
Chapter 10
Biomathematical Modeling in a Fuzzy
Environment

As far as the laws of mathematics refer to reality, they are not
certain; as far as they are certain, they do not refer to reality.

(Albert Einstein)

Abstract This chapter looks at the influence of the environment in a population as
a whole, that is, it looks at processes in which the environment affects all individuals
equally. We illustrate this phenomenon via four models.

Chapter9 stated that themethods of incorporating uncertainties inmathematicalmod-
els are quite varied and mentioned that there two such ways of incorporating fuzzy
uncertainty, environmental fuzziness and demographic fuzziness. Whereas the aim
of Chap.9 was the incorporation of demographic fuzziness in models, this chapter
focuses on environmental fuzziness. Thus, for pedagogical and didactic purposes
and for clarity, we have distinguished these two types of fuzziness inherent in mod-
eling biomathematical systems: demographic fuzziness (Chap. 9) and environmental
fuzziness, this chapter. These terms, demographic and environmental fuzziness, have
their origin in dynamic populationmodeling (see [1–3]). “Demographic stochasticity
(or ‘within-individual variability’, - ... individuals who are apparently identical have
different life spans and produce different numbers of offspring. ... Environmental
stochasticity - Environments vary unpredictably through time in ways that affect all
individuals equally” (Turelli [3], p. 321).

The estimation of the entity such as the future “number of descendents” in a
population, already inherently exhibits stochastic or fuzzy uncertainty properties
becauseof the existenceof perturbations in the conditions surrounding anypopulation
as awhole. Examples of this nature are abundant - how the cost of living in a particular
locality influences the life expectancy in a group of people, how, in a predator-
prey model, the natural surroundings favor either the predator or the prey, how in a
survival of the fittest model nature is favorable to one or another of the competitors at
various periods of time. Through translation of rules, environmental fuzziness may
be changed into a parameters or demographic fuzziness in biomathematical models.
In this chapter we study how to model with environmental fuzziness and compare

© Springer-Verlag Berlin Heidelberg 2017
L.C. de Barros et al., A First Course in Fuzzy Logic, Fuzzy
Dynamical Systems, and Biomathematics, Studies in Fuzziness
and Soft Computing 347, DOI 10.1007/978-3-662-53324-6_10

237

http://dx.doi.org/10.1007/978-3-662-53324-6_9
http://dx.doi.org/10.1007/978-3-662-53324-6_9
http://dx.doi.org/10.1007/978-3-662-53324-6_9


238 10 Biomathematical Modeling in a Fuzzy Environment

this type of fuzzy model with the deterministic and stochastic ones. Details of similar
types ofmodels can be found in [4, 5]. Recall that what we have called environmental
fuziness is fuzziness in the parameters of model.

The models we treat next can, from the mathematical point of view, be treated by
classical methods without the necessity of new concepts of mathematics to model
the evolution of uncertainty in them. For example, if the phenomenon were mod-
eled with differential equations and the rate of change in the differential equation
were uncertain, the differential equation may be understood as a family of classical
differential equations dependent on the parameters governing the uncertain rates of
change (the derivatives) so that the theory of stochastic differential equations may
be used. These types of equations are called random dynamical equations (see [6]).

Most of the models with uncertainty of interest to us have both types of uncer-
tainties present (demographic and environmental fuzziness) and, in these cases, the
modeling is not very different than what has been developed in the previous chap-
ters of this book. However, depending on the purpose of the model, environmental
fuzziness can be treated as demographic fuzziness. For this, however, we need to
transform all the uncertainty of the variables into the parameters of the mathematical
model assuming that such a process makes sense. Let us begin with an example in
which environmental fuzziness appears in the model.

10.1 Life Expectancy and Poverty

We can use various indicators to model poverty, for example, caloric intake, vitamin
intake, basic sanitation, and so on. For this presentation, we will use income of the
relevant group we are studying [5].

10.1.1 The Model

Suppose that A is a closed group (no in-migration or out-migration) with n(t) indi-
viduals at instant t. Assuming that poverty, here evaluated as the income level, is one
factor in the reduction of the number of years of life of all the individuals in A, we
can consider that { dn

dt
= − [λ1 + β(r)λ2] n

n0 = n(0)
, (10.1)

where:

• λ1 is the natural death rate (obtained from a group who is under favorable survival
conditions);

• β(r)λ2 indicates the influence of poverty on the increase on the natural death rate
λ1;
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• β(r) indicates the level to which an individual with income r belongs to the fuzzy
set poverty, that is, β is a membership function.

Wenote that themaximummortality rate isλ1 + λ2 which is obtainedwhenβ(r) = 1.
The solution to the differential equation (10.1) is

n(t) = n0e
−[λ1+β(r)λ2]t .

The membership function β can be represented by a function that is decreasing in r
and, here, we think it convenient to adopt a family of curves (see Example1.5)

βk(r) =
{ [1 − ( r

r0
)2]k if 0 < r < r0

0 if r ≥ r0
, (10.2)

where k is a parameter that supplies some characteristics of the group poverty.
Recall, from our previous models, the larger the value of k, the smaller the depen-

dence of the individual has in relation to income, that is, the smaller the influence
that income has on poverty. In this way, intuitively, k reveals if the environment in
which the group lives is more or is less favorable to life expectancy.

Observe that (10.1) is a family of ordinary differential equations. Thus, n(.) is a
family of solutions of the differential equation indexed by r, that is, for each fixed
r, n(.) is a solution of the differential equation corresponding to this r. This set
forms the solution of the fuzzy problem (10.1). In this way, suppose that r has a
statistical distribution, then n(t) is a random variable for each fixed t. If we wish to
select precisely one curve to represent the evolution of the number of individuals
over time, a strong candidate is the one that gives us numbers at the midpoint of n(t)
for each t. This “mid-curve” is obtained calculating the expectation in the same way
as it is done in stochastics/statistics.

Our object in what follows is to obtain an expectation of life expectancy of the
group by means of classical mathematical and fuzzy expectation according to the
concepts we have seen in Chap.7.

10.1.2 Statistical Expectation: E[n(t)]

Statistical expectation is given by

E[n(t)] =
∫ ∞

−∞
n(t)h(r)dr, (10.3)

where h(r) is the probability density function of income.

http://dx.doi.org/10.1007/978-3-662-53324-6_1
http://dx.doi.org/10.1007/978-3-662-53324-6_7
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Fig. 10.1 Probability
density function of income -
Pareto distribution

0 b

h

r

The Pareto distribution for developing countries (see [7]) with parameters a
and b,

h(r) =
{
abar−(a+1) if r ≥ b

0 if r < b
.

is used for our specific case (Fig. 10.1).
Therefore,

E[n(t)] = n(0)e−λ1taba
∫ ∞

b
e−βk(r)λ2tr−(a+1)dr

or

E

[
n(t)

n(0)

]
= e−λ1taba

∫ ∞

b
e−βk(r)λ2tr−(a+1)dr. (10.4)

• If r0 ≤ b, then βk(r) = 0 for r ≥ b and

E[n(t)] = n(0)e−λ1taba
∫ ∞

b
r−(a+1)dr = n(0)e−λ1t .

This means that E[ n(t)n(0) ] = e−λ1t for all a > 0, that is, in this case the value of b is
sufficiently large so that there is no affect of poverty on the life expectancy of the
group.

• If r0 > b, we have that aba
∫ ∞

b
e−βk(r)λ2tr−(a+1)dr < 1, so that E[n(t)]

< n(0)e−λ1t . This means that we can interpret the number

aba
∫ ∞

b
e−βk(r)λ2tr−(a+1)dr

as a factor of reduction in the life expectancy due to poverty.

What follows is the calculation of fuzzy expectation in order for us to compare it
with the statistical expectation given above.
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10.1.3 Fuzzy Expectation Value: FEV
[
n(t)
n(0)

]

Let us consider Yt(r) = n(t)
n0

a membership function of a fuzzy set since we have
n(t)
n0

∈ [0, 1]. Let us next obtain FEV
[
n(t)
n(0)

]
using Theorem 7.1 applying the function

H(α) = P{r : Yt(r) = n(t)

n(0)
≥ α} = P{r : e−(λ1+λ2βk(r))t ≥ α}

= P{r : e−λ2βk(r)t ≥ αeλ1t}, (10.5)

where P is a probability defined by the density function for income h(r).
Thus, H(α) = 0 if α > e−λ1t . On the other hand, if α ≤ e−λ1t ,

H(α) = P{r : α ≤ e−(λ1+λ2βk(r))t < e−λ1t} + P{r : r ≥ r0}

which, with a little algebraic manipulation, we arrive at

H(α) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if 0 ≤ α ≤ e−(λ1+λ2βk(b))t⎡
⎣ b

r0
√
1 − (−( lnα

λ2t
+ λ1

λ2
))

1
k

⎤
⎦

a

if e−(λ1+λ2βk(b))t < α ≤ e−λ1t

0 if e−λ1t < α ≤ 1

. (10.6)

It is easy to see that H(α) is continuous over [0, 1], except when α = e−λ1t and
H has a fixed point between Yt(b) and e−λ1t , that is,

Yt(b) = e−(λ1+λ2βk(b))t ≤ FEV

[
n(t)

n(0)

]
≤ e−λ1t(Fig. 10.2).

Some conclusions can quickly be made which are different than that of statistical
expectation. Specifically, if (

b

r0

)a

≥ e−λ1t,

then

FEV

[
n(t)

n(0)

]
= e−λ1t = FEV [e−λ1t].

In particular, we have if b ≥ r0, then poverty does not affect life expectancy.
This was the case with the results that were obtained using statistic expectation.
However, fuzzy expectation indicates more. In order for poverty to have no effect

on life expectancy, what is of interest is the relationship
[(

b
r0

)a ≥ e−λ1t
]
between

individual income and the minimal group income. For example, an individual can

http://dx.doi.org/10.1007/978-3-662-53324-6_7
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Fig. 10.2 H(α) and Fuzzy
Expectation (FEV )

H

1

bisectrix

FEV

b
r0

a

Yt(r) FEV e−λ1t 1 α

have a relatively small income (b < r0) and even so, not have it interfere with his/her

life expectancy. For this to occur, we just need that
(

b
r0

)a ≥ e−λ1t . This is the typical

case of a single person who has all the infrastructure to survive.
We want to emphasize that, from a technical point of view, it is harder to obtain

E(n(t)), since it is not integrable in closed form, whereas FEV
[
n(t)
n(0)

]
whose value

is the fixed point of H, can be obtained by the Banach Fixed Point Theorem

(see [8, 9]). If
(

b
r0

)a
< e−λ1t , we can compute the value of FEV

[
n(t)
n(0)

]
determined

by the fixed point ofH once this function is continuous and decreasing forα < e−λ1t .

We observe that H has the same fixed point as its inverse, that is, as

H−1(α) = exp

{
−

[
λ1 + λ2βk(

b

α1/a
)

]}
t, if

(
b

r0

)a

< α < 1.

This model of poverty was used to evaluate the life expectancy of a group of metal
workers in the city of Recife (see Tables10.1 and 10.2), the capital of the state of
the northeast state of Pernambuco in Brazil. For this group we had some information
about the income and the calculation of life expectancy using classical statistical
methods thus permitting us to compare the statistical methods to the fuzzy methods.

10.1.4 Application: Life Expectancy of a Group of Metal
Workers in Recife, Pernambuco - Brazil

We can determine the values of the parameter a and b of the income variable from
Table10.1 for a Pareto distribution h(r). Now consider the cumulative distribution
of income

F(r) =
∫ r

b
h(x)dx =

∫ r

b
abax−a−1dx = 1 − bar−a = R.
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Table 10.1 Workers’ distribution by minimum wage ranges. Recife, 1988 Source: DIEESE

Minimal salary range Populational distribution % of total of payment

n0 %

0 to 2 4003 45.0 21.1

2 to 3 2099 23.6 18.8

3 to 4 933 10.5 12.0

4 to 5 670 7.5 11.0

5 to 6 300 3.4 6.0

6 to 7 264 303.0 6.2

7 to 10 367 4.1 11.1

10 to 15 171 1.9 7.8

over 15 81 0.9 6.1

Table 10.2 Source: Carvalho
and Wood (1977)

Income class Income Cr$ Life
expectance(years)

1 1 to 150 40.0

2 151 to 300 45.9

3 301 to 500 50.8

4 over 500 54.4

This means that,
ln(1 − R) = a ln b − a ln r.

Linearizing the data from Table10.1, we obtain an approximation of a � 2.031 and
b � 1.726. Thus,

h(r) =
{
6.15r−3031 if r ≥ 1.726

0 if r < 1.726
.

The table for life expectancy in the northeast of Brazil in 1977, in urban areas,
where the minimum salary (which we denote S) was Cr$ 156.00 per month, is given
in Table10.2.

Suppose that income r is proportional to a power of the minimum salary S of the
group we are studying, r = Sm, where m is a constant. Then, we have

βk(S
m) =

{
[1 −

(
S
S0

)2m]k if 0 < S < S0
0 if S ≥ S0

.



244 10 Biomathematical Modeling in a Fuzzy Environment

Fig. 10.3 Membership
function of poor for k = 1.51

1.68

1

r

β 1,51

Life expectancy, independent of family income was 54.4 years. From this, the
natural mortality rate is λ1 = 1

54.4 . On the other hand, λ1 + λ2 is the highest rate of
mortality of the group which is 40, that is,

λ1 + λ2 = 1

40
=⇒ λ2 = 1

40
− 1

54.4
= 6.618 × 10−3.

Let us consider that the minimum livable wage in 1977 was Cr$ 500.00 per month
which is equivalent to S0 = 500

156 = 3.2 minimum salaries. From Table 10.2 we have
two values for life expectancy

If S = 1 =⇒ 1
λ1+λ2βk(1)

= 45.9

If S = 2 =⇒ 1
λ1+λ2βk(2m)

= 50.8
=⇒

λ2βk(1) = 1
45.9 − 1

54.4 = 3.404 × 10−3

λ2βk(2m) = 1
50.8 − 1

54.4 = 1.303 × 10−3.

Since λ2 = 6.618 × 10−3, we have

βk(1) = 0.514 =⇒
[
1 − ( 1

S0
)2m

]k = 0.514

βk(2m) = 0.197 =⇒
[
1 − ( 2

S0
)2m

]k = 0.197.

Then, m = 0.4435 and k = 1.51. Since S0 = 3.2, it must be that r0 = (3.2)0.4435 �
1.68 which means the membership function of the fuzzy set βk(r) (Fig. 10.3) is given
by

βk(r) =
{[

1 − (
r
3.2

)0.887]1.51
if 0 < r < 1.68

0 if r ≥ 1.68
. (10.7)
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Table 10.3 Statistical expectation and fuzzy of number of workers and difference between two
methodology

t E
[
n(t)
n(0)

]
EF

[
n(t)
n(0)

] ∣∣∣E [
n(t)
n(0)

]
−

EF
[
n(t)
n(0)

]∣∣∣ × 103

1 0.9810872 0.9800555 1.0317

2 0.9625352 0.9605718 1.9634

3 0.9443294 0.941537 2.7924

4 0.9264697 0.9229397 3.5300

5 0.908949 0.9047686 4.1804

10 0.8261962 0.8199376 6.2486

20 0.682632 0.6766003 6.0317

40 0.4660586 0.4687494 2.6908

10.1.5 Comparisons of the Statistical Expected Value
and the Fuzzy Expected Value

We have, in hand, the membership function of the set poverty (β1.51), so that we can
calculate the average for themetal workers that we have been studying in Sect. 10.1.4,
year by year, utilizing the results obtained in Sects. 10.1.2 and 10.1.3. Table10.3
illustrate these values.

The fourth column of Table10.3 shows us the various differences between the two
methods to calculate life expectancy. In a general manner, Corollary 7.3 guarantees
us that the differences are no greater than 0.25. For the values of the table, the largest
difference in life expectancy is on the order of 0.63%.

Moreover, for this specific example, it is easy to see that FEV
[
n(t)
n(0)

]
is in fact

between Y(cbm) and e−λ1t . Thus,

lim
t→∞

∣∣∣∣E
[
n(t)

n(0)

]
− FEV

[
n(t)

n(0)

]∣∣∣∣ = 0,

that is, E
[
n(t)
n(0)

]
� FEV

[
n(t)
n(0)

]
for t sufficiently large.

Now, as an example, let us suppose that income are given as fixed and let us use
Theorem 7.5. Moreover, suppose that the group of workers A have 150 individuals,
that is, #A = 150 = n0 and income is distributed in the following manner:
1. n1 = 100 individuals receive an income of about r = 2.0 minimum salaries →
Y(2) = e−0.0013te−λ1t;
2. n2 = 40 individuals receive an income of about r = 2.5 minimum salaries →
Y(2.5) = e−0.00057te−λ1t;

http://dx.doi.org/10.1007/978-3-662-53324-6_7
http://dx.doi.org/10.1007/978-3-662-53324-6_7
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3. n3 = 10 individuals receive an income of about r = 3.5 minimum salaries →
Y(3.5) = e−λ1t .

We can consider that

P {n |Y > α } = # {n |Y > α }
#A

.

Then,

if Y(2.5) < α ≤ Y(3.5) =⇒ n2
#A

= 10

150
= 0.0667;

if Y(2.0) < α ≤ Y(2.5) =⇒ n2 + n1
#A

= 50

150
= 0.333.

If we now use the fuzzy expected value at time t of Y(r), we have,

FEV [Yt(r)] = sup
0≤α≤1

inf [α,P {n |Y > α }]

= median
{
0.0667; 0.333; e−0.0013t−λ1t; e−0.00057t−λ1t; e−λ1t

}
= e−0.0013te−λ1t .

Observe that for t = 1 we have FEF(Y1(r)) � 0.9987e−λ1 .

On the other hand, if we take the classical average for these same data we obtain

E[Yt] = 100Y1 + 40Y2 + 10Y3
150

= e−λ1t

150
(100e−0.0013t + 40e−0.00057t + 10)

so that for t = 1
E[Y1] � 0.9998e−λ1 .

That is, the values FEF(Y1(r)) and E(Y1) are similar. This corroborates that, in gen-
eral, FEV [Y ] and E[Y ] are similar for normalized random variable.

The two following examples have similar characteristics in mathematical models
and as such are treated as analogousmathematical tools in terms of building blocks in
general biomathematical models. The principal similarity between the two examples
as we shall see, is the fact that their uncertainties have their origin in the state
variables and so we treat the uncertainty as environmental fuzziness. However, we
will “transform” this uncertainty into uncertainty in the parameters. This procedure
results in the reduction of complexity in the associated solution methods. To be
specific, to treat demographic fuzziness, we will need to use rule-based systems
which is generally more complex than if the uncertainty is all in the parameters -
environmental fuzziness. However, it is clear that we cannot always use this process
of transforming demographic fuzziness to environmental fuzziness. It depends on
the situation being modeled.
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10.2 The SI Epidemiological Model

The simplest mathematical model to describe the dynamics of directly transmitted
illnesses where there is interaction between susceptible individuals and infected
individuals is the SI model type and it can be represented by the compartmental
model depicted by Fig. 10.4.

The classical differential equations that describe the dynamics are given by:

⎧⎪⎨
⎪⎩
dS

dt
= −βSI

dI

dt
= βSI

, (10.8)

where S is the proportion of susceptible individuals, I is the proportion of infected
individuals and β is the coefficient of transmission of the disease. Taking into account
that the model is normalized, that is, S + I = 1, the number of infected individuals
is obtained by the solution to the logistic equation

dI

dt
= β(1 − I)I.

whose solution is given by:

I = I0eβt

S0 + I0eβt
, (10.9)

where S0 and I0 are the initial proportions of susceptible and infected individuals
respectively.

The SI model (10.8) is a part of a group of direct disease transmission models.
These models are formulated as differential equations and are based on the law of
mass actionwhose origin is in kinematic chemistry. The lawofmass action postulates
that the rate of formation of composites is proportional to the concentration of the
reactants. The acceptance of this law is based on the fact that each particle of the
reactants are moving independently with respect to all the other particles which
means that the mixture is homogeneous so that each particle has the same chance
of encountering the other particles. The translation of this law to biomathematical
models is made considering that the encounter between the variables of the model
is their product. Lotka and Volterra, in the same epoch also used this formulation to
model the interaction between animal species.

Fig. 10.4 Compartimental
diagram of SI model β

S I
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The incorporation of this law into epidemiological models was first made by
Kermack-Mackendric (see [10, 11]) based on the hypothesis that infected individuals
are homogeneously distributed in the entire population and each infected individual
has the same potential to transmit the illness. This is a rather considerable assumption
for epidemiological models since there are heterogeneous sources that interfere or
accelerate the propagation of an illness, for example, age and/or social class, health
habits (washing hands or quarantine, for example).

The model that we are going to propose uses the law of mass action, that is, each
infected individual has the same chance of encountering a susceptible individual.
This notwithstanding, let us also consider that the chance of new cases of the illness
varies from individual to individual. In particular let us consider that a new infection
can only occur if a minimal number of viruses (or another pathogenetic agent) is
transmitted by the host. In this way, we will take as a factor, the viral (or other
pathogen) load as a factor in the propagation of an illness where our assumption
is that individuals with a large viral load have a greater chance of transmitting an
illness than an individual with a lower viral load (see [12]). Thus, the SI model
that we present next takes into consideration viral load as a relevant property of an
infected individual.

10.2.1 The Fuzzy SI Model

With the heterogeneity in the population described above in mind as we build SI
model, we will consider that the higher the viral load, the higher the chance of
transmitting the disease. In other words, we will assume that β = β(v), where v

denotes the viral load which will be a non-decreasing function in v. On the other
hand,we expect thatwhen the viral load is very low, there is no chance of transmission
occurring. That is, we assume that there is a minimum viral load, vmı́n, necessary for
there to be the possibility of transmission of the illness. Moreover, after a viral load
of vM , the chance chance of infection is maximum. Lastly, we suppose the there is
an upper bound to the viral load which we denote as vmax.

We choose, keeping the above in mind, for β the following membership function,

β(v) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if v ≤ vmin
v − vmin

vM − vmin
if vmin < v ≤ vM

1 if vM < v ≤ vmax

0 if v > vmax

. (10.10)

The parameter vmin, as was mentioned, represents the minimal quantity of virus
(pathogens) necessary for there to be a transmission of the illness. This parameter
could be interpreted as the threshold value of susceptibility of the group in question.
In fact, the larger the value of vmin, the larger the quantity of virus necessary for a
transmission of the disease to occur and this means that the group in question has
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Fig. 10.5 Fuzzy
transmission coefficient β [4]

1

β

vMvmin v

low susceptibility to the illness. In other words, the larger that vmin is, the larger the
resistance of the susceptible individuals. Whereas the parameter vM represents the
viral load above which the chance of transmission is maximum, that is, β(v) = 1.
Obviously, this does not mean that a transmission of the disease will occur in fact
when β(v) = 1, just that the chance of transmission is the greatest at this value.

Since β(v) ∈ [0, 1], we can interpret β as a membership function of some fuzzy
set whose domain is the viral load (see Example7.6) (Fig. 10.5).

Fuzzy Solution

System (10.8), incorporating viral lood, can be seen as a family of ordinary differ-
ential equations that has as a solution the functions

I(v, t) = I0eβ(v)t

So + I0eβ(v)t
(10.11)

for each fixed v. Now, for each fixed t > 0, I(v, t) is a set of real numbers and this
means that for each instant t, a solution (10.11) of the fuzzy problem (10.8) is a
distribution of possible values for the number of infected individuals whose range
lies in the interval [0, 1]. Thus,

I(v, t) = It(v) ∈ [0, 1]

may be interpreted as a membership function of a fuzzy set. If for some reason it is
necessary to adopt a single real-value to represent the number in infected individuals,
we should choose some defuzzification. We could use, for example, the average at
every instant of time t by way of the fuzzy expected value FEV [I(V, t)] using as our
defuzzier of the fuzzy set I(v, t). To make a comparison between the classical and
fuzzy SI models we are calculating the statistic expected value E [I(V, t)] and the
fuzzy expected value FEV [I(V, t)]. To do this, let us consider that the viral load V is
a linguistic variable that can be considered weak (V−), medium (V+

− ) or strong (V+),
where each of these classifications is a fuzzy set whose membership function is a
triangular fuzzy number dependent on actual viral load associated with the disease
being studied,

http://dx.doi.org/10.1007/978-3-662-53324-6_7
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Fig. 10.6 Possibility
distribution of viral load ρ
[4]

1

ρ

0 vv̄ − δ v̄ v̄ + δ

ρ(v) =
{
1 − |v−v̄|

δ
if v ∈ [v̄ − δ, v̄ + δ]

0 if v /∈ [v̄ − δ, v̄ + δ] . (10.12)

Note that ρ(v) may be viewed as a possibility of occurrence V = v and, in this case
ρ becomes a possibility distribution for the variable V . For a fuller interpretation of
possibility (say of a fuzzy set like ρ) see Example 7.6 of Chap.7 (Fig. 10.6).

The parameter v̄ is an average value around which each one of the fuzzy sets
generated by V distributes itself, whereas δ is half of the distance of the base of the
triangles. This triangular fuzzy number may be considered as an ideal dispersion
around the average v̄. The fuzzy sets generated by the linguistic variable V are
classified based on the parameters vmin and vM that appear in the definition of β.

10.2.2 Expected Value of the Number of Infected Individuals

This section calculates the average number of infected individuals in the distinct cases
corresponding to the distributions of the viral load of the group. Since in Chap. 7 we
have already defined the fuzzy expected value FEV , we now use this definition to
define the expected value of the fuzzy set I(V, t) as follows

FEV [I(V, t)] = sup
0≤α≤1

min[α,μ{I(v, t) ≥ α}],

where μ{v : I(v, t) ≥ α} is the classical measure of the α − level [I(V, t)]α, which
is a classical set. In this way, for each t, the function H(α), whose fixed point is the
value of FEV [I(V, t)] according to Theorem 7.1 is given by

H(α) = μ{v : I(v, t) ≥ α} =
∫

[I(v,t)]α
ρ(v)dv = 1 − μ{v : I(v, t) < α}.

http://dx.doi.org/10.1007/978-3-662-53324-6_7
http://dx.doi.org/10.1007/978-3-662-53324-6_7
http://dx.doi.org/10.1007/978-3-662-53324-6_7
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First, observe that H(0) = 1 and H(1) = 0. For 0 < α < 1, and setting k = S0
I0

we have

H(α) = 1 − μ{v : I(v, t) < α} = 1 − μ{v : β(v) < ln

(
αk

1 − α

) 1
t

} =

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if ln( αk
1−α

)
1
t ≤ 0

μ{v ∈ [0,B)} if 0 < ln( αk
1−α

)
1
t < 1

0 if ln( αk
1−α

)
1
t ≥ 1

=

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if 0 ≤ α ≤ I0

μ{v ∈ [0,B)} if I0 < α < I0et

S0+I0et

0 if I0et

S0+I0et
≤ α ≤ 1

,

where B = vmin + (vM − vmin) ln( αk
1−α

)
1
t . Note that vmin < B ≤ vM .

To calculate the fuzzy expectation, any measure can be used not necessarily a
σ-additive one. To this end, in our case, let us adopt a fuzzy measure

μ(A) = 1

δ

∫
A
ρ(v)dv =

∫
A

ρ(v)

δ
dv,

which is also a probability measure where in that case, ρ(v)
δ

is the probability density
function and we note that

∫
A

ρ(v)
δ
dv = 1. With the aim of giving the example of the

cases where the viral load is weak, medium, or strong, let us calculate the fuzzy
expectation FEV [I(V, t)] for the three distinct cases according to Fig. 10.7.

• Weak viral load (V−).
This case B > vmin > v̄ + δ and we have μ {v ∈ [0,B]} = 1 and thus,

H(α) =
{
1 if 0 ≤ α ≤ I0
0 if I0 < α ≤ 1

.

Fig. 10.7 Classification of
viral load [4]

1

weak mediun strong

β

vMvmin v



252 10 Biomathematical Modeling in a Fuzzy Environment

Therefore,
FEV [I(V, t)] = I0.

The number if infected at each instant of time t remains the same as at the initial
state and so the disease does not propagate. This result is concordant with the fact
that in this interval, β(v) = 0.

• Strong viral load (V+).
This case B ≤ vM ≤ v̄ − δ and we obtain μ {v ∈ [0,B]} = 0. As a result

H(α) =
{
1 if 0 ≤ α ≤ I0et

S0+I0et

0 if I0et

S0+I0et
< α ≤ 1

and therefore,

FEV [I(V, t)] = I0et

S0 + I0et
.

In addition, we obtain the classical solution when β = 1.

• Medium viral load (V+
− ). This case has vmin < v̄ − δ < v̄ + δ < vM and a direct

calculation, though it requires quite a bit of work, gives us the following,

H(α) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 if 0 ≤ α ≤ I(v̄ − δ, t)

1 − 1
2

(
B − v̄

δ
+ 1

)2

if I(v̄ − δ, t) < α ≤ I(v̄, t)

1
2

(
v̄ − B

δ
+ 1

)2

if I(v̄, t) < α ≤ I(v̄ + δ, t)

0 if I(v̄ + δ, t) < α ≤ 1

. (10.13)

In accordance with expression (10.13) and the above figure, we can conclude that
H(α) is continuous and decreasing with H(0) = 1 and H(1) = 0. Consequently,
H has one and only one fixed point that coincides with FEV [I(V, t)] (Theorem
7.1). Once give the values of the parameters δ, v̄, vmin and vM are used to obtain
FEV [I(V, t)] (Fig. 10.8).

It is not hard to see that for each t > 0, if v ∈ [v − δ, v + δ] then I(v̄ − δ, t) and
I(v̄ + δ, t) are, respectively, the left and right endpoints of a real-valued interval. We
also have that if v2 ≥ v1, then I(v2, t) ≥ I(v1, t). In this way, by the Intermediate-
Value Theorem (see [13, 14]), for each t > 0 there exists a unique v = v(t) ∈ [v −
δ, v + δ] such that

FEV [I(V, t)] = I(v(t), t) = I0eβ(v(t))t

S0 + I0eβ(v(t))t
.

Therefore, the expectation of the solutions FEV [I(V, t)] does not coincide with any
of the solution curves (10.11) of the model. What we have is that for each t, the

http://dx.doi.org/10.1007/978-3-662-53324-6_7
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Fig. 10.8 Level function
H(α) for the medium viral
load [4] 1

H

I(v̄−δ,t) I(v̄+δ,t) 1 α

value of FEV [I(V, t)] coincides with I(v, t) for some v. Consequently, changing
the instant t, also will change the curve I(v, t), since FEV [I(V, t)] = I(v(t), t) and
v = v(t) varies with time. In other words, a curve FEV [I(V, t)] = I(v(t), t) is not a
solution of the original autonomous differential equation

dI

dt
= β(1 − I)I.

We make several observations based on what we presented above.

• While there are susceptible individuals and v̄ − δ − vmin > 0, the expectation of
the infected FEV [I(V, t)] grow with respect to t, because

lim
t→∞FEV [I(V, t)] ≥ lim

t→∞ I(v̄ − δ, t) = 1.

• The disease can be controlled by I(v̄ + δ, t), that is, making v̄ + δ − vmin ≤ 0, the
average number of infected cannot grow since

lim
t→∞FEV [I(V, t)] ≤ lim

t→∞ I(v̄ + δ, t) = I0.

10.2.3 Statistical Expected Values of the Number in Infected

The way we have considered the parameter β = β(v), the classical statistical
expected value of the number of infected individuals, E[I(V, t)], is given by

E[I(V, t)] =
+∞∫

−∞
I(v, t)

ρ(v)

δ
dv = 1

δ

v̄+δ∫
v̄−δ

I(v, t)ρ(v)dv, (10.14)
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since ρ(v) = 0 outside the interval [v̄ − δ, v̄ + δ]. So, we have

I(v̄ − δ, t) ≤ E[I(v, t)] ≤ I(v̄ + δ, t).

Since there exist various ways for us to calculate the expected value as a function
of the parameters, we choose the three particular cases already analyzed using the
fuzzy expected value (FEV ).

Weak viral load: vmin > v̄ + δ.
In this case, for all the infected individuals, the transmission coefficient β(v) is

zero. Substituting β(v) = 0 and I(V, t) given by (10.11) in (10.14), we obtain:

E[I(V, t)] = 1

δ

v̄+δ∫
v̄−δ

I(v, t)ρ(v)dv = I0.

Therefore, since all the infected individuals exhibit a viral load less than vmin,
that is, no individual possesses a minimal viral load necessary for transmission,
there occurs no propagation of the disease. We may interpret this situation as one in
which the group of individuals is highly resistant (vmin is high), that in turn makes
the susceptibility to the disease low. In this case the number of infected remains
unaltered from I0.

Strong viral load: vM < v̄ − δ.
In this case, the coefficient of transmission is maximum for all the infected indi-

viduals, that is, β(v) = 1. After some calculations we obtain

E[I(V, t)] = 1

δ

v̄+δ∫
v̄−δ

I(v, t)ρ(v)dv = I0et

S0 + I0et
. (10.15)

Observe that (10.15) coincides with the classical model when we consider the trans-
mission coefficient as constant, that is, β = 1.

Medium viral load: v̄ − δ > vmin and v̄ + δ < vM .
In this case, similar towe saw for the fuzzy expectation, here also the coefficient of

transmission is variable for all infected individuals. All the distribution, the support
of the distribution of V is in the regionwhere β(v) = v−vmin

vM−vmin
. So, to obtainE[I(V, t)]

it is necessary to know the values of all the parameters: δ, v̄, vmin, vM and vmax.
Analogous observations that weremade about the propagation of the diseasemade

for the fuzzy expected value also apply here remembering that

I(v̄ − δ, t) ≤ E[I(v, t)] ≤ I(v̄ + δ, t),

lim
t→∞E[I(V, t)] ≥ lim

t→∞ I(v̄ − δ, t) = 1
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and
lim
t→∞E[I(V, t)] ≤ lim

t→∞ I(v̄ + δ, t) = I0.

For the statistic expectation, we also have

E[I(V, t)] = I(v(t), t)),

for some function v = v(t).
To conclude this sectionwewould like to emphasize that unlike the statistic expec-

tation, we could have utilized other fuzzy measures to obtain the fuzzy expectation.
This possibility to choose different measures, according to the phenomenon being
studied, is what makes the fuzzy expectation a powerful tool in applications. For
example, instead of using the measure

μ(A) = 1

δ

∫
ρ(v)dv,

we could have used the possibilistic measure (see Chap.7)

μ(A) = sup
v∈A

ρ(v).

In our view, this is a very reasonable measure to use for our example if we want to
be very conservative in the following sense. It may be that for a particular disease, a
group A of infected individuals is evaluated by the one person with the greatest viral
load. The expectation of the number of infected individuals, FEV [I(V, t)], could be
evaluated with this more conservative measure and from this, mechanisms applied
to control the disease could be made according to this figure. To be specific, for
the possibility measure, we arrive at a very similar conclusion for the three cases
previously analyzed where in the possibilistic measure case the function H becomes

H(α) =

⎧⎪⎨
⎪⎩

1 if 0 ≤ α ≤ I0
sup

v∈[a,vmax]
ρ(v) if I0 < α ≤ I0et

S0+I0et

0 if I0et

S0+I0et
< α ≤ 1

(10.16)

and FEV [I(V, t)] is the fixed point of the function H.
Let us do a comparative study between the approaches taken above and the deter-

ministic method with the aim of exploring a little more this example.

http://dx.doi.org/10.1007/978-3-662-53324-6_7
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10.2.4 I(FEV[V ], t) Versus FEV[I(V, t)]

This section will compare the trajectories of the three cases we have been studying
previously above of the curve FEV [I(V, t)], that is, I(FEV [V ], t) = I(v̄, t). From
the expression of H (10.16), we can conclude that H(I(v̄, t)) = 1

2 for all t. Thus
FEV [I(V, t)] = I(v̄, t) only when I(v̄, t) = 1

2 .
On the other hand, once FEV [I(V, t)] is a fixed point of H we have

FEV [I(V, t)] > I(v̄, t) if I(v̄, t) < 1
2

FEV [I(V, t)] < I(v̄, t) if I(v̄, t) > 1
2

.

In this way, a trajectory due to a medium viral load (v̄), does not produce the medium
number of infected individuals, as given byFEV [I(V, t)], at every instant. Therefore,
from our point of view, it is not correct to adopt an average or modal viral load, v̄, to
study the evolution of the disease in a population as a whole since FEV [I(V, t)] =
I(v̄, t) only at the instant t̄ = vM−vmin

v̄−vmin
ln( S0I0 ), S0 ≥ I0.Weobserve that t̄ is the inflection

point of I(v̄, t) and that I(v̄, t̄) = 1
2 , that is, at the instant t̄, the increment of the rate

of increase of I(v̄, t) is larger than I(v̄, t̄) = 1
2 (see Fig. 10.9). Starting with Jensen’s

inequality [15], we obtain similar results as those commented upon above for the
classical expectation, E(I(V, t)), by only changing the time t̄ at which the curve
I(v̄, t) lies above E(I(V, t)).

These facts reveal that, for heterogeneous systems, two distinct instants of time
can appear in which the uncertainties of the model can induce different values for
the system as a whole. If we adopt a deterministic model to study the system above,
it leads us to adopt I(v̄, t) as a solution since in this case, all the uncertainty should
be extracted right at the beginning of the mathematical model which in our case is,
V = v̄. On the other hand, the fuzzy model allows the uncertainties, in this case
inherent in the phenomenon, to be extracted in a desired (future) moment resulting
in the solution FEV [I(V, t)] or E[I(V, t)]which is more representative of the system
as a whole.

Fig. 10.9 Deterministic
solution I(v̄, t) with v̄ and
the fuzzy expected value
FEV [I(V, t)] [4]

I

I0

0.5

1

FEV [I(V, t)]
I(v̄, t)

t t
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Mathematical models of epidemics are studied, in large part, with the aim of the
implementation of policies or strategies to control the disease. We further illustrate
this by studying a fuzzy SI model.

10.2.5 Control of Epidemics and the Basic
Reproductive Number

The discussion in this section is based on the properties of the fuzzy SI model,
keeping in mind the curve given by the fuzzy expectation FEV [I(V, t)]. In our
previous development, we obtained conclusions based on the curve E[I(V, t)] [4,
16]. In our previous discussions we saw the following facts.

• If S0 > I0, while t < t̄ = vM−vmin
v̄−vmin

ln( S0I0 ), then FEV [I(V, t)] > I(v̄, t). Beginning
with t = t̄ we have that FEV [I(V, t)] < I(v̄, t). In this way we can say that the
deterministic model underestimates the number of infected individuals at the
beginning of the illness and overestimates the number of infected individuals
beginning with t̄ (see Fig. 10.9).

• If S0 ≤ I0 then FEV [I(V, t)] ≤ I(v̄, t) for all t > 0 and in this case, the determin-
istic model overestimates the number of infected individuals.

Therefore, at the beginning of the illness when t < t̄ = vM−vmin
v̄−vmin

ln( S0I0 ) and S0 >> I0,
we have

I(v̄, t) ≤ FEV [I(V, t)] ≤ I(v̄ + δ, t)

and thus, v(t) ∈ [v̄, v̄ + δ].
OnceFEV [I(V, t)] = I(v(t), t) increaseswith the increase in v(t), we can say that

the larger themedium viral load the larger the average number of infected individuals
FEV [I(V, t)]. Also, the larger the dispersal δ, the larger will be FEV [I(V, t)] and
the larger vmin is, the smaller FEV [I(V, t)] will be.

An essential parameter, for epidemiological classical models, is the basic repro-
ductive number R0, which gives the number of secondary cases caused by an infected
individual introduced in a population that is totally susceptible [10, 17]. In this way,
this parameter indicates under what conditions the disease is propagated in a pop-
ulation. If an infected individual causes more than one new case, that is, if R0 > 1
then the disease will propagate. On the other hand, when R0 < 1 the disease will be
extinguished.

The expression for the parameter R0, for the more simple epidemiological models
can be obtained beginning with the condition dI/dt > 0, that is, the condition that
there occurs an increase in the number of infected. In this case, for the classical
normalized SI model where I + S = 1, we will have

dI

dt
> 0 ⇐⇒ βSI = β(1 − I)I > 0,
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which holds as long as there exist susceptible individuals in the populations sinceβ >

0. In other words wewill always haveR0 > 1when β > 0 and I < 1. However, when
weuse a fuzzy set to describe the parameterβ this cannot occur. In our case, according
to the analysiswemade above, it is easy to verify that a sufficient condition for there to
be no transmission of the disease is that no infected individual possesses theminimum
or higher viral load. That is, the condition v̄ + δ < vmin should be satisfied. We can
therefore define the fuzzy basic reproductive number as being the value

Rfuzzy
0 = v̄ + δ

vmin
. (10.17)

Classical epidemiological models use, as a prevention control mechanism, the
policy of reducing the value of the parameter R0 in such a way that R0 < 1 so that the
disease will not propagate. But for the classical SI model this is not possible since
the number of susceptible individuals is always positive as we have seen above.

However, if we consider the number of susceptible individuals was a fuzzy set,
that is, β = β(v) in (10.8), even in this simple model, we will garner additional
information about the dynamics of the disease. For example, it is possible to interfere
in the illness’ transmission by reducing the value of the fuzzy parameter Rfuzzy

0 . This
can be done in two ways: (1) Increasing the value of vmin, which means that we
increase the resistance of the susceptible individuals (decrease the susceptibility);
Increasing the value of vmin could be done through, for example, vaccination, basic
sanitation, etc. In this sense, by the fact that the parameter vmin is related to the
susceptible individuals, the way to reduce the value of R0 is referred to as methods
of control; (2) the second way to reduce R0 would be to diminish the value of v̄ + δ,
by reducing the value of v̄ and/or δ. The reduction of the value of δ could be done
by means of control of the infected population as in, for example, quarantine or
isolation. The reduction in v̄ is related to measures of treatment of the infected
individuals.

Wefinishour discussionof this applicationbyemphasizing that unlike the classical
SI model that is quite simple as we presented it, and inadequate for most diseases,
even the simple fuzzy SI model is more inclusive whose results are more closely
associated with more complex models in which the class of infected are divided
into subclasses in accordance with the intensity of the infected (see [18]). A more
detailed study of the fuzzy SI models can be found in [4] and fuzzy SIS models in
[11, 16, 19].

10.3 A Fuzzy Model of the Transference from
Asymptomatic to Symptomatic in HIV+ Patients

The model that we present next can be found in [20, 21]. When we analyze the
evolution of a population of individuals from asymptomatic HIV+ to a class of
symptomatic ones,many factors are involved in the process since the rate at which the
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transference occurs is subject to the factors responsible for the change in the stages
of HIV+. Some of these factors are more crucial and influential than others. For
example, the viral load of an individual and the level ofCD4+ are fundamental to the
determining the next state in aHIV+ the patient.What we exhibit with this example is
to show howwe can study a phenomenon, that is typically modeled deterministically,
as a fuzzy model that explicitly and effectively uses inexact variables and parameters
as they occur in the data and model statement. We demonstrate the transformation of
the subjective, uncertain, and inexact variables and parameters into a fuzzymodel via
environmental fuzziness. To this end, the demographic fuzziness (fuzzy variables) are
transformed into environmental (parameters) fuzziness. This being the case, we will
consider the rate of transference, from asymptomatic to symptomatic, subjectively
dependent on the viral load and the level CD4+. In this way, we can express the rate
of transference by a fuzzy set, that is, we express the transference rate via a linguistic
variable as developed and studied in Chap.5. However, to begin, we review the
classical deterministic case.

10.3.1 The Classical Model

In 1986 Anderson et al. [22] proposed the following model for the transference of
asymptomatic individuals to symptomatic HIV+ ones,⎧⎪⎨

⎪⎩
dx

dt
= −λ(t)x with x(0) = 1

dy

dt
= λ(t)x with y(0) = 0

, (10.18)

where the function λ(.) represents the rate of transference of infected asymptomatic
individuals with HIV+ into symptomatic ones. The state variable x is the proportion
of the infected individuals who still do not have symptoms indicative of AIDS and y
is the proportion of the individuals that possess clear symptoms of AIDS. As a first
approximation, Anderson proposes that this rate be given as a linear function

λ(t) = at, with a > 0,

which means that the solution of the deterministic system (10.18) is

x(t) = e− at2

2 and y(t) = 1 − e− at2

2 .

http://dx.doi.org/10.1007/978-3-662-53324-6_5
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10.3.2 The Fuzzy Model

Let us now consider the rate of transference to be dependent on viral load v and the
level of CD4+ c, that is,

λ = λ(υ, c).

Using the analogous deterministic model given by Anderson, we can write the model
as: { dx

dt
= −λ(υ, c)x

x(0) = 1
(10.19)

or as its complementary/dual equation in terms of the variable y,

dy

dt
= λ(υ, c)x = kλ(υ, c)(1 − y) with y(0) = 0.

The difference in the fuzzy model and the deterministic one is that now the rate
of transference λ has a clear biological and linguistical meaning whereas with the
deterministic case, this rate was a adjustable parameter. The fuzzy model solution is

x(t) = e−λ(υ,c)t or y(t) = 1 − e−λ(υ,c)t .

Each solution can be understood as an element of a family of curves which has initial
value equal to 1,

x(t) = e−λ(υ,c)t, with t > 0,

where λ assumes values dependent on the viral load and the level of CD4+ present
in the blood. The values υ and c of variables, are characteristic properties of the
infected population. The analytic definition of the parameter λ is obtained through a
combination of the linguistic meaning of the variables V and CD4+ and a rule base
as developed in Chap.5.

Medical knowledge and research seems to indicate that the parameter most used
to control the transference from asymptomatic HIV+ to symptomatic ones is the
value of CD4+. In this way we can simply use λ = λ(c) as the transference rate
in the fuzzy model (10.19). If for every viral load v we have λ = λ(c), then its
graph is approximately the decreasing curve depicted by Fig. 10.10. The equation
that defines λ = λ(c) given next and depicted in Fig. 10.10, was chosen taking in
consideration arguments similar to those of the models previously presented (see
Chap.5, Subsect. 5.6.2 for more technical justification) is,

λ(c) =

⎧⎪⎨
⎪⎩

1 if c < cmin
cM − c

cM − cmin
if cmin ≤ c ≤ cM,

0 if c > cM

(10.20)

http://dx.doi.org/10.1007/978-3-662-53324-6_5
http://dx.doi.org/10.1007/978-3-662-53324-6_5
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Fig. 10.10 Transference rate
λ = λ(c) [21]

λ

1

cmin cM cmax CD4+

where cmin represents theminimal level ofCD4+ required for an individual to become
symptomatic and cM represents the level of CD4+ after which the chance of an
infected individual becoming symptomatic is minimal or none.

10.3.3 The Fuzzy Expectation of the Asymptomatic
Individuals

The fuzzy expected value provides a type of average value for the values of x(t, c)
at each instant of time, since it is a type of defuzzification of the fuzzy set of asymp-
tomatic individuals

x(t, c) = e−λ(c)t .

As we have seen in Chap.7, to define fuzzy expectation we initially need to choose
a fuzzy measure μ. Once this is done, the value of the fuzzy expectation of the
asymptomatic individuals x(t, c) is given by

FEV [x] = sup
0≤α≤1

inf [α,μ {x ≥ α}] ,

where {x ≥ α} = {c : x(c) ≥ α} and μ is a fuzzy measure. Here, we have, recall-
ing Theorem 7.1, H(α) = μ{c : x(c) ≥ α} for each t > 0. For this case, a direct
calculation results in the following expression of the function H:

H(α) =
⎧⎨
⎩

μ [cM , cmax] if α = 1
μ [B, cmax] if e−t ≤ α < 1

1 if α ≤ e−t
, (10.21)

where B = cM − (cM − cmin)(
lnα
t ) =⇒ cmin < B ≤ cM .

The fuzzymeasure thatwe choose is a distribution of levels ofCD4+ with different
associated possibilities of occurrence. We will assume that the levels of CD4+ has a

http://dx.doi.org/10.1007/978-3-662-53324-6_7
http://dx.doi.org/10.1007/978-3-662-53324-6_7
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triangular distribution given by,

ρ(c) =
{
1 − |c−c̄|

δ
if c ∈ [c̄ − δ, c̄ + δ]

0 if c /∈ [c̄ − δ, c̄ + δ]
. (10.22)

Here, we take c̄ to be the modal or median value in [0, cmax], with cmax as a
maximum limit of viral load in an individual and δ being the dispersion of the levels
of CD4+ within the population of interest (those infected with HIV). Thus, with this
in mind, we suggest to use the following fuzzy measure μ

μ(A) =
{
sup
c∈A

ρ(c) if A 
= ∅
0 if A = ∅ ,

where A is a subset of real numbers, containing the domain of possible values of
CD4+ (Fig. 10.11).

The subsets A of real numbers of interest are the intervals A = [B, cmax], where
B = cM − (cM − cmin)(

− lnα
t ) =⇒ cmin < B ≤ cM . Observe that μ is an optimistic

measure in the sense that the level of CD4+ of a group is evaluated as being the best
level of the individuals of this group.

Consider the level of CD4+ as a linguistic variable with values low, medium and
high, each one of these being characterized by a triangular fuzzy set according to the
membership function ρ (see Fig. 10.12).

Fig. 10.11 Possibility
distribution of CD4+ [21]

ρ

1

c̄ − δ c̄ c̄ + δ CD4+

Fig. 10.12 Values of the
linguistic variable “level of
CD4+” [21] 1

β

cmin cM c
low medium high
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Case 1: The level of CD4+ low (C−).

In this case, we take cmin > c̄ + δ. Since B > cmin we have that
μ [cM, cmax] = 0 and μ [B, cmax] = 0. Thus,

H(α) =
{
1 if α ≤ e−t

0 if e−t < α ≤ 1

so that we obtain FEV [x] = e−t which means that the average number of
transferences from asymptomatic to symptomatic has an exponential decay
since the expected value of individuals with no HIV symptoms, x, goes to
zero exponentially and the transference to symptomatic is an exponential
decay.

Case 2: The level of CD4+ high (C+).

In this case, we take cM ≤ c̄ − δ and c̄ + δ ≤ cmax. Thus, we have B ≤ cM
and therefore μ[cM , cmin] = 1 and μ[B, cmax] = 1 which yields

H(α) =
{
1 ifα = 0
0 ifα > 0

.

This means that FEV [x] = 1, so that if in the group, the level of CD4+ is
high, then there is no transference of asymptomatic individuals to symp-
tomatic ones.

Case 3: The level of CD4+ medium (C+
−).

In this case, we take c̄ − δ > cmin and c̄ + δ < cM which implies that
μ [cM, cmax] = 1. After a few calculations we have that

H(α) =
⎧⎨
⎩

1 if 0 ≤ α ≤ e−λ(c̄)t

ρ(B) if e−λ(c̄)t < α < e−λ(c̄+δ)t

0 if e−λ(c̄+δ)t ≤ α ≤ 1
,

where ρ(B) = 1
δ
[−cM − (cM − cmin)(

lnα
t ) + c̄ + δ]. Since H(α) is a con-

tinuous decreasing function with H(0) = 1 and H(1) = 0, H has a unique
fixed point that coincideswithFEV [x] (seeChap.7). Figure10.13 illustrates
this fact.
Thus,

e−λ(c̄)t < FEV [x] < e− λ(c̄+δ)t .

We observe that for the three cases of low/medium/high, we always have
the inequality

e−EF[λ]t ≤ e−λ(c̄)t ≤ FEV [x] .

http://dx.doi.org/10.1007/978-3-662-53324-6_7
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Fig. 10.13 Representation
of FEV [x] [21]

1

H

e−λ(c̄)t e−λ(c̄+δ)t

bisectrix

FEV [x]

FEV [x]

1 α

Thismeans that the expectedvalueof the asymptomatic population, at each instant,
is larger than the deterministic model which considers the rate of transference (from
asymptomatic to symptomatic) as a constant λ(c̄) = λ̄.

10.4 Population Dynamics and Migration of Blow Flies

We close this chapter with the presentation of a two-dimensional model that repre-
sents a competition and migration of flies. This model was developed by Castanho
et al. [23]. Themodel comes from a discrete two-dimensional systemwhere the para-
meters were determined by means of a rule base. This is a environmental fuzziness
case because in the model, the uncertainties are all in the parameters. The uncer-
tainties in the parameters are treated by means of fuzzy set theory and the values
obtained are via fuzzy controllers.

Adeterministicmodel usedbyGodoy [24] to analyze the establishment of colonies
of blow flies has its foundation based on the incorporation of deterministic models
of Prout and McCheney [25] and the stochastic model of Roughgarden [26]. The
Godoy model is,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
N1,t+1 = (1 − m12)

2
F1S1e−(f+s)N1,t N1,t + m21

2
F2S2e−(f+s)N2,t N2,t

N2,t+1 = m12

2
F1S1e−(f+s)N1,t N1,t + (1 − m21)

2
F2S2e−(f+s)N2,t N2,t

. (10.23)

This model relates the dynamics of a population of blow flies with a process of
migration between two colonies of blow flies. The variables and parameters are:

1. Ni,t : the population of blow flies of colony i at time t;
2. Fi: maximal fecundity of the blow flies when these are encountered in colony i;
3. Si: maximal survival of the blow flies in colony i;
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4. mij: rate of migration from colony i to colony j;
5. f and s represent the variation in fecundity and the survival respectively.

The parameters mij, Fi and Si are dependent on a series of factors usually hard to
evaluate quantitatively. In this case, it seems that the approach of fuzzy set theory can
be useful. So, to obtain the solution of our model, we get the parameters via fuzzy
method and substituting them on the deterministic equation (10.23).

Let’s consider that the parameters mij, Fi and Si are uncertainty and modeled by
linguitic variable. Also, consider that these parameters are dependent on two input
variables, the Population (Ni,t) and its Environment (Ei) which is the habitat of each
colony. So,wehave based rule fuzzy system (if - then)with two input and three output,
according to Frame 10.1. For the input variable Population, using the experimen-
tal data found in Godoy [24], the linguistic terms adolted were, Small, Medium and
Large according to Fig. 10.14. For the input variableEnvironment the linguistic terms
considered were Hostile, Slightly Unfavourable and Favorable whose membership
functions are given in Fig. 10.15. To model the fuzzy parameter rate of Migration,
m, as an output variable, dependent on Population and on Environment, we adopt
a rule base given by Frame 10.1. The linguistic terms Small, Medium and Large
representing the rate of migration are given by Fig. 10.16. The memberships val-
ues of the output linguistic variables Fecundity F (Fig. 10.17) and fuzzy Survival
S (Fig. 10.18) are intuitively derived considering an interpolation between the
experimental values for maxima and minima of these variables.

The result of the equation of Godoy (10.23) with the parameters obtained
from fuzzy controller with inference of Mamdani (see Chap. 5) are showed in the
Figs. 10.19 and 10.20.

A study of metapopulations of blow flies using a fuzzy dynamic population model
was developed in [23, 27].

Fig. 10.14 Fuzzy values of
the populations [23]

100 200 300 400 500 600 7000

1
Small Medium Large

http://dx.doi.org/10.1007/978-3-662-53324-6_5
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Fig. 10.15 Fuzzy values of
the environment [23]

0 0.2 0.4 0.6 0.8 1

1
Hostile Slightly Unfavorable Favorable

1. If Population is Small and the Environment is Favorable then the Fecundity and
Survival are High and Migration is Low;

2. If Population is Small and the Environment is Slightly Unfavorable then the Fecun-
dity is High, the Survival is Medium and Migration is Low;

3. If Population is Small and theEnvironment isHostile then the Fecundity isMedium,
the Survival is Low and Migration is High;

4. If Population is Medium and the Environment is Favorable then the Fecundity is
High, the Survival is Medium and Migration is Low;

5. If Population is Medium and the Environment is Slightly Unfavorable then the
Fecundity is Medium, Survival is Low and Migration is High;

6. If Population is Medium and the Environment is Hostile then the Fecundity and
Survival are Low and Migration is High;

7. If Population is Large and the Environment is Favorable then the Fecundity is
Medium, the Survival is Low and Migration is Moderate;

8. If Population is Large and the Environment is Slightly Unfavorable then the Fecun-
dity and Survival are Low and Migration is High;

9. If Population is Large and the Environment is Hostile then the Fecundity and
Survival are Low and Migration is High;

Frame 10.1: Rule base for Blow flies [23].

Fig. 10.16 Fuzzy values of
migration [23]
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Fig. 10.17 Fuzzy values of
fecundity [23]
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Fig. 10.18 Fuzzy values of
survaival [23]
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0

1
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Fig. 10.19 Stability solution
of the colonies for
N1,0 = 300, N2,0 = 700,
E1,0 = 0.01, and E2,0 = 0.3
[23]
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Fig. 10.20 Periodic
variations of the populations
for N1,0 = 300, N2,0 = 400,
E1,0 = 1, and E2,0 = 0.9
[23]
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