to assume a stronger variant of the above definition
in which the adversary also sees the random coins used to generate the bilinear
instance.

2.3 NIZK in the RO

Let R be an efficiently computable binary relation. For pairs (x,w) ∈ R we call x
the statement and w the witness. Let L be the language consisting of statements
in R.

Definition 3 (NIZK). A non-interactive zero-knowledge proof system (NIZK,
in short), see [BFM88,FLS90], in the RO model, see [BR93,BFW15], for a rela-
tion R consists of the following PPT algorithms with access to an oracle O ran-
domly drawn from a space O of functions with domain and co-domain {0, 1}λ:

– ProveO(·)(x,w): takes as input a statement x and a witness w for x, and with
oracle access to O produces a proof π.

– VerifyO(·)(x, π): takes in input a statement x and a proof π, and with oracle
access to O outputs 1 if the proof is accepted and 0 otherwise.

We call NIZK a non-interactive zero-knowledge proof system for R if it has
the properties described below.

– Perfect completeness. A proof system is complete if an honest prover with a
valid witness can convince an honest verifier. Formally we have that for any
(x,w) ∈ R

Pr[O ← O; π ← ProveO(·)(x,w) : VerifyO(·)(x, π) = 1] = 1.

204 R. Giustolisi et al.

– Soundness. A proof system is sound if it is infeasible to convince an honest
verifier when the statement is false. For all non-uniform PPT adversaries A
we have

Pr[O ← O; (x, π) ← AO(1λ) : VerifyO(·)(x, π) = 1 ∧ x /∈ L] = negl(λ).

– (Adaptive Multi-theorem) Computational zero-knowledge [BFW15]. A proof sys-
tem is computational zero-knowledge5 in the RO model if the proofs do not
reveal any information about the witnesses to a bounded adversary. We say
a non-interactive proof NIZK is computational zero-knowledge if there exists
a PPT stateful simulator Sim = (Sim.RO,Sim) that without access to the
witness can simulate proofs having in addition the capability of programming
the oracle O at any point, i.e., for any x and y it is able to set O(x)

�
= y. For

all non-uniform PPT adversaries A with access to an oracle O, we have that
the following quantity is negligible in λ:

|Pr[O ← O : AO(·),ProveO(·)
2 (·,·)(1λ) = 1]−

Pr[O ← O : ASim.ROO(·),SimO(·)
2 (·,·)(1λ) = 1]|,

where Prove
O(·)
2 (x,w)

�
= ProveO(·)(x,w) for (x,w) ∈ R, Sim

O(·)
2 (x,w)

�
=

SimO(·)(x) for (x,w) ∈ R, the latter oracles output ⊥ for (x,w) /∈ R and
Sim.RO simulates the oracle O possibly modifying it at an arbitrary number
of points.

NIZK in the RO for Encryption of 0 or 1. Recall that Hao et al. used a
protocol of Cramer et al. [CDS94] to prove that their ballot correspond to a vote
of either 0 or 1. To that aim they convert the terms of their protocol into the form
of ElGamal encryptions by seeing the pair (g, gyi) terms as El Gamal PKs and
thus seeing the pair gxi , gyixigvi as an El Gamal encryption with randomness
xi, public-key gyi and plaintext vi. The Cramer et al.’s sigma protocol can prove
that vi is either 0 or 1 without revealing which. Using the Fiat-Shamir’s heuristic
[FS87] (see also [BFW15] for discussions about adaptiveness) it can be converted
in a NIZK in the RO model.

In our work we need a NIZK in the RO for a relation identical as above
except that g is an element of the target group of a bilinear group. Specifically
the variable g above takes the form g

�
= e(g′,Hash(I, s)) where g′ is an element

of a bilinear group, I is a bilinear instance, s is some string and Hash is an hash
function mapping the input to the base group.

It is straightforward to see that the protocol of Cramer et al. also work when g
has this form. In fact the computational assumption on which the security of the
sigma protocol of Cramer et al. depends, also holds when the underlying group is
the target group of a bilinear group, and in particular when the generator of such
5 Note that our definition of zero-knowledgeness is multi-theorem and adaptive like in

[BFW15].

On the Possibility of Non-interactive E-Voting in the Public-Key Setting 205

group has the above form. This is easy to verify assuming standard assumptions
on bilinear maps, but in order not to overburden the presentation we skip the
details.

Precisely our relation Rwf is the following.

Definition 4 (Relation Rwf). Rwf(x,w)
�
= 1 if x = (I, g, A,B,C) consists

of a bilinear instance I �
= (p,G,GT , e) and a triple of 3 elements of GT and

w = (x, y, v) are such that A = gy, B = gx, C = gxygv.

3 NIVS for YES/NO Elections

In this section we present our NIVS for YES/NO elections.

Definition 5 (NIVS for YES/NO Elections). Let O and O2 be two random
oracles (that in the implementation will be set to two secure hash functions, e.g.,
SHA3). Let G be a generator for a bilinear instance of prime order, let NIZK =
(ProveO,VerifyO) be a NIZK in the RO for the relation Rwf of Definition 4. Let

n(λ) be the number of voters, D
�
= {0, 1} be the domain of valid votes, Σ

�
= [n]

and F the sum function. Furthermore, we assume that the oracle O2 takes as
input a description of a bilinear instance I = (p,G,GT , e) and maps strings from
{0, 1}λ to G, and that oracle O maps strings from {0, 1}λ to {0, 1}p(�) for some
polynomial p(·) as needed by NIZK.

We define a (n,D,Σ, F)-NIVS
NIVS = (Setup,KeyGen,Cast,VerifyBallot,EvalTally) in the RO model as follows.

– Setup(1λ): on input the security parameter in unary, it outputs pp
�
= I where

I �
= (p,G,GT , e) ← G(1λ).

– KeyGen(pp): on input the public parameters pp
�
= (g, p,G,GT , e), the algo-

rithm chooses a random x ← Zp and outputs the pair (Pk
�
= gx,Sk

�
= x).

– Cast(pp, j, id,Sk, (Pk)i∈[n]−{j}, v), on input the public parameters pp, the

secret-key Sk
�
= x of voter j, the identifier id of the election, the pub-

lic keys (Pki)i∈[v]−{j} of the other voters, and a vote v ∈ D, outputs a

pair (Blt, π) where the ballot Blt
�
= e(Yj , O2(I, id))Sk · e(g,O2(I, id))v, where

Yj
�
=

∏
i<j Pki/

∏
j>i Pki = g

∑
i<j xi−

∑
i>j xi and π is the proof computed by

NIZK.ProveO with witness xi and v of the fact that the ballot is well-formed
and v ∈ {0, 1}.

– VerifyBallot(pp,Pk, id,Blt), on input the public parameters pp, a public-key Pk

of a voter, the identifier id ∈ {0, 1}λ of the election and a ballot Blt
�
= (Blt, π),

outputs OK if NIZK.VerifyO(Blt, π) = 1 or ⊥ otherwise.
– EvalTally(pp,Pk1, . . . ,Pkn, id,Blt1, . . . ,Bltn), on input the public parameters
pp, the public-keys of all voters, the identifier id ∈ {0, 1}λ of the election, and
the ballots cast by all voter, computes what follows.

206 R. Giustolisi et al.

It runs VerifyBallot on any ballot Blti, i ∈ [n] and if for any ballot the verifica-
tion fails, it outputs ⊥. Otherwise it computes R =

∏
i∈[n] Blti and by brute

force computes r
�
= dloge(g,O2(I,id))R. Finally, the algorithm outputs r.

3.1 Properties and Security of the Scheme

Correctness. It is straightforward to verify that the scheme satisfy the correct-
ness as, by construction of the yi’s it follows that

∑
xiyi = 0.

Verifiability. The computational verifiability follows from the soundness of
NIZK.

Privacy. Due to space constraints we defer the reduction of an adversary break-
ing the privacy of the scheme to an adversary breaking the BDDH assumption
to the full version of this work [GIR15].

4 Future Directions

The most urgent problem to tackle is to add robustness, as defined by Hao et al.,
without sacrificing non-interactiveness. In fact, if just a single voter does not cast
her vote, the other voters cannot compute the result of the election. In our non-
interactive case this problem is subtle as it seems to clash with privacy, and
new definitions and techniques are needed. Another open problem is upgrade
the privacy security and provide receipt-freeness. This could in turn be used to
give an alternative solution to the problem of the anonymity difference between
non-interactive elections and central elections for non-standard tally functions.
Another intriguing open problem is to extend the class of the functions that
we can support beyond e-voting. From the applied side we made a preliminary
implementation (available on request) using the pbc library [Lyn] in linux and we
expect to port it in Java [CI11]. It would be nice to implement our primitives in
real-world applications, e.g., a conference revision system like [Hal] or a facebook
app like in [BIPT11].

Acknowledgments. Vincenzo Iovino is supported by the Fonds National de la
Recherche, Luxembourg, and Peter B. Rønne is supported by the ANR project Sequoia
ANR-14-CE28-0030-01. We thank Yu Li for useful comments and Qiang Tang for point-
ing out a generalization of our definition of dispute-freeness.

References

[BF01] Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing.
In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer,
Heidelberg (2001)

On the Possibility of Non-interactive E-Voting in the Public-Key Setting 207

[BFM88] Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its
applications (extended abstract). In: 20th Annual ACM Symposium on
Theory of Computing, pp. 103–112. ACM Press (1988)

[BFW15] Bernhard, D., Fischlin, M., Warinschi, B.: Adaptive proofs of knowledge
in the random oracle model. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020,
pp. 629–649. Springer, Heidelberg (2015)

[BIPT11] Braghin, S., Iovino, V., Persiano, G., Trombetta, A.: Secure and
policy-private resource sharing in an online social network. In: PAS-
SAT/SocialCom 2011, Privacy, Security, Risk and Trust (PASSAT), 2011
IEEE Third International Conference on and 2011 IEEE Third Interna-
tional Conference on Social Computing (SocialCom), Boston, MA, USA,
9–11 October 2011, pp. 872–875 (2011)

[Boy08] Boyen, X.: The uber-assumption family. In: Galbraith, S.D.,
Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 39–56.
Springer, Heidelberg (2008)

[BR93] Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for
designing efficient protocols. In: Ashby, V. (ed.) ACM CCS 93: 1st Confer-
ence on Computer and Communications Security, pp. 62–73. ACM Press,
November 1993

[CDS94] Cramer, R., Damg̊ard, I.B., Schoenmakers, B.: Proof of partial knowledge
and simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.)
CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)

[CI11] De Caro, A., Iovino, V.: JPBC: Java pairing based cryptography. In: Pro-
ceedings of the 16th IEEE Symposium on Computers and Communica-
tions, ISCC 2011, Kerkyra, Corfu, Greece, June 28 - July 1, 2011, pp.
850–855 (2011)

[DH76] Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans.
Inf. Theory 22(6), 644–654 (1976)

[FLS90] Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowl-
edge proofs based on a single random string (extended abstract). In: 31st
Annual Symposium on Foundations of Computer Science, pp. 308–317.
IEEE Computer Society Press, October 1990

[FS87] Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identi-
fication and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986.
LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)

[GGG+14] Goldwasser, S., Gordon, S.D., Goyal, V., Jain, A., Katz, J., Liu, F.-H.,
Sahai, A., Shi, E., Zhou, H.-S.: Multi-input functional encryption. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441,
pp. 578–602. Springer, Heidelberg (2014)

[GGHR14] Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC from
indistinguishability obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS,
vol. 8349, pp. 74–94. Springer, Heidelberg (2014)

[GIR15] Giustolisi, R., Iovino, V., Rønne, P.B.: On the possibility of non-interactive
e-voting in the public-key setting. Cryptology ePrint Archive, Report
2015/1119 (2015). http://eprint.iacr.org/

[Gol04] Goldreich, O.: Foundations of Cryptography: Basic Applications, vol. 2.
Cambridge University Press, Cambridge (2004)

[Hal] Halevi, S.: Web submission and review softwares. http://people.csail.mit.
edu/shaih/websubrev/

[HRZ10] Hao, F., Ryan, P.Y.A., Zielinski, P.: Anonymous voting by two-round pub-
lic discussion. IET Inf. Secur. 4(2), 62–67 (2010)

http://eprint.iacr.org/
http://people.csail.mit.edu/shaih/websubrev/
http://people.csail.mit.edu/shaih/websubrev/

208 R. Giustolisi et al.

[IZ15] Iovino, V., Żebroski, K.: Simulation-based secure functional encryption in
the random oracle model. In: Lauter, K., Rodŕıguez-Henŕıquez, F. (eds.)
LatinCrypt 2015. LNCS, vol. 9230, pp. 21–39. Springer, Heidelberg (2015)

[Jou04] Joux, A.: A one round protocol for tripartite Diffie-Hellman. J. Cryptol.
17(4), 263–276 (2004)

[KSRH12] Khader, D., Smyth, B., Ryan, P.Y.A., Hao, F.: A fair and robust voting
system by broadcast. In: 5th International Conference on Electronic Voting
201, (EVOTE 2012), Co-organized by the Council of Europe, Gesellschaft
für Informatik and E-Voting.CC, July 11–14, 2012, Castle Hofen, Bregenz,
Austria, pp. 285–299 (2012)

[Lyn] Lynn, B.: Pairing-based cryptography library. https://crypto.stanford.
edu/pbc/

[MPR06] Micali, S., Pass, R., Rosen, A.: Input-indistinguishable computation. In:
47th Annual Symposium on Foundations of Computer Science, pp. 367–
378. IEEE Computer Society Press, October 2006

[Yao82] Yao, A.C.: Protocols for secure computations (extended abstract). In: 23rd
Annual Symposium on Foundations of Computer Science, pp. 160–164.
IEEE Computer Society Press, November 1982

https://crypto.stanford.edu/pbc/
https://crypto.stanford.edu/pbc/

Efficiency Comparison of Various Approaches
in E-Voting Protocols

Oksana Kulyk1(B) and Melanie Volkamer1,2

1 Technische Universität Darmstadt/CASED, Darmstadt, Germany
{oksana.kulyk,melanie.volkamer}@secuso.org

2 Karlstad University, Karlstad, Sweden

Abstract. In order to ensure the security of remote Internet voting, the
systems that are currently proposed make use of complex cryptographic
techniques. Since these techniques are often computationally extensive,
efficiency becomes an issue. Identifying the most efficient Internet vot-
ing system is a non-trivial task – in particular for someone who does
not have a sufficient knowledge on the systems that currently exist, and
on the cryptographic components that constitute those systems. Aside
from these components, the efficiency of Internet voting also depends
on various parameters, such as expected number of participating voters
and ballot complexity. In this paper we propose a tool for evaluating the
efficiency of different approaches for an input scenario, that could be of
use to election organizers deciding how to implement the voting system.

1 Introduction

Both vote secrecy and verifiability of the result are the crucial requirements in
Internet voting. For ensuring them, various cryptographic techniques have been
proposed. The two common approaches to anonymise the votes are verifiable mix
net and homomorphic tallying. Both these approaches, being versatile in use have
been widely employed in the literature, and also implemented in systems used in
practice [2,7,8]. Moreover, these approaches are interchangeable in some of the
voting schemes: the Helios system, which used both mix net and homomorphic
tallying approaches in its versions, is an example of such interchangeability. Thus,
the choice of either mix net or homomorphic tallying approach does not have an
impact on the security of the scheme. In such cases, the decision to use either
one of them for ensuring vote secrecy has to be made by the election organizers.
One of the important criteria is the efficiency of the resulting scheme.

In this paper we implement a prototype tool, that enables comparing the
efficiency of both these approaches by estimating the theoretic performance of
corresponding calculations. This tool is then supposed to support the election
organizers to appropriately implement the voting system, by choosing the most
efficient anonymisation approach.

We evaluate the efficiency of the anonymisation using different types of bal-
lots: namely, different kinds of approval voting, divisive (weighted) voting and

c© International Financial Cryptography Association 2016
J. Clark et al. (Eds.): FC 2016 Workshops, LNCS 9604, pp. 209–223, 2016.
DOI: 10.1007/978-3-662-53357-4 14

210 O. Kulyk and M. Volkamer

ranked voting. Each one of this type can be used either with the mix net app-
roach, or homomorphic tallying with different kinds of validity proofs. We count
the operations that require most performance and implement a prototype tool1

that, using the formulas we provide, enables estimating the efficiency of different
approaches given a specific election setting, thus helping to decide which of these
approaches would be the most effective in this setting.

The paper is structured as follows. We outline the methodology that we
use for estimating the efficiency in Sect. 2. We provide details on individual
anonymisation approaches in Sect. 3. Finally, we describe the prototype tool we
developed for evaluation in Sect. 4, and present the evaluation results of various
election settings in Sect. 5.

2 Methodology

In this section we describe the methodology we used in order to estimate the
time needed for the computations. First, we identify the appropriate election
phases, which efficiency can differ depending on the anonymisation approach
that is used. Then we describe the way to estimate the time for the computations
during those phases.

2.1 Election Phases

The following election stages necessarily differ, depending on the anonymisation
approach that is used:

Voting. The voter uses her private device in order to prepare and cast a vote
over the internet. Depending on the anonymisation method, different proofs
of well-formedness need to be computed, in order to prevent casting invalid
ballots.

Validation. The voting system verifies the validity of each cast vote, by verifying
the vote validity proofs that are appended to votes during the vote casting.
The system can start validating the votes directly after they are being cast,
and it needs to be fully completed before the tallying can start.

Tallying. After all the votes have been cast and verified, the result is being
tallied. This includes performing the mixing in the case of mix net based
approach, and finding the discrete logarithm in the case of homomorphic tal-
lying. After the anonymisation, the results are being decrypted. The number
of ciphertexts to be decrypted also depends on the type of the anonymisation.
We assume, that both the tasks of mixing and of decrypting are performed
by the same set of trustees.

1 The tool will be made open-source following the publication.

Efficiency Comparison of Various Approaches in E-Voting Protocols 211

2.2 Time Estimations

Let Gq be a cyclic group with order q, that is used for all the calculations
in the election. In order to estimate the efficiency of different anonymisation
approaches, we rely on the efficiency of performing one exponentiation in Gq on
a computer that runs the election. This value depends on several factors: not
just on the processor used, but also on the security parameters of the election,
such as the bit size of underlying group elements and exponent order q, or on
whether Gq is a subgroup of Zp for a prime p, or an elliptical curve. Therefore,
ideally it should be an input from the election organizers for each individual
case.

This value, further denoted as RExp is then used as a basis for estimating
the efficiency of individual operations. For further optimising the estimations,
we also consider the special kinds of exponentiations that might speed up the
calculations, as well as the possibilities to precompute some of the values in
advance.

Calculation Optimizations. Aside from calculating the exponentiations in a
straight-forward way, one can apply other algorithms developed for calculating
special kinds of exponentiations. These algorithms, outlined in [16], can perform
computations in a more efficient way than computing each exponentiation sep-
arately. The special kinds of exponentiations that are relevant for this work are
as follows:

Fixed-base exponentiations (FBExp). Computing multiple exponentiations
ge1 , ..., gem for a single base g.

Multi-exponentiations (MExp(m)). Computing the product of exponentia-
tions

∏m
i=1 g

ei
i .

In our calculations we assume, that the voting system can rely on precompu-
tations, while the voting client does not. We further assume the exponent size of
256 bits, which is the recommended size for both integers and elliptical curves
according to keylength.org. We then use following heuristics to determine the
type of exponentiations used in calculations for optimal efficiency:

– the voting client uses multiexponentiations where available,
– the voting system uses fixed-base exponentiations where available,
– for multiexponentiations with large values of m, the product

∏m
i=1 g

ei
i is cal-

culated in smaller batches2 as p1 · ... · p�m/7� with pi =
∏7i

j=7(i−1)+1 g
ej
j .

– for fixed-base exponentiations, the representation of an exponent e =
∑t−1

i=0 ei ·
bi is used, with b = 16, t = 64, ei < b∀i = 0, ..., t − 1.

The time needed for both multiexponentiation and fixed-base exponentia-
tion is then determined relatively to RExp, with MExp(2) = 1.16 · RExp,
MExp(7) = 1.64 · RExp, FBExp = 0.19 · RExp.
2 We consider splitting the product in batches of size seven, due to its optimal perfor-

mance.

http://keylength.org

212 O. Kulyk and M. Volkamer

Considerations About Pre-computations. A decision can be made by the
election organizers, to perform some of the needed computations in advance, thus
speeding up the computations during the election. As we assume, that no pre-
computations can be done by the voter, the operations that can be pre-computed
are as follows.

Special-kind of exponentiations. As already mentioned, special algorithms
can be employed for performing some parts of calculations more efficiently.
In particular, they can be of use when having to calculate a large number of
exponentiations with common base, thus speeding up each new exponentia-
tion with this base significantly.

Discrete logarithm. As in the homomorphic tallying approach, the calculation
of a discrete logarithm is necessary given a set of values gx1

1 , ..., gxC

C with C
as a total amount of resulting ciphertexts. Thus, for each gi one could use a
precomputed table of values (x, gxi) for all possible values of x.

Mix net matrix commitments. Given the mix net scheme in [20], a sub-
stantial part of the computations can be performed without the knowledge
of ciphertexts that are about to be shuffled. We therefore assume, that the
voting system performs precomputations that would allow to shuffle the votes
from all eligible voters.

Parallelisation. The operations performed by a single entity that we consider
can be parallelised, by distributing the calculations into different parts and com-
bining the result. This is especially trivial for homomorphic tallying approaches,
where the tasks of verifying the individual validity proofs or finding the discrete
logarithm results can be easily distributed. For the mix net approach, the oper-
ations that are needed for either calculating a proof of shuffle or for verifying it
can be parallelised as well with an appropriate implementation. For the sake of
simplicity, we consider that either all of the operations are parallelised using the
same number of processors, or none is.

3 Individual Calculations

In this section we provide the formulas that determine the estimated time needed
for calculation of decryption of the final result, as well of specific anonymisation
approaches.

3.1 Mix Net

One of the anonymization methods considered is a mix net scheme, whereby
the input list is being shuffled by each one of the trustees in turn, so that the
correspondences between the ciphertexts in the input and output lists are hidden.
Each of the ciphertexts in the output list is being decrypted and added to the
final tally according to the ballot rules.

Efficiency Comparison of Various Approaches in E-Voting Protocols 213

As long as at least two nodes keep the correspondences between the shuffled
lists secret, it is unfeasible to connect any ciphertext in the original list to its
correspondence in the final resulting list. In order to provide robustness against
faulty mix nodes, a reencryption mix net scheme is used, and for ensuring that
the ciphertexts are shuffled correctly and not replaced by manipulated votes, the
proof of shuffle is attached by each mix node. We chose to include the proof of
shuffle suggested by [20,22] due to it being to our knowledge the most efficient
algorithm, the implementation and detailed specification of which is available for
open usage [23]. For the mix net scheme, the efficiency of calculating the proof
of shuffle for C ciphertexts in terms of exponentiations is (C + 2)RExp + 2C ·
MExp(2) + MExp(C + 1) for the offline phase (i.e. that can be precomputed),
and 3MExp(C+1)+2C ·FBExp for the online phase. The efficiency of verifying
such proof is MExp(C)+RExp+MExp(C+2)+C ·MExp(3) exponentiations
for the offline phase, and MExp(C) + 3MExp(C + 2) for the online phase.

Note, that using the mix net based approach for anonymizing the votes does
not place any restriction on the ballot type that is used; further, as long as
individual vote can be encrypted in a single ElGamal ciphertext3, the efficiency
of the anonymization does not depend on ballot complexity.

3.2 Homomorphic Tallying

The second approach is to avoid decrypting individual votes, while aggregat-
ing them instead, and decrypting only the aggregated result. This is possible if
homomorphic cryptosystem is used to encrypt the votes, which is usually expo-
nential ElGamal. It follows, that the homomorphic tallying approach is suitable,
whenever the final tallying result can be represented as the sum of individual
votes. Furthermore, additional zero-knowledge proofs have to be implemented,
that allow to check for vote validity upon vote casting prior to aggregating the
votes, in order to exclude the possibility of overvoting or negative voting. There-
fore, in this section we consider ways to prove the validity of votes cast according
to different ballot types.

Let N be a number of voters, C1, ..., CL available candidates. For each ballot
type, we consider the valid representation of a single vote, and possible values
of the election result. The first value is crucial in proving the validity of a single
vote. The second is useful in calculating the final result: that is, more possible
combinations of votes would mean that more calculations have to be made for
calculating the discrete logarithm.

Given v1, ..., vL as the number of votes given for each candidate by a single
voter, there are various approaches to encode and encrypt this choice. As such,
the proofs of validity suggested in [9], encode the votes such that a single cipher-
text results for each voter. Proofs by Joachim [13] and the proofs used in Helios
voting system [1,11], namely the v4 version, result in L ciphertext, whereby votes
for each candidate are encoded separately; while the ciphertexts in Helios are
encoded as gvi for the same generator g, proofs in [13] encode the votes as gvi

i for

3 We consider it to be realistic in most cases.

214 O. Kulyk and M. Volkamer

different generators. The number of ciphertexts is important for the efficiency of
decryption and computations of the discrete logarithm at tallying.

Also note, that some of the methods proposed make use of a verifiable mix
net scheme. Thus, we denote the time needed to prove the validity of shuffling
C ciphertexts as MixProve(C), and the time needed to verify such proof as
MixV erify(C). In our calculations we assume, due to considerations outlined
earlier, that the scheme in [22] is used. However, the calculations are slightly
different: first, there is no offline phase; second, due to the fact that the voting
system has to verify a large amount of shuffles of the same ciphertexts. The
resulting functions are MixProve(C) = 4 · MExp(C + 1) + 2N · FBExp +
(C + 2) · RExp + 2C · MExp(2), MixV erify(C) = 2 · MExp(C) + 3 · RExp +
MExp(C + 1) +C ·MExp(2) + (4C + 6) · FBExp+RExp+ 2 ·MExp(C + 2).

Approval Voting kmin ...kmax of L. The most commonly used type of ballots
can be grouped together as Approval Voting, whereby the voter is allowed to
select at least kmin, at most kmax candidates. Thus, the single vote is conforming
to the election rules, if it is of the form {v1, ..., vL : vi ∈ {0, 1},∑L

i=1 vi ∈
[kmin, kmax]}; and the set of all possible election results is {v1, ..., vL : vi ∈
[0, N],

∑L
i=1 vi ∈ [N · kmin, N · kmax]}. Common elections that fall under this

type are “Yes/No” elections (with L = 1, kmin = 0, kmax = 1, or 1 of L elections
with kmin = kmax = 1. In Tables 1, 2 and 3 we summarize the proofs of validity
of such ballots that exist in the literature, together with the number of resulting
ciphertexts. Note, that together with proofs for the general case kmin...kmax of
L, a number of proofs tailored to special cases, such as kmin = kmax = k, or
kmin = 0, kmax = L, has been developed.

Table 1. Homomorphic tallying approaches, approval voting: proof efficiency

Schema Parameters Proof

[11] kmin...kmax of L (2L+ 2) ·RExp+ 2(kmax − kmin + 1 + L) ·MExp(2)

[11] 0...L of L 2L ·MExp(2) + 2L ·RExp

[13] kmin...kmax of L L ·RExp+MixProve(L+ kmax) + L ·MExp(2) +MExp(L+ 1)

[13] k of L L ·RExp+MixProve(L+ k) + L ·MExp(2) +MExp(L+ 1)

[13] 0...kmax of L L ·RExp+MixProve(L+ kmax) + L ·MExp(2)

[9] k of L 2 ·MExp(3k + 2) + 2RExp+ 1 +MExp(2)

[9] 0...L of L 3RExp+MExp(L+ 2) +MExp(2)

Divisive Voting (t,T) of L. The voter is allowed to distribute a total of T
votes to L candidates, whereby each candidate can get up to t votes. This kind
of elections is particularly relevant for shareholders elections, whereby each voter
i = 1, ..., N has a total of Ti votes to distribute, with Ti representing the amount
of possessed shares. Without loss of generality, assume that Ti = T ∀i = 1, ..., N
is the same for all voters. A variant of this type of ballot (t, 0...T) of L allows
not to distribute all the T votes.

Efficiency Comparison of Various Approaches in E-Voting Protocols 215

Table 2. Homomorphic tallying approaches, approval voting: verification efficiency

Schema Parameters Verification

[11] kmin...kmax of L (4L + 2 + 2kmax − 2kmin) · (FBExp + RExp)

[11] 0...L of L 4L(FBExp + RExp)

[13] kmin...kmax of L MixV erify(L + kmax) + (4L + 4 + 2kmax − 2kmin) ·
FBExp + (2L + 4 + 2kmax − 2kmin) ·RExp

[13] k of L MixV erify(L+k)+(4L+2) ·FBExp+(2L+2) ·RExp

[13] 0...kmax of L MixV erify(L + kmax) + 3L · FBExp + 2L ·RExp

[9] k of L (3k + 5) · FBExp + 3 ·RExp

[9] 0...L of L (L + 5) · FBExp + 3 ·RExp

Table 3. Homomorphic tallying approaches, approval voting: ciphertexts for decryp-
tion and fixed-base precomputations

Schema Parameters Number of ciphertexts Fixed-base precomputations

[11] kmin...kmax of L L 128

[13] kmin...kmax of L L 64 · (2L + kmax + 2)

[9] k of L 1 128 + 64 · (3k + 3)

[9] 0...L of L 1 128 + 64 · (3 + L)

As such, according to the election rules, a single vote must lie in the set of
{v1, ..., vL : vi ∈ [0, t],

∑L
i=1 vi = T}. The set of all the possible election results

can be defined as {v1, ..., vL : vi ∈ [0, Nt],
∑L

i=1 vi = TN}.
The proof by Groth et al. supports only the variant of t = T . For t ≤ T , a

proof of validity was developed by Joachim et al. In the Helios implementation,
it is only possible to conduct elections with T = L · t, although supporting
elections with T < L · t is possible with additional modifications4. The efficiency
of individual proofs is summarized in Tables 4, 5 and 6.

Table 4. Homomorphic tallying approaches, divisive voting: proof efficiency

Schema Parameters Proof

[11] (t, T) of L 2Lt ·MExp(2) + (2L + 2) ·RExp

[11] (t, 0...T) of L (2Lt + 2T) ·MExp(2) + (2L + 2) ·RExp

[11] (t, 0...Lt) of L 2Lt ·MExp(2) + 2L ·RExp

[13] (t, 0...T) of L L ·RExp + MixProve(Lt + T) + L ·MExp(2)

[9] (T, T) of L MExp(L + 1) + MExp(5L + 1) + RExp + MExp(2)

4 Such modifications would require computing and verifying additional zero-knowledge
proofs for all questions of the election, in order to verify, that the sum of all votes
of the election does not exceed T .

216 O. Kulyk and M. Volkamer

Table 5. Homomorphic tallying approaches, divisive voting: verification efficiency

Schema Parameters Verification

[11] (t, T) of L 2 · (FBExp + RExp) · (Lt + L + 1)

[11] (t, 0...T) of L 2 · (FBExp + RExp) · (Lt + L + T + 1)

[11] (t, 0...Lt) of L 2L(t + 1)(FBExp + RExp)

[13] (t, 0...T) of L MixV erify(Lt + T) + 3L · FBExp + 2L ·RExp

[9] (T, T) of L (4 + 5L) · FBExp + 3 ·RExp

Table 6. Homomorphic tallying approaches, divisive voting: ciphertexts for decryption
and fixed-base precomputations

Schema Parameters Number of ciphertexts Fixed-base precomputations

[11] (t, T) of L L 128

[13] (t, 0...T) of L L 64(Lt + 2L + T + 3)

[9] (T, T) of L 1 64(2 + 5L)

Ranking k of L (Borda). In this ballot type, the voter is to assign the ranks
1 to k to k out of L candidates. The ranks from voters are summed up for each
candidate to determine the election result.

Groths method offers only a solution for k = L. The proofs used in Helios
system cannot guarantee the validity of the ballot: while one is able to proof that
each individual vote lies in R, and the sum of all given votes equals

∑
i∈R i, in

current implementation there is no way to guarantee that each candidates gets
a unique rank.

A set of valid single votes therefore is defined as {(v1, ..., vL) : vi ∈ 0∪R; {vi :
vi �= 0} = R}. The set of all possible election results is then {(v1, ..., vL) : vi =
∑N

j=1 xij , xij ∈ 0∪R ∀x ∈ R : |(i, j) : xij = x| = N}. The efficiency of individual
proofs is summarized in Tables 7, 8 and 9.

Table 7. Homomorphic tallying approaches, ranking voting: proof efficiency

Schema Parameters Proof

[13] k of L k ·MixProve(L+ 1) +MixProve(L) + (2L+ 1) ·RExp+MExp(L+ 1)

[9] L of L 2 ·RExp+MExp(L+ 1) +MExp(2)

Table 8. Homomorphic tallying approaches, ranking voting: verification efficency

Schema Parameters Verification

[13] k of L k ·MixV erify(L + 1) + MixV erify(L) + (3L + 2) ·
FBExp + (2L + 2) ·RExp

[9] L of L (4 + L) · FBExp + 3 ·RExp

Efficiency Comparison of Various Approaches in E-Voting Protocols 217

Table 9. Homomorphic tallying approaches, divisive voting: ciphertexts for decryption
and fixed-base precomputations

Schema Parameters Number of ciphertexts Fixed-base precomputations

[13] k of L L(k + 1) 64(2k + L + 4)

[9] L of L 1 64(2 + L)

3.3 Distributed Decryption

Regardless of the anonymisation approach that is used, the vote secrecy also
heavily relies on the decryption process, that ensures that only the anonymised
ciphertexts are being decrypted. For this purpose, verifiable distributed threshold
secret sharing is employed, that enables decryption only if a threshold amount
of trustees collaborate, while ensuring that no single entity is in posession of
a secret key. A commonly used method is the threshold distributed ElGamal
key generation followed by distributed verifiable decryption, as described in [18].
Depending on the anonymisation method in use, the number of ciphertexts to
be decrypted varies, together with the efficiency of the decryption. For small
number of ciphertexts (C < 50), the efficiency of the decryption phase can be
estimated as (C(tr − 1) + 1) · FBModExp + C(tr − 1) · MExp(2) + (2Ctr +
1) · RModExp, requiring the precomputation of 64 exponentiations; for larger
amounts of ciphertext, however, the optimal estimation would be (2C(tr − 1) +
1) · FBModExp + C(tr − 1) · MExp(2) + (Ctr + C + 1) · RModExp with the
precomputation of 64 · (1 + tr) exponentiations.

4 Prototype Evaluation Tool

In this section we describe the tool implemented for the efficiency evaluation,
based upon the input of previous sections, and provide the efficiency evaluation
of various election settings.

4.1 Relevant Parameters

We take a look at different parameters that influence the efficiency of the elec-
tronic voting, based upon the formulas we derived in Sect. 3. Depending on the
anonymisation approach that is used, different kinds of parameters may or may
not play a role in how long do the different stages of the election take.

Number of Voters. As one could expect, the main parameter that determines
the efficiency of the election scheme, both for the mix net and homomorphic
tallying approaches, is the number of voters that participate in the election. For
the evaluation of precomputations that need to be done before the elections, the
upper bound of participating voters is needed. For this, a total amount of eligible
voters can be taken. For the efficiency estimation of the validation and tallying

218 O. Kulyk and M. Volkamer

phases, the actual amount of participated voters is required, an expected value
of which can be based i.e. on previous voter turnout.

In presence of multiple voting districts participating in a single election,
several alternatives exist on how to implement the system. The first alternative
would be to run the election in a centralized way, whereby all the votes are
being stored, processed and tallied by a single central server, while the second
way would be for the each voting district to run a separate instance of the voting
system themselves. Depending on the chosen approach, one could estimate either
the performance of centralized system or of a single district, by inputting the
parameters for the corresponding voting system instance.

Number of Trustees. This parameter is most important for evaluating the
efficiency of a mix net based approach, since the trustees have to act as mix
nodes. Furthermore, number of trustees also has an effect on the efficiency of
distributed decryption of the result. Given the assumption that more than half
of T trustees have to be honest, we set the threshold value as tr = �T/2� + 1.
In case of mix net based approach, given the fact that at least one honest mix
node has to participate, we set the number of mix nodes as tm = T − tr + 1.

Number of Candidates and Other Ballot-Specific Parameters. The
number of candidates or options is relevant for evaluating the efficiency of homo-
morphic tallying approach. It has an effect on the efficiency of proof of ballot
validity, as well as on the total amount of possible election result - that is, on the
complexity of calculating the discrete logarithm of the final result. Furthermore,
number of candidates also influences the number of ciphertexts to be decrypted
in some of the homomorphic tallying approaches. The same considerations hold
for other ballot-specific parameters, as outlined in Sect. 3.2.

4.2 Software

A tool for comparing the schemes described above depending on input of the elec-
tion parameters was implemented, using Java language. For the calculations we
used the formulas for homomorphic tallying approaches mentioned in Sect. 3.2,
mix net scheme from [20,22], as mentioned in Sect. 3.1, and verifiable decryption
scheme mentioned in Sect. 3.3. Upon entering the input (see Fig. 1), the tool
computes the execution time needed for each one of the available schemes, as
explained in Sect. 2. In our example calculations we consider the duration of 3ms
for a single exponentiation, which roughly corresponds to the performance of a
Macbook Pro Laptop using multiplicative group Gq ⊂ Zp of order q with p, q
primes with bit lengths of 2048 and 256 respectively.

5 Evaluation of Example Settings

In this section we demonstrate the workings on the tool by selecting appropriate
examples of the election settings, and showing how the efficiency of various
approaches for this settings is estimated.

Efficiency Comparison of Various Approaches in E-Voting Protocols 219

Fig. 1. Evaluation tool prototype interface

5.1 Description of Example Settings

We provide an example for the evaluation of an election setting, using the ballot
types described in Sect. 3. Some of these settings are based on the public data
from past elections5, that were conducted using Internet voting. Others are are
examples constructed by us for this evaluation specifically, which, however, might
also be relevant for the elections, conducted in practice.

Approval Voting: Estonian Elections. During the 2011 parliamentary elec-
tions, a total of 140, 846 out of the registered 913, 346 voters chose to vote via
electronic means. A total of 789 candidates registered, out of which the voters
were supposed to make their choice [4,5]. The decryption key was distributed
between 7 trustees. Thus, we evaluate an approval vote with “1 of 789” ballot.

Approval Voting: Norway Elections. We consider the local elections in
Norway in 2011 [14]. As the actual election rules are rather complex, in our
analysis we consider the distribution of seats between the parties, without paying
attention to personalised votes. In 2011, a total of 167, 506 out of 27, 738 eligible
voters have cast their vote electronically, and 21 parties participated. There were
a total of 10 trustees.

Approval Voting: IACR Elections. The International Association for Cryp-
tologic Research uses electronic voting for their internal elections. We consider
the election of 2012 [12], where the voters had to cast their vote for any number
of candidates out of registered 5. A total of 518 voters participated (out of 1530
eligible), and there were 3 trustees.

5 Note, that the parameters in our examples may not correspond precisely to the real
data.

220 O. Kulyk and M. Volkamer

Approval Voting: Boardroom Voting. A special kind of election setting
involving small groups of voters, often referred to as boardroom voting, is the
one where the roles of trustees are taken over by the voters themselves [10,15].
For the evaluation of this setting, we chose the parameters of 30 participating
voters, and, correspondingly, 30 trustee, voting on a 1 out of 5 ballot.

Approval Voting: Swiss Elections. Switzerland has been conducting
e-voting elections and referendums in some of its cantons for many years. As
an example, we consider the data from one of the referendums, given votes cast
using the Geneva voting system. In 2015, a total of 14052 votes were cast elec-
tronically using this system, out of eligible 119252 voters [19]. We assume 4 as
the number of trustees, given the 2011 report [17].

Divisive Voting. As we are not aware of any real-world e-voting election that
uses the divisive voting method, we had to construct an example by ourselves,
partially using the data from traditional voting elections. Namely, we base our
example election setting on the local Hesse elections [21], whereby the voters had
to distribute 71 vote to 502 candidates, giving at most 3 votes to each candidate,
and a total of 44385 out of 101666 eligible voters participated. We assume the
participation of 3 trustees.

Ranking Voting. Similarly to the divisive voting ballot, we were unable to
find data from a real-world election with this type of ballot. The closest exam-
ple would be the elections in Australia, that also use the ranking voting ballot
for their election, albeit using a different tallying method as opposed to Borda
voting. We therefore use the parameters similar to the Victorian state elections
[3,6] for our example: a total of 1121 participating voters, 7 trustees, and 40
candidates to be ranked.

5.2 Results and Discussion

The evaluation results for all the settings, showing the estimated performance for
expected number of voters, are given in Table 10. For setting and each election
stage, the approach most efficient during this stage is marked in bold.

As one can see from it, in many of the cases, with the exception of simple
ballots like “yes/no” elections, or approval voting elections with relatively small
number of available options, the mixnet approach outperforms all the approaches
based on homomorphic tallying. This can be explained by the fact, that the effi-
ciency of this approach does not depend on the ballot complexity. The large
number of trustees, however, like in case of boardroom voting, has significantly
larger effect on the mix net approach than on homomorphic tallying approaches.
Furthermore, the precomputations have a significant effect on the overall effi-
ciency of mix net approach, which tends to be higher, especially with a high
total number of eligible voters.

Efficiency Comparison of Various Approaches in E-Voting Protocols 221

Table 10. Evaluation results of different settings

Election Election stage Mixnet HT: Helios HT: Groth HT: Joachim

Approval voting:
Estonia

Precomputations 20.09 h 2.061 s > 30 days 190.4 h

Voting 0.009 s 14.97 s 0.024 s 21.4 s

Validation 14.08 m 441.1 h 31.83 m > 30 days

Tallying 2.316 h 22.78 s 0.039 s 22.78 s

Approval voting:
Norway

Precomputations 4.422 h 0.6 s > 30 days 1.81 m

Voting 0.009 s 0.411 s 0.024 s 0.603 s

Validation 2.774 m 2.366 h 6.269 m 5.323 h

Tallying 37.22 m 1.185 s 0.06 s 1.185 s

Approval voting:
Switzerland

Precomputations 1.574 h 0.495 s 8.976 s 1.647 s

Voting 0.009 s 0.018 s 0.021 s 0.057 s

Validation 1.405 m 3.344 m 2.775 m 18.96 m

Tallying 9.239 m 0.03 s 0.03 s 0.03 s

Approval voting:
IACR

Precomputations 1.225 m 0.387 s > 30 days 4.71 s

Voting 0.009 s 0.096 s 0.024 s 0.216 s

Validation 3.108 s 36.98 s 7.32 s 2.449 m

Tallying 16.55 s 0.084 s 0.021 s 0.084 s

Approval voting:
Boardroom

Precomputations 8.433 s 0.384 s 3.097 m 3.846 s

Voting 0.009 s 0.108 s 0.021 s 0.156 s

Validation 0.174 s 2.484 s 0.345 s 5.508 s

Tallying 7.887 s 0.786 s 0.159 s 0.786 s

Divisive voting Precomputations 1.342 h 1.617 s - 16.98 m

Voting 0.009 s 17.01 s - 28.23 s

Validation 4.438 m 183.1 h - 474.9 h

Tallying 23.54 m 6.84 s - 6.84 s

Ranking voting Precomputations 1.5 m - > 30 days 38.59 s

Voting 0.009 s - 0.045 s 33.86 s

Validation 6.726 s - 38.2 s 11.83 h

Tallying 1.108 m - 0.039 s 47.34 s

The homomorphic tallying approaches tend to be less efficient as ballot com-
plexity increases. If the vote is encoded in a single ciphertext, the length of the
exponent representing the election result strongly depends on both number of
voters and candidates, while the proofs themselves remain relatively efficient,

222 O. Kulyk and M. Volkamer

which is why this approach outperforms others in case of simple “yes/no” elec-
tions. In the homomorphic tallying approaches that require encoding the vote in
multiple ciphertexts, while the exponent size remains relatively small even with
the larger number of candidates and voters, the amount and the complexity
of validity proofs to be constructed and verified per vote, becomes larger, thus
making the election less efficient.

6 Conclusion

We have evaluated different approaches to anonymize the votes in different set-
tings with regards to their efficiency. Namely, we focused on two anonymisation
approaches common in use: mix net and homomorphic tallying with different
ballot types. Furthermore, we have built a prototype of a tool that enables elec-
tion organizers to perform such a comparison themselves with regards to their
chosen setting, in order to choose the most efficient approach. As we found out,
there is no single approach that is the most efficient in all the possible election
settings. Therefore, an individual evaluation has to be done for each setting,
which is what our tool is designed to assist in.

While efficiency is an important consideration in implementing e-votin sys-
tems, there are other criteria that can suggest using one approach over another.
In particular, revealing individual votes, which is inavoidable in mixnet-based
approach, can lead to privacy issues in certain settings, for example, in very
small-scale elections, or if coercion and vote buying is an issue. Thus, in case
both homomorphic tallying and mixnet-based approach is available for certain
kind of elections, the organizers have to evaluate themselves the trade-off between
efficiency and possible privacy concerns, while deciding for one or another app-
roach. Identifying the scenarios, in which such privacy issues can arise, is the
question of future work.

Acknowledgment. This project (HA project no. 435/14-25) is funded in the
framework of Hessen ModellProjekte, financed with funds of LOEWE – Landes-
Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz, Förderlinie 3:
KMU-Verbundvorhaben (State Offensive for the Development of Scientific and Eco-
nomic Excellence).

References

1. Adida, B.: Helios: web-based open-audit voting. USENIX Security Symposium,
vol. 17, pp. 335–348 (2008)

2. Adida, B., De Marneffe, O., Pereira, O., Quisquater, J.J., et al.: Electing a uni-
versity president using open-audit voting: analysis of real-world use of Helios.
EVT/WOTE 2009, pp. 10–10 (2009)

3. Burton, C., Culnane, C., Schneider, S.: Secure and verifiable electronic vot-
ing in practice: the use of vvote in the victorian state election. arXiv preprint
http://arXiv.org/abs/1504.07098 (2015)

http://arXiv.org/abs/1504.07098

Efficiency Comparison of Various Approaches in E-Voting Protocols 223

4. Committee, E.N.E.: Riigikogu elections 2011 - Riigikogu (parliament) elections -
past elections - estonian national electoral committee. (2011). http://www.vvk.ee/
past-elections/riigikogu-parliament-elections/riigikogu-elections-2011/. Accessed
2 Mar 2015

5. Committee, E.N.E.: Statistics - internet voting - voting methods in esto-
nia - estonian national electoral committee (2015). http://www.vvk.ee/
voting-methods-in-estonia/engindex/statistics. Accessed 2 Mar 2015

6. Culnane, C., Ryan, P.Y., Schneider, S., Teague, V.: Vvote: a verifiable voting sys-
tem. arXiv preprint arXiv:1404.6822 (2014)

7. Dubuis, E., Fischli, S., Haenni, R., Hauser, S., Koenig, R.E., Locher, P., Ritter, J.,
von Bergen, P.: Verifizierbare internet-wahlen an schweizer hochschulen mit univ-
ote. In: GI-Jahrestagung, pp. 767–788. Citeseer (2013)

8. Gjøsteen, K.: The Norwegian internet voting protocol. In: Kiayias, A., Lipmaa, H.
(eds.) VoteID 2011. LNCS, vol. 7187, pp. 1–18. Springer, Heidelberg (2012)

9. Groth, J.: Non-interactive zero-knowledge arguments for voting. In: Ioannidis, J.,
Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 467–482.
Springer, Heidelberg (2005)

10. Hao, F., Ryan, P.Y., Zieliński, P.: Anonymous voting by two-round public discus-
sion. IET Inf. Secur. 4(2), 62–67 (2010)

11. Helios: Helios v4 (2012). http://documentation.heliosvoting.org/verification-
specs/helios-v4. Accessed 2 Mar 2015

12. IACR: IACR Election 2012 (2012). http://www.iacr.org/elections/2012/. Accessed
2 Mar 2015

13. Joaquim, R.: How to prove the validity of a complex ballot encryption to the voter
and the public. J. Inf. Secur. Appl. 19(2), 130–142 (2014)

14. i Esteve, J.B., Goldsmith, B., Turner, J.: Norwegian E-vote Project - Speed
and Efficiency of the Vote Counting Process (2012). https://www.regjeringen.
no/globalassets/upload/krd/prosjekter/e-valg/evaluering/topic4 assessment.pdf.
Accessed 2 Mar 2015

15. Kiayias, A., Yung, M.: Self-tallying elections and perfect ballot secrecy. In:
Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 141–158. Springer,
Heidelberg (2002)

16. Menezes, A.J., Van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryp-
tography. CRC Press, Boca Raton (1996)

17. Organization for Security, Co-operation in Europe,: Switzerland, Federal Elections,
23 October 2011: Final report (2015). http://www.osce.org/odihr/87417. Accessed
30 Oct 2015

18. Pedersen, T.P.: Distributed provers and verifiable secret sharing based on the dis-
crete logarithm problem. DAIMI Rep. Ser. 21(388) (1992)

19. Bundeskanzlei, S.: Vote électronique - Versuchübersicht (2015). https://www.bk.
admin.ch/themen/pore/evoting/08004/index.html?lang=de. Accessed 30 Oct 2015

20. Terelius, B., Wikström, D.: Proofs of restricted shuffles. In: Bernstein, D.J.,
Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp. 100–113. Springer,
Heidelberg (2010)

21. Volkamer, M., Budurushi, J., Demirel, D.: Vote casting device with VV-SV-PAT
for elections with complicated ballot papers. In: 2011 International Workshop on
Requirements Engineering for Electronic Voting Systems (REVOTE), pp. 1–8.
IEEE (2011)

22. Wikström, D.: A commitment-consistent proof of a shuffle. In: Boyd, C., González
Nieto, J. (eds.) ACISP 2009. LNCS, vol. 5594, pp. 407–421. Springer, Heidelberg
(2009)

23. Wikström, D.: How to implement a stand-alone verifier for the verificatum mix-net
(2011)

http://www.vvk.ee/past-elections/riigikogu-parliament-elections/riigikogu-elections-2011/
http://www.vvk.ee/past-elections/riigikogu-parliament-elections/riigikogu-elections-2011/
http://www.vvk.ee/voting-methods-in-estonia/engindex/statistics
http://www.vvk.ee/voting-methods-in-estonia/engindex/statistics
http://arXiv.org/abs/1404.6822
http://documentation.heliosvoting.org/verification-specs/helios-v4
http://documentation.heliosvoting.org/verification-specs/helios-v4
http://www.iacr.org/elections/2012/
https://www.regjeringen.no/globalassets/upload/krd/prosjekter/e-valg/evaluering/topic4_assessment.pdf
https://www.regjeringen.no/globalassets/upload/krd/prosjekter/e-valg/evaluering/topic4_assessment.pdf
http://www.osce.org/odihr/87417
https://www.bk.admin.ch/themen/pore/evoting/08004/index.html?lang=de
https://www.bk.admin.ch/themen/pore/evoting/08004/index.html?lang=de

Remote Electronic Voting Can Be Efficient,
Verifiable and Coercion-Resistant

Roberto Araújo1, Amira Barki2,3, Solenn Brunet2,4(B), and Jacques Traoré2

1 Faculdade de Computação, Universidade Federal do Pará, Rua Augusto Corrêa 01,
Belém, PA 66075-110, Brazil

rsa@ufpa.br
2 Orange Labs, Caen, France

{amira.barki,solenn.brunet,jacques.traore}@orange.com
3 Sorbonne Universités, Université de Technologie de Compiègne (UTC), CNRS,

UMR 7253 Heudiasyc, Compiègne, France
4 Université de Rennes 1, Rennes, France

Abstract. The coercion issue in remote electronic voting has always
been of particular interest. However, to date, all proposals addressing it
either suffer from some shortcomings or are not efficient enough to be
used in real world elections. To fill this gap, we propose a new coercion-
resistant electronic voting scheme practical for real polls. Our scheme
relies on credentials generated thanks to a recent algebraic Message
Authentication Code (MAC) scheme due to Chase et al. To enable multi-
ple elections and credentials revocation, we also design a novel sequential
aggregate MAC scheme, that is of independent interest. Thanks to it, eli-
gible voters’ credentials can be efficiently updated.

1 Introduction

Internet voting offers a better voting experience since voters can cast their votes
from their computers or even smartphones. By eliminating the need to visit
polling places, it may attract more voters and thus increase voter turnout. In
addition, it improves the efficiency for tallying authorities. These benefits moti-
vated countries such as Estonia and Switzerland to adopt it in real world elec-
tions. However, it is still not widely spread. This is particularly due to many
inherent concerns such as selective DDoS attacks on the election server, mal-
ware attacks on the voter client as well as risks entailed by the lack of private
polling booths [14]. In this paper, we will mainly focus on the latter concern while
assuming that votes will be cast-as-intended. Indeed, adversaries may leverage
it to perform coercion or vote-selling attacks. Consequently, electronic voting
schemes ought to address this issue that remained a challenge for many years.

To this end, Juels, Catalano and Jakobsson (JCJ) [10] introduced an essential
property known as coercion-resistance. It considers the different actions that a
coercer could undertake: constrain a voter to cast a given vote, force her to
reveal her private vote information and subsequently vote on her behalf, or keep
her from voting. They also proposed the first coercion-resistant scheme based
c© International Financial Cryptography Association 2016
J. Clark et al. (Eds.): FC 2016 Workshops, LNCS 9604, pp. 224–232, 2016.
DOI: 10.1007/978-3-662-53357-4 15

Remote Electronic Voting 225

on anonymous credentials. To be able to vote, an eligible voter is beforehand
provided with a valid credential. Under coercion, she can use a fake credential
instead of her valid one. Thereby, she deceives any adversary about her true vote
intention as a coercer is unable to distinguish the fake credential from the valid
one. Unfortunately, JCJ’s scheme was inefficient for large scale voting scenarios
as, for N ballots, the complexity of the tallying is in O(N2).

Related Work. To enhance JCJ’s voting system, other coercion-resistant schemes
were then proposed1. AFT [1] was the first proposal to achieve linear time com-
plexity. Nevertheless, it does not support multiple elections. Indeed, at each
new election, the voter has to visit the registration place in order to obtain her
credential associated to the new poll. To address this drawback, AT [2] pro-
posed a scheme that allows credentials revocation and multiple elections. To
issue a new credential, it requires the registration authorities to jointly gener-
ate a BBS [3] group signature. Unfortunately, up to now, there is no practical
solution to compute such a signature in a distributed manner, which makes AT
impractical for real polls. They also proposed a generic technique to identify
valid (but illegitimate) voting credentials that a majority of colluding registrars
could compute. Although such an event is unlikely, their generic technique also
applies to our scheme. Finally, Clark and Hengartner [7] and Spycher et al. [13]
proposed two different approaches to tackle the coercion-resistance issue. How-
ever, both schemes do not really have linear time complexity. They truly achieve
it only if the level of anonymity is lowered. More specifically, a voter’s ballot is
indistinguishable from a small set of ballots and not from all the received ones.

Contribution. To tackle all these shortcomings, we propose a novel efficient
coercion-resistant voting scheme, with linear time complexity, that is suitable
and practical for real polls. Our scheme relies on credentials generated based
on the recent Algebraic MAC scheme due to Chase et al. [6]. We prove that
although a part of our credentials are made publicly known, a coercer is unable
to distinguish a valid credential from a fake one. Furthermore, our scheme allows
talliers to check credentials validity while being encrypted. To also enable multi-
ple elections and credentials revocation, we propose a new sequential aggregate
signature scheme, which is of independent interest. Using it, eligible voters’ cre-
dentials can be efficiently updated thereby allowing them to vote in new elections.
Credentials of voters who are no longer eligible to vote can be revoked as well.
Thanks to our improvements, coercion-resistance is obtained almost for free as
our scheme is just slightly slower than non coercion-resistant classical mix-net
based voting schemes.

1 Due to lack of space, we only mention the most promising coercion-resistant
proposals.

226 R. Araújo et al.

2 Preliminaries

In this section, we first introduce our main notation and required conventional
cryptographic primitives. Then, we detail building blocks including our new
sequential aggregate signature scheme necessary to update voters’ credentials.

2.1 Classical Tools

Notation. The notation x ∈R X states that x is chosen uniformly at random
from the set X. Besides,

→
x and Bi respectively denote the vector (x0, x1, . . . , xn)

and the ith element of the tuple B = 〈a, b, . . . , z〉.

Computational Assumptions. The decisional Diffie-Hellman assumption, known
as DDH, is defined as follows: given a cyclic group G =<h> of prime order p,
it is hard, given (h;ha;hb;hc) ∈ G

4, to decide whether c
?= ab.

ElGamal Encryption. The ElGamal cryptosystem is an asymmetric encryption
scheme with multiplicative homomorphic property. Let G be a cyclic group with
safe prime order p. The public key pk is defined as pk = (g, h = gsk) where g is
a generator of G and sk ∈R Z

∗
p is the corresponding private key. The ElGamal

encryption of a message m ∈ G using pk is denoted by Epk[m] and equal to
C = (c1, c2) where c1 = gr, c2 = mhr and r ∈R Z

∗
p. The plaintext is then

recovered as m = c2/csk
1 . Its multiplicative homomorphic property states that

given two ciphertexts C1 = (c1, c2) and C2 = (c′
1, c

′
2) of the messages m1 and m2

respectively, one can efficiently compute the ciphertext of the product m1m2 of
the two original messages as C ′ = (c′′

1 = c1c
′
1, c

′′
2 = c2c

′
2).

Non-interactive Zero-Knowledge Proofs of Knowledge (NIZKPK). Non Interac-
tive Zero-Knowledge Proofs of Knowledge enable a prover P to convince a verifier
V that she knows some secrets satisfying a given statement without revealing
anything else about them. Following the usual notation introduced by Camenisch
and Stadler [5], they are denoted by π = PoK{α, β : statements about α, β}
where Greek letters correspond to the knowledge of P.

2.2 Algebraic MACs

Message Authentication Codes (MACs) are cryptographic primitives that rely
on pseudorandom functions to provide authentication for messages. In these
protocols, MAC construction and verification are performed using the same key.
Unlike usual constructions, algebraic MACs are based on group operations.

In what follows, we describe the algebraic MACGGM scheme due to Chase
et al. [6]. It is a generalization of the algebraic MAC algorithm proposed by
Dodis et al. [8] and is proven unforgeable against chosen message and verification
attack (UF-CMVA) in the generic group model.

Remote Electronic Voting 227

Setup(1k). Define a secure cyclic group G with prime order p of k-bits as well
as g and h, two of its generators such that logg h is unknown. It outputs
params = (G, p, g, h).

Keygen(params). Generate a secret key sk =
→
x ∈R Z

n+1∗
p . Optionally, compute

the parameters (X1 = hx1 ,X2 = hx2 , . . . , Xn = hxn) denoted by iparams
and Cx0 = gx0hx̃0 , a commitment to x0 where x̃0 ∈R Z

∗
p.

MAC(sk,
→
m). Given a message

→
m ∈R Z

n
p , choose u ∈R G\{1} and compute the

tag σ = (u, u′) where u′ = ux0+m1x1+m2x2+...+mnxn .
Verify(sk,

→
m,σ). Check the correctness of σ i.e. u �= 1 and

ux0+m1x1+...+mnxn
?= u′.

We show in the following lemma that it is hard for an adversary to decide
whether a given triplet (s′, u, u′ = ux0+sx1) is a valid MAC on s or not.

Lemma 1. Under the DDH assumption, it is unfeasible to decide whether
s′ ?= s mod p from s′, Cx0 = gx0hx, X1 = hx1 , u = hb, u′ = ux0+sx1 where
s,s′,x,x0,x1,b ∈R Z

∗
p and g, h ∈R G two generators.

Proof. Suppose that we have an oracle deciding whether s′ ?= s mod p given s′,
X1 = hx1 , Cx0 = gx0hx, u = hb, u′ = ux0+sx1 , for s, s′, x, x0, x1, b ∈R Z

∗
p and

g, h ∈R G two generators. Then, we show how to decide whether c
?= x1b

mod p given h, α = hx1 , β = hb and γ = hc for x1, b, c ∈R Z
∗
p, hence

contradicting the DDH assumption.
The reduction is as follows. Set Cx0 = gx0hx for x0, x ∈R Z

∗
p, choose

s′ ∈R Z
∗
p and give s′, Cx0 ,X1 = α, u = β, u′ = ux0γs′

to the oracle. We have two
cases:
Case 1. If c = x1b mod p then u′ = ux0+s′x1 .
Case 2. If c �= x1b mod p then c = x1b(1 + c′) for some c′ �= 0 mod p (since
x1 �= 0 and b �= 0) and u′ = ux0+sx1 with s = s′(1 + c′) �= s′ (since s′ �= 0).

Therefore, given s′, Cx0 ,X1 = α, u = β, u′, the oracle will tell whether s′ ?= s

from which we decide whether c
?= x1b.

In the particular case where s = 0, even a computationally unbounded adver-
sary will not be able to figure out whether u′ ?= ux0 . This is due to the fact that
the Pedersen’s commitment Cx0 = gx0hx perfectly hides the value x0.

2.3 Our Sequential Aggregate MAC Scheme

An aggregate signature scheme [4] is a variant of a digital signature scheme that
additionally supports aggregation. Indeed, it allows to aggregate n signatures on
n distinct messages from n signers into a single compact signature. Along with
the n messages, the resulting signature will convince the verifier that the n mes-
sages were signed by the n signers. A sequential aggregate signature scheme [11]
is a particular type of aggregate signature schemes. Indeed, the final signature

228 R. Araújo et al.

is created sequentially with each signer signing the aggregate signature in turn.
Based on the MACGGM due to Chase et al., we design a new sequential aggregate
signature (MAC) scheme which supports n signers with n different messages. In
the case of two signers S1 and S2, it works as follows:

Setup(1k). Create the system public parameters param = (G, p, g, h) as defined
in Sect. 2.2.

KeyGeneration(params). Generate the secret key sk1 = (x0, x1) of the first signer
S1 and sk2 = x2 of the second signer S2. The corresponding public parameters
are respectively Cx0 = gx0hx where x ∈R Z

∗
p, X1 = hx1 and X2 = hx2 .

Signing(params,S1(sk1,m1),S2(sk2,m2)). Produce an aggregate signature on
messages m1 and m2 sequentially by S1 and S2. First, S1 generates the sig-
nature σ1 = (u, u′) on the message m1 where u′ = ux0+m1x1 . Then, S2 can
generate σ2 = (w = ut, w′ = (u′um2x2)t) a sequential aggregate signature on
both m1 and m2 where t ∈R Zp.

Verification(params, σ2,m1,m2, sk). Verify that σ2 is the aggregate of the signa-
tures of S1 on m1 and S2 on m2 i.e. u �= 1 and w′ ?= wx0+m1x1+m2x2 .

Theorem 1. Our sequential aggregate signature scheme is existentially unforge-
able under chosen message attacks (EUF-CMA) under the assumption that
MACGGM is UF-CMVA.

Proof. Owing to space limitations, the proofs will be detailed in an extended
version. It is, however, worth mentioning that the EUF-CMA proof is similar to
the one provided in [12].

We will subsequently use it in our voting scheme to update voter’s credentials
thereby enabling multiple elections and credentials revocation. m2 and x2 will
be respectively set to the new election identifier and the associated secret key.

3 A MAC Based Coercion Resistant Voting Scheme

In this section, we first provide an overview of our coercion-resistant voting
scheme then, detail it while explaining how it enables multiple elections and
credentials revocation.

3.1 An Overview of the Scheme

Our coercion-resistant voting scheme consists of five main phases. During the
setup phase, key material as well as election parameters are cooperatively gen-
erated by a set of authorities. The public parameters are then published on a
Web Bulletin Board (WBB). To be able to vote, an eligible voter must register
through a registration phase. After proving her identity, she receives a unique
and valid credential that depends on a secret s only known by the voter. The
credential is issued by the registration authorities and made publicly available.
Later, during voting phase, the voter uses her credential and the secret s to

Remote Electronic Voting 229

generate a ballot that she sends via an anonymous channel. It contains her cre-
dential randomized, the ciphertext of her vote as well as a set of NIZKPs proving
the validity of the ballot. If the voter is under coercion, she can cast a fake bal-
lot using an invalid secret s′ without the adversary being able to distinguish it
from a valid one. Before tallying votes, a pre-verification phase is carried out
to remove both erroneous ballots and duplicate votes. Once done, the tallying
authorities may perform the tallying phase. To do so, they first send the remain-
ing ballots to a verifiable mix net and then anonymously identify the valid votes,
i.e. votes published with valid credentials. Finally, they cooperatively decrypt
the associated ciphertexts to recover votes and publish results on the WBB.

3.2 Our Novel Coercion-Resistant Voting Scheme

Our voting scheme, which assumes a bulletin board communication model,
involves as participants a set of registration authorities known as registrars, a
set of tallying authorities called talliers, and a set of voters. For security reasons,
the roles of both registrars and talliers are distributed among a large group of
authorities. We describe our proposal as follows:

Setup Phase. Let O be the set of eligible options (candidates) and v ∈ O a
vote for a candidate. Let G be a cyclic group with a prime order p and o ∈ G

be a public generator selected for this election. The talliers share the threshold
ElGamal key pair (T, T̂). As for the registrars, they jointly select and share a
secret key sk = (x0, x1) ∈R Z

2∗
p associated to the public values (Cx0 ,X1 = hx1)

where Cx0 = gx0hx such that x ∈R Z
∗
p. This key is also shared among talliers.

Registration Phase. Once her eligibility proved, the voter obtains a unique
and valid voting credential σ. Indeed, by cooperatively choosing s ∈R Zp and
u ∈R G\{1}, the registrars jointly compute σ = (u, u′) where u′ = ux0+sx1 . It is
then provided, through an untappable channel, to the voter along with the secret
value s and a Designated Verifiable Proof2 [9] that σ is a valid credential on s.
Concurrently, the credential σ is stored in the database DB, which contains
all the valid credentials, while s is kept as a secret only known by the voter.
Thereby, in case of coercion, the voter would deceive the coercer by revealing her
credential with a fake value s′ without the coercer noticing it. Indeed, under the
DDH assumption, the coercer cannot decide whether s′ is valid with respect to
the voter’s credential σ or not (see Lemma 1). The generic technique proposed in
[2] can be subsequently used to detect any vote cast with a valid but illegitimate
credential computed by a set of malicious colluding registrars.

Voting Phase (First Election). To vote in a first election, the voter first
randomizes the received credential σ to generate σr = (ur, u′r) = (w,w′) where
2 The DVP proof can only convince the corresponding voter and nobody else. So, it

is useless in case of coercion and even for vote-selling.

230 R. Araújo et al.

r ∈R Zp. Then, she chooses her candidate v ∈ O and casts her vote that
consists of the ballot B = 〈ET [v], w, w′, ET [ws], os, P 〉 where P is a set of
NIZKPs ensuring that the ballot is well formed. In particular, P includes both
π1 = PoK{α : B4 = ET [wα] ∧ B5 = oα} related to the knowledge of s and
π2 = PoK{β : B1 = ET [β] ∧ β ∈ O} proving that v belongs to the set O.

Pre-verification Phase. This phase aims to verify votes posted on the WBB.
Talliers should perform it before the tallying phase detailed later on. It is worth
mentioning that, during this phase, ballots with invalid credentials are not yet
discarded. Hereinafter, we describe the four steps of this phase.

1. Verifying proofs. For each posted ballot, the proofs P are verified to remove
ballots with invalid proofs.

2. Removing duplicates. By comparing all os values, duplicates votes (i.e. ballots
published using the same secret s) are removed. The policy, in this case, could
be to keep the last one.

3. Reconstruction of the credential. For each ballot, the ElGamal ciphertext
ET [w] of w is cooperatively computed. Using ElGamal homomorphic prop-
erty, the ciphertexts ET [wx0] and ET [(ws)x1] are jointly obtained thanks to
the shared secret values x0 and x1 as well as ET [w] and ET [ws]. Thereby,
the talliers can compute ET [wx0+sx1] = ET [wx0] · ET [wsx1]. By dividing the
ciphertext second component by w′, they obtain C = ET [wx0+sx1]/w′. If the
credential σr = (w,w′) is valid, C should be equal to ET [1], a ciphertext of 1.

4. PET pre-test. In this last step, a Plaintext Equivalence Test (PET) is per-
formed on credentials. To this end, C is cooperatively raised to a random value
α ∈R Zp. For a valid credential σ, D = Cα should be equal to ET [1α] = ET [1].
Note that D is still kept encrypted to prevent any information leakage espe-
cially in case of coercion.

Tallying Phase. To compute election results, the talliers perform three steps:

1. Mixing tuples. The tuples 〈D,ET [v]〉 that succeeded all pre-verifications are
sent to a verifiable mix net. The output is then published on the WBB.

2. Identifying valid votes. For each tuple, the ciphertext D is jointly decrypted.
If the plaintext is equal to 1, the credential σr and the associated ballot are
considered as valid. Otherwise, the ballot is said invalid and is thus discarded.

3. Decrypting and counting votes. Finally, for each valid ballot, ET [v] is cooper-
atively decrypted in order to count the votes. The obtained results are then
published on the WBB.

Theorem 2. Our voting scheme satisfies the eligibility3 requirement under the
assumption that MACGGM is UF-CMVA secure and the coercion-resistance4

requirement, in the random oracle model, under the DDH assumption.
3 The eligibility requirement informally states that only eligible voters can cast the

votes and that every voter can cast only one vote.
4 As defined by JCJ [10]: A voter can deceive the coercer about her true vote intention

by making him believe that she behaved as instructed while it is not the case.

Remote Electronic Voting 231

Proof (sketch). Owing to space limitations, the proofs will be detailed in an
extended version. Intuitively, eligibility follows from the unforgeability of the
MACGGM and the removal of duplicates in step 2. Therefore, only one vote per
credential (valid or fake) will be processed during the tallying phase. Coercion-
resistance follows from the fact that a coercer cannot decide, under the DDH
assumption, whether a credential is valid or not (see Lemma 1) or trace a ballot
during the tallying phase (owing to the use of Mix-nets and PET that are secure
under the DDH assumption).

Universal Verifiability: We would also like to stress that every step of the
tallying phase is publicly verifiable. Thus, anyone can check that the election
outcome corresponds to the ballots published on the WBB (Universal Verifia-
bility) and in particular, that only invalid ballots containing invalid credentials
have been discarded.

For every new election or in the case where some voters are no longer eligi-
ble, the authorities should be able to update eligible voters’ credentials without
requiring them to register again. To this end, we design the following scheme
that relies on our sequential aggregate signature scheme introduced in Sect. 2.3.

Multiple Elections and Credentials Revocation. For every new election,
the registrars generate both a specific election identifier and a new pair of keys.
For the ith election, this pair is defined as (xi,Xi = hxi) where xi ∈R Zp is
shared among registrars and talliers. Hereinafter, we detail the case of a second
election identified by eI and where the new key pair is (x2,X2 = hx2).

For each initial credential σ = (u, u′) ∈ DB belonging to an eligible voter, the
registrars jointly select a random value t ∈R Zp, compute σ2 = (ut, (u′ueIx2)t) =
(w,w′ = wx0+sx1+eIx2) and update DB. Then, the new database is published to
enable eligible voters to learn their new credential. These changes are irrelevant
except for the pre-verification phase whose third step requires these modifica-
tions:

– Reconstruction of the credential. First, the talliers cooperatively encrypt w
to get ET [w]. Then, as previously and thanks to ElGamal homomorphic
property, they jointly compute the three ciphertexts: ET [wx0], ET [wsx1] and
ET [weIx2] using eI , ET [w] and ET [ws] as well as their shared secret keys x0,
x1 and x2. Thereby, the talliers can compute ET [wx0] ·ET [wsx1] ·ET [weIx2] =
ET [wx0+sx1+eIx2]. By dividing the ciphertext second component by w′, they
obtain C = ET [wx0+sx1+eIx2]/w′. If the associated credential is valid, C
should be equal to ET [1], a ciphertext of 1.

4 Conclusion

We proposed a new efficient coercion-resistant voting scheme that enables cre-
dentials revocation as well as multiple elections without requiring voters to visit
the registration place again. This is achieved through the design of a new sequen-
tial aggregate MAC scheme based on Chase et al. Algebraic MAC scheme.

232 R. Araújo et al.

References

1. Araújo, R., Foulle, S., Traoré, J.: A practical and secure coercion-resistant scheme
for remote elections. In: Chaum, D., Kutylowski, M., Rivest, R.L., Ryan, P.Y.A.
(eds.) Frontiers of Electronic Voting, pp. 330–342. Schloss Dagstuhl, Germany
(2007)

2. Araújo, R., Traoré, J.: A practical coercion resistant voting scheme revisited. In:
Heather, J., Schneider, S., Teague, V. (eds.) Vote-ID 2013. LNCS, vol. 7985, pp.
193–209. Springer, Heidelberg (2013)

3. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

4. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted
signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 416–432. Springer, Heidelberg (2003)

5. Camenisch, J., Stadler, M.: Proof systems for general statements about discrete
logarithms. Technical report (1997)

6. Chase, M., Meiklejohn, S., Zaverucha, G.: Algebraic MACs and keyed-verification
anonymous credentials. In: Proceedings of the 2014 ACM SIGSAC CCS, CCS 2014,
pp. 1205–1216. ACM, New York (2014)

7. Clark, J., Hengartner, U.: Selections: internet voting with over-the-shoulder
coercion-resistance. In: Danezis, G. (ed.) FC 2011. LNCS, vol. 7035, pp. 47–61.
Springer, Heidelberg (2012)

8. Dodis, Y., Kiltz, E., Pietrzak, K., Wichs, D.: Message authentication, revisited. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
355–374. Springer, Heidelberg (2012)

9. Jakobsson, M., Sako, K., Impagliazzo, R.: Designated verifier proofs and their
applications. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp.
143–154. Springer, Heidelberg (1996)

10. Juels, A., Catalano, D., Jakobsson, M.: Coercion-resistant electronic elections. In:
Atluri, V., di Vimercati, S.D.C., Dingledine, R. (eds.) WPES, pp. 61–70. ACM,
New York (2005)

11. Lysyanskaya, A., Micali, S., Reyzin, L., Shacham, H.: Sequential aggregate signa-
tures from trapdoor permutations. In: Cachin, C., Camenisch, J.L. (eds.) EURO-
CRYPT 2004. LNCS, vol. 3027, pp. 74–90. Springer, Heidelberg (2004)

12. Pointcheval, D., Sanders, O.: Short randomizable signatures. Cryptology ePrint
Archive, Report 2015/525 (2015)

13. Spycher, O., Koenig, R.E., Haenni, R., Schläpfer, M.: A new approach towards
coercion-resistant remote e-voting in linear time. FC 2011, 182–189 (2011)

14. US Vote Foundation: end-to-end verifiable internet voting. In: The Future of Vot-
ing, Expert Statement (2015). https://www.usvotefoundation.org/sites/default/
files/E2EVIV expert statements.pdf

https://www.usvotefoundation.org/sites/default/files/E2EVIV_expert_statements.pdf
https://www.usvotefoundation.org/sites/default/files/E2EVIV_expert_statements.pdf

Universal Cast-as-Intended Verifiability

Alex Escala1, Sandra Guasch2(B), Javier Herranz1, and Paz Morillo1

1 Universitat Politècnica de Catalunya, Barcelona, Spain
{alex.escala,javier.herranz,paz.morillo}@upc.edu

2 Scytl Secure Electronic Voting, Barcelona, Spain
sandra.guasch@scytl.com

Abstract. In electronic voting, we say that a protocol has cast-as-
intended verifiability if the contents of each encrypted vote can be audited
in order to ensure that they match the voter’s selections. It is tradition-
ally thought that this verification can only be performed by the voter who
casts the vote, since only she knows the content of her vote. In this work,
we show that this is not the case: we present the first cast-as-intended ver-
ification mechanism which is universally verifiable, i.e., the first protocol
in which anyone (the voter herself or another party) can check that the
contents of an encrypted vote match the voter’s selections. To achieve this
goal, we assume the existence of a trusted registrar. We formally define
universal cast-as-intended verifiability and we show that our protocol sat-
isfies such property, while also satisfying ballot privacy. We give a general
construction of the protocol and an efficient instantiation which is prov-
ably secure in the random oracle model. We also present a voting system
which can be implemented on top of the voting protocol, which is intended
to present a more intuitive process to the voter.

1 Introduction

Traditionally, verifiability properties of electronic voting are divided in two cate-
gories, depending on the entities who can make use of them. Individual verifiabil-
ity involves auditing the processes of vote creation and vote storage by the voter.
Universal verifiability consists on auditing that only votes from eligible voters
are stored in the ballot box, and that all stored votes are properly tallied, which
can be performed by everyone. Systems providing both types of verifiability are
known as end-to-end verifiable systems [3].

One of the individual verifiability properties is vote casting assurance [3], also
known as cast-as-intended verification, which is focused on the audit of the vote
creation process. This property is only meaningful when the vote is cast using
a voting device, therefore excluding voting systems where selections are done
on a physical ballot. Another property is recorded-as-cast verification, aimed at
auditing the correct reception and storage of the vote in a remote voting server.

In this paper, we focus on cast-as-intended verification, which we present here
using a simplified electronic voting scenario. In this simplified voting system, the
voter uses a voting device in order to select her choices. After she confirms her
vote, the voting device encrypts the selections using a public key encryption
scheme. The encrypted vote is then stored in a (local or remote) ballot box.
c© International Financial Cryptography Association 2016
J. Clark et al. (Eds.): FC 2016 Workshops, LNCS 9604, pp. 233–250, 2016.
DOI: 10.1007/978-3-662-53357-4 16

234 A. Escala et al.

When the voting period finishes, the votes in the ballot box are decrypted in
order to obtain the election results. By encrypting the vote at the voting device,
the secrecy of the vote is ensured during its transmission and storage in the
ballot box, until the time of decrypting and tallying the votes.

Naturally, neither the voter or any other entity is able to check if the content
of the encrypted vote that is cast really matches what the voter selected. This
implies that a malicious voting device would be able to encrypt other options
than those selected by the voter. Cast-as-intended verification mechanisms pro-
vide the system with means to audit the content of the encrypted vote in order
to detect this kind of attacks.

Traditionally, the electronic voting community has considered that the cast-
as-intended verification can only be performed by the voter who cast the vote,
given that she made her selections in secret. However, leaving the responsibility
of this verification to the voter may not be effective at all. On the one hand, we
might think of systems which make the cast-as-intended verification mandatory
in order to cast a vote. The problem is that current cast-as-intended verifica-
tion systems present important drawbacks: verification mechanisms are usually
not very usable and in most cases voters have to engage in highly interactive
protocols and/or be able to perform complex computations. Therefore, manda-
tory cast-as-intended verification would disenfranchise less skilled voters. On the
other hand, we could allow the cast-as-intended verification to be an optional
step which the voter can do before casting the vote. This does not solve the prob-
lem though, as targeted attacks against non-skilled voters, who will probably not
use the verification system, can succeed undetectably.

Our goal is to propose an alternative paradigm which solves the above-
mentioned problem, by allowing any party (not only the voter) to publicly verify
that an encrypted cast vote really matches the selection of a voter. We refer to
this property as universal cast-as-intended verifiability.

1.1 Our Contributions

In this paper, we present a universal cast-as-intended verification protocol, i.e.,
a protocol where cast-as-intended verification is not restricted to the voter any-
more. This allows to deploy mechanisms for auditing all the cast votes in an
extensive form, and ensure no tampering attacks happen. Once the voter has
cast a ballot, our protocol does not require her to take any further step to verify
that her cast ballot corresponds to her chosen candidates.

This is a change of paradigm with respect to current voting protocols, as in
our new protocol the verification of the content of the encrypted votes does not
rely on the willingness or skills of the voters. Indeed, it can now rely on third
parties (e.g. election auditors) without compromising voters’ privacy.

The main idea of our protocol is the following: a voter registers to vote with
a registrar, who generates a pair of public-secret values for each voting option
in the election. The secret values are sent to the voter, while the public ones are
published, linked to the voting options they are related to. We need to assume
that the registrar is trusted and follows these instructions correctly.

Universal Cast-as-Intended Verifiability 235

During the voting phase, the voter provides her selected voting options and
a subset of the secret values she received during registration to the voting
device. The voting device then encrypts the voter’s selections and creates a non-
interactive zero-knowledge proof of knowledge (NIZKPK), which will be valid
only in the case the voting device encrypted what the voter selected.

Thanks to the zero-knowledge property of the proofs, they can be publicly
verified while maintaining the voter’s privacy. Therefore, we can say that the
system provides universal cast as intended verifiability.

1.2 Related Work

Helios [1] is a well-known electronic voting protocol which has been used in
several real-world binding elections. Both Helios and our new voting protocol
are ballot private (even though the ballot privacy definition needs to be adapted
for considering voter-private information) and non-receipt free. However, our
new protocol has universal cast-as-intended verifiability, whereas Helios only
considers individual cast-as-intended verifiability.

At a first glance one would say that our voting protocol is similar to any
Code Voting protocol [7]: in both systems voters introduce codes in their voting
devices. However, there are important differences between our voting protocol
and any Code Voting protocol. Unlike Code Voting systems, privacy of our voting
protocol does not depend on the secrecy of the voting codes. In addition, not
only our voting protocol is (universally) cast-as-intended verifiable but it can be
extended to be end-to-end verifiable by using known techniques such as a Bulletin
Board [16] and a verifiable Mix-Net [22]. As far as we know, the only end-to-end
verifiable Code Voting protocols (with individual cast-as-intended verifiability)
are VeryVote [18], in which verifiability is achieved at the cost of making the
scheme non-private to the voting server, and Pretty Good Democracy [21], in
which verifiability implies knowledge and use of the election private key by a
set of trustees during the voting phase. Finally, note that our voting protocol
does not attempt to solve the secure platform problem [15] and, in particular, it
can be implemented with a user-friendly point and click voting interface (even
though voters still need to introduce voting codes).

Other systems which provide cast-as-intended verifiability while trying to
reduce the participation of the voter in the process, such as Scratch & Vote [2],
MarkPledge [19], Chaum’s Secret-Ballot Receipts [8] and Prêt à voter [20] are
focused on poll-site voting systems, and require specific hardware and proce-
dures, such as optical scanners or DREs with printers, which are not available
to remote voters.

Finally, the Eperio cryptographic election verification protocol [13] can be
considered a precursor of universal cast-as-intended verifiability. In this protocol,
voters might delegate their individual verifiability, without any privacy loss, by
giving a copy of their voting receipt to any other party. However, Eperio is
designed to be used in traditional elections in which only the tallying process is
done electronically.

236 A. Escala et al.

1.3 Structure of the Paper

We give the syntax of a voting system which enables such universal cast-as-
intended property in Sects. 2.1 and 2.2 we informally state the security assump-
tions we make, and provide a definition for universal cast-as-intended verifiabil-
ity. The building blocks of our protocol are presented in Sect. 3. In Sect. 4 we give
a generic construction of our new protocol. We provide the results of our security
analysis (included in the full version of this paper) in Sect. 5. In addition, we
give an efficient instantiation of our new protocol which is provably secure in the
random oracle model in Sect. 6. In Sect. 7 we present an implementation of our
new voting protocol which might lead to the design of usable voting systems.
Finally, we detail some lines of future research in Sect. 8.

2 Electronic Voting Definitions

2.1 Syntactical Definition

We now give the syntax of a voting scheme, which we will later use to present
our protocol. This definition is based on single-pass voting schemes, as defined
in [5]. These kind of schemes are characterized by the fact that voters interact
with the system only by submitting their ballots. Voters may have credentials
in order to be able to cast such ballots, but how voters get them is outside the
scope of this scheme.

As defined in [5], a voting scheme has the following participants: the Elec-
tion Authorities are in charge of setting up the election, computing the tally
and publishing the results; the Voters participate in the election by choosing
their preferred options; and the Bulletin Board Manager receives, processes and
publishes the ballots received, as well as other public information.

In addition, we also consider the following participants: the Registrars are
responsible for providing to the voters that chose them all the information they
need to vote, in particular the information that will provide the UCIV property.
We also explicitly consider the Voting Device as a participant. As opposed to
Voters, who only choose their preferred voting options, the Voting Device is in
charge of casting a ballot given those voting options. This distinction is important
when introducing the concept of universal cast-as-intended verifiability.

We assume that non-cryptographic election specifications such as the set
of voting options V or the set of voters are fixed in advance by the Election
Authorities. Further we assume a counting function ρ : (V ∪{⊥})∗ → R is given,
where V is the set of voting options, ⊥ denotes an invalid vote and R is the set
of results.

For sake of simplicity, we will assume that there is only one Election Author-
ity and one Registrar. Detailed trust assumptions for Election Authorities and
Registrars are further discussed in Sect. 2.2.

Universal Cast-as-Intended Verifiability 237

The voting scheme is characterized by the following algorithms:

– Setup(1λ) is a protocol executed by the Election Authority. On input a secu-
rity parameter 1λ, it generates and outputs an election public/private key
pair (epk, esk). In addition, it defines the space of secret Universal Cast-As-
Intended Verification (UCIV from now on) information SVI , the space of
voting option-dependent secret UCIV information S̃VI , the space of public
UCIV information PVI and a family of functions σ· : SVI → S̃VI such that,
for each voting option v ∈ V the function σv maps the secret UCIV informa-
tion to some voting option-dependant secret UCIV information (The function
σv will need to be evaluated by the voter, so it should be a relatively simple
one. In our scheme the function will consist on selecting some elements from
a given set).

– Register(vid, V, epk) is run by the Registrar. It takes as input a voter identity
vid, the set of voting options V and the election public key epk. It outputs
the secret UCIV information svid

uciv ∈ SVI and the public UCIV information
pvid

uciv ∈ PVI .
– Vote(vid, v, σv(svid

uciv), pvid
uciv, epk) is a probabilistic protocol run by voting

devices. It receives as input the voter identity vid, a voting option v ∈ V ,
the function σv evaluated on the secret UCIV information svid

uciv ∈ SVI , the
public UCIV information pvid

uciv ∈ PVI , the election public key epk and outputs
a ballot b.

– ProcessBallot(BB, b, vid) is run by the bulletin board manager. It receives as
input a bulletin board BB, a ballot b and a voter identity vid and outputs
either success (1) or reject (0).

– Tally(BB, esk) is run by the Election Authority. It takes as input a bulletin
board BB and the election secret key esk and outputs a result r ∈ R and a
correct tabulation proof Π.

Finally, the scheme is executed as follows:
Configuration Phase: in this phase, the Election Authority runs the Setup

algorithm. The Election Authority publishes the election public key epk on the
bulletin board BB and keeps the election secret key esk.

Registration Phase: in this phase, a voter registers to vote in the election. The
Registrar runs the Register algorithm, provides the secret UCIV information svid

uciv

to the voter, and publishes the public UCIV information pvid
uciv in the bulletin

board.
Voting Phase: in this phase each registered voter vid can vote. To

vote, the voter chooses a voting option v, evaluates σv(svid
uciv) and provides

(vid, v, σv(svid
uciv)) to the voting device. The voting device takes the election pub-

lic key epk and the public UCIV information pvid
uciv from the bulletin board and

runs the Vote algorithm, producing a ballot b. The ballot b and the voter’s iden-
tity vid are then sent to the bulletin board. Upon reception of the ballot, the
bulletin board manager executes the ProcessBallot algorithm. In case the out-
put is 1, the ballot is published in the bulletin board, otherwise the ballot is
discarded and the voter is notified accordingly.

238 A. Escala et al.

Counting Phase: in the counting phase the Election Authority runs the Tally
algorithm using the election private key esk and the information in the bulletin
board, including the ballots. The output of the Tally algorithm is published on
the bulletin board.

A voting system as defined above is correct if, when the four phases are run
with all the participants behaving correctly, the result r output by the Tally
algorithm is equal to the evaluation of the counting function ρ on the voting
options corresponding to the ballots cast by the voters.

2.2 Security Definitions

In this section we give the security definitions of privacy and universal cast-
as-intended. We will not define recorded-as-cast verifiability nor counted-as-
recorded verifiability, since these properties are out of the scope of this paper.
Similarly, we focus on the notions of privacy provided by existing schemes such
as [1], and leave the consideration of stronger notions of vote privacy, such as
receipt freeness or coercion resistance, for a future work.

Assumptions on Voting Devices, Election Authorities and Registrars.
When considering voting devices, we distinguish between privacy and integrity.
In order to guarantee privacy, we assume that the voting device behaves properly
by correctly encrypting the voter’s choice and not leaking any information. This
is a common assumption in electronic voting schemes where the voter can use
a point and click interface to make her choices, such as Helios [1]. On the other
hand, we do not trust the voting device at all when it comes to integrity, since
we assume it could try to change the voters’ choice prior to encryption. In the
same way, the verifiability of the scheme does not rely on the voting device being
honest.

We will assume that there is only one election authority, which is trusted for
privacy. Secret sharing and multi-party computation techniques can be easily
deployed, as done in [11], to overcome this limitation so that privacy is guar-
anteed as long as a subset of the election authorities are trusted. The electoral
authorities do not need to be trusted for our new verifiability property. Indeed,
in the UCIV security definition we assume that the election private key is leaked
to the adversary.

In addition, we will also assume that any common reference strings are gen-
erated by a single, trusted authority. This is a strong assumption, which can be
solved by using the multi-string model defined by Groth and Ostrovsky in [17].
In this model, several parties provide their common reference strings and secu-
rity relies on assuming that a threshold of such parties are honest. We consider
that directly using the multi-string model would make our paper utterly complex
and, on the other hand, it would not add much value to the paper. Moreover,
when we instantiate our scheme with protocols with ROM-based security, no
common reference string is needed at all.

Universal Cast-as-Intended Verifiability 239

We also assume that there is only one registrar, who is trusted to produce the
UCIV information correctly and keep it secret, so that the secret UCIV informa-
tion is not leaked to the adversary. This assumption is common in other protocols
for the information generated by the registrars for providing individual verifi-
ability properties, such as [21] or [2]. There are several well-known techniques
that can be used to weaken these assumptions. One is to randomly audit a set
of outputs produced by the registrar in order to ensure the UCIV information
is produced correctly. This audit involves the publication of the secret UCIV
information, and therefore an audited set of UCIV information should not be
used by a voter to cast her vote. Another one is to consider a set of registrars
and use multi-party computation techniques in order to guarantee the privacy
of the UCIV information, as far as a subset of the registrars are honest. The
printer which may be in charge of putting the shares of secret UCIV information
together and providing them to the voter is then trusted not to reveal this infor-
mation, as in [21]. Finally, another approach is to allow each voter to choose
which registrars she registers with: she might register with only one registrar
or with all of them. These extensions will be detailed in the full version of the
paper.

Ballot Privacy. Intuitively, a voting system has ballot privacy if an adversary
with access to the bulletin board is not able to guess what voting options the
voters chose. We adopt the formalization given in [4], where they give a definition
correcting the flaws of previous definitions.

Ballot privacy is defined using two experiments between an adversary A and a
challenger C . The goal of the adversary is to disinguish between the two exper-
iments. In both experiments, we let the adversary corrupt voters and submit
ballots on their behalf. In addition, for each honest voter the adversary can also
specify two votes to be used for casting her ballot. The votes which will be used
to cast the honest voters’ ballots will depend on which experiment is taking
place. The goal of the adversary is to distinguish between both experiments i.e.,
to distinguish which votes were used to cast the honest voters’ ballots. As reveal-
ing the “true” tally would easily allow the adversary to distinguish between the
experiments, the same tally is always shown to the adversary, regardless of which
vote was used to cast honest voters’ ballots.

For compactness, we present the two experiments as a single experiment
depending on a bit β. The experiments are parametrized by the set of voting
options V and an algorithm SimProof(BB, r) such that, given a bulletin board
and a result simulates a proof of correct tabulation.

1. Setup Phase. The challenger sets up two empty bulletin boards L and R.
It runs the Setup(1λ) protocol to obtain the election public key epk and
the election private key esk. It then posts epk on both bulletin boards. The
adversary is given read access to either L if β = 0 or R if β = 1. In addition,
C initializes an empty list ID .

2. Registration Phase. The adversary may make one type of query.

240 A. Escala et al.

– Register(vid) query. The adversary provides a voter identity such that
(vid) �∈ ID . The challenger runs Register on inputs (vid, V, epk) to gen-
erate the partial public UCIV information pvid

uciv and the partial secret
UCIV information svid

uciv. C provides both pvid
uciv and svid

uciv to A and pvid
uciv

is published on both bulletin boards. The identity vid is added to ID .
3. Voting Phase. The adversary may make two types of queries.

– Vote(vid, vL, vR) queries. The adversary provides a voter identity
vid such that vid ∈ ID and two votes vL, vR ∈ V . The chal-
lenger runs Vote(vid, vL, σvL

(svid
uciv), pvid

uciv, epk) which outputs bL and
Vote(vid, vR, σvR

(svid
uciv), pvid

uciv, epk) which outputs bR. C then obtains new
versions of the boards L and R by running ProcessBallot(L, bL, vid) and
ProcessBallot(R, bR, vid) and updating the boards accordingly.

– Ballot(b, vid) queries. These are queries made on behalf of corrupt voters.
Here the adversary provides a ballot b and an identity vid such that vid ∈
ID . The challenger runs ProcessBallot(L, b, vid) and if the process accepts
it also runs ProcessBallot(R, b, vid) and updates the boards accordingly.

4. Tallying Phase. The challenger evaluates Tally(L, esk) obtaining the result r
and the proof of correct tabulation Π. If β = 0, the challenger posts (r,Π) on
the bulletin board L. If β = 1, the challenger runs SimProof(R, r) obtaining
a simulated proof Π ′ and posts (r,Π ′) on the bulletin board R.

5. Output. The adversary A outputs a bit αA,V .

We say that a voting protocol as defined in Sect. 2.1 provides ballot privacy
if there exists an algorithm SimProof such that for any probabilistic polyno-
mial time (p.p.t.) adversary A and any set of voting options V , the following
advantage is negligible in the security parameter λ.

Advpriv
V (A) := |Pr[αA,V = 1|β = 1] − Pr[αA,V = 1|β = 0]|

We want to remark that in case of honest voters the ballots are properly
encrypted. In other words, this implies that the voting devices used to cast those
ballots use good randomness and do not leak information about the randomness
used. In addition, the ballot privacy does not rely on the adversary not having
access to the secret UCIV information.

Universal Cast-as-Intended Verifiability: Intuitively, a voting system sat-
isfies the cast-as-intended property if a corrupt voting device is not able to cast
a ballot for a voting option different to the one chosen by the voter. This should
hold as long as the voter is honest. If the voter is malicious no guarantees can
be given besides the fact that the ballot must correspond to at most one voting
option (i.e., it could also correspond to an invalid voting option which will not
be counted). We define cast-as-intended on a per-ballot basis, not considering
the tallying phase inside the definition.

In this definition, we use an extractor algorithm Extract which is defined as
follows: for any (epk, esk) in the image of Setup, for any voter identity vid, for

Universal Cast-as-Intended Verifiability 241

any correctly generated public and secret UCIV information pvid
uciv, svid

uciv and for
any v ∈ V , it is satisfied that Extract(Vote(vid, v, σv(svid

uciv), pvid
uciv, epk), esk) = v.

Universal cast-as-intended verifiability is defined as an experiment between
an adversary A and a challenger C . In this experiment, the adversary may
corrupt registrars, voters or voting devices. The goal of the adversary is to cast
ballots in behalf of a non-corrupt voter so that the ballot does not extract to
the voting option chosen by the voter. The extract is one with which the voting
scheme is strongly consistent, which according to [4] states that the tally of a
bulletin board must correspond to the result of applying a counting function to
the contents of the ballots in the bulletin board. The experiment is parametrized
by the set of voting options V and an algorithm Extract(b, esk) such that, given
a ballot and the election private key returns a vote or ⊥ denoting an invalid
vote.

1. Setup Phase. The challenger sets up an empty bulletin board BB and runs
the Setup(1λ) protocol to obtain the election public key epk and the election
private key esk, posts epk on the board and gives (epk, esk) to the adversary.
The adversary is given read access to BB. In addition, C initializes three
empty lists IDR, IDP , IDF . For convenience, we define ID = IDP ∪ IDF .

2. Registration Phase. The adversary may make one type of query.
– Register(vid) query. The adversary provides a voter identity such that

(vid) �∈ IDR. The challenger runs Register(vid, V, epk) to generate the
public UCIV information pvid

uciv and the secret UCIV information svid
uciv. C

provides pvid
uciv to A, publishes pvid

uciv on the bulletin board and adds vid
to IDR.

3. Voting Phase. The adversary may make two types of queries.
– CorruptVotingDevice(vid, vvid) queries. The adversary provides a

voter identity vid �∈ ID such that vid ∈ IDR and a voting option vvid

corresponding to such identity. Then, C provides σvvid
(svid

uciv) to A. The
challenger adds vid to IDP .

– CorruptVoter(vid) queries. The adversary provides a voter identity
vid �∈ ID such that vid ∈ IDR. Then, C provides svid

uciv to A. The chal-
lenger adds vid to IDF .

4. Output. The adversary submits a pair (b∗, vid∗). The output of the experi-
ment is a bit δV , which is defined as 1 if (i) vid∗ ∈ IDP , (ii) ProcessBallot(BB,
b∗, vid∗) = 1 and (iii) Extract(b∗, esk) �= vvid∗ , where vvid∗ is the voting option
submitted by the adversary in the CorruptVotingDevice query for vid∗. δV ,
is defined as 0 in any other case.

We say that a voting protocol as defined in Sect. 2.1 has universal cast-as-
intended verifiability with respect to a counting function ρ if there exists an
algorithm Extract such that the following two conditions hold:

(i) for all sets of voting options V the voting protocol is strongly consistent
with respect to ρ,Extract.

(ii) for any probabilistic polynomial time (p.p.t.) adversary A and any set of
voting options V , the following advantage is negligible as a function of λ.

242 A. Escala et al.

Advuciv
V (A) := Pr[δV = 1]

We want to remark that the universal cast-as-intended verifiability property
does not rely on the secrecy of the private election key.

3 Building Blocks

Encryption scheme. An encryption scheme consists of three probabilistic
polynomial time (PPT) algorithms: KGen, Encpk and Decsk. On input a secu-
rity parameter 1k, the KGen algorithm outputs a public key pk and a secret key
sk, and implicitly defines a message space Msp, a ciphertext space Csp and a
randomness space Rsp. The Encpk algorithm takes as input a message M ∈ Msp

and uses the public key pk to output a ciphertext C ∈ Csp. The Decsk algorithm
takes as input a ciphertext C ∈ Csp and uses the secret key sk to output a
message M ∈ Msp, or halts outputting ⊥.

We use the notion of NM-CPA security [5] for the encryption scheme.
One-way functions. Roughly speaking, a one-way function is a function which
is easy to compute but very difficult to invert. More formally, a function F : X →
Y between two finite sets is said to be one-way if the following two properties are
satisfied, where k = log |X |: (i) For each x ∈ X , the value F (x) can be computed
in time polynomial in k; (ii) For any algorithm A running in time polynomial in
k, and for x ∈ X chosen with the uniform distribution, the probability that A,
on input F (x), outputs x is negligible.

Non-interactive zero-knowledge proofs of knowledge. Namely,
a NIZKPK for the relation R is composed by three PPT algorithms
(GenCRS,Prove,Verify): GenCRS takes as input a security parameter 1k and out-
puts a common reference string crs. Prove takes as input the common reference
string crs, a statement x and a witness w such that (x,w) ∈ R and outputs a
proof π. Verify takes as input the common reference string crs, a statement x
and a proof π and outputs 1 if it accepts the proof or 0 if it rejects it.

A NIZKPK must satisfy the following three properties (see for instance
[12,23]): completeness, knowledge soundness and zero-knowledge, which implies
witness indistinguishability [14].

4 Core Voting Protocol

4.1 Overview

In this section we present our new voting protocol. We will not take into account
usability issues from a voter’s point of view; we will take care of these issues
on the voting systems proposed in Sect. 7. We think that by splitting the core
protocol from the voting systems built on top of it the reader can get a clearer
picture of our solution.

Our protocol is a mix-net based voting protocol, although the ideas can be
also applied to the setting of homomorphic tallying schemes. In mix-net based

Universal Cast-as-Intended Verifiability 243

protocols, the voters encrypt their votes (we will assume that each selection is
encrypted individually), then all the ciphertexts submitted by the voters are
shuffled and re-encrypted in several nodes and then the shuffled ciphertexts are
decrypted. We will work with a simplified scheme where votes are only shuffled
and decrypted once.

The goal of our work is to provide a protocol which provides ballot privacy
and universal cast-as-intended verifiability. Other requirements of voting schemes
such as the assurance of the authorship of the vote (an eligible voter), recorded-
as-cast verifiability and counted-as-recorded verifiability are not considered in
this work, since other measures can be built around the protocol in order to
fulfill them. For instance, digital signatures, public bulletin boards or verifiable
mix-nets could be used to satisfy the mentioned properties respectively.

The main idea of the core protocol is the following: during the registration
phase, a voter registers to vote. The registrar generates a secret value for each
voting option of the election, and provides them to the voter. A one-way function
will be applied to each secret value and the resulting images will be made public
(maintaining the relation with the voting options).

Once the voter has selected her voting options by using a voting device, she
will provide a subset of the secret values (previously unknown) to the voting
device. Then the voting device will encrypt the voting options, and will create
a non-interactive zero-knowledge proof of knowledge (NIZKPK). By carefully
choosing which secret values the voter discloses, the voting device will only be
able to create a valid NIZKPK if it really encrypted the voter’s selections.

The NIZKPK used in the protocol can be publicly verified, since the voter’s
privacy is maintained in such case due to the zero-knowledge property of the
proofs. Therefore, the system provides universal cast as intended verifiability
since the proofs can be universally verified, and this validation is successful only
in the case the voting device encrypted the voter’s selections.

A sketch on how this NIZKPK works is the following: In the voting phase,
the voter will provide the secret values whose images are associated to the voting
options she did not choose to the voting device; this idea is reminiscent of the
Bingo voting scheme [6]. The voting device will then create, for each possible
voting option, a NIZKPK of the statement “either this voting option is encrypted
in the ciphertext or I know the pre-image of the public value which corresponds
to it”. Without further information, the voting device will be able to create all
the proofs as long as it encrypted the voter’s selected voting option.

The proofs also guarantee that, as long as the voter behaved honestly, the
encrypted vote contains a valid voting option. This might be useful to discern
whether a malformed vote was intentionally created by a malicious voter or by
a malicious voting device (used by a honest voter). Note that, as we are giving a
mix-net based protocol, if both the voter and the voting device are malicious and
submit a vote containing a non-valid option, this vote will be anyway discarded
once the votes have been mixed and decrypted, prior to being added to the
count. Therefore, this is not an attack against the system.

244 A. Escala et al.

4.2 2-cnf-Proof of Knowledge

In Sect. 3 we defined an encryption scheme (KGen,Encpk, Dec) with an associated
message space Msp, ciphertext space Csp and randomness space Rsp. Consider
the relation Renc = {((C,M); r)|M ∈ Msp, C ∈ Csp, r ∈ Rsp, C = Encpk(M ; r)}
which consists of the tuples of ciphertexts, messages and randomness such that
the ciphertext is an encryption of the message using the specified randomness.
Note that, in this relation, the statement is the pair ciphertext - message, while
the witness is the randomness.

Also consider that we have a one-way function F with an associated input
space X and output space Y . Consider the relation Row = {(y;x)|x ∈ X , y ∈
Y , y = F (x)} which consists of the pairs of values such that the first value is the
image of the second one under the one-way function F . In this case, the image
value (i.e., the first element, y) is the statement while the pre-image (i.e., the
second element, x) is the witness.

The relation for which we will make the NIZKPK is the following one:

R2-cnf = {((C, (M1, . . . ,Mn), (y1, ..., yn)); (r, (x1, . . . , xn)))|
(((C,M1); r) ∈ Renc ∨ (x1, y1) ∈ Row) ∧
(((C,M2); r) ∈ Renc ∨ (x2, y2) ∈ Row) ∧

· · · ∧
(((C,Mn); r) ∈ Renc ∨ (xn, yn) ∈ Row)}

This way of presenting the relation R2-cnf allows us to analyze it easily: the
relation takes a statement which is a ciphertext, a set of messages and a set of
image values, and a witness, which is some randomness and a set of pre-images.
The tuple of statement and witness belongs to the language iff every predicate
in the AND clause is satisfied. This is, we require that for every i ∈ {1, . . . , n}
the predicate (((C,Mi); r) ∈ Renc ∨ (xi, yi) ∈ Row) is satisfied. This predicate
perfectly captures the intuition given above: either the ciphertext encrypts the
message Mi or a pre-image of yi is known. The description of the language
R2-cnf will also allow us to generate a NIZKPK from the composition of simpler
NIZKPKs for the relations Renc and Row. In Sect. 6 we present efficient NIZKPK
systems for this R2-cnf relation.

4.3 Detailed Protocol

Our protocol implements a voting scheme where the counting function ρ is the
multiset function as defined in [4]. This function returns a random permutation
of its input, filtering invalid votes. This is the case for all mix-net based protocols.

Here we describe the protocol for single-mark ballots. An extension for
multiple-mark ballots is provided in the full version.

The protocol uses as building blocks an encryption scheme (KGen,
Encpk,Decsk), a one-way function F and a NIZKPK (GenCRS,Prove,Verify) for
the relation R2-cnf defined in Sect. 4.2.

Universal Cast-as-Intended Verifiability 245

In our protocol, the secret UCIV information for a voter is a set of pre-images
(xvid

1 , . . . , xvid
n) of F , one for each element in V (the set of voting options), and

the public UCIV information is (yvid
1 , . . . , yvid

n) = (F (xvid
1), . . . ,F (xvid

n)), the
images of each element of the secret UCIV information. Each pair (xvid

i , yvid
i) is

related to the corresponding voting option vi, and the relation between yvid
i and

vi is public.
The function σvi

has as input the set of all pre-images (xvid
1 , . . . , xvid

n) and
outputs the the same values except for xvid

i . Note that this implicitly defines
SVI , S̃VI ,PVI . As all this information is only determined by F , there is no need
to consider the specification of SVI , S̃VI ,PVI , σ as part of the Setup algorithm.

The protocol consists of the following algorithms:
Setup(1λ): the algorithm first runs GenCRS to generate the common reference

string crs. The algorithm also runs KGen to generate a pair of public/private
encryption keys (pk, sk). This implicitly defines the message space Msp. For the
sake of simplicity, we will assume that V ⊂ Msp so that no specific encoding is
needed. The election public key epk is defined as epk = (crs, pk) and the election
secret key is defined as esk = sk.

Register(vid, V, epk): the algorithm generates the secret UCIV information
svid

uciv for that voter by generating, for each voting option vi ∈ V , a random value
xvid

i ∈ X . The public UCIV information pvid
uciv is generated by computing the

image yvid
i = F (xvid

i) for each voting option.
Vote(vid, v, σv(svid

uciv), pvid
uciv, epk): the algorithm parses epk as (crs, pk). It then

parses σv(svid
uciv) as {{xvid

i }i s.t. vi �=v} and pvid
uciv as {(yvid

1 , . . . , yvid
n)}. It then runs

the Encpk algorithm using fresh randomness r ∈ Rsp, producing a ciphertext C =
Encpk(v, r). Then, by using the witness w = (r, (ξvid

1 , . . . , ξvid)), where ξvid
k with

k = j such that vj = v is the empty string ε and it is xvid
k otherwise, the algorithm

computes a NIZKPK for the relation R2-cnf as π = Prove(crs, C, yvid
1 , . . . , yvid

n , w).
The resulting ballot b is defined by the pair (C, π).

ProcessBallot(BB, b, vid): upon reception of a ballot b, which can be parsed
as b = (C, π), it is checked if in the bulletin board there is another pair (id, b′)
(i.e., with the same id), or another ballot b′ = (C ′, π′) such that C = C ′. If
any of such case is found, the algorithm stops and returns 0. Otherwise, pvid

uciv

is recovered from the bulletin board and parsed as {(yvid
1 , . . . , yvid

n)}. Then,
Verify(crs, C, yvid

1 , . . . , yvid
n , π) is run, where crs is also recovered from the bul-

letin board. The output of Verify is returned as the output of ProcessBallot.
Tally(BB, esk): at the end of the election, ProcessBallot(BB, b, vid) is run for

all pairs (b, vid) appearing in the bulletin board. Then, each individual ballot b
is decrypted ṽ = Decsk(C, sk) and ρ is applied to the resulting decryptions {ṽ}.
The output of ρ is defined as the result and the proof of correct tabulation is
defined to be the empty string ε.

5 Security of the Protocol

Here we provide the results of our security analysis for ballot privacy and uni-
versal cast-as-intended verifiability. The security proofs will be available in the
full version of the paper.

246 A. Escala et al.

Theorem 1. Let (KGen,Encpk,Decsk) be a NM-CPA secure encryption scheme
and let (GenCRS,Prove,Verify) be a NIZKPK for the relation R2-cnf defined
in Sect. 4.2. Then, the protocol defined in Sect. 4.3 satisfies the ballot privacy
property.

Theorem 2. Let F be a one-way function and let (GenCRS,Prove,Verify) be a
NIZKPK. Let the number of voting options be polynomial in the security parame-
ter. Then, the protocol defined in Sect. 4.3 satisfies the universal cast-as-intended
property.

6 A Possible Instantiation

The instantiation of our protocol that we propose is quite efficient and its security
holds in the ROM. It works over a fixed cyclic group G = 〈g〉 of prime order q.
It uses a modified version of ElGamal with a Schnorr proof (Signed ElGamal
[24]), which is NM-CPA secure in the ROM; the encryption of a message m ∈ G
becomes C = (gr, pkr · m,h, z), where r, s ∈ Zq are randomly chosen, h =
H(gr, gs, pkr · m) for some suitable hash function H (included in the common
reference string) and z = r + sh mod q.

The exponentiation function defined as F (x) = gx, given an x ∈ Zq, with the
same cyclic group and generator used for the encryption scheme, is used for the
one-way function.

Finally the NIZKPK for the relation R2-cnf is constructed by combining
existing techniques. On the one hand, a σ-protocol for proving knowledge of a
discrete logarithm [24] (also known as a Schnorr protocol) and a σ-protocol for
proving equality of two discrete logarithms [9] (also known as a Chaum-Pedersen
protocol). On the other hand, as shown in [10], given a σ-protocol for a relation
R1 and another σ-protocol for a relation R2 one can construct both a σ-protocol
for the relation Ror defined as (x,w) ∈ Ror iff (x,w) ∈ R1 or (x,w) ∈ R2 and
a σ-protocol for the relation Rand defined as (x,w) ∈ Rand iff (x,w) ∈ R1 and
(x,w) ∈ R2.

Focusing on the election scheme for single-mark ballots, with n candidates, a
ballot in this specific instantiation of our scheme will have the form (C, π), where
C = (c1, c2, c3, c4) = (gr, pkr · v, h, z), if the chosen option is v = vj , and the
non-interactive zero-knowledge proof of knowledge π = (h, {h

(i)
1 , s

(i)
1 , s

(i)
2 }1≤i≤n)

for the relation R2-cnf can be computed by combining the Fiat-Shamir heuristic
and the afore-mentioned techniques, as detailed below (for simplicity, we denote
xi = xvid

i and yi = yvid
i , for each i = 1, . . . , n):

1. For i = 1, . . . , n, i �= j, choose s
(i)
1 , h

(i)
1 ∈ Zq at random. Define the values

c
(i)
1 = gs

(i)
1 · c

−h
(i)
1

1 and c
(i)
2 = pks

(
1i) · (c2/vi)

−h
(i)
1 .

2. For index j, choose s
(j)
2 , h

(j)
2 ∈ Zq at random, and define the value R(j) =

gs
(j)
2 · y

−h
(j)
2

j .

3. For i = 1, . . . , n, i �= j, choose α(i) ∈ Zq at random and compute R(i) = gα(i)
.

Universal Cast-as-Intended Verifiability 247

4. For index j, choose β(j) ∈ Zq and z(j) ∈ G , at random, and compute c
(j)
1 =

gβ(j)
and c

(j)
2 = pkβ(j)

.
5. Compute the hash function h = H(c1, c2, c3, c4, {c

(i)
1 , c

(i)
2 , R(i)}1≤i≤n) ∈ Zq.

6. For i = 1, . . . , n, i �= j, compute h
(i)
2 = h − h

(i)
1 mod q. For index j, compute

h
(j)
1 = h − h

(j)
2 mod q.

7. For i = 1, . . . , n, i �= j, compute s
(i)
2 = α(i) + xih

(i)
2 mod q.

8. For index j, compute s
(j)
1 = β(j) + rh

(j)
1 mod q.

To verify the correctness of the proof π, one has to compute first, for each

i = 1, . . . , n, the values h
(i)
2 = h − h

(i)
1 mod q, c

(i)
1 = gs

(i)
1 · c

−h
(i)
1

1 , c
(i)
2 = pks

(
1i) ·

(c2/vi)
−h

(i)
1 and R(i) = gs

(i)
2 · y−h

(i)
2

i . After that, the proof is accepted if and only
if h = H(c1, c2, c3, c4, {c

(i)
1 , c

(i)
2 , R(i)}1≤i≤n).

Efficiency Comparison to Helios. Each element in Zq and each element in
G can be represented with λ bits, where λ is the length in bits of the prime
number q (that is, the security parameter of the scheme). Therefore, the size of
each ballot (C, π) in this instantiation is (3n+5)λ bits: 4λ bits for C and (3n+1)λ
bits for π. The number of modular exponentiations that must be computed to
generate such a ballot is 3n + 4.

We can compare these costs with the costs of the basic version of Helios for the
case of a single-mark election, with n candidates. Let us remember that a ballot
in Helios consists of n ElGamal encryptions C1, . . . , Cn of 0 or 1, one encryption
for each of the n candidates (the voter encrypts 1 only for the chosen option,
and 0 everywhere else), along with a non-interactive zero-knowledge proof of
knowledge π of the fact that each ciphertext encrypts 0 or 1, and the product of
all the ciphertexts (which is an encryption of the sum of the n plaintenxts, by
the homomorphic properties of ElGamal) also encrypts 0 or 1. The size of each
ballot in Helios is (5n + 4)λ bits: 2nλ bits for the n ElGamal ciphertexts, and
(3(n + 1) + 1)λ bits for π. The number of modular exponentiations required to
generate a ballot in Helios is 6n.

The instantiation that we have just presented is more efficient than the basic
version of Helios, for single-mark elections, in terms of the size of the ballots
and the computational cost to generate them, while adding a new property
(universal cast-as-intended verifiability). This efficiency comparison shows that
our new protocol has ballots of a reasonable size and that ballot creation is
efficient enough to be used in a real election.

7 Towards Designing Usable UCIV Systems

The protocol presented in Sect. 4 requires the voter to provide one secret value
per each of the voting options that she did not choose to the voting device. This
may require a considerable effort, since the number of voting options available
in an election may be quite large, even if the voter can only make one selection

248 A. Escala et al.

(as in single-marking ballot elections). In addition, these values will be fairly
big, for instance 256 bits if elliptic curves are used. Finally, providing secrets for
the non-selected options is counter-intuitive (note that it is just inverse to what
is required in code-voting schemes, for example), since the voter usually expects
to enter information related to what she selects. Clearly, requiring the voter to
introduce such information is not very user-friendly.

We present now a voting system built on top of our new voting protocol
which provides a more intuitive approach for the voter introducing the codes.
We provide this example as a first step towards an implementation in a real
scenario: usability tests should be done to assess the real usability of this system.

The voting system that we propose uses high-capacity barcodes such as QR
codes. These QR codes will contain the secret values the voter has to enter in the
voting device. A paper sheet with printed QR codes provides means for storage
for those secrets, as well as a channel which can not be eavesdropped by the
voting device. The security of the channel depends on the method for delivering
the QR sheets to the voters, for example in sealed envelopes sent by postal mail.

The QR contents can be organized in a way such that the voter is only
required to scan the QR codes corresponding to the options she selects in order
to retrieve the secrets corresponding to the other voting options.

For each voter, a QR paper sheet will be created as follows. First, one QR
code will be assigned to each voting option. Let n be the total number of voting
options and let � be the number of voting options which the voter can select.
Then, each secret value xvid

i (which corresponds to the voting option vi) will
be divided into n − 1 shares using a threshold secret sharing scheme [25] with
threshold �. This will result in shares xvid

i,k for k ∈ {1, . . . , n}\i, this is, n − 1
shares, each one assigned to each voting option different from vi. Then, the QR
code assigned to the option vi will be created containing all the shares xvid

j,i for
j ∈ {1, . . . , n}\i, this is, the i-th share of each secret value except for xvid

i .
It follows that, given the information of � QRs codes (assigned to � voting

options), only the secret values for the voting options not assigned to those QR
codes can be reconstructed from the shares inside the QR codes. Scrath surfaces
or stickers can be used in order to enforce that only the designated QR codes
are scanned by the voting device’s camera.

Note that the maximum capacity of a QR code is around 23 thousand bits,
which should be more than enough, since each QR code will contain n−1 secret
values of size 256 bits each (if using elliptic curves).

This system can be used either in remote or in poll-site/kiosk-based electronic
voting schemes. The QR sheets may be distributed to the voters by postal mail
or by hand, depending on the scenario.

8 Future Work

We have proposed in this work a generic way to achieve the new notion of univer-
sal cast-as-intended verifiability. It would be interesting, and even necessary, to
investigate if this new property can be achieved by other means, for instance by

Universal Cast-as-Intended Verifiability 249

modifying existing voting protocols. In particular, the systems Scratch & Vote [2]
and Pretty Good Democracy [21] seem very good candidates; taking into account
that commitments (or encryptions) are particular cases of one-way functions, our
intuition is that a modification of Scratch & Vote or of Pretty Good Democracy
would lead to schemes that could be thought as a particular instantiation of our
generic construction. The formalization of this intuition, as well as the compar-
ison with the implementation proposed in this work, is left as future work.

Another interesting line of research is to improve the efficiency of the voting
protocol. In particular, the size of ballots scales badly with the number of voting
options and the number of choices a voter can make. This is in contrast with
typical (non-UCIV) mix-net protocols, where the size of ballots increases at most
linearly with the number of choices a voter can make.

Although in this work we focused on the notions of privacy provided by
existing schemes such as [1], we consider for future works to design a protocol
with universal cast-as-intended verifiability, together with stronger notions of
privacy such as receipt-freeness or coercion-resistance. Another challenge to solve
is to design a voting protocol such that the voting device does not learn the
identity of the voter even in front of dishonest registrars.

Finally, we consider there is work to do in the usability field. Although we
have proposed a solution for making the voting process more intuitive for the
voter, there is still a long way to walk to have a usable voting scheme. Feedback
from usability tests and user experience designers may be used in order to find
out the best approaches to follow.

Acknowledgements. Authors want to thank the Program Committe of the 1st Work-
shop on Advances in Secure Electronic Voting for their valuable comments, in partic-
ular for pointing out that some notion of UCIV may be achieved by adapting existing
schemes such as Scratch & Vote or Pretty Good Democracy.

The work of the third and fourth authors is partially supported by project MTM
2013-41426-R of Spanish Ministry MINECO.

References

1. Adida, B.: Helios: web-based open-audit voting. In: van Oorschot, P.C. (ed.)
USENIX Security Symposium, pp. 335–348. USENIX Association, Berkeley (2008)

2. Adida, B., Rivest, R.L.: Scratch and vote: self-contained paper-based cryptographic
voting. In: Juels, A., Winslett, M. (eds.) ACM Workshop on Privacy in the Elec-
tronic Society, WPES 2006, pp. 29–40. ACM (2006)

3. Benaloh, J.: Simple verifiable elections. In: Electronic Voting Technology Work-
shop, EVT 2006, p. 5. USENIX Association, Berkeley (2006)

4. Bernhard, D., Cortier, V., Galindo, D., Pereira, O., Warinschi, B.: SoK: a compre-
hensive analysis of game-based ballot privacy definitions. In: IEEE Symposium on
Security and Privacy, SP 2015, pp. 499–516. IEEE Computer Society (2015)

5. Bernhard, D., Pereira, O., Warinschi, B.: IACR Cryptology ePrint Archive
6. Bohli, J.-M., Müller-Quade, J., Röhrich, S.: Bingo voting: secure and coercion-free

voting using a trusted random number generator. In: Alkassar, A., Volkamer, M.
(eds.) VOTE-ID 2007. LNCS, vol. 4896, pp. 111–124. Springer, Heidelberg (2007)

250 A. Escala et al.

7. Chaum, D.: Physical and digital secret ballot systems, WO Patent App.
PCT/US2001/002,883, 2 August 2001

8. Chaum, D.: Secret-ballot receipts: true voter-verifiable elections. IEEE Secur. Pri-
vac. 2(1), 38–47 (2004)

9. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F.
(ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993)

10. Cramer, R., Damg̊ard, I.B., Schoenmakers, B.: Proof of partial knowledge and
simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO
1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)

11. Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient multi-
authority election scheme. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol.
1233, pp. 103–118. Springer, Heidelberg (1997)

12. Damg̊ard, I.B.: Commitment schemes and zero-knowledge protocols. In:
Damg̊ard, I.B. (ed.) EEF School 1998. LNCS, vol. 1561, pp. 63–86. Springer,
Heidelberg (1999)

13. Essex, A., Clark, J., Hengartner, U., Adams, C.: Eperio: mitigating technical com-
plexity in cryptographic election verification. IACR Cryptology ePrint Archive
2012, 178 (2012)

14. Feige, U., Shamir, A.: Witness indistinguishable and witness hiding protocols. In:
22nd Annual ACM Symposium on Theory of Computing, STOC 1990, pp. 416–426.
ACM Press (1990)

15. Gerck, E., Neff, C.A., Rivest, R.L., Rubin, A.D., Yung, M.: The business of elec-
tronic voting. In: Syverson, P.F. (ed.) FC 2001. LNCS, vol. 2339, pp. 234–259.
Springer, Heidelberg (2002)

16. Gharadaghy, R., Volkamer, M.: Verifiability in electronic voting - explanations for
non security experts. In: Krimmer, R., Grimm, R. (eds.) Electronic Voting. LNI,
vol. 167, pp. 151–162. GI (2010)

17. Groth, J., Ostrovsky, R.: Cryptography in the multi-string model. J. Cryptol.
27(3), 506–543 (2014)

18. Joaquim, R., Ribeiro, C., Ferreira, P.: VeryVote: a voter verifiable code voting
system. In: Ryan, P.Y.A., Schoenmakers, B. (eds.) VOTE-ID 2009. LNCS, vol.
5767, pp. 106–121. Springer, Heidelberg (2009)

19. Neff, C.A.: Practical high certainty intent verification for encrypted votes (2004)
20. Ryan, P.Y.A., Bismark, D., Heather, J., Schneider, S., Xia, Z.: Prêt à voter: a

voter-verifiable voting system. IEEE Trans. Inf. Forensics Secur. 4(4), 662–673
(2009)

21. Ryan, P.Y.A., Teague, V.: Pretty good democracy. In: Christianson, B.,
Malcolm, J.A., Matyáš, V., Roe, M. (eds.) Security Protocols 2009. LNCS, vol.
7028, pp. 111–130. Springer, Heidelberg (2013)

22. Sako, K., Kilian, J.: Receipt-free mix-type voting scheme. In: Guillou, L.C.,
Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp. 393–403.
Springer, Heidelberg (1995)

23. Santis, A.D., Persiano, G.: Zero-knowledge proofs of knowledge without interaction
(extended abstract). In: FOCS, pp. 427–436. IEEE Computer Society (1992)

24. Schnorr, C.-P., Jakobsson, M.: Security of signed elgamal encryption. In:
Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 73–89. Springer,
Heidelberg (2000)

25. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

4th Workshop on Encrypted Computing
and Applied Homomorphic
Cryptography, WAHC 2016

Hiding Access Patterns in Range Queries Using
Private Information Retrieval and ORAM

Gamze Tillem(B), Ömer Mert Candan, Erkay Savaş, and Kamer Kaya

Sabancı University, İstanbul, Turkey
{gtillem,mcandan,erkays,kaya}@sabanciuniv.edu

Abstract. We study the problem of privacy preserving range search
that provides data, query, and response confidentiality to the users for
range queries. We propose two methods based on Private Information
Retrieval (PIR) and Oblivious RAM (ORAM) techniques. For PIR-based
queries, Lipmaa’s computationally-private information retrieval (CPIR)
scheme is employed. For the ORAM-based method, Stefanov et al.’s Path
ORAM scheme is adapted to enable privacy preserving range search. Our
analyses show that from the computational point of view, the ORAM-
based method performs much better due to cheap server operations. How-
ever, CPIR utilizes the bandwidth better especially for large databases,
its security definitions are more formal, and it is more flexible for various
settings with multiple clients and/or bandwidth limitations. In this work,
to make CPIR a practical alternative for large databases, we improve
its performance via shared memory OpenMP and distributed memory
OpenMP-MPI parallelization with a scalable data/task partitioning.

Keywords: Privacy preserving range queries · Private information
retrieval · Oblivious RAM · Data privacy · Parallel computing

1 Introduction

While outsourcing the data storage to cloud is beneficial for data owners to
reduce the associated costs, ensuring a secure and private access to it becomes
the next big challenge. The threat is that a curious data-holder may try to
retrieve information from the stored data or the results of the queries sent by
the data owner. Therefore, several approaches have been proposed in the liter-
ature to securely search over outsourced data for a specific item or for multi-
ple items in a range. Existing approaches for range queries on encrypted data
include encryption techniques that preserve the order of plaintext values [1],
use of predicate functions based on cryptographic properties [2], utilizing spe-
cial data structures [10], and using a bucketization method [5] based on data
partitioning.

Regardless of the approach used, a privacy preserving range query scheme
needs, in general, to deal with three security issues: providing data confidential-
ity, providing query confidentiality, and preventing the disclosure of the query

c© International Financial Cryptography Association 2016
J. Clark et al. (Eds.): FC 2016 Workshops, LNCS 9604, pp. 253–270, 2016.
DOI: 10.1007/978-3-662-53357-4 17

254 G. Tillem et al.

access patterns. Data confidentiality is guaranteed by encryption in existing pri-
vacy preserving range query methods. The confidentiality of a query is provided
by its transformation into a secure representative. But, almost none of the exist-
ing methods aims to hide the query access patterns, since the solution of the
problem requires the use of computationally expensive schemes such as Private
Information Retrieval or Oblivious RAM. Nonetheless, recent advances in the
literature such as the fast Path ORAM method of Stefanov et al. [7], yield almost
practical schemes to enable hiding query access patterns. Similarly, certain accel-
eration techniques for PIR yield significant performance improvements [6,9].

The main contribution of this work is to explore the feasibility of hiding
access patterns in secure and private range queries. We introduce two techniques;
one based on CPIR [6], and the other on Path ORAM [7] and compare them in
terms of communication and computation costs. For the CPIR-based scheme, we
devise novel parallelization approaches in both shared and distributed memory
settings. Although the CPIR-based scheme is computationally less efficient than
the Path ORAM-based one, as our analyses show, a practical, parallel CPIR-
based implementation is an important contribution since Path ORAM has a
significant bandwidth usage and it is not as flexible as CPIR for various settings
such as one with multiple clients.

The outline of the paper is as follows: Section 2 gives the background. In
Sect. 3, multi-dimensional privacy preserving range query methods using PIR
and Path ORAM are explained in detail. The security of proposed methods
are explained in Sect. 4. Section 5 provides a complexity analysis of the two
approaches in terms of their communication and computational complexities.
Experimental results to compare these two approaches are given in Sect. 6.
Section 7 concludes the paper.

2 Background

Our work is based on three main concepts: Lipmaa’s BddCPIR model [6],
Stefanov’s Path ORAM model [7], and Hore’s bucketization model [5]. Here
we explain these concepts.

2.1 Privacy Preserving Range Queries Using Bucketization

In bucketization, a secure index tag for each data item is generated using a
predefined rule and the data items are partitioned to a bucket depending on this
tag [4]. The data buckets are stored in encrypted form in the database and a
query is first translated into the corresponding bucket ids (by the client). Then,
the data items with the matching bucket ids are retrieved from the database. If
the server knows the matching bucket ids and has some information on some of
the items, the privacy of the query can be disrupted. To obfuscate the retrieved
data range and increase the security level, false positives are used within each
bucket. However, the existence of false positives creates a performance overhead.

Hiding Access Patterns in Range Queries Using PIR and ORAM 255

Hore et al. [5] proposed an algorithm which aims to generate optimized
buckets in terms of performance and security; it starts with a greedy multi-
partitioning phase which initially puts all the items in a single bucket and iter-
atively partitions an existing bucket into two until a desired number of buckets
are obtained. At each iteration, a compactness function is used to decide the
bucket to be partitioned. This approach reduces the number of false positives
within a bucket; then a second algorithm, known as controlled diffusion [5], is
applied on the buckets to redistribute bucket contents based on a pre-defined
degradation factor and thus, calibrates the number of false positives within each
bucket for an acceptable security level.

The methods introduced in this paper do not solely depend on a controlled
diffusion mechanism since the server cannot uniquely identify the retrieved buck-
ets. Especially for the CPIR-based approach, the retrieved bucket can be an
arbitrary one in the database from the server’s point of view.

2.2 Lipmaa’s BddCPIR Protocol for PIR

The BddCPIR scheme [6] employs the Damg̊ard-Jurik cryptosystem [3] which
is based on the hardness of the decisional composite residuosity problem. To
improve the efficiency in terms of communication and computation, the scheme
employes binary decision diagrams.

Damg̊ard-Jurik Cryptosystem. While the setting of the homomorphic
Damg̊ard-Jurik (DJ) cryptosystem is similar to that of RSA which also employs
two sufficiently large primes p and q to work with a composite modulus N = pq;
the security of the scheme is based on the hardness of decisional composite resid-
uosity rather than integer factorization. The key property of DJ cryptosystem
is a positive integer s which provides block-length adjustment capability for the
encryptions in different levels of Lipmaa’s BddCPIR. The DJ scheme is summa-
rized in Fig. 1.

Key generation:
– Choose large primes p and q, and set N = pq.
– Choose g ∈ Z∗

Ns+1 s.t. g = (1 + N)jx mod Ns+1 with j is a known relative prime of N

and x ∈ H, where H is isomorphic to Z∗
N

– Compute λ = lcm(p − 1, q − 1), and choose d s.t. d ≡ 1 mod Ns and d ≡ 0 mod λ.
– Public parameters: (N, g)
– Private parameters: d

Encryption:

– E(m, r) = gmrNs
mod Ns+1, where plaintext is m ∈ ZN and r ∈ Z∗

Ns+1 is a random
integer.

Decryption:
– Compute cd mod Ns+1 and using the algorithm proposed in [3] find m.

Additive homomorphic properties:
– E(m1)E(m2) = E(m1 + m2)
– E(m)c = E(mc)

Fig. 1. Damg̊ard-Jurik cryptosystem

256 G. Tillem et al.

Binary Decision Diagram (Bdd). Bdds can be considered as binary trees.
The internal nodes of a binary tree are represented as Ri,j , where i is the level
of the node in the tree and j is the location of the node in the current level. The
leaf nodes of the binary tree hold the data items. Each leaf node is represented
as fx such that x is an m-bit string that represents the route taken from the root
to fx for a tree with height m+1. Figure 2 demonstrates an example of Bdd with
4 child nodes where 0 and 1 are used for the left and right child, respectively.

R2,0

R1,1

f3f2

0 1
R1,0

f1f0

0 1

0 1

Fig. 2. An illustration of a toy Bdd which contains 4 files.

(2,1)-CPIR Protocol. The client inputs either 0 or 1 to retrieve one of the 2
files (f0 or f1) stored in the server without leaking information. The flow of the
protocol is as follows:

– Client generates public and private keys (pk, sk). She then chooses an x ∈
{0, 1}, computes the encrypted selection bit c = Epk(x), and sends pk and c
to the server.

– Server computes R = Epk(f0)cf1−f0 and sends R to the client.
– Client decrypts R with his private key sk to find fx.

From (2,1)-CPIR to (n,1)-CPIR. The 1-out-of-2 CPIR protocol can be
extended to 1-out-of-n using a Bdd. The extended protocol starts with the leaf
nodes of the tree and iteratively merges siblings until the root is reached. For
each merge, an R value is calculated. The final result for the tree root is then
sent to the client. In (n, 1)-CPIR, the client needs to send m selection bits as
x = (x0, x1, . . . , xm−1) to denote the path. Furthermore, the result should be
decrypted m times to retrieve the requested file. Figure 3 illustrates (n, 1)-CPIR
protocol for a 4-file case based on the binary tree in Fig. 2.

Client:
– Encrypt the selection bits c0 = E(x0) and c1 = E(x1) and send them to the server.

Server:
– For the lowest level of the tree compute:

R1,0 = E(f0)c
f1−f0
0

R1,1 = E(f2)c
f3−f2
0

– For the next level repeat the computations; this time use Ri,j instead of the files and the
encrypted selection bits of the current level:

R2,0 = E(R0)c
R1−R0
1 .

– Send R2,0 to the client.
Client:

– Apply double decryption to R2,0 to retrieve the selected file.

Fig. 3. An example of (n, 1)-CPIR for a database of 4 files

Hiding Access Patterns in Range Queries Using PIR and ORAM 257

2.3 Path ORAM

Path ORAM [7] is a simple Oblivious RAM protocol used to prevent the leakage
of access patterns to the outsourced data. In each access a full path of data
is retrieved by client and it is written back to database after shuffling and re-
encryption. The details of the protocol are as follows:

– The server stores the data in a binary tree structure. Each node of the tree
is called a bucket. In each bucket, Z blocks of data are stored. If a bucket has
less than Z blocks, dummy blocks are added. At the beginning, all buckets
are initialized with some dummy values.

– The client maintains a local stash, a small and private storage, to perform
shuffling and re-encryption operations on the accessed data path. She also
maintains a position map that gives the current location of a data item. At
the beginning of the protocol, the stash is empty and the position map assigns
data items into some random buckets.

– Access protocol for read and write operations: To read/write data,
the client reads a path containing the block from the server. She remaps the
position of each block to a random position in the path. For writes, she also
updates the value of data in the block and add values from the stash to the
path. She then writes the path back to the tree.

3 Privacy Preserving Range Query Using PIR and
ORAM

We introduce two new approaches for privacy preserving range queries. First app-
roach is an implementation of PIR protocol on an existing range query scheme,
[5]. In the second one, we apply Path ORAM method for privacy preserving
range queries.

3.1 CPIR for Privacy Preserving Range Queries

Setup. In the setup phase, the data is partitioned into buckets with greedy
multi-partitioning [5]. The total number of buckets and size of each bucket is set
as a power of 2 to utilize a tree structure in the BddCPIR model. The bucket
sizes are equal; some dummy values are inserted into buckets if necessary.

Once the buckets are generated, the next step is to send them to the server;
here we assume that the data items in buckets are encrypted, therefore, data
confidentiality is guaranteed. The server stores the buckets within tree leaves
such that a leaf node corresponds to one part of each bucket. If the bucket size is
equal to DJ block size, i.e., if a bucket’s items can be stored within a single file,
there is only one tree. When buckets are larger, multiple (structurally equivalent)
trees are used to store the buckets in a way that the leaves with the same binary
representation (location) in each tree is a part of the same bucket. Hence the
number of trees is proportional to the bucket size and the size of the tree(s) is
determined by the number of buckets.

258 G. Tillem et al.

Query. To perform a range query, the client finds the bucket(s) that have the
items within the requested data range using a query translation operation. Based
on these bucket ids, she prepares the selection bits to retrieve the related content
from the server. Although different bits are required for multiple buckets, for a
single bucket, she does not need to compute a different set of selection bits for
each tree, since, for a given selection-bit set, the corresponding nodes in the trees
map to the same bucket.
Response. Based on the selection bits sent by the client, the server performs
BddCPIR on each tree to retrieve the corresponding bucket. Since the perfor-
mance of the PIR scheme is crucial for efficiently retrieving the buckets, instead
of Lipmaa’s BddCPIR scheme, an enhanced version of it, e.g., [9], is used in our
implementation. In the new CPIR scheme, the performance of the PIR opera-
tions are enhanced by the following changes:

– Instead of the binary trees, octal and hexadecimal trees are used to reduce the
depth of the tree which yields a significant improvement on the performance.

– A shared-memory non-trivial parallel algorithm for CPIR operations is intro-
duced to improve the performance further.

Parallel CPIR. To utilize the parallelism in the best way in the new CPIR
scheme, we used a (sub)tree-based data distribution and an adaptive query
processing algorithm. When there are more trees than the number of server
nodes, the trees are equally distributed to the nodes. Otherwise, when there are
more than one node per tree, a tree’s subtrees are equally distributed to the
corresponding nodes. Here, the number of nodes per tree is used to decide the
height of the subtrees. An example distribution with 2 trees and 8 server nodes
is given in Fig. 4. With 4 nodes, the subtree roots would be in the first level.

Fig. 4. A data distribution example for 2 (binary) trees and 8 nodes.

After each (sub)tree is processed, if it is possible the results are combined
on a different node to achieve a better parallelism. For example, to combine the
results in the first level, in Fig. 4, the (k + 1)th node sends its data to the kth

node for k = 1, 3, 5, 7. To combine the results in the root level, the (k+2)th node
sends its data to the kth node for k = 1, 5. That is for each subtree division,
a master node is selected to combine the partial results due to this division, to
utilize the nodes as much as possible and obtain a scalable solution.

Hiding Access Patterns in Range Queries Using PIR and ORAM 259

Within a single node, we use a hybrid, coarse/fine-grain query processing
algorithm which adapts itself to the number of trees and cores; when the number
of trees per node exceeds the number of available cores in the node, coarse-grain
parallelism is employed on the tree level, i.e., each (sub)tree is processed in
parallel, but the CPIR operation within a (sub)tree is performed serially. On
the other hand, when the number of (sub)trees is less than the number of cores,
the cores are distributed to the (sub)trees and each CPIR operation within a
(sub)tree is performed in a fine-grain fashion in addition to the coarse-grain
parallelism obtained in the (sub)tree level.

3.2 Path ORAM for Privacy Preserving Range Queries

Implementation of Path ORAM for privacy preserving range queries is rather
straightforward compared to the CPIR model. The method does not require any
change on the server side. The server is only responsible for sending the path
that contains the requested data and writing the path back to the tree without
any additional computations. Similarly, the client side operations do not require
any fundamental changes.

In the setup phase of the method, the binary tree structure on the server is
filled with dummy values. To place the data items into binary tree, the client
performs repetitive write operations using the access protocol. The properties of
a data item are same with CPIR method. That is each item has several attributes
and based on the total size of the item, it is encrypted with AES using a suitable
block size. After each retrieval operation, the data is re-encrypted. To enable
different ciphertext values for the same data item, some random value is padded
to a plaintext for each encryption operation.

For range queries, an extra query processing operation is employed in addition
to the original scheme [7]; when a client wants to search for a range, the query
processor finds the buckets which store the requested items. Since the query
range might be mapped to several buckets, the client may need to perform more
than one read operation to retrieve the items.

4 Analysis of Security in Privacy Preserving Range
Queries

The proposed approaches assume an honest but curious server model where client
is the owner of the database. As mentioned in Sect. 1, a privacy preserving range
query scheme needs to ensure three security conditions, data, query and access
pattern confidentiality. Data confidentiality is provided by encrypted storage of
data under AES encryption. Query confidentiality is handled by sending bucket
ids in CPIR based method and the id of sink node in Path ORAM based method
instead of original query range. Finally, leakage of access patterns is prevented
by utilizing the security definitions of CPIR and Path ORAM. In the rest of this
section these security definitions are briefly explained.

260 G. Tillem et al.

4.1 Security Analysis of CPIR

According to Lipmaa [6], a CPIR protocol achieves client security when it is
difficult for a probabilistic polynomial time server to distinguish between two
queries Q(x0) and Q(x1) where x0 and x1 are client’s selection bits.

Accordingly, to reveal the access pattern, a curious server needs to differenti-
ate the value of selection bits for the target data. In Lipmaa’s CPIR setting, DJ
cryptosystem, which is based on Decisional Composite Residuosity assumption,
is utilized for cryptographic operations. The cryptosystem satisfies ciphertext
indistinguishability by operating randomized algorithms. Thus, differentiating
an encrypted selection bit from a random bit string and determining its value is
difficult for the server.

4.2 Security Analysis of Path ORAM

Stefanov [7] defines security of Path ORAM based on the indistinguishability of
access patterns A(y) and A(z) of any two data request vectors y and z of same
length, considering the failure of scheme with a negligible probability.

The security can be proved by observing the indistinguishability property
on position of data and on encrypted data path. Assume the position of a data
item, which is stored in private stash, is discovered by server. However, since in
each access the data item is mapped to a new random position and since the new
position and former position are statistically independent from each other, server
cannot differentiate addresses [7]. On the other hand, in each access operation
the data path is re-encrypted and encryption is randomized by padding. Thus,
encrypted data paths become computationally indistinguishable from a random
bit sequence for curious server.

5 A Quantitative Analysis of Path ORAM and CPIR

The volume of exchanged data is an important issue for the efficiency of the
range query algorithms. Hence, a detailed inspection of bandwidth requirements
is required for a fair comparison of the schemes.

5.1 Communication Complexity Analysis

CPIR. There are two data transfer phases; the first one is sending the encrypted
selection bits to the server. The size of a single selection bit on the sth level of
the tree is (s + 1)|N | where |N | is the size of the modulus N [9]. Hence, at the
lowest level, the size of one encrypted selection bit is 2|N |. At the root level, the
bit size is �logk n + 1� |N | where n is the number of items in the database and k
is the branching factor of the tree which is 8 and 16 (i.e., octal and hexadecimal)
in our implementation. The proposed model requires 7 selection bits in octal
trees and 15 selection bits in hexadecimal trees for each tree level. Thus, for
one bucket request, we can find the cost of the client-to-server communication

Hiding Access Patterns in Range Queries Using PIR and ORAM 261

in terms of the number of bits as (k − 1) × (2 + 3 + · · · + (logk n + 1)) × |N |,
where k = 8 and k = 16 for octal and hexadecimal trees, respectively. Although
there can be multiple trees, sending the selection bits only for a single tree and
employing them on all the trees is sufficient.

The second data transfer is the response of the server to the client. For
a single bucket request and with a single tree, the number of bits transferred
in this phase is (logk n + 1)|N |. Unlike the client-to-server communication, the
volume of the server-to-client communication for CPIR is determined by the
number of trees, since in each tree there are data items for the requested bucket.
Therefore, the cost needs to be multiplied by the number of trees to compute
the total bandwidth usage.
Path ORAM. To read the path of the requested bucket from the database,
the server sends Z log T blocks to the client where Z is the number of blocks
within each bucket, T is the number of buckets and log T is the length of the
path containing the retrieved node. And to write the accessed path back to tree,
the client sends Z log T blocks of data back to the server. Therefore, the total
number of blocks sent/received for Path ORAM is 2Z log T . In our experiments,
Z is fixed to 4 as in the original Path ORAM method [7], and each data item is
considered as a tuple with 5 integer attributes (including the primary key), i.e.,
160 bits. However, the data needs to be stored in encrypted form; thus, a 160
bit plaintext value is mapped to a 256-bit ciphertext block of AES.

Number of Data items
16384 131072 1048576

R
at

io
 o

f e
xc

ha
ng

ed
 b

its
 to

 d
at

ab
as

e
si

ze

10-3

10-2

10-1

255 buckets - ORAM
511 buckets - ORAM
4095 buckets - ORAM
256 buckets - hexCPIR
4096 buckets - hexCPIR
512 buckets - octoCPIR
4096 buckets - octoCPIR

Fig. 5. The ratio of exchanged bits to the database size for the CPIR- and Path
ORAM-based range query schemes with different database sizes.

The bandwidth usage in case of a single bucket request for the CPIR- and
Path ORAM-based range query schemes are presented on Fig. 5. The y-axis in
the figure shows the ratio of the number of exchanged bits to database size (in
log scale), whereas the x-axis shows the number of data items in the database. As
the figure shows, with the same number of buckets, the CPIR-based approach is
superior in terms of bandwidth usage and Path ORAM-based scheme consumes

262 G. Tillem et al.

much more bandwidth to get a single bucket especially for large databases which
is the case for many applications today.

Number of Buckets
0 2 4 6 8 10 12 14 16R

at
io

 o
f e

xc
ha

ng
ed

 b
its

 to
 d

at
ab

as
e

si
ze

0

0.02

0.04

0.06

0.08

0.1

CPIR - octo
CPIR - hex
ORAM

Fig. 6. The bandwidth usage for the CPIR- and Path ORAM-based schemes to retrieve
multiple buckets (x axis) for 1,048,576 items distributed into 4,096 buckets.

Although the above analysis assumes single bucket retrieval, querying for a
range may require to retrieve more than one. Figure 6 analyzes the bandwidth
usage for (octal and hexadecimal tree based) CPIR- and Path ORAM-based
schemes when the number of the retrieved buckets is increasing. As before, the
bandwidth usage is given as the ratio of exchanged bits to database size. The
analysis is performed for 1,048,576 items which are distributed on 4,096 buck-
ets. As the results show, the Path ORAM-based scheme consumes much more
bandwidth and the difference increases with the number of buckets retrieved.

Range Queries with Multiple Clients. The additional storage and private
stash requirements on the client side make Path ORAM less flexible and ineffi-
cient for many scenarios. The existence of a private stash brings difficulties in a
multi-client scenario; when a client performs a read or write operation, she needs
to write back the retrieved items to a new path in the server. In addition, she
needs to inform the others about these new locations. This can cause a signif-
icant amount of computational overhead and bandwidth consumption for each
additional client using the database. Thus, the scalability of such a system is
questionable. On the other hand, for a multi-client CPIR-based implementation
individual client accesses are seamless, and hence, the scheme is not affected by
the number of clients.

To visualize the bandwidth usage in multi-client scenario, a simulation is
conducted for 100,000 (single bucket) queries using several number of clients as
shown in Fig. 7. In the simulation, two different approaches are applied for Path
ORAM to update the locations in client’s local. The first one is a push-based
approach which requires to push the updated locations to the other clients in
each query operation. The second approach is a pull-based approach in which

Hiding Access Patterns in Range Queries Using PIR and ORAM 263

a client needs to perform a comparison with other clients for the most recent
value of the position information. Figure 7 shows that CPIR-based method is
superior in communication for both approaches, since it does not require any
additional bandwidth usage in a multi-client scenario. Additionally, a pull-based
Path ORAM method provides better results than a push-based method due to
the possibility of communicating with fewer number of clients in each query
operation.

Number of Clients
1 10 100 1000 10000

N
um

be
r o

f e
xc

ha
ng

ed
 b

its

×1011

0

0.5

1

1.5

2

2.5

3

3.5

pull-based ORAM
push-based ORAM
CPIR

Fig. 7. The bandwidth usage in multiple client scenario for CPIR, pull-based Path
ORAM and push-based Path ORAM method

5.2 Computational Complexity Analysis

Path ORAM is an efficient method for retrieving encrypted data; the server
only returns the requested path to the client and does nothing else. Therefore,
there is no computational burden on the server. On the other hand, for a single
data access, the client side gets O(logK) blocks, where K is the number of
total blocks outsourced to the server. The client needs to decrypt, shuffle, and
re-encrypt these blocks for each data access.

Lipmaa’s CPIR requires O(n) computation on the server and O(log2 n) com-
putation on the client. Furthermore, since each bucket may be partitioned into
several trees, the server’s cost may increase by a constant factor. Hence, a CPIR-
based range query scheme is slower than a Path ORAM-based one. However, as
we will show in the next section, CPIR can still be a very practical approach for
privacy preserving range queries with a tuned tree structure and parallelization.

6 Experiments

We implement the CPIR- and Path ORAM-based privacy preserving range query
schemes in C++ using gcc 4.9.2. GNU Multiple Precision Arithmetic Library

264 G. Tillem et al.

for large integer arithmetic. OpenMP is used for parallelizing the client- and
server-side operations and MPI is employed for server operations in the distrib-
uted setting. The single node experiments are performed at a machine running
on 64 bit CentOS 6.5 with two Intel Xeon E7-4870 v2 clocked at 2.30 GHz each
having 15 cores. The distributed, multi-node experiments are conducted on a
cluster with 32 computational nodes connected with 20 Gbps InfiniBand, each
with dual Intel Xeon E5520 Quad-core CPUs (with 8MB of L3 cache per proces-
sor), 48 GB of main memory, and 64 bit CentOS 6.

To store a data item, we encrypt it by using AES with 256-bit block size. For
DJ cryptosystem, 1024-bit modulus is used to provide 80-bit security. The DJ
library we used performs encryption/decryption operations sequentially which
is the case for many implementations in practice.

Following the bucketization method of [5], the Lineitem table of TPCH bench-
mark is used [8] as the dataset which is widely used to evaluate database man-
agement systems. The table contains more than 6 million data entries, random
subsets are created for experiments on smaller datasets. The size of data sets
varies from 128 to 16,384 entries. To evaluate multi-dimensional range queries,
four integer attributes of Lineitem table –Quantity, Linenumber, ExtendedPrice
and Tax– are selected with primary key PartKey-SuppKey.

6.1 Single-Node Experiments

The first experiment is conducted to compare the client-side performance of our
CPIR- and Path ORAM-based implementations. For the CPIR-based scheme,
we measure the query times of single bucket retrieval for octal and hexadecimal
trees and present them in Tables 1 and 2, respectively. In the tables, n is the
number of data items distributed among a number of buckets which is given
in the second column. For the encryption stages, the tree structure and the

Table 1. Client-side timings for the CPIR-based method with octal trees (ms)

Encryption Decryption

Number of threads Number of threads

n No. buckets 1 2 4 8 16 1 2 4 8 16

128 8 15 9 4 2 2 9 4 2 2 2

64 76 41 22 11 8 7 7 7 7 7

1,024 8 15 9 4 2 2 68 34 17 9 4

64 76 41 22 11 9 27 13 7 7 7

512 227 128 65 32 30 14 14 14 14 14

16,384 8 15 9 4 2 2 1099 549 274 138 69

64 76 41 22 11 9 424 213 106 53 27

512 227 128 65 32 30 113 56 28 14 14

4, 096 512 281 144 73 62 25 25 25 25 25

Hiding Access Patterns in Range Queries Using PIR and ORAM 265

Table 2. Client-side timings for the CPIR-based method with hexadecimal trees (ms)

Encryption Decryption

Number of threads Number of threads

n No. buckets 1 2 4 8 16 1 2 4 8 16

128 16 32 17 9 4 2 4 2 2 2 2

1,024 16 32 17 9 4 2 34 17 9 4 2

256 163 85 44 22 11 7 7 7 7 7

16,384 16 32 17 9 4 2 549 274 137 69 34

256 163 85 44 22 11 106 53 27 13 7

4, 096 487 258 130 65 32 17 17 17 17 17

number of buckets are important parameters to understand the speedup results.
As described in Sect. 5.1, for the octal case, 7 selection bits are encrypted for
each tree level except the one containing the root and there are 2, 3, 4, and 5
levels (including the root level) for 8, 64, 512, and 4096 buckets, respectively. For
the hexadecimal case, there are 2, 3, and 4 levels for 16, 256, and 4096 buckets,
respectively, and the client encrypts 15 bits per level. As the tables show, for the
encryption stage with n = 16, 384 items, we obtained 7.5–8.3 speedup for the
octal case and 14.8–16 speedup for the hexadecimal case with 16 threads.

Since the encryption complexity of DJ is quadratic with respect to the input
size, which increases as we move to the upper levels in the tree, the encryption
tasks for different tree levels do not have the same computational complexity.
We aim to distribute a level’s tasks to the threads as even as possible to have
a better load balance; starting from the most expensive level (the first one),
we order the bit encryption tasks according to their levels and assign one task
to a thread at a time by tuning the OpenMP scheduling policy. This approach
works well for the hexadecimal case for which 15 encryption tasks exist for each
level. On the other hand, as Table 1 shows, the speedups for the octal case is
not satisfactory with 16 threads since there are only 7 bits to be encrypted at
each level and most of the threads cannot get a task from the most expensive
level. However with 8 threads, the speedup values for the octal case are between
6.9–7.5 which shows that the load balancing scheme works well as expected when
there is enough number of tasks per thread. In the future work, we are planning
to parallelize each encryption task and use a hybrid load-balancing approach to
have better speedups for the octal case.

For the decryption stage, the main limitation on our parallelization strategy
is the number of trees used in the CPIR-based scheme. For each tree, the server
returns a ciphertext to the client and we performed the decryption operations on
the ciphertexts independently with a single thread per decryption. Hence, when
the number of threads exceeds the number of ciphertexts, some cores remain
idle. This is why the decryption time do not decrease for some cases when the
number of threads increases. On the other hand, we obtain linear scaling for all

266 G. Tillem et al.

the cases which is expected since the decryption tasks use the same DJ modulus
and have the same complexity. For example, for the octal case (Table 1) with
n = 16, 384 items and 512 buckets, the scheme puts 32 items to each bucket.
Considering that each 256-bit block can store only 4 data items, the CPIR-based
scheme uses 8 trees. For this case, we obtain 8.1 speedup both with 8 and 16
threads.

Overall, as the table shows, the hexadecimal implementation is advantageous
for large datasets. The better performance of hexadecimal tree is a result of the
less number of levels and hence less complexity of the encryption/decryption
operations. For example, for 16,384 items and 4,096 buckets, the octal and
hexadecimal tree implementations require a tree with 5 and 4 levels, respectively.
Hence, the client-side encrypts 28 and 45 selection bits, respectively. Although
the number of bits is more for the hexadecimal case, the costs of client-side
encryptions are similar (512 and 487 ms). Furthermore, the load will be better
distributed to the threads in our simple hexadecimal implementation since the
variance between the task sizes is much less. As a result, with 16 threads, the
encryption operations cost 2 times more for the octal case than the hexadecimal
case (62 and 32 ms). For the client-side decryption with the same number of data
items and buckets, both implementations use a single tree, i.e., a single cipher-
text is returned, but the cost in the octal case is more due to a taller tree (25
and 17 ms).

To make the Path ORAM-based operations comparable with those of the
CPIR-based scheme, we use the same bucket sizes in our analysis. The average
processing time of the client-side computations in the Path ORAM-based scheme
is usually around 1ms for 128, 1024, and 16384 items. Only for 16,384 items
and 7–15 buckets, the client spends 6ms for the query preparation. The AES
encryption and decryption operations comprise the majority of computation in
Path ORAM, whereas the exponentiations performed during the encryption of
the selection bits and the decryption of query responses are the main burden
on the CPIR-based scheme. As our comparison shows, the Path ORAM-based
scheme performs better than the CPIR-based scheme. However, both schemes
can be considered as practical considering the core numbers in today’s CPUs.

We also measure the cost of the server-side operations for the CPIR-based
scheme (Path ORAM-based scheme does not require any server computation).
Table 3 shows the server-side cost to retrieve one bucket with octal and hexadec-
imal trees, respectively. When multiple CPIR trees are employed, the server
can process the query on these trees independently. Hence, when the number
of threads is smaller than the number of trees, a coarse-grain parallelization
can be applied on the tree level. For such cases, the system scales linearly; for
example, with an octal tree structure, n = 16, 384 data items and 512 buckets,
the server uses 8 trees as explained above. As Table 3 shows, with 8 threads,
i.e., one tree per thread, our implementation obtains 7.9 speedup (the server
response time reduces to 748 ms from 5,940 ms). On the other hand, when the
number of threads exceeds the number of trees, the parallelization is not straight-
forward; one can simply apply a fine-grain parallelism and use all the threads

Hiding Access Patterns in Range Queries Using PIR and ORAM 267

Table 3. Server-side timings for the CPIR-based method (in ms)

Number of threads
n No. buckets 1 2 4 8 16

128 8 28 14 7 7 7
64 85 56 42 35 35

1,024
8 227 114 57 29 15

64 338 170 85 53 41
512 743 405 236 152 124

16,384

8 3,641 1,827 914 454 230
64 5,410 2,712 1,358 680 341

512 5,940 2,976 1,488 748 407
4,096 6,067 3,103 1,614 873 537

Number of threads
n No. buckets 1 2 4 8 16

128 16 17 9 9 9 9

1,024 16 139 72 36 19 11
256 172 102 67 50 43

16,384
16 2,245 1,128 574 296 156

256 2,760 1,386 702 353 183
4,096 2,823 1,441 757 418 247

to process a single tree in parallel and repeat the same for all the trees. How-
ever, since there exist relatively less number of expensive tasks in the upper
levels of a tree, the tree structure can limit the scalability of the fine-grain app-
roach. To alleviate this, we applied a hybrid scheme where all the trees are
processed at the same time and in parallel with the same number of threads;
for the octal setting with 16,384 data items, 512 buckets, and 16 threads, 2
threads are assigned to each tree. With this hybrid strategy, we obtained 14.6
speedup (407 ms) with 16 threads, where a pure fine-grain strategy per tree only
yields a 6 speedup (991 ms).

To analyze the octal and hexadecimal case more clearly, we measured the num-
ber of data items the client-side can request and the server-side can provide in
a second (DiPS) with various parameters and different number of cores. Figure 8
shows the DiPS values for the server side; a small number of large buckets requires

Number of Threads
1 2 4 8 16

D
at

a
ite

m
 p

er
 s

ec
on

d
(D

iP
S)

10-1

100

101

102

103
64 buckets - octoCPIR
256 buckets - hexCPIR
512 buckets - octoCPIR
4096 buckets - hexCPIR
4096 buckets - octoCPIR

Fig. 8. The number of data items the server-side can provide in a second (DiPS) with
various parameters and different number of cores

268 G. Tillem et al.

less computation per data item, and a hexadecimal tree structure is better than an
octal structure when the same number of buckets have been employed. Thanks to
parallelization, with large buckets which are preferable by the queries with large
result sets, the server can provide more than 700 data items per second with 16
threads. On the other hand, for the same DiPS value, the client only needs 2 cores
(we omit the chart due to space limitations). Hence, as in practice, the client-side
requires less computation power compared to the server-side to use the proposed
CPIR-based range query scheme at its limit.

6.2 Multi-node Experiments

For multi-node experiments, we used a database of size n = 16, 777, 216 and a
hexadecimal tree with depth 5. Figure 9 shows the query processing times and
the speedups for this experiment with various number of server nodes. Similar
to the single-node experiments, a leaf in the tree can store 4 data items. Since
there are 16 items per bucket, there are 4 trees in total. Hence, up to 4 server
nodes, simply partitioning the trees to the nodes is enough for a balanced load
distribution. To use more server nodes, the trees are decomposed into their
subtrees; a single division generates 16 subtrees since we are using hexadecimal
trees. For each division, a master node is selected to combine the partial results
for the corresponding subtree division. The final results for each tree are then
sent to the server’s entry node which is also responsible for receiving the query
from the client and distributing it to the other processing nodes. The overall
communication in the server is negligible; with 32 server nodes, the intra-server
communication is around 1 % of the overall query response time. The query
response time is reduced from 615 s to 20.5 s yielding a 30× speedup over a
single node (8 core) execution.

Fig. 9. Server computation cost on different number of nodes each having 8 cores.
A hexadecimal tree with depth 5 is used to store 166 = 16, 777, 216 items for each
experiment. The numbers are averages of 5 experiments for each setting.

Hiding Access Patterns in Range Queries Using PIR and ORAM 269

7 Conclusion

We proposed two methods for privacy preserving range queries using PIR and
ORAM techniques. While most of the existing privacy preserving range query
schemes do not deal with hiding query access patterns, our methods aim to
prevent the disclosure of access patterns in addition to provide data and query
confidentiality. For Private Information Retrieval, we adopted an improved ver-
sion of Lipmaa’s BddCPIR and applied it on an existing range query scheme [5].
For ORAM, we adapted Stefanov et al.’s [7] Path ORAM. Our analyses show
that the Path ORAM-based scheme is much more efficient than the CPIR-based
one in terms of computation. However, it is not as flexible as the CPIR-based
scheme, and considering its high bandwidth usage, the CPIR-based scheme can
be more suitable in practice for various cases such as one with multiple clients
and slow communication. Furthermore, the computation cost of the CPIR-based
scheme can be reduced with parallelization on a distributed- and shared-memory
server and client, respectively, which is a very common setting in practice.

Acknowledgments. Erkay Savaş was supported by TÜBİTAK under Grant Number
113E537. Gamze Tillem was supported by TÜBİTAK under BİDEB 2211 program.
Kamer Kaya was supported by TÜBİTAK BİDEB 2232 program under grant number
115C018. The authors would like to thank Cengiz Örencik for his valuable comments
on the paper.

References

1. Boldyreva, A., Chenette, N., Lee, Y., O’Neill, A.: Order-preserving symmetric
encryption. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 224–241.
Springer, Heidelberg (2009). http://dx.doi.org/10.1007/978-3-642-01001-9 13

2. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data.
In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidel-
berg (2007). http://dl.acm.org/citation.cfm?id=1760749.1760788

3. Damg̊ard, I., Jurik, M.: A generalisation, a simplification and some appli-
cations of Paillier’s probabilistic public-key system. In: Kim, K. (ed.)
PKC 2001. LNCS, vol. 1992, pp. 119–136. Springer, Heidelberg (2001).
http://dl.acm.org/citation.cfm?id=648118.746742

4. Hacıgümüş, H., Iyer, B., Li, C., Mehrotra, S.: Executing SQL over
encrypted data in the database-service-provider model. In: Proceedings of
2002 ACM SIGMOD International Conference on Management of Data, SIG-
MOD 2002, Madison, Wisconsin, 3–6 June 2002, pp. 216–227. ACM (2002).
http://doi.acm.org/10.1145/564691.564717

5. Hore, B., Mehrotra, S., Canım, M., Kantarcıoğlu, M.: Secure multidimen-
sional range queries over outsourced data. VLDB J. 21(3), 333–358 (2012).
http://dx.doi.org/10.1007/s00778-011-0245-7

6. Lipmaa, H.: First CPIR protocol with data-dependent computation. In: Lee, D.,
Hong, S. (eds.) ICISC 2009. LNCS, vol. 5984, pp. 193–210. Springer, Heidelberg
(2010). http://dl.acm.org/citation.cfm?id=1883749.1883769

http://dx.doi.org/10.1007/978-3-642-01001-9_13
http://dl.acm.org/citation.cfm?id=1760749.1760788
http://dl.acm.org/citation.cfm?id=648118.746742
http://doi.acm.org/10.1145/564691.564717
http://dx.doi.org/10.1007/s00778-011-0245-7
http://dl.acm.org/citation.cfm?id=1883749.1883769

270 G. Tillem et al.

7. Stefanov, E., van Dijk, M., Shi, E., Fletcher, C., Ren, L., Yu, X., Devadas,
S.: Path ORAM: an extremely simple oblivious RAM protocol. In: Proceedings
of 2013 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2013, Berlin, Germany, 4–8 November 2013. pp. 299–310. ACM (2013).
http://doi.acm.org/10.1145/2508859.2516660

8. TPC-H: Decision Support Benchmark. http://www.tpc.org/tpch
9. Ünal, E., Savaş, E.: On acceleration and scalability of number theoretic private

information retrieval. IEEE Trans. Parallel Distrib. Syst. 27(6), 1727–1741 (2016).
doi:10.1109/TPDS.2015.2456021

10. Capitani, D., di Vimercati, S., Foresti, S., Paraboschi, S., Pelosi, G., Samarati,
P.: Efficient and private access to outsourced data. In: Proceedings of 2011 31st
International Conference on Distributed Computing Systems, ICDCS 2011, pp.
710–719 (2011). http://dx.doi.org/10.1109/ICDCS.2011.37

http://doi.acm.org/10.1145/2508859.2516660
http://www.tpc.org/tpch
http://dx.doi.org/10.1109/TPDS.2015.2456021
http://dx.doi.org/10.1109/ICDCS.2011.37

Optimizing MPC for Robust and Scalable
Integer and Floating-Point Arithmetic

Liisi Kerik1, Peeter Laud1(B), and Jaak Randmets1,2

1 Cybernetica AS, Tartu, Estonia
2 University of Tartu, Tartu, Estonia

{liisi.kerik,peeter.laud,jaak.randmets}@cyber.ee

Abstract. Secure multiparty computation (SMC) is a rapidly matur-
ing field, but its number of practical applications so far has been small.
Most existing applications have been run on small data volumes with the
exception of a recent study processing tens of millions of education and
tax records. For practical usability, SMC frameworks must be able to
work with large collections of data and perform reliably under such con-
ditions. In this work we demonstrate that with the help of our recently
developed tools and some optimizations, the Sharemind secure compu-
tation framework is capable of executing tens of millions integer opera-
tions or hundreds of thousands floating-point operations per second. We
also demonstrate robustness in handling a billion integer inputs and a
million floating-point inputs in parallel. Such capabilities are absolutely
necessary for real world deployments.

Keywords: Secure Multiparty Computation · Floating-point
operations · Protocol design

1 Introduction

Secure multiparty computation (SMC) [19] allows a group of mutually distrust-
ing entities to perform computations on data private to various members of the
group, without others learning anything about that data or about the interme-
diate values in the computation. Theory-wise, the field is quite mature; there
exist several techniques to achieve privacy and correctness of any computa-
tion [15,16,19,21,28], and the asymptotic overheads of these techniques are
known. In practical terms, the search for best implementations and deployment
strategies for performing computations on real-world scale is still ongoing. There
exist several SMC platforms [4,9,13,17,20,29,31,35] and independent implemen-
tations of SMC protocols for complex computational tasks [11,25] looking for
the right trade-offs.

Sharemind [9,10] is one of the most mature SMC platforms and the base
of some of the largest SMC deployments until now. With the help of Share-
mind, we have performed statistical analyses over tens of millions of records [22,
Chap. 6], and searched for anomalies in a set of 100 million records [5]. Share-
mind achieves the versatility and scalability through a simple security model
c© International Financial Cryptography Association 2016
J. Clark et al. (Eds.): FC 2016 Workshops, LNCS 9604, pp. 271–287, 2016.
DOI: 10.1007/978-3-662-53357-4 18

272 L. Kerik et al.

(enabling efficient protocols) and a large set of composable protocols for primi-
tive operations, which can be used as building blocks for large applications. The
total number of implemented primitive protocols for integer, fixed- and floating-
point operations for arguments of various sizes is significantly over 100. While
historically the protocols have been implemented in C++, with more complex
protocols invoking simpler ones in hierarchic manner, recently we have intro-
duced a domain-specific language (the Protocol DSL) for specifying them [27].
The Protocol DSL brings at least two benefits. First, it allows tighter composi-
tion of protocols, enabling subprotocols with data dependencies to run in parallel
without any additional effort from the developer of the protocol set. Second, it
allows the developer to try out different implementation options for complex
protocols with an effort that is orders of magnitude smaller compared to using
C++.

In this paper, we report on our optimizations for the protocols in Share-
mind’s protocol set, enabled by the Protocol DSL. Many of the improved pro-
tocols are used for operations on private floating-point numbers. Our reported
optimizations may be useful for other SMC platforms and protocol sets provid-
ing private floating-point numbers, as several of our optimizations are not that
dependent on particular details of Sharemind. In addition to optimizations
of private floating-point operations, we also show how the protocol construc-
tion toolchain, central to which is the Protocol DSL, allowed us to implement
a major architectural change of all protocols with relatively little effort. This
provides additional validation of the choices made in [27].

This paper has the following structure. In Sect. 2 we give an overview of
Sharemind and the protocols it uses, as well as the related work on privacy-
preserving floating-point operations. In Sect. 3 we describe our improvements
to various floating-point protocols, both generic changes and modifications of
specific protocols, as well as the constructions of protocols for new operations.
In Sect. 4 we describe another optimization that applies to all protocols in the
main protocol set of Sharemind. We show that the optimizations in this and
previous section improve the performance of protocols for various operations.
In Sect. 5 we give a more thorough description on how we have measured the
performance of the protocols of Sharemind. We provide precise running times
of certain protocols, thereby making clear the current state of the art. Finally,
we conclude in Sect. 6.

2 Background

In a Sharemind deployment, the involved parties are divided into three classes
which may overlap: the input parties provide inputs to the private computation,
the computation parties execute the SMC protocols for performing operations
with private data, and result parties learn the result(s) of the computation [6].
While the architecture of Sharemind supports the use of several SMC protocol
sets [8], the main set in use is based on additively sharing the private values
among three computing parties [10]. The sharing can be over any finite ring

Optimizing MPC for Robust and Scalable Integer 273

and there are protocols to convert between different rings. Hence the input par-
ties secret share their inputs among computation parties, and the result parties
recombine the shares of outputs they receive from computation parties. The
computation parties follow the description of the private functionality specified
in the SecreC language [8], invoking the SMC protocols in specified order.

Sharemind’s protocol set provides security against one passively corrupted
party. Its security and privacy guarantees are composable, allowing the security
of complex protocols to be deduced from the security of its component proto-
cols [7]. The development of secure protocols is also greatly assisted by a protocol
privacy checker [32] for the Protocol DSL [27].

Typically, rings Z2n are used in Sharemind applications and supported by
the Protocol DSL. In the following, we let [[x]] denote the value x which has been
secret-shared among the computing parties, and [[x]]i denotes the i-th party’s
share.

For private numeric computations (e.g. for the satellite collision analysis [23]),
Sharemind features a set of protocols for working with secret-shared fixed-point
and floating-point numbers [23,26]. In this protocol set, a floating-point number
x is represented as x = (−1)s ·f ·2e, where s ∈ {0, 1} is the sign bit, f ∈ Z2m the
significand, and e ∈ Z2n the exponent. The representation with (m,n) = (32, 8)
[resp. (m,n) = (64, 11)] is called single precision [resp. double precision]. For a
private value, each part is separately secret-shared among the computing parties.
The same representation (plus an indication whether the number is 0) is used
also by Aliasgari et al. [3] who have built a private floating-point protocol set
implementing arithmetic operations and a number of elementary functions on
top of Shamir’s threshold secret sharing [34]. In a different line of work, protocols
for private floating-point operations have been built atop garbled circuits or the
GMW protocol set [18,30] with various optimizations.

Internally, many of our floating-point protocols call protocols for computa-
tions on private fixed-point numbers. In our protocols, a fixed-point number x
is represented as an integer x · 2M for a suitable M . Several sets of SMC pro-
tocols for fixed-point computations (including both arithmetic operations and
elementary functions) have been proposed [14,26]. Our Protocol DSL has allowed
us to experiment with the details of these protocols and propose more efficient
implementations.

3 Improvements in Protocol Design

In our floating-point protocols, we use the following operations as primitive build-
ing blocks:

– Zero-extension of secret shared integers denoted with Extend([[u]], n) where
[[u]] ∈ Z2m . This operation converts a private integer from Z2m to Z2n+m

without changing its value.
– Dropping some least-significant bits of a secret shared integer, denoted with
Cut([[u]], n) where [[u]] ∈ Z2m and n ≤ m. The cut operation removes n least

274 L. Kerik et al.

significant bits of [[u]] and results in an (m−n)-bit integer. It computes �u/2n�
more efficiently than division or shift-right operation.

– Multiplication of integer with an array of integers MultArr([[u]], {[[vi]]}ki=1),
where [[u]] ∈ Z2n and [[vi]] ∈ Z2n for every i ∈ {1, . . . , k}. The operation
results in an array {[[wi]]}ki=1 ∈ Z

k
2n where wi = u · vi. The implementation is

straightforward based on regular integer multiplication protocol. Efficiency is
improved by sending the shares of u only once instead of k times.

We do not describe the implementations of those operations here. However, all
of them are relatively straightforward to implement using the tools provided
in [10].

Algorithm 1. Protocol PowArr for integer powers of a fixed-point number.
Data: [[x̃]], k, n, n′

Result: Computes the powers of a secret fixed-point number. Takes in a
secret fixed-point number [[x̃]] with 0 bits before and n bits after
the radix point. Outputs a secret fixed-point array {[[x̃i]]}ki=1 with
n′ + n bits before and n bits after the radix point.

1 if k = 0 then
2 return {}
3 else
4 l ← �log2 k�
5 [[x̃1]] ← Extend([[x̃]], n′ + (l + 1)n)
6 for i ← 0 to l − 1 do

7 {[[x̃j]]}2i+1

j=2i+1 ← MultArr([[x̃2i]], {[[x̃j]]}2ij=1)

8 for j ← 1 to 2i+1 do in parallel
9 [[x̃j]] ← Cut([[x̃j]], n)

10 end
11 end

12 return {[[x̃i]]}ki=1

13 end

3.1 Efficient Polynomial Evaluation

Most of our floating-point functions are implemented using polynomial approxi-
mation. For example, when computing the square root of 2e · f we approximate
the square root of fixed-point f with a polynomial and return 2e/2 · √

f [26,
Algorithm 5]. Fast and precise fixed-point polynomial evaluation is important to
ensure the speed and accuracy of floating-point operations. Recall that fixed-
point addition is just regular integer addition. Multiplication requires extending
both inputs to larger integers, integer multiplication and dropping the lowest
bits.

We have significantly improved upon the fixed-point polynomial evaluation
presented in [26, Algorithm 1]. Improved protocol for polynomial evaluation is

Optimizing MPC for Robust and Scalable Integer 275

presented in Algorithm 2 and a helper function for evaluating integer powers of
a fixed-point number is presented in Algorithm 1. First, polynomial coefficients
are now represented in two’s complement form as opposed to using sign bits.
This means we do not need to pick different multiplication results depending
on the sign bits. Second, we have improved the efficiency of fixed-point mul-
tiplications which are used to evaluate the polynomial. The algorithm in [26]
uses ordinary fixed-point multiplications throughout. Fixed-point multiplication
requires extending the operands beforehand, multiplying, and then cutting off
the lowest bits. This approach is costly, and we would like to avoid extending the
operands before each multiplication. So, we extend the argument of the polyno-
mial only once, in the beginning, by a sufficient number of bits to allow for all
subsequent cuts. This approach is analogous to the one used in [27, Algorithm 8]
for computing the product of several fixed-point numbers. Third, we have made
the last round of polynomial evaluation more efficient; while in [26, Algorithm 1]
the powers of the argument are multiplied by the corresponding coefficients, the
lowest bits of the results are cut off, and then they are added up to find the value
of the polynomial, we first perform the summation and then cut off the lowest
bits of the sum, thus replacing k cut operations with 1. In addition to efficiency
this shortcut slightly improves precision as it results in smaller rounding error
of the end result.

Algorithm 2. Fixed-point polynomial evaluation protocol.
Data: [[x̃]], {c̃i}ki=0, n, n′

Result: Computes a public polynomial on a secret fixed-point number.
Takes in a secret fixed-point number [[x̃]] with 0 bits before and n
bits after the radix point and public fixed-point coefficients
{c̃i}ki=0 with n′ + n bits before and n bits after the radix point
(the highest n bits are empty). Outputs a secret fixed-point
number [[ỹ]] with 0 bits before and n bits after the radix point
that is the value of the polynomial at x.

1 {[[x̃i]]}ki=1 ← PowArr([[x̃]], k, n, n′)
2 [[z̃0]] ← Share(c̃0)
3 for i ← 1 to k do in parallel
4 [[z̃i]] ← c̃i · [[x̃i]]
5 end
6 for i ← 0 to k do in parallel
7 [[z̃′

i]] ← Trunc([[z̃i]], n′)
8 end
9 [[ỹ]] ← Cut(Sum({[[z̃′

i]]}ki=0), n)
10 return [[ỹ]]

Our polynomial evaluation algorithm is in a way less general than [26, Algo-
rithm 1] as both the argument and the result have to be in range [0, 1). However,
this approach is sufficient for all the floating-point functions that we have imple-
mented. In fact, this striction offers an advantage as it ensures that the powers

276 L. Kerik et al.

of x do not overflow. Note that we do not place any restrictions on the size of
the coefficients, while [26, Algorithm 1] requires the coefficients to fit into the
same fixed-point format as the argument and the result. In [26, Algorithm 5],
when computing the square root of a fixed-point number in range [0.5, 1), the
argument has to be shifted right in order to achieve a fixed-point format with
enough bits before radix point to fit in the coefficients; our approach allows for
coefficients that are larger than the argument, and therefore, no precision is lost
through shifting out the lowest bits of the argument.

We, similarly to [26], approximate functions by interpolating through Cheby-
shev nodes [12, p. 521]. We have implemented two adjustments which result in
better approximations.

First, sometimes we want the result to be in a certain range. For example, we
assume that the result of 2x−1 where x ∈ [0, 1) ought to be in range [0.5, 1). How-
ever, approximation errors might cause results outside the range and overflows.
In [26] this problem was solved by the so-called correction protocol which nor-
malizes the result into the correct range. We get a suitable result directly, with
no need for the correction step. If we interpolate function f(x) in range (a, b) and
we need f(a) to be rounded upwards and f(b) to be rounded downwards we pick
a small positive constant ε and interpolate function f(x)+ ε · (a+ b−2x)/(b−a)
instead. The small linear term ensures that approximation errors are in the right
direction. If we want to round f(a) downwards and f(b) upwards then ε has to
be negative. Should need arise to achieve errors in the same direction on both
ends a small quadratic term added to the function can achieve this result.

Second, large coefficients pose a problem: due to the particularities of fixed-
point polynomial evaluation they can result in large approximation errors and
make the algorithm too imprecise for practical use in some cases. For example,
interpolating erf(8x) in range [0.125, 0.25) with 17 nodes results in coefficients
that are larger than 230 and therefore need 31 bits before radix point; when eval-
uating this polynomial, the rounding errors inherent to fixed-point computations
result in an extremely imprecise approximation. We can improve the situation
by noting that the first three bits of the input are always the same (001) and
shifting the input 3 bits to the left, which amounts to multiplying it by 8 and
subtracting 1. The initial range [0.125, 0.25) is mapped into [0, 1) and the new
function that has to be interpolated is erf(x + 1). Interpolation with 17 nodes
yields coefficients which are less than 1 and therefore require 0 bits before radix
point and thus, precision is improved, and in this example the length of most
variables in polynomial computation is reduced by almost 4 bytes. This app-
roach of shifting out the known highest bit(s) of the argument and modifying
the function for interpolation has improved the efficiency and precision of square
root, logarithm, and error function.

As a result of aforementioned changes, evaluating a polynomial of degree 16
on a 64-bit fixed-point number takes 57 rounds and 7.5 KB of communication,
while with the old algorithm, it takes 89 rounds and 27 KB of communication.

Optimizing MPC for Robust and Scalable Integer 277

3.2 Additional Improvements to Floating-Point Protocols

In addition to improvements made to polynomial evaluation that benefit most
floating-point functions, we have also modified other protocols from [26], namely
inverse, square root, exponent function, and error function.

The new inverse protocol has been presented in [27, Algorithm 8]. We have
found that correction of fixed-point inverse approximation results is not nec-
essary as with this method 0.5−1 is always rounded down and 1−1 is always
rounded up.

Computation of exponent function begins by separating the input x into
whole part and fractional part. In [26, Algorithm 6] the whole part �x� is com-
puted in integer format and converted to floating-point format. The fractional
part {x} is computed through floating-point subtraction: {x} = x − �x�. Then
{x} has to be converted to fixed-point format in order to approximate 2x. Instead
of combining costly integer to floating-point conversion and floating-point sub-
traction, we have designed a special separation protocol which efficiently sep-
arates a floating-point number into whole and fractional part (in integer and
fixed-point format, respectively) by obliviously choosing between all possible
results.

Another optimization we have devised for exponent function is an improve-
ment to the computation of polynomials on {x} and 1−{x}. Instead of computing
the powers of 1−{x} in ordinary manner we use the powers of {x} and binomial
coefficients. This employs only fast, local operations - multiplication by a public
integer and addition. (For why we need to compute the value of a polynomial
on both {x} and 1 − {x} see [26, Algorithm 6].)

When 2{x} has been found and converted to floating-point format, the end
result is computed as 2�x� · 2{x}. In [26, Algorithm 6] this is achieved through
floating-point multiplication. We have found a more efficient approach: since
2{x} is a floating-point number we can just add �x� to the exponent (which
allows us to avoid an integer to floating-point conversion and a floating-point
multiplication).

Finally, we have added a new feature to exponent function. When 2x becomes
so small it cannot be represented accurately, we round the result down to zero.

In [26, Algorithm 7] erf(x) is approximated by 2x/
√

π if x < ε and 1 if
x � 4. The interval [ε, 4) is divided into 4 pieces and in each one the function
is approximated with a different polynomial. In our implementation, double-
precision erf(x) is approximated by 1 if x � 8. The interval [ε, 8) is divided
into 8 pieces; in first six the function is approximated with polynomials and in
last two with constants. We compute several different polynomials (4 in single-
precision case and 6 in double-precision case) on the same number and perform
oblivious choices in the end. We can optimise this calculation by computing the
powers of the argument only once as they are the same for all polynomials. But
the main improvement in performance comes from restructuring the algorithm
to compute only the correct value of erf(x) instead of computing several different
values and obliviously choosing between them in the end. In [26, Algorithm 7]
several possible shift rights of the significand are computed (essentially giving

278 L. Kerik et al.

us several possible results of the floating-point to fixed-point conversion). On
all of them, error function is computed, and finally, the correct result is picked
obliviously. We have reversed the order of the last two steps: first, we obliviously
pick the correct shift right of the significand (essentially performing a floating-
point to fixed-point conversion) and then we compute the error function on the
single correct value.

Our improvements have increased precision compared to [26]. The maximum
relative error of inverse is 2.69 · 10−9 for single precision and 7.10 · 10−19 for
double precision (compared to 1.3 · 10−4 and 1.3 · 10−8 in [26]). For square root
our errors are respectively 4.92 ·10−9 and 1.30 ·10−15 (compared to 5.1 ·10−6 and
4.1 · 10−11 in [26]). In a few cases we have achieved better accuracy guarantees
than what IEEE 754 single- and double-precision floating-point numbers allow.
This is possible because we are using slightly longer fractional parts.

3.3 New Floating-Point Protocols

In addition to improving the floating-point protocols published in [23,26,27] we
have also designed a few new ones, namely logarithm, sine, floor and ceiling.
Here we shall present a short explanation of logarithm and sine.

In order to compute the binary logarithm of a floating-point number we note
that log2(2e · f) = e + log2 f . As f is in range [0.5, 1) its binary logarithm
is in range [−1, 0). However, in order to easily convert it to a floating-point
number, we would like to get a result in range [0.5, 1). Therefore, we transform
the expression above as follows: e+log2 f = (e−2)+2(log4 f +1). If f is in range
[0.5, 1) then the value of log4 f + 1 is in range [0.5, 1). This is the function that
we approximate with a fixed-point polynomial. For double precision, we split the
interval into two equal parts and use two different polynomials. Finally, e − 2
is converted to floating-point format and the end result is computed through
floating-point addition. Near 1 we use second degree Taylor polynomial log2 x ≈
log4 e · (x − 1)(3 − x) to achieve better precision. In order to convert binary
logarithm to natural logarithm we use the conversion lnx = ln 2 · log2 x.

The algorithm for computing the sine is relatively straightforward as we can
use to our advantage all kinds of symmetry inherent to the function. First, we
divide the argument by 2π and find the fractional part in fixed-point format,
thus reducing the computation to two full turns (from −2π to 2π). We note
that sin (−x) = − sin x, sin (x + π) = − sin x, and sin (π/2 − x) = sin (π/2 + x).
Thus, we have reduced the computation to one quarter-turn (from 0 to π/2).
Then we use fixed-point polynomial approximation and convert the end result to
floating-point format. When the argument is near zero we use the approximation
sin x ≈ x to achieve better precision.

4 Optimization Techniques

The Protocol DSL has allowed us to easily apply certain optimizations across
the entire suite of protocols employed in Sharemind. They are described in

Optimizing MPC for Robust and Scalable Integer 279

the following. The optimizations are specific to the “main” protocol set [10]
of Sharemind based on additive secret sharing over finite rings, using three
computing parties.

4.1 Shared Random Number Generators

To ensure that a party’s view in a protocol could be generated from only its
inputs, we commonly use the resharing protocol, to ensure independence from
other parties’ inputs and outputs. For example, usually every input of a protocol
is explicitly reshared. The resharing protocol takes a private value [[u]] ∈ R and
returns a [[v]] ∈ R such that u = v and all shares [[v]]i are uniformly distributed
and independent of the shares [[u]]j . The protocol is implemented as follows: each
party Pi generates a random value ri ← R and sends it to the next computing
party Pn(i), adds the generated value ri to the input share [[u]]i, and subtracts
the random number rp(i) received from the previous computing party Pp(i). The
shares of the output [[v]] of the protocol are ([[u]]1 + r1 − r3, [[u]]2 + r2 − r1, [[u]]3 +
r3 − r2). We see that v = [[v]]1 + [[v]]2 + [[v]]3 = [[u]]1 + [[u]]2 + [[u]]3 = u.

We can spot a common pattern that occurs in resharing (and in some other
primitive protocols): a party generates a random number and sends it to some
other party. This pattern can be optimized by letting both parties generate
the same random number using a common random number generator (RNG).
Analysis of our protocols shows that network communication can be reduced
by 30% to 60% using this technique (exactly 60% in the case of integer multi-
plication protocol). This optimization is not new and has previously been used
in [24]. Our toolchain around the Protocol DSL allows this optimization to be
automatically introduced, with no changes to the specification of the protocols.
The optimization itself is straightforward on our intermediate representation:
we detect randomness nodes that are sent to one other computing party, and
transform them to instead take use of shared randomness nodes.

We have manually implemented this optimization for the multiplication pro-
tocol (for which the Protocol DSL has not been used) and compared the perfor-
mance to the unoptimized version to validate the effectiveness of this modifica-
tion. Multiplication protocol has been chosen because of its simplicity, efficiency,
ubiquity in application, and because it is one of the least computation heavy
protocols. The comparison was performed using the methodology described in
Sect. 5 and the results are displayed in Table 1. We see a slowdown of at most
15% on small input lengths (up to one hundred elements), but for large inputs
we see a universal speedup that reaches up to 60%. The performance of 64-bit
multiplication has been universally improved. The slowdown on small inputs can
be explained by a slight increase in computation overhead (critical path became
longer due to invoking the shared RNG in the end of the protocol) and the
speedup can be explained by the decrease in network communication. In fact,
network communication is reduced by exactly 60%.

280 L. Kerik et al.

Table 1. Speedups of shared RNG (SRNG) and symmetric multiplication protocols
over the regular multiplication. The speedups have been measured from 1 element
inputs to 108 element input vectors.

Bit-width SRNG Symmetric SRNG and Symmetric

100 102 104 106 108 100 102 104 106 108 100 102 104 106 108

64 1.03 1.03 1.48 1.44 1.61 1.08 1.09 1.13 1.08 1.04 1.10 1.12 1.67 1.55 1.68

32 0.95 0.98 1.34 1.45 1.30 1.09 1.08 1.14 1.02 1.08 1.04 1.06 1.53 1.48 1.41

16 0.85 0.90 1.14 1.36 1.41 1.18 1.12 1.17 1.02 1.02 1.00 1.01 1.34 1.39 1.43

8 0.96 0.96 1.03 1.11 1.01 1.04 1.03 0.91 1.03 1.07 0.99 0.98 0.95 1.14 1.08

4.2 Symmetric Protocols

Multiplication protocol in additive schemes is commonly presented as Algo-
rithm 3 such as in [10,27]. The given protocol is perfectly reasonable when the
SRNG optimization is not used: the resharing sub-protocol sends the network
messages in one direction and the multiplication protocol itself in the other. As
a result the communication channels are under similar workload. However, using
the SRNG optimization results in a protocol that sends network messages only
over one of the two network channels. We propose a small modification in the
form of Algorithm 4 as an alternative multiplication protocol that uses the net-
work in a balanced manner. The correctness and security of the algorithm can
be shown the same way as it was shown for the multiplication protocol in [10].

Algorithm 3. Multiplication protocol.
Data: Shared values [[u]], [[v]] ∈ R
Result: Shared value [[w]] ∈ R such that uv = w.

1 [[u]] ← Reshare([[u]])
2 [[v]] ← Reshare([[v]])
3 All parties Pi perform the following:
4 Send [[u]]i and [[v]]i to Pn(i)

5 Receive [[u]]p(i) and [[v]]p(i) from Pp(i)

6 [[w]]i ← [[u]]i · [[v]]i + [[u]]p(i) · [[v]]i + [[u]]i · [[v]]p(i)
7 [[w]] ← Reshare([[w]])
8 return [[w]]

The symmetric protocol provides a small performance gain over the SRNG
optimized protocol. The comparison against our legacy multiplication protocol
(see Table 1) shows better results and disappearance of the slowdown present
with only the SRNG optimization. Only the 8-bit multiplication experiences a
small slowdown in a few cases. We predict that the speedups will be greater in
a setting where network latency is worse or the available bandwidth is smaller
because in these cases the network will become the dominant bottleneck. This
claim is supported by the evidence that the speedups improve as the proto-
cols need to send more data over the network (larger bit-widths or larger input
vectors).

Optimizing MPC for Robust and Scalable Integer 281

Algorithm 4. Symmetric multiplication protocol.
Data: Shared values [[u]], [[v]] ∈ R
Result: Shared value [[w]] ∈ R such that uv = w.

1 [[u]] ← Reshare([[u]])
2 [[v]] ← Reshare([[v]])
3 All parties Pi perform the following:
4 Send [[u]]i to Pn(i) and [[v]]i to Pp(i)

5 Receive [[u]]p(i) from Pp(i) and [[v]]n(i) from Pn(i)

6 [[w]]i ← [[u]]i · [[v]]i + [[u]]p(i) · [[v]]i + [[u]]p(i) · [[v]]n(i)
7 [[w]] ← Reshare([[w]])
8 return [[w]]

This modification can be applied to many other protocols, but a few of the
protocols are inherently asymmetric (such as squaring a value, or finding the
bitwise conjunction of a single bit with a 64-bit integer). For all asymmetric
protocols we can implement two versions that are unbalanced in different direc-
tions, and pick versions of them such that overall the communication is roughly
balanced (we do not expose this facility to the end user). This optimization has
been applied manually as the set of primitive protocols is manageable and the
protocol DSL enables such changes easily. We have not explored the possibility
of automatically performing communication balancing.

4.3 Speedup over Previous Results

We have applied the systematic optimizations presented in this section to all
our protocols and compared the results against operations without those opti-
mizations. In addition to the optimizations mentioned previously we have also
eliminated many resharing calls (this optimization does not reduce network com-
munication) as allowed by [7] and verified the security of resulting protocols
using our privacy analyser [32]. Table 2 shows comparison results for floating-
point addition, multiplication and square root. These protocols provide a rough
idea of how the optimizations fare across all protocols.

Table 2. Speedup of optimized floating-point protocols.

Operation Precision Speedup on given input length

100 101 102 103 104 105 106

[[x]] + [[y]] Single 1.04 1.13 1.48 1.94 1.73 1.71 1.73

Double 0.97 1.03 1.38 1.67 1.61 1.69 1.77

[[x]] × [[y]] Single 0.91 0.92 1.04 1.42 1.60 1.45 1.57

Double 1.03 1.08 1.28 1.81 1.82 1.80 1.79
√

[[x]] Single 0.91 0.98 1.33 1.82 1.73 1.66 1.64

Double 1.06 1.22 1.71 1.86 1.85 1.85 1.87

282 L. Kerik et al.

Table 2 shows an almost universal improvement in performance. In a few cases
single-precision floating-point operations perform slightly worse (less than 10%)
but only on small input sizes. In the case of inputs of length 100 and more we see
significant speedups across the board. In a few cases speedups reach over 80%.

5 Large-Scale Performance Evaluation

Benchmarking was performed on a dedicated cluster of three computers con-
nected with 10 Gbps Ethernet. Each computer was equipped with 128GB DDR4
memory, two 8-core Intel Xeon (E5-2640 v3) processors and was running Debian
8.2 Jessie (15th Sep 2015). Both memory overcommit and swap were disabled.
During benchmarking only the necessary system processes and some low over-
head services (such as SSH and monitoring) were enabled.

A single run-time measurement was computed by taking the running times of
each of the computing parties and finding the maximum of those. This is neces-
sary as a protocol may terminate faster for some participants and the maximum
reflects the time it takes for the result of the operation to become available to
all. The average running time was estimated by computing the mean of all the
measurements. On every input length we performed at least 5 repetitions (10
for integer operations) and, to reduce variance, significantly more on small input
lengths (up to 10000 repetitions). Measurements were performed in a randomized
order because we found that running the tests sequentially in an increasing size
of inputs gave significantly better performance results. Sequential order results
in a steady increase of network load which is predictable for the networking layer
but is not a very realistic scenario for all SMC applications.

Performance results for floating-point operations are presented in Table 3.
We have measured addition, multiplication, comparison, reciprocal, square root,
exponentiation, natural logarithm, sine, and error function from 1 element input
to one million element input vectors. All the results have been presented in opera-
tions per millisecond (thousands of operations per second). Looking at the table,
it is clear that performance scales very well with vectorization: only a few hundred
scalar operations can be executed per second but by computing on many inputs
in parallel we can perform hundreds of thousands of operations per second.

We have also thoroughly measured the performance of integer and fixed-
point multiplication operations (Table 4). The fixed-point operations, especially
addition and multiplication, have turned out to be useful tools in implementing
efficient higher-level applications. As the respective floating-point operations are
rather slow, the computations relying heavily on them may become impracti-
cal (for example, floating-point addition [23, Algorithm 4] requires private shifts
which makes it a costly operation). While not a universal solution, efficient signed
fixed-point operations alleviate the problem in many cases.

We have also evaluated private integer multiplication to establish a baseline,
against which to compare more complex protocols when choosing the operations
to be used in a larger application. We have limited the performance evaluation of
multiplication to 109 element input vectors. This is due to memory limitations:

Optimizing MPC for Robust and Scalable Integer 283

Table 3. Performance (in operations per millisecond) of optimized floating-point oper-
ations. Combing all manual and automatic optimizations presented in this work. Vari-
ables x and y denote floating-point numbers.

Operation Precision OP/ms on given input length

100 101 102 103 104 105 106

[[x]] + [[y]] Single 0.32 3.0 20.4 54.3 60.6 52.8 53.1

Double 0.27 2.4 12.9 24.5 22.9 23.9 25.3

[[x]] × [[y]] Single 0.52 4.8 36.1 140 231 172 185

Double 0.54 4.8 32.2 111 131 107 106

[[x]] < [[y]] Single 1.14 10.5 78.8 210 237 199 209

Double 0.97 9.0 62.3 133 120 111 118

[[x]]−1 Single 0.30 2.7 18.1 48.7 52.4 45.5 49.4

Double 0.23 1.9 9.0 16.8 16.9 17.6 18.6
√

[[x]] Single 0.26 2.4 16.4 44.8 48.7 45.1 44.1

Double 0.21 1.7 6.5 10.4 9.4 11.2 11.2

exp [[x]] Single 0.18 1.7 11.4 28.8 33.1 30.4 29.2

Double 0.16 1.3 5.4 9.1 8.8 9.5 9.9

ln [[x]] Single 0.14 1.2 6.8 12.3 12.0 11.2 11.1

Double 0.12 1.0 3.3 4.2 4.0 4.4 4.6

sin [[x]] Single 0.14 1.2 6.3 9.4 8.4 8.8 9.3

Double 0.12 0.9 2.7 2.8 2.8 3.3 3.4

erf [[x]] Single 0.23 2.0 12.1 24.2 24.1 23.5 23.7

Double 0.18 1.3 4.2 5.9 5.5 6.7 6.8

Table 4. Performance of optimized integer and signed fixed-point multiplication. Num-
bers are provided in operations per second with suffix K denoting thousands and M
denoting millions.

Type 100 101 102 103 104 105 106 107 108 109

uint8 7.4K 71.6K 703.5K 5.8M 24.1M 38.9M 40.1M 28.0M 37.9M 41.5M

uint16 7.0K 68.4K 663.4K 5.4M 22.0M 34.0M 29.5M 29.3M 35.0M 37.1M

uint32 6.6K 65.7K 629.7K 5.0M 17.1M 22.4M 18.8M 20.7M 22.1M 21.4M

uint64 6.4K 63.5K 586.9K 4.3M 11.2M 12.1M 10.5M 12.1M 13.7M 13.3M

fix32 640 6.0K 51.2K 270.8K 435.4K 344.1K 361.1K 369.4K 351.6K

fix64 680 6.2K 46.6K 187.3K 226.2K 184.3K 186.0K 187.6K 179.0K

a single 1010 element vector of 64-bit integers takes roughly 80 gigabytes of
RAM (it would be possible to only allocate a single vector and use that as both
input and output, but this would compute square and not product). Capability
to handle arrays of 109 elements with ease demonstrates the robustness of our
platform.

284 L. Kerik et al.

We have compared the performance of arithmetic operations and square root
against previous works. Unfortunately it was not possible to provide comparison
in an identical setups as both previous works we compare against have the per-
formance measures on a 1 Gbps Ethernet connection over LAN (opposed to our
10 Gbps connection over LAN). However, we found that we never came close
to saturating a 1 Gbps of the connection. Performance in [33] was measured on
cluster of three nodes each equipped with 48 GB of RAM and 12-core 3 GHz
Intel CPUs supporting AES-NI and HyperThreading. Performance in [18] was
measured on two desktop computers each equipped with a 3.5 GHz Intel Core
i7 CPU and 16 GB of RAM (the number of cores was unspecified).

In the case of additive 3-party secret sharing the best results so far have
been obtained in [33]. In the case of scalar operations our results show 132 fold
speedup for addition, 67 fold speedup for multiplication and 618 fold speedup
for square root. The speedups also remain good for 104 element input vectors:
16, 14 and 416 fold respectively. Additionally [33] reports the performance of
garbled circuit based on IEEE 754 floating-point numbers. Compared to those
we provide 13, 20 and 27 fold speedups in the case of scalars and 102, 364 and
495 fold speedups in the case of 104 element input vectors.

While garbled circuit approach is not directly comparable to secret sharing
we also compare our results against [18] which provides, to our knowledge, as
of now, the best performance for 2-party garbled circuit approach. For scalar
operations we are, at worst, 80% slower, and in case of 104 element input vectors
at worst 50% slower, and at best 4.6 times faster. This is considering only online
time. When offline time is also taken into account we report similar performance
for scalar operations and significant speedups for vectorized ones (over 40 fold).
These comparisons are against the better of GMW (vector operations) and Yao
(scalar operations).

6 Conclusions

We have demonstrated the current state of the art in the performance of SMC
protocols for numeric computations. Our results show that with careful design
and the right set of tools, significant performance improvements are still pos-
sible. But currently, as Table 4 shows, the performance of SMC operations on
modern but reasonably-spec’d hardware is comparable to a computer with a
80386 processor.

References

1. 2013 ACM SIGSAC Conference on Computer and Communications Security, CCS
2013, Berlin, Germany, 4–8 November 2013. ACM (2013)

2. Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communi-
cations Security, Denver, CO, USA, 12–16 October 2015. ACM (2015)

Optimizing MPC for Robust and Scalable Integer 285

3. Aliasgari, M., Blanton, M., Zhang, Y., Steele, A.: Secure computation on floating
point numbers. In: 20th Annual Network and Distributed System Security Sympo-
sium, NDSS 2013, San Diego, California, USA, 24–27 February 2013. The Internet
Society (2013)

4. Ben-David, A., Nisan, N., Pinkas, B.: FairplayMP: a system for secure multi-party
computation. In: CCS 2008: Proceedings of the 15th ACM Conference on Computer
and Communications Security, pp. 257–266. ACM (2008)

5. Bogdanov, D., Jõemets, M., Siim, S., Vaht, M.: A short paper on how the national
tax office evaluated a tax fraud detection system based on secure multi-party com-
putation. In: Proceedings of 19th International Conference on Financial Cryptogra-
phy and Data Security. LNCS, vol. 8975, pp. 227–234. Springer, Heidelberg (2015)

6. Bogdanov, D., Kamm, L., Laur, S., Pruulmann-Vengerfeldt, P., Talviste, R.,
Willemson, J.: Privacy-preserving statistical data analysis on federated databases.
In: Preneel, B., Ikonomou, D. (eds.) APF 2014. LNCS, vol. 8450, pp. 30–55.
Springer, Heidelberg (2014)

7. Bogdanov, D., Laud, P., Laur, S., Pullonen, P.: From input private to universally
composable secure multi-party computation primitives. In: IEEE 27th Computer
Security Foundations Symposium, CSF 2014, pp. 184–198. IEEE, July 2014

8. Bogdanov, D., Laud, P., Randmets, J.: Domain-polymorphic programming of
privacy-preserving applications. In: Proceedings of the Ninth Workshop on Pro-
gramming Languages and Analysis for Security, PLAS@ECOOP 2014, Uppsala,
Sweden, 29 July 2014, p. 53. ACM (2014)

9. Bogdanov, D., Laur, S., Willemson, J.: Sharemind: a framework for fast privacy-
preserving computations. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS,
vol. 5283, pp. 192–206. Springer, Heidelberg (2008)

10. Bogdanov, D., Niitsoo, M., Toft, T., Willemson, J.: High-performance secure multi-
party computation for data mining applications. Int. J. Inf. Secur. 11(6), 403–418
(2012)

11. Bogetoft, P., et al.: Secure multiparty computation goes live. In: Dingledine, R.,
Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 325–343. Springer, Heidelberg (2009)

12. Burden, R.L., Faires, J.D.: Numerical Analysis, 9th edn. Brooks/Cole, Boston
(2011)

13. Burkhart, M., Strasser, M., Many, D., Dimitropoulos, X.: SEPIA: privacy-
preserving aggregation of multi-domain network events and statistics. In: USENIX
Security Symposium, pp. 223–239. Washington, DC, USA (2010)

14. Catrina, O., Saxena, A.: Secure computation with fixed-point numbers. In: Sion,
R. (ed.) FC 2010. LNCS, vol. 6052, pp. 35–50. Springer, Heidelberg (2010)

15. Cramer, R., Damg̊ard, I.B., Maurer, U.M.: General secure multi-party computation
from any linear secret-sharing scheme. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 316–334. Springer, Heidelberg (2000)

16. Cramer, R., Damg̊ard, I.B., Nielsen, J.B.: Multiparty computation from threshold
homomorphic encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 280–299. Springer, Heidelberg (2001)

17. Damg̊ard, I., Geisler, M., Krøigaard, M., Nielsen, J.B.: Asynchronous multiparty
computation: theory and implementation. In: Jarecki, S., Tsudik, G. (eds.) PKC
2009. LNCS, vol. 5443, pp. 160–179. Springer, Heidelberg (2009)

18. Demmler, D., Dessouky, G., Koushanfar, F., Sadeghi, A., Schneider, T., Zeitouni,
S.: Automated synthesis of optimized circuits for secure computation. In: Proceed-
ings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security, Denver, CO, USA, 12–6 October 2015 [2], pp. 1504–1517 (2015)

286 L. Kerik et al.

19. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: STOC, pp. 218–229. ACM
(1987)

20. Henecka, W., Kögl, S., Sadeghi, A.R., Schneider, T., Wehrenberg, I.: TASTY: tool
for automating secure two-party computations. In: Proceedings of the 17th ACM
Conference on Computer and Communications Security, CCS 2010, pp. 451–462.
ACM (2010)

21. Ishai, Y., Paskin, A.: Evaluating branching programs on encrypted data. In: Vad-
han, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 575–594. Springer, Heidelberg
(2007)

22. Kamm, L.: Privacy-preserving statistical analysis using secure multi-party compu-
tation. Ph.D. thesis, University of Tartu (2015)

23. Kamm, L., Willemson, J.: Secure floating point arithmetic and private satellite
collision analysis. Int. J. Inf. Secur. 14(6), 531–548 (2015)

24. Keller, M., Scholl, P., Smart, N.P.: An architecture for practical actively secure
MPC with dishonest majority. In: 2013 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2013, Berlin, Germany, 4–8 November 2013
[1], pp. 549–560 (2013)

25. Kerschbaum, F., Schröpfer, A., Zilli, A., Pibernik, R., Catrina, O., de Hoogh,
S., Schoenmakers, B., Cimato, S., Damiani, E.: Secure collaborative supply-chain
management. IEEE Comput. 44(9), 38–43 (2011)

26. Krips, T., Willemson, J.: Hybrid model of fixed and floating point numbers in
secure multiparty computations. In: Chow, S.S.M., Camenisch, J., Hui, L.C.K.,
Yiu, S.M. (eds.) ISC 2014. LNCS, vol. 8783, pp. 179–197. Springer, Heidelberg
(2014)

27. Laud, P., Randmets, J.: A domain-specific language for low-level secure multiparty
computation protocols. In: Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, Denver, CO, USA, 12–16 October 2015
[2], pp. 1492–1503 (2015)

28. Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party compu-
tation. J. Cryptology 22(2), 161–188 (2009)

29. Liu, C., Huang, Y., Shi, E., Katz, J., Hicks, M.W.: Automating efficient ram-model
secure computation. In: 2014 IEEE Symposium on Security and Privacy, SP 2014,
Berkeley, CA, USA, 18–21 May 2014, pp. 623–638. IEEE Computer Society (2014)

30. Liu, Y.C., Chiang, Y.T., Hsu, T.S., Liau, C.J., Wang, D.W.: Floating point arith-
metic protocols for constructing secure data analysis application. Procedia Com-
put. Sci. 22, 152–161 (2013). 17th International Conference in Knowledge Based
and Intelligent Information and Engineering Systems - KES2013

31. Malka, L.: VMCrypt: modular software architecture for scalable secure computa-
tion. In: Proceedings of the 18th ACM Conference on Computer and Communica-
tions Security, CCS 2011, Chicago, Illinois, USA, 17–21 October 2011, pp. 715–724.
ACM (2011)

32. Pettai, M., Laud, P.: Automatic proofs of privacy of secure multi-party computa-
tion protocols against active adversaries. In: 2015 IEEE 28th Computer Security
Foundations Symposium (CSF 2015) (2015)

Optimizing MPC for Robust and Scalable Integer 287

33. Pullonen, P., Siim, S.: Combining secret sharing and garbled circuits for efficient
private IEEE 754 floating-point computations. In: Brenner, M., Christin, N., John-
son, B., Rohloff, K. (eds.) FC 2015 Workshops. LNCS, vol. 8976, pp. 172–183.
Springer, Heidelberg (2015)

34. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
35. Zhang, Y., Steele, A., Blanton, M.: PICCO: a general-purpose compiler for private

distributed computation. In: 2013 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2013, Berlin, Germany, 4–8 November 2013 [1],
pp. 813–826

On-the-fly Homomorphic Batching/Unbatching

Yarkın Doröz(B), Gizem S. Çetin, and Berk Sunar

Worcester Polytechnic Institute, Worcester, USA
{ydoroz,gscetin,sunar}@wpi.edu

Abstract. We introduce a homomorphic batching technique that can
be used to pack multiple ciphertext messages into one ciphertext for
parallel processing. One is able to use the method to batch or unbatch
messages homomorphically to further improve the flexibility of encrypted
domain evaluations. In particular, we show various approaches to imple-
ment Number Theoretic Transform (NTT) homomorphically in Fast
Fourier Transform (FFT) speed. Also, we present the limitations that we
encounter in application of these methods. We implement homomorphic
batching in various settings and present concrete performance figures.
Finally, we present an implementation of a homomorphic NTT method
in which we process each element in an independent ciphertext. The
advantage of this method is we are able to batch independent homomor-
phic NTT evaluations and achieve better amortized time.

Keywords: Homomorphic encryption · Homomorphic batching ·
Homomorphic number theoretic transform

1 Introduction

Fully Homomorphic Encryption (FHE) is an encryption method that allows to
perform arbitrary circuit or function evaluations on encrypted data without the
need for decryption of the ciphertexts. The first FHE scheme was a lattice-based
construction introduced by Gentry [12] in 2009. In 2010, Gentry and Halevi [15]
simplified the construction and completed the first practical FHE implementa-
tion. Even with the optimizations the FHE scheme lacked in performance, since a
crucial operation called recryption had to be performed after each bit AND oper-
ation which was taking 30 seconds. After the first FHE implementation various
schemes [3–5,9,13,14] have emerged with different optimization techniques on
fully or somewhat homomorphic encryption (SHE). In [26] batching and SIMD
operations were introduced to pack multiple messages into a ciphertext and
thereby allow for parallel homomorphic evaluations. Other operations such as
bootstrapping [12], relinearization [23], modulus reduction [3,5], key switching
[3] and flattening [17] are used as key and noise management techniques permit-
ting the evaluation of deeper circuits with similar parameter sizes.

In [3] Brakerski, Gentry and Vaikuntanathan implemented a leveled FHE
scheme that is capable of evaluating polynomial-size circuits by using noise man-
agement techniques. Their scheme is based on the Learning With Errors (LWE)
c© International Financial Cryptography Association 2016
J. Clark et al. (Eds.): FC 2016 Workshops, LNCS 9604, pp. 288–301, 2016.
DOI: 10.1007/978-3-662-53357-4 19

On-the-fly Homomorphic Batching/Unbatching 289

problem. Later, the BGV scheme was implemented as a software library HElib
[19] using C++. The library was used to re-implement the homomorphic evalu-
ation of an earlier AES circuit [16] by Gentry, Halevi and Smart. They achieved
an amortized time of 2 seconds for 120 blocks of AES implementation. Later, [2]
presented a new tensor product technique that reduces the noise from quadratic
to linear growth. The technique is applicable to LWE schemes, i.e. BGV style
schemes. Later, López-Alt, Tromer and Vaikuntanathan (LTV) [23] proposed an
FHE scheme based on a variant of NTRU [27] that has multi key support. Doröz,
Hu and Sunar implemented the proposed LTV scheme and using it evaluated
a custom AES circuit and a level optimized Prince block cipher circuit [10,11]
homomorphically. These implementations were later accelerated using a GPU by
Dai et. al. [7,8]. With GPU support, amortized timings of homomorphic Prince
and AES evaluations reduced to 24 msec and 7.3 sec respectively. Recently, a
new approximate eigenvector FHE scheme with reduction to LWE was proposed
by Gentry, Shai and Waters (GSW) [17]. The approximate eigenvector, eigen-
value pairs are used in the construction and they introduce a new noise manage-
ment technique called flattening. GSW is asymptotically faster due to the use of
standard matrix operations in order to apply homomorphic addition and mul-
tiplications. With flattening the need for costly relinearization operations and
any association storage of massive evaluation keys is eliminated.

Applications. The increasing number of new FHE schemes proposed along
with a variety of optimizations, motivated researchers to conduct experiments on
their practicality in applications. For example, Lagendijk et al. [20] give details
on applicability of homomorphic encryption and multi-party computation for
signal processing operations. These signal processing operations include but are
not limited to linear filters, correlation evaluations, thresholding, signal trans-
formations, inner product calculations and dimension reduction.

In [24], Lauter et al. focus on simple statistical operations that can be used
in real-life cloud services for medical or financial applications such as finding the
mean, the standard deviation and the logistical regression. Since these functions
do not have high multiplicative depth, they are not necessarily required to be
implemented using an FHE scheme, but an SHE construction is sufficient. In
the same work, they also implement the SHE scheme of Brakerski and Vaikun-
tanathan [4] using Magma algebra program. The same reference discussed how
to pack multiple message bits into a ciphertext. As noted, even though it is
possible to pack multiple ciphertexts into a single ciphertext, there are some
problems. First of all, they state that there is no known technique to unpack the
messages in the encrypted form, so they cannot retrieve the messages within a
packed ciphertext. Secondly, arithmetic operations become limited, i.e. we can-
not perform multiplication without destroying the messages in the ciphertext.

Later, in [21] Lauter et al. investigate another homomorphic application:
genomic data computation algorithms. They measure the performance of algo-
rithms such as Pearson Goodness-of-Fit test, the D’ and r2-measures of linkage
disequilibrium, the Estimation Maximization algorithm for haplotyping, and the
Cochran-Armitage Test for Trend. Another homomorphic encryption application

290 Y. Doröz et al.

on medical data is performed in [1] by Bos et al. The technique is applied on
medical data to perform private predictive analysis on the probability of cardio-
vascular disease.

There are many other homomorphic applications from various fields that are
implemented by various groups of researchers. A machine learning algorithm,
i.e. Linear Means Classifier and Fisher’s Linear Discriminant Classifier on the
Wisconsin Breast Cancer Data set, is implemented in [18] by Graepel et al.
Another application is dynamic programming that is presented by Cheon et
al. [6]. They implemented algorithms such as Hamming distance, edit distance,
and the Smith-Waterman algorithm on genomic data.

2 Motivation

The recent progress in fully homomorphic encryption schemes motivated
researchers to investigate applications of FHE schemes as solutions to real life
privacy concerning problems. In these applications, researchers face difficulties
to evaluate some of the basic primitive operations homomorphically. The lack of
these homomorphic primitive operations limits the applications or forces proto-
col changes, e.g. by moving some of the more difficult operations to the client
side. In this work, we focus on two different problems. The first one is a remark-
ably important, yet still open problem of homomorphic unbatching of a single
ciphertext that contains batched messages. The second one is the homomorphic
evaluation of the NTT operation over multiple ciphertexts. The details are as
follows:

– Homomorphic Unbatching. This problem was explicitly posed by Lauter
et al. in [24]: How can we unpack information belonging to numerous clients
packed at the beginning of a homomorphic evaluation session into a single
ciphertext for efficiency. The authors mention that if there was a method
for homomorphic unbatching, a server might easily batch messages of different
clients on a single ciphertext, process the ciphertext and later it can homomor-
phically unbatch the individual results to different ciphertexts to be delivered
to the respective clients. Basically, this method helps to significantly improve
the computational performance on servers by compressing the different cipher-
text messages from users into a single ciphertext for parallel processing. In
addition it gives the option to separate these results into different ciphertexts
so that the result is only send to the owner of the data. Here we show a way
to achieve homomorphic unbatching by using the NTT homomorphically. We
focus on ways to implement the homomorphic NTT and show the difficulties
of achieving FFT speed to this end.

– Homomorphic NTT. In this case, we implement the homomorphic NTT
using a different method and we succeed to achieve FFT speed, and with
this method our goal is to compute convolutions, instead of unbatching. This
operation can be used for many NTT/FFT applications, such as filtering,
large integer and polynomial multiplications, Chebyshev approximation and
efficient matrix-vector multiplications in the FHE setting.

On-the-fly Homomorphic Batching/Unbatching 291

Our Contribution. In this work we present an array of solutions to improve
the versatility of homomorphic NTT, specifically:

– We tackle the problem of computing the Number Theoretical Transform homo-
morphically over the domain defined by the message space. It turns out that
noise growth is a significant issue and FFT speed evaluation is difficult to
achieve without homomorphic modular reduction. We work out a solution
and provide concrete performance figures.

– Empowered by homomorphic NTT we define homomorphic batch-
ing/unbatching which allows us to move the coefficients of encrypted message
polynomials into message slots and vice versa. Using homomorphic batching
one may unpack message polynomials, i.e. extract coefficients from encrypted
message polynomials; and more broadly change the processing domain on-the-
fly while evaluation proceeds.

– From a security perspective, homomorphic batching/unbatching allows us to
prevent information leakage through partial evaluation results that accumu-
late in batched messages. This is of utmost concern in multi-user settings
where multiple streams of information are bundled together and processed
simultaneously.

– We implement homomorphic NTT using another method in which we encrypt
the elements of the NTT in different ciphertexts and perform levels of NTT
computations on these ciphertexts. In the end we achieve the elements of
NTT result in different ciphertexts. This way we are able to achieve the FFT
speed, batch independent NTT operations for parallel processing and achieve
amortized time. However we are unable to compute batch/unbatch homomor-
phically.

– Also, we give run-time complexity analysis on both of the proposed homomor-
phic NTT methods.

– Finally we note that homomorphic NTT is of independent interest to numerous
applications, e.g. filtering in digital signal processing, spectral decomposition
and analysis, etc.

3 FHE Background

In this work, we use customized leveled FHE implementation proposed by Doröz,
Hu and Sunar (DHS) [10]. The library is written in C++ and it uses NTL soft-
ware with GMP support. The library supports the leveled multi-key FHE scheme
implementation proposed in 2012 by López-Alt, Tromer and Vaikuntanathan
(LTV) [23]. It is based on a variant of Stehlé and Steinfeld’s [27] NTRU encryp-
tion with new operation called relinearization and existing operation modulus
switching to control noise. Although the scheme can support multi-keys (users),
the implemented library focuses on the single-key (user) scenario.

The LTV scheme uses the following primitives; there is a polynomial ring
Rq = Zq[x]/〈xN + 1〉 with N being the polynomial degree and q being the
prime modulus. The message space is defined using a prime modulus p. In the

292 Y. Doröz et al.

scheme, polynomials are sampled using a truncated discrete Gaussian distrib-
ution χ. These are B-bounded polynomials, i.e. each coefficient of the polyno-
mial is selected between [−B,B]. The scheme consists of the following primitive
functions: KeyGen, Encrypt, Decrypt and Eval. The primitive Eval consist of a
multiplication operation which is later followed by a relinearization and a mod-
ulus switch operation. The relinearization and modulus switch operations are
used to correct the corrupted encryption mask and reduce the noise caused by
the multiplication, respectively. Here we describe the primitive functions of the
LTV scheme:

KeyGen. In the scheme modulus q is a decreasing sequence of prime numbers
for each level: q0 > q1 > q2 · · · > qd. We select the prime modulus qi, according
to the noise size at ith level. We sample two polynomials g(i) ← χ and u(i) ← χ
to compute the secret keys f (i) = pu(i)+1 and the public key h(i) = pg(i)f−(i) for
each level. We compute the evaluation keys as ζ

(i)
ρ (x) = h(i)s

(i)
ρ +pe

(i)
ρ +2ρf2(i−1)

where {s
(i)
ρ , e

(i)
ρ } ← χ and ρ ∈ [0, �log (qi)�] for each level i.

Encrypt. We encrypt a message b ∈ Zp (or it can be a message polynomial
b(x) ∈ Zp[x]) by evaluating c(i) = h(i)s(i) + pe(i) + b by sampling {s(i), e(i)} ∈ χ
for ith level.

Decrypt. The decryption for ith level is simply achieved by evaluating: m =
c(i)f (i) (mod p).

Eval. The multiplication and summation of the ciphertexts corresponds to mul-
tiplication and addition of messages in the ring Zp[x]. These operations increase
the noise level of the ciphertexts and multiplication explicitly outweighs addi-
tion in terms of noise growth. The scheme uses two significant operations to
control the noise; relinearization and modulus switching. We summarize these
two operations as follows:

– Modulus Switching. This operation is a way of reducing the existing noise
in the ciphertexts. Basically, we perform c̃(i)(x) = � qi

qi−1
c̃(i−1)(x)�p on each

coefficient of the ciphertxt. We achieve following two things; a reduction in
the noise by log (qi/qi−1) bits and a new field Zqi

for modular arithmetic. The
ceil/floor operation �·�p refers to rounding to match the parity for modular p.
An advantage of the scheme is that its performance is increased as we switch
levels due to a smaller modulus qi.

– Relinearization. This operations is necessary after each multiplication oper-
ation in order to prevent the noise growth and the increase of inverse powers of
secret keys f (i). Simply we are switching square power of secret key f−2(i−1) for
level i−1 with the new secret key f (−i) of level i. We evaluate the relineariza-
tion operation by computing: c̃(i)(x) =

∑
ρ ζ

(i)
ρ (x)c̃(i−1)

ρ (x). In the equation

c̃
(i−1)
ρ (x) are binary polynomials that forms c̃(i−1)(x) =

∑
ρ 2ρc̃

(i−1)
ρ (x).

Specializations. In DHS library [10], the decreasing modulus sequence is
selected as a power of a fixed prime, i.e. qi = σk−i. Here the prime σ is equal

On-the-fly Homomorphic Batching/Unbatching 293

to the noise cutting size for each level and k is the circuit depth plus one. This
special ring structure is used to promote the evaluation keys to the next level
using modulo reduction when needed, i.e. ζ

(i)
ρ (x) = ζ

(0)
ρ (x) mod qi. This reduces

the key size significantly, as we only need to store the first level evaluation keys.

4 NTT Background

In this section, we will briefly go over Fourier Transform (FT) and its finite
version, Discrete Fourier Transform (DFT) which is more widely used in practical
applications. Then, we will talk about NTT which is a variant of DFT.

4.1 Fourier Transform

Fourier Transform is a signal transformation method that is used in many math-
ematical and scientific applications such as filtering, time domain and frequency
domain conversions, large integer multiplications and sine/cosine wave transfor-
mations. For practical applications, DFT, the finite version of the FT, is used. If
we have a sequence of N complex numbers x0, · · · , xN−1 in one domain, apply-
ing DFT will give us a new sequence of N complex numbers X0, · · · ,XN−1 in
another domain and these values can be computed by simply evaluating:

Xk =
N−1∑

j=0

xje
−2πik j

N , ∀k ∈ [0, N − 1] .

This linear transformation can be represented using a transformation matrix.
We can define the same operation as a multiplication of our input vector −→x =
[x0, . . . , xN−1] with a special transformation matrix W, i.e.

−→
X = W · −→x . We

have the output vector
−→
X = [X0, . . . , XN−1] of length N . The transformation

matrix W has the structure of a Vandermonde matrix with entries αk,j =
(
αk

)j

where α = e
−2πi

N and can be visualized as follows:
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

α0 α0 α0 . . . α0 α0

α0 α1 α2 . . . αN−2 αN−1

α2·0 α2·1 α2·2 . . . α2·(N−2) α2·(N−1)

...
...

...
. . .

...
...

α(N−2)·0 α(N−2)·1 α(N−2)·2 . . . α(N−2)·(N−2) α(N−2)·(N−1)

α(N−1)·0 α(N−1)·1 α(N−1)·2 . . . α(N−1)·(N−2) α(N−1)·(N−1)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

In a näıve implementation the time complexity of the DFT becomes
O(N2). However, by using a Fast Fourier Transform (FFT) algorithm
namely Cooley-Tukey method, we can reduce the cost of the evaluation to
O(N log (N) log log (N)). The Cooley-Tukey algorithm is based on re-expressing
the DFT equation into summation of two sub-DFT equations:

294 Y. Doröz et al.

Xk =
N−1∑

j=0

xje
−i2πk j

N =
N/2−1∑

m=0

x2me−i2πk m
N/2

︸ ︷︷ ︸
Even

+ e
−2πik

N

N/2−1∑

m=0

x2m+1e
−i2πk m

N/2

︸ ︷︷ ︸
Odd

As shown on the equation above, summation on the left calculates the DFT of
the even indices and the summation on the right calculates the DFT of the odd
indices. These odd/even DFT summations can also be re-expressed as summa-
tion of sub -odd and -even indicies. This procedure can be applied recursively
until the DFT size is small enough to be evaluated fast enough. Later, the FFT
can be calculated by reconstructing the calculated sub-DFT’s by going into upper
levels in the recursive function.

4.2 Number Theoretic Transform

Number Theoretic Transform is a specialization of DFT over the ring Z/pZ by
replacing e−i2πk j

N with a primitive N th root of unity ω. One of the most common
usage of the method is to evaluate large integer or polynomial multiplications.
It prevents the errors that might be caused by the floating point arithmetic of
FFT and provides precise arithmetic evaluations. We can compute the NTT by
simply evaluating:

Xk =
N−1∑

j=0

xjω
k·j (mod p),

where −→x is again the input vector, p is the prime modulus and k ∈ [0, N −1]. The
inverse-NTT of the evaluated vector

−→
X is computed using the same equation by

replacing ω with ω−1 (mod p):

xk =
N−1∑

j=0

Xjω
−k·j (mod p).

Thus the transformation matrix W and the inverse transformation matrix W−1

becomes:
⎡

⎢
⎢
⎢
⎣

1 1 . . . 1
1 ω . . . ωN−1

...
...

. . .
...

1 ωN−1 . . . ω(N−1)·(N−1)

⎤

⎥
⎥
⎥
⎦

and

⎡

⎢
⎢
⎢
⎣

1 1 . . . 1
1 ω−1 . . . ω−(N−1)

...
...

. . .
...

1 ω−(N−1) . . . ω−(N−1)·(N−1)

⎤

⎥
⎥
⎥
⎦

respectively. Using the Cooley-Tukey approach that is explained in the previous
section, the NTT conversion can achieve a runtime of O(N log (N) log log (N)).

5 Homomorphic NTT

In this section we give two methods to perform homomorphic NTT and discuss
their advantages and disadvantages. In the first method we show that we are

On-the-fly Homomorphic Batching/Unbatching 295

able to homomorphically batch/unbatch messages on a single ciphertext, but
also show that it has limitations to achieve FFT speed. In the second method
we show that we can overcome the problem and achieve FFT speed, but we need
use N ciphertexts for input and output.

5.1 Homomorphic Batching/Unbatching

Batching is a powerful data encoding technique that is used for processing inde-
pendent data in parallel. It, when used in homomorphic computing, yields great
versatility in the computations and greatly improves performance. Although
batching is important in homomorphic computing, existing implementations
used batching only to process independent data in parallel. Therefore, these
implementations perform batching only before the encryption and after the
decryption of the messages as follows. First many independent data is embedded
into message slots. The message slot contents are then encoded into a polyno-
mial representation with the help of the (inverse) Chinese Remainder Theorem
(CRT). The encoded message polynomial is then encrypted. Once batched mes-
sages are encrytped, then they are processed in independent homomorphic eval-
uation paths, i.e. evaluation of many AES encryption(by batching) using single
polynomial ciphertext. Once the evaluations are completed, the output message
polynomial is decrypted and the message slot contents are retrieved using the
CRT residue computation.

Here, we want to extend the capabilities of homomorphic encryption by
implementing a batching technique homomorphically so that we are able to
batch any data on-the-fly. In order to do that, we need a transformation that
is capable to bring the message slot contents into the coefficients in the poly-
nomial representation and back while all data is maintained in encrypted form.
This homomorphic arithmetic actually is the equivalent of evaluating a CRT and
its inverse homomorphically. We define this as homomorphic batching as follows.

Definition 1 (Homomorphic Batching). The isomorphism Zp[x]/(Φ(x)) ∼=
Zp[x]/(x − ζ) ×Zp[x]/(x − ζ2) × · · · ×Zp[x]/(x − ζN−1) where Φ(x) =

∏
(x − ζi)

denotes the characteristic polynomial in Zp of degree N − 1 and ζ denotes a
primitive N th root of unity in Zp. We refer to the homomorphic evaluation
of the isomorphism and its inverse as homomorphic unbatching and batching,
respectively.

From a computational perspective, the encoding/decoding operations
both amount to the evaluation of a linear transformation on the message
slot/polynomial coefficients, respectively. For instance, the message polynomial
m(x) is decoded as m̄ = 〈m(ζ),m(ζ2), . . . , m(ζN−1)〉. The encoding function
may be computed, for example, using Lagrange interpolation. Computations
may be expressed as linear transformations as:

Decode(m(x)) = m̄ = W	m and Encode(m̄) = 	m = W−1m̄,

which [W]ij = ζij ∈ Zp and 	m is a vector that holds the coefficients of m(x).
The operation appears simple enough since modulo p operations is the natural

296 Y. Doröz et al.

domain of the homomorphic evaluations and since all we need to compute is
constant multiplications by powers of ζ. Typically, when batching in cleartext
we compute the encoding and decoding operation with the aid of an N th root
of unity ζ ∈ Zp via a number theoretical transform (NTT) to gain FFT speed,
i.e. O(N log(N)) encoding/decoding performance. However, using cyclotomic
polynomials to batch messages bring limitations for us to directly evaluate NTT
and achieve FFT speed.
Limitations. The batched messages in a polynomial presents independent com-
putation paths. However, when we compute it’s linear transformation we need
to sum the scaled message slot contents. Thus we need a means to move the
message slot contents. We achieve this by using Φ(x) =

∏
i∈[N−1](x− ζbi

) where
b is a primitive element of Z

∗
N and later by evaluating m(xb), we rotate the

message slot contents. The side-effect of this shift operation on a ciphertext is
that the key is altered during the evaluation process:

c(xb) = pg(xb)s(xb)f−1(xb) + pe(xb) + m(xb)

The ciphertext will still decrypt correctly since g(xb), s(xb) and e(xb) will have
small norm. However, to decrypt the ciphertext the key needs to be updated to
f(xb). To restore the original key we may use key switching: L.KeySwitch(c(xb), θ)
where θ =

{
L.Encrypt(wτf(xb)τ) for τ ∈ [log q]

}
. With this approach we can

rotate the message slot contents an arbitrary i positions by evaluating the cipher-
text polynomial as c(xbi

) and then by applying a key switching operation with
f(xbi

).
Here the problem lies with the selection of cyclotomic polynomial Φ(x) as

the modulus. It gives a decoding matrix W as:
⎡

⎢
⎢
⎢
⎢
⎢
⎣

α0 α1 α2 . . . αN−2 αN−1

α2·0 α2·1 α2·2 . . . α2·(N−2) α2·(N−1)

...
...

...
. . .

...
...

α(N−2)·0 α(N−2)·1 α(N−2)·2 . . . α(N−2)·(N−2) α(N−2)·(N−1)

α(N−1)·0 α(N−1)·1 α(N−1)·2 . . . α(N−1)·(N−2) α(N−1)·(N−1)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

and an encoding matrix W−1 (mod p). The formed matrices W and W−1 of
Φ(x) are not Vandermonde matrices, therefore we are unable to apply Cooley-
Tukey’s algorithm. Since we cannot apply the even-odd splitting trick, we are
unable to apply fast NTT.

We can solve W and W−1 not being Vandermonde matrices by switching
the cyclotomic polynomial Φ(x) with xN − 1 which has the following form:

xN − 1 = (x − 1) · Φ(x) =
i=N−1∏

i=0

(x − ζi),

where N is power of 2. This converts the batching operation to be applicable
using Vandermonde matrix multiplication which is suitable for fast NTT using
Cooley-Tukey. Although the scheme is suitable for fast NTT, we are not able to

On-the-fly Homomorphic Batching/Unbatching 297

rotate the messages as in cyclotomic polynomials. The message in the first slot,
i.e. in (x − ζ0), never rotates in function f(xbi

) for any i.

Homomorphic Batch/Unbatch. With the issues addressed above, we are
able to compute homomorphic unbatching by the following equation:

L.Unbatch(c) =
∑

s∈N

c(s) · Encode (
(Wrot)�[s]

)
.

Here c(s) represents the rotated versions of the ciphertext (and message) coeffi-
cients by s positions. Wrot is the transformation matrix where each row index
i is rotated by i. The symbol � represents the transpose of the matrix and [s]
is used for the row index s of the matrix. In case of batching we only replace
W with W−1. The all operation requires only one level of circuit depth for
evaluation.

Packing/Unpacking. Packing and unpacking messages in homomorphic
encryption is useful for processing the information in parallel by batch-
ing/unbatching multi-user information. In multi-user scenarios where we have
many users that provides input for a process, we can pack the informations to
efficiently process. In word message space we can input N user information into
the same chipertext that will provide N times speedup for information process-
ing. In [24] Lauter et al. show how to pack the messages from multiple cipher-
texts into one ciphertext. They mention that they cannot present a technique to
unpack messages which restricts their computations. After a packing operation
the polynomial multiplications rounds and deforms the information because of
the polynomial modulus. Our main motivation here was to transfer the message
slot contents into the polynomial coefficients and back. However, we achieve
unpacking, which is regarded as difficult to achieve, with the aid of homomor-
phic batching. We may unpack the kth coefficient c(k) = L.Encrypt(mkxk) and
c =

(∑
i∈[N] mix

i
)

with the following steps:

– Push coefficients into the message slots c̃ = L.Unbatch(c) ∈ R,
– Filter desired coefficient(s) by multiplying with constant cleartext mask

μk(x) = NTT−1(Ik),
– Push message slot contents back into coefficients by homomorphic batching

c(k) = L.Batch(˜cμk(x)) ∈ R.

The packing/unpacking operation enables to do privatization in the homo-
morphic encryption. We may easily batch the information for parallel processing
and later send the result informations for filtering the results for each users in
multi-user scenarios. This prevents the information leaks while returning the
results to the users, since we are able to eliminate the results of other users from
the ciphertext.

5.2 Homomorphic NTT Using Parallel Batching

There is an alternative and straightforward way to implement homomorphic
NTT that is not limited by the issues given in the previous section. We can

298 Y. Doröz et al.

encrypt each message to be used in the NTT separately: ci = hsi + pei + mi.
Then, we can compute the fast NTT using the Cooley-Tukey algorithm as:

Ck =
N−1∑

j=0

cjζ
jk =

N/2−1∑

j=0

c2jζ
2jk

︸ ︷︷ ︸
Even

+ ζjk

N/2−1∑

j=0

c2j+1ζ
2jk

︸ ︷︷ ︸
Odd

where ζ is a primitive N th root of unity modulo p. Since each message is in an
independent ciphertext, we can easily divide them into even and odd indicies.
This way we can easily compute the fast NTT of the input. However there are
two main issues with the scheme that limits the operation:

– The modulo p reduction does not take place until the very end of the decryp-
tion step, i.e. L.Decrypt(c) =
cf�q (mod p).
Therefore, intermediate results will accumulate powers of ζ, which likely will
cause a wraparound and decryption failure. One alternative is to aggressively
apply noise reduction, e.g. modulus switching, even for the constant multi-
plications. However, this will increase the evaluation levels significantly. For
instance, even a moderate N = 213 would add 13 evaluation levels. To over-
come noise accumulation we abandon FFT style evaluation and instead only
multiply with precomputed W,W−1 ∈ Z

(N−1)×(N−1)
p .

– The number of ciphertexts increase to the number of NTT elements, i.e. N in
our case, from a single ciphertext. This increases the ciphertext input size by
N times and it is equal to N2 log q. More than the computational complexity,
it increases the I/O transactions of the scheme significantly. Although we have
N ciphertexts at the end, we can simply batch them by evaluating:

i=N−1∑

i=0

Ck · xi.

This solves the issue of having many ciphertexts. However, we are unable to
unbatch the values in the equation which limits further processing. We can
access the values individually only after a decryption operation.

Although we are not able to batch the dependent elements in a fast NTT
operation, we are able to batch N independent fast NTT operations. Basically,
we are able to use the empty message slots to evaluate N parallel fast NTT
operations. This way we are able to achieve an amortized time that is N times
better than the total runtime.

6 Complexity Analysis

Here we discuss the complexity of the two proposed algorithms. In homomorphic
batching we need to compute N multiplications of ciphertext with a polyno-
mial formed by the row values of W. Using a large polynomial multiplication

On-the-fly Homomorphic Batching/Unbatching 299

algorithm, such as Schönhage-Strassen algorithm, we achieve a run-time com-
plexity of O(N log N log log N). Furthermore, we have to perform key-switching
operations to the ciphertexts to correct the public keys that are corrupted
in rotation operation. This is a similar operation to the relinearization, so
we can apply the time complexity of relinearization in [10] for key-switching
as well. We have N key-switching operations with run-time complexity of
O(log (q)N log N log log N). In total the algorithm has a run-time complexity
of O(log (q)N2 log N log log N).

In the second algorithm, i.e. homomorphic NTT using parallel batching, we
have log N stages of NTT operations. Each stage N multiplications of a constant
with a ciphertext which makes N2 coefficient multiplications per stage. In total
the algorithm has run-time of O(N2 log N).

An important thing to note is that the complexity analysis takes into account
only the number of coefficient multiplications. It does not include the run-time
complexity of the coefficient multiplications. In the first case we have small and
fix size coefficients which gives an advantage in real time applications against the
second method. The second method has larger coefficients because of the leveled
implementation. Thus it takes longer time to process the second method even
though the run-time complexity of the method is smaller in terms of number of
coefficient multiplications.

7 Implementation Results

We implemented the algorithms using a leveled LTV scheme using Shoup’s
NTL library version 9.0 [25] compiled with the GMP 5.1.3 package. For para-
meter selection we utilized the two Hermite factor analysis using the formula
in [22], i.e. 1.8/ log δ − 110. The security level of the experiments varies on the
settings, but each setting has at least 100-bit security.

In the homomorphic NTT using homomorphic batching we use special
cyclotomic polynomial Φm(x), where we set m as a prime number to have
Φm(x) = x0 + x1 + x2 + · · · + xN , to perform faster modular reduction. The
results are summarized in Table 1. In the algorithm we have one constant poly-
nomial multiplication and N additions, so our prime modulus q does not grow
too large. The values of N are chosen to be close to as powers of two, i.e. 2048,
4096, 8192. The message slots are used for the same NTT operation so there is
no amortized time.

Table 1. Timings for homomorphic batching/unbatching operation.

N log q Security (in bits) Total time (in minutes)

2080 64 140 2.5

4252 64 400 10.7

8782 64 943 43

300 Y. Doröz et al.

In the second case, we compute homomorphic NTT by using parallel batch-
ing. We choose the polynomial degree N = 16384 and modulus bitsize log q = 512
which are slightly higher values compared to the first algorithm. The reason
behind this is that we need to handle the noise in stages, so the modulus q grows
significantly. Our implementation achieves a runtime of 108 minutes. Since we
are able to batch N independent homomorphic NTT computation, we achieve
0.4 second of amortized time.

8 Conclusion

To improve the versatility of homomorphic encryption applications, we tack-
led another challenging problem, i.e. the problem of moving data in encrypted
form from the message slots into the message polynomial coefficients and back.
We called this operation homomorphic batching/unbatching. Via homomorphic
batching one can extract coefficients and achieve unpacking operations easily.
In addition, the batching operation enabled via a homomorphic NTT operation,
which will be of interest for numerous signal processing applications.

References

1. Bos, J.W., Lauter, K., Naehrig, M.: Private predictive analysis on encrypted med-
ical data. Technical report MSR-TR-2013-81 (2013). http://research.microsoft.
com/apps/pubs/default.aspx?id=200652

2. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical gapSVP. IACR Cryptology ePrint Archive 2012/78 (2012)

3. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: Proceedings of the 3rd Innovations inTheo-
retical Computer Science Conference, pp. 309–325. ACM (2012)

4. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE
and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011)

5. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. SIAM J. Comput. 43(2), 831–871 (2014)

6. Cheon Jung, H., Miran, K., Kristin, L.: Secure DNA-sequence analysis on
encrypted DNA nucleotides (2014). http://media.eurekalert.org/aaasnewsroom/
MCM/FIL 000000001439/EncryptedSW.pdf

7. Dai, W., Doröz, Y., Sunar, B.: Accelerating NTRU based homomorphic encryption
using GPUs. In: 2014 IEEE High Performance Extreme Computing Conference
(HPEC), pp. 1–6 (2014)

8. Dai, W., Sunar, B.: cuHE: a homomorphic encryption accelerator library. In:
Pasalic, E., et al. (eds.) BalkanCryptSec 2015. LNCS, vol. 9540, pp. 169–186.
Springer, Heidelberg (2016). doi:10.1007/978-3-319-29172-7 11

9. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic
encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 24–43. Springer, Heidelberg (2010)

10. Doröz, Y., Hu, Y., Sunar, B.: Homomorphic AES evaluation using the modified
LTV scheme. Des. Codes Cryptogr. 80, 1–26 (2015)

http://research.microsoft.com/apps/pubs/default.aspx?id=200652
http://research.microsoft.com/apps/pubs/default.aspx?id=200652
http://media.eurekalert.org/aaasnewsroom/MCM/FIL_000000001439/EncryptedSW.pdf
http://media.eurekalert.org/aaasnewsroom/MCM/FIL_000000001439/EncryptedSW.pdf
http://dx.doi.org/10.1007/978-3-319-29172-7_11

On-the-fly Homomorphic Batching/Unbatching 301

11. Doröz, Y., Shahverdi, A., Eisenbarth, T., Sunar, B.: Toward practical homomorphic
evaluation of block ciphers using prince. In: Böhme, R., Brenner, M., Moore, T.,
Smith, M. (eds.) FC 2014 Workshops. LNCS, vol. 8438, pp. 208–220. Springer,
Heidelberg (2014)

12. Gentry, C.: A Fully Homomorphic Encryption Scheme. Ph.D. thesis, Stanford Uni-
versity (2009)

13. Gentry, C.: Fully homomorphic encryption using ideal lattices In: Proceedings of
the Forty-First Annual ACM Symposium on Theory of Computing, STOC 2009,
pp. 169–178. ACM (2009)

14. Gentry, C., Halevi, S.: Fully homomorphic encryption without squashing using
depth-3 arithmetic circuits. IACR Cryptology ePrint Archive 2011/279 (2011)

15. Gentry, C., Halevi, S.: Implementing Gentry’s fully-homomorphic encryption
scheme. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 129–
148. Springer, Heidelberg (2011)

16. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit.
IACR Cryptology ePrint Archive 2012 (2012)

17. Dai, W., Sunar, B.: cuHE: a homomorphic encryption accelerator library. In:
Pasalic, E., et al. (eds.) BalkanCryptSec 2015. LNCS, vol. 9540, pp. 169–186.
Springer, Heidelberg (2016). doi:10.1007/978-3-319-29172-7 11

18. Graepel, T., Lauter, K., Naehrig, M.: ML confidential: machine learning on
encrypted data. In: Lee, M.-K., Kwon, D., Kwon, T. (eds.) ICISC 2012. LNCS,
vol. 7839, pp. 1–21. Springer, Heidelberg (2013)

19. Halevi, S., Shoup, V.: HElib, homomorphic encryption library. Internet Source
(2012)

20. Lagendijk, R., Erkin, Z., Barni, M.: Encrypted signal processing for privacy pro-
tection: conveying the utility of homomorphic encryption and multiparty compu-
tation. IEEE Signal Process. Mag. 30(1), 82–105 (2013)

21. Lauter, K., López-Alt, A., Naehrig, M.: Private computation on encrypted genomic
data. In: Aranha, D.F., Menezes, A. (eds.) LATINCRYPT 2014. LNCS, vol. 8895,
pp. 3–27. Springer, Heidelberg (2015)

22. Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryp-
tion. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer,
Heidelberg (2011)

23. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-flymultiparty computation
on the cloud via multikey fully homomorphic encryption. In: Proceedings of the
Forty-Fourth Annual ACM Symposium on Theory of Computing STOC 2012, pp.
1219–1234. ACM (2012)

24. Naehrig, M., Lauter, K., Vaikuntanathan, V.: Can homomorphic encryption
bepractical? In: Proceedings of the 3rd ACM Workshop on Cloud ComputingSe-
curity Workshop, CCSW 2011, pp. 113–124. ACM (2011)

25. Shoup, V.: NTL: A library for doing number theory (2001). http://www.shoup.
net/ntl/

26. Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations. Des. Codes
Cryptogr. 71(1), 57–81 (2014)

27. Stehlé, D., Steinfeld, R.: Making NTRU as secure as worst-case problems over ideal
lattices. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 27–47.
Springer, Heidelberg (2011)

http://dx.doi.org/10.1007/978-3-319-29172-7_11
http://www.shoup.net/ntl/
http://www.shoup.net/ntl/

Using Intel Software Guard Extensions for
Efficient Two-Party Secure Function Evaluation

Debayan Gupta1, Benjamin Mood2, Joan Feigenbaum1(B), Kevin Butler2,
and Patrick Traynor2

1 Yale University, New Haven, CT 06520, USA
{debayan.gupta,joan.feigenbaum}@yale.edu

2 University of Florida, Gainesville, FL 32611, USA
bmood@ufl.edu, {butler,traynor}@cise.ufl.edu

Abstract. Recent developments have made two-party secure function
evaluation (2P-SFE) vastly more efficient. However, because they make
extensive use of cryptographic operations, these protocols remain too
slow for practical use by most applications. The introduction of Intel’s
Software Guard Extensions (SGX), which provide an environment for the
isolated execution of code and handling of data, offers an opportunity
to overcome such performance concerns. In this paper, we explore the
challenges of using SGX to achieve security guarantees similar to those
found in traditional 2P-SFE systems. After demonstrating a number of
critical concerns, we develop two protocols for secure computation in
the semi-honest model on this platform: one in which both parties are
SGX-enabled and a second in which only one party has direct access to
this hardware. We then show how these protocols can be made secure in
the malicious model. We conclude that implementing 2P-SFE on SGX-
enabled devices can render it practical for a wide range of applications.

1 Introduction

Secure Function Evaluation (SFE) is a powerful way to protect sensitive data.
Made possible by a range of cryptographic primitives, SFE allows multiple par-
ties to compute the output of a function without revealing the potentially sen-
sitive inputs of any individual party. In this paper, we focus on the case of
two-party secure function evaluation (2P-SFE). While both the performance of
and the security provided by these underlying primitives have improved dramat-
ically over the past decade [8,16,24,26,28,32,43], the expense of using 2P-SFE
remains too high for most practical applications.

An emerging hardware primitive may help to reduce the cost of such compu-
tation substantially. Intel’s Software Guard Extensions (SGX) [1,25] provide a
module within upcoming chipsets that allow for the creation of secure containers
called “enclaves.” These hardware-enforced sandboxes allow for code and data
to be executed without the influence of code running in the traditional registers
of the processor. In addition, an SGX system can use hardware-based attestation

c© International Financial Cryptography Association 2016
J. Clark et al. (Eds.): FC 2016 Workshops, LNCS 9604, pp. 302–318, 2016.
DOI: 10.1007/978-3-662-53357-4 20

Using Intel Software Guard Extensions for Efficient Two-Party SFE 303

to prove that an enclave performs the operations as claimed. While not neces-
sarily appropriate for all scenarios, this set of capabilities may help to support
the use of fast and strong 2P-SFE in a wide range of practical applications.

In this paper, we perform the first analysis of SGX as a platform on which
to implement 2P-SFE. Beginning with a tutorial example, we show why the
naive execution of functions within SGX fails to provide the strong properties
necessary to prevent significant leakage. From this observation, we then make
the following contributions:

– We show how to augment an SGX system to provide stronger guarantees
against leakage and provide a protocol that enables two SGX systems to
perform 2P-SFE more efficiently than a pure garbled-circuits implementation.
We refer to this approach as SGX-supported 2P-SFE. We then provide a
protocol for securely outsourcing the SGX-supported 2P-SFE computation
from a resource constrained device (i.e., one without an SGX module) to an
SGX-compliant device (i.e., another device that has an SGX module). This
allows us to take advantage of a remote SGX hardware unit without requiring
universal deployment.

– We show how to modify 2P-SFE protocols secure against semi-honest adver-
saries so that, when run on augmented SGX machines, they are secure against
malicious adversaries.

– We describe a number of novel use cases for SGX with our augmentations.

The rest of the paper is organized as follows: Sect. 2 provides background
on 2P-SFE and SGX. Section 3 explains problems that arise in straightforward
attempts to use SGX for 2P-SFE. Section 4 describes how to augment SGX so
that it can be used to implement 2P-SFE, a secure-outsourcing protocol for non-
SGX machines, and how 2P-SFE and SGX can be used efficiently in conjunction
to provide better security. Section 5 discusses previous work on secure-execution
environments, and Sect. 6 provides conclusions and open questions.

2 Technical Background

We begin with a brief overview of garbled-circuit 2P-SFE and SGX. We use this
as a point of departure for our investigation of SGX-based protocols for 2P-SFE
and why they are harder to design than one might imagine at first glance.

2.1 Garbled Circuits for Two-Party, Secure Function Evaluation

In a garbled-circuit protocol, two parties with private inputs jointly compute
a function represented as a Boolean circuit. Both parties receive outputs – the
scenario described in Sect. 1, which has a single output y for both parties, is
a special case; in general, the protocol may deliver different outputs to each
party. First, a compiler [32,37] is used to convert the function into a Boolean
circuit. One of the parties, the generator, encrypts, or garbles the Boolean circuit.

304 D. Gupta et al.

He then sends it to the evaluator, who evaluates the garbled circuit without
learning any information about the generator’s inputs, intermediate values (i.e.,
those computed by non-output gates of the circuit), or the generator’s output.
Finally, the evaluator sends the generator’s (encrypted) output back to him.

Each gate in a Boolean circuit can be evaluated using its truth table to
get the output corresponding to the input values. Likewise, a garbled circuit is
made up of many garbled gates, and each gate is evaluated in turn. A garbled
gate’s output entry in the truth table is encrypted under a unique combination
of the two inputs: TTi,j = Enc(Xi, Yj) ⊕ Outi,j , where TTi,j is the truth-table
entry created by the ith value of wire X and the jth value of wire Y , and
Outi,j is the corresponding unencrypted output value. The truth-table entries
are permuted so that the position of the (only) decryptable entry does not leak
the underlying Boolean value. Once the evaluator receives the garbled gates and
the input values, she finds the correct garbled output by trying to decrypt each
truth-table entry or by using the point-and-permute optimization [32].

There are two basic types of adversaries in the garbled-circuit literature: semi-
honest and malicious adversaries; each captures a basic threat model. (There
exist others, such as the covert model, but we do not discuss them here.) Semi-
honest adversaries faithfully follow the protocol but attempt to gain information
by observing all transmitted messages. Malicious adversaries, on the other hand,
may behave in any arbitrarily manner in an attempt to gain information about
another party’s input or output, to corrupt the computation (i.e., to cause incor-
rect outputs), or to block the protocol execution from completing.

To achieve security against malicious adversaries, the computation must be
performed N times in order to prevent the generator from creating an incorrect
circuit. The security parameter N sets the upper bound on an adversary’s suc-
cessfully cheating at 1

2N
. There must be mechanisms to ensure that the same

inputs are used each time and a way to ensure the evaluator does not corrupt the
generator’s output. These are solved problems in the garbled-circuit literature.

2P-SFE and garbled circuits were introduced in the seminal paper of Yao [50],
and the area has since been studied extensively by the cryptography community.
One very notable achievement was the creation of the first general-purpose 2P-
SFE platform, Fairplay [32]. Today, many 2P-SFE platforms exist [8,16,24,26,
28,31,36,43], and their performance is improving. Such platforms have been
used for scenarios as varied as those of farmers conducting beet-root auctions [7],
inter-domain routing [23], governments reporting aggregated salary data [6], and
database policy compliance [14]. For a detailed explanation of many essential
garbled-circuit techniques, see Kreuter et al. [28] and Perry et al. [40].

2.2 Intel’s Software Guard Extensions Module

The Software Guard extensions (SGX) module allows parts of programs to be
executed inside of separate segments of the CPU called enclaves. This is a
general-purpose module (unlike, say, a DRM module). SGX provides a hardware-
based guarantee that the programs and memory inside an enclave cannot be read
or modified from outside of the enclave (including by a program in a different

Using Intel Software Guard Extensions for Efficient Two-Party SFE 305

enclave). In particular, neither root nor any other type of special-access program
can read or modify the memory inside an enclave. Technically, the data inside
of an enclave are still within the same registers and cache as other programs;
however, SGX processors provide functionality to prevent unauthorized access.

An adversary should not be able to determine what is accessed inside of the
enclave or what is written back to RAM when the cache is full. Therefore, any
data in the enclave that must be written back to main memory is encrypted and
signed so that it cannot be read or modified by another program. Modifications
of code, data, or stack outside an enclave cannot interfere with the operation of
the enclave except in one way: If something needed by a program in the enclave is
simply unavailable or has been corrupted, then the program may have to abort.

Comprehensive overviews of SGX can be found in Intel’s whitepapers [1,25].
Design of systems and protocols that make extensive use of SGX is covered by,
e.g., Baumann et al. [5] and Schuster et al. [42].

2.3 Towards Using Secure Hardware for Garbled-Circuit Protocols

Both garbled circuits and SGX are designed for scenarios in which parties have
private input data for a computation in which they want to receive the result of
the computation while no one else learns either the input or the result. Therefore,
it is natural to consider using SGX-enabled machines to execute a garbled-circuit
protocol. The reason that it is not straightforward to do so is that garbled circuits
and SGX use different techniques to protect private inputs.

In garbled-circuit protocols (and SFE more generally), cryptographic guar-
antees are used to ensure the privacy of the data. In SGX, users rely on secure
hardware to guarantee data privacy. SGX provides security against malicious
adversaries as long as one trusts Intel’s setup process. In the SFE world, this is
comparable to having a trusted setup, on top of which one runs one’s protocol
(here, part of the “setup” occurs at the Intel factory when the hardware and
private key are created). The security properties of the exact model used by
SGX are described in Intel’s whitepapers [1,25].

3 Why Simple “Solutions” Do Not Quite Work

The security guarantees provided by SGX do not immediately translate into
being able to perform 2P-SFE protocols in general or even garbled-circuit pro-
tocols in particular. Simple solutions that use unmodified SGX primitives may
leak information or, in some cases, undermine the security of other code running
under SGX. In this section, we explain how that can happen.

3.1 A Simple 2P-SFE Protocol Implemented with SGX

Below, we describe a naive, straw-man protocol for performing SGX-supported
2P-SFE. There exist numerous ways of doing this, but almost all of them suffer
from a number of problems that we discuss in the next subsection.

306 D. Gupta et al.

Setup: We start with the standard 2P-SFE setup – two mutually distrustful
parties with private inputs who wish to jointly compute a function and produce
private results. In this scenario, both parties have SGX-enabled machines and
have agreed to run a specific program. The two parties are as follows: the evalua-
tor, who will use his SGX module to evaluate the program, and the sender, who
will check the agreed-upon program and then send her input. In the following,
a superscripted “+” denotes a public key, while a superscripted “−” denotes a
private key that does not leave the SGX enclave.

Protocol

1. The sender ensures the evaluator will evaluate the correct program, progsgx,
by checking the signed measurement, Ecvevalmeasure, from the evaluator’s
enclave. Ecvevalmeasure is signed by the evaluator enclave’s private key Ecv−

keyeval
.

2. The sender encrypts her input, inputsender, under the evaluator enclave’s
public key, Ecv+keyeval

, and sends it to the evaluator.
3. The sender’s encrypted input, Enc(inputsender) is decrypted inside of the

evaluator’s enclave using Ecv−
keyeval

.
4. The evaluator enters his own input, inputeval into the enclave.
5. The enclave puts inputsender and inputeval into the SGX program, progsgx. It

then executes progsgx and encrypts the sender’s output, outputsender, under
the sender enclave’s public key, Ecv+keysend

.
6. The evaluator’s enclave releases the evaluator’s output to him and sends the

sender’s encrypted output, Enc(outputsender), to the sender.
7. The sender decrypts Enc(outputsender) using Ecv−

keysend
.

3.2 Problems with Simple SGX-Supported 2P-SFE

Side Channels

1. Runtime: 2P-SFE protocols are not directly vulnerable to timing attacks.
This is achieved by ensuring all program paths take equal time, at the cost
of efficiency. In SGX-supported 2P-SFE, if a secret value x determines the
number of times, for instance, a loop is executed, the timing could easily nar-
row the range of x. Principally, an attacker could execute the same program
offline with many different iterations of the same loop inside of the enclave to
see how long several different numbers of iterations take. This may provide
a lot of information if each iteration of the loop is easily identifiable, e.g., if
each iteration takes a second to execute.

2. RAM Access: Data access is not hidden in SGX-supported 2P-SFE, which
can potentially leak significant amounts of data. For example, consider a sim-
ple database-style query using a binary search, where one side, the client,
sends a private query to check whether a given value exists within the data-
base. The enclave on the server reads in the plaintext records and matches
them, one by one, to the queried value. In such a scenario, the data access
alone is enough to leak information about the queried value. (If the query
matches, we have the value itself, and, if not, we know that the value lies

Using Intel Software Guard Extensions for Efficient Two-Party SFE 307

within a certain range.) There exist some methods to add hardware-level
cryptographic support to FPGAs [45], but not for RAM. The best ways to
make RAM secure are still Oblivious RAM and similar techniques [19].

3. RAM Timing: A timing attack could reveal a lot of information about the
item being queried in the binary search. If the item is located on the first
jump, we know that it’s the value in the middle, etc.

Cryptography vs Memory Out of Bounds. Garbled circuits rely on cryp-
tography for data privacy; information leakage is not an issue, because we have
proofs of correctness and security. While it is theoretically possible to “leak” data
by simply outputting it in the predefined program, such a blatant problem is easy
to notice. SGX, if used improperly, might leak information if memory goes out
of bounds; this is one of the most common bugs in everyday programming [42]
and can have catastrophic consequences [13,48]. Unfortunately, in SGX, such an
error would not only break the security of the program (and enclave) in question
but would also affect the security of SGX as a whole, because users might be
able to access or modify data that they should not be able to see.

Trusting SGX vs Trusting Cryptography. SGX requires the users to trust
that the evaluator of the program has not broken into the enclave to watch
the memory and that the supply chain was not disrupted with insecure parts.
These might not be acceptable assumptions for nation states or large companies.
In contrast, 2P-SFE protocols provide cryptographic guarantees. They prove
themselves equivalent to the “ideal model,” which uses a trusted third party.
SGX uses the trusted platform model, which is weaker than the trusted third
party model and allows side-channel and information flow attacks.

SGX requires us to have trust in hardware and standard cryptographic prim-
itives (which are used by SGX to protect data), while a 2P-SFE protocol needs
only the latter. Moving the “trust” from software to hardware presents addi-
tional problems – the authors are unaware of any techniques that could be used
to sign and verify hardware. Given recent reports of nation states’ actively infil-
trating hardware vendors at massive scales for bulk data collection, this is a
major problem. Ultimately, the trust in SGX boils down to trust in hardware
suppliers and whether or not the hardware can be opened and the CPU read.

4 Using SGX for 2P-SFE Computations

Having outlined the capabilities and limitations of SGX-supported 2P-SFE, we
now present our solutions to the problems faced when trying to use SGX for 2P-
SFE protocols. Throughout this section, because of space limitations, we present
only short, intuitive sketches of correctness and security proofs; complete proofs
will appear in a future, expanded version of the paper.

4.1 Using SGX for 2P-SFE: Problems and Solutions

Our solution is to augment the SGX programs to prevent (or reduce) data leakage
in SGX for 2P-SFE computations. These augmentations are described below.

308 D. Gupta et al.

Timing Side Channel: We must ensure that all code paths take approxi-
mately the same amount of time. There are many such obfuscation-based pal-
liative mechanisms, as well as general mitigation strategies [33]. However, these
problems are more complex in some scenarios – e.g., when a secret variable
determines how many times a loop executes. In this case, the time the program
takes can reveal information about the value of the secret variable. It is possible
to prevent any secret values from being revealed by having a fixed loop bound,
but this may not always be preferable. We can limit the amount of information
leaked when executing a loop by including N extra loop iterations, where N is
a pseudo-random number based on secret information from both parties. Using
this technique, neither party learns the number of iterations executed.

Memory Side Channel: We must ensure that all memory that can be touched
by the SGX program is touched exactly once at the beginning of the program.
Once the SGX program touches a piece of plaintext memory, the memory should
not be read again unless the read is not dependent on secret information. If the
read is dependent on secret information, the evaluator may be able to learn
something about the secret [17,38]. However, if we need too much data and
some are encrypted and stored outside of the enclave, there might be a correlation
between when a block of memory is read and when a block of encrypted memory
is sent back to RAM; for example, if a binary-search program that runs inside
an enclave reads one element at a time, mere observation yields the secret query
(within a range, if it is missing). In order to prevent this problem, we must
ensure that a mix operation is performed to remove any correlation between
plaintext memory and encrypted memory; e.g., this would occur if the memory
were placed outside of the enclave in the same order as it was entered. Such mix
operations, which continuously shuffle and re-encrypt data as they are accessed,
already exist and are widely used to implement Oblivious RAM [19,46].

Array Out of Bounds: To mitigate the risk of arrays out of bounds in SGX,
we apply safe memory-access techniques to ensure that memory does not go out
of bounds. SGX programs can use bound-checking data structures or memory-
safe languages [42]. Although such techniques slow down the execution time of
the application, both of the aforementioned methods would still be significantly
faster than executing the programs in a 2P-SFE protocol.

Cost of a 2P-SFE Protocol vs SGX: In Table 1, we note the expected cost of
normal 2P-SFE using garbled circuits and SGX-supported 2P-SFE. We examine
the costs of setup, input, the operation itself, data access, and memory access.
As shown in the table, the primary reason for the expected improvement in the
speed of SGX-supported 2P-SFE over a garbled-circuit protocol is the amount
of cryptography required for each operation and data access in 2P-SFE (which is
free in SGX). However, unlike garbled-circuit protocols, SGX encounters a cost
to push memory out of the cache to RAM (Non-Cache Access).

Using Intel Software Guard Extensions for Efficient Two-Party SFE 309

Table 1. Cost (in terms of cryptography) for operations in 2P-SFE and SGX-supported
2P-SFE. “-” means there is no cryptography required. N is length of input. C is length
of the circuit/program. K is the bit-security parameter. S is the stat parameter (number
of circuits in 2P-SFE). a - per gate for 2P-SFE and per processor instruction for SGX-
supported 2P-SFE. b - the cost of saving and loading a value to or from main memory
for SGX. + - assumes we attained a symmetric key during the setup phase and used it
to encrypt the input.

2P-SFESemi 2P-SFEMalicious SGX

Sym Asym Sym Asym Sym Asym

Setup - - - - O(1) O(1)

Input O(N) O(K) O(N ∗ S) O(K ∗ S) O(N)+ -

Per operationa O(1) - O(S) - - -

Data (array) access O(N) - O(N ∗ S) - - -

Non-cache accessb - - - - O(1) -

4.2 Half and Half

With the techniques above, 2P-SFE protocols and SGX can be used together
in scenarios in which parties trust each other enough to want to cooperate in
the first place but not enough to release private data or blindly trust the other
parties not to cheat [29]. However, when different groups of parties want to per-
form a secure computation together, a user may trust one group over another;
the different guarantees and characteristics of SGX-supported 2P-SFE and cur-
rent 2P-SFE protocols mean that it might make sense to use one technique for
a certain group but not another. We now consider how to perform a secure
computation using current 2P-SFE protocols for one part of the evaluation and
SGX-supported 2P-SFE for another part.

We start with two companies, A and B (as shown in Fig. 1), that want to
perform a secure computation involving nodes both inside and outside their
private networks. Parts of the computation are done inside of each company,

2P-SFE

Company A Company B

Node 1 Node 2
2P-SFE

with SGX

Node 3 Node 4
2P-SFE

with SGX

Fig. 1. Half and Half. In this usage, we convert SGX-supported 2P-SFE values to
standard 2P-SFE values and back in order to take advantage of the speed of the
combined form when the trust model is acceptable and still allow for a stronger model
when the trust model of SGX-supported 2P-SFE is not acceptable (say, the user does
not trust Intel when using a public network).

310 D. Gupta et al.

while others require A and B to cooperate. Thus, companies could use the trust
model of SGX when within their own networks and 2P-SFE when they want
cryptographic guarantees instead of assuming that the hardware remains secure.

To perform such hierarchical or “mixed” SGX computations, users need to
know how to convert a value from a 2P-SFE protocol to an SGX-supported 2P-
SFE value and vice-versa. Once we know how to perform these transformations,
we can run “mixtures” of 2P-SFE protocols and SGX. For simplicity, we deal
with the semi-honest setting, although we note there are ways to do the same
conversions in the malicious setting. For the purposes of this short protocol,
the evaluator is the evaluator in both 2P-SFE and SGX-supported 2P-SFE. The
generator is the generator for 2P-SFE and the sender in SGX-supported 2P-SFE.

Before we briefly describe the conversion process, we describe garbled circuits
in more detail. During the evaluation of the garbled circuit, each wire holds an
encrypted value. The generator knows the possible encrypted values (that is,
which values represent 0 and 1) but does not know which value is actually on
the wire (the value the evaluator has). The evaluator knows the encrypted value
on each wire value but does not know what any value represents.

Conversion from Garbled Circuit to SGX:

1. For each garbled wire wi we will convert to an SGX value, the evaluator has
wr

i (the encrypted result), and the generator has w0
i and w1

i (the encrypted
values that represent 0 and 1).

2. The generator enters w0
i and w1

i into progsgx (the SGX program) as input.
3. The evaluator enters in wr

i into progsgx as her input.
4. progsgx calculates whether wr

i is w0
i or w1

i and sets the corresponding input,
bi, to match wr

i .
5. progsgx uses each bi as input.

Conversion from SGX to Garbled Circuit:

1. For each bit bi that will be converted into a garbled value wi, the generator
creates both possible garbled values, w0

i and w1
i , that will represent the two

possible values of b and enters them into progsgx.
2. progsgx, based on whether bi is a 0 or 1, selects either w0

i or w1
i to be wr

i .
3. Each wr

i is sent to the evaluator to be used as input to the garbled circuit.
4. The generator uses his values, w0

i and w1
i , in the creation of the garbled circuit

to ensure wr
i will map to a value.

Security: In order for either the generator or the evaluator to learn additional
information, it has to (1) possess either w0

i or w1
i and possess wr

i , or (2) see bi
outside of the enclave. Since bi only exists inside of the enclave, it will not be
seen by either the generator or evaluator. The generator only ever sees w0

i and
w1

i and never sees wr
i . Likewise, the evaluator only sees wr

i and never sees w0
i or

w1
i . Thus, neither party will learn any additional information.

Using Intel Software Guard Extensions for Efficient Two-Party SFE 311

Cloud

Evaluator

Sender

Sender securely outsources to the cloud

SGX-Enabled

SGX-Enabled

SGX-supported 2P-SFE
 computation

Fig. 2. Outsourcing. Shows the different parties in our outsourcing protocol.

4.3 Outsourcing

For devices that do not have an SGX module (or are slow), it would be useful to
have the ability to securely outsource computation to a more powerful or better
equipped system. There have already been a number of works addressing this
situation in 2P-SFE [9–12,35]. In this section, we examine how we can outsource
from a constrained device (that does not possess an SGX module) when we want
to perform SGX-supported 2P-SFE.

In our setup, seen in Fig. 2, the sender does not have an SGX unit and
is outsourcing to a server, the cloud, that has an SGX unit. Any outsourcing
protocol must guarantee that (1) the party we are outsourcing to (the cloud)
cannot cheat, and (2) the party that performs the SGX execution (the other
party in the original SGX-supported 2P-SFE computation, the evaluator) cannot
cheat.

We assume that we are trying to protect the input and output of the sender;
we also assume that the cloud and evaluator do not collude, i.e., they are not
working together to corrupt the sender’s output or input. As before, super-
scripted “+” and “−” signs denote public and private keys, respectively.

Protocol

1. The cloud and evaluator perform the standard SGX setup to initialize their
SGX units and confirm that they are running the desired program.

2. Both parties pass enclave public keys, Ecv+keycloud
and Ecv+keyeval

to the
sender and authenticate by using MRSIGNER [1,25].

3. Both the evaluator and cloud enclaves send to the sender their enclave mea-
surements, Ecvcloudmeasure and Ecvevalmeasure.

4. The sender checks that Ecvcloudmeasure and Ecvevalmeasure are correct.
5. The sender encrypts its input, inputsender, and a public key for its output,

Out+key, under Ecv+keyeval
to create Enc(inputsender||Out+key) and sends it to

the cloud.
6. The cloud enters Enc(inputsender||Out+key) into the SGX program, progsgx.

We note here that there is no reason the cloud cannot also provide input to
the program if desired.

7. The input is sent from the cloud to the evaluator.

312 D. Gupta et al.

8. progsgx is run according to the previous SGX-supported 2P-SFE protocol.
9. The sender’s output, outputsender, is encrypted under Out+key as a final step

in progsgx.
10. This value, Enc(outputsender), is sent from the evaluator to the sender.
11. The sender uses the output private key Out−key to decrypt Enc(outputsender).

Security of the Sender’s Data
Input: Because the sender’s input is encrypted under the evaluator’s enclave
private key, it can only be decrypted inside of the evaluator’s enclave. Given the
measurement of the evaluator’s enclave, we also know that the program inside
of the enclave is correct; so it will not pass the input outside the enclave.

Output: Because the sender’s output is encrypted inside the enclave during
evaluation and is only sent outside when it is encrypted under the sender’s public
key, only the sender can decrypt and read this output.

4.4 Improving the Security of 2P-SFE Protocols Using SGX

Semi-honest or honest-but-curious protocols guarantee security as long as all
parties faithfully follow the protocol. Such protocols are much cheaper in terms
of computational cost than those that protect against malicious adversaries, who
attempt to gain additional information by any means necessary. We can use
SGX for parts of the semi-honest 2P-SFE protocol to gain additional security
guarantees without incurring significant overhead.

First, we replace the OT in the 2P-SFE protocol with an SGX component
that acts like an OT. The SGX OT is a stripped-down version of the previ-
ously described SGX-supported 2P-SFE protocol. In this program, the 2P-SFE
evaluator chooses the encrypted form of the input as in the 2P-SFE protocol.
This immediately gives us greater security than the standard semi-honest OT,
because we are not relying on the parties to behave correctly during the OT
(i.e., the SGX unit checks whether the parties are running the correct “OT”
program). Note that this does not guarantee fair release of the result, because a
malicious party can still cause us to abort at any point.

Similarly, we can replace the circuit generation and evaluation with an
SGX component. This SGX-evaluation is the program-evaluation component
described earlier. While we could use the 2P-SFE OT before this part of the
protocol, using the SGX OT component gives us better security. After the input
and circuit-evaluation components are replaced, we can also replace the out-
put component with the SGX output protocol. Replacing all of these elements
leaves us with a protocol that is significantly more secure than the original semi-
honest 2P-SFE protocol (because the SGX protocol has checks for when a user
is malicious), while remaining much cheaper than a malicious 2P-SFE protocol.

4.5 Universal Programs (Circuits)

A universal circuit (UC) is a program that takes another program as input
(denoted as UCprog) and then executes it. In a UC for two parties, one party
enters UCprog as input while the other party enters the input for UCprog.

Using Intel Software Guard Extensions for Efficient Two-Party SFE 313

However, in 2P-SFE, a UC requires a massive number of array accesses
because of the nature of oblivious data access. For each operation in UCprog

(e.g., data[a] = data[b] + data[c]), the inputs to the operation (i.e., data[b] and
data[c]) have to be found from all the possible values that could be entered
into the instructions – i.e.. this requires a set of if statements to check whether
index value v equals b – unless constraints can be added to UCprog. However,
in SGX-supported 2P-SFE, this would be more efficient, because array access
takes O(1). Thus, UC programs can be efficiently and privately executed in an
enclave.

4.6 Novel Use Cases for SGX

Secure Data Storage: With the advent of cloud and multi-user systems, unau-
thorized data access is a greater problem than ever before. Our idea is to use
SGX as a gatekeeper: If all reads and writes went through the SGX hardware, we
could automatically encrypt and decrypt it based on a user-entered key without
the need for a specialized drive. A keyboard could enter the enclave password
while skipping the operating system and any keyloggers within. Unlike systems
such as BitLocker [18], the key here would remain safe even if the operating
system were compromised. For cloud storage, the SGX program would encrypt
data before they are sent to the cloud server; it could be implemented so as to
be transparent to the end user and obviate the need to trust cloud companies.

User Authentication: SGX offers many new avenues for user authentication.
It includes MRSIGNER, which signs the enclave before it is deployed. Group
authentication is also possible, using EPID (Enhanced Privacy ID) [1], an exten-
sion to the Direct Anonymous attestation scheme used in [21,22]. This allows
an enclave to sign communications while maintaining privacy within a group.

There is also a “pseudonymous” mode, which relaxes the security slightly,
allowing the verifier to know whether it has checked an enclave in the past while
still maintaining intra-group anonymity.

Cyber-Physical Applications: Given the security concerns involved in control
systems for sensitive infrastructure (e.g., a nuclear power plant or a hydroelectric
dam), improving security is highly desirable. In order to prevent attacks on
such systems, the controls could be made accessible only through an enclave
that would require all orders to the system to be signed; the current state of
the system would also be hidden. Periodic signed updates from the enclave to
a “master” control system would prevent the system from being taken offline
without the knowledge of the master control system. These strategies would
mitigate the threat of hackers breaking into the system and altering code or
stealing passwords – this information would exist only inside of the enclaves.

Online Games: Online games are played by multiple users on different
machines. In order to reduce bandwidth, many games only transfer events, e.g.,
information for each user command. Each machine can then process events inde-
pendently but at the cost of each machine’s knowing the entirety of the game’s

314 D. Gupta et al.

data, including sensitive information about other players’ positions. SGX could
be used to protect private data from other gamers. If each gamer’s private data
are inside an enclave, a hacker (or any user who uses a tool to read informa-
tion normally not available to him) is denied access to private information. The
enclave would release such private information to the local machine based on
triggers in the code, e.g., when an enemy unit is nearby. We can periodically
verify the state of each enclave to prevent cheating.

5 Previous Work on Secure-Execution Environments

In this section, we briefly discuss previous work on the use of specialized soft-
ware and hardware platforms to enable secure execution of code. None of these
works provides the same guarantees or addresses the same scenarios as a 2P-
SFE protocol. Various levels of code and data protection have been achieved
using approaches as varied as managed runtime environments (such as Java and
.NET), tamper resistant software [3], and microkernels.

Haven [5] is an SGX-based system for executing Windows applications in the
cloud. VC3 [42], also based on SGX, allows verifiable and confidential execution
of MapReduce jobs in untrusted cloud environments.

Systems such as TrustedDB [4] and Cipherbase [2] use different kinds of
trusted hardware to process database queries over encrypted data. There exist
several other systems [30,39,47] that use trusted system software (usually a
trusted hypervisor) along with specialized hardware to achieve various security
and privacy requirements. Some, such as Virtual Ghost [15] and Flicker [34],
avoid hypervisors by using specialized kernel-level hardware-isolation mecha-
nisms and time-partitioning between trusted and untrusted operations, respec-
tively. Super-distribution systems for transmission of protected digital data also
exist [27]. They decrypt protected data using a key from an authorized clearing-
house and then re-encrypt the data with a locally generated key on the end-user
system, ensuring that no one else can use the data. Secure co-processors [44]
allow programs to execute securely as long as users can verify that they are
dealing with untampered programs and hardware.

Intel has a number of whitepapers on SGX [1,25], as well as previous attempts
in the same vein, such as the Trusted Execution Technology [20]. ARM trustzone
for Cortex-A processors also provides some similar guarantees and has been used
to build embedded linux platforms [49], language runtimes for mobile applica-
tions [41], and many other systems.

6 Conclusion

This paper presents the first systematic consideration of Intel’s Software Guard
Extensions as a platform on which to implement two-party secure function eval-
uation. We show that careful use of SGX primitives can facilitate extremely
efficient 2P-SFE protocols, provide an outsourcing mechanism for machines with-
out an SGX module, and discuss augmentations to SGX which provide stronger

Using Intel Software Guard Extensions for Efficient Two-Party SFE 315

guarantees against leakage. We also use SGX to convert 2P-SFE protocols secure
against semi-honest adversaries into ones secure against malicious adversaries,
and discuss a number of use cases for SGX. As SGX-enabled processors eventu-
ally make their way onto the market, future work will include implementations
and improvements to the efficiency and security properties of these protocols.

Acknowledgements. The first author was supported in part by DARPA contract
FA8750-13-2-0058. The second and fourth authors were supported in part by NSF
grants CNS-1540217 and CNS-1540218. The third author was supported in part by
NSF grants CNS-1407454 and CNS-1409599. The fifth author was supported in part
by NSF grants CNS-1464087 and CNS-1464088. The U.S. Government is authorized
to reproduce and distribute reprints for Governmental purposes notwithstanding any
copyright notation thereon. The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of DARPA, NSF, or the U.S. Government.

References

1. Anati, I., Gueron, S., Johnson, S., Scarlata, V.: Innovative technology for CPU
based attestation and sealing. In: Proceedings of the 2nd International Workshop
on Hardware and Architectural Support for Security and Privacy (2013)

2. Arasu, A., Blanas, S., Eguro, K., Kaushik, R., Kossmann, D., Ramamurthy, R.,
Venkatesan, R.: Orthogonal security with cipherbase. In: CIDR (2013)

3. Aucsmith, D.: Tamper resistant software: an implementation. In: Anderson, R.
(ed.) IH 1996. LNCS, vol. 1174, pp. 317–333. Springer, Heidelberg (1996)

4. Bajaj, S., Sion, R.: TrustedDB: a trusted hardware-based database with privacy
and data confidentiality. IEEE Trans. Knowl. Data Eng. 26(3), 752–765 (2014)

5. Baumann, A., Peinado, M., Hunt, G.: Shielding applications from an untrusted
cloud with haven. In: USENIX Symposium on Operating Systems Design and
Implementation (OSDI) (2014)

6. Bogdanov, D., Talviste, R., Willemson, J.: Deploying secure multi-party compu-
tation for financial data analysis. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol.
7397, pp. 57–64. Springer, Heidelberg (2012)

7. Bogetoft, P., Christensen, D.L., Damg̊ard, I., Geisler, M., Jakobsen, T., Krøigaard,
M., Nielsen, J.D., Nielsen, J.B., Nielsen, K., Pagter, J., Schwartzbach, M., Toft,
T.: Secure multiparty computation goes live. In: Dingledine, R., Golle, P. (eds.)
FC 2009. LNCS, vol. 5628, pp. 325–343. Springer, Heidelberg (2009)

8. Burkhart, M., Strasser, M., Many, D., Dimitropoulos, X.: SEPIA: privacy-
preserving aggregation of multi-domain network events and statistics. In: Proceed-
ings of the USENIX Security Symposium (2010)

9. Carter, H., Amrutkar, C., Dacosta, I., Traynor, P.: For your phone only: custom
protocols for efficient secure function evaluation on mobile devices. J. Secur. Com-
mun. Netw. (SCN) 7(7), 1165–1176 (2014)

10. Carter, H., Lever, C., Traynor, P.: Whitewash: outsourcing garbled circuit gener-
ation for mobile devices. In: Proceedings of the Annual Computer Security Appli-
cations Conference (ACSAC) (2014)

11. Carter, H., Mood, B., Traynor, P., Butler, K.: Secure outsourced garbled circuit
evaluation for mobile devices. In: Proceedings of the USENIX Security Symposium
(SECURITY 2013) (2013)

316 D. Gupta et al.

12. Carter, H., Mood, B., Traynor, P., Butler, K.: Outsourcing secure two-party com-
putation as a black box. In: Reiter, M., et al. (eds.) CANS 2015. LNCS, vol. 9476,
pp. 214–222. Springer, Heidelberg (2015). doi:10.1007/978-3-319-26823-1 15

13. Cowan, C., Wagle, P., Pu, C., Beattie, S., Walpole, J.: Buffer overflows: attacks and
defenses for the vulnerability of the decade. In: DARPA Information Survivability
Conference and Exposition, vol. 2, pp. 119–129. IEEE (2000)

14. Di Crescenzo, G., Feigenbaum, J., Gupta, D., Panagos, E., Perry, J., Wright, R.N.:
Practical and privacy-preserving policy compliance for outsourced data. In: Böhme,
R., Brenner, M., Moore, T., Smith, M. (eds.) FC 2014 Workshops. LNCS, vol. 8438,
pp. 181–194. Springer, Heidelberg (2014)

15. Criswell, J., Dautenhahn, N., Adve, V.: Virtual ghost: protecting applications from
hostile operating systems. ACM SIGARCH Comput. Architect. News 42(1), 81–96
(2014)

16. Damg̊ard, I., Geisler, M., Krøigaard, M., Nielsen, J.B.: Asynchronous multiparty
computation: theory and implementation. In: Jarecki, S., Tsudik, G. (eds.) PKC
2009. LNCS, vol. 5443, pp. 160–179. Springer, Heidelberg (2009)

17. Erlingsson, Ú., Abadi, M.: Operating system protection against side-channel
attacks that exploit memory latency. Technical report, MSR-TR-2007-117,
Microsoft Research (2007)

18. Ferguson, N.: AES-CBC+ elephant diffuser: A disk encryption algorithm for win-
dows vista. Technical report, Microsoft (2006)

19. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious
RAMs. J. ACM (JACM) 43(3), 431–473 (1996)

20. Greene, J.: Intel trusted execution technology. Intel Technology White Paper
(2012)

21. Group, T.C.: Trusted platform module main specification (tpm1.0) (2011). http://
www.trustedcomputinggroup.org/resources/tpm main specification

22. Group, T.C.: Trusted platform module library specification (tpm2.0) (2013).
http://www.trustedcomputinggroup.org/resources/tpm library specification

23. Gupta, D., Segal, A., Panda, A., Segev, G., Schapira, M., Feigenbaum, J., Rexford,
J., Shenker, S.: A new approach to interdomain routing based on secure multi-
party computation. In: Proceedings of the 11th ACM Workshop on Hot Topics in
Networks, pp. 37–42. ACM (2012)

24. Henecka, W., Kogl, S., Sadeghi, A.R., Schneider, T., Wehrenberg, I.: Tasty: tool
for automating secure two-party computations. In: Proceedings of the Conference
on Computer and Communications Security. ACM (2010)

25. Hoekstra, M., Lal, R., Pappachan, P., Phegade, V., Del Cuvillo, J.: Using innovative
instructions to create trustworthy software solutions. In: Proceedings of the 2nd
International Workshop on Hardware and Architectural Support for Security and
Privacy, p. 11. ACM (2013)

26. Holzer, A., Franz, M., Katzenbeisser, S., Veith, H.: Secure two-party computations
in ANSI C. In: Proceedings of the Conference on Computer and Communications
Security. ACM (2012)

27. Kawahara, M.: Superdistribution: the concept and the architecture. IEICE
TRANSACTIONS (1976–1990) 73(7), 1133–1146 (1990)

28. Kreuter, B., Mood, B., Shelat, A., Butler, K.: PCF: a portable circuit format for
scalable two-party secure computation. In: Proceedings of the USENIX Security
Symposium (2013)

29. Libicki, M., Tkacheva, O., Feng, C., Hemenway, B.: Ramifications of DARPA’s
PROCEED Program. RAND, Santa Monica (2014)

http://dx.doi.org/10.1007/978-3-319-26823-1_15
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.trustedcomputinggroup.org/resources/tpm_library_specification

Using Intel Software Guard Extensions for Efficient Two-Party SFE 317

30. Lie, D., Thekkath, C., Mitchell, M., Lincoln, P., Boneh, D., Mitchell, J., Horowitz,
M.: Architectural support for copy and tamper resistant software. ACM SIGPLAN
Not. 35(11), 168–177 (2000)

31. Lindell, Y., Riva, B.: Blazing fast 2PC in the offline/online setting with security
for malicious adversaries. In: Proceedings of the 2015 ACM SIGSAC Conference
on Computer and Communications Security. ACM (2015)

32. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay-a secure two-party compu-
tation system. In: Proceedings of the USENIX Security Symposium (SECURITY
2004) (2004)

33. Martin, R., Demme, J., Sethumadhavan, S.: Timewarp: rethinking timekeeping and
performance monitoring mechanisms to mitigate side-channel attacks. In: Proceed-
ings of the 39th Annual International Symposium on Computer Architecture ISCA
2012, pp. 118–129. IEEE Computer Society, Washington, DC (2012)

34. McCune, J.M., Parno, B.J., Perrig, A., Reiter, M.K., Isozaki, H.: Flicker: an exe-
cution infrastructure for TCB minimization. ACM SIGOPS Oper. Syst. Rev. 42,
315–328 (2008)

35. Mood, B., Gupta, D., Butler, K., Feigenbaum, J.: Reuse it or lose it: more efficient
secure computation through reuse of encrypted values. In: Proceedings of the ACM
SIGSAC Conference on Computer and Communications Security (2014)

36. Mood, B., Gupta, D., Carter, H., Butler, K., Traynor, P.: Frigate: a validated,
extensible, and efficient compiler and interpreter for secure computation. In: Pro-
ceedings of the 1st IEEE European Symposium on Security and Privacy (2016)

37. Mood, B., Letaw, L., Butler, K.: Memory-efficient garbled circuit generation for
mobile devices. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 254–268.
Springer, Heidelberg (2012)

38. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: the
case of AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1–20.
Springer, Heidelberg (2006)

39. Owusu, E., Guajardo, J., McCune, J., Newsome, J., Perrig, A., Vasudevan, A.:
OASIS: On achieving a sanctuary for integrity and secrecy on untrusted plat-
forms. In: Proceedings of the 2013 ACM SIGSAC Conference on Computer and
Communications Security, pp. 13–24. ACM (2013)

40. Perry, J., Gupta, D., Feigenbaum, J., Wright, R.N.: Systematizing secure compu-
tation for research and decision support. In: Abdalla, M., De Prisco, R. (eds.) SCN
2014. LNCS, vol. 8642, pp. 380–397. Springer, Heidelberg (2014)

41. Santos, N., Raj, H., Saroiu, S., Wolman, A.: Using arm trustzone to build a trusted
language runtime for mobile applications. ACM SIGARCH Comput. Archit. News
42, 67–80 (2014)

42. Schuster, F., Costa, M., Fournet, C., Gkantsidis, C., Peinado, M., Mainar-Ruiz,
G., Russinovich, M.: Vc 3: trustworthy data analytics in the cloud using SGX. In:
36th IEEE Symposium on Security and Privacy - S & P 2015. IEEE, New York
(2015)

43. Shelat, A., Shen, C.: Two-output secure computation with malicious adversaries.
In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 386–405.
Springer, Heidelberg (2011)

44. Smith, S.W., Weingart, S.: Building a high-performance, programmable secure
coprocessor. Comput. Netw. 31(8), 831–860 (1999)

45. Standaert, F.-X., Rouvroy, G., Quisquater, J.-J., Legat, J.-D.: Efficient implemen-
tation of Rijndael encryption in reconfigurable hardware: improvements and design
tradeoffs. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779,
pp. 334–350. Springer, Heidelberg (2003)

318 D. Gupta et al.

46. Stefanov, E., Van Dijk, M., Shi, E., Fletcher, C., Ren, L., Yu, X., Devadas, S.:
Path oram: an extremely simple oblivious RAM protocol. In: Proceedings of the
2013 ACM SIGSAC Conference on Computer and Communications Security, pp.
299–310. ACM (2013)

47. Suh, G.E., Clarke, D., Gassend, B., Van Dijk, M., Devadas, S.: Aegis: architecture
for tamper-evident and tamper-resistant processing. In: Proceedings of the 17th
Annual International Conference on Supercomputing, pp. 160–171. ACM (2003)

48. Vipindeep, V., Jalote, P.: List of common bugs and programming practices to avoid
them (2005)

49. Winter, J.: Trusted computing building blocks for embedded Linux-based arm
trustzone platforms. In: Proceedings of the 3rd ACM Workshop on Scalable Trusted
Computing, pp. 21–30. ACM (2008)

50. Yao, A.C.: Protocols for secure computations. In: Proceedings of the IEEE Sym-
posium on Foundations of Computer Science (FOCS 1982) (1982)

CallForFire: A Mission-Critical Cloud-Based
Application Built Using the Nomad Framework

Mamadou H. Diallo(B), Michael August, Roger Hallman, Megan Kline,
Henry Au, and Vic Beach

US Department of Defense, SPAWAR Systems Center Pacific, San Diego, USA
{mamadou.h.diallo,michael.august,roger.hallman,megan.kline,henry.au,

vic.beach}@navy.mil

Abstract. In this demo paper we describe CallForFire, a GIS-based
mission-critical defense application that can be deployed in the cloud.
CallForFire enables secure computation of enemy target locations and
selection of firing assets. It is built using the Nomad framework, which
enables the development of secure cloud-based applications. Our exper-
imental results validate the feasibility of this application within the
Nomad framework.

1 Introduction

Cloud computing provides many benefits for organizations, including improved
IT cost efficiencies, scalability, flexibility, and accessibility. However, the con-
fidentiality of data stored within public clouds is not guaranteed due to the
multiple cloud security threats identified by the Cloud Security Alliance [2] as
well as other surveys [1]. As a result, organizations with sensitive data, especially
government agencies, are hesitant to make use of public clouds.

Various technologies have been suggested to address the security concerns
associated with storing and processing sensitive data in off-premise public
clouds. One such technology is Fully Homomorphic Encryption (FHE), which
enables computations to be performed directly on encrypted data. Over the past
few years, the cryptographic research community has introduced efficient FHE
schemes [5,9]. The Nomad Framework [4] takes advantage of these efficiencies,
thereby enabling developers to build applications that leverage FHE for secure
computation.

In this demo paper, we describe CallForFire, a prototype cloud-based appli-
cation that uses the Nomad framework to implement the “Call for Indi-
rect/Supporting Fire” protocol [7]. Nomad’s underlying storage system is a
FHE-based key/value store, which enables storage, computation, and retrieval
of encrypted data in the cloud. The use of FHE ensures the confidentiality of the
data that is stored and processed in the cloud by mission-critical applications.
Nomad uses HElib, an open source FHE library [6] that implements the Brak-
erski, Gentry, and Vaikuntanathan (BGV) FHE scheme [3]. While CallForFire
runs slowly due to the intensive FHE operations, the experimental results show
that it is feasible for interactive applications.
c© International Financial Cryptography Association 2016
J. Clark et al. (Eds.): FC 2016 Workshops, LNCS 9604, pp. 319–327, 2016.
DOI: 10.1007/978-3-662-53357-4 21

320 M.H. Diallo et al.

2 Nomad Framework Overview

The Nomad framework provides building blocks for ensuring the confidential-
ity of the data stored and processed in the cloud by using FHE. It abstracts
out the underlying mechanisms for protecting the data so that developers can
focus on building the value-added capabilities of their applications. This frame-
work has the benefits of speeding up and simplifying the development of secure
applications deployed in the cloud.

Nomad is designed using the client/server architecture paradigm. The design
is modular, which enables extensibility and customization of the framework.
The architecture of the framework is depicted in Fig. 1, which is composed of
two main components: the Client Management Service and the Cloud Storage
Service. It is assumed that the Client Management Service will be deployed in
a trusted infrastructure, and that insider attacks are still a threat. The Cloud
Storage Service is assumed to be deployed in a semi-trusted cloud infrastructure.
In the following sections, we describe the Client Management Service, the Cloud
Storage Service, and the Operational Overview of Nomad.

Fig. 1. Nomad framework high-level architecture

2.1 Client Management and Storage Services

The Client Management Service provides both the client management and graph-
ical user interfaces for the system. It consists of multiple components (see Fig. 1).
The Client Management Engine orchestrates the client operations, which include
encryption, decryption, homomorphic arithmetic operations, key generation, and
key management. The client-side FHE Processing Engine is used for encrypting
and decrypting the application’s data. In order to store the data in the FHE-
based storage, the following steps are performed: (1) homomorphic encryption is
performed on the data using the public key, and (2) the public key is sent along
with the ciphertext to the server for storage. Note that the public key is needed
by the server-side FHE Processing Engine in order to perform re-encryption

CallForFire: A Mission-Critical Cloud-Based Application 321

(i.e. bootstrapping) and operations on the ciphertext. The Public/Private Key
Store persists both the public and private keys associated with each user of the
system. The client-side FHE Key Manager is responsible for generating pub-
lic/private key pairs, storing/retrieving them in the Public/Private Key Store,
and encrypting/decrypting data. The Client API is used for exposing these ser-
vices to applications, and the Cloud Monitor GUI is used for monitoring the
resource usage of the virtual machines in the cloud.

The Cloud Storage Service enables the deployment of trusted storage and
computation services within a semi-trusted cloud environment. The Cloud Stor-
age Engine orchestrates all of the operations of the Cloud Storage Service
and provides the server-side interface to the storage system. The cloud service
provider’s underlying hypervisor generates and manages the Virtual Machines
(VMs) which host Nomad’s cloud services. The Monitor collects the resource
usage of each VM periodically and stores it in the Dom Stats DB (i.e., the
domain statistics database). The server-side FHE Processing Engine is used for
processing the homomorphically encrypted data, and stores the results along
with the original ciphertexts in the Ciphertext Store. The server-side FHE Key
Manager keeps track of the public keys used to encrypt the data.

2.2 Nomad Operational Overview

The operations performed by the Nomad framework include encryption/
decryption, storage, retrieval, deletion, and processing of the data. The Cloud
Storage Service functionality is exposed to the client application via the Client
API. The Client Management Service manages all of the keys, data, and oper-
ations on behalf of the client. At a high level, the client application data is
stored and processed in the cloud in encrypted form, then returned to the client
application and decrypted for display to the end-user. When first using the sys-
tem, the user must initialize the client and generate their own public/private
key pair (Keypublic, Keyprivate). Note that, in a deployment environment, key
generation must be done by a trusted third party, as it is done with current cer-
tificate authorities. Alternatively, key management/distribution could be done
using homomorphic encryption, as is being done by Porticor [10].

Data Storage Workflow. In this data storage workflow, we assume that each
user has a single public/private key pair used for encrypting and decrypting their
data.

1. System Initialization: Upon first using the system, the user sends a request
to the Client Management Engine to generate a public/private key tuple
(<IDuser,Keypublic,Keyprivate>). The Client Management Engine forwards
the request to the HE Key Manager to generate the key pair and store it in
the Public/Private Key Store. The Client Management Engine also sends the
tuple (< IDuser,Keypublic >) to the Cloud Storage Engine for later usage.
The Cloud Storage Engine calls on the HE Key Manager to store the tuple
(< IDuser,Keypublic >) in the Public Key Store.

322 M.H. Diallo et al.

2. The user initiates a request to store their Dataplaintext in the cloud storage.
3. The Client Management Engine submits a request to encrypt the data to get

the ciphertext (Enc(Dataplaintext,Keypublic) = Dataciphertext).
4. The Client Management Engine submits a request to the Cloud Storage

Engine to store the ID/data tuple (< IDuser, IDdata,Dataciphertext >).
5. The Cloud Storage Engine receives the storage request and calls on the HE

Processing Engine to store the data (IDuser, < IDdata,Dataciphertext >) in
the Ciphertext Store.

3 Application: Call For Fire

In this section, we describe the design of the CallForFire prototype. Defense
organizations may call for indirect/supporting fire during combat operations
when an infantry unit is impractical for engagement with a target. CallForFire
places the sensitive computations involved in calling for indirect or supporting
fire, specifically computation of a target location, into a secure, homomorphically
encrypted cloud environment.

In a tactical environment, the call for indirect/supporting fire procedure
involves multiple players. The Forward Observer (FO) observes an adversary
target, or “High Value Target” (HV T). The FO determines the Observer-
Target distance (OTdistance) and bearing (OTdirection) using technology such
as a laser range finder or other means. The FO then homomorphically encrypts
the (OTdistance, OTdirection) and transmits the information to the “Fire Direc-
tion Center” (FDC). Since the FO location is already known, the FDC uses the
FO’s position and the (OTdistance, OTdirection) to calculate the HV T location.
Once calculated, the information is sent to the “Firing Unit” (FU), which “fires
for effect” on the HV T . Note that the FDC is not fully trusted due to insider
threats, which is the main reason FHE is used to enforce the “need to know”
restriction. FHE is also needed to securely outsource the computation to the
cloud.

CallForFire uses the Military Grid Reference System (MGRS) [8] rather than
the more widely known latitude/longitude coordinate system. The reasons for
choosing MGRS are twofold: (1) it is the geocoordinate standard used by all
NATO militaries, and (2) all MGRS coordinates are alpha-numeric with letters
and integers which are easily handled by all FHE schemes. MGRS coordinates
consist of a grid zone designator (GZD)–a double digit integer followed by a
letter, a 100,000-meter square identifier (SQID)–two letters, followed by the
numerical location (easting and northing) within the 100,000 m2–both with the
same number of digits, which varies from 1 to 5 depending on the MGRS pre-
cision/resolution level. The lowest value 1 corresponds to precision level 10 km,
while the highest value 5 corresponds to precision level 1 m. The precision level
of 1 m is used in the CallForFire application. Given a reference point, distance,
and bearing, the numerical location of any position can be computed.

To compute the HV T location in MGRS, it is assumed that the GZD and
SQID are known. Also assumed is that the FO location within the 100,000-
meter square is known and the HV T is within the same square. Let FOeasting

CallForFire: A Mission-Critical Cloud-Based Application 323

and FOnorthing be the FO’s easting and northing. Similarly, let HV Teasting and
HV Tnorthing be the HV T ’s easting and northing. The OTdirection, θ, is refer-
enced from 0◦ north, moving clockwise. Note that the trigonometric function
values are pre-computed to four decimal places, appropriately scaled for com-
putation as integers, and then stored in the FHE-based storage. The HV T ’s
location is calculated as follows:

HV Teasting = FOeasting + OTdistance × sin(θ)

HV Tnorthing = FOnorthing + OTdistance × cos(θ)

Initially, CallForFire was tested using only a single FO and HV T [4]. In an
actual combat environment, there are likely to be multiple FOs, HV T s, and
FUs, and a single FDC would need to process many calls for indirect/supporting
fire simultaneously. Therefore, CallForFire has been expanded to handle multiple
FOs requesting indirect/supporting fire on adversary HV T s, and selectively
assigning the HV T s to different FUs based on predefined criteria (i.e. firing asset
selection). The firing asset selection process involves computing the distances
between all FUs and a given HV T , and selecting which FU to direct fire on
the HV T . In a real world scenario, asset selection would consist of more criteria
than just the distance between the FU and the HV T . It will be assumed that
the positions of the FOs and FUs will be known to the FDC. Multiple FOs
may call for fire support on the same HV T . The distance is calculated as follows:

Distance2FU−HV T = (FUeasting −HV Teasting)2 + (FUnorthing −HV Tnorthing)2

Figure 2 is a screenshot of the actual CallForFire GUI in a web browser. It shows
an example scenario with the following players: 1 FDC, 4 FOs, 5 FUs, and 3

Fig. 2. Screenshot of the CallForFire application in a web browser.

324 M.H. Diallo et al.

HV T s. In this scenario, the FDC has computed the locations of the three HV T s
using the information given by the FOs. It has also selected the nearest FU for
each HV T as indicated by the lines between them on the map.

CallForFire Operational Workflow. The CallForFire operational workflow
describes how the call for indirect/supporting fire procedure is simulated by the
CallForFire application. Nomad currently supports the following integer opera-
tions in the encrypted domain: addition, subtraction, multiplication, and nega-
tion. For this simple scenario, we assume that all locations (except the FDC)
are inside of the same MGRS zone.

1. The FO detects an HVT in the field, estimates its distance and bearing, and
enters the data into the FO client application.

2. The FO client application uses the FDC public key to homomorphically
encrypt the FO ’s location (easting and northing) and the HVT ’s distance
and bearing, and sends them to the FDC.

3. The FDC outsources the computation of the HVT ’s location to the Nomad
cloud service by sending the homomorphically encrypted FO ’s location, the
HVT ’s bearing and distance, and locations of the available FUs over to the
cloud.

4. The cloud homomorphically computes the HVT ’s absolute location and
selects the nearest FU to direct fire on the HVT.

5. The cloud sends the HVT ’s location and FU selection back to the FDC.
6. The FDC decrypts the HVT ’s location and the FU selection, then makes the

final decision to initiate the firing operation.
7. The FDC encrypts the HVT ’s location using the FU public key and sends

the firing command to the selected FU.
8. The selected FU decrypts the HVT ’s location and directs fire on the HVT.

4 Implementation and Experiments

The Nomad framework is designed to be modular and extensible, using Thrift
as the underlying client/server framework. This enables an open architecture,
allowing developers to extend the framework, including using different hyper-
visors for virtual machine management, and choosing different key/value stores
for back-end storage. We used Xen as the underlying hypervisor and LevelDB as
the key/value store. We implemented the GPGPU-based acceleration technique
as described in [4], which uses the Nvidia CUDA programming platform, for a
limited number of subroutines. For the Client Management Service, we used the
CppCMS web development framework to integrate the different C++ libraries
including HElib, Thrift, LevelDB, and Nvidia CUDA. We used OpenLayers as
the mapping technology for visualizing the information.

We have extended the CallForF ire application, which was originally
described in [4]. The extension of the application allows us to examine the perfor-
mance improvement resulting from HElib batching of operations. In this exten-
sion, we have increased the number of Forward Observers (FOs), Firing Units

CallForFire: A Mission-Critical Cloud-Based Application 325

(FUs), and observed targets (HV Ts). We compute the locations of all the HV Ts
using the information given by the FOs. Once the locations of all the HV Ts are
known, then we identify which FU to assign to each HV T . This determination
is based on the distance between the HV T and the FU . We can then compare
the performance between batched and non-batched (individual) calculations. We
performed experiments to analyze the performance of CallForF ire with respect
to the overhead associated with Computation, Storage, and Data Transmission.
We ignored the latency between browser and server.

HElib uses the following main parameters: R (number of rounds), p (plaintext
base), r (lifting), d (degree of the field extension), c (number of columns in
the key-switching matrices), k (security parameter), L (number of levels in the
modulus chain), s (minimum number of slots), and m (modulus). For all the
experiments, the following parameters are fixed: R = 1, r = 1, d = 1, c = 2, and
s = 0. We adjusted the parameters p and k in order to evaluate the performance
tradeoffs associated with having a larger integer space and a higher security
level, respectively. The parameters L and m are automatically generated by
HElib based on the other parameters.

The experiments were performed using two HP Z420 desktops with 16 GB
RAM and 500 GB storage, and one MacBook Pro with 2.6 GHz Intel Core i7, 16
GB RAM, and 500 GB storage. The setup is as follows: FO (MacBook), FDC
(Z420), Cloud (Z420).

Table 1. Average computation overhead in sec. with fixed p=9576890767 (10 digits)

k: Security parameter 80 (L=11, m=11021) 100 (L=11, m=12403) 120 (L=11, m=13019)

Type Individual Batched Individual Batched Individual Batched

Location encryption 702.3990 63.0778 782.6890 71.8735 831.9190 77.1963

Location decryption 600.7040 165.2790 692.3490 217.0520 760.9390 217.0620

Location computation 212.1974 21.3238 221.7478 27.3559 237.1199 23.2551

Distance computation 271.2946 26.3864 283.7557 28.7946 331.0418 33.2885

Storing location 2.4743 0.2498 2.7999 0.2847 2.8119 0.2824

Retrieving location 16.3833 1.5589 18.0937 1.8003 21.8311 1.9645

CallForFire Computation Overhead. To measure the computation over-
head, we performed two sets of computations: (1) calculation of the HV T ’s
location and, (2) firing asset selection. In the HV T location calculation, we
measured the time it took to homomorphically encrypt 10 individual locations
consisting of 6 parameters (GZD, SQID, FOeasting, FOnorthing, OTdistance,
OTdirection) each, computed the numerical location (easting and northing) of
the HV T for each FO, and decrypted the HV T locations. We also measured
the time it took to store and retrieve 10 encrypted locations from the storage.
In the firing asset selection, we measured the time it took to compute the dis-
tance between 10 FUs and 10 HV Ts pairewise. We repeated both experiments
100 times and computed the averages. Tables 1 and 2 summarizes the results of

326 M.H. Diallo et al.

Table 2. Average computation overhead in sec. with Fixed p=1000000000039 (13
digits)

k: Security parameter 80 (L=12, m=11639)100 (L=12, m=12851)120 (L=12, m=14279)

Type IndividualBatched IndividualBatched IndividualBatched

Location encryption 818.4560 72.2017 850.1300 72.3850 939.4530 84.5170

Location decryption 696.9510 181.3630 738.4030 220.9120 931.8070 303.4390

Location computation 227.4829 23.1525 253.9844 25.3798 262.6284 26.6340

Distance computation 287.5192 28.1036 295.7541 27.7043 354.8627 34.4122

Storing location 2.5129 0.2454 2.7538 0.2922 3.1536 0.3925

Retrieving location 16.5563 1.7040 18.2733 1.9397 20.7723 2.1635

these experiments and gives a comparison between the performance of individual
and batched operations. When performing operations in batched mode, an input
array with multiple elements is passed in to the storage system. The homomor-
phic encryption operations can then be performed on all of the elements of the
array within the same operation. With individual operations, one data element
(i.e. an integer) is placed into the input array, which is then passed to the storage
system. Based on the results of these experiments, it is best to use batch mode
when possible, which can reduce the overhead significantly.

Transmission and Storage Overhead. For the transmission and storage
overhead, we measured the time it took for the FO to encrypt and transmit the
location information to the FDC, and for the FDC to store the information in
its database. We considered scenarios for 100 FOs and calculated the averages.
The time it takes to transmit an encrypted location and store it in the database is
about 22 times longer than when the location is not encrypted. For the storage
space overhead, the average space used to store a location using HE is 8.96
megabytes, whereas the average for a location without using HE is 17.6 bytes.
This significant storage space overhead is a limitation common to all lattice-
based homomorphic encryption schemes.

5 Conclusion

In this paper, we presented CallForFire, a cloud-based mission-critical defense
application built using the Nomad framework. CallForFire takes advantage of
Nomad’s Cloud Storage Service to encrypt and compute enemy target locations
in the battlefield. In order to accelerate FHE operations, we investigated the
use of GPGPU programming techniques to parallelize some of the HElib sub-
routines. Our preliminary results show some improvement in the performance
of HElib. While the overall performance of HElib may still be impractical for
many applications, certain interactive applications, such as CallForFire, can still
make use of HElib in a limited context to enhance data confidentiality. Further

CallForFire: A Mission-Critical Cloud-Based Application 327

development of HE libraries such as HElib will likely accelerate the adoption of
cloud computing by organizations with sensitive data.

References

1. GCN: Like it or not, cloud computing is here to stay (2011). http://gcn.com/
microsites/2011/cloud-computing-download/cloud-computing-application-develop
ment.aspx

2. Alliance, C.S.: The notorious nine: cloud computing top threats in 2013. In: Top
Threats Working Group (2013)

3. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: Fully homomorphic encryption
without bootstrapping. Cryptology ePrint Archive, Report 2011/277 (2011)

4. Diallo, M.H., August, M., Hallman, R., Kline, M., Au, H., Beach, V.: Nomad: a
framework for developing mission-critical cloud-based applications. In: 10th Inter-
national Conference on Availability, Reliability and Security, ARES, Toulouse,
France, 24–27 August 2015

5. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of
the Forty-first Annual ACM Symposium on Theory of Computing, STOC 2009.
ACM (2009)

6. Halevi, S., Shoup, V.: Design and implementation of a homomorphic-encryption
library (2013)

7. Headquarters, Department of the Army: Tactics, Techniques, and Procedures for
Observed Fire, Field Manual 6-30 (1991)

8. Headquarters Department of the Army Washington, D.C: FM 3–25.26 Map Read-
ing and Land Navigation (2001)

9. Parmar, P.V., Padhar, S.B., Patel, S.N., Bhatt, N.I., Jhaveri, R.H.: Survey of
various homomorphic encryption algorithms and schemes. Int. J. Comput. Appl.
91(8), 26–32 (2014). Published by Foundation of Computer Science, New York,
USA, April 2014

10. Porticor: Securing data in the cloud (2013). https://www.porticor.com/
homomorphic-encryption/

http://gcn.com/microsites/2011/cloud-computing-download/cloud-computing-application-development.aspx
http://gcn.com/microsites/2011/cloud-computing-download/cloud-computing-application-development.aspx
http://gcn.com/microsites/2011/cloud-computing-download/cloud-computing-application-development.aspx
https://www.porticor.com/homomorphic-encryption/
https://www.porticor.com/homomorphic-encryption/

Cryptographic Solutions for Genomic Privacy

Erman Ayday(B)

Computer Engineering Department, Bilkent University,
06800 Bilkent, Ankara, Turkey
erman@cs.bilkent.edu.tr

Abstract. With the help of rapidly developing technology, DNA
sequencing is becoming less expensive. As a consequence, the research in
genomics has gained speed in paving the way to personalized (genomic)
medicine, and geneticists need large collections of human genomes to
further increase this speed. Furthermore, individuals are using their
genomes to learn about their (genetic) predispositions to diseases, their
ancestries, and even their (genetic) compatibilities with potential part-
ners. This trend has also caused the launch of health-related websites and
online social networks (OSNs), in which individuals share their genomic
data (e.g., OpenSNP or 23andMe). On the other hand, genomic data car-
ries much sensitive information about its owner. By analyzing the DNA
of an individual, it is now possible to learn about his disease predis-
positions (e.g., for Alzheimer’s or Parkinson’s), ancestries, and physical
attributes. The threat to genomic privacy is magnified by the fact that
a person’s genome is correlated to his family members’ genomes, thus
leading to interdependent privacy risks. In this work, focusing on our
existing and ongoing work on genomic privacy, we will first highlight
one serious threat for genomic privacy. Then, we will present the high
level descriptions of our cryptographic solutions to protect the privacy
of genomic data.

1 Kin Genomic Privacy

A recent New York Times’ article [1] reports the controversy about sequencing and
publishing, without the permission of her family, the genome of Henrietta Lacks
(who died in 1951). On the one hand, the family members think that her genome is
private family information and it should not be published without the consent of
the family. On the other hand, some scientists argued that the genomes of current
family members have changed so much over time (due to gene mixing during repro-
duction), that nothing accurate could be told about the genomes of current family
members by using Henrietta Lacks’ genome. As we shown in [10] (that we briefly
describe in the latter), they are wrong. Minutes after Henrietta Lacks’ genome
was uploaded to a public website called SNPedia, researchers produced a report
full of personal information about Henrietta Lacks. Later, the genome was taken
offline, but it had already been downloaded by several people, hence both her and
(partially) the Lacks family’s genomic privacy was already lost.

c© International Financial Cryptography Association 2016
J. Clark et al. (Eds.): FC 2016 Workshops, LNCS 9604, pp. 328–341, 2016.
DOI: 10.1007/978-3-662-53357-4 22

Cryptographic Solutions for Genomic Privacy 329

Unfortunately, the Lacks, even though possibly the most publicized family fac-
ing this problem, are not the only family facing this threat. Genomes of thousands
of individuals are available online. Once the identity of a genome donor is known,
an attacker can learn about his relatives (or his family tree) by using an auxiliary
side channel, such as an OSN, and infer significant information about the DNA
sequences of the donor’s relatives. We will show the feasibility of such an attack
and evaluate the privacy risks by using publicly available data on the Web.

Although the researchers took Henrietta Lacks’ genome offline from SNPe-
dia, other databases continue to publish portions of her genomic data. Publish-
ing only portions of a genome does not, however, completely hide the unpub-
lished portions; even if a person reveals only a part of his genome, other parts
can be inferred using the statistical relationships between the nucleotides in his
DNA. For example, James Watson, co-discoverer of DNA, made his whole DNA
sequence publicly available, with the exception of one gene known as Apolipopro-
tein E (ApoE), one of the strongest predictors for the development of Alzheimer’s
disease. However, later it was shown that the correlation (called linkage disequi-
librium by geneticists) between one or multiple polymorphisms and ApoE can
be used to predict the ApoE status [13]. Thus, an attacker can also use these sta-
tistical relationships (which are publicly available) to infer the DNA sequences
of a donor’s family members, even if the donor shares only part of his genome. It
is important to note that these privacy threats not only jeopardize kin genomic
privacy, but, if not properly addressed, these issues could also hamper genomic
research due to untimely fear of potential misuse of genomic information.

In this work, we evaluate the genomic privacy of an individual threatened
by his relatives revealing their genomes. Focusing on the most common genetic
variant in human population, single nucleotide polymorphism (SNP), and con-
sidering the statistical relationships between the SNPs on the DNA sequence,
we quantify the loss in genomic privacy of individuals when one or more of their
family members’ genomes are (either partially or fully) revealed.1 To achieve this
goal, first, we design a reconstruction attack based on a well-known statistical
inference technique. The computational complexity of the traditional ways of
realizing such inference grows exponentially with the number of SNPs (which
is on the order of tens of millions) and relatives. Therefore, in order to infer
the values of the unknown SNPs in linear complexity, we represent the SNPs,
family relationships and the statistical relationships between SNPs on a fac-
tor graph and use the belief propagation algorithm [12,14] for inference. Then,
using various metrics, we quantify the genomic privacy of individuals and show
the decrease in their level of genomic privacy caused by the published genomes
of their family members. We also quantify the health privacy of the individuals
by considering their (genetic) predisposition to certain serious diseases. We eval-
uate the proposed inference attack and show its efficiency and accuracy by using
real genomic data of a pedigree. Figure 1 gives an overview of the framework.

1 SNPs carry privacy-sensitive information about individuals’ health. Recent discover-
ies show that the susceptibility of an individual to several diseases can be computed
from his SNPs.

330 E. Ayday

GPPM

Adversary’s Background Knowledge
Familial relationships gathered from
social networks or genealogy websites

Reconstructi
on

A
tt
ack

(Inference)

G
enom

ic-Privacy
Q
uanti

ficati
on

H
ealth-Privacy

Q
uanti

ficati
on

Linkage disequilibrium values:
Matrix of pairwise joint prob.

Actual genomic sequences Observed genomic sequences

Decision

Rules
ofm

eiosis

SN
P
j

SNP i

Minor allele
frequencies

SNP i

AG CT AA GC AT … AC

AG CC AC GC AT … AA

AG CT AA CC TT … AC

… …

m SNPs

AG __ AA __ AT … __

__ __ __ __ __ … __

__ CT AA __ __ … AC

…

m SNPs

…

Fig. 1. Overview of the proposed framework to quantify kin genomic privacy. Each
vector Xi (i ∈ {1, . . . , n}) includes the set of SNPs for an individual in the targeted
family. Furthermore, each letter pair in Xi represents a SNP xi

j ; and for simplicity, each
SNP xi

j can be represented using {BB,Bb, bb} (or {0, 1, 2}). Linkage disequilibrium
(LD) can be thought as a correlation between two variables (SNPs) and minor allele
frequency can be considered as the probability of observing a SNP in the population.
Once the health privacy is quantified, the family should ideally decide whether to
reveal less or more of their genomic information through the genomic-privacy preserving
mechanism (GPPM).

In a nutshell, the goal of the adversary is to infer the unknown (unobserved)
SNPs of a member (or multiple members) of a targeted family. For the evaluation,
we use the CEPH/Utah Pedigree 1463 that contains the partial DNA sequences
of 17 family members (4 grandparents, 2 parents, and 11 children) [7]. As shown
in Fig. 2 that we only use 5 (out of 11) children for our evaluation.

We consider 100 SNPs on chromosome 1. We define a target individual from
the CEPH family and sequentially reveal other family members’ SNPs (excluding
the target individual) to observe the decrease in the genomic privacy of the
target individual. We start revealing from the most distant family members
to the target individual (in terms of number of hops in Fig. 2) and we keep
revealing relatives until we reach his/her closest family members.2 We observe
that individuals sometimes reveal different parts of their genomes (e.g., different
sets of SNPs) on the Internet. Thus, we assume that for each family member
(except for the target individual), the adversary observes 50 random SNPs out of
100 only, and these sets of observed SNPs are different for each family member.
In Fig. 3, we show the evolution of genomic privacy of one target individual
(P5). We quantify the genomic privacy based on (i) attackers in correctness (red
plot), (ii) attacker’s uncertainty (green plot), and (iii) an entropy-based metrics
that quantifies the mutual dependence between the hidden genomic data that

2 The exact sequence of the family members (whose SNPs are revealed) is indicated
for each evaluation.

Cryptographic Solutions for Genomic Privacy 331

Fig. 2. Family tree of CEPH/Utah Pedigree 1463 consisting of the 11 family members
that were considered. The symbols ♂ and ♀ represent the male and female family
members, respectively.

0 GP3 GP4 P6 C7 C8 C9 C10 C11 GP1 GP2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Revealed relatives

Pr
iv

ac
y

le
ve

l

Parent P5’s privacy
Estimation error (w/o LD)

Estimation error (with LD)

Normalized entropy (w/o LD)

Normalized entropy (with LD)

1 − mutual info. (w/o LD)

1 − mutual info. (with LD)

Fig. 3. Evolution of the genomic privacy of the parent (P5), with and without con-
sidering LD. For each family member, we reveal 50 randomly picked SNPs (out of
100 SNPs on chromosome 1), starting from the most distant family members, and the
x-axis represents the exact sequence of this disclosure. Note that x = 0 represents the
prior distribution, when no genomic data is revealed.

the adversary is trying to reconstruct (blue plot). We observe that LD decreases
genomic privacy, especially when few individuals’ genomes are revealed. As more
family member’s genomes are observed, LD has less impact on the genomic
privacy.

As we already mentioned, the Lacks family is just one (albeit famous) exam-
ple. In the future (and already today), people of the same family might have
very different opinions on whether to reveal genomic data, and this can lead
to disagreement: relatives might have divergent perceptions of possible conse-
quences. It is high time for the security research community to prepare itself for

332 E. Ayday

this formidable challenge. The genetic community is highly concerned about the
fact that the proliferation of negative stories could potentially lead to a nega-
tive perception by the population and to tighter laws, thus hampering scientific
progress in this field.

2 Solutions for Genomic Privacy

In order to prevent some of the aforementioned threats on the privacy of genomic
data, we proposed several solutions to protect the privacy of such data in various
domains. In this part, we summarize some of those efforts by focusing on privacy-
preserving use of genomic data in personalized medicine and post-quantum pri-
vacy for storage of genomic data, and protecting kin genomic privacy.

2.1 Private Use of Genomic Data in Personalized Medicine

As we have shown in [5], our goal is to protect the privacy of users’ genomic data
while enabling medical units to access the genomic data in order to conduct
medical tests or develop personalized medicine methods. In a medical test, a
medical unit checks for different health risks (e.g., disease susceptibilities) of a
user by using specific parts of his genome. Similarly, to provide personalized
medicine, a pharmaceutical company tests the compatibility of a user with a
particular medicine. It is important to note that these genetic tests are currently
done by different types of medical units, and the tools we propose in this work
aim to protect the genomic privacy of the patients in such tests. In both medical
tests and personalized medicine methods, in order to preserve his privacy, the
user does not want to reveal his complete genome to the medical unit or to the
pharmaceutical company. In addition, in some scenarios, it is the pharmaceutical
companies who do not want to reveal the genetic properties of their drugs. To
achieve these goals, we introduce the privacy-preserving disease susceptibility
test (PDS).

Most medical tests and personalized medicine methods (that use genomic
data) involve a patient and a medical unit. In general, the medical unit can be
a physician in a medical center (e.g., hospital), a pharmacist, a pharmaceutical
company, or a medical council. In this study, we consider the existence of a
malicious entity in the medical unit as the potential attacker. That is, a medical
unit might contain a disgruntled employee or it can be hacked by an intruder
that is trying to obtain private genomic information about a patient (for which
it is not authorized).

In addition, extreme precaution is needed for the storage of genomic data
due to its sensitivity. Thus, we claim that a storage and processing unit (SPU)
should be used to store the genomic data. We assume that the SPU is more
“security-aware” than a medical unit, hence it can protect the stored genomic
data against a hacker better than a medical unit (yet, attacks against the SPU
cannot be ruled out, as we discuss next). Recent medical data breaches from
various medical units also support this assumption. Furthermore, instead of every

Cryptographic Solutions for Genomic Privacy 333

medical unit individually storing the genomic data of the patients (in which case
patients need to be sequenced by several medical units and their genomic data
will be stored at several locations), a medical unit can retrieve the required
genomic data belonging to a patient directly from the SPU. We note that a
private company (e.g., cloud storage service), the government, or a non-profit
organization could play the role of the SPU.

We assume that the SPU is an honest organization, but it might be curious.
In other words, the SPU honestly follows the protocols and provides correct infor-
mation to the other parties, however, a curious party at the SPU could access
or infer the stored genomic data. Further, it is possible to identify a person only
from his genomic data via phenotyping, which determines the observable phys-
ical or biochemical characteristics of an organism from its genetic makeup and
environmental influences. Therefore, genomic data should be stored at the SPU
in encrypted form. Similarly, apart from the possibility of containing a malicious
entity, the medical unit honestly follows the protocols. Thus, we assume that the
medical unit does not make malicious requests from the SPU. We consider the
following models for the attacker:

• A curious party at the SPU (or a hacker who breaks into the SPU), who
tries to infer the genomic sequence of a patient from his stored genomic data.
Such an attacker can infer the variants (i.e., nucleotides that vary between
individuals) of the patient from his stored data.

• A semi-honest entity in the medical unit, who can be considered either as an
attacker that hacks into the medical unit’s system or a disgruntled employee
who has access the medical unit’s database. The goal of such an attacker is
to obtain private genomic data of a patient for which it is not authorized.
The main resource of such an attacker is the results of the genetic tests the
patient undergoes.

For the simplicity of presentation, in the rest of this section, we will focus
on a particular medical test (namely, computing genetic disease susceptibility).
Similar techniques would apply for other medical tests and personalized medicine
methods. In a typical genetic disease-susceptibility test, a medical center (MC)
wants to check the susceptibility of a patient (P) for a particular disease X (i.e.,
the probability that patient P will develop disease X) by analyzing particular
SNPs of the patient.3

For each patient, we propose to store only the real SNPs (around 4 million
SNP positions on the DNA at which the patient has a mutation) at the SPU.
At this point, it can be argued that these 4 million real SNPs (nucleotides)
could be easily stored on the patient’s computer or mobile device, instead of at
the SPU. However, we assert that this should be avoided due to the following
issues. On one hand, types of variations in human population are not limited to
SNPs, and there are other types of variations such as copy-number variations
3 In this study, we only focus on the diseases which can be analyzed using the SNPs. We
admit that there are also other diseases which depend on other forms of mutations
or environmental factors.

334 E. Ayday

(CNVs), rearrangements, or translocations, consequently the required storage
per patient is likely to be considerably more than only 4 million nucleotides.
This high storage cost might still be affordable (via desktop computers or USB
drives), however, the genomic data of the patient should be available any time
(e.g., for emergencies), thus it should be stored at a reliable source such as the
SPU. On the other hand, leaving the patient’s genomic data in his own hands and
letting him store it on his computer or mobile device is risky, because his mobile
device can be stolen or his computer can be hacked. It is true that the patient’s
cryptographic keys (or his authentication material) to access his genomic data
at the SPU can also be stolen, however, in the case of a stolen cryptographic
key, his genomic data (which is stored at the SPU) will still be safe. This can be
considered like a stolen credit card issue. If the patient does not report that his
keys are compromised as soon as possible, his genomic data can be accessed by
the attacker.

It is important to note that protecting only the states (contents) of the
patient’s real SNPs is not sufficient in terms of his genomic privacy. As the
real SNPs are stored at the SPU, a curious party at the SPU can infer the
nucleotides corresponding to the real SNPs from their positions and from the
correlation between the patient’s potential SNPs and the real ones. That is, by
knowing the positions of the patient’s real SNPs, the curious party at the SPU
will at least know that the patient has one or two minor alleles at these SNP
positions (i.e., it will know that the corresponding SNP position includes either
a real homozygous or heterozygous SNP), and it can make its inference stronger
using the correlation between the SNPs. Therefore, we propose to encrypt both
the positions of the real SNPs and their states. We assume that the patient
stores his cryptographic keys (public-secret key pair for asymmetric encryption,
and symmetric keys between the patient and other parties) on his smart card
(e.g., digital ID card). Alternatively, these keys can be stored at a cloud-based
password manager and retrieved by the patient when required.

In short, the whole genome sequencing is done by a certified institution (CI)
with the consent of the patient. Moreover, the real SNPs of the patient and their
positions on the DNA sequence (or their unique IDs) are encrypted by the same
CI (using the patient’s public and symmetric key, respectively) and uploaded to
the SPU, so that the SPU cannot access the real SNPs of the patient (or their
positions). We are aware that the number of discovered SNPs increases with
time. Thus, the patient’s complete DNA sequence is also encrypted as a single
vector file (via symmetric encryption using the patient’s symmetric key) and
stored at the SPU, thus when new SNPs are discovered, these can be included
in the pool of the previously stored SNPs of the patient. We also assume the
SPU not to have access to the real identities of the patients and data to be
stored at the SPU by using pseudonyms; this way, the SPU cannot associate the
conducted genetic tests to the real identities of the patients.

Depending on the access rights of the MC, either (i) the MC computes Pr(X),
the probability that the patient will develop disease X by checking a subset of
the patient’s encrypted SNPs via homomorphic encryption techniques [6], or (ii)

Cryptographic Solutions for Genomic Privacy 335

the SPU provides the relevant SNPs to the MC (e.g., for complex diseases that
cannot be interpreted using homomorphic operations). These access rights are
defined either jointly by the MC and the patient, or directly by the medical
authorities. We note that homomorphic encryption lets the MC compute Pr(X)
using encrypted SNPs of patient P. In other words, the MC does not access P’s
SNPs to compute his disease susceptibility. We use a modification of the Paillier
cryptosystem [2,6] to support the homomorphic operations at the MC. We show
our proposed protocol in Fig. 4.

Fig. 4. Proposed privacy-preserving disease susceptibility test (PDS).

Following the steps in the figure, initially, the patient (P) provides his sample
(e.g., his blood or saliva) to the certified institution (CI) for sequencing. After
sequencing, the CI first determines the positions of P’s real SNPs and the set
positions at which P has real SNPs. Then, CI encrypts the SNPs (with Paillier
cryptosystem using the public key of the patients) and their positions (using the
symmetric key shared between the patient and the CI). Next, the CI sends the
encrypted SNPs and positions to the SPU and the patient provides a part of his
secret key (x(1)) to the SPU. This finalizes the initialization phase of the protocol.
Then, the MC wants to conduct a susceptibility test on P for a particular disease
X, and P provides the other part of his secret key (x(2)) to the MC. The MC tells
the patient the positions of the SNPs that are required for the susceptibility test
or requested directly as the relevant SNPs (but not the individual contributions
of these SNPs to the test). The patient encrypts each requested position with
the symmetric key and sends the SPU the encrypted positions of the requested
SNPs. Next, the SPU re-encrypts the requested SNPs and sends then to the MC.
MC computes P’s total susceptibility for disease X by using the homomorphic

336 E. Ayday

properties (i.e., homomorphic addition and multiplication with a constant) of the
modified Paillier cryptosystem. The MC sends the encrypted end-result to the
SPU. The SPU partially decrypts the end-result using x(1) by following a proxy
re-encryption protocol and sends it back to the MC. Finally, the MC decrypts
the message received from the SPU by using x(2) and recovers the end-result.

Even though this proposed approach provides a secure algorithm, there is
still a privacy risk in case the MC tries to infer the patient’s SNPs from the
end-result of a test. We also show that such an attack is indeed possible and one
way to prevent such an attack is to obfuscate the end-result before providing it
to the MC. Obviously, this causes a conflict between privacy and utility and this
conflict is still a hot research topic for genomic privacy.

In a follow up work [4], we also propose a system for protecting the pri-
vacy of individuals’ sensitive genomic, clinical, and environmental information,
while enabling medical units to process it in a privacy-preserving fashion in
order to perform disease risk tests. We introduce a framework in which individ-
uals’ medical data (genomic, clinical, and environmental) is stored at a storage
and processing unit (SPU) and a medical unit conducts the disease risk test
on the encrypted medical data by using homomorphic encryption and privacy-
preserving integer comparison. The proposed system preserves the privacy of the
individuals’ genomic, clinical, and environmental data from a curious party at
the SPU and from a malicious party (e.g., a hacker) at the medical unit when
computing the disease risk. We also implement the proposed system and show
its practicality via a complexity evaluation.

The general architecture of the proposed system is illustrated in Fig. 5. In
summary, the patient provides his sample for sequencing to the CI. Meanwhile,

(i
)

D
N

A
 s

am
pl

e

(i) Clinical and
Environmental data

(ii) Encrypted SNPs

(i
ii)

 D
is

ea
se

 R
is

k
C

om
pu

ta
ti

on

CERTIFIED
INSTITUTION (CI)

MEDICAL UNIT (MU)

STORAGE AND
PROCESSING UNIT (SPU)

PATIENT (P)

Fig. 5. Proposed system model for the privacy-preserving computation of the disease
risk.

Cryptographic Solutions for Genomic Privacy 337

he also provides his clinical and environmental data to the SPU and the MU.4

The CI is responsible for sequencing and encryption of the patient’s genomic
data. Then, the CI sends the encrypted genomic data to the SPU. Finally, the
privacy-preserving computation of the disease risk takes place between the MU
and the SPU.

2.2 Coping with Weak Passwords for the Protection
of Genomic Data

Appropriately designed cryptographic schemes can preserve the utility of data,
but they provide security based on assumptions about the computational limi-
tations of adversaries. Hence they are vulnerable to brute-force attacks when
these assumptions are incorrect or erode over time. Given the longevity of
genomic data, serious consequences can result. Compared with other types of
data, genomic data has especially long-term sensitivity. A genome is (almost)
stable over time and thus needs protection over the lifetime of an individual and
even beyond, as genomic data is correlated between the members of a single fam-
ily. It has been shown that the genome of an individual can be probabilistically
inferred from the genomes of his family members [10].

In many situations, though, particularly those involving direct use of data
by consumers, keys are weak and vulnerable to brute-force cracking even today.
This problem arises in systems that employ password-based encryption (PBE),
a common approach to protection of user-owned data. Users’ tendency to choose
weak passwords is widespread and well documented [8].

Recently, Juels and Ristenpart introduced a new theoretical framework for
encryption called honey encryption (HE) [11]. Honey encryption has the property
that when a ciphertext is decrypted with an incorrect key (as guessed by an
adversary), the result is a plausible-looking yet incorrect plaintext. Therefore,
HE gives encrypted data an additional layer of protection by serving up fake
data in response to every incorrect guess of a cryptographic key or password.
Notably, HE provides a hedge against brute-force decryption in the long term,
giving it a special value in the genomic setting.

However, HE relies on a highly accurate distribution-transforming encoder
(DTE) over the message space. Unfortunately, this requirement jeopardizes the
practicality of HE. To use HE in any scenario, we have to understand the corre-
sponding message space quantitatively, that is, the precise probability of every
possible message. When messages are not uniformly distributed, characterizing
and quantifying the distribution is a highly non-trivial task. Building an effi-
cient and precise DTE is the main challenge when extending HE to a real use
case, and it is what we do in this work. Hopefully, the techniques proposed in
this work are not limited to genomic data; they are intended to inspire those
who want to apply HE to other scenarios, typically when the data shares similar
characteristics with genomic data.
4 Depending on the privacy-sensitivity of the clinical and environmental data, the
patient can choose which clinical and environmental attributes to reveal to the MU,
and which ones to encrypt and keep at the SPU.

338 E. Ayday

As we have shown [9], we propose to address the problem of protecting
genomic data by combining the idea of honey encryption with the special char-
acteristics of genomic data in order to develop a secure genomic data storage
(and retrieval) technique that is (i) robust against potential data breaches, (ii)
robust against a computationally unbounded adversary, and (iii) efficient.

In the original HE paper [11], Juels and Ristenpart propose specific HE con-
structions that rely on existing generation algorithms (e.g. for RSA private keys),
or operate over very simple message distributions (e.g., credit card numbers).
These constructions, however, are inapplicable to plaintexts with considerably
more complicated structure, such as genomic data. Thus substantially new tech-
niques are needed in order to apply HE to genomic data. Additional complica-
tions arise when the correlation between the genetic variants (on the genome)
and phenotypic side information are taken into account. This work is devoted
mainly to addressing these challenges.

We propose a scheme called GenoGuard. In GenoGuard, genomic data is
encoded, encrypted under a patient’s password5, and stored at a centralized
biobank. We propose a novel tree-based technique to efficiently encode (and
decode) the genomic sequence to meet the special requirements of honey encryp-
tion. Legitimate users of the system can retrieve the stored genomic data by
typing their passwords.

A computationally unbounded adversary can break into the biobank pro-
tected by GenoGuard, or remotely try to retrieve the genome of a victim. The
adversary could exhaustively try all the potential passwords in the password
space for any genome in the biobank. However, for each password he tries (thanks
to our encoding phase), the adversary will obtain a plausible-looking genome
without knowing whether it is the correct one. We also consider the case when
the adversary has side information about a victim (or victims) in terms of his
physical traits. In this case, the adversary could use genotype-phenotype asso-
ciations to determine the real genome of the victim. GenoGuard is designed to
prevent such attacks, hence it provides protections beyond the normal guarantees
of HE.

We show the main steps of the GenoGuard protocol in Fig. 6. We represent
the patient and the user as two separate entities, but they can be the same
individual, depending on the application.

GenoGuard is highly efficient and can be used by the service providers that
offer DTC services (e.g., 23andMe) to securely store the genomes of their cus-
tomers. It can also be used by medical units (e.g., hospitals) to securely store the
genomes of patients and to retrieve them later for clinical use. The general proto-
col in Fig. 6 can work in a healthcare scenario without any major changes. In this
scenario, a patient wants a medical unit (e.g., his doctor) to access his genome
and perform medical tests. The medical unit can request for the encrypted seed
on behalf of (and with consent from) the patient. Hence, there is a negotiation
phase that provides the password to the medical unit. Such a phase can be

5 A patient can choose a low-entropy password that is easier for him/her to remember,
which is a common case in the real world [8].

Cryptographic Solutions for Genomic Privacy 339

Fig. 6. GenoGuard protocol. A patient provides his biological sample to the CI, and
chooses a password for honey encryption. The CI does the sequencing, encoding and
password-based encryption, and then sends the ciphertext to the biobank. During a
retrieval, a user (e.g., the patient or his doctor) requests for the ciphertext, decrypts it
and finally decodes it to get the original sequence.

completed automatically via the patient’s smart card (or smart phone), or the
patient can type his password himself. In this setup, the biobank can be a public
centralized database that is semi-trusted. Such a centralized database would be
convenient for the storage and retrieval of the genomes by several medical units.

For direct-to-customer (DTC) services, the protocol needs some adjustments.
For instance, Counsyl6 and 23andMe7 provide their customers various DTC
genetic tests. In such scenarios, the biobank is the private database of these
service providers. Thus, such service providers have the obligation to protect
customers’ genomic data in case of a data breach. In order to perform various
genetic tests, the service providers should be granted permission to decrypt the
sequences on their side, which is a reasonable relaxation of the threat model
because customers share their sequences with the service providers. Therefore,
steps 8 and 9 in Fig. 6 should be moved to the biobank. A user (customer) who
requests a genetic test result logs into the biobank system, provides the password
for password-based decryption and asks for a genetic test on his sequence. The
plaintext sequence is deleted after the test.

6 https://www.counsyl.com/.
7 https://www.23andme.com/.

https://www.counsyl.com/
https://www.23andme.com/

340 E. Ayday

3 Conclusions

Advances in genomics will soon result in large numbers of individuals having
their genomes sequenced and obtaining digitized versions thereof. This poses a
wide range of technical problems, which we also explore in detail in a recent
work [3]. Mitigating privacy issues of genomic data will require long-term col-
laboration among geneticists, other healthcare providers, ethicists, lawmakers,
and computer scientists. In order to foster this collaboration, funding agencies
need to target this topic. There are numerous EU, US, and nationally funded
projects focusing on e-health, some of which address data protection. However,
the genomic privacy challenge has been overlooked, and the number of computer
scientists working on the topic is currently low. We hope that the privacy issues
highlighted here will encourage collaboration among researchers in the fields
outlined above. We believe that consideration of such privacy issues will have a
positive benefit to society and individuals in their daily lives.

References

1. http://www.nytimes.com/2013/03/24/opinion/sunday/
the-immortal-life-of-henrietta-lacks-the-sequel.html?pagewanted=all

2. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption
schemes with applications to secure distributed storage. ACM Trans. Inf. Syst.
Secur. 9, 1–30 (2006)

3. Ayday, E., Cristofaro, E.D., Tsudik, G., Hubaux, J.-P.: Whole genome sequencing:
revolutionary medicine or privacy nightmare. IEEE Comput. Mag. 48(2), 58–66
(2015)

4. Ayday, E., Raisaro, J.L., Mclaren, P.J., Fellay, J., Hubaux, J.-P.: Privacy-
preserving computation of disease risk by using genomic, clinical, and environmen-
tal data. In: Proceedings of USENIX Security Workshop on Health Information
Technologies (HealthTech) (2013)

5. Ayday, E., Raisaro, J.L., Rougemont, J., Hubaux, J.-P.: Protecting and evaluating
genomic privacy in medical tests and personalized medicine. In: WPES 2013 (2013)

6. Bresson, E., Catalano, D., Pointcheval, D.: A simple public-key cryptosystem with
a double trapdoor decryption mechanism and its applications. In: Proceedings of
Asiacrypt (2003)

7. Drmanac, R., Sparks, A.B., Callow, M.J., Halpern, A.L., Burns, N.L., Kermani,
B.G., Carnevali, P., Nazarenko, I., Nilsen, G.B., Yeung, G., et al.: Human genome
sequencing using unchained base reads on self-assembling DNA nanoarrays. Science
327(5961), 78–81 (2010)

8. Florencio, D., Herley, C.: A large-scale study of web password habits. In: Proceed-
ings of the 16th International Conference on World Wide Web, WWW 2007, pp.
657–666. ACM, New York (2007)

9. Huang, Z., Ayday, E., Hubaux, J.-P., Fellay, J., Juels, A.: Genoguard: protecting
genomic data against brute-force attacks. In: Proceedings of IEEE Symposium on
Security and Privacy (2015)

10. Humbert, M., Ayday, E., Hubaux, J.-P., Telenti, A.: Addressing the concerns of
the Lacks family: quantification of kin genomic privacy. In: CCS 2013 (2013)

http://www.nytimes.com/2013/03/24/opinion/sunday/the-immortal-life-of-henrietta-lacks-the-sequel.html?pagewanted=all
http://www.nytimes.com/2013/03/24/opinion/sunday/the-immortal-life-of-henrietta-lacks-the-sequel.html?pagewanted=all

Cryptographic Solutions for Genomic Privacy 341

11. Juels, A., Ristenpart, T.: honey encryption: security beyond the brute-force bound.
In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 293–
310. Springer, Heidelberg (2014)

12. Kschischang, F., Frey, B., Loeliger, H.A.: Factor graphs and the sum-product algo-
rithm. IEEE Trans. Inf. Theor. 47, 498–519 (2001)

13. Nyholt, D., Yu, C., Visscher, P.: On Jim Watson’s APOE status: genetic informa-
tion is hard to hide. Eur. J. Hum. Genet. 17, 147–149 (2009)

14. Pearl, J., Reasoning, P.: Probabilistic Reasoning in Intelligent Systems: Networks
of Plausible Inference. Morgan Kaufmann Publishers Inc., San Francisco (1988)

Author Index

Araújo, Roberto 224
Arnett, Mitchell 79
Au, Henry 319
August, Michael 319
Ayday, Erman 328

Baldimtsi, Foteini 43
Baqer, Khaled 3
Barki, Amira 224
Beach, Vic 319
Bentov, Iddo 142
Bonneau, Joseph 19, 95
Brunet, Solenn 224
Butler, Kevin 302

Candan, Ömer Mert 253
Çetin, Gizem S. 288
Croman, Kyle 106

Decker, Christian 106
Delmolino, Kevin 79
Diallo, Mamadou H. 319
Doröz, Yarkın 288

Escala, Alex 233
Eyal, Ittay 106, 126

Feigenbaum, Joan 302

Gabizon, Ariel 142
Gencer, Adem Efe 106
Giustolisi, Rosario 193
Goldberg, Sharon 43
Guasch, Sandra 233
Gün Sirer, Emin 106, 126
Gupta, Debayan 302

Haenni, Rolf 161
Hallman, Roger 319
Heilman, Ethan 43
Herranz, Javier 233
Huang, Danny Yuxing 3

Iovino, Vincenzo 176, 193

Juels, Ari 106

Kaya, Kamer 253
Kerik, Liisi 271
Kiayias, Aggelos 61
Kline, Megan 319
Koenig, Reto E. 161
Kosba, Ahmed 79, 106
Kulyk, Oksana 209

Lamprou, Nikolaos 61
Laud, Peeter 271
Locher, Philipp 161

McCoy, Damon 3
Miller, Andrew 79, 106
Mizrahi, Alex 142
Mood, Benjamin 302
Morillo, Paz 233
Möser, Malte 126

Randmets, Jaak 271
Rønne, Peter B. 176, 193
Rusinowitch, Michael 27
Ryan, Peter Y.A. 176

Savaş, Erkay 253
Saxena, Prateek 106
Shi, Elaine 79, 106
Song, Dawn 106
Stouka, Aikaterini-Panagiota 61
Sunar, Berk 288

Tillem, Gamze 253
Traoré, Jacques 224
Traynor, Patrick 302
Turuani, Mathieu 27

Voegtlin, Thomas 27
Volkamer, Melanie 209

Wattenhofer, Roger 106
Weaver, Nicholas 3

	BITCOIN 2016: Third Workshop on Bitcoin and Blockchain Research
	VOTING 2016: First Workshop on Advances in Secure Electronic Voting Schemes
	WAHC 2016: 4th Workshop on Encrypted Computing and Applied Homomorphic Cryptography
	Contents
	Third Workshop on Bitcoin and Blockchain Research, BITCOIN 2016
	Stressing Out: Bitcoin ``Stress Testing''
	1 Introduction
	2 Background
	2.1 DoS Targets Inherent in Bitcoin

	3 Data Collection
	4 Spam Clustering
	4.1 Methodology
	4.2 Results and Motifs
	4.3 Validation

	5 Impact on Bitcoin
	6 Discussion
	7 Related Work
	8 Conclusion
	References

	Why Buy When You Can Rent?
	1 Introduction
	2 Renting Mining Capacity
	2.1 Out-of-Band Payment
	2.2 Negative-Fee Mining Pool
	2.3 In-Band Payment via Forking

	3 Bribery Attacks
	3.1 Counter-Bribing by Miners

	4 Analysis of Mitigating Factors
	4.1 Miners May Be Too Simplistic to Recognize or Accept Bribes
	4.2 The Attack Requires Significant Capital and Risk-Tolerance
	4.3 Profit from Double-Spends May Not Be Frictionless or Boundless
	4.4 Extra Confirmations for Large Transactions
	4.5 Counter-Bribing by the Intended Victim
	4.6 Miners May Refuse to Help an Attack Against Bitcoin

	5 Concluding Remarks
	References

	Automated Verification of Electrum Wallet
	1 Context
	2 Electrum Wallet
	3 Modeling BIP32
	4 ASLan++ Wallet Model
	4.1 Attacker Model and Assumptions
	4.2 Security Properties
	4.3 User Role
	4.4 Client Role
	4.5 Server Registration Role
	4.6 Server Confirmation Role
	4.7 Server Signature Role

	5 Results
	5.1 Executability Checking
	5.2 Attack by Confirmation Replay
	5.3 Security Analysis

	6 Conclusion
	References

	Blindly Signed Contracts: Anonymous On-Blockchain and Off-Blockchain Bitcoin Transactions
	1 Introduction
	1.1 Related Work

	2 Overview and Security Properties
	2.1 Anonymity Properties
	2.2 Security Properties

	3 Implementing Fair Exchange via Scripts and Blind Signatures
	4 On-Blockchain Anonymous Protocols
	4.1 Anonymous Fee Vouchers
	4.2 Anonymity Analysis

	5 Off-Blockchain Anonymous Payments over Micropayment Channel Networks
	5.1 Micropayment Channel Networks
	5.2 Anonymizing Micropayment Channel Networks
	5.3 Anonymity Analysis

	6 Security Analysis
	7 Conclusion
	References

	Proofs of Proofs of Work with Sublinear Complexity
	1 Introduction
	2 Preliminaries
	3 Interconnected Blockchains
	3.1 Description of the Interlink-Update Algorithm

	4 Proving Proof of Work with Sublinear Complexity
	4.1 Description of the Prover
	4.2 Description of the Lite Verifier

	5 Efficiency Analysis
	5.1 Space Complexity
	5.2 Communication and Time Complexity

	6 Security Analysis
	References

	Step by Step Towards Creating a Safe Smart Contract: Lessons and Insights from a Cryptocurrency Lab
	1 Introduction
	2 Background
	2.1 Background on Decentralized Cryptocurrencies
	2.2 Background on Smart Contracts
	2.3 A Taste of Smart Contract Design

	3 A Recount of Our Smart Contract Programming Lab
	4 Pitfalls of Smart Contract Programming
	4.1 Errors in Encoding State Machines
	4.2 Failing to Use Cryptography
	4.3 Misaligned Incentives
	4.4 Ethereum-Specific Mistakes
	4.5 Complete, Fixed Contract

	5 Conclusion
	5.1 Open-Source Course and Lab Materials
	5.2 Cryptocurrency and Smart Contracts as a Cybersecurity Pedagogical Platform
	5.3 The ``Build, Break, and Amend Your Own Programs'' Approach to Cybersecurity Education
	5.4 Subsequent Pedagogical Efforts and Research

	References

	EthIKS: Using Ethereum to Audit a CONIKS Key Transparency Log
	1 Introduction
	2 CONIKS Overview
	3 Ethereum Overview
	4 EthIKS
	5 Implementation and Costs
	6 Concluding Discussion
	References

	On Scaling Decentralized Blockchains
	1 Introduction
	2 Bitcoin Scalability Today: A Reality Check
	3 Scaling by Parameter Tuning and Fundamental Limits
	3.1 Measurement Study
	3.2 Limits of Scalability by Reparametrization
	3.3 Bottleneck Analysis

	4 Rethinking the Design of a Scalable Blockchain
	4.1 Network Plane
	4.2 Consensus Plane
	4.3 Storage Plane
	4.4 View Plane
	4.5 Side Plane

	5 Conclusion
	A BFT Experiments (Consortium Consensus)
	B Use of SNARKs for Outsourcing View Computation
	References

	Bitcoin Covenants
	1 Introduction
	2 Preliminaries
	3 Covenants
	3.1 Basic Covenants
	3.2 Recursive Covenants
	3.3 Distinguished Coins
	3.4 Overhead
	3.5 Discussion

	4 Vault Transactions
	4.1 Overview
	4.2 Architecture
	4.3 Script Programs

	5 Bitcoin-NG Overlay
	5.1 Preliminaries: Bitcoin-NG Operation
	5.2 Overlaying Bitcoin-NG on Top of Bitcoin
	5.3 Poison Transactions

	6 Related Work
	7 Conclusions
	References

	Cryptocurrencies Without Proof of Work
	1 Introduction
	2 Pure Proof of Stake
	2.1 The PPCoin System
	2.2 The CoA Pure Proof of Stake System
	2.3 The Dense-CoA Pure Proof of Stake Variant

	3 Solidification of the Ledger History
	4 Conclusion
	References

	First Workshop on Secure Voting Systems, VOTING 2016
	Coercion-Resistant Internet Voting with Everlasting Privacy
	1 Introduction
	1.1 Related Work
	1.2 Contribution
	1.3 Paper Overview

	2 Coercion-Resistant Internet Voting with Everlasting Privacy
	2.1 Adversary Model and Trust Assumptions
	2.2 Protocol Overview
	2.3 Discussion of Coercion-Resistance

	3 Detailed Cryptographic Protocol
	3.1 Cryptographic Preliminaries
	3.2 Protocol Description
	3.3 Security Properties

	4 Conclusion
	References

	Selene: Voting with Transparent Verifiability and Coercion-Mitigation
	1 Introduction
	2 Background
	3 Cryptographic Primitives
	4 Related Work
	5 The Set-Up Phase
	5.1 Distributed Generation of the Tracker Number Commitments
	5.2 Voting
	5.3 Mixing and Decryption
	5.4 Notification of Tracker Numbers

	6 The Voter Experience
	6.1 The Core Ceremony
	6.2 The Ceremony in the Event of Coercion
	6.3 Selene as an Add-On

	7 Analysis
	7.1 Verifiability and Verification
	7.2 Ballot Privacy
	7.3 Receipt-Freeness
	7.4 Coercion: Threats and Mitigation
	7.5 Dispute Resolution

	8 Alternative Selene Scheme
	9 Conclusions
	References

	On the Possibility of Non-interactive E-Voting in the Public-Key Setting
	1 Introduction
	1.1 Multiple Non-interactive Elections in the PK Setting
	1.2 Relation to Secure Computation
	1.3 Our Results in a Nutshell

	2 Definitions
	2.1 Non-interactive Voting Scheme in the PK Setting
	2.2 Bilinear Maps
	2.3 NIZK in the RO

	3 NIVS for YES/NO Elections
	3.1 Properties and Security of the Scheme

	4 Future Directions
	References

	Efficiency Comparison of Various Approaches in E-Voting Protocols
	1 Introduction
	2 Methodology
	2.1 Election Phases
	2.2 Time Estimations

	3 Individual Calculations
	3.1 Mix Net
	3.2 Homomorphic Tallying
	3.3 Distributed Decryption

	4 Prototype Evaluation Tool
	4.1 Relevant Parameters
	4.2 Software

	5 Evaluation of Example Settings
	5.1 Description of Example Settings
	5.2 Results and Discussion

	6 Conclusion
	References

	Remote Electronic Voting Can Be Efficient, Verifiable and Coercion-Resistant
	1 Introduction
	2 Preliminaries
	2.1 Classical Tools
	2.2 Algebraic MACs
	2.3 Our Sequential Aggregate MAC Scheme

	3 A MAC Based Coercion Resistant Voting Scheme
	3.1 An Overview of the Scheme
	3.2 Our Novel Coercion-Resistant Voting Scheme

	4 Conclusion
	References

	Universal Cast-as-Intended Verifiability
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work
	1.3 Structure of the Paper

	2 Electronic Voting Definitions
	2.1 Syntactical Definition
	2.2 Security Definitions

	3 Building Blocks
	4 Core Voting Protocol
	4.1 Overview
	4.2 2-cnf-Proof of Knowledge
	4.3 Detailed Protocol

	5 Security of the Protocol
	6 A Possible Instantiation
	7 Towards Designing Usable UCIV Systems
	8 Future Work
	References

	4th Workshop on Encrypted Computing and Applied Homomorphic Cryptography, WAHC 2016
	Hiding Access Patterns in Range Queries Using Private Information Retrieval and ORAM
	1 Introduction
	2 Background
	2.1 Privacy Preserving Range Queries Using Bucketization
	2.2 Lipmaa's BddCPIR Protocol for PIR
	2.3 Path ORAM

	3 Privacy Preserving Range Query Using PIR and ORAM
	3.1 CPIR for Privacy Preserving Range Queries
	3.2 Path ORAM for Privacy Preserving Range Queries

	4 Analysis of Security in Privacy Preserving Range Queries
	4.1 Security Analysis of CPIR
	4.2 Security Analysis of Path ORAM

	5 A Quantitative Analysis of Path ORAM and CPIR
	5.1 Communication Complexity Analysis
	5.2 Computational Complexity Analysis

	6 Experiments
	6.1 Single-Node Experiments
	6.2 Multi-node Experiments

	7 Conclusion
	References

	Optimizing MPC for Robust and Scalable Integer and Floating-Point Arithmetic
	1 Introduction
	2 Background
	3 Improvements in Protocol Design
	3.1 Efficient Polynomial Evaluation
	3.2 Additional Improvements to Floating-Point Protocols
	3.3 New Floating-Point Protocols

	4 Optimization Techniques
	4.1 Shared Random Number Generators
	4.2 Symmetric Protocols
	4.3 Speedup over Previous Results

	5 Large-Scale Performance Evaluation
	6 Conclusions
	References

	On-the-fly Homomorphic Batching/Unbatching
	1 Introduction
	2 Motivation
	3 FHE Background
	4 NTT Background
	4.1 Fourier Transform
	4.2 Number Theoretic Transform

	5 Homomorphic NTT
	5.1 Homomorphic Batching/Unbatching
	5.2 Homomorphic NTT Using Parallel Batching

	6 Complexity Analysis
	7 Implementation Results
	8 Conclusion
	References

	Using Intel Software Guard Extensions for Efficient Two-Party Secure Function Evaluation
	1 Introduction
	2 Technical Background
	2.1 Garbled Circuits for Two-Party, Secure Function Evaluation
	2.2 Intel's Software Guard Extensions Module
	2.3 Towards Using Secure Hardware for Garbled-Circuit Protocols

	3 Why Simple ``Solutions'' Do Not Quite Work
	3.1 A Simple 2P-SFE Protocol Implemented with SGX
	3.2 Problems with Simple SGX-Supported 2P-SFE

	4 Using SGX for 2P-SFE Computations
	4.1 Using SGX for 2P-SFE: Problems and Solutions
	4.2 Half and Half
	4.3 Outsourcing
	4.4 Improving the Security of 2P-SFE Protocols Using SGX
	4.5 Universal Programs (Circuits)
	4.6 Novel Use Cases for SGX

	5 Previous Work on Secure-Execution Environments
	6 Conclusion
	References

	CallForFire: A Mission-Critical Cloud-Based Application Built Using the Nomad Framework
	1 Introduction
	2 Nomad Framework Overview
	2.1 Client Management and Storage Services
	2.2 Nomad Operational Overview

	3 Application: Call For Fire
	4 Implementation and Experiments
	5 Conclusion
	References

	Cryptographic Solutions for Genomic Privacy
	1 Kin Genomic Privacy
	2 Solutions for Genomic Privacy
	2.1 Private Use of Genomic Data in Personalized Medicine
	2.2 Coping with Weak Passwords for the Protection of Genomic Data

	3 Conclusions
	References

	Author Index

