
On the Price of Anarchy of Highly Congested
Nonatomic Network Games

Riccardo Colini-Baldeschi1, Roberto Cominetti2, and Marco Scarsini1(B)

1 Dipartimento di Economia e Finanza, LUISS, Viale Romania 32, 00197 Rome, Italy
{rcolini,marco.scarsini}@luiss.it
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Abstract. We consider nonatomic network games with one source and
one destination. We examine the asymptotic behavior of the price of
anarchy as the inflow increases. In accordance with some empirical obser-
vations, we show that, under suitable conditions, the price of anarchy is
asymptotic to one. We show with some counterexamples that this is not
always the case. The counterexamples occur in simple parallel graphs.

1 Introduction

The study of network routing costs and their efficiency goes back to Pigou [23]
who, in the first edition of his book, introduces his famous two-road model.
Wardrop [31] develops a model where many players (vehicles on the road) choose
a road in order to minimize their cost (travel time) and the influence of each one
of them, singularly taken, is negligible. He introduces a concept of equilibrium
that has become the standard in the literature on nonatomic network games.

When travelers minimize their travel time without considering the negative
externalities that their behavior has on other travelers, the collective outcome
of the choices of all travelers is typically inefficient, i.e., it is worse than the
outcome that a benevolent planner would have achieved. Various measures have
been proposed to quantify this inefficiency. Among them the price of anarchy
has been the most successful. Introduced by Koutsoupias and Papadimitriou
[14] and given this name by Papadimitriou [21], it is the ratio of the worst social
equilibrium cost and the optimum cost. The price of anarchy has been studied
by several authors and interesting bounds for it have been found under some
conditions on the cost functions.

Most of the existing results about the price of anarchy consider worst-case
scenarios. They are not necessarily helpful in specific situations. In a nice recent
paper O’Hare et al. [19] show, both theoretically and with the aid of simulations,
how the price of anarchy is affected by changes in the total inflow of players. They
consider data for three cities and they write: “In each city, it can be seen that
there are broadly three identifiably distinct regions of behaviour: an initial region
in which the Price of Anarchy is one; an intermediate region of fluctuations;
and a final region of decay, which has a similar characteristic shape across all
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three networks. The similarities in this general behaviour across the three cities
suggest that there may be common mechanisms that drive this variation.”

The core of the paper [19] is an analysis of the intermediate fluctuations.
In our paper we will mainly look at the asymptotic behavior of the price of
anarchy. We consider nonatomic congestion games with single source and single
destination. We show that for a large class of cost functions the price of anarchy
is, indeed, asymptotic to one, as the mass of players grows. Nevertheless, we find
counterexamples where its lim sup is not 1 and it can even be infinite.

Contribution. The goal of this paper is twofold. On one hand we provide some
positive results that show that under some conditions the price of anarchy of
nonatomic network games is indeed asymptotic to one. On the other hand, we
present counterexamples where the lim sup of the price of anarchy is not one.

We first show that, for any single-source, single-destination graph, the price of
anarchy is asymptotic to one whenever the cost of at least one path is bounded.
Then we focus on parallel graphs and we show that the price of anarchy is
asymptotic to one for a large class of costs that we characterize in terms of
regularly varying functions (see [3] for properties of these functions). This class
includes affine functions and cost functions that can be bounded by a pair of
affine functions with the same slope.

Next, we present counterexamples where the behavior of the price of anar-
chy is periodic on a logarithmic scale, so that its lim sup is larger than one
both as the mass of players grows unbounded and as it goes to zero. In another
counterexample the lim sup of the price of anarchy is infinite. A further coun-
terexample shows that the price of anarchy may not converge to one even for
convex costs. An interesting point is that all the counterexamples concern a very
simple parallel graph with just two edges, so that the bad behavior of the price
of anarchy depends solely on the costs and not on the topology of the graph.
This is in stark contrast with the results in [19], where the irregular behavior of
the price of anarchy in the intermediate region of inflow heavily depends on the
structure of the graph.

Related Literature. Wardrop’s nonatomic model has been studied by
Beckmann et al. [2] and many others. The formal foundation of games with
a continuum of players came with Schmeidler [30] and then with Mas Colell [16].
Nonatomic congestion games have been studied, among others, by Milchtaich
[17,18].

Various bounds for the price of anarchy in nonatomic games have been
proved, under different conditions. In particular Roughgarden and Tardos [27]
prove that, when the cost functions are affine, the price of anarchy in nonatomic
games is at most 4/3, irrespective of the topology of the network. The bound
is sharp and is attained even in very simple networks. Several authors have
extended this bound to larger classes of functions. Roughgarden [25] shows that
if the class of cost functions includes the constants, then the worst price of
anarchy is achieved on parallel networks with just two edges. In his paper he
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considers bounds for the price of anarchy when the cost functions are polynomi-
als of degree at most d. Dumrauf and Gairing [8] do the same when the degrees
of the polynomials are between s and d. Roughgarden and Tardos [28] provide a
unifying result for the class of standard costs, i.e., costs c that are differentiable
and such that xc(x) is convex. Correa et al. [5] consider the price of anarchy
for networks where edges have a capacity and costs are not necessarily convex,
differentiable, or even continuous. In [7] they reinterpret and extend these results
using a geometric approach. In [6] they consider the problem of minimizing the
maximum latency rather than the average latency and provide results about the
price of anarchy in this framework. The reader is referred to [26,29] for a survey.

Some papers show how in real life the price of anarchy may substantially
differ from the worst-case scenario, [15,32]. González Vayá et al. [12] deal with a
problem of optimal schedule for the electricity demand of a fleet of plug-in electric
vehicles. Without using the term, they show that the price of anarchy goes to
one as the number of vehicles grows. Cole and Tao [4] study large Walrasian
auctions and large Fisher markets and show that in both cases the price of
anarchy goes to one as the market size increases. Feldman et al. [10] define a
concept of (λ, μ)-smoothness for sequences of games, and show that the price
of anarchy in atomic congestion games converges to the price of anarchy of the
corresponding nonatomic game, when the number of players grows. Patriksson
[22] and Josefsson and Patriksson [13] perform sensitivity analysis of Wardrop
equilibrium to some parameters of the model. Closer to the scope of our paper,
Englert et al. [9] examine how the equilibrium of a congestion game changes
when either the total mass of players is increased by ε or an edge that carries
an ε fraction of the mass is removed. For polynomial cost functions they bound
the increase of the equilibrium cost when a mass ε of players is added to the
system. Other recent papers, such as [20,24], have also raised questions about
the practical validity of known results about the price of anarchy.

2 The Model

Consider a finite directed multigraph G = (V,E), where V is a set of vertices
and E is a set of edges. The graph G together with a source s and a destination
t, with s, t ∈ V , is called a network. A path P is a set of consecutive edges that
go from source to destination. Call P the set of all paths. Each path P has a
flow xP ≥ 0 and call x = (xP )P∈P . The total flow from source to destination is
denoted by M ∈ R+. A flow x is feasible if

∑
P∈P xP = M . Call FM the set of

feasible flows. For each edge e ∈ E there exists a cost function ce(·) : R+ → R+,
that is assumed (weakly) increasing and continuous. Call c = (ce)e∈E . This
defines a nonatomic congestion game ΓM = (G ,M, c). The number M can be
seen as the mass of players who play the game.

The cost of a path P with respect to a flow x is the sum of the cost of its
edges: cP (x) =

∑
e∈P ce(xe), where

xe =
∑

P∈P:
e∈P

xP .
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A flow x∗ is an equilibrium flow if for every P,Q ∈ P such that x∗
P > 0 we

have cP (x∗) ≤ cQ(x∗). Denote E (ΓM ) the set of all such equilibrium flows.
For each flow x define the social cost associated to it as

C(x) :=
∑

P∈P

xP cP (x) =
∑

e∈E

xece(xe),

and let Opt(ΓM ) = minx∈FM
C(x) be the optimum cost of ΓM . Define also the

worst equilibrium cost of ΓM as WEq(ΓM ) = maxx∈E (ΓM ) C(x). Actually, in the
present setting the cost C(x∗) is the same for every equilibrium x∗ (see [11]).

The price of anarchy of the game ΓM is then defined as

PoA(ΓM ) :=
WEq(ΓM )
Opt(ΓM )

.

We will be interested in the price of anarchy of this game, as M → ∞. We will
show that, under suitable conditions, it is asymptotic to one. We call asymptot-
ically well behaved the congestion games for which this happens.

3 Well Behaved Congestion Games

3.1 General Result

The following general result shows that for any network the price of anarchy is
asymptotic to one when at least one path has a bounded cost.

Theorem 1. For each path P ∈ P denote

c∞
P =

∑

e∈P

c∞
e with c∞

e = lim
z→∞ ce(z)

and suppose that B := minP∈P c∞
P is finite. Then, limM→∞ PoA(ΓM ) = 1.

Proof. Let x∗ be an equilibrium for ΓM . Then if x∗
P > 0 we have

cP (x∗) = min
Q∈P

cQ(x∗) ≤ min
Q∈P

c∞
Q = B

and therefore

WEq(ΓM ) =
∑

P∈P

x∗
P cP (x∗) ≤

∑

P∈P

x∗
P B = MB.

It follows that
PoA(ΓM ) ≤ MB

Opt(ΓM )
,

so that it suffices to prove that Opt(ΓM )/M → B. To this end denote Δ(P) the
simplex defined by y = (yP )P∈P ≥ 0 and

∑
P∈P yP = 1, so that

1
M

Opt(ΓM ) = min
x∈FM

∑

P∈P

xP

M
cP (x)

= min
y∈Δ(P)

∑

P∈P

yP cP (My).
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Denote ΦM (y) =
∑

P∈P yP cP (My). Since the cost functions ce(·) are non-
decreasing, the family ΦM (·) monotonically increases with M towards the limit
function

Φ∞(y) =
∑

P∈P:yP >0

yP c∞
P .

Now we use the fact that a monotonically increasing family of functions epi-
converges (see [1]) and since Δ(P) is compact it follows that the minimum
miny∈Δ(P) ΦM (y) converges as M → ∞ towards

min
y∈Δ(P)

Φ∞(y).

Clearly this latter optimal value is B and is attained by setting yP > 0 only on
those paths P that attain the smallest value c∞

P = B, and therefore we conclude

1
M

Opt(ΓM ) = min
y∈Δ(P)

ΦM (y) → B,

as was to be proved. ��

3.2 Parallel Graphs

In this section we examine the asymptotic behavior of the price of anarchy when
the game is played on a parallel graph.

Let G = (V,E) be a parallel graph such that V = {s, t} are the vertices and
E = {e1, e2, . . . , en} are the edges. For each edge ei ∈ E the function ci(·) rep-
resents the cost function of the edge ei. Call ΓM = (G ,M, c) the corresponding
game. In the whole section we will deal with this graph.

Adding a Constant to Costs. First we prove a preservation result. We show
that if the price of anarchy of a game converges to 1, then adding positive
constants to each cost does not alter this asymptotic behavior.

Theorem 2. Given a game ΓM = (G ,M, c) and a vector a ∈ [0,∞)n, consider
a new game Γa

M (G ,M, ca), where

cai (x) = ai + ci(x).

If ci(·) is strictly increasing and continuous, limx→∞ ci(x) = ∞ for all ei ∈ E,
and limM→∞ PoA(ΓM ) = 1, then limM→∞ PoA(Γa

M ) = 1.

Regularly Varying Functions

Definition 3. Let β ≥ 0. A function Θ : (0,+∞) → (0,+∞) is called
β-regularly varying if for all a > 0

lim
x→∞

Θ(a · x)
Θ(x)

= aβ ∈ (0,+∞).

When β = 1, we just say that the function is regularly varying.
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The following theorem shows that asymptotically the price of anarchy goes
to 1 for a large class of cost functions.

Theorem 4. Consider the game ΓM and suppose that for some β > 0 there
exists a β-regularly varying function c(·) ∈ C1 such that the function x 	→
c(x)+xc′(x) is strictly increasing and for all ei ∈ E the function ci(·) is strictly
increasing and continuous with

lim
x→∞

c−1 ◦ ci(x)
x

= αi ∈ (0,+∞] (1)

and that at least one αi is finite. Then

lim
M→∞

PoA(ΓM ) = 1.

Proof. We begin by noting that if some cost ci(·) is bounded, then the result
follows directly from Theorem 1. Suppose now that ci(x) → ∞ when x → ∞
in all links and consider first the case where all the αi are finite. In this case
the equilibrium flows x∗

i must diverge to ∞ as M → ∞ and the equilibrium is
characterized by ci(x∗

i ) = λ. This allows to derive an upper bound for the cost
of the equilibrium. That is, (1) implies that for small ε > 0 we have

c−1 ◦ c(x∗
i )

x∗
i

=
c−1(λ)

x∗
i

∈ (αi − ε, αi + ε),

provided M is large enough. It then follows that

n∑

i=1

c−1(λ)
αi + ε

≤
n∑

i=1

x∗
i = M,

so that, denoting

a(ε) =

(
n∑

i=1

1
αi + ε

)−1

,

we get λ ≤ c(Ma(ε)) and

WEq = Mλ ≤ Mc(Ma(ε)).

Next we derive a lower bound for the optimal cost

Opt(ΓM ) = min
x∈FM

n∑

i=1

xici(xi).

We note that when M → ∞ the optimal solutions are such that xi(M) → ∞ so
that using (1) and the fact that αi − ε > 0 we get for all M large enough

min
x∈FM

n∑

i=1

xici(xi) ≥ min
x∈FM

n∑

i=1

xic((αi − ε)xi).
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The optimality condition for the latter yields

c((αi − ε)xi) + (αi − ε)xic
′((αi − ε)xi) = μ.

For the sake of brevity we denote c̃(x) = c(x) + xc′(x) and yi = (αi − ε)xi so
that the optimality condition becomes c̃(yi) = μ. This yields yi = c̃−1(μ) and
therefore

M =
n∑

i=1

xi =
n∑

i=1

c̃−1(μ)
αi − ε

.

Denoting

b(ε) =

(
n∑

i=1

1
αi − ε

)−1

,

we then get μ = c̃(Mb(ε)) and we obtain the following lower bound for the
optimal cost

Opt(ΓM ) ≥ min
x∈FM

n∑

i=1

xic((αi − ε)xi) = Mc(c̃−1(μ)) = Mc(Mb(ε)).

Combining the previous bounds we obtain the following estimate for the price
of anarchy

PoA(ΓM ) ≤ Mc(Ma(ε))
Mc(Mb(ε))

.

Letting M → ∞ and using the fact that c is β-regularly varying we deduce

lim sup
M→∞

PoA(ΓM ) ≤
(

a(ε)
b(ε)

)β

and since a(ε)/b(ε) → 1 as ε → 0 we conclude

lim sup
M→∞

PoA(ΓM ) = 1.

If some αi = ∞, then call I0 := {i : αi < ∞}. In equilibrium

M =
n∑

i=1

c−1
i (λ) ≥

∑

i∈I0

c−1
i (λ) ≥

∑

i∈I0

1
αi + ε

c−1(λ),

hence

λ ≤ c

⎛

⎝M

(
∑

i∈I0

1
αi + ε

)−1
⎞

⎠ .

In the optimum proceed as before with α′
i ↗ αi. ��

The following results follow easily from Theorem 4.
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Corollary 5. In the game ΓM if for all i ∈ E we have limx→∞ ci(x)/x = mi ∈
(0,+∞] and at least one mi < ∞, then

lim
M→∞

PoA(ΓM ) = 1.

Corollary 6. In the game ΓM if for all i ∈ E we have limx→∞ c′
i(x) = mi with

mi ∈ (0,+∞] and at least one mi is finite, then

lim
M→∞

PoA(ΓM ) = 1.

Corollary 7. In the game ΓM if for all i ∈ E for some β > 0 there exists a
β-regularly varying function c(·) such that

lim
x→∞

ci(x)
c(x)

= mi ∈ (0,+∞], (2)

and at least one mi is finite, then

lim
M→∞

PoA(ΓM ) = 1.

Corollary 8. In the game ΓM if, for all ei ∈ E, ci(x) = ai + bix, then

lim
M→∞

PoA(ΓM ) = 1.

Costs Bounded by Affine Functions. The next theorem examines the case
where each cost function is bounded above and below by two affine functions
with the same slope.

Theorem 9. Consider the game ΓM and assume that for every ei ∈ E


i(x) := ai + bix ≤ ci(x) ≤ αi + bix =: Li(x).

Then
lim

M→∞
PoA(ΓM ) = 1.

4 Ill Behaved Games

In this section we will consider some examples where the price of anarchy is not
asymptotic to one, as the inflow goes to infinity.

Consider a standard Pigou graph and assume that the costs are as follows:

c1(x) = x,

c2(x) = ak for x ∈ (ak−1, ak], k ∈ Z,
(3)

with a ≥ 2, as in Fig. 1. In this game the cost of one edge is the identity, whereas
for the other edge it is a step function that touches the identity at intervals that
grow exponentially. The cost function c2 is not continuous, but a very similar
game can be constructed by approximating it with a continuous function.
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y

x

ce1(x)

ce2(x)

ce2(x)

ce1(x)

Fig. 1. Step function.

Theorem 10. Consider the game ΓM with costs as in (3). We have

lim inf
M→∞

PoA(ΓM ) = 1, lim sup
M→∞

PoA(ΓM ) =
4 + 4a

4 + 3a
.

Remark 11. We can immediately see that

lim sup
M→∞

PoA(ΓM ) =
6
5

for a = 2

and
lim sup
M→∞

PoA(ΓM ) → 4
3

as a → ∞.

The proof of Theorem 10 shows that there is a periodic behavior of the price
of anarchy (on a logarithmic scale). This implies that

lim inf
M→0

PoA(ΓM ) = 1, lim sup
M→0

PoA(ΓM ) =
4 + 4a

4 + 3a
.

That is, even for very small values of M the price of anarchy is not necessarily
close to 1.

Figure 2 plots the price of anarchy for M ∈ [2ak, 2ak+1], when a = 3.
The next theorem shows that the price of anarchy may fail to be asymptotic

to one, even when the cost functions are all convex.

Theorem 12. There exist congestion games ΓM where the cost functions are
all increasing and convex and both

lim sup
M→∞

PoA(ΓM ) > 1 and lim sup
M→0

PoA(ΓM ) > 1.
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Fig. 2. Price of anarchy for M ∈ [2ak, 2ak+1], with a = 3, k = 1.

The next theorem shows that the lim sup of the price of anarchy may even
be infinite.

Theorem 13. There exist congestion games ΓM with lim sup
M→∞

PoA(ΓM ) = ∞.

5 Conclusions

The classical result of [27] can be restated as follows. Given a nontrivial single-
commodity network, for any fixed total flow M , there exists a vector c of affine
costs that depend on M , such that the price of anarchy of the corresponding
game is 4/3.

In this paper we have proved that, given a single-commodity network, for any
vector c of costs that is bounded on some path P , there exists a total flow M
such that the price of anarchy of the corresponding game is arbitrarily close to
1. Similar results have been obtained under different conditions on the network
and the costs. What is relevant is that in our model the order of the quantifiers is
reversed with respect to the classical bounds of the price of anarchy, such as [27].
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