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“If you obey all the rules you miss all the fun”.
(Katharine Hepburn)

Abstract This chapter presents the concept of joint possibility distribution from the
point of view of fuzzy number membership. The concept of completely correlated
fuzzy numbers is presented. Next, an interactive fuzzy number subtraction operator
is discussed. Finally, two bio-mathematical models are studied using these concepts.
The first models the risk of getting dengue fever and second is an epidemiological
SI-model with completely correlated initial conditions.

This last chapter is a collection of various fun topics. So, if Katherine Hepburn is
correct, we are not following all rules. However, we are following fuzzy rule. Let
us start by presenting some more advanced topics associated with fuzzy number
arithmetic. Then we will present biomathematical models that use some of these
concepts, specifically, the concepts of t-norm, Takagi-Sugeno inference method, and
interactivity between fuzzy numbers.

The models that we will present here do not properly fit in either demographic or
environmental uncertainty as developed in Chaps. 9 and 10. So we opted to present
them into newchapter. In the firstmodelweuse the concepts of t-norm to represent the
interactivity between the involved individuals, but the equations are deterministic. In
the second model we employ the Takagi-Sugeno inference method in order to obtain
a partial differential equation that represent the evolution of an epidemic system in
time and space. Finally, in the third model we use a fuzzy differential equation whose
the variables are given by completely correlated fuzzy numbers.

Our first section starts with subtraction of fuzzy numbers of special type, interac-
tive fuzzy numbers. The reason we start with subtraction is that subtraction is where
additive inverses and change (derivatives) begin. The reason we start with interac-
tivity is that it is not always the case that the entities modeled by fuzzy numbers are
non-interactive.
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11.1 Subtration of Interactive Fuzzy Numbers

Intuitively, for the arithmetic presented in Chap. 2 there exists some type of indepen-
dence (or non-interactive) between the α-levels of the two fuzzy numbers involved,
since all elements of both intervals contribute to the result of operation in question.
Such a fact is corroborated by the minimum t-norm in the united extension and
Zadeh’s extension for fuzzy numbers. However, it is possible to define an arithmetic
for fuzzy numbers that resembles the arithmetic for random variables by means of
joint distributions.

The standard difference between two fuzzy numbers based on the difference
between intervals (see Proposition 2.5) and takes into account all the possible com-
binations between two elements, one at each α-level. Consequently, the result is
always greater (in diameter) than any of the sets involved in the operation. In fact,
the width of the result of subtracting of two intervals is the sum of the widths of these
two intervals. Thus, the difference between two non-crisp fuzzy numbers is always
a non-crisp number and subtracting a non-crisp number from itself is never zero.

Using the Hukuhara Difference (2.9), the result of subtracting a non-crisp number
A from itself (A �H A) is, in fact, non-zero. However, for this case, a necessary con-
dition for the subtraction between two different fuzzy numbers A and B to exist is
that the first term must have a bigger diameter than the second one. A proposed rem-
edy to some of the issues involving interval subtraction is the Generalized Hukuhara
difference, which also satisfies A −gH A = 0 [1, 2] and is defined for a bigger class
of fuzzy numbers than the Hukuhara difference. An extension of the generalized
Hukuhara difference is the generalized difference [1, 3], which has the same results
of the generalized Hukuhara operator (when it exists), but is defined for a larger class
of fuzzy numbers. Another possibility is CIA (Constraint Interval Arithmetic) [4].
In this case, the diameter of the difference between two fuzzy numbers using CIA is
often smaller than using standard difference.

All differences mentioned above make use of the interval arithmetic on α-levels.
Extensions to fuzzy numbers are computed viaNegoita andRalescu’s Representation
Theorem (Theorem 1.4) over the resulting α-levels.

Another way to subtract is similar to the arithmetic for random variables, that is,
the subtractions between fuzzy numbers are obtained using the joint possibility (or
membership) distribution between the involved fuzzy numbers [5]. The comparison
between the results obtained from the two approaches (interval-valued and joint
possibility distribution) is made via a kind of Nguyen extension theorem [5].

The following concepts are from possibility theory and will be used to define the
interactive difference between fuzzy numbers [5]. Some these concepts have been
presented in Chap.4.

Definition 11.1 Let A and B be fuzzy numbers and J ∈ FC(R2), the class of fuzzy
normal subsets of R2. Then J is a joint possibility distribution of A and B if

max
y∈R

ϕJ (x, y) = ϕA(x) and max
x∈R

ϕJ (x, y) = ϕB(y).
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Moreover, ϕA and ϕB are called marginal distributions of J .

If the joint possibility distribution is given by a t-norm �, then

ϕJ (x, y) = (ϕA(x)�ϕB(y)).

When � = min, A and B are called non-interactive fuzzy numbers. The results of
this section may be considered as a generalization of Zadeh’s extension for fuzzy
arithmetic which is a particular case of what is presented when the t-norm is the
minimum norm. The next definition describes a joint possibility distribution which
is not given by means of t-norm.

Definition 11.2 Two fuzzy numbers A and B are said to be completely correlated
if there are q, r ∈ R, with q �= 0, such that their joint possibility distribution C is
defined by

ϕC(x, y) = ϕA(x)X{qx+r=y}(x, y)
= ϕB(y)X{qx+r=y}(x, y) (11.1)

where

X{qx+r=y}(x, y) =
{
1 if qx + r = y
0 if qx + r �= y

is the membership function on the real line {(x, y) ∈ R
2 : qx + r = y}.

We have, in this case:

[C]α = {(x, qx + r) ∈ R
2 : x = (1 − s)aα

1 + saα
2 , s ∈ [0, 1]}

where [A]α = [aα
1 , a

α
2 ]; [B]α = q[A]α + r, for anyα ∈ [0, 1].Moreover, if asq �= 0,

ϕB(x) = ϕA

( x − r

q

)
,∀x ∈ R.

It is important to observe that some pairs of fuzzy numbers cannot be completely
correlated. For example, a triangular fuzzy number can not be completely correlated
with a trapezoidal fuzzy number. Recently, we presented a family of parametrized
joint possibility distributions which extend the properties of completely fuzzy num-
ber [6, 7].

In Definition 11.2, if q is positive (negative), the fuzzy numbers A and B are
said to be completely positively (negatively) correlated. If [B]α = q[A]α + r , the
correlated addition of A and B is the fuzzy number A + B with α-cuts

[A + B]α = (q + 1)[A]α + r. (11.2)
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We will formulate the extension principle in what follows for the joint possibility
distribution of fuzzy numbers [5].

Definition 11.3 Let J be a joint possibility distribution with marginal possibility
distributions ϕA and ϕB , and let f : R2 −→ R be a function. Then the extension f J
of f by J at pair (A, B) is the fuzzy set f J (A, B) whose membership function is
given by

ϕ f J (A,B)(z) =
⎧⎨
⎩

sup
z= f (x,y)

ϕJ (x, y) if f −1(z) �= ∅

0 if f −1(z) = ∅
where f −1(z) = {(x, y) : f (x, y) = z}.

The next result can be viewed as a generalization of Nguyen’s theorem [8].

Theorem 11.1 ([5]) Let A, B ∈ F(R) be completely correlated fuzzy numbers, C
its joint possibility distribution and f : R2 −→ R a continuous function. Then,

[ fC(A, B)]α = f ([C]α),∀α ∈ [0, 1].

11.1.1 Difference Between Fuzzy Numbers

Nextwepresent differentways, as found in literature, to obtain the difference between
fuzzy numbers.

Difference Via Interval Analytic Theory

Initially we present the fuzzy differences arising from the interval analysis theory.

Definition 11.4 (Standard difference) Let A, B be fuzzy numbers with α-levels
given by [aα

1 , a
α
2 ] and [bα

1 , b
α
2 ], respectively. The α-levels of the standard difference,

A − B, are defined by

[A − B]α = [aα
1 − bα

2 , a
α
2 − bα

1 ].

This standard difference can also be called Minkowski difference and it coincides
to the one introduced in Proposition 2.5.

Lodwick [4, 9] proposed constraint interval arithmetic (CIA) and in particular
subtraction is defined as follows.

Definition 11.5 (CIA) The subtraction between two fuzzy numbers A and B is
defined level-wise by

[A − CIA B]α = {[(1 − λA)a
α
1 + λAa

α
2 ] − [(1 − λB )b

α
1 + λBb

α
2 ],

0 ≤ λA ≤ 1, 0 ≤ λB ≤ 1}.

http://dx.doi.org/10.1007/978-3-662-53324-6_2
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Remark 11.2 Using CIA, we have

[A − CIA A]α =
{[(1 − λA)a

α
1 + λAa

α
2 ] − [(1 − λA)a

α
1 + λAa

α
2 ]} = {0}

where 0 ≤ λA ≤ 1. Therefore, A −CIA A = {0}.
Definition 11.6 Given two fuzzy numbers A, B the Hukuhara difference
(H-difference) A �H B = C is the fuzzy numberC such that A = B + C , if it exists.

Note that the above definition was presented in Chap.2 (see Definition 2.9).

Definition 11.7 ([1, 2]) Given two fuzzy numbers A, B the generalized Hukuhara
difference (gH-difference) A �gH B is the fuzzy number C (if it exists) such that in
this case we write A �gH B = C.

{
(i) A = B + C or
(i i) B = A − C.

Definition 11.8 ([1, 3]) Given two fuzzy numbers A, B the generalized difference
(g-difference) A 	g B = C is the fuzzy number C with α-levels

[A 	g B]α = cl
⋃
β≥α

([A]β 	gH [B]β),∀α ∈ [0, 1],

where the gH-difference (	gH ) is related to the intervals [A]β and [B]β .
Bede and Stefanini [1, 3] proposed the generalized difference between fuzzy

numbers as a difference that always exists and results in a fuzzy number. But for
this, as observed in [10], a convexification is required in order that the difference
is always a fuzzy number. For each of the differences presented in this subsection,
A − B is a fuzzy number according to Theorem 1.4.

Differences Via Joint Possibility Distribution

Differences via joint possibility distribution are obtained with the help of Defin-
ition 11.3. Note that this form of dealing with fuzzy numbers is inspired by the
arithmetic of random variables, which considers the joint probability distribution.

Definition 11.9 Suppose A and B are two fuzzy numbers. Let f : R2 → R be
defined by f (x, y) = x − y, that is, the subtraction operator for real numbers. The
difference using the joint distribution J is the fuzzy number A −J B, whose mem-
bership function is defined by

ϕ(A−J B)(z) = sup
(x,y)∈ f −1(z)

ϕJ (x, y), (11.3)

where f −1(z) = {(x, y) : f (x, y) = x − y = z}.

http://dx.doi.org/10.1007/978-3-662-53324-6_2
http://dx.doi.org/10.1007/978-3-662-53324-6_2
http://dx.doi.org/10.1007/978-3-662-53324-6_1
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Next the difference using the joint possibility distribution is given via t-norms.

Definition 11.10 (Differences via the t-norm) Let A, B be fuzzy numbers and
f (x, y) = x − y the subtraction operator, then the extension sup−T of the fuzzy
number A −� B is obtained by the following membership function

ϕA−�B(z) = sup
(x,y)∈ f −1(z)

(ϕA(x)�ϕB(y)), z ∈ R.

where f −1(z) = {(x, y) : f (x, y) = x − y = z}.
Note that Definition 2.9 (c) arises when � is the minimum t-norm.

Moreover, the difference using joint possibility distributions may not necessarily be
given by a t-norm.

Definition 11.11 ([5]) The subtraction of two completely correlated fuzzy numbers
A and B is defined by

ϕA−C B(z) = sup
(x,y)∈ f −1(z)

ϕC(x, y).

That is, ϕA−C B(z) = sup
z=x−y

ϕB(y)X{qx+r=y}(x, y).

From Theorem 11.1, [5], we have that, for all α ∈ [0, 1],

[A −C B]α = (q − 1)[B]α + r.

Remark 11.3 The sum of two completely correlated fuzzy numbers A and B is the
fuzzy number A +C B which α-levels are given by

[A +C B]α = (q + 1)[B]α + r.

Definition 11.12 Let C be a joint possibility distribution with marginal possibility
distributions A and B, and let f : R2 −→ R

2 be a function. If A and B are completely
correlated fuzzy numbers, then the extension of f applied to (A, B) is the fuzzy set
fC (A, B) whose membership function is defined by

ϕ fC (A,B) (u, v) =

⎧⎪⎨
⎪⎩

sup
(x,y)∈ f −1(u,v)

ϕC (x, y), if f −1(u, v) �= ∅

0 , if f −1(u, v) = ∅,

where f −1(u, v) = {(x, y) : f (x, y) = (u, v)}.

The next theorem will be used to study the solution of an epidemiological model
(SI) where S and I is considered completely correlated.

http://dx.doi.org/10.1007/978-3-662-53324-6_2
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Theorem 11.4 Let A, B ∈ F(R) be completely correlated fuzzy numbers, let C be
their joint possibility distribution, and let f : R2 −→ R

2 be a continuous function.
Then,

[ fC (A, B)]α = f ([C]α).

The proof of the Theorem 11.4 is found in [11]. We end this section by recalling that
the interactive difference can be used to define derivative for autocorrelated fuzzy
process (see [12, 13]).

11.2 Prey-Predator

The study presented in this section is based on [14, 15]. The classical models of
interaction between species of prey-predator type uses the hypothesis that the preda-
tion rates are related to the probability of encounters between a predator and a prey.
A typical case is in the Lotka-Volterra model below, already seen in Sect. 9.3,

{ dx
dt = ax − bxy
dy
dt = −cy + dxy

, (11.4)

where x and y are, respectively, the number (or density) of prey and predators,
a > 0 is the growth rate of prey, c > 0 is the mortality rate of predators, b > 0 is the
proportion of successful attacks of the predators and d > 0 is the biomass conversion
rate of the prey to predators.

This model supposes that both of species are uniformly distributed in the habitat
and this is implicit in the terms bxy and dxy which are proportional to the probability
of the number of encounters between prey and predators. In other words, we can say
that the rate of encounters is derived from the"mass action law" that in the context of
physicochemical establishes that the rates of molecular collisions of two chemicals
and is proportional to the product of their concentrations [16].

On the other hand, we know that if the habitat where the prey and predators
are living together is small, that is the area in which the two populations exist is
small, the predation happens immediately, because there are enough prey. Therefore
it is possible that if the number of prey is bigger than the number of predators, the
predation rate is proportional to just the number of predators. Now, if the number of
predators is bigger than the prey, then the predation rate is given by the number of
prey. So, in both cases the predation rate is proportional to the minimum between
the populations of prey and predators [17, 18]. These observations translate into
various t-norms operations, more specifically, other t-norms besides the product t-
normwhich is commonly used inmodels to represent the interaction between species.
The more detailed analysis of this situation is found in Sect. 9.3.

http://dx.doi.org/10.1007/978-3-662-53324-6_9
http://dx.doi.org/10.1007/978-3-662-53324-6_9
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11.2.1 Prey-Predator with the Minimum t-Norm

These observations and those found in [17] lead us to consider the predation rate
as proportional to the minimum between the populations of prey and predators. To
model this situation, we change the t-norm of the product to the minimum t − norm
to represent the interaction between species. Thus, we have the following model
[14, 15]: {

dx
dt = ax − b(x ∧ y)
dy
dt = −cy + d(x ∧ y)

, (11.5)

where a, b, c and d are the same as in (11.4).
The phase plane of the model (11.5) can be seen in the Fig. 11.1. From (11.5)

it is possible to see that the only equilibrium point is the trivial one (0, 0). But the
qualitative aspect of phase plane of (11.5) is very different to that of the one in
Sect. 9.3.

11.2.2 Prey-Predator with the Hamacher t-Norm

The Hamacher t-norm (see Chap.4), given by

�H (x, y) = xy

p + (1 − p)(x + y − xy)
, p ≥ 0 (11.6)

and it can replace the product t-norm in the prey-predator model (11.4). The para-
meter p can be tunned in order to fit the specific character of the population under
consideration. The various t-norms are obtained by a parameter p where the product
t-norm occurs for p = 1. Thus, we have the following model

Fig. 11.1 Phase plane of the
model (11.5) where
a = 0.08, b = 0.09,
c = 0.075 and d = 0.07
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(a) with a = 0.08, b = 0.09, c = 0.075 and
d = 0.07, for p = 0.5, 1, 1.5, and 2.

(b) with a = 0.08, b = 0.09, c = 0.075 and
d = 0.07, for p = 0.5, 1, 1.5, and 2.

Fig. 11.2 Solution x and y for time t

{
dx
dt = ax − bxy

p+(1−p)(x+y−xy)
dy
dt = −cy + dxy

p+(1−p)(x+y−xy)

, (11.7)

where a, b, c and d are the same as in (11.4). Figure11.2a, b illustrate solutions of
model (11.7) for some values of p.

It is interesting to note that the peaks of the solutions in Fig. 11.2a, b increase
as p gets bigger. In cases where p > 1, the solutions go together to an equilibrium
point, which differs from the classical case (p = 1), where there exists a periodic
curve [15, 16].

Figures11.3a up to 11.4b show the phase plane of the solutions of themodel (11.7)
for values of p = 0.5, 1.0, 1.5, 2.0. It is possible to observe that for 0 ≤ p < 1 we

(a) with p = 0.5. (b) with p = 1.

Fig. 11.3 Phase plane of the solution with parameters like Fig. 11.2a
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(a) with p = 1.5. (b) with p = 2.

Fig. 11.4 Phase plane of the solution with parameters like Fig. 11.2a

have repelling equilibrium points, for p = 1 we have closed orbits around the equi-
librium point and for p > 1 we have attractors equilibrium points and saddle points.
Therefore, the choice of the parameter p will determine the stability of the system
equilibrium (11.7).

11.3 Epidemiological Model

The more common epidemiological models that describe the dynamics of diseases
spread by direct contact are SI , SI S and SI R where S is susceptible, I is infected
and R is recovered. In these models the change of the state of a susceptible individual
to the class of infected ones occurs as a result of the contact between individuals with
infectious pathogens and healthy ones, that is, the transmission rate is proportional to
the encounter rate of those individuals which is traditionally modeled by the product
between the densities (quantities) [16, 19].

We have studied in Sect. 10.2 the simplest classical model that describes the
dynamics of the diseases transmitted by direct contact without vital dynamics, that
is, without birth/death. This is the SI model, given by

{
dx
dt = −βxy; x(0) = x0 > 0
dy
dt = βxy; y(0) = y0 > 0,

(11.8)

where x(t) and y(t) are, respectively, the fractions of susceptible and infected indi-
viduals at time t and the parameter β > 0 is the disease transmission rate. From
(11.8) we have x(t) + y(t) = 1 and, as we saw in Sect. 10.2, the solution of (11.8)
is given by

http://dx.doi.org/10.1007/978-3-662-53324-6_10
http://dx.doi.org/10.1007/978-3-662-53324-6_10
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y(t) = y0eβt

x0 + y0eβt
and x(t) = 1 − y(t) = x0

x0 + y0eβt
. (11.9)

In some epidemiological SI models, an individual who is infected can not recover. A
typical case of this model is HIV, where the virus attacks the immune system which
is responsible for protecting the body against diseases. For more details the reader
might want to see [20].

One of the first models developed for populations of individuals that already have
HIV is due to Anderson et al. [21]. The Anderson model studies the transfer between
the individuals that are asymptomatic to the symptomatic ones, that is, it is not a
direct transmission model [22]. This model is given by

⎧⎪⎨
⎪⎩

dx

dt
= −λx; x(0) = x0 > 0

dy

dt
= λx; y(0) = y0 > 0,

(11.10)

where λ is the transfer rate from the asymptomatic to symptomatic phase (AIDS),
x(t) and y(t) are, respectively, the fractions of infected individuals who did not
develop AIDS and the others who did develop the disease. According to the model
above we have the constraint

x(t) + y(t) = 1, ∀t ≥ 0.

The solution of (11.10) is given by

x(t) = x0e
−λt and y(t) = 1 − x0e

−λt . (11.11)

In (11.10) the dynamics of the disease is not modeled by the product operation.
Since all individuals are already infected, the transmission does not depend on the
encounter between them.Epidemiologicalmodelers frequently discuss how to handle
these types ofmodels inwhich infections are not always transmitted by are interaction
between a product-like accumulation of two populations (infected and susceptible).

Apparently the models (11.8) and (11.10) are not linked. However we will see
that this is not one hundred percent true when different t-norms are used instead of
the product.

11.3.1 SI Model with Minimum t-Norm

We base this section on [17, 23] where the model we have chosen uses the minimum
t-norm, instead of product operation. This is because, when the susceptive population
is small, its variation rate is proportional to susceptive population. On the other hand,
the variation rate of infected population is proportional to this population when it is
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small. Thus, in both cases, the variation rate is proportional to the minimum between
susceptive and infected population.

The model is given by the following differential equations [14, 15],

{
dx
dt = −λ(x ∧ y)
dy
dt = λ(x ∧ y)

. (11.12)

The solution of (11.12) is given by

x(t) =
{

1 − y0eλt if t ≤ t
0.5e−λ(t−t) if t > t

(11.13)

and

y(t) =
{

y0eλt if t ≤ t
1 − 0.5e−λ(t−t) if t > t

, (11.14)

where t = 1
λ
ln 0.5

y0
. The model (11.10) coincides with (11.12) when the individuals

of population interact and the majority is already symptomatic, that is, (x ∧ y) = x .
Illustrations of the solutions (11.13) and (11.14) can be seen in Fig. 11.5a and b,

respectively. It is possible to verify the similarity between the curves that represent
the proportion of infected individuals in this section to those in Sect. 10.2.

11.3.2 SI Model with Hamacher t-Norm

We will next use the t-norm of Hamacher, which is given by
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(a) λ = 0.2 and x(0) = 0.7. (b) λ = 0.2 and y(0) = 0.3.

Fig. 11.5 Proportion of susceptible and infected individuals versus time
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�H (x, y) = xy

p + (1 − p)(x + y − xy)
, (11.15)

to model the interaction between the individuals. Thus, we have

{
dx
dt = −λxy

p+(1−p)(x+y−xy)
dy
dt = λxy

p+(1−p)(x+y−xy)

. (11.16)

Since x + y = 1, that is, there is no vital dynamics, we have

�H (x, 1 − x) = x(1 − x)

p + (1 − p)(1 − x(1 − x))
.

The implicit solution of (11.16) for the susceptible is given by

c1 + λt = (1 − p)x(t) − ln (1 − x(t)) + ln x(t)

while the infected ones follows from the equation

(p − 1 − c1) + λt = (p − 1)y(t) − ln (1 − y(t)) + ln y(t).

We next do a comparative study of the models (11.8) and (11.16). Let us suppose
that in (11.16) the interaction is proportional to the product (xy). Thus, in (11.16)
we can interpret β = λ

p+(1−p)(x+y−xy) as the transfer rate from susceptible to infected
class of individuals. In this case, the rate β = β(x, y) depends on both concentrations
of x and y. Therefore, the number of susceptible individuals is provided by (11.16)
and is inferior to the one that is provided by (11.8) for p < 1, and superior for p > 1.
The illustration of the solutions for some values of p can be seen in Fig. 11.6a and b.

We finish this section by observing that all model presented here are in fact
classical ones, in the sense that both are differential equation and their solutions are
deterministic.
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(a) with λ = 0.2 and x(0) = 0.9. (b) with λ = 0.2 and y(0) = 0.1.

Fig. 11.6 Number of susceptible a and infected b versus time of the model (11.16)
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11.4 Takagi–Sugeno Method to Study the Risk of Dengue

This section discusses concepts related to the formulation of models of
Takagi–Sugeno and an application will be presented for the analysis of the risk
of dengue1 in the southern region of Campinas. The city of Campinas, located in
southeast region of Brazil in the state of São Paulo, experienced the largest epidemic
of dengue in 2007, with 1089.4 registered cases per 100, 000 inhabitants. High rates
of incidence of dengue have been reported in the south region of the city, leading
researchers from the Faculty of Medical Sciences of the University of Campinas to
initiate a study on the phenomenon and its possible causes [24, 25].

11.4.1 Takagi–Sugeno Model

Chapter 5 developed the theory of fuzzy inference processes of the
Takagi–Sugeno-Kang type where the consequent of each rule is explicitly given
by a function of the input values of this rule. Currently, researchers are using this
idea to construct fuzzy rules whose consequences are differential equations, applied
to different problems [26–28].

The formulation of Takagi–Sugeno model for the risk of dengue in the southern
region of Campinas, that will be presented, is based on references [24, 25]. The
following is a summary of the main concepts used by these authors.

Consider the nonlinear partial differential equation (PDE) problem,

∂y(x, t)

∂t
= κ(y(x, t))

∂2y(x, t)

∂x2
+ f (y(x, t)) + g(x)u(t) (11.17)

for 0 ≤ x ≤ L , t > 0 where y(x, t) is the displacement, κ(y(x, t)) ≥ 0 and
f (x, t) are nonlinear functions satisfying κ(0) = 0 and f (0, 0) = 0 , u(t) is the
distribution of the control force and g(x) is an influence function. The initial and
boundary conditions are given by

y(0, t) = y(L , t) = 0, yx (0, t) = yx (L , t) = 0 and y(x, 0) = y0(x) (11.18)

In the fuzzy formulation of systems (11.17)–(11.18) we will set u(t) = 0, i.e.,

∂y(x, t)

∂t
= κ(y(x, t))

∂2y(x, t)

∂x2
+ f (y(x, t)). (11.19)

A model of type Takagi–Sugeno is used to approximate equation (11.19) and it
has the following fuzzy rules:

1Dengue is a mosquito borne disease that causes fever and in some cases death.

http://dx.doi.org/10.1007/978-3-662-53324-6_5
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Rule i : If y(x, t) is Fi , then

∂y(x, t)

∂t
= κi

∂2y(x, t)

∂x2
+ ai y(x, t) (11.20)

where Fi are fuzzy sets, κi ≥ 0, ai are known constants for i = 1, 2, . . . ,M ; and M
is the number of rules.

Fuzzy rule i means that if the input variable y(x, t) is locally represented by
the fuzzy set Fi , then the non-linear partial differential equation (11.19) can be
represented by the linear equation (11.20). The process of fuzzy inference is done as
follows

∂y(x, t)

∂t
=

M∑
i=1

ϕi (y(x, t))

[
κi

∂2y(x, t)

∂x2
+ ai y(x, t)

]
, (11.21)

where

ϕi (y(x, t)) = ϕFi (y(x, t))/(
M∑
k=1

ϕFk (y(x, t)))

is themembershipdegreeof y(x, t) belonging to Fi . Thedenominator of ϕi (y(x, t))
is only for normalization so that the total sum is

M∑
k=1

ϕi (y(x, t))) = 1.

11.4.2 Dengue Risk Model

This section develops a model of the risk of dengue epidemic from the point of view
spacial temporal dynamics for the southeast part of the city of Campinas, Brazil.
With the collaboration of the Laboratory for Spacial Analysis of Epidemiological
Data (epiGeo) researchers of University of Campinas [29], we obtained data that
generated the initial risk map of dengue in the region studied as shown in Fig. 11.7.

The mesh adopted corresponds to a 40 × 40 grid which covers approximately
20 km × 20km of the region. Note that higher risks are associated with warm colors,
that is, with reddish hues.

The researchers of epiGeo determined, from the initial data that gave rise to
the map, the relative risk. The relative risk is given as the quotient between the
probabilities of the exposed individual and of the control (not exposed individual)
[25]. For example, if the risk is 2, then at that geographic location, the individuals
have twice the risk of contracting the dengue disease than individuals not exposed to
risk factors. From Fig. 11.7, the risk of dengue was classified as Low, Medium and
High and membership functions were constructed as illustrated in Fig. 11.8.
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Fig. 11.7 Map of dengue risk developed by the epiGeo [25]

Fig. 11.8 Membership
functions for the risk of
dengue [25]

0 0.5 1 1.5 2 2.5 3

0

0.2

0.4

0.6

0.8

1

Risk

D
eg

re
e 

of
 m

em
be

rs
hi

p

L M H

Let r(x, y, t) be the risk of dengue. The fuzzy rules that were developed, using
the ideas presented by [26], were the following.

Rule 1 : If r(x, y, t) is Low (L), then

∂r(x, y, t)

∂t
= κB

[
∂2r(x, y, t)

∂x2
+ ∂2r(x, y, t)

∂y2

]
+ aBr(x, y, t).
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Rule 2 : If r(x, y, t) is Medium (M), then

∂r(x, y, t)

∂t
= κM

[
∂2r(x, y, t)

∂x2
+ ∂2r(x, y, t)

∂y2

]
+ aMr(x, y, t).

Rule 3 : If r(x, y, t) is High (H), then

∂r(x, y, t)

∂t
= κA

[
∂2r(x, y, t)

∂x2
+ ∂2r(x, y, t)

∂y2

]
+ aAr(x, y, t).

In this case (M = 3), and from (11.21) we have

∂r(x, y, t)

∂t
=

M∑
i=1

ϕi (r(x, y, t))

[
κi

(
∂2r(x, y, t)

∂x2
+ ∂2r(x, y, t)

∂y2

)
+ air(x, t)

]
.

(11.22)
The parameters κi in (11.22) represent the spatial distribution of risk for the given
domain, that is, the associated geographical region.

A system based on fuzzy rules was constructed to find κi taking into account
environmental factors that influence the dynamics of Aedes aegypti and the affect
they have on the dispersion of risk. From this point of view, one might consider the
dynamics ofAedes aegypti as environment fuzziness (see Chaps. 9 and 10). The input
variables that affect the dynamics of Aedes aegypti are rainfall, human inhabitants
and mosquito breeding containers. The membership functions adopted for the input
variables can be found in [24, 25]. The membership functions constructed for the
output variable κi are shown in Fig. 11.9. A stochastic model was constructed to
determine the amount of rain, taking into account historical records provided by the
Agronomic Institute of Campinas.
References [24, 25] contain the details of the procedures used to calculate the para-
meters ai and the numerical methods to implement the equations.

Fig. 11.9 Membership
functions for κi [25]
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11.4.3 Simulations

We used MATLAB to implement computationally the PDE given in (11.22) and we
coupled the MATLAB toolkit for stochastic systems and fuzzy logic to determine
the parameters followed by their numerical methods solvers. The interested reader
can find a detailed development in [24, 25].

The spatial discretization we chose was WENO-5 (weighted essentially non-
oscillatory schemes) for the non-smooth regions of the map and CFDS-4 (centered
finite difference scheme of fourth order) for the smooth regions of the map. The time
discretization used Runge–Kutta TVD (Total Variation Diminishing). Figure11.10
shows a representative scheme of our coupling.

Case 1

Simulations of the evolution of dengue risk over time were implemented for the
months of December, January and February, corresponding to summer in the region.
Figure 11.11 shows the results obtained.

These results show, in general, that there was a spread of the disease risk over the
region. It is observed that there was a higher risk (red) of dengue that occurred in our
simulation during the three months. We conclude that, for the summer months, the
estimated values for the parameters κi and ai in this simulation favored the spread
of the risk of dengue in the southern region of Campinas.

Public health officials usually adopt measures to combat the Aedes aegypti mos-
quito breeding to decrease the incidence of dengue. So, the next simulation assumes
a reduction of potential mosquito breeding sites available in the region and this is
used in the fuzzy rules for κi , to see whether or not the model/simulation obtained a
decreased risk of dengue.

The fuzzy rules were developed according to [26] and it was assumed u(t) = 0 in
(11.17). The measure of control, which was the reduction of mosquito breeding sites,
was inserted into the parameter estimation procedure κi through the system based
on fuzzy rules. For a more comprehensive study, one could try to obtain a function
u(.) that takes into account other possible disease controls.

Fig. 11.10 Representative scheme of the coupling mathematical tools
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(a) Initial conditions (equal Figure 11.7). (b) After 30 days.

(c) After 60 days. (d) After 90 days.

Fig. 11.11 Evolution of the risk of dengue [25]

Case 2

Suppose we have a reduction of 80% in the number of mosquito breeding sites for
Aedes aegypti in the region. Starting from the given initial conditions, we have the
results illustrated in Fig. 11.12.

The figures show that after the first 30 days, there was reduction in the risk of
dengue in virtually the entire region considered, indicating that a relatively important
measure is to invest in a large reduction of sites available for the breeding of the
dengue vector. However note that after 60 and 90 days, in the vicinity of the red
regions, there was a growth and the spread of risk. This indicates that a public health
policy needs to be one of continuing reduction of mosquito breeding sites.

11.4.4 Final Considerations

This section proposed a Takagi–Sugeno model to assess the risk of dengue in the
southern region of Campinas. Preliminary studies regarding the risk of dengue in
this region were conducted by researchers at EpiGeo Laboratory of the University
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(a) Initial conditions. (b) After 30 days.

(c) After 60 days. (d) After 90 days.

Fig. 11.12 Evolution of the dengue risk [25]

of Campinas. Such information was the starting point for the proposed model. The
model was comprised of rules where the consequences are PDEs. The inference
combines such rules and the resulting equations are solved numerically by means of
methods developed in [24].

We observe from the situation, that an effective measure to reduce the risk of
dengue is to aggressively reduce the potential mosquito’s, Aedes aegypti, breeding
sites. For a more comprehensive study, one could try to obtain a function u(t) that
takes into account various possible disease controls such as genetically modified
mosquitoes, house screens, and/ormosquito eating animals such as bats and swallows
(birds).

11.5 The SI-model with Completely Correlated Initial
Conditions

This section presents the SI epidemiologicalmodel by consedering uncertain parame-
tersmodeled by completely correlated fuzzy numbers.More specifically wewill ana-
lyze themodel, via the extension principle that will account for the correlation among
the variables. The initial conditions are given by interactive fuzzy numbers [11].
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The SI-model, as we have already seen, is described by the system of differential
equations ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

dS

dt
= −βSI, S(0) = S0

d I

dt
= βSI, I (0) = I0 > 0,

(11.23)

where S(t) and I (t) are, respectively, the fractions of susceptible and infected indi-
viduals at the time t . The parameter β is a positive constant representing the rate of
contact of the disease.

Suppose that there is no variation in the total number of the population, that is,
consider the model without vital dynamics,

S(t) + I (t) = 1, ∀t ≥ 0. (11.24)

Thus, we get for each t ≥ 0, the deterministic solution of problem (11.23) given by

Lt (S0, I0) =
(

S0
S0 + I0eβt

,
I0eβt

S0 + I0eβt

)
. (11.25)

Now, consider system (11.23) where the initial conditions are uncertain and mod-
eled by fuzzy numbers. Since S0 + I0 = 1, we are dealingwith completely correlated
fuzzy numbers where r = 1 and q = −1 which we explain next. According to Def-
inition 11.2, S0 + I0 = 1 means that the joint possibility distribution C of S0 and I0
is such that

ϕC (s0, i0) = ϕS0(s0)X{s0+i0=1}(s0, i0) = ϕI0(i0)X{s0+i0=1}(s0, i0). (11.26)

In this case, for each α ∈ [0, 1], we have

ϕI0
(i0) = ϕS0

(1 − i0), [I0]α = [aα
1 , a

α
2 ], [S0]α = (−1)[I0]α + 1

and

[C]α = {(1 − i0, i0) ∈ R
2 : i0 = (1 − γ)aα

1 + γaα
2 , γ ∈ [0, 1]}. (11.27)

Thus, S0 + I0 = 1 implies q = −1 and r = 1.
Taking into consideration (11.27), and remembering the notions found in

Sect. 8.1.3, Eq. (11.23) becomes

⎧⎪⎪⎨
⎪⎪⎩

(
dS

dt
,
d I

dt

)
=

(
−βSI,βSI

)

(S0, I0) ∈ C

. (11.28)

http://dx.doi.org/10.1007/978-3-662-53324-6_8
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Solution of the Fuzzy SI-model Via Differential Inclusion

The solution to the Eq. (11.28) via fuzzy differential inclusion requires that we apply
the method described in Sect. 8.1.3 of Chap. 8, so that the solution of the problem
(11.28), using differential inclusion, is obtained from the solution of the auxiliary
problem ⎧⎨

⎩
( dSdt ,

d I
dt ) = (−βSI,βSI )

(S0, I0) ∈ [C]α,
(11.29)

where [C]α is given by Eq. (11.27). The attainable sets of the problem (11.29) are
given by

At ([C]α) =
{
x(t, S0, I0) : x(., S0, I0) is solution of (11.29)

}

=
{
x(t, S0, I0) : x ′(t, S0, I0) = (−βSI,βSI ), (S0, I0) ∈ [C]α

}

=
{(

s0
s0+i0eβt ,

i0eβt

s0+i0eβt

)
: (s0, i0) ∈ [C]α

}

=
{(

1−i0
(1−i0)+i0eβt ,

i0eβt

(1−i0)+i0eβt

)
:

i0 = (1 − γ)aα
1 + γaα

2 , γ ∈ [0, 1]
}
.

Solution of the Fuzzy SI-model Via Extension Principle

We will study the fuzzy SI-model given by (11.28) using as a tool the extension
principle via Definition 11.12 in (11.25). According to Theorem 11.4, the α-levels
of the solution obtained by the extension principle of the problem (11.28) are given
by the expression

[(Lt )C(S0, I0)]α = Lt ([C]α).

Therefore, the α-levels of the solution of the problem (11.28) are

[(Lt)C(S0, I0)]α = Lt ([C]α)
=

{
Lt (s0, i0) : (s0, i0) ∈ [C]α

}

=
{
Lt (1 − i0, i0) : i0 = (1 − γ)aα

1 + γaα
2 , γ ∈ [0, 1]

}

=
{(

1−i0
(1−i0)+i0eβt ,

i0eβt

(1−i0)+i0eβt

)
:

i0 = (1 − γ)aα
1 + γaα

2 , γ ∈ [0, 1]
}
.

That is, as predicted by Theorem 3.2 in [11], for every t ≥ 0, the sets (Lt )C(S0, I0)
and At (C) are identical.

http://dx.doi.org/10.1007/978-3-662-53324-6_8
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Fig. 11.13 Fuzzy solution to the problem (11.28) in the phase-portrait. The dots correspond
to the deterministic solution for different values of time t . The initial conditions are the com-
pletely correlated triangular fuzzy numbers I0 = (0.05; 0.08; 0.11) and S0 = (0.89; 0.92; 0.95),
with S0 + I0 = 1, and the contact rate is β = 0.3. Darker regions (for each t ≥ 0) mean greater
possibility (membership) of the number of susceptible and infected to the solution of the problem.
The deterministic solution has membership degree equal to 1 in the fuzzy solution [11, 30]

Figure11.13 represents the solution to the problem (11.28) employing the com-
pletely correlated triangular fuzzy numbers I0 = (0.05; 0.08; 0.11) and S0 = (0.89;
0.92; 0.95) as initial conditions, with S0 + I0 = 1 (according to Formula (11.3)) and
contact rate β = 0.3. Note that the fact that the fuzzy numbers are completely cor-
related forces the solution to problem (11.28) to be a curve contained within the line
S + I = 1, for each t ≥ 0.

We conclude this study by commenting that the solutions S(t) and I (t), of a
general epidemiological model are trajectories out of line x + y = 1 (see [16]). The
deterministic solution of problem (11.23), belong to line x + y = 1 becausewe admit
the correlation S(t) + I (t) = 1 for each t ≥ 0. If bise this we admit that S(t) and
I (t) are fuzzy numbers, then due S(t) + I (t) = 1, we have fuzzy numbers negatively
completely correlated.
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