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Abstract. We consider the scheduling problem on n strategic unrelated
machines when no payments are allowed, under the objective of minimiz-
ing the makespan. We adopt the model introduced in [Koutsoupias 2014]
where a machine is bound by her declarations in the sense that if she is
assigned a particular job then she will have to execute it for an amount
of time at least equal to the one she reported, even if her private, true
processing capabilities are actually faster. We provide a (non-truthful)
randomized algorithm whose pure Price of Anarchy is arbitrarily close
to 1 for the case of a single task and close to n if it is applied indepen-
dently to schedule many tasks. Previous work considers the constraint of
truthfulness and proves a tight approximation ratio of (n + 1)/2 for one
task which generalizes to n(n + 1)/2 for many tasks. Furthermore, we
revisit the truthfulness case and reduce the latter approximation ratio
for many tasks down to n, asymptotically matching the best known lower
bound. This is done via a detour to the relaxed, fractional version of the
problem, for which we are also able to provide an optimal approximation
ratio of 1. Finally, we mention that all our algorithms achieve optimal
ratios of 1 for the social welfare objective.

1 Introduction

We consider a variant of the scheduling problem proposed by Koutsoupias [11]
where no payments are allowed and the machines are bound by their declarations.
In particular, the goal is to allocate a set of tasks to strategic unrelated machines
while minimizing the makespan. The time/cost needed by a machine to execute
a task is private information of the machine. Each machine is rational and selfish,
and will misreport its costs in an attempt to minimize its own overall running
time, under the assumption that if she is allocated a task, she will execute it
for at least the declared cost (more specifically, for the maximum among her
true and reported execution times). We are interested in designing allocation
protocols that do not use payments and the stable outcomes are not far from
the non-strategic, centrally enforced optimum makespan.

The field of Mechanism Design [17] focuses on the implementation of desired
outcomes. Given the strategic behaviour of the players who provide the input
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and a specific objective function that measures the quality of the outcome,
the challenge is to design mechanisms which are able to elicit a desired behav-
iour from the players, while at the same time optimizing that objective value.
A primary designer goal that has been extensively studied is that of truthful-
ness, under the central solution concept of dominant strategies: a player should
be able to optimize her own individual utility by reporting truthfully, no matter
what strategies the other players follow. However, achieving this is not always
compatible with maintaining a good objective value [9,21]. The introduction of
payments was suggested as a means towards achieving these goals as a carefully
designed payment scheme incentivizes the players to make truthful declarations.
The goal now becomes to design such algorithms (termed mechanisms) which
utilize monetary compensations in order to impose truthful behaviour while
optimizing the objective function [16].

There are many situations, though, where the use of payments might be
considered unethical [17], illegal (e.g. organ donations) or even just impracti-
cal. For this reason researchers have started turning their attention to possi-
ble ways of achieving truthfulness without the use of payments. In such a set-
ting, in order to circumvent Social Choice impossibility results (e.g. the seminal
Gibbard-Satterthwaite [9,21] theorem) domains with richer structure have to be
considered. Procaccia and Tennenholtz [20] were the first to consider achieving
truthfulness without using payments, by sacrificing the optimality of the solu-
tion and settling for just an approximation, in the context of facility location
problems. Similar questions have been considered in the context of inter-domain
routing [14], in assignment problems [6], and in the setting of allocating items to
two players (with the use of a certain artificial currency) [10]. Moreover, (exact,
as opposed to approximate) mechanism design without money has a rich history
in the social choice literature.

Clearly, truthfulness is a property desired by any mechanism designer; if the
mechanism can ensure that no player can benefit from misreporting, the designer
knows what kind of player behaviour and outcome to expect. Moreover, the focus
on truthful mechanisms has been largely motivated by the Revelation Principle
stating that essentially every equilibrium state of a mechanism can be simulated
by a truthful mechanism which achieves the same objective. However this is no
longer possible in the variant we examine here, due to the fact that the players are
bound by their declarations and thus don’t have quasi-linear utilities. So, it is no
longer without loss of generality if we restrict attention to truthful mechanisms.
For mechanisms that are not truthful, Price of Anarchy (PoA) [12] analysis is
the predominant, powerful tool for quantifying the potential suboptimality of the
outcomes/equilibria; it measures the impact the lack of coordination (strategic
behaviour) has on the solution quality, by comparing it to the optimal, non-
strategic solution.

Scheduling is one of the most influential problems in Algorithmic Game Theory
and has been studied extensively. In its most general form, the goal is to schedule
m tasks to n parallel machines with arbitrary processing times, in order to min-
imize the makespan. In the front where payments are allowed and truthfulness
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comes at no extra cost given the strategic nature of the machines Nisan and Ronen
[16] first considered the mechanism design approach of the problem. They prove
that the well known VCG mechanism achieves an n-approximation of the optimal
makespan, while no truthful deterministic mechanism can achieve approximation
ratio better than 2. The currently known best lower bound is 2.61 [13] while Ashlagi
et al. [2] prove the tightness of the upper bound for anonymous mechanisms. With
respect to randomized (truthful in expectation) mechanisms as well as fractional
ones, the best known bounds are (n + 1)/2 and 2 − 1/n [5,15]. We note that the
aforementioned lower bounds disregard computational feasibility and simply rely
on the requirement for truthfulness.

In an attempt to get positive results when payments are not allowed in the
scheduling context, Koutsoupias [11] first considered the plausible assumption
that the machines are bound by their declarations. This was influenced by the
notion of impositions that appeared in [7,18] and was applied in facility loca-
tion as well as digital goods pricing settings. The notion of winner imposition
fits within the framework of approximate mechanism design without payments.
A more powerful framework that is also very much related to this assumption is
the notion of verification that appears in [3,16,19]. The mechanisms in this con-
text are allowed to use payments and simply give or deny payments to machines
after they discover their true execution costs. Relevant works include [1,4] where
the scheduling problem of selfish tasks is considered again under the assumption
that the players who control the tasks are bound by their declarations.

Our Results. In this work we adopt the model of [11]. For the case of scheduling
a single task Koutsoupias [11] proved that the approximation ratio of any mech-
anism is at least (n+1)/2 and gave a mechanism matching this bound, where n
is the number of machines. When applied to many tasks, this mechanism imme-
diately implies a n(n + 1)/2 approximation ratio for the makespan objective. In
Sect. 3 we provide a (non-truthful) algorithm which performs considerably bet-
ter than the best truthful mechanism; even the worst pure equilibrium/outcome
of our algorithm achieves an optimal makespan, i.e. our algorithm has a pure
PoA of 1. If we run this algorithm independently for each job, we get a task-
independent and anonymous algorithm, yielding a PoA of n for any number of
tasks. Next, revisiting truthfulness, in Sect. 4 we also show that the mechanism
inspired by the LP relaxation of the problem is provably truthful and provides
an n-approximation ratio when interpreted as a randomized mechanism, while
achieving an optimal approximation ratio 1 for the fractional scheduling problem
of divisible tasks. This almost matches the lower bound of (n+1)/2 for truthful
mechanisms known from [11]. Finally, in Sect. 5 we briefly study the more opti-
mistic objective of minimizing the makespan at the best possible equilibrium
(instead of the worst one used in the Price of Anarchy metric) and show that
the natural greedy algorithm achieves an optimal Price of Stability. Due to lack
of space some proofs appear only in the full version [8].
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2 Model and Notation

We have a set N = {1, 2, . . . , n} of unrelated parallel machines and m tasks/jobs
that need to be scheduled to these machines. Throughout the text we assume
that vector t denotes the true execution times, i.e. ti,j is the time machine i needs
to execute task j. This is private knowledge of each machine i. Let t̂ denote the
corresponding (not necessarily true) declarations of the machines for these costs.

A (randomized) allocation protocol takes as input the machines’ declarations
t̂ and outputs an allocation A of tasks to machines where Aij is a 0–1 random
variable indicating whether or not machine i gets allocated task j and a is
the corresponding probability distribution of allocation, i.e. ai,j = Pr [Ai,j = 1]
where of course

∑n
i=1 ai,j = 1 for any task j.

If a machine i is allocated some task j, we assume that the machine will exe-
cute the task for time max{ti,j , t̂i,j}. So, the expected cost/workload of machine
i is defined as

Ci(t̂|ti) =
m∑
j=1

ai,j(t̂)max
{
t̂i,j , ti,j

}
, (1)

while the makespan is computed as the average maximum execution time

M(t̂|ti) = E
A∼a

⎡
⎣ max
i=1,...,n

m∑
j=1

Ai,j max
{
t̂i,j , ti,j

}
⎤
⎦ .

To simplify notation, whenever the true execution times t are clear from the
context we will drop them and simply use Ci(t̂) and M(t̂).

The allocation protocol is called truthful, or truthful mechanism, if it does not
give incentives to the machines to misreport their true execution costs. Formally,
for every machine i and declarations vector t̂,

Ci(ti, t̂−i) ≤ Ci(t̂),

where (xi,y−i) denotes the vector of declarations where machine i has deviated
to xi while all other machines report costs as in y. The approximation ratio mea-
sures the performance of truthful mechanisms and is defined as the maximum
ratio, over all instances, of the objective value (makespan) under that mecha-
nism over the optimal objective value achievable by a centralized solution which
ignores the truthfulness constraint.

If an allocation protocol is not truthful (we simply refer to it as algorithm),
we measure its performance by the quality of its Nash equilibria; the states from
which no player has the incentive to unilaterally deviate. The Price of Anarchy
(PoA) is established as a meaningful benchmark and captures the maximum
ratio, over all instances, of the objective value of the worst equilibrium over
that of the optimal centralized solution that ignores the machines’ incentives.
For most part of this paper we restrict attention to pure Nash equilibria where
the machines make deterministic reports about their execution costs, and we
will from now on refer to them simply as equilibria. Then, the corresponding
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benchmark is called pure PoA. A more optimistic benchmark is the Price of
Stability (PoS) which compares the objective value of the best equilibrium to
the value of the optimal centralized solution.

The makespan objective is inherently different if we consider divisible tasks,
i.e. fractional allocations. In that case, each machine is allocated a portion of
each task by the protocol and the makespan is computed as the maximum of
the execution times of the machines, namely

Mf (t) = max
i=1...n

m∑
j=1

αi,jti,j

where αi,j ∈ [0, 1] is the fraction of task j allocated to machine i. Again, it must
be that

∑n
i=1 αi,j = 1 for any task j. Notice here that each fractional algorithm

with allocation fractions α naturally gives rise to a corresponding randomized
integral algorithm with allocation probabilities a = α, whose makespan is within
a factor of n from the fractional one1, i.e. for any cost matrix t

Mf (t) ≤ M(t) ≤ n · Mf (t). (2)

Except when clearly stated otherwise, in this paper we deal with the integral
version of the scheduling problem.

Social Welfare. An alternative objective, very common in the Mechanism Design
literature, is that of optimizing social welfare, i.e. minimizing the combined costs
of all players: W(t̂) =

∑n
i=1 Ci(t̂). It is not difficult to see3 that the makespan

and social welfare objectives are within a factor of n away, whatever the alloca-
tion algorithm a and the input costs t̂ might be:

M(t̂) ≤ W(t̂) ≤ n · M(t̂). (3)

Also notice that for the special case of a single task, since the job is eventually
allocated entirely to some machine, the two objectives coincide no matter the
number of machines n, i.e. M(t̂) = W(t̂). Because of that and the linearity of
the social welfare with respect to the players’ costs, it is easy to verify that all
algorithms we present in this paper achieve optimal ratios of 1 for that objective,
both with respect to equilibrium/PoA and truthfulness analysis (e.g. Theorems 2
and 5). We will not mention that explicitly again in the remaining of the paper
and rather focus on the more challenging for our scheduling problem objective
of makespan minimization.

3 Price of Anarchy

For clarity of exposition, we first describe our scheduling algorithm in the special
case of just n = 2 machines (and one task) before presenting the algorithm for
1 This is due to the fact that for any random variables Y1, Y2, . . . , Yn it is E[maxi Yi] ≤
E[
∑

i Yi] =
∑

i E[Yi] ≤ n maxi E[Yi], and also maxi E[Yi] ≤ E[maxi Yi] due to the
convexity of the max function.
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the general case of n ≥ 1. Since we treat the case of only one task in this section,
we use t̂i and ti to denote the declared and the true execution time of machine
i, respectively, and use ai to denote i’s allocation probability.

3.1 Warm Up: The Case of Two Machines

To simplify notation, throughout this section we will assume without loss of
generality that t̂1 ≤ t̂2, i.e. the input to our algorithm is sorted in nondecreasing
order. Notice that the true bids t = (t1, t2) do not have to preserve this ordering,
since the highest biding machine might very well in reality have the fastest
execution capabilities.

Our algorithm for the case of two machines, parametrized by two constants
L > 2, c > 1, and denoted by A(2)

L,c is defined by the allocation probabilities in
Fig. 1. Whenever parameter c is insignificant in a particular context2, we will
just use A(2)

L .

a1 a2

if t̂1 = t̂2
1
2

1
2

if t̂1 < t̂2 < c · t̂1
1
L

1 − 1
L

if c · t̂1 ≤ t̂2 1 − 1
L

t̂1
t̂2

1
L

t̂1
t̂2

Fig. 1. Algorithm A(2)
L,c for scheduling a single task to two machines, parametrized by

L > 2 and c > 1. The probability that machine i = 1, 2 gets the task is denoted by ai,
and t̂1, t̂2 are the reported execution times by the machines.

The main result of this section is the following theorem, showing that by
choosing parameter L arbitrarily high, the above algorithm can achieve an opti-
mal Price of Anarchy:

Theorem 1. For the case of one task and two machines, algorithm A(2)
L has a

(pure) Price of Anarchy of 1 + 1
L (for any L > 2).

We break down the proof of Theorem1 in distinct claims.

Claim 1. At any equilibrium t̂ the ratio of the two bids must be at least c, i.e.
t̂2 ≥ c · t̂1.

2 In such case, as it is for example in the statement of Theorem 1, one can simply pick
e.g. c = 1 + 1

L
.
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Proof. Without loss assume t̂1 �= 0, since otherwise the claim is trivially true.
First, assume for a contradiction that t̂1 < t̂2 < c · t̂1. Then the machine with
largest report would have an incentive to deviate to bid t′2 = max{ct̂1, t2}:

C2(t̂) =
(

1 − 1
L

)
max{t̂2, t2} >

1
L

t̂1 =
t̂1

Lt′2
max{t′2, t2} = C2(t̂1, t′2)

where the inequality holds since L > 2 and the final two equalities hold because
for the deviating bid it is t′2 ≥ t2, ct̂1. Thus t̂ = (t̂1, t̂2) could not have been an
equilibrium under the assumption that t̂1 < t̂2 < c · t̂1.

A similar contradiction can be obtained for the remaining case of t̂1 = t̂2. In
this case, both machines have an incentive to deviate to a bid t′1 = t̂1

c < t̂1, since

C1(t̂) =
1
2

max{t̂1, t1} ≥ 1
2

max{t′1, t1} >
1
L

max{t′1, t1} = C1(t′1, t̂2).

Claim 2. At any equilibrium t̂ the machine with the largest report will never
have underbid, i.e. t̂2 ≥ t2.

Proof. Assume for a contradiction that t̂2 < t2. Then

C2(t̂) =
t̂1

Lt̂2
max{t̂2, t2} =

t̂1

Lt̂2
t2 >

t̂1
Lt2

t2 = C2(t̂1, t2),

the first equality holding due to Claim1 and the last one because t2 > t̂2 ≥ t̂1.

Claim 3. At any equilibrium t̂ the smallest bid is given by t̂1 = min{t1,
t̂2
c }.

Proof. Assume for a contradiction that t̂1 �= t′1 = min{t1,
t̂2
c }. Then, we will

show that the lowest bidding machine would have an incentive to deviate from
t̂1 to t′1.

Indeed, first consider the case when t̂1 < t′1. Then

C1(t̂) =
(

1 − t̂1

Lt̂2

)
max{t̂1, t1} >

(
1 − t′1

Lt̂2

)
max{t′1, t1} = C1(t1, t̂2).

In the remaining case of t̂1 > t′1 = min{t1,
t̂2
c }, because of Claim 1 it must be

that t′1 = t1 < t̂1 ≤ t̂2
c , thus

C1(t̂) =
(

1 − t̂1

Lt̂2

)
max{t̂1, t1} =

(
1 − t̂1

Lt̂2

)
t̂1 >

(
1 − t1

Lt̂2

)
t1 = C1(t1, t̂2).

where the inequality holds since x �→
(
1 − x

y

)
x is a strictly increasing function

for x ∈ [0, y
2 ], and indeed t1 < t̂1 < t̂2 < Lt̂2

2 .

Claim 4. At any equilibrium t̂ bidding must preserve the relative order of the
true execution times, i.e. t1 ≤ t2.
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Proof. For a contradiction assume that t2 < t1, and first consider the case when
t2 < t̂1. If we pick t′2 ∈

(
t̂1
c , t̂1

)
, we have

C2(t̂) =
t̂1

Lt̂2
max{t̂2, t2} =

t̂1
L

>
1
L

max{t′2, t2} = C2(t̂1, t′2).

For the remaining case of t̂1 ≤ t2 < t1, first note that if t1 ≤ t̂2
c then by

Claim 3 we would immediately derive that t̂1 = t1, which is a contradiction.
Hence, we can assume that t̂1 = t̂2

c < t1. Then, if t̂2 > t1 we have that

C1(t̂) =
(

1 − t̂1

Lt̂2

)
max{t̂1, t1} =

(
1 − t̂1

Lt̂2

)
t1 >

1
L

t1 = C1(t1, t̂2),

the inequality holding because t̂1
t̂2

1
L ≤ 1

L < 1
2 , and if t̂2 ≤ t1 then, in the same

way, for t′1 = max{t1, ct̂2}

C1(t̂) >
1
L

t1 ≥ t̂2
L

=
t̂2

Lt1
max{t′1, t1} = C1(t1, t̂2).

Proof (Proof of Theorem 1). Claims 1–4 imply that the makespan (and thus also
the social cost since we have a single task) of any allocation at equilibrium can
be bounded by

M(t̂) =
(

1 − t̂1

Lt̂2

)
max{t̂1, t1} +

t̂1

Lt̂2
max{t̂2, t2}

≤ max{t̂1, t1} +
1
L

t̂1

≤
(

1 +
1
L

)
t1,

where t1 is the optimal makespan.
Also, it is important to mention that it can be verified that there exists at

least one (pure Nash) equilibrium, e.g. reporting t̂1 = t1 and t̂2 = max{Lc·t1, t2}.

3.2 The General Case

The algorithm for two machines (and a single task) can be naturally generalized
to the case of any number of machines n ≥ 2. Due to lack of space we only give
the definition of the algorithm here and the proof can be found in the full version
of the paper [8]. We note that the essence of the techniques and the core ideas
we presented in Sect. 3.1 carry over to the general case.

To present our algorithm AL,c we first need to add some notation. We use
t̂min and t̂sec to denote the smallest and second smallest declarations in t̂, and
Nmin, Nsec the corresponding sets of machine indices that make these decla-
rations. (If N = Nmin, i.e. all machines make the same declaration we define
t̂sec = t̂min). Also let nmin = |Nmin| and nsec = |Nsec|.
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i ∈ Nmin i ∈ Nsec i ∈ N\(Nmin∪Nsec)

if t̂min = t̂sec
1
n

1
n

1
n

if t̂min < t̂sec < c · t̂min
1
L

/nmin 1 − 1
L

/nsec 0

if t̂sec ≥ c · t̂min

⎛
⎝1 −

k∈N\Nmin

t̂min

L · t̂k

⎞
⎠ /nmin

t̂min

L·t̂i
t̂min

L·t̂i

Fig. 2. Algorithm AL,c for scheduling a single task to n ≥ 2 machines, parametrized
by L > 2(n − 1) and c > 1. The first and second highest reported execution times by
the machines are denoted by t̂min and t̂sec respectively, while Nmin, Nsec denote the
corresponding sets of machine indices, and nmin, nsec their cardinalities.

Our main algorithm AL,c for the case of one task and n machines, parame-
trized by L > 2(n − 1), c > 1, is defined by the allocation probabilities ai for
each machine i ∈ N given in Fig. 2.

As the following theorem suggests, by picking a high enough value for L the
above algorithm can achieve an optimal performance under equilibrium:

Theorem 2. For the problem of scheduling one task without payments to n ≥ 2
machines, algorithm AL has a (pure) Price of Anarchy of 1 + n

L (for any L >
2(n − 1)).

Multiple Tasks. It is not difficult to extend our single-task algorithm and the result
of Theorem 2 to get a task-independent, anonymous algorithm with a pure PoA of
n for any number of tasks m ≥ 1: simply run AL independently for each job. Then,
the equilibria of the extended setting correspond exactly to players not having an
incentive to deviate for any task/round, and the approximation ratio of 1+ n

L with
respect to the minimum cost mini ti,j at every such round j = 1, . . . ,m, guarantees
optimality with respect to the social welfare and thus provides indeed a worst-case
n-approximation for the makespan objective (see Eq. 3).

4 Truthful Mechanisms

In this section we turn our attention to truthful algorithms for many tasks and
provide a mechanism that achieves approximation ratio n, almost matching the
(n + 1)/2 known lower bound on truthfulness [11]. The best known ratio before
our work was n(n+1)/2, achieved by running the algorithm of Koutsoupias [11]
independently for each task. Unfortunately this guarantee turns out to be tight
for the particular algorithm (see the full version [8] for a bad instance), thus here
we have to devise more involved, non task-independent mechanisms.
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4.1 The LP Mechanism

It is a known fact that the LP relaxation of a problem can be a useful tool for
designing mechanisms (both randomized and fractional). We recall that the LP
relaxation for the scheduling problem is as shown in Fig. 3.

minimize μ

∀j :
n

i=1

αi,j = 1 (each task is allocated entirely)

∀i : μ −
m

j=1

αi,jti,j ≥ 0 (the cost of each machine does not exceed makespan)

∀i, j : αi,j ≥ 0 (the allocation probabilities are positive)

Fig. 3. The LP relaxation for the scheduling problem. Our LP mechanism is defined
by an optimal solution αLP

i,j (t) to this program.

We denote an optimal solution3 to the above LP by αLP(t), μLP
t (dropping the

LP superscript whenever this is clear from the context). The vector αLP(t) can
be straightforwardly interpreted as allocation probabilities or allocation fractions
giving rise to a randomized and a fractional mechanism, respectively. We refer
to the corresponding mechanisms as the LP randomized and the LP fractional
mechanism. In Theorem 3 we show that both mechanisms are truthful, hence, we
can think of μLP

t as corresponding to the maximum (expected) cost/workload
perceived by any machine.

It is a simple observation that in an optimal solution the workload must
be fully balanced among all machines and that μLP can only increase when all
execution times increase, i.e. μLP

t ≤ μLP
t′ for t ≤ t′ (pointwise).

Note that the proof of Theorem 3 is identical in both cases where the α
correspond to fractions or allocation probabilities. Hence, the result holds for
both the LP randomized and the LP fractional mechanism.

Theorem 3. Under the LP (fractional or randomized) mechanism, truthfully
reporting the execution times is a (weakly) dominant strategy for every machine.

Proof. Recall that t and t̂ denote the true and (some) declared execution times
for all the machines. Fix some machine i and define vector tmaxi as follows: row
i, tmaxi

i , is the vector of point-wise maxima between true and declared times for
machine i, that is

tmaxi
i = (max{t̂i,1, ti,1},max{t̂i,2, ti,2}, . . . ,max{t̂i,m, ti,m}),

3 Notice that although μLP
t is unique, there might be various allocation fractions αi,j

that give rise to the optimal makespan μLP
t , in which case we can choose an arbitrary

one for αLP
t , e.g. take the lexicographically smaller.
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while every other row k �= i is tmaxi

k = t̂k, i.e. tmaxi = (tmaxi
i , t̂−i). Seen as

a vector of declarations, tmaxi corresponds to machine i’s deviation from t̂ to
tmaxi
i . Then we can derive the following:

m∑
j=1

αk,j(t̂)tmaxi

k,j =
m∑
j=1

αk,j(t̂)t̂k,j = μt̂ =
m∑
j=1

αi,j(t̂)t̂i,j ≤
m∑
j=1

αi,j(t̂)tmaxi
i,j

and thus from the optimality of the LP solutions it must be that

μtmaxi ≤ max
l=1,...,n

⎧⎨
⎩

m∑
j=1

αl,j(t̂)tmaxi

l,j

⎫⎬
⎭ =

m∑
j=1

αi,j(t̂)tmaxi
i,j .

Bringing everything together and taking into consideration that (ti, t̂−i) ≤ tmaxi

we get

Ci(t̂) =

m∑

j=1

αi,j(t̂)max
{
t̂i,j , ti,j

} ≥ μtmaxi ≥ μ(ti,t̂−i)
=

m∑

j=1

αi,j(ti, t̂−i)ti,j = Ci(ti, t̂−i),

which shows that indeed, whatever the declarations of the other machines t̂−i,
machine i is always (weakly) better of by truthfully reporting ti.

Theorem 3 gives rise to the following two results.

Theorem 4. The LP fractional mechanism has approximation ratio 1 for the
fractional scheduling problem without money, for any number of machines and
tasks.

As discussed in Sect. 2, by 2 we know that the above performance guarantee
can deteriorate at most by a factor of n when we use the fractions as allocation
probabilities for the integral case:

Theorem 5. The LP randomized mechanism has approximation ratio n for
(integrally) scheduling any number of tasks to n machines without money.

4.2 The Proportional Mechanism

In this section we briefly consider the proportional mechanism which allocates
to each machine i a t−1

i /
∑n

k=1 t−1
k fraction of the task or probability of getting

the task, respectively, depending on whether we consider the randomized or the
fractional variant. In [11] it was shown that this algorithm is truthful and that
its approximation ratio for randomized allocations of a single task is n. With
the following theorem we wish to stress the difference between fractional and
(randomized) integral allocations. The theorem is about the fractional case and
proves the optimality of the proportional mechanism for scheduling one task
without payments.

Theorem 6. The proportional mechanism has an optimal approximation ratio
of 1 for the fractional scheduling problem of a single task. For m tasks the approx-
imation ratio increases to at least m.
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5 Price of Stability and Mixed Equilibria

In this section we attempt a more optimistic approach regarding the problem
of scheduling without payments. We consider the benchmark of the best (mixed
Nash) equilibrium and prove that the following, most natural greedy algorithm
can achieve optimality: allocates each task independently to the machine declar-
ing the minimum cost (breaking ties arbitrarily).

Theorem 7. The Price of Stability of the Greedy algorithm is 1 for scheduling
without money any number of tasks to any number of machines.
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ICALP 2004. LNCS, vol. 3142, pp. 171–182. Springer, Heidelberg (2004)

4. Christodoulou, G., Gourvès, L., Pascual, F.: Scheduling selfish tasks: about the
performance of truthful algorithms. In: Lin, G. (ed.) COCOON 2007. LNCS, vol.
4598, pp. 187–197. Springer, Heidelberg (2007)

5. Christodoulou, G., Koutsoupias, E., Kovács, A.: Mechanism design for fractional
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