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Abstract. Network routing games, and more generally congestion
games play a central role in algorithmic game theory, comparable to
the role of the traveling salesman problem in combinatorial optimiza-
tion. It is known that the price of anarchy is independent of the network
topology for non-atomic congestion games. In other words, it is indepen-
dent of the structure of the strategy spaces of the players, and for affine
cost functions it equals 4/3. In this paper, we show that the situation is
considerably more intricate for atomic congestion games. More specifi-
cally, we consider congestion games with affine cost functions where the
players’ strategy spaces are symmetric and equal to the set of bases of
a k-uniform matroid. In this setting, we show that the price of anarchy
is strictly larger than the price of anarchy for singleton strategy spaces
where it is 4/3. As our main result we show that the price of anarchy can
be bounded from above by 28/13 ≈ 2.15. This constitutes a substantial
improvement over the price of anarchy bound 5/2, which is known to be
tight for network routing games with affine cost functions.

1 Introduction

Understanding the impact of selfish behavior on the performance of a system
is an important question in algorithmic game theory. One of the cornerstones
of the substantial literature on this topic is the famous result of Roughgarden
and Tardos [27]. They considered the traffic model of Wardrop [30] in a network
with affine flow-dependent congestion cost functions on the edges. Given a set of
commodities, each specified by a source node, a target node, and a flow demand,
a Wardrop equilibrium is a multicommodity flow with the property that every
commodity uses only paths that minimize the cost. For this setting, Roughgarden
and Tardos proved that the total cost of an equilibrium flow is not worse than 4/3
times that of a system optimum. This ratio was coined the price of anarchy by
Koutsoupias and Papadimitriou [19] who introduced it as a measure of a system’s
performance degradation due to selfish behavior. A surprising consequence of
the result of Roughgarden and Tardos is that the worst case price of anarchy
in congested networks is attained for very simple single-commodity networks
already considered a century ago by Pigou [23]. Pigou-style networks consist
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of only two nodes connected by two parallel links. In fact, Roughgarden [26]
proved that for any set of cost functions, the price of anarchy is independent
of the network topology as it is always attained for such simple Pigou-style
networks where a feasible strategy of each commodity is to choose exactly one
out of the two links.

A model related to Wardrop’s model is that of a congestion game with
unsplittable (i.e., atomic) players. In such a game, there is a finite set of play-
ers and a strategy of each player is to choose a set of resources allowable to
her. Without any restrictions on the strategy spaces, the price of anarchy for
affine cost functions is 5/2 as shown by Christodoulou and Koutsoupias [9] and
Awerbuch et al. [5]. As a contrast, for simple Pigou-style instances with symmet-
ric and singleton strategies, Lücking et al. [20] showed that the price of anarchy
is only 4/3. These results imply that for atomic congestion games the price of
anarchy does depend on the combinatorial structure of players’ strategies.

In this work, we shed new light on the impact of the combinatorial structure
of strategy spaces on the inefficiency of equilibria in atomic congestion games.
Specifically, we focus on the minimum combinatorial structure that one may
think of, namely symmetric k-uniform congestion games where the strategy set
of each player consists of all k-elementary subsets of resources. These games
are a natural generalization of the singleton case, and we consider it interesting
because it constitutes a first step into the direction where strategies are bases of
a (general) matroid. As for potential applications, one may think of, e.g., load
balancing games where each player controls the same amount of jobs; see also
Abed et al. [1] for a related model in the context of coordination mechanisms.

Our Results. We prove that the price of anarchy in congestion games with
affine cost functions is at most 28/13 when strategy spaces are symmetric and
bases of a k-uniform matroid. The proof uses in its core several combinatorial
arguments on the amount and cost of resources that are over- respectively under-
demanded in any given Nash equilibrium as opposed to an optimal solution. It
also exploits the affinity of the cost functions, along the lines of earlier arguments
of Fotakis [12] for the singleton case. The main point of the technical side of the
paper is the insight that the combinatorial structure of strategy spaces, here of
the simplest possible form, allows to furnish combinatorial arguments that yield
improved results on the price of anarchy. We are not aware of earlier attempts
in this direction, and believe this opens new possibilities for our understanding
of a “classical” showcase problem in algorithmic game theory. We also show
that the price of anarchy for the k-uniform matroid case cannot be the same as
for singleton congestion games, as we bound it away from 4/3: For affine cost
functions, and k large enough, the price of anarchy is at least 1.343. For k = 5
it is at least 47/35 ≈ 1.3428.

Related Work. Since the early works of Pigou [23], Beckman et al. [6], and
Braess [7] it is well known that user equilibria in congested networks may be
suboptimal for the overall performance of the system. In order to quantify this



Efficiency of Equilibria in Uniform Matroid Congestion Games 107

inefficiency, Koutsoupias and Papadimitriou [19] proposed to study the ratio of
the total cost of an equilibrium and the total cost of an optimal solution. This
ratio is now known as the price of anarchy. Roughgarden and Tardos [27] showed
that the price of anarchy for non-atomic games with affine costs is 4/3. The
worst case is attained for simple networks of two parallel links previously studied
by Pigou [23]. Roughgarden [26] gave a closed form expression for the price
of anarchy for arbitrary cost functions which is again attained for Pigou-style
networks, e.g., for polynomials with positive coefficient and maximum degree d
the price of anarchy is of order Θ(d/ ln(d)).

Awerbuch et al. [5] and Christodoulou and Koutsoupias [9] considered the
related model with atomic players that was introduced by Rosenthal [24]. They
showed that for affine cost functions the price of anarchy is 5/2. Aland et al. [4]
gave tight bounds on the price of anarchy for polynomial cost functions with max-
imum degree d which behaves asymptotically as Θ((d/ ln d)d+1). It is interesting
to note that these worst-case bounds are not attained for simple Pigou-style net-
works with symmetric and singleton strategies as in the non-atomic case. Based
on previous work of Suri et al. [28], Caragiannis et al. [8] showed that for affine
costs, the worst case is attained for asymmetric singleton strategies. For a sim-
ilar result for polynomial costs, see Gairing and Schoppmann [15]. In fact, for
singleton games with symmetric strategies, the price of anarchy is considerably
better than in the general case. In fact, Fotakis [12] showed that the price of
anarchy of symmetric singleton atomic games is equal to the price of anarchy of
non-atomic games. This improves and generalizes previous bounds by Lücking
et al. [20] and Gairing et al. [14].

The class of k-uniform games that we consider in this paper is also related
to the class of integer-splittable congestion games introduced by Rosenthal [25]
and the classes of k-splittable and integer k-splittable congestion games studied
by Meyers [21]. In contrast to our model, the models above allow that a player
uses a resource with multiple units of demand at the same time. It turns out
that allowing for this kind of self-congestion has a severe impact on the existence
of pure Nash equilibria [11,25] but for networks of parallel links it is known that
pure Nash equilibria are guaranteed to exist [17,29].

The impact of combinatorial structure on the existence and computability of
pure Nash equilibria has been studied for many variants of congestion games.
Ackermann et al. [2] proved that for atomic games with unweighted players all
sequences of best replies converge in polynomial time to a pure Nash equilibrium
if the set of strategies of each player corresponds to the set of bases of a matroid.
For weighted congestion games, the matroid property guarantees the existence
of a pure Nash equilibrium [3] while without that property a pure Nash equilib-
rium may fail to exist [16]. Similarly, congestion games with player-specific costs
and matroid strategies have a pure Nash equilibrium which can be computed
efficiently [3] which is in contrast to the general case [22]. For similar results in
the context of resource buying games, see also Harks and Peis [18].

To the best of our knowledge, the impact of matroid structures on the effi-
ciency of Nash equilibria has not been considered before. The only result in this
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direction is a yet unpublished work of Fujishige et al. [13]. They showed that
Braess’ paradox cannot occur in non-atomic games with matroid strategies, i.e.,
the quality of the user equilibrium cannot deteriorate when removing a resource.
This result, however, has no consequences for the inefficiency of equilibria in non-
atomic games since the worst case is attained for Pigou-style networks where the
strategies are symmetric and 2-uniform matroids.

2 Preliminaries

Let N = {1, . . . , n} be a finite set of players and let R be a finite set of resources.
Each player i is associated with a set of subsets of resources Si ⊆ 2R allowable to
her. A strategy of a player is to choose a subset si ∈ Si from this set. A strategy
vector s = (si)i∈N consists of n strategies, one for each player. Every resource r
is endowed with a cost function cr : N → R that maps the total number of its
users xr = |{i ∈ N : r ∈ si}| to a cost value cr(xr). The cost functions cr are
called affine if cr(xr) = αr + βrxr, for constants αr, βr ≥ 0, r ∈ R. The private
cost of player i in strategy vector s is then defined as

πi(s) =
∑

r∈si

cr(xr).

We use standard game theory notation; for a strategy vector s ∈ S = S1×· · ·×Sn,
a player i and an alternative strategy s′

i ∈ Si, we denote by (s′
i, s−i) the strategy

vector in which all players play as in s except for i who plays s′
i. A strategy

vector s is a Nash equilibrium if,

πi(s) ≤ πi(s′
i, s−i) for all i ∈ N and s′

i ∈ Si.

Given an instance of a game I = (N,R, S, (cr)r∈R), we denote the set of Nash
equilibria of I by SNE(I).

We are interested in how restrictions on the set of strategies of each player
influence the inefficiency of equilibria. We measure the efficiency of a strategy
vector s ∈ S in terms of the social costs C(s) defined as

C(s) =
∑

i∈N

πi(s).

We denote by SOPT(I) the set of strategy vectors s that minimize C(s). For an
instance I of a game, the price of anarchy is defined as

PoA(I) = maxsNE∈SNE(I)

C(sNE)
C(sOPT)

,

where sOPT ∈ SOPT(I) is a strategy vector minimizing C. For a class G of games,
the price of anarchy is defined as PoA(G) = supI∈G PoA(I). We drop G whenever
it is clear from context. We are specifically interested in singleton and k-uniform
matroid strategy spaces. A game is said to be a singleton game, if |si| = 1 for all
si ∈ Si and i ∈ N . A game is called k-uniform game if for each player, there is a
subset Ri ⊆ R such that Si = {R′ ⊆ Ri : |R′| = k}. A game is called symmetric,
if Si = Sj for all i, j ∈ N .
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3 Symmetric k-uniform Games

The main result of this paper is the following.

Theorem 1. The price of anarchy of symmetric k-uniform congestion games
with affine cost functions is at most 28

13 ≈ 2.15.

For the proof of Theorem 1, we are going to prove that C(sNE) ≤ 28
13 C(sOPT)

for any given worst-case Nash equilibrium sNE and optimal solution sOPT, of an
arbitrary instance I of a symmetric k-uniform congestion game. For the remain-
der of this section, fix an instance I, a worst-case Nash equilibrium sNE and a
system optimal solution sOPT.

To gain some intuition on congestion games with k-uniform matroid strate-
gies, let us first consider the following example of a k-uniform congestion game
that will serve as a running example throughout this section. Even though it has
only a moderate price of anarchy of 16/14, it showcases the crucial structures
that we exploit later in this section when proving Theorem 1.

OPT 1 2 3 1 2 3 1

2

1 2 3 3

NE 1 2 3

c1(x)=1

1 2

c2(x)=1

3

c3(x)=x

2

1

c4(x)=x

2

1

c5(x)=x

3

c6(x)=x

3

c7(x)=x

A B

Fig. 1. A symmetric 4-uniform congestion game with seven resources. The height of
the stack of each resource corresponds to its cost, e.g., resource 1 is used by players 1,
2 and 3 both in sNE and sOPT and the corresponding cost is 1; resource 3 is used by
players 1 and 2 in sOPT and the corresponding cost is 2.

Example 1. Consider the symmetric 4-uniform congestion game in Fig. 1. There
are seven resources R = {1, . . . , 7}. The first two resources have constant cost
functions c1(x) = c2(x) = 1 for all x ∈ N. The cost function of the other five
resources is the identity, i.e., cr(x) = x for all r ∈ {3, . . . , 7}. There are three
players whose strategy is to choose exactly 4 resources, i.e., Si = {R′ ⊂ R : |R′| =
4} for all i ∈ {1, 2, 3}. In the system optimum, the two resources with constant
costs are used by all players and each player chooses two of the remaining five
resources, see the upper profile in Fig. 1. One of the resources with non-constant
costs has to be used by two players leading to overall costs of 14. However, there



110 J. de Jong et al.

is a Nash equilibrium, in which not all of the resources with constant costs are
used by all players, see the lower profile in Fig. 1. This Nash equilibrium has a
total cost of 16. The price of anarchy of this instance is 16/14 ≈ 1.14. �

In order to derive bounds on the price of anarchy for the proof of Theorem 1,
we bound the excess costs of the resources that are chosen by more players in
the Nash equilibrium than in the system optimum in terms of the excess costs
of the resources that are chosen by more players in the system optimum than in
the Nash equilibrium. To this end, we denote by A the set of resources chosen
by more players in sOPT than in sNE, and by B the set of resources chosen by
more players in sNE than in sOPT, i.e.,

A =
{

r ∈ R : xOPT
r > xNE

r

}
and B =

{
r ∈ R : xOPT

r < xNE
r

}
. (1)

Henceforth, we term the resources in A underloaded and the resources in B over-
loaded. For an illustration, see also Fig. 1 where the set of underloaded resources
is A = {2, 3} and the set of overloaded resources is B = {4, 5}.

As we show in the following lemma, it is sufficient to bound the excess costs
of the resources in B in terms of the excess costs of the resources in A in order
to bound the price of anarchy.

Lemma 1. For a symmetric k-uniform congestion game with affine cost func-
tions and A and B as in (1), we have

3
4
C(sNE) ≤ C(sOPT)+

∑

b∈B

(
xNE
b −xOPT

b

)
cb(xNE

b )−
∑

a∈A

(
xOPT
a −xNE

a

)
ca(xNE

a +1).

(2)

The proof is a rather straightforward generalization of a similar lemma due
to Fotakis [12] for singleton games. It is contained in the full version of this
paper [10].

In order to use Lemma 1 for the proof of Theorem 1, we are interested in
bounding

∑
b∈B

(
xNE
b − xOPT

b

)
cb(xNE

b ) − ∑
a∈A

(
xOPT
a − xNE

a

)
ca(xNE

a + 1
)

in terms
of C(sNE). It is interesting to note that for symmetric singleton games, it holds
that

cr(xNE
r ) ≤ cr′(xNE

r′ + 1) (3)

for all r, r′ ∈ R by the Nash inequality. This implies in particular that
∑

b∈B

(
xNE
b − xOPT

b

)
cb(xNE

b ) ≤
∑

a∈A

(
xOPT
a − xNE

a

)
ca(xNE

a + 1
)
, (4)

which together with Lemma 1 implies an upper bound on the price of anarchy
of 4/3. This is the road taken by Fotakis [12] in order to derive this bound.

However, neither inequality (3) nor inequality (4) hold in k-uniform con-
gestion games due to the more complicated strategy spaces. E.g., for the Nash
equilibrium sNE and system optimum sOPT in Fig. 1 we have

c4(xNE
4 ) = 2 > c2(xNE

2 + 1) = 1,
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contradicting (3), as well as

c4(xNE
4 ) + c5(xNE

5 ) = 4 > 3 = c2(xNE
2 + 1) + c3(xNE

2 + 1),

contradicting (4). More generally speaking, inequality (3) does not necessarily
hold if all players choosing r in sNE also choose r′. The main technical work in
our proof of Theorem 1 is to derive an alternative upper bound for the right
hand side in (2). Specifically, we will work towards showing that for k-uniform
congestion games, we have

∑

b∈B

(
xNE
b − xOPT

b

)
cb(xNE

b ) −
∑

a∈A

(
xOPT
a − xNE

a

)
ca(xNE

a + 1) ≤ 2
7
C(sNE) . (5)

In order to show inequality (5), some further notation is necessary. A natural
way of decomposing the cost of a strategy vector s is to consider the tuples (i, r)
with the property that player i uses resource r in strategy s. One may think
of such a tuple as a single unit of demand that player i places on resource r
under strategy vector s. The cost of a unit of demand is equal to the cost of
the corresponding resource under that strategy profile, and the cost of strategy
profile is then equal to the sum of the costs of the units of demand. Let

PA ⊆ {
(i, a) : a ∈ A, a ∈ sNEi

}

be a subset of the units of demand placed in sNE on the resources in A such that
|{(i, a) ∈ PA}| = xOPT

a − xNE
a for all a ∈ A, i.e., for each resource a ∈ A, PA

contains exactly as many units of demand as there are more on these resources
in sOPT than in sNE. Similarly, let

PB ⊆ {
(i, b) : b ∈ B, b ∈ sOPT

i

}

be such that |{(i, b) ∈ PB}| = xNE
b − xOPT

b for all b ∈ B.
Given these definitions, we want to bound the total costs of the units in PB

with respect to the total costs of the units in PA. We first identify a subset of
these units, for which a simple bound can be obtained, i.e., we identify units of
demand (i, a) ∈ PA and (j, b) ∈ PB such that cb(xNE

b ) ≤ ca(xNE
a + 1). For our

purposes, it is sufficient to do this iteratively in a greedy way, see the greedy
cancelling process in Algorithm 1.

Intuitively, this algorithm maps all units of demand in PB whose cost are
bounded by the cost of another unit in PA and removes both units from the
sets PA and PB . In the following, we denote by P ′

A ⊆ PA and P ′
B ⊆ PB the

set of units that survives this elimination. We denote by x′OPT
a and x′NE

b the
number of units of demand that survive this elimination on each underloaded
and overloaded resource respectively. Note that by definition of PA and PB, we
have that x′NE

b ≥ xOPT
b for b ∈ B, and x′OPT

a ≥ xNE
a for a ∈ A after the cancelling.

Also note that during the course of the algorithm there may be different pairs
(i, a) ∈ PA and (j, b) ∈ PB for which the condition in the if-loop is satisfied. For
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P ′
A ← PA, P ′

B ← PB ;

x′OPT
a ← xOPT

a , ∀a ∈ A;

x′NE
b ← xNE

b , ∀b ∈ B;
while true do

if there are (i, a) ∈ PA and (j, b) ∈ PB with cb(x
NE
b ) ≤ ca(x

NE
a + 1) then

P ′
A ← P ′

A \ {(i, a)};
P ′
B ← P ′

B \ {(j, b)};

x′OPT
a ← x′OPT

a − 1;

x′NE
b ← x′NE

b − 1;

else

return P ′
A, P

′
B , x

′OPT
a , ∀a ∈ A, x′NE

b , ∀b ∈ B;
end

end
Algorithm 1. Cancelling process

our following arguments it is irrelevant, which of these is removed from PA

and PB . Let

A′ = {a ∈ A : there is (i, a) ∈ P ′
A for some i ∈ N}, (6a)

B′ = {b ∈ B : there is (i, b) ∈ P ′
B for some i ∈ N} (6b)

be the resources that remain over- respectively underloaded in sNE as opposed
to sOPT after the cancelling process. The following lemma then follows directly
by definition of the above cancelling process and states that the cost of cancelled
packets on B with respect to cb(xNE

b ) is bounded by the cost of the cancelled
packets on A with respect to ca(xNE

a + 1).

Lemma 2. For a symmetric k-uniform congestion game with affine cost func-
tions, A and B as in (1), and A′ and B′ as in (6), we have

∑

b∈B

(xNE
b − x′NE

b )cb(xNE
b ) −

∑

a∈A

(xOPT
a − x′OPT

a )ca(xNE
a + 1) ≤ 0 .

For the following arguments, it may be helpful to consult Fig. 2 that shows
the outcome of the cancelling process and the resulting sets A′ and B′ for the
congestion game introduced in Example 1. Let us define

P = {(i, r) : r ∈ R, r ∈ sNEi } (7)

as the set of all units of demand in sNE. The next lemma is the first, crucial
ingredient that allows us to obtain improved bounds on the price of anarchy. It
states that for each “overloaded” unit of demand on a resource in P ′

B, there are
“enough” other units on other resources. Subsequently, we also bound the cost
of these other units. The proof of the lemma is deferred to the full version [10].

Lemma 3. For a symmetric k-uniform congestion game with affine cost func-
tions, let P be as in (7) and let (P ′

A, P ′
B) be the output of Algorithm 1. Then,

|P \ P ′
B | ≥ 3|P ′

B |.
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PB

PA

OPT . . . 1 2 3 1

2

1 2 . . .

NE . . . 1 2

c2(x)=1

3

c3(x)=x

2

1

c4(x)=x

2

1

c5(x)=x

. . .

AA BB

Fig. 2. Underloaded resources A = {2, 3} and overloaded resources B = {4, 5} for
the game considered in Example 1. In the cancelling process one unit of demand of
resource 4 cancelled out with a unit of demand of resource 3. After the cancelling
process only resource 2 is underloaded and only resource 5 is overloaded, i.e., A′ = {2}
and B′ = {5}.

Before we proceed, we provide two structural lemmas which restrict the space
of instances with worst-case price of anarchy.

Lemma 4. The worst-case price of anarchy of symmetric k-uniform congestion
games is attained on games that have the property that no resource is chosen by
all players both in an optimal strategy vector and a worst-case Nash equilibrium.

The proof is by contradiction and can be found in the full version. The
next lemma is a technical lemma specifically about the structure of worst-case
instances with PoA(I) ≥ 4/3. Again, the proof is given in the full version [10].

Lemma 5. For any instance I of a symmetric k-uniform congestion game with
affine cost functions and PoA(I) ≥ 4/3 and a resource r ∈ R \ B′, chosen by
all players in sNE, there exists an instance Ĩ, with resource r removed, such that
PoA(Ĩ) ≥ PoA(I).

The restrictions on the structure of worst-case instances obtained in Lemma 5
will be used later in the proof of Theorem 1. Before we can do that, however, we
proceed to bound the costs of the resources in A′ with the following two lemmas.

Lemma 6. For a symmetric k-uniform congestion game with affine cost func-
tions, we have cr(xNE

r ) ≤ 2cr′(xNE
r′ +1) for any two resources r, r′, where xNE

r ≥ 1
and xNE

r′ < n.

The proof is contained in the full version [10].
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Lemma 7. For a symmetric k-uniform congestion game with affine cost func-
tions, we have

∑

b∈B′
(x′NE

b − xOPT
b )cb(xNE

b ) ≤ 2
∑

a∈A′
(x′OPT

a − xNE
a )ca(xNE

a + 1) .

Proof. First recall that xNE
b ≥ 1 for all b ∈ B′, and xNE

a < n for all a ∈ A′ as
resources in A′ ⊆ A are chosen more often in sOPT than in sNE. By Lemma 6, we
can therefore conclude that cb(xNE

b ) ≤ 2ca(xNE
a + 1) for all resources b ∈ B′ and

a ∈ A′. Summing over all units of demands in P ′
A and P ′

B , respectively, yields
the result. 	


We are now ready to prove our main result (Theorem 1).

Proof. (Proof of Theorem 1). By Lemma 3, for each unit of demand in P ′
B , there

are three distinct units of demand in sNE on resources r ∈ R \B′. We bound the
cost of each of these resource units from below by

cr(xNE
r ) ≥ cr(xNE

r + 1)
2

≥ cb(xNE
b )

4
, (8)

for any b ∈ B. Here the first inequality follows directly from the fact that the cost
functions are affine. The second inequality follows from Lemma 6 for resources r
with xNE

r < n. However, by Lemma 5, it is without loss of generality to assume
that no resource r ∈ R \ B′ is chosen by all players in sNE, unless the price of
anarchy is not larger than 4/3. Therefore, we finally get

C(sNE) ≥
∑

b∈B′
(x′NE

b − xOPT
b )cb(xNE

b ) +
∑

b∈B′
xOPT
b cb(xNE

b ) +
∑

r∈R\B′
xNE
r cr(xNE

r )

≥
∑

b∈B′
(x′NE

b − xOPT
b )cb(xNE

b ) +
∑

r∈R\B′
xNE
r cr(xNE

r )

≥7
4

∑

b∈B′
(x′NE

b − xOPT
b )cb(xNE

b ) . (9)

Here, the first inequality uses x′NE
b ≤ xNE

b for any resource b ∈ B, which follows
from the cancelling process. The last inequality uses that

∑
b∈B′(x′NE

b −xOPT
b ) =

|P ′
B |, and by Lemma 3,

∑
r∈R\B′ xNE

r ≥ |P \P ′
B | ≥ 3|P ′

B | = 3
∑

b∈B′(x′NE
b −xOPT

b ),
and each of these resource units has cost at least cb(xNE

b )/4, for all b ∈ B by (8).
Combining (9) with Lemmas 2 and 7 yields

∑

b∈B

(xNE
b − xOPT

b )cb(xNE
b ) −

∑

a∈A

(xOPT
a − xNE

a )ca(xNE
a + 1)

≤
∑

b∈B′
(x′NE

b − xOPT
b )cb(xNE

b ) −
∑

a∈A′
(x′OPT

a − xNE
a )ca(xNE

a + 1)

≤1
2

∑

b∈B′
(x′NE

b − xOPT
b )cb(xNE

b ) ≤ 2
7
C(sNE) ,
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where the first inequality is by Lemma 2, the second by Lemma 7, and the third
by (9). Finally, plugging this into (2) proves Theorem 1. 	


4 Lower Bound

We show that generalizing the strategy spaces from singletons to k-uniform
matroids increases the price of anarchy of congestion games. The proof is by
a parametric set of instances and contained in the full version [10].

Theorem 2. The price of anarchy of symmetric k-uniform congestion games
with affine cost functions is at least 7 − 4

√
2 ≈ 1.343 for large enough k.

5 Conclusions

The most interesting open problem, next to improving lower and upper bounds
for the k-uniform matroid case we study here, is to analyze the price of anarchy
for the generalized problem with arbitrary matroid strategy spaces. We also note
that larger lower bounds on the price of anarchy can be achieved for more general
settings such as matroid strategy spaces, or non-affine cost functions. They are
not included in this paper, however.
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28. Suri, S., Tóth, C.D., Zhou, Y.: Selfish load balancing and atomic congestion games.

Algorithmica 47(1), 79–96 (2007)
29. Tran-Thanh, L., Polukarov, M., Chapman, A., Rogers, A., Jennings, N.R.: On the

existence of pure strategy nash equilibria in integer–splittable weighted congestion
games. In: Persiano, G. (ed.) SAGT 2011. LNCS, vol. 6982, pp. 236–253. Springer,
Heidelberg (2011)

30. Wardrop, J.G.: Some theoretical aspects of road traffic research. Proc. Inst. Civ.
Eng. 1(3), 325–362 (1952)

http://eprints.eemcs.utwente.nl/26855/
http://arxiv.org/abs/1504.07545

	Efficiency of Equilibria in Uniform Matroid Congestion Games
	1 Introduction
	2 Preliminaries
	3 Symmetric k-uniform Games
	4 Lower Bound
	5 Conclusions
	References


