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Preface

This volume contains the proceedings of the 9th International Symposium on Algo-
rithmic Game Theory (SAGT), held in Liverpool, UK, in September 2016.

The program of SAGT 2016 consisted of 3 invited lectures and 28 presentations of
refereed submissions. The invited speakers were Constantinos Daskalakis (MIT),
Olivier Gossner (LSE and École Polytechnique), and Kurt Mehlhorn (Max-
Planck-Institut für Informatik). After a careful reviewing process, the Program Com-
mittee selected 28 out of 62 submissions. To accommodate the publishing traditions of
different fields, authors of accepted papers could ask that only a one-page abstract
of the paper appears in the proceedings. Among the 28 accepted papers, the authors of
two papers opted for publication as a one-page abstract. The accepted submissions
cover various important aspects of algorithmic game theory such as computational
aspects of games, congestion games and networks, matching and voting, auctions and
markets, and mechanism design. This year, with financial support from Springer, we
introduced a best paper award, which was given to “The Big Match in Small Space” by
Hansen, Ibsen-Jensen, and Koucky.

We would like to thank all authors who submitted their research work and all
Program Committee members and external reviewers for their effort in selecting the
program for SAGT 2016. We thank ACM SIGecom, EATCS, Facebook, and Springer
for their generous support. We thank Anna Kramer and Alfred Hofmann at Springer for
helping with the proceedings. We are grateful for the use of the EasyChair paper
management system.

July 2016 Martin Gairing
Rahul Savani
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Logarithmic Query Complexity for Approximate
Nash Computation in Large Games

Paul W. Goldberg1, Francisco J. Marmolejo Cosśıo1(B),
and Zhiwei Steven Wu2

1 University of Oxford, Oxford, UK
{paul.goldberg,francisco.marmolejocossio}@cs.ox.ac.uk

2 University of Pennsylvania, Philadelphia, USA
wuzhiwei@cis.upenn.edu

Abstract. We investigate the problem of equilibrium computation for
“large” n-player games where each player has two pure strategies. Large
games have a Lipschitz-type property that no single player’s utility is
greatly affected by any other individual player’s actions. In this paper,
we assume that a player can change another player’s payoff by at most
1
n

by changing her strategy. We study algorithms having query access
to the game’s payoff function, aiming to find ε-Nash equilibria. We seek
algorithms that obtain ε as small as possible, in time polynomial in n.

Our main result is a randomised algorithm that achieves ε approach-
ing 1

8
in a completely uncoupled setting, where each player observes her

own payoff to a query, and adjusts her behaviour independently of other
players’ payoffs/actions. O(log n) rounds/queries are required. We also
show how to obtain a slight improvement over 1

8
, by introducing a small

amount of communication between the players.

1 Introduction

In studying the computation of solutions of multi-player games, we have the well-
known problem that a game’s payoff function has description length exponential
in the number of players. One approach is to assume that the game comes from
a concisely-represented class (for example, graphical games, anonymous games,
or congestion games), and another one is to consider algorithms that have query
access to the game’s payoff function.

In this paper, we study the computation of approximate Nash equilibria of
multi-player games having the feature that if a player changes her behaviour,
she only has a small effect on the payoffs that result to any other player. These
games, sometimes called large games, or Lipschitz games, have recently been
studied in the literature, since they model various real-world economic interac-
tions; for example, an individual’s choice of what items to buy may have a small
effect on prices, where other individuals are not strongly affected. Note that
these games do not have concisely-represented payoff functions, which makes
them a natural class of games to consider from the query-complexity perspective.

c© Springer-Verlag Berlin Heidelberg 2016
M. Gairing and R. Savani (Eds.): SAGT 2016, LNCS 9928, pp. 3–14, 2016.
DOI: 10.1007/978-3-662-53354-3 1



4 P.W. Goldberg et al.

It is already known how to compute approximate correlated equilibria for unre-
stricted n-player games. Here we study the more demanding solution concept of
approximate Nash equilibrium.

Large games (equivalently, small-influence games) are studied in Kalai [16]
and Azrieli and Shmaya [1]. In both of these the existence of pure ε-Nash equi-
libria for ε = γ

√
8n log(2mn) is established, where γ is the largeness/Lipschitz

parameter of the game. In particular, since we assume that γ = 1
n and m = 2 we

notice that ε = O(n−1/2) so that there exist arbitrarily accurate pure Nash equi-
libria in large games as the number of players increases. Kearns et al. [17] study
this class of games from the mechanism design perspective of mediators who aim
to achieve a good outcome to such a game via recommending actions to play-
ers. Babichenko [2] studies large binary-action anonymous games. Anonymity
is exploited to create a randomised dynamic on pure strategy profiles that with
high probability converges to a pure approximate equilibrium in O(n log n) steps.

Payoff query complexity has been recently studied as a measure of the
difficulty of computing game-theoretic solutions, for various classes of games.
Upper and lower bounds on query complexity have been obtained for bima-
trix games [6,7], congestion games [7], and anonymous games [11]. For general
n-player games (where the payoff function is exponential in n), the query com-
plexity is exponential in n for exact Nash, also exact correlated equilibria [15];
likewise for approximate equilibria with deterministic algorithms (see also [4]).
For randomised algorithms, query complexity is exponential for well-supported
approximate equilibria [3], which has since been strengthened to any ε-Nash
equilibria [5]. With randomised algorithms, the query complexity of approxi-
mate correlated equilibrium is Θ(log n) for any positive ε [10].

Our main result applies in the setting of completely uncoupled dynamics in
equilibria computation. These dynamics have been studied extensively: Hart and
Mas-Colell [13] show that there exist finite-memory uncoupled strategies that
lead to pure Nash equilibria in every game where they exist. Also, there exist
finite memory uncoupled strategies that lead to ε-NE in every game. Young’s
interactive trial and error [18] outlines completely uncoupled strategies that lead
to pure Nash equilibria with high probability when they exist. Regret testing
from Foster and Young [8] and its n-player extension by Germano and Lugosi
in [9] show that there exist completely uncoupled strategies that lead to an ε-
Nash equilibrium with high probability. Randomisation is essential in all of these
approaches, as Hart and Mas-Colell [14] show that it is impossible to achieve
convergence to Nash equilibria for all games if one is restricted to deterministic
uncoupled strategies. This prior work is not concerned with rate of convergence;
by contrast here we obtain efficient bounds on runtime. Convergence in adap-
tive dynamics for exact Nash equilibria is also studied by Hart and Mansour in
[12] where they provide exponential lower bounds via communication complex-
ity results. Babichenko [3] also proves an exponential lower bound on the rate
of convergence of adaptive dynamics to an approximate Nash equilibrium for
general binary games. Specifically, he proves that there is no k-queries dynamic
that converges to an ε-WSNE in 2Ω(n)

k steps with probability of at least 2−Ω(n)
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in all n-player binary games. Both of these results motivate the study of specific
subclasses of these games, such as “large” games.

2 Preliminaries

We consider games with n players where each player has two actions A = {0, 1}.
Let a = (ai, a−i) denote an action profile in which player i plays action ai and
the remaining players play action profile a−i. We also consider mixed strategies,
which are defined by the probability distributions over the action set A. We write
p = (pi, p−i) to denote a mixed-strategy profile where player i plays action 1 with
probability pi and the remaining players play the profile p−i. We will sometimes
abuse notation to use pi to denote i’s mixed strategy, and write pi0 and pi1 to
denote the probabilities that player i plays the action 0 and 1 respectively.

Each player i has a payoff function ui : An → [0, 1] mapping an action profile
to some value in [0, 1]. We will sometimes write ui(p) = Ea∼p [ui(a)] to denote
the expected payoff of player i under mixed strategy p. An action a is player
i’s best response to mixed strategy profile p if a ∈ argmaxj∈{0,1} ui(j, p−i).

We assume our algorithms or the players have no other prior knowledge of
the game but can access payoff information through querying a payoff oracle Q.
For each payoff query specified by an action profile a ∈ An, the query oracle will
return (ui(a))n

i=1 the n-dimensional vector of payoffs to each player. Our goal is
to compute an approximate Nash equilibrium with a small number of queries. In
the completely uncoupled setting, a query works as follows: each player i chooses
her own action ai independently of the other players, and learns her own payoff
ui(a) but no other payoffs.

Definition 1 (Regret; (approximate) Nash equilibrium). Let p be a mixed
strategy profile, the regret for player i at p is

reg(p, i) = max
k∈{0,1} E

a−i∼p−i

[ui(k, a−i)] − E
a∼p

[ui(a)]

A mixed strategy profile p is an ε-approximate Nash equilibrium if for each player
i, the regret satisfies reg(p, i) ≤ ε.

Observation. To find an exact Nash (or even, correlated) equilibrium of a large
game, in the worst case it is necessary to query the game exhaustively, even with
randomised algorithms. This uses a similar negative result for general games due
to [15], and noting that we can obtain a strategically equivalent large game, by
scaling down the payoffs into the interval [0, 1

n ].
We will also use the following useful notion of discrepancy.

Definition 2 (Discrepancy). Letting p be a mixed strategy profile, the dis-
crepancy for player i at p is

disc(p, i) =
∣∣∣∣ E
a−i∼p−i

[ui(0, a−i)] − E
a−i∼p−i

[ui(1, a−i)]
∣∣∣∣
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We will assume the following largeness condition in our games. Informally,
such largeness condition implies that no single player has a large influence on
any other player’s utility function.

Definition 3 (Large Games). A game is large if for any two distinct players
i �= j, any two distinct actions aj and a′

j for player j, and any tuple of actions
a−j for everyone else:

|ui(aj , a−j) − ui(a′
j , a−j)| ≤ 1

n
.

One immediate implication of the largeness assumption is the following Lip-
schitz property of the utility functions.

Lemma 1. For any player i ∈ [n], and any action j ∈ {0, 1}, the utility
ui(j, p−i) is a ( 1

n )-Lipschitz function in the second coordinate p−i w.r.t. the �1
norm, and the mixed strategy profile of all other players.

Estimating payoffs for mixed profiles. We can approximate the expected payoffs
for any mixed strategy profile by repeated calls to the oracle Q. In particular,
for any target accuracy parameter β and confidence parameter δ, consider the
following procedure to implement an oracle Qβ,δ:

– For any input mixed strategy profile p, compute a new mixed strategy profile
p′ = (1 − β

2 )p + (β
2 )1 such that each player i is playing uniform distribution

with probability β
2 and playing distribution pi with probability 1 − β

2 .
– Let N = 64

β3 log (8n/δ), and sample N payoff queries randomly from p, and
call the oracle Q with each query as input to obtain a payoff vector.

– Let ûi,j be the average sampled payoff to player i for playing action j.1 Output
the payoff vector (ûij)i∈[n],j∈{0,1}.

Lemma 2. For any β, δ ∈ (0, 1) and any mixed strategy profile p, the oracle
Qβ,δ with probability at least 1 − δ outputs a payoff vector (ûi)i∈[n],j∈{0,1} that
has an additive error of at most β, that is for each player i, and each action
j ∈ {0, 1},

|ui(j, p−i) − ûi,j | ≤ β.

The lemma follows from Proposition 1 of [10] and the largeness property.

Extension to Stochastic Utilities. We consider a generalisation where the utility
to player i of any pure profile a may consist of a probability distribution Da,i

over [0, 1], and if a is played, i receives a sample from Da,i. The player wants to
maximise her expected utility with respect to sampling from a (possibly mixed)
profile, together with sampling from any Da,i that results from a being chosen.
If we extend the definition of Q to output samples of the Da,i for any queried
profile a, then Qβ,δ can be defined in a similar way as before, and simulated as
above using samples from Q. Our algorithmic results extend to this setting.
1 If the player i never plays an action j in any query, set ûi,j = 0.
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3 Warm-Up: 0.25-Approximate Equilibrium

As a starting point, we will show that without any payoff queries, we could easily
give a 1

2 -approximate Nash equilibrium.

Observation. Consider the following “uniform” mixed strategy profile. Each
player puts 1

2 probability mass on each action: for all i, pi = 1
2 . Such a mixed

strategy profile is a 1
2 -approximate Nash equilibrium.

In this section, we will present two simple and query-efficient algorithms
that allows us to get a better approximation than 1

2 . Both algorithms could
be regarded as a simple refinement of the above “uniform” mixed strategy. For
simplicity of presentation, we will assume that we have access to a mixed strategy
query oracle QM that returns exact expected payoff values for any input mixed
strategy p. Our results continue to hold if we replace QM by Qβ,δ.2

Obtaining ε = 0.272. First, we show that having each player making small
adjustment from the “uniform” strategy can improve ε from 1

2 to around 0.27.
We simply let players with large regret shift more probability weight towards
their best responses. More formally, consider the following algorithm OneStep
with two parameters α,Δ ∈ [0, 1]:

– Let the players play the “uniform” mixed strategy. Call the oracle QM to
obtain the payoff values of ui(0, p−i) and ui(1, p−i) for each player i.

– For each player i, if ui(0, p−i) − ui(1, p−i) > α, then set pi0 = 1
2 + Δ and

pi1 = 1
2 − Δ; if ui(1, p−i) − ui(0, p−i) > α, set pi1 = 1

2 + Δ and pi0 = 1
2 − Δ;

otherwise keep playing pi = 1
2 .

Lemma 3. If we set the parameters α = 2 − √
11/3 and Δ =

√
11/48 − 1/4

in the instantiation of the algorithm OneStep, then the resulting mixed strategy
profile is an ε-approximate Nash equilibrium with ε ≤ 0.272.

Obtaining ε = 0.25. We now give a slightly more sophisticated algorithm than
the previous one. We will again have the players starting with the “uniform”
mixed strategy, then let players shift more weights toward their best responses,
and finally let some of the players switch back to the uniform strategy if their
best responses change in the adjustment. Formally, the algorithm TwoStep
proceeds as:

– Start with the “uniform” mixed strategy profile, and query the oracle QM for
the payoff values. Let bi be player i’s best response.

– For each player i, set the probability of playing their best response bi to be 3
4 .

Call QM to obtain payoff values for this mixed strategy profile, and let b′
i be

each player i’s best response in the new profile.
– For each player i, if bi �= b′

i, then resume playing pi0 = pi1 = 1
2 . Otherwise

maintain the same mixed strategy from the previous step.

Lemma 4. The mixed strategy profile output by TwoStep is an ε-approximate
Nash equilibrium with ε ≤ 0.25.
2 In particular, if we use Qβ,δ for our query access, we will get (ε+O(β))-approximate

equilibrium, with ε = 0.272, 0.25 with probability at least 1 − δ.
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4 1
8
-Approximate Equilibrium via Uncoupled Dynamics

In this section, we present our main algorithm that achieves approximate equi-
libria with ε ≈ 1

8 in a completely uncoupled setting. In order to arrive at this
we first model game dynamics as an uncoupled continuous-time dynamical sys-
tem where a player’s strategy profile updates depend only on her own mixed
strategy and payoffs. Afterwards we present a discrete-time approximation to
these continuous dynamics to arrive at a query-based algorithm for computing
( 18 + α)-Nash equilibrium with logarithmic query complexity in the number of
players. Finally, as mentioned in Sect. 2, we recall that these algorithms carry
over to games with stochastic utilities, where we can show that our algorithm
uses an essentially optimal number of queries.

Throughout the section, we will rely on the following notion of a strategy-
payoff state, capturing the information available to a player at any moment of
time.

Definition 4 (Strategy-payoff state). For any player i, the strategy-payoff
state for player i is defined as the ordered triple si = (vi1, vi0, pi) ∈ [0, 1]3, where
vi1 and vi0 are the player’s utilities for playing pure actions 1 and 0 respec-
tively, and pi denotes the player’s probability of playing action 1. Furthermore,
we denote the player’s discrepancy by Di = |vi1 − vi0| and we let p∗

i denote the
probability mass on the best response, that is if vi1 ≥ vi0, p∗

i = pi, otherwise
p∗

i = 1 − pi.

4.1 Continuous-Time Dynamics

First, we will model game dynamics in continuous time, and assume that a
player’s strategy-payoff state (and thus all variables it contains) is a differentiable
time-valued function. When we specify these values at a specific time t, we
will write si(t) = (vi1(t), vi0(t), pi(t)). Furthermore, for any time-differentiable
function g, we denote its time derivative by ġ = d

dtg. We will consider continuous
game dynamics formally defined as follows.

Definition 5 (Continuous game dynamic). A continuous game dynamic
consists of an update function f that specifies a player’s strategy update at
time t. Furthermore, f depends only on si(t) and ṡi(t). In other words, ṗi(t) =
f(si(t), ṡi(t)) for all t.

Observation. We note that in this framework, a specific player’s updates do not
depend on other players’ strategy-payoff states nor their history of play. This will
eventually lead us to uncoupled Nash equilibria computation in Sect. 4.2.

A central object of interest in our continuous dynamic is a linear sub-space
P ⊂ [0, 1]3 such that all strategy-payoff states in it incur a bounded regret.
Formally, we will define P via its normal vector n = (− 1

2 , 1
2 , 1) so that P =

{si| si · n = 1
2}. Equivalently, we could also write P = {si | p∗

i = 1
2 (1 + Di)}.

(See Fig. 1 for a visualisation.) With this observation, it is straightforward to see
that any player with strategy-payoff state in P has regret at most 1

8 .
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0

1
2

1

pi = Pr[play 1]

vi0

vi1

•

•

Fig. 1. Visualisation of P; on the red line, vi0 = vi1 so the player is indifferent and
mixes with equal probabilities; at the red points the player has payoffs of 0 and 1, and
makes a pure best response. (Color figure online)

Lemma 5. Suppose that the player’s strategy-payoff state satisfies si ∈ P, then
her regret is at most 1

8 .

Proof. This follows from the fact that a player’s regret can be expressed as
Di(1 − p∗

i ) and the fact that all points on P also satisfy p∗
i = 1

2 (1 + Di). In
particular, the maximal regret of 1

8 is achieved when Di = 1
2 and p∗

i = 3
4 .

Next, we want to show there exists a dynamic that allows all players to even-
tually reach P and remain on it over time. We notice that for a specific player, v̇i1,
v̇i0 and subsequently Ḋi measure the cumulative effect of other players shifting
their strategies. However, if we limit how much any individual player can change
their mixed strategy over time by imposing |ṗi| ≤ 1 for all i, Lemma 1 guarantees
|v̇ij | ≤ 1 for j = 0, 1 and consequently |Ḋi| ≤ 2. With these quantities bounded,
we can consider an adversarial framework where we construct game dynamics
by solely assuming that |ṗi(t)| ≤ 1, |v̇ij(t)| ≤ 1 for j = 0, 1 and |Ḋi(t)| ≤ 2 for
all times t ≥ 0.

Now assume an adversary controls v̇i0, v̇i1 and hence Ḋi, one can show that
if a player sets ṗi(t) = 1

2 (v̇i1(t) − v̇i0(t)), then she could stay on P whenever she
reaches the subspace.

Lemma 6. If si(0) ∈ P, and ṗi(t) = 1
2 (v̇i1(t) − v̇i0(t)), then si(t) ∈ P ∀ t ≥ 0.
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Theorem 1. Under the initial conditions pi(0) = 1
2 for all i, the following

continuous dynamic, Uncoupled Continuous Nash (UCN), has all play-
ers reach P in at most 1

2 time units. Furthermore, upon reaching P a player
never leaves.

ṗi(t) = f(si(t), ṡi(t)) =

⎧
⎪⎨

⎪⎩

1 if si /∈ P and vi1 ≥ vi0

−1 if si /∈ P and vi1 < vi0

1
2 (v̇i1(t) − v̇i0(t)) if si ∈ P

Proof. From Lemma 6 it is clear that once a player reaches P they never leave
the plane. It remains to show that it takes at most 1/2 time steps to reach P.

Since pi(0) = p∗
i (0) = 1

2 , it follows that if si(0) /∈ P then p∗
i (0) < 1

2 (1+Di(0)).
On the other hand, if we assume that ṗ∗

i (t) = 1 for t ∈ [0, 1
2 ], and that player

preferences do not change, then it follows that p∗
i (

1
2 ) = 1 and p∗

i (
1
2 ) ≥ 1

2 (1 +
Di( 12 )), where equality holds only if Di( 12 ) = 1. By continuity of p∗

i (t) and Di(t)
it follows that for some k ≤ 1

2 , si(k) ∈ P. It is simple to see that the same holds
in the case where preferences change.

4.2 Discrete Time-Step Approximation

The continuous-time dynamics of the previous section hinge on obtaining
expected payoffs in mixed strategy profiles, thus we will approximate expected
payoffs via Qβ,δ. Our algorithm will have each player adjusting their mixed
strategy over rounds, and each round query Qβ,δ to obtain the payoff values.

Since we are considering discrete approximations to UCN, the dynamics
will no longer guarantee that strategy-payoff states stay on the plane P. For this
reason we define the following region around P:

Definition 6. Let Pλ = {si | si · n ∈ [12 − λ, 1
2 + λ]}, with normal vector

n = (− 1
2 , 1

2 , 1). Equivalently, P = {si | p∗
i = 1

2 (1 + Di) + c, c ∈ [−λ, λ]}.
Just as in the proof of Lemma 5, we can use the fact that a player’s regret is
Di(1 − p∗

i ) to bound regret on Pλ.

Lemma 7. The worst case regret of any strategy-payoff state in Pλ is 1
8 (1+2λ)2.

This is attained on the boundary: ∂Pλ = {si | si · n = 1
2 ± λ}

Corollary 1. For a fixed α > 0, if λ =
√
1+8α−1

2 , then Pλ attains a maximal
regret of 1

8 + α.

We present an algorithm in the completely uncoupled setting, UN(α, η),
that for any parameters α, η ∈ (0, 1] computes a ( 18 + α)-Nash equilibrium with
probability at least 1 − η.

Since pi(t) ∈ [0, 1] is the mixed strategy of the i-th player at round t we let
p(t) = (pi(t))n

i=1 be the resulting mixed strategy profile of all players at round
t. Furthermore, we use the mixed strategy oracle Qβ,δ from Lemma 2 that for
a given mixed strategy profile p returns the vector of expected payoffs for all
players with an additive error of β and a correctness probability of 1 − δ.

The following lemma is used to prove the correctness of UN(α, η):
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Lemma 8. Suppose that w ∈ R
3 with ‖w‖∞ ≤ λ and let function h(x) = x · n,

where n is the normal vector of P. Then h(x+w)−h(x) ∈ [−2λ, 2λ]. Furthermore,
if w3 = 0, then h(x + w) − h(x) ∈ [−λ, λ].

Proof. The statement follows from the following expression:

h(x + w) − h(x) = w · n =
1
2
(w2 − w1) + w3

We now give a formal description for UN(α, η):

1. Set λ =
√
1+8α−1

2 , Δ = λ
4 , and N = � 2

Δ�
2. For each player i, let pi(0) = 1

2 and v̂ij(−1) =
(
Q(Δ, η

N )(p(0))
)

i,j
for j = 0, 1

3. During t ≤ N rounds, for each player i, calculate v̂ij(t) =
(
Q(Δ, η

N )(p(t))
)

i,j

and let Δv̂ij(t) = v̂ij(t) − v̂ij(t − 1) for j = 0, 1.
4. if ŝi(t) = (v̂i1(t), v̂i0(t), pi(t)) /∈ Pλ/4, then p∗

i (t + 1) = p∗
i (t) + Δ, otherwise

p∗
i (t + 1) = p∗

i (t) + 1
2 (Δv̂i1(t) − Δv̂i0(t))

5. return p(t)

Theorem 2. With probability 1−η, UN(α, η) correctly returns a (18+α) approx-

imate Nash equilibrium by using O( 1
α4 log

(
n
αη

)
) queries.

Proof. By Lemma 2 and union bound, we can guarantee that with probability
at least 1−η all sample approximations to mixed payoff queries have an additive
error of at most Δ = λ

4 . We will condition on this accuracy guarantee in the
remainder of our argument. Now we can show that for each player there will be
some round k ≤ N , such that at the beginning of the round their strategy-payoff
state lies in Pλ/2. Furthermore, at the beginning of all subsequent rounds t ≥ k,
it will also be the case that their strategy-payoff state lies in Pλ/2.

The reason any player generally reaches Pλ/2 follows from the fact that in
the worst case, after increasing p∗ by Δ for N rounds, p∗ = 1, in which case a
player is certainly in Pλ/2. Furthermore, Lemma 8 guarantees that each time p∗

is increased by Δ, the value of ŝi · n changes by at most λ
2 which is why ŝi are

always steered towards Pλ/4. Due to inherent noise in sampling, players may at
times find that ŝi slightly exit Pλ/4 but since additive errors are at most λ

4 . We
are still guaranteed that true si lie in Pλ/2.

The second half of step 4 forces a player to remain in Pλ/2 at the beginning
of any subsequent round t ≥ k. The argumentation for this is identical to that
of Lemma 6 in the continuous case.

Finally, the reason that individual probability movements are restricted to
Δ = λ

4 is that at the end of the final round, players will move their probabilities
and will not be able to respond to subsequent changes in their strategy-payoff
states. From the second part of Lemma 8, we can see that in the worst case
this can cause a strategy-payoff state to move from the boundary of Pλ/2 to the
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boundary of P 3λ
4 ⊂ Pλ. However, λ is chosen in such a way so that the worst-

case regret within Pλ is at most 1
8 +α, therefore it follows that UN(α, η) returns

a 1
8 + α approximate Nash equilibrium. Furthermore, the number of queries is

(N + 1)
(

1024
λ3

log
(

8nN

η

))
=

(
1
λ

+ 1
) (

1024
λ3

log
(

8n

λη

))
.

It is not difficult to see that 1
λ = O( 1

α ) which implies that the number of queries

made is O
(

1
α4 log

(
n
αη

))
in the limit.

4.3 Logarithmic Lower Bound

As mentioned in the preliminaries section, all of our previous results extend to
stochastic utilities. In particular, if we assume that G is a game with stochastic
utilities where expected payoffs are large with parameter 1

n , then we can apply
UN(α, η) with O(log(n)) queries to obtain a mixed strategy profile where no
player has more than 1

8 + α incentive to deviate. Most importantly, for k > 2,
we can use the same methods as [10] to lower bound the query complexity of
computing a mixed strategy profile where no player has more than (12 − 1

k )
incentive to deviate.

Theorem 3. If k > 2, the query complexity of computing a mixed strategy profile
where no player has more than (12 − 1

k ) incentive to deviate for stochastic utility
games is Ω(logk(k−1)(n)). Alongside Theorem 2 this implies the query complexity
of computing mixed strategy profiles where no player has more than 1

8 incentive
to deviate in stochastic utility games is Θ(log(n)).

5 Achieving ε < 1
8
with Communication

We return to continuous dynamics to show that we can obtain a worst-case
regret of slightly less than 1

8 by using limited communication between players,
thus breaking the uncoupled setting we have been studying until now.

First of all, let us suppose that initially pi(0) = 1
2 for each player i and that

UCN is run for 1
2 time units so that strategy-payoff states for each player lie

on P = {si | p∗
i = 1

2 (1 + Di)}. We recall from Lemma 5 that the worst case
regret of 1

8 on this plane is achieved when p∗
i = 3

4 and Di = 1
2 . We say a player

is bad if they achieve a regret of at least 0.12, which on P corresponds to having
p∗

i ∈ [0.7, 0.8]. Similarly, all other players are good. We denote θ ∈ [0, 1] as the
proportion of players that are bad. Furthermore, as the following lemma shows,
we can in a certain sense assume that θ ≤ 1

2 .

Lemma 9. If θ > 1
2 , then for a period of 0.15 time units, we can allow each bad

player to shift to their best response with unit speed, and have all good players
update according to UCN to stay on P. After this movement, at most 1 − θ
players are bad.



Logarithmic Query Complexity; Large Games 13

Proof. If i is a bad player, in the worst case scenario, Ḋi = 2, which keeps their
strategy-payoff state, si, on P. At the end of 0.15 time units however, p∗

i > 0.85,
hence they will no longer be bad. On the other hand, good players stay on P,
so at worst, all of them become bad.

Observation. After this movement, players who were bad are the only play-
ers possibly away from P and they have a discrepancy that is greater than 0.1.
Furthermore, all players who become bad lie on P.
We can now outline a continuous-time dynamic that utilises Lemma 9 to obtain
a (18 − 1

220 ) maximal regret.

1. Have all players begin with pi(0) = 1
2

2. Run UCN for 1
2 time units.

3. Measure, θ, the proportion of bad players. If θ > 1
2 apply the dynamics of

Lemma 9.
4. Let all bad players use ṗ∗

i = 1 for Δ = 1
220 time units.

Theorem 4. If all players follow the aforementioned dynamic, no single player
will have a regret greater than 1

8 − 1
220 .

Proof. Technical details of this proof can be found in the full paper, but in
essence one shows that if Δ is a small enough time interval (less than 0.1 to
be exact), then all bad players will unilaterally decrease their regret by at least
0.1Δ and good players won’t increase their regret by more than Δ. The time
step Δ = 1

220 is thus chosen optimally.

As a final note, we see that this process requires one round of communication
in being able to perform the operations in Lemma 9, that is we need to know if
θ > 1

2 or not to balance player profiles so that there are at most the same number
of bad players to good players. Furthermore, in exactly the same fashion as
UN(α, η), we can discretise the above process to obtain a query-based algorithm
that obtains a regret of 1

8 − 1
220 + α < 1

8 for arbitrary α.

6 Conclusion and Further Research

We have assumed a largeness parameter of γ = 1
n , but in the full paper we extend

our techniques to γ = c
n for constant c. We can obtain approximate equilibria

approaching ε = c
8 for c ≤ 2 and ε = 1

2 − 1
2c for c > 2. In the full paper, we also

extend our techniques to games where players have k strategies.
An obvious question raised by our results is the possible improvement in the

additive approximation obtainable since pure approximate equilibria are known
to exist for these games. A slightly weaker objective than this would be the
search for well-supported approximate equilibria. It would also be interesting to
investigate lower bounds in the completely uncoupled setting. Finally, since our
algorithms are randomised, it would be interesting to see what can be achieved
using deterministic algorithms.
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Abstract. In this paper, we study games with continuous action spaces
and non-linear payoff functions. Our key insight is that Lipschitz conti-
nuity of the payoff function allows us to provide algorithms for finding
approximate equilibria in these games. We begin by studying Lipschitz
games, which encompass, for example, all concave games with Lipschitz
continuous payoff functions. We provide an efficient algorithm for com-
puting approximate equilibria in these games. Then we turn our attention
to penalty games, which encompass biased games and games in which
players take risk into account. Here we show that if the penalty function
is Lipschitz continuous, then we can provide a quasi-polynomial time
approximation scheme. Finally, we study distance biased games, where
we present simple strongly polynomial time algorithms for finding best
responses in L1, L

2
2, and L∞ biased games, and then use these algorithms

to provide strongly polynomial algorithms that find 2/3, 5/7, and 2/3
approximations for these norms, respectively.

1 Introduction

Nash equilibria [18] are the central solution concept in game theory. However,
recent advances have shown that computing an exact Nash equilibrium is PPAD-
complete [8,9], and so there are unlikely to be polynomial time algorithms for
this problem. The hardness of computing exact equilibria has lead to the study of
approximate equilibria: while an exact equilibrium requires that all players have
no incentive to deviate from their current strategy, an ε-approximate equilibrium
requires only that their incentive to deviate is less than ε.

A fruitful line of work has developed studying the best approximations that
can be found in polynomial-time for bimatrix games, which are two-player strate-
gic form games. There, after a number of papers [5,10,11], the best known algo-
rithm was given by Tsaknakis and Spirakis [21], who provide a polynomial time
algorithm that finds a 0.3393-equilibrium. The existence of an FPTAS was ruled
out by Chen, Deng, and Teng [8] unless PPAD = P. Recently, Rubinstein [20]
proved that there is no PTAS for the problem, assuming the Exponential Time
Hypothesis for PPAD. However, there is a quasi-polynomial approximation scheme
given by Lipton, Markakis, and Mehta [16].

In a strategic form game, the game is specified by giving each player a finite
number of strategies, and then specifying a table of payoffs that contains one

c© Springer-Verlag Berlin Heidelberg 2016
M. Gairing and R. Savani (Eds.): SAGT 2016, LNCS 9928, pp. 15–26, 2016.
DOI: 10.1007/978-3-662-53354-3 2
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entry for every possible combination of strategies that the players might pick.
The players are allowed to use mixed strategies, and so ultimately the payoff
function is a convex combination of the payoffs given in the table. However,
some games can only be modelled in a more general setting where the action
spaces are continuous, or the payoff functions are non-linear.

For example, Rosen’s seminal work [19] considered concave games, where each
player picks a vector from a convex set. The payoff to each player is specified by
a function that satisfies the following condition: if every other player’s strategy
is fixed, then the payoff to a player is a concave function over his strategy space.
Rosen proved that concave games always have an equilibrium. A natural subclass
of concave games, studied by Caragiannis, Kurokawa, and Procaccia [6], is the
class of biased games. A biased game is defined by a strategic form game, a base
strategy and a penalty function. The players play the strategic form game as
normal, but they all suffer a penalty for deviating from their base strategy. This
penalty can be a non-linear function, such as the L2

2 norm.
In this paper, we study the computation of approximate equilibria in such

games. Our main observation is that Lipschitz continuity of the players’ payoff
functions (with respect to changes in the strategy space) allows us to provide
algorithms that find approximate equilibria. Several papers have studied how
the Lipschitz continuity of the players’ payoff functions affects the existence, the
quality, and the complexity of the equilibria of the underlying game. Azrieli and
Shmaya [1] studied many player games and derived bounds for the Lipschitz
constant of the utility functions for the players that guarantees the existence
of pure approximate equilibria for the game. We have to note though, that the
games Azrieli and Shmaya study are significantly different from our games. In [1]
the Lipschitz coefficient refers to the payoff function of player i as a function of
x−i, i.e. when xi is fixed. In this paper, the Lipschitz coefficient refers to the
payoff function of player i as a function of xi when the x−i is fixed. We used
this definition of the Lipschitz continuity in order to follow Rosen’s definition
of concave games that requires the payoff function of player i to be concave for
every fixed strategy profile for the rest of the players. Daskalakis and Papadim-
itriou [12] proved that anonymous games posses pure approximate equilibria
whose quality depends on the Lipschitz constant of the payoff functions and
the number of pure strategies the players have and proved that these approxi-
mate equilibria can be computed in polynomial time. Furthermore, they gave a
polynomial-time approximation scheme for anonymous games with many players
and constant number of pure strategies. Babichenko [2] presented a best-reply
dynamic for n-players Lipschitz anonymous games with two strategies which
reaches an approximate pure equilibrium in O(n log n) steps. Deb and Kalai [13]
studied how some variants of the Lipschitz continuity of the utility functions are
sufficient to guarantee hindsight stability of equilibria.

1.1 Our Contribution

Lipschitz Games. We begin by studying a very general class of games, where
each player’s strategy space is continuous, and represented by a convex set of
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vectors, and where the only restriction is that the payoff function is Lipschitz
continuous. This class is so general that exact equilibria, and even approximate
equilibria may not exist. Nevertheless, we give an efficient algorithm that either
outputs an ε-equilibrium, or determines that the game has no exact equilibria.
More precisely, for M player games with a strategy space defined as the convex
hull of n vectors, that have λ-Lipschitz continuous payoff functions in the Lp

norm, for p ≥ 2, and where γ = max ‖x‖p over all x in the strategy space, we
either compute an ε-equilibrium or determine that no exact equilibrium exists
in time O

(
MnMk+l

)
, where k = O

(
λ2Mpγ2

ε2

)
and l = O

(
λ2pγ2

ε2

)
. Observe that

this is a polynomial time algorithm when λ, p, γ, M , and ε are constant.
To prove this result, we utilize a recent result of Barman [4], which states

that for every vector in a convex set, there is another vector that is ε close to
the original in the Lp norm, and is a convex combination of b points on the
convex hull, where b depends on p and ε, but does not depend on the dimen-
sion. Using this result, and the Lipschitz continuity of the payoffs, allows us to
reduce the task of finding an ε-equilibrium to checking only a small number of
strategy profiles, and thus we get a brute-force algorithm that is reminiscent of
the QPTAS given by Lipton, Markakis, and Mehta for bimatrix games [16] and
by the QPTAS of Babichenko, Barman, and Peretz [3] for many player games.

However, life is not so simple for us. Since we study a very general class of
games, verifying whether a given strategy profile is an ε-equilibrium is a non-
trivial task. It requires us to compute a regret for each player, which is the
difference between the player’s best response payoff and their actual payoff.
Computing a best response in a bimatrix game is trivial, but for Lipschitz games,
it may be a hard problem. We get around this problem by instead giving an
algorithm to compute approximate best responses. Hence we find approximate
regrets, and it turns out that this is sufficient for our algorithm to work.

Penalty Games. We then turn our attention to penalty games. In these games,
the players play a strategic form game, and their utility is the payoff achieved
in the game minus a penalty. The penalty function can be an arbitrary func-
tion that depends on the player’s strategy. This is a general class of games that
encompasses a number of games that have been studied before. The biased games
studied by Caragiannis, Kurokawa, and Procaccia [6] are penalty games where
the penalty is determined by the amount that a player deviates from a specified
base strategy. The biased model was studied in the past by psychologists [22]
and it is close to what they call anchoring [7,15]. In their seminal paper, Fiat
and Papadimitriou [14] introduced a model for risk prone games, which resemble
penalty games since the risk component can be encoded as a penalty. Mavroni-
colas and Monien [17] followed this line of research and provided results on the
complexity of deciding if such games possess an equilibrium.

We again show that Lipschitz continuity helps us to find approximate equilib-
ria. The only assumption that we make is that the penalty function is Lipschitz
continuous in an Lp norm with p ≥ 2. Again, this is a weak restriction, and it does
not guarantee that exact equilibria exist. Even so, we give a quasi-polynomial
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time algorithm that either finds an ε-equilibrium, or verifies that the game has
no exact equilibrium.

Our result can be seen as a generalisation of the QPTAS given by Lipton,
Markakis, and Mehta [16] for bimatrix games. Their approach is to show the
existence of an approximate equilibrium with a logarithmic support. They proved
this via the probabilistic method: if we know an exact equilibrium of a bimatrix
game, then we can take logarithmically many samples from the strategies, and
playing the sampled strategies uniformly will be an approximate equilibrium with
positive probability. We take a similar approach, but since our games are more
complicated, our proof is necessarily more involved. In particular, for Lipton,
Markakis, and Mehta, proving that the sampled strategies are an approximate
equilibrium only requires showing that the expected payoff is close to the best
response payoff. In penalty games, best response strategies are not necessarily
pure, and so the events that we must consider are more complex.

Distance Biased Games. Finally, we consider distance biased games, which
form a subclass of penalty games that have been studied recently by Caragiannis,
Kurokawa, and Procaccia [6]. They showed that, under very mild assumptions on
the bias function, biased games always have an exact equilibrium. Furthermore,
for the case where the bias function is either the L1 norm, or the L2

2 norm, they
give an exponential time algorithm for finding an exact equilibrium.

Our results for penalty games already give a QPTAS for biased games, but
we are also interested in whether there are polynomial-time algorithms that can
find non-trivial approximations. We give a positive answer to this question for
games where the bias is the L1 norm, the L2

2 norm, or the L∞ norm. We follow
the well-known approach of Daskalakis, Mehta, Papadimitriou [11], who gave a
simple algorithm for finding a 0.5-approximate equilibrium in a bimatrix game.

We show that this algorithm also works for biased games, although the gen-
eralisation is not entirely trivial. Again, this is because best responses cannot be
trivially computed in biased games. For the L1 and L∞ norms, best responses
can be computed via linear programming, and for the L2

2 norm, best responses
can be formulated as a quadratic program, and it turns out that this particular
QP can be solved in polynomial time by the ellipsoid method. However, none of
these algorithms are strongly polynomial. We show that, for each of the norms,
best responses can be found by a simple strongly-polynomial combinatorial
algorithm. We then analyse the quality of approximation provided by the tech-
nique of Daskalakis, Mehta, Papadimitriou [11]. We obtain a strongly polynomial
algorithm for finding a 2/3 approximation in L1 and L∞ biased games, and a
strongly polynomial algorithm for finding a 5/7 approximation in L2

2 biased
games. For the latter result, in the special case where the bias function is the
inner product of the player’s strategy we find a 13/21 approximation.

2 Preliminaries

Westart byfixing somenotation. For eachpositive integernweuse [n] to denote the
set {1, 2, . . . , n}, we use Δn to denote the (n−1)-dimensional simplex, and ‖x‖q

p to
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denote the (p, q)-norm of a vector x ∈ R
d, i.e. ‖x‖q

p = (
∑

i∈[d] |xi|p)q/p. When q =
1, then we will omit it for notation simplicity. Given a set X = {x1, x2, . . . , xn} ⊂
R

d, we use conv(X) to denote the convex hull of X. A vector y ∈ conv(X) is said
to be k-uniform with respect to X if there exists a size k multiset S of [n] such that
y = 1

k

∑
i∈S xi. When X is clear from the context we will simply say that a vector

is k uniform without mentioning that uniformity is with respect to X.

Games and Strategies. A game with M players can be described by a set
of available actions for each player and a utility function for each player that
depends both on his chosen action and the actions the rest of the players chose.
For each player i ∈ [M ] we use Si to denote his set of available actions and we
call it his strategy space. We will use xi ∈ Si to denote a specific action chosen
by player i and we will call it the strategy of player i, we use x = (x1, . . . , xM ) to
denote a strategy profile of the game, and we will use x−i to denote the strategy
profile where the player i is excluded, i.e. x−i = (x1, . . . , xi−1, xi+1, . . . , xM ). We
use Ti(xi,x−i) to denote the utility of player i when he plays the strategy xi

and the rest of the players play according to the strategy profile x−i. A strategy
x̂i is a best response against the strategy profile x−i, if Ti(x̂i,x−i) ≥ Ti(xi,x−i)
for all xi ∈ Si. The regret player i suffers under a strategy profile x is the
difference between the utility of his best response and his utility under x, i.e.
Ti(x̂i,x−i) − Ti(xi,x−i).

An n×n bimatrix game is a pair (R,C) of two n×n matrices: R gives payoffs
for the row player and C gives the payoffs for the column player. We make the
standard assumption that all payoffs lie in the range [0, 1]. If x and y are mixed
strategies for the row and the column player, respectively, then the expected
payoff for the row player under strategy profile (x,y) is given by xT Ry and for
the column player by xT Cy.

λp-Lipschitz Games. We will use the notion of the λp-Lipschitz continuity.

Definition 1 (λp-Lipschitz). A function f : A → R, with A ⊆ R
d is λp-Lipsc-

hitz continuous if for every x and y in A, it is true that |f(x)−f(y)| ≤ λ·‖x−y‖p.

We call the game L := (M,n, λ, p, γ, T ) λp-Lipschitz if for each player i ∈ [M ] the
strategy space Si is the convex hull of n vectors y1, . . . , yn inR

d, maxxi∈Si
‖xi‖p ≤

γ, and the utility function Ti(x) ∈ T is λp-Lipschitz continuous.

Two-Player Penalty Games. A two-player penalty game P is defined by a
tuple

(
R,C, fr(x), fc(y)

)
, where (R,C) is a bimatrix game and fr(x) and fc(y)

are the penalty functions for the row and the column player respectively. The
utilities for the players under a strategy profile (x,y), denoted by Tr(x,y) and
Tc(x,y), are given by Tr(x,y) = xT Ry − fr(x) and Tc(x,y) = xT Cy − fc(y).
We will use Pλp

to denote the set of two-player penalty games with λp-Lipschitz
penalty functions. A special class of penalty games is obtained when fr(x) = xTx
and fc(y) = yTy. We call these games as inner product penalty games.

Two-Player Biased Games. This is a subclass of penalty games, where extra
constraints are added to the penalty functions fr(x) and fc(y) of the players. In
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this class of games there is a base strategy and for each player and the penalty
they receive is increasing with the distance between the strategy they choose
and their base strategy. Formally, the row player has a base strategy p ∈ Δn,
the column player has a base strategy q and their strictly increasing penalty
functions are defined as fr(‖x − p‖s

t ) and fc(‖y − q‖l
m) respectively.

Two-Player Distance Biased Games. This is a special class of biased games
where the penalty function is a fraction of the distance between the base strategy
of the player and his chosen strategy. Formally, a two player distance biased game
B is defined by a tuple

(
R,C, br(x,p), bc(y,q), dr, dc

)
, where (R,C) is a bimatrix

game, p ∈ Δn is a base strategy for the row player, q ∈ Δn is a base strategy
for the column player, br(x,p) = ‖x − p‖s

t and bc(y,q) = ‖y − q‖l
m are the

penalty functions for the row and the column player respectively. The utilities
for the players under a strategy profile (x,y), denoted by Tr(x,y) and Tc(x,y),
are given by Tr(x,y) = xT Ry−dr ·br(x,p) and Tc(x,y) = xT Cy−dc ·bc(y,q),
where dr and dc are non negative constants.

Solution Concepts. A strategy profile is an equilibrium if no player can
increase his utility by unilaterally changing his strategy. A relaxed version of
this concept is the approximate equilibrium, or ε-equilibrium, in which no player
can increase his utility more than ε by unilaterally changing his strategy. For-
mally, a strategy profile x is an ε-equilibrium in a game L if for every player
i ∈ [M ] it holds that Ti(xi,x−i) ≥ Ti(x′

i,x−i) − ε for all x′
i ∈ Si.

In [20] it was proven that, unless P = PPAD, there is no PTAS for computing
an ε-NE in bimatrix games. The same result holds for the class of penalty games
where the penalty functions f(n,x) for the players depend on n, the size of the
underlying bimatrix game, and limn→∞ f(n,x) = 0 for every player, for every
possible x. Let P ′ denote this class of games.

Theorem 1. Unless P = PPAD, there is no PTAS for computing an ε-equilibrium
in penalty games in P ′.

3 Approximate Equilibria in λp-Lipschitz Games

In this section, we give an algorithm for computing approximate equilibria
in λp Lipschitz games. Note that, our definition of a λp-Lipschitz game does
not guarantee that an equilibrium always exists. Our technique can be applied
irrespective of whether an exact equilibrium exists. If an exact equilibrium does
exist, then our technique will always find an ε-equilibrium. If an exact equilib-
rium does not exist, then our algorithm either finds an ε-equilibrium or reports
that the game does not have an exact equilibrium.

We will utilize the following theorem that was recently proved by Barman [4].

Theorem 2 (Barman [4]). Given a set of vectors X = {x1, x2, . . . , xn} ⊂ R
d,

let conv(X) denote the convex hull of X. Furthermore, let γ := maxx∈X ‖x‖p

for some 2 ≤ p < ∞. For every ε > 0 and every μ ∈ conv(X), there exists an
4pγ2

ε2 uniform vector μ′ ∈ conv(X) such that ‖μ − μ′‖p ≤ ε.
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Combining Theorem 2 with the Definition 1 we get the following lemma.

Lemma 1. Let X = {x1, x2, . . . , xn} ⊂ R
d, let f : conv(X) → R be a λp-

Lipschitz continuous function for some 2 ≤ p < ∞, let ε > 0 and let k = 4λ2pγ2

ε2 ,
where γ := maxx∈X ‖x‖p. Furthermore, let f(x∗) be the optimum value of f .
Then we can compute a k-uniform point x′ ∈ conv(X) in time O(nk), such that
|f(x∗) − f(x′)| < ε.

We now prove our result about Lipschitz games. In what follows we will
study a λp-Lipschitz game L := (M,n, λ, p, γ, T ). Assuming the existence of an
exact Nash equilibrium, we establish the existence of a k-uniform approximate
equilibrium in the game L, where k depends on M,λ, p and γ. Note that λ
depends heavily on p and the utility functions for the players.

Since by the definition of λp-Lipschitz games the strategy space Si for every
player i is the convex hull of n vectors y1, . . . , yn in R

d, any xi ∈ Si can be
written as a convex combination of yjs. Hence, xi =

∑n
j=1 αjyj , where αj > 0

for every j ∈ [n] and
∑n

j=1 αj = 1. Then, α = (α1, . . . , αn) is a probability
distribution over the vectors y1, . . . , yn, i.e. vector yj is drawn with probability
αj . Thus, we can sample a strategy xi by the probability distribution α.

So, let x∗ be an equilibrium for L and let x′ be a sampled uniform strategy
profile from x∗. For each player i we define the following events

φi =
{|Ti(x′

i,x
′
−i) − Ti(x∗

i ,x
∗
−i)| < ε/2

}

πi =
{
Ti(xi,x′

−i) < Ti(x′
i,x

′
−i) + ε

}
for all possible xi

ψi =
{

‖x′
i − x∗

i ‖p <
ε

2Mλ

}
for some p > 1.

Notice that if all the events πi occur at the same time, then the sampled profile
x′ is an ε-equilibrium. We will show that if for a player i the events φi and

⋂
j ψj

hold, then the event πi is also true.

Lemma 2. For all i ∈ [M ] it holds that
⋂

j∈[M ] ψj ∩ φi ⊆ πi.

We are ready to prove the main result of the section.

Theorem 3. In any λp-Lipschitz game L that possess an equilibrium and any ε >

0, there is a k-uniform strategy profile, with k = 16M2λ2pγ2

ε2 that is an ε-equilibrium.

Theorem 3 establishes the existence of a k-uniform approximate equilibrium,
but this does not immediately give us our approximation algorithm. The obvi-
ous approach is to perform a brute force check of all k-uniform strategies, and
then output the one that provides the best approximation. There is a problem
with this, however, since computing the quality of approximation requires us
to compute the regret for each player, which in turn requires us to compute a
best response for each player. Computing an exact best response in a Lipschitz
game is a hard problem in general, since we make no assumptions about the
utility functions of the players. Fortunately, it is sufficient to instead compute
an approximate best response for each player, and Lemma 1 can be used to do
this.
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Lemma 3. Let x be a strategy profile for a λp-Lipschitz game L, and let x̂i be
a best response for player i against the profile x−i. There is a 4λ2pγ2

ε2 -uniform
strategy x′

i that is an ε-best response against x−i.

Our goal is to approximate the approximation guarantee for a given strategy
profile. More formally, given a strategy profile x that is an ε-equilibrium, and a
constant δ > 0, we want an algorithm that outputs a number within the range
[ε − δ, ε + δ]. Lemma 3 allows us to do this. For a given strategy profile x, we
first compute δ-approximate best responses for each player, then we can use
these to compute δ-approximate regrets for each player. The maximum over the
δ-approximate regrets then gives us an approximation of ε with a tolerance of δ.
This is formalised in the following algorithm.

Algorithm 1. Evaluation of approximation guarantee

Input: A strategy profile x for L, and a constant δ > 0.
Output: An additive δ-approximation of the approximation guarantee
α(x) for the strategy profile x.

1. Set l = 4λ2pγ2

δ2 .
2. For every player i ∈ [M ]

(a) For every l-uniform strategy x′
i of player i compute Ti(x′

i,x−i).
(b) Set m∗ = maxx′

i
Ti(x′

i,x−i).
(c) Set Ri(x) = m∗ − Ti(xi,x−i).

3. Set α(x) = δ + maxi∈[M ] Ri(x).
4. Return α(x).

Utilising the above algorithm, we can now produce an algorithm to find an
approximate equilibrium in Lipschitz games. The algorithm checks all k-uniform
strategy profiles, using the value of k given by Theorem 3, and for each one,
computes an approximation of the quality approximation using the algorithm
given above.

Algorithm 2. 3ε-equilibrium for λp-Lipschitz game L

Input: Game L and ε > 0.
Output: An 3ε-equilibrium for L.

1. Set k > 16λ2Mpγ2

ε2 .
2. For every k-uniform strategy profile x′

(a) Compute an ε-approximation of α(x′).
(b) If the ε-approximation of α(x′) is less than 2ε, return x′.

If the algorithm returns a strategy profile x, then it must be a 3ε equilibrium.
This is because we check that an ε-approximation of α(x) is less than 2ε, and
therefore α(x) ≤ 3ε. Secondly, we argue that if the game has an exact Nash equi-
librium, then this procedure will always output a 3ε-approximate equilibrium.
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From Theorem 3 we know that if k > 16λ2Mpγ2

ε2 , then there is a k-uniform strat-
egy profile x that is an ε-equilibrium for L. When we apply our approximate
regret algorithm to x, to find an ε-approximation of α(x), the algorithm will
return a number that is less than 2ε, hence x will be returned by the algorithm.

To analyse the running time, observe that there are
(
n+k−1

k

)
= O(nk) possible

k-uniform strategies for each player, thus O(nMk) k-uniform strategy profiles.
Furthermore, our regret approximation algorithm runs in time O(Mnl), where
l = 4λ2pγ2

ε2 . Hence, we get the next theorem.

Theorem 4. Given a λp-Lipschitz game L that possess an equilibrium and
any ε > 0, a 3ε-equilibrium can be computed in time O

(
MnMk+l

)
, where

k = O
(

λ2Mpγ2

ε2

)
and l = O

(
λ2pγ2

ε2

)
.

Although it might be hard to decide whether a game has an equilibrium, our
algorithm can be applied in any λp-Lipschitz game. Notice that our algorithm
never uses the fact that the game possess an equilibrium. If the game does
not posses an exact equilibrium then our algorithm either finds an approximate
equilibrium or determines that the game does not posses an exact equilibrium.

Theorem 5. For any λp-Lipschitz game L in time O
(
MnMk+l

)
, we can either

compute a 3ε-equilibrium, or decide that L does not posses an exact equilibrium,
where k = O

(
λ2Mpγ2

ε2

)
and l = O

(
λ2pγ2

ε2

)
.

4 A Quasi-polynomial Algorithm for Penalty Games

In this section we present an algorithm that, for any ε > 0, can compute an
ε-equilibrium for any penalty game in Pλp

that posses one in quasi-polynomial
time. For the algorithm, we take the same approach as we did in the previous
section for Lipschitz games: we show that if an exact equilibrium exists, then a
k-uniform approximate equilibrium always exists too, and provide a brute-force
search algorithm for finding it. Once again, since best response computation may
be hard for this class of games, we must provide an approximation algorithm for
finding the quality of an approximate equilibrium.

We first focus on penalty games that posses an exact equilibrium. So, let
(x∗,y∗) be an equilibrium of the game and let (x′,y′) be a k-uniform strategy
profile sampled from this equilibrium. We define the following four events:

φr =
{|Tr(x′,y′) − Tr(x∗,y∗)| < ε/2

}

πr =
{
Tr(x,y′) < Tr(x′,y′) + ε

}
for all x

φc =
{|Tc(x′,y′) − Tc(x∗,y∗)| < ε/2

}

πc =
{
Tc(x′,y) < Tc(x′,y′) + ε

}
for all y.

The goal is to derive a value for k such that all the four events above are true,
or equivalently Pr(φr ∩ πr ∩ φc ∩ πr) > 0.

Note that in order to prove that (x′,y′) is an ε-equilibrium we only have to
consider the events πr and πc. Nevertheless, as we show in Lemma 4, the events
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φr and φc are crucial in our analysis. The proof of the main theorem boils down
to the events φr and φc.

We will focus only on the row player, since the same analysis can be applied
to the column player. Firstly we study the event πr.

Lemma 4. For all penalty games it holds that Pr(πc
r) ≤ n · e− kε2

2 + Pr(φc
r).

With Lemma 4 in hand, we can see that in order to compute a value for k it
is sufficient to study the event φr. We introduce the following auxiliary events
that we will study separately: φru =

{|x′T Ry′ − x∗T

Ry∗| < ε/4
}

and φrb ={|fr(x′)− fr(x∗)| < ε/4
}
. It is easy to see that if both φrb and φru are true, then

the event φr must be true too. So we have φrb ∩ φru ⊆ φr. Using the analysis
from [16] we can prove that Pr(φc

ru) ≤ 2e− kε2
8 . Finally, we must prove an upper

bound on the event φc
rb, which we provide in the following lemma.

Lemma 5. Pr(φc
rb) ≤ 8λ

√
p

ε
√

k
.

Let us define the event GOOD = φr ∩ φc ∩ πr ∩ πc. To prove our theorem it
suffices to prove that Pr(GOOD) > 0. Notice that for the events φc and πc the
same analysis as for φr and πr can be used. Then, using Lemmas 4, 5 and the
analysis for φru we get that Pr(GOODc) < 1 for the chosen value of k.

Theorem 6. For any equilibrium (x∗,y∗) of a penalty game from the class Pλp
,

any ε > 0, and any k ∈ Ω(λ2 log n)
ε2 , there exists a k-uniform strategy profile (x′,y′)

that:

1. (x′,y′) is an ε-equilibrium for the game,
2. |Tr(x′,y′) − Tr(x∗,y∗)| < ε/2,
3. |Tc(x′,y′) − Tc(x∗,y∗)| < ε/2.

Theorem 6 establishes the existence of a k-uniform strategy profile (x′,y′)
that is an ε-equilibrium, but as before, we must provide an efficient method for
approximating the quality of approximation provided by a given strategy profile.
To do so, we first give the following lemma, which shows that approximate best
responses can be computed in quasi-polynomial time for penalty games.

Lemma 6. Let (x,y) be a strategy profile for a penalty game Pλp
, and let x̂ be

a best response against y. There is an l-uniform strategy x′, with l = 17λ2√
p

ε2 ,
that is an ε-best response against y, i.e. Tr(x̂,y) < Tr(x′,y) + ε.

Given this lemma, we can reuse Algorithm 1, but with l set equal to 17λ2√
p

ε2 ,
to provide an algorithm that aproximates the quality of approximation of a
given strategy profile. Then, we can reuse Algorithm 2 with k = Ω(λ2 log n)

ε2 to
provide a quasi-polynomial time algorithm that finds approximate equilibia in
penalty games. Notice again that our algorithm can be applied in games in
which it is computationally hard to verify whether an exact equilibrium exists.
Our algorithm either will compute an approximate equilibrium or it will fail to
find one, in which case the game does not posses an exact equilibrium.
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Theorem 7. In any penalty game Pλp
and any ε > 0, in quasi polynomial time

we can either compute a 3ε-equilibrium, or decide that Pλp
does not posses an

exact equilibrium.

5 Distance Biased Games

In this section, we focus on three particular classes of distance biased games, and
we provide polynomial-time approximation algorithms when the penalty function
is one of the L1, L

2
2 and L∞ norm. Our approach is to follow the technique of

Daskalakis, Mehta, Papadimitriou [11] that finds a 0.5-NE in a bimatrix game.
The algorithm that we will use for all three penalty functions is given below.

Algorithm 3. The Base Algorithm

1. Compute a best response y∗ against p.
2. Compute a best response x against y∗.
3. Set x∗ = δ · p + (1 − δ) · x, for some δ ∈ [0, 1].
4. Return the strategy profile (x∗,y∗).

While this is a well-known technique for bimatrix games, it cannot immedi-
ately be applied to penalty games, because the algorithm requires us to compute
two best responses. While computing a best-response is trivial in bimatrix games,
this is not the case for penalty games. Best responses for L1 and L∞ penalties can
be computed in polynomial-time via linear programming, and for L2

2 penalties,
the ellipsoid algorithm can be applied to a specialized quadratic program. How-
ever, these methods work as black boxes and do not provide strongly polynomial
algorithms.

For each of the penalties we develop a simple combinatorial algorithm for
computing best response strategies. We use the nature of these penalty functions
and we provide strongly polynomial algorithms that compute best responses.
More specifically, for the L1 and L∞ norms we compute the exact probability
each pure strategy should be played in a best response by studying how the
utility function increases. For the L2

2 norm we use the KKT conditions of a
quadratic program to produce a closed formula for the solution. Our algorithms,
which are strongly polynomial, allow us to optimize the value of δ, and produce
the following approximation guarantees.

Theorem 8. In biased games with L1, L
2
2 and L∞ penalties a 2/3, 5/7 and 2/3-

equilibrium respectively can be computed in polynomial time. For inner product
games the approximation guarantee is 13/21.

References

1. Azrieli, Y., Shmaya, E.: Lipschitz games. Math. Oper. Res. 38(2), 350–357 (2013)
2. Babichenko, Y.: Best-reply dynamics in large binary-choice anonymous games.

Games Econ. Behav. 81, 130–144 (2013)



26 A. Deligkas et al.

3. Babichenko, Y., Barman, S., Peretz, R.: Simple approximate equilibria in large
games. In: Proceeding of EC, pp. 753–770 (2014)

4. Barman, S.: Approximating Nash equilibria and dense bipartite subgraphs via an
approximate version of Caratheodory’s theorem. In: Proceeding of STOC 2015, pp.
361–369 (2015)

5. Bosse, H., Byrka, J., Markakis, E.: New algorithms for approximate Nash equilibria
in bimatrix games. Theor. Comput. Sci. 411(1), 164–173 (2010)

6. Caragiannis, I., Kurokawa, D., Procaccia, A.D.: Biased games. In: Proceeding of
AAAI, pp. 609–615 (2014)

7. Chapman, G.B., Johnson, E.J.: Anchoring, activation, and the construction of
values. Organ. Behav. Hum. Decis. Process. 79(2), 115–153 (1999)

8. Chen, X., Deng, X., Teng, S.-H.: Settling the complexity of computing two-player
Nash equilibria. J. ACM 56(3), 14:1–14:57 (2009)

9. Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of computing
a Nash equilibrium. SIAM J. Comput. 39(1), 195–259 (2009)

10. Daskalakis, C., Mehta, A., Papadimitriou, C.H.: Progress in approximate Nash
equilibria. In: Proceeding of EC, pp. 355–358 (2007)

11. Daskalakis, C., Mehta, A., Papadimitriou, C.H.: A note on approximate Nash
equilibria. Theor. Comput. Sci. 410(17), 1581–1588 (2009)

12. Daskalakis, C., Papadimitriou, C.H.: Approximate Nash equilibria in anonymous
games. J. Econ. Theory (2014, to appear)

13. Deb, J., Kalai, E.: Stability in large Bayesian games with heterogeneous players.
J. Econ. Theor. 157(C), 1041–1055 (2015)

14. Fiat, A., Papadimitriou, C.H.: When the players are not expectation maximizers.
In: SAGT, pp. 1–14 (2010)

15. Kahneman, D.: Reference points, anchors, norms, and mixed feelings. Organ.
Behav. Hum. Decis. Process. 51(2), 296–312 (1992)

16. Lipton, R.J., Markakis, E., Mehta, A.: Playing large games using simple strategies.
In: EC, pp. 36–41 (2003)

17. Mavronicolas, M., Monien, B.: The complexity of equilibria for risk-modeling val-
uations. CoRR, abs/1510.08980 (2015)

18. Nash, J.: Non-cooperative games. Ann. Math. 54(2), 286–295 (1951)
19. Rosen, J.B.: Existence and uniqueness of equilibrium points for concave n-person

games. Econometrica 33(3), 520–534 (1965)
20. Rubinstein, A.: Settling the complexity of computing approximate two-player nash

equilibria. CoRR, abs/1606.04550 (2016)
21. Tsaknakis, H., Spirakis, P.G.: An optimization approach for approximate Nash

equilibria. Internet Math. 5(4), 365–382 (2008)
22. Tversky, A., Kahneman, D.: Judgment under uncertainty: heuristics and biases.

Science 185(4157), 1124–1131 (1974)



The Parallel Complexity of Coloring Games

Guillaume Ducoffe(B)
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Abstract. We wish to motivate the problem of finding decentralized
lower-bounds on the complexity of computing a Nash equilibrium in
graph games. While the centralized computation of an equilibrium in
polynomial time is generally perceived as a positive result, this does
not reflect well the reality of some applications where the game serves
to implement distributed resource allocation algorithms, or to model
the social choices of users with limited memory and computing power.
As a case study, we investigate on the parallel complexity of a game-
theoretic variation of graph coloring. These “coloring games” were shown
to capture key properties of the more general welfare games and Hedo-
nic games. On the positive side, it can be computed a Nash equilibrium
in polynomial-time for any such game with a local search algorithm.
However, the algorithm is time-consuming and it requires polynomial
space. The latter questions the use of coloring games in the modeling of
information-propagation in social networks. We prove that the problem
of computing a Nash equilibrium in a given coloring game is PTIME-
hard, and so, it is unlikely that one can be computed with an efficient
distributed algorithm. The latter brings more insights on the complexity
of these games.

1 Introduction

In algorithmic game theory, it is often the case that a problem is considered
“tractable” when it can be solved in polynomial time, and “difficult” only when
it is NP-hard or it is PLS-hard to find a solution. On the other hand, with
the growing size of real networks, it has become a boiling topic in (non game-
theoretic) algorithmic to study on the finer-grained complexity of polynomial
problems [16]. In our opinion, the same should apply to graph games when they
serve as a basis for new distributed algorithms. We propose to do so in some
cases when it can be easily computed a Nash equilibrium in polynomial time.
The following case study will make use of well-established parallel and space
complexity classes to better understand the hardness of a given graph game.

Precisely, we investigate on a “coloring game”, first introduced in [14] in order
to unify classical upper-bounds on the chromatic number. Since then it has been
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rediscovered many times, attracting attention on the way in the study of infor-
mation propagation in wireless sensor networks [4] and in social networks [12].
We choose to consider this game since it is a good representative of the sepa-
rable welfare games–proposed in [13] as a game-theoretic toolkit for distributed
resource allocation algorithms–and the additively separable symmetric Hedonic
games [3]. A coloring game is played on an undirected graph with each vertex
being an agent (formal definitions will be given in the technical sections of the
paper). Agents must choose a colour in order to construct a proper coloring of
the graph. The individual goal of each agent is to maximize the number of agents
with the same colour as hers. Furthermore, it can always be computed a Nash
equilibrium in polynomial time with a simple local-search algorithm [6,12,14].

However, for n-vertex m-edge graphs, the above-mentioned algorithm has
O(m+n

√
n)-time complexity and O(n+m)-space complexity. Therefore, when

the graph gets larger, potential applications of coloring games as a computational
mechanism design (e.g., in order to assign frequencies in sensor networks in
a distributed fashion, or to model the behaviour of social network users with
limited power and storage) can be questioned. In particular, the authors in [11]
report on the limited abilities of human subject networks to solve a coloring
problem. In this note, we will investigate on the belonging of our problem–the
computation of a Nash equilibrium in coloring games–to some complexity classes
that are related to parallel and space complexity. Our goal in doing so is to bring
more insights on the complexity of the problem.

Related Work. Apart from lower-bounds in communication complexity [7], we are
not aware of any analysis of decentralized complexity in game theory. Closest to
our work are the studies on the sequential complexity of Hedonic games. Deciding
whether a given Hedonic game admits a Nash equilibrium is NP-complete [1].
Every additively separable symmetric Hedonic games has a Nash equilibrium
but it is PLS-complete to compute one [8]. Coloring games are a strict subclass
where the local-search algorithm terminates on a Nash equilibrium within a
polynomial number of steps. We will go one step further by considering their
parallel complexity, something we think we are the first to study.

In [4], they introduced a distributed algorithm in order to compute the Nash
equilibrium of a given coloring game. Their algorithm is a natural variation of
the classical local-search algorithm for the problem, however, it does not speed
up the computation of equilibria (at least theoretically). In addition, each agent
needs to store locally the colouring of the graph at any given step, that implies
quadratic space and communication complexity. Additional related work is [6,12],
where it is studied the number of steps of more elaborate local-search algorithms
when up to k players are allowed to collude at each step. Informally, collusion
means that the players can simultaneously change their colours for the same
new colour provided they all benefit from the process (note that the classical
local-search algorithm corresponds to the case k = 1).

Contributions. We prove that the problem of computing a Nash equilibrium in a
given coloring game is PTIME-hard (Theorem 2). This is hint that the problem is
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inherently sequential, i.e., it is unlikely the computation of an equilibrium can be
sped up significantly on a parallel machine with polynomially many processors.
In particular, our negative result applies to the distributed setting since any
distributed algorithm on graphs can be simulated on a parallel machine with
one processor per edge and per vertex. By a well-known relationship between
space and parallel complexity [15], Theorem 2 also extends to show that no
space efficient algorithm for the problem (say, within logarithmic workspace)
can exist. Altogether, this may be hint that coloring games are a too powerful
computational mechanism design for “lightweight” distributed applications.

Our reduction is from the standard Monotone Circuit Value problem.
However, the gadgets needed are technically challenging, and we will need to
leverage nontrivial properties of coloring games in order to prove its correctness.
Definitions and useful background will be given in Sect. 2. We will detail our
reduction in Sect. 3 before concluding this paper in Sect. 4.

2 Definitions and Notations

We use the graph terminology from [2]. Graphs in this study are finite, simple,
and unweighted.

Coloring Games. Let G = (V,E) be a graph. A coloring of G assigns a positive
integer, taken in the range {1, . . . , n}, to each of the n vertices in V . For every
i, let Li be the subset of vertices coloured i. We name Li a colour class in what
follows. Nonempty colour classes partition the vertex set V . The partition is a
proper coloring when no two adjacent vertices are assigned the same colour, i.e.,
for every 1 ≤ i ≤ n and for every u, v ∈ Li, {u, v} /∈ E.

Fig. 1. Proper coloring of a graph G. Each colour class is represented by an ellipse.
Every agent receives unit payoff.

Every graph G defines a coloring game whose n agents are the vertices in
V . The strategy of an agent is her colour. Furthermore, every v ∈ Li receives
payoff: −1 if there is u ∈ Li s.t. {u, v} ∈ E (in which case, the coloring is not
proper), and |Li| − 1 otherwise. We refer to Fig. 1 for an illustration. Finally, a
Nash equilibrium of the coloring game is any coloring of G where no agent can
increase her payoff by changing her strategy. In particular, the proper coloring
in Fig. 1 is a Nash equilibrium. More generally, observe that a Nash equilibrium
in this game is always a proper coloring of G. In what follows, we will focus on
the computation of Nash equilibria in coloring games.
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Theorem 1 ([6,12]). For any coloring game that is specified by an n-vertex m-
edge graph G = (V,E), a Nash equilibrium can be computed in O(m+n

√
n)-time

and O(n + m)-space.

Parallel Complexity. Computations are performed on a parallel random-access
machine (PRAM, see [9]) with an unlimited amount of processors. However, as
stated in the conclusion, our results also apply to more realistic parallel complex-
ity classes. In what follows, we will use the fact that processors are numbered.
We will handle with read/write conflicts between processors with the strategy
CREW-PRAM (concurrent read, exclusive write). Let PTIME contain the deci-
sion problems that can be solved in sequential polynomial-time (that is, with a
single processor). Problem A reduces to problem B if given an oracle to solve B,
A can be solved in polylogarithmic-time with a polynomial number of processors.
In particular, a problem B is PTIME-hard if every problem in PTIME reduces
to B (this is formally defined as quasi-PTIME-hardness in [9]). Such reductions
are finer-grained than the more standard logspace reductions.

3 Main Result

Theorem 2. Computing a Nash equilibrium for coloring games is PTIME-hard.

In order to prove Theorem 2, we will reduce from a variation of the well-
known Monotone Circuit Value problem, defined as follows.

Problem 1 (Monotone Circuit Value).

Input: A boolean circuit C with m gates and n entries, a word w ∈ {0, 1}n
such that:

– the gates are either AND-gates or OR-gates;
– every gate has exactly two entries (in-degree two);
– a topological ordering of the gates is given, with the mth gate being

the output gate.
Question: Does C output 1 when it takes w as input?

Monotone Circuit Value is proved to be PTIME-complete in [9].

3.1 The Reduction

Let 〈C, w〉 be any instance of Monotone Circuit Value. We will reduce it to
a coloring game as follows. Let G := (g1, g2, . . . , gm) be the gates of the circuit,
that are topologically ordered.
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Construction of the Gate-Gadgets. For every 1 ≤ j ≤ m, the jth gate will be
simulated by a subgraph Gj = (Vj , Ej) with 12(n + j) − 9 vertices. We refer to
Fig. 2 for an illustration. Let us give some intuition for the following construction
of Gj . We aim at simulating the computation of the (binary) output of all the
gates in C when it takes w as input. To do that, given a supergraph G of Gj (to be
defined later), and a fixed Nash equilibrium for the coloring game that is defined
on G, we aim at guessing the output of the jth gate from the subcoloring of Gj .
More precisely, the subcoloring will encode a “local certificate” that indicates
which values on the two entries of gj cause the output.

Observe that to certify that an OR-gate outputs 1, it suffices to show that it
receives 1 on any one of its two entries, whereas for an AND-gate it requires to
show that it outputs 1 on its two entries. Since by de Morgan’s laws, the negation
of an AND-gate can be transformed into an OR-gate and vice-versa, therefore,
we need to distinguish between three cases in order to certify the output of
the gate. So, the vertices in Vj are partitioned in three subsets of equal size
4(n + j) − 3, denoted by V 1

j , V 2
j , V 3

j . Furthermore, for every 1 ≤ t ≤ 3, every
vertex in V t

j is adjacent to every vertex in Vj\V t
j .

Fig. 2. Gadget subgraph Gj representing the jth gate. An edge between two subsets of
vertices (delimited by an ellipse) denotes the existence of a complete bipartite subgraph.

Let us now describe the structure of the three (isomorphic) subgraphs
Gj [V t

j ] = (V t
j , E

t
j) with 1 ≤ t ≤ 3. Informally, we will need this internal structure

in order to ensure that every of the three subsets V t
j will behave as a “truthful”

certificate to decide on the output of the gate; i.e., only a few vertices of Vj will
be used to certify the output of the jth gate, while all others will be divided
into artificial aggregates that we name “private groups” whose role is to ensure
“truthfulness” of the certificate (this will be made clearer in the following). There
are two nonadjacent vertices atj , b

t
j ∈ V t

j playing a special role. The other vertices
in V t

j \{atj , btj} are partitioned in two subsets At
j , B

t
j of respective size 2(n+j)−3

and 2(n+ j)− 2. The sets At
j , B

t
j are called the private groups of atj , b

t
j . Further-

more, every vertex in At
j is adjacent to every vertex in V t

j \(At
j ∪{atj}), similarly

every vertex in Bt
j is adjacent to every vertex in V t

j \(Bt
j ∪ {btj}).

Since all edges are defined above independently the one from the other, the
graph Gj [V 1

j ] = (V 1
j , E

1
j ) (encoded by its adjacency lists) can be constructed with
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|V 1
j |+|E1

j | = 4(n+j)2−2(n+j)−2processors simply by assigning the construction
of each vertex and each edge to a different processor. Note that each processor can
decide on the vertex, resp. the edge, it needs to compute from its number. Overall,
it takes O(log(n+ j))-time in order to construct Gj [V 1

j ] in parallel. The latter can
be easily generalized in order to constructGj in O(log(n+j))-time with |Vj |+ |Ej |
processors. Therefore, the graphs G1, G2, . . . , Gm can be constructed in parallel in
O(log(n+m))-time with

∑m
j=1(|Vj |+|Ej |) processors, that is polynomial inn+m.

Construction of the Graph. Let X = {x1, x
′
1, . . . , xi, x

′
i, . . . , xn, x

′
n} contain 2n

nonadjacent vertices, that are two vertices per letter in the binary word w. The
graph G = (V,E) for the reduction has vertex-set V = X ∪

(⋃m
j=1 Vj

)
. In

particular, it has 2n − 9m + 6m(m + 2n + 1) vertices. Furthermore, G[Vj ] is
isomorphic to Gj for every 1 ≤ j ≤ m. In order to complete our reduction, let
us now describe how our gadgets are connected the one with the other.

For technical reasons, we will need to make adjacent every vertex in the
private group At

j (resp. Bt
j), with 1 ≤ j ≤ m and 1 ≤ t ≤ 3, to every vertex

in V \Vj . By doing so, note that every vertex in V \(At
j ∪ {atj}) is adjacent to

every vertex in At
j (resp., every vertex in V \(Bt

j ∪ {btj}) is adjacent to every
vertex in Bt

j). Furthermore, each edge is defined independently the one from
the other. Hence, similarly as above,

∑m
j=1

∑3
t=1(|At

j | + |Bt
j |)|V \Vj | processors

are sufficient in order to construct these edges in O(log(n + m))-time, that is
polynomial in n + m.

Fig. 3. Edges in G to simulate the two connections of an AND-gate in the circuit.

Finally, we recall that for every j, there are three cases to distinguish in
order to decide on the output of the jth gate, with each case being represented
with some subset V t

j . The union of subsets representing a positive certificate
(output 1) is named Yj , while the union of those representing a negative certifi-
cate (output 0) is named Nj . In particular, if the jth gate is an OR-gate, let
Yj := {a1j , b1j , a2j , b2j} and Nj := {a3j , b3j} (it suffices to receive 1 on one input).
Else, the jth gate is an AND-gate, so, let Yj := {a1j , b1j} and Nj := {a2j , b2j , a3j , b3j}.

Suppose the jth gate is an OR-gate (the case when it is an AND-gate follows
by symmetry, up to interverting Yj with Nj , see also Fig. 3). Let us consider the
first entry of the gate. There are two cases. Suppose that it is the ith entry of
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the circuit, for some 1 ≤ i ≤ n. If wi = 0 then we make both xi, x
′
i adjacent

to both a1j , b
1
j ; else, wi = 1, we make both xi, x

′
i adjacent to both a3j , b

3
j . Else,

the entry is some other gate of the circuit, and so, since gates are topologically
ordered, it is the kth gate for some k < j. We make every vertex in Nk adjacent
to both a1j , b

1
j , and we make every vertex in Yk adjacent to both a3j , b

3
j .

The second entry of the gate is similarly considered, up to replacing above the
two vertices a1j , b

1
j with a2j , b

2
j . We refer to Fig. 3 for an illustration. In particular,

observe that there is only a constant number of edges that are added at this step
for each gate. Furthermore, the construction of these new edges only requires to
read the two in-neighbours of the gate in the circuit C. As a result, the last step
can be done in parallel in O(log(n + m))-time with m processors.

3.2 Structure of a Nash Equilibrium

The graph G = (V,E) of our reduction (constructed in Sect. 3.1) defines a
coloring game. Let us fix any Nash equilibrium for this game (that exists by
Theorem 1). We will show that it is sufficient to know the colour of every vertex
in Ym ∪Nm in order to decide on the output of the circuit C (recall that the mth

gate is the output gate). To prove it, we will need the following technical claims
in order to gain more insights on the structure of the equilibrium.

Fig. 4. A boolean circuit (left) with a Nash equilibrium of the coloring game from our
reduction (right). Each colour class is represented with an ellipse. Intuitively, vertices
in the central colour class simulate the computation of the output. Other colour classes
contain a private group and they are “inactive”.

More precisely, we will prove that there are exactly 6m + 1 colour classes,
that are one colour class per private group At

j or Bt
j and an additional colour

for the vertices in X. The intuition is that there are 2(n + m) vertices in one
special colour class (including X) that simulates the computation of the output
of C, whereas all other vertices are “trapped” with the vertices in their respective
private group. We refer to Fig. 4 for an illustration.

Claim 1. For every j, any colour class does not contain more than two vertices
in every Yj ∪Nj. Furthermore, if it contains exactly two vertices in Yj ∪Nj then
these are atj , b

t
j for some 1 ≤ t ≤ 3.
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Proof. A Nash equilibrium is a proper coloring of G. Therefore, since any two
vertices in different subsets among V 1

j , V 2
j , V 3

j are adjacent by construction,
they cannot have the same colour. Since Yj ∪ Nj = {a1j , b1j , a2j , b2j , a3j , b3j} and
atj , b

t
j ∈ V t

j for every 1 ≤ t ≤ 3, the claim follows directly. �
Claim 2. Any two vertices that are in a same private group have the same
colour. Similarly, xi and x′

i have the same colour for every 1 ≤ i ≤ n.

Proof. Let S be either a private group (S = At
j or S = Bt

j for some 1 ≤ j ≤ m
and 1 ≤ t ≤ 3), or a pair representing the same letter of word w (i.e., S = {xi, x

′
i}

for some 1 ≤ i ≤ n). Let v ∈ S maximize her payoff and let c be her colour. Note
that v receives payoff |Lc|− 1 with Lc being the colour class composed of all the
vertices with colour c. Furthermore, every u ∈ S receives payoff lower than or
equal to |Lc| − 1 by the choice of v. In such case, every u ∈ S must be coloured
c, or else, since the adjacency and the nonadjacency relations are the same for
u and v (they are twins), furthermore u, v are nonadjacent, the agent u would
increase her payoff to |Lc| by choosing c as her new colour, thus contradicting
the hypothesis that we are in a Nash equilibrium. �

The argument we use in Claim 2 is that twin vertices must have the same
colour. In what follows, we will use the same argument under different disguises.

Claim 3. Let 1 ≤ j ≤ m and 1 ≤ t ≤ 3. Either At
j or At

j ∪ {atj} is a colour
class, and in the same way either Bt

j or Bt
j ∪{btj} is a colour class. Furthermore,

either Bt
j ∪ {btj} is a colour class, or atj and btj have the same colour.

Proof. Recall that a Nash equilibrium is a proper coloring of G. Since atj is the
only vertex in V \At

j that is nonadjacent to At
j , furthermore every two vertices in

At
j have the same colour by Claim 2, therefore, either At

j or At
j ∪{atj} is a colour

class. Similarly, either Bt
j or Bt

j ∪ {btj} is a colour class. In particular, suppose
that btj does not have the same colour as her private group. Then, she must
receive payoff at least |Bt

j | = 2(n+ j) − 2 (else, she would increase her payoff by
choosing the same colour as her private group, thus contradicting the hypothesis
that we are in a Nash equilibrium). Furthermore, there can be only vertices in
V \(At

j ∪Bt
j) with the same colour c as btj . Suppose for the sake of contradiction

that atj does not have colour c. There are two cases to be considered.
Suppose that At

j ∪ {atj} is a colour class. Then, atj receives payoff |At
j | =

2(n + j) − 3. In such case, since atj and btj are twin vertices in G\(At
j ∪ Bt

j),
vertex atj could increase her payoff to at least 2(n + j) − 1 by choosing c as her
new colour, thus contradicting the hypothesis that we are in a Nash equilibrium.

Else, atj and btj do not have the same colours as their respective private groups.
In such case, At

j and Bt
j are colour classes, hence we can constrain ourselves to the

subgraph G\(At
j ∪ Bt

j). In particular, the constriction of the Nash equilibrium
to the subgraph must be a Nash equilibrium of the coloring game defined on
G\(At

j ∪ Bt
j). Since atj and btj are twin vertices in G\(At

j ∪ Bt
j), they must have

the same colour by a similar argument as for Claim 2.
As a result, atj must have colour c in both cases, that proves the claim. �
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We recall that we aim at simulating the computation of the output of all
the gates in C. To do that, we will prove the existence of a special colour class
containing X and some pair in Yj ∪ Nj for every j. Intuitively, the two vertices
of Yj ∪Nj are used to certify the output of the jth gate. However, this certificate
is “local” in the sense that it assumes the output of the j − 1 smaller gates to
be already certified. Therefore, we need to prove that there can be no “missing
gate”, i.e., every gate is represented in the special colour class.

Claim 4. Let c be a colour such that Lc 	⊆ X and Lc does not intersect any
private group (At

j or Bt
j for any 1 ≤ j ≤ m and 1 ≤ t ≤ 3).

Then, X ⊆ Lc and there exists an index j0 such that the following holds true:
|Lc ∩ (Yj ∪ Nj)| = 2 for every 1 ≤ j ≤ j0, and Lc ∩ (Yj ∪ Nj) = ∅ for every
j0 + 1 ≤ j ≤ m.

Proof. By the hypothesis Lc 	⊆ X and Lc does not intersect any private group,
so, there is at least one vertex of

⋃m
j=1(Yj∪Nj) with colour c. Let j0 be the largest

index j such that there is a vertex in Yj ∪ Nj with colour c. Since by Claim 1,
there can be no more than two vertices of Yj ∪ Nj that are in Lc for every j,
therefore, by maximality of j0 we get |Lc| ≤ |X|+2j0 = 2(n+ j0). In particular,
observe that if |Lc| = 2(n + j0) then X ⊆ Lc and for every 1 ≤ j ≤ j0 there are
exactly two vertices in Yj∪Nj with colour c. So, let us prove that |Lc| = 2(n+j0),
that will prove the claim. By the choice of j0, there is some 1 ≤ t ≤ 3 such that
atj0 ∈ Lc or btj0 ∈ Lc. In particular, |Lc| ≥ min{|At

j0
|, |Bt

j0
|} + 1 = 2(n + j0) − 2

or else, every vertex vtj0 ∈ Lc ∩ {atj0 , btj0} would increase her payoff by choosing
the colour of the vertices in her private group (that is a colour class by Claim 3),
thus contradicting the hypothesis that we are in a Nash equilibrium.

We prove as an intermediate subclaim that for any 1 ≤ j ≤ j0 − 1 such that
Lc∩(Yj ∪Nj) 	= ∅, there is some 1 ≤ t′ ≤ 3 such that at

′
j , b

t′
j ∈ Lc. Indeed, in this

situation, there is some t′ such that at
′
j ∈ Lc or bt

′
j ∈ Lc. If bt

′
j ∈ Lc then we are

done as by Claim 3, at
′
j ∈ Lc. Otherwise, bt

′
j /∈ Lc and we prove this case cannot

happen. First observe that at
′
j ∈ Lc in this case. Furthermore, since at

′
j and bt

′
j

do not have the same colour we have by Claim 3 that Bt′
j ∪{bt′

j } is a colour class.
In this situation, bt

′
j receives payoff 2(n+ j)− 2 ≤ 2(n+ j0 − 1)− 2 < |Lc|. Since

in addition at
′
j and bt

′
j are twins in G\(At′

j ∪ Bt′
j ), vertex bt

′
j could increase her

payoff by choosing colour c, thus contradicting that we are in a Nash equilibrium.
This proves at

′
j , b

t′
j ∈ Lc, and so, the subclaim.

By the subclaim, there is an even number 2k of vertices in
⋃j0−1

j=1 (Yj ∪ Nj)
with colour c, for some k ≤ j0 − 1. Similarly, since by Claim 2 the vertices xi, x

′
i

have the same colour for every 1 ≤ i ≤ n, |X ∩ Lc| = 2n′ for some n′ ≤ n. Now
there are two cases to be considered.

Suppose that btj0 ∈ Lc. Then, by Claim 3 atj0 ∈ Lc. Furthermore |Lc| ≥
2(n+ j0) − 1 or else, vertex btj0 would increase her payoff by choosing the colour
of the vertices in Bt

j0
(that is a colour class by Claim 3), thus contradicting the

hypothesis that we are in a Nash equilibrium. As a result, |Lc| = 2(n′ +k+1) ≥
2(n+j0)−1, that implies n′ +k ≥ n+j0−1, and so, |Lc| ≥ 2(n+j0), as desired.
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Else, btj0 /∈ Lc and we prove this case cannot happen. First observe that
atj0 ∈ Lc. Furthermore, |Lc| = 2(n′ + k) + 1 ≥ 2(n + j0) − 2, that implies
n′ + k ≥ n + j0 − 1, and so, |Lc| ≥ 2(n + j0) − 1. However, since atj0 and btj0 do
not have the same colour, Bt

j0
∪ {btj0} is a colour class by Claim 3. In particular,

btj0 receives payoff 2(n+ j0)− 2 < |Lc|. Since atj0 , b
t
j0

are twins in G\(At
j0

∪Bt
j0

),
vertex btj0 could increase her payoff by choosing colour c, thus contradicting that
we are in a Nash equilibrium.

Altogether, |Lc| ≥ 2(n + j0), that proves the claim. �
We point out that by combining Claim 1 with Claim 4, one obtains that for

every 1 ≤ j ≤ m, there are either zero or two vertices in Yj ∪ Nj in each colour
class not containing a private group, and in case there are two vertices then these
are atj , b

t
j for some 1 ≤ t ≤ 3.

Claim 5. Any two vertices in X have the same colour. Furthermore, for every
1 ≤ j ≤ m, every vertex in Yj ∪ Nj either has the same colour as vertices in X
or as vertices in her private group.

Proof. Let Lc be any colour class with at least one vertex in
⋃m

j=1(Yj ∪Nj). Let
j0 be the largest index j such that there is a vertex in Yj ∪ Nj with colour c.
In order to prove the claim, there are two cases to be considered. Suppose that
Lc 	= At

j0
∪ {atj0} and Lc 	= Bt

j0
∪ {btj0} for any 1 ≤ t ≤ 3. We will prove that

X ⊆ Lc, that will imply that Lc is unique in such a case, and so, will prove the
claim. By the choice of colour c, Lc 	⊆ X. Further, observe that there can be no
private group with a vertex in Lc. As a result, this case follows directly from
Claim 4.

Else, either Lc = At
j0

∪ {atj0} or Lc = Bt
j0

∪ {btj0} for some 1 ≤ t ≤ 3, and we
may assume that it is the case for any colour class Lc that contains at least one
vertex in

⋃m
j=1(Yj ∪ Nj) (or else, we are back to the previous case). So, let us

constrain ourselves to the subgraph G[X]. In particular, the constriction of the
Nash equilibrium to the subgraph must be a Nash equilibrium of the coloring
game defined on G[X]. Since the vertices in X are pairwise nonadjacent, they
must form a unique colour class in such case, that proves the claim. �

We will need a “truthfulness” property to prove correctness of our reduction.
Namely, the value of the output of any gate in the circuit must be correctly
guessed from the agents with the same colour as vertices in X.

Claim 6. Let 1 ≤ j0 ≤ m such that for every 1 ≤ j ≤ j0, there is at least one
vertex in Yj ∪ Nj with the same colour c0 as all vertices in X. Then for every
1 ≤ j ≤ j0, Lc0 ∩ Yj 	= ∅ if and only if the output of the jth gate is 1.

Proof. In order to prove the claim by contradiction, let 1 ≤ j1 ≤ j0 be the
smallest index j such that either Yj ∩ Lc0 = ∅ and the output of the jth gate
is 1 (false negative) or Yj ∩ Lc0 	= ∅ and the output of the jth gate is 0 (false
positive). We will show that in such case, there is an edge with two endpoints
of colour c0, hence the coloring is not proper, thus contradicting the hypothesis
that we are in a Nash equilibrium. Note that since by de Morgan’s laws, the
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negation of an AND-gate can be transformed into an OR-gate and vice-versa,
both cases are symmetrical, and so, we can assume w.l.o.g. that the jth1 gate is
an OR-gate. There are two subcases to be considered.

Suppose that the output of the jth1 gate is 0 (false positive). In such case,
Yj1 ∩ Lc0 	= ∅. Let us consider the first entry of the gate. If it is the ith entry of
the circuit for some 1 ≤ i ≤ n then wi = 0 (because the output of the jth1 gate is
0) and so, by construction, xi, x

′
i ∈ Lc0 are adjacent to a1j1 , b

1
j1

. Else, it is the kth

gate of the circuit for some k < j1. By minimality of j1, since the output of the
kth gate must be 0 (because the output of the jth1 gate is 0), Yk ∩ Lc0 = ∅, and
so, Nk ∩ Lc0 	= ∅. By construction, every vertex in Nk is adjacent to a1j1 , b

1
j1

. As
a result, a1j1 , b

1
j1

have a neighbour in Lc0 in this subcase. We can prove similarly
(by considering the second entry of the gate) that a2j1 , b

2
j1

have a neighbour in Lc0

in this subcase. The latter implies the existence of an edge with both endpoints
in Lc0 since Yj1 = {a1j1 , b1j1 , a2j1 , b2j1}.

Else, the output of the jth1 gate is 1 (false negative). In such case, Yj1∩Lc0 = ∅,
hence Nj1 ∩ Lc0 	= ∅. Since the output of the gate is 1, there must be an entry
of the gate such that: either it is the ith entry of the circuit for some 1 ≤ i ≤ n,
and wi = 1 (in which case, the two vertices xi, x

′
i ∈ Lc0 are adjacent to both

a3j1 , b
3
j1

by construction); or it is the kth gate of the circuit for some k < j1 and
this gate outputs 1. In the latter case, by minimality of j1, Yk ∩ Lc0 	= ∅. By
construction, every vertex in Yk is adjacent to a3j1 , b

3
j1

. As a result, a3j1 , b
3
j1

have
a neighbour in Lc0 in this subcase. The latter implies the existence of an edge
with both endpoints in Lc0 since Nj1 = {a3j1 , b3j1}. �

3.3 Proof of Theorem 2

Proof of Theorem 2. Let 〈C, w〉 be any instance of Monotone Circuit Value.
Let G = (V,E) be the graph obtained with our reduction from Sect. 3.1, which
can be constructed in polylogarithmic-time with a polynomial number of proces-
sors. The graph G defines a coloring game. We fix any Nash equilibrium for this
game, that exists by Theorem 1. By Claim 5, any two vertices in X have the same
colour c0. We will prove that there is at least one vertex in Ym with colour c0 if
and only if the circuit C outputs 1 when it takes w as input. Since Monotone
Circuit Value is PTIME-complete [9], the latter will prove that computing a
Nash equilibrium for coloring games is PTIME-hard.

By Claim 6, we only need to prove that for every 1 ≤ j ≤ m, there is at least
one vertex in Yj ∪ Nj with colour c0. To prove it by contradiction, let j0 be the
smallest index j such that no vertex in Yj ∪Nj has colour c0. By Claim 5, every
vertex in Yj0 ∪ Nj0 has the same colour as her private group. In particular, the
three of a1j0 , a

2
j0
, a3j0 receive payoff 2(n+ j0) − 3. We will prove that one of these

three agents could increase her payoff by choosing c0 as her new colour, thus
contradicting that we are in a Nash equilibrium. Indeed, by the minimality of
j0, it follows by Claim 4 that for any 1 ≤ j ≤ j0−1, there are exactly two vertices
of Yj ∪Nj with colour c0, while for every j0 ≤ j ≤ m there is no vertex in Yj ∪Nj

with colour c0. As a result, |Lc0 | = 2(n+ j0)−2. In particular, any agent among
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a1j0 , a
2
j0
, a3j0 could increase her payoff by choosing c0 as her new colour—provided

she is nonadjacent to every vertex in Lc0 . We will show it is the case for at least
one of the three vertices, that will conclude the proof of the theorem. Assume
w.l.o.g. that the jth0 gate is an OR-gate (indeed, since by de Morgan’s laws, the
negation of an AND-gate can be transformed into an OR-gate and vice-versa,
both cases are symmetrical). There are two cases.

Suppose that the output of the jth0 gate is 1. In such case, there must be an
entry of the gate such that: it is the ith entry of the circuit, for some 1 ≤ i ≤ n,
and wi = 1; or it is the kth gate of the circuit for some k < j0 and the output
of that gate is 1. In the latter case, we have by Claim 6 that the two vertices
of Yk ∪ Nk with colour c0 are in the set Yk. Assume w.l.o.g. that the above-
mentioned entry is the first entry of the gate. By construction, the two vertices
a1j0 , b

1
j0

are nonadjacent to every vertex in Lc0 . Else, the output of the jth0 gate is
0. Therefore, for every entry of the gate: either it is the ith entry of the circuit,
for some 1 ≤ i ≤ n, and wi = 0; or it is the kth gate of the circuit for some k < j0
and the output of that gate is 0. In the latter case, we have by Claim 6 that
the two vertices of Yk ∪ Nk with colour c0 are in the set Nk. By construction,
the two vertices a3j0 , b

3
j0

are nonadjacent to every vertex in Lc0 . In both cases, it
contradicts that we are in a Nash equilibrium. ��

4 Conclusion and Open Perspectives

We suggest through this case study a more in-depth analysis of the complexity
of computational mechanism designs. We would find it interesting to pursue
similar investigations for other games. Experiments in the spirit of [11] could be
helpful for our purposes. Further, we note that PRAM is seen by some as a too
unrealistic model for parallel computation. Thus, one may argue that proving
our reduction in this model casts a doubt on its reach. However, we can leverage
on the stronger statement that Monotone Circuit Value is strictly PTIME-
hard [5]. It implies roughly that the sequential time and the parallel time to solve
this problem cannot differ by more than a moderate polynomial-factor (unless
the solving of all problems in PTIME can be sped up on a parallel machine
by at least a polynomial-factor). Our reduction directly shows the same holds
true for the problem of computing a Nash equilibrium in a given coloring game,
that generalizes our hardness result to more recent parallel complexity classes
(e.g., [10]).
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Stéphane Durand1 and Bruno Gaujal2(B)

1 Univ. Grenoble Alpes, 38000 Grenoble, France
stephane.durand@inria.fr

2 Inria, Grenoble, France
bruno.gaujal@inria.fr

Abstract. In this paper we compute the worst-case and average exe-
cution time of the Best Response Algorithm (BRA) to compute a pure
Nash equilibrium in finite potential games. Our approach is based on a
Markov chain model of BRA and a coupling technique that transform
the average execution time of this discrete algorithm into the solution
of an ordinary differential equation. In a potential game with N players
and A strategies per player, we show that the worst case complexity of
BRA (number of moves) is exactly NAN−1, while its average complexity
over random potential games is equal to eγN + O(N), where γ is the
Euler constant. We also show that the effective number of states vis-
ited by BRA is equal to log N + c + O(1/N) (with c � eγ), on average.
Finally, we show that BRA computes a pure Nash Equilibrium faster (in
the strong stochastic order sense) than any local search algorithm over
random potential games.

1 Introduction

The question of computing Nash Equilibria (NE) in games is a central question
in algorithmic game theory and has been investigated of many papers. The most
classical result is in [1], showing that the problem of computing NE in finite
games is PPAD complete.

Potential games have been introduced in [2] and have proven very useful,
especially in the context of routing problems in networks, first mentioned in [3]
and exhaustively studied ever since, in the transportation as well as computer
science literature, see for example [4–6]. They have also been heavily investigated
in the context of distributed optimization (see for example [7]). In [8,9] the
authors show that the computation of NE for general potential games is PLS
complete (Polynomial Local Search complete). As for PPAD, this complexity
class is believed to be different from P .

The best response dynamics is one of the most basic tool in game theory. The
original proof of the existence of a Nash Equilibrium by Nash [10] can be seen as
the proof of existence of a fixed point of the best response correspondence (best
response is called countering in [10]). It has been well-known for a long time that
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the Best Response Algorithm converges in finite time to a pure NE in potential
games [11]. So BRA is a natural candidate for computing Nash equilibria.

In this paper, we analyze the performance of BRA over potential games with
N players, each with A possible strategies. It is well known that the convergence
time of BRA over potential games can be exponential in the number of players
(see for example [8]). Here, we confirm this by showing that the worst case
complexity of BRA (number of plays) is exactly NAN−1. Special cases, such as
graphical potential games have been analyzed in [12] by showing an equivalence
between the potential of such games and Markov fields. In other special cases
such as scheduling congestion games with identical tasks, it has been show that
BRA takes at most N steps before finding a NE [13]. Extensions with positive
and negative externalities also have a linear complexity [14].

However the average complexity of BRA over all potential games has
attracted surprisingly little attention. Random (non potential) games with two
players have been studied in [15]: With two IID utility matrices of size A × A,
the computation of a NE is O(A3 log log A) with high probability using a rather
sophisticated algorithm.

Our main contribution is to show that for potential games with N players,
E[MBRA], the average number of strategy profiles visited by BRA before con-
vergence, is E[MBRA] = log(N)+C +O(1/N) (where C � eγ , γ being the Euler
constant). We also show that the average number of comparisons performed by
the algorithm is equal to eγ(A − 1)(N − 1) + o(AN). This could be intuitively
explained by the fact that random potential games have a lot of pure NE [16].
In our framework, potentials are IID random variables so that, on average, one
action profile out of (A − 1)N + 1 profiles is a NE while in the worst case, a
potential game may have a single pure NE. This is only a partial explanation,
however. This does not explain the fact that the complexity does not depend on
the number of actions, nor the value of the constant factor, eγ ≈ 1.78.

We further show that the Best Response Algorithm computes a pure Nash
Equilibrium faster than any algorithm based on player’s local information, not
only in average but also in the strong stochastic order sense.

Missing proofs and additional details (numerical simulations, analysis of
alternative algorithms) are given in a long version of this paper, available in
HAL Archive [17].

1.1 Coupling and Markovian Analysis

The main idea of our approach is to see the evolution of BRA in a random
environment as a dynamical system, whose behavior can be computed using
differential equations. This will allow us to compute the exact asymptotics of
the average complexity in N and A, not only O(.) bounds. Second moments of
TBRA and of MBRA can also be computed by the same approach (see [17]).

The first step (Sect. 4.2) is to construct an approximation of the behavior of
BRA over a potential game. This approximation is called IFA in the paper, for
Intersection-Free Approximation because it discards strategies already explored
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by BRA. We show that the execution time of BRA is smaller than the execu-
tion time of its IFA approximation for the strong stochastic order. This is done
by constructing a non-trivial coupling between both executions. This powerful
technique is exploited to our great benefit here.

The second and most important step (Sect. 4.4) is to consider one run of the
IFA approximation of BRA as a trajectory of a Markov chain over the contin-
uous space of potentials. Doing so, the average complexity is transformed into
the average hitting time of an absorbing state of the Markov chain. The theory
of Markov chains implies that this average hitting time satisfies a Poisson differ-
ential equation. Thus, the average complexity of BRA is given by the solution of
a system of ordinary differential equations. This system happens to have a solu-
tion in closed form whose asymptotics in N and A can be computed by taking
integrals over initial states.

As for the proof of optimality of BRA among all local search algorithms
(Sect. 5), our approach is based once again on a coupling argument. While using
coupling techniques is more classical in this context (comparison of algorithms),
this particular case retains some originality because the coupling used here is
not built off-line but is being constructed on the fly while the algorithm runs.

2 Best Response Algorithm and Potential Games

We consider a game with a finite number N of players, each with A strategies.

Definition 1 (N-player game). A game is a tuple G
def= G(N ,A, u) with

– a finite set of players N = {1, . . . , N};
– a finite set Ak of pure strategies for each player k ∈ N .

The set of strategy profiles or states of the game is A def= A1×A2×· · ·AN .
– The players’ payoff functions uk : A → R.

We define the best response correspondence brk(x) as the set of all strategies
that maximizes the payoff for player k under profile x = (x1, . . . , xN ): brk(x) def={

argmax
α∈Ak

uk(α;x−k)
}

.

A Nash equilibrium (NE) is a fixed point of this correspondence, i.e. a profile
x∗ such that x∗

k ∈ brk(x∗) for every player k.

Definition 2 (Potential games and its generalizations). A game is an
(exact) potential game [11] if it admits a function (called the potential) Φ : A →
R such that for any player k and any unilateral deviation of k from strategy
profile x to x′: uk(α, x−k) − uk(α′, x−k) = Φ(α, x−k) − Φ(α′, x−k).

A game is a generalized ordinal potential game [11] (or G-potential game for
short) if there exists a potential function Φ : A → R such that, for any player k
and any state x, uk(α, x−k) > uk(α′, x−k) ⇒ Φ(α, x−k) > Φ(α′, x−k).

A game is a best-response potential game [18] (or BR-potential game for
short) if there is Φ : A → R such that for any player k and strategy profile x,

brk(x) =
{
argmax

α∈Ak

Φ(α, x−k)
}
.
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As shown in [18], exact potential games are BR-potential games, but there
exist G-potential games that are not BR-potential games. In the following, we
will consider the most general case (i.e. all games that are either BR-potential
or G-potential games) and call them potential games for simplicity.

We consider a general version of the Best Response Algorithm (BRA) with
uniform choice over all possible best responses when ties occur and where the
next player is selected according to a revision function R(.), that may depend
of the whole past of the algorithm. We assume that this function is weakly fair:
each player appears infinitely often in the sequence of plays induced by R, almost
surely. This revision function can be deterministic (for example, round-robin:
R(t) = t mod N) or random (for example, Bernoulli where the next player
is chosen according to an probability distribution ρ (the revision law): ∀k ∈
N ,P(R(t) = k) = ρk). In that case, weak fairness implies that the probability of
choosing any player k is strictly positive (∀k ∈ N , ρk > 0).

Algorithm 1. Best Response Algorithm (BRA)
Input: Game utilities (uk(·)); Initial state (x := x(0));
Weakly fair revision function R;
List of satisfied customers, initially empty: L := ∅ ;

repeat
Pick next player k := R(t); t := t + 1;
if xk �∈ brk(x) then

Update strategy for player k to any xk ∈ brk(x);
L := ∅;

L := L ∪ {k};
until size(L) = N ;

It is well known (see [11]) that for any potential game G, Algorithm 1 con-
verges in finite time, almost surely, to a Nash Equilibrium of G.

3 Worst Case Complexity

In this section, we analyze the time complexity of BRA. More precisely, we con-
sider three measures (related to each other). The first one is TBRA, the number
of iterations (or the number of times that the function br is called) before BRA
reaches a Nash equilibrium. A related measure is the total number of comparisons
used by BRA (denoted CBRA). One should expect that CBRA ≈ (A − 1)TBRA.
Finally, another interesting quantity is the number of different states visited by
BRA (denoted MBRA). This is called the number of moves done by BRA before
convergence to a Nash equilibrium (NE). Of course, MBRA � TBRA.

These quantities depend on the game over which BRA is run, on the initial
state x0 and on the infinite sequence of revision players R. It should also be clear
that they are functions of the game only through the potential Φ, so we denote
by TBRA(Φ, x0, R) the number of steps before convergence of Algorithm BRA
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for a game with potential Φ, starting in state x0, under the condition that the
sequence of players is given by R.

In the worst case, for some weakly fair revision functions R, TBRA(Φ, x0, R)
can be unbounded because the revision sequence induced by R can be arbitrarily
bad: one player might appear too few times to guarantee convergence in any
bounded time. When R is the round-robin function, the time for convergence is
finite but can still be very large, as shown in the following theorem.

Theorem 1. In the worst case, TBRA(Φ, x0, round-robin) = NAN−1.

It is well known that the worst case complexity of BRA is exponential in
the number of players (see for example [8]). The version of this result given here
(for round robin revision and generalized potential games) is only given for the
record (the proof is given in [17]).

4 Average Complexity of BRA

4.1 Randomization

In the following we will randomize over the potential games over which BRA
is used. Since the behavior of BRA only depends on the potential function, we
randomize directly over the potential Φ.

We consider a randomization over all games, uniformly over all possible orders
for the potentials. On one hand, this is the classical average complexity approach
when no additional information is known about the games (the same approach
is used in [15] for 2 player games for example). This yields IID potential for all
profiles, as explained below. On the other hand, some may argue that uniformly
random games are not generic in some sense and a good performance of BRA
on average does not necessarily translate in good performances for “real word”
games. In any case, this is a first step that must be taken in absence of additional
information about specific games that one may want to study.

There are several equivalent ways to do this randomization. The first one
is based on the fact that the complexity of the algorithm does not depend on
the actual values of the potential of the states but only on the comparisons
between them. When two potentials are equal, a strict order between them is
chosen uniformly. Therefore, the natural randomization is to consider the linear
extensions (total orders) of all possible partial orders over the set A and pick
one uniformly. The number of total orders on A is the number of permutations
on A, namely (AN )!.

The second (equivalent) randomization is the following: The potentials of all
states x are chosen independent, identically distributed according to an arbitrary
distribution F admitting a density w.r.t. the Lebesgue measure.

Both randomizations are equivalent. Indeed, take any k states x1, . . . , xk in
A. In both cases, P(Φ(x1) > Φ(x2) > · · · > Φ(xk)) = 1/k!. Now, since F is
increasing, F−1 is well-defined and we get P(Φ(x) > Φ(x′)) = P(F−1(Φ(x)) >
F−1(Φ(x′))). Note that F−1(Φ(x)) is uniformly distributed on [0, 1]. Therefore,
with no loss of generality, one can assume that the potential of all the states are
i.i.d., uniformly distributed on [0, 1]. This randomization is used in the following.
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4.2 Intersection-Free Approximation

The direct analysis of the behavior of BRA over a random potential is difficult
because, over time, more and more states have been visited by the algorithm.
Thus, its behavior is non-homogeneous in time. To avoid this difficulty, we con-
sider a new model, called the Intersection-Free Approximation (IFA) in the fol-
lowing. Under the Intersection-Free Approximation, every time a new player (say
k) has to compute its best response in a state (say x), it compares Φ(x) with
the potential of its A − 1 other possible strategies, as for the real BRA. Here
however, we assume that those A−1 states have not yet been visited during the
previous steps of the algorithm. Note that under the real behavior of BRA, it
could happen that some of these states have already been compared at a previ-
ous step of the algorithm, by another player (this will be called an intersection
in the following). Under the Intersection-Free Approximation, the states visited
by the algorithm are always “new” states, never compared before with any other
states.

More formally, the algorithm BRA under IFA can be written as follows.

Algorithm 2. BRA algorithm under IFA
Input: Initial state (x(0)); Revision function R;
Set of satisfied players, initially empty L := ∅.

repeat
Pick next player k := R(t); t := t + 1;
if k /∈ L then

Generate IID potentials Φ(α, x−k), α ∈ Ak \ {xk} unif. on [0, 1];
Compute best response: αk := argmax

β∈Ak

Φ(β;x−k);

if αk = xk then
L := L ∪ {k}

else
L := {k}; xk := αk;

until size(L) = N ;

Let us recall that CBRA (resp. TBRA,MBRA) is the number of comparisons
(resp. number of steps, number of moves) taken by BRA before convergence
and let us define CIFA (resp. TIFA,MIFA) to be the number of comparisons
(steps, moves) of BRA under the intersection-free approximation. By definition,
the worst case complexity of IFA under a round-robin revision sequence is infi-
nite. However, its average complexity is the same as for BRA, as shown by the
following lemma.

Lemma 1 (BRA and IFA are asymptotically equivalent). Under the
foregoing notations and using a round-robin revision function, the following com-
parisons hold, where �st is the strong stochastic order:
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1. CBRA �st CIFA (equivalently, [19] ∀t ∈ R, P(CBRA > t) � P(CIFA > t)).
2. If I is the total number of intersections in BRA, then TBRA �st TIFA + I

A−1 .
3. E[TBRA] = E[TIFA] + o(1) and E[CBRA] = E[CIFA] + o(1),
4. E[MBRA] = E[MIFA] + o(1).

The proof of the lemma is available in [17]. It is based on the construction of a
coupling between the executions of BRA with and without IFA. The assumption
that the revision function is round-robin for BRA and for IFA does not play a
big role in the proof, and it could be removed. However, the following section,
asserting the optimality of round-robin implies that extending the proof to more
general revision functions has a limited interest.

4.3 Round-Robin and Other Revision Sequences

As for the worst case analysis, the revision sequence influences the average time
complexity of the algorithm. We show that on average round-robin is asymptot-
ically the best one.

Lemma 2 (Asymptotic optimality of round-robin). For any revision
function R, E

[
TBRA(Φ, x0, round-robin)

]
� E

[
TBRA(Φ, x0, R)

]
+ ε(N), where

the expectation is taken over all potentials Φ and all initial states x0 and ε(N)
goes to zero when N goes to infinity.

The proof is again available in [17]. It uses the comparison with IFA. In the
rest, we focus on round-robin revision functions and omit it in the notations,
unless specified otherwise.

4.4 Complexity Analysis

We will be analyzing the intersection-free approximation of the behavior of BRA,
under a round-robin revision sequence, with no further reference to this.

Let us consider the intersection-free approximation and let y be the poten-
tial of the current state x: (y def= Φ(x)). Let k be the number of players that
have already played best response without changing the profile. This number
of “satisfied” players can replace the explicit set L used in Algorithm 2 when
the revision sequence is round-robin. The evolution at the next step of BRA
under IFA is as follows. The kth player computes its best response. The player
has A − 1 new strategies whose potential must be compared with the current
potential (y). As mentioned before, we can assume that the potentials of those
a

def= A − 1 strategies are IID, uniformly distributed in [0, 1].
With probability ya none of the new strategies beat the current choice. The

state remains at y, one more player is satisfied and it is the turn of the k + 1-st
player to try its best response.

With probability 1 − ya, one of the new strategies is the best response. The
current state moves to a new state where the number of satisfied players is set
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back to 1 and the potential increases to a value larger than u > y with probability
1 − ua.

Let Yt be the potential at step t (Yt ∈ [0, 1]) and Kt be the current number
of consecutive players whose best response did not change the current potential
(Kt ∈ {1, 2, . . . , N}) (number of satisfied players). The previous discussion says
that the couple (Yt,Kt) is a discrete-time, continuous-space Markov chain whose
kernel is:

P

(
(Yt+1,Kt+1) = (y, k + 1)

∣
∣∣∣(Yt,Kt) = (y, k)

)
= ya,

and, for any u > y,

P

(
(Yt+1,Kt+1) ∈ ([u, 1], 1)

∣∣∣∣(Yt,Kt) = (y, k)
)

= 1 − ua.

All the other transitions have a null probability.
Let m(y, k) be the number of moves of IFA before convergence when the

current state of the Markov chain is equal to (y, k).
With probability ya, the next player does not change its choice so that

m(y, k) = m(y, k + 1).
With probability density aua−1 the next player finds a new best response with
potential u so that one move is taken and m(y, k) = 1 + m(u, 1).
Let M(y, k) = E[m(y, k)]. The previous one step analysis of m(y, k) makes
M(y, k) satisfy a forward Poisson equation:

M(y, k) = yaM(y, k + 1) +
∫ 1

y

aua−1(M(u, 1) + 1)du.

By definition, the boundary conditions are: ∀y,M(y,N) = 0 (the current
state is NE when all players agree on this) and ∀k,M(1, k) = 0 (the potentials
are all bounded by 1, so a state with potential 1 is guaranteed to be a NE).

By setting B(y) def=
∫ 1

y
aua−1(M(u, 1) + 1)du, we get the following system of

integral equations

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

M(y, 1) = yaM(y, 2) + B(y),
M(y, 2) = yaM(y, 3) + B(y),
... =

...
M(y,N − 2) = yaM(y,N − 1) + B(y),
M(y,N − 1) = B(y).

(1)

Successive substitution of M(y, 2), . . . , M(y,N − 1) in the first equality yields
M(y, 1) = B(y)H(y) where H(y) def= 1+ya + · · ·+ya(N−2). Differentiating w.r.t.
y, one gets an ordinary differential equation in M(y, 1):

dM(y, 1)
dy

+ (aya−1H − 1
H

dH

dy
)M(y, 1) = −aya−1H.
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The equation is of the form ḟ +gf = h. Using the boundary condition M(1, 1) =
0, its generic solution is

M(y, 1) = e−Q(y)

∫ 1

y

aua−1H(u)eQ(u)du. (2)

where

Q(y)
def
=

∫ y

0

(

aua−1H(u) − 1

H(u)

dH(u)

du

)

du = − log(H(y))+

∫ y

0

aua−1H(u)du. (3)

The average number of profile changes in the execution of the algorithm
starting from an arbitrary profile is E[MIFA] =

∫ 1

0
M(y, 1)dy. Since M(y, 1)

is decreasing in y, E[MIFA] is upper-bounded by M(0, 1). Using Q(0) = 0,
H(0) = 1 and replacing Q and H by their values,

M(0, 1) =

∫ 1

0
exp

(
N−2∑
i=0

ua(i+1)

i + 1

)
au

a−1
du =

∫ 1

0
exp

(
N−2∑
i=0

vi+1

i + 1

)
dv (with v = u

a
)

=

∫ 1− 1
N

0
exp

(
N−1∑
i=1

vi

i

)
dv +

∫ 1

1− 1
N

exp

(
N−1∑
i=1

vi

i

)
dv

�
∫ 1− 1

N

0
exp

( ∞∑
i=1

vi

i

)
dv +

1

N
exp

(
N−1∑
i=1

1

i

)
(4)

=

∫ 1− 1
N

0

dv

1 − v
+ e

γ
+ O(1/N) = log(N) + e

γ
+ O(1/N). (5)

Furthermore, this bound is tight, up to an additive constant (see [17]).
Let us now consider the average number of comparisons made by BRA under

the intersection-free assumption. Let C(y, k) be the average number of compar-
isons starting in a state with potential y and k players have played without
changing their strategy. The Poisson equation for C(y, k) is :

C(y, k) = ya(C(y, k + 1) + a) +
∫ 1

y

aua−1(C(u, 1) + a)du,

with the boundary conditions C(1, 1) = a(N − 1) and C(y,N) = 0.
The solution of this differential system can be obtained in closed form, using

a similar approach as for M(y, 1).

C(y, 1) = a

(
N−2∑

i=0

yai

)

exp

(

−
N−1∑

i=1

yai − 1
i

)

.

The average number of comparisons is E[CIFA] =
∫ 1

0
C(y, 1)dy.
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For all y < 1,

C(y, 1) = a

( ∞∑

i=0

yai

)

exp

(
N−1∑

i=1

1/i

)

exp

(

−
∞∑

i=1

yia/i

)

+ o(aN) (6)

= a
1

1 − ya
(N − 1)eγ(1 − ya) + o(aN) + O(1) (7)

= a(N − 1)eγ + o(aN), (8)

where γ is the Euler constant (γ ≈ 0.5772...). Therefore, the same equality holds
for the integral, equal to E[CIFA].

The results of this section, together with Lemma 1, lead to the following
theorem, the main result of the section.

Theorem 2 (Average complexity of BRA). Under the round-robin revi-
sion sequence, the average complexity of BRA over a potential game satisfies:
(i) Average number of moves: E[MBRA] = log(N) + c + O(1/N)., where c � eγ

(ii) Average number of comparisons : E[CBRA] = eγAN + o(AN).
(iii) Average number of steps: E[TBRA] = eγN + o(N).

The average complexity E[TBRA] can be split into two parts: The number of
plays before reaching a NE and the number of plays needed to check if a state is
indeed a NE. This last part takes exactly N −1 steps in Algorithm 1: The players
have to play one by one to fill up set L. This means that a NE equilibrium is
reached on average as soon as eγ − 1 ≈ 78% of the players have played once.
The second moments of the number of steps and the number of moves under
IFA can be computed similarly (see [17]). In both cases, the standard deviations
are of the same order as the means.

5 Optimality of BRA

In this section, we prove that BRA finds a Nash equilibrium faster than any
local search algorithm (defined in Sect. 5), in the strong stochastic order sense.

By definition a Local Search Algorithm can only access the payoff matrix, one
player at a time. This access is often called a query in the literature. Once the
payoff of a strategy profile has been obtained, it is stored in memory and can
re-used later by the algorithm without an additional query.

In addition to queries, a local search algorithm can use any arithmetic oper-
ation, draw random variables and choose a strategy for all players.
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Any local search algorithm can be written in the following form, based on
the history of the execution, Ht, that corresponds to the amount of information
gathered by the algorithm up to step t.

Algorithm 3. A general local search algorithm
Initial storage reduced to the initial profile: H0 := {(x(0)}.
repeat

Select next player: k := R(Ht);
Query payoff vector of k under current state: uk(·, x−k(t));
Store the new visited states and their payoffs in memory:
Ht+1 := Ht ∪ {((α, x−k(t)), uk(α, x−k(t)))α∈Ak

};
jump to next state x(t + 1) := J(Ht+1);
Set stop := 1 if the current state is a NE;
t := t + 1;

until stop;

The functions J and R used in the inner loop are arbitrary functions that
choose the next state as well as the next player to play, according to the whole
history of the process. These functions can be deterministic or random. Testing
if x(t + 1) is NE is not detailed. Notice, however, that it can only be done when
all the payoff vectors for all the players in state x(t + 1) have been stored in
memory.

The complexity of a local search algorithm A is defined as the total number
of its payoff vector queries (denoted TA).

Theorem 3 (Optimality of BRA). Let A be any local search algorithm that
computes a Nash Equilibria in potential games. Under the foregoing random-
ization, and choosing the starting point x0 uniformly among all states, ∀t � 0,
P(TBRA � t|R = RA) � P(TA � t), where RA is the revision sequence con-
structed in A.

The proof is reported in [17]. Combining this theorem with Lemma2 estab-
lishes the optimality of BRA with round-robin.

6 Conclusion and Perspectives

The best response algorithm is one on the most basic object in game theory. In
this paper, we prove it has a linear complexity on average over uniformly random-
ized potential games. Furthermore, BRA is optimal in the class of local search
algorithms when one has no information about the structure of the potential
game.

Does all this make BRA the perfect algorithm to compute NE in general? We
believe that the answer is no because BRA suffers from several drawbacks. First,
it does not tolerate simultaneous plays. Second, it requires to know the entire
payoff vector of a player before choosing its strategy. Other drawbacks include
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high sensitivity on the order of play and on noisy perturbations on the payoffs.
Designing algorithms that do not suffer from these drawbacks is the object of
our future investigations.
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Abstract. Two-player, turn-based, stochastic games with reachability
conditions are considered, where the maximizer has no information (he is
blind) and is restricted to deterministic strategies whereas the minimizer
is perfectly informed. We ask the question of whether the game has
maxmin value of 1 in other words we ask whether for all ε > 0 there exists
a deterministic strategy for the (blind) maximizer such that against all
the strategies of the minimizer, it is possible to reach the set of final states
with probability larger than 1−ε. This problem is undecidable in general,
but we define a class of games, called leaktight half-blind games where
the problem becomes decidable. We also show that mixed strategies in
general are stronger for both players and that optimal strategies for the
minimizer might require infinite-memory.

1 Introduction

Two-player stochastic games are a natural framework for modeling and verifica-
tion in the presence of uncertainty, where the problem of control is reduced to
the problem of optimal strategy synthesis [9]. There is a variety of two-player
stochastic games that have been studied, depending on the information available
to the players (perfect information or partial information), the winning objec-
tive (safety, reachability, etc.), the winning condition (surely, almost-surely, or
limit-surely winning; probability higher than some quantity), whether the play-
ers choose actions concurrently or whether they take turns. Stochastic games
with partial observation are particularly well suited for modeling many scenar-
ios occurring in practice; normally we do not know the exact state of the system
we are trying to model, e.g. we are aided by noisy sensors or by a software
interface that provides only a partial picture. Unfortunately, compared to per-
fect information games, algorithmic problems on partial information games are
substantially harder and often undecidable [3,13,16]. Assuming one player to
be perfectly informed while the other player is partially informed (semiperfect-
information games [4,5]) brings some relief to the computational hardness as
opposed to general partial information games.
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In the present paper we consider half-blind stochastic games: one player has
no information (he is blind) and plays deterministically while the other player
is perfectly informed. We study half-blind games for the reachability objective
and maxmin winning condition: we want to decide if for every ε > 0 there exists
a deterministic strategy for the maximizer such that against all strategies of the
minimizer, the final states are reached with probability at least 1 − ε.

The maxmin condition for half-blind games is a generalization of the value 1
problem for probabilistic finite automata [17]. Most decision problems on prob-
abilistic finite automata are undecidable, notably language emptiness [1,13,16],
and the value 1 problem [13]. Consequently, stochastic games with partial infor-
mation and quantitative winning conditions (the probability of fulfilling the
winning objective is larger than some quantity) are undecidable. Nevertheless
recently there has been some effort on characterizing decidable classes of prob-
abilistic automata [2,6,10,12,13], with the leaktight class [12] subsuming the
others [11].

The interest of this model is twofold. First, it can be considered as a prob-
abilistic finite automaton where the transition probabilities are not fixed but
controlled by an adversary with some constraints. In this sense, it is a more
robust notion of a probabilistic automaton. Second interest is the study how
much more difficult a problem becomes when another player is added, in this
case the problem of limit-sure reachability.

Our Results. In the present paper we show that a subclass of half-blind games
called leaktight games have a decidable maxmin reachability problem. The game
is abstracted through a finite algebraic structure called the belief monoid. This is
an extension to the Markov monoid used in [12]. Indeed the elements of the belief
monoid are sets of elements of the Markov monoid, and they contain information
on the outcome of the game when one strategy choice is fixed. The algorithm
builds the belief monoid and searches for particular elements which are witnesses
that the set of final states is maxmin reachable. The proof of the correctness of
the algorithm uses k-decomposition tree, a data structure used in [8] that is
related to Simon’s factorization forests. The k-decomposition trees are used to
prove lower and upper bounds on certain outcomes of the game and show that
it behaves as predicted by the belief monoid.

Comparison with Previous Work. The proof methods extends those devel-
oped in [12] in three aspects. First, we define a new monoid structure on top of
the Markov monoid structure introduced in [12]. Second, we rely on the exten-
sion of Simon’s factorization forest theorem [18] to k-factorization trees instead
of 2-factorization trees in [12] in order to derive upper and lower bound on the
actual probabilities abstracted by the belief monoid. Third, we rely on the leak-
tight hypothesis to prove both completeness and soundness, while in the case of
probabilistic automata the soundness of the abstraction by the Markov monoid
was for free.

Outline of the Paper. We start by fixing some notions and notation in Sect. 2
as well as providing a couple of examples. In Sect. 3 we introduce the belief
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monoid algorithm and the Markov and belief monoids themselves. In Sect. 4 the
class of leaktight games is defined using the notion of a leak. The correctness of
the algorithm is sketched in Sect. 5, and finally we discuss the power of different
types of strategies in Sect. 6 and conclude. The details and proofs can be found
in [15].

2 Half-Blind Games and the Maxmin Reachability
Problem

Given a set X, we denote by Δ(X) the set of distributions on X, i.e. functions
f : X → [0, 1] such that

∑
x∈X f(x) = 1.

A half-blind game is a two-player, zero-sum, stochastic, turn-based game,
played on a finite bipartite graph, where the maximizer has no information,
whereas the minimizer has perfect information. Formally a game G is given by
the tuple G = (S1,S2,A1,A2, p, F ). The finite set Si is the states controlled by
Player i, the finite set Ai is the actions available to Player i (i = 1, 2). Player 1 is
the maximizer and Player 2 is the minimizer. The function p mapping (S1,A1)
to Δ(S2) and (S2,A2) to Δ(S1) gives the dynamics of the game. The sets S1,S2

and A1,A2 are disjoint, i.e. S1 ∩ S2 = ∅ and A1 ∩ A2 = ∅. The set F ⊆ S1 is
the set of final states.

A play of such a game takes place in turns. Initially the game is in some state
s1 ∈ S1, then the maximizer (a.k.a. player 1) chooses some action a1 ∈ A1 which
moves the game to some state t1 ∈ S2 selected randomly according to the lottery
p(s1, a1). It is up to the minimizer (a.k.a. player 2) now to choose some action
b1 ∈ A2 which moves the game to some state s2 ∈ S1. Then again maximizer
chooses some action a2 ∈ A1 and so on, until the maximizer decides to stop, at
which point, if the game is in a state that belongs to the set of final states F ,
the maximizer wins, otherwise it is the minimizer who wins. The maximizer is
totally blind and does not know what happens, he does not know in which state
the game is nor the actions played by the minimizer. Moreover the maximizer
plays in a deterministic way, he is not allowed to use a random generator to
select his actions. As a consequence, the decisions of maximizer only depend on
the time elapsed and can be represented as words on A1. On the other hand, the
minimizer has full information and is allowed to plays actions selected randomly.

Formally, the set of strategies for the maximizer is denoted by Σ1 they consist
of finite words, i.e. Σ1 = A1

∗. In order to emphasize that the strategies of the
maximizer are words, elements of Σ1 are usually denoted by w.

The minimizer’s strategies are functions from H = (S1A1S2A2)∗S1 to
Δ(A2). Let Σ2 be the set of such strategies. Its elements are typically denoted
by τ .

Fixing strategies w ∈ Σ1 of length n, τ ∈ Σ2 and an initial state s ∈ S1 gives
a probability measure on the set Hn = (S1A1S2A2)nS1 which is denoted by
P

w,τ
s : for a history h = s1a1t1b1 · · · snantnbnsn+1 ∈ Hn,

P
w,τ
s (h) =

n∏

i=1

p(si, ai)(ti) · τ(hi)(bi) · p(ti, bi)(si+1)
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if s = s1 and w = a1 · · · an, and 0 otherwise, where hi = s1a1t1b1 · · · siaiti,
1 ≤ i ≤ n.

For t ∈ S1, we will denote by P
w,τ
s (t) the chance of ending up in state t

after starting from state s and playing the respective strategies, i.e. Pw,τ
s (t) =∑

ht∈H P
w,τ
s (ht). Whereas for a set of states R ⊆ S1 let Pw,τ

s (R) =
∑

t∈R P
w,τ
s (t).

2.1 The Maxmin Reachability Problem

Now we can introduce the maxmin reachability and for half-blind games, using
the notation and notions just defined. Given a game with initial state s ∈ S1

and final states F ⊆ S1, the maxmin value val(s) is defined by

val(s) = sup
w∈Σ1

inf
τ∈Σ2

P
w,τ
s (F ).

In case val(s) = 1, we say that F is maxmin reachable from s.

Problem 1 (Maxmin reachability). Given a game, is the set of final states F
maxmin reachable from the initial state s?

There is no hope to decide this problem in general. The reason is that in
the special case where the minimizer has no choice in any of the states that she
controls, then Problem1 is equivalent to the value one problem for probabilistic
finite automata which is already known to be undecidable [13]. However, in the
present paper, we establish that Problem 1 is decidable for a subclass of half-
blind games called leaktight games.

2.2 Deterministic Strategies for the Minimizer

In general, strategies of the minimizer are functions from H = (S1A1S2A2)∗S1

to Δ(A2). However, because in the present paper we focus on the maxmin reach-
ability problem, we can assume that strategies of the minimizer have a much
simpler form: the choice of action by the minimizer is deterministic and only
depends on the current state and on how much time has elapsed since the begin-
ning of the play. Formally, we assume that minimizer strategies are functions
N → (S2 → A2). Denote Σp

2 the set of all such strategies. This restriction
of the set of minimizer strategies does not change the answer to the maxmin
reachability problem (Theorem 1, [15]).

2.3 Two Examples

The graph on which a half-blind game is played is visualized as in Figs. 1 and 2.
The circle states are controlled by the maximizer, and the square states are
controlled by the minimizer, so for the example in Fig. 1, S1 = {i, f} and S2 =
{1, 2}. We represent only edges (s, t) such that p(s, a)(t) > 0 for some action a
and we label the edge (s, t) by a if p(s, a)(t) = 1 and by (a, p(s, a, t)) otherwise.
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Fig. 1. A half-blind game with
val(i) = 1.
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(α, 1

4 )

a, b
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Fig. 2. A half-blind game with
val(i) < 1.

For the game in Fig. 1 it is easy to see that val(i) = 1, since if the maxi-
mizer plays the strategy an, no matter what strategy the minimizer chooses the
probability to be on the final state is at least 1 − 1

2n . On the other hand in the
game depicted on Fig. 2, {f} is not maxmin reachable from i. If the maximizer
plays a strategy of only a’s then the minimizer always plays the action β and α1

for example and the probability to be in the final state will be 0. Therefore the
maximizer has to play a b at some point. But then the strategy of the minimizer
will be to play β except against the action just before b, against that action the
minimizer plays α letting at most 1/4 of the chance to go to the final state,
but making sure that the rest of the probability distribution is stuck in the sink
state s. Consequently val(s) = 1/4. We reuse the examples above to illustrate
the belief monoid algorithm in the next section.

3 The Belief Monoid Algorithm

We abstract the game using two (finite) monoid structures that are constructed,
one on top of the other. Given that the game belongs to the class of leaktight
games, the monoids will contain enough information to decide maxmin reacha-
bility.

3.1 The Markov Monoid

The Markov monoid is a finite algebraic object that is in fact richer than a
monoid; it is a stabilization monoid (see [7]). The Markov monoid was used in
[12] to decide the value 1 problem for leaktight probabilistic automata on finite
words.

Elements of the Markov monoid are S1 × S1 binary matrices. They are typ-
ically denoted by capital letters such as U, V,W . The entry that corresponds to
the states s, t ∈ S1 is denoted by U(s, t). We will make use of the notation s

U−→ t
in place of U(s, t) = 1, when it is helpful.

We define two operations on these matrices: the product and the iteration.
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Definition 1. Given two S1 ×S1 binary matrices U, V , their product (denoted
UV ) is defined for all s, t ∈ S1 as

UV (s, t) = 1 ⇐⇒ ∃s′ ∈ S1, s
U−→ s′ ∧ s′ V−→ t.

Given a S1 × S1 binary matrix U that is idempotent, i.e. U2 = U , its iteration
(denoted U#) is defined for all s, t ∈ S1 as

U#(s, t) = 1 ⇐⇒ s
U−→ t and t is U-recurrent.

We say that some state t ∈ S1 is U -recurrent, if for all t′ ∈ S1, t
U−→ t′ =⇒

t′ U−→ t. Otherwise we say that t is U -transient.

For a set X of binary matrices, we denote 〈X〉 the smallest set of binary
matrices containing X and closed under product and iteration. Let Ba,τ , a ∈ A1,
τ ∈ Σp

2 be a matrix defined by s
Ba,τ

−−−→ t ⇐⇒ P
a,τ
s (t) > 0, s, t ∈ S1. Now the

definition of the Markov monoid can be given.

Definition 2 (Markov monoid). The Markov monoid denoted M is

M = 〈{Ba,τ | a ∈ A1, τ ∈ Σp
2} ∪ {1}〉 ,

where 1 is the unit matrix.

3.2 The Belief Monoid

Roughly speaking, while the elements of the Markov monoid try to abstract
the outcome of the game when both strategies are fixed, the belief monoid tries
to abstract the possible outcomes of the game when only the strategy of the
maximizer is fixed. Hence the elements of the belief monoid are subsets of M,
and they are typically denoted by boldfaced lowercase letters such as u,v,w.

Given two elements of the belief monoid u and v, their product is the product
of their elements, while the iteration of some idempotent u is the sub-Markov
monoid that is generated by u minus the elements in u that are not iterated.

Definition 3. Given u,v ⊆ M, their product (denoted uv) is defined as

uv = {UV | U ∈ u, V ∈ v}.

Given u ⊆ M that is idempotent, i.e. u2 = u, its iteration (denoted u#) is
defined as

u# =
〈{

UE#V | U,E, V ∈ u, EE = E
}〉

.

Given a ∈ A1, let a = {Ba,τ | τ ∈ Σp
2}, we give a definition of the belief

monoid.

Definition 4 (Belief Monoid). The belief monoid, denoted B, is the smallest
subset of 2M that is closed under product and iteration and contains {a | a ∈
A1} ∪ {{1}}, where 1 is the unit matrix.
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For the proofs we use extended versions of the monoids denoted M̃, B̃, where the
edges that are deleted by the iteration operation are saved for book-keeping, the
definitions can be found in the long version of the paper [15].

We are interested in a particular kind of elements in the belief monoid, called
reachability witnesses.

Definition 5 (Reachability Witness). An element u ∈ B is called a reacha-
bility witness if for all U ∈ u, s

U−→ t =⇒ t ∈ F , where s is the initial state of
the game and F is the set of final states.

We give an informal description of the way that the belief monoid abstracts
the outcomes of the game. Roughly speaking the strategy choice of the maxi-
mizer corresponds to choosing an element u ∈ B while the strategy choice of
the minimizer corresponds to picking some U ∈ u. Consequently under those
strategy choices, U will tell us the outcome of the game, that is to say if for
some s, t ∈ S1, if we have s

U−→ t then there is some positive probability (larger
than a uniform bound) of going from the state s to the state t. In case of s � U−→ t
we will be ensured that the probability of reaching the state t from s can be
made arbitrarily small. Therefore if a reachability witness is found then we will
know that for any strategy that the minimizer picks the probability of going to
some non-final state from the initial state can be made to be arbitrarily small.

3.3 The Belief Monoid Algorithm

The belief monoid associated with a given game is computed by the belief monoid
algorithm, see Algorithm 1. We will see later that under some conditions, the
belief monoid algorithm decides the maxmin reachability problem.

Algorithm 1. The belief monoid algorithm.
Data: A leaktight half-blind game.
Result: Answer to the Maxmin reachability problem.
B ← {a | a ∈ A1}.
Close B by product and iteration
Return true iff there is a reachability witness in B

We illustrate the computation of the belief monoid with an example. Consider
the game represented on Fig. 2. The minimizer has four pure stationary strategies
τα1α, mapping 1 to α1 and 2 to α, and similarly the strategies τα1β , τα2α, τα2β .
Now we compute Ba,τ where τ is one of the strategies above. Assume that we

have the following order on the states: i < c < s < f , then Ba,τα1α =

[
1 0 0 1
1 0 0 1
0 0 1 0
0 0 0 1

]

,

Ba,τα1β =

[
1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

]

, Ba,τα2α =

[
1 1 0 1
1 0 0 1
0 0 1 0
0 0 0 1

]

, and Ba,τα2β =

[
0 1 0 0
0 1 0 1
0 0 1 0
0 0 0 1

]

. The set that
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contains these matrices is the set a. We can verify that a is not idempotent
but the set a2 on the other hand is closed under taking products, i.e. a4 = a2.
Therefore we can take it’s iteration and compute the element (a2)#. The reader

can verify that (a2)# contains (Ba,τα1α)# =

[
0 0 0 1
0 0 0 1
0 0 1 0
0 0 0 1

]

, (Ba,τα1β )# =

[
0 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

]

,

and Ba,τα2β . But it also contains (Ba,τα1β )#Ba,τα1α = Ba,τα1α . Therefore (a2)#b
is not a reachability witness because if we pick A = Ba,τα1α in (a2)# and some
B ∈ b, we will have i

AB−−→ s, and s is a sink state.
This roughly tells us that maximizer cannot win with the strategies

(
(a2nb)

)
n
,

because against a2nb the minimizer plays the strategy τα1β for the first 2n − 1
turns and then plays the strategy τα1α against the last a, making sure that after
the b is played the we end up in the sink state s with at least 3/4 probability.
Continuing the computation we can verify that the belief monoid of the game
in Fig. 2 does not contain a reachability witness.

4 Leaks

Leaks were first introduced in [12] to define a decidable class of instances for
the value 1 problem for probabilistic automata on finite words. The decidable
class of leaktight automata is general enough to encompass all known decidable
classes for the value 1 problem [11] and is optimal in some sense [10]. We extend
the notion of leak from probabilistic automata to half-blind games and prove
that when a game does not contain any leak then the belief monoid algorithm
decides the maxmin reachability problem.

Intuitively a leak happens when there is some communication between two
recurrence classes with transitions that have a small probability of occurring.
Whether this small probability builds up to render one of the recurrence classes
transient is a computationally hard question to answer — and in fact impossible
in general. Examples of leaks can be found in [11] and the link between leaks
and convergence rates are discussed further in [10].

Definition 6 (Leaks). An element of the extended Markov monoid (U, Ũ) ∈ M̃
is a leak if it is idempotent and there exist r, r′ ∈ S1, such that: (1) r, r′ are U -

recurrent, (2) r � U−→ r′ and (3) r
Ũ−→ r′.

An element of the extended belief monoid u ∈ B̃ is a leak if it contains
(U, Ũ) ∈ u such that (U, Ũ) is a leak.

A game is leaktight if its extended belief monoid does not contain any leaks.

Note also that the question of whether a game is leaktight is decidable, since
this information can be found in the belief monoid itself.

5 Correctness of the Belief Monoid Algorithm

This section is dedicated to proving that when the game is leaktight the belief
monoid algorithm is both sound (a reachability witness is found implies val(s) =
1) and complete (no reachability witness is found implies val(s) < 1).
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Theorem 1. The belief monoid algorithm solves the maxmin reachability prob-
lem for half-blind leaktight games.

Theorem 1 is a direct consequence of Theorems 2 and 3 which are given in
the next two sections.

5.1 Soundness

In this section we give the main ideas to prove soundness of the belied monoid
algorithm.

Theorem 2 (Soundness). Assume that the game is leaktight and that its
extended belief monoid contains a reachability witness. Then the set of final states
is maxmin reachable from the initial state.

Theorem 2 is justifying the yes instances of the belief monoid algorithm, i.e.
if the algorithm replies yes, then indeed val(s) = 1. It is interesting to note that
the equivalent soundness theorem for probabilistic automata in [12] does not
make use of the leaktight hypothesis. Theorem 2 follows as a corollary of:

Lemma 1. Given a game whose extended belief monoid is leaktight, with every
element u ∈ B of its belief monoid we can associate a sequence (un)n, un ∈
Σ1 such that for all (τn)n, τn ∈ Σp

2 there exists U ∈ u and a subsequence
((u′

n, τ ′
n))n ⊂ ((un, τn))n for which

U(s, t) = 0 =⇒ lim
n

P
u′

n,τ ′
n

s (t) = 0,

for all s, t ∈ S1.

We can prove Theorem 2 as follows. We are given a game that is leaktight
and has a reachability witness u ∈ B, to whom we can associate a sequence of
words (un)n according to Lemma 1. If on the contrary there exists ε > 0 such
that val(s) ≤ 1 − ε then there exists a sequence of strategies (τn)n such that for
all n ∈ N, Pun,τn

s (F ) ≤ 1−ε′, for some ε′ > 0. This contradicts Lemma 1 because
for the reachability witness we have by definition that for all U ∈ u, U(s, t) = 1
implies t ∈ F .

We give a short sketch of the main ideas utilized into proving Lemma1.
To a ∈ B, a ∈ A1 we associate the constant sequence of words (a)n. To the

product of two elements in B we associate the concatenation of their respective
sequences, and to u# ∈ B the sequence (un

n)n is associated, given that (un)n

is coupled with u. Then we consider words whose letters are pairs (a, τ), where
a ∈ A1 and τ is a strategy that maps S2 to A2, i.e. a pure and stationary
strategy, and give a morphism from these words to the extended Markov monoid
M̃. This allows us to construct k-decomposition trees of such words with respect
to M̃ (see [15]) . Then the k-decomposition trees are used to prove lower and
upper bounds on the outcomes of the game under the strategy choices given by
the word of pairs. The main idea is that we can construct for longer and longer
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words, k-decomposition trees for larger and larger k, thereby making sure that
the iteration nodes have a large enough number of children which enables us
to show that the probability of being in transient states is bounded above by a
quantity that vanishes in the limit.

5.2 Completeness

Before introducing the main theorem of this section let us give a definition.

Definition 7 (μ-faithful abstraction). Let u ∈ Σ1 be a word, and μ > 0 a
strictly positive real number. We say that u ∈ B̃ is a μ-faithful abstraction of the
word u if for all (U, Ũ) ∈ u there exists τ ∈ Σp

2 such that for all s, t ∈ S1,

Ũ(s, t) = 1 ⇐⇒ P
u,τ
s (t) > 0 (1)

U(s, t) = 1 =⇒ P
u,τ
s (t) ≥ μ. (2)

This section is devoted to giving the main ideas behind the proof of the
following theorem.

Theorem 3. Assume that the game is leaktight. Then there exists μ > 0 such
that for all words u ∈ Σ1 there is some element u ∈ B̃ that is a μ-faithful
abstraction of u.

The notion of μ-faithful abstraction is compatible with product in the fol-
lowing sense.

Lemma 2. Let u,v ∈ B̃ be μ-faithful abstractions of u ∈ Σ1 and v ∈ Σ1 respec-
tively. Then uv is a μ2-faithful abstraction of uv ∈ Σ1.

A näıve use of Lemma 2 shows that any word w has a μw-faithful abstraction
in B̃, where μw converges to 0 as the length of w increases. However we need
μw to depend only on B̃, independently of |w|. For that we make use of k-
decomposition trees. More precisely we build N -decomposition trees for words
in Σ1 where N = 23·|M̃|. We can construct N -decomposition trees for any word
u ∈ Σ1 whose height is at most 3 · |B̃|2 and since N is fixed we will be able to
propagate the constant μ, it only remains to take care that the constant does
not shrink as a function of the number of children in iteration nodes, hence the
following lemma.

Lemma 3. Let u ∈ Σ1 be a word factorized as u = u1 · · · un where n > 23·|M̃| =
N , and u ∈ B̃ an idempotent element such that u is a μ-faithful abstraction of ui,
1 ≤ i ≤ n, for some μ > 0. If u is not a leak then u# is a μ′-faithful abstraction
of u, where μ′ = μN+1.

Then Theorem 3 is an easy consequence from the lemmata above, which can
be shown as follows. We construct a N -decomposition tree for the word u ∈ Σ1,
and propagate the lower bound from the leaf nodes, for which we have the bound
ν > 0 (where ν is the smallest transition probability appearing in the game) up to



62 E. Kelmendi and H. Gimbert

the root node. If we know that a bound μ > 0 holds for the children, for the
parents we have the following lower bounds as a function of the kind of the node:
(1) product node: μ2; (2) idempotent node μN ; (3) iteration node μN+1. Since the
length of the tree is at most h = 3 · |B̃|2 we have the lower bound μ = νh(N+1)

that holds for all u ∈ Σ1.

6 Complexity of Optimal Strategies

The maxmin reachability problem solved by the belief monoid algorithm con-
cerns games where the maximizer is restricted to pure strategies, and decides
whether val(s) = supw∈Σ1

infτ∈Σ2 P
w,τ
s (F ) = 1, where Σ1 = A1

∗. If we extend
further the set Σ1 of strategies of the maximizer and allow him to have mixed
strategies too, then half-blind games have a value [14]. Let Σm

1 = Δ(A1
∗) be

the set of mixed words then

val(s) = sup
w∈Σm

1

inf
τ∈Σ2

P
w,τ
s (F ) = inf

τ∈Σ2
sup

w∈Σm
1

P
w,τ
s (F ).

Define Σf
2 to be the set of finite-memory strategies for the minimizer. These

are strategies that are stochastic finite-state probabilistic transducers reading
histories and outputting elements of Δ(A2), mixed actions.

Let valf (s) = infτ∈Σf
2

supw∈Σ1
P

w,τ
s (F ). In general val(s) ≤ val(s) ≤ valf (s).

A natural question is whether the inequalities above are strict in general,
i.e. whether mixed strategies are strictly more powerful for the maximizer and
whether infinite-memory strategies are strictly more powerful for the minimizer.
The answer to both questions is positive; the relevant examples and further
details can be found in [15].

Conclusion

We have defined a class of stochastic games with partial observation where the
maxmin-reachability problem is decidable. This holds under the assumption that
maximizer is restricted to deterministic strategies. The extension of this result
to the value 1 problem where maximizer is allowed to use mixed strategies seems
rather challenging.
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Abstract. We study repeated games with absorbing states, a type of
two-player, zero-sum concurrent mean-payoff games with the prototyp-
ical example being the Big Match of Gillete (1957). These games may
not allow optimal strategies but they always have ε-optimal strategies.
In this paper we design ε-optimal strategies for Player 1 in these games
that use only O(log log T ) space. Furthermore, we construct strategies
for Player 1 that use space s(T ), for an arbitrary small unbounded non-
decreasing function s, and which guarantee an ε-optimal value for Player
1 in the limit superior sense. The previously known strategies use space
Ω(log T ) and it was known that no strategy can use constant space if it is
ε-optimal even in the limit superior sense. We also give a complementary
lower bound. Furthermore, we also show that no Markov strategy, even
extended with finite memory, can ensure value greater than 0 in the Big
Match, answering a question posed by Neyman [11].

1 Introduction

In game theory there has been considerable interest in studying the complexity
of strategies in infinitely repeated games. A natural way how to measure the
complexity of a strategy is by the number of states of a finite automaton imple-
menting the strategy. A common theme is to consider what happens when some
or all players are restricted to play using a strategy given by an automaton of a
certain bounded complexity.

Asymptotic View. Previous works have mostly been limited to dichotomy
results: either there is a good strategy implementable by finite automaton or
there is no such strategy. Our goal here is to refine this picture. We do this
by taking the asymptotic view: measuring the complexity as a function of the
number of rounds played in the game. Now when the strategy no longer depends
just on a finite amount of information about the history of the game it could even
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be a computationally difficult problem to decide the next move of the strategy.
But we focus on investigating how much information a good strategy must store
about the play so far to decide on the next move; in other words, we study how
much space the strategy needs.

Game Classes. The class of games we study is that of repeated zero-sum games
with absorbing states. These form a special case of undiscounted stochastic
games. Stochastic games were introduced by Shapley [12], and they constitute
a very general model of games proceeding in rounds. We consider the basic ver-
sion of two-player zero-sum stochastic games with a constant number of states
and a constant number of actions. In a given round t the two players simulta-
neously choose among a number of different actions depending on the current
state. Based on the choice of the pair (i, j) of actions as well as the current state
k, Player 1 receives a reward rt = ak

ij from Player 2, and the game proceeds to
the next state � according to probabilities pk�

ij .

Limit-Average Rewards. In Shapley’s model, in every round the game stops
with non-zero probability, and the payoff assigned to Player 1 by a play is simply
the sum of rewards ri. The stopping might be viewed as discounting later rewards
by a discounting factor 0 < β < 1. Gillette [4] considered the more general model
of undiscounted stochastic games where all plays are infinite. He is interested
in the average reward 1

T

∑T
t=1 rt to Player 1 as T tends to infinity. As the limit

may not exist one needs to consider lim inf, lim sup, or some Banach limit [13]
of the sums. In many cases the particular choice of the limit does not matter
much, but it turns out that for our results it has interesting consequences. For
this reason we consider both lim infT→∞ 1

T

∑T
t=1 rt and lim supT→∞

1
T

∑T
t=1 rt.

Note that both these notions have natural interpretations. For instance, the
lim inf notion suits the setup where the infinite repeated game actually models a
game played repeatedly for an unspecified (but large) number of rounds, where
one thus desires a guarantee on the average reward after a certain number of
rounds. The lim sup notion on the other hand models the ability to always recover
from arbitrary losing streaks in the repeated game.

The Big Match. A prototypical example of an undiscounted stochastic game
is the well-known Big Match of Gillette [4] (see Fig. 1 for an illustration of the
Big Match, together with the adjacent description). This game fits also into an
important special subclass of undiscounted stochastic games: the repeated games
with absorbing states, defined by Kohlberg [9]. In a repeated game with absorbing
states there is only one state that can be left; all the other states are absorbing,
i.e., the probability of leaving them is zero regardless of the actions of the players.
Even in these games, as for general undiscounted stochastic games, there might
not be an optimal strategy for the players [4]. On the other hand there always
exist ε-optimal strategies [9], which are strategies guaranteeing the value of the
game up to an additive term ε. The Big Match provides such an example: the
value of the game is 1/2, but Player 1 does not have an optimal strategy, and
must settle for an ε-optimal strategy [2]. However, it is known that such ε-
optimal strategies in the Big Match must have a certain level of complexity.
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More precisely, for any ε < 1
2 , an ε-optimal strategy can neither be implemented

by a finite automaton nor take the form of a Markov strategy (a strategy whose
only dependence on the history is the number of rounds played) [14].

In this paper we consider the Big Match in particular and then generalize
our results to general repeated games with absorbing states.

The Model Under Consideration. We are interested in the space complexity
of ε-optimal strategies in repeated games with absorbing states. A general strat-
egy of a player in a game might depend on the whole history of the play up to
the current time step. Moreover the decision about the next move might depend
arbitrarily on the history. This provides the strategies with lots of power. There
are two natural ways how to restrict the strategies: one can put computational
restrictions on how the next move is decided based on the history of the play, or
one can put a limit on how much information can the strategy remember about
the history. One can also combine both types of restrictions, which leads to an
interactive Turing machine based model, modelling a dynamic algorithm.

In this paper we mainly focus on restricting the amount of information the
strategy can remember. This restriction is usually studied in the form of how
large size a finite automaton (transducer) for the strategy has to be, and we
follow this convention. By the size of a finite automaton we mean the number
of states. The automatons we consider can make use of probabilistic transitions,
and we will not consider the description of these probabilities as part of the size
of the automaton. We do address these separately, however.

History of the Model. The idea of measuring complexity of strategies in
repeated games in terms of automata was proposed by Aumann [1]. The sur-
vey by Kalai [8] further discuss the idea in several settings of repeated games.
However in this line of research the finite automata is assumed to be fixed for
the duration of the game. This represents a considerable restriction as for many
games there is no good strategy that could be described in this setting. Hence
we consider strategies in which the automata can grow with time. To be more
precise we consider infinite automata and measure how many different states we
could have visited during the first T steps of the play. The logarithm of this
number corresponds to the amount of space one would need to keep track of the
current state of the automaton. We are interested in how this space grows with
the number of rounds of the play.

Comparison of our Model with a Turing Machine Based Model. To
impose also computational restrictions on the model, one can consider the usual
Turing machine with one-way input and output tapes that work in lock-step
and that record the play: whenever the machine writes its next action on the
output tape it advances the input head to see the corresponding move of the
other player. The space usage of the model is then the work space used by the
machine, growing with the number of actions processed. The Turing machine can
be randomized to allow for randomized strategies. The main differences between
this model and the automaton based model we focus on in this paper is that in
the case of infinite automata the strategy can be non-uniform and use arbitrary
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probabilities on its transitions whereas the Turing machine is uniform in the
sense that it has a finite program that is fixed for the duration play and in
particular, all transition probabilities are explicitly generated by the machine.

Bounds for Strategies with Deterministic Update. Trivially, any strategy
needs space at most O(T ), since such memory would suffice to remember the
whole history of the play. It is not hard to see (cf. [7, Chapter 3.2.1]) that if
a strategy is not restricted to a finite number of states, then the number of
reachable states by round T must be at least T , thus the space usage is at least
log T , by definition of space. However this provides only worst-case answer to our
question, since for randomized strategies it might happen that only negligible
fraction of the states can be reached with reasonable probability. Indeed, it might
be that with probability close to 1 the strategy reaches only a very limited
number of states. This is the setup we are interested in. As we will see in a
moment, the strategies we consider use substantially less space than O(log T )
with high probability (and O(log T ) space in the worst case).

Our Results. We provide two types of results. We show that there are ε-
optimal strategies for repeated games with absorbing states, and we also show
that there are limits on how small space such strategies could possibly use. Our
strategies are first constructed for the Big Match. Then, following Kohlberg [9]
these strategies are extended to general repeated games with absorbing states.

Upper Bounds on Space Usage. Our first results concern the Big Match. We
show that for all ε > 0, there exists an ε-optimal strategy that uses O(log log T )
space with probability 1−δ for any δ > 0. We note that the previous constructed
strategies of Blackwell and Ferguson [2] and Kohlberg [9] uses space Θ(log T ).

Theorem 1. For all ε > 0, there is an ε-optimal strategy σ1 for Player 1 in the
Big Match such that for any δ > 0 with probability at least 1 − δ, the strategy σ1

uses O(log log T ) space in round T .

Remark 2. We would like to stress the order of quantification above and their
impact on the big-O notation used above for conciseness. The strategy we build
depends on the choice of ε, but only for the actions made – the memory updates
are independent thereof, and thus likewise is the space usage. The dependence of
δ is also very benign. More precisely, there exists a constant C > 0 independent
of ε and δ, and an integer T0 depending on δ, but independent of ε, in such
a way that with probability at least 1 − δ, the strategy σ1 uses at most space
C log log T , for all T ≥ T0. The same remark holds elsewhere in our statements.

Our Results Translated to the Turing Based Model. After a slight mod-
ification our ε-optimal strategy can be implemented by a Turing machine so
that (1) it processes T actions in time O(T ); and (2) each time it processes an
action, all randomness used comes from at most 1 unbiased coin flip; and (3) for
all δ > 0, it uses O(log log T + log log ε−1) space with probability 1 − δ, before
round T . See Theorem 9.
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Arbitrary Small, but Growing Space for lim sup. For the case of lim sup
evaluation of the average rewards we can design strategies that uses even less
space, in fact arbitrarily small, but growing, space.

Theorem 3. For any non-decreasing unbounded function s, there exists an ε-
supremum-optimal strategy σ1 for Player 1 in the Big Match such that for each
δ > 0, with probability at least 1 − δ, strategy σ1 uses O(s(T )) space in round T .

We may for instance think of s as the inverse of the Ackermann function. For
s = o(log log T ) such a strategy cannot be implemented by a Turing machine as
it would require generating probabilities that cannot be achieved on any Turing
machine using only an unbiased coin as implied by our Theorem 10.

Our strategy that is ε-optimal is actually an instantiation of the ε-supremum-
optimal strategy by setting s(T ) to O(log log T ). We are unable to achieve ε-
optimality in less space, and this seems to be inherent to our techniques.

Generalization to Repeated Games with Absorbing States. We can
extend the above results to the case of general repeated games with absorb-
ing states.

Theorem 4. For all ε > 0 and any repeated game with absorbing states G, there
is an ε-optimal strategy σk for Player k in G such that, for each δ > 0, with
probability at least 1 − δ, the strategy σk uses O(log log T + log 1/ε · poly(|G|))
space in round T .

Theorem 5. For all ε > 0, any repeated game with absorbing states G, and
any non-decreasing unbounded function s, there exists an ε-supremum optimal
strategy σk for Player k in G such that for each δ > 0, with probability at least
1 − δ, the strategy σ1 uses O(s(T ) + log 1/ε · poly(|G|)) space in round T .

These strategies are obtained by reducing to a special simple case of repeated
games with absorbing states, generalized Big Match games, to which our Big
Match strategies can be generalized. This reduction can furthermore be done
effectively by a polynomial time algorithm.

Lower Bound on Space Usage. We provide two lower bounds on space
addressing different aspects of our strategies. One property of our strategies
is that the smaller the space used is, the smaller the probabilities of actions
employed are. The reciprocal of the smallest non-zero probability is the patience
of a strategy. This is a parameter of interest for strategies. We show that
the patience of our strategies is close to optimal. In particular, we show that
the first f(T ) memory states must use probabilities close to 1/T f(T ), where
s(T ) = log f(T ) is the space usage. We can almost match this bound by our
strategies.

Finite-Memory Deterministic-Update Markov Strategies are no
Good. Beside the lower bound on patience we investigate the possibility of
using a good strategy for Player 1 which would use only a constant number
of states but where the actions could also depend on the round number. This
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is what we call a finite-memory Markov strategy. We show that such a strategy
which also updates its memory state deterministically cannot exist. This answers
a question posed by Abraham Neyman [11].

Theorem 6. For all ε < 1
2 , there exists no finite-memory deterministic-update

ε-optimal Markov strategy for Player 1 in the Big Match.

Our Techniques. The previously given strategies for Player 1 in the Big Match
[2,9] use space Θ(log T ) as they maintain the count of the number of different
actions taken by the other player. There are two principal ways to decrease
the number of states for such randomized strategies: either to use approximate
counters [3,10], or to sub-sample the stream of actions of the other player and use
a good strategy on the sparse sample. In this paper we use the latter approach.

Overview Over our Strategy for the Big Match. Our strategies for Player 1
proceed by observing the actions of Player 2 and collecting statistics on the
payoff. Based on these statistics Player 1 adjusts his actions. The statistics is
collected at random sample points and Player 1 plays according to a “safe”
strategy on the points not sampled and plays according to a good (but space-
inefficient) strategy on the sample points. If the space of Player 1 is at least
log log T then Player 1 is able to collect sufficient statistics to accurately estimate
properties of the actions of Player 2. Namely, substantial dips in the average
reward given to Player 1 can be detected with high probability and Player 1 can
react accordingly. Thus that during infinite play, the average reward will not
be able drop for extended periods of time, and this will guarantee that lim inf
evaluation of the average rewards is close to the value of the game.

The Bottleneck in the lim inf Case. However, if our space is considerably less
than log log T we do not know how to accurately estimate these properties of the
actions of Player 2. Thus, long stretches of actions of Player 2 giving low average
rewards might go undetected as long as they are accompanied by stretches of
high average rewards. Thus one could design a strategy for Player 2 that has
low lim inf value of the average rewards, but has large lim sup value. Against
such a strategy, our space-efficient strategy for Player 1 is unlikely to stop. So
during infinite play, while our strategy guarantees that the lim sup evaluation of
the average rewards is close to the value of the game, it performs poorly under
lim inf evaluation. It is not clear whether this is an intrinsic property of all very
small space strategies for Player 1 or whether one could design a very small space
strategy achieving that the lim inf evaluation of the average rewards is close to
the value of the game. We leave this as an interesting open question.

Generalizing to Repeated Games with Absorbing States. Our exten-
sion to general repeated games with absorbing states follow closely the work of
Kohlberg [9]. He showed that all such games have a value and constructed ε-
optimal strategies for them, building on the work of Blackwell and Ferguson [2].
His construction is in two steps: The question of value and of ε-optimal strategies
are solved for a special case of repeated games with absorbing states, generalized
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Big Match games, that are sufficiently similar to the Big Match game that one
of the strategies given by Blackwell and Ferguson [2] can be extended to this
more general class of games. Having done this, Kohlberg shows how to reduce
general repeated games with absorbing states to generalized Big Match games.

In a similar way we can extend our small-space strategies for the Big Match
to the larger class of generalized Big Match games. These can then directly
be used for Kohlberg’s reduction. This reduction is however only given as an
existence statement. We show how the reduction can be made explicit and com-
puted by a polynomial time algorithm. This is done using linear programming
formulations and fundamental root bounds of univariate polynomials. This also
provides explicit bounds on the bitsize of the reduced generalized Big Match
games. We also give a simple polynomial time algorithm for approximating the
value of any repeated game with absorbing states based on bisection and linear
programming.

2 Definitions

A probability distribution over a finite set S, is a map d : S → [0, 1], such that∑
s∈S d(s) = 1. Let Δ(S) denote the set of all probability distributions over S.

Repeated Games with Absorbing States. The games we consider are special
cases of two player, zero-sum concurrent mean-payoff games in which all states
except at most one are absorbing, i.e. never left if entered (note also that an
absorbing state can be assumed to have just a single action for each player).
We restrict our definitions to this special case, introduced by Kohlberg [9] as
repeated games with absorbing states. Such a game G is given by sets of actions
A1 and A2 for each player together with maps π : A1 × A2 → R (the stage
payoffs) and ω : A1 × A2 → [0, 1] (the absorption probabilities).

The game G is played in rounds. In every round T = 1, 2, 3, . . . , each player
k ∈ {1, 2} independently picks an action aT

k ∈ Ak. Player 1 then receives the
stage payoff π(aT

1 , aT
2 ) from Player 2. Then, with probability ω(aT

1 , aT
2 ) the game

stops and all payoffs of future rounds are fixed to π(aT
1 , aT

2 ) (think of this as the
game proceeding to an absorbing state where the stage payoff for future rounds
is π(aT

1 , aT
2 )). Otherwise, the game just proceeds to the next round.

The sequence (a1
1, a

1
2), (a

2
1, a

2
2), (a

3
1, a

3
2), . . . of actions taken by the two play-

ers is called a play. A finite play occurs when the game stops after the last
pair of actions. Otherwise the play is infinite. To a given play P we asso-
ciate an infinite sequence of rewards (rT )T≥1 received by Player 1. If P =
(a1

1, a
1
2), (a

2
1, a

2
2), . . . , (a

�
1, a

�
2) is a finite play of length � we let rT = π(aT

1 , aT
2 )

for 1 ≤ T ≤ �, and rT = π(a�
1, a

�
2) for T > �. In this case we say that the

game stops with outcome r�. Otherwise, if P = (a1
1, a

1
2), (a

2
1, a

2
2), . . . is infinite

we simply let rT = π(aT
1 , aT

2 ) for all T ≥ 1.
To evaluate the sequence of the rewards we consider both the lim inf and

lim sup value of the average reward 1
T

∑T
t=1 rt. We thus define the limit-

infimum payoff to Player 1 of the play as uinf(P ) = lim infn→∞ 1
n

∑n
T=1 rT ,

and similarly we define the limit-supremum payoff to Player 1 of the play as
usup(P ) = lim supn→∞

1
n

∑n
T=1 rT .
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Strategies. A strategy for Player k is a function σk : (A1 × A2)∗ → Δ(Ak)
describing the probability distribution of the next chosen action after each finite
play. We say that Player k follows a strategy σk if for every finite play P of
length T − 1, at round T Player k picks the next action according to σk(P ). We
say that a strategy σk is pure if for every finite play P the distribution σk(P )
assigns probability 1 to one of the actions of Ak. Also, we say that a strategy
σk is a Markov strategy if for every T and every play P of length T − 1, the
distribution σk(P ) does not depend on the particular actions during the first
T −1 rounds but is just a function of T . Thus Markov strategy σk can be viewed
as a map Z+ → Δ(Ak) or simply a sequence of distributions over Ak.

A strategy Profile σ is a pair of strategies (σ1, σ2), one for each player. A
strategy profile σ defines a probability measure on plays in the natural way.
We define the expected limit-infimum payoff to Player 1 of the strategy profile
σ = (σ1, σ2) as uinf(σ) = uinf(σ1, σ2) = EP∼(σ1,σ2)[uinf(P )] and similarly the
expected limit-supremum payoff to Player 1 of the strategy profile σ as usup(σ) =
usup(σ1, σ2) = EP∼(σ1,σ2)[usup(P )].

Values and Near-Optimal Strategies. We define the lower values of G by
vinf = supσ1

infσ2 uinf(σ1, σ2) and vsup = supσ1
infσ2 usup(σ1, σ2), and the upper

values of G by vinf = infσ2 supσ1
uinf(σ1, σ2) and vsup = infσ2 supσ1

usup(σ1, σ2).
Clearly vinf ≤ vsup ≤ vsup and vinf ≤ vinf ≤ vsup. Kohlberg showed that all
these values coincide and we call this common number v(G) the value v of G.

Theorem 7 (Kohlberg, Theorem 2.1). vinf = vsup.

This implies that for the purpose of defining the value of G the choice of the
limit of the average rewards does not matter. But a given strategy σ1 for Player 1
could be close to guaranteeing the value with respect to lim sup evaluation of
the average rewards, while being far from doing so with respect to the lim inf
evaluation. We shall hence distinguish between these different guarantees.

Let ε > 0 and let σ1 be a strategy for Player 1. We say that σ1 is ε-supremum-
optimal, if v(G) − ε ≤ infσ2 usup(σ1, σ2) and that σ1 is ε-optimal, if v(G) − ε ≤
infσ2 uinf(σ1, σ2) .

Observation 1. Clearly it is sufficient to take the infimum over just pure strate-
gies σ2 for Player 2, and hence when showing that a particular strategy σ1 is ε-
supremum-optimal or ε-optimal we may restrict our attention to pure strategies
σ2 for Player 2.

One can naturally make similar definitions for Player 2, where the roles of
lim inf and lim sup would then be interchanged, but we shall restrict ourselves
here to the perspective of Player 1.

If the strategy σ1 is 0-supremum-optimal (0-optimal) we simply say that σ1

is supremum-optimal (optimal). The Big Match gives an example where Player 1
does not have a supremum-optimal strategy [2].

Memory and Memory-Based Strategies. A memory configuration or state
is simply a natural number. We will often think of memory configurations as
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representing discrete objects such as tuples of integers. In such a case we will
always have a specific encoding of these objects in mind.

Let M ⊆ N be a set of memory states. A memory-based strategy σ1 for
Player 1 consists of a starting state ms ∈ M and two maps, the action map
σa
1 : M → Δ(A1) and the update map σu

1 : A1 × A2 × M → Δ(M). We say
that Player 1 follows the memory-based strategy σ1 if in every round T when
the game did not stop yet, he picks his next move aT

1 at random according to
σa
1 (mT ), where the sequence m1,m2, . . . is given by letting m1 = ms and for

T = 1, 2, 3, . . . choosing mT+1 at random according to σu
1 (aT

1 , aT
2 ,mT ), where

aT
2 is the action chosen by Player 2 at round T . The strategies we construct in

this paper have the property that their action maps do not depend on the action
aT
1 of Player 1. In these cases we simplify notation and write just σu

1 (aT
2 ,mT ).

Since each finite play can be encoded by a binary string, and thus a natural
number, we can view any strategy σk for Player k as a memory-based strategy.
One can find similarly defined types of strategies in the literature, but typically,
the function corresponding to the update function is deterministic.

Memory Sequences and Space Usage of Strategies. Let σ1 be a memory-
based strategy for Player 1 on memory states M and σ2 be a strategy for
Player 2. Assume that Player 1 follows σ1 and Player 2 follows σ2. The strategy
profile (σ1, σ2) defines a probability measure on (finite and infinite) sequences
over M in the natural way. For a (finite) sequence M ∈ M∗, let ω1(M) be the
probability that Player 1 follows this sequence of memory states during the first
|M | rounds of the game, while the game does not stop before round |M |.

Fix a non-decreasing function f : N → N and a probability p. The strategy
σ1 uses log f(T ) space with probability at least p against σ2, if for all T , the
probability Pr(σ1,σ2)[∀i ≤ T : Mi ≤ f(T )] ≥ p (i.e., with probability at least p,
the current memory has stayed below that of f(T ) before round T , for all T ).
If σ1 uses log f(T ) space with probability at least p against every strategy σ′

2,
then we say that σ1 uses log f(T ) space with probability at least p.

The Big Match. The Big Match, introduced by Gillette [4] is a simply defined
repeated game with absorbing states, where each player has only two actions.
In each round Player 1 has the choice to stop the game (action R), or continue
with the next round (action L). Player 2 has the choice to declare the round safe
(action L) or unsafe (action R). If play continues in a round declared safe, or if
play stops in a round declared unsafe, Player 2 must give Player 1 a reward 1.
In the other two cases no reward is given.

L R

L 1 0

R 0* 1*

Fig. 1. The Big
Match in matrix
form.

Formally, action sets are A1 = A2 = {L,R}. The rewards
are π(a1, a2) = 1 if a1 = a2 and π(a1, a2) = 0 if a1 �= a2. The
stopping probabilities are ω(R, a2) = 1 and ω(L, a2) = 0.

We can illustrate this game succinctly in a matrix form
as shown in Fig. 1, where rows are indexed by the actions
of Player 1, columns are indexed by the actions of Player 2,
entries give the rewards, and a star on the reward means that
the game stops with probability 1.
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3 Small Space ε-supremum-optimal Strategies
in the Big Match

For any non-decreasing and unbounded function f : Z+ → Z+, we will now give
an ε-supremum optimal strategy σ∗

1 for Player 1 in the Big Match that for all
δ > 0 with probability 1−δ uses O(log f(T )) space. Let f be a strictly increasing
unbounded function from Z+ to R+, such that f(x) ≤ f(x) for all x ∈ Z+, and
let F be the inverse of f . For simplicity, and without loss of generality, we assume
that F (1) = 1 and F (T + 1) ≥ 2 · F (T ).

Intuitive Description of the Strategy and Proof. The main idea for build-
ing the strategy is to partition the rounds of the game into epochs, such that
epoch i has expected length F (i). The i’th epoch is further split into i sub-
epochs. In each sub-epoch j of the i-th epoch we sample i2 rounds uniformly at
random. In every round not sampled we simply stay in the same memory state
and play L with probability 1. We view the i2 samples as a stream of actions
chosen by Player 2. We then follow a particular ε2-optimal base strategy σi,ε

1 for
the Big Match on the samples of sub-epoch j. This strategy σi,ε

1 is a suitably
modified version of a strategy by Blackwell and Ferguson [2] and Kohlberg [9].

More precisely, if σi,ε
1 stops in its k-th round when run on the samples of

sub-epoch j, the strategy σ∗
1 stops on the k-th sample in sub-epoch j. This will

ensure that if σ∗
1 stops with probability at least ε, the outcome is at least 1

2 − ε.
Also, for any 0 < δ < 1

2 and for sufficiently large i, depending on δ, if the
samples have density of L at most 1

2 − δ then σi,ε
1 stops on the samples with a

positive probability depending only on ε, namely ε8. For f(T ) = Θ(log T ), the
division into sub-epochs ensures that if lim infT→∞ dens(σT ) < 1

2 then infinitely
many sub-epochs have density of L smaller than 1/2, and thus the play stops
with probability 1 in one of such epochs. This is not necessarily true for f(T )
smaller than log T .

The Base Strategy. The important inner part of our strategy is a ε2-optimal
strategy σi,ε

1 parametrized by a non-negative integer i. These strategies are simi-
lar to ε-optimal strategies given by Blackwell and Ferguson [2] and Kohlberg [9].

The strategy σi,ε
1 uses deterministic updates of memory, and uses integers as

memory states (we think of the memory as an integer counter). The memory
update and action function is given by

σi,u
1 (a, �) =

{
� + 1 if a = L
� − 1 if a = R

σi,a
1 (�)(R) =

{
ε8(1 − ε)2(i+�) if i + � > 0
ε8 if i + � ≤ 0

The Complete Strategy. We are now ready to define σ∗
1 . The memory states

of this strategy are 5-tuples (i, j, k, �, b) ∈ Z+ × Z+ × N × Z × {0, 1}. Here i
denotes the current epoch and j denotes the current sub-epoch of epoch i. The
number of samples already made in the current sub-epoch is k. The memory
state of the inner strategy is stored as �. Finally b is 1 if and only if the strategy
will sample to the inner strategy in the next step.
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The memory update function σ∗,u
1 is as follows. Let (i, j, k, �, b) be the current

memory state and let a be the action of Player 2 in the current step. We then
describe the distribution of the next memory state (i′, j′, k′, �′, b′).

– The current step is not sampled if b = 0. In that case we keep i′ = i, j′ = j,
k′ = k, and �′ = �.

– The current epoch is ending if j = i, k = i2 − 1, and b = 1. In that case
i′ = i + 1, j′ = 1, k′ = 0, and �′ = 0.

– A sub-epoch is ending within the current epoch if j < i, k = i2−1, and b = 1.
In that case i′ = i, j′ = j + 1, k′ = 0, and �′ = 0.

– We sample within a sub-epoch if k < i2 − 1 and b = 1. In that case i′ = i,
j′ = j, k′ = k + 1, and �′ = σi,u

1 (a, �).

Finally, in every case, we make a probabilistic choice whether to sample in the
next step by letting b′ = 1 with probability (i′)3

F (i′) .
The action function σ∗,a

1 is given by

σ∗,a
1 ((i, j, k, �, b))(a) =

⎧
⎪⎨

⎪⎩

σi,ε
1 (�)(a) if b = 1

1 if b = 0 and a = L
0 otherwise

.

In other words, if the current step is sampled, Player 1 follows the current
base strategy, and otherwise always plays L. The starting memory state is ms =
(1, 1, 1, 0, 0). The states that can be reached in sub-epoch j of epoch i are of the
form (i, j, k, �, b) where 0 ≤ k < i2 and −i2 < � < i2. Thus at most 4i4 states
can be reached. The states are mapped to the natural numbers as follows: The
memory (1, 1, 1, 0, 0) is mapped to 0 and for each epoch i, all states in epoch i are
mapped to the numbers (in an arbitrary order) following the numbers mapped
to by epoch i − 1. We state our main theorem.

Theorem 8. The strategy σ∗
1 is ε-supremum-optimal, and for all δ > 0, with

probability at least 1 − δ it uses space O(log f(T )).

By instantiating the strategy σ∗
1 for f(T ) = 	log T 
 we obtain an ε-optimal

strategy σ∗
1 for Player 1 in the Big Match that for all δ > 0 with probability

1 − δ uses O(log log T ) space. We can now conclude with the other main result.

Theorem 9. For any natural number k, there is a strategy which is 2−k-optimal,
has patience 2 and can be implemented on a Turing machine, using at most 1
random bit and amortized constant time per round and with probability at least
1 − δ does it use tape space O(log log(T ) + log k) up to round T .

4 Lower Bound on Patience

When considering a strategy of a player one may want to look at how small or
large the probabilities occurring in that strategy are. The parameter of interest
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is the patience of the strategy which is the reciprocal of the smallest non-zero
probability occurring in the strategy. Patience is closely related to the expected
length of finite plays as small probability events will not occur if the play is too
short so they will have little influence on the overall outcome [5,9]. Care has
to be taken how to define patience for strategies with infinitely many possible
events. Note that for our space efficient strategies, the patience of the states in
which we are with high probability during the first T steps is approximately T ,
for rounds close to the end of an epoch. This patience can be further improved
to roughly T 1/f(T ). In this section we show that this is essentially necessary.

We use the following definitions to deal with the fact that our strategies
use infinitely many transitions so their overall patience is infinite. For a memory
based strategy σ1 of Player 1 in a repeated zero-sum game with absorbing states,
the patience of a set of memory states M is defined as:

pat(M) = max
{

1
σa
1 (m)(a1)

,
1

σu
1 (a1, a2,m)(m′)

, m,m′ ∈ M,a1 ∈ A1, a2 ∈ A2

}
.

Theorem 10. Let δ, ε > 0 be reals and f : N → N be an unbounded non-
decreasing function such that f(T ) ≤ 1

4 log1/ε T for all large enough T . If a
strategy σ1 of Player 1 in the Big Match uses space log f(T ) before time T with
probability at least 1 − δ, and the patience of the set of lexicographically first
f(T ) memory states is at most T 1/(2f(T )) for all T large enough, then there is a
strategy σ2 of Player 2 such that usup(σ1, σ2) ≤ δ + 2ε.
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“Rumor is not always wrong”
De vita et moribus Iulii Agricolae
— Publius Cornelius TACITUS (56 - 117)

Abstract. How should we evaluate a rumor? We address this question
in a setting where multiple agents seek an estimate of the probability, b,
of some future binary event. A common uniform prior on b is assumed.
A rumor about b meanders through the network, evolving over time. The
rumor evolves, not because of ill will or noise, but because agents incor-
porate private signals about b before passing on the (modified) rumor.
The loss to an agent is the (realized) square error of her opinion.

Our setting introduces strategic behavior based on evidence regarding
an exogenous event to current models of rumor/influence propagation in
social networks.

We study a simple Exponential Moving Average (EMA) for combining
experience evidence and trusted advice (rumor), quantifying its result-
ing performance and comparing it to the optimal achievable using Bayes
posterior having access to the agents private signals.

We study the quality of pT , the prediction of the last agent along a
chain of T rumor-mongering agents. The prediction pT can be viewed
as an aggregate estimator of b that depends on the private signals of T
agents. We show that
– When agents know their position in the rumor-mongering sequence,

the expected mean square error of the aggregate estimator is Θ( 1
T
).

Moreover, with probability 1−δ, the aggregate estimator’s deviation

from b is Θ

(
√

ln(1/δ)
T

)

.

– If the position information is not available, and agents act strate-
gically, the aggregate estimator has a mean square error of O( 1√

T
).

Furthermore, with probability 1 − δ, the aggregate estimator’s devi-

ation from b is ˜O
(√

ln(1/δ)√
T

)

.

1 Introduction

According to McKinsey, word-of-mouth is the primary factor behind up to 50 %
of purchasing decisions in developing markets, with ’experimental’ (that is, based
on personal experience) advice being most common and powerful.
c© Springer-Verlag Berlin Heidelberg 2016
M. Gairing and R. Savani (Eds.): SAGT 2016, LNCS 9928, pp. 77–89, 2016.
DOI: 10.1007/978-3-662-53354-3 7
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The question we address herein is how does one balance word of mouth
“rumors” with other, private, sources of information. At issue is the providence
of the rumor, what is the impact of not knowing the history of a rumor?

Consider predictions on the probability, b, that some newly purchased prod-
uct will malfunction out of the box. Some acquaintance, Bob, tells Alice his own
opinion on the probability b. Moreover, Alice may experience the product her-
self, forming a private signal that is one with probability b and zero otherwise.
Alice now forms her own opinion on b by merging Bob’s opinion with her private
signal. Subsequently, she may reveal her opinion to other acquaintance[s], and
so on. The loss (of face) for giving an erroneous opinion is the realized mean
squared error.

The main issue in this paper is that it is important for Alice to know just
how much weight to give to Bob’s opinion, versus how much to trust her own
individual signal. Clearly, if Alice believes that Bob’s opinion is well founded
then Alice should give little weight to her own individual signal. Contra-wise, if
Alice believes that Bob’s opinion has little statistical evidence behind it (e.g.,
is only based upon Bob’s private signal) then Alice should give her own private
signal much greater weight. Critically, Alice is uncertain regarding how many
agents have influenced Bob’s opinion.

Our solution concept is that of strategic individually optimal agents, in a
symmetric Nash Equilibrium, where agents seek to minimize the mean squared
error of their prediction. We give a variety of results in this context. In particular,
we compare how well the predictions produced by individually optimal agents
compare to the predictions that would have been produced if more information
were available to the agents. That is, how much better could Alice predict if the
actual signals of those agents along the rumor-mongering sequence, up to and
including Bob, were revealed? How much better would the prediction be if Alice
knew the length of the rumor-mongering chain of opinions that culminated with
Bob’s opinion? In fact, it turns out that knowing the actual signals or knowing
the length of the preceding chain gives the same precision (and is optimal).
However, not knowing the length of the preceding chain gives weaker estimates,
where the error made by Alice grows from 1

T to 1√
T

where T is the true length
of the whole chain. We also consider confidence/precision measures, see Fig. 1
which explains how not knowing the providence of the rumor impacts the quality
of the learning process.

1.1 Our Model

We study the following scenario. Some future event is to occur with (unknown)
probability, and the individual agents share a common prior regarding this prob-
ability. The agents get independent binary signals correlated with the future
event (specifically, they have the same occurrence probability as the event). In
addition to their private signal, each agent observes the prediction of the preced-
ing agent. Agents arrive in a random order and predict exactly once (unaware
of their position in the sequence). The agents use a simple strategy that com-
bines their private signal and the prediction of the previous agent. (The first
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agent observes a “dummy” prediction.) Finally, the loss of the agents, deter-
mined upon the realization of the event, is a quadratic loss. The agents either
try to minimize the loss selfishly or cooperatively. One of the main goals of the
work is to understand the difference in the outcomes between the selfish and the
cooperative behavior of the agents.

To be able to analyze the dynamics in our setting we need to designate the
class of simple strategies that the agents utilize. We focus on linear combination
of the private signal and the observed prediction of the previous agent, namely,
exponential moving averages. This has the effect that more recent signals (and,
in particular, the agent’s private signal) are given more weight than older signals
whose effect decays with time. Also, no access to the past updates’ history (or
its length) is needed to implement the exponentially moving average update,
making it an appropriate strategy class for this task.

By the inherent symmetry of our setting, all the agents use the same predic-
tion update rule strategy. The prediction update rule may depend on the total
number of agents T , and has a decay parameter γ which governs the exponential
weighting. We consider two cases. First, the cooperative socially optimal update,
aiming at minimal expected sum of losses. This benchmark is important to see
the loss due to the uncertainty regarding the agents position in the sequence,
on the one hand, and the loss due to strategic behavior, on the other hand. Sec-
ond, the individually optimal update, where each selfish agent predicts in order
to minimize its own loss, ignoring the effect it will have on future agents and
their loss. When doing the comparison, we consider the last prediction made as
an estimator for the unknown bias, and our goal is to study the quadratic loss
between the last prediction and the true unknown bias.

1.2 Our Results

Our main results are summarized in Fig. 1. We considered three measures of qual-
ity for a predictor. The worst case mean square error for any choice of b ∈ [0, 1]
(Column 2), the expected mean square error where b is uniformly distributed
in [0, 1] before the signals are generated (Column 3), and the guaranteed accu-
racy for a given level of confidence (Column 4). The rows of Fig. 1 are for Bayes
updates (the equivalent to agents knowing the complete history, namely, the
count and values of previous updates performed) and values of γ for exponential
moving averages in two settings: Selfish agents (where γ = 1√

2T
is a symmetric

equilibrium), and for cooperative agents γ = lnT
2T minimizes the mean square

error. We also give the general form of the estimators performance metrics for
any value of γ (last row).

Now, comparing Row 1 (Bayes estimator) of Fig. 1 with Row 3 (optimal
choice of γ for cooperative agents) quantifies the agents loss due to history
independence and use of exponentially moving averaging. Their loss cannot be
lower than that obtained by the Bayes estimator, and they are close to this upper
bound. I.e., the Bayes estimator has a loss of about O( 1

T ) and the exponential
weight moving average has a loss of O( lnT

T ).
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Update

process

Worst case Mean

Square Error:

maxb MSE(b, PT )

Expected Mean

Square Error:

EBMSE(b, PT )

B uniform in [0, 1]

Guaranteed accuracy

for confidence 1 − δ:

ε(δ) = argminε maxb

Prob(|PT − b| < ε) ≥ 1 − δ

Bayes

(Known History)
1

4(T+2)
1

6(T+2)
1

T+2
+

√
ln 1

δ
2T

Individually Optimal

γ = 1√
2T

1

4
√
2T

+ e−√
2T 1

12
√
2T−6

+ O
(
e−√

2T
)

O
(√

log(T ) log(1/δ)√
T

)

Socially Optimal

γ = ln T
2T

ln T
8T

+ 1
T

ln T
24T

− 1
12T

+ O 1
T2 O

(√
log(T ) log(1/δ)

T

)

Arbitrary γ γ
4
+ (1 − γ)2T γ

6(2−γ)
+ (1 − γ)2T (2−3γ)

12(2−γ)

√
γ
2
ln 1

δ
+ (1 − γ)T

Fig. 1. Performance metrics for Exponential Moving Average (EMA) versus Bayes
optimal benchmark for estimating (PT ) the unknown bias b of a coin. T is the total
number of updates and γ is the averaging constant of EMA. The mean squared error
(MSE) in the second column is over realizations of the signals V1, . . . , VT . The expecta-
tion in the third column is assuming a uniform prior of b ∈ [0, 1] and initial prediction
P0 = 1

2
.

Also, comparing Row 2 (Individually Optimal) of Fig. 1 with Row 1 (Bayes
estimator) shows that the mean square error increases by a Θ(

√
T ) factor and

that the error probability for a given confidence increases by a Θ(T− 1
4 ) factor.

Note that the mean square error still vanishes at a polynomial rate (in T ),
and that, for any constant accuracy, the error probability remains exponentially
small.

1.3 Related Models

Our setting can be cast in the model of partial information presented by [2].1

The issues studied in [2,8,9] are how communication leads agents to revise their
posteriors until they converge, given that the agents have common priors. Other
work discussing aspects of information aggregation among agents having private
information differ by the nature of the information to get aggregated.

The study of information aggregation by word-of-mouth information flow has
been previously studied in various settings, e.g., [1,3,4,7] and many others. The
settings considered are quite different than ours, and, notably, cascading effects
are observed in several of these models. Cascades (see, e.g., [6]) do not develop
in our setting because opinions are continuous and not discrete, one can always
modify one opinion sufficiently slightly.

1 In a somewhat non-standard use of the Aumann’s model, because there are aspects
of the state of the world that are not interesting in and of themselves, whereas in
our setting agents are only interested in the underlying probability of the event
occurring.
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There is a strong connection between minimizing the expected mean error
and the use of the quadratic scoring rule as the basis for a market making
mechanism in information markets. The convergence of such markets to the true
answer has been studied [10], however — this assumes that the history of trades
is public knowledge, in contrast we assume that the agents are unaware of the
history and even unaware of their position.

2 Model and Preliminaries

A social learning process is established to learn the unknown probability of some
future event F ∈ {0, 1}. The unknown event F is governed by a Bernoulli random
variable with a bias b and there is a uniform prior over it, i.e., b ∼ B where B
is uniformly distributed in [0, 1]. The social learning process has T agents, each
agent t ∈ [1, T ] receives a private signal vt ∼ Vt, where Vt is a Bernoulli random
variable with bias b (the same bias as F ) and the r.v. Vt are i.i.d. Each agent
t outputs an estimate pt, which is based on its realized private signal vt and
the estimate of the preceding agent pt−1. (Agent 1 observes p0 = 1

2 .) Once
the event is realized, each agent suffers a quadratic loss, i.e., agent t has a loss
�t(F, pt) = (F − pt)2.

We denote a series of T i.i.d. such random variables by V [1,T ] = (V1, . . . , VT )
and their respective realizations by v [1,T ] = (v1, . . . , vT ). We denote by Pt(V )
the random variable giving the distribution of the prediction of agent t, i.e.,
pt∼Pt. Pt depends on V [1,t] and how agents 1, . . . , t−1 compute their prediction.
Now, each of the T agents knows T but not its own position t ∈ {1, . . . , T}.

We view the final posted estimate pT , an aggregation of the T agent’s private
signals, as an estimator for b, the unknown probability of F occurring.

2.1 Estimation of the Unknown Bias

Given v [1,T ], an estimator θ(·) : {0, 1}T → [0, 1] for the unknown bias b is a
function that maps v [1,T ] to some estimated bias in [0, 1]. Two such estimators
are presented next. The Bayes estimator θ̂(·) for b is

θ̂(v [1,T ]) =
∑T

t=1 vt + 1
T + 2

. (1)

Equivalently, the Bayes estimator can be computed iteratively as follows for
t = 1, . . . , T .2

θ̂(v [1,t]) =
(

1 − 1
t + 2

)
θ̂(v [t−1]) +

1
t + 2

vt. (2)

The Exponential Moving Average (EMA) estimator θγ(·) is parame-
terized by a predefined constant γ:

θγ(v [1,T ]) = (1 − γ)T θγ(∅) +
T∑

t=1

(1 − γ)T−tγvt, (3)

2 Note that ̂θ(∅) = 1
2
which is consistent with B ∼ U [0, 1].
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where θγ(∅) = 1
2 . The interpretation of γ as the importance associated to recent

signals is evident by the EMA’s equivalent iterative form

θγ(v [1,t]) = (1 − γ)θγ(v [1,t−1]) + γvt. (4)

Note the resemblance of θγ(·) to the iterative form of the Bayes estimator θ̂(·).
The difference being that 1

t+2 in (2) is replaced with a fixed γ in (4).

Estimator Performance Metrics. A common metric for assessing the per-
formance of an estimator θ̂(·) : X → Θ is the Mean Squared Error (MSE):

MSE(θ, θ̂) � Eθ̂[(θ − θ̂)2]. (5)

Note that θ above is fixed, and the expectation is over realizations of the random
variable θ̂ that depends on θ through the observations X. The Bayes Risk of an
estimator is its expected risk (over a prior distribution of θ).

We therefore consider in our analysis the following three properties of an
estimator θ̂(·)
– maxθ MSE(θ, θ̂): Quantifying the worst case MSE, over all possible values of

θ.
– maxθ Pr(|θ − θ̂| > ε): The worst case confidence δ(ε) of a desired ε-accuracy.
– E[MSE(θ, θ̂)]: This is the Bayes Risk, the expected MSE over a prior proba-

bility distribution for θ.

Bayes Optimal Estimation. The Bayes Optimal estimator given observation
X is

θ̂Bayes(X) = E[θ|X], (6)

that is, the expected posterior, minimizes the Bayes Risk. 3 Finally, considering
our unknown-bias estimation setting and assuming a uniform prior b ∼ U [0, 1],
the Bayes Estimator (Eq. (1)) satisfies θ̂(v [1,T ]) = E[b|v [1,T ]] and is therefore
Bayes Optimal, justifying its use as our key benchmark in assessing the perfor-
mance of EMA estimators θγ(·) for γ ∈ [0, 1].

2.2 History-Independent Distributed Learning

Recall that each of the T agents knows T but not its position t ∈ {1, . . . , T}.
If agents knew their position in the sequence, and all agents were rational, then
they could update the estimate for b using the iterative Bayes update of Eq. (2),
since this would minimize the quadratic loss. We consider the alternative setting
where agents are history independent, and that the order of updates is a random
permutation of the agents. In this case, agents cannot update the estimate pt for b

3 This actually holds (see [5]) also for a more general definition of Bayes Risk, where
a Bregman loss is used to generalize the MSE (5).
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using the Bayes estimator — the tth agent does not know how many updates have
been done, i.e., t − 1, and therefore can’t use Eq. (2). For reasons of symmetry,
in this history independent setting, the update strategies of all agents should be
identical. It is thus natural to consider exponential moving average updates (4).

In what follows, we consider the limited strategy space using EMA with
γ ∈ [0, 1] available to the agents in the history-independent setting, and ana-
lyze the individually optimal strategy (in equilibrium) and the socially optimal
strategy. We then compare the performance of the corresponding estimator of
each strategy to that of the Bayes optimal estimator.

3 Strategies: Socially Optimal, Individually Optimal

Socially Optimal Strategy. The socially optimal strategy is the value γ∗
max ∈

[0, 1] for which the score of the resulting computation is maximal:

γ∗
max � arg min

γ∈[0,1]
E[(F − PT )2].

Note that the expectation is over the realization of F and PT = θγ(V [1,T ]).

Theorem 1. For the EMA estimator PT = θγ(V[1,T ]),

γ∗
max =

ln T

2T
+ φ, where |φ| ≤ 2

T
.

Proof (Sketch). We first note that for the quadratic loss

arg min
γ∈[0,1]

E[(F − PT )2] = arg max
γ∈[0,1]

E[2bPT − P 2
T ].

Next we derive the following closed form for the above optimization target:

E[2bPT − P 2
T ] =

4 − 3γ

6(2 − γ)
− (1 − γ)2T

(
P 2
0 − P0 +

4 − 3γ

6(2 − γ)

)
,

and show that the unique optimum is as required. �	
It is worthwhile to compare the resulting γ∗

max, minimizing agent loss using the
EMA estimator with that of the Bayesian estimator. In the Bayesian estimator
the agent is aware of the history and knows his location in the permutation,
and when his location is t he updates using γBayes = 1

t+2 . If we average over all
the locations we have that the average update magnitude is 1

T

∑T
t=1

1
t+2 ≈ lnT

T .
Note that this is only a factor of 2 larger than the resulting update minimizing
total agents’ loss using EMA.
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Individually Optimal Strategy. We now consider the social learning process
with agents using the EMA estimator, θγ(V ), where agents are strategic. I.e., we
seek a value of γ such that, for all t, given that agents 1, . . . , t− 1 compute their
prediction using EMA with parameter γ, then it is a best response for agent t
to do likewise. Such a choice of γ gives a symmetric equilibrium.

To find such a value of γ, let λ(γ) be the best response of an agent, assuming
that all other agents use update factor γ. (For brevity we will use λ, when clear
from the context.) An agent arriving at time t will update the outstanding Pt−1

as follows
Pt(γ, λ) = (1 − λ)Pt−1(γ) + λVt,

where Pt−1(γ) = Pt−1(γ, γ) assumes that the first t − 1 agents update using θγ .
Since the agent does not know her location, her expected loss is,

�(γ, λ) =
1
T

T∑

t=1

EB,V [(F − Pt(γ, λ))2].

Therefore, an agent minimizes her expected loss, given that all other agents
update using γ, by choosing the best response λ∗(γ) = arg minλ �(γ, λ) and in
equilibrium λ∗(γ) = γ.

An update parameter that achieves equilibrium is denoted γ∗
eq, i.e., λ∗(γ∗

eq) =
γ∗

eq. Note that we are assuming that the total number of agents T is known by
the agents. Hence the utilities and updates defined above may all depend on T
(e.g., γ∗

eq(T )) which is omitted from the notations for clarity when not needed
explicitly. In Sect. 5.1 we discuss the extension to the case where the agents have
only a prior distribution over the number of agents.

Theorem 2. For the EMA estimator PT = θγ(V[1,T ]), then,

γ∗
eq =

√
1

2T
− β, and β ∈ [0,

6
T

],

is the unique symmetric equilibrium.

Proof (Sketch). We first derive a closed form for the best response

λ∗(γ) =
γ2T + (1 − γ)2(1 − (1 − γ)2T )a(γ)
2γT + (1 − γ)2(1 − (1 − γ)2T )a(γ)

where a(γ) = 1
2 (1 − 2γ

2−γ ), and then prove that γ∗
eq as stated in the theorem is

the unique solution to λ∗(γ) = γ. �	

4 Estimators Performance

In this section we study the basic performance measures for the Bayes estimator
and EMA as a function of T , the total number of agents. We first compute the
worse case MSE and high probability deviation for the Bayes estimator and the
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EMA estimator (for a general γ). We then compute the performance for the
specific γ value of the symmetric equilibrium and compare to the performance
of the optimal (Bayes) estimator. The main goal is to show that the loss due
to the restriction of the agents to use EMA is rather minimal (assuming a non-
strategic behavior of the agents) and to quantify the effect of strategic behavior
on the resulting estimator’s performance.

We will need the following lemma, a bound for the worse case probability
(over possible values of b, the expected value of each of the signals {Vt}T

t=1) of
ε-deviation of an estimator PT = θ̂(V ) from b.

Lemma 1. For any estimator PT = θ̂(V) and any b ∈ [0, 1], define

β � max
b

|E(PT ) − b| , then

max
b

Pr(|PT − b| > ε) ≤ max
b

Pr(|PT − E(PT )| > ε − β).

We start with the analysis of the Bayes estimator.

Theorem 3. For the Bayes estimator PT = θ̂(V),
(1) ∀b ∈ [0, 1],MSE(b, PT ) ≤ 1

4(T+2) ,

(2) ∀b ∈ [0, 1],,With probability at least 1 − δ we have |PT − b| ≤ 1
T+2 +

√
ln 1

δ

2T ,
or equivalently, Pr(|PT − b| > ε) ≤ exp(−2(ε − 1

T+2 )2T ), and
(3) Eb∼B [MSE(b, PT )] = 1

6(T+2) .

Proof (Sketch). The first claim (1) follows by a direct computation. For the high
probability bound (2), we first use McDiarmid’s inequality as follows. Recall that

PT = θ̂(V ) =
1

T + 2
+

T∑

t=1

1
T + 2

Vt .

This implies that the influence of Vt on PT is abounded by ct = 1
T+2 . Therefore,

∑
t c2t = T

(T+2)2 and we get:

Pr(|PT − E(PT )| > ε) ≤ e
−2ε2∑

t c2t = e
−2ε2(T+2)2

T ≤ e−2ε2T

Plugging into Lemma 1, we get

max
b

Pr(|PT − b| > ε) ≤ max
b

Pr(|PT − E(PT )| > ε − 1
T + 2

) ≤ e−2(ε− 1
T+2 )

2T

As required. The equivalent formulation is achieved by setting δ = e−2(ε− 1
T+2 )

2T

and solving for ε. For the third claim (3), we first show by a direct computation
that for the Bayes estimator E[2bPT − P 2

T ] = 1
3 − 1

6(T+2) , where the averaging
is over the realization of PT and also over b ∼ U [0, 1]. �	



86 A. Fiat et al.

Similar techniques are used to establish bounds for the performance of the Expo-
nential Moving Average (EMA) as a function of the parameter γ and the number
of agents T .

Theorem 4. For the EMA estimator PT = θγ(V),

(1) ∀b ∈ [0, 1], MSE(b, PT ) ≤ γ
4 + (1 − γ)2T ,

(2) ∀b ∈ [0, 1], with probability at least 1 − δ, we have |PT − b| ≤ (1 − γ)T +√
γ
2 ln 1

δ , or equivalently, Pr(|PT − b| > ε) ≤ exp(−2 (ε−(1−γ)T )2

γ ), and

(3) Eb∼B [MSE(b, PT )] = γ
6(2−γ) + (1 − γ)2T (2−3γ)

12(2−γ) .

Now, based on Theorem 4, we derive the following performance of the EMA
estimator θγ∗

max
(V ):

Corollary 1. For the EMA estimator PT = θγ∗
max

(V),

(1) ∀b ∈ [0, 1], MSE(b, PT ) = O( lnT
T ),

(2) ∀b ∈ [0, 1], with probability at least 1 − δ, we have |PT − b| =
O(

√
log(T ) log(1/δ)/T )

(3) Eb∼B [MSE(b, PT )] = lnT
24T − 1

12T + O( 1
T 2 ).

Proof (Sketch). Note that (1 − γ∗
max)

2T ≈ 1
T , and that for γ = lnT

2T we have
(1 − γ)2T = 1

T . Also, for γ = 1√
2T

we have (1 − γ)2T = e−√
T . Finally, the term

γ
6(2−γ) approaches γ

12 and the term 2−3γ
12(2−γ) approaches 1

12 . Plugging the above
in Theorem 4 yields the corollary. �	
We can contrast the bounds with those of the Bayes estimator PT = θ̂(V ). The
MSE bound increased by a logarithmic factor O(ln T ) (from O( 1

T ) to O( lnT
T )

and the high probability bound increases only by a factor of O(
√

log T ). This
logarithmic increases show that the impact of restricting the updates to EMA is
rather limited.

We now revisit the EMA estimator PT = θγ(V ) performance for the equi-
librium update γ∗

eq = 1√
2T

. As in the case for non-strategic agents, note that

(1 − γ∗
eq)

T ≈ e−
√

T/2, and calculating similarly to the proof of Corollary 1, we
derive the following corollary of Theorem 4 for the case PT = θγ∗

eq
(V ).

Corollary 2. For the EMA estimator PT = θγ∗
eq

(V),

(1) ∀b ∈ [0, 1], MSE(b, PT ) = O( 1√
T

),
(2) ∀b ∈ [0, 1], with probability at least 1 − δ, we have |PT − b| =

O(T−1/4
√

log(T ) log(1/δ))
(3) Eb∼B [MSE(b, PT )] = 1

12
√
2T−6

+ O(e−√
2T ).

Comparing the bounds above with those of the Bayes estimator θ̂(V ) and
with the exponential moving average θγ∗

max
(V ). Both θ̂(V ) and θγ∗

max
(V ) achieve

a mean square error of Õ( 1
T ) vs. O( 1√

T
) for the symmetric equilibrium. For the

high probability bound (2) the gap is between Õ( 1√
T

) and Õ( 1

T
1
4
).
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This is both good news and bad news. The good news is the process converges
to the true probabilities even when agents are unaware of the trading history
(and use EMA updates). The bad news is that the convergence rate deteriorates
due to selfish strategic behavior.

5 Extensions

5.1 Distribution over the Number of Agents

An interesting extension is to assume further uncertainty, where even the total
number of agents, T , is unknown. It may be unrealistic to forecast the number of
agents. A more reasonable assumption may be a common prior over the number
of agents. The obvious question is how this additional uncertainty impacts our
results. We therefore compute the symmetric equilibrium in this setting.

Theorem 5. For strategic agents that know neither their position in line, nor
the total number of agents, but share a prior on the total number of agents with

E[ 1T ] ≤ 1
8 , the equilibrium update is γ∗

dist = Θ(
√

E( 1
T )).

Note that the resulting equilibrium update parameters is Θ(
√

E( 1
T )), which

is different from Θ(E( 1√
T

)). Conceptually, this is very good news. Recall that the
Bayes update would have mean square error equal Θ(E(1/T )). This implies that
the EMA equilibrium update γ∗

dist, which is only square-root of that quantity,

has a mean square error of Θ(
√

E( 1
T )), assuming that for α =

√
E( 1

T ) we have

E[Te−αT ] = O(
√

E( 1
T )). This establishes the following corollary to Theorem4

part (1), for γ∗
dist = Θ(

√
E( 1

T )).

Corollary 3. If the Bayes estimator MSE is bounded by ε then for agents in
equiliria, the mean square error is at most O(

√
ε + E[Te−εT ]).

5.2 Single Unaware Agent

Assume all agents do the correct (fully informed, Bayesian) update θ̂(·), except
for one agent which is not aware of the history and his location. Such a setting
assesses the penalty of an agent not knowing its location. Alternatively, this
measures the maximum price that such an agent would be willing to pay to gain
the information, in the extreme case that all other agents know their location.
One can view the unaware agent as a late adaptor of a technology that deter-
mines an agent’s location, and we compute the penalty associated with this late
adoption. Technically, this implies that when the unaware agent arrives at the
process, the price is set by the Bayesian update θ̂(v). We now compute the γ
that maximizes the agent’s score. Let t be the unaware agent, then we have,

P γ
t =(1 − γ)PB

t−1 + γVt and PB
t−1 =

1 +
∑t−1

i=1 Vi

t + 1
.
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The expected score of the unaware agent, assuming a uniform distribution over
his arrival t ∈ {1, · · · , T}, is,

1
T

T∑

t=1

EB,V [(F − P γ
t )2].

The following theorem establishes the optimal update parameter.

Theorem 6. The optimal update parameter γ∗
1 for a single unaware agent

model, when P0 = 1
2 , is

γ∗
1 =

ln T

T + lnT

Recall that when none of the agents are informed, the utility maximizing
update parameter is lnT

2T while if all the agents are informed and use Bayes
updates then the average update parameter is lnT

T . The update parameter above
is a small step from the update of all informed Bayesian agents to all uninformed
EMA agents.

5.3 Single Aware Agent

This setting can be seen as the flip-side of the previous setting. Here we consider
the case that only a single agent is informed regarding his location. This models
the benefit that an agent can gain by being able to access his location. One
way of gaining the information is through buying it exclusively, the utility gain
bounds the price the agent would be willing to pay for such an information.

Technically, assume a single agent doing the correct (fully informed,
Bayesian) update θ̂(·), and all other agents (not aware of their location) are
restricted to use EMA θγ strategy and are either unaware or ignore the fact that
a single agent is using a different strategy. We define

P γ
t−1 =(1 − γ)P γ

t−2 + γVt−1 and PB
t =

1 +
∑t

i=1 Vi

t + 2
.

Now, for an agent using a strategy Pt(·), we define the average expected loss as
follows,

�T (PT ) � 1
T

T∑

t=1

EB,V [(F − Pt)2] =
1
T

T∑

t=1

Eb∼BMSE(b, Pt).

We consider the difference between the average expected loss of an unaware
agent and the average expected loss of a single aware agent,

uT (γ,Bayes) � �T (P γ
T ) − �T (PB

T )

Theorem 7. For γ = lnT
2T we have uT ( lnT

2T ,Bayes) = Θ( ln
2 T
T ) and for γ = 1√

2T

we have uT ( 1√
2T

,Bayes) = Θ( 1√
T

).
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When all agents are symmetric then the loss of an individual agent is Θ( 1
T ),

since the total loss of all the agents is constant. It follows from the theorem above
that the loss to a single aware agent is significantly higher. Thus, the value of
knowledge is (about) 1√

T
.

6 Closing Remarks and Future Work

Our analysis of history-independent social learning settings assumed quadratic
loss. This raises the question regarding the socially optimal and individually
optimal updates resulting for other loss functions.

Finally, the choice of strategy space for the agents is usually key in the analy-
sis of equilibrium in game-like scenarios. Future research allowing for strategies
beyond the linear updates assumed herein are a natural next research challenge.
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Abstract. One of the main results shown through Roughgarden’s
notions of smooth games and robust price of anarchy is that, for any
sum-bounded utilitarian social function, the worst-case price of anarchy
of coarse correlated equilibria coincides with that of pure Nash equilibria
in the class of weighted congestion games with non-negative and non-
decreasing latency functions and that such a value can always be derived
through the, so called, smoothness argument. We significantly extend
this result by proving that, for a variety of (even non-sum-bounded)
utilitarian and egalitarian social functions and for a broad generaliza-
tion of the class of weighted congestion games with non-negative (and
possibly decreasing) latency functions, the worst-case price of anarchy of
ε-approximate coarse correlated equilibria still coincides with that of ε-
approximate pure Nash equilibria, for any ε ≥ 0. As a byproduct of
our proof, it also follows that such a value can always be determined by
making use of the primal-dual method we introduced in a previous work.

1 Introduction

The celebrated notion of robust price of anarchy introduced by Roughgarden
in [22] has lately given rise to much interest in the determination of inefficiency
bounds for pure Nash equilibria which may automatically extend to some of their
appealing generalizations, such as mixed Nash equilibria, correlated equilibria
and coarse correlated equilibria. These three types of solutions have a particular
flavor since, differently from pure Nash equilibria, they are always guaranteed to
exist by Nash’s Theorem [19]; moreover, the last two ones can also be efficiently
computed and even easily learned when a game is repeatedly played over time.

To this aim, Roughgarden [22] identifies a class of games, called smooth
games, for which a simple three-line proof, called smoothness argument, shows
significant upper bounds on the price of anarchy of pure Nash equilibria as long
as the social function measuring the quality of any strategy profile in the game is
sum-bounded , that is, upper bounded by the sum of the players’ costs. He then
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TechnoMedia: “Algorithmics for Social Technological Networks” funded by the
Italian Ministry of University.
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defines the robust price of anarchy of a smooth game as the best-possible (i.e.,
the lowest) upper bound which can be derived by making use of this argument
and provides an extension theorem which shows that, still for sum-bounded social
functions, the price of anarchy of coarse correlated equilibria of any smooth game
is upper bounded by its robust price of anarchy. Finally, he shows that several
games considered in the literature happen to be smooth and that the class of
(unweighted) congestion games with non-negative and non-decreasing latency
functions is tight for the utilitarian social function (that is, the social func-
tion defined as the sum of the players’ costs), in the sense that, in this class of
games, the worst-case price of anarchy of pure Nash equilibria exactly matches
the robust price of anarchy. This last result has been subsequently extended to
the class of weighted congestion games by Bhawalkar, Gairing and Roughgarden
in [4].

Our Contribution and Significance. In this work, we generalize the tight-
ness result by Bhawalkar, Gairing and Roughgarden along the following four
directions (see Sect. 2 for formal definitions):

1. the class of games we consider is a broad generalization of that of weighted
congestion games. In particular, we focus on generalized weighted congestion
games, that is, games in which each player’s perceived cost is defined as a
certain linear combination of all the players’ individual costs originally expe-
rienced in some underlying weighted congestion game.

2. the families of social functions we consider are generalizations of both the
utilitarian and the egalitarian social functions (where the egalitarian social
function is defined as the maximum of the players’ costs). In particular, a
family of utilitarian social functions is obtained by summing up a certain
contribution from each player, whereas a family of egalitarian social functions
is obtained by taking the maximum contribution among the players, where
each player’s contribution is given by a conic combination of the players’
individual costs. We stress that such a combination may significantly differ
from the one used to define the players’ perceived costs, so that there exist
social functions in both families that may not be sum-bounded;

3. the latency functions we consider in the definition of the players’ individual
costs are selected from a family of allowable non-negative functions with no
additional restrictions. This permits us to encompass also latency functions
not considered so far in the previous tightness results known in the literature,
such as, for instance, the widely used fair cost sharing rule induced by the
Shapley value [23];

4. the solution concepts we consider are the approximate versions of all the four
types of equilibria named so far. In particular, for any real value ε ≥ 0, we
focus on either ε-approximate pure Nash equilibria and ε-approximate coarse
correlated equilibria.

More precisely, but still informally speaking, we prove the following result
(Theorem 1 in Sect. 3): for a variety of utilitarian and egalitarian social func-
tions and for any real value ε ≥ 0, the worst-case price of anarchy of ε-
approximate pure Nash equilibria coincides with that of ε-approximate coarse
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correlated equilibria in the class generalized weighted congestion games with non-
negative latency functions.

As it can be appreciated, the above tightness result generalizes the previous
one by Bhawalkar, Gairing and Roughgarden along all four directions simulta-
neously. The technique we use to prove the theorem is the primal-dual method
that we introduced in [5]. In fact, as a byproduct of our proof, it also follows
that, in the above considered scenario of investigation, the worst-case price of
anarchy of ε-approximate pure Nash equilibria can always be determined through
the primal-dual method.

Related Work. The notion of price of anarchy as a measure of the inefficiency
caused by selfish behavior in non-cooperative games has been introduced in a
seminal paper by Koutsoupias and Papadimitriou [17] in 1999. Since then, several
classes of games have been studied under this perspective. Among these classes,
congestion games introduced by Rosenthal in [21] and their weighted variants
[18] occupy a preeminent role.

Tight bounds for the worst-case price of anarchy of pure Nash equilibria in
congestion games with polynomial latency functions under the utilitarian social
function have been given by Awerbuch, Azar and Epstein [3], Christodoulou
and Koutsoupias [14] and Aland et al. [1] which have been subsequently gener-
alized to approximate pure Nash equilibria by Christodoulou, Koutsoupias and
Spirakis [16]. Christodoulou and Koutsoupias [15] show that the worst-case price
of anarchy of correlated equilibria is the same as that for pure Nash equilibria
in weighted and unweighted congestion games when considering affine latency
functions. As already said, such an equivalence has been further extended to
coarse correlated equilibria and to any class of non-negative and non-decreasing
latency functions by Roughgarden [22] in the unweighted case and by Bhawalkar,
Gairing and Roughgarden [4] in the weighted case, by making use of the smooth-
ness argument and the robust price of anarchy.

Robust bounds on the worst-case price of anarchy have been lately achieved
via extensions (even to non-sum-bounded social functions) of the smoothness
argument in some generalizations of (unweighted) congestion games. In par-
ticular, de Anagnostopoulos et al. [2] and Rahn and Schäfer [20] consider the
altruistic extension of congestion games in which, similarly to our model of gen-
eralized congestion games, the perceived cost of each player is defined as a linear
combination of the individual costs of all the players in the game. However, they
restrict their analysis to the case in which the social function is the sum of the
players’ individual costs.

Much less attention has been devoted in the literature to the egalitarian social
function, for which Christodoulou and Koutsoupias [14] give an asymptotically
tight bound on the worst-case price of anarchy in unweighted congestion games
with affine latency functions.

We introduced the primal-dual method in [5] as a tool for obtaining tight
bounds on the inefficiencies caused by selfish behavior in weighted congestion
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games and their possible generalizations for a variety of solutions concepts. Since
then, the method has been fruitfully exploited in [6,8–13].

Paper Organization. The paper is organized as follows. In the next section,
we give all necessary definitions and notation and provide also some preliminary
remarks. Section 3 contains the technical contribution of the paper, with the
proof of our main theorem. Due to space limitations, some material has been
omitted, see [7] for a complete version.

2 Definitions, Notation and Preliminaries

A weighted congestion game is a tuple CG =
(
[n], (wi)i∈[n], E, (Σi)i∈[n], (�e)e∈E

)

such that [n] = {1, 2, . . . , n} is a set of n ≥ 2 players, wi > 0 is the weight of
player i, E is a non-empty set of resources, Σi ⊆ 2E \ {∅} is a non-empty set
of strategies for player i and �e : R≥0 → R≥0 is the latency function of resource
e ∈ E. Denote as Σ =

∏
i∈[n] Σi the set of all strategy profiles of CG, that is, the

set of outcomes which can be realized when each player i ∈ [n] chooses a strategy
in Σi. A strategy profile σ = (σ1, . . . , σn) is then a vector of strategies, where, for
each i ∈ [n], σi ∈ Σi denotes the choice of player i in σ. For a strategy profile σ
and a resource e ∈ E, the value ne(σ) =

∑
i∈[n]:e∈σi

wi denotes the congestion
of resource e in σ, that is, the sum of the weights of all the players choosing e in
σ. The individual cost of player i in σ is defined as ci(σ) = wi

∑
e∈σi

�e(ne(σ)).
Given a finite space of functions F ⊆ {f : R≥0 → R≥0}, let B(F) = {fk :

R≥0 → R≥0 | k ∈ [r]} be a basis for F of cardinality r, whose elements (functions)
are numbered from 1 to r. We say that CG is defined over F if, for each e ∈ E, it
holds that �e =

∑
k∈[r] v

e
kfk, where ve

k ∈ R is a scalar. Throughout the paper, we
will impose only minimal assumptions on F ; in particular, we will assume
that any f ∈ F is non-negative with f(x) = 0 if and only if x = 0.

For any n-dimensional vector of (positive) weights w = (w1, . . . , wn), we
denote with Cw(F) the class of all the weighted congestion games with play-
ers’ weights induced by w and defined over F . Moreover, for a fixed quadruple
Tw = ([n],w, E, (Σi)i∈[n]), called a congestion model, the set CTw

(F) = {CG ∈
Cw(F) | CG = (Tw, (�e)e∈E)} is the set of all the weighted congestion games
induced by Tw and defined over F . Note that, since for each game CG ∈ CTw

(F)
and e ∈ E there exist r numbers ve

1, . . . , v
e
r such that �e =

∑
k∈[r] v

e
kfk, it follows

that CG can be specified by the pair (Tw, (ve
k)e∈E,k∈[r]). Moreover, it holds that

Cw(F) =
⋃

Tw
CTw

(F). Finally, we denote with Σ(Tw) the set of strategy profiles
induced by the congestion model Tw.

A generalized weighted congestion game is a pair (CG, α) where CG =
([n], (wi)i∈[n], E, (Σi)i∈[n], (�e)e∈E) is a weighted congestion game and α ∈
R

n×n is an n-dimensional square matrix. Game (CG, α) has the same
set of players and strategies of CG, but the perceived cost of player
i in the strategy profile σ is defined as ĉi(σ) =

∑
j∈[n] αijcj(σ) =∑

e∈E

∑
k∈[r] v

e
kfk(ne(σ))

∑
j∈[n]:e∈σj

αijwj , where ci(σ) is the individual cost
that player i experiences in σ in the underlying weighted congestion game CG.
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Note that, when α is the identity matrix, (CG, α) coincides with CG, while, in
all the other cases, (CG, α) may not be isomorphic to any weighted congestion
game, so that the set of generalized weighted congestion games expands that of
weighted congestion games.

Given a strategy profile σ, a player i ∈ [n] and a strategy x ∈ Σi, we denote
with (σ−i, x) the strategy profile obtained from σ when player i changes her
strategy from σi to x, while the strategies of all the other players are kept fixed.
In particular, for any ε ≥ 0, the perceived cost suffered by player i in σ minus 1+ε
times the perceived cost suffered by player i in (σ−i, x) in a generalized weighted
congestion game can be expressed as follows (for a strategy profile σ, a player
i, a resource e, an index k and a value ε, we set Ai

e(σ) =
∑

j∈[n]:e∈σj
αijwj ,

T+
e,i(σ, ε, k) = fk(ne(σ))Ai

e(σ) − (1 + ε)fk(ne(σ) + wi)
(
Ai

e(σ) + αiiwi

)
and

T−
e,i(σ, ε, k) = fk(ne(σ))Ai

e(σ) − (1 + ε)fk(ne(σ) − wi)
(
Ai

e(σ) − αiiwi

)
):

ĉi(σ) − (1 + ε) · ĉi(σ−i, x)

=
∑

j∈[n]

αijcj(σ) − (1 + ε)
∑

j∈[n]

αijcj(σ−i, x)

= Ai
e(σ)

(
∑

e∈σi

�e(ne(σ)) − (1 + ε)
∑

e∈x

�e(ne(σ−i, x))

)

=
∑

e∈σi\x

∑

k∈[r]

ve
kT−

i,e(σ, ε, k)

+
∑

e∈x\σi

∑

k∈[r]

ve
kT+

i,e(σ, ε, k) − ε
∑

e∈σi∩x

∑

k∈[r]

ve
kfk(ne(σ))Ai

e(σ). (1)

Next two definitions formalize the two concepts of approximate equilibria
that we will consider throughout the paper.

Definition 1. For any ε ≥ 0, an ε-approximate coarse correlated equi-
librium is a probability distribution p defined over Σ such that, for any player
i ∈ [n] and strategy x ∈ Σi, it holds that

∑
σ∈Σ pσ · ĉi(σ) ≤ (1 + ε)

∑
σ∈Σ pσ ·

ĉi(σ−i, x), where, for each σ ∈ Σ, pσ is the probability assigned to σ by p.

Definition 2. For any ε ≥ 0, an ε-approximate pure Nash equilibrium is
a strategy profile σ such that, for any player i ∈ [n] and strategy x ∈ Σi, it holds
that ĉi(σ) ≤ (1 + ε) · ĉi(σ−i, x).

Denote as PNEε(CG, α) and CCEε(CG, α), respectively, the set of ε-
approximate pure Nash equilibria and ε-approximate coarse correlated equilibria
of the generalized weighted congestion game (CG, α). It is easy to see that, for
any ε ≥ 0, an ε-approximate pure Nash equilibrium σ is an ε-approximate coarse
correlated equilibrium p such that pσ = 1 and pτ = 0 for any τ ∈ Σ \ {σ}. So,
PNEε(CG, α) ⊆ CCEε(CG, α). Moreover, the sets PNE0(CG, α) and CCE0(CG, α)
coincide with the sets of pure Nash equilibria and coarse correlated equilibria of
(CG, α), respectively.
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For an n-dimensional non-null square matrix β ∈ R
n×n
≥0 and a player i ∈ [n],

let β-costi : Σ → R>0 be the contribution of player i to the definition of the
social function which is defined as follows:

β-costi(σ) =
∑

j∈[n]

βijcj(σ) =
∑

e∈E

∑

k∈[r]

ve
kfk(ne(σ))

∑

j∈[n]:e∈σj

βijwj .

Let Δ(Σ) be the set of all the probability distributions defined over Σ. For a
p ∈ Δ(Σ), the β-utilitarian social function is a function β-SUM : Δ(Σ) → R>0

such that

β-SUM(p) =
∑

i∈[n]

Eσ∼p [β-costi(σ)] = Eσ∼p

⎡

⎣
∑

i∈[n]

β-costi(σ)

⎤

⎦

=
∑

σ∈Σ

pσ

⎛

⎝
∑

e∈E

∑

k∈[r]

ve
kfk(ne(σ))

∑

i∈[n]

∑

j∈[n]:e∈σj

βijwj

⎞

⎠

and the β-egalitarian social function is a function β-MAX : Δ(Σ) → R>0 such
that

β-MAX(p) = max
i∈[n]

{Eσ∼p [β-costi(σ)]}

= max
i∈[n]

⎧
⎨

⎩

∑

σ∈Σ

pσ

∑

e∈E

∑

k∈[r]

ve
kfk(ne(σ))

∑

j∈[n]:e∈σj

βijwj

⎫
⎬

⎭
.

We remark that there is also another possible (and indeed more traditional)
definition for the β-egalitarian social function, obtained by setting β-MAX(p) =
Eσ∼p

[
maxi∈[n]{β-costi(σ)}]. In such a case, however, the application of the

primal-dual method seems to be not so natural, so that the study of this social
function remains an interesting open problem at the moment.

Consider the case in which p ∈ Δ(Σ) is indeed a strategy profile σ ∈ Σ.
When β is the identity matrix, β-SUM (resp. β-MAX) coincides with the sum
(resp. the maximum) of the players’ individual costs in the underlying weighted
congestion game CG, while, when β = α, β-SUM (resp. β-MAX) coincides with
the sum (resp. the maximum) of the players’ perceived costs in (CG, α). In gen-
eral, an infinite variety of social functions can be defined by tuning the choice of
matrix β. For a function SF ∈ {SUM,MAX}, we denote with o the social opti-
mum, that is, any strategy profile minimizing β-SF. Note that, by the properties
of the latency functions and the definition of β, it follows that β-SF(o) > 0. The
ε-approximate coarse correlated price of anarchy of (CG, α) under the social func-
tion β-SF is defined as CCPoAε(β-SF,CG, α) = maxp∈CCEε(CG,α)

β-SF(p)
β-SF(o) , while the

ε-approximate pure price of anarchy of (CG, α) under the social function β-SF is
defined as PPoAε(β-SF,CG, α) = maxσ∈PNEε(CG,α)

β-SF(σ)
β-SF(o) .

For an n-dimensional vector of weights w = (w1, . . . , wn) and a matrix α ∈
R

n×n, we denote with Cw(F , α) = {(CG, α) : CG ∈ Cw(F)} the set of all the
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generalized weighted congestion games induced by w and α and defined over
F . Similarly, for any congestion model Tw, one defines the class CTw

(F , α), so
as to obtain Cw(F , α) =

⋃
Tw

CTw
(F , α). The worst-case ε-approximate coarse

correlated price of anarchy of the class Cw(F , α) under the social function β-SF
is defined as CCPoAε(β-SF, Cw(F , α)) = sup(CG,α)∈Cw(F,α) CCPoAε(β-SF,CG, α).
Similarly, one defines the worst-case ε-approximate pure price of anarchy of the
class Cw(F , α) under the social function β-SF.

By PNEε(CG, α) ⊆ CCEε(CG, α), it follows that PPoAε(β-SF, Cw(F , α)) ≤
CCPoAε(β-SF, Cw(F , α)) for any real value ε ≥ 0, n-dimensional vector of weights
w, finite space of function F , pair of matrices α ∈ R

n×n and β ∈ R
n×n
≥0 and func-

tion SF ∈ {SUM,MAX}. Throughout the paper, we will also refer to the worst-
case ε-approximate pure price of anarchy and to the worst-case ε-approximate
coarse correlated price of anarchy of subsets of Cw(F , α) which are naturally
defined by restriction.

We conclude this section with an easy, although crucial result, stating that,
independently of which is the adopted social function, both the worst-case ε-
approximate pure price of anarchy and the worst-case ε-approximate coarse cor-
related price of anarchy of a class of generalized weighted congestion games
remain the same even if one restricts to only those games in the given class
whose social optimum has social value equal to one. To this aim, for any func-
tion SF ∈ {SUM,MAX} and matrix β ∈ R

n×n
≥0 , let Cw(F , α) ⊂ Cw(F , α) be the

subset of all the generalized weighted congestion games induced by w and α and
defined over F such that the social optimum o satisfies β-SF(o) = 1. Similarly,
for any congestion model Tw, one defines the class CTw

(F , α), so as to obtain
Cw(F , α) =

⋃
Tw

CTw
(F , α).

Lemma 1. For any ε ≥ 0, n-dimensional vector of weights w, finite space of
functions F , pair of matrices α ∈ R

n×n and β ∈ R
n×n
≥0 and function SF ∈

{SUM,MAX}, it holds that PPoAε(β-SF, Cw(F , α)) = PPoAε(β-SF, Cw(F , α))
and CCPoAε(β-SF, Cw(F , α)) = CCPoAε(β-SF, Cw(F , α)).

3 The Main Result

Our main result is the proof of the following general theorem.

Theorem 1. For any real value ε ≥ 0, n-dimensional vector of weights w,
finite space of functions F , pair of matrices α ∈ R

n×n and β ∈ R
n×n
≥0

and function SF ∈ {SUM,MAX}, it holds that PPoAε(β-SF, Cw(F , α)) =
CCPoAε(β-SF, Cw(F , α)). Moreover, the value PPoAε(β-SF, Cw(F , α)) can
always be determined via the primal-dual method.

Proof. Fix a real value ε ≥ 0, an n-dimensional vector of weights w, a finite
space of functions F , a pair of matrices α ∈ R

n×n and β ∈ R
n×n
≥0 and a function

SF ∈ {SUM,MAX}. We prove the claim in four steps.
Step (1). Definition of the representative congestion model T∗

w.
Let T∗

w = ([n],w, E∗, (Σ∗
i )i∈[n]) be a congestion model such that
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1. Σ∗
i = {σ∗

i , o∗
i } for each i ∈ [n], i.e., each player i ∈ [n] has exactly two

strategies denoted as σ∗
i and o∗

i ;
2. the set of resources E∗ and the strategies σ∗

i and o∗
i for each i ∈ [n] are

properly defined in such a way that, for each P,Q ⊆ [n], there exists exactly
one resource e(P,Q) ∈ E∗ for which it holds that {i ∈ [n] | e(P,Q) ∈ σ∗

i } = P
and {i ∈ [n] | e(P,Q) ∈ o∗

i } = Q. Hence, |E∗| = 2n · 2n = 4n.

Intuitively, the representative congestion model T∗
w is defined in such a way that

the pair of strategy profiles σ∗ = (σ∗
1 , . . . , σ

∗
n) and o∗ = (o∗

1, . . . , o
∗
n) is able to

encompass all possible configurations of congestions that may arise in any pair
of strategy profiles and for any congestion model induced by w. In particular,
the following fundamental property holds.

Property 1. For any congestion model Tw = ([n],w, E, (Σi)i∈[n]), resource e ∈ E
and pair of profiles σ′,σ′′ ∈ Σ(Tw), there exists a resource e ∈ E∗ such that
{i ∈ [n] | e ∈ σ′

i} = {i ∈ [n] | e ∈ σ∗
i } and {i ∈ [n] | e ∈ σ′′

i } = {i ∈ [n] | e ∈ o∗
i }.

Proof. Fix a congestion model Tw = ([n],w, E, (Σi)i∈[n]), a resource e ∈ E and
pair of profiles σ′,σ′′ ∈ Σ(Tw). Let {i ∈ [n] | e ∈ σ′

i} := P and {i ∈ [n] | e ∈
σ′′

i } := Q. To prove the claim, it suffices choosing e = e(P,Q). 	

Step (2). Definition of a primal-dual formulation for PPoAε(β-SF, Cw(F , α)).

Fix a function SF ∈ {SUM,MAX}. Our aim is to use the optimal solution
of a linear program PPPNE(SF,T∗

w,σ∗,o∗) to achieve an upper bound on the
worst-case ε-approximate pure price of anarchy of any game in CT∗

w
(F , α) under

the restriction that the latency functions are suitably tuned so as to make σ∗ the
worst ε-approximate pure Nash equilibrium and o∗ a social optimum (of social
value 1). The linear program PPPNE(SUM,T∗

w,σ∗,o∗) for the β-utilitarian social
function is defined as follows.

maximize
∑

e∈E∗

∑

k∈[r]

ve
kfk(ne(σ

∗))
∑

i∈[n]

∑

j∈[n]:e∈σ∗
j

βijwj

subject to
∑

e∈σ∗
i \o∗

i

∑

k∈[r]

ve
kT −

e,i(σ
∗, ε, k) +

∑

e∈o∗
i \σ∗

i

∑

k∈[r]

ve
kT+

e,i(σ
∗, ε, k)

−ε
∑

e∈o∗
i ∩σ∗

i

∑

k∈[r]

ve
kfk(se)A

i
e(σ

∗) ≤ 0, ∀i ∈ [n]

∑

e∈E∗

∑

k∈[r]

ve
kfk(ne(o

∗))
∑

i∈[n]

∑

j∈[n]:e∈o∗
j

βijwj ≤ 1,

ve
k ≥ 0, ∀e ∈ E∗, k ∈ [r]

The first n constraints guarantee that no player can lower her perceived cost
of a factor more than 1 + ε by switching to the strategy she uses in the social
optimum o∗ (see Eq. (1)), while the last constraint normalizes to at most 1 the
value β-SUM(o∗).

The dual program DPPNE(SUM,T∗
w,σ∗,o∗) is the following (we associate a

variable yi with the ith constraint of the first n ones and a variable γ with the
normalizing constraint).



On the Robustness of the Approximate Price of Anarchy 101

minimize γ
subject to
∑

i∈[n]:e∈σ∗
i \o∗

i

yiT
−
e,i(σ

∗, ε, k) +
∑

i∈[n]:e∈o∗
i \σ∗

i

yiT
+
e,i(σ

∗, ε, k)

−ε
∑

i∈[n]:e∈o∗
i ∩σ∗

i

yifk(ne(σ
∗))Ai

e(σ
∗)

+γfk(ne(o
∗))
∑

i∈[n]

∑

j∈[n]:e∈o∗
j

βijwj ≥ fk(ne(σ
∗))
∑

i∈[n]

∑

j∈[n]:e∈σ∗
j

βijwj , ∀e ∈ E∗, k ∈ [r]

yi ≥ 0, ∀i ∈ [n]
γ ≥ 0

For the primal-dual formulations for the β-egalitarian social function, we
refer the reader to [7].

We stress that, being all the values ε, (wi)i∈[n], (αij , βij)i,j∈[n], ne(σ∗) and
ne(o∗) fixed constants in the proposed formulations, PPPNE(SUM,T∗

w,σ∗,o∗)
is a linear program defined over the variables (ve

k)e∈E∗,k∈[r] and PPPNE(MAX,
T∗

w,σ∗,o∗) is a linear program defined over the variables (ve
k)e∈E∗,k∈[r] and t, as

needed. Note that, for SF ∈ {SUM,MAX}, PPPNE(SF,T∗
w,σ∗,o∗) is, in general,

under-constrained. In fact, in order to assure that σ∗ and o∗ are the worst ε-
approximate pure Nash equilibrium and the social optimum, respectively, one
should guarantee β-SF(σ∗) ≥ β-SF(σ) for each other ε-approximate pure Nash
equilibrium σ ∈ Σ∗, if any, and β-SF(o∗) ≤ β-SF(σ) for each σ ∈ Σ∗. Moreover,
the normalizing constraints have also been relaxed so as to assure β-SF(o∗) ≤ 1
rather than β-SF(o∗) = 1. However, as we will discuss in the proof of Lemma
2, either removing or relaxing these constraints can only worsen the resulting
upper bounds.

The significance of the previously defined pairs of primal-dual formula-
tions is witnessed by the following lemma which states that the value of
an optimal solution to PPPNE(SF,T∗

w,σ∗,o∗) provides an upper bound on
PPoAε(β-SF, Cw(F , α)).

Lemma 2. For a fixed SF ∈ {SUM,MAX}, let x be the value of an optimal solu-
tion to PPPNE(SF,T∗

w,σ∗,o∗) when this linear problem is not unlimited, other-
wise let x = ∞. Then PPoAε(β-SF, Cw(F , α)) ≤ x.

Step (3). Proof of existence of a game (CG, α) ∈ Cw(F , α) such that
PPoAε(β-SF,CG, α) = x.

Lemma 3. For a fixed SF ∈ {SUM,MAX}, let x be the value of an optimal solu-
tion to PPPNE(SF,T∗

w,σ∗,o∗) when this linear problem is not unlimited, other-
wise let x = ∞. Then PPoAε(β-SF, Cw(F , α)) = x.

Step (4). Definition of a primal-dual formulation for CCPoAε(β-SF, Cw(F , α))
and proof of the “Extension Lemma”.

Fix a congestion model Tw = ([n],w, E, (Σi)i∈[n]), a probability distribution
p ∈ Δ(Σ(Tw)) and a strategy profile o ∈ Σ(Tw). We define the following primal
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program PPCCE(SUM,Tw,p,o) for the β-utilitarian social function.

maximize
∑

σ∈Σ

pσ

∑

e∈E

∑

k∈[r]

ve
kfk(ne(σ))

∑

i∈[n]

∑

j∈[n]:e∈σj

βijwj

subject to
∑

σ∈Σ

pσ

∑

e∈σi\oi

∑

k∈[r]

ve
kT −

e,i(σ, ε, k) +
∑

σ∈Σ

pσ

∑

e∈o∗
i \σ∗

i

∑

k∈[r]

ve
kT+

e,i(σ, ε, k)

−ε
∑

σ∈Σ

pσ

∑

e∈o∗
i ∩σ∗

i

∑

k∈[r]

ve
kfk(ne(σ))Ai

e(σ) ≤ 0, ∀i ∈ [n]

∑

e∈E

∑

k∈[r]

ve
kfk(ne(o))

∑

i∈[n]

∑

j∈[n]:e∈oj

βijwj ≤ 1,

ve
k ≥ 0, ∀e ∈ E, k ∈ [r]

The dual program DPCCE(SUM,Tw,p,o) is the following (again, we associate a
variable yi with the ith constraint of the first n ones and a variable γ with the
normalizing constraint).

minimize γ
subject to∑
σ∈Σ

pσ
∑

i∈[n]:e∈σ∗
i

\o∗
i

yiT
−
e,i

(σ, ε, k) +
∑

σ∈Σ

pσ
∑

i∈[n]:e∈o∗
i

\σ∗
i

yiT
+
e,i

(σ, ε, k)

−ε
∑

σ∈Σ

pσ
∑

i∈[n]:e∈o∗
i

∩σ∗
i

yifk(ne(σ))A
i
e(σ)

+γfk(ne(o))
∑

i∈[n]

∑
j∈[n]:e∈oj

βijwj ≥
∑

σ∈Σ

pσfk(ne(σ))
∑

i∈[n]

∑
j∈[n]:e∈σj

βijwj, ∀e ∈ E, k ∈ [r]

yi ≥ 0, ∀i ∈ [n]
γ ≥ 0

For the primal-dual formulations for the β-egalitarian social function, we refer
the reader to [7].

Again, even though both PPCCE(SUM,Tw,p,o) and PPCCE(MAX,Tw,p,o)
may be, in general, under-constrained, by the same arguments used in the dis-
cussion of the pairs of primal-dual formulations used for bounding the worst-
case ε-approximate pure price of anarchy, it follows that, for each function
SF ∈ {SUM,MAX}, the optimal solution to PPCCE(SF,Tw,p,o) yields an upper
bound on the worst-case ε-approximate coarse correlated price of anarchy of the
class CTw

(F , α) attainable when p is taken for the worst ε-approximate coarse
correlated equilibrium and o for the social optimum (of social value 1). Let us
denote such a class with ĈTw

(F , α).
The following lemma shows that any upper bound on PPoAε(β-SF,

CT∗
w

(F , α)) proved via the primal-dual method automatically extends to
CCPoAε(β-SF, ĈTw

(F , α)).

Lemma 4 (Extension Lemma). For any function SF ∈ {SUM,MAX},
congestion model Tw = ([n],w, E, (Σi)i∈[n]), probability distribution p ∈
Δ(Σ(Tw)) and strategy profile o ∈ Σ(Tw), it holds that any feasible solution
to DPPNE(SF,T∗

w,σ,o) is also a feasible solution to DPCCE(SF,Tw,p,o).

We now have all the ingredients needed to conclude the proof of the theorem.
Fix a function SF ∈ {SUM,MAX}. Assume, first, that PPPNE(SF,T∗

w,σ∗,o∗) is
unlimited. Then, by Lemma 3, it holds that PPoAε(β-SF, Cw(F , α)) = ∞ which,
together with PPoAε(β-SF, Cw(F , α)) ≤ CCPoAε(β-SF, Cw(F , α)), immediately
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implies that PPoAε(β-SF, Cw(F , α)) = CCPoAε(β-SF, Cw(F , α)). By applying
Lemma 1, we obtain PPoAε(β-SF, Cw(F , α)) = CCPoAε(β-SF, Cw(F , α)).

In the case in which PPPNE(SF,T∗
w,σ∗,o∗) admits an optimal solution of

value x, by Lemma 3, it holds that PPoAε(β-SF, Cw(F , α)) = x. Moreover,
by the Strong Duality Theorem, there exists a feasible solution (y∗, γ∗) to
DPPNE(SF,T∗

w,σ,o) of value γ∗ = x. Choose an arbitrary game (CG, α) ∈
Cw(F , α) such that CCPoAε(β-SF, Cw(F , α)) = CCPoAε(β-SF,CG, α) and let
Tw be the congestion model defining CG, p be the worst ε-approximate coarse
correlated equilibrium of (CG, α) and o be the social optimum (of social value
1). By the definition of Tw, p and o, it follows that the optimal solution to
PPCCE(SF,Tw,p,o) has a value of at least CCPoAε(β-SF, Cw(F , α)), which,
by the Weak Duality Theorem, implies in turn that any feasible solution to
DPCCE(SF,Tw,p,o) has a value of at least CCPoAε(β-SF, Cw(F , α)). By Lemma
4, it follows that (y∗, γ∗) is also a feasible solution to DPCCE(SF,Tw,p,o). This
implies that CCPoAε(β-SF, Cw(F , α)) ≤ γ∗ = x = PPoAε(β-SF, Cw(F , α)).
Again, by applying Lemma 1, we obtain that PPoAε(β-SF, Cw(F , α)) =
CCPoAε(β-SF, Cw(F , α)).

It is clear from our discussion that the value PPoAε(β-SF, Cw(F , α)) =
PPoAε(β-SF, Cw(F , α)) can always be (theoretically) determined via the primal-
dual method, that is, by computing the value of the optimal solution of either
the primal program PPPNE(SF,T∗

w,σ,o) or the dual one DPPNE(SF,T∗
w,σ,o) for

each function SF ∈ {SUM,MAX}, and this concludes the proof (solving the dual
program, in particular, requires to determine the minimum value γ∗ for which
all the r ·4n possible constraints induced by the |E∗| = 4n pairs of values yielded
by the representative congestion model T∗

w on each of the r components of the
latency functions are satisfied). 	
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6. Bilò, V.: On linear congestion games with altruistic social context. In: Cai, Z.,
Zelikovsky, A., Bourgeois, A. (eds.) COCOON 2014. LNCS, vol. 8591, pp. 547–
558. Springer, Heidelberg (2014)



104 V. Bilò
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Abstract. Network routing games, and more generally congestion
games play a central role in algorithmic game theory, comparable to
the role of the traveling salesman problem in combinatorial optimiza-
tion. It is known that the price of anarchy is independent of the network
topology for non-atomic congestion games. In other words, it is indepen-
dent of the structure of the strategy spaces of the players, and for affine
cost functions it equals 4/3. In this paper, we show that the situation is
considerably more intricate for atomic congestion games. More specifi-
cally, we consider congestion games with affine cost functions where the
players’ strategy spaces are symmetric and equal to the set of bases of
a k-uniform matroid. In this setting, we show that the price of anarchy
is strictly larger than the price of anarchy for singleton strategy spaces
where it is 4/3. As our main result we show that the price of anarchy can
be bounded from above by 28/13 ≈ 2.15. This constitutes a substantial
improvement over the price of anarchy bound 5/2, which is known to be
tight for network routing games with affine cost functions.

1 Introduction

Understanding the impact of selfish behavior on the performance of a system
is an important question in algorithmic game theory. One of the cornerstones
of the substantial literature on this topic is the famous result of Roughgarden
and Tardos [27]. They considered the traffic model of Wardrop [30] in a network
with affine flow-dependent congestion cost functions on the edges. Given a set of
commodities, each specified by a source node, a target node, and a flow demand,
a Wardrop equilibrium is a multicommodity flow with the property that every
commodity uses only paths that minimize the cost. For this setting, Roughgarden
and Tardos proved that the total cost of an equilibrium flow is not worse than 4/3
times that of a system optimum. This ratio was coined the price of anarchy by
Koutsoupias and Papadimitriou [19] who introduced it as a measure of a system’s
performance degradation due to selfish behavior. A surprising consequence of
the result of Roughgarden and Tardos is that the worst case price of anarchy
in congested networks is attained for very simple single-commodity networks
already considered a century ago by Pigou [23]. Pigou-style networks consist
c© Springer-Verlag Berlin Heidelberg 2016
M. Gairing and R. Savani (Eds.): SAGT 2016, LNCS 9928, pp. 105–116, 2016.
DOI: 10.1007/978-3-662-53354-3 9



106 J. de Jong et al.

of only two nodes connected by two parallel links. In fact, Roughgarden [26]
proved that for any set of cost functions, the price of anarchy is independent
of the network topology as it is always attained for such simple Pigou-style
networks where a feasible strategy of each commodity is to choose exactly one
out of the two links.

A model related to Wardrop’s model is that of a congestion game with
unsplittable (i.e., atomic) players. In such a game, there is a finite set of play-
ers and a strategy of each player is to choose a set of resources allowable to
her. Without any restrictions on the strategy spaces, the price of anarchy for
affine cost functions is 5/2 as shown by Christodoulou and Koutsoupias [9] and
Awerbuch et al. [5]. As a contrast, for simple Pigou-style instances with symmet-
ric and singleton strategies, Lücking et al. [20] showed that the price of anarchy
is only 4/3. These results imply that for atomic congestion games the price of
anarchy does depend on the combinatorial structure of players’ strategies.

In this work, we shed new light on the impact of the combinatorial structure
of strategy spaces on the inefficiency of equilibria in atomic congestion games.
Specifically, we focus on the minimum combinatorial structure that one may
think of, namely symmetric k-uniform congestion games where the strategy set
of each player consists of all k-elementary subsets of resources. These games
are a natural generalization of the singleton case, and we consider it interesting
because it constitutes a first step into the direction where strategies are bases of
a (general) matroid. As for potential applications, one may think of, e.g., load
balancing games where each player controls the same amount of jobs; see also
Abed et al. [1] for a related model in the context of coordination mechanisms.

Our Results. We prove that the price of anarchy in congestion games with
affine cost functions is at most 28/13 when strategy spaces are symmetric and
bases of a k-uniform matroid. The proof uses in its core several combinatorial
arguments on the amount and cost of resources that are over- respectively under-
demanded in any given Nash equilibrium as opposed to an optimal solution. It
also exploits the affinity of the cost functions, along the lines of earlier arguments
of Fotakis [12] for the singleton case. The main point of the technical side of the
paper is the insight that the combinatorial structure of strategy spaces, here of
the simplest possible form, allows to furnish combinatorial arguments that yield
improved results on the price of anarchy. We are not aware of earlier attempts
in this direction, and believe this opens new possibilities for our understanding
of a “classical” showcase problem in algorithmic game theory. We also show
that the price of anarchy for the k-uniform matroid case cannot be the same as
for singleton congestion games, as we bound it away from 4/3: For affine cost
functions, and k large enough, the price of anarchy is at least 1.343. For k = 5
it is at least 47/35 ≈ 1.3428.

Related Work. Since the early works of Pigou [23], Beckman et al. [6], and
Braess [7] it is well known that user equilibria in congested networks may be
suboptimal for the overall performance of the system. In order to quantify this



Efficiency of Equilibria in Uniform Matroid Congestion Games 107

inefficiency, Koutsoupias and Papadimitriou [19] proposed to study the ratio of
the total cost of an equilibrium and the total cost of an optimal solution. This
ratio is now known as the price of anarchy. Roughgarden and Tardos [27] showed
that the price of anarchy for non-atomic games with affine costs is 4/3. The
worst case is attained for simple networks of two parallel links previously studied
by Pigou [23]. Roughgarden [26] gave a closed form expression for the price
of anarchy for arbitrary cost functions which is again attained for Pigou-style
networks, e.g., for polynomials with positive coefficient and maximum degree d
the price of anarchy is of order Θ(d/ ln(d)).

Awerbuch et al. [5] and Christodoulou and Koutsoupias [9] considered the
related model with atomic players that was introduced by Rosenthal [24]. They
showed that for affine cost functions the price of anarchy is 5/2. Aland et al. [4]
gave tight bounds on the price of anarchy for polynomial cost functions with max-
imum degree d which behaves asymptotically as Θ((d/ ln d)d+1). It is interesting
to note that these worst-case bounds are not attained for simple Pigou-style net-
works with symmetric and singleton strategies as in the non-atomic case. Based
on previous work of Suri et al. [28], Caragiannis et al. [8] showed that for affine
costs, the worst case is attained for asymmetric singleton strategies. For a sim-
ilar result for polynomial costs, see Gairing and Schoppmann [15]. In fact, for
singleton games with symmetric strategies, the price of anarchy is considerably
better than in the general case. In fact, Fotakis [12] showed that the price of
anarchy of symmetric singleton atomic games is equal to the price of anarchy of
non-atomic games. This improves and generalizes previous bounds by Lücking
et al. [20] and Gairing et al. [14].

The class of k-uniform games that we consider in this paper is also related
to the class of integer-splittable congestion games introduced by Rosenthal [25]
and the classes of k-splittable and integer k-splittable congestion games studied
by Meyers [21]. In contrast to our model, the models above allow that a player
uses a resource with multiple units of demand at the same time. It turns out
that allowing for this kind of self-congestion has a severe impact on the existence
of pure Nash equilibria [11,25] but for networks of parallel links it is known that
pure Nash equilibria are guaranteed to exist [17,29].

The impact of combinatorial structure on the existence and computability of
pure Nash equilibria has been studied for many variants of congestion games.
Ackermann et al. [2] proved that for atomic games with unweighted players all
sequences of best replies converge in polynomial time to a pure Nash equilibrium
if the set of strategies of each player corresponds to the set of bases of a matroid.
For weighted congestion games, the matroid property guarantees the existence
of a pure Nash equilibrium [3] while without that property a pure Nash equilib-
rium may fail to exist [16]. Similarly, congestion games with player-specific costs
and matroid strategies have a pure Nash equilibrium which can be computed
efficiently [3] which is in contrast to the general case [22]. For similar results in
the context of resource buying games, see also Harks and Peis [18].

To the best of our knowledge, the impact of matroid structures on the effi-
ciency of Nash equilibria has not been considered before. The only result in this
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direction is a yet unpublished work of Fujishige et al. [13]. They showed that
Braess’ paradox cannot occur in non-atomic games with matroid strategies, i.e.,
the quality of the user equilibrium cannot deteriorate when removing a resource.
This result, however, has no consequences for the inefficiency of equilibria in non-
atomic games since the worst case is attained for Pigou-style networks where the
strategies are symmetric and 2-uniform matroids.

2 Preliminaries

Let N = {1, . . . , n} be a finite set of players and let R be a finite set of resources.
Each player i is associated with a set of subsets of resources Si ⊆ 2R allowable to
her. A strategy of a player is to choose a subset si ∈ Si from this set. A strategy
vector s = (si)i∈N consists of n strategies, one for each player. Every resource r
is endowed with a cost function cr : N → R that maps the total number of its
users xr = |{i ∈ N : r ∈ si}| to a cost value cr(xr). The cost functions cr are
called affine if cr(xr) = αr + βrxr, for constants αr, βr ≥ 0, r ∈ R. The private
cost of player i in strategy vector s is then defined as

πi(s) =
∑

r∈si

cr(xr).

We use standard game theory notation; for a strategy vector s ∈ S = S1×· · ·×Sn,
a player i and an alternative strategy s′

i ∈ Si, we denote by (s′
i, s−i) the strategy

vector in which all players play as in s except for i who plays s′
i. A strategy

vector s is a Nash equilibrium if,

πi(s) ≤ πi(s′
i, s−i) for all i ∈ N and s′

i ∈ Si.

Given an instance of a game I = (N,R, S, (cr)r∈R), we denote the set of Nash
equilibria of I by SNE(I).

We are interested in how restrictions on the set of strategies of each player
influence the inefficiency of equilibria. We measure the efficiency of a strategy
vector s ∈ S in terms of the social costs C(s) defined as

C(s) =
∑

i∈N

πi(s).

We denote by SOPT(I) the set of strategy vectors s that minimize C(s). For an
instance I of a game, the price of anarchy is defined as

PoA(I) = maxsNE∈SNE(I)

C(sNE)
C(sOPT)

,

where sOPT ∈ SOPT(I) is a strategy vector minimizing C. For a class G of games,
the price of anarchy is defined as PoA(G) = supI∈G PoA(I). We drop G whenever
it is clear from context. We are specifically interested in singleton and k-uniform
matroid strategy spaces. A game is said to be a singleton game, if |si| = 1 for all
si ∈ Si and i ∈ N . A game is called k-uniform game if for each player, there is a
subset Ri ⊆ R such that Si = {R′ ⊆ Ri : |R′| = k}. A game is called symmetric,
if Si = Sj for all i, j ∈ N .
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3 Symmetric k-uniform Games

The main result of this paper is the following.

Theorem 1. The price of anarchy of symmetric k-uniform congestion games
with affine cost functions is at most 28

13 ≈ 2.15.

For the proof of Theorem 1, we are going to prove that C(sNE) ≤ 28
13 C(sOPT)

for any given worst-case Nash equilibrium sNE and optimal solution sOPT, of an
arbitrary instance I of a symmetric k-uniform congestion game. For the remain-
der of this section, fix an instance I, a worst-case Nash equilibrium sNE and a
system optimal solution sOPT.

To gain some intuition on congestion games with k-uniform matroid strate-
gies, let us first consider the following example of a k-uniform congestion game
that will serve as a running example throughout this section. Even though it has
only a moderate price of anarchy of 16/14, it showcases the crucial structures
that we exploit later in this section when proving Theorem 1.

OPT 1 2 3 1 2 3 1

2

1 2 3 3

NE 1 2 3

c1(x)=1

1 2

c2(x)=1

3

c3(x)=x

2

1

c4(x)=x

2

1

c5(x)=x

3

c6(x)=x

3

c7(x)=x

A B

Fig. 1. A symmetric 4-uniform congestion game with seven resources. The height of
the stack of each resource corresponds to its cost, e.g., resource 1 is used by players 1,
2 and 3 both in sNE and sOPT and the corresponding cost is 1; resource 3 is used by
players 1 and 2 in sOPT and the corresponding cost is 2.

Example 1. Consider the symmetric 4-uniform congestion game in Fig. 1. There
are seven resources R = {1, . . . , 7}. The first two resources have constant cost
functions c1(x) = c2(x) = 1 for all x ∈ N. The cost function of the other five
resources is the identity, i.e., cr(x) = x for all r ∈ {3, . . . , 7}. There are three
players whose strategy is to choose exactly 4 resources, i.e., Si = {R′ ⊂ R : |R′| =
4} for all i ∈ {1, 2, 3}. In the system optimum, the two resources with constant
costs are used by all players and each player chooses two of the remaining five
resources, see the upper profile in Fig. 1. One of the resources with non-constant
costs has to be used by two players leading to overall costs of 14. However, there
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is a Nash equilibrium, in which not all of the resources with constant costs are
used by all players, see the lower profile in Fig. 1. This Nash equilibrium has a
total cost of 16. The price of anarchy of this instance is 16/14 ≈ 1.14. �

In order to derive bounds on the price of anarchy for the proof of Theorem 1,
we bound the excess costs of the resources that are chosen by more players in
the Nash equilibrium than in the system optimum in terms of the excess costs
of the resources that are chosen by more players in the system optimum than in
the Nash equilibrium. To this end, we denote by A the set of resources chosen
by more players in sOPT than in sNE, and by B the set of resources chosen by
more players in sNE than in sOPT, i.e.,

A =
{

r ∈ R : xOPT
r > xNE

r

}
and B =

{
r ∈ R : xOPT

r < xNE
r

}
. (1)

Henceforth, we term the resources in A underloaded and the resources in B over-
loaded. For an illustration, see also Fig. 1 where the set of underloaded resources
is A = {2, 3} and the set of overloaded resources is B = {4, 5}.

As we show in the following lemma, it is sufficient to bound the excess costs
of the resources in B in terms of the excess costs of the resources in A in order
to bound the price of anarchy.

Lemma 1. For a symmetric k-uniform congestion game with affine cost func-
tions and A and B as in (1), we have

3
4
C(sNE) ≤ C(sOPT)+

∑

b∈B

(
xNE
b −xOPT

b

)
cb(xNE

b )−
∑

a∈A

(
xOPT
a −xNE

a

)
ca(xNE

a +1).

(2)

The proof is a rather straightforward generalization of a similar lemma due
to Fotakis [12] for singleton games. It is contained in the full version of this
paper [10].

In order to use Lemma 1 for the proof of Theorem 1, we are interested in
bounding

∑
b∈B

(
xNE
b − xOPT

b

)
cb(xNE

b ) − ∑
a∈A

(
xOPT
a − xNE

a

)
ca(xNE

a + 1
)

in terms
of C(sNE). It is interesting to note that for symmetric singleton games, it holds
that

cr(xNE
r ) ≤ cr′(xNE

r′ + 1) (3)

for all r, r′ ∈ R by the Nash inequality. This implies in particular that
∑

b∈B

(
xNE
b − xOPT

b

)
cb(xNE

b ) ≤
∑

a∈A

(
xOPT
a − xNE

a

)
ca(xNE

a + 1
)
, (4)

which together with Lemma 1 implies an upper bound on the price of anarchy
of 4/3. This is the road taken by Fotakis [12] in order to derive this bound.

However, neither inequality (3) nor inequality (4) hold in k-uniform con-
gestion games due to the more complicated strategy spaces. E.g., for the Nash
equilibrium sNE and system optimum sOPT in Fig. 1 we have

c4(xNE
4 ) = 2 > c2(xNE

2 + 1) = 1,
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contradicting (3), as well as

c4(xNE
4 ) + c5(xNE

5 ) = 4 > 3 = c2(xNE
2 + 1) + c3(xNE

2 + 1),

contradicting (4). More generally speaking, inequality (3) does not necessarily
hold if all players choosing r in sNE also choose r′. The main technical work in
our proof of Theorem 1 is to derive an alternative upper bound for the right
hand side in (2). Specifically, we will work towards showing that for k-uniform
congestion games, we have

∑

b∈B

(
xNE
b − xOPT

b

)
cb(xNE

b ) −
∑

a∈A

(
xOPT
a − xNE

a

)
ca(xNE

a + 1) ≤ 2
7
C(sNE) . (5)

In order to show inequality (5), some further notation is necessary. A natural
way of decomposing the cost of a strategy vector s is to consider the tuples (i, r)
with the property that player i uses resource r in strategy s. One may think
of such a tuple as a single unit of demand that player i places on resource r
under strategy vector s. The cost of a unit of demand is equal to the cost of
the corresponding resource under that strategy profile, and the cost of strategy
profile is then equal to the sum of the costs of the units of demand. Let

PA ⊆ {
(i, a) : a ∈ A, a ∈ sNEi

}

be a subset of the units of demand placed in sNE on the resources in A such that
|{(i, a) ∈ PA}| = xOPT

a − xNE
a for all a ∈ A, i.e., for each resource a ∈ A, PA

contains exactly as many units of demand as there are more on these resources
in sOPT than in sNE. Similarly, let

PB ⊆ {
(i, b) : b ∈ B, b ∈ sOPT

i

}

be such that |{(i, b) ∈ PB}| = xNE
b − xOPT

b for all b ∈ B.
Given these definitions, we want to bound the total costs of the units in PB

with respect to the total costs of the units in PA. We first identify a subset of
these units, for which a simple bound can be obtained, i.e., we identify units of
demand (i, a) ∈ PA and (j, b) ∈ PB such that cb(xNE

b ) ≤ ca(xNE
a + 1). For our

purposes, it is sufficient to do this iteratively in a greedy way, see the greedy
cancelling process in Algorithm 1.

Intuitively, this algorithm maps all units of demand in PB whose cost are
bounded by the cost of another unit in PA and removes both units from the
sets PA and PB . In the following, we denote by P ′

A ⊆ PA and P ′
B ⊆ PB the

set of units that survives this elimination. We denote by x′OPT
a and x′NE

b the
number of units of demand that survive this elimination on each underloaded
and overloaded resource respectively. Note that by definition of PA and PB, we
have that x′NE

b ≥ xOPT
b for b ∈ B, and x′OPT

a ≥ xNE
a for a ∈ A after the cancelling.

Also note that during the course of the algorithm there may be different pairs
(i, a) ∈ PA and (j, b) ∈ PB for which the condition in the if-loop is satisfied. For
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P ′
A ← PA, P ′

B ← PB ;

x′OPT
a ← xOPT

a , ∀a ∈ A;

x′NE
b ← xNE

b , ∀b ∈ B;
while true do

if there are (i, a) ∈ PA and (j, b) ∈ PB with cb(x
NE
b ) ≤ ca(x

NE
a + 1) then

P ′
A ← P ′

A \ {(i, a)};
P ′
B ← P ′

B \ {(j, b)};

x′OPT
a ← x′OPT

a − 1;

x′NE
b ← x′NE

b − 1;

else

return P ′
A, P

′
B , x

′OPT
a , ∀a ∈ A, x′NE

b , ∀b ∈ B;
end

end
Algorithm 1. Cancelling process

our following arguments it is irrelevant, which of these is removed from PA

and PB . Let

A′ = {a ∈ A : there is (i, a) ∈ P ′
A for some i ∈ N}, (6a)

B′ = {b ∈ B : there is (i, b) ∈ P ′
B for some i ∈ N} (6b)

be the resources that remain over- respectively underloaded in sNE as opposed
to sOPT after the cancelling process. The following lemma then follows directly
by definition of the above cancelling process and states that the cost of cancelled
packets on B with respect to cb(xNE

b ) is bounded by the cost of the cancelled
packets on A with respect to ca(xNE

a + 1).

Lemma 2. For a symmetric k-uniform congestion game with affine cost func-
tions, A and B as in (1), and A′ and B′ as in (6), we have

∑

b∈B

(xNE
b − x′NE

b )cb(xNE
b ) −

∑

a∈A

(xOPT
a − x′OPT

a )ca(xNE
a + 1) ≤ 0 .

For the following arguments, it may be helpful to consult Fig. 2 that shows
the outcome of the cancelling process and the resulting sets A′ and B′ for the
congestion game introduced in Example 1. Let us define

P = {(i, r) : r ∈ R, r ∈ sNEi } (7)

as the set of all units of demand in sNE. The next lemma is the first, crucial
ingredient that allows us to obtain improved bounds on the price of anarchy. It
states that for each “overloaded” unit of demand on a resource in P ′

B, there are
“enough” other units on other resources. Subsequently, we also bound the cost
of these other units. The proof of the lemma is deferred to the full version [10].

Lemma 3. For a symmetric k-uniform congestion game with affine cost func-
tions, let P be as in (7) and let (P ′

A, P ′
B) be the output of Algorithm 1. Then,

|P \ P ′
B | ≥ 3|P ′

B |.
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PB

PA

OPT . . . 1 2 3 1

2

1 2 . . .

NE . . . 1 2

c2(x)=1

3

c3(x)=x

2

1

c4(x)=x

2

1

c5(x)=x

. . .

AA BB

Fig. 2. Underloaded resources A = {2, 3} and overloaded resources B = {4, 5} for
the game considered in Example 1. In the cancelling process one unit of demand of
resource 4 cancelled out with a unit of demand of resource 3. After the cancelling
process only resource 2 is underloaded and only resource 5 is overloaded, i.e., A′ = {2}
and B′ = {5}.

Before we proceed, we provide two structural lemmas which restrict the space
of instances with worst-case price of anarchy.

Lemma 4. The worst-case price of anarchy of symmetric k-uniform congestion
games is attained on games that have the property that no resource is chosen by
all players both in an optimal strategy vector and a worst-case Nash equilibrium.

The proof is by contradiction and can be found in the full version. The
next lemma is a technical lemma specifically about the structure of worst-case
instances with PoA(I) ≥ 4/3. Again, the proof is given in the full version [10].

Lemma 5. For any instance I of a symmetric k-uniform congestion game with
affine cost functions and PoA(I) ≥ 4/3 and a resource r ∈ R \ B′, chosen by
all players in sNE, there exists an instance Ĩ, with resource r removed, such that
PoA(Ĩ) ≥ PoA(I).

The restrictions on the structure of worst-case instances obtained in Lemma 5
will be used later in the proof of Theorem 1. Before we can do that, however, we
proceed to bound the costs of the resources in A′ with the following two lemmas.

Lemma 6. For a symmetric k-uniform congestion game with affine cost func-
tions, we have cr(xNE

r ) ≤ 2cr′(xNE
r′ +1) for any two resources r, r′, where xNE

r ≥ 1
and xNE

r′ < n.

The proof is contained in the full version [10].
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Lemma 7. For a symmetric k-uniform congestion game with affine cost func-
tions, we have

∑

b∈B′
(x′NE

b − xOPT
b )cb(xNE

b ) ≤ 2
∑

a∈A′
(x′OPT

a − xNE
a )ca(xNE

a + 1) .

Proof. First recall that xNE
b ≥ 1 for all b ∈ B′, and xNE

a < n for all a ∈ A′ as
resources in A′ ⊆ A are chosen more often in sOPT than in sNE. By Lemma 6, we
can therefore conclude that cb(xNE

b ) ≤ 2ca(xNE
a + 1) for all resources b ∈ B′ and

a ∈ A′. Summing over all units of demands in P ′
A and P ′

B , respectively, yields
the result. 	


We are now ready to prove our main result (Theorem 1).

Proof. (Proof of Theorem 1). By Lemma 3, for each unit of demand in P ′
B , there

are three distinct units of demand in sNE on resources r ∈ R \B′. We bound the
cost of each of these resource units from below by

cr(xNE
r ) ≥ cr(xNE

r + 1)
2

≥ cb(xNE
b )

4
, (8)

for any b ∈ B. Here the first inequality follows directly from the fact that the cost
functions are affine. The second inequality follows from Lemma 6 for resources r
with xNE

r < n. However, by Lemma 5, it is without loss of generality to assume
that no resource r ∈ R \ B′ is chosen by all players in sNE, unless the price of
anarchy is not larger than 4/3. Therefore, we finally get

C(sNE) ≥
∑

b∈B′
(x′NE

b − xOPT
b )cb(xNE

b ) +
∑

b∈B′
xOPT
b cb(xNE

b ) +
∑

r∈R\B′
xNE
r cr(xNE

r )

≥
∑

b∈B′
(x′NE

b − xOPT
b )cb(xNE

b ) +
∑

r∈R\B′
xNE
r cr(xNE

r )

≥7
4

∑

b∈B′
(x′NE

b − xOPT
b )cb(xNE

b ) . (9)

Here, the first inequality uses x′NE
b ≤ xNE

b for any resource b ∈ B, which follows
from the cancelling process. The last inequality uses that

∑
b∈B′(x′NE

b −xOPT
b ) =

|P ′
B |, and by Lemma 3,

∑
r∈R\B′ xNE

r ≥ |P \P ′
B | ≥ 3|P ′

B | = 3
∑

b∈B′(x′NE
b −xOPT

b ),
and each of these resource units has cost at least cb(xNE

b )/4, for all b ∈ B by (8).
Combining (9) with Lemmas 2 and 7 yields

∑

b∈B

(xNE
b − xOPT

b )cb(xNE
b ) −

∑

a∈A

(xOPT
a − xNE

a )ca(xNE
a + 1)

≤
∑

b∈B′
(x′NE

b − xOPT
b )cb(xNE

b ) −
∑

a∈A′
(x′OPT

a − xNE
a )ca(xNE

a + 1)

≤1
2

∑

b∈B′
(x′NE

b − xOPT
b )cb(xNE

b ) ≤ 2
7
C(sNE) ,
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where the first inequality is by Lemma 2, the second by Lemma 7, and the third
by (9). Finally, plugging this into (2) proves Theorem 1. 	


4 Lower Bound

We show that generalizing the strategy spaces from singletons to k-uniform
matroids increases the price of anarchy of congestion games. The proof is by
a parametric set of instances and contained in the full version [10].

Theorem 2. The price of anarchy of symmetric k-uniform congestion games
with affine cost functions is at least 7 − 4

√
2 ≈ 1.343 for large enough k.

5 Conclusions

The most interesting open problem, next to improving lower and upper bounds
for the k-uniform matroid case we study here, is to analyze the price of anarchy
for the generalized problem with arbitrary matroid strategy spaces. We also note
that larger lower bounds on the price of anarchy can be achieved for more general
settings such as matroid strategy spaces, or non-affine cost functions. They are
not included in this paper, however.
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Abstract. We consider nonatomic network games with one source and
one destination. We examine the asymptotic behavior of the price of
anarchy as the inflow increases. In accordance with some empirical obser-
vations, we show that, under suitable conditions, the price of anarchy is
asymptotic to one. We show with some counterexamples that this is not
always the case. The counterexamples occur in simple parallel graphs.

1 Introduction

The study of network routing costs and their efficiency goes back to Pigou [23]
who, in the first edition of his book, introduces his famous two-road model.
Wardrop [31] develops a model where many players (vehicles on the road) choose
a road in order to minimize their cost (travel time) and the influence of each one
of them, singularly taken, is negligible. He introduces a concept of equilibrium
that has become the standard in the literature on nonatomic network games.

When travelers minimize their travel time without considering the negative
externalities that their behavior has on other travelers, the collective outcome
of the choices of all travelers is typically inefficient, i.e., it is worse than the
outcome that a benevolent planner would have achieved. Various measures have
been proposed to quantify this inefficiency. Among them the price of anarchy
has been the most successful. Introduced by Koutsoupias and Papadimitriou
[14] and given this name by Papadimitriou [21], it is the ratio of the worst social
equilibrium cost and the optimum cost. The price of anarchy has been studied
by several authors and interesting bounds for it have been found under some
conditions on the cost functions.

Most of the existing results about the price of anarchy consider worst-case
scenarios. They are not necessarily helpful in specific situations. In a nice recent
paper O’Hare et al. [19] show, both theoretically and with the aid of simulations,
how the price of anarchy is affected by changes in the total inflow of players. They
consider data for three cities and they write: “In each city, it can be seen that
there are broadly three identifiably distinct regions of behaviour: an initial region
in which the Price of Anarchy is one; an intermediate region of fluctuations;
and a final region of decay, which has a similar characteristic shape across all
c© Springer-Verlag Berlin Heidelberg 2016
M. Gairing and R. Savani (Eds.): SAGT 2016, LNCS 9928, pp. 117–128, 2016.
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three networks. The similarities in this general behaviour across the three cities
suggest that there may be common mechanisms that drive this variation.”

The core of the paper [19] is an analysis of the intermediate fluctuations.
In our paper we will mainly look at the asymptotic behavior of the price of
anarchy. We consider nonatomic congestion games with single source and single
destination. We show that for a large class of cost functions the price of anarchy
is, indeed, asymptotic to one, as the mass of players grows. Nevertheless, we find
counterexamples where its lim sup is not 1 and it can even be infinite.

Contribution. The goal of this paper is twofold. On one hand we provide some
positive results that show that under some conditions the price of anarchy of
nonatomic network games is indeed asymptotic to one. On the other hand, we
present counterexamples where the lim sup of the price of anarchy is not one.

We first show that, for any single-source, single-destination graph, the price of
anarchy is asymptotic to one whenever the cost of at least one path is bounded.
Then we focus on parallel graphs and we show that the price of anarchy is
asymptotic to one for a large class of costs that we characterize in terms of
regularly varying functions (see [3] for properties of these functions). This class
includes affine functions and cost functions that can be bounded by a pair of
affine functions with the same slope.

Next, we present counterexamples where the behavior of the price of anar-
chy is periodic on a logarithmic scale, so that its lim sup is larger than one
both as the mass of players grows unbounded and as it goes to zero. In another
counterexample the lim sup of the price of anarchy is infinite. A further coun-
terexample shows that the price of anarchy may not converge to one even for
convex costs. An interesting point is that all the counterexamples concern a very
simple parallel graph with just two edges, so that the bad behavior of the price
of anarchy depends solely on the costs and not on the topology of the graph.
This is in stark contrast with the results in [19], where the irregular behavior of
the price of anarchy in the intermediate region of inflow heavily depends on the
structure of the graph.

Related Literature. Wardrop’s nonatomic model has been studied by
Beckmann et al. [2] and many others. The formal foundation of games with
a continuum of players came with Schmeidler [30] and then with Mas Colell [16].
Nonatomic congestion games have been studied, among others, by Milchtaich
[17,18].

Various bounds for the price of anarchy in nonatomic games have been
proved, under different conditions. In particular Roughgarden and Tardos [27]
prove that, when the cost functions are affine, the price of anarchy in nonatomic
games is at most 4/3, irrespective of the topology of the network. The bound
is sharp and is attained even in very simple networks. Several authors have
extended this bound to larger classes of functions. Roughgarden [25] shows that
if the class of cost functions includes the constants, then the worst price of
anarchy is achieved on parallel networks with just two edges. In his paper he
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considers bounds for the price of anarchy when the cost functions are polynomi-
als of degree at most d. Dumrauf and Gairing [8] do the same when the degrees
of the polynomials are between s and d. Roughgarden and Tardos [28] provide a
unifying result for the class of standard costs, i.e., costs c that are differentiable
and such that xc(x) is convex. Correa et al. [5] consider the price of anarchy
for networks where edges have a capacity and costs are not necessarily convex,
differentiable, or even continuous. In [7] they reinterpret and extend these results
using a geometric approach. In [6] they consider the problem of minimizing the
maximum latency rather than the average latency and provide results about the
price of anarchy in this framework. The reader is referred to [26,29] for a survey.

Some papers show how in real life the price of anarchy may substantially
differ from the worst-case scenario, [15,32]. González Vayá et al. [12] deal with a
problem of optimal schedule for the electricity demand of a fleet of plug-in electric
vehicles. Without using the term, they show that the price of anarchy goes to
one as the number of vehicles grows. Cole and Tao [4] study large Walrasian
auctions and large Fisher markets and show that in both cases the price of
anarchy goes to one as the market size increases. Feldman et al. [10] define a
concept of (λ, μ)-smoothness for sequences of games, and show that the price
of anarchy in atomic congestion games converges to the price of anarchy of the
corresponding nonatomic game, when the number of players grows. Patriksson
[22] and Josefsson and Patriksson [13] perform sensitivity analysis of Wardrop
equilibrium to some parameters of the model. Closer to the scope of our paper,
Englert et al. [9] examine how the equilibrium of a congestion game changes
when either the total mass of players is increased by ε or an edge that carries
an ε fraction of the mass is removed. For polynomial cost functions they bound
the increase of the equilibrium cost when a mass ε of players is added to the
system. Other recent papers, such as [20,24], have also raised questions about
the practical validity of known results about the price of anarchy.

2 The Model

Consider a finite directed multigraph G = (V,E), where V is a set of vertices
and E is a set of edges. The graph G together with a source s and a destination
t, with s, t ∈ V , is called a network. A path P is a set of consecutive edges that
go from source to destination. Call P the set of all paths. Each path P has a
flow xP ≥ 0 and call x = (xP )P∈P . The total flow from source to destination is
denoted by M ∈ R+. A flow x is feasible if

∑
P∈P xP = M . Call FM the set of

feasible flows. For each edge e ∈ E there exists a cost function ce(·) : R+ → R+,
that is assumed (weakly) increasing and continuous. Call c = (ce)e∈E . This
defines a nonatomic congestion game ΓM = (G ,M, c). The number M can be
seen as the mass of players who play the game.

The cost of a path P with respect to a flow x is the sum of the cost of its
edges: cP (x) =

∑
e∈P ce(xe), where

xe =
∑

P∈P:
e∈P

xP .
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A flow x∗ is an equilibrium flow if for every P,Q ∈ P such that x∗
P > 0 we

have cP (x∗) ≤ cQ(x∗). Denote E (ΓM ) the set of all such equilibrium flows.
For each flow x define the social cost associated to it as

C(x) :=
∑

P∈P

xP cP (x) =
∑

e∈E

xece(xe),

and let Opt(ΓM ) = minx∈FM
C(x) be the optimum cost of ΓM . Define also the

worst equilibrium cost of ΓM as WEq(ΓM ) = maxx∈E (ΓM ) C(x). Actually, in the
present setting the cost C(x∗) is the same for every equilibrium x∗ (see [11]).

The price of anarchy of the game ΓM is then defined as

PoA(ΓM ) :=
WEq(ΓM )
Opt(ΓM )

.

We will be interested in the price of anarchy of this game, as M → ∞. We will
show that, under suitable conditions, it is asymptotic to one. We call asymptot-
ically well behaved the congestion games for which this happens.

3 Well Behaved Congestion Games

3.1 General Result

The following general result shows that for any network the price of anarchy is
asymptotic to one when at least one path has a bounded cost.

Theorem 1. For each path P ∈ P denote

c∞
P =

∑

e∈P

c∞
e with c∞

e = lim
z→∞ ce(z)

and suppose that B := minP∈P c∞
P is finite. Then, limM→∞ PoA(ΓM ) = 1.

Proof. Let x∗ be an equilibrium for ΓM . Then if x∗
P > 0 we have

cP (x∗) = min
Q∈P

cQ(x∗) ≤ min
Q∈P

c∞
Q = B

and therefore

WEq(ΓM ) =
∑

P∈P

x∗
P cP (x∗) ≤

∑

P∈P

x∗
P B = MB.

It follows that
PoA(ΓM ) ≤ MB

Opt(ΓM )
,

so that it suffices to prove that Opt(ΓM )/M → B. To this end denote Δ(P) the
simplex defined by y = (yP )P∈P ≥ 0 and

∑
P∈P yP = 1, so that

1
M

Opt(ΓM ) = min
x∈FM

∑

P∈P

xP

M
cP (x)

= min
y∈Δ(P)

∑

P∈P

yP cP (My).
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Denote ΦM (y) =
∑

P∈P yP cP (My). Since the cost functions ce(·) are non-
decreasing, the family ΦM (·) monotonically increases with M towards the limit
function

Φ∞(y) =
∑

P∈P:yP >0

yP c∞
P .

Now we use the fact that a monotonically increasing family of functions epi-
converges (see [1]) and since Δ(P) is compact it follows that the minimum
miny∈Δ(P) ΦM (y) converges as M → ∞ towards

min
y∈Δ(P)

Φ∞(y).

Clearly this latter optimal value is B and is attained by setting yP > 0 only on
those paths P that attain the smallest value c∞

P = B, and therefore we conclude

1
M

Opt(ΓM ) = min
y∈Δ(P)

ΦM (y) → B,

as was to be proved. ��

3.2 Parallel Graphs

In this section we examine the asymptotic behavior of the price of anarchy when
the game is played on a parallel graph.

Let G = (V,E) be a parallel graph such that V = {s, t} are the vertices and
E = {e1, e2, . . . , en} are the edges. For each edge ei ∈ E the function ci(·) rep-
resents the cost function of the edge ei. Call ΓM = (G ,M, c) the corresponding
game. In the whole section we will deal with this graph.

Adding a Constant to Costs. First we prove a preservation result. We show
that if the price of anarchy of a game converges to 1, then adding positive
constants to each cost does not alter this asymptotic behavior.

Theorem 2. Given a game ΓM = (G ,M, c) and a vector a ∈ [0,∞)n, consider
a new game Γa

M (G ,M, ca), where

cai (x) = ai + ci(x).

If ci(·) is strictly increasing and continuous, limx→∞ ci(x) = ∞ for all ei ∈ E,
and limM→∞ PoA(ΓM ) = 1, then limM→∞ PoA(Γa

M ) = 1.

Regularly Varying Functions

Definition 3. Let β ≥ 0. A function Θ : (0,+∞) → (0,+∞) is called
β-regularly varying if for all a > 0

lim
x→∞

Θ(a · x)
Θ(x)

= aβ ∈ (0,+∞).

When β = 1, we just say that the function is regularly varying.
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The following theorem shows that asymptotically the price of anarchy goes
to 1 for a large class of cost functions.

Theorem 4. Consider the game ΓM and suppose that for some β > 0 there
exists a β-regularly varying function c(·) ∈ C1 such that the function x 	→
c(x)+xc′(x) is strictly increasing and for all ei ∈ E the function ci(·) is strictly
increasing and continuous with

lim
x→∞

c−1 ◦ ci(x)
x

= αi ∈ (0,+∞] (1)

and that at least one αi is finite. Then

lim
M→∞

PoA(ΓM ) = 1.

Proof. We begin by noting that if some cost ci(·) is bounded, then the result
follows directly from Theorem 1. Suppose now that ci(x) → ∞ when x → ∞
in all links and consider first the case where all the αi are finite. In this case
the equilibrium flows x∗

i must diverge to ∞ as M → ∞ and the equilibrium is
characterized by ci(x∗

i ) = λ. This allows to derive an upper bound for the cost
of the equilibrium. That is, (1) implies that for small ε > 0 we have

c−1 ◦ c(x∗
i )

x∗
i

=
c−1(λ)

x∗
i

∈ (αi − ε, αi + ε),

provided M is large enough. It then follows that

n∑

i=1

c−1(λ)
αi + ε

≤
n∑

i=1

x∗
i = M,

so that, denoting

a(ε) =

(
n∑

i=1

1
αi + ε

)−1

,

we get λ ≤ c(Ma(ε)) and

WEq = Mλ ≤ Mc(Ma(ε)).

Next we derive a lower bound for the optimal cost

Opt(ΓM ) = min
x∈FM

n∑

i=1

xici(xi).

We note that when M → ∞ the optimal solutions are such that xi(M) → ∞ so
that using (1) and the fact that αi − ε > 0 we get for all M large enough

min
x∈FM

n∑

i=1

xici(xi) ≥ min
x∈FM

n∑

i=1

xic((αi − ε)xi).
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The optimality condition for the latter yields

c((αi − ε)xi) + (αi − ε)xic
′((αi − ε)xi) = μ.

For the sake of brevity we denote c̃(x) = c(x) + xc′(x) and yi = (αi − ε)xi so
that the optimality condition becomes c̃(yi) = μ. This yields yi = c̃−1(μ) and
therefore

M =
n∑

i=1

xi =
n∑

i=1

c̃−1(μ)
αi − ε

.

Denoting

b(ε) =

(
n∑

i=1

1
αi − ε

)−1

,

we then get μ = c̃(Mb(ε)) and we obtain the following lower bound for the
optimal cost

Opt(ΓM ) ≥ min
x∈FM

n∑

i=1

xic((αi − ε)xi) = Mc(c̃−1(μ)) = Mc(Mb(ε)).

Combining the previous bounds we obtain the following estimate for the price
of anarchy

PoA(ΓM ) ≤ Mc(Ma(ε))
Mc(Mb(ε))

.

Letting M → ∞ and using the fact that c is β-regularly varying we deduce

lim sup
M→∞

PoA(ΓM ) ≤
(

a(ε)
b(ε)

)β

and since a(ε)/b(ε) → 1 as ε → 0 we conclude

lim sup
M→∞

PoA(ΓM ) = 1.

If some αi = ∞, then call I0 := {i : αi < ∞}. In equilibrium

M =
n∑

i=1

c−1
i (λ) ≥

∑

i∈I0

c−1
i (λ) ≥

∑

i∈I0

1
αi + ε

c−1(λ),

hence

λ ≤ c

⎛

⎝M

(
∑

i∈I0

1
αi + ε

)−1
⎞

⎠ .

In the optimum proceed as before with α′
i ↗ αi. ��

The following results follow easily from Theorem 4.
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Corollary 5. In the game ΓM if for all i ∈ E we have limx→∞ ci(x)/x = mi ∈
(0,+∞] and at least one mi < ∞, then

lim
M→∞

PoA(ΓM ) = 1.

Corollary 6. In the game ΓM if for all i ∈ E we have limx→∞ c′
i(x) = mi with

mi ∈ (0,+∞] and at least one mi is finite, then

lim
M→∞

PoA(ΓM ) = 1.

Corollary 7. In the game ΓM if for all i ∈ E for some β > 0 there exists a
β-regularly varying function c(·) such that

lim
x→∞

ci(x)
c(x)

= mi ∈ (0,+∞], (2)

and at least one mi is finite, then

lim
M→∞

PoA(ΓM ) = 1.

Corollary 8. In the game ΓM if, for all ei ∈ E, ci(x) = ai + bix, then

lim
M→∞

PoA(ΓM ) = 1.

Costs Bounded by Affine Functions. The next theorem examines the case
where each cost function is bounded above and below by two affine functions
with the same slope.

Theorem 9. Consider the game ΓM and assume that for every ei ∈ E


i(x) := ai + bix ≤ ci(x) ≤ αi + bix =: Li(x).

Then
lim

M→∞
PoA(ΓM ) = 1.

4 Ill Behaved Games

In this section we will consider some examples where the price of anarchy is not
asymptotic to one, as the inflow goes to infinity.

Consider a standard Pigou graph and assume that the costs are as follows:

c1(x) = x,

c2(x) = ak for x ∈ (ak−1, ak], k ∈ Z,
(3)

with a ≥ 2, as in Fig. 1. In this game the cost of one edge is the identity, whereas
for the other edge it is a step function that touches the identity at intervals that
grow exponentially. The cost function c2 is not continuous, but a very similar
game can be constructed by approximating it with a continuous function.
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ce1(x)

ce2(x)

ce2(x)

ce1(x)

Fig. 1. Step function.

Theorem 10. Consider the game ΓM with costs as in (3). We have

lim inf
M→∞

PoA(ΓM ) = 1, lim sup
M→∞

PoA(ΓM ) =
4 + 4a

4 + 3a
.

Remark 11. We can immediately see that

lim sup
M→∞

PoA(ΓM ) =
6
5

for a = 2

and
lim sup
M→∞

PoA(ΓM ) → 4
3

as a → ∞.

The proof of Theorem 10 shows that there is a periodic behavior of the price
of anarchy (on a logarithmic scale). This implies that

lim inf
M→0

PoA(ΓM ) = 1, lim sup
M→0

PoA(ΓM ) =
4 + 4a
4 + 3a

.

That is, even for very small values of M the price of anarchy is not necessarily
close to 1.

Figure 2 plots the price of anarchy for M ∈ [2ak, 2ak+1], when a = 3.
The next theorem shows that the price of anarchy may fail to be asymptotic

to one, even when the cost functions are all convex.

Theorem 12. There exist congestion games ΓM where the cost functions are
all increasing and convex and both

lim sup
M→∞

PoA(ΓM ) > 1 and lim sup
M→0

PoA(ΓM ) > 1.
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Fig. 2. Price of anarchy for M ∈ [2ak, 2ak+1], with a = 3, k = 1.

The next theorem shows that the lim sup of the price of anarchy may even
be infinite.

Theorem 13. There exist congestion games ΓM with lim sup
M→∞

PoA(ΓM ) = ∞.

5 Conclusions

The classical result of [27] can be restated as follows. Given a nontrivial single-
commodity network, for any fixed total flow M , there exists a vector c of affine
costs that depend on M , such that the price of anarchy of the corresponding
game is 4/3.

In this paper we have proved that, given a single-commodity network, for any
vector c of costs that is bounded on some path P , there exists a total flow M
such that the price of anarchy of the corresponding game is arbitrarily close to
1. Similar results have been obtained under different conditions on the network
and the costs. What is relevant is that in our model the order of the quantifiers is
reversed with respect to the classical bounds of the price of anarchy, such as [27].
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Abstract. We introduce a unifying model to study the impact of worst-
case latency deviations in non-atomic selfish routing games. In our
model, latencies are subject to (bounded) deviations which are taken
into account by the players. The quality deterioration caused by such
deviations is assessed by the Deviation Ratio, i.e., the worst case ratio of
the cost of a Nash flow with respect to deviated latencies and the cost
of a Nash flow with respect to the unaltered latencies. This notion is
inspired by the Price of Risk Aversion recently studied by Nikolova and
Stier-Moses [9]. Here we generalize their model and results. In particu-
lar, we derive tight bounds on the Deviation Ratio for multi-commodity
instances with a common source and arbitrary non-negative and non-
decreasing latency functions. These bounds exhibit a linear dependency
on the size of the network (besides other parameters). In contrast, we
show that for general multi-commodity networks an exponential depen-
dency is inevitable. We also improve recent smoothness results to bound
the Price of Risk Aversion.

1 Introduction

In the classical selfish routing game introduced by Wardrop [12], there is an (infi-
nitely) large population of (non-atomic) players who selfishly choose minimum
latency paths in a network with flow-dependent latency functions. An assump-
tion that is made in this model is that the latency functions are given deter-
ministically. Although being a meaningful abstraction (which also facilitates the
analysis of such games), this assumption is overly simplistic in situations where
latencies are subject to deviations which are taken into account by the players.

In this paper, we study how much the quality of a Nash flow deteriorates
in the worst case under (bounded) deviations of the latency functions. More
precisely, given an instance of the selfish routing game with latency functions
(la)a∈A on the arcs, we define the Deviation Ratio (DR) as the worst case ratio
C(fδ)/C(f0) of a Nash flow fδ with respect to deviated latency functions (la +
δa)a∈A, where (δa)a∈A are arbitrary deviation functions from a feasible set, and
a Nash flow f0 with respect to the unaltered latency functions (la)a∈A. Here the
c© Springer-Verlag Berlin Heidelberg 2016
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social cost function C refers to the total average latency (without the deviations).
Our motivation for studying this social cost function is that a central designer
usually cares about the long-term performance of the system (accounting for the
average latency or pollution). On the other hand, the players typically do not
know the exact latencies and use estimates or include “safety margins” in their
planning. Similar viewpoints are adopted in [7,9].

In order to model bounded deviations, we extend an idea previously put
forward by Bonifaci, Salek and Schäfer [1] in the context of the restricted network
toll problem: We assume that for every arc a ∈ A we are given lower and upper
bound restrictions θmin

a and θmax
a , respectively, and call a deviation δa feasible if

θmin
a (x) ≤ δa(x) ≤ θmax

a (x) for all x ≥ 0.
Our notion of the Deviation Ratio is inspired by and builds upon the Price of

Risk Aversion (PRA) recently introduced by Nikolova and Stier-Moses [9]. The
authors investigate selfish routing games with uncertain latencies by considering
deviations of the form δa = γva, where γ ≥ 0 is the risk-aversion of the players
and va is the variance of some random variable with mean zero. They derive
upper bounds on the Price of Risk Aversion for single-commodity networks with
arbitrary non-negative and non-decreasing latency functions if the variance-to-
mean-ratio va/la of every arc a ∈ A is bounded by some constant κ ≥ 0. It is not
hard to see that their model is a special case of our model if we choose θmin

a = 0
and θmax

a = γκla (see Sect. 2 for more details).

Our contributions. The main contributions presented in this paper are as follows:
1. Upper bounds: We derive a general upper bound on the Deviation Ratio for
multi-commodity networks with a common source and arbitrary non-negative
and non-decreasing latency functions (Theorem 3).

In order to prove this upper bound, we first generalize a result by Bonifaci
et al. [1] characterizing the inducibility of a fixed flow by δ-deviations to multi-
commodity networks with a common source (Theorem 2). This characterization
naturally gives rise to the concept of an alternating path, which plays a crucial
role in the work by Nikolova and Stier-Moses [9] and was first used by Lin,
Roughgarden, Tardos and Walkover [6] in the context of the network design
problem.

We then specialize our bound to the case of so-called (α, β)-deviations, where
θmin

a = αla and θmax
a = βla with −1 < α ≤ 0 ≤ β. We prove that the Deviation

Ratio is at most 1+(β −α)/(1+α)�(n−1)/2�r, where n is the number of nodes
of the network and r is the sum of the demands of the commodities (Theorem 3).
In particular, this reveals that the Deviation Ratio depends linearly on the size
of the underlying network (among other parameters).

By using this result, we obtain a bound on the Price of Risk Aversion
(Theorem 6) which generalizes the one in [9] in two ways: (i) it holds for multi-
commodity networks with a common source and (ii) it allows for negative risk-
aversion parameters (i.e., capturing risk-taking players as well). Further, we show
that our result can be used to bound the relative error in social cost incurred by
small latency perturbations (Theorem 7), which is of independent interest.
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2. Lower bounds: We prove that our bound on the Deviation Ratio for (α, β)-
deviations is best possible. More specifically, for single-commodity networks we
show that our bound is tight in all its parameters. Our lower bound construction
holds for arbitrary n ∈ N and is based on the generalized Braess graph [10]
(Example 1). In particular, this complements a recent result by Lianeas, Nikolova
and Stier-Moses [5] who show that their bound on the Price of Risk Aversion is
tight for single-commodity networks with n = 2j nodes for all j ∈ N.

Further, for multi-commodity networks with a common source we show that
our bound is tight in all parameters if n is odd, while a small gap remains if
n is even (Theorem 4). Finally, for general multi-commodity graphs we estab-
lish a lower bound showing that the Deviation Ratio can be exponential in n
(Theorem 5). In particular, this shows that there is an exponential gap between
the cases of multi-commodity networks with and without a common source. In
our proof, we adapt a graph structure used by Lin, Roughgarden, Tardos and
Walkover [6] in their lower bound construction for the network design problem
on multi-commodity networks (see also [10]).
3. Smoothness bounds: We improve (and slightly generalize) recent smoothness
bounds on the Price of Risk Aversion given by Meir and Parkes [7] and inde-
pendently by Lianeas et al. [5]. In particular, we derive tight bounds for the
Biased Price of Anarchy (BPoA) [7], i.e., the ratio between the cost of a devi-
ated Nash flow and the cost of a social optimum, for arbitrary (0, β)-deviations
(Theorem 8).1 Note that the Biased Price of Anarchy yields an upper bound on
the Deviation Ratio/Price of Risk Aversion. We also derive smoothness results
for general path deviations (which are not representable by arc deviations). As
a result, we obtain bounds on the Price of Risk Aversion (Theorem 9) under the
non-linear mean-std model [5,9] (see Sect. 2).

It is interesting to note that the smoothness bounds on the Biased Price of
Anarchy [7] and the Price of Risk Aversion [5] are independent of the network
structure (but dependent on the class of latency functions). In contrast, the
bound on the Deviation Ratio depends on certain parameters of the network.2

Our results answer a question posed in the work by Nikolova and Stier-Moses
[9] regarding possible relations between their Price of Risk Aversion model [9],
the restricted network toll problem [1], and the network design problem [10]. In
particular, our results also show that the analysis in [9] is not inherent to the
used variance function, but rather depends on the restrictions imposed on the
feasible deviations.

Related work. The modeling and studying of uncertainties in routing games has
received a lot of attention in recent years. An extensive survey on this topic is
given by Cominetti [2].

1 We remark that for certain types of (0, β)-deviations, e.g., scaled marginal tolls,
better bounds can be obtained (see, e.g., [7]).

2 For example, there are parallel-arc networks for which the Biased Price of Anarchy
is unbounded, whereas the Deviation Ratio is a constant.
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As mentioned above, our investigations are inspired by the study of the Price
of Risk Aversion by Nikolova and Stier-Moses [9]. They prove that for single-
commodity instances with non-negative and non-decreasing latency functions
the Price of Risk Aversion is at most 1 + γκ�(n − 1)/2�. We elaborate in more
detail on the connections to their work in Sect. 2.

There are several papers that study the problem of imposing tolls (which
can be viewed as latency deviations) on the arcs of a network to reduce the cost
of the resulting Nash flow. Conceptually, our model is related to the restricted
network toll problem by Bonifaci et al. [1]. The authors study the problem of
computing non-negative tolls that have to obey some upper bound restrictions
(θa)a∈A such that the cost of the resulting Nash flow is minimized. This is
tantamount to computing best-case deviations in our model with θmin

a = 0 and
θmax

a = θa. In contrast, our focus here is on worst-case deviations. As a side
result, we prove that computing such worst-case deviations is NP-hard, even for
single-commodity instances with linear latencies (Theorem 1).

Roughgarden [10] studies the network design problem of finding a subnetwork
that minimizes the latency of all flow-carrying paths of the resulting Nash flow.
He proves that the trivial algorithm (which simply returns the original network)
gives an �n/2�-approximation algorithm for single-commodity networks and that
this is best possible (unless P = NP). Later, Lin et al. [6] show that this algorithm
can be exponentially bad for multi-commodity networks. The instances that we
use in our lower bound constructions are based on the ones used in [6,10].

Meir and Parkes [7] and independently Lianeas et al. [5] show that for non-
atomic network routing games with (1, μ)-smooth3 latency functions it holds that
PRA ≤ BPoA ≤ (1 + γκ)/(1 − μ). An advantage of such bounds is that they
hold for general multi-commodity instances (but depend on the class of latency
functions). These bounds stand in contrast to the topological bounds obtained
here and by Nikolova and Stier-Moses [9] which hold for arbitrary non-negative
and non-decreasing latency functions.

2 Preliminaries

Bounded deviation model. Let I = (G = (V,A), (la)a∈A, (si, ti)i∈[k], (ri)i∈[k]) be
an instance of a non-atomic network routing game. Here, G = (V,A) is a directed
graph with node set V and arc set A ⊆ V × V , where each arc a ∈ A has a non-
negative, non-decreasing and continuous latency function la : R≥0 → R≥0. Each
commodity i ∈ [k] is associated with a source-destination pair (si, ti) and has
a demand of ri ∈ R>0. We assume that ti �= tj if i �= j for i, j ∈ [k]. If all
commodities share a common source node, i.e., si = sj = s for all i, j ∈ [k], we
call I a common source multi-commodity instance (with source s). We assume
without loss of generality that 1 = r1 ≤ r2 ≤ · · · ≤ rk and define r =

∑
i∈[k] ri.

3 Meir and Parkes [7] define a function l to be (1, μ)-smooth if xl(y) ≤ μyl(y) + xl(x)
for all x, y ≥ 0 (which is slightly different from Roughgarden’s original smoothness
definition [11]). Lianeas et al. [5] only require local smoothness where y is taken fixed.
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We denote by Pi the set of all simple (si, ti)-paths of commodity i ∈ [k]
in G, and we define P = ∪i∈[k]Pi. An outcome of the game is a feasible flow
f : P → R≥0, i.e.,

∑
P∈Pi

fP = ri for every i ∈ [k]. Given a flow f = (f i)i∈[k],
we use f i

a to denote the total flow on arc a ∈ A of commodity i ∈ [k], i.e.,
f i

a =
∑

P∈Pi:a∈P fP . The total flow on arc a ∈ A is defined as fa =
∑

i∈[k] f
i
a.

The latency of a path P ∈ P with respect to f is defined as lP (f) :=
∑

a∈P la(fa).
The social cost C(f) of a flow f is given by its total average latency, i.e., C(f) =∑

P∈P fP lP (f) =
∑

a∈A fala(fa). A flow that minimizes C(·) is called (socially)
optimal. We use A+

i = {a ∈ A : f i
a > 0} to refer to the support of f i for

commodity i ∈ [k] and define A+ = ∪i∈[k]A
+
i as the support of f .

For every arc a ∈ A, we have a continuous function δa : R≥0 → R modeling
the deviation on arc a, and we write δ = (δa)a∈A. We define the deviation of
a path P ∈ P as δP (f) =

∑
a∈P δa(fa). The deviated latency on arc a ∈ A is

given by qa(fa) = la(fa) + δa(fa); similarly, the deviated latency on path P ∈ P
is given by qP (f) = lP (f) + δP (f). We say that f is δ-inducible if and only if it
is a Wardrop flow (or Nash flow) with respect to l + δ, i.e.,

∀i ∈ [k],∀P ∈ Pi, fP > 0 : qP (f) ≤ qP ′(f) ∀P ′ ∈ Pi. (1)

If f is δ-inducible, we also write f = fδ. Note that a Nash flow f for the unaltered
latencies (la)a∈A is 0-inducible, i.e., f = f0.

Let θmin = (θmin
a )a∈A and θmax = (θmax

a )a∈A be given continuous threshold
functions satisfying θmin

a (x) ≤ 0 ≤ θmax
a (x) for all x ≥ 0 and a ∈ A, and let

θ = (θmin, θmax). We define Δ(θ) = {(δa)a∈A | ∀a ∈ A : θmin
a (x) ≤ δa(x) ≤

θmax
a (x), ∀x ≥ 0} as the set of feasible deviations. Note that 0 ∈ Δ(θ) for

all threshold functions θmin and θmax. We say that δ ∈ Δ(θ) is a θ-deviation.
Furthermore, f is θ-inducible if there exists a δ ∈ Δ(θ) such that f is δ-inducible.
For −1 < α ≤ 0 ≤ β, we call δ ∈ Δ(θ) an (α, β)-deviation if θmin = αl and
θmax = βl, and also write θ = (α, β). Throughout the paper, we assume that the
deviated latencies are always non-negative, i.e., la(x)+ θmin

a (x) ≥ 0 for all x ≥ 0
and a ∈ A.

We (implicitly) assume that only deviations δ are considered for which a
Nash flow exists. We briefly elaborate on the existence when θmin = 0 and θmax

a

is non-negative, non-decreasing and continuous for all a ∈ A. It is not hard to see
that for a deviated Nash flow fδ there exists some 0 ≤ λa ≤ 1 for every arc a ∈ A
such that δa(fδ

a) = λaθmax
a (fδ

a). In particular, this means that δ′ ∈ Δ(θ) defined
by δ′

a = λaθmax
a also induces fδ. Therefore it is sufficient to consider deviations

of the form δa = λaθmax
a where 0 ≤ λa ≤ 1 for all a ∈ A. As a consequence,

it follows that qa = la + δa is a non-negative, non-decreasing and continuous
function for all a ∈ A. It is well-known that for these types of functions, the
existence of a Nash flow is guaranteed.

Deviation Ratio. Given an instance I and threshold functions θ = (θmin, θmax),
we define the Deviation Ratio DR(I, θ) = supδ∈Δ(θ) C(fδ)/C(f0) as the worst-
case ratio of the cost of a θ-inducible flow and the cost of a 0-inducible flow.
Intuitively, DR(I, θ) measures the worst-case deterioration of the social cost of
a Nash flow due to (feasible) latency deviations.
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We emphasize that the social cost function C is defined as above, i.e., with
respect to the latencies (not taking into account the deviations). Note that
for fixed deviations δ ∈ Δ(θ), there might be multiple Nash flows that are
δ-inducible. In this case, we adopt the convention that C(fδ) refers to the social
cost of the worst Nash flow that is δ-inducible.

Our main focus in this paper is on establishing (tight) bounds on the Devia-
tion Ratio. As a side-result, we prove that the problem of determining worst-case
deviations is NP-hard.

Theorem 1. It is NP-hard to compute deviations δ ∈ Δ(θ) such that C(fδ) is
maximized, even for single-commodity networks with linear latencies.

Related notions. Nikolova and Stier-Moses [9] (see also [5,8]) consider non-atomic
network routing games with uncertain latencies. Here the deviations correspond
to variances (va)a∈A of some random variable ζa (with expectation zero). The
perceived latency of a path P ∈ P with respect to a flow f is then defined
as qγ

P (f) = lP (f) + γvP (f), where γ ≥ 0 is a parameter representing the risk-
aversion of the players. They consider two different objectives as to how the devi-
ation vP (f) of a path P is defined: vP (f) =

∑
a∈P va(fa), called the mean-var

objective, and vP (f) = (
∑

a∈P va(fa))1/2, called the mean-std objective. Note
that for the mean-var objective there is an equivalent arc-based definition, where
the perceived latency of every arc a ∈ A is defined as qγ

a(fa) = la(fa) + γva(fa).
They define the Price of Risk Aversion [9] as the worst-case ratio C(x)/C(z),
where x is a risk-averse Nash flow with respect to qγ = l + γv and z is a
risk-neutral Nash flow with respect to l.4 In their analysis, it is assumed that
the variance-to-mean-ratio of every arc a ∈ A under the risk-averse flow x is
bounded by some constant κ ≥ 0, i.e., va(xa) ≤ κla(xa) for all a ∈ A. Under this
assumption, they prove that the Price of Risk Aversion PRA(I, γ, κ) of single-
commodity instances I with non-negative and non-decreasing latency functions
is at most 1 + γκ�(n − 1)/2�, where n is the number of nodes.

We now elaborate on the relation to our Deviation Ratio. The main technical
difference is that in [9] the variance-to-mean ratio is only considered for the
respective flow values xa. Note however that if we write for every a ∈ A, va(xa) =
λala(xa) for some 0 ≤ λa ≤ κ, then the deviation function δa(y) = γλala(y) has
the property that x = fδ is δ-inducible with δ ∈ Δ(0, γκ). It follows that for
every instance I and parameters γ, κ, PRA(I, γ, κ) ≤ DR(I, (0, γκ)).

Another related notion is the Biased Price of Anarchy (BPoA) introduced
by Meir and Parkes [7]. Adapted to our setting, given an instance I and
threshold functions θ, the Biased Price of Anarchy is defined as BPoA(I, θ) =
supδ∈Δ(θ) C(fδ)/C(f∗), where f∗ is a socially optimal flow. Note that because
C(f∗) ≤ C(f) for every feasible flow f , we have DR(I, θ) ≤ BPoA(I, θ).

Due to space limitations, some material is omitted from this extended abstract
and can be found in the full version of the paper (see [4]).

4 The existence of a risk-averse Nash flow is proven in [8].
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3 Upper Bounds on the Deviation Ratio

We derive an upper bound on the Deviation Ratio. All results in this section
hold for multi-commodity instances with a common source.

We first derive a characterization result for the inducibility of a given flow f .
This generalizes the characterization in [1] to common source multi-commodity
instances and negative deviations. We define an auxiliary graph Ĝ = Ĝ(f) =
(V, Â) with Â = A∪ Ā, where Ā = {(v, u) : a = (u, v) ∈ A+}. That is, Â consists
of the set of arcs in A, which we call forward arcs, and the set Ā of arcs (v, u)
with (u, v) ∈ A+, which we call reversed arcs. Further, we define a cost function
c : Â → R as follows:

ca =

{
l(u,v)(fa) + θmax

(u,v)(fa) for a = (u, v) ∈ A

−l(u,v)(fa) − θmin
(u,v)(fa) for a = (v, u) ∈ Ā.

(2)

Theorem 2. Let f be a feasible flow. Then f is θ-inducible if and only if Ĝ(f)
does not contain a cycle of negative cost with respect to c.

Theorem 2 does not hold for general multi-commodity instances. The proof
of Lemma 1 follows directly from Theorem 2.

Lemma 1. Let x be θ-inducible and let Xi be a flow-carrying (s, ti)-path for
commodity i ∈ [k] in G. Let χ and ψ be any (s, ti)-path and (ti, s)-path in Ĝ(x),
respectively. Then

∑

a∈Xi

la(xa) + θmin
a (xa) ≤

∑

a∈χ∩A

la(xa) + θmax
a (xa) −

∑

a∈χ∩Ā

la(xa) + θmin
a (xa)

∑

a∈Xi

la(xa) + θmax
a (xa) ≥

∑

a∈ψ∩Ā

la(xa) + θmin
a (xa) −

∑

a∈ψ∩A

la(xa) + θmax
a (xa).

The following notion of alternating paths turns out to be crucial. It was first
introduced by Lin et al. [6] and is also used by Nikolova and Stier-Moses [9].

Definition 1 (Alternating path [6,9]). Let x and z be feasible flows. We
partition A = X ∪ Z, where Z = {a ∈ A : za ≥ xa and za > 0} and X = {a ∈
A : za < xa or za = xa = 0}. We say that πi = (a1, . . . , ar) is an alternating
s, ti-path if the arcs in πi ∩ Z are oriented in the direction of ti, and the arcs in
πi ∩ X are oriented in the direction of s.

Without loss of generality we may remove all arcs with za = xa = 0 (as they
do not contribute to the social cost). Note that if along πi we reverse the arcs
of Z then the resulting path is a directed (ti, s)-path in Ĝ(z) (which we call the
s-oriented version of πi); similarly, if we reverse the arcs of X then the resulting
path is an (s, ti)-path in Ĝ(x) (which we call the ti-oriented version of πi).

The following lemma proves the existence of an alternating path tree, i.e., a
spanning tree of alternating paths, rooted at the common source node s. It is a
direct generalization of Lemma 4.6 in [6] and Lemma 4.5 in [9].
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Lemma 2. Let z and x be feasible flows and let Z and X be a partition of A as
in Definition 1. Then there exists an alternating path tree.

We now have all the ingredients to prove the following main result.

Theorem 3. Let x be θ-inducible and let z be 0-inducible. Further, let A = X∪Z
be a partition as in Definition 1. Let π be an alternating path tree, where πi

denotes the alternating s, ti-path in π.

(i) Suppose θ = (θmin, θmax). Let Xi be a flow-carrying path of commodity i ∈ [k]
maximizing lP (x) over all P ∈ Pi.5 Then

C(x) ≤ C(z) +
∑

i∈[k]

ri

( ∑

a∈Z∩πi

θmax
a (za) −

∑

a∈X∩πi

θmin
a (za) −

∑

a∈Xi

θmin
a (xa)

)
.

(ii) Suppose θ = (α, β) with −1 < α ≤ 0 ≤ β. Let ηi is the number of disjoint
segments of consecutive arcs in Z on the alternating s, ti-path πi for i ∈ [k].6

Then

C(x)
C(z)

≤ 1 +
β − α

1 + α
·
∑

i∈[k]

riηi ≤ 1 +
β − α

1 + α
·
⌈

n − 1
2

⌉
· r.

Proof (i). We have C(x) =
∑

i

∑
P∈Pi

xi
P lP (x) ≤ ∑

i ri

∑
a∈Xi

la(xa) by the
choice of Xi. By applying the first inequality of Lemma 1 to the flow x in the
graph Ĝ(x), where we choose χ to be the ti-oriented version of πi, we obtain
∑

a∈Xi

la(xa) + θmin
a (xa) ≤

∑

a∈Z∩πi

la(xa) + θmax
a (xa) −

∑

a∈X∩πi

la(xa) + θmin
a (xa).

Let Zi be an arbitrary flow-carrying path of commodity i ∈ [k] with respect
to z. By applying the second inequality of Lemma 1 to the flow z in the graph
Ĝ(z) with θmax = θmin = 0, where we choose ψ to be the s-oriented version of
πi, we obtain ∑

a∈Zi

la(za) ≥
∑

a∈Z∩πi

la(za) −
∑

a∈X∩πi

la(za).

Combining these inequalities and exploiting the definition of X and Z, we obtain
∑

a∈Xi

la(xa) + θmin
a (xa) ≤

∑

a∈Z∩πi

la(xa) + θmax
a (xa) −

∑

a∈X∩πi

la(xa) + θmin
a (xa)

≤
∑

a∈Z∩πi

la(za) + θmax
a (za) −

∑

a∈X∩πi

la(za) + θmin
a (za)

≤
∑

a∈Zi

la(za) +
∑

a∈Z∩πi

θmax
a (za) −

∑

a∈X∩πi

θmin
a (za).

The claim now follows by multiplying the above inequality with ri and sum-
ming over all commodities i ∈ [k]. Note that C(z) =

∑
i ri

∑
a∈Zi

la(za). ��
5 Note that the values lP (x) + δP (x) are the same for all flow-carrying paths, but this

is not necessarily true for the values lP (x).
6 Note that ηi ≤ �(n − 1)/2�.
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4 Lower Bounds for (α, β)-deviations

We show that the bound in Theorem 3 is tight in all its parameters for (α, β)-
deviations. We start with single-commodity instances.

s v3

v4

v2

v1

w4

w3

w2

w1

t

(1,
β)

(ym
(x), 0

)

(2ym(x), 0)

(3ym(x), 0)

(4y
m (x), 0)

(1
, 0

)

(1, β)

(1,
0)

(1, β)

(1,
0)

(1, β)

(1,
0)

(4ym(x), 0)

(3ym(x), 0)

(2ym(x), 0)

(ym
(x), 0

)

(1,
β)

Fig. 1. The fifth Braess graph with (l5a, δ5a) on the arcs as defined in Example 1. The
bold arcs indicate the alternating path π1.

Our instance is based on the generalized Braess graph [10]. The m-th Braess
graph Gm = (V m, Am) is defined by V m = {s, v1, . . . , vm−1, w1, . . . , wm−1, t}
and Am as the union of three sets: Em

1 = {(s, vj), (vj , wj), (wj , t) : 1 ≤ j ≤
m − 1}, Em

2 = {(vj , wj−1) : 2 ≤ j ≤ m} and Em
3 = {(v1, t) ∪ {(s, wm−1}}.

Example 1. We can assume without loss of generality that α = 0 (see [4]). Let
β ≥ 0 be a fixed constant and let n = 2m ≥ 4 ∈ N.7 Let Gm be the m-th
Braess graph. Furthermore, let ym : R≥0 → R≥0 be a non-decreasing, continuous
function8 with ym(1/m) = 0 and ym(1/(m − 1)) = β. We define

lma (g) =

⎧
⎨

⎩

(m − j) · ym(g) for a ∈ {(s, vj) : 1 ≤ j ≤ m − 1}
j · ym(g) for a ∈ {(wj , t) : 1 ≤ j ≤ m − 1}
1 otherwise.

Furthermore, we define δm
a (g) = β for a ∈ Em

2 , and δm
a (g) = 0 otherwise. Note

that 0 ≤ δm
a (g) ≤ βlma (g) for all a ∈ A and g ≥ 0 (see Fig. 1).

A Nash flow z = f0 is given by routing 1/m units of flow over the paths
(s, wm−1, t), (s, v1, t) and the paths in {(s, vj , wj−1, t) : 2 ≤ j ≤ m−1}. Note that

7 Note that the value �(n − 1)/2� is the same for n ∈ {2m, 2m + 1} with m ∈ N. The
example shows tightness for n = 2m. The tightness for n = 2m + 1 then follows
trivially by adding a dummy node.

8 For example ym(g) = m(m−1)β max{0,
(

g − 1
m

)}. That is, we define ym to be zero
for 0 ≤ g ≤ 1/m and we let it increase with constant rate to β in 1/(m − 1).
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all these paths have latency one, and the path (s, vj , wj , t), for some 1 ≤ m ≤ j,
also has latency one. We conclude that C(z) = 1.

A Nash flow x = fδ, with δ as defined above, is given by routing 1/(m − 1)
units of flow over the paths in {(s, vj , wj , t) : 1 ≤ j ≤ m − 1}. Each such path P
then has a latency of lP (x) = 1 + βm. It follows that C(x) = 1 + βm. Note that
the deviated latency of path P is qP (x) = 1+βm because all deviations along this
path are zero. Each path P ′ = (s, vj , wj−1, t), for 2 ≤ j ≤ m − 1, has a deviated
latency of qP ′(x) = 1+β +(m− 1)ym(1/(m− 1)) = 1+β +(m− 1)β = 1+βm.
The same argument holds for the paths (s, wm−1, t) and (s, v1, t). We conclude
that x is δ-inducible. It follows that C(x)/C(z) = 1 + βm = 1 + βn/2. ��

By adapting the construction above, we obtain the following result.

Theorem 4. There exist common source two-commodity instances I such that

DR(I, (α, β)) ≥
{

1 + (β − α)/(1 + α) · (n − 1)/2 · r for n = 2m + 1 ∈ N≥5

1 + (β − α)/(1 + α) · [(n/2 − 1)r + 1] for n = 2m ∈ N≥4.

For two-commodity instances and n even, we can actually improve the upper
bound in Theorem3 to the lower bound stated in Theorem4 (see [4]).

For general multi-commodity instances the situation is much worse. In par-
ticular, we establish an exponential lower bound on the Deviation Ratio. The
instance used in proof of Theorem5 is similar to the one used by Lin et al. [6].

Theorem 5. For every p = 2q+1 ∈ N, there exists a two-commodity instance I
whose size is polynomially bounded in p such that DR(I, (α, β)) ≥ 1 + βFp+1 ≈
1 + 0.45β · φp+1, where Fp is the p-th Fibonacci number and φ ≈ 1.618 is the
golden ratio.

5 Applications

By using our bounds on the Deviation Ratio, we obtain the following results.

Price of Risk Aversion

Theorem 6. The Price of Risk Aversion for a common source multi-commodity
instance I with non-negative and non-decreasing latency functions, variance-to-
mean-ratio κ > 0 and risk-aversion parameter γ ≥ −1/κ is at most

PRA(I, γ, κ) ≤
{

1 − γκ/(1 + γκ)�(n − 1)/2�r for − 1/κ < γ ≤ 0
1 + γκ�(n − 1)/2�r for γ ≥ 0.

Moreover, these bounds are tight in all its parameters if n = 2m + 1 and almost
tight if n = 2m (see [4]). In particular, for single-commodity instances we obtain
tightness for all n ∈ N.
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Stability of Nash flows under small perturbations

Theorem 7. Let I be a common source multi-commodity instance with non-
negative and non-decreasing latency functions (la)a∈A. Let f be a Nash flow
with respect to (la)a∈A and let f̃ be a Nash flow with respect to slightly perturbed
latency functions (l̃a)a∈A satisfying supa∈A, x≥0 |(la(x) − l̃a(x))/la(x)| ≤ ε for
some small ε > 0. Then the relative error in social cost is (C(f̃)−C(f))/C(f) ≤
2ε/(1 − ε)�(n − 1)/2� · r = O(εrn).

6 Smoothness Based Approaches

We derive tight smoothness bounds on the Biased Price of Anarchy for (0, β)-
deviations. Our bounds improve upon the bounds of (1 + β)/(1 − μ) recently
obtained by Meir and Parkes [7] and Lianeas et al. [5] for (1, μ)-smooth latency
functions. As a direct consequence, we also obtain better smoothness bounds on
the Price of Risk Aversion. Our approach is a generalization of the framework
of Correa, Schulz and Stier-Moses [3] (which we obtain for β = 0).

Let L be a given set of latency functions and β ≥ 0 fixed. For l ∈ L, define

μ̂(l, β) = sup
x,z≥0

{
z[l(x) − (1 + β)l(z)]

xl(x)

}
and μ̂(L, β) = sup

l∈L
μ̂(L, β).

Theorem 8. Let L be a set of non-negative, non-decreasing and continuous
functions. Let I be a general multi-commodity instance with (la)a∈A ∈ LA. Let
x be δ-inducible for some (0, β)-deviation δ and let z be an arbitrary feasible
flow. Then C(x)/C(z) ≤ (1 + β)/(1 − μ̂(L, β)) if μ̂(L, β) < 1. Moreover, this
bound is tight if L contains all constant functions and is closed under scalar
multiplication, i.e., for every l ∈ L and γ ≥ 0, γl ∈ L.

For example, for affine latencies μ̂(L, β) = 1/(4(1+β)) (see [4]) and we obtain
a bound of (1 + β)2/( 34 + β) on the Biased Price of Anarchy, which is strictly
better than the bound 4(1 + β)/3 obtained in [5,7].

We also provide an upper bound on the absolute gap between the Biased
Price of Anarchy and the Deviation Ratio (see [4]).

As a final result we derive smoothness bounds for general path deviations, which
are not necessarily decomposable into arc deviations (see [4] for formal defini-
tions). The main motivation for investigating such deviations is that we can apply
such bounds to the mean-std objective of the Price of Risk Aversion model by
Nikolova and Stier-Moses [9] (see Sect. 2).

Theorem 9. Let I be a general multi-commodity instance with (la)a∈A ∈ LA.
Let x be δ-inducible with respect to some (0, β)-path deviation δ and let z an
arbitrary feasible flow. If μ̂(L, 0) < 1/(1 + β), then C(x)/C(z) ≤ (1 + β)/(1 −
(1 + β)μ̂(L, 0)).
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7 Conclusions

We introduced a unifying model to study the impact of (bounded) worst-case
latency deviations in non-atomic selfish routing games. We demonstrated that
the Deviation Ratio is a useful measure to assess the cost deterioration caused
by such deviations. Among potentially other applications, we showed that the
Deviation Ratio provides bounds on the Price of Risk Aversion and the relative
error in social cost if the latency functions are subject to small perturbations.

Our approach to bound the Deviation Ratio (see Sect. 3) is quite generic and,
albeit considering a rather general setting, enables us to obtain tight bounds.
We believe that this approach will turn out to be useful to derive bounds on the
Deviation Ratio of other games (e.g., network cost sharing games).

In general, studying the impact of (bounded) worst-case deviations of the
input data of more general classes of games (e.g., congestion games) is an inter-
esting and challenging direction for future work.
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1. Bonifaci, V., Salek, M., Schäfer, G.: Efficiency of restricted tolls in non-atomic
network routing games. In: Persiano, G. (ed.) SAGT 2011. LNCS, vol. 6982, pp.
302–313. Springer, Heidelberg (2011)

2. Cominetti, R.: Equilibrium routing under uncertainty. Math. Program. 151(1),
117–151 (2015)

3. Correa, J.R., Schulz, A.S., Stier-Moses, N.E.: A geometric approach to the price
of anarchy in nonatomic congestion games. Games Econ. Behav. 64(2), 457–469
(2008)
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Abstract. Robustness is one of the key properties of nowadays net-
works. However, robustness cannot be simply enforced by design or reg-
ulation since many important networks, most prominently the Internet,
are not created and controlled by a central authority. Instead, Internet-
like networks emerge from strategic decisions of many selfish agents.
Interestingly, although lacking a coordinating authority, such naturally
grown networks are surprisingly robust while at the same time having
desirable properties like a small diameter. To investigate this phenom-
enon we present the first simple model for selfish network creation which
explicitly incorporates agents striving for a central position in the net-
work while at the same time protecting themselves against random edge-
failure. We show that networks in our model are diverse and we prove the
versatility of our model by adapting various properties and techniques
from the non-robust versions which we then use for establishing bounds
on the Price of Anarchy. Moreover, we analyze the computational hard-
ness of finding best possible strategies and investigate the game dynamics
of our model.

1 Introduction

Networks are everywhere and we crucially rely on their functionality. Hence it is
no surprise that designing networks under various objective functions is a well
established research area in the intersection of Operations Research, Computer
Science and Economics. However, investigating how to create suitable networks
from scratch is of limited use for understanding most of nowadays networks.
The reason for this is that most of our resource, communication and online social
networks have not been created and designed by some central authority. Instead,
these critical networks emerged from the interaction of many selfish agents who
control and shape parts of the network. This clearly calls for a game-theoretic
perspective.

One of the most prominent examples of such a selfishly created network
is the Internet, which essentially is a network of sub-networks which are each
owned and controlled by Internet service providers (ISP). Each ISP decides self-
ishly how to connect to other ISPs and thereby balancing the cost for creating
links (buying the necessary hardware and/or peering agreement contracts for
c© Springer-Verlag Berlin Heidelberg 2016
M. Gairing and R. Savani (Eds.): SAGT 2016, LNCS 9928, pp. 141–152, 2016.
DOI: 10.1007/978-3-662-53354-3 12
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routing traffic) and the obtained service quality for its customers. Interestingly,
although the Internet is undoubtedly an important and critical infrastructure,
there is no central authority which ensures its functionality if parts of the net-
work fail. Despite this fact, the Internet seems to be robust against node or edge
failures, which hints that a socially beneficial property like network robustness
may emerge from selfish behavior.

Modeling agents with a desire for creating a robust network has long been
neglected and was started to be investigated only very recently. This paper con-
tributes to this endeavor by proposing and analyzing a model of selfish network
creation, which explicitly incorporates agents who strive for occupying a central
position in the network while at the same time ensuring that the overall network
remains functional even under edge-failure.

1.1 Related Work

Previous research on game-theoretic models for network creation has either
focused on centrality models, where the agents’ service quality in the created
network depends on the distances to other agents, or on reachability models
where agents only care about being connected to many other agents.

Some prominent examples of centrality models for selfish network creation
are [2,7–10,13,18]. They all have in common that agents correspond to nodes in
a network and that the edge set of the network is determined by the combina-
tion of the agents’ strategies. The utility function of an agent contains a service
quality term which depends on the distances to all other agents. To the best
of our knowledge the very recent paper by Meirom et al. [19] is the only cen-
trality model which incorporates edge-failures. The authors consider two types
of agents, major-league and minor-league agents, which maintain that the net-
work remains 2-connected while trying to minimize distances, which are a linear
combination of the length of a shortest path and the length of a best possible ver-
tex disjoint backup path. Under some specific assumptions, e.g. that there are
significantly more minor-league than major-league agents, they prove various
structural properties of equilibrium networks and investigate the corresponding
game-dynamics. In contrast to this, we will investigate a much simpler model
with homogeneous agents which is more suitable for analyzing networks created
by equal peers. Our results can be understood as zooming in on the sub-network
formed by the major-league agents (i.e. top tier ISPs).

In reachability models, e.g. [3–5,11,12,15], the service quality of an agent
is simply defined as the number of reachable agents and distances are ignored
completely. For reachability models the works of Kliemann [15,16] and the very
recent paper by Goyal et al. [12] explicitly incorporate a notion of network robust-
ness in the utility function of every agent. All models consider an external adver-
sary who strikes after the network is built. In [15,16] the adversary randomly
removes a single edge and the agents try to maximize the expected number of
reachable nodes post attack. Two versions of the adversary are analyzed: edge
removal uniformly at random or removal of the edge which hurts the society of
agents most. For the former adversary a constant Price of Anarchy is shown,
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whereas for the latter adversary this positive result is only true if edges can
be created unilaterally. In [12] nodes are attacked (and killed) and this attack
spreads virus-like to neighboring nodes unless they are protected by a firewall.
Interestingly also this model has a low Price of Anarchy and the authors prove
a tight linear bound on the amount of edge-overbuilding due to the adversary.

1.2 Model and Notation

We consider the Network Creation Game (NCG) by Fabrikant et al. [10] aug-
mented with the uniform edge-deletion adversary from Kliemann [15] and we call
our model Adversary NCG (Adv-NCG). More specifically, in an Adv-NCG there
are n selfish agents which correspond to the nodes of an undirected multi-graph
G = (V,E) and we will use the terms agent and node interchangeably. A pure
strategy Su of agent u ∈ V (G) is any multi-set over elements from V \ {u}. If
v is contained k times in Su then this encodes that agent u wants to create k
undirected edges to node v. Moreover we say that u is the owner of all edges to
the nodes in Su. We emphasize the edge-ownership in our illustrations by draw-
ing directed edges which point away from their owner - all edges are nonetheless
understood to be undirected. Given an n-dimensional vector of pure strategies
for all agents, then the union of all the edges encoded in all agents’ pure strate-
gies defines the edge set E of the multi-graph G. Since there is a bijection of
multi-graphs with edge-ownership information and pure strategy-vectors, we will
use networks and strategy-vectors interchangeably, e.g. by saying that a network
is in equilibrium.

The agents prepare for an adversarial attack on the network after creation.
This attack deletes one edge uniformly at random. Hence, agents try to minimize
the attack’s impact on themselves by minimizing their expected cost. Let G − e
denote the network G where edge e is removed. Let δG(u) =

∑
v∈V (G) dG(u, v),

where dG(u, v) is the number of edges of a shortest path from u to v in network
G. Let

distG(u) =
1

|E|
∑

e∈E

δG−e(u) =
1

|E|
∑

e∈E

∑

v∈V

dG−e(u, v)

denote agent u’s expected distance cost after the adversary has removed some
edge uniformly at random from G. The expected cost of an agent u in network
G = (V,E) with edge-price α is defined as costu(G,α) = edgeu(G,α)+distG(u),
where edgeu(G,α) = α · |Su| is the total edge-cost for agent u with strategy Su

in (G,α). Thus, compared to the NCG [10], the distance cost term is replaced
by the expected distance cost with respect to uniform edge deletion.

Let (G,α) be any network with edge-ownership information. We call any
strategy-change from Su to S′

u of some agent u a move. Specifically, if |Su| = |S′
u|,

then such a move is called a multi-swap, if |Su ∩ S′
u| < |Su| − 2 and a swap if

|Su ∩ S′
u| = |Su| − 2. If a move of agent u strictly decreases agent u’s cost, then

it is called an improving move. If no improving move exists, then we say that
agent u plays its best response. Analogously we call a strategy-change towards
a best response a best response move. A sequence of best response moves which
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starts and ends with network (G,α) is called a best response cycle. We say that
(G,α) is in Pure Nash Equilibrium (NE) if all agents play a best response.

We measure the overall quality of a network (G,α) with its social cost, which
is defined as cost(G,α) =

∑
u∈V (G) costu(G,α) = edge(G,α) + dist(G), where

edge(G,α) =
∑

u∈V (G) edgeu(G,α) = α · |E| and dist(G) =
∑

u∈V (G) distG(u).
Let OPT (n, α) be a network on n nodes with edge-price α which minimizes
the social cost and we call OPT(n, α) the optimum network for n and α. Let
maxNE(n, α) be the maximum social cost of any NE network on n agents with
edge-price α and analogously let minNE(n, α) be the NE having minimum social
cost. Then, the Price of Anarchy is the maximum over all n and α of the ratio
maxNE(n,α)
OPT(n,α) , whereas the Price of Stability is the maximum over all n and α of

the ratio minNE(n,α)
OPT (n,α) .

1.3 Our Contribution

This paper introduces and analyzes an accessible model, the Adv-NCG, for selfish
network creation in which agents strive for a central position in the network while
protecting against random edge-failures.

We show that optimum networks in the Adv-NCG are much more diverse
than without adversary, which also indicates that the same holds true for the
Nash equilibria of the game. However, we also show that many techniques and
results from the NCG can be adapted to cope with the Adv-NCG, which indi-
cates that the influence of the adversary is limited. In particular, we prove NP-
hardness of computing a best possible strategy and W[2]-hardness of computing
a best multi-swap. Moreover, we show that the Adv-NCG is not weakly acyclic,
which is the strongest possible non-convergence result for any game. On the pos-
itive side, we prove that the amount of edge-overbuilding due to the adversary is
limited, which is then used for proving that upper bounding the diameter essen-
tially bounds the Price of Anarchy from above. We apply this by adapting two
diameter-bounding techniques from the NCG to the adversarial version which
then yields an upper bound on the PoA of O(1 + α/

√
n).

Due to space constraints some proofs and details are omitted. All missing
material can be found in the full version [6].

2 Optimal Networks

Clearly, every optimal network must be 2-edge connected. Thus, every optimal
network must have at least n edges. We first prove the intuitive fact that if edges
get more expensive, then the optimum networks will have fewer edges.

Theorem 1. Let (G = (V,E), α) and (G′ = (V,E′), α′) be optimal networks on
n nodes in the Adv-NCG for α and α′, respectively. If α′ > α, then |E| ≥ |E′|.
In the following, we show that the landscape of optimum networks is much richer
in the Adv-NCG, compared to the NCG where the optimum is either a clique
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DG7 G7 F7 C7DG7,3 DS7

Fig. 1. Different candidates for optimum networks.

or a star, depending on α. In particular, we prove that there are Ω(n2) different
optimal topologies. We consider the following types of networks: Here DGn is a
clique of n nodes where we have a double edge between all pairs of nodes. Let
DGn,k be a n node clique with exactly k pairs of nodes which are connected with
double edges. Thus, DGn,0 = Gn and DGn,(n

2) = DGn. Moreover, let Fn denote
the fan-graph on n nodes which is a collection of triangles which all share a single
node and let DSn denote a star on n nodes where all connections between the
center and the leaves are double edges. Finally, let Cn be a cycle of length n.

Clearly, if α = 0, then the optimum network on n nodes must be a DGn, since
in this network no edge deletion of the adversary has any effect, it minimizes the
sum of distances of each agent and since edges are for free.

Now consider what happens, if one pair of agents, say u and v, are just
connected via a single edge instead of a double edge. The probability that the
adversary removes this edge is 1

n(n−1)−1 . The removal would cause an increase in
distance cost of 1 between u and v and between v and u. Thus, if α < 2

n(n−1)−1 ,
then agent u and v would individually be better off buying another edge between
each other. Thus, we have the following observation.

Observation 2. If 0 ≤ α ≤ 2
n(n−1)−1 , then OPT(n, α) = DGn.

Lemma 1. If 2n(n−1)

((n
2)+k)((n

2)+k+1)
≤ α ≤ 2n(n−1)

((n
2)+k)((n

2)+k−1)
, for 1 ≤ k ≤ (

n
2

) − 1,

then the network DGn,k is optimal.

Note, that the proof of the above statement implies that the complete graph Gn

is an optimum, if 4

(n
2)+1

≤ α < 2 − 2

(n
2)

.

We also remark that we conjecture that Fig. 1 resembles a snapshot of opti-
mum networks for increasing α from left to right. In fact, extensive simulations
indicate that the optimum changes from Gn to DSn and then, for slightly larger
α for Fn. After this the cycles in the fan-graph increase and get fewer in number
until, finally, for α ∈ Ω(n3) the cycle appears as optimum.

3 Computing Best Responses and Game Dynamics

In this section we investigate computational aspects of the Adv-NCG. First we
analyze the hardness of computing a best response and the hardness of comput-
ing a best possible multi-swap. Then we analyze a natural process for finding an
equilibrium network by sequentially performing improving moves.
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3.1 Hardness of Best Response Computation

We first introduce useful properties for ruling out multi-buy or multi-delete
moves. The proof is similar to the proof of Lemma 1 in [17].

Proposition 1. If an agent cannot decrease its expected cost by buying (delet-
ing) one edge in the Adv-NCG, then buying (deleting) k > 1 edges cannot
decrease the agent’s expected cost.

Lemma 2. If 1 − 1
|E|+1 < α < 1 + 1

|E|(|E|−1) and if agent u is not an endpoint
of any double-edge in the Adv-NCG, then buying the minimum number of edges
such that u’s expected distance to all nodes in V \ Nu is 2 and to nodes in Nu is
1 + 1

|E| is u’s best response.

Now we show that computing the best possible strategy-change is intractable.

Theorem 3. 1. It is NP-hard to compute the best response of agent u in the
Adv-NCG.

2. It is W [2]-hard to compute the best multi-swap of agent u in the Adv-NCG.

3.2 Game Dynamics

We investigate the dynamic properties of the Adv-NCG. That is, we turn the
model into a sequential version which starts with some initial network (G,α)
and then agents move sequentially in some order and perform improving moves,
if possible. One natural question is, if this process is guaranteed to converge to
a Nash equilibrium of the game.

For the game dynamics of the Adv-NCG we prove the strongest possible
negative result, which essentially shows that there is no hope for convergence if
agents stick to performing improving moves only. In particular, we prove that
the order of the agents moves or any tie-breaking between different improving
moves does not help for achieving convergence. This result is even stronger than
the best known non-convergence results for the NCG [14].

Theorem 4. The Adv − NCG is not weakly acyclic.

4 Analysis of Networks in Nash Equilibrium

In this section we establish the existence of networks in Nash Equilibrium for
almost the whole parameter space and we compare NE networks in the Adv-NCG
with NE networks from the NCG [10] and Kliemann’s adversarial model [15].
Moreover, we investigate structural properties which allow us to provide bounds
on the Price of Stability and the Price of Anarchy.

We start with the existence result:

Theorem 5. The networks DGn and DSn are in pure Nash Equilibrium if α ≤
1

n(n−1)−1 and α ≥ 1 − 1
2n−1 , respectively.
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Next, we show that NE in the Adv-NCG are not comparable with NE from the
NCG or Kliemann’s model.

Theorem 6. There is a NE in the Adv-NCG which is not an NE in the NCG
and vice versa. The analogous statement also holds for Kliemann’s model.

4.1 Relation Between the Diameter and the Social Cost

We prove a property which relates the diameter of a network with its social cost.
With this, we prove that one of the most useful tools for analyzing NE in the
NCG [10] can be carried over to the Adv-NCG.

Before we start, we analyze the diameter increase induced by removing a
single edge in a 2-edge-connected network.

Lemma 3. Let G = (V,E) be any 2-edge-connected network having diameter D
and let G − e be the network G where some edge e ∈ E is removed. Then the
diameter of G − e is at most 2D.

Next, we will focus on edges which are part of cuts of the network of size two.
Remember that a bridge is an edge whose removal from a network increases
the number of connected components of that network. Let G = (V,E) be any
2-edge-connected network. We say that an edge e ∈ E is a 2-cut-edge if there
exists a cut of G of size 2 which contains edge e. Equivalently, e is a 2-cut-edge
of G if its removal from G creates at least one bridge in G−e. We now bound the
number of 2-cut-edges in any 2-edge-connected network G. This is an important
structural result, since this proves that the amount of edge-overbuilding due to
the adversary is sharply limited.

Lemma 4. Any 2-edge-connected network G with n nodes can have at most
2(n − 1) edges which are 2-cut-edges.

Proof. Let e be any 2-cut-edge in network G. By definition, the removal of e
creates one or more bridges in G − e. Let b1, . . . , bl denote those bridges. Note,
that b1, . . . , bl also must be 2-cut-edges in G. Moreover, it follows that there
must be a shortest cycle C in G which contains all the edges e, b1, . . . , bl. If there
are more than one such cycles, then fix one of them. We call the fixed cycle C a
cut-cycle.

Notice that any 2-cut-edge corresponds to exactly one cut-cycle in the net-
work and that every cut-cycle contains at least two 2-cut-edges. We show in the
following that if any cut-cycle in the network contains at least three 2-cut-edges,
then we can modify the network to obtain strictly more 2-cut-edges and strictly
more cut-cycles. This implies that the number of 2-cut-edges is maximized if
the number of cut-cycles is maximized and every cut-cycle contains exactly two
2-cut-edges.

Now we describe the procedure which converts any network with at least one
cut-cycle containing at least three 2-cut-edges into a modified network with a
strictly increased number of cut-cycles and 2-cut-edges (see Fig. 2). Let G be
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a) Conversion of adjacent 2-cut-edges
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b) Conversion of non-adjacent 2-cut-edges

Fig. 2. Increasing the number of 2-cut-edges by splitting up a cut-cycle.

any network with at least one cut-cycle C = v1, . . . , vk, v1 containing at least
three 2-cut-edges. If there are two adjacent 2-cut-edges {vl, vl+1}, {vl+1, vl+2} in
cycle C, then delete the 2-cut-edge {vl, vl+1} and insert two new edges {vl, vl+2}
and {vl+1, vl+2}. First of all, note that these new edges have not been present in
network G before the insertion since otherwise {{vl, vl+1}, {vl+1, vl+2}} cannot
be a cut of G. We claim that both new edges are 2-cut-edges and that the cycle C
is divided into two new cut-cycles v1, . . . , vl, vl+2, . . . , vk, v1 and vl+1, vl+2, vl+1.
Indeed, there are at least two bridges {vl+1, vl+2} and {vk, vk+1} in the cut-cycle
C after deleting {vl, vl+1}, and both of them end up in different new cut-cycles.
Hence, deleting any of the newly inserted edges {vl, vl+2} or {vl+1, vl+2} implies
that {vk, vk+1} or {vl+1, vl+2} becomes a bridge. Thus, both new edges are 2-
cut-edges and both of new cycles are cut-cycles.

If there are three pairwise non-adjacent 2-cut-edges {vl, vl+1}, {vm, vm+1},
{vp, vp+1} in cycle C, then delete one 2-cut-edge {vl, vl+1} and insert two new
edges {vl, vp+2} and {vl+1, vm+1}. Analogous to above, both new edges cannot
be already present in G and both are 2-cut-edges because deleting any of them
renders edge {vm, vm+1} or {vp, vp+1} a bridge. Moreover, cut-cycle C is divided
into two new cut-cycles.

Finally, we claim that the maximum number of cut-cycles in any n-vertex
network G is at most n − 1. Since we know that every such cut-cycle contains
exactly two 2-cut-edges this then implies that there can be at most 2(n − 1)
2-cut-edges in any network G.

Now we prove the above claim. Note that applying our transformation does
not disconnect the network. Thus, we know that network G after all transfor-
mations is connected. Now we iteratively choose any cut-cycle C in G and we
delete the two 2-cut-edges contained in C. This deletion increases the number
of connected components of the current network by exactly 1. We repeat this
process until we have destroyed all cut-cycles in G. Note that deleting edges from
G may create new cut-cycles, but we never destroy more than one of them at a
time. Thus, since each iteration increases the number of connected components
of the network by 1, it follows that there can be at most n − 1 iterations since
network G with n vertices cannot have more than n connected components. ��
Remark 1. Lemma 4 is tight, since a path of length n− 1, where all neighboring
nodes are connected via double edges, has exactly 2(n − 1) 2-cut-edges.

Now we relate the diameter with the social cost.
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Theorem 7. Let (G,α) be any NE network on n nodes having diameter D and
let OPT (n, α) be the optimum network on n nodes for the same edge-cost α.
Then we have that

cost(G,α)
cost(OPT (n, α))

∈ O(D).

Proof. Since OPT (n, α) must be 2-edge-connected, it must have at least n
edges. Moreover, the minimum expected distance between each pair of vertices
in OPT (n, α) is at least 1. Thus, we have that cost(OPT (n, α)) ∈ Ω(α ·n+n2).

Now we analyze the social cost of the NE network (G,α), where G = (V,E).
We have cost(G,α) = edge(G,α) + dist(G) and we will analyze both terms
separately. We start with an upper bound on dist(G).

Since (G,α) has diameter D and since (G,α) is 2-edge-connected, Lemma 3
implies that the expected distance between each pair of vertices in (G,α) is at
most 2D. Thus, we have that dist(G) ∈ O(n2 · D).

Now we analyze edge(G,α). By Lemma 4 we have at most 2n many 2-cut-
edges in G. Buying all those edges yields cost of at most 2n · α.

We proceed with bounding the number of non-2-cut-edges in G. We consider
any agent v and analyze how many non-2-cut-edges agent v can have bought.
We claim that this number is in O (

nD
α

)
, which yields total edge-cost of O(nD)

for agent v. Summing up over all n agents, this yields total edge-cost of O(n2D)
for all non-2-cut-edges of G. This then implies an upper bound of O(α ·n+n2D)
on the social cost of G which finishes the proof.

Now we prove our claim. Fix any non-2-cut-edge e = {v, w} of G which is
owned by agent v. Let Ve ⊂ V be the set of nodes of G to which all shortest
paths from v traverse the edge e.

We first show that removing the edge e increases agent v’s expected distance
to any node in Ve to at most 4D. By Lemma 3, removing edge e increases the
diameter of G from D to at most 2D. Since e is a non-2-cut-edge, we have that
G − e is still 2-edge-connected. Thus, again by Lemma 3, it follows that agent
v’s expected distance to any other node in G − e is at most 4D.

However, removing edge e not only increases v’s expected distance towards
all nodes in Ve, instead, since G − e has a less many edges than G, agent v’s
expected distance to all other nodes in V \ (Ve ∪ {v}) increases as well. We now
proceed to bound this increase in expected distance cost.

We compare agent v’s expected distance cost in network G and in network
G − e. Let m denote the number of edges in G. Thus, G − e has m − 1 many
edges. For network G agent v’s expected distance cost is

distG(v) =
1
m

∑

f∈E

δG−f (v) =
1
m

∑

f∈E\{e}
δG−f (v) +

δG−e(v)
m

.

In network G − e, we have distG−e(v) = 1
m−1

∑
f∈E\{e} δG−e−f (v). Now we

upper bound the increase in expected distance cost for agent v due to removal
of edge e from G. distG−e(v) − distG(v) is
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1
m − 1

∑

f∈E\{e}
δG−e−f (v) −

⎛

⎝ 1
m

∑

f∈E\{e}
δG−f (v) +

δG−e(v)
m

⎞

⎠

=
∑

f∈E\{e}

(
δG−e−f (v)

m − 1
− δG−f (v)

m

)
− δG−e(v)

m
.

We have that δG−e−f (v) ≤ δG−f (v) + |Ve| · 4D, since in G − e − f only the
distances to nodes in Ve increase, compared to the network G − f and since e
is a non-2-cut-edge in G. Moreover, by Lemma 3, the distances to nodes in Ve

in G − e − f increase to at most 4D for each node in Ve. Thus, we have that
distG−e(v) − distG(v) is

∑

f∈E\{e}

(
δG−e−f (v)

m − 1
− δG−f (v)

m

)
− δG−e(v)

m

≤
∑

f∈E\{e}

(
δG−f (v) + |Ve|4D

m − 1
− δG−f (v)

m

)

= |Ve|4D +
∑

f∈E\{e}

(
δG−f (v)

m(m − 1)

)
≤ |Ve|4D +

∑

f∈E\{e}

(
2D · n

n(m − 1)

)

≤ |Ve|4D + 4D = (|Ve| + 1)4D.

Since G is in Nash Equilibrium, we know that removing edge e is not an improv-
ing move for agent v. Thus, we have that

α ≤ (|Ve| + 1)4D ⇐⇒ |Ve| ≥ α

4D
− 1.

Thus, for all non-2-cut-edges e which are bought by agent v, we have that |Ve| ∈
Ω( α

D ). Since all these sets Ve are disjoint, it follows that v can have bought at
most n

Ω( α
D ) ∈ O(nD

α ) many non-2-cut-edges. ��

4.2 Price of Stability and Price of Anarchy

Theorem 8. If α ≤ 1
n(n−1)−1 , then the PoS is 1. If 1

n(n−1)−1 < α < 2
n(n−1)−1 ,

then PoS is strictly larger than 1, if α > 1 − 1
2n−1 , then the PoS is at most 2.

We now show how to adapt two techniques from the NCG for bounding the
diameter of equilibrium networks to our adversarial version. This can be under-
stood as a proof of concept showing that the Adv-NCG can be analyzed as
rigorously as the NCG. However, carrying over the currently strongest general
diameter bound of 2O(

√
log n) due to Demaine et al. [8], which is based on inter-

leaved region-growing arguments seems challenging due to the fact that we can
only work with expected distances.

We start with a simple diameter upper bound based on [10].
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Theorem 9. The diameter of any NE network (G,α) is in O(
√

α).

Proof. We prove the statement by contradiction. Assume that there are agents
u and v in network G with dG(u, v) ≥ 4�, for some �. Since expected distances
cannot be shorter than distances in G, it follows that u’s expected distance to
v is at least 4�. If u buys an edge to v for the price of α then u’s decrease in
expected distance cost is at least |E|

|E|+1 (4� − 1 + 4� − 3 + · · · + 1) = |E|
|E|+12�2.

Thus, if dG(u, v) > 4
√

α, then u′s decrease in expected distance cost by
buying the edge uv is at least |E|

|E|+12α > α. Thus, if the diameter of G is at least
4
√

α then there is some agent who has an improving move. ��
Together with Theorem 7 this yields the following statement:

Corollary 1. The Price of Anarchy of the Adv-NCG is in O(
√

α).

Adapting a technique by Albers et al. [1] yields a stronger statement, which
implies constant PoA for α ∈ O(

√
n).

Theorem 10. The Price of Anarchy of the Adv-NCG is in O
(
1 + α√

n

)
.

We conclude with a weak lower bound on the PoA, which is tight for high α.

Theorem 11. The Price of Anarchy of the Adv-NCG is at least 2 and for very
large α this bound is tight.

5 Conclusion

Our work is the first step towards incorporating both centrality and robustness
aspects in a simple and accessible model for selfish network creation. In essence
we proved that many properties and techniques can be carried over from the
non-adversarial NCG and we indicated that the landscape of optimum and equi-
librium networks in the Adv-NCG is much more diverse than without adversary.
As for the NCG, proving strong upper or lower bounds on the PoA is very chal-
lenging. Especially surprising is the hardness of constructing higher lower bounds
than in the NCG since by introducing suitable gadgets it is always possible to
enforce that no agent wants to swap or delete edges. A non-constant lower bound
on the PoA seems possible if α is linear in n.

It would also be interesting to consider different adversaries. An obvious
candidate for this is node-removal at random. Another promising choice is a
local adversary, where every agent considers that some of its incident edges may
fail. This local perspective combined with a centrality aspect could explain why
many selfishly built networks have a high clustering coefficient.

Another direction is to consider the swap version [9,20] of the Adv-NCG,
especially in the case where all agents own at least 2 edges. We note in passing,
that the swap-version of the Adv-NCG is not a potential game (an improving
move cycle can be found in the full version [6]) and that creating equilibrium
networks having diameter 4 is already very challenging.
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Abstract. In resource allocation games, selfish players share resources
that are needed in order to fulfill their objectives. The cost of using a
resource depends on the load on it. In the traditional setting, the players
make their choices concurrently and in one-shot. That is, a strategy for
a player is a subset of the resources. We introduce and study dynamic
resource allocation games. In this setting, the game proceeds in phases.
In each phase each player chooses one resource. A scheduler dictates
the order in which the players proceed in a phase, possibly scheduling
several players to proceed concurrently. The game ends when each player
has collected a set of resources that fulfills his objective. The cost for each
player then depends on this set as well as on the load on the resources in it
– we consider both congestion and cost-sharing games. We argue that the
dynamic setting is the suitable setting for many applications in practice.
We study the stability of dynamic resource allocation games, where the
appropriate notion of stability is that of subgame perfect equilibrium,
study the inefficiency incurred due to selfish behavior, and also study
problems that are particular to the dynamic setting, like constraints on
the order in which resources can be chosen or the problem of finding a
scheduler that achieves stability.

1 Introduction

Resource allocation games (RAGs, for short) [21] model settings in which selfish
agents share resources that are needed in order to fulfill their objectives. The
cost of using a resource depends on the load on it. Formally, a k-player RAG G
is given by a set E of resources and a set of possible strategies for each player.
Each strategy is a subset of resources, fulfilling some objective of the player.
Each resource e ∈ E is associated with a latency function �e : N → R, where
�e(γ) is the cost of a single use of e when it has load γ. For example, in network
formation games (NFGs, for short) [2], a network is modeled by a directed graph,
and each player has a source and a target vertex. In the corresponding RAG,
the resources are the edges of the graph and the objective of each player is to
connect his source and target. Thus, a strategy for a player is a set of edges that
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form a simple path from the source to the target. When an edge e is used by m
players, each of them pays �e(m) for his use.

A key feature of RAGs is that the players choose how to fulfill their objectives
in one shot and concurrently . Indeed, a strategy for a player is a subset of the
resources – chosen as a whole, and the players choose their strategies simultane-
ously. In many settings, however, resource sharing proceeds in a different way.
First, in many settings, the choices of the players are made resource by resource
as the game evolves. For example, when the network in an NFG models a map
of roads and players are drivers choosing routes, it makes sense to allow each
driver not to commit to a full route in the beginning of the game but rather
to choose one road (edge) at each junction (vertex), gradually composing the
full route according to the congestion observed. Second, players may not reach
the junctions together. Rather, in each “turn” of the game, only a subset of the
players (say, these that have a green light) proceed and chose their next road.

As another example to a rich composition and scheduling of strategies, con-
sider the setting of synthesis from component libraries [16], where a designer
synthesizes a system from existing components rather than from scratch as in
the traditional problem [20]. It is shown in [4,6] that when multiple designers
use the same library, a RAG arises. Here too, the choice of components may be
made during the design process and may evolve according to choices of other
designers.

In this work we introduce and study dynamic resource allocation games,
which allow the players to choose resources in an iterative and non-concurrent
manner. A dynamic RAG is given by a pair G = 〈G, ν〉, where G is a k-player
RAG and ν : {1, . . . , k} → {1, . . . , k} is a scheduler. A dynamic RAG proceeds in
phases. In each phase, each player chooses one resource. A phase is partitioned
into at most k turns, and the scheduler dictates which players proceed in each
turn: Player i moves at turn ν(i). Note that the scheduler may assign the same
turn to several players, in which case they choose a resource concurrently in a
phase. Once all turns have been taken, a phase is concluded and a new phase
begins. A strategy for a player in a dynamic RAG is a function that takes the
history of choices made by the players so far (in the current phase as well as
previous ones), and returns the next choice the player makes. A player finishes
playing once the resources he has chosen forms a strategy in the underlying
RAG. In an outcome of the game, each player selects a set of resources. His cost
depends on their load and latency functions as in usual RAGs.

Example 1. Consider the 4-player network formation game that is depicted
in Fig. 1. The interesting edges have names, e.g., a, b, c . . ., and their latency
function is depicted below the edge. For example, we have �a(x) = x and
�c1(x) = 10x. The other edges have latency function 0. The source and tar-
get of a node of Player i are depicted with a node called s and t, respectively,
and with a subscript i. For example, Player 2’s source is s1,2 and he has two
targets tL2 and tR2 . The players’ strategies are paths from one of their sources to
one of their targets.
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Fig. 1. A network formation game in which it is beneficial to select a path that is not
simple.

Consider a dynamic version of the game in which Player i chooses an edge
at turn i. At first look, it seems that edge g will never be chosen. However, we
show that Player 1’s optimal strategy uses it. Player 1 has three options in the
first turn, either choose g, a, or b1. Assume he chooses a (and dually b). Then,
we claim that Player 2 will choose b. Note that Players 3 and 4 move oposite of
Player 2 no matter how Player 1 moves, as they prefer avoiding a load of 2 on
c1 and c2, which costs 20 each, even at the cost of a load of 3 on f , which costs
only 3. Knowing this, Player 2 prefers using b alone over sharing a with Player 1.
Since the loads on a and e are 1 and 3, respectively, Player 1’s cost is 1 + 3 = 4.

On the other hand, if Player 1 chooses g in the first phase, he postpones
revealing his choice between left and right. If Player 2 proceeds left, then Players
3 and 4 proceed right, and Player 1 proceeds left in the second phase. Now, the
load on a and e is 2 and 1, respectively, thus Player 1’s cost is 1

2 +2+1 = 31
2 . ��

The concept of what we refer to as a dynamic game is old and dates back
to Von Neumann’s work on extensive form games [18]. Most work on RAGs
considers the simultaneous setting. However, there have been different takes
on adding dynamicity to RAGs. In [17], the authors refine the notion of NE
by considering lookahead equilibria; a player predicts the reactions of the other
players to his deviations, and he deviates only if the outcome is beneficial. The
depth of lookahead is bounded and is a parameter to the equilibria. A similar
setting was applied to RAGs in [7], where the players are restricted to choose
a best-response move rather than a deviation that might not be immediately
beneficial. Concurrent ongoing games are commonly used in formal methods to
model the interaction between different components of a system (c.f., [1]). In
such a game, multiple players move a token on a graph. At each node, each
player selects a move, and the transition function determines the next position
of token, given the vector of moves the players selected. The objectives of the
players refer to the generated path and no costs are involved. Closest to our
model is the model of [15], and its subsequent works [8,10]. They study RAGs
in which players arrive and select strategies one by one, yet in one shot.

Our dynamic games differ from all of these games in two aspects. We allow
the players to reveal their choices of resources in parts, thus we allow “breaking”
the strategies. Moreover, the choices the players make in all the games in earlier

1 In this example we require the players to choose their paths incrementally, which is
not the general definition we use in the paper.
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work are either concurrent or sequential, and we allow a mix between the two.
These new aspects we introduce are natural and general, and can be applied to
other games and settings.

The first question that arises in the context of games, and on which we focus
in this work, is the existence of a stable outcome of the game. In the context of
RAGs, the most prominent stability concept is that of a Nash equilibrium (NE,
for short) – a profile such that no player can decrease his cost by unilaterally
deviating from his current strategy. It is well known that every RAG has an
NE [21]. The definition of an NE applies to all games, and can also be applied
to our dynamic RAGs. As we demonstrate in Example 2, the dynamic setting
calls for a different stability concept, and the prominent one is subgame perfect
equilibrium (SPE, for short) [24], which we define formally in Sect. 2.

Classifying RAGs, we refer to the type of their latency functions as well as the
type of the objectives of the players. Congestion games [22] are RAGs in which
the latency functions are increasing, whereas in cost-sharing games [2], each
resource has a cost that is split between the players that use it (in particular, the
latency functions are decreasing). In terms of objectives, we consider singleton
RAGs, in which the objectives of the players are singletons of resources, and
symmetric RAGs, in which all players have the same objective.

Our most interesting results are in terms of equilibrium existence. It is easy
to show, and similar results are well known, that every dynamic RAG with a
sequential scheduler has an SPE. The proof uses backwards induction on the
tree of all possible outcomes of the game. One could hope to achieve a similar
proof also for schedulers that are not sequential, especially given the fact that
every RAG has an NE. Quite surprisingly, however, we show that this is not the
case. For congestion games, we show examples of a singleton congestion game
and a symmetric congestion game with no SPE. Moreover, the latency function
in both cases is linear. On the positive side, we show that singleton and sym-
metric congestion games are guaranteed to have an SPE for every scheduler. For
cost-sharing games, we also show an example with no SPE. In the cost-sharing
setting, however, we show that singleton objectives are sufficient to guarantee
the existence of an SPE in all schedules. It follows that singleton dynamic con-
gestion games are less stable than singleton dynamic cost-sharing games. This is
interesting, as in the one-shot concurrent setting, congestion games are known
to be more stable than cost-sharing games in various parameters. One would
expect that this “order of stability” would carry over to the dynamic setting,
as is the case in other extensions of the traditional setting. For example, an NE
is not guaranteed for weighted cost-sharing games [9] as well as very restrictive
classes of multiset cost-sharing games [5], whereas every linear weighted conges-
tion game [12] and even linear multiset congestion game is guaranteed to have
an NE [6].

It is well known that decentralized decision-making may lead to solutions that
are sub-optimal from the point of view of society as a whole. In simultaneous
games, the standard measures to quantify the inefficiency incurred due to selfish
behavior is the price of anarchy (PoA) [14] and price of stability (PoS) [2]. In
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both measures we compare against the social optimum (SO, for short), namely
the cheapest profile. The PoA is the worst-case inefficiency of an NE (that is,
the ratio between the cost of a worst NE and the SO). The PoS is the best-
case inefficiency of an Nash equilibrium (that is, the ratio between the cost of a
best NE and the social optimum). For the dynamic setting, we adjust these two
measures to consider SPEs rather than NEs, and we refer to them as DPoA and
DPoS. We study the equilibrium inefficiency in the classes of games that have
SPEs. We show that the DPoA and DPoS in dynamic singleton cost-sharing
games as well as dynamic singleton congestion games coincide with the PoA
and PoS in the corresponding simultaneous class. As mentioned above, [8,10,15]
study games in which players arrive one after the other. Since their games are
sequential, they always have an SPE. They study the sequential PoA, and show
that it can either be equal, below, or above the PoA of the corresponding class
of RAGs.

We then turn to study the computational complexity of deciding whether
a given dynamic RAG has an SPE. We show that the problem is PSPACE-
complete for both congestion and cost-sharing games. Our lower bound for cost-
sharing games implies that finding an SPE in sequential games is PSPACE-hard.
To the best of our knowledge, while this problem was solved in [15] for congestion
games, we are the first to solve it for cost-sharing games.

Due to lack of space, some proofs and examples are given in the full version,
which can be found in the authors’ homepages.

2 Preliminaries

Resource Allocation Games. For k � 1, let [k] = {1, . . . , k}. A resource-
allocation game (RAG, for short) is a tuple G = {[k], E, {Σi}i∈[k], {�e}e∈E},
where [k] is a set of k players; E is a set of resources; for i ∈ [k], the set Σi ⊆ 2E

is a set of objectives2 for Player i; and, for e ∈ E, we have that �e : N → R is
a latency function. The game proceeds in one-round in which the players select
simultaneously one of their objectives. A profile P = 〈σ1, . . . , σk〉 ∈ Σ1× . . .×Σk

is a choice of an objective for each player. For e ∈ E, we denote by nused(P, e)
the number of times e is used in P , thus nused(P, e) = |{i ∈ [k] : e ∈ σi}|. For
i ∈ [k], the cost of Player i in P , denoted costi(P ), is

∑
e∈σi

�e(nused(P, e)).
Classes of RAGs are characterized by the type of latency functions and objec-

tives. In congestion games (CGs, for short), the latency functions are increasing.
An exceptionally stable class of CGs are ones in which the latency functions are
affine (c.f., [6,12]); every resource e ∈ E has two constants ae and be, and the
latency function is �e(x) = ae ·x+be. In cost-sharing games (SG, for short), each
resource e ∈ E has a cost ce and the players that use the resource share its cost,
thus the latency function for e is �e(x) = ce

x , and in particular is decreasing. We
use DCGs and DSGs to refer to dynamic CGs and dynamic SGs, respectively.
In terms of objectives, we study symmetric games, where the players’ sets of

2 We use “objectives” rather than “strategies” as the second will later be used for
dynamic games.
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objectives are equal, thus Σi = Σj for all i, j ∈ [k], and singleton games, where
each σ ∈ Σi is a singleton, for every i ∈ [k].

Dynamic Resource Allocation Games. A dynamic RAG is pair G = 〈G, ν〉,
where G is a RAG and ν : [k] → [k] is a scheduler. Intuitively, in a dynamic game,
rather than revealing their objectives at once, the game proceeds in phases: in
each phase, each player reveals one resource in his objective. Each phase is
partitioned into at most k turns. The scheduler dictates the order in which the
players proceed in a phase by assigning to each player his turn in the phases.
If the scheduler assigns the same turn to several players, they select a resource
concurrently. Once all players take their turn, a phase is concluded and a new
phase begins. There are two “extreme” schedulers: (1) players get different turns,
i.e., ν is a permutation, (2) all players move in one turn, i.e., ν ≡ 1. We refer
to games with these schedulers as sequential and concurrent, respectively. Note
that ν might not be an onto function. For simplicity, we assume that, for j > 1,
if turn j is assigned a player, then so is turn j − 1. We use tν to denote the last
turn according to ν, thus tν = maxi ν(i).

Let E⊥ = E∪{⊥}, where ⊥ is a special symbol that represents the fact that a
player finished playing. Consider a turn j ∈ [k]. We denote by before(j) the set of
players that play before turn j; thus before(j) = {i ∈ [k] : ν(i) < j}. A player has
full knowledge of the resources that have been chosen in previous phases and the
resources chosen in previous turns in the current phase. A strategy for Player i

in G is a function fi : (E[k]
⊥ )∗ ·(Ebefore(ν(i))

⊥ ) → E⊥. A profile P = 〈f1, . . . , fk〉 is a
choice of a strategy for each player. The outcome of the game given a profile P ,
denoted out(P ), is an infinite sequence of functions π1, π2, . . ., where for i � 1,
we have πi : [k] → E⊥. We define the sequence inductively as follows. Let m � 1
and j ∈ [k]. Assume m − 1 phases have been played as well as j − 1 turns in the
m-th phase, thus π1, π2, . . . , πm−1 are defined as well as πm

j−1 : before(j) → E⊥.
We define πm

j as follows. Consider a player i with ν(i) = j. The resource Player i

chooses in the m-th phase is fi(π1, . . . , πm−1, πm
j−1). Finally, we define πm = πm

tν
.

We restrict attention to legal strategies for the players, namely ones in which
the collection of resources chosen by Player i in all phases is an objective in Σi

3

Also, once Player i chooses ⊥, then he has finished playing and all his choices
in future phases must also be ⊥. Formally, for a profile P = 〈f1, . . . , fk〉 with
out(P ) = π1, π2, . . . and i ∈ [k], let outi(P ) be π1(i), π2(i), . . .. For j � 1, let
ej = πj(i) be the resource Player i selects in the j-th phase. Thus, outi(P ) is an
infinite sequence over E⊥. We say that fi is legal if (1) there is an index m such
that ej ∈ E for all j < m and ej = ⊥ for all j � m, and (2) the set {e1, . . . , em−1}
is an objective in Σi. (In particular, a player cannot select a resource multiple
times nor a resource that is not a member in his chosen objective). We refer to

3 It is interesting to allow players to use “redundant resources”; a player’s choice of
resources should contain one of his objectives. While in the traditional setting, using
a redundant resource cannot be beneficial, in the dynamic setting, it is, as a variant
of Example 1 demonstrates.
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an outcome in which the players use legal strategies as a legal outcome and a
prefix of a legal outcome as a legal history.

In out(P ), every player selects a set of resources. The cost of a player is
calculated similarly to RAGs. That is, his cost for a resource e, assuming the
load on it is γ, is �e(γ), and his total cost is the sum of costs of the resources
he uses. When the outcome of a profile P in a dynamic RAG coincides with the
outcome of a profile Q in a RAG G, we say that P and Q are matching profiles.

Equilibrium Concepts. A Nash equilibrium4 (NE, for short) in a game is
a profile in which no player has an incentive to unilaterally deviate from his
strategy. Formally, for a profile P , let P [i ← f ′

i ] be the profile in which Player i
switches to the strategy f ′

i and all other players use their strategies in P . Then,
a profile P is an NE if for every i ∈ [k] and every legal strategy f ′

i for Player i, we
have costi(P ) � costi(P [i ← f ′

i ]). It is well known that every RAG is guaranteed
to have an NE [21].

The definition of NE applies to all games, in particular to dynamic ones.
Every NE Q in a RAG G matches an NE in a dynamic game 〈G, ν〉, for some
scheduler ν, in which the players ignore the history of the play and follow their
objectives in Q. However, such a strategy is not rational. Thus, one could argue
that an NE is not necessarily achievable in a dynamic setting. We illustrate this
in the following example.

Example 2. Consider a two-player DCG with resources {a, b}, latency functions
�a(x) = x and �b(x) = 1.5x, and objectives Σ1 = Σ2 = {{a}, {b}}. Consider the
sequential scheduling in which Player 1 moves first followed by Player 2. Since
the players’ objectives are singletons, the dynamic game consists of one phase.
Consider the Player 2 strategy f2 that “promises” to select the resource a no
matter what Player 1 selects, thus f2(a) = f2(b) = a. Let fa

1 and f b
1 be the

Player 1 strategies in which he selects a and b, respectively, thus fa
1 (ε) = a and

f b
1(ε) = b, where ε denotes the empty history. Note that these are all of Player 1’s

possible strategies. The profile P = 〈f b
1 , f2〉 is an NE. Indeed, Player 2 pays 1,

which is the least possible payment, so he has no incentive to deviate. Also, by
deviating to fa

1 , Player 1’s payoff increases from 1.5 to 2, so he has no incentive
to deviate either. Note, however, that this strategy of Player 2 is not rational.
Indeed, when it is Player 2’s turn, he is aware of Player 1’s choice. If Player 1
plays fa

1 , then a rational Player 2 is not going to choose a, as this results in a
cost of 2, whereas by b, his cost will be 1.5. Thus, an NE profile with f2 may not
be achievable. ��

To overcome this issue, the notion of subgame perfect equilibrium (SPE, for
short) was introduced. In order to define SPE, we need to define a subgame of
a dynamic game. Let G = 〈G, ν〉. It is helpful to consider the outcome tree TG
of G, which is a finite rooted tree that contains all the legal histories of G. Each
internal node in TG corresponds to a legal history, its successors correspond to

4 Throughout this paper, we consider pure strategies as is the case in the vast literature
on RAGs.
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possible extensions of the history, and each leaf corresponds to a legal outcome.
Consider a legal history h. We define a dynamic RAG Gh, which, intuitively, is
the same as G after the history h has been played. More formally, the outcome
tree of Gh is the subtree T h

G whose root is the node h. We define the costs in
Gh so that the costs of the players in the leaves of T h

G are the same as the
corresponding leaves in TG . Assume that h ends at the m-th turn. A profile P
in G corresponds to a trimming of TG in which the internal node h has exactly
one child h · σ, where σ is the set of choices of the players in ν−1(m) when they
play according to their strategies in P . The profile P induces a profile Ph in Gh,
where the trimming of T h

G according to Ph coincides with the trimming of G
according to P . We formally define the outcome tree and a subgame in the full
version.

Definition 1. A profile P is an SPE if for every legal history h, the profile Ph

is an NE in Gh.

Note that the profile P = 〈f b
1 , f2〉 in the example above is an NE but not an

SPE. Indeed, for the history h = a, the profile Ph is not an NE in Gh as Player 2
can benefit from unilaterally deviating as described above.

3 Existence of SPE in Dynamic Congestion Games

It is easy to show that every sequential dynamic game has an SPE by unwinding
the outcome tree, and similar results have been shown before (c.f., [15]). The
proof can be found in the full version.

Theorem 1. Every sequential dynamic game has an SPE.

One could hope to prove that a general dynamic game G also has an SPE
using a similar unwinding of TG , possibly using the well-known fact that every
CG is guaranteed to have an NE [21]. Unfortunately, and somewhat surprisingly,
we show that this is not possible. We show that (very restrictive) DCGs might
not have an SPE. For the good news, we identify a maximal fragment that is
guaranteed to have an SPE.

Recall that a CG is singleton when the players’ objectives consist of singletons
of resources, and a CG is symmetric if all the players agree on their objectives.
We start with the bad news and show that symmetric DCGs and singleton DCGs
need not have an SPE, even with linear latency functions. We then show that
the combination of these two restrictions is sufficient for existence of an SPE in
a DCG.

Theorem 2. There are symmetric and singleton linear DCGs with no SPE.

Proof. We first describe a linear DCG with no SPE, and then alter it to make it
symmetric. The proof for singleton linear DCG is given in the full version. Con-
sider the following three-player linear CG G with resources E = {a, a′, b, b′, c}
and linear latency functions �a(x) = �b(x) = x, �a′(x) = 3

4x, �b′(x) = 11
4 , and
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�c(x) = x+ 2
3 . Let Σ1 = Σ2 = {{a, a′}, {b, b′}, {c}} and Σ3 = {{c}, {a′, b}}. Con-

sider the dynamic game G in which Players 1 and 2 move concurrently followed
by Player 3. Formally, G = 〈G, ν〉, where ν(1) = ν(2) = 1 and ν(3) = 2.

We claim that there is no SPE in G. Note that since the players’ objectives
are disjoint, then once a player reveals the first choice of resource, he reveals the
whole objective he chooses, thus we analyze the game as if it takes place in one
phase in which the players’ reveal their whole objective. The profiles in which
Players 1 and 2 choose the same objective are clearly not a SPE as they are not
an NE in the game Gε. As for the other profiles, in Fig. 2, we go over half of
them, and show that none of them is an SPE. The other half is analogous. The
root of each tree is labeled by the objectives of Players 1 and 2, and its branches
according to Player 3’s objectives. In the leaves we state Player 3’s payoff. In an
SPE, Player 3 performs a best-response according to the objectives he observes
as otherwise the subgame is not in an NE. We depict his choice with a bold edge.
Beneath each tree we note the payoffs of all the players in the profile, and the
directed edges represent the player that can benefit from unilaterally deviating.
In the full version, we construct a symmetric DCG G′ by altering the game G
above. We do this by adding a fourth player and three new resources so that G′

simulates G. ��
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Fig. 2. Profiles in the game G with no SPE.

We now prove that combining the two restrictions does guarantee the exis-
tence of SPE. We note that while our negative results hold for linear DCGs,
which tend to be stabler than other DCGs, our positive result holds for every
increasing latency function.

Theorem 3. Every symmetric singleton DCG has an SPE.

Proof. Consider a symmetric singleton DCG G = 〈G, ν〉. Recall that since G is a
singleton game, every outcome of G consists of one phase. Let P be an NE in G
(recall that according to [21] an NE exists in every CG). Since G is symmetric,
we can assume that, for 1 � j < k, the players that move in the j-th turn do
not pay more than the players that move after them. Formally, for i, i′ ∈ [k], if
ν(i) < ν(i′), then costi(P ) � costi′(P ). In particular, the players who move in
the first turn pay the least, and the players that move in the last turn pay the
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most. We construct a profile Q in G and show that it is an SPE. Intuitively, in Q,
the players follow their objectives in P assuming the previous players also follow
it. Since the costs are increasing with turns, if Player i deviates, a following
Player j will prefer switching resources with Player i and also switching the
costs. Thus, the deviation is not beneficial for Player i. In the full version, we
construct Q formally and prove that it is an SPE. ��

4 Existence of SPE in Dynamic Cost-Sharing Games

Cost sharing games tend to be less stable than congestion games in the concur-
rent setting; for example, very simple fragments of multiset cost-sharing games
do not have an NE [5] while linear multiset congestion games are guaranteed to
have an NE [6]. In this section we are going to show that, surprisingly, there are
classes of games in which an SPE exists only in the cost-sharing setting. Still,
SPE is not guaranteed to exist in general DSGs. We start with the bad news.

Theorem 4. There is a DSG with no SPE.

Proof. Consider the following four-player SG G with resources E =
{a, a′, a′′, b, b′, b′′, c, c′, c′′} and costs ca = cb = cc = 6, ca′ = cb′ = cc′ = 4,
and ca′′ = cb′′ = cc′′ = 3. Let Σ1 = {{a, a′}, {b, b′′}}, Σ2 = {{b, b′}, {c, c′′}},
Σ3 = {{c, c′}, {a, a′′}}, and Σ4 = {{a, a′}, {b, b′}, {c, c′}}. Consider the dynamic
game G in which players 1,2, and 3 move concurrently followed by Player 4.
Formally, G = 〈G, ν〉, where ν(1) = ν(2) = ν(3) = 1 and ν(4) = 2.

We claim that there is no SPE in G. Similar to Theorem 2, since the players’
objectives are disjoint, we analyze the game as if it takes place in one phase. In
Fig. 3, we depict some of the profiles and show that none of them are an SPE.
As in Theorem 2, the root of each tree is labeled by the objectives of Players
1, 2, and 3, its branches according to Player 4’s choices, and in the leaves we
state the cost of Player 4 assuming he chooses his best choice given the other
players’ choices. Finally, it is not hard to show that every profile not on the cycle
of profiles cannot be an SPE. ��

{b, b }, {b, b }, {a, a }

7 4 10

5, 4, 9, 4

{a, a } {b, b } {c, c }

{a, a }, {b, b }, {a, a }

4 7 10

4, 10, 5, 4

{a, a } {b, b } {c, c }

{a, a }, {c, c }, {a, a }

4 10 7

4, 9, 5, 4

{a, a } {b, b } {c, c }

{a, a }, {c, c }, {c, c }

7 10 4

10, 5, 4, 4

{a, a } {b, b } {c, c }

Fig. 3. Profiles in the game with no SPE. Bold edges depict Player 4’s best choice
given the other players choices. Directed edges represent the player that can benefit
from unilaterally deviating.
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Recall that singleton DCGs are not guaranteed to have an SPE (Theorem 2).
On the other hand, we show below that singleton DSGs are guaranteed to have
an SPE. In order to find an SPE in such a game, we use a firmer notion of an
equilibria in SGs.

A strong equilibrium (SE, for short) [3] is a profile that is stable against
deviations of coalitions of players rather than deviations of a single player as in
NEs (see the full version for a formal definition). We show a connection between
strong equilibria and SPEs in singleton SGs. It is shown in [13] that every sin-
gleton SG has an SE.

Theorem 5. Consider a singleton DSG G = 〈G, ν〉. Then, every strong equi-
librium in G matches an SPE of G. In particular, every singleton DSG has an
SPE.

Proof. We describe the intuition of the proof and the details can be found in
the full version. Consider a singleton DSG G = 〈G, ν〉, and let Q be an SE in G.
We describe a profile P in G that matches Q, and we claim that it is an SPE.
Consider a history h that ends in the i-th turn. Assume the players that play
in h follow their objective in Q. Then, the players who play next, namely these
in ν−1(i + 1), also follow Q. Thus, P matches Q. The definition of the strategies
in P for histories that do not follow Q is inductive: assume only the players in
ν−1(i) choose differently than in Q, then the subgame Gh is a singleton DSG. We
find a strong equilibrium in Gh and let the players in ν−1(i+1) choose according
to it. In order to show that no Player i can unilaterally benefit from deviating
to a resource e from P , we observe that it is not possible that all players that
deviate into e decrease their costs (as Q is an SE). So, there must be a Player j1
that deviates from some resource e′ to e and increases his cost. This can only
happen if there is a Player j2 that also uses e′ in Q and deviates to e′′ while
decreasing his cost. The same reasoning holds for players deviating to e′′. Thus,
we find a sequence of resources, which must contain a loop as there are finitely
many resources. Using it we can reach a contradiction to the fact that Player i
benefits. ��

5 Equilibrium Inefficiency

It is well known that decentralized decision-making may lead to sub-optimal
solutions from the point of view of society as a whole. We define the cost of a
profile P , denoted cost(P ), to be

∑
i∈[k] costi(P ). We denote by OPT the cost

of a social-optimal solution; i.e., OPT = minP cost(P ). Two standard measures
that quantify the inefficiency incurred due to self-interested behavior are the
price of anarchy (PoA) [14,19] and price of stability (PoS) [2,23]. The PoA is
the worst-case inefficiency of an NE; The PoA of a game G is the ratio between
the cost of the most expensive NE and the cost of the social optimum. The
PoS measures the best-case inefficiency of an NE, and is defined similarly with
the cheapest NE. The PoA of a family of games F is supG∈F PoA(G), and the
definition is similar for PoS.
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In dynamic games we consider SPE rather than NE. We adapt the defini-
tions above accordingly, and we refer to the new measures as dynamic PoA and
dynamic PoS (DPoA and DPoS, for short). We study the equilibrium inefficiency
in the classes of games that are guaranteed to have an SPE, namely singleton
DSGs and symmetric singleton DCGs.

The lower bounds for the PoA and PoS for singleton SG and singleton sym-
metric CGs follow to the dynamic setting as we can consider the scheduler in
which all players choose simultaneously in the first turn. For the upper bound
we start with the DPoS. In the congestion setting, we show that every NE in
the underlying RAG matches an SPE. In the cost-sharing setting, recall that an
SE in the traditional game matches an SPE in the dynamic game, and by [26],
a singleton SG has an SE whose cost is at most log(k) · OPT . This matches the
log(k) lower bound. We continue to study DPoA. In the cost-sharing setting,
the upper bound follows from the same argument as traditional games. For con-
gestion games, it follows by applying a recent result by [10] to our setting. The
details can be found in the full version.

Theorem 6. The DPoA and DPoS in singleton DSGs and singleton symmetric
DCGs coincide with the PoA and PoS in singleton SGs and singleton symmetric
CGs, respectively.

Proof. Thus, for singleton DSGs we have DPoA = k and DPoS = log k [2], and
for singleton symmetric DCGs we have DPoA = 4/3 [11] and we are not aware
of bounds for the PoS in the corresponding CGs.

6 Deciding the Existence of SPE

In the previous sections we showed that dynamic RAGs are not guaranteed to
have an SPE. A natural decision problem arises, which we refer to as ∃SPE: given
a dynamic RAG, decide whether it has an SPE. We show that the problem is
PSPACE-complete in DSGs and DCGs. We start with the lower bound. The crux
of the proof is given in the following lemma. For DCGs, such a construction is
described in [15], which uses a construction by [25] in order to simulate the logic
of a NAND gate by means of a CG. For SGs we are not aware of a similar known
result. We describe the construction in the full version, which is inspired by the
construction in [15].

Lemma 1. Given a QBF instance ψ, there is a fully sequential game Gψ that is
either a DCG or a DSG, and two constants γ, δ > 0, such that in every SPE P in
Gψ, (1) if ψ is true, then cost1(P ) < γ, and (2) if ψ is false, then cost1(P ) > δ.

To conclude the lower-bound proof, we combine the game that is constructed
in Lemma 1 and a game that has no SPE as in the examples we show in the
previous sections. For the upper bound, consider a dynamic RAG G, and let
TG be the outcome tree of G. Recall that there is a one-to-one correspondence
between leaves in TG and legal outcomes of G. In order to decide in PSPACE
whether G has an SPE, we guess a leaf l in TG and verify that it is an outcome
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of an SPE. Thus, we ask if there is an SPE P in G whose outcome corresponds
to l.

Theorem 7. The ∃SPE problem is PSPACE-complete for dynamic RAGs.

7 Extensions

In the full version we study two extensions of the dynamic setting. In the first,
we consider the problem of finding a schedule that admits an SPE under given
constraints on the order the players move, and show that this problem is also
PSPACE-complete. Then, we consider dynamic RAGs in which there is an order
on the resources that the players choose. So, if for two resources e1 and e2,
we have e1 ≺ e2, then a player cannot choose e1 in a later phase than e2.
The motivation for an order on resources is natural. For example, returning to
network formation games, a driver can only extend the path he chooses as the
choices are made during driving. We show that all our results carry over to the
ordered case.
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Abstract. Weighted voting games (WVGs) are a class of cooperative
games that capture settings of group decision making in various domains,
such as parliaments or committees. Earlier work has revealed that the
effective decision making power, or influence of agents in WVGs is not
necessarily proportional to their weight. This gave rise to measures of
influence for WVGs. However, recent work in the algorithmic game the-
ory community have shown that computing agent voting power is com-
putationally intractable. In an effort to characterize WVG instances for
which polynomial-time computation of voting power is possible, several
classes of WVGs have been proposed and analyzed in the literature. One
of the most prominent of these are super increasing weight sequences.
Recent papers show that when agent weights are super-increasing, it is
possible to compute the agents’ voting power (as measured by the Shap-
ley value) in polynomial-time. We provide the first set of explicit closed-
form formulas for the Shapley value for super-increasing sequences. We
bound the effects of changes to the quota, and relate the behavior of
voting power to a novel function. This set of results constitutes a com-
plete characterization of the Shapley value in weighted voting games,
and answers a number of open questions presented in previous work.

1 Introduction

Weighted voting games (WVGs) are a class of cooperative games, commonly
used to model large group decision making systems, such as parliaments. Alter-
natively, one can think of each player as controlling some resource, with winning
coalitions being ones that have sufficient resources in order to complete a task.
One of the main challenges in the WVG setting is the measurement of player
influence, or power. It is a well known fact that one’s ability to affect decisions
may not necessarily be proportional to one’s weight. As an intuitive example,
consider a parliament with three parties, A,B and C: A and B both have 50
seats, while C has 20 (a government must control a majority of the house, i.e.,
c© Springer-Verlag Berlin Heidelberg 2016
M. Gairing and R. Savani (Eds.): SAGT 2016, LNCS 9928, pp. 169–181, 2016.
DOI: 10.1007/978-3-662-53354-3 14
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have at least 60 votes). If one equates voting power with weight, then A and
B are significantly more powerful than C; a government can be formed by any
two coalitions, and no single party can form a government on its own. Based on
this observation, it can be reasonably argued that all parties have equal electoral
power. Formal measures of voting influence, such as the Shapley value, aim to
capture exactly these effects, providing a formal measure of player influence in
WVGs. The Shapley value is considered by many to be a particularly appeal-
ing method of measuring voting power, as it satisfies several desired properties.
However, it is well-known that computing the Shapley value in WVGs is com-
putationally intractable [1]. This has naturally led to works identifying classes
of WVGs for which computing voting influence is computationally tractable.
In particular, an interesting sufficient condition on weights has been identified,
which, if satisfied, guarantees the polynomial-time computability of the Shap-
ley value. More formally, polynomial-time computability of the Shapley value
is guaranteed if player weights are known to be super-increasing: a sequence
of weights w1, . . . , wn is said to be super-increasing if wi >

∑n
j=i+1 wj for all

i ∈ {1, . . . , n − 1}.

1.1 Our Contributions

We provide a complete characterization of the Shapley values in a game where
weights form a super-increasing sequence (Sect. 3). We provide a closed-form for-
mula for the Shapley value when weights are super-increasing (extending tech-
niques and observations on such games discussed in earlier work [2–4]). This
formula is derived by exploiting an interesting relation between general super-
increasing sequences, and the WVG obtained when weights are exponents of 2.
We show several implications of our analysis to the results by [2,4], as well as
a relation to a curious fractal function (Fig. 1). We significantly improve our
understanding of this function, showing its various analytical properties, and its
relation to Shapley values in WVGs with super-increasing weights. On a tech-
nical level, we employ several non-trivial combinatorial techniques, as well as
surprising insights on the bit representation of fractions.

1.2 Related Work

Our work generalizes several results appearing in [2–4] with respect to WVGs
with weights that are powers of 2. We use the Shapley value [5,6] to measure
voting power; this follows the extensive literature in mathematical economics
and, more recently, the AI community (see [7, Chap. 4] and [8] for a literature
review), on measuring influence in cooperative games. The computational com-
plexity of computing the Shapley value is a well-studied problem, with several
works on either establishing its intractability [1,9,10], approximating it [11–13],
or computing it exactly for some class of cooperative game [14–20], using it to
measure importance and assign gains or costs [21–26] or analyzing its behav-
ior in the face of various types of uncertainty [27–31] (this list is by no means
exhaustive, for a comprehensive review see [7,8]).
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2 Preliminaries

We generally refer to vectors as lowercase, boldface letters and sets as uppercase
letters. Given a positive integer m we denote [m] = {1, . . . , m}. A weighted voting
game (WVG) is given by a set of agents N = {1, . . . , n}, a non-negative weight
vector w = (w1, . . . , wn), where wi is the weight of player i ∈ N (and we let w
denote the length-n weight vector), and a quota (or threshold) q. Thus, we refer
to a WVG over N as the tuple 〈w; q〉. Unless otherwise specified, we assume that
w1 ≥ · · · ≥ wn. For a subset of agents S ⊆ N (also referred to as a coalition),
we define w(S) =

∑
i∈S wi.

A coalition S ⊆ N is called winning (has a value v(S) = 1) if w(S) ≥ q and is
called losing (has a value v(S) = 0) otherwise. To define the Shapley value, we
require the following notation. Given a coalition S ⊆ N and some i ∈ N\S, we
let the marginal contribution of i to S be mi(S) = v(S ∪{i})− v(S); for WVGs,
mi(S) ∈ {0, 1}, and mi(S) = 1 iff w(S) < q but w(S) + wi ≥ q. If mi(S) = 1 we
say that i is pivotal for S. Given a permutation σ : N → N , we let Pi(σ) = {j ∈
N | σ(i) > σ(j)} be the set of i’s predecessors in σ. By letting mi(σ) = mi(Pi(σ)),
we have that mi(σ) = 1 iff i is pivotal for its predecessors in σ, in which case we
simply say that i is pivotal for σ. Let Symn be the set of all permutations of N .
The Shapley value of player i is the probability that i is pivotal for a randomly
selected permutation σ ∈ Symn: ϕi(w; q) = 1

n!

∑
σ∈Symn

mi(σ). For i ∈ N , we
write ϕi(q) whenever w is clear from the context, and assume that q ∈ (0, w(N)]
(as otherwise ϕi(w; q) = 0).

3 A Formula for the Shapley Value Under
Super-Increasing Sequences

Given a vector of weights w = (w1, . . . , wn), we say that w is super-increasing
(SI) if wi >

∑n
j=i+1 wj for all i ∈ {1, . . . , n − 1}. We henceforth assume that w

is a super-increasing sequence.1

In Lemma 2, we show that computing the Shapley value for SI weight
sequences is essentially equivalent to doing so for the sequence β =
(2n−1, 2n−2, . . . , 1) (for a subset S ⊆ N , recall that β(S) =

∑
i∈S 2n−i). Given

an integer value q ∈ (0, 2n −1 = β(N)], we note that there exists a unique subset
Sq ⊆ N such that β(Sq) = q. Given an SI vector w, not every number q in the
range (0, w(N)] can be written as a sum of members of {w1, . . . , wn}; however,
there are certain naturally defined intervals that partition (0, w(N)].

We begin by proving the following two simple lemmas (the proof of Lemma 1
is omitted due to space constraints).

Lemma 1. Let w be an SI weight vector. For every S, T ⊆ N , β(S) < β(T ) if
and only if w(S) < w(T ).

1 Our definition actually results in super-decreasing weight sequences; for consistent
notation with [2,4] and others, we refer to our sequences as super-increasing.
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For a non-empty set of agents S ⊆ N , we let S− ⊆ N be the unique subset
of agents satisfying β(S−) = β(S) − 1. For example, assuming n = 4, if S =
{1, 3, 4}, then β(S) = 24−1 + 24−3 + 24−4 = 23 + 21 + 20 = 11; thus S− =
{1, 3} since β({1, 3}) = 24−1 + 24−3 = 23 + 21 = 10. Lemma 1 shows that for
every quota q ∈ (0, w(N)] there exists a unique set A(q) ⊆ N such that q is
in (w(A(q)−), w(A(q))]. Whenever we write A(q) = {a0, . . . , ar}, we will always
assume that a0 < · · · < ar.

Lemma 2. Given an SI vector w, then for every i ∈ N and q ∈ (0, w(N)],
ϕi(w; q) = ϕi(β;β(A(q))).

Proof. Recall that Pi(σ) is the set of agents appearing before agent i in a given
permutation σ ∈ Symn. The Shapley value ϕi(w; q) is the probability that
w(Pi(σ)) ∈ [q − wi, q), or equivalently, that q ∈ (w(Pi(σ)), w(Pi(σ)) + wi]. The
intervals (w(C−), w(C)] partition (0, w(N)]; thus q is in (w(Pi(σ)), w(Pi(σ))+wi]
if and only if w(Pi(σ)) ≤ w(A(q)−) and w(A(q)) ≤ w(Pi(σ) ∪ {i}). Lemma 1
shows that this is equivalent to checking whether β(Pi(σ)) ≤ β(A(q)−) and
β(A(q)) ≤ β(Pi(σ) ∪ {i}). Now, note that β(A(q)−) = β(A(q)) − 1, so the above
condition simply states that i is pivotal for σ under β when the quota is β(A(q)).

Lemma 2 implies that for any SI w, computing ϕi(w; q) only requires finding
A(q); this can be done using Algorithm 1. This is a straightforward greedy
algorithm, whose proof of correctness is omitted due to space constraints.

Algorithm 1. Algorithm Find-Set for finding A(q)
Input: w, q
A ← ∅
for i ← 1 to n do

if q > w(A ∪ {i + 1, . . . , n}) then
A ← A ∪ {i}

end

end
return A

We now present our main result, a closed form formula for the Shapley values
in the super-increasing case. The resulting Shapley values are illustrated in Fig. 1.

Theorem 1. Given an SI vector w and a threshold q, let A(q) = {a0, . . . , ar}.
If i /∈ A(q) then:

ϕi(w; q) =
∑

t∈{0,...,r} :
at>i

1
at

(
at−1

t

) .

If i ∈ A(q), say i = as, then:

ϕi(w; q) =
1

as

(
as−1

s

) −
∑

t>s

1
at

(
at−1
t−1

) .
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Proof. We present here the case where i /∈ A(q); the case where i ∈ A(q) is
similar, and its proof is omitted due to space constraints. Lemma 2 shows that
ϕi(w; q) = ϕi(β;β(A(q))), where β = 2n−1, . . . , 1. Therefore we can assume
w.l.o.g. that w = β and that the threshold is q∗ =

∑
j∈A(q) 2n−j .

Recall that ϕi(w; q) is the probability that w(Pi(σ)) ∈ [q − wi, q), where σ
is chosen randomly from Symn, and Pi(σ) is the set of predecessors of i in σ.
The idea of the proof is to consider the maximal τ ∈ {1, . . . , r + 1} such that
at ∈ Pi(σ) for all t < τ . We will show that when i /∈ A(q), each possible value of
τ corresponds to one summand in the expression for ϕi(w; q).

Suppose that i is pivotal for σ. We start by showing that τ ≤ r, ruling out
the case τ = r+1. If τ = r+1 then by definition β(Pi(σ)) ≥ ∑

j∈A(q) 2n−j = q∗,
contradicting the assumption β(Pi(σ)) < q∗. Thus τ ≤ r, and so aτ is well-
defined. We claim that if k ∈ Pi(σ) for some agent k < aτ then k ∈ A(q).
Indeed, otherwise:

β(Pi(σ)) ≥
τ−1
∑

t=0

2n−at + 2n−k ≥
τ−1
∑

t=0

2n−at + 2n−aτ+1

≥
τ−1
∑

t=0

2n−at +

n
∑

j=aτ

2n−j ≥ β(A(q)) = q∗,

again contradicting β(Pi(σ)) < q∗; thus, if k ∈ Pi(σ)\A(q), then k > aτ .
Furthermore, we claim that aτ ≥ i. Otherwise:

β(Pi(σ)) ≤
τ−1
∑

t=0

2n−at +
n
∑

j=aτ+1

2n−j − 2n−i

<
τ
∑

t=0

2n−at − 2n−i ≤ q∗ − wi,

contradicting the assumption w(Pi(σ)) ≥ q∗ − wi.
Summarizing, we have that if i is pivotal for σ, then τ ≤ r, aτ ≥ i and

Pi(σ) ∩ {1, . . . , aτ} = {a0, . . . , aτ−1}. (1)

Denote this event Eτ , and call a τ ≤ r satisfying aτ ≥ i legal.
Recall that i /∈ A(q); we have shown above that if i is pivotal for σ then Eτ

occurs for some legal τ . We claim that the converse is also true; that is, if there
exists some legal τ such that (1) holds with respect to σ, then i is pivotal for σ.
Indeed, given Eτ defined with respect to a permutation σ, and for some legal τ ,
the weight of Pi(σ) can be bounded as follows.

τ−1∑

t=0

2n−at ≤ β(Pi(σ)) ≤
τ−1∑

t=0

2n−at +
n∑

j=aτ+1

2n−j <

τ∑

t=0

2n−at ,

where the last expression is at most q∗. The second inequality follows from the
definition of τ . As i < aτ , the lower bound satisfies:

τ−1∑

t=0

2n−at ≥ q∗ −
n∑

j=aτ

2n−j > q∗ − 2n−aτ+1 ≥ q∗ − 2n−i,
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It remains to calculate Pr[Eτ ]. The event Eτ states that the restriction of σ
to {1, . . . , aτ} consists of the elements {a0, . . . , aτ−1} in some order, followed by
i (recall that i ≤ aτ ). For each of the τ ! possible orders, the probability of this
is 1/aτ · · · (aτ − τ) = (aτ − τ − 1)!/aτ !, and so

Pr[Eτ ] =
τ !(aτ − τ − 1)!

aτ !
=

1
aτ

(
aτ −1

τ

) . (2)

Summing over all legal τ , we obtain the formula in the statement of the theorem.
This completes the proof in the case i /∈ A(q).

Example 1. Consider a 10 agent game where wi = 2n−i. Let us compute the
Shapley value of agent 7 when the quota is q = 27. We can write q = 16 + 8 +
2 + 1 = w6 + w7 + w9 + w10, hence A(q) = {a0 = 6, a1 = 7, a2 = 9, a3 = 10}.
Since agent 7 is in A(q), it must be the case that: ϕ7(27) = 1

7(61)
− 1

9(81)
− 1

10(92)
≈

0.007143.

(a) Shapley values for n = 5, wi = 2−i. Val-
ues ϕi(q) for different i are slightly nudged to
show the effects of Lemma 4.

(b) Shapley values ϕ1(q) for n = 5, wi = 2−i

compared to the limiting case n = ∞.

(c) Shapley values in the case wi = 2−i. (d) Shapley values in the case wi = 3−i.

Fig. 1. Examples Shapley values corresponding to super-increasing sequences.
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4 Shapley Values Under Super-Increasing Weights

Zuckerman et al. [4] prove a nice property of super-increasing sets (Lemma 19):

Theorem 2 (given in[4]). Suppose that n ≥ 3; if the weights w are SI, then for
every quota q ∈ (0, w(N)], either ϕn(q) = ϕn−1(q) or ϕn−1(q) = ϕn−2(q).

We generalize this result using Theorem 1, showing how to determine in which
cases ϕi(q) = ϕi+1(q). We prove Lemma 4 using a combinatorial identity.

Lemma 3. Let p, t be integers satisfying p > t ≥ 1. Then

1
p
(
p−1

t

) +
1

p
(
p−1
t−1

) =
1

(p − 1)
(
p−2
t−1

) .

Lemma 4. Given a quota q ∈ (0, w(N)], let A(q) = {a0, . . . , ar}. Given some
i ∈ N\{n}, (a) if i, i + 1 ∈ A(q) or i, i + 1 /∈ A(q) then ϕi(q) = ϕi+1(q); (b)
if i /∈ A(q) and i + 1 ∈ A(q) then ϕi(q) ≥ ϕi+1(q), with equality if and only if
i + 1 = ar; (c) if i ∈ A(q) and i + 1 /∈ A(q) then ϕi(q) > ϕi+1(q).

Proof. We write A(q) = {a1, . . . , ar}. Let us assume that neither i nor i + 1
are in A(q); the other cases are similar and their proof is omitted due to space
constraints. For every t ∈ {0, . . . , r}, at > i if and only at > i + 1. Employing
the formula used in Theorem 1, we have that

ϕi(q) =
∑

t∈{0,...,r} :
at>i

1

at

(

at−1
t

)

=
∑

t∈{0,...,r} :
at>i+1

1

at

(

at−1
t

) = ϕi+1(q).

Next, if i, i + 1 ∈ A(q) then there is some s such that i = as and i + 1 = as+1,
so:

ϕi(q) =
1

as

(

as−1
s

) −
∑

t∈{0,...,r}:
at>i

1

at

(

at−1
t−1

)

=
1

as

(

as−1
s

) − 1

as+1

(

as+1−1
s

) −
∑

t∈{0,...,r}:
at>i+1

1

at

(

at−1
t−1

)

=
1

as

(

as−1
s

) − 1

(as + 1)
(

as
s

) −
∑

t∈{0,...,r}:
at>i+1

1

at

(

at−1
t−1

)

According to Lemma 3 this equals:

1

(as + 1)
(

as
s+1

) −
∑

t∈{0,...,r}:
at>i+1

1

at

(

at−1
t−1

) =
1

(as+1)
(

as+1−1
s+1

) −
∑

t∈{0,...,r}:
at>i+1

1

at

(

at−1
t−1

) = ϕi+1(q),

where the last equality uses Theorem 1.



176 Y. Bachrach et al.

Next, we show that Lemma 4 generalizes Theorem 2. We can, in fact, show
the following stronger corollary (proof omitted).

Corollary 1. Let w be a vector of super-increasing weights. Let A(q) =
{a0, . . . , ar}. Then for all i ≥ ar, either ϕi(q) = ϕi−1(q), or ϕi−1(q) = ϕi−2(q).

Invoking Corollary 1 with i = n gives Theorem 2.
Another interesting implication of Corollary 1 is the following. Suppose that

A(q) = {a0, . . . , ar}, then for all i, j > ar, ϕi(q) = ϕj(q).
It is often desirable that WVGs exhibit separability: if two players have

different weights, then they should have different voting power. [4] show that
separability is not attainable under SI weights; Corollary 1 implies that some
quotas offer more separability than others: if A(q) does not consist of low-
weight agents, then low-weight agents are not separable under q. For example,
if weights are exponents of 2 and q = �2n−m, where � is an odd number, then
ϕn−m+1 = · · · = ϕn(q). Our results allow us to bound the difference in voting
power that one may achieve by changing the quota under SI weights. Recall that
given a set S ⊆ N , S− is the set for which β(S) = β(S−) + 1. As the Shapley
values are constant in the interval (w(S−), w(S)], in order to analyze the behav-
ior of ϕi(q), one needs only determine the rate of increase or decrease at quotas
of the form w(S) for S ⊆ N . These are given by the following lemma.

Lemma 5. For every S ⊆ N , and any i ∈ N , if i /∈ S− then ϕi(w(S−)) <
ϕi(w(S)). If i ∈ S− then ϕi(w(S−)) > ϕi(w(S)).

Moreover, |ϕi(w(S)) − ϕi(w(S−))| = 1
n if one of the following holds: (a)

S = {n}; (b) i < n and S = {1, . . . , i} or S = {i, n}; or (c) i = n and
S = {n − 1}. Otherwise, |ϕi(w(S)) − ϕi(w(S−))| ≤ 1

n(n−1) .

Proof. Given a non-empty set S ⊆ N , we define ϕ+ = ϕi(w(S)) and ϕ− =
ϕi(w(S−)). Let S = {a0, . . . , ar}. We have S− = {a0, . . . , ar−1, ar + 1, . . . , n}.

Suppose first that i > ar, and let s be the index of i in the sequence S−.
According to Theorem 1, ϕ+ = 0 and

ϕ− =
1

i
(
i−1
s

) −
n−i∑

�=1

1
(i + �)

(
i+�−1
s+�−1

) =
1

n
(

n−1
s+n−i

) ;

thus ϕ− > ϕ+. Furthermore, |ϕ+ − ϕ−| ≤ 1
n(n−1) , unless s + n − i ∈ {0, n − 1}.

If s + n − i = 0 then s = 0 and i = n, implying S− = {n} and so S = {n − 1}. If
s+n− i = n−1 then s = i−1 and so S− = {1, . . . , n}, which is impossible. The
cases where i = ar and i < ar are similarly analyzed, and provide the complete
case analysis; we omit the details due to space constraints.

5 The Limiting Behavior of the Shapley Value Under
Super-Increasing Weights

Given a super-increasing sequence w1, . . . , wn (where again, w1 > w2 > · · · >
wn) and some m ∈ N , let us write w|m for (w1, . . . , wm) and [m] for {1, . . . , m}.
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We write ϕi(w|m; q) for the Shapley value of agent i ∈ [m] in the weighted voting
game in which the set of agents is [m], the weights are w|m, and the quota is q.
We also write A|m(q) for the set S ⊆ [m] such that q ∈ (w|m(S−), w|m(S)].

The following lemma (proof omitted) relates ϕi(w; q) and ϕi(w|m; q).

Lemma 6. Let m ∈ N and i ∈ [m], and let q ∈ (0, w([m])]. Then

ϕi(w|m; q) = ϕi(w;w(A|m(q))).

Therefore the plot of ϕi(w|m; q) (as a function of q) can be readily obtained
from that of ϕi(w; q). This suggests looking at the limiting case of an infinite
super-increasing sequence (wi)∞

i=1, which is a sequence satisfying wi > 0 and
wi ≥ ∑∞

j=i+1 wj for all i ≥ 1. In this section we make some normalizing assump-
tions that will be useful. Just like in the preceding subsections, we assume that
weights are arranged in decreasing order; furthermore, we assume that w1 = 1

2 .
This is no loss of generality: it is an easy exercise to see that given a weight
vector w and some positive constant α, ϕi(w; q) = ϕi(αw;αq). Thus, instead
of the weight vector (2n−1, 2n−2, . . . , 1), we now have ( 12 , 1

4 , . . . , 1
2n−1 ). The

super-increasing condition implies that the infinite sequence sums to some value
w(∞) ≤ 1. Lemma 6 suggests how to define ϕi(q) in this case. For q ∈ (0, w(∞))
and i ≥ 1, define: ϕ

(∞)
i (q) = limn→∞ ϕi(w|n; q).

We show that the limit exists by providing an explicit formula for it, as given
in the main result of this section, Theorem 3. Under this definition, Lemma 6
easily extends to the case n = ∞ (proof omitted):

Lemma 7. Let m ≥ 1 be an integer, let i ∈ [m], and let q ∈ (0, w([m])]. Then
ϕi(w|m; q) = ϕ

(∞)
i (w(A|m(q))).

Below, we consider possibly infinite subsets S = {a0, . . . , ar} of the positive
integers, ordered in increasing order; when r = ∞, the subset is infinite. Also,
the notation {a, . . . ,∞} (or {a, . . . , r} when r = ∞) means all integers larger
than or equal to a.

Given a finite sequence of integers S = {a0, . . . , ar}, such that a0 < a1 <
· · · < ar, we define S− to be {a0, . . . , ar−1}∪{ar+1, . . . ,∞}; note the analogy to
the finite case: when we had a finite sequence of agents N , S− was the maximal
weight set such that w(S−) < w(S). This is also the case for S− as defined
above. For a (possibly infinite) subset S of the positive integers, define β∞(S) =∑

i∈S 2−i. First, we show an analog of Lemma 1 (proof omitted).

Lemma 8. Suppose S, T ⊆ N are two subsets of the positive integers. Then
β∞(S) ≤ β∞(T ) if and only if w(S) ≤ w(T ). Further, if β∞(S) < β∞(T ) then
w(S) < w(T ).

There is a subtlety involved here: unlike the finite case explored in Lemma 1,
we can have β∞(S) = β∞(T ) for S = T . This is because dyadic rationals (num-
bers of the form a

2b for some positive integer a) have two different binary expan-
sions. For example, 1

2 = (0.1000 . . .)2 = (0.0111 . . .)2. The lemma states (in this
case) that w({1}) ≥ w({2, 3, 4, . . .}), but there need not be equality.
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Next, we use the fact that any real r ∈ (0, 1) has a binary expansion with
infinitely many 0s (alternatively, a set Sr such that β∞(Sr) =

∑
n∈Sr

2−n = r
and there are infinitely many n /∈ Sr), and a binary expansion with infinitely
many 1s (alternatively, a set Tr such that β∞(Tr) =

∑
n∈T 2−n = r and there

are infinitely many n ∈ Tr). If r is not dyadic, then it has a unique binary
expansion which has infinitely many 0s and 1s. If r is dyadic, say r = 1

2 , then it
has one expansion (0.1000 . . .)2 with infinitely many 0s and another expansion
(0.0111 . . .)2 with infinitely many 1s. The following lemma describes the analog
of the intervals (w(S−), w(S)] in the infinite case.

Lemma 9. Let q ∈ (0, w(∞)). There exists a non-empty subset S of the pos-
itive integers such that either q = w(S) or S = {a0, . . . , ar} is finite and
q ∈ (w(S−), w(S)].

Proof. Since q < w(∞), there exists some finite m such that q ≤ w([m]). For
any n ≥ m, let A|n = A|n(q). Let Q|n be the subset of [n] preceding A|n,
and let R|n be the subset of [n + 1] preceding A|n; here “preceding” is in the
sense of X �→ X−. The interval (w(Q|n), w(A|n)] splits into (w(Q|n), w(R|n)] ∪
(w(R|n), w(A|n)], and so A|n+1 ∈ {R|n, A|n}. Also β∞(A|n+1) ≤ β∞(A|n), with
equality only if A|n+1 = A|n. We consider two cases. The first case is when
for some integer M , for all n ≥ M we have A|n = A = {a0, . . . , ar}. In that
case for all n ≥ M

∑r−1
t=0 wat

+
∑n

t=ar+1 wt < q ≤ ∑r
t=0 wat

, and taking the
limit n → ∞ we obtain q ∈ (w(A−), w(A)]. The other case is when A|n never
stabilizes. The sequence β∞(A|n) is monotonically decreasing, and reaches a
limit b satisfying b < β∞(A|n) for all n. Since w(A|m) ∈ (w(Q|n), w(A|n)] for all
integers m ≥ n ≥ 1, Lemma 8 implies that b ∈ [β∞(Q|n), β∞(A|n)).

Let L be a subset such that b = β∞(L) and there are infinitely many i /∈ L,
and define L|n = L∩[n]. We have b ∈ [β∞(L|n), β∞(L|n)+2−n). Thus Q|n = L|n,
and so q > w(Q|n) = w(L|n). Taking the limit n → ∞, we deduce that q ≥ w(L).
If n /∈ L then A|n = Q|n ∪ {n}, and so q ≤ w(A|n) = w(L|n) + wn. There are
infinitely many such n, so taking the limit n → ∞ we conclude that q ≤ w(L)
and so q = w(L).

We can now give an explicit formula for ϕ
(∞)
i . We extend our notation to

accommodate the notions given in Lemma 9. The proof of Theorem 3 is similar
in spirit to the proof of Theorem 1, with one important subtlety: given some
q ∈ (0, w(∞)), we write A(q) ⊆ N to be an infinite set S such that q = w(S), or
the finite set S for which q ∈ (w(S−), w(S)]. In the first case there may be more
than one set S such that q = w(S); Theorem 3 holds for any of the possible
representations of q using w.

Theorem 3. Let q ∈ (0, w(∞)) and let i be a positive integer. Let A(q) =
{a0, . . . , ar} be the set defined in Lemma 9. Then:

(a) the limit ϕ
(∞)
i (q) = limn→∞ ϕi(w|n; q) exists.

(b) if i /∈ A(q) then

ϕ
(∞)
i (q) =

∑

t∈{0,...,r} :
at>i

1
at

(
at−1

t

) .
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If i ∈ A(q), say i = as, then

ϕ
(∞)
i (q) =

1
as

(
as−1

s

) −
∑

t∈{0,...,r} :
at>i

1
at

(
at−1
t−1

) .

We conclude by stating that the limiting functions ϕ
(∞)
i are continuous; the

proof is omitted due to space constraints.

Theorem 4. Let i be a positive integer. The function ϕ
(∞)
i is continuous on

(0, w(∞)), and limq→0 ϕ
(∞)
i (q) = limq→w(∞) ϕ

(∞)
i (q) = 0.

Summarizing, we can extend the functions ϕi(w|n; q) to a continuous function
ϕ
(∞)
i which agrees with ϕi(w|n; q) on the points w(S) for S ⊆ {1, . . . , n}.

When wi = 2−i the plot of ϕ(∞) has no flat areas, but when wi = d−i

for d > 2, the limiting function is constant on intervals (w(S−), w(S)]. This
is reflected in Fig. 1. These flat areas highlight a curious phenomenon. When
w1 >

∑∞
j=2 wj , we have w({2, 3, . . . ,∞}) < w({1}), which corresponds to the

strict inequality 0.0111 . . . < 0.1 in binary, or 0.4999 . . . < 0.5 in decimal. The
infinitesimal difference is expanded to an interval (w({1}−), w({1})] of non-zero
width w1 −∑∞

j=2 wj . When wi >
∑∞

j=i+1 wj for all i, this phenomenon happens
around every dyadic number.

6 Conclusions and Future Work

In this paper we present a series of novel results characterizing the behavior of
the Shapley value in WVGs when weights are super-increasing. We derive an
explicit formula for the Shapley value in this case, and use it to gain several
insights, bounding the gain in value as the quota changes, and explaining our
results via the behavior of an interesting fractal function. While our technical
results are interesting on their own, they offer some instructive insights on the
study of WVGs in the AI lens. For example, our combinatorial techniques can
inform the study of annexation and merging in WVGs [32–35], as well as other
AI domains such as combinatorial auctions and boolean threshold logic.

References

1. Matsui, Y., Matsui, T.: NP-completeness for calculating power indices of weighted
majority games. Theor. Comput. Sci. 263(1–2), 305–310 (2001)

2. Aziz, H., Paterson, M.: Computing voting power in easy weighted voting games.
CoRR abs/0811.2497 (2008)

3. Chakravarty, N., Goel, A., Sastry, T.: Easy weighted majority games. Math. Soc.
Sci. 40(2), 227–235 (2000)

4. Zuckerman, M., Faliszewski, P., Bachrach, Y., Elkind, E.: Manipulating the quota
in weighted voting games. Artif. Intell. 180–181, 1–19 (2012)



180 Y. Bachrach et al.

5. Shapley, L.: A value for n-person games. In: Contributions to the Theory of Games,
vol. 2. Annals of Mathematics Studies, vol. 28, pp. 307–317. Princeton University
Press, Princeton (1953)

6. Shapley, L., Shubik, M.: A method for evaluating the distribution of power in a
committee system. Am. Polit. Sci. Rev. 48(3), 787–792 (1954)

7. Chalkiadakis, G., Elkind, E., Wooldridge, M.: Computational Aspects of Cooper-
ative Game Theory. Morgan and Claypool (2011)

8. Chalkiadakis, G., Wooldridge, M.: Weighted voting games. In: Brandt, F.,
Conitzer, V., Endriss, U., Lang, J., Procaccia, A. (eds.) Handbook of Compu-
tational Social Choice. Cambridge University Press (2016)

9. Elkind, E., Goldberg, L., Goldberg, P., Wooldridge, M.: Computational complexity
of weighted threshold games. In: Proceedings of the 22nd AAAI Conference on
Artificial Intelligence (AAAI 2007), pp. 718–723 (2007)

10. See, A., Bachrach, Y., Kohli, P.: The cost of principles: analyzing power in com-
patibility weighted voting games. In: AAMAS (2014)

11. Bachrach, Y., Markakis, E., Resnick, E., Procaccia, A., Rosenschein, J., Saberi, A.:
Approximating power indices: theoretical and empirical analysis. Auton. Agent.
Multi-Agent Syst. 20(2), 105–122 (2010)

12. Fatima, S., Wooldridge, M., Jennings, N.: An approximation method for power
indices for voting games. In: Proceedings of the 2nd International Workshop on
Agent-Based Complex Automated Negotiations (ACAN 2009), pp. 72–86 (2009)

13. Maleki, S., Tran-Thanh, L., Hines, G., Rahwan, T., Rogers, A.: Bounding the esti-
mation error of sampling-based shapley value approximation with/without strati-
fying. CoRR abs/1306.4265 (2013)

14. Deng, X., Papadimitriou, C.: On the complexity of cooperative solution concepts.
Math. Oper. Res. 19(2), 257–266 (1994)

15. Littlechild, S.C., Owen, G.: A simple expression for the shapely value in a special
case. Manage. Sci. 20(3), 370–372 (1973)
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Abstract. We cast the various different models used for the analysis of
iterative voting schemes into a general framework, consistent with the lit-
erature on acyclicity in games. More specifically, we classify convergence
results based on the underlying assumptions on the agent scheduler (the
order of players) and the action scheduler (the response played by the
agent).

Our main technical result is proving that Plurality with randomized
tie-breaking (which is not guaranteed to converge under arbitrary agent
schedulers) is weakly-acyclic. I.e., from any initial state there is some
path of better-replies to a Nash equilibrium. We thus show a separation
between restricted-acyclicity and weak-acyclicity of game forms, thereby
settling an open question from [17]. In addition, we refute another con-
jecture by showing the existence of strongly-acyclic voting rules that are
not separable.

1 Introduction

Voting protocols are commonly used to aggregate agents’ preferences over out-
comes. In iterative voting, the voting rules and the voters’ preferences are fixed,
but voters are strategic and are allowed to change their vote one at a time after
observing the interim outcome [25]. The main questions in the field are regard-
ing which voting rules guarantee convergence of the iterative process to a Nash
equilibrium, and under what conditions (e.g.,[19,28,31]).

Long before that, researchers in economics and game theory since Cournot [7]
had been developing a formal framework to study questions about acyclicity and
convergence of local improvement dynamics in games [1,2,9,17,26,27]. However,
these two lines of work remained largely detached from one another. Bridging
this gap is the main conceptual contribution of this work.

Intuitively put, strong-acyclicity means that the game will converge regard-
less of the order of players/voters and how they select their action (as long as
they are improving their utility), i.e. that there are no cycles of better-replies
whatsoever; Weak-acyclicity means that while cycles may occur, from any initial
state (voting profile) there is at least one path of better-replies that leads to a
Nash equilibrium; Restricted-acyclicity is a middle ground, requiring convergence
for any order of players (agent scheduler), but allowing the action scheduler to
restrict the way they choose among several available replies (e.g., only allowing

c© Springer-Verlag Berlin Heidelberg 2016
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best-replies). Most relevant to us is the work of Kukushkin [15–17], who stud-
ied general characterizations of game forms that guarantee various notions of
acyclicity.

Papers on iterative voting typically focus on a specific voting rule (game
form), and study its convergence properties. Most results, both positive and
negative, are about restricted acyclicity (under various notions of restriction)
and include the work of Meir et al. [25], Reyhani and Wilson [31], and Lev and
Rosenschein [19].

More recent work on iterative voting deals with voters who are uncertain,
truth-biased, lazy-biased, bounded-rational, non-myopic, or apply some other
restrictions and/or heuristics that diverge from the standard notion of better-
reply in games [11,12,22,24,28–30]. Although the framework is suitable for
studying such iterative dynamics as well, this paper deals exclusively with myopic
better-reply dynamics.

Building on the formalism of Kukushkin [17] for strong/restricted/weak-
acyclicity of game forms, we re-interpret most of the known results on con-
vergence of better- and best-reply in voting games.

1.1 Contribution and Structure

The paper unfolds as follows. In Sect. 2, we define the iterative voting model
within the more general framework of acyclic and weakly acyclic game forms. In
Sect. 3 we consider strong acyclicity, and settle an open question regarding the
existence of acyclic non-separable game forms by explicitly constructing such a
game form. Section 2.4 briefly discusses restricted acyclicity. Our main technical
contribution is in Sect. 4, where we use variations of Plurality to show a strict
separation between restricted acyclicity and weak acyclicity, thereby settling
another open question. We conclude in Sect. 5.

2 Preliminaries

We build upon the basic notations and definitions of Meir et al. [25] and
Kukushkin [17]. We usually denote sets by uppercase letters and vectors by
bold letters, e.g., a = (a1, . . . , an).

2.1 Voting Rules and Game Forms

There is a set C of m alternatives (or candidates), and a set N of n strate-
gic agents, or voters. A game form (also called a voting rule) f allows each
agent i ∈ N to select an action from a set Ai. Thus the input to f is a vector
a = (a1, . . . , an) called an action profile. Mixed strategies are not allowed. We
also refer to ai as the vote of agent i in profile a. Then, f chooses a winning
alternative—i.e., it is a function f : A → C, where A = ×i∈NAi. See Fig. 1 for
examples.

The definitions in this section apply to all voting rules unless stated otherwise.
For a permutation P ∈ π(C), We denote by top(P ) the first element in P .
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Plurality. In the Plurality voting rule we have that A = C, and the winner
is the candidate with the most votes. We allow for a broader set of “Plurality
game forms” by considering both weighted and fixed voters, and varying the
tie-breaking method. Each of the strategic voters i ∈ N has an integer weight
wi ∈ N. In addition, there are n̂ “fixed voters” who do not play strategically or
change their vote. The vector ŝ ∈ N

m (called “initial score vector”) specifies the
number of fixed votes for each candidate. Weights and initial scores are part of
the game form.1 These extensions also apply to other positional scoring rules.

f1 a b c

a a a a
b b b b
c c c c

f2 a b c

a a a a
b a b b
c a b c

f3 x y

a a b
b b c
c c a

f4 x y z w

a ax ay az aw
b bx by bz bw
c cx cy cz cw

Fig. 1. Four examples of game forms with two agents. f1 is a dictatorial game form
with 3 candidates (the row agent is the dictator). f2 is the Plurality voting rule with
3 candidates and lexicographic tie-breaking. In f3, A1 = C = {a, b, c}, A2 = {x, y}.
Note that f4 is completely general (there are 3×4 possible outcomes in C, one for each
voting profile) and can represent any 3-by-4 game.

The final score of c for a given profile a ∈ An in the Plurality game form fw,ŝ

is the total weight of voters that vote c. We denote the final score vector by sŝ,w,a

(often just sa or s when the other parameters are clear from the context), where
s(c) = ŝ(c) +

∑
i∈N :ai=c wi. Thus the Plurality rule selects some candidate from

W = argmaxc∈C sŝ,w,a(c), breaking ties according to some specified method.
The two variations we consider are fPL

ŝ,w which breaks ties lexicographically, and
fPR
ŝ,w which selects a winner from W uniformly at random. As with s, we omit

the scripts w and ŝ when they are clear from the context.

2.2 Incentives

Games are attained by adding either cardinal or ordinal utility to a game form.
The linear order relation Qi ∈ π(C) reflects the preferences of agent i. That
is, i prefers c over c′ (denoted c �i c′) if (c, c′) ∈ Qi. The vector containing
the preferences of all n agents is called a preference profile, and is denoted by
Q = (Q1, . . . , Qn). The game form f , coupled with a preference profile Q, defines
an ordinal utility normal form game G = 〈f,Q〉 with n agents, where agent i
prefers outcome f(a) over outcome f(a′) if f(a) �i f(a′).

1 All of our results still hold if there are no fixed voters, but allowing fixed voters
enables the introduction of simpler examples. For further discussion on fixed voters
see [8].
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Manipulation and Stability. Having defined a normal form game, we can now
apply standard solution concepts. Let G = 〈f,Q〉 be a game, and let a = (a−i, ai)
be a joint action in G. We denote by a i→ a′ an individual improvement step,
if (1) a,a′ differ only by the action of player i; and (2) f(a−i, a

′
i) �i f(a−i, ai).

We sometimes omit the actions of the other voters a−i when they are clear
from the context, only writing ai

i→ a′
i. We denote by Ii(a) ⊆ A the set of

actions a′
i s.t. ai

i→ a′
i is an improvement step of agent i in a, and I(a) =

⋃
i∈N

⋃
a′
i∈Ii(a)

(a−i, a
′
i). a

i→ a′
i is called a best reply if a′

i is i’s most preferred
candidate in Ii(a).

A joint action a is a (pure) Nash equilibrium (NE) in G if I(a) = ∅. That is,
no agent can gain by changing his vote, provided that others keep their strategies
unchanged. A priori, a game with pure strategies does not have to admit any NE.

Now, observe that in most common voting rules the preference profile Q
induces a special joint action a∗ = a∗(Q), termed the truthful state, where a∗

i is
implied by Qi. E.g. in Plurality a∗

i = top(Qi). We refer to f(a∗) as the truthful
outcome of the 〈f,Q〉.

2.3 Iterative Games

We consider natural dynamics in iterative games. Assume that agents start by
announcing some initial profile a0, and then proceed as follows: at each step t
a single agent i may change his vote to a′

i ∈ Ii(at−1), resulting in a new state
(joint action) at = (at−1

−i , a′
i). The process ends when no agent has objections,

and the outcome is set by the last state. Such a restriction makes sense in many
computerized environments, where voters can log-in and change their vote at
any time.

Local Improvement Graphs and Schedulers. Any game G induces a directed
graph whose vertices are all action profiles (states) An, and edges are all local
improvement steps [1,35]. The pure Nash equilibria of G are all states with no
outgoing edges. Since a state may have multiple outgoing edges (|I(a)| > 1), we
need to specify which one is selected in a given play. A scheduler φ selects which
edge is followed at state a at any step of the game [2]. The scheduler can be
decomposed into two parts, namely selecting an agent i to play (agent scheduler
φN ), and selecting an action in Ii(a) (action scheduler φA), where φ = (φN , φA).

Convergence and Acyclicity. Given a game G, an initial action profile a0 and a
scheduler φ, we get a unique (possibly infinite) path of steps. Also, it is immediate
to see that the path is finite if and only if it reaches a Nash equilibrium (which
is the last state in the path). We say that the triple

〈
G,a0, φ

〉
converges if the

induced path is finite.
Following [26,27], a game G has the finite individual improvement property

(we say that G is FIP), if
〈
G,a0, φ

〉
converges for any a0 and scheduler φ. Games

that are FIP are also known as acyclic games and as generalized ordinal potential
games [27].
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It is quite easy to see that not all Plurality games are FIP [25]. However,
there are alternative, weaker notions of acyclicity and convergence.

– A game G is weakly-FIP if there is some scheduler φ such that
〈
G,a0, φ

〉
con-

verges for any a0. Such games are known as weakly acyclic, or as φ-potential
games [2].

– A game G is restricted-FIP if there is some action scheduler φA such that〈
G,a0, (φN , φA)

〉
converges for any a0 and φN [17]. We term such games as

order-free acyclic.

Intuitively, restricted FIP means that there is some restriction players can
adopt s.t. convergence is guaranteed regardless of the order in which they play.
Kukushkin identifies a particular restriction of interest, namely restriction to
best-reply improvements, and defines the finite best-reply property (FBRP) and
its weak and restricted analogs. We emphasize that an action scheduler must
select an action in Ii(a), if one exists. Thus restricted dynamics that may dis-
allow all available actions (as in [11,12]) do not fall under the definition of
restricted-FIP (but can be considered as separate dynamics).

For the Plurality rule we identify a different restriction, namely direct reply.
Formally, a step a i→ a′ is a direct reply if f(a′) = a′

i, i.e., if i votes for the
new winner. φA is direct if it always selects a direct reply. We get the following
definitions for a Plurality game G, where FDRP stands for finite direct reply
property :

– G is FDRP if
〈
G,a0, (φN , φA)

〉
converges for any a0, any φN , and any direct

φA.
– G is weakly-FDRP if there is a direct φ such that

〈
G,a0, φ

〉
converges for any

a0.
– G is restricted-FDRP if there is a direct φA such that

〈
G,a0, (φN , φA)

〉
con-

verges for any a0 and φN .
– FDBRP means that replies are both best and direct. Note that it is unique

and thus cannot be further restricted.

Finally, a game form f has the X property (where X is any of the above versions
of finite improvement) if 〈f,Q〉 is X for any preference profile Q. Since some
convergence properties entail others, we describe these entailments in Fig. 2.

Kukushkin notes that there are no known examples of game forms that are
weak-FIP, but not restricted-FIP. We settle this question later in Sect. 4.2.

Convergence from the Truth. We say that a game G is FIP from state a if
〈G,a, φ〉 converges for any φ. Clearly a game is FIP iff it is FIP from a for
any a ∈ An. The definitions for other all other notions of finite improvement
properties are analogous.

We are particularly interested in convergence from the truthful state a∗.
This is since: a. it is rather plausible to assume that agents will start by voting
truthfully, especially when not sure about others’ preferences; and b. even with
complete information, they may be inclined to start truthfully, as they can always
later change their vote.
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FBRP restricted-FBRP ⇒ weak-FBRP
⇑ ⇓ ⇓
FIP FDBRP restricted-FIP ⇒ weak-FIP ⇒ pure Nash
⇓ ⇑ ⇑ exists

FDRP restricted-FDRP ⇒ weak-FDRP

Fig. 2. A double arrow X ⇒ Y means that any game or game form with the X property
also has the Y property. A triple arrow means any property on the premise side entails
all properties on the conclusion side. The third row is only relevant for Plurality/Veto,
where direct-reply is well defined.

2.4 Known Results for Plurality

Restricted better-replies and order-free acyclicity have been heavily studied in
[14,19,25,28,31], mainly under the restrictions of direct-reply and best-reply.
We summarize most known results in Table 1. We only list here explicitly two
results on the convergence of Plurality with random tie-breaking (see Sect. 4.1
for a formal definition), that we will use later.

Theorem 1 (Meir et al. [23,25]). fPR
ŝ is FBRP from the truth.

Theorem 2 (Meir et al. [23,25]). fPR is not restricted-FIP.

3 Strong Acyclicity

A game form f is called “separable” [17] if there are mappings gi : Ai → C for
i ∈ N s.t. for all a ∈ A, f(a) ∈ {g1(a1), g2(a2), . . . , gn(an)}. That is, the vote of
each voter is mapped to a single candidate via some function gi, and the outcome
is always one of the candidates in the range. Examples of separable rules include
Plurality and dictatorial rules, in both of which gi are the identity functions.

Conjecture 1 (Kukushkin [17]). Any FIP game form is separable.

Some weaker variations of this conjecture have been proved. In particular, for
game forms with finite coalitional improvement property [17], and for FIP game
forms with n = 2 voters [3] (separable game forms are called “assignable” there).
We next show that for sufficiently large n, there are non-separable FIP game
forms, thereby refuting the conjecture.

Theorem 3. For any n ≥ 20, there is a non-separable game form fn s.t. fn is
FIP.

Proof sketch. Let C = {a1, . . . , a2n} ∪ {z}. Let Ai = {x, y} for each voter. Thus
fn is a function from the n dimensional binary cube B = {x, y}n to C. Our
proof uses the probabilistic method: we define a game form fn by sampling 2n
specific profiles in which the outcome is distinct, and in all other 2n −2n profiles
the outcome is z. We then show that with positive probability, fn must be non-
separable and FIP. The first property follows from a counting argument, and the
latter since any cycle would have to go through two consequent profiles where
the outcome remains z. ��
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4 Weak Acyclicity

Except for Plurality and Veto, convergence is not guaranteed even under
restrictions on the action scheduler and the initial state. In contrast, simula-
tions [12,14,24] show that iterative voting almost always converges even when
this is not guaranteed by theory. We believe that weak acyclicity is an important
part of the explanation to this gap.

4.1 Plurality with Random Tie-Breaking

Formally, the game form fPR
ŝ,w maps any state a ∈ An to the set

argmaxc∈C sŝ,w,a(c). Let W t = fPR(at) ⊆ C denote the set of winners at time t.
We define a direct reply at−1

i
i→ at

i as one where at
i ∈ W t. Note that Qi does not

induce a complete order over set outcomes. For instance, the order a �i b �i c
does not determine if i will prefer {b} over {a, c}. However, we can naturally
extend Qi to a partial preference order over subsets. There are several standard
extensions, using the following axioms:2

K (Kelly [13]): (∀a ∈ X, b ∈ Y, a �i b) ⇒ X �i Y ;
G (Gärdenfors [10]): (∀b ∈ Y, a �i b) ⇒ {a} �i ({a} ∪ Y ) �i Y ;
R (Responsiveness [32]): a �i b ⇐⇒ ∀X ⊆ C \{a, b}, ({a}∪X) �i ({b}∪X).

Note that G entails K. The axioms reflect various beliefs a rational voter
may have on the tie-breaking procedure: the K axiom reflects no assumptions
whatsoever; The G axiom is consistent with tie-breaking according to a fixed but
unknown order; and K+G+R axioms are consistent with random tie-breaking
with equal probabilities [21,25]. For the next result we assume all K+G+R
axioms hold (as in [25]), however our results do not depend on the above inter-
pretations, and we do not specify the voter’s preferences in cases not covered by
the above axioms.

By Theorems 1+2, fPR is FBRP from the truthful initial state, but order-
free convergence is not guaranteed under any action scheduler. Our main the-
orem shows that under a certain scheduler (of agents+actions), convergence is
guaranteed from any state. Further, this still holds if actions are restricted to
direct-replies.

Lemma 4. Consider any game G =
〈
fPR
ŝ ,Q

〉
. Consider some candidate a∗,

and suppose that in a0, there are x, y s.t. s0(x) ≥ s0(y) ≥ s0(a∗) + 2. Then for
any sequence of direct replies, a∗ /∈ f(at).

Proof sketch. We show by induction that a∗ is not considered a possible winner
by any voter (and thus does not get any additional votes), and that the gap
remains. ��
Theorem 5. fPR

ŝ is weak-FDRP.

2 We thank an anonymous reviewer for the references.
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Proof. Consider a game G =
〈
fPR
ŝ ,Q

〉
, and an initial state a0. For a state a,

denote by B(a) ⊆ An all states reachable from a via paths of direct replies. Let
B = B(a0), and assume towards a contradiction that B does not contain a Nash
equilibrium. For every b ∈ B, let C(b) = {c ∈ C : ∃a ∈ B(b) ∧ c ∈ f(a)}, i.e.
all candidates that are winners in some state reachable from b.

For any b ∈ B(a0), define a game Gb by taking G and eliminating all candi-
dates not in C(b). Since we only consider direct replies, for any a ∈ B(b), the
set of outgoing edges I(a) is the same in G and in Gb (as any direct reply must
be to candidate in C(b)). Thus by our assumption, the set B(b) in game Gb

does not contain an NE.
For any b ∈ B(a0), let b∗ be the truthful state of game Gb, and let T (b) ⊆ N

be the set of agents who are truthful in b. That is, i ∈ T (b) if bi = b∗
i .

Let b0 be some state b ∈ B(a0) s.t. |T (b)| is maximal, and let T 0 = T (b0).
If |T 0| = n then b0 is the truthful state of Gb0 , and thus by Theorem 1 all
best-reply paths from b0 in Gb0 lead to an NE, in contradiction to B(b0) not
containing any NE. Thus T 0 < n. We will prove that there is a path from b0 to
a state b′ s.t. |T (b′)| > |T 0|.

Let i /∈ T (b0) (must exist by the previous paragraph). Consider the score of
candidate b∗

i at state b0. We divide into 5 cases. All scores specified below are
in the game Gb0 .

Case 1. |f(b0)| > 1 and b∗
i ∈ f(b0) (i.e. b∗

i is one of several winners). Then
consider the step b0 i→ b∗

i . This make b∗
i the unique winner, and thus

it is a direct best-reply for i. In the new state b′ = (b0
−i, b

∗
i ) we have

T (b′) = T (b0) ∪ {i}.
Case 2. s0(b∗

i ) = sw0 − 1 (i.e., b∗
i needs one more vote to become a winner).

By Axioms G+R, i prefers f(b0
−i, b

∗
i ) over f(b0). Then similarly to

case 1, i has a direct step b0 i→ b∗
i , which results in a “more truthful”

state b′.
Case 3. b∗

i = f(b0) (i.e. b∗
i is the unique winner). Then the next step b0 j→ b1

will bring us to one of the two previous cases. Moreover, it must
hold that j /∈ T (b0) since otherwise b0j = b∗

j = f(b0) which means
Ij(b0) = ∅. Thus |T (b′)| = |T (b1)| + 1 ≥ |T (b0)| + 1.

Case 4. f(b0) = x �= b∗
i , and s0(x) = s0(b∗

i ) + 2. We further divide into:
Case 4.1. s0(b∗

i ) ≥ s0(y) for all y �= x. Then the next step by j must be from x,
which brings us to one of the two first cases (as in Case 3).

Case 4.2. There is y �= x s.t. s0(x) = s0(y) + 1 = s0(b∗
i ) + 2. Then we continue

the sequence of steps until the winner’s score decreases. Since all steps
that maintain swt select a more preferred candidate, this most occur
at some time t, and T (b0) ⊆ T (bt). Then at bt we are again in Case 1
or 2.

Case 4.3. There is y �= x s.t. s0(x) = s0(y) = s0(b∗
i ) + 2. Then by Lemma 4 b∗

i

can never be selected, in contradiction to b∗
i ∈ C(b0).

Case 5. f(b0) = x �= b∗
i , and s0(x) ≥ s0(b∗

i ) + 3. We further divide into:
Case 5.1. For all y �= x, s0(y) ≤ s0(x) − 3. In this case no reply is possible.
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Case 5.2. There is some y �= x s.t. s0(y) ≥ s0(b∗
i ) + 2. Then by Lemma 4 b∗

i can
never be selected, in contradiction to b∗

i ∈ C(b0).
Case 5.3. There is some y �= x s.t. s0(y) ≥ s0(b∗

i )+1 Then the next step must be
from x to such y. Which means s1(x) = s1(y) = sw0−1 ≥ s0(b∗

i )+2 =
s1(b∗

i ) + 2. Thus again by Lemma 4 we reach a contradiction.

Therefore we either construct a path of direct replies to b′ ∈ B(b0) with
|T (b′)| > |T (b0)| in contradiction to our maximality assumption, or we reach
another contradiction. Thus B(b0) must contain some NE (both in Gb0 and
in G), which means by construction that G is weakly-FDRP from b0. However
since b0 ∈ B(a0), we get that G is weakly-FDRP from a0 as well. ��

4.2 Weighted Plurality

When voters are weighted, cycles of direct responses can emerge [23,25]. We
conjecture that such cycles must depend on the order of agents, and that certain
orders will break such cycles and reach an equilibrium, at least from the truthful
state.

Conjecture 2. fPL
ŝ,w is weak-FDRP (in particular weak-FIP).

We leave the proof of the general conjecture for future work. Yet, we want to
demonstrate the power of weak acyclicity over restricted acyclicity, even when
there are no randomness or restrictions on the utility space. That is, to provide
a definite (negative) answer to Kukushkin’s question of whether weak acyclicity
entails restricted acyclicity. To do so, we will use a slight variation of Plurality
with weighted voters and lexicographic tie-breaking.

Theorem 6. There exist a game form f∗ s.t. f∗ is weak-FIP but not restricted-
FIP.

Proof. Consider the following game G: The initial fixed score of candidates
{a, b, c, d} is ŝ = (0, 1, 2, 3). The weight of each voter i ∈ {1, 2, 3} is i. The
preference profile is as follows: c �1 d �1 b �1 a, b �2 c �2 a �2 d, and
a �3 b �3 c �3 d. This game was used in [25] to demonstrate that Plurality with
weighted voters is not FDRP, however it can be verified that G is restricted-FIP
so it is not good enough for our use.

If we ignore agents’ preferences, we get a particular game form fPL
ŝ,w where

N = {1, 2, 3}, M = {a, b, c, d}, ŝ = (0, 1, 2, 3) and w = (1, 2, 3). We define
f∗ by modifying fPL

ŝ,w with the following restrictions on agents’ actions: A1 =
{c, d}, A2 = {b, c}, A3 = {a, b, d}. Thus f∗ is a 2 × 2 × 3 game form, presented
in Fig. 3(a).
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Q3 state action new state

1 b � d (d, b, a) b (d, b, b)

2 d � b & d � a (c, b, b) d (c, b, d)

3 a � d � b � c (d, c, b) d (d, c, d)

In either case, agent 3 moves from a state on the cycle to a Nash equilibrium. ��
We first show that f∗ is not restricted-FIP. Indeed, consider the game G∗

accepted from f∗ with the same preferences from game G (Fig. 3(b)). We can see
that there is a cycle of length 6 (in bold). An agent scheduler that always selects
the agent with the bold reply guarantees that convergence does not occur, since
in all 6 relevant states the selected agent has no alternative replies.

Next, we show that f∗ is weak-FIP. That is, for any preference profile there is
some scheduler that guarantees convergence. We thus divide into cases according
to the preferences of agent 3. In each case, we specify a state where the scheduler
selects agent 3, the action of the agent, and the new state.

We note that since all thick edges must be oriented in the same direction,
a �3 b if and only if b �3 c. Thus the following three cases are exhaustive.

(a) The game form f∗

(c c d){d}

(c c b){c}

(c c a){c}

(d c d){d}

(d c b){b}

(d c a){c}

(c b d){d}

(c b b){b}

(c b a){a}

(d b d){d}

(d b b){b}

(d b a){d}

3 3

3

3

3

3

3

1

1

2 2 2

3

3

(b) The game G∗

(c c d){d}

(c c b){c}

(c c a){c}

(d c d){d}

(d c b){b}

(d c a){c}

(c b d){d}

(c b b){b}

(c b a){a}

(d b d){d}

(d b b){b}

(d b a){d}

Fig. 3. In each state we specify the actions of all 3 agents, and the outcome in curly
brackets. Agent 1 controls the horizontal axis, agent 2 the vertical axis, and agent 3 the
in/out axis. We omit edges between states with identical outcomes, since such moves
are impossible for any preferences. A directed edge in (b) is a better-reply in G∗.
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Table 1. Positive results carry to the right side, negative to the left side. We assume
lexicographic tie breaking in all rules except Plurality. FDBRP is only well-defined for
Plurality and Veto. See [21] for details.

FBRP from truth [25, 23] ⇐ FBRP restricted-FBRP ⇒ weak-FBRP ?
⇑ ⇑ ⇓ ⇓

FIP from truth ⇐ FIP restricted-FIP [25] ⇒ weak-FIP
⇓ ⇓ ⇑ ⇑

FDRP from truth [23] ⇐ FDRP restricted-FDRP ⇒ weak-FDRP (Thm. 5)

Fig. 4. Convergence results for Plurality under random tie-breaking. Positive results
(in light green) carry with the direction of the arrows. (Color figure online)

5 Conclusions and Future Work

We summarize most known results on iterative voting in Table 1. For Plurality with
random tie-breaking we provide a more detailed picture in Fig. 4. For a complete
overview of known convergence results, see the full version of this paper [21].

Beyond the direct implication of various acyclicity properties on convergence
in an interactive setting where agents vote one-by-one, [strong/weak] acyclicity
is tightly linked to the convergence properties of more sophisticated learning
strategies in repeated games [4,20], which is another reason to understand them.
Fabrikant et al. [9] provide a sufficient condition for weak-acyclicity, namely that
any subgame contains a unique Nash equilibrium. Unfortunately, this criterion
is not very useful for most voting rules, where typically (at least) all unanimous
votes form equilibria. Another sufficient condition due to Apt and Simon [2] is
by eliminating never-best-reply strategies, and the prospects of applying it to
common voting rules is not yet clear.

Based on the work summarized, and the additional progress made in this paper,
we believe that research in this area should focus on three primary directions:

1. Weak-acyclicity seems more indicative than order-free acyclicity to determine
convergence in practice. Thus theorists should study which voting rules are
weak-FIP, perhaps under reasonable restrictions (as we demonstrated, this
property is distinct from restricted-FIP).
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2. It is important to experimentally study how people really vote in iterative
settings (both in and out of the lab), so that this behavior can be formalized
and behavioral models can be improved. The work of [33] is a preliminary
step in this direction, but there is much more to learn. Ideally, we would like
to identify a few types of voters, such that for each type we can relatively
accurately predict the next action in a particular state. It would be even
better if these types are not specific to a particular voting rule or contextual
details.

3. We would like to know not only if a voting rule converges under a particular
dynamics (always or often), but also what are the properties of the attained
outcome—in particular, whether the iterative process improves welfare or
fairness, avoids “voting paradoxes” [34] and so on. Towards this end, several
researchers (e.g., [5,6,14,24,30]) have started to explore these questions via
theory and simulations. However, a good understanding of how iterative vot-
ing shapes the outcome, whether the population of voters consists of humans
or artificial agents, is still missing.

References

1. Andersson, D., Gurvich, V., Hansen, T.D.: On acyclicity of games with cycles.
Discrete Appl. Math. 158(10), 1049–1063 (2010)

2. Apt, K.R., Simon, S.: A classification of weakly acyclic games. In: Serna, M. (ed.)
SAGT 2012. LNCS, vol. 7615, pp. 1–12. Springer, Heidelberg (2012)

3. Boros, E., Gurvich, V., Makino, K., Papp, D.: Acyclic, or totally tight, two-person
game forms: characterization and main properties. Discrete Math. 310(6), 1135–
1151 (2010)

4. Bowling, M.: Convergence and no-regret in multiagent learning. Adv. Neural Inf.
Process. Syst. 17, 209–216 (2005)

5. Bowman, C., Hodge, J.K., Ada, Y.: The potential of iterative voting to solve the
separability problem in referendum elections. Theor. Decis. 77(1), 111–124 (2014)

6. Brânzei, S., Caragiannis, I., Morgenstern, J., Procaccia, A.D.: How bad is selfish
voting? In: Proceeding of 27th AAAI (2013)

7. Cournot, A.-A.: Recherches sur les principes mathématiques de la théorie des
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Abstract. We consider the two-sided stable matching setting in which
there may be uncertainty about the agents’ preferences due to limited
information or communication. We consider three models of uncertainty:
(1) lottery model — in which for each agent, there is a probability dis-
tribution over linear preferences, (2) compact indifference model — for
each agent, a weak preference order is specified and each linear order
compatible with the weak order is equally likely and (3) joint probabil-
ity model — there is a lottery over preference profiles. For each of the
models, we study the computational complexity of computing the sta-
bility probability of a given matching as well as finding a matching with
the highest probability of being stable. We also examine more restricted
problems such as deciding whether a certainly stable matching exists.
We find a rich complexity landscape for these problems, indicating that
the form uncertainty takes is significant.

1 Introduction

We consider a Stable Marriage problem (SM) in which there is a set of men
and a set of women. Each man has a linear order over the women, and each
woman has a linear order over the men. For the purpose of this paper we assume
that the preference lists are complete, i.e., each agent finds each member of the
opposite side acceptable.1 In the stable marriage problem the goal is to compute
a stable matching ; a matching where no two agents prefer to be matched to
each other rather than be matched to their current partners. Unlike most of
1 We note that the complexity of all problems that we study are the same for com-

plete and incomplete lists, where non-listed agents are deemed unacceptable—see
Proposition 2 in the full version of the paper [1].
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the literature on stable matching problems [4,9,11], we assume that men and
women may have uncertainty in their preferences which can be captured by
various probabilistic uncertainty models. We focus on linear models in which
each possible deterministic preference profile is a set of linear orders.

Uncertainty in preferences could arise for a number of reasons both practical
and epistemological. For example, an agent could express a weak order because
the agent did not invest enough time or effort to differentiate between potential
matches and therefore one could assume that each linear extension of the weak
order is equally likely; this maps to our compact indifference model. In many real
applications the ties are broken randomly with lotteries, e.g., in the school choice
programs in New York and Boston as well as in centralized college admissions in
Ireland. However, a central planner may also choose a matching that is optimal
in some sense, without breaking the ties in the preference list. For instance,
in Scotland they used to compute the maximum size (weakly) stable matching
to allocate residents to hospitals [9]. We argue that another natural solution
could be the matching which has the highest probability of being stable after
conducting a lottery. Alternatively, there may be a cost associated with eliciting
preferences from the agents, so a central planner may want to only obtain and
provide a recommendation based on a subset of the complete orders [2].

As another example, imagine a group of interns are admitted to a company
and allocated to different projects based on their preferences and the prefer-
ences of the project leaders. Suppose that after three months the interns can
switch projects if the project leaders agree; though the company would prefer
not to have swaps if possible. However, both the interns and the project lead-
ers can have better information about each other after the three months, and
the assignment should also be stable with regard to the refined preferences. This
example motivates our lottery and joint probability models. In the lottery model,
the agents have independent probabilities over possible linear orders (e.g. each
project leader has a probability distribution on possible refined rankings over the
interns independently from each other). In the joint probability model, the proba-
bility distribution is over possible preference profiles and can thus accommodate
the possibility that the preferences of the agents are refined in a correlated way
(e.g. if an intern performs well in the first three months then she is likely to
be highly ranked by all project leaders). Uncertainty in preferences has already
been studied in voting [6] and for cooperative games [8]. Ehlers and Massó [3]
considers many-to-one matching markets under a Bayesian setting. Similarly, in
auction theory, it is standard to examine Bayesian settings in which there is a
probability distribution over the types of agents.

To illustrate the problem we describe a simple example with four agents. We
write b �a c to say that agent a prefers b to c and assume the lottery model.

Example 1. We have two men m1 and m2 and two women w1 and w2.
Each agent assigns a probability to each strict preference ordering as follows.
(i) p(w1�m1w2) = 0.4 and p(w2�m1w1) = 0.6 (ii) p(w1�m2w2) = 0.0
and p(w2�m2w1) = 1.0 (iii) p(m1�w1m2) = 1.0 and p(m2�w1m1) = 0.0
(iv) p(m1�w2m2) = 0.8 and p(m2�w2m1) = 0.2. This setting admits two



Stable Matching with Uncertain Linear Preferences 197

matchings that are stable with positive probability: μ1 = {(m1, w1), (m2, w2)}
and μ2 = {(m1, w2), (m2, w1)}. Notice that if each agent submits the preference
list that s/he finds most likely to be true, then the setting admits a unique stable
matching that is μ2. The probability of μ2 being stable, however, is 0.48 whereas
the probability of μ1 being stable is 0.52.

1.1 Uncertainty Models

We consider three different uncertainty models:

– Lottery Model: For each agent, we are given a probability distribution over
strict preference lists.

– Compact Indifference Model: Each agent reports a single weak preference
list that allows for ties. Each complete linear order extension of this weak
order is assumed to be equally likely.

– Joint Probability Model: A probability distribution over preference pro-
files is specified.

Note that for the Lottery Model and the Joint Probability Model the represen-
tation of the input preferences can be exponentially large. However, in settings
where similar models of uncertainty are used, including resident matching [2]
and voting [6], a limited amount of uncertainty (i.e. small supports) is com-
monly expected and observed in real world data. Consequently, we consider
special cases when the uncertainty is bounded in certain natural ways including
the existence of only a small number of uncertain preferences and/or uncertainty
on only one side of the market.

Observe that the compact indifference model can be represented as a lottery
model. This is a special case of the lottery model in which each agent expresses
a weak order over the candidates (similar to the SMT setting [4,9]). However,
the lottery model representation can be exponentially larger than the compact
indifference model; for an agent that is indifferent among n agents on the other
side of the market, there are n! possible linearly ordered preferences.

1.2 Computational Problems

Given a stable marriage setting where agents have uncertain preferences, various
natural computational problems arise. Let stability probability denote the prob-
ability that a matching is stable. We then consider the following two natural
problems for each of our uncertainty models.

– MatchingWithHighestStabilityProbability: Given uncertain prefer-
ences of the agents, compute a matching with highest stability probability.

– StabilityProbability: Given a matching and uncertain preferences of the
agents, what is the stability probability of the matching?
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Table 1. Summary of results.

Problems Lottery Compact Joint

Model Indifference Probability

StabilityProbability #P-complete ? in P

in P for all three models if 1 side is certain

IsStabilityProbabilityNon-Zero NP-complete in P in P

IsStabilityProbabilityOne in P in P in P

ExistsPossiblyStableMatching in P in P in P

ExistsCertainlyStableMatching in P in P NP-complete

MatchingWithHighestStabilityProb ? NP-hard NP-hard

in P for all models if 1 side is certain and

there is O(1) number of uncertain agents

We also consider two specific problems that are simpler than StabilityProb-
ability: (1) IsStabilityProbabilityNon-Zero — For a given matching, is
its stability probability non-zero? (2) IsStabilityProbabilityOne — For a
given matching, is its stability probability one?

We additionally consider problems connected to, and more restricted than,
MatchingWithHighestStabilityProbability: (1) ExistsCertainly
StableMatching — Does there exist a matching that has stability probabil-
ity one? (2) ExistsPossiblyStableMatching — Does there exist a matching
that has non-zero stability probability?

Note that ExistsPossiblyStableMatching is straightforward to answer
for any of the three uncertainty models we consider here, since there exists
a stable matching for each deterministic preference profile that is a possible
realization of the uncertain preferences.

1.3 Results

Table 1 summarizes our main findings. Note that the complexity of each problem
is considered with respect to the input size, and that under the lottery and joint
probability models the input size could be exponential in n, namely O(n! · 2n)
for the lottery model and O((n!)2n) for the joint probability model, where n is
the number of agents on either side of the market. The complete version of the
sketched or missing proofs can be found in the full version of the paper [1].

We point out that StabilityProbability is #P-complete for the lot-
tery model even when each agent has at most two possible preferences,
but in P if one side has certain preferences. Additionally, we show that
IsStabilityProbabilityNon-Zero is in P for the lottery model if each agent
has at most two possible preferences. Note that StabilityProbability is open
for the compact indifference model when both sides may be uncertain, and we
also do not know the complexity of MatchingWithHighestStabilityPro-
bility in the lottery model, except when only a constant number of agents are
uncertain on the same side of the market.
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2 Preliminaries

In the Stable Marriage problem, there are two sets of agents. Let M denote a
set of n men and W a set of n women. We use the term agents when making
statements that apply to both men and women, and the term candidates to refer
to the agents on the opposite side of the market to that of an agent under con-
sideration. Each agent has a linearly ordered preference over the candidates. An
agent may be uncertain about his/her linear preference ordering. Let L denote
the uncertain preference profile for all agents. We denote by I = (M,W,L)
an instance of a Stable Marriage problem with Uncertain Linear Preferences
(SMULP).

We say that a given uncertainty model is independent if any uncertain pref-
erence profile L under the model can be written as a product of uncertain pref-
erences La for all agents a, where all La’s are independent. Note that the lottery
and the compact indifference models are both independent, but the joint prob-
ability model is not.

A matching μ is a pairing of men and women such that each man is paired
with at most one woman and vice versa; defining a list of (man, woman) pairs
(m,w). We use μ(m) to denote the woman w that is matched to m and μ(w) to
denote the match for w. Given linearly ordered preferences, a matching is stable
if there is no pair (m,w) not in μ where m prefers w to his current partner in
μ, i.e., w �m μ(m), and vice versa. If such a pair exists, it constitutes a blocking
pair ; as the pair would prefer to defect and match with each other rather than
stay with their partner in μ. Given an instance of SMULP, a matching is certainly
stable if it is stable with probability 1.

The following extensions of SM will come in handy in proving our results.
The Stable Marriage problem with Partially ordered lists (SMP) is an extension
of SM in which agents’ preferences are partial orders over the candidates. The
Stable Marriage problem with Ties (SMT) is a special case of SMP in which
incomparability is transitive and is interpreted as indifference. Therefore, in SMT
each agent partitions the candidates into different ties (equivalence classes), is
indifferent between the candidates in the same tie, and has strict preference
ordering over the ties. In some practical settings some agents may find some
candidates unacceptable and prefer to remain unmatched than to get matched
to the unacceptable ones. SMP with Incomplete lists (SMPI) and SMT with
Incomplete lists (SMTI) capture these scenarios where each agent’s partially
ordered list contains only his/her acceptable candidates. A matching is super-
stable in an instance of SMPI if it is stable w.r.t. all linear extensions of the
partially ordered lists.

We define the certainly preferred relation �cert
a for agent a. We write b �cert

a c
if and only if agent a prefers b over c with probability 1. Based on the cer-
tainly preferred relation, we can define a dominance relation D: Dm(w) =
{w} ∪ {w′ : w′ �cert

m w}; Dw(m) = {m} ∪ {m′ : m′ �cert
w m}. Based on the

notion of the dominance relation, we present a useful characterization of cer-
tainly stable matchings for independent uncertainty models.
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Lemma 1. A matching μ is certainly stable for an independent uncertainty
model if and only if for each pair {m,w}, μ(m) ∈ Dm(w) or μ(w) ∈ Dw(m).

We point out that certainly preferred relation can be computed in polynomial
time for all three models studied in this paper.

Certainly stable matchings are closely related to the notion of super-stable
matchings [4,7]. In fact we can define a certainly stable matching using a termi-
nology similar to that of super-stability. Given a matching μ and an unmatched
pair {m,w}, we say that {m,w} very weakly blocks (blocks) μ if μ(m) ��cert

m w
and μ(w) ��cert

w m. The next claim then follows from Lemma 1.

Proposition 1. A matching μ is certainly stable for an independent uncertainty
model if and only if it admits no very weakly blocking pair.

3 General Results

In this section, we present some general results that apply to multiple uncer-
tainty models. First we show that ExistsCertainlyStableMatching can be
solved in polynomial time for any independent uncertainty model including lot-
tery and compact indifference. Second, when the number of uncertain agents is
constant and one side of the market is certain, then we can solve Matching-
WithHighestStabilityProbability efficiently for each of the linear models.

3.1 An Algorithm for the Lottery and Compact Indifference Models

Theorem 1. For any independent uncertainty model in which the certainly pre-
ferred relation is transitive and can be computed in polynomial time, ExistsCer-
tainlyStableMatching can be solved in polynomial time.

Proof sketch. We prove this by reducing ExistsCertainlyStableMatching
to the problem of deciding whether an instance of SMP admits a super-stable
matching. The latter problem can be solved in polynomial time using algorithm
SUPER-SMP in [10].

Let I = (M,W,L) be an instance of ExistsCertainlyStableMatching
under an independent uncertainty model, assuming that the certainly preferred
relation is transitive and can be computed in polynomial time. We construct an
instance I ′ = (M,W, p) of SMP, in polynomial time, as follows. The set of men
and women are unchanged. To create the partial preference ordering pa for each
agent a we do the following. W.l.o.g., assume that a is a man m. For every pair
of women w1 and w2 (i) if w1 �cert

m w2 then (w1, w2) ∈ pm, denoting that m
(strictly) prefers w1 to w2 in I ′, (ii) if w2 �cert

m w1 then (w2, w1) ∈ pm, denoting
that m (strictly) prefers w2 to w1 in I ′. We claim, and show, that I ′ admits a
super-stable matching iff I has a certainly stable matching. ��
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3.2 An Algorithm for a Constant Number of Uncertain Agents

Theorem 2. When the number of uncertain agents is constant and one side of
the market is certain then MatchingWithHighestStabilityProbability is
polynomial-time solvable for each of the linear models.

Proof sketch. Let I = (M,W,L) be an instance of MatchingWithHighest-
StabilityProbability and let X ⊆ M be the set of uncertain agents with
|X| = k for a constant k. We consider all the possible matchings between X
and W , where their total number is K = n(n − 1) . . . (n − k). Let μi be such a
matching for i ∈ {1 . . . K}. The main idea of the proof is to show that there exist
an extension of μi to M ∪ W that has stability probability at least as high as
any other extension of μi. In this way we will need to compute this probability
for only a polynomial number of matchings in n, which we can do efficiently for
each model when one side has certain preferences—see Theorems 3, 8 and 10,
and select the one with the highest probability. ��

4 Lottery Model

In this section we focus on the lottery model.

Theorem 3. For the lottery model, if one side has certain preferences, Stabil-
ityProbability is polynomial-time solvable.

Proof sketch. W.l.o.g. assume that men are certain. The stability probability of
a given matching μ is equal to the probability that none of the possible blocking
pairs form. The probability of one blocking pair {m,w} forming is equal to the
probability that w prefers m to μ(w) given m also prefers w to μ(m). ��
Theorem 4. For the lottery model, IsStabilityProbabilityOne can be
solved in linear time.

Theorem 5. For the lottery model, IsStabilityProbabilityNon-Zero is
polynomial-time solvable when each agent has at most two possible preference
orderings.

Proof sketch. We reduce the problem to 2SAT, that is polynomial-time solvable.
For each agent and for both possible preference orderings for that agent, we
introduce a variable, and we construct a 2CNF formula that encodes (1) that for
each agent exactly one preference ordering is selected, and (2) that the selected
preference orderings cause the given matching to be stable. Satisfying assign-
ments then correspond to witnesses for non-zero stability probability. ��
Lemma 2. In polynomial time, we can transform any 2CNF formula ϕ
over the variables x1, . . . , xn to a 2CNF formula ϕ′ over the vari-
ables x1, . . . , xn, y1, . . . , yn such that (1) ϕ and ϕ′ have the same number of
satisfying assignments, (2) each clause of ϕ′ contains exactly one variable xi

and one variable yj, and (3) for any two variables, there is at most one clause
in ϕ′ that contains these variables.
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Theorem 6. For the lottery model, StabilityProbability is #P-complete,
even when each agent has at most two possible preferences.

Proof. We show how to count the number of satisfying assignments for a 2CNF
formula using the problem StabilityProbability for the lottery model where
each agent has two possible preferences. Since this problem is #P-hard, we get
#P-hardness also for StabilityProbability.

Let ϕ be a 2CNF formula over the variables x1, . . . , xn. We firstly transform ϕ
to a 2CNF formula ϕ′ over the variables x1, . . . , xn, y1, . . . , yn as specified by
Lemma 2. We then construct an instance of StabilityProbability. The sets of
agents that we consider are {x1, . . . , xn, a1, . . . , an} and {y1, . . . , yn, b1, . . . , bn}.
The matching that we consider matches xi to bi and matches yi to ai, for each 1 ≤
i ≤ n. This is depicted below. Each agent bi has only a single possible preference,
namely one where they prefer xi over all other agents. Similarly, each agent ai

has a single possible preference where they prefer yi over all other agents. In
other words, the agents ai and bi are perfectly happy with the given matching.

•
b1

•
x1

•
b2

•
x2

•
b3

•
x3

· · ·
•
bn

•
xn

•
y1

•
a1

•
y2

•
a2

•
y3

•
a3

· · ·
•
yn

•
an

The agents xi and yi each have two possible preferences, that are each chosen
with probability 1

2 . These two possible preferences are associated with setting
these variables to true or false, respectively. We describe how these preferences
are constructed for the agents xi. The construction for the preferences of the
agents yi is then entirely analogous.

Take an arbitrary agent xi. We show how to construct the two possible
preferences for agent xi, which we denote by pxi

and p¬xi
. Both of these possible

preferences are based on the following partial ranking: b1 > b2 > · · · > bn, and
we add some of the agents y1, . . . , yn to the top of this partial ranking, and the
remaining agents to the bottom of this partial ranking.

To the ranking pxi
we add exactly those agents yj to the top where ϕ′ contains

a clause (¬xi ∨ yj) or a clause (¬xi ∨ ¬yj). All remaining agents we add to the
bottom. Similarly, to the ranking p¬xi

we add exactly those agents yj to the
top where ϕ′ contains a clause (xi ∨ yj) or a clause (xi ∨ ¬yj). The rankings pyi

and p¬yi
, for the agents yi, are constructed entirely similarly.

Now consider a truth assignment α : {x1, . . . , xn, y1, . . . , yn} →
{0, 1}, and consider the corresponding choice of preferences for the
agents x1, . . . , xn, y1, . . . , yn, where for each agent xi the preference pxi

is chosen
if and only if α(xi) = 1, and for each agent yi the preference pyi

is chosen if
and only if α(yi) = 1. Then α satisfies ϕ′ if and only if the corresponding choice
of preferences leads to the matching being stable. Since each combination of
preferences is equally likely to occur, and there are 22n many combinations of
preferences, the probability that the given matching is stable is exactly q = s

22n ,
where s is the number of satisfying truth assignments for ϕ. Therefore, given q, s
can be obtained by computing s = q22n. ��
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If each agent is allowed to have three possible preferences, then even the following
problem is NP-complete. The statement can be proved via a reduction from
Exact Cover by 3-Sets (X3C).

Theorem 7. For the lottery model, IsStabilityProbabilityNon-Zero is
NP-complete.

We obtain the first corollary from Theorem7 and the second from [12, Propo-
sition 8] and Theorem7.

Corollary 1. For the lottery model, unless P = NP, there exists no polynomial-
time algorithm for approximating StabilityProbability of a given matching.

Corollary 2. For the lottery model, unless NP = RP, there is no FPRAS for
StabilityProbability.

5 Compact Indifference Model

The compact indifference model is equivalent to assuming that we are given an
instance of SMT and each linear order over candidates (each possible preference
ordering) is achieved by breaking ties independently at random with uniform
probabilities. It is easy to show that IsStabilityProbablityNonZero, IsSta-
bilityProbablityOne, and ExistsCertainlyStableMatching are all in P.
The corresponding claims and the proof can be found in [1].

We do not yet know the complexity of computing the stability probability of
a given matching under the compact indifference model, but this problem can
be shown to be in P if one side has certain preferences.

Theorem 8. In the compact indifference model, if one side has certain prefer-
ences, StabilityProbability is polynomial-time solvable.

Proof. Assume, w.l.o.g., that men have certain preferences. The following pro-
cedure gives us the stability probability of any given matching μ. (1) For each
uncertain woman w identify those men with whom she can potentially form a
blocking pair. That is, those m such that w�mμ(m) and w is indifferent between
m and her partner in μ. Assume there are k of such men. The probability of w not
forming a blocking pair with any men is then 1

k+1 . (2) Multiply the probabilities
from step 1. ��
We next show that MatchingWithHighestStabilityProbability is NP-
hard. For an instance I of SMT and matching μ, let p(μ, I) denote the probability
of μ being stable, and let pS(I) = max{p(μ, I)|μ is a matching in I}, that is the
maximum probability of a matching being stable. A matching μ is said to be
weakly stable if there exists a tie-breaking rule where μ is stable. Therefore a
matching μ has positive probability of being stable if and only if it is weakly
stable. Furthermore, if the number of possible tie-breaking is N then any weakly
stable matching has a probability of being stable at least 1

N .
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An extreme case occurs if we have one woman only with n men, where the
woman is indifferent between all men. In this case any matching (pair) has a
1
n probability of being stable. An even more unfortunate scenario is when we
have n men and n women, each women is indifferent between all men, and each
man ranks the women in a strict order in the same way, e.g. in the order of
their indices. In this case, the probability that the first woman picks her best
partner, and thus does not block any matching is 1

n . Suppose that the first woman
picked her best partner, the probability that the second woman also picks her
best partner from the remaining n − 1 men is 1

n−1 , and so on. Therefore, the
probability that an arbitrary complete matching is stable is 1

n(n−1)...2 = 1
n! .

Theorem 9. For the compact indifference model MatchingWithHighest-
StabilityProbability is NP-hard, even if only one side of the market has
uncertain agents.

Proof sketch. For an instance I of SMTI, let opt(I) denote the maximum size
of a weakly stable matching in I. Halldorsson et al. [5] showed [in the proof of
Corollary 3.4] that given an instance I of SMTI of size n, where only one side
of the market has agents with indifferences and each of these agents has a single
tie of size two, and any arbitrary small positive ε, it is NP-hard to distinguish
between the following two cases: (1) opt(I) ≥ 21−ε

27 n (2) opt(I) < 19+ε
27 n.

When choosing ε so that 0 < ε < 1
2 we can simplify the above cases to

(1) opt(I) > 41
54n, since opt(I) ≥ 21−ε

27 n > 41
54n and (2) opt(I) < 39

54n, since
opt(I) < 19+ε

27 n < 39
54n.

Therefore, the number of agents left unmatched on either side of the market
is less than 13

54n in the first case and more than 15
54n in the second case. Let us

now extend instance I to a larger instance of SMTI I ′ as follows. Besides the
n men M = {m1, . . . ,mn} and n women W = {w1, . . . , wn}, we introduce 13

54n
men X = {x1, . . . xk} and another n

27 men Y = {y1, . . . yl} and n
27 women Z =

{z1, . . . zl}. Furthermore, for each yj ∈ Y , we introduce n men Y j = {yj
1, . . . , y

j
n}.

We create the preferences of I ′ as follows. The preferences of men M remain the
same. For each woman w ∈ W we append the men X and then Y at the end of
her list in the order of their indices. Each man xi ∈ X has only all the women
W in his list in the order of their indices. Furthermore, each yj ∈ Y has all the
women W first in his preference list in the order or their indices and then zj .
Let each zj ∈ Z has yj as first choice and then all the men Y j in one tie of
size n. Each man in Y j has only zj in his list. We will show that in case one
pS(I ′) ≥ 1

2n , whilst in case two pS ≤ ( 1
n )

n
27 . Therefore, for n > 227, it is NP-hard

to decide which of the two separate intervals contains the value pS(I ′). ��

6 Joint Probability Model

In this section, we examine problems concerning the joint probability model.

Theorem 10. For the joint probability model, StabilityProbability can be
solved in polynomial time.
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Corollary 3. For the joint probability model, IsStabilityProbabilityNon-
Zero and IsStabilityProbabilityOne can be solved in polynomial time.

For the joint probability model, the problem ExistsCertainlyStableMatch-
ing is equivalent to checking whether the intersection of the sets of stable match-
ings of the different preference profiles is empty or not.

Theorem 11. For the joint probability model, ExistsCertainlyStable-
Matching is NP-complete.

Proof sketch. The problem is in NP, since computing StabilityProbability
can be done in polynomial time by Theorem 10. The proof is by reduction from
3-Colorability. Let G = (V,E) be a graph specifying an instance of 3-Colorability,
where V = {v1, . . . , vn}. We construct an instance I of SMULP assuming the
joint probability model.

For each vertex vi ∈ V , we introduce three men mi,1,mi,2,mi,3 and three
women wi,1, wi,2, wi,3. Then, we introduce one preference profile P0 that ensures
that every certainly stable matching matches—for each i ∈ [n]— each mi,j to
some wi,j′ and, vice versa, each wi,j to some mi,j′ , for j, j′ ∈ [3]. Moreover,
it ensures that for each i ∈ [n], exactly one of three matchings between the
men mi,j and the women wi,j must be used:

(1) mi,1 is matched to wi,1,mi,2 is matched to wi,2, and mi,3 is matched to wi,3;
(2) mi,1 is matched to wi,2,mi,2 is matched to wi,3, and mi,3 is matched to wi,1; or
(3) mi,1 is matched to wi,3,mi,2 is matched to wi,1, and mi,3 is matched to wi,2;

Intuitively, choosing one of the matchings (1)–(3) for the agents mi,j , wi,j corre-
sponds to coloring vertex vi with one of the three colors in {1, 2, 3}.

Then, for each edge e = {vi1 , vi2} ∈ E, and for each color c ∈ {1, 2, 3},
we introduce a preference profile Pe,c that ensures that in any certainly sta-
ble matching, the agents mi1,j , wi1,j and the agents mi2,j , wi2,j cannot both be
matched to each other with matching (c). We let each preference profile appear
with non-zero probability (e.g., we take a uniform lottery). As a result, any
certainly stable matching directly corresponds to a proper 3-coloring of G. A
detailed description of the preference profiles P0 and Pe,c can be found in [1], as
well as a proof of correctness for this reduction. ��
By modifying the proof of Theorem 11, the following can also be proved.

Corollary 4. For the joint probability model, ExistsCertainlyStable-
Matching is NP-complete, even when there are only 16 preference profiles in
the lottery.

7 Future Work

First we note that we left open two outstanding questions, as described in
Table 1. In this paper we focused on the problem of computing a matching with
the highest stability probability. However, a similarly reasonable goal could be
to minimize the expected number of blocking pairs. It would also be interesting
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to investigate some further realistic probability models, such as the situation
when the candidates are ranked according to some noisy scores (like the SAT
scores in the US college admissions). This would be a special case of the joint
probability model that may turn out to be easier to solve. Finally, in a follow-up
paper we are planning to investigate another probabilistic model that is based
on independent pairwise comparisons.
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Abstract. We consider two variants of the classical Stable Roommates
problem with Incomplete (but strictly ordered) preference lists (sri) that
are degree constrained, i.e., preference lists are of bounded length. The
first variant, egal d-sri, involves finding an egalitarian stable matching
in solvable instances of sri with preference lists of length at most d. We
show that this problem is NP-hard even if d = 3. On the positive side
we give a 2d+3

7
-approximation algorithm for d ∈ {3, 4, 5} which improves

on the known bound of 2 for the unbounded preference list case. In the
second variant of sri, called d-srti, preference lists can include ties and
are of length at most d. We show that the problem of deciding whether
an instance of d-srti admits a stable matching is NP-complete even if
d = 3. We also consider the “most stable” version of this problem and
prove a strong inapproximability bound for the d = 3 case. However for
d = 2 we show that the latter problem can be solved in polynomial time.

1 Introduction

In the Stable Roommates problem with Incomplete lists (sri), a graph G = (A,E)
and a set of preference lists O are given, where the vertices A = {a1, . . . , an}
correspond to agents, and O = {≺1, . . . ,≺n}, where ≺i is a linear order on the
vertices adjacent to ai in G (1 ≤ i ≤ n). We refer to ≺i as ai’s preference list.
The agents that are adjacent to ai in G are said to be acceptable to ai. If aj and
ak are two acceptable agents for ai where aj ≺i ak then we say that ai prefers
aj to ak.

Let M be a matching in G. If aiaj ∈ M then we let M(ai) denote aj . An
edge aiaj /∈ M blocks M , or forms a blocking edge of M , if ai is unmatched
or prefers aj to M(ai), and similarly aj is unmatched or prefers ai to M(aj).
A matching is called stable if no edge blocks it. Denote by sr the special case
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of sri in which G = Kn. Gale and Shapley [8] observed that an instance of sr
need not admit a stable matching. Irving [13] gave a linear-time algorithm to
find a stable matching or report that none exists, given an instance of sr. The
straightforward modification of this algorithm to the sri case is described in [10].
We call an sri instance solvable if it admits a stable matching.

In practice agents may find it difficult to rank a large number of alternatives
in strict order of preference. One natural assumption, therefore, is that preference
lists are short, which corresponds to the graph being of bounded degree. Given an
integer d ≥ 1, we define d-sri to be the restriction of sri in which G is of bounded
degree d. This special case of sri problem has potential applications in organising
tournaments. As already pointed out in a paper of Kujansuu et al. [16], sri can
model a pairing process similar to the Swiss system, which is used in large-
scale chess competitions. The assumption on short lists is reasonable, because
according to the Swiss system, players can be matched only to other players with
approximately the same score.

A second variant of sri, which can be motivated in a similar fashion, arises
if we allow ties in the preference lists, i.e., ≺i is now a strict weak ordering1

(1 ≤ i ≤ n). We refer to this problem as the Stable Roommates problem with
Ties and Incomplete lists (srti) [15]. As in the sri case, define d-srti to be the
restriction of srti in which G is of bounded degree d. Denote by srt the special
case of srti in which G = Kn. In the context of the motivating application of
chess tournament construction as mentioned in the previous paragraph, d-srti
is naturally obtained if a chess player has several potential partners of the same
score and match history in the tournament.

In the srti context, ties correspond to indifference in the preference lists.
In particular, if aiaj ∈ E and aiak ∈ E where aj �≺i ak and ak �≺i aj then ai

is said to be indifferent between aj and ak. Thus preference in the sri context
corresponds to strict preference in the case of srti. Relative to the strict weak
orders in O, we can define stability in srti instances in exactly the same way
as for sri. This means, for example, that if aiaj ∈ M for some matching M ,
and ai is indifferent between aj and some agent ak, then aiak cannot block M .
The term solvable can be defined in the srti context in an analogous fashion to
sri. Using a highly technical reduction from a restriction of 3-sat, Ronn [20]
proved that the problem of deciding whether a given srt instance is solvable is
NP-complete. A simpler reduction was given by Irving and Manlove [15].

For solvable instances of sri there can be many stable matchings. Often it is
beneficial to work with a stable matching that is fair to all agents in a precise
sense [9,14]. One such fairness concept can be defined as follows. Given two
agents ai, aj in an instance I of sri, where aiaj ∈ E, let rank(ai, aj) denote the
rank of aj in ai’s preference list (that is, 1 plus the number of agents that ai

prefers to aj). Let AM denote the set of agents who are matched in a given stable
matching M . (Note that this set depends only on I and is independent of M by
[10, Theorem 4.5.2].) Define c(M) =

∑
ai∈AM

rank(ai,M(ai)) to be the cost of
M . An egalitarian stable matching is a stable matching M that minimises c(M)

1 That is, ≺i is a strict partial order in which incomparability is transitive.
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over the set of stable matchings in I. Finding an egalitarian stable matching in
sr was shown to be NP-hard by Feder [6]. Feder [6,7] also gave a 2-approximation
algorithm for this problem in the sri setting. He also showed that an egalitarian
stable matching in sr can be approximated within a factor of α of the optimum
if and only if Minimum Vertex Cover can be approximated within the same
factor α. Is was proved later that, assuming the Unique Games Conjecture,
Minimum Vertex Cover cannot be approximated within 2 − ε for any ε > 0 [17].

Given an unsolvable instance I of sri or srti, a natural approximation to
a stable matching is a most-stable matching [1]. Relative to a matching M in
I, define bp(M) to be the set of blocking edges of M and let bp(I) denote the
minimum value of |bp(M ′)|, taken over all matchings M ′ in I. Then M is a most-
stable matching in I if |bp(M)| = bp(I). The problem of finding a most-stable
matching was shown to be NP-hard and not approximable within nk−ε, for any
ε > 0, unless P = NP, where k = 1

2 if I is an instance of sr and k = 1 if I is an
instance of srt [1].

To the best of our knowledge, there has not been any previous work published
on either the problem of finding an egalitarian stable matching in a solvable
instance of sri with bounded-length preference lists or the solvability of srti
with bounded-length preference lists. This paper provides contributions in both
of these directions, focusing on instances of d-sri and d-srti for d ≥ 2, with the
aim of drawing the line between polynomial-time solvability and NP-hardness
for the associated problems in terms of d.

Our contribution. In Sect. 2 we study the problem of finding an egalitarian stable
matching in an instance of d-sri. We show that this problem is NP-hard if
d = 3, whilst there is a straightforward algorithm for the case that d = 2. We
then consider the approximability of this problem for the case that d ≥ 3. We
give an approximation algorithm with a performance guarantee of 9

7 for the
case that d = 3, 11

7 if d = 4 and 13
7 if d = 5. These performance guarantees

improve on Feder’s 2-approximation algorithm for the general sri case [6,7]. In
Sect. 3 we turn to d-srti and prove that the problem of deciding whether an
instance of 3-srti is solvable is NP-complete. We then show that the problem of
finding a most-stable matching in an instance of d-srti is solvable in polynomial
time if d = 2, whilst for d = 3 we show that this problem is NP-hard and
not approximable within n1−ε, for any ε > 0, unless P = NP. Due to various
complications, as explained in Appendix A of the full version of this paper [5],
we do not attempt to define and study egalitarian stable matchings in instances
of srti. A structured overview of previous results and our results (marked by *)
for d-sri and d-srti is contained in Table 1. All missing proofs are contained in
Appendix B of the full version of this paper [5].

Related work. Degree-bounded graphs, most-stable matchings and egalitarian
stable matchings are widely studied concepts in the literature on matching under
preferences [18]. As already mentioned, the problem of finding a most-stable
matching has been studied previously in the context of sri [1]. In addition to
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Table 1. Summary of results for d-sri and d-srti.

Finding a stable matching Finding an egalitarian stable matching

d-sri In P [10,13] in P for d = 2 (*)

NP-hard even for d = 3 (*)
2d+3

7
-approximation for d ∈ {3, 4, 5} (*)

2-approximation for d ≥ 6 [6,7]

d-srti In P for d = 2 (*) Not well-defined (see [5, Appendix A])

NP-hard even for d = 3 (*)

the results surveyed already, the authors of [1] gave an O(mk+1) algorithm to
find a matching M with |bp(M)| ≤ k or report that no such matching exists,
where m = |E| and k ≥ 1 is any integer. Most-stable matchings have also been
considered in the context of d-sri [3]. The authors showed that, if d = 3, there is
some constant c > 1 such that the problem of finding a most-stable matching is
not approximable within c unless P = NP. On the other hand, they proved that
the problem is solvable in polynomial time for d ≤ 2. The authors also gave a
(2d−3)-approximation algorithm for the problem for fixed d ≥ 3. This bound was
improved to 2d−4 if the given instance satisfies an additional condition (namely
the absence of a structure called an elitist odd party). Most-stable matchings have
also been studied in the bipartite restriction of sri called the Stable Marriage
problem with Incomplete lists (smi) [4,12]. Since every instance of smi admits a
stable matching M (and hence bp(M) = ∅), the focus in [4,12] was on finding
maximum cardinality matchings with the minimum number of blocking edges.

Regarding the problem of finding an egalitarian stable matching in an
instance of sri, as already mentioned Feder [6,7] showed that this problem is NP-
hard, though approximable within a factor of 2. A 2-approximation algorithm
for this problem was also given independently by Gusfield and Pitt [11], and by
Teo and Sethuraman [23]. These approximation algorithms can also be extended
to the more general setting where we are given a weight function on the edges,
and we seek a stable matching of minimum weight. Feder’s 2-approximation
algorithm requires monotone, non-negative and integral edge weights, whereas
with the help of LP techniques [22,23], the integrality constraint can be dropped,
while the monotonicity constraint can be partially relaxed.

2 The Egalitarian Stable Roommates Problem

In this section we consider the complexity and approximability of the problem
of computing an egalitarian stable matching in instances of d-sri. We begin by
defining the following problems.
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Problem 1. egal d-sri
Input: A solvable instance I = 〈G,O〉 of d-sri, where G is a graph and O is a
set of preference lists, each of length at most d.
Output: An egalitarian stable matching M in I.

The decision version of egal d-sri is defined as follows:

Problem 2. egal d-sri dec
Input: I = 〈G,O,K ′〉, where 〈G,O〉 is a solvable instance I ′ of d-sri and K ′ is
an integer.
Question: Does I ′ admit a stable matching M with c(M) ≤ K ′?

In [5, Appendix B] we give a reduction from the NP-complete decision version
of Minimum Vertex Cover in cubic graphs to egal 3-sri dec, deriving the
hardness of the latter problem.

Theorem 1. egal 3-sri dec is NP-complete.

Theorem 1 immediately implies the following result.

Corollary 2. egal 3-sri is NP-hard.

We remark that egal 2-sri is trivially solvable in polynomial time: the
components of the graph are paths and cycles in this case, and the cost of a
stable matching selected in one component is not affected by the matching edges
chosen in another component. Therefore we can deal with each path and cycle
separately, minimising the cost of a stable matching in each. Paths and odd cycles
admit exactly one stable matching (recall that (i) the instance is assumed to be
solvable, and (ii) the set of matched agents is the same in all stable matchings
[10, Theorem 4.5.2]), whilst even cycles admit at most two stable matchings (to
find them, just pick the two perfect matchings and test each for stability) – we
can just pick the stable matching with lower cost in such a case. The following
result is therefore immediate.

Proposition 3. egal 2-sri admits a linear-time algorithm.

Corollary 2 naturally leads to the question of the approximability of egal
d-sri. As mentioned in the Introduction, Feder [6,7] provided a 2-approximation
algorithm for the problem of finding an egalitarian stable matching in an instance
of sri. As Theorems 4, 6 and 7 show, this bound can be improved for instances
with bounded-length preference lists.

Theorem 4. egal 3-sri is approximable within 9/7.

Proof. Let I be an instance of 3-sri and let Megal denote an egalitarian sta-
ble matching in I. First we show that any stable matching in I is a 4/3-
approximation to Megal. We then focus on the worst-case scenario when this
ratio 4/3 is in fact realised. Then we design a weight function on the edges of
the graph and apply Teo and Sethuraman’s 2-approximation algorithm [22,23]
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to find an approximate solution M ′ to a minimum weight stable matching Mopt

for this weight function. This weight function helps M ′ to avoid the worst case
for the 4/3-approximation for a significant amount of the matching edges. We
will ultimately show that M ′ is in fact a 9/7-approximation to Megal.

Claim 5. In an instance of egal 3-sri, any stable matching approximates
c(Megal) within a factor of 4/3.

Proof. Let M be an arbitrary stable matching in I. Call an edge uv an (i, j)-pair
(i ≤ j) if v is u’s ith choice and u is v’s jth choice. By Theorem 4.5.2 of [10], the
set of agents matched in Megal is identical to the set of agents matched in M . We
will now study the worst approximation ratios in all cases of (i, j)-pairs, given
that 1 ≤ i ≤ j ≤ 3 in 3-sri.

• If uv ∈ Megal is a (1, 1)-pair then u and v contribute 2 to c(Megal) and also
2 to c(M) since they must be also be matched in M (and in every stable
matching).

• If uv ∈ Megal is a (1, 2)-pair then u and v contribute 3 to c(Megal) and at
most 4 to c(M). Since, if uv /∈ M , then v must be matched to his 1st choice
and u to his 2nd or 3rd, because one of u and v must be better off and the
other must be worse off in M than in Megal.

• If uv ∈ Megal is a (1, 3)-pair then u and v contribute 4 to c(Megal) and at
most 5 to c(M). Since, if uv /∈ M , then v must be matched to his 1st or 2nd
choice and u to his 2nd or 3rd.

• If uv ∈ Megal is a (2, 2)-pair then u and v contribute 4 to c(Megal) and at
most 4 to c(M). Since, if uv /∈ M , then one must be matched to his 1st choice
and the other to his 3rd.

• If uv ∈ Megal is a (2, 3)-pair then u and v contribute 5 to c(Megal) and at
most 5 to c(M). Since, if uv /∈ M , then v must be matched to his 1st or 2nd
choice and u to his 3rd.

• If uv ∈ Megal is a (3, 3)-pair then u and v contribute 6 to c(Megal) and also
6 to c(M) since they must be also be matched in M (and in every stable
matching – this follows by [10, Lemma 4.3.9]).

It follows that, for every pair uv ∈ Megal,

rank(u,M(u)) + rank(v,M(v))
rank(u,Megal(u)) + rank(v,Megal(v))

=
rank(u,M(u)) + rank(v,M(v))

rank(u, v) + rank(v, u)
≤ 4/3.

Hence c(M)/c(Megal) ≤ 4/3 and Claim 5 is proved.

As shown in Claim 5, the only case when the approximation ratio 4/3 is
reached is where Megal consists of (1, 2)-pairs exclusively, while the stable match-
ing output by the approximation algorithm contains (1, 3)-pairs only. We will
now present an algorithm that either delivers a stable solution M ′ containing
at least a significant amount of the (1, 2)-pairs in Megal or a certificate that
Megal contains only a few (1, 2)-pairs and thus any stable solution is a good
approximation.
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To simplify our proof, we execute some basic pre-processing of the input
graph. If there are any (1, 1)-pairs in G, then these can be fixed, because they
occur in every stable matching and thus can only lower the approximation ratio.
Similarly, if an arbitrary stable matching contains a (3, 3)-pair, then this edge
appears in all stable matchings and thus we can fix it. Those (3, 3)-pairs that
do not belong to the set of stable edges can be deleted from the graph. From
this point on, we assume that no edge is ranked first or last by both of its end
vertices in G and prove the approximation ratio for such graphs.

Take the following weight function on all uv ∈ E:

w(uv) =

{
0 if uv is a (1, 2)-pair,
1 otherwise.

We designed w(uv) to fit the necessary U-shaped condition of Teo and Sethu-
raman’s 2-approximation algorithm [22,23]. This condition on the weight func-
tion is as follows. We are given a function fp on the neighbouring edges of a
vertex p. Function fp is U-shaped if it is non-negative and there is a neighbour
q of p so that fp is monotone decreasing on neighbours in order of p’s preference
until q, and fp is monotone increasing on neighbours in order of p’s preference
after q. The approximation guarantee of Teo and Sethuraman’s algorithm holds
for an edge weight function w(uv) if for every edge uv ∈ E, w(uv) can be written
as w(uv) = fu(uv) + fv(uv), where fu and fv are U-shaped functions.

Our w(uv) function is clearly U-shaped, because at each vertex the sequence
of edges in order of preference is either monotone increasing or it is (1, 0, 1).
Since w itself is U-shaped, it is easy to decompose it into a sum of U-shaped fv

functions, for example by setting fv(uv) = fu(uv) = w(uv)
2 for every edge uv.

Let M denote an arbitrary stable matching and M (1,2) be the set of (1, 2)-
pairs in a matching M and Mopt be a minimum weight stable matching with
respect to the weight function w(uv). Since Mopt is by definition the stable
matching with the largest number of (1, 2)-pairs, |M (1,2)

opt | ≥ |M (1,2)
egal |. We also

know that w(M) = |M | − |M (1,2)| for every stable matching M .
Due to Teo and Sethuraman’s approximation algorithm [22,23], it is possible

to find a stable matching M ′ whose weight approximates w(Mopt) within a factor
of 2. Formally,

|M | − |M ′(1,2)| = w(M ′) ≤ 2w(Mopt) = 2|M | − 2|M (1,2)
opt |.

This gives us a lower bound on |M ′(1,2)|.

|M ′(1,2)| ≥ 2|M (1,2)
opt | − |M | ≥ 2|M (1,2)

egal | − |M | (1)

We distinguish two cases from here on, depending on the sign of the term on
the right. In both cases, we establish a lower bound on c(Megal) and an upper
bound on c(M ′). These will give the desired upper bound of 9/7 on c(M ′)

c(Megal)
.
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(1) 2|M (1,2)
egal | − |M | ≤ 0

The derived lower bound for |M ′(1,2)| is negative or zero in this case. Yet we
know that at most half of the edges in Megal are (1, 2)-pairs, and c(e) ≥ 4
for the rest of the edges in Megal. Let us denote |M | − 2|M (1,2)

egal | ≥ 0 by x.

Thus, |M (1,2)
egal | = |M |−x

2 .

c(Megal) ≥ |M | − x

2
· 3 +

|M | + x

2
· 4 = 3.5|M | + 0.5x (2)

We use our arguments in the proof of Claim 5 to derive that an arbitrary
stable matching approximates c(Megal) on the |M |−x

2 (1, 2)-edges within a
ratio of 4

3 , while its cost on the remaining |M |+x
2 edges is at most 5. These

imply the following inequalities for an arbitrary stable matching M .

c(M) ≤ |M | − x

2
· 3 · 4

3
+

|M | + x

2
· 5 = 4.5|M | + 0.5x (3)

We now combine (2) and (3). The last inequality holds for all x ≥ 0.

c(M)
c(Megal)

≤ 4.5|M | + 0.5x

3.5|M | + 0.5x
≤ 9

7

(2) 2|M (1,2)
egal | − |M | > 0

Let us denote 2|M (1,2)
egal | − |M | by x̂. Notice that |M (1,2)

egal | = x̂+|M |
2 . We can

now express now the number of edges with cost 3, and at least 4 in Megal.

c(Megal) ≥ 3 · x̂ + |M |
2

+ 4 ·
(

|M | − x̂ + |M |
2

)

= 3.5|M | − 0.5x̂ (4)

Let |M ′(1,2)| = z1. Then exactly z1 edges in M ′ have cost 3. It follows from
(1) that z1 ≥ x̂. Suppose that z2 ≤ z1 edges in M ′(1,2) correspond to edges
in M

(1,2)
egal . Recall that |M (1,2)

egal | = x̂+|M |
2 . The remaining |M |+x̂

2 − z2 edges in

M
(1,2)
egal have cost at most 4 in M ′. This leaves |M | − |M (1,2)

egal | − (z1 − z2) =
|M |−x̂

2 − z1 + z2 edges in Megal that are as yet unaccounted for; these have
cost at most 5 in both Megal and M ′. We thus obtain:

c(M ′) ≤ 3z1 + 4
( |M | + x̂

2
− z2

)
+ 5

( |M | − x̂

2
− z1 + z2

)

= 4.5|M | − 0.5x̂ − 2z1 + z2

≤ 4.5|M | − 1.5x̂ (5)

Combining (4) and (5) delivers the following bound.

c(M ′)
c(Megal)

≤ 4.5|M | − 1.5x̂

3.5|M | − 0.5x̂
<

9
7

The last inequality holds for every x̂ > 0.
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We derived that M ′, the 2-approximate solution with respect to the weight
function w(uv) delivers a 9

7 -approximation in both cases.
Using analogous techniques we can establish similar approximation bounds

for egal 4-sri and egal 5-sri, as follows.

Theorem 6. egal 4-sri is approximable within 11/7.

Theorem 7. egal 5-sri is approximable within 13/7.

Using a similar reasoning for each d ≥ 6, our approach gives a cd-
approximation algorithm for egal d-sri where cd > 2. In these cases the 2-
approximation algorithm of Feder [6,7] should be used instead.

3 Solvability and Most-Stable Matchings in d-SRTI

In this section we study the complexity and approximability of the problem
of deciding whether an instance of d-srti admits a stable matching, and the
problem of finding a most-stable matching given an instance of d-srti.

We begin by defining two problems that we will be studying in this section
from the point of view of complexity and approximability.

Problem 3. solvable d-srti
Input: I = 〈G,O〉, where G is a graph and O is a set of preference lists, each of
length at most d, possibly involving ties.
Question: Is I solvable?

Problem 4. min bp d-srti
Input: An instance I of d-srti.
Output: A matching M in I such that |bp(M)| = bp(I).

We will show that solvable 3-srti is NP-complete and min bp 3-srti is hard
to approximate. In both cases we will use a reduction from the following satisfi-
ability problem:

Problem 5. (2, 2)-e3-sat
Input: I = B, where B is a Boolean formula in CNF, in which each clause
comprises exactly 3 literals and each variable appears exactly twice in unnegated
and exactly twice in negated form.
Question: Is there a truth assignment satisfying B?

(2, 2)-e3-sat is NP-complete, as shown by Berman et al. [2]. We begin with the
hardness of solvable 3-srti.

Theorem 8. solvable 3-srti is NP-complete.
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Proof. Clearly solvable 3-srti belongs to NP. To show NP-hardness, we
reduce from (2, 2)-e3-sat as defined in Problem5. Let B be a given instance
of (2, 2)-e3-sat, where X = {x1, x2, . . . , xn} is the set of variables and
C = {c1, c2, . . . , cm} is the set of clauses. We form an instance I = (G,O) of
3-srti as follows. Graph G consists of a variable gadget for each xi (1 ≤ i ≤ n),
a clause gadget for each cj (1 ≤ j ≤ m) and a set of interconnecting edges
between them; these different parts of the construction, together with the pref-
erence orderings that constitute O, are shown in Fig. 1 and will be described in
more detail below.

Fig. 1. Clause and variable gadgets for 3-srti. The dotted edges are the interconnecting
edges. The notation used for edge a1

jv
4
i implies that the first literal of the corresponding

clause cj is the second occurrence of the corresponding variable xi in negated form.

When constructing G, we will keep track of the order of the three literals in
each clause of B and the order of the two unnegated and two negated occur-
rences of each variable in B. Each of these four occurrences of each variable is
represented by an interconnecting edge.

A variable gadget for a variable xi (1 ≤ i ≤ n) of B comprises the 4-cycle
〈v1

i , v2
i , v3

i , v4
i 〉 with cyclic preferences. Each of these four vertices is incident to

an interconnecting edge. These edges end at specific vertices of clause gadgets.
The clause gadget for a clause cj (1 ≤ j ≤ m) contains 20 vertices, three of
which correspond to the literals in cj ; these vertices are also incident to an
interconnecting edge.

Due to the properties of (2, 2)-e3-sat, xi occurs twice in unnegated form, say
in clauses cj and ck of B. Its first appearance, as the rth literal of cj (1 ≤ r ≤ 3),
is represented by the interconnecting edge between vertex v1

i in the variable
gadget corresponding to xi and vertex ar

j in the clause gadget corresponding
to cj . Similarly the second occurrence of xi, say as the sth literal of ck (1 ≤ s ≤ 3)
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is represented by the interconnecting edge between v3
i and as

k. The same variable
xi also appears twice in negated form. Appropriate a-vertices in the gadgets
representing those clauses are connected to v2

i and v4
i . We remark that this

construction involves a gadget similar to one presented by Biró et al. [3] in their
proof of the NP-hardness of min bp 3-sri.

In [5, Appendix B] we prove that there is a truth assignment satisfying B if
and only if there is a stable matching M in I.

Our construction shows that the complexity result holds even if the preference
lists are either strictly ordered or consist of a single tie of length two. Moreover,
Theorem 8 also immediately implies the following result.

Corollary 9. min bp 3-srti is NP-hard.

The following result strengthens Corollary 9.

Theorem 10. min bp 3-srti is not approximable within n1−ε, for any ε > 0,
unless P= NP, where n is the number of agents.

Proof (sketch).The core idea of our proof is to gather several copies of the 3-srti
instance created in the proof of Theorem8, together with a small unsolvable 3-srti
instance. By doing so, we create a min bp 3-srti instance I in which bp(I) is large
if the Boolean formula B (originally given as an instance of (2, 2)-e3-sat) is not
satisfiable, and bp(I) = 1 otherwise. Therefore, finding a good approximation for
I will imply a polynomial-time algorithm to decide the satisfiability of B.

To complete the study of cases of min bp d-srti, we establish a positive
result for instances with degree at most 2.

Theorem 11. min bp 2-srti is solvable in O(|V |) time.

Proof. For an instance I of min bp 2-srti, clearly every component of the
underlying graph G is a path or cycle. We claim that bp(I) equals the number
of odd parties in G, where an odd party is a cycle C = 〈v1, v2, ..., vk〉 of odd
length, such that vi strictly prefers vi+1 to vi−1 (addition and subtraction are
taken modulo k).

Since an odd party never admits a stable matching, bp(I) is bounded below by
the number of odd parties [21]. This bound is tight: by taking an arbitrary max-
imum matching in an odd party component, a most-stable matching is already
reached. Now we show that a stable matching M can be constructed in all other
components.

Each component that is not an odd cycle is therefore a bipartite subgraph
(indeed either a path or an even cycle). Such a subgraph therefore gives rise to the
restriction of srti called the Stable Marriage problem with Ties and Incomplete
lists (smti). An instance of smti always admits a stable solution and it can be
found in linear time [19]. Thus these components contribute no blocking edge.

Regarding odd-length cycles that are not odd parties, we will show that there
is at least one vertex not strictly preferred by either of its adjacent vertices.
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Leaving this vertex uncovered and adding a perfect matching in the rest of the
cycle results in a stable matching.

Assume that every vertex along a cycle Ck (where k is an odd number) is
strictly preferred by at least one of its neighbours. Since each of the k vertices is
strictly preferred by at least one vertex, and a vertex v can prefer at most one
other vertex strictly, every vertex along Ck has a strictly ordered preference list.
Now every vertex can point at its unique first-choice neighbour. To avoid an odd
cycle, there must be a vertex pointed at by both of its neighbours. This implies
that there is also a vertex v pointed at by no neighbour, and v is hence ranked
second by both of its neighbours.

Open Questions. Theorems 4, 6 and 7 improve on the best known approximation
factor for egal d-sri for small d. It remains open to come up with an even
better approximation or to establish an inapproximability bound matching our
algorithm’s guarantee. A more general direction is to investigate whether the
problem of finding a minimum weight stable matching can be approximated
within a factor less than 2 for instances of d-sri for small d.
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3. Biró, P., Manlove, D.F., McDermid, E.J.: “Almost stable” matchings in the room-
mates problem with bounded preference lists. Theor. Comput. Sci. 432, 10–20
(2012)
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Abstract. We consider simple symmetric fractional hedonic games, in
which a group of utility maximizing players have hedonic preferences
over the players’ set, and wish to be partitioned into clusters so that
they are grouped together with players they prefer. Each player either
wishes to be in the same cluster with another player (and, hence, values
this agent at 1) or is indifferent (and values this player at 0). Given a
cluster, the utility of each player is defined as the number of players
inside the cluster that are valued at 1 divided by the cluster size, and a
player will deviate to another cluster if this leads to higher utility. We
are interested in Nash equilibria of such games, where no player has an
incentive to unilaterally deviate to another cluster, and we focus on the
notion of the price of stability. We present new and improved bounds
on the price of stability both for the normal utility function and for a
slightly modified one.

1 Introduction

Economic entities, be it individuals or corporations, interact frequently in the
context of performing complex tasks or even in enjoying cultural activities. For
example, people usually tend to like or dislike other people and, therefore, wish
to socialize or distance themselves depending on the occasion. The choice about
which party to attend, which restaurant to dine in, etc., usually depends also
on the other participants that will be present. Such a behavior is captured by
the class of hedonic games, where participating agents have preferences over
coalitions (or groups), and, based on these preferences, they behave accordingly
when selecting which group to join. In such scenarios, when an agent has decided
to join a specific group, e.g., for having dinner, his utility depends only on the
other agents in the same group and not on how the remaining agents have
been grouped together. Such preferences are termed hedonic preferences and
completely ignore inter-coalitional dependencies. Due to their simplicity, hedonic
games can be used to model a large spectrum of activities (e.g., clustering in
social networks [2], distributed task allocation for wireless agents [22], etc.).
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Hedonic games can be very expressive and admit a large class of utility
functions over coalitions. For instance, given a group, we may care about the
sum of utility we obtain over all members of the group, or only care about the
minimum or maximum utility (again, over all members of the group). In addition,
we may prefer a smaller group containing people that we value significantly
over a larger group with the same set of preferred people as well as several
other members that we are indifferent to; in this case, we are interested in the
average utility we obtain. What constitutes an acceptable or desired solution in
such games is a question that has also attracted significant attention. Clearly, a
natural objective is to compute a solution that maximizes some global function
over all participating agents. This solution, however, may leave several agents
dissatisfied and they may not adhere to it, but, on the contrary, may choose to
deviate to another group if this is to their best interest. Then, such deviations
may incentivize further agents (or even groups of agents) to deviate on their
own (or, respectively, in collaboration), and so on, until some group formation
is reached where all agents are satisfied, if such a formation exists.

Related Work. Hedonic games (see [5] for a very recent survey) that rely
on hedonic preferences were introduced by Drèze and Greenberg [12]. Bloch
and Diamantoudi [8] consider a bargaining procedure of coalition formation in
hedonic games and present necessary and sufficient conditions for existence of
pure strategy stationary perfect equilibria. Bogomolnaia and Jackson [9] present
sufficient conditions for the existence of core stable partitions in hedonic settings
and also consider the weaker notion of individual stability, where no player can
deviate to another cluster without either hurting itself or hurting a member of
its new cluster. Peters and Elkind [20] investigate the computational complexity
of stability-related questions in hedonic games. Feldman et al. [14] consider the
non-cooperative version of hedonic clustering games, where they characterize
Nash equilibria and provide upper and lower bounds on the price of anarchy
and price of stability. Other instances of hedonic games include those studied by
Branzei and Larson [10] as well as by Elkind and Wooldridge [13]. An important
subclass is that of additively separable hedonic games (see [3,16,18]), where the
total utility of each player is defined as the sum of utility it obtains from each
player in its cluster.

In fractional hedonic games, the utility of each player is defined as the sum
of utility it obtains from each player in its cluster divided by the cluster size.
Aziz et al. [2] introduced the model, considered more general stability notions,
such as core stability, and presented positive results for several classes of graphs.
Then, Aziz et al. [4] consider the computational complexity of computing parti-
tions that maximize the social welfare, defined as the sum of the players’ utilities,
in fractional hedonic games, without caring about stability. They consider three
different notions of social welfare (i.e., utilitarian, egalitarian, and Nash welfare)
and show that maximizing social welfare is NP-hard even for the subclass of sim-
ple symmetric fractional hedonic games, where the utility obtained from a single
player can be either 0 or 1 and the utility is symmetric. On the positive side, they
present polynomial time algorithms with small constant approximation ratio for
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the notions of utilitarian and egalitarian social welfare and the class of simple
symmetric fractional hedonic games. Olsen [19], among other results, suggested
an alternate utility function for fractional hedonic games, where the utility func-
tion of player i does not take i into account when averaging over the cluster
size, i.e., each player is interested in the average utility obtained from all other
players in the same cluster.

Bilò et al. [6,7] consider the price of anarchy and stability in fractional hedo-
nic games. They show that when the utility function may take negative values,
Nash stable outcomes are not guaranteed to exist, but if all values are nonnega-
tive, then the partition where all players are in the same cluster is Nash stable.
For the last case, they show an upper bound of O(n) on the price of anarchy,
which is tight even for simple symmetric fractional hedonic games. Furthermore,
they show a lower bound of Ω(n) on the price of stability for games played
on weighted stars and non-negative utility functions. For the price of stability
in simple symmetric fractional hedonic games, they show a lower bound of 2
for general graphs, an upper bound of 4 for triangle-free graphs, and almost
tight bounds for the case of bipartite graphs. In particular, they present an
upper bound of 6(3 − 2

√
2) ≈ 1.0294 and a lower bound of 1.003. In addition,

Bilò et al. [7] observe that their upper bounds still hold for the utility function
defined by Olsen. Further notions of stability in fractional hedonic games have
been investigated by Brandl et al. [11].

Our Contribution. We present new and improved bounds on the price of
stability for the class of simple symmetric fractional hedonic games. We improve
upon the lower bound of [7] and show a lower bound of 1 +

√
6/2 ≈ 2.224 for

general graphs. The construction we use in the proof admits an optimal partition
consisting of cliques of different sizes, while the only Nash stable partition is the
grand coalition, where all players form a single cluster.

Then, we consider games played on graphs of girth at least 5, i.e., graphs
without cycles of size 3 and 4. We prove that the price of stability, for this class
of graphs, is 1. This result complements a result of Bilò et al. [7] that there
exists a bipartite graph with price of stability at least 1.003. Since bipartite
graphs have no cycles of length 3 but may have cycles of length 4, we obtain a
clear separation of which girth values lead to price of stability equal to 1.

Our final result concerns the utility function defined by Olsen [19], where the
average utility is computed with respect to the cluster size minus 1, i.e., each
player only considers the average utility it obtains by the nodes it is grouped
together with. We show that, under this utility function, the price of stability of
simple symmetric fractional hedonic games is 1; the previously known bounds
were those obtained in [7] for the standard utility function.

Roadmap. The remainder of the paper is structured as follows. We begin, in
Sect. 2, by formally introducing the class of simple symmetric fractional hedonic
games and presenting the necessary definitions. Then, in Sect. 3, we present the
results on the price of stability and we conclude with open problems in Sect. 4.
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2 Preliminaries

A fractional hedonic game is a non-cooperative strategic game played by a set N
of n utility maximizing players. A partition (or clustering) of the game consists
of a set C = {C1, C2, . . . } of clusters such that ∪iCi = N , and Ci ∩ Cj = ∅
for any pair i �= j, i.e., each player belongs to exactly one cluster. We let C(u)
denote the cluster that player u belongs to.

Each player i has a utility function ui : N → R that denotes how much player
i values each of the remaining players. We are interested in the class of simple
symmetric fractional hedonic games, where ui(j) is either 0 or 1 and, further-
more, ui(j) = uj(i). Also, for any player i, ui(i) = 0. Simple symmetric fractional
hedonic games admit a graph representation by considering a connected1 undi-
rected graph G = (V,E) with |V | = n. Each node u ∈ V corresponds to a player
and an edge (i, j) ∈ E denotes the fact that player i values player j at 1 and vice
versa. If, otherwise, edge (i, j) /∈ E then player i values j at 0 and vice versa.
Note that edges are undirected and the weight of each edge is 1. Let degG(i)
denote the degree of node i in graph G and let degC(i) denote the number of
neighbors of node i that belong to cluster C. Given a partition C, the utility of
player i that is in cluster C(i) is defined as

ui(C(i)) =

∑
j∈C(i) ui(j)

|C(i)| =
degC(i)(i)

|C(i)| .

Clearly, for any player i and any partition C it holds that 0 ≤ ui(C(i)) ≤ n−1
n .

The social welfare SW(C) of partition C is defined as the sum of the players’
utility, i.e., SW (C) =

∑
i ui(C(i)). An equivalent way to define the social welfare

is by taking into account the number of edges E(C) inside each cluster C. Hence,
we obtain that

SW(C) =
∑

C∈C

2E(C)
|C| .

We denote by C∗ the partition that maximizes the social welfare.
Since each player is utility maximizing, given a partition C, player i may

deviate from its current cluster C(i) in C and join another cluster C ′, if it holds
that ui(C(i)) < ui(C ′ ∪ i), i.e., whenever

degC(i)(i)

|C(i)| < degC′ (i)
|C′|+1 . A player i is Nash

stable if there is no cluster C ′ �= C(i) such that its utility improves by deviating
to C ′, i.e., for any cluster C ′ it holds that

degC(i)(i)

|C(i)| ≥ degC′ (i)
|C′|+1 . A cluster is Nash

stable if all players in the cluster are Nash stable. A partition is a Nash stable
partition if all clusters are Nash stable.

The price of stability PoS (introduced in [1]) denotes the best-case perfor-
mance deterioration arising from the requirement that the resulting partition is
Nash stable. Given a graph G, the corresponding fractional hedonic game ΓG

and its set of Nash stable partitions Cs, the price of stability for the game ΓG

1 Our upper bounds also hold for disconnected graphs by considering each component
separately.
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is formally defined as PoS(ΓG) = minC∈Cs

SW(C∗)
SW(C) . Similarly, the price of sta-

bility for the class of simple symmetric fractional hedonic games is defined as
PoS = maxG PoS(ΓG).

A variant of fractional hedonic games was introduced by Olsen [19], where
the single difference is that the utility of each player i is now defined as

u′
i(C(i)) =

{
degC(i)(i)

|C|−1 , if|C| > 1;
0, otherwise.

3 Price of Stability of Fractional Hedonic Games

This section contains the results on the price of stability of simple symmetric
fractional hedonic games. We begin by presenting an improved lower bound of
1+

√
6/2 ≈ 2.224. Then, we consider the case where the game is played on graphs

of girth at least 5, i.e., there are no triangles and no cycles of length 4. For this
case, we prove that there exists an optimal partition that is also Nash stable, i.e.,
the price of stability is 1. We conclude by considering a slightly different utility
function (defined by Olsen [19]) where each agent averages the value obtained
over the cluster size minus one.

3.1 A Lower Bound for General Graphs

Our construction extends in a non-trivial way the graph used in the lower bound
of [7]. The proof relies on showing that the grand coalition is the only Nash stable
partition while the optimal partition contains cliques of different sizes. We now
present the main result of this section.

Theorem 1. The price of stability of simple symmetric fractional hedonic
games is at least 1 +

√
6
2 − ε for ε > 0.

Proof (Sketch). Let α be a positive integer. Consider the following graph G that
is also presented in Fig. 1. It consists of α + 2 cliques Kκ where 1 ≤ κ ≤ α + 2
and some additional nodes and edges to be detailed later. Clique K1 contains
4(

√
6+1)α2 nodes2, clique K2 contains 4α2+2 nodes, while each remaining clique

contains 4α nodes. There exist 4(
√

6+1)α2 additional nodes where each of them
has degree 1 and is connected to a node in K1 so that no pair of additional nodes
shares a neighbor. The total number of nodes is n = 8(2 +

√
6)α2 + 2. There

exist additional edges as follows: each node in K2 is connected to any node in
Kκ, for κ ∈ [1, . . . , α + 2]. The total number of edges in G is

E(G) = 4(
√

6 + 1)α2 +
4(

√
6 + 1)α2(4(

√
6 + 1)α2 − 1)

2
+

(4α2 + 2)(4α2 + 1)
2

+ α
4α(4α − 1)

2
+ (4α2 + 2)(4(

√
6 + 1)α2 + 4α2)

= 32(3 +
√

6)α4 + 8α3 + 2(11 + 5
√

6)α2 + 1,

2 In fact, |K1| should be either �4(√6 + 1)α2� or �4(√6 + 1)α2� but the proof still
follows in the same way. We set |K1| = 4(

√
6+1)α2 to keep the presentation cleaner.
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where, in the first equality, the first term is due to the edges connecting the
additional nodes to the nodes in K1, the second term is due to the edges inside
K1, the third term is due to the edges inside K2, the fourth term is due to the
edges inside the remaining cliques, while the last term is due to edges connecting
nodes of K2 to nodes in other cliques.

K1 K2

K3

Kα+2

K4

. . .

...

4α nodes

4α nodes

4α nodes

4α2 + 2 nodes4(
√

6 + 1)α2 nodes

4(
√

6 + 1)α2 nodes

Fig. 1. The graph G used in the lower bound. Each bubble is a clique and dashed lines
represent the edges connecting any node in K2 to any node at another clique.

Consider the partition C where each node in K1 forms a cluster with its
additional neighbor, nodes in K2 and K3 form a single cluster together, while
each Kκ, for κ ≥ 4, is a cluster. Then, the social welfare is

SW(C) =
∑

C∈C

2E(C)
|C|

= |K1| + (|K2| + |K3| − 1) +
α+2∑

κ=4

(|Kκ| − 1)

= 4(
√

6 + 1)α2 + 4α2 + 4α + 1 + (α − 1)(4α − 1)

= 4(3 +
√

6)α2 − α + 2.

Clearly, for the optimal partition C∗ it holds that SW(C∗) ≥ SW(C), hence

SW(C∗) ≥ 4(3 +
√

6)α2 − α + 2. (1)

Consider now the partition C′ where all nodes form a single cluster, i.e., the
grand coalition. Its social welfare is

SW(C′) =
2E(G)

n

=
32(3 +

√
6)α4 + 8α3 + 2(11 + 5

√
6)α2 + 1

4(2 +
√

6)α2 + 1
. (2)
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We can show that C′ is the only Nash stable partition using the following
approach; due to lack of space, details are omitted. First, note that, in any Nash
stable partition, any additional node is in the same cluster as its neighbor in K1;
otherwise, its utility would be 0. Next, we can show that all nodes in K2 must
be in the same cluster. Then, we argue that all nodes in K1 and the additional
nodes must be in the same cluster as those in K2. Our next step would be to
show that all nodes within any Kκ, for κ ≥ 3, are in the same cluster (but not
necessarily in the same cluster as the nodes in K1, K2 or in Kλ for λ �= κ), and,
finally, that nodes in K2 must be in the same cluster as nodes in all Kκ, for
κ ≥ 3. This leaves only the grand coalition as a possible Nash stable partition.

By combining inequalities (1) and (2), we conclude that the price of stability
for graph G is

PoS(G) =
SW(C∗)
SW(C′)

≥ (4(3 +
√

6)α2 − α + 2)(4(2 +
√

6)α2 + 1)
32(3 +

√
6)α4 + 8α3 + 2(11 + 5

√
6)α2 + 1

=
16(12 + 5

√
6)α4 − 4(2 +

√
6)α3 + 4(7 + 3

√
6)α2 − α + 2

32(3 +
√

6)α4 + 8α3 + 2(11 + 5
√

6)α2 + 1

≥ 1 +
√

6
2

− ε

as α tends to infinity, where ε is an arbitrarily small positive number. �

3.2 Graphs of Girth at Least 5

We now consider the class of triangle-free and quadrilateral-free graphs, i.e.,
when there are no cycles of length 3 or 4. We show that there exists an optimal
partition where all clusters are stars and then argue that it must also be Nash
stable; this implies a price of stability of 1.

In our proof we exploit the following lemma that upper-bounds the number
of edges in a quadrilateral-free graph.

Lemma 1 (Due to [17,21], as mentioned in [15]). The maximum number
of edges in a quadrilateral-free graph with n ≥ 4 nodes is f(n) ≤ 1

4n(1+
√

4n − 3).

We now present a key lemma that details the structure of at least one optimal
partition. We will then exploit this result in order to prove the upper bound of
1 on the price of stability.

Lemma 2. There exists an optimal partition where all clusters are stars.

Proof. Consider an optimal partition C∗ and let C be a cluster with at least
two nodes of degree greater than one. Let i and j be two such nodes. We split
C in two clusters C(i) and C(j) so that i ∈ C(i), j ∈ C(j) and, furthermore,
C(i) is either a cluster with only two nodes or a star such that there is no edge
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between a leaf in C(i) and a node in C(j). In addition, we require that C(j)
is still connected. Note that there always exists a node i with degree at least 2
so that these constraints are satisfied. E.g., we can always identify a star whose
removal does not increase the number of connected components and remove any
leaf that is connected to C(j). Also, let ci = |C(i)| and cj = |C(j)|.

The total utility of the players in C is u(C) = 2ei+2ej+2eij

ci+cj
, where ei (respec-

tively, ej) is the number of edges among nodes that are in C(i) (respectively, in
C(j)) and eij is the number of edges where one endpoint is in C(i) and the other
is in C(j). Similarly, the total utility of players in C(i) is u(C(i)) = 2ei

ci
= 2ci−2

ci
,

since C(i) is a star, and the total utility of players in C(j) is u(C(j)) = 2ej

cj
.

It suffices to prove that u(C(i)) + u(C(j)) ≥ u(C), i.e.,

2ci − 2
ci

+
2ej

cj
− 2ci − 2 + 2ej + 2eij

ci + cj
≥ 0. (3)

The left hand side of (3) becomes

2cicj(ci + cj) − 2cicj − 2c2j + 2ejci(ci + cj) − 2c2i cj − 2cicj + 2ejcicj + 2eijcicj ,

and subsequently

2cic
2
j − 2c2j + 2ejc

2
i − 2eijcicj .

Since ej ≥ cj − 1, in order to prove (3) it suffices to show that

cic
2
j + c2i cj − eijcicj − c2i − c2j ≥ 0. (4)

We now distinguish among two cases, depending on whether eij ≤ ci+cj
2 or

not. If eij ≤ ci+cj
2 , then by substituting it in (4) we obtain cic

2
j

2 + c2i cj
2 − c2i − c2j

which is clearly nonnegative since ci, cj ≥ 2. So, (4) holds, and, subsequently, (3)
also holds and, then, splitting C to C(i) and C(j) does not decrease the social
welfare while increasing the number of star clusters by at least 1.

Otherwise, when eij >
ci+cj

2 , it has to be the case that C(i) is a cluster of
size 2 where both nodes are connected to nodes in C(j). To see that, observe
that if C(i) was a star with at least 2 leaves, then since, by the discussion above,
there are no edges connecting the leaves to nodes in C(j), all the eij edges are
adjacent to the star center. Since the endpoints of these eij edges in C(j) must
have distance at least 3 among themselves, as otherwise the girth would be less
than 5, it cannot be that eij >

ci+cj
2 . It remains, therefore, to consider the

case where C(i) contains exactly two nodes and there are more than 2+cj
2 edges

connecting them with nodes in C(j). First, observe that these eij endpoints are
at distance at least 2 from each other, as otherwise the girth would be less than 5.
Similarly, all endpoints connected to the same node in C(i) must be at distance
at least 3 from each other. Then, we can decompose C(j) into tree clusters so
that each tree cluster contains at most one endpoint connected to the same node
in C(i) and at most two endpoints in total. In the worst case, this decomposition
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leads to a social welfare of at least cj+2
3 , by considering a clustering where each

cluster contains exactly two of the eij endpoints and has, therefore, utility at
least 4/3. Hence, the total social welfare of C(i) and the tree decomposition of
C(j) is at least 1 + cj+2

3 , i.e., 1 + n
3 , since ci + cj = n and ci = 2. The argument

concludes by observing that maximum social welfare in the original cluster C is,
due to Lemma 1, SW(C) = 2E(C)

|C| ≤ 1+
√
4n−3
2 , and since 1+

√
4n−3
2 < 1 + n

3 for
any n ≥ 4.

To conclude, we have shown that a non-star cluster C can be split into
two clusters C(i) and C(j) where C(i) is a star, without decreasing the social
welfare. By iterating the process, we reach an optimal partition where all clusters
are stars. �

The following result (Lemma 3 in [7]) states that in a triangle-free graph, the
partition, that maximizes the social welfare among partitions consisting only of
stars, is stable.

Lemma 3 (Due to [7]). Let G be a triangle-free graph, then any optimal star
clustering is stable.

By combining Lemmas 2 and 3, we obtain the main result of this section.

Theorem 2. The price of stability of simple symmetric fractional hedonic
games on graphs of girth at least 5 is 1.

3.3 Olsen’s Utility Function

In this section we consider the alternate utility function considered by Olsen [19],
i.e., the utility of a player i belonging to cluster C(i) is u′

i(C(i)) =
degC(i)(i)

|C(i)|−1 . We
show that, under this utility function, the price of stability of simple symmetric
fractional hedonic games is 1 by arguing about the structure of the optimal
partition. In particular, we show that there exists an optimal partition satisfying
a desirable structure, and then we argue that this partition is Nash stable. We
begin with a technical lemma.

Lemma 4. For any integers x, y, z such that 1 ≤ x ≤ y ≤ z − 1, it holds that
z2 − 3z + xy − x2 + x + y − yz + 2 ≥ 0.

Proof. Fix z and let f(x, y) = −x2 +xy +x+(1−z)y +z2 −3z +2. It suffices to
prove that f(x, y) ≥ 0 for any 1 ≤ x ≤ y ≤ z−1. The derivative with respect to y
is f ′

y(x, y) = x+1−z. Note that f ′
y(x, y) < 0 whenever x < z−1 and f ′

y(x, y) = 0
only when x = z −1. In both cases, the value y = z −1 minimizes f(x, y). Then,
f(x, z − 1) = −x2 + zx + 1 − z with f(1, z − 1) = 0 and f(z − 1, z − 1) = 0.
The proof follows since f(x, z −1) is increasing up to x = z/2 and then becomes
decreasing. �

The next lemma specifies the structure of an optimal partition. In particular,
we show that there exists an optimal partition where each cluster C is either a
singleton cluster (when |C| = 1), a path of two nodes (when |C| = 2), a star
with 2 leaves or a triangle (when |C| = 3), or a star (whenever |C| ≥ 4).
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Lemma 5. There exists an optimal partition C∗ where each cluster C with |C| ≥
4 is a star.

Proof. Consider a cluster C with k nodes, with k ≥ 4, that is not a star. Let
� = E(C) be the number of edges in C. Then, the social welfare is SW(C) = 2�

k−1 .
Let i be a node in C with the smallest degree and let x = deg(i); in case of

ties, we pick i arbitrarily. Let j be the neighbor of i with the smallest degree
among all i’s neighbors and let y = deg(j); again, we pick j arbitrarily in case
of ties. We argue that we can split C into two clusters, i.e., C1 = {i, j} and
C2 = C \ C1 without decreasing the social welfare. The total social welfare of
the two clusters is SW′ = SW(C1) + SW(C2) = 2 + 2�′

k−3 , where �′ is the number
of edges in cluster C2. It holds that � = �′ + x + y − 1, as i (respectively, j) has
x − 1 (respectively, y − 1) neighbors in C2 while the edge (i, j) also exists in C
but not in C2.

We now provide a lower bound on �′ based on x, y and k. By the defi-
nitions of x and y, it holds that C contains x nodes with degree at least y

and k − x nodes with degree at least x. Hence, we obtain that � ≥ xy+(k−x)x
2 .

Since �′ = � − x − y + 1, we obtain that

�′ ≥ kx + xy − x2 − 2x − 2y + 2
2

. (5)

It suffices to prove that SW′ ≥ SW(C). We have

SW′ − SW(C) =
2k + 2�′ − 6

k − 3
− 2�′ + 2x + 2y − 2

k − 1

=
2k2 − 6k + 4�′ − 2kx − 2ky + 6x + 6y

k2 − 4k + 3

≥ 2k2 − 6k + 2kx + 2xy − 2x2 − 4x − 4y + 4 − 2kx − 2ky + 6x + 6y

k2 − 4k + 3

=
2k2 − 6k + 2xy − 2x2 + 2x + 2y − 2ky + 4

k2 − 4k + 3

≥ 0.

The first inequality follows by using (5), while the last inequality holds due to
Lemma 4 (by setting z = k) and since k ≥ 4.

By repeating this process as long as there exists a non-star cluster of size at
least 4, we obtain an optimal solution with the desired properties. �

We now show that there exists an optimal partition that is Nash stable, hence
the price of stability is 1.
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Theorem 3. The price of stability of simple symmetric fractional hedonic
games is 1 when the utility function of player i is defined as u′

i(C(i)) =
degC(i)(i)

|C(i)|−1 .

Proof. Consider an optimal partition satisfying the properties of Lemma 5.
Clearly, any node in a triangle and any node that is a root in a star is sat-
isfied since its utility is 1. The only players that might wish to deviate are either
nodes in singleton clusters, or leaves in a star. Observe that there cannot be
an edge connecting two nodes from the set of leaves and singletons, otherwise
they would form a new cluster and the social welfare would strictly increase; this
contradicts our assumption that we begin from an optimal partition. Similarly,
there cannot be an edge connecting a leaf or singleton node i to a node j that
belongs to a cluster C forming a triangle, as then the social welfare would strictly
increase by creating cluster {i, j} and reducing C to C \ {j}.

We first let all singleton clusters deviate and join their preferred star. Since
the social welfare of any star cluster C with k nodes is SW(C) = 2(k−1)

(k−1) , i.e.,
SW(C) = 2 irrespective of the number of leaves, these deviations do not decrease
the social welfare. Then, all possible subsequent deviating moves (which can be
made only by leaves) lead to partitions where the number of triangles remains
the same, the number of stars remains also the same, but the structure of these
stars may change as the leaves deviate. Observe that a deviating move of node
i from star C(i) to another star C, requires that |C(i)| > |C| + 1 and strictly
decreases the maximum size among these two star clusters, i.e., |C(i)| in this
example. Therefore, by considering the lexicographic order π of all star-clusters
in the partition C based on the number of nodes, from the minimum to the
maximum, we observe that any deviating move that leads to partition C′ satisfies
π(C) < π(C′) and, hence, this process is guaranteed to end. Furthermore, any
deviating move does not decrease the social welfare, as the new clusters remain
stars. This concludes the proof of the theorem. �

4 Conclusions

We have presented new bounds on the price of stability of simple symmetric
fractional hedonic games. The most important open question concerns the upper
bound for general graphs. We conjecture that the price of stability is constant
but the proof of such a claim remains elusive. Interestingly, for graphs of girth at
least 5, we show that there exists an optimal partition that is stable. Note that
for the remaining case, for graphs of girth at least 4, Bilò et al. [7] have shown a
constant upper bound of 4 and a lower bound of approximately 1.003; they also
show an improved upper bound of approximately 1.03 for the case of bipartite
graphs. Whether triangle-free graphs indeed behave differently than bipartite
graphs is another natural question; we have not been able to find a lower bound
for non-bipartite triangle-free graphs with price of stability greater than 1.03.
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Abstract. In many markets bidders want to maximize value rather than
payoff. This is different to the quasi-linear utility functions, and leads to
different strategies and outcomes. We refer to bidders who maximize
value as value bidders. While simple single-object auction formats are
truthful for value bidders, standard multi-object auction formats allow
for manipulation. It is straightforward to show that there cannot be a
truthful and revenue-maximizing deterministic auction mechanism with
value bidders and general valuations. Using approximation as a means
to achieve truthfulness, we study truthful approximation mechanisms for
value bidders. We show that the approximation ratio that can be achieved
with a deterministic and truthful approximation mechanism with n bid-
ders and m items cannot be higher than 1/n for general valuations. For
randomized approximation mechanisms there is a framework with a ratio
of O(

√
m

ε3
) with probability at least 1 − ε, for 0 < ε < 1.

Keywords: Value bidders · Revenue · Truthfulness · Approximation
mechanisms

1 Introduction

In auction theory, bidders are typically modeled as payoff-maximizing individuals
using a quasilinear utility function. Under these utility functions the Vickrey-
Clarke-Groves mechanism is the unique mechanism to obtain maximum welfare
in dominant strategies. Sometimes, however, payoff-maximization might just not
be the right assumption and bidders rather maximize value subject to a budget
constraint.

In display ad auctions individual user impressions on a web site are auc-
tioned off. Advertising buyers bid on an impression and, if the bid is won, the
buyer’s ad is instantly displayed on the publisher’s site. Demand-side platforms
(DSPs) are intermediaries, who provide the technology to bid for advertisers on
such advertising exchanges. A number of papers describe bidding strategies and
heuristics in display ad auctions. Zhang [14] gives an up-to-date overview. In all
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of these papers the task of the DSP or advertiser is to maximize the values of
impressions typically subject to a budget constraint for a campaign.

Value maximization subject to a budget is not limited to display ad auc-
tions. Private individuals often determine a budget before making a purchase,
and then buy the best item or set of items (e.g., cars, real-estate) that meets
the budget. Actually, in classical micro-economic consumer choice theory, con-
sumers select a package of objects that maximizes value subject to a budget
constraint, they don’t maximize payoff. Maximizing value subject to a budget
constraint is also wide-spread in business due to principal-agent relationships.
For example, in spectrum auctions, national telecoms have different preferences
for different packages of spectrum licenses based on the corresponding net present
values of business cases. These billion dollar net present values exceed the finan-
cial capabilities of the local telecom by far, but not those of its stakeholder, a
multinational, which has mainly long run strategic incentives of operating in the
local market. Thus, the stakeholder provides the local telecom with allowances
for individual packages based on the underlying net present value. The local
management then tries to win the most valuable package within the allowances
provided by the stakeholder.

In this paper, we analyze truthful approximation mechanisms for value maxi-
mizing bidders. One can think of several market types with value bidders depend-
ing on the nature of the preferences for one or more objects and of the budgets:
single-object markets, assignment markets, and combinatorial markets, where
bidders have preferences for and can bid on packages of objects.

We discuss truthful mechanisms for a number of these environments, but
focus on approximation mechanisms for combinatorial auction markets (with a
fully expressive XOR bid language). Combinatorial auction markets allow for
general preferences including substitutes and complements and the efficiency of
the mechanism is not limited just due to restrictions in the expressiveness of the
bid language.

1.1 Our Results

First, we analyze a truthful Pareto-optimal mechanism for markets with value
bidders. We show that such a mechanism exists. Then we study truthful revenue
maximizing mechanisms. We focus on revenue rather than welfare. Social welfare
is difficult to analyze in environments where bidders have values and budget
constraints. We show that for single-minded and single-valued value bidders
there are simple truthful mechanisms that maximize revenue, but that this is not
possible for multi-minded value bidders. Next, we explore truthful approximation
mechanisms. We maximize revenue without considering incentives, and refer
to this as optimal revenue. We will then say that a strategy-proof mechanism
returns (at least) a ratio α of the optimal if it’s revenue is always greater than or
equal to α times the optimal revenue. Our first main result concerns deterministic
approximation mechanisms for multi-unit package auctions.
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Theorem. The best revenue ratio achievable by a deterministic and truthful
mechanism with value bidders in a market with n bidders and m homogeneous
items is 1

n , for any n ≥ 2 and m ≥ 2.

The theorem has a straightforward extension to combinatorial markets. In
quasi-linear mechanism design, randomization is often a remedy to achieve higher
approximation ratios. Approximation mechanisms for quasi-linear bidders do
typically not lead to strategy-proofness with value bidders. However, there is a
recent contribution by Dobzinski et al. [4], which is also truthful for value bidders
with a simple change of the payment rule.

Theorem. There exists a polynomial-time randomized mechanism for value
bidders which is universally truthful and guarantees an approximation ratio of
O(

√
m

ε3 ) with probability at least 1 − ε, for 0 < ε < 1.

1.2 Related Literature

The Gibbard-Satterthwaite theorem describes one of the most celebrated results
in social choice theory. Gibbard [6] proved that any non-dictatorial voting scheme
with at least three possible outcomes is not strategy-proof. Satterthwaite [13]
showed that if a committee is choosing among at least three alternatives, then
every strategy-proof voting procedure is dictatorial. There have been a number
of papers on multi-unit assignment problems without money, showing that the
only strategy-proof and Pareto-optimal mechanisms are serial dictatorships.

Closest to our assumptions is the model analyzed by Feldman [5] in which
bidders have an overall budget and a value for ad slots in sponsored search and
they want to maximize the number of clicks given their budget. They also argue
that a bidder is incentivized to spend the entire budget to maximize exposure
or the number of clicks in the market. Maximizing the total value of clicks is
actually well-motivated also in more recent literature on bidding heuristics for
display ad auctions [14].

2 Preliminaries and Notations

In a combinatorial market we have m non-homogeneous items, J , one seller 0,
and n bidders, I (I0 includes the seller). Each bidder i ∈ I has a valuation vi(ai)
for any package ai ⊆ a assigned to an agent i and allocation a ∈ A, where
A describes the set of all allocations. For brevity, we will drop the subscript
in ai and write vi(a), even though the bidder is only interested in his own
allocation and not the allocation overall. A feasible allocation of bundles of
items to bidders is described as a =

⋃
i∈I ai with

⋂
i∈I ai = ∅ and a ∈ A. When

we discuss combinatorial auctions with heterogeneous items, we assume general
cardinal valuations and allow for substitutes and complements and free disposal
(vi(S) ≤ vi(T ), S ⊆ T ⊆ J). In contrast to mechanism design with quasi-linear
utility functions where utility is defined as valuation minus price of a bundle,
ui(a) = vi(a) − pi(a), we assume that these bidders have no value for residual
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budget or payoff, but they want to win their highest-valued package subject to
some budget constraint bi.

There are different ways, how budget can be considered. In combinatorial
markets the value of larger packages of objects a can exceed the overall bud-
get constraint vi(a) > bi(a). This can also happen in single object auctions.
In this paper we are concerned with maximizing revenue, and we consider the
willingness-to-pay for a package rather than the true value and trim the valuation
of such packages to the amount of the overall budget constraint bi. For example,
a telecom in a spectrum auction market might have a very high value for the
package of all spectrum licenses in the market, but it has only one million dollar
budget available. Therefore, we assume that his value, i.e., willingness-to-pay,
for the package of all licenses is vi =$1 million. In summary, the value bidders’
utility function is ui(a) = vi(a) if pi(a) ≤ vi(a), and ui(a) = −∞ otherwise.
This means, utility is non-transferable between the value bidders in our model.
The values vi are assumed to be monotone non-decreasing (free disposal) and
they are normalized with vi(∅) = 0, ∀i ∈ I.

Note that value bidders would not bid beyond their valuation vi(a), even if
their overall budget bi is not binding. For example, an advertiser on a digital
advertising exchange does not want to have an allocation which is within his
overall budget bi, but where he has to pay more for every impression than what
the net present value for these impressions is. In spectrum auctions, principals
typically determine a budget for different packages, which is based on the net
present value of the licenses in the package. The management needs to consider
these limits and cannot bid beyond.

We consider an offline environment, where we can match bidders to objects
in a single step. We will start discussing the simplest variant of a combinatorial
auction market in our paper: the multi-unit package auction. In a multi-unit
auction we have m identical units of an item. We use the notation of an n × m
auction to point to a multi-unit auction with n bidders and m identical items
or units. In a multi-unit auction we use the notation (s1, s2, . . . , sn) to denote
an allocation in which si units are assigned to bidder i. We focus on package
auctions, because without package bids, bidders cannot express their preferences
for complements or substitutes, which can lead to arbitrarily low revenue with
general valuations. Moreover, in a multi-unit market we use vi(s) to describe the
valuation of bidder i on s units. When an auctioneer presents a bidder with a
package s, and the bidder responds with his value vi(s), we will also refer to this
as a value query. The optimization goal is to find an allocation of objects to the
bidders, where bidder i gets si units, with

∑
i si ≤ m, that maximizes

∑
i vi(si).

Definition 1. A (direct revelation) mechanism is a social choice function f :
V1 × ... × Vn → A and a vector of payment functions p1, ..., pn, where pi : V1 ×
... × Vn → 
 is the amount that player i pays.

Vi ⊆ 
A describes the set of possible valuation functions for bidder i.
We sometimes refer to the social choice function as the allocation rule of a
mechanism.
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Definition 2. A mechanism (f, p1, ..., pn) is called incentive compatible if for
every bidder i, every v1 ∈ V1, ..., vn ∈ Vn and every v′

i ∈ Vi, if we denote a =
f(vi, v−i) and a′ = f(v′

i, v−i), then ui(a) ≥ ui(a′).

We will also talk about a truthful or strategy-proof mechanism in this context
when truthtelling is a dominant strategy.

Desirable goals in mechanism design are Pareto optimality, the maximization
of social welfare, and revenue. Utilitarian social welfare functions add up the
value of each individual in order to obtain society’s overall welfare. As indicated
earlier, the notion of social welfare is difficult if bidders have budget constraints.
In this paper we focus on maximizing the auctioneers’ revenue. In other words,
vi(a) is the willingness-to-pay of a bidder i for a package a (eventually trimmed
to bi), and the auctioneer wants to maximize the sum of these values in the
allocation: fR = maxa∈A

∑
i∈I0

vi(a). Assuming that every bidder is telling the
truth, fR states the optimal revenue or is optimal, for short.

The other desirable goal in mechanism design is Pareto-optimality.

Definition 3. A pair of allocation and payments (a, p1, . . . , pn) is Pareto-
optimal if for no other pair (a′, p′

1, . . . , p
′
2) are all bidders and seller better off,

ui(a′) ≥ ui(a), including the seller
∑

i∈I p′
i ≥ ∑

i∈I pi, with at least one of the
inequalities strict.

A quasi-linear mechanism is Pareto-optimal if in equilibrium it selects an
allocation or choice a such that ∀i∀a′,

∑
i vi(a) ≥ ∑

i vi(a′). Therefore, an allo-
cation that solves the social welfare maximization problem is Pareto optimal. In
a non-quasi-linear environment with value bidders, maximizing social welfare is
a sufficient, but not a necessary condition for Pareto-optimal allocations with
value bidders.

Example 1. To see this consider an example with bidder 1 interested in item A
for $8 and B for $5, and a bidder 2 with a value of $7 for A and $6 for B. If
the auctioneer allocates B to bidder 1 and A to bidder 2 with the price equal
to their bid, then the utility of the auctioneer and the two bidders would be
(12, 5, 7) rather than (14, 8, 6) in the social welfare maximizing allocation. Both
allocations are Pareto-optimal, though.

A mechanism is individually rational if bidders always get nonnegative utility.
Most of our analysis focuses on individually rational and truthful approximation
mechanisms for value bidders. The algorithmic problem of finding the optimal
social welfare for general valuations in combinatorial auctions is O(

√
m) [7],

which is a natural upper bound on the approximation factor of truthful approx-
imation mechanisms. For quasi-linear bidders randomized approximation mech-
anisms with the same approximation ratio have been found [4,10]. However, the
best deterministic truthful approximation guarantee known for general combi-
natorial auctions is O( m√

log m
) [8].

The algorithmic problem of allocating multiple units of an item to multi-
minded bidders reduces to the knapsack problem, for which a simple greedy
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algorithm proves an approximation ratio of 2 [10]. Just like for the knapsack
problem, the algorithmic allocation problem can be approximated arbitrarily
well and has an FPTAS: approximation ratio of 1 + ε obtained in time that is
polynomial in n, log m, and ε−1. For quasi-linear bidders, the framework by [10]
can be used such that any approximation algorithm witnessing an LP integrality
gap can be transformed into an algorithm that is truthful in expectation. For the
multi-unit auction problem the integrality gap is 2 and, hence, the framework of
Lavi and Swamy gives a 2-approximation. [3] presented an FPTAS for multi-unit
auctions that is truthful in expectation for quasi-linear bidders.

3 Pareto-Optimality and Revenue Maximization

We will first analyze if revenue maximization and Pareto efficiency can be imple-
mented in dominant strategies with value bidders. Due to the revelation princi-
ple, we limit ourselves to direct revelation mechanisms.

3.1 Truthful and Pareto-Optimal Mechanisms

Because our setting is similar to the setting without money, achieving strategy-
proof and Pareto-optimal mechanisms might seem impossible at first sight. How-
ever, payments are available and provide an escape route from the many impossi-
bility results in mechanism design without money. In the following we show that
there exists a Pareto-optimal and strategy-proof mechanism for the problem,
which is a simple greedy algorithm similar in spirit to [12].

Definition 4 (PO auction). Given a set of items J and bidders I, find the
i ∈ I and S ⊆ J with the highest vi(S). Allocate S to i at the price equal to
vi(S), and recurse on (J \ S) and (I \ {i}).

For the following theorem, we assume that bidders have strict valuations.
That is, for all bundles S, and T in the bidder i’s demand set, we have that
vi(S) �= vi(T ), for all bidders i ∈ I. This is a reasonable assumption for example
in spectrum auctions, where it is unlikely that two different packages have the
same value. We will discuss truthful mechanisms for general valuations including
ties in Sect. 4.

Theorem 1. The PO auction is a deterministic, strategy-proof, and Pareto-
optimal mechanism for value bidders with strict valuations.

All proofs can be found in the a long version of the paper. It is easy to see
that the mechanism achieves the best possible revenue in multi-unit markets
with linear valuations. However, the revenue of the mechanism in general can be
as low as 1

n of the optimal revenue (see Example 2).

Example 2. Suppose in a multi-unit market, bidders have valuations vi(1) =
x + ε, vi(2) = x + 2ε, . . . , vi(m) = x + m · ε, for any ε > 0, and i ∈ I. With
these valuations, the mechanism will return revenue of x+m · ε. But the optimal
revenue can be higher than n · x. Thus, the mechanism returns a result with a
revenue lower than 1

n of the optimal revenue.
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Note that if the mechanism chooses the revenue-maximizing allocation based
on the bids it would not be strategy-proof any more because bidders could shade
lower-valued bids in order to get a higher valued package, as we will discuss in
the next section. We will discuss the goal of revenue maximizing mechanisms
next.

3.2 Truthful Mechanisms Maximizing Revenue

Let’s first consider the trivial case of a single item only. A direct pay-as-bid
revelation simply gives the item to the highest bidder. Reporting the truth is
a weakly dominant strategy for this mechanism. All bidders will report vi(a),
since they pay what they bid but have no value for payoff. The losing bidders
cannot gain from decreasing their bid, but would risk making a loss if they bid
beyond their valuation. The same result can be extended to single-minded and
single-valued value bidders.

Definition 5 [12]. A valuation v is called single-minded if there exists a bundle
of items S∗ and a value v∗ ∈ R such that v(S) = v∗ for all S ⊇ S∗ and v(S) = 0
for all other S. A single-minded bid is the pair (S∗, v∗).

Definition 6 [1]. A bidder i is a single-valued (multi-minded) value bidder if
there exists a real value vi > 0 such that for any bundle S ∈ J , vi(S) ∈ {0, vi}
and vi(T ) = vi for all T ⊇ S if vi(S) = vi. Both the bidder’s value and his
collection of desired bundles are assumed to be private information, known only
to the bidder himself.

Theorem 2. A mechanism (f, p1, . . . , pn) with single-valued or single-minded
value bidders is incentive compatible if and only if the following conditions hold:

1. f is monotone in every vi.
2. Every winning bidder pays his bid.

Notice that with single-minded or single-valued value bidders the winner
determination problem to select the revenue-maximizing allocation is still NP -
hard [11]. Theorem 2 allows us to use the existing monotone approximation algo-
rithms for the allocation problem in markets with single-minded or single-valued
value bidders which are such that the computational hardness cannot be ignored.
With a pay-as-bid payment rule such single-parameter value bidders would not
have an incentive to deviate from truthful bidding. Unfortunately, these positive
results do not carry over to multi-minded value bidders with general valuations.

Theorem 3. There is no strategy-proof and revenue maximizing auction mech-
anism for general value bidders and more than one object for sale.

In the quasi-linear setting, assignment markets allow even for strategy-proof
ascending auctions [2]. Unfortunately, the negative result in Theorem 3 even
holds for assignment markets, where value bidders can only win at most one
from multiple items.
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Corollary 1. There is no strategy-proof and revenue maximizing auction mech-
anism for value bidders in assignment markets.

Proof. Suppose there is a market with two items A and B and two bidders.
Bidder 1 has a value of x for item B, while bidder 2 has a value of x for item
A and a value of x + ε for item B. Bidder 2 can increase his utility by bidding
0 for item A, which would make him win item B and lead to a revenue of 1

2 of
the optimal.

One escape route from these negative results on strategy-proof and revenue
maximizing auctions is to give up on optimal solutions and restrict attention to
approximation mechanisms to achieve strategy-proofness. In other words, we try
to keep strategy-proofness at the expense of optimal revenue. There is a growing
literature on approximation mechanisms for quasi-linear bidders [9] and it is a
natural question to understand approximation mechanisms for value bidders.

4 Deterministic Mechanisms for General Value Bidders

In this section, we characterize properties of truthful revenue maximizing mecha-
nisms for value bidders in general. This allows us to answer the question whether
an approximation ratio better than 1

n is possible for markets with n bidders. This
is what we can achieve when bidders are only allowed to submit bids on the
grand bundle (the bundle of all items). We try to analyze this by characterizing
the allocation rule of all possible truthful mechanisms. We present our negative
results for multi-unit auctions which are a subset of combinatorial auctions.

Generally speaking, with value bidders at most one value query for each
bidder can be verified by a truthful mechanism. This severely restricts the pos-
sibility of designing deterministic truthful mechanisms. One observation from
the golden ratio mechanism and the randomized 2 × 2 mechanism is that only a
single value query for one package S is used by the auctioneer, i.e., only a single
value vi(S) of each bidder is considered and then the bidder can either win this
package or a lower valued one. An example for another allocation rule f in a
3×4 market which satisfies the same properties is: “if v1(4) > v2(2)+v3(2) then
(4, 0, 0) else (0, 2, 2).” In this example, each bidder can only win the package,
which is evaluated in the condition of the allocation rule or the empty set. No
bidder has an incentive to lie in the value query, because this package is assigned
to the bidder.

4.1 Allocation Rule Revisited

We restrict our attention to those valuations of bidders which make the allocation
rule assign all units to only one bidder. These valuations play an essential role
in defining the outcome of the allocation rule and we discuss this further in this
section. We first define two new notations. Let v = (v1, . . . , vn) ∈ V1 × . . . × Vn

point to an arbitrary set of valuations. We denote by (i ←↩ s) the assignment in
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which s units are assigned to bidder i. Given an allocation rule f : V1×. . .×Vn →
A, we define a new function

Fi : V1 × . . . × Vn → {true, false}
Fi(v) =

{
true if f(v) = (i ←↩ m) ,
false otherwise.

Intuitively speaking, Fi determines whether a set of bidders’ valuations will
result in the assignment of m units to bidder i. Notice, Fi(·)’s are disjunctive, i.e.
Fi(v) & Fj(v) = false, ∀i, j ∈ I, because the grand bundle cannot be assigned to
more than one bidder, simultaneously. Now, using Fi’s we redefine the allocation
rule as follows.

f∗ : V1 × . . . × Vn → A

f∗(v) =
{

(i ←↩ m) if Fi(v) = true,∀i ∈ I,
f(v) otherwise.

Example 3. Consider the following allocation rule for the 3 × 4 market.

1. If v1(4) > max(v2(4), v3(4)) ∧ (v1(4) > v2(2) + v3(2)) then (4, 0, 0).
2. If v2(4) > max(v1(4), v3(4)) ∧ (v2(4) > v1(2) + v3(2)) then (0, 4, 0).
3. If v3(4) > max(v1(4), v2(4)).
4. If v1(4) > max(v2(4), v3(4)) then (0, 2, 2).
5. If v2(4) > max(v1(4), v3(4)) then (2, 0, 2).

In this allocation rule, the functions Fi(·)’s are defined as follows. F1(v) ≡ v1(4) >
max(v2(4), v3(4)) ∧ (v1(4) > v2(2) + v3(2)), F2(v) ≡ v2(4) > max(v1(4), v3(4)) ∧
(v2(4) > v1(2) + v3(2)), and F3(v) ≡ v3(4) > max(v1(4), v2(4)). These functions
are disjunctive and all might become false simultaneously.

This new rewriting of the allocation rule will be useful for deriving a general
result in mechanism design for value bidders as will be shown in the following.

It is easy to observe that the two definitions of the allocation rule are
equivalent.

Lemma 1. For any set of valuations v ∈ V1 × . . . × Vn, we have that f∗(v) =
f(v).

That f∗ and f are equivalent, lets us focus on f∗ and try to find conditions
which f∗ must satisfy in order to achieve a good revenue as well as obtaining
truthfulness.

4.2 Properties of Fi(·)
The domain of function Fi(·) is the set of all valuations. Thus, one might guess
that in computing Fi(·), the valuations of bidders for any bundle j ≤ m might be
queried. Yet, in what follows we present multiple lemmata which show that this
is not the case and restrict the arguments of Fi(·) to only valuations of bidders
for m units: vj(m) ∀j ∈ I.
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We first look at the lemma which describes properties of mechanisms, which
avoid low revenue.

Lemma 2. In order to avoid arbitrarily low revenues of less than 1
n , arguments

of function Fi(·) must include all value queries vj(m), ∀j ∈ I, i.e. Fi(·) has to
be a function of all vj(m)’s.

The proofs for the following lemmata can be found in the long version of the
paper. The second lemma holds only for value bidders. This lemma takes into
account the truthfulness of mechanism.

Lemma 3. In order to obtain truthfulness, no valuation from bidder i other
than vi(m) can be queried in computing Fi(·).
Lemma 4. If two bidders are equal in all valuations except for the grand bundle,
then in case the mechanism wishes to assign the grand bundle to one of them,
it must assign the grand bundle to the stronger bidder, otherwise the mechanism
will be neither revenue maximizing nor truthful.

The next lemma proves that, by taking into consideration the truthfulness,
if all units are assigned to a bidder, that bidder has to be the strongest on the
grand bundle.

Lemma 5. If Fi(v) = true then vi(m) > maxj �=i vj(m), ∀i, j ∈ I, otherwise the
mechanism is not truthful.

Considering Lemma 5, we can be more specific about the function Fi(·) as
the following lemma states.

Lemma 6. The rewriting of function Fi(·) as the following is without loss of
generality. Fi(v) = (vi(m) > maxj �=i vj(m)) ∧ F ′

i (v), where

F ′
i : V1 × . . . × Vn → {true, false}

F ′
i (v) =

⎧
⎨

⎩

true if Fi(v) = true,
false if Fi(v) = false ∧ vi(m) > maxj �=i vj(m),
don′tcare vi(m) < maxj �=i vj(m).

In the next lemma, we show that when a bidder has the highest valuation for
the grand bundle, he will get the all units. In order to show this, we draw on a
property of social choice functions, namely anonymity. Anonymity requires that
the outcome of a social choice function is unaffected when agents are renamed.

Lemma 7. If vi(m) > maxj �=i vj(m) then Fi(v) = true, ∀i, j ∈ I, otherwise the
mechanism is not truthful.

Example 4. Consider the allocation rule given in Example 3. Obviously, the allo-
cation rule is not anonymous since the outcome depends on the label of the
bidders. If bidder 3 has the highest valuation for the grand bundle, he will get
it but for bidder 1 and 2 this does not hold.
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In addition, the mechanism is not truthful. Consider a case in which v1(4) >
v2(4) > v3(4), v1(4) < v2(2) + v3(2), and v2(4) < v1(4) + v3(2). The outcome of
the mechanism in this case will be (0, 2, 2). But, bidder 1 can be better off by
bidding v′

1(4) < v2(4), for which the outcome will be (2, 0, 2).

Theorem 4. The best revenue ratio achievable by a deterministic and truthful
mechanism with value bidders in an n × m market is 1

n .

Proof. According to Lemma 7, the allocation rule assigns everything to the bid-
der with the highest bid for the grand bundle. This assignment has a worst-case
approximation ratio 1

n .

Theorem 4 is easily extensible to combinatorial markets as the following
corollary states. Overall, there is a gap between the best approximation ratio of
an approximation algorithm to the set packing problem (O(

√
m), and the best

truthful approximation mechanism.

Corollary 2. The best revenue ratio achievable by a deterministic and truthful
mechanism with value bidders in a combinatorial market is 1

n .

5 A Randomized Mechanism for General Value Bidders

Interestingly, the general randomized framework designed by Dobzinski et al. [4]
for mechanism design in quasi-linear settings, can easily be adapted for value
bidders. We will refer to this framework as U . Therefore, we can also achieve a
randomized mechanism for combinatorial auctions with value bidders, which is
truthful in a universal sense.

The framework tries to distinguish two cases: either there is a dominant
bidder such that allocating all items to him is a good approximation to the
revenue, or there is no such bidder. In the first case all items will be assigned to
a bidder. In the second case, a fixed-price auction is performed, which achieves
a good approximation. In a first phase of the auction bidders are partitioned
randomly in three sets. One of these sets is then used to gather statistics in
phase II, which allow to set a reserve price in the second-price auction of phase
III, which only allocates all items to one of the bidders. If the reserve price is not
met in phase III, then the items are sold in the fixed-price auction in phase IV.

Theorem 5. A randomized mechanism according to framework U for value bid-
ders is universally truthful and runs in polynomial time. It guarantees an approx-
imation ratio of O(

√
m

ε3 ) with probability at least 1 − ε.

A randomized mechanism according to framework U is also tight as it obtains
an O(

√
m)-approximation of the optimal revenue for general bidder valuations.

This also shows, that there exists a gap between the power of randomized versus
deterministic mechanisms. Whether such a gap exists for quasi-linear mechanism
design is an open problem [9].
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Abstract. We study the computation of revenue-maximizing envy-free
outcomes in a monopoly market with budgeted buyers. Departing from
previous works, we focus on buyers with asymmetric combinatorial valu-
ation functions over subsets of items. We first establish a hardness result
showing that, even with two identical additive buyers, the problem is
inapproximable. In an attempt to identify tractable families of the prob-
lem’s instances, we introduce the notion of budget compatible buyers,
placing a restriction on the budget of each buyer in terms of his valua-
tion function. Under this assumption, we establish approximation upper
bounds for buyers with submodular valuations over preference subsets as
well as for buyers with identical subadditive valuation functions. Finally,
we also analyze an algorithm for arbitrary additive valuation functions,
which yields a constant factor approximation for a constant number of
buyers. We conclude with several intriguing open questions regarding
budgeted buyers with asymmetric valuation functions.

1 Introduction

We study a pricing problem in a monopoly market involving n buyers and m
distinct goods (items) on sale. Each buyer has preferences over subsets of items,
expressed through a combinatorial valuation function; each buyer is also asso-
ciated with a scalar budget, that constrains his monetary capacity. The budget
constitutes an exogenous constraint on liquidity expressing the fact that, no mat-
ter how high any buyer may value a subset of items, the amount of money that
he can readily spend on it may be significantly lower. Under this setting, our
goal is to produce an allocation of items to the buyers along with correspond-
ing payments, so as to maximize the achieved revenue. We study this problem
subject to (i) the buyers’ budget constraints, (ii) individual rationality and (iii)
envy-freeness among the buyers. Individual rationality ensures that the utility of
every buyer should be non-negative, in any feasible outcome, and envy-freeness
imposes that no buyer may increase his utility by acquiring the allocation of
another buyer at the price paid by that buyer. Given that the problem is gener-
ally NP-hard, we wish to investigate both algorithmic and hardness results on
approximating the optimal revenue.
c© Springer-Verlag Berlin Heidelberg 2016
M. Gairing and R. Savani (Eds.): SAGT 2016, LNCS 9928, pp. 247–259, 2016.
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The study of envy-free pricing for revenue maximization has received con-
siderable attention in the recent literature. It was initialized by the work of
Guruswami et al. [15], and has been the subject of various follow-up works [1,3–
6,9,19], with or without budgets. Several factors have made this family of prob-
lems gain popularity. First, envy-freeness is one of the dominant and established
solution concepts in the fair division literature, ever since the works of [12,20].
Furthermore, envy-freeness along with individual rationality can be seen as a
relaxation of the Walrasian equilibrium concept [14]. This relaxation aims at
remedying the fact that Walrasian equilibria do not always exist for arbitrary
valuation functions. Finally, in certain cases, envy-freeness can also be viewed as
a relaxation of incentive compatibility, see e.g., [16], where envy-free outcomes
are used as a benchmark for prior-free mechanisms.

Despite the plethora of works on envy-free pricing, results on the case of
buyers with budgets have been quite elusive. Recent works on budgeted buyers
concern primarily symmetric (multi-unit) valuation functions [9], with the excep-
tion of [6], wherein valuation functions with limited asymmetry are also studied.
In contrast, our focus is exclusively on buyers with asymmetric combinatorial
valuation functions. We find that asymmetric valuation functions in conjunction
with budget constraints induce severe computational hardness. This motivates
the introduction of assumptions on the problem’s parameters, so as to identify
families of instances that are computationally more benign. We introduce for-
mally such a restricted class of instances, by conditioning on a relation between
the buyers’ valuation functions and their budgets. For this class of instances, we
manage to obtain positive approximation results, through adaptations of familiar
techniques from the literature on combinatorial auctions.

Contribution. Our first result is a negative one; we show that envy-free revenue
optimization for two budgeted buyers with identical additive valuation functions
is inapproximable in polynomial time (Sect. 3). This result motivates the intro-
duction of the notion of budget compatible buyers; for instances of the problem
that we consider subsequently, we require that each buyer has enough budget to
“cover” his value for specific subsets of items that we refer to as minimally valu-
able. First we observe that, under the assumption of budget compatible buyers,
certain approximation results from the literature on social welfare and revenue
maximization (for buyers without budgets) [15,18] transfer to our problem of
envy-free revenue maximization for budgeted buyers.

Subsequently, in Sect. 4, we consider budgeted buyers with identical sub-
modular valuation functions over preference subsets, as well as identical subad-
ditive valuation functions. In the former case, we analyze an adaptation of a
well known greedy algorithm from [17] for social welfare maximization, achiev-
ing a 4-approximation of the optimal envy-free revenue. For the case of identical
subadditive budgeted buyers, we modify an algorithm from [8] for subadditive
welfare maximization, and show that the resulting algorithm achieves an optimal
O(

√
m)-approximation. For the special case of two buyers with arbitrary subad-

ditive valuation functions we also justify a 4-approximation. Finally, in Sect. 5, we
study the setting of budgeted buyers with arbitrary additive valuation functions.
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We analyze a simple greedy-like algorithm that achieves a constant approxima-
tion of the optimum envy-free revenue, for a constant number of buyers. We also
highlight that the case of additive valuation functions with budget compatible
buyers still remains an interesting challenge.

1.1 Related Work

The settings studied by Feldman et al. [9] and Colini-Baldeschi et al. [6] are
the closest to ours. Feldman et al. [9] studied envy-free revenue maximization
in a limited supply multi-unit auction setting with budgeted buyers, having lin-
ear valuation functions over the number of items they receive. They devised a
uniform price mechanism that sells all (identical) items at the same price; the
payments of buyers are then proportional to the number of items they receive.
This mechanism was shown to output an envy-free outcome and approximate
the optimum envy-free revenue within factor 2. The authors also established the
problem’s NP-hardness. Colini-Baldeschi et al. [6] studied a setting with bud-
geted buyers and multiple distinct items, each available in a limited number of
identical copies. Each buyer’s valuation function was defined to be linear over
copies of items belonging in a buyer-specific preference subset, thus, exhibiting
some asymmetry. For this setting the authors proved an approximation lower
bound of Ω((min{m,n})1/2) for the optimum envy-free revenue, and showed
how a Θ(m)-approximation can be obtained by exploiting the results of [9]. For
unit-demand buyers, they analyzed a best-possible O(log n)-approximation algo-
rithm. For a multi-unit setting with a single item in limited supply of identical
copies and budgeted buyers with linear valuation functions, the authors analyzed
a fully polynomial-time approximation scheme, for approximating the optimum
envy-free uniform-price revenue.

Guruswami et al. [15] initialized the study of envy-free revenue maximiza-
tion algorithms (for buyers without budgets). Envy-freeness of an outcome in this
work and several works that followed [1–5,19] ensures that every buyer receives
his most preferred subset for given prices on the items. The authors in [15] ana-
lyzed approximation algorithms for Unit-Demand and Single-Minded buyers;
they also proved computational inapproximability results for these two cases of
buyers. The results on Single-Minded buyers were further improved and extended
in a number of subsequent works including [1,3,5]. Fiat and Wingarten [11] also
studied envy-free revenue maximization for Single-Minded buyers, but with the
same definition of envy-freeness as the one we use. While most of the works on
envy-free revenue maximization (without budgets) focused on settings of multi-
ple distinct items, the recent work of Monaco et al. [19] concerns a multi-unit
setting of a single good in limited supply and buyers with symmetric valuation
functions. Moreover, the authors study both kinds of envy-freeness, the one that
we consider here and the one studied by [15] and follow-up works.

Let us note that there has been considerable work on the design of incentive
compatible mechanisms in settings involving budgeted buyers, starting with the
seminal work of Dobzinski, Lavi and Nisan [7] and followed by several works
including, e.g., [10,13].
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2 Definitions and Preliminaries

We consider a market involving a set N = {1, . . . , n} of n = |N | buyers and a set
M = {1, . . . , m} of m = |M | items. Each buyer i ∈ N is associated with a budget
bi > 0 and with a monotone non-decreasing valuation function, vi : 2M �→ R

+,
satisfying vi(∅) = 0. For every subset of items X ⊆ M , vi(X) denotes the
intrinsic value of buyer i for acquiring X; in effect, vi(X) corresponds to the
maximum monetary amount that i is willing to spend for the purchase of X.
The budget bi constrains the maximum monetary amount that i can actually
spend for any allocation of items, regardless of his value for this allocation.

In this setting we are interested in outcomes (X,p) consisting of an allocation
X = (X1, . . . , Xn) of subsets of items to the buyers, along with payments p =
(p1, . . . , pn) that the buyers are required to issue for their allocated subsets. In
particular, we study the computation of outcomes (X,p) that approximately
maximize the raised revenue R(X,p) =

∑
i pi, while respecting the buyers’

budgets, i.e., pi ≤ bi for every i ∈ N , and satisfying the constraints of Individual
Rationality and Envy Freeness, imposed on the buyers’ utilities. The utility of a
buyer i for an outcome (X,p) is defined as:

ui(X,p) ≡ ui(Xi, pi) =
{

vi(Xi) − pi, if pi ≤ bi
−∞ otherwise (1)

Individual Rationality requires that ui(Xi, pi) ≥ 0 for every buyer i ∈ N . An
outcome (X,p) is envy-free if it satisfies:

ui(Xi, pi) ≥ ui(Xi′ , pi′), for every two i, i′ ∈ N (2)

Thus, i does not envy i′ if his utility would not increase if he received the allo-
cation of i′ at the price payed by i′. By definition of ui(·, ·) in (1), we observe
that (2) holds trivially if bi < pi′ , i.e., if i cannot afford to pay pi′ .

The social welfare of an allocation X is denoted by SW (X) and defined as
the sum of the buyers’ values for it, i.e., SW (X) =

∑
i vi(Xi). For any subset

N ′ ⊆ N , we will use the notation SWN ′(X) for
∑

i∈N ′ vi(Xi). We denote the
optimum envy-free revenue of the instance in context by R∗; we use R∗

N ′ for the
optimum envy-free revenue of the instance restricted to the subset of buyers N ′.

Valuation Functions. We consider the classes of additive (ADD), submodular
(SM), and subadditive (SA) valuation functions for the buyers. These classes
have been studied extensively in the context of combinatorial auctions.

Definition 1. A function v : 2M �→ R
+ belongs to the class:

– ADD, if for every X ⊆ M , v(X) =
∑

j∈X v({j}).
– SM, if for every two X,Y ⊆ M , v(X) + v(Y ) ≥ v(X ∪ Y ) + v(X ∩ Y ).
– SA, if for every two X,Y ⊆ M , v(X) + v(Y ) ≥ v(X ∪ Y ).

It is known that ADD ⊂ SM ⊂ SA; for further information on these classes
of valuation functions, we refer the reader to the seminal work of Lehmann,
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Lehmann and Nisan [17]. We note that all our results are based on algorithms
accessing the buyers’ valuation functions through value queries. In the presen-
tation our results, we will find it convenient to use the following notation, in the
manipulation of valuation function values: v(A|B) ≡ v(A ∪ B) − v(B).

3 Budget Compatibility

Our main result in this section is that envy-free revenue approximation is
intractable, even for two buyers with identical additive valuation functions. The
proof is by reduction from the Equal-Sum-Subsets problem [21].

Theorem 1. For any polynomial-time computable function ρ(m), the optimal
envy-free revenue cannot be approximated within a factor of ρ(m), unless P =
NP, even for 2 buyers with identical additive valuation functions on m items
and equal budgets.

To alleviate the problem’s hardness, we introduce below the notion of budget-
compatible buyers, a restriction that relates the valuation function of each buyer
with his budget. In subsequent sections we consider only instances with such
buyers. As we observe at the end of this section, the assumption of budget-
compatible buyers already yields some simple positive results for certain classes
of valuation functions.

Definition 2. Consider a buyer with budget b > 0 and a non-decreasing valua-
tion function v : 2M �→ R

+, over subsets of goods from a set M , |M | = m ≥ 1. A
subset Y ⊆ M is minimally valuable for the buyer if v(Y ) > 0 and v(Y \{j}) = 0
for every j ∈ Y . The buyer is Budget-Compatible (BC) if b ≥ v(X), for every
minimally valuable subset of items X ⊆ M .

Let us note that for the most general class of SA valuation functions that we
consider, the minimally valuable subsets are always singletons. If v : 2M �→ R+ is
a (non-decreasing) SA valuation function and v(X) > 0 for some X ⊆ M with
|X| ≥ 2, there exists j0 ∈ X such that v({j0}) > 0; otherwise,

∑
j∈X v({j}) =

0 < v(X) contradicts the subadditivity of v. By the monotonicity of v, no strict
superset of {j0} can be minimally valuable, according to Definition 2.

For functions that do not belong to the class SA the minimally valuable
subsets can be non-singletons. Consider for example the class of single-minded
buyers [18]; each such buyer i has a scalar value vi > 0 for a particular subset
Mi of items (or any superset of it) and 0 for all other subsets. Then Mi is
the (unique) minimally valuable subset of i. Budget compatibility in this setting
yields a (best-possible) O(

√
m)-approximation of the optimum envy-free revenue,

via the celebrated greedy algorithm of Lehmann, O’Callaghan and Shoham [18],
for social welfare maximization.

Another result that follows immediately under the assumption of BC bud-
geted buyers is a factor O(log n)-approximation of the optimal envy-free rev-
enue for Unit Demand valuation functions, which make up a strict subclass of
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SM valuation functions. A valuation function v : 2M �→ R+ is Unit Demand if
v(X) = maxj∈X v({j}). For Unit Demand buyers (without budgets), Guruswami
et al. analyzed in [15] an O(log n)-approximation algorithm for envy-free revenue
maximization; the notion of envy-freeness used in their work expresses that every
buyer is allocated his utility-wise most preferable allocation under an item pric-
ing. Because the algorithm of [15] allocates at most a single item to each buyer
and charges him a payment at most equal to his value for the received item, the
outcome remains individually rational under the assumption of BC buyers and
envy-free according to inequality (2).

4 Identical Valuation Functions on Preference Subsets

In this section we study the cases of BC budgeted buyers with near-identical SM
valuation functions and, subsequently, with identical ADD and SA valuation
functions. Let us first assume SM buyers. We focus on a case of SM functions,
where every buyer i is equipped with a preference subset Si of items, so that, his
value for any subset of items X ⊆ M is defined as vi(X) = v(Si ∩ X), for some
SM function v : 2M �→ R

+, which is common across all buyers i ∈ N . Note that
every restriction vi of v, with respect to any preference subset Si, remains SM.

We analyze a straightforward adaptation of the greedy algorithm of Leh-
mann, Lehmann and Nisan [17], which was originally designed for computing
(approximately) social welfare maximizing allocations, for SM buyers. Our adap-
tation of the algorithm, referred to as mLLN, appears in Fig. 1 (for the description
of the algorithm, recall the notation v(A|B) ≡ v(A ∪ B) − v(B), for any 2 sets
A,B). The algorithm chooses iteratively the most valuable buyer-item pair in
lines 3.1 and 3.2, by identifying first a buyer i and, subsequently, an item j
from the buyer’s currently eligible preference subset Mi ⊆ Si. If the total value
of i after allocating j to him does not exceed his budget bi, the allocation is
performed; otherwise, j is removed from Mi. The algorithm terminates when all
eligible preference subsets are empty, and returns the resulting allocation X.

The algorithm uses a slightly different selection criterion from [17], in that
it always examines the most (marginally) valuable buyer-item pair, instead of
scanning the items in arbitrary order and allocating each to the buyer with the
highest value for it. It also satisfies the following properties:

1. It does not allocate an item if the buyer’s total value exceeds his budget.
2. It does not allocate to any buyer any item outside his preference subset.

It is clear that when we ignore the budgets, mLLN has the same performance
as shown in [17], i.e., approximates the optimum social welfare within factor 2.

Fact 1. If bi = +∞ for every i ∈ N , mLLN achieves a 2-approximation on the
optimal social welfare for buyers with SM valuation functions.

The two properties identified above allow us to show:
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1. X ← (∅, . . . , ∅) // Initialize

2. for i ∈ N do: Mi ← Si // Eligible items per buyer

3. while (∪iMi) �= ∅ do: // While eligible items remain

1. i := arg max
�∈N :M� �=∅

(
max

j′∈M�

v�({j′}|X�)
)

// Buyer i with most valuable item

2. j := arg max
j′∈Mi

vi({j′}|Xi) // Most valuable item of i

3. if bi ≥ vi(Xi ∪ {j}) do: // If remaining budget suffices

Xi ← Xi ∪ {j}; // Allocate j to i

for � ∈ N do:M� ← M� \ {j} // Remove j from eligible subsets

else do: Mi ← Mi \ {j} // Else, j is not eligible for i
4. return X

Fig. 1. The modified Lehmann-Lehmann-Nisan (mLLN) algorithm.

Lemma 1. Let X be an allocation returned by the mLLN algorithm for an
instance involving BC budgeted buyers with preference-set-restricted identical
SM valuation functions. The outcome (X,p) where pi = vi(Xi) satisfies indi-
vidual rationality and envy-freeness.

We next prove the following lemma:

Lemma 2. Consider the execution of the mLLN algorithm, for BC budgeted buy-
ers with SA valuation functions. Let i ∈ N and j ∈ M , be the buyer and item
chosen in the t-th iteration. Let Xt−1

i denote the allocation of i in the beginning
of the t-th iteration and Xi be the final allocation of i. If bi < vi(Xt−1

i ∪ {j}),
then vi(Xi) ≥ 1

2bi.

Using Lemmas 1 and 2, we can establish the following approximation.

Theorem 2. For a market involving BC budgeted buyers with an identical SM
valuation function on their preference subsets, there exists a polynomial time
algorithm that approximates the optimum envy-free revenue within factor 4.

Proof. We analyze the outcome (X,p), where X is the allocation of the mLLN
algorithm, and pi = vi(Xi). We need to establish that R(X,p) ≥ 1

4R∗, where R∗

is the optimal envy-free revenue. For this, it suffices to show that SW (X) ≥ 1
4R∗.

We partition the set of buyers N into two disjoint subsets V and B, where
V = N \ B and B is defined to contain buyers for which Lemma 2 can be
applied. I.e., for every buyer i ∈ B, there exists an iteration t in the course
of the algorithm’s execution, during which, the buyer-item pair that is chosen is
〈i, j〉,f or some j ∈ Si (in lines 3.1, 3.2), and it occurred that bi < vi(Xt−1

i ∪{j}).
Fix an optimal envy-free outcome, with revenue R∗, and let R∗

B (resp. R∗
V) be

the revenue extracted from the buyers of B (resp. of V) in the optimal outcome.
Consider first the case that R∗

B ≥ R∗
V . By Lemma 2 we obtain vi(Xi) ≥ 1

2bi
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for every buyer i ∈ B. Since bi is an upper bound on the payment of i in any
revenue-optimal envy-free outcome, SWB(X) =

∑
i∈B vi(Xi) ≥ 1

2R∗
B. Hence:

SW (X) ≥ SWB(X) ≥ 1
2
R∗

B ≥ 1
2

(
1
2
R∗

B +
1
2
R∗

V

)
≥ 1

4
R∗

Consider now the alternative case, where R∗
V ≥ R∗

B. We will argue that
SW (X) =

∑
i vi(Xi) ≥ 1

2R∗
V ; this, in turn, yields a 4-approximation of the opti-

mal envy-free revenue. The argument is by utilizing Fact 1 on the performance of
mLLN for social welfare maximization. We compare the algorithm’s execution on
two instances of the problem; both concern the same set of buyers, V. For every
buyer in V we ignore his budget constraint for this analysis. Let MV = ∪iXi

contain the items allocated to buyers of V under X. Let the first instance be
I0 ≡ (V,MV ,v); the second is I1 ≡ (V,M,v).

The execution of the mLLN algorithm on I0 will output an allocation Y0 for
buyers in V, that is identical to their allocation under X; thus, SW (Y0) =
SWV(X). Consider now the algorithm’s output, Y1, when executed on I1.
Because the greedy algorithm mLLN has chosen to allocate every item j ∈
(∪i∈BXi) to some buyer in B and not to some buyer in V, we know that none of
these items can have a higher marginal contribution – in the algorithm’s greedy
selection order – to SWV(Y1), than their marginal contribution to SWB(X). A
similar argument holds for items j ∈ ∪i∈VXi; none of these items may achieve a
larger marginal value contribution to SWV(Y1) (in the greedy selection order)
than the marginal value it contributed to SWV(X) = SWV(Y0). Thus, if W∗

1

denotes the socially optimal welfare value for I1, we have:

SW (X) = SWB(X) + SWV(X) = SWB(X) + SWV(Y0)

≥ SWV(Y1) ≥ 1
2
W∗

1 ≥ 1
2
R∗

V

where the previous to last inequality comes from Fact 1, and the last inequality
comes from the fact that W∗

1 is an upper bound on the optimal revenue that can
be collected from buyers in V. Hence SW (X) ≥ 1

4R∗. ��
Next we analyze an algorithm for BC budgeted buyers with fully identical SA

valuation functions. En route, we prove a factor 2-approximation for buyers with
identical ADD valuation functions, which improves upon the 4-approximation
shown above; this 4-approximation remains valid also for buyers with identical
ADD valuation functions, because ADD ⊂ SM. With respect to the description
of the mLLN algorithm in Fig. 1, we assume that the preference subset Si of each
buyer coincides with M , the whole set of items, and that vi = v for all buyers
i ∈ N , where v is ADD or SA.

Theorem 3. For a market with BC budgeted buyers and m items, an envy-free
outcome can be computed in polynomial time, that approximates the optimum
envy-free revenue within factor:
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– 2, when the buyers have identical additive valuation functions,
– O(

√
m), when the buyers have identical subadditive valuation functions.

No better approximation to the optimum revenue can be achieved in the
case of identical subadditive buyers; for high enough budgets, a better revenue
approximation factor would result in at least as good an approximation of the
optimum social welfare; the latter is excluded by a result from [8] (cf. Theorem
6.1), stating that, for at least

√
m identical buyers, approximation of the social

welfare within less than O(
√

m) requires exponentially many value queries.

5 Additive Buyers

In this section we consider instances with arbitrary additive valuation func-
tions. Recall from Theorem 1 that without the BC assumption, the problem
is intractable. Assuming BC buyers, we will analyze a greedy-like algorithm,
which yields a constant approximation for a constant number of buyers. For a
special case of additive buyers, Colini-Baldeschi et al. [6] proved a factor Θ(m)-
approximation (cf. [6] Corollary 4), by using the results of [9]. This yields a
constant approximation for m = O(1) items. Here, we are able to improve upon
this ratio for arbitrary additive valuation functions, under the assumption of bud-
get compatibility. We note that for BC buyers, a factor m-approximation can
be obtained straightforwardly, even for SA valuation functions. For instances
involving 2 buyers only, we can obtain a further improved 4-approximation,
again even when the valuation functions of the buyers are subadditive.

Theorem 4. There exists a polynomial-time 4-approximation algorithm for en-
vy-free revenue maximization in a market wth m items and two budget-compatible
buyers having subadditive valuation functions.

Before we proceed to discuss an algorithm for an arbitrary (constant) number
of buyers, we state a useful lemma.

Lemma 3. Consider any instance (N,M,v,b) of envy-free revenue maximiza-
tion, with buyers having additive valuation functions. Let R∗

N denote the opti-
mum envy-free revenue for this instance. For any subset of buyers N ′ ⊆ N ,
denote by R∗

N ′ , R∗
N\N ′ the optimum envy-free revenue values for the sub-instances

(N ′,M,v,b) and (N \ N ′,M,v,b) respectively. Then: R∗
N ′ + R∗

N\N ′ ≥ R∗
N .

The algorithm we describe allocates items only to a single buyer and charges
this buyer his value for the items. For simplicity, we use the notation [i,X] to
describe an outcome (X,p), where Xi = X, pi = vi(Xi) and Xi′ = ∅, pi′ = 0,
for every i′ �= i. Throughout this section, we let k ≤ n denote the number of
distinct budget values among the n buyers; for every budget value b, N(b) ⊆ N
is the set of buyers with budget equal to b. Conceivably, k could be much smaller
than n, in cases where many buyers can have a similar monetary capacity.
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We refer to our algorithm as r-greedy (for “recursive greedy”). It is described
in pseudo-code on the left of Fig. 2. r-greedy uses a greedy subroutine (right of
Fig. 2). The greedy subroutine picks iteratively the pair of a buyer i0 and a yet
unallocated item j0, with the largest value vi0({j0}). If vi0(Xi0 ∪ {j0}) ≤ bi0 , it
allocates j0 to i0; otherwise, it stops and returns the allocation [i0,Xi0 ]. I.e, it
greedily tries to find a buyer who comes close to violating his budget constraint.
If no such buyer is found and all items end up being allocated, greedy returns
the outcome corresponding to the buyer with the highest value (lines 3 and 4).
The performance of greedy is summarized as follows:

Fact 2. The allocation [i0,Xi0 ] returned by greedy is envy-free. Moreover, if it
allocates all the items, then n · vi0(Xi0) ≥ R∗

N . Otherwise, 2vi0(Xi0) ≥ bi0 .

Envy-freeness follows by the fact that we have additive valuation functions,
hence separable, over the set of items. The items that i0 obtains are not valued
higher by the other buyers, thus no envy can be created by charging i0 his value.
The last statement of Fact 2 follows by the budget compatibility assumption
and by Lemma 2, shown previously for the algorithm mLLN, which is of similar
functionality. Let us now describe r-greedy; first it obtains an allocation [i0,Xi0 ]
by executing greedy on the whole instance. If all buyers have identical budgets
equal to bi0 , the allocation is returned (in line 2). Otherwise, r-greedy calls
itself recursively on the sub-instance not containing the buyers in N(bi0), and
obtains an allocation [i1,Xi1 ]. Subsequently, it compares the value vi1(Xi1) of the
allocation [i1,Xi1 ] with the budget bi0 of i0, so as to determine a final outcome
to return. The analysis of the comparison cases is central to the proof of the
algorithm’s approximation ratio (below). Finally, r-greedy runs in polynomial
time, since it calls itself only once on a sub-instance with less buyers.

r-greedy(N, M,v,b)

1. [i0, Xi0 ] := greedy(N, M,v,b)

2. if N(bi0) = N

return [i0, Xi0 ]

else

1. N := N \ N(bi0)

2. [i1, Xi1 ] := r-greedy(N, M,v,b)

3. (a) if vi1(Xi1) ≤ bi0

return [i0, Xi0 ]

(b) else return [i1, Xi1 ]

greedy(N, M,v,b)

1. X := (∅, . . . , ∅)

2. while M �= ∅
1. 〈i0, j0〉 := arg max vi({j})

〈i,j〉∈N×M

2. if vi0({j0} ∪ Xi0) ≤ bi0

Xi0 := Xi0 ∪ {j0}
M := M \ {j0}

else return [i0, Xi0 ]

3. i0 := arg maxi vi(Xi)

4. return [i0, Xi0 ]

Fig. 2. The n2k-approximation r-greedy algorithm, for n additive buyers with at most
k ≤ n distinct budget values, accompanied by a greedy subroutine.
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Theorem 5. There exists a polynomial-time n2k-approximation algorithm for
envy-free revenue maximization, in a market of m items and n budgeted BC
buyers, with additive valuation functions and at most k ≤ n distinct budgets.

Proof. We prove the approximation bound and the outcome’s envy-freeness
inductively on the number of distinct budgets. Let [r,Xr] be the allocation
returned by r-greedy when executed on an instance involving a set N of n = |N |
buyers. We will show (n2k)·vr(Xr) ≥ R∗

N . When k = 1, i.e., all buyers have equal
budgets, the output of r-greedy is determined in line 2 and coincides with that
of greedy. By Fact 2, we have either vr(Xr) = 1

nR∗
N , or vr(Xr) ≥ 1

2br ≥ 1
2nR∗

N .
Envy-freeness is trivially guaranteed as well. This completes the induction basis.

For the inductive hypothesis, assume that the allocation [i1,Xi1 ] of algorithm
r-greedy in line 2.2 – for the sub-instance with the set of buyers N \ N(bi0) –
satisfies envy-freeness among all buyers in N \ N(bi0) and:

(n − |N(bi0)|)2k−1vi1(Xi1) ≥ R∗
N\N(bi0 )

(3)

We analyze each of the two cases, (a) and (b), in line 2.3 of r-greedy, to assert
that the returned allocation [r,Xr] yields an outcome satisfying envy-freeness
among all buyers in N and n2k · vr(Xr) ≥ R∗

N .

Case (a) In this case r-greedy returns [r,Xr] = [i0,Xi0 ], which yields an envy-
free outcome among the set N of all buyers, with pi0 = vi0(Xi0), by the func-
tionality of greedy. If, additionally, this allocation was determined in line 3 of
greedy, then by Fact 2 vi0(Xi0) ≥ 1

nR∗
N , thus, is trivially n2k-approximate. Oth-

erwise, the allocation was determined in the “else” part of line 2 of greedy, thus:
vi0(Xi0) ≥ 1

2bi0 ≥ 1
2|N(bi0 )|R

∗
N(bi0 )

, where R∗
N(bi0 )

is the optimum envy-free re-
venue for the sub-instance involving only the subset N(bi0) of buyers. Also, pi0 ≥
1
2bi0 ≥ 1

2vi1(Xi1), thus, by (3) we have: (n − |N(bi0)|)2k−1pi0 ≥ 1
2R∗

N\N(bi0 )
.

Adding to this inequality |N(bi0)| · pi0 ≥ 1
2R∗

N(bi0 )
, yields, by Lemma 3:

n2k−1pi0 ≥ 1
2

(
R∗

N(bi0 )
+ R∗

N\N(bi0 )

)
≥ 1

2
R∗

N

which establishes the approximation ratio.

Case (b) is analyzed in a similar manner. ��

6 Concluding Remarks and Open Problems

We initiated a systematic study of envy-free revenue maximization for buyers
with budgets and asymmetric valuation functions over subsets of items. We
established the problem’s inapproximability, and introduced the notion of bud-
get compatible buyers so as to alleviate this negative result. Our main posi-
tive approximation results include the cases of identical submodular valuation
functions, restricted on preference sets, as well as identical subadditive valua-
tion functions. For buyers with arbitrary additive valuation functions we were
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also able to provide a constant approximation for a constant number of buyers.
Several intriguing questions still remain open, particularly with respect to BC
buyers. It would be insightful to understand if better approximations are pos-
sible for this setting; we believe that the analysis of our algorithm for additive
buyers is not tight (we obtained a lower bound of Ω(kn)). For the special case of
additive buyers of [6], it is not clear if better results are attainable under the BC
assumption. It is also very interesting to obtain hardness results for BC buyers.
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Abstract. In a seminal paper, McAfee (1992) presented the first dom-
inant strategy truthful mechanism for double auction. His mechanism
attains nearly optimal gain-from-trade when the market is sufficiently
large. However, his mechanism may leave money on the table, since the
price paid by the buyers may be higher than the price paid to the sell-
ers. This money is included in the gain-from-trade and in some cases it
accounts for almost all the gain-from-trade, leaving almost no gain-from-
trade to the traders. We present SBBA: a variant of McAfee’s mechanism
which is strongly budget-balanced. There is a single price, all money is
exchanged between buyers and sellers and no money is left on the table.
This means that all gain-from-trade is enjoyed by the traders. We gen-
eralize this variant to spatially-distributed markets with transit costs.

Keywords: Mechanism design · Double auction · Budget balance ·
Social welfare · Gain from trade · Spatially distributed market

1 Introduction

In the simplest double auction a single seller has a single item. The seller values
the item for s, which is private information to the seller. A single buyer values
the item for b, which is private to the buyer. If b > s, then trade can increase the
utility for both traders; there is a potential gain-from-trade of b − s. However,
there is no truthful, individually rational, budget-balanced mechanism that will
perform the trade if-and-only-if it is beneficial to both traders. The reason is
that it is impossible to determine a price truthfully. This is easy to see for a
deterministic mechanism. If the mechanism chooses a price p < b, the seller is
incentivized to bid (p + b)/2 to force the price up; similarly, if the mechanism
chooses a price p > s, the buyer is incentivized to force the price down. The
impossibility holds even when the valuations are drawn from a known prior
distribution and even when the mechanism is allowed to randomize; see the
classic papers of [13] and [16].

1.1 McAfee’s Trade-Reduction Mechanism

McAfee [12] showed how to circumvent this impossibility result when there are
many sellers, seller i having private valuation si, and many buyers, buyer i hav-
ing private valuation bi. In McAfee’s double auction mechanism, each trader is
c© Springer-Verlag Berlin Heidelberg 2016
M. Gairing and R. Savani (Eds.): SAGT 2016, LNCS 9928, pp. 260–272, 2016.
DOI: 10.1007/978-3-662-53354-3 21



SBBA: A Strongly-Budget-Balanced Double-Auction Mechanism 261

asked to give his valuation. The sellers are sorted in an ascending order according
to their valuations s1 ≤ s2 ≤ . . . ≤ sn, and the buyers are sorted in a descending
order b1 ≥ b2 ≥ . . . ≥ bn. Let k be the largest index such that sk ≤ bk. The
optimal gain-from-trade is attained by picking any price p ∈ [sk, bk] and per-
forming k deals in that price. But this scheme is not truthful. McAfee attains
truthfulness by considering the following two cases:

(a) If there are at least k + 1 buyers and k + 1 sellers and the price pk+1 :=
(bk+1 + sk+1)/2 is in the range [sk, bk], then pk+1 is set as the market price,
allowing all k efficient deals to execute in that price.

(b) Otherwise, two prices are used, and k − 1 deals are done: all sellers with
values s1, . . . , sk−1 sell their item for sk, and all buyers with values b1, . . . bk−1

buy an item for bk. The mechanism performs a trade reduction by canceling
a single deal, the deal between bk and sk, which is the least efficient of the k
efficient deals. Hence, its gain-from-trade is 1 − 1/k of the maximum.

Crucially, the gain-from-trade approximated by McAfee’s mechanism is the
total-gain-from-trade - the gain-from-trade including the money left on the
table due to the difference between the buyers’ price and the sellers’ price. More-
over, this money might include almost all the gain, so that the market-gain-
from-trade - the gain enjoyed by the traders - might be near zero.

Example 1. There are k buyers and k sellers with the following valuations

– si = 0 and bi = B for all i ∈ {1, . . . , k − 1}.
– sk = ε and bk = B − ε, where 0 < ε � B.

The optimal market-gain-from-trade occurs when all sellers sell and all buyers
buy, and it is: k · B − 2ε.

Since there are no k + 1-th buyer and seller, McAfee’s mechanism sets the
buy price at B − ε and the sell price at ε. The trade includes k − 1 buyers and
k − 1 sellers. The gain-from-trade in each deal is B, so the total-gain-from-trade
is (k − 1) · B, which is a very good approximation to the optimum for large k.

However, the net gain of each trader is ε, so the market-gain-from-trade is
only (k − 1) · 2ε; when ε → 0, the market-gain-from-trade becomes arbitrarily
small, and most gain-from-trade (k − 1) · (B − 2ε) remains on the table. ��
Money on the table can be desirable in some cases. E.g, the government may want
to arrange a double-auction between commercial firms and collect the revenue.
However, in other cases it may be considered unfair and drive traders away. For
example, if traders in a stock-exchange notice that most gain-from-trade is taken
by the operator, they may decide to switch to another operator.

The double-auction literature, e.g. [7], differentiates between mechanisms
that are weakly budget-balanced, i.e., the auctioneer does not lose but may gain
money, and strongly budget-balanced, i.e., the auctioneer does not lose nor gain
any money. McAfee’s mechanism is weakly budget-balanced.

1.2 Our Mechanism

In this paper we introduce SBBA - a Strongly-Budget-Balanced double-Auction
mechanism. SBBA attains strong budget-balance by setting a single trade price
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for all traders, in all cases. This may lead to excess supply; to handle the excess
supply, a lottery is done between the sellers. At most one seller, selected at
random, is excluded from trade. Hence, the expected total-gain-from-trade of
SBBA is the same as McAfee’s - 1 − 1/k.

A disadvantage of SBBA is that its approximation holds only in expectation
(taken over the randomization of the mechanism), while McAfee’s approximation
holds in the worst case. An advantage of SBBA is that it is strongly budget-
balanced, so the market-gain-from-trade equals the total-gain-from-trade - all
gain-from-trade is enjoyed by the traders. Besides these differences, SBBA has
all the desirable properties of McAfee’s mechanism:

– It is ex-post individually-rational - a trader never loses any value from
participating in the market (a buyer is never forced to buy an item for more
than its declared value; a seller is never forced to sell an item for less than its
declared value; a trader who does not participate in the trade pays nothing).

– It is ex-post dominant-strategy truthful: for every trader, every vector
of declarations by the other traders and every randomization, the trader’s net
value is always maximized by reporting his true value.

– It is prior-free - it does not assume or require any knowledge on the distri-
bution of the traders’ valuations. In other words, its approximation ratio is
valid even for adversarial (worst-case) valuations.

Below we survey some related literature (Sect. 2). Then, we present the SBBA
mechanism in the most basic double auction setting - a single market with single-
unit buyers and single-unit sellers (Sect. 3). The idea of SBBA can be used in
much more complex settings. To demonstrate its generality, we show how to use
it in a spatially-distributed market - a collection of markets in different locations,
with positive transit costs between markets (Sect. 4).

2 Related Work

2.1 Double Auctions

VCG (Vickrey-Clarke-Grove) is a well-known mechanism that can be used in
various settings, including double auction. It is truthful and attains the max-
imum gain-from-trade. Its main drawback is that it has budget deficit, which
means that the auctioneer has to subsidize the market.

McAfee’s Trade-Reduction mechanism was extended and generalized in many
ways. Some of the extensions are surveyed below.

Babaioff et al. extend McAfee’s mechanism to handle spatially-distributed
markets with transit costs [3] and supply chains [2,4,5], providing similar welfare
guarantees. One variant, Probabilistic Reduction [2], achieves ex-ante budget
balance by randomly selecting between the Vickrey-Clarke-Grove (VCG) mecha-
nism and the Trade-Reduction mechanism. The probability is selected such that
the deficit of the VCG exactly balances (in expectation) the surplus of McAfee.
However, the probability depends on the distribution of the agents’ valuations
so the mechanism is not prior-free.
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Lately, there has been a surge of interest in a more complicated market,
namely double spectrum auctions, in which an auction is used to transfer spec-
trum from incumbent companies (e.g. TV stations) to modern companies (e.g.
cellular operators). [20] adapted the Trade-Reduction mechanism to a double-
spectrum-auction by creating groups of non-interfering buyers that can buy the
same channel. [17] created on online variant of Trade-Reduction to handle the
case in which new buyers arrive over time. [18] adapted Trade-Reduction to
enable local markets, in which only some buyer-seller combinations are feasible.
[10] adapted it to enable heterogeneous spectra. All these mechanisms are only
weakly budget-balanced.

Some recent papers extend McAfee’s mechanism to settings with more than
one item per trader. These are the TAHES mechanism of [10], which is multi-
type single-unit; the Secondary Market mechanism of [19], which is single-
type multi-unit; and the Combinatorial Reallocation mechanism of [7], which
is multi-type multi-unit. Our mechanism is single-type single-unit; we leave to
future work its extension to multi-type and multi-unit settings.

A different approach to double auctions is random-sampling. It was intro-
duced by [6] under the assumptions that the traders’ valuations are random
variables drawn from an unknown bounded-support distribution and there is a
single item-type. We recently extended it to a prior-free setting with multiple
item-types [15]. The idea is to divide the traders randomly to two half-markets,
calculate an optimal price in one half and apply it to the other half, and vice
versa. Since there is a single price in each market, the mechanism is strongly-
budget-balanced. However, our analysis (for the single-type case) shows that the
gain-from-trade is 1 − O(

√
ln k/k). While this still approaches 1 when the mar-

ket is sufficiently large, the convergence rate is much slower than the 1 − 1/k
guarantee of SBBA.

Recently, [9] presented a two-sided sequential posted price mechanism
(2SPM). Its main objective is to handle matroid constraints on the sets of
buyers that can be served simultaneously. Like our mechanism, it is strongly
budget-balanced. However, its approximation ratio is multiplicative - the ratio
is between 4 to 16, depending on the setting. In particular, the approximation
ratio does not approach 1 when the market is large.

The following table compares our work to some typical single-type single-unit
double-auction mechanisms. In this table, an asterisk means “in expectation”.
TGFT means total-gain-from-trade and MGFT means market-gain-from-trade;
they are identical for strongly-budget-balanced mechanisms.

2.2 Redistribution Mechanisms

The problem illustrated by Example 1, where the money left on the table eats
most of the welfare and leaves little welfare to the agents, happens in other
domains besides double auctions. Several authors have suggested a two-step
solution: in the first step, the original mechanism is executed and the budget-
surplus is collected. In the second step, some of the surplus is re-distributed
among the agents. This second step is called a redistribution mechanism and it
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Mechanism Prior-free Budget TGFT MGFT

VCG Yes Deficit 1 1

Trade reduction (McAfee 1992)[12] Yes Surplus 1 − 1/k 0

Random sampling (Baliga 2003)[6,15] Yes Balance 1 −O(
√

ln k/k)

Probabilistic reduction (Babaioff 2009)[3] No Balance* 1 − 1/k*

2SPM (Colini 2016)[9] No Balance 1/4 to 1/16

SBBA (this paper) Yes Balance 1 − 1/k*

should be carefully designed in order not to harm the truthfulness of the original
mechanism. While it is not possible to redistribute the entire surplus in a truthful
way, there are some truthful mechanisms that redistribute a large fraction of the
surplus [1,8,11]. We take a different approach: we modify the original mechanism
such that there is no budget-surplus at all, so no redistribution is needed and all
social welfare remains with the agents.

3 The SBBA Mechanism

Order the buyers and sellers as in McAfee’s mechanism. In case of ties, impose
an arbitrary order, e.g. lexicographic order of name.

Let k be the largest integer for which sk ≤ bk (or 0 if already s1 > b1).
Call the first k sellers, the “cheap sellers”, and the first k buyers, the “expensive
buyers”. As a convenience, if k = n, set sk+1 = ∞ and bk+1 = 0. Note that with
this notation, we have that si ≤ bi for i ≤ k and si > bi for i > k. The price is:

p := min(sk+1, bk).

There are two cases. We illustrate them below by plotting buyers’ valuations as
balls and sellers’ valuations as squares (in all illustrations, k = 3).

Case 1: sk+1 ≤ bk (note that by definition of k: sk+1 > bk+1):

B:

S:

B:

S:

The price is p = sk+1. All k expensive buyers and k cheap sellers trade in p.
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Case 2: sk+1 > bk :

B:

S:

B:

S:

The price is p = bk. From the group of k cheap sellers, select k−1 at random
and let them trade with the k − 1 expensive buyers (excluding bk).

Theorem 1. The SBBA mechanism is prior-free (PF), individually-rational
(IR), strongly-budget-balanced (SBB) and dominant-strategy truthful. Its
expected market-gain-from-trade is at least 1 − 1/k of the optimum.

Proof. The mechanism is PF by construction. It is IR since the trade is always
between buyers whose value is above p and sellers whose value is below p. It is
SBB since there is always a single price and all payments are between buyers
and sellers. To analyze the gain-from-trade, note that in case 1, all k efficient
deals are carried out and thus the maximum possible gain is achieved. In case 2,
a single random deal is canceled, which implies an expected loss of 1/k. Hence,
in expectation, at most a fraction 1/k of the gain-from-trade is lost.

To prove truthfulness, we use a characterization of truthful single-parameter
mechanisms from [14, Chap. 9]. A mechanism is truthful iff:

(a) the probability of an agent to win, given the bids of other agents, is a
weakly monotonically increasing function of the agent’s bid, and:

(b) the price paid by a winning agent equals the critical price - the lowest
value this agent has to bid in order to win, given the other agents’ bids.

We prove that SBBA is truthful for the buyers. The winning probability
of a buyer is either 0 or 1. Hence, it is sufficient to prove that a winning buyer
never loses by raising the bid. Consider two cases of a winning buyer:

– The buyer is bi for i < k.
– The buyer is bk and bk ≥ sk+1.

In both cases, if the bid is raised, bk remains above sk+1 and the buyer’s index
may only decrease, so the buyer still wins.

The critical price when bk < sk+1 is bk, since a trading buyer (one of the
expensive k − 1 buyers) exits the trade by bidding below bk and becoming the
new bk. The critical price when bk ≥ sk+1 is sk+1, since a trading buyer (one of
the expensive k buyers) exits the trade by becoming bk and bidding below sk+1.
In both cases, the price paid by the winning buyers is the critical price.

Finally, we prove that SBBA is truthful for the sellers. The sellers’ ask-prices
represent negative valuations, so monotonicity means that a seller’s probability
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of participation should increase when the ask-price decreases. The winning prob-
ability of a seller is 0 when the seller is si for i ≥ k + 1. When the seller is si
for i ≤ k, the winning probability is positive, and it does not depend on si itself
but only on the relation between sk+1 and bk:

– If sk+1 ≤ bk, the probability that si (for i ≤ k) wins and pays is 1;
– If sk+1 > bk, the probability that si (for i ≤ k) wins and pays is 1 − 1/k.

In each of these cases, decreasing the ask-price can only decrease the seller’s
index, so the winning probability remains the same.

The critical price when sk+1 ≤ bk is sk+1, since a trading seller (one of the k
cheap sellers) exits the trade by asking above sk+1 and becoming the new sk+1.
This is indeed the price paid to a winning seller.

The critical price when sk+1 > bk is bk, since a trading seller (one of the k
cheap sellers) exits the trade by asking above bk, which decreases k by 1 (the
seller who increased his ask-price becomes sk, but now the number of efficient
deals is k − 1, so sk is excluded from trade). Indeed, bk is the price paid to a
winning seller. Note that in this case both the winning and the price are realized
with probability 1 − 1/k.

��

3.1 Alternatives

The price set by our mechanism, min(bk, sk+1), has an interesting economic
interpretation: it is the highest price in a price-equilibrium (aka Walrasian equi-
librium), i.e. the highest price in which the market can be cleared by balancing
supply and demand. If the price is raised above bk then the demand becomes
less than k while the supply is still at least k; if the price is raised above sk+1

then the supply becomes at least k + 1 while the demand is still at most k; in
both cases there is an excess supply.

It is possible to switch the role of buyers and sellers, splitting the cases by
whether bk+1 > sk. In this case, the price is max(sk, bk+1) which is the lowest
price-equilibrium. The alternative mechanism has the same properties of our
original mechanism.

There are some other alternatives that come to mind, but are either not
truthful or not efficient:

– If in Case 2, instead of using a lottery we select the trading sellers determin-
istically (e.g. taking the k − 1 cheaper sellers), the mechanism will not be
truthful, since some agents who want to trade at the market price have an
incentive to deviate from their true values in order to enter the trade.

– If we always set the price to sk+1, in some cases this price might be higher
than the valuations of all buyers so we might lose all gain-from-trade.

– If we always set the price to bk, in some cases this price might be higher than
the valuations of all sellers, the market will be flooded by inefficient sellers,
and the expected gain-from-trade will be low.
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4 Spatially Distributed Markets

A spatially distributed market is a collection of several markets, each of which is
located in a different geographic location. It is possible to transport goods from
one market to another for a fixed, positive transit cost, which may be different for
each ordered pair of markets. Babaioff et al. [3] extended McAfee’s mechanism to
handle such markets. Similarly to McAfee’s mechanism, their mechanism has a
budget surplus. Below we briefly present their mechanism and present a strongly
budget-balanced variant of it.

4.1 Create the Market-Flow Graph

Create a network-flow graph representing the market in the following way:

– Create a node for each market. Create a directed edge between each pair of
markets, with infinite capacity and with cost equal to the transit cost between
the two markets (which may be different in each direction).

– Create an additional Agents node, representing the buyers and sellers. For
each seller in market i, create an edge FROM the Agents node TO Market i,
with unit capacity and cost equal to the seller’s ask-price. This edge represents
the seller producing an item and sending it to the market. For each buyer in
market i, create an edge TO the Agents node FROM Market i, with unit
capacity and cost equal to MINUS the buyer’s bid. This edge represents the
buyer bringing an item from the market.

The following illustration shows a graph representing two markets, with a transit
cost of 4 in each direction. Each solid arc represents an infinite-capacity edge.
Each dashed arc represents several unit-capacity edges with different costs. The
numeric labels are the costs.

Agents

Market 1
Sellers: 1 5 9 13 19

Buyers: 20 18 12 8 4

1 5 9 13 19

-20 -18 -12 -8 -4

Market 2
Sellers: 2 19 21 27 31

Buyers: 36 32 28 23 18

2 19 21 27 31

-36 -32 -28 -23 -18

4

4
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4.2 Calculate a Minimum-Cost Flow

Babaioff et al. use a known polynomial-time algorithm for finding a flow with
minimum cost in the market graph. Assuming all data is integral, the flow in
every edge is also an integer number. In particular, the flow in every buyer/seller
edge (with capacity 1) is either 0 or 1. Hence, a flow in the graph defines an alloca-
tion in which each trader trades if and only if the flow in the corresponding edge
to/from the Agents node is 1. A minimum-cost flow corresponds to an optimal
trade: the (negative) cost of the flow is minus the gain-from-trade. The following
illustration shows the minimum-cost flow and the corresponding optimal trade
in the above example market (non-trading agents are bracketed):

Agents

Market 1
Sellers: 1 5 9 13 [19]

Buyers: 20 18 [12 8 4]

1 5 9 13

-20 -18

Market 2
Sellers: 2 19 [21 27 31]

Buyers: 36 32 28 23 [18]

2 19

-36 -32 -28 -23

4+4

There are 6 efficient deals. The net cost is −100 so the gain-from-trade is
100.

4.3 Find Commercial-Relationship Components

In the optimal flow, the markets can be partitioned to groups, such that all
trade is within groups and no trade is between groups. Such groups are called
commercial-relationship components; they are the connectivity components of a
graph in which the nodes are the markets and there is an edge between markets
trading in the optimal flow.

The optimal trade can be attained in a price-equilibrium, in which there is
a single price in each market. In each component, the prices in the different
markets are tied by the equilibrium conditions: if the price in market i is pi, and
there is positive trade from market i to market j, then we must have:

pj = pi + Cost[i, j] (1)

since in equilibrium, the sellers in market i should be indifferent between selling
in their local market for a net revenue of pi, and selling in market j for a net
revenue of pj − Cost[i, j]. Therefore, in each component, setting the price in
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a single market uniquely determines the prices in other markets. Formally, for
every two markets i, j in the same component there is a constant Δi,j such that,
in any price-equilibrium, pj = pi + Δi,j (Δi,j can be calculated, for example, by
calculating cheapest paths in the residual graph of the min-cost flow; see [3]).

In our running example, there is a single component. Here, Δ1,2 =
Cost[1, 2] = 4. The optimal trade can be attained in a price-equilibrium in
which the price in Market 1 is p1 and the price in Market 2 is p2 = p1 + 4. Any
price-vector between p1 = 15, p2 = 19 and p1 = 17, p2 = 21 is an equilibrium
price-vector.

4.4 Trade Reduction

At this point, Babaioff et al. calculate a reduced residual graph of the min-cost
flow, remove a single cycle representing the least efficient deal, and determine
two prices in each market (buy price and sell price) based on distances in the
reduced residual graph. This gives a truthful mechanism with a budget surplus.

Here our mechanism takes a different approach:

– In each commercial-relationship-component, virtually bring all traders to an
arbitrary market in that component, e.g., Market i. Adjust their bids accord-
ing to the price-equilibrium conditions: a bid b in Market j is translated to a
bid b − Δi,j in Market i.

– Proceed as in the single-market situation (Sect. 3): order the buyers decreas-
ingly and the sellers increasingly and find k - the total number of efficient
deals in the component. Set the price in Market i to pi := min(bk, sk+1).

– Determine the prices in the other markets of the same component according
to the equilibrium conditions: for every market j, set pj := pi + Δi,j . Below
we prove that all these prices are non-negative.

– If bk is the price-setter, then exclude bk and a random seller in the component
from trading. Otherwise, allow all k efficient traders in the component to trade
in their market prices.

– Ban any trade between different components.

In the above example, when all traders are brought to Market 1, we have the
following valuations (here Δ1,2 = 4; the adjusted valuations of traders brought
from Market 2 are displayed in slanted digits):

– Sellers: −2, 01, 05, 09, 13, 15, 17, 19, 23, 27
– Buyers: 32, 28, 24, 20, 19, 18, 14, 12, 08, 04

Here, the number of efficient deals k = 6. We have bk = 18 and sk+1 = 17, so the
price-setter is sk+1, who is originally a seller in Market 2 (where his valuation is
21). The price-vector is p1 = 17, p2 = 21. All 6 efficient deals are performed.

4.5 Analysis

Similarly to our single-market mechanism, the spatially-distributed-market
mechanism is prior-free and strongly-budget-balanced, since there is a single
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price in each market. The reduction in trade is only at most a single deal in each
component. Hence, the expected gain-from-trade in each component is (1− 1/k)
of the optimum in that component, where k is the number of efficient deals in
the component. When the components are large, this k may be much larger than
the number of efficient deals in each market alone.
For truthfulness, we use the monotonicity characterization shown in Theorem1.

First, we have to prove that a winning trader never loses by increas-
ing/decreasing the bid/ask price. Indeed, if a trader is winning, then the edge
from the Agents node to the trader is active in the min-cost flow. When the
bid/ask increases/decreases, the cost of that edge decreases. Hence, the cost
of the flow decreases, and it remains the min-cost flow. Thus, the partition of
the graph to commercial relationship components does not change. Within each
component, increasing/decreasing the bid/ask price weakly decreases the index
of the trader in the ordering, so a winning buyer/seller is still among the first k
buyers/sellers.

Next, we have to prove that each trader pays the critical price. For traders
originally from Market i, the critical price is pi = min(bk, sk+1); this follows
immediately from the proof of Theorem 1. Consider now a winning buyer from
Market j 
= i in the same component as Market i. If our buyer bids b, then
the bid is translated to Market i as b − Δi,j . The buyer exits the trade when
b−Δi,j < pi. Hence, the critical price for our buyer is pi +Δi,j , which is exactly
the price pj paid by our buyer. Similar considerations are true for the sellers.

Finally, as promised, we prove that the prices determined by our mechanism
are non-negative. Let Market j be a market with a smallest price in some compo-
nent. Suppose by contradiction that pj < 0. Since we proved that the mechanism
is truthful, it implies that there are no active sellers in Market j (since a seller
would prefer to lie than to sell in negative price). This means that there is no
trade outgoing from Market j. Since there must be active sellers elsewhere in
the component, there must be other markets in the component, and this means
that there is trade incoming to Market j, say, from Market i. But this means
that pi = pj − Cost[i, j]. Since we assume that transit costs are positive, this
contradicts the minimality of pj . ��

5 Future Work

Besides spatially-distributed markets, there are many other variants of McAfee’s
mechanism. An interesting line of future work is to survey these variants and see
if and how they can be made strongly-budget-balanced.
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Abstract. We study the computational challenge faced by a interme-
diary who attempts to profit from trade with a small number of buyers
and sellers of some item. In the version of the problem that we study,
the number of buyers and sellers is constant, but their joint distribu-
tion of the item’s value may be complicated. We consider discretized
distributions, where the complexity parameter is the support size, or
number of different prices that may occur. We show that maximizing
the expected revenue is computationally tractable (via an LP) if we are
allowed to use randomized mechanisms. For the deterministic case, we
show how an optimal mechanism can be efficiently computed for the one-
seller/one-buyer case, but give a contrasting NP-completeness result for
the one-seller/two-buyer case.

1 Introduction

We consider a double auction scenario from the perspective of a market inter-
mediary, collecting bids from one or more sellers and buyers and determining
payments and allocations. Real-world instances of this are manifold, including
in electronic markets. Companies such as eBay or Amazon match sellers and
buyers, and charge a fee for each successful transaction. Our aim is to maximize
the intermediary’s profit in such settings.

There is an extensive literature on this challenge, some of which is discussed
below, but it mostly considers the case of many buyers and/or sellers with inde-
pendent priors. Our interest here is different, in that we assume only a constant
number of buyers and sellers (in the simplest version, just one of each), and the
complexity arises from their joint probability distribution of valuations for the
item. In the simplest version of this, where there is just one buyer and one seller,
the intermediary can profit from buying the item from the seller and selling at
a higher price to the buyer. We assume their valuations for the item come from
a known joint distribution, which is the input to the problem. We consider two
versions: the “no short selling” version, with the natural constraint that we can-
not sell more items than we buy; and the more restrictive “balanced inventory”
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version, where in addition we must sell all the items we buy. For multiple buyers
and sellers, we assume that the intermediary can buy and sell multiple items
(but that each buyer/seller has unit demand/supply).

1.1 Related Work

The problem of optimal mechanisms in a market intermediation setting was first
studied by Myerson and Satterthwaite [11]. In addition to an impossibility result
for ex-post efficiency in a bilateral trade setting without an intermediary, they
show optimal intermediation mechanisms for both social welfare as well as the
intermediary’s revenue in the case of one buyer and one seller, whose valuations
are independent. Their revenue-maximization result is similar to Myerson’s sem-
inal single auction result [10] in that it, too, uses virtual valuation functions, for
both buyer and seller. Welfare maximization for multiple buyers and sellers has
been further studied for instance by McAfee [9] or more recently by [1,4,5].

Our own interest is chiefly in the complexity of computing optimal (revenue-
maximizing) or near-optimal mechanisms in the market intermediation setting.
Prior work in this area has focused on the case where sellers’ and buyers’ valua-
tions are independent. Deng et al. [2] show optimal and near-optimal mechanisms
that can be computed in polynomial time for several variations of this setting,
including continuous or discrete distributions and arbitrary or unlimited supply
and demand. Niazadeh et al. [12] as well as Loertscher and Niedermayer [6–8]
study a class of mechanisms called respectively fee-setting mechanisms or affine
fee schedules in the independent setting. These are shown by Niazadeh et al. [12]
to be able to extract a constant factor of the optimum revenue in the worst case,
under certain assumptions on the buyer’s and seller’s distribution.

Here we are interested in potentially correlated distribution over buyers’ and
sellers’ valuations. The complexity of this has been studied for (non-double) auc-
tions. Papadimitriou and Pierrakos [13] show that for two buyers, an optimal
mechanism (for a discrete joint distribution) can be found in polynomial time via
a reduction to finding a maximum-weight independent set on a bipartite graph.
For continuous distributions they give a FPTAS. For the case of three buyers,
in contrast, they show that it is NP-hard to approximate the optimal auction
to within a certain constant fraction. Dobzinski et al. [3] show a polynomial-
time algorithm for the two-buyer auction through derandomization and give
polynomial-time approximation mechanisms for the many-buyers correlated sin-
gle auction problem, building on previous work by Ronen [14].

2 Preliminaries

2.1 Definitions, Notation

We consider m buyers indexed by j, and k sellers indexed by i (where m, k are
constants), each offering (respectively seeking) a single unit of an indivisible good.
For fixed m, k, we use “m × k” as shorthand for the m buyers, k sellers case. They
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cannot tradewith each other directly, and can only tradewith the intermediary.We
assume each seller i has some valuation si and each buyer j has some valuation bj

for an item, and that these are drawn from a given joint probability distribution ψ.
We focus on discrete distributions. For simplicity, we assume that the support of ψ
is a grid of size nk+m, with each player having possible valuations {i : 1 ≤ i ≤ n}
(as shown in Fig. 1). The distribution ψ is assumed to be represented as a matrix
of the probabilities on each of the grid points.

In this paper we focus on individually rational and incentive compatible
mechanisms. Let b and s denote the vector of buyers’ and sellers’ bids received
by the mechanism, and let b−j and s−i be (respectively) the bids of buyers other
than j, and sellers other than i. Analogous to auctions, there are two equivalent
ways in which we can define a deterministic, incentive compatible mechanism in
this setting. Firstly, we can focus on allocations. For each seller/buyer we define
a set Si/Bj (⊆ supp(ψ)) of bid vectors in which we buy an item from seller i/sell
an item to buyer j. Incentive compatibility means monotonicity of allocations,
meaning for each seller i, if (s, b) ∈ Si, and s′

i < si, then (s′
i, s−i, b) ∈ Si. In

words, if given everyone else’s bids s−i, b, seller i’s item would be bough by the
intermediary if i bid si, then it would also be bought for any lower bid s′

i. For
short we will say that Si is “downward-closed” in the direction of si. Similarly
for each buyer j, Bj needs to be upward-closed in the direction of bj .

Equivalently, we may think of a mechanism in terms of critical bids. Myerson
tells us that the unique payments that make a monotone allocation rule (as just
defined via the regions Si and Bj) are precisely the critical bids. That is, the
lowest (highest) bid for which a buyer (seller) would still be allocated the item
(the sale of their item) if everyone else’s bids remained fixed. We write σi(b, s−i)
(respectively, βj(b−j , s)) for these critical bids. (For simplicity sometimes just
βj(b, s) and σi(b, s).) If si ≤ σi(b, s−i) we buy an item from seller i (paying
σi(b, s−i)), and similarly if bj ≥ βj(b−j , s) we sell an item to buyer j (charging
βj(b−j , s)). We write βj(b−j , s) = n + 1 to indicate that a mechanism does not
sell to buyer j at all for this combination of others’ bids, independently of j’s
bid. Similarly σi(b, s−i) = 0 to indicate not buying from seller i.

It is easy to see that these two yield equivalent definitions. Clearly Si is simply
the region “above” σi in the direction of si, (the graph of) which in turn is the
boundary of Si. Similarly Bj is the region below βj in direction bj . This is a slight
generalization of the conceptually simpler picture in auctions. Here we have for
each bidder a region Bj where they win the item, and a critical bid function
βj that gives their payment. If there is a single item to be sold, no two of the
Bj may overlap. This constraint too generalizes to the market intermediation
setting. Consider Fig. 2 in contrast with Fig. 1 to illustrate the difference. As
mentioned above, we consider two variants. In the “no short-selling” setting,
we must buy at least as many items from sellers as we sell to buyers; in the
“balanced inventory” variant we must buy exactly as many as we sell. Formally
in terms of critical bids: (Again these can be expressed equivalently in terms of
Si and Bj .)
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No Short-Selling:
∀(b, s), |{j : bj ≥ βj(b, s)}| ≤ |{i : si ≤ σi(b, s)}| (1a)

Balanced Inventory:
∀(b, s), |{j : bj ≥ βj(b, s)}| = |{i : si ≤ σi(b, s)}| (1b)

2.2 The Geometry of Deterministic 1 × 1 Market Intermediation

If there is only a single buyer and a single seller, the constraints simplify signifi-
cantly, most easily expressed in terms of now simply S and B. In the balanced-
inventory case, constraint 1b simplifies to B = S. That is, a mechanism in this
setting, with only one buyer and seller each, is determined only by a single
region of bid-combinations that yield a successful transaction. In the no-short-
selling case, constraint 1a simplifies to B ⊆ S. That is, S can potentially extend
beyond B. However, we can say more, assuming optimality of the mechanism.
Recall that by truthfulness, S is down-closed in the seller’s direction and B is
up-closed in the buyer’s direction. If a mechanism is optimal, S must exactly
be the down-closure (still in the seller’s direction) of B. Firstly, it is easy to see
that the down-closure of B must be contained in S: B is contained in S, and S
is down-closed. Secondly, if S extended beyond the down-closure of B, we could
strictly improve our revenue by removing this protruding part of S. (On the
other hand, we may not elect to remove the part of S − B that lies below any

b

s

1 2 3 · · · n
1

2

3

...

b
=

s

B

S

Fig. 1. Example mechanism in the 1×1
case. Note that S contains B, to avoid
short-selling. (In a balanced-inventory
auction, B and S should coincide.) B
and S lie below the diagonal b = s:
any point above the diagonal is one
where the buyer’s bid is less than the
seller’s. The auction shown is subopti-
mal: in most of the S region, the item is
being bought without being sold. Note
that we draw the outline of the regions
slightly away from the points on the
prior support for easier readability.

b1

b2

1 2 3 · · · n
1

2

3

...

B1

B2

Fig. 2. Compare this to a two-bidder
auction. Here B1 and B2 indicate
where we sell to each of the two buyers.
In the two-bidder auction B1 and B2

must be disjoint, as we cannot sell the
item twice. In the market intermedia-
tion setting, B must be contained in S.
Note also that in this setting both B1

and B2 are upward-closed in the direc-
tion of the respective buyer’s bid.
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Fig. 3. Removing the indicated area
from S as in Fig. 1, the expected
revenue of the mechanism cannot
decrease. Below red line: Remaining
region S, right of black line: Region B.
For the remaining part of S that is not
also in B, we still buy but not sell the
item. This can be optimal, e.g. if there
is very high probability weight on the
two points indicated. Crucially, if at a
point (b, s) ∈ S − B an optimal mech-
anism buys but not sells, then there
must exist a point (b, s′) ∈ S ∩ B with
s′ > s where it buys and sells. Truth-
fulness then dictates that it also needs
to buy at (b, s). (Color figure online)

β
(

)

β
(

−
1
)

β
(

−
2
)

σ(β( )) σ(β( ) + 1)

σ(β( ) − 1)

m

Cost of buying from seller

due to choice of β( ).

Revenue of selling to buyer

due to choice of β( ).

Fig. 4. For fixed m� and
β(1), · · · , β(� − 1), the choice of a
particular β(�) influences the expected
revenue in two ways: On the one hand,
the revenue from selling to the buyer at
all points to the right of β(�) in row �.
On the other hand, the cost of buying
from the seller for all points below
σ(β(�)) = � in rows β(�) ≤ b < m�.

point in B due to truthfulness, i.e. down-closedness of S.) Figs. 1 and 3 illustrate
this. Note the contrast with a standard 2-bidder auction, where the shape of the
region in which we sell to one buyer does not fully determine the region in which
we sell to the other. In a way, in the 1 × 1 market intermediation setting, we
have fewer degrees of freedom to consider than in a two-buyer auction setting.

3 The Deterministic One Seller, One Buyer Case

For the case of one seller and one buyer, we show how to compute an optimal
deterministic solution using a dynamic programming approach. In the full version
of this paper we show how to achieve this via modifications to known 2-bidder
auctions in this setting, but the runtime guarantee of that approach, while still
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polynomial, is substantially worse. We represent a mechanism using values β =
(β(1), ..., β(n)) for β(s) ∈ {1, . . . , n + 1}, where β(s) signifies the leftmost point
in row s that is a member of B. If β(s) = 1 then the entire row s is in B. We set
β(s) = n + 1 to signify that none of the points in row s are in B. We begin by
noting that the contribution to the expected revenue that arises from the choice
of one particular β(s) does not depend on all the other β−s simultaneously.
Consider the expected revenue R for a given B, which is given by:

E[R(β)] =
n∑

s=1

β(s)
∑

b≥β(s)

ψbs −
n∑

b=1

σ(b)
∑

s≤σ(b)

ψbs (2)

That is, the first sum gives the expected profit from selling at points to the right
of each (β(s), s), while the second sum gives the cost of buying points that are
below each (b, σ(b)). The contribution of a particular choice for one single β(s) to
the first of these sums is easily seen to be simply the profit of selling the points in
row s to the right of and including β(s). The impact of a particular β(s) on the
second of the sums is slightly more intricate. There are two ways in which the
choice of β(s) impacts the cost of buying. Firstly, we may have to buy the item
at some points in row s, where we would not buy the item otherwise. Consider
the minimum of β(s + 1), ..., β(n), say β(t). We know that in row t, we buy and
sell at points (β(t), t),...,(n, t). So by truthfulness, we must also buy at points
(β(t), s),...,(n, s). This is regardless of our choice of β(s). For points to the left of
(β(t), s), whether we buy the item or not does depend on β(s). Secondly, in all
those columns in which we buy due to β(s), also affect the rows below s. We may
increase the buying price from a lower value to s at those points, and (in the no
short-selling case) we may have to buy the item (due to truthfulness) at points
at which we would not otherwise buy it. The magnitude of this effect depends
on all the β(1), ..., β(s − 1). This suggests a bottom-up dynamic programming
approach, which we develop in this section.

3.1 Algorithm for the No Short-Selling Case

We next describe our dynamic programming algorithm first for the no short-
selling setting. The idea is as follows: because the optimal choice of β(1), ..., β(�)
depends only on the minimum of the β(�+1), ..., β(n), we can iteratively compute
all the potential optimal values for row 1 given values of min{β(2), ..., β(n)}; then
all optimal values of β(1), β(2) given all possible values of min{β(3), ..., β(n)}.
We do not need to consider all n2 combinations of β(2) and β(1). Since given
β(2) and min{β(3), ..., β(n)}, we can immediately look up the best β(1) using
the information computed in the first step. We then proceed iteratively up the
rows until we have computed to optimal values for β.

Let us start by defining R(n, β(�),m�) to be the expected revenue of the
best deterministic mechanism that takes points (β(�), �) and rightward in row
�, no points in rows � + 1 and above, and does not have to pay for points in
columns m� to n. We set R(0, ., .) = 0. The idea is that we want to capture the
best possible revenue extractable from rows 1 to � for a particular choice of β(�),
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disregarding the cost of buying in columns m� to n. We can take R(n, β(�), n+1)
to denote the optimal revenue among mechanisms that have to pay for all rows.
More precisely,

R(�, β(�),m�) = max
β(1),...,β(�−1)

�∑

s=1

β(s)
∑

b≥β(s)

ψbs −
m�−1∑

b=1

σ(b)
∑

s≤σ(b)

ψbs (3)

It is easy to see that maxβ(n) R(n, β(n), n + 1) gives the revenue of the optimal
auction. Indeed, by definition this is the maximum expected revenue extractable
from all rows, if we have to pay in all columns. We can then show how to
recursively compute the values of R, laying the groundwork for our dynamic
programming algorithm.

Theorem 1 (Recursion for the no short-selling case). The R(�, β(�),m�)
as defined above satisfy the following recursion:

R(�, β(�),m�) = max
β(�−1)

R
(
� − 1, β(� − 1),min{β(�),m�}

)
+

β(�)
∑

b≥β(�)

ψb� − �
∑

β(�)≤b<m�

∑

s≤�

ψbs (4)

Proof. We can check this by splitting up the explicit formula for R(�, β(�),m�)
into terms for rows below � and row �, and columns to the left of min(β(�),m�)
and those between the two.

R(�, β(�),m�) =
�−1∑

s=1

β(s)
∑

b≥β(s)

ψbs + β(�)
∑

b≥β(�)

ψb�−

min(β(�),m�)−1∑

b=1

σ(b)
∑

s≤σ(b)

ψbs −
m�−1∑

b=β(�)

σ(b)
∑

s≤σ(b)

ψbs

Observe that for b ≥ β(�), σ(b) will be equal to � (in the (�, β(�))-auction),
so the last term in the above sum is precisely �

∑m�−1
b=β(�)

∑
s≤� ψbs. Similarly,

min(β(�),m�) is precisely the m�−1 we used in the recursion, and therefore the
first and third term are precisely R(�−1, β(� − 1),m�−1). Putting these together,
we get that:

R(�, β(�),m�) = R(� − 1, β(� − 1),m�−1) + β(�)
∑

b≥β(�)

ψb� − �

m�−1∑

b=β(�)

∑

s≤�

ψbs (5)

i.e. precisely our claimed recursion. (The max follows from optimality of the
auction.) The second term on the right hand side is the revenue from selling at
points due to the choice of β(�), while the third term accounts for the cost of
buying at points due to this choice. Figure 4 illustrates these two terms. Note
that if � = 1 then the first term vanishes since we defined R(0, ., .) = 0, and we
are left with the explicit formula for R(1, ., .).
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We can therefore compute the R(�, β(�),m�) recursively, as claimed. This
suggests the following algorithm, listed below as Algorithm 1. This can easily
be augmented to keep track of the values used for the β(s), and to return the
optimal β together with its expected revenue. Therefore, we can compute the
optimal region B and thereby the optimal mechanism in the no short-selling
setting in time O(n4).1

Algorithm 1. Optimal revenue in the no short-selling setting
1: for � = 1, ..., n do
2: for β(�) = 1, .., n do
3: for m� = 1, ..., n + 1 do
4: if � = 1 then
5: R(1, β(1), m1) ← β(1)

∑

b≥β(1) ψb1 −∑β(1)≤b<m1
ψb1

6: else
7: Compute R(�, β(�), m�) using the recursion in theorem 1.

return maxβ(n) R(n, β(n), n + 1).

We can easily modify this algorithm to return the optimal mechanism that
satisfies the balanced inventory property. We show the details in the full version
of this paper. This modified algorithm runs in time O(n3).

4 NP-hardness for the Deterministic Multiple Buyers or
Sellers Case

For three or more buyers, it follows from Papadimitriou and Pierrakos [13] that
computing the optimal mechanism is NP-hard. We show that this is also true
for the 2 × 1 case (i.e. two buyers, one seller) in the no-short-selling setting
by reducing from Maximum Independent Set. The idea here is to place high
probability weight on high-revenue points along a diagonal in the s = 1 plane
for each vertex of a given instance of Independent Set. We then use appropriately
placed high-probability points for each of the edges to “force” a higher buying
price for (at least) one of any two points corresponding to adjacent vertices. We
can do this in a way that ensures that in the optimal mechanism the number
of vertex points with a low buying price is maximized and corresponds to the
maximum independent set.

Theorem 2 (NP-hardness). It is NP-hard to compute the optimal mechanism
in the 1 seller, 2 buyers setting with no short selling.

1 Careful analysis of the algorithm presented shows that the last summand in the
recursion for R() has (m� − β(�)) · � summands. It is easy to see however that we
need not recompute the inner sum from scratch in each iteration. We can thus easily
make the computation of the recursion run in linear time, giving the overall running
time stated.
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Proof. In the following we construct a prior distribution in (b1, b2, s)-space. We
will “choose” points, and place equal probability mass 1

|V |+|E| on all of these
chosen points. In the analysis we will omit these weights to simplify the algebra.
We place probability 0 on all other points in the prior support. We use K1 and
K2 as constants whose values we define at the end of the proof.

The Construction. Given a graph (V,E) with |V | = n, pick any order of
vertices and begin by placing probability weight 1

|V |+|E| on point (K1 + �n
2 � −

i,K1 − �n
2 � + i, 1) for each vertex 0 ≤ i < n. Next, enumerate the edges ej ,

0 ≤ j < |E|. We will write each edge as ej = (ej1, ej2), where ej1 < ej2 in the
order of vertices just picked. For each edge put probability weight 1

|V |+|E| on
point (K1+�n

2 �−ej2,K1−�n
2 �+ej1,K2+j). That is, we put probability weight

for each edge on a point that has the same b1-coordinate as the vertex point for
its lower-numbered vertex and the same b2-coordinate as its higher vertex. We
choose these edge points with a different s-coordinate each, and all of them with
a higher s-coordinate than the vertex points. It is clear that if the mechanism
wants to buy and sell at an edge point (K1 + �n

2 � − ej2,K1 − �n
2 � + ej1,K2 + j),

it will also need to sell (and therefore buy by truthfulness) at one of the points
(K1+�n

2 �−ej2,K1−�n
2 �+ej2,K2+j) or (K1+�n

2 �−ej1,K1−�n
2 �+ej1,K2+j),

when it sells to buyer 1 or buyer 2, respectively. But by truthfulness this entails
a raised purchase price of K2 + j at the corresponding vertex points directly
below ((K1 + �n

2 �− ej2,K1 −�n
2 �+ ej2, 1) or (K1 + �n

2 �− ej1,K1 −�n
2 �+ ej1, 1))

where it had otherwise been 1. Figure 5 illustrates this construction.

Reducing from Maximum Independent Set. Now, in order to ensure that
the optimal mechanism raises the purchasing price at all vertex points except
those that are in an independent set of maximum size, we need to pick constants
K1,K2 in a way that ensures that:

1. The optimal mechanism always buys and sells at all the edge points.
2. The optimal mechanism raises the purchasing price at as few vertex points

as possible.

From condition 1: The worst possible selling price at any edge point is given by
K1 − �n

2 �, and the highest possible purchase price is K2 + |E| ≤ K2 + n2, for
a revenue that is at least K1 − �n

2 � − K2 − n2. On the other hand, buying and
selling at an edge point could necessitate a higher purchasing price at a vertex
point, raising it by an amount that is bounded above by K2 + n2 as well. The
profit obtained from the edge point must outweigh this. So in order to ensure
that the optimal mechanisms buys and sells at all edge points, we need to ensure:

K1 − �n

2
� − 2K2 − 2n2 > 0

From condition 2: We need to ensure that if for an edge point (K1 + �n
2 � −

ej2,K1 − �n
2 � + ej1),K2 + j), only one of the two corresponding vertex points
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already has a purchase price of at least K2 due to another edge, but the other
is still 1, the optimal mechanism will always prefer to sell to the buyer whose
corresponding vertex point already has a high price. In other words, we need
to ensure that the potential difference in revenue from selling to one buyer over
the other is outweighed by the required raise in the purchase price by (at least)
K2 − 1. But the highest difference in selling price is bounded by n, and so we
required that K2 > n + 1.

Combining the two we get our desired result: Set K2 = 2n and K1 = 4n2

in the above construction for a given instance of Maximum Independent Set.
Since the optimal mechanism will buy and sell at all the edge points, it is clear
that at most one vertex point corresponding to two adjacent vertices can have a
purchase price of 1. On the other hand, in the optimal mechanism the number
of vertex points with a raised purchase price will be minimized. Therefore, the
vertex points with purchase price 1 in the optimal mechanism correspond to the
vertices of the maximum independent set in the graph.

b1

b2

s

e1

e3
e2

Vertex points in layer s = 1.

Edge points in layers s = K2 + i.

Raised purchase price.

B2 in layer s = K2 + 1.

B1 in layer s = K2 + 2.

B2 in layer s = K2 + 3.

S raised above vertex points.

(S not explicitly shown elsewhere.)

(b1 + b2 = K1)-diagonal (s = 1)

Fig. 5. The construction for the reduction from Maximum Independent Set.

5 Truthful-in-Expectation Mechanisms

While in the preceding section we have shown that we cannot compute an opti-
mal deterministic mechanism for the general case, we can however compute the
optimal truthful-in-expectation mechanism for a fixed number of buyers and
sellers. In single-item auctions a randomized mechanism is easily described by
allocation probabilities xi(v) and expected payments pi(v) for all players for each
possible bid vector. In the market intermediation setting with multiple buyers
and sellers this is not obviously the case. For instance, there are many ways in
which to make allocation probabilities of 1

2 for each of two buyers and two sellers
into a randomization over valid outcomes. The mechanism could flip a coin and
buy from seller 1 and sell to buyer 1 on heads, seller 2 and buyer 2 on tails.



Market Intermediation with Correlated Priors 283

It could not, however, independently flip four coins if we want to fulfill condition
(1a) respectively (1b) ex-post. In the following we will consider the balanced
inventory case. Our arguments easily extend to the no short-selling case. We
first show that for our purposes, it is indeed sufficient to consider only the mar-
ginal allocation probabilities xi, yj and expected payments pi, qj . First, observe
that any two randomized mechanisms that have the same marginal probabili-
ties and expected payments will lead to identical expected utilities for players
and expected revenue. It remains to show that any sensible vector of marginal
allocation probabilities can be made into a probability distribution over valid
outcomes (i.e. allocations which buy exactly as many items as they sell).

Theorem 3. Let x, y be k-dimensional vectors of probabilities, i.e. 0 ≤ xi, yi ≤
1, with

∑
i xi =

∑
i yi. Then there exists a joint probability distribution over

2 k-dimensional 0/1 vectors {(a, b) ∈ {0, 1}2k|∑i ai =
∑

i bi} which satisfies
Pr(ai = 1) = xi and Pr(bi = 1) = yi.

Proof. Let H2k = [0, 1]2k be the 2k-dimensional hypercube, and H∗
2k = {0, 1}2k

its vertices. Let D2k = {(x, y) ∈ H2k|∑xi =
∑

yi} be the “generalized diag-
onal” of the hypercube. Let D∗

2k = {(x, y) ∈ {0, 1}2k|∑xi =
∑

yi} be the
vertices of H2k with as many x-coordinates set to 1 as y-coordinates. That is,
this is the set of valid (deterministic) allocation vectors for k buyers and sellers.
Then our claim is equivalent to saying that D2k is (in) the convex hull of D∗

2k.
By the Krein-Milman theorem a convex set S is exactly the convex hull of its
extreme points. An extreme point s ∈ S is any point in S which can not be writ-
ten as a convex combination of points in S \ s. Clearly D2k is convex. It remains
to show that the extreme points of D2k are precisely D∗

2k. Clearly D∗
2k ⊆ D2k.

So let (x,y) ∈ D2k \D∗
2k be a point in D2k that does not have all elements equal

to 0 or 1. We show that (x,y) is not an extreme point of D2k.
If there is exactly one xi with 0 < xi < 1, then there must be at least one

yj with 0 < yj < 1. (Otherwise
∑

xi /∈ N, but
∑

yj ∈ N, which contradicts the
assumption that

∑
xi =

∑
yj .) Then for 0 < ε < min{xi, 1 − xi, yj , 1 − yj}, we

have that (xi +ε, yj +ε,x−i,y−j) ∈ D2k, and also (xi −ε, yj −ε,x−i,y−j) ∈ D2k.
Clearly (x,y) is a convex combination of these two. If there is at least two distinct
0 < xi, x� < 1, i 	= �, then for 0 < ε < min{xi, 1 − xi, x�, 1 − x�}, we have that
(xi+ε, x�−ε,x−i�,y) ∈ D2k, and also (xi−ε, x�+ε,x−i�,y) ∈ D2k. Again, clearly
(x,y) is a convex combination of these two. Similarly, if there is no 0 < xi < 1
there is at least two such yj , y�. So D2k is the convex hull of D∗

2k. This shows
our claim.

From this it follows immediately that we need only concern ourselves with
the marginal allocation probabilities in computing an optimal randomized mech-
anism. Therefore we can write this as a LP following the approach of Dobzinski
et al. [3] for auctions. We defer the proof of this theorem to the full version.

Theorem 4 (The optimal randomized mechanism as an LP). For a fixed
number of buyers and sellers, we can compute the optimal truthful-in-expectation
mechanism using a linear program that is polynomial in the size of the prior.
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6 Discussion and Further Work

One question raised by our results is that of the relation between single seller,
single buyer market intermediation and two-bidder auctions. As mentioned, and
discussed in the full version the graph algorithm of Papadimitriou and Pierrakos
[13] can be used to solve the no short-selling 1 × 1 market intermediation case,
and the derandomization in Dobzinski et al. [3] applies immediately to both this
and the 1×1 balanced inventory setting. These give running times of O(n6) and
O(n7) in contrast to a running time of O(n4), respectively O(n3) in the balanced
inventory case, for our approach in the market intermediation setting. It is not
clear immediately that the 2-bidder auction design problem could in turn be
solved using a modified version of this algorithm, given the additional complexity
of two interdependent regions for each seller. We suspect that there might indeed
be a gap between the complexity of these two problems. Furthermore, we believe
that an optimal 2-bidder reverse auction can be computed using our dynamic
program for the balanced inventory case. Thus a gap between auctions and
market intermediation would imply an asymmetry between auctions and reverse
auctions. An immediate follow-up question is if we can give good approximations
in polynomial time. In the full version of this paper we show that no good
multiplicative guarantees are possible using prior-independent mechanisms.
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Abstract. Schummer [27] introduced the concept of bribeproof mech-
anism which, in a context where monetary transfer between agents is
possible, requires that manipulations through bribes are ruled out. Unfor-
tunately, in many domains, the only bribeproof mechanisms are the triv-
ial ones which return a fixed outcome.

This work presents one of the few constructions of non-trivial
bribeproof mechanisms for this setting. Though the suggested con-
struction applies to rather restricted domains, the results obtained are
tight: for several natural problems, the method yields the only possi-
ble bribeproof mechanism and no such mechanism is possible on more
general domains.

1 Introduction

Strategyproof mechanisms guarantee that the agents never find it convenient to
misreport their types, that is, truth-telling is a dominant strategy. Such mech-
anisms play a key role to cope with selfish behavior, and they received a lot
of attention also when considering protocols for optimally allocating resources
that necessarily involve selfish entities [21]. One of the critical issues with strat-
egyproof mechanisms is that agents can still manipulate the mechanism, and
improve their utilities, by bribing one another:

An agent can offer money to another for misreporting her type and in this
way the utility of both improves.

The famous second-price auction provides a clear example of such an issue. If
two agents are willing to pay 10 and 9 for an item, the one bidding 10 wins and
pays 9. However, if before the auction starts the winner offers some money to
the other agent for bidding a low value (say 1), then both agents would be better
off (now the winner pays only 1 and the other agent gets some money).

The concept of bribeproof mechanism [27] strengthens strategyproofness
by requiring that bribing another agent is also not beneficial. The appeal of
this notion is that it does not consider unreasonably large coalitions.1 Despite
1 The notion of coalitional strategyproofness requires the mechanism to be immune to

manipulations by any group of agents. As already observed in [27,29], this notion
turns out to be too restrictive as it rules out all but a few unreasonable mechanisms.
Moreover, large coalitions would require all members to coordinate their actions.

c© Springer-Verlag Berlin Heidelberg 2016
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bribeproofness is apparently adding only a minimal condition, this has a tremen-
dous impact on what the mechanisms can do in general:

– The class of strategyproof mechanisms is extremely rich and, among others,
it includes VCG mechanisms which optimize the social welfare;

– In contrast, the class of bribeproof mechanisms consists of only trivial mech-
anisms which output a fixed outcome [16,27].

That is to say, while strategyproofness by itself is not an obstacle to optimization,
the only way to get bribeproofness is to ignore the agents types, which clashes
with most optimization criteria. One example of such VCG mechanisms is for the
path auction problem [21] where we want to select the shortest path between two
nodes of a given network, every edge is owned by an agent, and the cost of the
edges are private. Selecting the shortest path means that we want the solution
minimizing the sum of all agents’ costs, that is, to optimize the social welfare.
Clearly, any trivial mechanism which returns a fixed path has no guarantee to
find the shortest path.

1.1 Our Contribution

Because the impossibility results on bribeproof mechanisms hold for unre-
stricted or for “sufficiently rich” domains [16,27], we are interested in designing
bribeproof mechanisms for restricted domains. Specifically, we present a novel
construction of bribeproof mechanisms for the following class of a two-values
problems. Every feasible solution corresponds to some amount of work allocated
to each agent, and every agent has a private cost per unit of work which is either
L (low) or H (high).2 Typically the amount of work allocated to the agents can-
not be arbitrary, but it is rather determined by the “combinatorial structure”
of the problem under consideration. For instance, in the path auction problem
[21], the mechanism must select a path in a graph, and each agent owns one edge
of the graph (see Fig. 1). Selecting a path means allocating one unit of work to
each agent in the path, and no work to all other agents.
In a nutshell our results can be summarized as follows:

– An extremely simple construction yields bribeproof mechanisms if the under-
lying algorithm satisfies certain monotonicity conditions (Sect. 2).

– One application of the above result, is a class of bribeproof mechanisms opti-
mizing the social welfare for every binary allocation problem, that is, when-
ever each agent is either selected or not selected (Sect. 3).

– These mechanisms actually characterize the whole class of bribeproof mecha-
nisms for certain problems, including the path auction one, and the boundary
conditions for which such mechanisms exist (Sect. 4).

2 Throughout this work we adopt the terminology used by [1] in the context of procure-
ment auctions, though these domains have been investigated earlier in the context
of allocating identical goods, as well as for certain restricted combinatorial auctions.
All the results apply to these problems as well (see full version [14]).
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Fig. 1. Two instances of the path auction problem.

– The positive result is more general as it can be applied to non-binary problems
and to other optimization criteria (Sect. 5).

More in detail, our mechanisms simply provide all agents the same amount of
money M for each unit of work that they get allocated (Definition 1). Such
mechanisms are bribeproof if certain monotonicity conditions hold (Theorem2).
Roughly speaking, these conditions relate the “influence” that an agent has
on her own allocation to the influence she has on the others’ allocation. In
particular, by taking the special case M = L+H

2 in our construction leads to the
following natural sufficient condition (Corollary 1):

Bounded influence: No agent can change the allocation of another agent
by more than the change caused to her own allocation.

For the class of binary allocations, where the allocated work is zero or one,
this condition is nothing but non-bossiness: no agent can change the alloca-
tion of the others, without changing her own allocation (Theorem3). The main
positive result here is that every problem in which one wants to minimize the
weighted sum of all agents’ costs admits an exact strongly bribeproof mechanism
(Theorem 4). Interestingly, our general construction provides both characteriza-
tions of bribeproof mechanisms as well as the boundary conditions for which
such mechanisms exist in several problems:

– For the path auction problem, our mechanism with M = L+H
2 is essentially

the only possible, and no mechanism exist on slightly more general domains
(with three values, or heterogeneous two values), nor collusion-proof mecha-
nisms for coalitions of three or more agents.

– For the k-items procurement auction, the mechanism with M = M is
bribeproof on three values domains L (low), M(medium), H(high). This is
the only mechanism for k = 1 and no mechanism for four values domains
exist.

We then turn our attention to problems with different objective function and
non-binary allocations. Specifically, we consider minimizing the maximum cost
among the agents (note that this is different from welfare maximization which
would minimize the sum of all agents’ costs). In the scheduling terminology,
we aim at minimizing the makespan on related machines [1]. In the fractional
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version, when each job can be divided among the machines, we get an exact
bribeproof mechanism (Theorem9) since the problem is equivalent to allocating
a single job (in a fractional way) and the bounded influence condition holds. On
the contrary, when jobs cannot be divided [1], we show that our method cannot
give exact or even approximate bribeproof mechanisms. The existence of other
mechanisms for this and other problems is an interesting open question. More
in general, it would be interesting to obtain approximate mechanisms when the
domain does not allow for exact ones.

1.2 Related Work

Schummer [27] introduced the notion of bribeproofness and proved that, on
certain domains, the only bribeproof mechanisms are the trivial mechanisms
which return a fixed outcome; [16] proved the same but under weaker assump-
tions. In simpler domains, bribeproof (or even collusion-proof) mechanisms can
be obtained via take-it-or-leave-it prices [8,9]: these mechanisms fix a price for
each agent, who then wins a copy of the item if bidding above this price, inde-
pendently of what happens to the other agents. Note that our mechanisms are
different from these mechanisms since in our setting we cannot treat agents
separately.

Though strategyproofness is much less stringent and quite well understood,
restricting the domain is also very common, as unrestricted domains are often
unrealistic and impose unnecessary limitations (see e.g. [5,12,25]). In multi-
dimensional domains, minimizing the makespan or min-max fairness is not pos-
sible using strategyproof mechanisms [2,7,11,13,18,21], while for one-parameter
domains optimal solutions are possible [1,18] also in polynomial time [4]. Our
domains are at the intersection of one-parameter domains in [1] and the two-
values domains in [13], and they also appear in study of revenue of take-it-or-
leave-it identical items auctions [9]. One-parameter domains have been studied
by [20] who characterized strategyproofness and obtained optimal-revenue mech-
anisms for selling a single item.

The strong limitations imposed by bribeproofness lead to the study of weaker
or variants of this notion. Group strategyproofness assumes that the members of
the coalitions can coordinate their reports but cannot exchange compensations
(see e.g. [10,17,19,24]). The restriction to coalitions of size two is called pairwise
strategyproofness [28], and it corresponds to strong bribeproofness when compen-
sations between agents are not allowed. The class of deferred acceptance mecha-
nisms [15] satisfies (weakly) group strategyproofness3, at the price of significantly
worse social welfare even in rather simple settings [6]. Mechanisms with verifi-
cation [23] are based on the assumption that it is possible to partially verify the
agents types after the solution is computed. Collusive dominant-strategy truth-
fulness [3] is based on the idea that the mechanism asks the agents to report also
their coalitions, and it provides better performance for selling identical items.

3 This condition relaxes group strategyproofness, by requiring that no coalition could
deviate from truth-telling in a way that makes all of its members strictly better off.
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In the so-called single-peaked domains, agents receive a variable amount of a
divisible item, and they can bribe each other by transferring part of the item
(with no money involved). Interestingly enough, [29] characterizes bribeproof-
ness in terms of a bounded impact condition which is very similar to our bounded
influence, despite the two settings being not equivalent. Finally, while [26] shows
that bribeproofness is closely related to Pareto efficiency together with strat-
egyproofness, [22] proved that the latter two requirements cannot be achieved
simultaneously in a setting involving finite “small” domains.

1.3 Preliminaries

There is a set N = {1, 2, . . . , n} of n ≥ 2 agents and a set A ⊆ R
n
+ of feasible

allocations, where each allocation a ∈ A is an n-dimensional vector (a1, . . . , an)
with ai being the amount of work allocated to agent i. For each agent i, her cost
for an allocation a is equal to

ai · θi,

where θi ∈ R is some private number called the type of this agent (her cost for
a unit of work). Every type θi belongs to a publicly-known set Θi which is the
domain of agent i, and the agent can misreport her type θi to any θ̂i ∈ Θi. The
cross-product Θ := Θ1 × · · · × Θn is the types domain representing the possible
type vectors that can be reported by the agents.

A mechanism is a pair (A, p) where A : Θ → A is an algorithm and p : Θ →
R

n is a suitable payment function. For any type vector θ̂ ∈ Θ reported by the
agents, each agent i receives pi(θ̂) units of money and Ai(θ̂) units of work. A
mechanism (A, p) is bribeproof if for all θ ∈ Θ, all i and j, and all θ̂i ∈ Θi

pi(θ) − Ai(θ) · θi + pj(θ) − Aj(θ) · θj ≥ (1)

pi(θ̂) − Ai(θ̂) · θi + pj(θ̂) − Aj(θ̂) · θj

where θ̂ = (θ̂i, θ−i) := (θ1, . . . , θi−1, θ̂i, θi+1, . . . , θn) denotes the vector obtained
by replacing the ith entry of θ with θ̂i.

Inequality (1) says that no agent j can bribe another agent i with b units of
money to misreport her type so that they both improve. By taking i = j in the
definition above, we obtain the (weaker) notion of strategyproof mechanism,
that is, pi(θ)−Ai(θ) · θi ≥ pi(θ̂i, θ−i)−Ai(θ̂i, θ−i) · θi, for all θ ∈ Θ, for all i, and
for all θ̂i ∈ Θi. Strong bribeproofness requires that no two agents can improve
even if they jointly misreporting their types (see [27, p. 184]). Let (θ̂i, θ̂j , θ−ij)
denote the vector obtained by replacing the ith and the jth entry of θ with θ̂i

and θ̂j , respectively. A mechanism (A, p) is strongly bribeproof if inequality
(1) holds also for all θ̂ = (θ̂i, θ̂j , θ−ij), with θi ∈ Θi, θj ∈ Θj , and θ ∈ Θ.

A domain Θ is a two-values domain if there exist two constants L and
H with L < H such that Θi = {L,H} for all i ∈ N . More generally, for any
ordered sequence of reals w1 < w2 < · · · < wk, we denote by Θ(w1,w2,...,wk) the
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k-values domain Θ such that Θi = {w1, w2, . . . , wk} for all i ∈ N . We say that a
mechanism is (strongly) bribeproof over a k-values domain if the corresponding
condition (1) holds for Θ being a k-values domain.

Example 1 (path auction and perfectly divisible good). In the path auction prob-
lem instance in Fig. 1, the two feasible allocations are (1, 1, 0, 0) for the “upper
path” and (0, 0, 1, 1) for the “lower path”. The problem of allocating a single
perfectly divisible good among the agents corresponds to the set of feasible allo-
cations consists of all vectors a = (a1, . . . , an) such that ai ≥ 0 and

∑n
i=1 ai = 1.

In a bribeproof mechanism the payments must depend only on the allocation:

Fact 1. We say that two type vectors θ′ and θ′′ are A-equivalent if they differ
in exactly one agent’s type and algorithm A returns the same allocation in both
cases. That is θ′′ = (θ′′

i , θ′
−i) and A(θ′′) = A(θ′). In a bribeproof mechanism

(A, p) the payment for two A-equivalent type vectors must be the same.

Proof. Suppose by way of contradiction that p(θ′) �= p(θ′′) and, without loss
of generality, that pj(θ′) > pj(θ′′) for some agent j. Since A(θ′) = A(θ′′), this
violates bribeproofness (1). ��

2 A Class of Bribeproof Mechanisms

The idea to obtain bribeproof mechanisms is to pay each agent the same fixed
amount for each unit of work she gets allocated.

Definition 1 (linear mechanism). A mechanism (A, p) is a λ-linear mecha-
nism if every agent i receives a fixed payment fi plus λL + (1 − λ)H units of
money for each unit of allocated work, where λ ∈ [0, 1]. That is,

pi(θ) = Ai(θ) · q(λ) + fi where q(λ) = λL + (1 − λ)H

for all i and for all θ ∈ Θ.

Remark 1. Note that, in Definition 1, we limit ourself to q ∈ [L,H] because oth-
erwise the mechanism would not be even strategyproof in general. Moreover, the
constants fi can be used to rescale the payments without affecting bribeproof-
ness. For instance, one can set each fi so that truthfully reporting agents are
guaranteed a nonnegative utility, i.e., the mechanism satisfies voluntary partici-
pation or individual rationality.

In the following we define

i-influence(Ak, θ) := Ak(L, θ−i) − Ak(H, θ−i).

The monotonicity condition for strategyproofness [1,20] requires that the allo-
cation of each agent is weakly decreasing in her reported cost, that is, for all
i ∈ N and for all θ ∈ Θ

i-influence(Ai, θ) ≥ 0 (monotonicity). (2)

We next show that a stronger condition suffices for bribeproofness.
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Theorem 2. The λ-linear mechanism is bribeproof for a two-values domain if
and only if algorithm A satisfies the following conditions: for all θ ∈ Θ(L,H) and
for all i ∈ N condition (2) holds and, for all � ∈ N with θ� = L and for all
h ∈ N with θh = H,

(1 − λ) · i-influence(Ai, θ) ≥ (λ − 1) · i-influence(A�, θ), (3)
(1 − λ) · i-influence(Ai, θ) ≥ λ · i-influence(Ah, θ), (4)

λ · i-influence(Ai, θ) ≥ (1 − λ) · i-influence(A�, θ), (5)
λ · i-influence(Ai, θ) ≥ −λ · i-influence(Ah, θ). (6)

Proof (Sketch). We observe that the utility of a generic agent k is of the form

pk(θ̂) − Ak(θ̂) · θk = fk + Ak(θ̂) · (H − L) ·
{

1 − λ if θk = L;
−λ if θk = H.

From this obtain that bribeproofness (1) is equivalent to conditions (3), (4),
(5) and (6) when i �= j. In particular, depending on θi and θj , we have:

(1) ≡(3) for θi = L and θj = L; (1) ≡(4) for θi = L and θj = H

(1) ≡(5) for θi = H and θj = L; (1) ≡(6) for θi = H and θj = H.

��
A simple corollary of the previous theorem is that the following natural con-

dition implies bribeproofness when setting λ = 1/2.

Definition 2 (bounded influence). An algorithm A satisfies bounded influ-
ence if, for all θ ∈ Θ and for all i, j ∈ N , the following condition holds:

i-influence(Ai, θ) ≥ |i-influence(Aj , θ)|. (7)

Corollary 1. The
(
1
2

)
-linear mechanism is bribeproof for two-values domains

if and only if its algorithm A satisfies bounded influence.

3 Binary Allocations

In this section we apply our results to the case of binary allocations, that is, the
problems in which each agent is allocated either an amount equal 0 or 1 (the
path auction and the k-item procurement auction are two examples).

We first observe that bounded influence boils down to the following natural
condition called non-bossiness (no agent can change the allocation of another
agent without changing her own allocation), and for our construction this con-
dition is equivalent to (strong) bribeproofness.
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Definition 3 (non-bossiness). An algorithm A satisfies non-bossiness if, for
all i and for all θ, the following implication holds: if i-influence(Ai, θ) = 0 then
i-influence(Aj , θ) = 0 for all j.

Theorem 3. For binary allocations and two-values domains, the following
statements are equivalent:

1. The
(
1
2

)
-linear mechanism (A, p) is bribeproof.

2. Algorithm A satisfies monotonicity and non-bossiness.
3. The

(
1
2

)
-linear mechanism (A, p) is strongly bribeproof.

It is not difficult to show that non-bossiness is not a necessary condition in
general mechanisms (see full version [14]).

The main application of the previous result is a general construction of exact
mechanisms for utilitarian problems (see e.g. [21]), that is, for minimizing the
(weighted) sum of all agents’ costs.

Definition 4 (weighted social cost minimization). An algorithm A mini-
mizes the weighted social cost if there exist nonnegative constants {αi}i∈N and
arbitrary constants {βa}a∈A such that, for all θ ∈ Θ, it holds that

A(θ) ∈ arg min
a∈A

{sum(a, θ)},

where sum() is defined as sum(a, θ) :=
(∑

i∈N αiaiθi

)
+ βa.

Obviously, every mechanism minimizing the sum of all agents’ costs correspond
to the case αi = 1 and βa = 0. Welfare maximization problems correspond to
the case in which agents have valuations instead of costs.

Definition 5 (consistent ties). An algorithm A minimizes the weighted social
cost breaking ties consistently if there exists a total order 
 over the set A of
feasible allocations such that, for all θ ∈ Θ and for all a′ ∈ A, the following
implication holds: if sum(A(θ), θ) = sum(a′, θ), then A(θ) 
 a′.

Theorem 4. For binary allocation problems over two-values domains, if algo-
rithm A minimizes the weighted social cost breaking ties consistently, then the
corresponding

(
1
2

)
-linear mechanism is strongly bribeproof.

Proof. We show that every algorithm A which minimizes the weighted social
cost breaking ties consistently, satisfies non-bossiness and monotonicity (2). The
theorem then follows from Theorem 3.

It is convenient to rewrite the weighted social cost into two parts, the con-
tribution of a fixed agent i and the rest:

αiaiθi + sum−i(a, θ−i) where sum−i(a, θ−i) := (
∑

j∈N\{i}
αjajθj) + βa.
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For ease of notation, also let θL := (L, θ−i) and θH := (H, θ−i). Observe that
since A minimizes the weighted social cost we have the following:

sum(A(θL), θL) = LαiAi(θL) + sum−i(A(θL), θ−i) ≤ (8)

sum(A(θH), θL) = LαiAi(θH) + sum−i(A(θH), θ−i), and

sum(A(θH), θH) = HαiAi(θH) + sum−i(A(θH), θ−i) ≤
sum(A(θL), θH) = HαiAi(θL) + sum−i(A(θL), θ−i). (9)

First, we show the following implication:

αiAi(θH) = αiAi(θL) ⇒ A(θL) = A(θH). (10)

The left-hand side implies that both inequalities (8) and (9) hold with “=”. Since
ties are broken consistently, we have A(θL) 
 A(θH) by (8) and A(θH) 
 A(θL)
by (9), thus implying A(θL) = A(θH).

Now observe that (10) implies that A satisfies non-bossiness, and thus it only
remains to prove that the monotonicity condition holds. By summing inequalities
(8) and (9) we obtain αi(H − L)Ai(θH) ≤ αi(H − L)Ai(θL). From this the
inequality

Ai(θH) ≤ Ai(θL)

follows immediately for the case αi > 0, while for αi = 0 it follows by
(10). By definition, the inequality above is equivalent to the monotonicity
condition (2). ��

The mechanism for the path auction problem consists in paying each agent
in the chosen path an amount equal to M = L+H

2 , where the algorithm breaks
ties between paths in a fixed order. Similar mechanisms can be obtained for
other utilitarian problems like minimum spanning tree [21] or for the k-item
procurement auction (see Sect. 4 for the latter).

4 Characterizations for Two Problems

In this section we show that the
(
1
2

)
-linear mechanism is the only bribeproof

mechanism for the path auction on general networks (this result applies also to
combinatorial auctions with known single minded bidders – see [14] for details).
We then obtain analogous characterizations for the k-item procurement auction
in terms of our λ-linear mechanisms.

As for the path auction problem, we actually prove a stronger result saying
that the

(
1
2

)
-linear mechanism is the only bribeproof for the simple network in

Fig. 1b on the following generalization of two-values domains:

Definition 6. The path auction with ε-perturbed domain (ε ≥ 0) is the path
auction problem restricted to the network in Fig. 1b in which the agents domain
are as follows: Θ1 = Θ2 = {L − ε,H + ε} and Θ3 = Θ4 = {L,H}.
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Clearly the two-values domain corresponds to setting ε = 0.

Theorem 5. A mechanism which is bribeproof for the path auction with
ε-perturbed domain must be a

(
1
2

)
-linear mechanism.

Proof (Main Ideas). We first show that, no matter how the mechanism breaks
ties, the payments must depend only on which path is selected (using Fact 1).
This means that the payments are of the form

pi(θ) = fi +

{
qi if i is selected for types θ,

0 otherwise.

In order to conclude that the mechanism must be a
(
1
2

)
-linear mechanism it is

enough to prove that qi = L+H
2 for all i. This is the technically involved part,

because we have to consider the possible tie breaking rules. At an intermediate
step, we show that q1 + q2 = L + H = q3 + q4, for otherwise there exists a
coalition which violates bribeproofness. ��

By taking ε = 0 we obtain a characterization for this problem:

Corollary 2. The
(
1
2

)
-linear mechanism is the only bribeproof mechanism for

the path auction on general networks.

Since in these instances of path-auction problem
(
1
2

)
-linear mechanism are

not bribeproof on three-values domains, we obtain the following result.

Theorem 6. There is no bribeproof mechanism for the path auction problem on
general networks and for three-values domains.

Theorem 5 implies that we cannot extend the positive result to coalitions of
larger size, nor to heterogeneous two-values domains in which θi ∈ {Li,Hi}.

Corollary 3. There is no collusion-proof mechanism for the path auction prob-
lem on general networks and two-values domains. The same remains true even
if we restrict to coalitions of size three (in which two agents bribe another for
misreporting her type).

Corollary 4. There is no bribeproof mechanism for the path auction problem
on general networks and certain heterogeneous two-values domains.

We remark that on a simple network consisting of n parallel edges the path
auction problem is the same as the 1-item procurement auction. For the k-
item procurement auction over three values domains Θ(L,M,H), we consider the
following mechanism:

λM -linear mechanism (normalized to fi = 0): Select the k agents
with smallest types, breaking ties in favor of agents with smaller index;
Pay each of the selected agents an amount M , and non-selected agents
receive no money.
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Note that this is the λM -linear mechanism for λM := H−M
H−L .

Theorem 7. The λM -linear mechanism is bribeproof for the k-item procure-
ment auction in the case of three-values domains.

Also in this problem our construction yields the only mechanism, and results
cannot be extended to more complex domains.

Theorem 8. The λM -linear mechanism is the only bribeproof mechanism for
the 1-item procurement auction with three-values domains and two agents.

This implies the impossibility result.
Corollary 5. There is no bribeproof mechanism for the 1-item procurement auc-
tion with two agents and four-values domains.

5 Min-Max Fairness and Non-binary Problems

In this section we consider problems with min-max fairness optimization criteria,
and non-binary allocations. Thus, the algorithm A should satisfy

A(θ) ∈ arg min
a∈A

max
i∈N

{ai · θi}. (11)

In particular we consider the problem of allocating a perfectly divisible item
(Example 1) according to the above min-max fairness criteria (11). In such allo-
cation all agents will get some positive amount so that all costs will be identical.

Theorem 9 (min-max fairness). There is a strongly bribeproof
(
1
2

)
-linear

mechanism satisfying min-max fairness for allocating a perfectly divisible item.

We next consider the problem of scheduling selfish related machines [1]. In
this problem, we are given several indivisible items (jobs) each of them with
some size. Each item must be assigned to some agent (machine) and the goal is
to minimize the maximum cost (the makespan). Note that the allocation of each
machine is the sum of the size of the jobs allocated to this machine.

Example 2. Consider three machines and three jobs of size 10, 6, and 6. For L = 1
and H = 2 + ε, for some small ε to be specified (below). The allocation of the
jobs minimizing the makespan for types θ = (L,L,H) and θ̂ = (L,H,H), for any
0 < ε < 2/3, is as follows: A(L,L,H) = (6+6, 10, 0) and A(L,H,H) = (10, 6, 6).
This is unique up to a permutation of the allocation of machines with the same
type.

Using this example we can show that our construction cannot lead to
bribeproof mechanisms for minimizing the makespan in the scheduling problem
above, or even to approximate the makespan within some small factor α > 1,
i.e., returning an allocation whose makespan is at most α times the optimum
makespan.

Theorem 10 (selfish related machines). No bribeproof λ-linear mechanism
for the makespan minimization on three agents with two values-domains can
approximate the makespan within a factor smaller than 2√

3
≈ 1.1547.

Impossibility results also apply to randomized mechanisms (see [14]).
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Abstract. We consider the scheduling problem on n strategic unrelated
machines when no payments are allowed, under the objective of minimiz-
ing the makespan. We adopt the model introduced in [Koutsoupias 2014]
where a machine is bound by her declarations in the sense that if she is
assigned a particular job then she will have to execute it for an amount
of time at least equal to the one she reported, even if her private, true
processing capabilities are actually faster. We provide a (non-truthful)
randomized algorithm whose pure Price of Anarchy is arbitrarily close
to 1 for the case of a single task and close to n if it is applied indepen-
dently to schedule many tasks. Previous work considers the constraint of
truthfulness and proves a tight approximation ratio of (n + 1)/2 for one
task which generalizes to n(n + 1)/2 for many tasks. Furthermore, we
revisit the truthfulness case and reduce the latter approximation ratio
for many tasks down to n, asymptotically matching the best known lower
bound. This is done via a detour to the relaxed, fractional version of the
problem, for which we are also able to provide an optimal approximation
ratio of 1. Finally, we mention that all our algorithms achieve optimal
ratios of 1 for the social welfare objective.

1 Introduction

We consider a variant of the scheduling problem proposed by Koutsoupias [11]
where no payments are allowed and the machines are bound by their declarations.
In particular, the goal is to allocate a set of tasks to strategic unrelated machines
while minimizing the makespan. The time/cost needed by a machine to execute
a task is private information of the machine. Each machine is rational and selfish,
and will misreport its costs in an attempt to minimize its own overall running
time, under the assumption that if she is allocated a task, she will execute it
for at least the declared cost (more specifically, for the maximum among her
true and reported execution times). We are interested in designing allocation
protocols that do not use payments and the stable outcomes are not far from
the non-strategic, centrally enforced optimum makespan.

The field of Mechanism Design [17] focuses on the implementation of desired
outcomes. Given the strategic behaviour of the players who provide the input
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and a specific objective function that measures the quality of the outcome,
the challenge is to design mechanisms which are able to elicit a desired behav-
iour from the players, while at the same time optimizing that objective value.
A primary designer goal that has been extensively studied is that of truthful-
ness, under the central solution concept of dominant strategies: a player should
be able to optimize her own individual utility by reporting truthfully, no matter
what strategies the other players follow. However, achieving this is not always
compatible with maintaining a good objective value [9,21]. The introduction of
payments was suggested as a means towards achieving these goals as a carefully
designed payment scheme incentivizes the players to make truthful declarations.
The goal now becomes to design such algorithms (termed mechanisms) which
utilize monetary compensations in order to impose truthful behaviour while
optimizing the objective function [16].

There are many situations, though, where the use of payments might be
considered unethical [17], illegal (e.g. organ donations) or even just impracti-
cal. For this reason researchers have started turning their attention to possi-
ble ways of achieving truthfulness without the use of payments. In such a set-
ting, in order to circumvent Social Choice impossibility results (e.g. the seminal
Gibbard-Satterthwaite [9,21] theorem) domains with richer structure have to be
considered. Procaccia and Tennenholtz [20] were the first to consider achieving
truthfulness without using payments, by sacrificing the optimality of the solu-
tion and settling for just an approximation, in the context of facility location
problems. Similar questions have been considered in the context of inter-domain
routing [14], in assignment problems [6], and in the setting of allocating items to
two players (with the use of a certain artificial currency) [10]. Moreover, (exact,
as opposed to approximate) mechanism design without money has a rich history
in the social choice literature.

Clearly, truthfulness is a property desired by any mechanism designer; if the
mechanism can ensure that no player can benefit from misreporting, the designer
knows what kind of player behaviour and outcome to expect. Moreover, the focus
on truthful mechanisms has been largely motivated by the Revelation Principle
stating that essentially every equilibrium state of a mechanism can be simulated
by a truthful mechanism which achieves the same objective. However this is no
longer possible in the variant we examine here, due to the fact that the players are
bound by their declarations and thus don’t have quasi-linear utilities. So, it is no
longer without loss of generality if we restrict attention to truthful mechanisms.
For mechanisms that are not truthful, Price of Anarchy (PoA) [12] analysis is
the predominant, powerful tool for quantifying the potential suboptimality of the
outcomes/equilibria; it measures the impact the lack of coordination (strategic
behaviour) has on the solution quality, by comparing it to the optimal, non-
strategic solution.

Scheduling is one of the most influential problems in Algorithmic Game Theory
and has been studied extensively. In its most general form, the goal is to schedule
m tasks to n parallel machines with arbitrary processing times, in order to min-
imize the makespan. In the front where payments are allowed and truthfulness
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comes at no extra cost given the strategic nature of the machines Nisan and Ronen
[16] first considered the mechanism design approach of the problem. They prove
that the well known VCG mechanism achieves an n-approximation of the optimal
makespan, while no truthful deterministic mechanism can achieve approximation
ratio better than 2. The currently known best lower bound is 2.61 [13] while Ashlagi
et al. [2] prove the tightness of the upper bound for anonymous mechanisms. With
respect to randomized (truthful in expectation) mechanisms as well as fractional
ones, the best known bounds are (n + 1)/2 and 2 − 1/n [5,15]. We note that the
aforementioned lower bounds disregard computational feasibility and simply rely
on the requirement for truthfulness.

In an attempt to get positive results when payments are not allowed in the
scheduling context, Koutsoupias [11] first considered the plausible assumption
that the machines are bound by their declarations. This was influenced by the
notion of impositions that appeared in [7,18] and was applied in facility loca-
tion as well as digital goods pricing settings. The notion of winner imposition
fits within the framework of approximate mechanism design without payments.
A more powerful framework that is also very much related to this assumption is
the notion of verification that appears in [3,16,19]. The mechanisms in this con-
text are allowed to use payments and simply give or deny payments to machines
after they discover their true execution costs. Relevant works include [1,4] where
the scheduling problem of selfish tasks is considered again under the assumption
that the players who control the tasks are bound by their declarations.

Our Results. In this work we adopt the model of [11]. For the case of scheduling
a single task Koutsoupias [11] proved that the approximation ratio of any mech-
anism is at least (n+1)/2 and gave a mechanism matching this bound, where n
is the number of machines. When applied to many tasks, this mechanism imme-
diately implies a n(n + 1)/2 approximation ratio for the makespan objective. In
Sect. 3 we provide a (non-truthful) algorithm which performs considerably bet-
ter than the best truthful mechanism; even the worst pure equilibrium/outcome
of our algorithm achieves an optimal makespan, i.e. our algorithm has a pure
PoA of 1. If we run this algorithm independently for each job, we get a task-
independent and anonymous algorithm, yielding a PoA of n for any number of
tasks. Next, revisiting truthfulness, in Sect. 4 we also show that the mechanism
inspired by the LP relaxation of the problem is provably truthful and provides
an n-approximation ratio when interpreted as a randomized mechanism, while
achieving an optimal approximation ratio 1 for the fractional scheduling problem
of divisible tasks. This almost matches the lower bound of (n+1)/2 for truthful
mechanisms known from [11]. Finally, in Sect. 5 we briefly study the more opti-
mistic objective of minimizing the makespan at the best possible equilibrium
(instead of the worst one used in the Price of Anarchy metric) and show that
the natural greedy algorithm achieves an optimal Price of Stability. Due to lack
of space some proofs appear only in the full version [8].
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2 Model and Notation

We have a set N = {1, 2, . . . , n} of unrelated parallel machines and m tasks/jobs
that need to be scheduled to these machines. Throughout the text we assume
that vector t denotes the true execution times, i.e. ti,j is the time machine i needs
to execute task j. This is private knowledge of each machine i. Let t̂ denote the
corresponding (not necessarily true) declarations of the machines for these costs.

A (randomized) allocation protocol takes as input the machines’ declarations
t̂ and outputs an allocation A of tasks to machines where Aij is a 0–1 random
variable indicating whether or not machine i gets allocated task j and a is
the corresponding probability distribution of allocation, i.e. ai,j = Pr [Ai,j = 1]
where of course

∑n
i=1 ai,j = 1 for any task j.

If a machine i is allocated some task j, we assume that the machine will exe-
cute the task for time max{ti,j , t̂i,j}. So, the expected cost/workload of machine
i is defined as

Ci(t̂|ti) =
m∑

j=1

ai,j(t̂)max
{
t̂i,j , ti,j

}
, (1)

while the makespan is computed as the average maximum execution time

M(t̂|ti) = E
A∼a

⎡

⎣ max
i=1,...,n

m∑

j=1

Ai,j max
{
t̂i,j , ti,j

}
⎤

⎦ .

To simplify notation, whenever the true execution times t are clear from the
context we will drop them and simply use Ci(t̂) and M(t̂).

The allocation protocol is called truthful, or truthful mechanism, if it does not
give incentives to the machines to misreport their true execution costs. Formally,
for every machine i and declarations vector t̂,

Ci(ti, t̂−i) ≤ Ci(t̂),

where (xi,y−i) denotes the vector of declarations where machine i has deviated
to xi while all other machines report costs as in y. The approximation ratio mea-
sures the performance of truthful mechanisms and is defined as the maximum
ratio, over all instances, of the objective value (makespan) under that mecha-
nism over the optimal objective value achievable by a centralized solution which
ignores the truthfulness constraint.

If an allocation protocol is not truthful (we simply refer to it as algorithm),
we measure its performance by the quality of its Nash equilibria; the states from
which no player has the incentive to unilaterally deviate. The Price of Anarchy
(PoA) is established as a meaningful benchmark and captures the maximum
ratio, over all instances, of the objective value of the worst equilibrium over
that of the optimal centralized solution that ignores the machines’ incentives.
For most part of this paper we restrict attention to pure Nash equilibria where
the machines make deterministic reports about their execution costs, and we
will from now on refer to them simply as equilibria. Then, the corresponding
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benchmark is called pure PoA. A more optimistic benchmark is the Price of
Stability (PoS) which compares the objective value of the best equilibrium to
the value of the optimal centralized solution.

The makespan objective is inherently different if we consider divisible tasks,
i.e. fractional allocations. In that case, each machine is allocated a portion of
each task by the protocol and the makespan is computed as the maximum of
the execution times of the machines, namely

Mf (t) = max
i=1...n

m∑

j=1

αi,jti,j

where αi,j ∈ [0, 1] is the fraction of task j allocated to machine i. Again, it must
be that

∑n
i=1 αi,j = 1 for any task j. Notice here that each fractional algorithm

with allocation fractions α naturally gives rise to a corresponding randomized
integral algorithm with allocation probabilities a = α, whose makespan is within
a factor of n from the fractional one1, i.e. for any cost matrix t

Mf (t) ≤ M(t) ≤ n · Mf (t). (2)

Except when clearly stated otherwise, in this paper we deal with the integral
version of the scheduling problem.

Social Welfare. An alternative objective, very common in the Mechanism Design
literature, is that of optimizing social welfare, i.e. minimizing the combined costs
of all players: W(t̂) =

∑n
i=1 Ci(t̂). It is not difficult to see3 that the makespan

and social welfare objectives are within a factor of n away, whatever the alloca-
tion algorithm a and the input costs t̂ might be:

M(t̂) ≤ W(t̂) ≤ n · M(t̂). (3)

Also notice that for the special case of a single task, since the job is eventually
allocated entirely to some machine, the two objectives coincide no matter the
number of machines n, i.e. M(t̂) = W(t̂). Because of that and the linearity of
the social welfare with respect to the players’ costs, it is easy to verify that all
algorithms we present in this paper achieve optimal ratios of 1 for that objective,
both with respect to equilibrium/PoA and truthfulness analysis (e.g. Theorems 2
and 5). We will not mention that explicitly again in the remaining of the paper
and rather focus on the more challenging for our scheduling problem objective
of makespan minimization.

3 Price of Anarchy

For clarity of exposition, we first describe our scheduling algorithm in the special
case of just n = 2 machines (and one task) before presenting the algorithm for
1 This is due to the fact that for any random variables Y1, Y2, . . . , Yn it is E[maxi Yi] ≤
E[
∑

i Yi] =
∑

i E[Yi] ≤ n maxi E[Yi], and also maxi E[Yi] ≤ E[maxi Yi] due to the
convexity of the max function.
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the general case of n ≥ 1. Since we treat the case of only one task in this section,
we use t̂i and ti to denote the declared and the true execution time of machine
i, respectively, and use ai to denote i’s allocation probability.

3.1 Warm Up: The Case of Two Machines

To simplify notation, throughout this section we will assume without loss of
generality that t̂1 ≤ t̂2, i.e. the input to our algorithm is sorted in nondecreasing
order. Notice that the true bids t = (t1, t2) do not have to preserve this ordering,
since the highest biding machine might very well in reality have the fastest
execution capabilities.

Our algorithm for the case of two machines, parametrized by two constants
L > 2, c > 1, and denoted by A(2)

L,c is defined by the allocation probabilities in
Fig. 1. Whenever parameter c is insignificant in a particular context2, we will
just use A(2)

L .

a1 a2

if t̂1 = t̂2
1
2

1
2

if t̂1 < t̂2 < c · t̂1
1
L

1 − 1
L

if c · t̂1 ≤ t̂2 1 − 1
L

t̂1
t̂2

1
L

t̂1
t̂2

Fig. 1. Algorithm A(2)
L,c for scheduling a single task to two machines, parametrized by

L > 2 and c > 1. The probability that machine i = 1, 2 gets the task is denoted by ai,
and t̂1, t̂2 are the reported execution times by the machines.

The main result of this section is the following theorem, showing that by
choosing parameter L arbitrarily high, the above algorithm can achieve an opti-
mal Price of Anarchy:

Theorem 1. For the case of one task and two machines, algorithm A(2)
L has a

(pure) Price of Anarchy of 1 + 1
L (for any L > 2).

We break down the proof of Theorem1 in distinct claims.

Claim 1. At any equilibrium t̂ the ratio of the two bids must be at least c, i.e.
t̂2 ≥ c · t̂1.

2 In such case, as it is for example in the statement of Theorem 1, one can simply pick
e.g. c = 1 + 1

L
.
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Proof. Without loss assume t̂1 �= 0, since otherwise the claim is trivially true.
First, assume for a contradiction that t̂1 < t̂2 < c · t̂1. Then the machine with
largest report would have an incentive to deviate to bid t′2 = max{ct̂1, t2}:

C2(t̂) =
(

1 − 1
L

)
max{t̂2, t2} >

1
L

t̂1 =
t̂1

Lt′2
max{t′2, t2} = C2(t̂1, t′2)

where the inequality holds since L > 2 and the final two equalities hold because
for the deviating bid it is t′2 ≥ t2, ct̂1. Thus t̂ = (t̂1, t̂2) could not have been an
equilibrium under the assumption that t̂1 < t̂2 < c · t̂1.

A similar contradiction can be obtained for the remaining case of t̂1 = t̂2. In
this case, both machines have an incentive to deviate to a bid t′1 = t̂1

c < t̂1, since

C1(t̂) =
1
2

max{t̂1, t1} ≥ 1
2

max{t′1, t1} >
1
L

max{t′1, t1} = C1(t′1, t̂2).

Claim 2. At any equilibrium t̂ the machine with the largest report will never
have underbid, i.e. t̂2 ≥ t2.

Proof. Assume for a contradiction that t̂2 < t2. Then

C2(t̂) =
t̂1

Lt̂2
max{t̂2, t2} =

t̂1

Lt̂2
t2 >

t̂1
Lt2

t2 = C2(t̂1, t2),

the first equality holding due to Claim1 and the last one because t2 > t̂2 ≥ t̂1.

Claim 3. At any equilibrium t̂ the smallest bid is given by t̂1 = min{t1,
t̂2
c }.

Proof. Assume for a contradiction that t̂1 �= t′1 = min{t1,
t̂2
c }. Then, we will

show that the lowest bidding machine would have an incentive to deviate from
t̂1 to t′1.

Indeed, first consider the case when t̂1 < t′1. Then

C1(t̂) =
(

1 − t̂1

Lt̂2

)
max{t̂1, t1} >

(
1 − t′1

Lt̂2

)
max{t′1, t1} = C1(t1, t̂2).

In the remaining case of t̂1 > t′1 = min{t1,
t̂2
c }, because of Claim 1 it must be

that t′1 = t1 < t̂1 ≤ t̂2
c , thus

C1(t̂) =
(

1 − t̂1

Lt̂2

)
max{t̂1, t1} =

(
1 − t̂1

Lt̂2

)
t̂1 >

(
1 − t1

Lt̂2

)
t1 = C1(t1, t̂2).

where the inequality holds since x �→
(
1 − x

y

)
x is a strictly increasing function

for x ∈ [0, y
2 ], and indeed t1 < t̂1 < t̂2 < Lt̂2

2 .

Claim 4. At any equilibrium t̂ bidding must preserve the relative order of the
true execution times, i.e. t1 ≤ t2.
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Proof. For a contradiction assume that t2 < t1, and first consider the case when
t2 < t̂1. If we pick t′2 ∈

(
t̂1
c , t̂1

)
, we have

C2(t̂) =
t̂1

Lt̂2
max{t̂2, t2} =

t̂1
L

>
1
L

max{t′2, t2} = C2(t̂1, t′2).

For the remaining case of t̂1 ≤ t2 < t1, first note that if t1 ≤ t̂2
c then by

Claim 3 we would immediately derive that t̂1 = t1, which is a contradiction.
Hence, we can assume that t̂1 = t̂2

c < t1. Then, if t̂2 > t1 we have that

C1(t̂) =
(

1 − t̂1

Lt̂2

)
max{t̂1, t1} =

(
1 − t̂1

Lt̂2

)
t1 >

1
L

t1 = C1(t1, t̂2),

the inequality holding because t̂1
t̂2

1
L ≤ 1

L < 1
2 , and if t̂2 ≤ t1 then, in the same

way, for t′1 = max{t1, ct̂2}

C1(t̂) >
1
L

t1 ≥ t̂2
L

=
t̂2

Lt1
max{t′1, t1} = C1(t1, t̂2).

Proof (Proof of Theorem 1). Claims 1–4 imply that the makespan (and thus also
the social cost since we have a single task) of any allocation at equilibrium can
be bounded by

M(t̂) =
(

1 − t̂1

Lt̂2

)
max{t̂1, t1} +

t̂1

Lt̂2
max{t̂2, t2}

≤ max{t̂1, t1} +
1
L

t̂1

≤
(

1 +
1
L

)
t1,

where t1 is the optimal makespan.
Also, it is important to mention that it can be verified that there exists at

least one (pure Nash) equilibrium, e.g. reporting t̂1 = t1 and t̂2 = max{Lc·t1, t2}.

3.2 The General Case

The algorithm for two machines (and a single task) can be naturally generalized
to the case of any number of machines n ≥ 2. Due to lack of space we only give
the definition of the algorithm here and the proof can be found in the full version
of the paper [8]. We note that the essence of the techniques and the core ideas
we presented in Sect. 3.1 carry over to the general case.

To present our algorithm AL,c we first need to add some notation. We use
t̂min and t̂sec to denote the smallest and second smallest declarations in t̂, and
Nmin, Nsec the corresponding sets of machine indices that make these decla-
rations. (If N = Nmin, i.e. all machines make the same declaration we define
t̂sec = t̂min). Also let nmin = |Nmin| and nsec = |Nsec|.
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i ∈ Nmin i ∈ Nsec i ∈ N\(Nmin∪Nsec)

if t̂min = t̂sec
1
n

1
n

1
n

if t̂min < t̂sec < c · t̂min
1
L

/nmin 1 − 1
L

/nsec 0

if t̂sec ≥ c · t̂min

⎛

⎝1 −
k∈N\Nmin

t̂min

L · t̂k

⎞

⎠ /nmin
t̂min

L·t̂i
t̂min

L·t̂i

Fig. 2. Algorithm AL,c for scheduling a single task to n ≥ 2 machines, parametrized
by L > 2(n − 1) and c > 1. The first and second highest reported execution times by
the machines are denoted by t̂min and t̂sec respectively, while Nmin, Nsec denote the
corresponding sets of machine indices, and nmin, nsec their cardinalities.

Our main algorithm AL,c for the case of one task and n machines, parame-
trized by L > 2(n − 1), c > 1, is defined by the allocation probabilities ai for
each machine i ∈ N given in Fig. 2.

As the following theorem suggests, by picking a high enough value for L the
above algorithm can achieve an optimal performance under equilibrium:

Theorem 2. For the problem of scheduling one task without payments to n ≥ 2
machines, algorithm AL has a (pure) Price of Anarchy of 1 + n

L (for any L >
2(n − 1)).

Multiple Tasks. It is not difficult to extend our single-task algorithm and the result
of Theorem 2 to get a task-independent, anonymous algorithm with a pure PoA of
n for any number of tasks m ≥ 1: simply run AL independently for each job. Then,
the equilibria of the extended setting correspond exactly to players not having an
incentive to deviate for any task/round, and the approximation ratio of 1+ n

L with
respect to the minimum cost mini ti,j at every such round j = 1, . . . ,m, guarantees
optimality with respect to the social welfare and thus provides indeed a worst-case
n-approximation for the makespan objective (see Eq. 3).

4 Truthful Mechanisms

In this section we turn our attention to truthful algorithms for many tasks and
provide a mechanism that achieves approximation ratio n, almost matching the
(n + 1)/2 known lower bound on truthfulness [11]. The best known ratio before
our work was n(n+1)/2, achieved by running the algorithm of Koutsoupias [11]
independently for each task. Unfortunately this guarantee turns out to be tight
for the particular algorithm (see the full version [8] for a bad instance), thus here
we have to devise more involved, non task-independent mechanisms.
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4.1 The LP Mechanism

It is a known fact that the LP relaxation of a problem can be a useful tool for
designing mechanisms (both randomized and fractional). We recall that the LP
relaxation for the scheduling problem is as shown in Fig. 3.

minimize μ

∀j :
n

i=1

αi,j = 1 (each task is allocated entirely)

∀i : μ −
m

j=1

αi,jti,j ≥ 0 (the cost of each machine does not exceed makespan)

∀i, j : αi,j ≥ 0 (the allocation probabilities are positive)

Fig. 3. The LP relaxation for the scheduling problem. Our LP mechanism is defined
by an optimal solution αLP

i,j (t) to this program.

We denote an optimal solution3 to the above LP by αLP(t), μLP
t (dropping the

LP superscript whenever this is clear from the context). The vector αLP(t) can
be straightforwardly interpreted as allocation probabilities or allocation fractions
giving rise to a randomized and a fractional mechanism, respectively. We refer
to the corresponding mechanisms as the LP randomized and the LP fractional
mechanism. In Theorem 3 we show that both mechanisms are truthful, hence, we
can think of μLP

t as corresponding to the maximum (expected) cost/workload
perceived by any machine.

It is a simple observation that in an optimal solution the workload must
be fully balanced among all machines and that μLP can only increase when all
execution times increase, i.e. μLP

t ≤ μLP
t′ for t ≤ t′ (pointwise).

Note that the proof of Theorem 3 is identical in both cases where the α
correspond to fractions or allocation probabilities. Hence, the result holds for
both the LP randomized and the LP fractional mechanism.

Theorem 3. Under the LP (fractional or randomized) mechanism, truthfully
reporting the execution times is a (weakly) dominant strategy for every machine.

Proof. Recall that t and t̂ denote the true and (some) declared execution times
for all the machines. Fix some machine i and define vector tmaxi as follows: row
i, tmaxi

i , is the vector of point-wise maxima between true and declared times for
machine i, that is

tmaxi
i = (max{t̂i,1, ti,1},max{t̂i,2, ti,2}, . . . ,max{t̂i,m, ti,m}),

3 Notice that although μLP
t is unique, there might be various allocation fractions αi,j

that give rise to the optimal makespan μLP
t , in which case we can choose an arbitrary

one for αLP
t , e.g. take the lexicographically smaller.
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while every other row k �= i is tmaxi

k = t̂k, i.e. tmaxi = (tmaxi
i , t̂−i). Seen as

a vector of declarations, tmaxi corresponds to machine i’s deviation from t̂ to
tmaxi
i . Then we can derive the following:

m∑

j=1

αk,j(t̂)tmaxi

k,j =
m∑

j=1

αk,j(t̂)t̂k,j = μt̂ =
m∑

j=1

αi,j(t̂)t̂i,j ≤
m∑

j=1

αi,j(t̂)tmaxi
i,j

and thus from the optimality of the LP solutions it must be that

μtmaxi ≤ max
l=1,...,n

⎧
⎨

⎩

m∑

j=1

αl,j(t̂)tmaxi

l,j

⎫
⎬

⎭
=

m∑

j=1

αi,j(t̂)tmaxi
i,j .

Bringing everything together and taking into consideration that (ti, t̂−i) ≤ tmaxi

we get

Ci(t̂) =
m∑

j=1

αi,j(t̂)max
{
t̂i,j , ti,j

} ≥ μtmaxi ≥ μ(ti,t̂−i)
=

m∑

j=1

αi,j(ti, t̂−i)ti,j = Ci(ti, t̂−i),

which shows that indeed, whatever the declarations of the other machines t̂−i,
machine i is always (weakly) better of by truthfully reporting ti.

Theorem 3 gives rise to the following two results.

Theorem 4. The LP fractional mechanism has approximation ratio 1 for the
fractional scheduling problem without money, for any number of machines and
tasks.

As discussed in Sect. 2, by 2 we know that the above performance guarantee
can deteriorate at most by a factor of n when we use the fractions as allocation
probabilities for the integral case:

Theorem 5. The LP randomized mechanism has approximation ratio n for
(integrally) scheduling any number of tasks to n machines without money.

4.2 The Proportional Mechanism

In this section we briefly consider the proportional mechanism which allocates
to each machine i a t−1

i /
∑n

k=1 t−1
k fraction of the task or probability of getting

the task, respectively, depending on whether we consider the randomized or the
fractional variant. In [11] it was shown that this algorithm is truthful and that
its approximation ratio for randomized allocations of a single task is n. With
the following theorem we wish to stress the difference between fractional and
(randomized) integral allocations. The theorem is about the fractional case and
proves the optimality of the proportional mechanism for scheduling one task
without payments.

Theorem 6. The proportional mechanism has an optimal approximation ratio
of 1 for the fractional scheduling problem of a single task. For m tasks the approx-
imation ratio increases to at least m.
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5 Price of Stability and Mixed Equilibria

In this section we attempt a more optimistic approach regarding the problem
of scheduling without payments. We consider the benchmark of the best (mixed
Nash) equilibrium and prove that the following, most natural greedy algorithm
can achieve optimality: allocates each task independently to the machine declar-
ing the minimum cost (breaking ties arbitrarily).

Theorem 7. The Price of Stability of the Greedy algorithm is 1 for scheduling
without money any number of tasks to any number of machines.
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Abstract. Coordination mechanisms aim to mitigate the impact of self-
ishness when scheduling jobs to different machines. Such a mechanism
defines a scheduling policy within each machine and naturally induces a
game among the selfish job owners. The desirable properties of a coor-
dination mechanism includes simplicity in its definition and efficiency of
the outcomes of the induced game. We present a broad class of coordi-
nation mechanisms for unrelated machine scheduling that are simple to
define and we identify one of its members (mechanism DCOORD) that is
superior to all known mechanisms. DCOORD induces potential games with
logarithmic price of anarchy and only constant price of stability. Both
bounds are almost optimal.

1 Introduction

We consider a selfish scheduling setting where each job owner acts as a non-
cooperative player and aims to assign her job to one of the available machines
so that the completion time of the job is as low as possible. An algorithmic tool
that can be utilized by the designer of such a system is a coordination mechanism
[8]. The coordination mechanism uses a scheduling policy within each machine
that aims to mitigate the impact of selfishness to performance.

We focus on unrelated machine scheduling. There are m available machines
and n players, each controlling a distinct job. The job (owned by player) u
has a (possibly infinite) positive processing time (or load) wu,j when processed
by machine j. A scheduling policy defines the way jobs are scheduled within a
machine. In its simplest form, such a policy is non-preemptive and processes jobs
uninterruptedly according to some order. Preemptive scheduling policies (which
is our focus here) do not necessarily have this feature (e.g., they may process
jobs in parallel) and may even introduce some idle time.

Naturally, a coordination mechanism induces a game with the job owners as
players. Each player has all machines as possible strategies. The term assignment
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is used for a snapshot of the game, where each player has selected a strategy, i.e.,
it has selected a particular machine to process her job. Given an assignment, the
cost a player experiences is the completion time of her job on the machine she
has selected. This is well-defined by the scheduling policy of the machine and
typically depends on the characteristics of all jobs assigned to the machine.

Assignments in which no player has any incentive to change her strategy are
called pure Nash equilibria (or, simply, equilibria). When studying a coordination
mechanism, we are interested in bounding the inefficiency of equilibria of the
game induced by the mechanism. We use the maximum completion time among
all jobs to measure the social cost. A related quantity is the load of a machine
which is defined as the total processing time of the jobs assigned to the machine.
The makespan of an assignment is the maximum load over all machines. Clearly,
the makespan of an assignment is a lower bound on the maximum completion
time. The price of anarchy (respectively, price of stability) of the game induced
by a coordination mechanism is defined as the worst (respectively, best) ratio of
the maximum completion time over all equilibria over the optimal makespan.

We prefer mechanisms that induce games that always have equilibria. Fur-
thermore, we would like these equilibria to be easy to find. A highly desirable
property that ensures that equilibria can be reached by the players themselves
(with best-response play) is the existence of a potential function. A potential
function is defined over all possible assignments and has the property that, in
any two assignments differing in the strategy of a single player, the difference of
the two values of the potential and the difference of the completion time of the
deviating player have the same sign.

Coordination mechanisms for scheduling were introduced by Christodoulou
et al. [8]. Immorlica et al. [11] were the first to consider coordination mech-
anisms in the unrelated machine setting and studied several intuitive mecha-
nisms, including ShortestFirst and Makespan. In ShortestFirst, the jobs in
each machine are scheduled non-preemptively, in monotone non-decreasing order
of their processing time. Since ties are possible, the mechanism has to distin-
guish between jobs with identical processing times, e.g., using distinct IDs for
the jobs. This is necessary for every deterministic non-preemptive coordination
mechanism in order to be well-defined. In contrast, in Makespan, each machine
processes the jobs assigned to it “in parallel” so that they all have the same com-
pletion time. So, no ID information is required by Makespan. We use the term
anonymous to refer to coordination mechanisms having this property. These two
coordination mechanisms are strongly local in the sense that the only information
that is required to compute the schedule of jobs within a machine is the process-
ing time of the jobs on that machine only. A local coordination mechanism may
use all parameters of the jobs that are assigned to a machine (e.g., the whole
load vector of each job).

Azar et al. [4] prove lower bounds of Ω(m) and Ω(log m) on the price of
anarchy for any strongly local and local non-preemptive coordination mecha-
nism, respectively. On the positive side, they presented two local coordination
mechanisms with price of anarchy o(m). Their first coordination mechanism
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Table 1. A comparison between DCOORD and other local coordination mechanisms from
the literature.

Coordination mechanism PoA PoS PNE Pot. IDs. Preempt Reference

AFJMS-1 Θ(logm) - No No Yes No [4]

AFJMS-2 O(log2 m) - Yes Yes Yes Yes [4]

ACOORD O(logm) Θ(logm) Yes Yes Yes Yes [7]

Balance O(logm) Θ(logm) Yes Yes Yes Yes [9]

BCOORD Θ( logm
log logm

) - ? No No Yes [7]

CCOORD O(log2 m) O(logm) Yes Yes No Yes [7]

DCOORD O(logm) O(1) Yes Yes No Yes This paper

(henceforth called AFJMS-1) is non-preemptive and may induce game without
equilibria. When the induced game has equilibria, the price of anarchy is at most
O(log m). Their second coordination mechanism (henceforth called AFJMS-2) is
preemptive, induces potential games, and has price of anarchy O(log2 m). Both
mechanisms are not anonymous.

Caragiannis [7] presents three more coordination mechanisms. The mecha-
nism ACOORD, induces potential games with price of anarchy O(log m). The mech-
anism uses the distinct IDs of the jobs to ensure that the equilibria of the game
are essentially assignments that are reached by a greedy-like online algorithm for
minimizing the p-norm of machine loads. [3] and [6] study this online schedul-
ing problem; the results therein imply that the price of stability of mechanism
ACOORD is Ω(log m) as well. A different coordination mechanism with similar
characteristics (called Balance) is presented in [9]. The coordination mechanism
BCOORD (defined also in [7]) has even better price of anarchy O

(
log m

log log m

)
(match-

ing a lower bound due to Abed and Huang [2] for all deterministic coordination
mechanisms) but the induced games are not potential ones and may not even
have equilibria. However, the price of anarchy bound for BCOORD indicates that
preemption may be useful in order to beat the Ω(log m) lower bound for non-
preemptive mechanisms from [4]. Interestingly, this mechanism is anonymous.
The third mechanism CCOORD is anonymous as well, induces potential games,
and has price of anarchy and price of stability O(log2 m) and O(log m), respec-
tively. To the best of our knowledge, this is the only anonymous mechanism
that induces potential games and has polylogarithmic price of anarchy.1 Table 1
summarizes the known local coordination mechanisms.

In the discussion above, we have focused on papers that define the social cost
as the maximum completion time (among all players). An alternative social cost
that has received much attention is the weighted average completion time; see

1 Even though their mechanism Balance heavily uses job IDs, Cohen et al. [9] claim
that it is anonymous. This is certainly false according to our terminology since
anonymity imposes that two jobs with identical load vectors should be indistin-
guishable.
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[1,5,10] for some recent related results. Interestingly, the design principles that
lead to efficient mechanisms in their case are considerably different.

Our contribution is as follows. We introduce a quite broad class (called M(d))
of local anonymous coordination mechanisms that induce potential games. The
class contains the coordination mechanism CCOORD as well as the novel coor-
dination mechanism DCOORD, which has additional almost ideal properties. In
particular, we prove that it has logarithmic price of anarchy and only constant
price of stability. A (qualitative and quantitative) comparison of DCOORD to other
known local coordination mechanisms is depicted in Table 1.

The rest of the paper is structured as follows. We begin with preliminary
definitions in Sect. 2. Section 3 is devoted to the definition of the class of mecha-
nisms M(d) and to the proof that all mechanisms in this class induce potential
games. Then, the novel mechanism DCOORD from this class is defined in Sect. 4;
its feasibility as well as preliminary statements that are useful for the analysis
are also presented there. Finally, in Sect. 5, we prove the bounds on the price of
anarchy and stability.

2 Definitions and Preliminaries

Throughout the paper, we denote the number of machines by m. The index j
always refers to a machine; the sum

∑
j runs over all available machines. An

assignment is a partition N = (N1, ..., Nm) of the players to the m machines.
So, Nj is the set of players assigned to machine j under N . We use the notation
Lj(Nj) to refer to the load of machine j, i.e., Lj(Nj) =

∑
u∈Nj

wu,j .
A coordination mechanism uses a scheduling policy per machine. For every

set of jobs assigned to machine j, the scheduling policy of the machine defines a
detailed schedule of the jobs in the machine, i.e., it defines which job is executed
in each point in time, whether more than one jobs are executed in parallel, or
whether a machine stays idle for particular time intervals. Instead of defining
coordination mechanisms at this level of detail, it suffices to focus on the defi-
nition of the completion time P(u,Nj) for the job of each player u ∈ Nj . This
definition should correspond to some feasible detailed scheduling of jobs in the
machine. A sufficient condition that guarantees feasibility is to define completion
times that are never smaller than the machine load.

Like the coordination mechanisms in [4,7,9], our coordination mechanisms
are local. The completion time P(u,Nj) of the job belonging to player u in
machine j depends on the processing times the jobs in Nj have on machine j,
as well as on the minimum processing time wu = minj wu,j of job u over all
machines.

Our proofs exploit simple facts about Euclidean norms of machine loads.
Recall that, for p ≥ 1, the p-norm of the vector of machine loads
L(N) = (L1(N1), L2(N2), ..., Lm(Nm)) under an assignment N is ‖L(N)‖p =
(∑

j Lj(Nj)p
)1/p

. By convention, we denote the makespan maxj Lj(Nj) as
‖L(N)‖∞. The following property follows easily by the definition of norms; we
use it extensively in the following.
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Lemma 1. For any p ≥ 1 and any assignment N , ‖L(N)‖∞ ≤ ‖L(N)‖p ≤
m1/p‖L(N)‖∞.

We also use the well-known Minkowski inequality (or triange inequality for
the p-norm). For machine loads, it reads as follows:

Lemma 2 (Minkowski inequality). For every p ≥ 1 and two assignments N
and N ′, ‖L(N) + L(N ′)‖p ≤ ‖L(N)‖p + ‖L(N ′)‖p.

The notation L(N)+L(N ′) denotes the m-entry vector with Lj(Nj)+Lj(N ′
j)

at the j-th entry. Another necessary technical lemma follows by the convexity
properties of polynomials; see [7] for a proof.

Lemma 3. For r ≥ 1, t ≥ 0, positive integer p, and ai ≥ 0 for i = 1, ..., p, it
holds

p∑

i=1

((t + ai)r − tr) ≤
(

t +
p∑

i=1

ai

)r

− tr.

3 A Broad Class of Coordination Mechanisms

In this section, we show that the coordination mechanism CCOORD from [7] can be
thought of as belonging to a broad class of coordination mechanisms, which we
call M(d). This class contains also our novel coordination mechanism DCOORD,
which will be presented in Sect. 4.

The definition of CCOORD uses a positive integer d ≥ 2 and the functions Ψj

that map sets of players to the reals as follows. For any machine j, Ψj(∅) = 0
and for any non-empty set of players U = {u1, u2, ..., u�},

Ψj(U) = d!
∑

t1+t2+...+t�=d

�∏

k=1

wtk
uk,j .

The sum runs over all multi-sets of non-negative integers {t1, t2, ..., t�} that sat-
isfy t1 + t2 + ...+ t� = d. So, Ψj(U) is the sum of all possible degree-d monomials
of the processing times of the jobs belonging to players from U on machine j,
with each term in the sum having a coefficient of d!. CCOORD schedules the job
of player ui on machine j in an assignment N so that its completion time is

P(ui, Nj) =
(

wui,jΨj(Nj)
wui

)1/d

.

We will extend CCOORD to define a broad class of coordination mechanisms; we
use M(d) to refer to this class, where d ≥ 2 is a positive integer. Each member
of M(d) is identified by a coefficient function γ. The coefficient functions are
defined over multi-sets of non-negative integers that have sum equal to d+1 and
take non-negative values. An important property of the coefficient functions is
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that they are invariant to zeros that requires that for a multi-set A of integers
that sum up to d+1, γ(A) = γ(A∪{0}). Hence, the value returned by γ depends
only on the non-zero elements in the multiset it takes as argument.

The definition of a coordination mechanism in M(d) uses the quantity
Λui,j(U), which is defined as follows for a machine j and a job ui from a subset
of jobs U = {u1, u2, ..., u�}:

Λui,j(U) =
∑

t1+t2+...+t�=d+1
ti≥1

γ({t1, t2, ..., t�})
�∏

k=1

wtk
uk,j . (1)

The sum runs over all multi-sets of non-negative integers, with each integer
corresponding to a distinct player of U , so that the integer ti corresponding to
player ui is strictly positive. Notice that γ is defined over (unordered) multi-sets;
this implies that symmetric monomials have the same coefficient. For example,
for the set of players U = {u1, u2} and a machine j,

Λu1,j(U) = γ({3, 0})w3
u1,j + γ({2, 1})w2

u1,jwu2,j + γ({1, 2})wu1,jw
2
u2,j .

Clearly, {2, 1} and {1, 2} denote the same multi-set and, hence, the coefficients
of the (symmetric) second and third monomial are identical.

A coordination mechanism of M(d) sets the completion time of player ui to

P(ui, Nj) =
(

Λui,j(Nj)
wui

)1/d

. (2)

when its job is scheduled on machine j under assignment N .
By simply setting γ(A) = d! for every multi-set A of non-negative integers

summing up to d+1, we obtain CCOORD. Indeed, it is easy to see that Λui,j(U) =
wui,jΨj(U) in this case.

The definition of M(d) guarantees that all its members satisfy two important
properties. First, every coordination mechanism in M(d) is anonymous. This
is due to the fact that the definition of the completion time in (2) does not
depend on the identity of a player and the jobs of two different players u and
u′ that have equal processing times wu,j = wu′,j at machine j and the same
minimum processing time (over all machines) will enjoy identical completion
times therein, when each is scheduled together with a set U of other players
(i.e., P(u,U ∪ {u}) = P(u′, U ∪ {u′})) or when the set of players Nj assigned to
machine j contains both u and u′ (P(u,Nj) = P(u′, Nj) in this case).

Another important property of the coordination mechanisms in M(d) is that
they always induce potential games. We will prove this in a while, after defining
the function Λj(U), again for a machine j and a set of players U = {u1, u2, ..., u�},
as follows:

Λj(U) =
∑

t1+t2+...+t�=d+1

γ({t1, t2, ..., t�})
�∏

k=1

wtk
uk,j . (3)
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Compared to the definition of Λui,j(U) in (1), the sum in (3) runs just over
all multi-sets of non-negative integers (corresponding to players in U) that sum
up to d + 1, without any additional constraint.

We will sometimes use the informal term Λ-functions to refer to the functions
defined in both (1) and (3). We can now state (in Lemma 4) the following
property of Λ-functions that we will use several times in our analysis below; its
proof is omitted due to lack of space. For example, it will be particularly useful in
order to prove that mechanisms of M(d) induce potential games (in Theorem1).

Lemma 4. Consider a machine j and a set of players U = {u1, u2, ..., u�}.
Then, for every player ui ∈ U ,

Λj(U) = Λui,j(U) + Λj(U \ {ui}).

Theorem 1. The non-negative function Φ, which is defined over assignments
of players to machines as Φ(N) =

∑
j Λj(Nj), is a potential function for the

game induced by any coordination mechanism in M(d).

Proof. Consider two assignments N and N ′ that differ in the assignment of
a single player u. Assume that player u is assigned to machine j1 and j2 in
the assignments N and N ′, respectively. Using the definition of function Φ and
Lemma 4, we have

Φ(N) − Φ(N ′) =
∑

j

Λj(Nj) −
∑

j

Λj(Nj)

= Λj1(Nj1) + Λj2(Nj2) − Λj1(N
′
j1) − Λj2(N

′
j2)

= Λu,j1(Nj1) + Λj1(Nj1 \ {u}) + Λj2(Nj2)
−Λj1(N

′
j1) − Λu,j2(N

′
j2) − Λj2(N

′
j2 \ {u}).

Now observe that Nj1 \ {u} = N ′
j1

and N ′
j2

\ {u} = Nj2 . Hence, using this
observation and the definition of the completion time for u in assignments N
and N ′, the above derivation becomes

Φ(N) − Φ(N ′) = Λu,j1(Nj1) − Λu,j2(N
′
j2)

= wu

(P(u,Nj1)
d − P(u,N ′

j2)
d
)
,

which implies that the difference in the potentials and the difference P(u,Nj1)−
P(u,N ′

j2
) in the completion time of the deviating player u in the two assignments

have the same sign as desired. �	

4 The Coordination Mechanism DCOORD

Like CCOORD, our new coordination mechanism DCOORD belongs to class M(d).
It uses the coefficient function defined as

γ({t1, t2, ..., t�}) =
{

1 if ∃i such that ti = d + 1
d!d

t1!t2!...t�!
otherwise
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for every multi-set of integers {t1, t2, ..., t�} such that t1 + t2 + ... + t� = d + 1.
Observe that γ({t1, t2, ..., t�}) is very similar (but not identical) to the

multinomial coefficient defined as
(

d+1
t1,t2,...,t�

)
= (d+1)!

t1!...t�!
. This is exploited in the

proof of the next statement.

Lemma 5. Consider a machine j and a subset of players U = {u1, u2, ..., u�}.
Then,

Λj(U) =
d

d + 1
Lj(U)d+1 +

1
d + 1

∑

u∈U

wd+1
u,j .

Proof. By the definition of Λj(U) and the coefficient function γ, we have

Λj(U) =
∑

t1+t2+...+t�=d+1

γ({t1, t2, ..., t�})
�∏

k=1

wtk
uk,j

=
d

d + 1

∑

t1+t2+...+t�=d+1

(
d + 1

t1, t2, ..., t�

) �∏

k=1

wtk
uk,j +

1
d + 1

∑

u∈U

wd+1
u,j

=
d

d + 1
Lj(U)d+1 +

1
d + 1

∑

u∈U

wd+1
u,j

as desired. �	
We proceed with two properties which relate Λ-functions to machine loads.

The first one (Corollary 1) follows as a trivial corollary of Lemma 5 after observ-
ing that

∑
u∈U wd+1

u,j ≤ Lj(U)d+1.

Corollary 1. Consider a machine j and a set of players U . Then,

d

d + 1
Lj(U)d+1 ≤ Λj(U) ≤ Lj(U)d+1.

The second one (Lemma 6) will be very useful in proving that DCOORD is feasible
and in bounding its price of anarchy. Its proof is omitted due to lack of space.

Lemma 6. Let U = {u1, ..., u�} be a set of players. For every player ui ∈ U
and every machine j, it holds that

wui,jLj(U)d ≤ Λui,j(U) ≤ d · wui,jLj(U)d.

Feasibility follows easily now.

Theorem 2. DCOORD produces feasible schedules.

Proof. Consider player u1 and any assignment N which assigns it to machine
j together with � − 1 other players u2, u3, ..., u�. By the leftmost inequality of
Lemma 6, we have that
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P(u1, Nj) =
(

Λu1,j(Nj)
wu1

)1/d

≥
(

wu1,j

wu1

)1/d

Lj(Nj) ≥ Lj(Nj),

as desired. The inequality holds since, by definition, wu1,j ≥ wu1 . �	

5 Bounding the Price of Anarchy and Stability

For proving the price of anarchy bound, we will need the following lemma which
relates the load of any machine at an equilibrium with the optimal makespan.

Lemma 7. Let N be an equilibrium and N∗ an assignment of optimal
makespan. Then, for every machine j, it holds that

Lj(N) ≤ m
1

d+1
d + 1
ln 2

‖L(N∗)‖∞.

Proof. Consider a player u that is assigned to machine j in the equilibrium
assignment N and to machine j′ in the assignment Ñ that minimizes the ld+1-
norm of the machine loads. First, consider the case where j �= j′. In the equi-
librium assignment N , player u has no incentive to deviate from machine j to
machine j′ and, hence, P(u,Nj) ≤ P(u,Nj′ ∪{u}). By the definition of DCOORD,
we obtain that Λu,j(Nj) ≤ Λu,j′(Nj′ ∪ {u}). Using this observation, Lemmas 4,
and 5, we get

Λu,j(Nj) ≤ Λu,j′(Nj′ ∪ {u}) = Λj′(Nj′ ∪ {u}) − Λj′(Nj′)

=
d

d + 1
Lj′(Nj′ ∪ {u})d+1 − d

d + 1
Lj′(Nj′)d+1 +

1
d + 1

wd+1
u,j′

=
d

d + 1
(Lj′(Nj′) + wu,j′)d+1 − d

d + 1
Lj′(Nj′)d+1 +

1
d + 1

wd+1
u,j′

We will now prove that the same inequality holds when j = j′. In this case,
together with Lemmas 4 and 5, we need to use a different argument that exploits
a convexity property of polynomials. We have

Λu,j(Nj) = Λu,j′(Nj′) = Λj′(Nj′) − Λj′(Nj′ \ {u})

=
d

d + 1
Lj′(Nj′)d+1 − d

d + 1
Lj′(Nj′ \ {u})d+1 +

1
d + 1

wd+1
u,j′

=
d

d + 1
Lj′(Nj′)d+1 − d

d + 1
(Lj′(Nj′) − wu,j′)d+1 +

1
d + 1

wd+1
u,j′

≤ d

d + 1
(Lj′(Nj′) + wu,j′)d+1 − d

d + 1
Lj′(Nj′)d+1 +

1
d + 1

wd+1
u,j′ .

The last inequality follows since zd+1 − (z −α)d+1 ≤ (z +α)d+1 − zd+1 for every
z ≥ α ≥ 0, due to the convexity of the polynomial function zd+1.



324 I. Caragiannis and A. Fanelli

Let us sum the above inequality over all players. We obtain
∑

j

∑

u∈Nj

Λu,j(Nj)

≤ d

d + 1

∑

j

∑

u∈Ñj

(
(Lj(Nj) + wu,j)

d+1 − Lj(Nj)d+1
)

+
1

d + 1

∑

j

∑

u∈Ñj

wd+1
u,j

≤ d

d + 1

∑

j

⎛

⎜
⎝

⎛

⎝Lj(Nj) +
∑

u∈Ñj

wu,j

⎞

⎠

d+1

− Lj(Nj)d+1

⎞

⎟
⎠ +

1
d + 1

∑

j

Lj(Ñj)d+1

=
d

d + 1
‖L(N) + L(Ñ)‖d+1

d+1 − d

d + 1
‖L(N)‖d+1

d+1 +
1

d + 1
‖L(Ñ)‖d+1

d+1

≤ d

d + 1

(
‖L(N)‖d+1 + ‖L(Ñ)‖d+1

)d+1

− d − 1
d + 1

‖L(N)‖d+1
d+1. (4)

The second inequality follows by Lemma 3 and since
∑

u∈Ñj
wd+1

u,j ≤ Lj(Ñ)d+1.
The equality follows by the definition of ld+1-norms and the last inequality fol-
lows by Minkowski inequality (Lemma 2) and by the fact that ‖L(Ñ)‖ ≤ ‖L(N)‖.

Using the definition of norms and Lemma 6, we also have

‖L(N)‖d+1
d+1 =

∑

j

Lj(Nj)d+1 =
∑

j

∑

u∈Nj

wu,jLj(Nj)d ≤
∑

j

∑

u∈Nj

Λu,j . (5)

By combining (4) and (5), we have

2‖L(N)‖d+1
d+1 ≤

(
‖L(N)‖d+1 + ‖L(Ñ)‖d+1

)d+1

and, equivalently,

‖L(N)‖d+1 ≤ 1

2
1

d+1 − 1
‖L(Ñ)‖d+1 ≤ d + 1

ln 2
‖L(N∗)‖d+1

≤ m
1

d+1
d + 1
ln 2

‖L(N∗)‖∞.

The second inequality follows since, by definition, ‖L(Ñ)‖d+1 ≤ ‖L(N∗)‖d+1

and by the inequality ez ≥ z + 1. The third inequality follows by Lemma 1.
Since ‖L(N)‖d+1 ≥ Lj(Nj) for every machine j, the lemma follows. �	

For the price of stability bound, we will use a qualitatively similar (to
Lemma 7) relation between machine loads at a particular equilibrium and the
optimal makespan.

Lemma 8. Let N be the equilibrium that minimizes the potential function and
N∗ an assignment of optimal makespan. Then, for every machine j, it holds that

Lj(Nj) ≤
(

d + 1
d

m

) 1
d+1

‖L(N∗)‖∞.
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Proof. Observe that Φ(N) ≤ Φ(N∗) since every equilibrium that is reached when
players repeatedly best-respond starting from assignment N∗ has potential at
most Φ(N∗). Using this observation, the definition of norms, Corollary 1, and
the definition of the potential function (see the statement of Theorem 1), we
have

‖L(N)‖d+1
d+1 =

∑

j

Lj(Nj)d+1 ≤ d + 1
d

∑

j

Λj(Nj) =
d + 1

d
Φ(N)

≤ d + 1
d

Φ(N∗) =
d + 1

d

∑

j

Λj(N∗
j )d+1 ≤ d + 1

d

∑

j

Lj(N∗
j )d+1

=
d + 1

d
‖L(N∗)‖d+1

d+1.

Hence, for every machine j, by exploiting Lemma 1, we have Lj(N) ≤
‖L(N)‖d+1 ≤ (

d+1
d

) 1
d+1 ‖L(N∗)‖d+1 ≤ (

d+1
d m

) 1
d+1 ‖L(N∗)‖∞ as desired. �	

We are now ready to complete the price of anarchy/stability proofs. We will
do so by comparing the completion time of any player to the optimal makespan
‖L(N∗)‖∞.

Theorem 3. By setting d = O(log m), DCOORD has price of anarchy O(log m)
and price of stability O(1).

Proof. Consider a player u that is assigned to machine j at some equilibrium N
and satisfies wu = wu,j∗ for some machine j∗. We will use the fact that player u
(is either already at or) has not incentive to deviate to machine j∗ at equilibrium
to bound its completion time as follows:

P(u,Nj) ≤ P(u,Nj∗ ∪ {u}) =
(

Λu,j∗(Nj∗ ∪ {u})
wu

)1/d

≤
(

dwu,j∗Lj∗(Nj∗ ∪ {u})d

wu

)1/d

≤ d1/d(Lj∗(Nj∗) + wu).

The equality follows by the definition of DCOORD, and the second inequality
follows by Lemma 6. The third inequality follows since wu = wu,j∗ and by
observing that Lj∗(Nj∗ ∪ {u}) = L(Nj∗) + wu if u �∈ Nj∗ (i.e., j �= j∗) and
Lj∗(Nj∗ ∪ {u}) = L(Nj∗) otherwise.

Now, using Lemma 7 to bound Lj∗(Nj∗), we obtain that

P(u,Nj) ≤ d1/d

(
m

1
d+1

d + 1
ln 2

+ 1
)

‖L(N∗)‖∞.

If the equilibrium N is a potential-minimizing assignment, Lemma 8 can be
further used to obtain the better guarantee

P(u,Nj) ≤ d1/d

((
d + 1

d
m

) 1
d+1

+ 1

)

‖L(N∗)‖∞.
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The theorem follows since, by setting d = Θ(log m), the factors (ignoring
‖L(N∗)‖∞ in the rightmost expressions become O(log m) and O(1), respectively.
So, in general, we have that the completion time of any player at equilibrium
is at most O(log m) times the optimal makespan (hence, the price of anarchy
bound) while there exists a particular equilibrium where the completion time
of any player is at most O(1) times the optimal makespan (hence, the price of
stability bound). �	
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Abstract. We study the design of cost-sharing protocols for two fun-
damental resource allocation problems, the Set Cover and the Steiner
Tree Problem, under environments of incomplete information (Bayesian
model). Our objective is to design protocols where the worst-case
Bayesian Nash equilibria, have low cost, i.e. the Bayesian Price of Anar-
chy (PoA) is minimized. Although budget balance is a very natural
requirement, it puts considerable restrictions on the design space, result-
ing in high PoA. We propose an alternative, relaxed requirement called
budget balance in the equilibrium (BBiE). We show an interesting connec-
tion between algorithms for Oblivious Stochastic optimization problems
and cost-sharing design with low PoA. We exploit this connection for
both problems and we enforce approximate solutions of the stochastic
problem, as Bayesian Nash equilibria, with the same guarantees on the
PoA. More interestingly, we show how to obtain the same bounds on
the PoA, by using anonymous posted prices which are desirable because
they are easy to implement and, as we show, induce dominant strategies
for the players.

Keywords: Price of Anarchy · Bayesian games · Network design

1 Introduction

A cost-sharing game, is an abstract setting that describes interactions of self-
ish players in environments where the cost of the produced solution needs to
be shared among the participants. A cost-sharing protocol prescribes how the
incurred cost is split among the users. This defines a game that is played by
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the participants, who try to select outcomes that incur low personal costs.
Chen, Roughgarden and Valiant [6] initiated the design aspect, seeking for pro-
tocols that induce approximately efficient equilibria, with low Price of Anarchy
(PoA) [25]. Similarly, we study the design of cost-sharing protocols, for two
well-studied and very general resource allocation problems with numerous appli-
cations, the Set Cover and the Steiner tree (multicast) problem.

Set Cover Game. In the (weighted) set cover problem, there is a universe of n
elements, U = {1, . . . , n}, and a family of subsets of U , F = {F1, . . . , Fm}, with
weights/costs cF1 , . . . , cFm

. A subset of elements, X ⊆ U , needs to be covered by
the F ′

is so that the total cost is minimized. We are interested in a game theoretic
version, where there are |X| players and |U | possible types; X corresponds to
the set of players and each player’s type associates her with a specific element
of U . Multiple players may have the same type. A player’s action is to chose
a subset from F that covers her element, and pay some cost-share for using it.
A cost-sharing method prescribes how the subsets’ costs are split among players.

Multicast Game. In a multicast game, there is a rooted (connected) undirected
graph G = (V,E, t), where each edge e carries a nonnegative weight ce and t
is a designated root. There are k players and |V | = n possible types; each
player’s type associates him with a specific vertex of V which needs to establish
connectivity with t. The players’ strategies are all the paths that connect their
terminal with t. A cost-sharing method defines the cost-shares of the players.

Cost-Sharing Under Uncertainty. There are two different possible sources
of uncertainty that may need to be considered in the above scenarios. Firstly,
the designer needs to specify the cost-sharing protocol, having only partial infor-
mation about the players’ types. Moreover, the players themselves, when they
select their actions, may have incomplete knowledge about the types of the other
players. We approach the former by using a stochastic model similar to [10], and
the latter, as a Bayesian game, introduced by [21], which is an elegant way of
modelling selfishness in partial-information settings. In a Bayesian game, play-
ers do not know the private types of the other players, but only have beliefs,
expressed by probability distributions over the possible realizations of the types.

The order of events is as follows; first, the designer specifies the cost-sharing
methods, using the product probability distribution over the players’ types, then
the players interact in the induced Bayesian game, and end up in a Bayesian Nash
Equilibrium. We are interested in the design of protocols, where all equilibria
have low cost i.e., the (Bayesian) PoA of the induced game is low.

Budget-Balance in the Equilibrium (BBiE). One of the axioms that [6]
required in their design space, that every cost-sharing protocol should satisfy,
is budget balance i.e., that the players’ cost-shares cover exactly the cost of any
solution. Although budget balance is a very natural requirement, it puts consid-
erable restrictions on the design space. However, since we expect that the players
will end up in a Nash equilibrium, it is not clear why one should be interested to
impose budget balance in non-equilibrium states; the players are going to deviate
from such states anyways. We propose an alternative, relaxed requirement that
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we call budget balance in the equilibrium (BBiE). A BBiE cost-sharing protocol
satisfies budget balance in all equilibria; for any non-equilibrium profile we do not
impose this requirement. This natural relaxation, enlarges the design space but
maintains the desired property of balancing the cost in the equilibrium. More
importantly, this amplification of the design space, allows us to design proto-
cols that dramatically outperform the best possible PoA bounds obtained by
budget-balanced protocols. Indeed, by restricting to budget-balanced protocols,
a lower bound of Ω(n) exists, for the complete information set cover game [6]; we
extend this lower bound for the Bayesian setting. We further show a lower bound
of Ω(

√
n), for the multicast Bayesian game. We demonstrate that, by designing

BBiE protocols, we can enforce better solutions, that dramatically improve the
PoA. For the set cover game, we improve the PoA to O(n/ log n) (or O(log n) if
m = poly(n)). Regarding the multicast game, we improve the PoA to O(1).

Posted Prices. It is a very common practice, especially in large markets and
double auctions, for sellers to use posted prices. More closely to cost-sharing
games is the model proposed by Kelly [23] regarding bandwidth allocation. Kelly’s
mechanism processes players’ willingness to pay and posts a price for the whole
bandwidth. Then each player pays a price proportional to the bandwidth she
uses. This can be seen as pricing an infinitesimal quantity of bandwidth and the
players, acting as price-takers, choose some number of quantities to buy. It turns
out that it is in the best interest of the players to buy the whole bandwidth.

The use of posted prices, to serve as cost-sharing mechanism, is highly desir-
able, but not always possible to achieve; a price is posted for each resource
and then the players behave as price takers, picking up the cheapest possible
resources that satisfy their requirements. Such a mechanism is desirable because
it is extremely easy to implement and also induces dominant strategies. We stress
that our main results can be implemented by anonymous posted prices.

1.1 Results and Discussion

We study the design of cost-sharing protocols for two fundamental resource allo-
cation problems, the Set Cover and the Steiner tree problem. We are interested in
environments of incomplete information where both the designer and the play-
ers have partial information, described by prior probability distributions over
types. Our objective is to design cost-sharing protocols that are BBiE and the
worst-case equilibria have low cost, i.e. the Bayesian PoA is minimized.

We show an interesting connection between algorithms for Oblivious Stochas-
tic optimization problems and cost-sharing design with low PoA. We exploit this
for both problems and we are able to enforce approximate solutions of the sto-
chastic problem, as Bayesian Nash equilibria, with the same guarantees on the
PoA. Although this connection is quite simple, it results in significant improve-
ment on the PoA comparing to budget-balanced protocols. More precisely, we
map each player to a single specific strategy and charge very high costs for any
alternative strategy. In this way, their mapped strategy becomes a (strongly)
dominant strategy. For the set cover game, we enforce the oblivious solution
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given by [19]. They apriori map each player i to some subset Fi ∈ F ; then,
if i is sampled, Fi should be in the induced solution. For the multicast game,
the algorithm of [17], for the online Steiner tree problem, provides an oblivious
solution.

Budget-Balanced Protocols (Sect. 3). First, we provide lower bounds for the
PoA of budget-balanced protocols. It is not hard to see that there exists a set cover
game that reduces to the lower bound of Chen, Roughgarden and Valiant [6] for the
multicast directed network games, resulting in PoA= Ω(n) in the complete infor-
mation case; we refer the reader to the full version of the paper for this reduction.
For the stochastic or Bayesian setting, where players are i.i.d., we show that the
same lower bound holds, but a further analysis is needed. We refer the reader to
the full version of the paper for this reduction. Regarding the multicast game, the
PoA is O(1) for the complete information case [6] and the stochastic case [10,17].
However, we show that for the Bayesian setting there is a lower bound of Ω(

√
n)

(see Table 1 for a summary of the main results).

BBiE Protocols (Sect. 4). For the Bayesian (and stochastic) set cover game
there exists an ex-post1 BBiE protocol (determined in polynomial time) with PoA
O(log n), if m = poly(n), and O

(
log m

log log m−log log n

)
, if m � n. An ex-post BBiE

protocol also exists for the Bayesian multicast game resulting in constant PoA.

Posted Prices (Sect. 5). For the Bayesian (and stochastic) settings, ex-post
BBiE cannot be obtained by anonymous prices. Hence, we examine prices that
are ex-ante BBiE. In the full version of the paper, we discuss limitations of other
concepts, such as BBiE with “high” probability or bounded possible excess and
deficit. In Sect. 5 we present anonymous prices with the same upper bounds as
the BBiE protocols, for the unweighted set cover and for the multicast games,
respectively. We stress that oblivious solutions may not be sufficient to guarantee
low PoA for anonymous posted prices, in contrast to the BBiE protocols. This
is because it is not clear anymore how to enforce players to choose desirable
strategies, since anonymous prices are available to anyone. The reason that they
exist here is due to the specific properties of the oblivious solution.

Regarding the weighted set cover game, we can only provide semi-anonymous
prices with the same bounds; by semi-anonymous we mean that the prices for
each player do not depend on her identity, but only on her type. We leave the
case of anonymous prices as an open question. We remark that in all cases,
posted prices induce dominant strategies for the players. At last, for the poly-
time determinable prices, we give tight lower bounds.

Prior-Independent Mechanisms. Clearly, the above BBiE protocols and
posted prices depend on the prior distribution. Prior-independent mechanisms
are also of high interest and in Sect. 6 we discuss their limitations.

1 In ex-post budget-balance we require budget-balance in every realization of the game.
If the expected excess and deficit are zero, the budget balance is called ex-ante.
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Table 1. PoA of budget-balanced and BBiE protocols.

BB protocols BBiE protocols/posted prices

Set cover Undirected Set cover Undirected

Full information Θ(n) [6] O(1) [6] 1 1

Bayesian Ω(n) Ω(
√

n) O(n/ log n) O(1)

In the full version of the paper we further study the complete information
setting (see Table 1). Due to lack of space, we refer the reader to the full version
of the paper for all the missing proofs.

1.2 Related Work

There is a vast amount of research in cost-sharing games and so, we only mention
some of the most related. Moulin and Shenker [27] studied cost-sharing games
under mechanism design context. In similar context, other papers considered
(group)strategy proof and efficient mechanisms and relaxed the budget-balanced
constraint; Devanur, Mihail and Vazirani [12] and Immorlica, Mahdian and Mir-
rokni [22] studied the set cover game under this context showing positive and
negative bounds on the fraction of the cost that is covered.

Regarding the network design games, there is a long line of works mainly
focusing on fair cost allocation originated by Anshelevich et al. [2]. They showed
a tight Θ(log k) bound on the PoS for directed networks, while for undirected net-
works the exact value of PoS still remains an open problem. For multicast games,
Li [26] proved an upper bound of O(log k/ log log k), while for broadcast games,
a constant upper bound is known due to Bilò, Flammini and Moscardelli [4].
Chen, Roughgarden and Valiant [6] were the first to study the design aspects
for this game, identifying the best protocol with respect to the PoA and PoS
in various cases, followed by [10,13,18]. The Bayesian Price of anarchy was first
studied in auctions by [8]; see also [28] for routing games, and [30] for the PoS
of Shapley protocol in cost-sharing games.

Close in spirit to our work is the notion of Coordination Mechanisms [7] which
provide a way to improve the PoA in cases of incomplete information. Similar to
our context, the designer has to decide in advance game-specific policies, without
knowing the exact input. Such mechanisms have been used for scheduling and
simple routing games, see [1,3,9] and the papers cited therein.

Posted prices have been used for pricing in large markets. Kelso and Crawford
[24] and Gul and Stacchetti [20] proved the existence of prices, for gross substi-
tute valuations, that clear the market efficiently. Pricing bundles for combina-
torial Walrasian equilibria was introduced by Feldman, Gravin and Lucier [15],
who showed that half of the social welfare can be achieved. In a follow-up work
[16], they considered Bayesian combinatorial auctions and they could guarantee
half of the optimum welfare, by using anonymous posted prices.

The underlying problems that we consider here, the set cover and the min-
imum Steiner tree problems, are well studied NP-complete problems. The best
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known approximations are O(log(k)) [11] (by using a simple greedy algorithm)
and 1.39 [5]; in fact, for the set cover problem, Feige [14] showed that no improve-
ment by a constant factor is likely. Research has been done regarding the sto-
chastic model, Grandoni et al. [19] showed a roughly O(log nm) tight bound for
the set cover problem and Garg et al. [17] gave bounds on the approximation
of the stochastic online Steiner tree problem. A slightly different distribution is
the independent activations; [10,29] demonstrated constant approximation algo-
rithms or the universal TSP problem and the multicast game, respectively.

2 Model

Cost-Sharing Protocol. In the cost-sharing games, we consider that there
are k players who are interested in a set of resources, R = {r1, . . . , rm}. Each
resource r carries a cost cr. Whenever a subset of players uses a resource r,
they are charged some cost-share, defined by a cost-sharing (resource-specific)
method ξ. A cost-sharing protocol Ξ decides a cost-sharing method for each
resource. In accordance with previous works, [6,10,13], the following are some
natural properties that Ξ needs to satisfy:

– Stability: The induced game has always a pure Nash equilibrium.
– Separability: The cost shares of each resource r are completely determined by

the set of players that choose it.
– BBiE: In any pure (Bayes) Nash equilibrium profile, the cost shares of the

players choosing r should cover exactly the cost of r.

For the rest of the paper, by k we denote the number of players and by n the
number of different types of the players, i.e. in the set cover game, |U | = n, and
in the multicast game, |V | = n.

Information Models. We study several information models, from the point of
view of the designer and of other players, regarding the knowledge of players’
type. A player’s type is some resource: in the set cover game, it is some element
from U that needs to be covered, and in the multicast game, it is some vertex of
G, on which the player’s terminal lies, and requires connectivity with the root t.
The parameters of the game is known to both the protocol designer and the
participants. To be more specific, the tuple (U,F , c) in the set cover game and
the underlying (weighted) graph in the multicast game are commonly known.

The information models that we consider are the following:

– Complete Information: The types of the players are common knowledge, i.e.
they are known to all players and to the designer.

– Stochastic/A priori: The players’ types are drawn from some product distrib-
ution D defined over the type set (U for set cover and V for multicast). The
actual types are unknown to the designer, who is only aware of D. However,
the players decide their strategies by knowing other players’ types.
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– Bayesian: The players’ types are drawn from some product distribution D
defined over the type sets. Both the designer and the players know only D.
The players now decide their strategies by knowing only D and not the actual
types. A natural assumption is that every player knows her own type.

We assume that the players’ types are distributed i.i.d. (D = πk) and the
type of each player is drawn independently from some probability distribution
π : R → [0, 1], with

∑
r∈R π(r) = 1; R is either U in the set cover or V in the

multicast. For simplicity we write πr instead of π(r).

Price of Anarchy (PoA). Let opt(t) be the optimum solution given the play-
ers’ types t, and NE(t) and BNE be the set of pure Nash equilibria and pure
Bayesian Nash equilibria, respectively. We denote the cost of any solution A as
c(A). Then, the Price of Anarchy (PoA) for the complete information, stochastic
and Bayesian settings is defined, respectively, as:

PoA = max
t

s∈NE(t)

c(s)
c(opt(t))

; PoA = max
D

Et∼D[maxs∈NE(t) c(s)]
Et∼D[c(opt(t))]

;

PoA = max
D,s∈BNE

Et∼D,s(t)[c(s(t))]
Et∼D[c(opt(t))]

.

3 Lower Bounds for Budget-Balanced Protocols

Theorem 1. The Bayesian or stochastic PoA of any budget-balanced protocol,
for the unweighted set cover game, is Ω(n).

Proof. Consider n players and n elements/types U = (1, . . . , n) and the family of
sets F = {F1 = {1}, F2 = {2}, . . . Fn = {n}, Fall = U} with unit costs. Suppose
that π is the uniform distribution over U . Then the probability that element i is
drawn as the type of at least one player is qi = 1 − (

1 − 1
n

)n ≥ 1 − 1
e . By using

any budget-balanced protocol, it is a (Bayes) Nash equilibrium if each player of
type i chose set Fi. Her cost-share does not exceed 1, while by deviating to Fall

her cost-share becomes 1. The expected cost of that equilibrium is nqi = Ω(n),
whereas the optimum solution (all players choose the set Fall) has cost 1. �	
Theorem 2. The Bayesian PoA of any budget-balanced protocol, for the multi-
cast game, is Ω(

√
n).

Proof. Consider the graph of Fig. 1. We set p = 1 −
(
1 − 1√

n

) 1
n

, such that
the probability that vertex vi is drawn as the type of at least one player is
qi = 1 − (1 − p)n = 1√

n
. We claim that, for any budget-balanced protocol, it is

a Bayes-Nash equilibrium if any player with type vi uses the direct edges (vi, t).
Indeed, if player i uses any other path (vi, v, vj , t) her cost-share will be at least
2√
n

+ (1 − qj) = 1 + 1√
n
, which is greater than her current cost-share of at

most 1. The expected social cost and optimum are: E[SC] =
∑

i qi =
√

n and
E[Opt] ≤ ∑

i qi · 1√
n

+ 1 = n 1
n + 1 = 2. So, the Bayes PoA is at least 1

2

√
n. �	
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t pt = 1 − np
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Fig. 1. Lower bound on the PoA of any budget-balanced protocol.

4 BBiE Protocols

In this section we drop the requirement of budget balance and instead we consider a
more general class of cost-sharing protocols C, where the requirement is to preserve
the budget balance in the equilibrium. For the rest of the paper, by h we denote a
very high value with respect to the parameters of the game. h should be larger than
the total cost-share of anyplayerbyusinganybudget-balancedprotocol. It is safe to
assume that h >

∑
r∈R cr. For the set cover game it is sufficient that h > maxj cFj

.
To show our results we will use known oblivious algorithms of the corresponding
optimization problems and we will enforce their solution by applying appropriate
cost-sharing protocols (or posted prices in Sect. 5); e.g. choices, not consistent with
this solution, are highly expensive.

The types of the players correspond to the input components of the problem,
and the set of the resources are the domain of players action space. An obliv-
ious algorithm assigns an action for each input component, based on the prior
distribution, and independently of the realization of all other input components.
Take as an example, the multicast game, where the actions of an input (source)
corresponds to the paths connecting the source to the root. An oblivious solu-
tion, maps each vertex to some path that connects it to the root, and is used in
any realization of the input that contains this source.

Theorem 3. Let G be any cost-sharing game and Π the underlying optimization
resource allocation problem. Given any oblivious algorithm of Π with approxima-
tion ratio ρ, there exists a cost-sharing protocol Ξ ∈ C for G with PoA= O(ρ).

The following corollaries hold for both the Bayesian and the stochastic setting.

Set Cover Game. Grandoni et al. [19] studied the stochastic problem, and they
showed two mapping algorithms for the oblivious set cover problem (one for the
unweighted problem which is length-oblivious and one for the unweighted problem
which is length-oblivious), which are almost O(log mn)-competitive. Theorem 3
implies the following corollary.

Corollary 4. In the unweighted and weighted set cover game, there exist length-
oblivious protocol Ξ1 ∈ C and length-aware protocol Ξ2 ∈ C, respectively, both
computed in polynomial time, and with PoA of O(log n), if m = poly(n), and
O

(
log m

log log m−log log n

)
, if m � n.
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Multicast Game. Garg et al. [17] showed a constant approximation on the
online Steiner tree problem. The idea is the following: sample a set S from
the distribution πk over the vertices and construct a minimum Steiner tree (or a
constant approximation). Then connect each other vertex with its nearest vertex
from S via shortest path. That way we end up with a spanning tree T (standard
derandomization techniques can apply [10,29,31]). T defines a single path from
each vertex to the root and this is an oblivious strategy for each players’ type.
By using Theorem 3 and any constant approximation of the minimum Steiner
tree (the best known is by [5]), the following corollary holds.

Corollary 5. In the multicast game, there exists Ξ ∈ C with PoA = O(1).

5 Posted Prices

In this section, we show how to set anonymous or semi-anonymous prices for the
resources. Ex-post BBiE cannot be obtained by using anonymous posted prices.
Instead, we require ex-ante BBiE. For the rest of the section we define kA to
be the expected number of players having type in A and k1

A to be the expected
number of players having type in A, given there exists at least one such player:

kA = Et[|i : ti ∈ A|] = k
∑

i∈A

πi;

k1
A = Et[|i : ti ∈ A| given |i : ti ∈ A| ≥ 1] =

k
∑

i∈A πi

1 − (
1 − ∑

i∈A πi

)k
. (1)

Set Cover Game. To determine anonymous prices for the unweighted set cover
game, we first state Lemma 6 to be used in stability arguments.

Lemma 6. For any a > b > 0 and integer k ≥ 2, a
1−(1−a)k

> b
1−(1−b)k

.

Proposition 7. In the unweighted set cover game, there exist length-oblivious
and anonymous prices (computed in polynomial time) with PoA O(log n), if
m = poly(n), and O

(
log m

log log m−log log n

)
, if m � n.

Proof. In order to set the prices, we run the greedy algorithm of [11] and at each
step we set the price for the selected set. Algorithm 1 describes this procedure.

We first argue that there exists a unique Bayes-Nash equilibrium, where each
player i chooses the set picked earlier by Algorithm 1 and covers her. For that it is
sufficient to show that for any two sets A and B, such that

∑
i∈A πi >

∑
i∈B πi,

k1
A > k1

B . From (1), we need to show that k
∑

i∈A πi

1−(1−∑i∈A πi)k
>

k
∑

i∈B πi

1−(1−∑i∈B πi)k
,

which is true due to Lemma 6, by setting a =
∑

i∈A πi and b =
∑

i∈B πi; note
that for k = 1, there exists only one player and this is a trivial case.

Next notice that, given that a set F is chosen by some player, the expected
number of players paying for it is k1

F , resulting in ex-ante BBiE. As for the PoA,
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ALGORITHM 1. Bayesian posted prices.
Input: (U, F).
while U �= ∅ do

let F ← set in F maximizing
∑

i∈F∩U πi;
set the price for F to 1

k1
F∩U

; Let U ← U \ F .

end
Set the price of all other sets to h.

Grandoni et al. [19] analyzed the performance of Algorithm 1, for the stochastic
problem. They didn’t consider any prices, instead they mapped each player to
the first set considered by the algorithm and they used the mapping in order to
form a set cover. Their cover though coincide with the equilibrium solution and
therefore their results immediately provide bounds on the PoA. �	
Proposition 8. In the weighted set cover game, there exist length-aware and
semi-anonymous prices (computed in polynomial time) with PoA O(log n), if
m = poly(n), and O

(
log nm

log log m−log log n

)
, if m � n.

Proposition 9. For k = Ω(n), there are no anonymous prices for the
unweighted set cover, or semi-anonymous prices for the weighted set cover,
with PoA= o

(
log m

log log m−log log n

)
, for m � n. Moreover, there are no such

prices computed in poly-time, with PoA= o(log n) for m = poly(n), unless
NP ⊆ DTIME(nO(log log n)).

Multicast Game. We construct a spanning tree T in the same way as in Sect. 4
and we use it to set the posted prices (computed in polynomial time).

Proposition 10. In the multicast game, there exist prices with PoA= O(1).

Proof. For each edge e ∈ E(T ), let V (e) be the set of vertices that are discon-
nected from the root t in T\{e}. We set the price for each e ∈ E(T ) as ce/k1

V (e).
For each e /∈ E(T ), the price is set to h. In the equilibrium each player chooses
the path that connects her terminal with t via T . The constant PoA follows by
[17] and the approximation of [5]. The expected total prices for e ∈ E(T ) is
k1

V (e)ce/k1
V (e) = ce, if e is used, and 0 otherwise, resulting in ex-ante BBiE. �	

6 Prior-Independent Mechanisms

The design of prior-independent mechanisms is a more difficult task, as the objec-
tive now is to identify a single mechanism that always has good performance,
under any distributional assumption. In this section, we show limitations of prior-
independent mechanisms even for the restricted class of i.i.d. prior distributions.

BBiE Protocols. Satisfying BBiE with prior-independent protocols highly
restricts the class of cost-sharing protocols and seems hard for natural classes of
distribution, e.g. i.i.d., to find ex-post BBiE protocols with low PoA.
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Proposition 11. In the weighted set cover game, any prior-independent, ex-
post BBiE protocol Ξ ∈ C has PoA= Ω(

√
n).

Proof. Consider n players, n+1 elements/types U = {0, 1, . . . , n} and the family
of sets F = {F0, F1, . . . Fn, Fall}, with Fj = {j}, cFj

= 1 for all j, and Fall =
{1, . . . , n}, cFall

=
√

n. Note that 0 is covered only by F0, serving as dummy set.
Given a BBiE, prior-independent protocol Ξ, suppose that there exists some

Fj , j �= 0, where Ξ is not budget-balanced, i.e. there exists a set of players S,
such that if only S chooses Fj , the sum of their cost-shares are different from 1.
Consider the prior distribution D1 = πn with π(0) = π(j) = 1/2 and π(j′) = 0
for any j′ /∈ {0, j}. With positive probability, 1/2n, all player of S have type j
and all other players have type 0. If all players of S choose Fj in any pure Bayes-
Nash equilibrium, ex-post BBiE is violated. So, there exists a player choosing
Fall (and this happens with probability 1/2) which results in PoA = Ω(

√
n).

Suppose now that Ξ is budget-balanced for any Fj , where j �= 0. Let I be
the set of players such that whenever i ∈ I is the only player choosing Fall, Ξ
doesn’t charge

√
n to i. Consider the prior distribution D2 = πn with π(0) = 1/2

and π(j) = 1/2n for all other j. With positive probability, 1/(2nn), player i’s
type is some j �= 0 and all other players’ type is 0. If for any type j �= 0 player i
chooses Fall in any Bayes-Nash equilibrium, ex-post BBiE is violated.

We claim that the strategy profile, where any player i with type ti chooses
Fti is a Bayes-Nash equilibrium. For any player i ∈ I there is no other valid
strategy. For each player i /∈ I, whenever ti �= 0, player i always pays at most 1
(due to budget balanced in Fti), whereas if she deviates to Fall she pays

√
n.

Each element j �= 0 is a type of a player with probability 1−(
1 − 1

2n

)n ≥ 1− 2
e ,

giving an expected cost of Ω(n) in the equilibrium. The expected optimum is at
most 1 +

√
n by using only F0 and Fall and so PoA= Ω(

√
n). �	

Posted Prices. Setting posted prices in the adversarial model cannot guarantee
any budget-balance in equilibrium, even ex-ante. Consider the set cover game
(similar example exists for the multicast game) with n players, n elements and
two subsets of unit costs, one containing element 1 and the other containing
the rest. Suppose now that we post a price q for the first subset. If q ≤ 1/

√
n,

for the uniform prior distribution, the expected number of players with type 1,
given that there exists at least one, is n·1/n

1−(1−1/n)n ≤ e
e−1 . The expected cost

shares for the first set are O(1/
√

n), meaning that its cost is undercovered by a
factor of Ω(

√
n). If q > 1/

√
n, consider the prior D = πn, where π(1) = 1 and

π(j) = 0 for all j �= 1. All players choose the first set and their total shares are
n · 1/

√
n =

√
n which exceeds the set’s cost by a factor of

√
n. So, there is no

way to avoid an over/under-charge of a resource by a factor better than Θ(
√

n).
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Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 820–832. Springer,
Heidelberg (2008)

9. Christodoulou, G., Mehlhorn, K., Pyrga, E.: Improving the price of anarchy for
selfish routing via coordination mechanisms. Algorithmica 69(3), 619–640 (2014)

10. Christodoulou, G., Sgouritsa, A.: Designing networks with good equilibria under
uncertainty. In: SODA, pp. 72–89. SIAM (2016)

11. Chvatal, V.: A greedy heuristic for the set-covering problem. Math. Oper. Res.
4(3), 233–235 (1979)

12. Devanur, N.R., Mihail, M., Vazirani, V.V.: Strategyproof cost-sharing mechanisms
for set cover and facility location games. Decis. Support Syst. 39(1), 11–22 (2005)

13. von Falkenhausen, P., Harks, T.: Optimal cost sharing for resource selection games.
Math. Oper. Res. 38(1), 184–208 (2013)

14. Feige, U.: A threshold of ln n for approximating set cover. J. ACM 45(4), 634–652
(1998)

15. Feldman, M., Gravin, N., Lucier, B.: Combinatorial walrasian equilibrium. In:
STOC, pp. 61–70. ACM (2013)

16. Feldman, M., Gravin, N., Lucier, B.: Combinatorial auctions via posted prices. In:
SODA, pp. 123–135. SIAM (2015)

17. Garg, N., Gupta, A., Leonardi, S., Sankowski, P.: Stochastic analyses for online
combinatorial optimization problems. In: SODA, pp. 942–951. SIAM (2008)

18. Gkatzelis, V., Kollias, K., Roughgarden, T.: Optimal cost-sharing in weighted con-
gestion games. In: Liu, T.-Y., Qi, Q., Ye, Y. (eds.) WINE 2014. LNCS, vol. 8877,
pp. 72–88. Springer, Heidelberg (2014)

19. Grandoni, F., Gupta, A., Leonardi, S., Miettinen, P., Sankowski, P., Singh, M.: Set
covering with our eyes closed. SIAM J. Comput. 42(3), 808–830 (2013)

20. Gul, F., Stacchetti, E.: Walrasian equilibrium with gross substitutes. J. Econ. The-
ory 87(1), 95–124 (1999)

21. Harsanyi, J.C.: Games with incomplete information played by “Bayesian” players,
i-iii. part ii. Bayesian equilibrium points. Manage. Sci. 14(5), 320–334 (1968)

22. Immorlica, N., Mahdian, M., Mirrokni, V.S.: Limitations of cross-monotonic cost-
sharing schemes. ACM Trans. Algorithms 4(2), 24 (2008)

23. Kelly, F.: Charging and rate control for elastic traffic. Eur. Trans. Telecomm. 8(1),
33–37 (1997)



Designing Cost-Sharing Methods for Bayesian Games 339

24. Kelso, A.S., Crawford, V.P.: Job matching, coalition formation, and gross substi-
tutes. Econometrica 50(6), 1483–1504 (1982)

25. Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: Meinel, C., Tison,
S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999)

26. Li, J.: An o(log(n)/log(log(n))) upper bound on the price of stability for undirected
shapley network design games. Inf. Process. Lett. 109(15), 876–878 (2009)

27. Moulin, H., Shenker, S.: Strategyproof sharing of submodular costs: budget balance
versus efficiency. Econ. Theory 18(3), 511–533 (2001)

28. Roughgarden, T.: The price of anarchy in games of incomplete information. ACM
Trans. Econ. Comput. 3(1), 6 (2015)

29. Shmoys, D., Talwar, K.: A constant approximation algorithm for the a priori trav-
eling salesman problem. In: Lodi, A., Panconesi, A., Rinaldi, G. (eds.) IPCO 2008.
LNCS, vol. 5035, pp. 331–343. Springer, Heidelberg (2008)

30. Syrgkanis, V.: Price of stability in games of incomplete information. CoRR (2015)
31. Williamson, D.P., van Zuylen, A.: A simpler and better derandomization of an

approximation algorithm for single source rent-or-buy. Oper. Res. Lett. 35(6),
707–712 (2007)



Abstracts



Essential µ-Compatible Subgames for Obtaining
a von Neumann-Morgenstern Stable Set

in an Assignment Game

Keisuke Bando1,2(B) and Yakuma Furusawa1,2

1 Department of Business Economics, School of Management,
Tokyo University of Science, Tokyo, Japan

k.bando@rs.tus.ac.jp
2 Department of Social Engineering,

Graduate School of Decision Science and Technology,

Tokyo Institute of Technology, Tokyo, Japan

Abstract. We study von Neumann-Morgenstern (vNM) stable sets in
an assignment game. Previous research has shown that for any given
optimal matching µ, the union of the extended cores of all µ-compatible
subgames is a vNM stable set. Typically, the set of all µ-compatible sub-
games includes many elements, most of which are inessential for obtain-
ing the vNM stable set. We introduce the notion of essential µ-compatible
subgames, without which one cannot obtain the vNM stable set. We pro-
vide an algorithm to find a collection of essential µ-compatible subgames
for obtaining the vNM stable set under a mild assumption for the val-
uation matrix. Our simulation result reveals that the average number
of essential µ-compatible subgames is significantly lower than that of all
µ-compatible subgames.

Keywords: Two-sided matching · Assignment game · Stable set ·
Essential µ-compatible subgames

The full version of this paper is available at http://www.soc.titech.ac.jp/info/docs/
DP2016-5.pdf. Keisuke Bando acknowledges the Japan Society for the Promo-
tion of Science for financial support through the Grant-in-Aid for Young Scientists
(WAKATE B, No. 16K17079).

c© Springer-Verlag Berlin Heidelberg 2016
M. Gairing and R. Savani (Eds.): SAGT 2016, LNCS 9928, p. 343, 2016.
DOI: 10.1007/978-3-662-53354-3

http://www.soc.titech.ac.jp/info/docs/DP2016-5.pdf
http://www.soc.titech.ac.jp/info/docs/DP2016-5.pdf


Repeated Multimarket Contact
with Observation Errors

Atsushi Iwasaki1, Tadashi Sekiguchi2, Shun Yamamoto3,
and Makoto Yokoo3

1 University of Electro-Communications, Chofu, Japan
iwasaki@is.uec.ac.jp

2 Kyoto University, Kyoto, Japan
sekiguchi@kier.kyoto-u.ac.jp

3 Kyushu University, Fukuoka, Japan
syamamoto@agent.inf.kyushu-u.ac.jp, yokoo@inf.kyushu-u.ac.jp

This paper analyzes repeated multimarket contact with observation errors where
two players operate in multiple markets simultaneously. A firm, e.g., Uber, pro-
vides its taxi service in multiple distinct markets (areas) and determines its
price or allocation in each area, facing an oligopolistic competition, which is
often modeled as a prisoners’ dilemma. To improve profits, it is inevitably help-
ful to realize how the firm’s rival should behave in an equilibrium. Alternatively,
it is pointed out that tacit collusion among firms is likely to occur. It is also
desirable for a regulatory agency to theoretically understand the extent of the
profits firms earn by collusion. However, despite vast empirical studies that have
examined whether multimarket contact fosters cooperation or collusion, little is
theoretically known as to how players behave in an equilibrium when each player
receives a noisy observation or signal of other firms’ actions.

This paper considers a different, but realistic noisy situation where players
do not share common information on each other’s past history, i.e., private mon-
itoring where each player may observe a different signal. For example, although
a firm cannot directly observe its rival’s action, e.g., prices, it can observe a noisy
signal, e.g., its rival’s sales amounts. Though analytical studies on this class of
games have not been very successful, a belief-free approach has established a
general characterization where an equilibrium strategy is constructed. However,
it is not obvious whether this approach is helpful in examining the effects of
multimarket contact. Its tractability may be lost if we deal with any number of
markets, so that the number of available actions exponentially increases.

The goal of this paper is to answer the following question: under multimarket
contact with private monitoring, can we find a particular class of strategies which
can sustain a better outcome than an equilibrium strategy for a single market?
To the best of our knowledge, we are the first to construct a strategy designed for
multiple markets whose per-market equilibrium payoffs exceed one for a single
market. First, we construct an entirely novel strategy whose behavior is specified
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ported in part by KAKENHI 26280081 and 24220003.
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by a nonlinear function of the signal configurations. Precisely, a player chooses
her action at a period according to in which markets she receives bad signals
at the previous period. We call this class of the strategies nonlinear transition,
partial defection. Then, we show that the per-market equilibrium payoff improves
when the number of markets is sufficiently large via the theoretical and numerical
analysis.
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