
Chapter 1
Fuzzy Sets Theory and Uncertainty
in Mathematical Modeling

Man is the measure of all things: of things which are, that they
are, and of things which are not, that they are not.

(Protagoras – 5th Century BCE)

Abstract This chapter presents a brief discussion about uncertainty based on philo-
sophical principles, mainly from the point of view of the pre-Socratic philosophers.
Next, the notions of fuzzy sets and operations on fuzzy sets are presented. Lastly,
the concepts of alpha-level and the statement of the well-known Negoita-Ralescu
Representation Theorem, the representation of a fuzzy set by its alpha-levels, are
discussed.

1.1 Uncertainty in Modeling and Analysis

The fundamental entity of analysis for this book is set, a collection of objects. A
second fundamental entity for this book is variable. The variable represents what
one wishes to investigate by a mathematical modeling process that aims to quantify
it. In this context, the variable is a symbolic receptacle of what one wishes to know.
The quantification process involves a set of values which is ascribed a-priori. Thus,
when one talks about a variable being fuzzy, a real-number, a random number, and
so on, one is ascribing to the variable its attribution.

A set also has an existence or context. That is, when one is in the process of
creating a mathematical model, one ascribes to sets attributions associated with the
model or problem at hand. One speaks of a set being a classical set, a fuzzy set, a set
of distributions, a random sets, and so on. Given that models of existent problems or
conditions are far from ideal deterministic mathematical entities, we are interested
in dealing directly with associated inexactitudes and so ascribe to our fundamental
objects of modeling and analysis properties of determinism (exactness) and non-
determinism (inexactness).

This book is about processes in which uncertainty both in the input or data side
and in the relational structure is inherent to the problem at hand. Social and biological
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2 1 Fuzzy Sets Theory and Uncertainty in Mathematical Modeling

the modeling are characterized by such uncertainties. The mathematical theory on
which we focus to enable modeling with uncertainty occurring in biological and
social systems is fuzzy set theory first developed by L. Zadeh [1].

Uncertainty has long been a concern of researchers and philosophers alike,
throughout the ages as it is to us in this present book. The pursuit of the truth,
of what is, of what exists, which is one aspect of uncertainty if we characterize truth
or existence certainty, has been debated since the dawn of thinking. In ancient Greece
individuals and schools explicitly asked the question: “What exists? Is everything in
transformation or is there permanence?” These are two dimensions of thought and
can be considered completely separate issues and even contradictory issues.

The pre-Socratic philosophers tried to make statements summarizing their
thoughts about the Universe in an attempt to explain what is existent in the uni-
verse. In the words of Heraclitus of Ephesus (6th to 5th Century BCE), “panta hei”,
which means “everything flows, everything changes”. By way of illustration, con-
sider a situation in which a river is never the same, one cannot bathe in the same river
twice. Cratylus, his disciple, took Heraclitus’ thoughts to the extreme by saying that
we cannot bathe in the river even once, because if we assign an identity to things or
give them names, we are also giving stability to these things which, in his view, are
undergoing constant change.

The Eleatic school, in contrast to Heraclitus, questions the existence of motion
or change itself. According to Parmenides of Elea (6th to 5th Century BCE): “the
only thing that exists is the being - which is the same as thinking”. Zeno, his main
follower, denies that there is motion as this was understood at the time by giving his
famous paradox of Achilles and the turtle [2].

The Sophists interpret what Parmenides said as the impossibility of false rhetoric.
According to Protagoras (5th Century BCE): “Man is the measure of all things”.
There is no absolute truth or falsehood. In the Sophists’ view, humankind must seek
solutions in the practical. The criterion of true or false is related to the theoretical
and must therefore be replaced by (more practical) patterns related to the concepts
of better or worse. Rhetoric is the way to find such patterns.

Most of the pre-Socratic philosophers with the exception of Heraclitus, believed
there was something eternal and unchanging behind the coming-to-be (that which is
in the process of being, of becoming), that was the eternal source, the foundation of
all beings. According to Thales, it was water; in the opinion of Anaximenes, the air;
Pythagoras thought it was numbers; and, Democritus believed that this source lay
in the atoms and in the void. This eternal something which was unchangeable and
which held all things was called by the Greeks arche.

Certainty and uncertainty were widely discussed by Greek philosophers. The
Sophists (a term derived from sophistes, sages) were known to teach the art of rhetoric.
Protagoras, the most important Sophist along with Górgias, taught students how to
turn weaknesses of argument into strengths. Rhetoric, for the Sophists, is a posture
or attitude with respect to knowledge that has a total skepticism in relation to any
kind of absolute knowledge. This, no matter how things are, is because everything
is relative and also depends on who gives judgement about them. Górgias said that
rhetoric surpasses all other arts, being the best because it makes all things submit



1.1 Uncertainty in Modeling and Analysis 3

to spontaneity rather than to violence. As is well known, Socrates confronted the
Sophists of his day with the question: “What is?” That is, if everything is relative,
what exists?

Plato, a disciple of Socrates, initially shared the ideas of Heraclitus that every-
thing is changing, the flow of coming-to-be, everything was in process. However, if
everything was in motion then knowledge would not be possible. To avoid falling
back into skepticism, Plato thought of a “world of ideas”. Around this world, there
would be changes, and things would be eternal beyond the space-time dimension.
The so-called “sensory world”, which is the world as perceived by the five senses,
would then come into being. It would be true that the “world of ideas” would be
behind the coming-to-be of this “sensory world”. For Plato the most important thing
was not the final concept, but the path taken to reach it. The “world of ideas” is not
accessible by the senses but rather just by intuition, while intellectual dialectics is the
movement of asceticism in pursuit of the truth. Therefore, Plato promotes a synthesis
between Heraclitus and Parmenides.

On the other hand, for Aristotle, the world of ideas and essences is not contained
in things themselves. Universal knowledge is linked to its underlying logic (the
Logos, the same reason, the principle of order and study of the consequences) and
also the syllogism, which is the formal mechanism for deduction. Based on certain
general assumptions, knowledge must strictly follow an order using the concept
of the demonstrative syllogism. In short, and perhaps naively, we think that the
most important difference between Aristotle and the Sophists is the fact that, for
Aristotle, there is an eternal, an immutable, independent of human beings, while
the Sophists consider that there is no eternal and absolute truth, but rather just the
knowledge obtained from our senses. For Plato and Aristotle, respectively, dialectics
and syllogisms are to be used in the quest for the truth. The Sophists consider that
rhetoric, the art of persuasion, is convincing in relation to the search for the truth,
because truth does not exist as an absolute.

Understanding that subjectivity, imprecision, uncertainty, are inherent to certain
terms of language, Górgias denied the existence of absolute truth: even if absolute
truth existed, it would be incomprehensible to man, even if it were comprehensible to
one man, it would not be communicable to others. In order to stimulate our thought
about this aspect of the uncertainty of language, we will try to reach a compromise
between the positions of the Sophists, on the one hand, and Plato and Aristotle, on
the other, by means of a simple example.

It is common practice to propose a meeting with another person by saying some-
thing like “Let’s meet at four o’clock”. Well, the abstract concept of “four o’clock”,
indicating a measurement of time, shows a need to establish communication (in the
abstract) and also enable the holding of the event, our meeting. If this were not
the case, how should we then communicate our meeting? - A point for Plato. On
the other hand, if we take this at face value, the meeting would never take place as
our respective clocks would never reach four o’clock simultaneously, even if they
had been synchronized, as we could not get to the point marked in hours, minutes,
seconds, and millionths of seconds. A point for Górgias. Admitting that we often
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carry out our commitments at the appointed time and place, it looks like we equally
need abstract truths and practical standards of a sensible world.

We articulated the thoughts above in order to point out the difficulty of talking
about certainty or uncertainty and of fuzzy or determinism. If we look in a dictionary
for terms synonymous with uncertainty, we find, for example: subjectivity, inaccu-
racy, randomness, doubt, ambiguity, and unpredictably, among others. Historically,
researchers, from what we have noticed, have, in their quantitative treatment, made
distinctions between the different types of uncertainty. The uncertainty arising from
the randomness of events has been well documented, and now occupies a prominent
position in the gallery of mathematics, in probability theory. Quantum physics has
used stochastic theories, and a series of formulae now try to explain the “relation-
ships of uncertainty”. One of the most widely known of these is the Uncertainty
Principle devised by the physicist W. Heisenberg (1927), which relates the position
and the velocity (momentum) of a particle. In a nutshell, Heisenberg’s Uncertainty
Principle says that one cannot know simultaneous for certain the exact position and
speed (momentum) of a subatomic particle. One can know one or the other, but not
both.

Unlike randomness, some variables used in our daily lives, and which are perfectly
understood when transmitted linguistically between partners, have always remained
outside the scope of traditional mathematical treatment. This is the case of some lin-
guistic variables that have arisen from the need to distinguish between qualifications
through a grading system. To describe certain phenomena within the sensible world,
we have used degrees that represent qualities or partial truths, or “better standards” to
use Sophist language. This is the case, for example, with such concepts as tall, heavy
smoker, or infections. This kind ambiguity in language which is a type of uncertainty
in terms of its precise meaning since these terms are by their very nature, imprecise,
is from a linguistic point of view, a flexibility regarding what elements belong to
the category/set (tall, heavy smoker). Moreover, the main contribution that fuzzy
logic made and is making, is to the mathematical analysis of fuzzy sets, these vague,
flexible, open concepts. Fuzzy logic gives precision to imprecise (linguistic) terms
so that mathematical analysis of these flexible categories is meaningful. In language
usage, we could refer to the sets of tall people, smokers or infections. These are
typical examples of “sets” whose boundaries can be considered transitional, flexible,
vague, since they are defined through subjective or flexible properties or attributes.

Let’s consider the example of tall people. To make a formal mathematical repre-
sentation of this set, we could approach it in at least two different ways. The first is the
classical approach, establishing a height above which a person could be considered
tall. In this case, the set is well-defined. The second and less conventional approach
to this issue would be that of considering all people as being tall with greater or less
extent, that is, there are people who are more or less tall or not tall at all. This means
that the less tall the individual, the lower the degree of relevance to this class. We
can therefore say that all people belong to the set of tall people, with greater or less
extent. This latter approach is what we intend to discuss in our book. It was from
such notions, where the defining characteristics or properties of the set is flexible,
transitional, open, that fuzzy theory appeared. Fuzzy set theory has grown consider-
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ably since it was introduced in 1965, both theoretically and in diverse applications
especially in the field of technology - microchips.

The word “fuzzy” is of English origin and means (see Concise Oxford English
Dictionary, 11th edition) indistinct or vague. Other meanings include blurred, hav-
ing the nature or characteristic of fuzzy. Fuzzy set theory was introduced in 1965 by
Lotfi Asker Zadeh [1] (an electrical engineer and researcher in mathematics, com-
puter science, artificial intelligence), who initially intended to impart a mathematical
treatment on certain subjective terms of language, such as “about” and “around”,
among others. This would be the first step in working towards programming and
storing concepts that are vague on computers, making it possible to perform calcu-
lations on vague or flexible entities, as do human beings. For example, we are all
unanimous in agreeing that the doubling of a quantity “around 3” results in another
“around 6 ”.

The formal mathematical representation of a fuzzy set is based on the fact that
any classic subset can be characterized by a function, its characteristic function, as
follows.

Definition 1.1 Let U be a non-empty set and A a subset of U . The characteristic
function of A is given by:

χA(x) =
{

1 if x ∈ A

0 if x /∈ A

for all x ∈ U.

In this context, a classical subset A of U can uniquely be associated with its
characteristic function. So, in the classical case, we may opt for using the language
from either “set theory” or “function theory”, depending on the problem at hand.

Note that the characteristic function χA : U → {0, 1} of the subset A shows
which elements of the universal set U are also elements of A, where χA(x) = 1
meaning that the element x ∈ A, while χA(x) = 0 means that x is not element
of A. However, there are cases where an element is partially in a set which means
we cannot always say that an element completely belongs to a given set or not. For
example, consider the subset of real numbers “near 2”:

A = {x ∈ R : x is near 2}.

Question. Does the number 7 and the number 2.001 belong to A? The answer to
this question is not no/yes (so is uncertain from this point of view) because we do
not know to what extent we can objectively say when a number is near 2. The only
reasonable information in this case is that 2.001 is nearer 2 than 7.

We now start the mathematical formalization of fuzzy set theory that shall be
addressed in this text, starting with the concept of fuzzy subsets.
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1.2 Fuzzy Subset

Allowing leeway in the image or range set of the characteristic function of a set from
the Boolean set {0, 1} to the interval [0, 1], Zadeh suggested the formalization of
the mathematics behind vague concepts, such as the case of “near 2,” using fuzzy
subsets.

Definition 1.2 Let U be a (classic universal) set. A fuzzy subset F of U is defined
by a function ϕF , called the membership function (of F)

ϕF : U −→ [0, 1].

The subscript F on ϕ identifies the subset (F in this case) and the function ϕF

is the analogue of the characteristic function of the classical subset as defined in
Definition 1.1 above. The value of ϕF (x) ∈ [0, 1] indicates the degree to which the
element x of U belongs to the fuzzy set F ; ϕF (x) = 0 and ϕF (x) = 1, respectively,
mean x for sure does not belong to fuzzy subset F and x for sure belongs to the fuzzy
subset F . From a formal point of view, the definition of a fuzzy subset is obtained
simply by increasing the range of the characteristic function from {0, 1} to the whole
interval [0, 1]. We can therefore say that a classical set is a special case of a fuzzy set
when the range of the membership function ϕF is restricted to {0, 1} ⊆ [0, 1], that
is, the membership function ϕF retracts to the characteristic function χF . In fuzzy
language, a subset in the classic sense is usually called a crisp subset.

A fuzzy subset F of U can be seen as a standard (classic) subset of the Cartesian
product U × [0, 1]. Moreover, we can identify a fuzzy subset F of U with the set of
ordered pairs (i.e., the graph of ϕF ):

{(x,ϕF (x)) : with x ∈ U }.

The classic subset of U defined below

supp F = {x ∈ U : ϕF (x) > 0}

is called the support of F and has a fundamental role in the interrelation between
classical and fuzzy set theory. Interestingly, unlike fuzzy subsets, a support is a crisp
set. Figure 1.1 illustrates this fact.

It is common to denote a fuzzy subset, say F , in fuzzy set literature, not by its
membership function ϕF but simply by the letter F . In this text we have decided
to distinguish between F and ϕF . In classical set theory, whenever we refer to a
particular set A we are actually considering a subset of a universal set U but for
the sake of simplicity or convenience, we say set A even though set A is actually a
subset. The fuzzy set literature also uses of these terms. This text will use both terms
interchangeably.

We now present some examples of fuzzy subsets.
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Fig. 1.1 Illustration of subsets fuzzy and crisp

Example 1.1 (Even numbers) Consider the set of natural even numbers:

E = {n ∈ N : n is even}.

This set E has characteristic function which assigns to any natural number n the
value χE (n) = 1 if n is even and χE (n) = 0 if n odd. This means that the set
of even numbers is a particular fuzzy set of the set of natural numbers N, since
χE (n) ∈ [0, 1], in particular

χE (n) = ϕE (n) =
{

1 if n is even
0 otherwise.

In this case, it was possible to determine all the elements of E , in the domain of the
universal set N of natural numbers, because every natural number is either even or
odd. However, this is not the case for other sets with imprecise boundaries.

Example 1.2 (Numbers near 2) Consider the following subset F of the real num-
bers near of 2:

F = {x ∈ R : x is near 2}.

We can define the function ϕF : R −→ [0, 1], which associates each real value
x proximity to point 2 using the expression

ϕF (x) =
{
(1 − |x − 2|) if 1 ≤ x ≤ 3

0 if x /∈ [1, 3]
, x ∈ R.

In this case the fuzzy subset F of points near 2, characterized in ϕF , is such that
ϕF (2.001) = 0.999 and ϕF (7) = 0. We say that x = 2.001 is near to 2 with
proximity degree 0.999; x = 7 is not near 2.
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On the other hand, in the example above, one may suggest a different membership
function to show proximity to the value 2. For example, if the closeness proximity
function were defined by

νF (x) = exp
[− (x − 2)2] ,

with x ∈ R, then the elements of the fuzzy set F , characterized by the function νF ,
as above, have different degrees of belonging from ϕF : νF (2.001) = 0.99999 and
νF (7) = 1.388 × 10−11.

We can see that the notion of proximity is subjective and also depends on the
membership function which can be expressed in countless different ways, depending
on how we wish to evaluate the idea of a “nearness”. Note that we could also define the
concept “numbers near 2” by a classic set with membership function ϕFε

, considering,
for example, a sufficiently small value of ε and the characteristic function for the
interval (2 − ε, 2 + ε), by following expression:

ϕεF (x) =
{

1 if |x − 2| < ε

0 if |x − 2| ≥ ε.

Note that being close to 2 means being within a preset neighborhood of 2. The
element of subjectivity lies in the choice of the radius of the neighborhood consid-
ered.In this specific case, all the values within the neighborhood are close to 2 with
the same degree of belonging, which is 1.

Example 1.3 (Small natural numbers) Consider the fuzzy subset F containing the
small natural numbers,

F = {n ∈ N : n is small}.

Does the number 0 (zero) belong to this set? What about the number 1.000? In
the spirit of fuzzy set theory, it could be said that both do indeed belong to F , but
with different degrees depending on the membership function ϕF with respect to the
fuzzy set F . The membership function associated with F must be built in a way that
is consistent with the term “small”, the context of the problem and the application
(mathematical model). One possibility for the membership function of F would be

ϕF (n) = 1

n + 1
, n ∈ N.

Therefore, we could say that the number 0 (zero) belongs to F with a degree of
belonging equal to ϕF (0) = 1, while 999 also belongs to F , albeit with a degree of
belonging equal to ϕF (999) = 0.001.

It is clear that in this case the choice of the function ϕF was made in a some-
what arbitrary fashion, only taking into account the meaning of “small”. To make a
mathematical model of the “small natural number” notion, and thus to link F to a



1.2 Fuzzy Subset 9

membership function, we could, for example, choose any monotonically decreasing
sequence, starting at 1 (one) and converging to 0 (zero) as

{ϕn}n∈N; with ϕ0 = 1.

For example,

ϕF (n) = e−n;
ϕF (n) = 1

n2 + 1
;

ϕF (n) = 1

ln (n + e)
.

The function to be selected to represent the fuzzy set considered depends on
several factors related to the context of the problem under study. From the standpoint
of strict fuzzy set theory, any of the previous membership functions can represent the
subjective concept in question. However, what should indeed be noted is that each
of the above functions produces a different fuzzy set, according to Definition 1.2.

The examples we have presented above possess a universal set U for each fuzzy
set that is clearly articulated. However, this is not always the case. In most cases
of interest for mathematical modeling, the universal set needs to be delineated and
in most instances the support set as well. Let’s illustrate this point with a few more
examples.

Example 1.4 (Fuzzy set of young people, Y) Consider the inhabitants of a specific
city. Each individual in this population can be associated to a real number corre-
sponding to their age. Consider the whole universe as the ages within the interval
U = [0, 120] where x ∈ U is interpreted as the age of a given individual. A fuzzy
subset Y , of young people of this city, could be characterized by the following two
membership functions for young, Y1,Y2 according different experts:

ϕY1(x) =

⎧⎪⎨
⎪⎩

1 if x ≤ 10
80 − x

70
if 10 < x ≤ 80

0 if x > 80

,

ϕY2(x) =
⎧⎨
⎩

(
40 − x

40

)2

if 0 ≤ x ≤ 40

0 if 40 < x ≤ 120
.

In the first case Y1, the support is the interval [0, 80] and in the second case Y2, the
support is [0, 40]. The choice of which function to be used to represent the concept of
young people relies heavily on the context or analysis. Undoubtedly, about to retire
professors would choose Y1. Note that the choice of U = [0, 120] as the interval
for the universal set is linked to the fact that we have chosen to show how much
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an individual is young and our knowledge that statistically in the world, no one has
lived beyond 120. If another characteristic were to be adopted, such as the number
of grey hairs, to indicate the degree of youth, the universe would be different as well
as the support.

The next example shows a bit more about fuzzy set theory in the mathematical
modeling of “fuzzy concepts”. In this example, we shall present a mathematical
modeling treatment that allows the quantification and exploration of a theme of
important social concern, poverty. This concept could be modeled based on a variety
of appropriate variables, calorie intake, consumption of vitamins, iron intake, the
volume of waste produced, or even the income of every individual, among many other
features that are possible. However, we have chosen to represent poverty assuming
that the only variable is income level. A possible mathematical model for poverty is
shown below.

Example 1.5 (Fuzzy subset of the poor) Consider that the concept of poor is based
on the income level r . Hence, it is reasonable to assume that when you lower the
income level, you raise the level of poverty of the individual. This means that the
fuzzy subset Ak , of the poor in a given location, can be given by the following
membership function:

ϕAk (r) =
⎧⎨
⎩

{
1 −

[(
r
r0

)2
]}k

if r ≤ r0

0 if r > r0

.

The parameter k indicates a characteristic of the group we are considering. This
parameter might indicate such things as the environment in which the individual
people are situated. The parameter value, r0, is the minimum income level believed
to be required to be out of poverty.

As illustrated in Fig. 1.2 above, we have that if k1 ≥ k2, then ϕAk1
(r) ≤ ϕAk2

(r)
which means that an individual group in k1, with an income level r̄ , would be poorer
for this income level were the individual in group k2. We can also say that in terms of
income, it is easier to live in the places where k is greatest. So, intuitively, k shows

Fig. 1.2 The membership
function of the fuzzy subset
of “poor”

( )r

( )rAk1

ϕ

r 0r

Ak2

ϕ

r
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whether the environment where the group lives is less or more favorable to life. The
parameter k may give an idea of the degree of saturation that a group has on the
environment and, therefore, can be considered as an environmental parameter.

1.3 Operations with Fuzzy Subsets

This section presents the typical operations on fuzzy sets such as union, intersection
and complementation. Each one of these operations is obtained from membership
functions. Let A and B be two fuzzy subsets of U , with their respective membership
functions ϕA and ϕB . We say that A is a fuzzy subset of B, and write A ⊂ B if
ϕA(x) ≤ ϕB(x) for all x ∈ U . Remember that the membership function of the
empty set (∅) is given by ϕ∅(x) = 0, while the universal set U has membership
function ϕU (x) = 1 for all x ∈ U . Hence we can say that ∅ ⊂ A and A ⊂ U for all
A.

Definition 1.3 (Union) The union between A and B is the fuzzy subset of U whose
membership function is given by:

ϕA∪B (x) = max{ϕA (x) ,ϕB (x)}, x ∈ U.

We note that this definition is an extension of the classic case. In fact, when A and
B are classics subsets of U have:

max{χA (x) ,χB (x)} =
{

1 if x ∈ A or x ∈ B

0 if x /∈ A and x /∈ B

=
{

1 if x ∈ A ∪ B

0 if x /∈ A ∪ B

= χA∪B (x) , x ∈ U.

Definition 1.4 (Intersection) The intersection between A and B is the fuzzy subset
of U whose membership function is given by the following equation:

ϕA∩B (x) = min{ϕA (x) ,ϕB (x)}, x ∈ U.

Definition 1.5 (Complement) The complement of A is the fuzzy subset A
′

in U
whose membership function is given by:

ϕA′ (x) = 1 − ϕA (x) , x ∈ U.

Exercise 1.1 Suppose that A and B are classic subsets of U .

1. Check that
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min{χA (x) ,χB (x)} =
{

1 if x ∈ A ∩ B

0 if x /∈ A ∩ B.

2. Check that χA∩B (x) = χA (x)χB (x). Note that this identity is does not hold in
cases where A and B are fuzzy subsets.

3. Check that χA∩A′ (x) = 0
(

A ∩ A
′ = ∅)

and that χA∪A′ (x) = 1
(

A ∪ A
′ = U

)
for all x ∈ U.

Unlike the classical situation, in the fuzzy context (see Fig. 1.3) we can have:

• ϕA∩A′ (x) �= 0 = ϕ∅ (x) which means that we may not have
A ∩ A

′ = ∅;
• ϕA∪A′ (x) �= 1 = ϕU (x) which means that we may not have

A ∪ A
′ = U.

In the following example, we intend to exploit the special features presented by
the concept of the complement of a fuzzy set.

Example 1.6 (Fuzzy set of the elderly) The fuzzy set O of the elderly (the old) should
reflect a situation opposite of young people given above, when considering the ages
that belong to O . While youth membership functions should decrease with age, the
elderly should be increase with age. One possibility for the membership function of
O is:

ϕO (x) = 1 − ϕY (x) ,

where ϕY is the membership function of the fuzzy subset “young”. Therefore, the
fuzzy set O is the complement of fuzzy Y . In this example, if we take the set of
young people Y1 as having the membership function mentioned in the first part of
Example 1.4, then:

’

A

U

B

U

BA ∩

U

B∪A

U

A

U
(c)(b)(a)

Fig. 1.3 Operations with fuzzy subsets: a union, b intersection, and c complement
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Fig. 1.4 Fuzzy subsets of
young and elderly

ϕJ

ϕ

age

young:

elderly: I

10 20 30 40 50 60 70 80 90 100 110 120

1

ϕO(x) = 1 − ϕY1 (x) =

⎧⎪⎪⎨
⎪⎪⎩

0 if x ≤ 10
x − 10

70
if 10 < x ≤ 80

1 if x > 80

.

A graphical representation for O and Y1 is shown in Fig. 1.4.
Note that this operation, complement, exchanges degrees of belonging for the

fuzzy subsets of O and Y1. This property characterizes the fuzzy complement, which
means that while ϕA (x) represents the degree of compatibility of x with the linguistic
concept in question, ϕA′ (x) shows the incompatibility of x with the same concept.

One consequence of the imprecision of fuzzy sets is that there is a certain overlap
of a fuzzy set with its complement. In Example 1.6, an individual who belongs to
the of fuzzy set young with grade 0.8, also belongs to its complement O with grade
0.2. Also note that it is quite possible for a member to belong to one set and also
its complementary set with the same degree of belonging (in Fig. 1.4 this value is
45), showing that the more doubt we have about an element belonging to the set, the
nearer to 0.5 is the degree of belong to this set. That is, the closer to a 0.5 membership
value an element is, the greater the doubt of whether or not this element belongs to
the set. The degree 0.5 is the maximum doubt (greatest entropy). This is a major
difference from classical set theory in which an element either belongs to a set or to
its complement, these being mutually exclusive, and there is absolutely no doubt.

Here it must also be noted that we have defined young and elderly (old), which
are admittedly linguistic terms of opposite meanings, through the use of fuzzy sets
that are not necessarily complementary. For example, we could have used ϕY1 :

ϕY2 (x) =

⎧⎪⎨
⎪⎩

(
40 − x

40

)2

if 0 ≤ x ≤ 40

0 if 40 < x ≤ 120,
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in which case we could have obtained

ϕO(x) =

⎧⎪⎨
⎪⎩

(
x − 40

80

)2

if 40 < x ≤ 120

0 if x ≤ 40.

Exercise 1.2 Assume that the fuzzy set for young people, Y , is given by

ϕY (x) =

⎧⎪⎨
⎪⎩

[
1 −

( x

120

)2
]4

if x ∈ [10, 120]

1 if x /∈ [10, 120]
.

1. Define a fuzzy set for the elderly.
2. Determine the age of an individual considered of middle age, which means grade

0.5, both in terms of youth and of elderly (old) age, assuming that the fuzzy set
of the elderly is the complement to that of the young.

3. Draw the graph of the young and elderly (old) for part 2, and then compare it with
Example 1.6.

We will next extend the concept to the complement for A ⊆ B where A is a
fuzzy subset of fuzzy set B and both in relation to the universe U . In this case, the
complement of A in relation to B is denoted by the fuzzy set A

′
B which has the

following membership function:

ϕA
′
B
(x) = ϕB (x) − ϕA (x) , x ∈ U.

Note also that the complement of A in relation to U is a particular case of the
complement of A in B since ϕU (x) = 1.

In the following example, we shall try to further exploit the concept of the ideas
of complements with fuzzy subsets as defined in Example 1.5.

Example 1.7 (Fuzzy set of the poor revisited) If the environment in which a group
lives suffers any kind of degradation, from what we saw in Example 1.5, this results
in a decreased environmental parameter, declining from k1 to a lower value k2, so
that the individual having income level r in k1 has degree of poverty ϕAk1

(r) less
than that of another ϕAk2

(r) with the same income r in k2. That is,

ϕAk1
(r) < ϕAk2

(r) ⇔ Ak1 ⊂ Ak2 .

Such a change could lead to the poverty level of a pauper, represented by Ak2 . The
fuzzy complement of Ak1 in Ak2 is the fuzzy subset given by

(
A

′)
Ak2

.
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This set is not empty, and its membership function is given by

ϕ(A′)Ak2

= ϕAk2
(r) − ϕAk1

(r) , r ∈ U.

A recompense to the group that has suffered such a fall should be that of the same
status of poverty as before. That is, given an income of r1, the group should have an
income of r2 (after the fall) which means that

ϕAk2
(r2) − ϕAk1

(r1) = 0.

Therefore r2 − r1 > 0 and the recompense should be r2 − r1 (see Fig. 1.5).
We shall now make some brief comments and also look at the consequences of

the major operations between fuzzy sets.
If A and B are sets in the classical sense, then the characteristic functions of their

operations also satisfy the definitions defined for the fuzzy case, showing coher-
ence between such concepts. For example, if A is a (classic) subset of U , then the
characteristic function χA′ (x) of its complement is such that

{
χA′ (x) = 0 if χA (x) = 1 ⇔ x ∈ A;
χA′ (x) = 1 if χA (x) = 0 ⇔ x /∈ A.

In this case, either x ∈ A or x /∈ A,while the theory of fuzzy sets does not necessarily
have this dichotomy. As seen in the Example 1.6, it is not always true that A∩ A

′ = ∅
for fuzzy sets, and it may not even true that A ∪ A

′ = U. The following example
reinforces these facts.

Example 1.8 (Fuzzy sets of fever and/or myalgia, muscular rheumatism) Let’s sup-
pose that the universal set U is the set of all patients within a clinic, identified by
numbers 1, 2, 3, 4 and 5. Let A and B be fuzzy subsets that represent patients with
fever and myalgia, respectively. Table 1.1 shows the operations union, intersection
and complement.

2r1r r0

r

1

ϕAk1
ϕAk2

ϕAk1
(r1) = ϕAk2

(r2)

Fig. 1.5 Recompense for changing in environment
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Table 1.1 Illustration of operations between fuzzy subsets

Patient Fever: A Myalgia: B A ∪ B A ∩ B A′ A ∩ A′ A ∪ A′

1 0.7 0.6 0.7 0.6 0.3 0.3 0.7

2 1.0 1.0 1.0 1.0 0.0 0.0 1.0

3 0.4 0.2 0.4 0.2 0.6 0.4 0.6

4 0.5 0.5 0.5 0.5 0.5 0.5 0.5

5 1.0 0.2 1.0 0.2 0.0 0.0 1.0

The values in all columns except the first, show the degree to which each patient
belongs to the fuzzy sets A, B, A∪ B, A∩ B, A′, A∩ A′, A∪ A′; respectively, where
A and B are hypothetical data. In the column A ∩ A′, the value of 0.3 shows that
patient number 1 is both in the first group of patients with a fever as well as in the
group with non-fever. As we have seen, this is a fact that would not be possible
in classical set theory in which there is the exclusion law by which any set and its
complement are mutually exclusive, A ∩ A′ = ∅.

The fuzzy subsets A and B of U are equal if their membership functions are
identical, that is, if ϕA (x) = ϕB (x) for all x ∈ U . Below is listed the main properties
of the operations as defined in this section.

Proposition 1.1 The operations between fuzzy subsets satisfying the following prop-
erties:

• A ∪ B = B ∪ A,
• A ∩ B = B ∩ A,
• A ∪ (B ∪ C) = (A ∪ B) ∪ C,
• A ∩ (B ∩ C) = (A ∩ B) ∩ C,
• A ∪ A = A,
• A ∩ A = A,
• A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C),
• A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C),
• A ∩ ∅ = ∅ and A ∪ ∅ = A,
• A ∩ U = A and A ∪ U = U,
• (A ∪ B)

′ = A′ ∩ B ′ and (A ∩ B)
′ = A′ ∪ B ′ (

DeMorgan′s Law
)
.

Proof The proof of each property is an immediate application of the properties
between maximum and minimum functions, which means

⎧⎪⎨
⎪⎩

max [ϕ (x) ,ψ (x)] = 1

2
[ϕ (x) + ψ (x) + |ϕ (x) − ψ (x) |]

min [ϕ (x) ,ψ (x)] = 1

2
[ϕ (x) + ψ (x) − |ϕ (x) − ψ (x) |] .

where ϕ and ψ are functions with image inR.We will only prove one of De Morgan’s
laws, because the other properties have similar proofs. If we consider that ϕA is the
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membership function associated with the subset A, then we have:

ϕA′∪B ′ (u) = max [1 − ϕA (u) , 1 − ϕB (u)]

= 1

2
[(1 − ϕA (u)) + (1 − ϕB (u)) + |ϕA (u) − ϕB (u) |]

= 1

2
[2 − (ϕA (u) + ϕB (u)) − |ϕA (u) − ϕB (u) |]

= 1 − 1

2
[ϕA (u) + ϕB (u) − |ϕA (u) − ϕB (u) |]

= 1 − min [ϕA (u) ,ϕB (u)] = 1 − ϕA∩B (u) = ϕ(A∩B)′ (u) ,

for all u ∈ U. �

Exercise 1.3 Consider the fuzzy subset of tall people (in meters) in Brazil as defined
by,

ϕA (x) =

⎧⎪⎪⎨
⎪⎪⎩

0 if 0 ≤ x ≤ 1.4
1

0.4
(x − 1.4) if 1.4 < x ≤ 1.8

1 if x > 1.8

.

And people of average height x (in meters) as follows,

ϕB (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if x ≤ 1.4
1

0.2
(x − 1.4) if 1.4 < x ≤ 1.6

1 if 1.6 < x ≤ 1.7
1

0.1
(1.8 − x) if 1.7 < x ≤ 1.8

0 if x > 1.8

.

Obtain (A ∪ B)′ and A′ ∪ B ′ and give an interpretation for such operations.

To end this chapter, we look, in the next section, at a special class of crisp sets
which are closely related to each fuzzy subset. These crisp sets can be interpreted as
representing the level of vagueness represented by each fuzzy set.

1.4 Concept of α-Level

A fuzzy subset A of U is “formed” by elements of U with an order (hierarchy) that
is given by the membership degrees. An element x of U will be in an “order class”
α if its degree of belonging (its membership value) is at least the threshold level
α ∈ [0, 1] that defines that class. The classic set of such elements is called an α-level
of A, denoted [A]α .
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Definition 1.6 (α-level) Let A be a fuzzy subset of U and α ∈ [0, 1] . The α-level
of the subset A is classical set [A]α of U defined by

[A]α = {x ∈ U : ϕA (x) ≥ α} for 0 < α ≤ 1.

When U is a topological space, the zero α-level of the fuzzy subset A is defined as
the smallest closed subset (in the classic sense) in U containing the support set of A.
In mathematical terms, [A]0 is the closure of the support of A and is also denoted
by suppA. This consideration becomes essential in theoretical situations appearing
in this text. Note also that the set {x ∈ U : ϕA (x) ≥ 0} = U is not necessarily equal
to [A]0 = suppA.

Example 1.9 Let U = R be the set of real numbers and let A be a fuzzy subset of R
with the following function membership function:

ϕA (x) =

⎧⎪⎨
⎪⎩

x − 1 if 1 ≤ x ≤ 2

3 − x if 2 < x < 3

0 if x /∈ [1, 3)

.

In this case we have:

[A]α = [α + 1, 3 − α] for 0 < α ≤ 1 and [A]0 = ]1, 3[ = [1, 3] (Fig. 1.6).

Example 1.10 Let U = [0, 1] and A be the fuzzy subset of U whose membership
function is given by ϕA (x) = 4

(
x − x2

)
. Then,

[A]α =
[

1

2

(
1 − √

1 − α
)
,

1

2

(
1 + √

1 − α
)]

for all α ∈ [0, 1] (Fig. 1.7).

We observed that if x is an element of [A]α, then x belongs to the fuzzy set A with
at least membership function degree α.We have also that if α ≤ β then [A]β ⊆ [A]α .

The following theorem shows that a fuzzy set is uniquely determined by its α-cuts.

Fig. 1.6 α-level of the fuzzy
subset A

[A ]α

ϕA
1

α

31 U
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Fig. 1.7 α-level of the fuzzy
subset A

[A ]α

ϕA
1

α

1
U

Theorem 1.2 Let A and B be fuzzy subset of U.A necessary and sufficient condition
for A = B to hold is that [A]α = [B]α , for all α ∈ [0, 1] .

Proof Of course A = B =⇒ [A]α = [B]α for all α ∈ [0, 1] . Let’s now suppose
that [A]α = [B]α for all α ∈ [0, 1] . If A �= B then there is an x ∈ U such that
ϕA (x) �= ϕB (x) . Therefore we have ϕA (x) < ϕB (x) or that, conversely, ϕA (x) >
ϕB (x) . If we imagine that ϕA (x) > ϕB (x) , then we come to the conclusion that
x ∈ [A]ϕA(x) and x /∈ [B]ϕA(x) and therefore [A]ϕA(x) �= [B]ϕA(x) , which contradicts
the hypothesis that [A]α = [B]α for all α ∈ [0, 1] . Similar contradiction is reached
if we assume that ϕA (x) < ϕB (x) . �

One consequence of this theorem is that we now have a relationship between the
membership function of a fuzzy subset and the characteristic functions of its α-levels.

Corollary 1.3 The membership function ϕA of a fuzzy set A can be expressed in
terms of the characteristic function of their α-levels, as follows:

ϕA (x) = sup{min
[
α,χ[A]α (x)

]}, where χ[A]α (x) =
{

1 if x ∈ [A]α

0 if x /∈ [A]α
.

The following theorem is of extreme importance in the study of fuzzy set theory
and shows a condition which is sufficient for a family of subsets, in the classical
sense, of U can be formed by different α-levels of a fuzzy subset.

Theorem 1.4 (Negoita and Ralescu’s Theorem of Representation [3]) Let Aα,α ∈
[0, 1], be a family of classical subsets of U, such that the following conditions hold:

1.
⋃

Aα ⊆ A0 with α ∈ [0, 1];
2. Aα ⊆ Aβ if β ≤ α;

3. Aα =
⋂
k≥0

Aαk if αk converges to α with αk ≤ α.

Under these conditions, there is one single fuzzy subset of A in U whose α-levels
are exactly the classic subsets Aα, in other words,

[A]α = Aα.
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The idea of the proof is to construct, for each x ∈ U , the membership function of
A, as following,

ϕA (x) = sup{α ∈ [0, 1] : x ∈ Aα}.

For a complete proof see Negoita and Ralescu [3].
Using the definition of α-levels, we have the following properties:

1. [A ∪ B]α = [A]α ∪ [B]α ,
2. [A ∩ B]α = [A]α ∩ [B]α .

On the other hand, since in general [A]α∪[
A′]α �= U,we have that

[
A′]α �= ([A]α)′ .

Definition 1.7 A fuzzy set is said to be normal when all its α-levels are not empty
or in other words, if [A]1 �= ∅.

Recalling that the support of the fuzzy subset A is the classic set

supp A = {x ∈ U : ϕA (x) > 0},

it is common to describe A using the following notation, when it has a denumerable
number of elements in its support, using the following notation,

A = ϕA (x1)

x1
+ ϕA (x2)

x2
+ .... =

∞∑
i=1

ϕA (xi )

xi
,

and

A = ϕA (x1)

x1
+ ϕA (x2)

x2
+ .... + ϕA (xn)

xn
=

n∑
i=1

ϕA (xi )

xi
.

when A has finite discrete support. That is, supp A = {x1, x2, . . . , xn}. It is worth

noting that the notation
ϕA (xi )

xi
, does not indicate division. It’s just a way to visualize

an element xi and its respective degree of belonging, its membership value, ϕA (xi ) .

Also here the “+” symbol in the notation does not mean addition and
∑

does not
mean summation. It’s just a way to connect the elements of U that are in A with their
respective degrees.

Example 1.11 (Finite fuzzy set) Let A be the fuzzy set of real numbers represented
by

A =
n∑

i=1

ϕA (xi )

xi
= 0.1

1
+ 0.2

2
+ 0.25

3
+ 0.7

5
+ 0.9

8
+ 1.0

10
.

So,

A′ =
n∑

i=1

[
1 − ϕA (xi )

xi

]
= 0.9

1
+ 0.8

2
+ 0.75

3
+ 0.3

5
+ 0.1

8
+ 0.0

10
.
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In this case we have for example, 0.15-level of A and its complement A′ are respec-
tively, [A]0.15 = {2, 3, 5, 8, 10} and

[
A′]0.15 = {1, 2, 3, 5}.

Example 1.12 (Fuzzy set of wolves) Let A be a pack of n wolves. The degree of
predation for each wolf may be associated with their age x ∈]0, 15], assuming that
the maximum age of a wolf is 15 years. The finite number of wolves means that one
has only a finite number of wolves for each wolf ages. We will denote the set of these
ages, as A = {x1, x2, . . . , xn} and let us define the degree of predation of a wolf
as ϕP (x), considering that many young wolves prey less than adults, and that old
wolves have reduced their ability for predation. Hence, the fuzzy subset of predators
in the pack can be given by the membership function

ϕP (x) =

⎧⎪⎨
⎪⎩

0.5 if 0 ≤ x ≤ 2

1.0 if 2 < x < 10

0.2 (15 − x) if 10 ≤ x ≤ 15

.

With the above notation, the fuzzy finite subset P is conveniently denoted by

P = ϕP (x1)

x1
+ ϕP (x2)

x2
+ · · · + ϕP (xn)

xn
,

meaning that ϕP
(
x j

)
is the predation capacity of an individual of age x j .

1.5 Summary

This chapter has discussed the differences of fuzzy set and uncertainty along with a
brief philosophical discussion of the difficulties associated with these concepts. Our
main interest is in fuzzy sets and their use in mathematical models of fuzzy logic and
fuzzy dynamical systems. Secondly, we defined and illustrated the basic operations
of fuzzy sets. More will be introduced in the context of the topics that follow. Lastly,
the classical sets, called α-levels, were discussed since they are central to the analysis
in the ensuing chapters.
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