
Chapter 3
Fuzzy Relations

Everything that exists in nature is due to chance and need.
(Democritus, C.460–C.370 BCE)

Abstract This chapter presents a short discussion of mathematical relations, basic
concepts of fuzzy relations, and the composition between two fuzzy relations. Lastly,
the chapter presents the rule for the composition of inferences, which is relevant to
the modus ponens discussed in the next chapter.

Do the individuals of a species agree with Democritus: they relate to one another so
as to construct the trajectories in the course of their lives only to survive apparently
without any interest of optimizing anything? Or do they seek the maximum return
for the minimum of effort, as was advocated by Leibniz when he said “that we live
in the best of all worlds?” Maybe the difference between these two poles is just a
matter of gradual truth.

Studies dealing with associations, relations or interactions between elements of
many classes is of great interest in the analysis andunderstandingofmanyphenomena
of real world problems and mathematics. Such studies are always concerned with
establishing such relations. We will see in this chapter that fuzzy relations are a
natural extension of classical mathematical relations and these fuzzy relations have
wide applications.

3.1 Fuzzy Relations

The concept of relation in mathematics is formalized from the point of view of set
theory. We will follow the same path. Intuitively, we say that the relation is fuzzy
when we adopt a fuzzy set theory point of view, and is crisp when we use classical
set theory to conceptualize the relation. The choice of the relation depends on the
phenomenon that we are studying. However, fuzzy set theory is always more general
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44 3 Fuzzy Relations

than classical set theory, since fuzzy set theory includes classical set theory as a
particular case (remember that a classical set—crisp set—is a particular fuzzy set).
A classical relation indicates if there is or is not some association between two
elements, while fuzzy relations indicate, in addition, the degree of this association.

Definition 3.1 A (classical) relation R over U1×U2× · · · ×Un is any (classical)
subset of the Cartesian productU1×U2× · · · ×Un . If the Cartesian product is formed
by just two sets U1×U2, this relation is called a binary relation over U1×U2. If
U1 = U2 = · · · = Un = U , we say that R is a n-ary relation over U .

A crisp relationR is a subset of the Cartesian product and can be represented by
its characteristic function

χR : U1×U2× . . . ×Un −→ {0, 1} ,

with

χR(x1, x2, . . . , xn) =
{
1 if (x1, x2, . . . , xn) ∈ R
0 if (x1, x2, . . . , xn) /∈ R . (3.1)

The mathematical concept of fuzzy relation is formalized from the usual Cartesian
product between sets, extending the characteristic function of a classical relation to
a membership function.

Definition 3.2 A fuzzy relation R over U1 ×U2× . . . ×Un is any fuzzy subset of
U1 ×U2× . . . ×Un . Thus, a fuzzy relation R is defined by a membership function
ϕR : U1×U2× . . . ×Un −→ [0, 1].

If the Cartesian product is formed by just two sets U1×U2, the relation is called
a binary fuzzy relation over U1×U2. If the sets Ui , i = 1, 2, . . . , n, are all equal to
U , then we say thatR is a n-ary fuzzy relation over U . For example, a binary fuzzy
relation over U is a fuzzy relation R over U×U . If a membership function of the
fuzzy relation R is indicated by ϕR, then the number

ϕR(x1, x2, . . . , xn) ∈ [0, 1]

indicates the degree to which the elements xi that compose the n-tuple
(x1, x2, . . . , xn) are related according to the relationR.

The fuzzy inference relationships which are used in making decisions are of
great importance, especially in the theory of the fuzzy controllers, as we shall see
in Chap.5. Technically, in fuzzy set theory this operation is similar to intersection,
as seen in Chap.1, Sect. 1.3. The great difference is in the associated universe from
which the set comes. While in the intersection of fuzzy subsets, the same universal
sets are the same, in the Cartesian product they can be different, as we shall see in
the next definition.
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3.1 Fuzzy Relations 45

Definition 3.3 The fuzzyCartesian product of the fuzzy subsets A1, A2, ..., An ofU1,
U2, ...,Un , respectively, is the fuzzy relation A1×A2× · · · × An , whose membership
function is given by

ϕA1×A2×···×An (x1, x2, . . . , xn) = ϕA1(x1) ∧ ϕA2(x2) ∧ · · · ∧ ϕAn (xn),

where ∧ represents the minimum.

Notice that if A1, A2, . . . , An are classical sets, then the classicalCartesianproduct
A1×A2× · · · ×An may be obtained by Definition 3.3, substituting the membership
functions by the respective characteristic functions of the sets A1, A2, . . . , An . The
next example illustrates the application of the Cartesian product.

Example 3.1 Let us consider again the Table1.1 of the Example1.8 which relates
the diagnostics of 5 patients with two symptoms: fever and myalgia.

Patient F : Fever M : Myalgia D: Diagnosis
1 0.7 0.6 0.6
2 1.0 1.0 1.0
3 0.4 0.2 0.2
4 0.5 0.5 0.5
5 1.0 0.2 0.2

To diagnose a patient the doctor evaluates the symptoms that are specific to each
disease. Many diseases can present symptoms like fever and myalgia with different
intensities and measures. For example, for flu, the patient with fever and myalgia
with intensities that, if represented by fuzzy subsets, must have distinct universal
sets. The universe that indicates the fever can be given by the possible temperatures
of a person, while the myalgia can be assessed by the numbers of painful areas.

The indication of how much an individual has flu can be taken as the degree of
membership of the set of the fever symptoms and the set of myalgia. For example,
the patient 1 in Table1.1 has temperature x whose membership in the fever set F
is ϕF (x) = 0.7 and the value y to myalgia is ϕM(y) = 0.6. The diagnosis of the
patient 1 for the flu is then given by:

Patient 1: ϕflu(x, y) = ϕF (x) ∧ ϕM(y) = 0.7 ∧ 0.6 = 0.6.

Here we have used the fuzzy binary relationship “and” as “min”. This means that
the patient 1 is in the fuzzy subset of the ones who have fever and myalgia with
membership degree 0.6 which coincides with the degree of its diagnosis for flu.

This number obtained can give support to a physician’s decision of which adopted
treatment is best for the patient. It is clear that from the theoretical point of view, the
classical Cartesian product could also be employed for the diagnoses. In this case the
information would be flu (degree one) or not flu (degree zero). Consequently, just
patient 2 of Table1.1 would be considered to have flu.

http://dx.doi.org/10.1007/978-3-662-53324-6_1
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Chapter 6, Sect. 6.2.3, will present a more complete study about medical diag-
noses. However, we want to note that in the example above we have used the “min”
binary relationship because we have assumed that flu occurs with myalgia. However,
if myalgia was not a strong correlated part of the diagnosis, we would use a different
fuzzy relationship.

Exercise 3.1 Compare the Example 3.1 with the Example 1.8 and explain the dif-
ference between them.

Exercise 3.2 Investigate one more symptom that is typical for flu (coryza, for exam-
ple) and add it as a fuzzy subset in Table1.1 (create some values) and diagnose the
patients who have flu using the “and” operator.

3.1.1 Forms of Representation and Properties
of the Binary Relations

This text will just stress the forms of representation and some properties of the binary
relations and fuzzy binary relations, which will be illustrated by some examples. The
interested reader can consult other texts for more detailed discussion of relationships.
The following example will help to illustrate the main representations that we will
be using in this text.

Example 3.2 Let U be an ecosystem with the following populations: eagles (e),
snakes (s), insects (i),hare (h) and frogs ( f ).Apossible studybetween the individuals
of these populationsmight be the predation process, that is, the relationprey-predator.
To study the relation between two individuals from this ecosystem, this relation can
be mathematically modeled by a binary relation R with ϕR(x, y) = 0 if y is not a
predator of x and ϕR (x, y) �= 0 if y is a predator of x , where x and y are individuals
from the set U .

Next, we will discuss two possible cases of the use of the classical relation and
of the fuzzy relation for this example.

• If the interest regarding the relation is just to indicate who is the predator and who
is the prey in U , then we can choose the classical theory andR will be a classical
binary relation. In this case,

ϕR(x, y) = χR(x, y) =
{
1 if y is a predator of x
0 if y is not a predator of x

.

A graphic representation for this relation is in Fig. 3.1, where we put the animals
in alphabetical order on a pair of axes.
The points that are highlighted in Fig. 3.1 indicate the pairs that belong to the
relationR, that is, the relationR reveals who is the predator of whom accordingly
to some specialist.

http://dx.doi.org/10.1007/978-3-662-53324-6_6
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Fig. 3.1 Representation of
the classical relation between
the predators and their prey
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Fig. 3.2 Fuzzy relation and
the many degrees of
preference

• If there is interest in knowing, for example, the gradual preference of a predator for
some prey inU , then a good option is to chooseR as a fuzzy relation. In that case,
ϕR(x, y) indicates the preference degree of y for prey x . Supposing that there is no
difference in the predation degree in each species, one possibility for ϕR(x, y) for
this example, might be measured according to a specialist as illustrated in Fig. 3.2,
where in the third axis (vertical axis) this (fuzzy) measure is represented as degree
ϕR(x, y).

When X and Y are finite, the most common forms to represent a binary fuzzy
relation in X×Y are the tabular and the matrix forms. Let us define X =
{x1, x2, . . . , xm}, Y = {y1, y2, . . . , yn} and the fuzzy relation R over X × Y with
membership function given by ϕR(xi , y j ) = ri j , for 1 ≤ i ≤ n and 1 ≤ j ≤ m.
The representations of R can be in table or in matrix form as it follows below.

R y1 y2 . . . yn
x1 r11 r12 . . . r1n
x2 r21 r22 . . . r2n
...

...
...

. . .
...

xm rm1 rm2 . . . rmn

orR =

⎡
⎢⎢⎢⎣
r11 r12 . . . r1n
r21 r22 . . . r2n
...

...
. . .

...

rm1 rm2 . . . rmn

⎤
⎥⎥⎥⎦ .
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To exemplify the representations in table and in matrix form for Example 3.2 we
have, respectively,

p r e d a t o r

p
r
e
y
s

R e s i h f
e 0.0 0.0 0.0 0.0 0.0
s 1.0 0.2 0.0 0.0 0.0
i 0.1 0.0 0.3 0.0 1.0
h 1.0 0.8 0.0 0.0 0.0
f 0.2 1.0 0.0 0.0 0.1

and

R =

⎡
⎢⎢⎢⎢⎣

0.0 0.0 0.0 0.0 0.0
1.0 0.2 0.0 0.0 0.0
0.1 0.0 0.3 0.0 1.0
1.0 0.8 0.0 0.0 0.0
0.2 1.0 0.0 0.0 0.1

⎤
⎥⎥⎥⎥⎦ .

The following definition will be used in subsequent analyses.

Definition 3.4 Let R be a binary fuzzy relation defined over X × Y . The inverse
binary fuzzy relation,R−1, defined over Y × X , has the following membership func-
tion ϕR−1 : Y × X −→ [0, 1], with ϕR−1(y, x) = ϕR(x, y).

Notice that the matrix ofR−1 coincides with the transpose ofR, since ϕR−1(y, x)
= ϕR(x, y). For this reason many texts of fuzzy logic adopt the term transpose
relation instead of inverse (see Pedrycz and Gomide [1]). Thus, if R is the fuzzy
relation of the Example 3.2, then the matrix representation of its inverse R−1 is
given by its transpose

R� =

⎡
⎢⎢⎢⎢⎣

0.0 1.0 0.1 1.0 0.2
0.0 0.2 0.0 0.8 1.0
0.0 0.0 0.3 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.0 0.0 1.0 0.0 0.1

⎤
⎥⎥⎥⎥⎦ .

The transpose, R−1, for our prey-predator example, indicates that x is a prey of
y, while byR we have that y is a predator of x .

3.2 Composition Between Binary Fuzzy Relations

The composition between relations is of great importance in many applications.
This operation will be explored extensively in Chap. 6, where the main applications
in medical diagnoses are developed. Also in Chap.6 we will study many types of

http://dx.doi.org/10.1007/978-3-662-53324-6_6
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compositions between fuzzy relations. Here, in this section, we will present only the
more traditional compositions of fuzzy logic.

Definition 3.5 Let R and S be two binary fuzzy relations in U×V and V×W ,
respectively. The compositionR ◦ S is a binary fuzzy relation inU×W whosemem-
bership function is given by

ϕR◦S(x, z) = sup
y ∈ V

[min(ϕR(x, y), ϕS(y, z))]. (3.2)

Let the setsU , V andW be finite. Then thematrix formof the relationR ◦ S, given
by the composition [max–min], is obtained by a matrix multiplication, substituting
the product by the minimum and the sum by the maximum. Indeed, suppose that

U = {u1, u2, . . . , um};V = {v1, v2, . . . , vn} and W = {w1, w2, . . . , wp}

and that

R =

⎡
⎢⎢⎢⎣
r11 r12 . . . r1n
r21 r22 . . . r2n
...

...
. . .

...

rm1 rm2 . . . rmn

⎤
⎥⎥⎥⎦

m×n

and S =

⎡
⎢⎢⎢⎣
s11 s12 . . . s1p
s21 s22 . . . s2p
...

...
. . .

...

sn1 sn2 . . . snp

⎤
⎥⎥⎥⎦

n×p

.

According to Definition 3.5, the binary fuzzy relation given by the composition
[max–min] has the following matrix form

T = R ◦ S =

⎡
⎢⎢⎢⎣
t11 t12 . . . t1p
t21 t22 . . . t2p
...

...
. . .

...

tm1 tm2 . . . tmp

⎤
⎥⎥⎥⎦

m×p

,

where

ti j = sup
1≤k≤n

[min(ϕR(ui , vk), ϕS(vk, w j ))] = sup
1≤k≤n

[min(rik, sk j )]. (3.3)

The special case of the composition [max–min], which will be presented next,
will be used in a more general way in Chap.6.

Definition 3.6 (Rule of inference composition) Let U and V be two sets with the
respective classes of the fuzzy subsets F(U ) and F(V ) andR a binary relation over
U×V .

(i) The relation R defines a function of F(U ) into F(V ) such that for each A ∈
F(U ) there is a corresponding element B ∈ F(V ) whose membership function
is given by

http://dx.doi.org/10.1007/978-3-662-53324-6_6
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ϕB(y) = ϕR(A)(y) = sup
x ∈U

[min(ϕR(x, y), ϕA(x))]. (3.4)

This composition is known as the rule of inference composition which will
produce other rules as we shall see in Chaps. 4 and 5.

(ii) The relationR also defines a function of F(V ) into F(U ): for each B ∈ F(V )

there is a corresponding element A ∈ F(U )whosemembership function is given
by

ϕA(x) = ϕR−1(B)(x) = sup
y ∈ V

[min(ϕR−1(y, x), ϕB(y))]. (3.5)

A is called the inverse image of B by R.

Notice that formula (3.4) can be rewritten as

ϕB(y) = ϕR(A)(y) = sup
x ∈U

[min(ϕA(x), ϕR(x, y))].

Thus, according to (3.2),
B = R(A) = A ◦ R.

In a similar way the inverse image is given by

A = B ◦ R−1.

Exercise 3.3 Suppose that the universal sets U and V are finite so that A, B andR
can be represented in matrix form. From the observation above verify that

B = A ◦ R and A = B ◦ R�

where A and B are the matrix forms of the respective fuzzy sets whose elements are
obtained from (3.3).

We will present some important definitions to deepen our understanding of binary
relations which will be made first for classical binary relations and next for the
binary fuzzy relations. The definitions for the classical binary relations R will be
made by the use of their characteristic functions χR : U×U −→ {0, 1}, for a better
understanding of the fuzzy case.

Definition 3.7 Let R be a (classical) binary relation over U . Then, for any x, y
and z of U , the relation R is

(i) reflexive if χR(x, x) = 1;
(ii) symmetric if χR(x, y) = 1 implies χR(y, x) = 1;
(iii) transitive if χR(x, y) = χR(y, z) = 1 implies χR(x, z) = 1;
(iv) anti-symmetric if χR(x, y) = χR(y, x) = 1 implies x = y.

http://dx.doi.org/10.1007/978-3-662-53324-6_4
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Observe that the definitions above represent exactly each one of the traditional
definitions used in classical set theory. The use of the characteristic function was just
an “artifice” to facilitate the understanding of those concepts in the fuzzy case. There
are some little differences in the extensions of the concepts given in theDefinition 3.7,
when adapted to the fuzzy case, mainly the concept of transitivity (see [2, 3]).

Definition 3.8 LetR be a binary fuzzy relation overU , whosemembership function
is ϕR. Then, for any x, y and z of U , the fuzzy relation R is

(i) reflexive if ϕR(x, x) = 1;
(ii) symmetric if ϕR(x, y) = ϕR(y, x);
(iii) transitive if ϕR(x, z) ≥ ϕR(x, y) ∧ ϕR(y, z), where ∧ = minimum.
(iv) anti-symmetric if ϕR(x, y) > 0 and ϕR(y, x) > 0 implies x = y.

The reflexive relation is the relation in which all element have the maximum
relation to themselves; the symmetric relation is characterized by the reciprocity
between their elements; the transitive indicates that the relation between any two
individuals can not be simultaneously less than the relation of each of them with
the rest; and the last, the anti-symmetric, is the relation that does not admit any
reciprocity between distinct elements. Relations that satisfy simultaneously the four
properties above are, generally, very artificial. Typically when they are required to
fulfill (ii) and (iv) the relation tends to be artificial. For example, if U has just one
element x , the Cartesian product U×U = {(x, x)} satisfies the properties (i)–(iv)
from the Definition 3.8. Relations that satisfy just the first three conditions are called
equivalence relations. Concepts (i)–(iv) can be seen in the following example:

Example 3.3 Intuitively, the relation of the military hierarchy (M): “is a higher rank
than” is based on the rank of the individual, that is, x is related to y if the rank of x is
higher than y. So, M is reflexive, transitive and anti-symmetric but not symmetric.
On the other hand, the relation (A): “is friend of ” is reflexive, symmetric but not
transitive.

The relations M and A are not necessarily fuzzy relations. However, if we want
to indicate the degree that x is higher than y, based not on rank but in subjective
factors, say status, thenM can be considered a fuzzy relation. The same can be said
about the relation A.
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