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9.1	 �Introduction

Commonly employed delivery systems include 
injections, pills, and to some extent topical and 
mucosal formulations. Oral delivery is by far the 
easiest and most convenient way of delivering 
drugs especially when repeated or routine admin-
istration is required (Chen and Langer 1998). This 
advantage, however, is offset for protein and pep-
tide-based drugs sensitive to enzymatic degrada-
tion in the gastrointestinal tract. Drugs based on 
proteins and peptides now form a significant frac-
tion of the therapeutic spectrum, primarily due to 
accelerated advances in understanding protein 
chemistry and drug interactions. Thus, while the 
bygone drug delivery systems have been domi-
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nated by the oral route, the next millennia of 
health care will demand more accommodating 
delivery systems for sensitive drug classes.

Injections comprise the next most commonly 
used method for administering therapeutics into 
humans. The World Health Organization (WHO) 
estimates that 12 billion injections are given 
annually (Kermode 2004). Despite the common 
use, needle-based drug administration has several 
limitations. Needle phobia is a significant issue in 
adults and children alike (Nir et  al. 2003) and 
makes drug administration stressful (Breau et al. 
2001). Accidental needle sticks also add to the 
limitations of needle use in developed and devel-
oping countries alike (Kane et  al. 1999; Miller 
and Pisani 1999). Further, hepatic metabolism 
results in rapid clearance of active drug from the 
blood plasma making repeated administration 
inevitable. This only aggravates the problem of 
needle pain especially for patients requiring mul-
tiple administrations on a daily basis.

It is thus sufficiently obvious that as we move 
toward the next era of health care, compliant, 
noninvasive, and sustained delivery will become 
the key features desirable of any drug delivery 
system. Several advances to this effect have been 
made in the last two to three decades and novel 
drug delivery systems have been brought to the 
forefront (Drachman 1989; Vanbrunt 1989; 
Langer 1990). A large contribution to these novel 
systems appeared as modifications to the active 
drug or formulation excipients to modulate drug 
pharmacokinetics, safety, efficacy, and 
metabolism. A more radical approach has been to 
explore newer interfaces on the body for intro-
ducing therapeutics. One such approach, trans-
dermal drug delivery, makes use of human skin 
as a port of entry for systemic delivery of drug 
molecules (Guy 1996; Prausnitz 1997; Barry 
2001a, b; Pillai et al. 2001; Prausnitz et al. 2004; 
Thomas and Finnin 2004).

9.1.1	 �Transdermal Drug Delivery

Transdermal drug delivery (TDD) offers an 
advantageous mode of drug administration by 
eliminating first-pass hepatic metabolism and 

providing sustained drug release for a prolonged 
period of time. It is painless compared to needles 
and therefore offers superior patient compatibil-
ity. However, skin is the first line of defense of an 
organism and the last barrier separating the 
organism from its hostile environment of viruses, 
pathogens, and toxics. Evolved to impede the 
flux of exogenous molecules into the body, the 
skin naturally offers a very low permeability to 
the movement of foreign molecules across it. A 
unique hierarchical structure of lipid-rich matrix 
with embedded keratinocytes in the upper strata 
(15 μm) of skin, stratum corneum (SC), is respon-
sible for this barrier (Bouwstra 1997). In addition 
to its role as a barrier, both physical and biologi-
cal, skin performs a complimentary role, which is 
that of a transport regulator. Skin routinely regu-
lates the flux of water molecules into and out of 
the body. It also permits the influx of a variety of 
small molecules that are fairly lipophilic (parti-
tion coefficient, log P >1.5) and have molecular 
weight (MW) less than 500 Da (Bos and Meinardi 
2000). As a result there has been a natural bias of 
transdermal delivery systems to cash in on thera-
peutics that meet these requirements. Drug mol-
ecules currently administered via the transdermal 
route fall within a narrow range of MW and lipo-
philicity. They are typically characterized by 
high log P (>1.5) and low MW (<500  Da), 
thereby taking advantage of the natural selectiv-
ity of skin membrane. A large fraction of drug 
molecules lie outside these bounds. These are 
mostly peptide- and protein-based drugs that will 
become the key therapeutics in the future. The 
biggest challenge in transdermal drug delivery 
today is to open the skin safely and reversibly to 
these high molecular weight hydrophilic drugs.

Several technological advances have been 
made in the past couple of decades to overcome 
this challenge. These advances can be broadly 
divided into two categories: (1) physical 
approaches including but not limited to iontopho-
resis (Panchagnula et  al. 2000; Delgado-Charro 
and Guy 2001), sonophoresis (Mitragotri and 
Kost 2004; Ogura et  al. 2008), microneedles 
(McAllister et al. 2000; Prausnitz 2004; Sivamani 
et al. 2007), and electroporation (Pliquett 1999; 
Denet et al. 2004) that use some form of physical 
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energy to modulate the SC ultrastructure, and (2) 
chemical approaches that employ chemical for-
mulations to modulate skin transport barrier 
(Sinha and Kaur 2000; Williams and Barry 2004). 
Each of these methods has its individual benefits 
and limitations.

9.1.2	 �Scope of Review

The early 1990s of the last century brought the 
first transdermal patch to the market. The market 
for patch-based therapeutics has since grown to 
$4 billion per annum worldwide, a small but sig-
nificant proportion of the total revenues from 
pharmaceuticals (Barry 2001a, b). After more 
than a quarter of a century since the introduction 
of the first patch, the number of marketed trans-
dermal patches has not exceeded beyond a couple 
of dozen. Another four dozen are in the develop-
mental phases. Although somewhat satisfactory 
on the face value, these numbers are misleading 
since a huge fraction is made up of generic repli-
cas of similar drugs. Only 11 independent drugs 
make up these 80 odd products, almost all exclu-
sively below 500 Da and characteristically lipo-
philic in nature. Most efforts to push the envelope 
on molecular weight have shown limited success. 
Only one physical method (i.e., iontophoresis) 
has successfully entered the market share of 
transdermal delivery technologies but it is being 
used to deliver a low molecular weight drug, 
lidocaine (235  Da). On the other hand, 
laurocapram (Azone®), the most widely studied 
chemical permeation enhancer with high expec-
tations, has failed to gain clinical acceptance in 
transdermal delivery due to its skin irritation 
(Okamoto et al. 1988; Lashmar et al. 1989; Wong 
et al. 1989). The landscape of transdermal deliv-
ery opportunities seems grim and one cannot 
help but ask, “Is transdermal drug delivery 
research still important today?” (Barry 2001a, b). 
The concept of transdermal drug delivery is 
rooted in strong scientific acumen even though 
the practical realization of it has been less fasci-
nating than expected. A sound engineering 
approach coupled with fundamental understand-
ing of a complex biological tissue is required. 

Equally important is adoption of the right plat-
form of models, methods, and measurement tech-
niques to evaluate new and traditional transdermal 
delivery strategies in light of the knowledge 
gained in the last five decades in this field of 
research. The number of original publications 
with “transdermal delivery” in the title has well 
approached 1000 with the numbers rising rapidly. 
These numbers form one metric to indicate that 
new scientists continue to be attracted to this 
field. This review aims to provide a synopsis of 
the “nuts and bolts” in transdermal drug delivery 
research to a new scientist. A short introduction 
on skin structure and constituents is followed by 
a description of different model systems and 
methods employed in this area.

9.2	 �Structure of Skin

Elucidation of skin structure, especially in rela-
tion to its barrier function, has drawn countless 
researchers since the early 1950s (Blank 1952; 
Breathnach et  al. 1973; Elias and Friend 1975). 
The human skin is a sandwich of two layers: a 
thin layer of epidermis stacked upon a much 
thicker substrate, the dermis. The dermis is highly 
vascularized and permeable, consisting predomi-
nantly of a fibrous collagen meshwork that is 
sparsely populated with cells. It houses sweat 
glands, sebaceous glands, hair follicles, and a net-
work of capillaries supported by the connective 
tissue. The dermis provides most of the bulk and 
toughness of the skin. The epidermis is devoid of 
blood vessels, receiving all of its nutrients and 
disposing of its waste products by diffusional 
exchange with the dermis. It is maintained by 
continuous cell division in the germinative basal 
layer. Differentiating daughter cells, the keratino-
cytes move outward toward the surface of skin. 
During this process, there is a change in the mor-
phology and composition of keratinocytes. 
Ultimately, the keratinocytes undergo terminal 
differentiation, forming dead, flattened corneo-
cytes; 20–30 layers of corneocytes embedded in a 
matrix of lipid, extruded from the cells immedi-
ately before cornification, form the 
SC.  Corneocytes continually exfoliate from the 
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SC to maintain a constant thickness of this layer at 
~20–30 μm (Elias and Friend 1975; Odland 1983; 
Matoltsy 1986; Downing 1992). In the last 60 
years of close scrutiny of the skin structure, the 
SC has received by far the most attention. And not 
surprisingly, since this superficial layer is where 
the barrier property of skin resides. The seminal 
work of Scheuplein et  al. conclusively summa-
rized the locus and origin of the molecular imper-
meability of skin and established it to be a passive 
rather than biologically active property 
(Scheuplein 1965, 1966, 1967, 1972, 1978; Blank 
and Scheuplein 1973). Through their studies of 
the permeability of excised human skin in vitro to 
a large number of permeants, they were able to 
show conclusively that the principal barrier to 
permeation is provided by the SC. Separating the 
epidermis from the underlying dermis by heat 
stripping followed by enzymatic removal of the 
live epidermal layer, Scheuplein et al. measured 
the permeability of the residual SC and dermis 
independently. These measurements indicated 
that the SC is at least three, and frequently as 
much as five, orders of magnitude less permeable 
to most substances than the dermis. Moreover, the 
permeability of the entire epidermis was found to 
be indistinguishable from that of the SC alone. 
This prompted Scheuplein to model the skin as a 
three-layer laminate of SC, epidermis, and der-
mis, with permeation occurring by Fickian diffu-
sion of the penetrating species through the three 
layers in series. Since the dominant resistance to 
permeation of most compounds is offered by the 
SC, the gradient in penetrant concentration across 
the entire skin is, for all practical purposes, local-
ized within the SC.

9.2.1	 �Ultra-structure of Stratum 
Corneum

Several models have been proposed for the struc-
ture of the SC. These include the classic “brick 
and mortar” model of Michaels, the “domain 
mosaic” model of Forslind, the “single gel phase” 
model of Norlen, “molecular lipid lamellae” mod-
els of Swartzendruber and Fenske, and “membrane 
folding” model of Norlen (Michaels et al. 1975; 
Swartzendruber et  al. 1989; Fenske et  al. 1994; 

Forslind 1994; Kitson et al. 1994; Engström et al. 
1995; Menon and Elias 1997; Bouwstra et  al. 
1998; Menon et  al. 1998; Norlen 2001; Norlén 
2001). A comprehensive all encompassing model 
seems to be elusive as newer observations con-
tinually require modulating the physical picture of 
this membrane (Wertz et  al. 1987; Norlén et  al. 
1998). While newer models are being proposed to 
accommodate minor nuances, the coarse macro-
scopic–microscopic structure is well agreed upon. 
The most simplistic model in this respect is still 
the “brick and mortar” model of Michaels et al.; 
the term itself coined by Elias (Elias and Friend 
1975; Michaels et al. 1975). This model treats the 
skin barrier as a simplified two-compartment sys-
tem with discontinuous protein pockets embed-
ded in a continuous, homogeneous lipid matrix. 
Proteins held within corneocyte lipid envelopes 
thus form the bricks held by the mortar of a con-
tinuous lipid phase in the “brick and mortar” 
model. The bricks occupy, by far, the larger vol-
ume of this assembly. Early solvent extraction 
experiments indicated that lipids, especially polar 
lipids, play a critical role in the barrier (Matoltsy 
et  al. 1968; Sweeney and Downing 1970). The 
freeze fracture studies of the SC established con-
clusively that lipids form multiple broad bilayers 
filling the corneocyte intercellular spaces 
(Breathnach et al. 1973). These bilayers, shown to 
exist throughout the SC, provide the barrier to 
water permeability as determined by Elias and 
Squier through freeze-fracture, thin-section, and 
tracer studies (Squier 1973; Elias et  al. 1977; 
Madison et al. 1987; Wertz et al. 1987).

A general observation of mammalian cells 
indicates that their membranes do not provide a 
formidable barrier to water or water-soluble mol-
ecules. These membranes are typically composed 
of phosphoglycerides, sphingomyelin, and cho-
lesterol where the lipid fatty acyl chains extend to 
16 through 20 carbons with a varied degree of 
unsaturation (Fettiplace and Haydon 1980). 
Occasionally, methyl branching is also observed 
on the interior of the fatty acyl chains. This 
methyl branching coupled with unsaturation in 
the interior of the chains inhibits formation of a 
highly ordered membrane. The membrane is dis-
ordered or fluid with high permeability to small 
hydrophilic solutes and water. Interesting to note 
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is the lack of any phospholipids or the usual fatty 
acyl chain structures in the SC (Yardley and 
Summerly 1981; Yardley 1983; Wertz 1986). 
Instead, the SC bilayers are made of cholesterol, 
fatty acids, and ceramides (Wertz et  al. 1987; 
Hedberg et  al. 1988). The molecular structure 
and composition of these constituents play an 
important role in defining the barrier properties 
of the bilayers and in turn of the SC membrane.

Subsequent sections provide a brief descrip-
tion of the corneocyte proteins and the lipids of 
the SC.

9.2.2	 �Lipids of Stratum Corneum

9.2.2.1	 �Ceramides
Ceramides (1–6) constitute ~42 % of the material 
in the bilayers followed by cholesterol (~40 % 
along with cholesteryl sulfate and cholesteryl 
esters) and fatty acids (~13 %) (Wertz and 
Downing 1983a, b; Abraham et  al. 1985; Long 
et  al. 1985; Wertz et  al. 1985). The ceramides 
include both sphingosines (ceramides 1, 2, 4, and 
5) and phytosphingosines (ceramides 3 and 6). 
Also, the amide-linked fatty acids include nonhy-
droxy acids (ceramides 2 and 3), α-hydroxy acids 
(ceramides 4, 5, and 6), and ω-hydroxy acids 
(ceramide 1). In addition, ester-linked fatty acids 
(ceramide 1) are also present in the epidermal 
ceramides. The ceramides are straight and satu-
rated with the exception of ceramide 1. Also the 
unsaturation is placed exclusively at the polar 
end of these ceramide chains thus providing little 
room for formation of kinks. This architecture is 
well poised to provide a highly ordered structure 
to the membrane formed from these ceramides. 
In addition, there is a considerable chain length 
variation in the ceramides, i.e., from 15 to 48. 
This provides room for interdigitation of the 
hydrocarbon chains, an interaction highly favor-
able during bilayer formation. Also, the lipids are 
characteristically amphiphilic in nature capable 
of extensive hydrogen bonding, once again a 
primo in formation of self-assembled lamellae.

9.2.2.2	 �Cholesterol
Free cholesterol is the second most abundant 
lipid in the SC, amounting to 25 % of extractable 

lipid. In addition, 15 % of the SC lipids are made 
of cholesteryl sulfate and cholesteryl esters. 
Cholesterol plays a key role in providing barrier 
property of the SC. This was shown conclusively 
by Feingold et al. in 1990 based on their observa-
tion that barrier recovery was severely inhibited 
in skin treated with an enzyme that inhibits cuta-
neous cholesterol synthesis (Feingold et  al. 
1990). Later Takahashi et al. showed that choles-
terol at high concentrations (>30 % molar basis) 
promotes lamellar structures, regarded generally 
to provide superior barrier properties (Takahashi 
et al. 1996). Cholesterol also increases the chain 
mobility of lipids in the gel state making them 
more pliable and thus, potentially, more resistant 
to mechanical stresses (de Kruyff et al. 1974). In 
addition, cholesterol broadens phase transition 
regions or in some cases may entirely abolish 
subtransitions between gel phases thereby stabi-
lizing them (McMullen and McElhaney 1995; 
Takahashi et al. 1996).

9.2.2.3	 �Fatty Acids
Fatty acids make up ~13 % of the SC lipids. The 
origin of these fatty acids is not completely 
understood, although it is believed that some of 
them are a result of hydrolysis of ceramides. The 
composition of the mixture of fatty acids is 
unusual in consisting predominantly of very long 
chain (20–28 carbons) saturated acids, with only 
6 % of monounsaturated and 1 % of diunsaturated 
acids (Wertz et  al. 1987; Downing 1992). 
Presence of fatty acids along with cholesterol and 
ceramides is essential to the barrier property of 
the SC. In addition to providing structural integ-
rity to the SC, free fatty acids are also responsible 
for providing a low pH or acidic surface (Blank 
1939; Draize 1942; Beare et al. 1958; Baden and 
Pathak 1967; Qiang et  al. 1993). This may be 
critical to the antimicrobial activity of the SC 
thereby making it a physical as well as physio-
logical barrier (Fluhr et al. 2001).

9.2.3	 �Proteins of Stratum Corneum

Protein pockets, the bricks in the “brick and mor-
tar” model, form the second important compo-
nent of the SC. These pockets are included in flat, 
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hexagonal, and physiologically dead corneo-
cytes. The SC proteins are typically composed of 
keratin. Keratins are a family of α-helical poly-
peptides ranging from 40 to 70 kDa in size (Green 
et al. 1982; Wertz and Downing 1989). They are 
relatively poor in cysteine, rich in serine and gly-
cine, and contain N-acetylserine at the amino ter-
minus (Steinert and Cantieri 1983). Keratins 
accumulate throughout epidermal differentiation 
and represent the major component of the SC as 
well as of epidermal appendages such as hair and 
nails (Baden et  al. 1973). Earlier in epidermal 
differentiation, low molecular weight keratins 
predominate, whereas higher molecular weight 
polypeptides are found in the SC (Skerrow and 
Hunter 1978). Individual keratin molecules 
aggregate to form superhelices, the detailed 
structures of which are still under investigation 
(Steinert and Cantieri 1983). They are stabilized 
by disulfide bridges that can be solubilized only 
by reducing agents. The keratin in the SC is prob-
ably responsible for maintaining the hexagonal 
shapes of the corneocytes and may contribute to 
the toughness and flexibility of the SC (Wertz and 
Downing 1989).

The corneocyte envelope enclosing the  
keratin filaments is made of two layers. The 
inner portion of the envelope consists of cross 
linked proteins, predominantly involucrin and at 
least six other soluble and membrane-associated 
proteins (Rice and Green 1977; Watt and  
Green 1981; Simon and Green 1984). The outer 
portion is made of ester-linked ω-hydroxyacyl
sphingosines. These hydroxyceramide molecules 
contain mainly 30–34 carbon ω-hydroxyacyl 
chains and represent 2 % of the dry weight of 
the SC (Wertz and Downing 1989). At least 
50 % of the hydroxyceramides are linked to the 
protein envelope through the ω-hydroxy termi-
nus. This helps the sphingosine moieties to 
interdigitate with the lipid lamellae (Wertz and 
Downing 1987). This may explain why unlike 
other membranous structures the lipid envelope 
persists even after extensive extraction with 
methanol–chloroform mixture (Swartzendruber 
et al. 1987; Wertz and Downing 1987). The lipid 
envelope hydroxyceramides anchor the corneo-
cytes to the intercellular lipids. As a result, even 

when all the intercellular lipids are extracted the 
covalently bound hydroxyceramides can inter-
digitate in a zip-like manner to close the inter-
cellular space and thus maintain the integrity of 
the SC.

9.3	 �Routes of Permeation

There are three major routes of permeation for 
passive diffusion of a molecule across the 
SC. These include: (a) diffusion through append-
ages such as sweat ducts, sebaceous glands, and 
hair follicles; (b) diffusion through the corneo-
cytes of the SC; and (c) diffusion through the 
lipids of the SC. Diffusion across the corneocytes 
and lipids of the intact SC comprises the predom-
inant route through which most molecules pene-
trate. The appendageal area available for diffusion 
is significantly lower, ~0.1 %, but has received 
considerable attention as an important perme-
ation pathway for ions or large polar molecules 
that have slow permeation across the SC (Barry 
2001a, b).

9.3.1	 �Skin Appendages

The involvement of skin appendages in transcu-
taneous permeation has received considerable 
attention over six decades. Early studies by many 
investigators implicated skin appendages as 
important avenues for penetration of topically 
applied chemicals (Mackee et  al. 1945; Shelley 
and Melton 1949; Fredriksson 1961; Tregear 
1961; Vankooten and Mali 1966; Wahlberg 1968; 
Rutherford and Black 1969; Wallace and Barnett 
1978). Using full-thickness mouse skin main-
tained as short-term organ cultures in an in vitro 
experimental system, Kao et  al. demonstrated 
that permeation of topically applied benzo[a]
pyrene was higher in haired mice skin compared 
to hairless mice skin (Kao et  al. 1988). 
Histochemical techniques, autoradiographic 
techniques, and fluorescence microscopy have 
been used to visualize and quantitate appenda-
geal absorption. These studies revealed that topi-
cally applied agents concentrated and persisted in 
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the hair follicles and sebaceous glands (Grasso 
and Lansdown 1972; Foreman et  al. 1979; 
Holland et al. 1984).

Of all the appendageal routes, the hair folli-
cle has received the most attention as a promi-
nent route of permeation. It also serves as an 
important cutaneous reservoir for topically 
applied molecules (Lademann et  al. 2006). 
Hueber et al. and Tenjarla et al. showed that the 
penetration of corticosteroids is considerably 
lower in hairless skin compared to haired skin 
(Hueber et  al. 1994; Tenjarla et  al. 1999). 
Hydrocortisone permeability increased in tissue 
engineered skin on insertion of hair follicles 
(Michel et al. 1999). Permeation enhancers that 
specifically target hair follicles have been inves-
tigated with great success. Of these, liposomes 
have been shown to deliver DNA (Li et  al. 
1993), plasmids (Domashenko et  al. 2000), 
monoclonal antibodies (Balsari et al. 1994), cal-
cein (Lieb et  al. 1992), and melanin (Li and 
Hoffman 1997) to hair follicles. Lee et  al. 
reported that the auxiliary SC associated with 
the sweat glands has a reduced barrier function 
(Lee et  al. 2001). Following up with elegant 
immunostaining studies, Wilke et  al. proposed 
that the active permeation barriers in sweat 
ducts in the epidermis and dermis are function-
ally and morphologically distinct (Wilke et  al. 
2005, 2006). The innermost layer of the intra-
epidermal duct is completely keratinized 
(Zelickson 1961; Hashimot et al. 1965). In con-
trast, the dermal ducts lack the presence of cor-
nified corneocytes but contain luminal tight 
junctions, which seem to be absent from the epi-
dermal duct lining (Hashimot 1971a, b). Similar 
to the dermal ducts, the secretory coils of the 
sweat glands themselves lack cornified layers 
but are rich in tight junctions as evidenced by 
the colocalization of occludin and claudin-4 
(Hashimot 1971a, b). In light of these observa-
tions, Wilke et  al. propose that dermal sweat 
ducts and the sweat glands could serve as poten-
tial permeation routes (Wilke et al. 2006). Only 
a few experimental studies have actually been 
dedicated to evaluating the contribution of sweat 
glands and ducts to transcutaneous permeation 
(Vankoote and Mali 1966).

9.3.2	 �Intracellular Route

Certain permeation enhancers can open up the 
dense keratin structure in corneocytes creating 
porous pathways for diffusion across them. For 
example, decylmethyl sulfoxide interacts with 
keratin and is hypothesized to enhance permea-
bility by opening up aqueous channels within the 
corneocyte (Cooper 1982). Dimethyl sulfoxide 
can induce reversible changes in protein struc-
tures of isolated corneocytes (Mendelsohn et al. 
2006). Hexamethyl sulfoxide and dimethyl sulf-
oxide convert α-helical keratins in the corneocyte 
to β-sheets (Oertel 1977). Lee et al. have demon-
strated the capability of thioglycolates in depila-
tory creams in disrupting intracellular keratin 
matrix and the protein envelope using multipho-
ton microscopy (Lee et al. 2008). He et al. have 
shown that N-trimethyl chitosan is capable of 
increasing transcutaneous permeation by affect-
ing secondary structure of keratins within the 
corneocytes (He et al. 2008). Azone® can act on 
the keratin fibers of the corneocytes converting 
their rigid α-helical conformation to a flexible 
β-sheet confirmation (Xueqin et al. 2005). Lauric 
acid enhances the permeability of verapamil by 
interacting with skin proteins (Shah et al. 1992). 
Dithiothreitol enhances flux of sucrose and man-
nitol across the SC exclusively through interac-
tions with corneocyte keratin matrix (Goates and 
Knutson 1993). Oleic acid and isopropyl 
myristate increase the permeability of the cor-
neocytes for polar substances after pretreatment 
of the skin (Eder and Müller-Goymann 1995).

9.3.3	 �Intercellular Route

Several chemicals can alter or disrupt the organi-
zation of lipid molecules in the SC bilayers 
thereby facilitating the diffusion of molecules 
across the SC. Barry postulated different ways in 
which permeation enhancers can modify SC lip-
ids (Barry 1988, 1991, 2004). Enhancers can act 
on polar head groups of lipids and modify the 
hydrogen bonding and ionic forces between them 
resulting in a disruption of the packing geometry. 
Fluidity caused at the polar plane due to the 
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disruption of packing geometry accelerates the 
diffusion of solute molecules across the lipid 
bilayers. An alternate consequence of disrupting 
packing geometry of lipid head groups is the cre-
ation of aqueous pockets that facilitate diffusion 
of hydrophilic molecules. In addition to fluidiz-
ing bilayers, enhancers that disrupt lipid head 
group interactions can cause extraction of lipid 
molecules, phase separation, or micelle forma-
tion (Barry 2004). Enhancers can also insert 
themselves between the hydrocarbon chains of 
the lipid bilayers and thereby disrupt the packing 
of lipid molecules. Consequent fluidization of the 
lipid bilayers facilitates the diffusion of perme-
ants. Disruption in packing of lipid chains can in 
turn alter the packing of polar head groups of the 
lipid molecules, thereby accelerating, to a small 
extent, the diffusion of permeants.

Karande et  al. studied permeation enhancers 
from eight different categories: anionic surfac-
tants, cationic surfactants, zwitterionic surfac-
tants, fatty acids, fatty alcohols, fatty amines, fatty 
esters, and azone-like molecules, and showed that 
chemicals in all these categories could be classi-
fied, more simply, as lipid extractors or lipid fluid-
izers (Karande et  al. 2005). Lipid extractors 
increased SC permeability by extracting lipids 
from bilayers or the corneocyte envelope. Loss of 
lipids from the SC was monitored as a decrease in 
the signal intensity of methylene groups of lipid 
chains in Fourier transform infrared (FT-IR) spec-
troscopy. Lipid fluidizers increased SC permea-
bility by partitioning themselves in the bilayers 
and disrupting the bilayers packing structure. 
Fluidization was monitored as an increase in the 
signal intensity of methylene groups (from hydro-
carbon tails of the enhancer) and disappearance of 
peaks related to the ordered packing of lipids in 
FT-IR spectroscopy. Extent of extraction or fluidi-
zation correlated very well with the extent of skin 
permeabilization.

9.4	 �In Vitro Skin Models

9.4.1	 �Excised Human skin

Human skin is the obvious choice in experiments 
for determining the permeability of model 

compounds or therapeutics (Rao and Misra 1994; 
McCullough et al. 2006; Suppasrivasuseth et al. 
2006; Elewski 2007; Kim et  al. 2008). Freshly 
excised skin from autopsies, cadaver skin, or dis-
carded skin from breast reduction procedures are 
excellent sources of human skin (Bronaugh et al. 
1986; Wester and Maibach 1989; Friend 1992). 
The primary barrier to transport of molecules 
across the skin is the SC. In comparison the epi-
dermis and dermis offer minimal resistance to 
passive diffusion of solutes. The SC is composed 
of lipids and terminally differentiated, fully kera-
tinized corneocytes. It is, therefore, intuitively 
expected for ex vivo skin to maintain the barrier 
integrity of the SC for an extended period of time 
after harvesting when stored under appropriate 
conditions. Some investigators have indeed veri-
fied that skin can be frozen for up to 12 months 
without significant deterioration of barrier prop-
erties (Franz 1975; Harrison et al. 1984). Barry 
et  al. found that human cadaver skin stored at 
−18 °C for 466 days did not show any significant 
change in permeability toward tritiated water 
(Harrison et al. 1984). Interestingly, Barry et al. 
also found that the skin obtained from an iceman 
5000 years old and buried in glacial ice was very 
well preserved. Several reports have documented 
the comparison between in vivo and ex vivo SC 
and have shown that it retains its barrier proper-
ties for several days after harvesting (Berenson 
and Burch 1951; Galey et al. 1976). Wester et al. 
monitored glucose metabolism in skin as a mea-
sure of its viability and showed that the metabolic 
activity was highest during the first 18 h after the 
skin was harvested. The metabolic activity 
showed a decrease by day 2 but stayed steady 
until day 8 (Wester et al. 1998a).

In spite of the several advantages of using 
human skin in permeation experiments there are 
several problems associated with its use such as 
safety concerns, difficulty in procurement, lim-
ited supply, and regulatory considerations. Also 
the permeability measurements obtained on 
human skin samples vary greatly between indi-
viduals as well as between samples from differ-
ent anatomical sites on the same individual 
(Wester and Maibach 1992; Norlen et al. 1999; 
Robert Peter Chilcott 2000). Chilcott et al. have 
shown that there is a statistically significant 
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variation in the skin barrier property with relation 
to gender, chirality, time of the day when mea-
surement was obtained, and to some extent the 
dietary habits of the individual (Robert Peter 
Chilcott 2000). Akomeah measured the permea-
bility of caffeine, methyl paraben, and butyl para-
ben on skin samples from several donors and 
found interdonor variabilities between 33 % and 
44 % (Akomeah et al. 2007). In general, the inter-
subject skin sample variability in skin permeation 
was higher than that observed within the same 
subject. Similar observations have been reported 
by other investigators (Southwell et  al. 1984; 
Langguth et  al. 1986; Rochefort et  al. 1986). 
Further, these permeability measurements show a 
non-Gaussian distribution (Williams et al. 1992; 
Cornwell and Barry 1995).

9.4.2	 �Excised Animal Skin

In view of the difficulties associated with human 
skin, animal skin is routinely used as a model for 
human skin in in  vitro experiments (Haigh and 
Smith 1994). Mouse (Bonina et  al. 1993; Roy 
et  al. 1994; Panchagnula et  al. 1997; Bhandari 
et  al. 2008; Cho et  al. 2008), rat (Panchagnula 
et  al. 1997; Hai et  al. 2008; Zhao et  al. 2008), 
guinea pig (Panchagnula et  al. 1997; Tipre and 
Vavia 2003; Pabla and Zia 2007), rabbit 
(Panchagnula et  al. 1997; Ogiso et  al. 2001; 
Artusi et  al. 2004; Sebastiani et  al. 2005; 
Elgorashi et  al. 2008), porcine (Panchagnula 
et al. 1997; Karande et al. 2004; Ben-Shabat et al. 
2007), monkey (Wester and Maibach 1987; Roy 
and Degroot 1994; Panchagnula et al. 1997), dog 
(Sato et  al. 1991; Panchagnula et  al. 1997; 
Rohatagi et al. 1997), hamster (Coutelegros et al. 
1992; Panchagnula et al. 1997; Bach and Lippold 
1998), fish (Watanabe et al. 1989; Masson et al. 
2002), snake (Megrab et  al. 1995; Suh and Jun 
1996; Panchagnula et al. 1997), cow (Panchagnula 
et al. 1997; Netzlaff et al. 2006b), frog (Dewhurst 
and Williams 1993; Smith 1993), sheep 
(Panchagnula et al. 1997), and marmoset (Scott 
et al. 1991) are some of the animal skin models 
studied to represent human skin. Animal skin 
offers advantages over human skin in that the age 
and sex of the animal can be controlled as well as 

large quantities of skin can be obtained for exper-
imental purpose (Friend 1992).

One needs to be cautious, however, in extrapo-
lating animal skin data to human skin. Several 
differences exist and have been documented. 
Skin from experimental animals is different from 
human skin in thickness, composition, and con-
stitution of the SC, and distribution and density 
of appendages such as sweat glands and hair fol-
licles (Schalla and Schaefer 1982; Bronaugh 
et al. 1983). Panchagnula et al. have documented 
follicular density, SC thickness, epidermis thick-
ness, and full skin thickness for 16 animal mod-
els including human skin (Panchagnula et  al. 
1997). These parameters vary significantly 
between the different species studied. For two 
model compounds used in this study, water and 
7-hydroxycoumarin, lag time and permeability 
varied significantly across the skin models. While 
both compounds have similar permeabilities 
across human skin, their permeabilities across 
other skin models vary drastically. The lipid con-
tent of the skin is a major determinant in its bar-
rier potential and differs between species or 
between sites on the same animal (Elias et  al. 
1980, 1981). Hairless mouse skin which is com-
monly used as a model for human skin is com-
paratively fragile. While permeability of human 
skin exposed to water increases only twofold in 
10 days, hydration can completely disintegrate 
hairless mouse skin (Bond and Barry 1988a, b, 
c). A 2-min treatment with acetone has negligible 
effect on human skin but can increase hairless 
mouse skin permeability by 15-fold (Bond and 
Barry 1988a, b, c, d). Hairless mouse skin model 
overestimates the effect of permeation enhancers 
on skin permeability by sevenfold (Bond and 
Barry 1988a, b, c). In contrast, another common 
model, shed snake skin, underestimates the effect 
of permeation enhancers on skin permeability 
when compared to human skin (Rigg and Barry 
1990). In general, it has been observed that ani-
mal skin permeability is higher than human skin 
permeability (Panchagnula et al. 1997).

Of all animal skin models studied, porcine 
skin, and particularly porcine ear skin, is closest 
to human skin in terms of its biochemical compo-
sition and histological features (Gray and Yardley 
1975; Dick and Scott 1992; Wester et al. 1998b; 
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Sekkat et al. 2002; Muhammad et al. 2004; Jacobi 
et al. 2007). Porcine skin resembles human skin 
most in terms of the SC thickness (Holbrook and 
Odland 1974; Wester and Maibach 1989; Jacobi 
et  al. 2007), epidermis thickness (Wester and 
Maibach 1989; Sandby-Moller et al. 2003; Jacobi 
et  al. 2007), follicular structure and density 
(Jacobi et al. 2007), lipid composition (Gray and 
Yardley 1975), and the underlying vasculature 
(Simon and Maibach 2000). As a result, the por-
cine skin has gained wide acceptance as a repre-
sentative model for human skin.

9.4.3	 �Living Skin Equivalents

Skin samples obtained from different species 
show varying permeability responses in presence 
of the same permeation enhancer on account of 
the differences in their constituents, composition, 
and microstructure. In addition to an interspecies 
variation, there is also a variation observed in skin 
permeability with age and anatomical location 
within the same species (Bronaugh et  al. 1982; 
Dupuis et al. 1986; Hughes et al. 1994; Duncan 
et  al. 2002). Cell culture or tissue culture-based 
models of human skin can potentially overcome 
this problem by offering a more consistent skin 
representation (Roguet et  al. 1998; Faller and 
Bracher 2002; Lotte et  al. 2002). In general, 
in vitro cell culture models of living tissues offer 
several advantages such as high reproducibility, 
rapid assessment of permeability and metabolism 
of drugs, stricter control over experimental condi-
tions, well-defined end points, and potential time 
and cost savings when compared to animal use. 
The biggest advantage of cell culture models, 
however, is their amenability to high-throughput 
studies for drug discovery or formulation optimi-
zation studies (Audus et al. 1990).

Reconstruction of skin in vitro typically starts 
with obtaining keratinocytes from full thickness 
or split thickness skin by enzymatic digestion 
using trypsin (Larsen et al. 1988), dispase (Green 
et al. 1979), or thermolysin (Walzer et al. 1989). 
Basal keratinocytes are isolated and grown at an 
air–liquid interface on a substrate that is equiva-
lent of the dermis. Dermal equivalents that have 

been used successfully include permeable syn-
thetic membranes such as nylon mesh (Slivka 
et al. 1993; Crooke et al. 1996) and polycarbonate 
membranes (MonteiroRiviere et al. 1997; Poumay 
et  al. 2004; Kandarova et  al. 2006), collagen 
(Fransson et al. 1998; Flamand et al. 2006), col-
lagen lattices (Bell et al. 1981), glycated collagen 
(Pageon and Asselineau 2005), collagen-
glycosaminoglycan matrices (Boyce et al. 1988), 
chitosan cross-linked collagen-glycosaminoglycan 
matrices (Shahabeddin et  al. 1990), fibrin 
(Holland et  al. 2008), dead de-epidermized der-
mis (Regnier et al. 1998; Rehder et al. 2004), syn-
thetic scaffolds (Shakespeare 2001; Mansbridge 
2002), biodegradable scaffolds (El Ghalbzouri 
et al. 2004), or combinations thereof (Slivka et al. 
1993; Lee et al. 2000; Barker et al. 2004; Sobral 
et al. 2007). Keratinocytes receive nutrients from 
the lower surface of the culture while being 
pushed upward in a process of progressive differ-
entiation. In 14–21 days, the topmost layer 
achieves terminal differentiation and manifests 
characteristics remarkably similar to those of nor-
mal SC, i.e., completely cornified cells sur-
rounded by a lipid intercellular matrix (Nabila 
Sekkat 2001). Today, several cell culture-based 
skin models are commercially available for ready 
use in skin permeation or skin toxicity studies. 
These include TestSkin® and TestSkin® II by 
Organogenesis, Canton, MA (Davis 1990; Moody 
et  al. 1995; Elyan et  al. 1996; Rodriguez et  al. 
2004; Shibayama et  al. 2008), EpiDerm™ and 
EpiDermFT™ (Hayden et  al. 2004, 2005; 
Kandarova et al. 2007; Borgia et al. 2008; Schafer-
Korting et al. 2008) by MatTek Corp., Ashland, 
MA, EpiSkin® and SkinEthic RHE® (Botham 
2004; Schafer-Korting et al. 2006, 2008; Luu-The 
et  al. 2007; Netzlaff et  al. 2007) by SkinEthic 
Labs., Nice, France, Vitrolife-Skin (Uchino et al. 
2002; Morikawa et  al. 2007) by Gunze, Kyoto, 
Japan. Netzlaff et  al. have reviewed the 
EpiDerm™, EpiSkin®, and SkinEthic® models 
based on their morphology, lipid composition, 
biochemical markers, and their applicability in 
tests for evaluating phototoxicity, corrosivity, irri-
tancy, and transport properties (Netzaff et  al. 
2005). The architecture, homeostasis, and lipid 
composition of these models come close to human 
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skin (Ponec and Kempenaar 1995; Ponec et  al. 
2000, 2002). Faller et al. compared the models in 
their ability to secrete extracellular enzymes glu-
tamic oxaloacetic transaminase (GOT) and lactate 
dehydrogenase (LDH), and interleukin-1α on 
treatment with sodium lauryl sulfate (SLS). 
EpiDermTM was the most resistant to SLS and 
most reproducible (Faller and Bracher 2002).

In general, the reconstructed skin models have 
higher permeabilities compared to excised human 
skin (Gysler et  al. 1999). Schmook et  al. 
compared the permeabilities of four topical der-
matological compounds of varying polarity—sal-
icylic acid, hydrocortisone, clotrimazole and 
terbinafine, across rat, human and pig skin as 
well as two models of human skin—Graftskin™ 
LSE™ and Skinethic™ HRE (Schmook et  al. 
2001). In these studies pig skin performed similar 
to human skin with comparable flux of solute 
across both tissues. Graftskin™ LSE™ provided 
an adequate barrier to salicylic acid, but clotrima-
zole flux across it was 1000-fold higher and its 
skin concentration 50-fold higher when com-
pared with human skin. Skinethic™ HRE was 
approximately sevenfold more permeable com-
pared to human skin for salicylic acid and 900-
fold more permeable to clotrimazole. In a similar 
study Marty et  al. reported that trinitroglycerol 
and estradiol were about 20-fold more permeable 
across Skinethic™ HRE compared to split-
thickness human skin (Marty et  al. 1997). In 
cutaneous bioavailability studies on topical for-
mulations, vehicle effects were observed to be 
vastly different in EpiDerm™ and EpiSkin® mod-
els compared to ex vivo human skin (Dreher et al. 
2002). Although the reconstructed human skin 
models underperform significantly in reproduc-
ing the barrier properties of ex vivo human skin 
they can still be used to rank order the permeabil-
ities of solutes based on their permeabilities. 
Such a rank order has been shown to match the 
order obtained on ex vivo human skin for several 
different molecules. Lotte et al. have shown that 
the skin absorption and permeability of lauric 
acid, mannitol, and caffeine follow the same rank 
order as they would on ex vivo human skin (Lotte 
et al. 2002). Dreher et al. found that the EpiSkin® 

and EpiDerm™ models showed the same rank 

order permeability as human skin for caffeine 
and α-tocopherol acetate from a water in oil 
(w/o)-emulsion, an oil in water (o/w)-emulsion, a 
liposomal dispersion and a hydrogel (Dreher 
et al. 2002). In addition, a multilab study verified 
that the permeability ranking across EpiSkin®, 
EpiDerm™, and Skin Ethic™ RHE models was 
comparable to the permeation through human 
epidermis for caffeine and testosterone (Schafer-
Korting et al. 2008).

The biggest shortcoming of commercially 
available skin models is their relatively weak bar-
rier function. Impaired desquamation (Vicanova 
et al. 1996a, b), impaired transfer of desmosomes 
(Vicanova et al. 1996a, b), and presence of unke-
ratinized microscopic foci (Mak et al. 1991) are 
cited as reasons for this poor performance. 
Another significant impediment to the use of 
reconstructed human skin models is their high 
cost. This has limited the use of such models 
mostly to industry and out of reach of most aca-
demic labs and small enterprises. Furthermore, all 
commercially available models use proprietary 
chemically defined media and sources for cells 
that can put additional constraints on the flexibil-
ity of using such models. All three leading mod-
els, Epiderm™, EpiSkin®, and SkinEthic™ RHE 
are based on the epidermis raised on a minimal 
dermal equivalent such as collagen gel scaffold 
encapsulating fibroblasts. In contrast, Nakamura 
et  al. report that full-thickness models based on 
organ cultures of skin explants match the in vivo 
situation more closely (Nakamura et al. 1990).

9.4.4	 �Polymers

Model membrane systems can provide tremen-
dous insight into mechanistic details of solute dif-
fusion and thermodynamics of solute–membrane 
and solvent–membrane interactions (Corrigan 
et al. 1980; Flynn 1985; Beastall et al. 1986; Haigh 
and Smith 1994). Diffusion of a solute molecule 
across a membrane is governed by physical factors 
such as molecule size and shape, pore size, pore 
distribution, path length and tortuosity, and chemi-
cal factors such as hydrogen bonding, hydropho-
bic interactions, and electrostatic interactions. The 
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contribution from each of these factors can 
potentially be decoupled by a systematic study 
with model membranes. Synthetic membranes and 
polymers such as silicone (Hou and Flynn 1997; 
Cross et  al. 2001), cellulose acetate (Barry and 
Eleini 1976; Barry and Brace 1977; Farinha et al. 
2003), poly(dimethylsiloxane) (Cronin et al. 1998; 
Du Plessis et al. 2002; Farinha et al. 2003; Frum 
et  al. 2007), polyvinylidene difluoride (Olivella 
et al. 2006), polyvinyl chloride, polyether sulfone 
(Farinha et al. 2003), ethyl vinyl acetate (Farinha 
et al. 2003), multimembrane laminates (Scheuplein 
and Bronaugh 1983; Houk and Guy 1988), and a 
mixture of isopropyl myristate and silicone oil 
(Ottaviani et al. 2006) have been used to this end. 
In spirit of the “fluid—mosaic model” of the skin, 
organic solvents such as 1-octanol, alkanes, ether, 
chloroform, esters, and paraffins have also been 
used to model diffusion through skin (Houk and 
Guy 1988). Relatively less studied synthetic mem-
brane systems are porous materials. In diffusion 
studies across model biomembranes, filter sup-
ports have typically gained prominence as support 
membranes. A few studies, however, have used 
filter supports or filter supports filled with organic 
liquid to study diffusion of topical agents (Tanaka 
et  al. 1978; Demeere and Tomlinson 1984; 
Turakka et al. 1984; Viegas et al. 1986). Schramm-
Baxter et  al. have used polyacrylamide gels to 
model human skin and study the energetics of liq-
uid jet penetration into skin (Schramm-Baxter 
et  al. 2004). Dyer et  al. have tested zeolites as 
model systems (Dyer et al. 1979). Although such 
models are simplistic and lack all the functional 
and structural complexity of skin, they provide 
several other advantages such as uniformity of 
structure, sample-to-sample reproducibility, and 
ease of procurement.

9.4.5	 �Lipids

In vitro models based on lipids, model lipids, or 
mixtures of natural or model lipids have been 
evaluated for studying percutaneous absorption in 
humans. An artificial lipid membrane composed 
of isopropyl myristate (IPM) supported in a rotat-
ing diffusion cell has been used to simulate the 
epidermal barrier. Reasonable correlation was 

obtained between diffusion of a wide range of 
compounds across the IPM membrane and 
excised skin. Transport resistance across the 
model membrane, however, was 1000-fold lower 
as compared to excised skin (Hadgraft and Ridout 
1987). A three-component mixture of dipalmitoyl 
phosphatidylcholine, linoleic acid, and tetradec-
ane showed an order of magnitude improvement 
in transport resistance when compared to IPM 
membrane (Hadgraft and Ridout 1988). Matsuzaki 
et al. developed a model skin membrane by fixing 
liposomes composed of SC lipids: ceramides, pal-
mitic acid, cholesterol, and cholesterol-3-sulfate 
onto a supporting filter, Biodyne B (Matsuzaki 
et al. 1993; Miyajima et al. 1994). Drug permea-
bility through this system correlated very well 
(r = 0.88) with that through guinea pig skin 
although permeability through the model system 
was an order of magnitude higher. Moghimi et al. 
constructed a model lipid matrix from cholesterol, 
water, and free fatty acids of the SC and their 
sodium salts (Moghimi et al. 1996). This model 
matrix was shown to be a good representation of 
the SC barrier based on the permeability of a 
model hydrophobic drug, 5-fluorouracil. Using a 
similar approach, de Jager et al. created a SC sub-
stitute (SCS) by applying a mixture of synthetic 
SC lipids, free fatty acids, and cholesterol on a 
porous substrate. The composition, organization, 
and orientation of lipids in the SCS bore high 
resemblance to that of the intercellular barrier lip-
ids in SC (de Jager et al. 2006a, b). Other groups 
have reported studies on membranes reconstituted 
from porcine SC lipids or porcine brain ceramides 
on porous substrates. These models have been 
shown to reproduce the permeability of water and 
some other permeants across intact SC (Abraham 
and Downing 1989; Friberg and Kayali 1989; 
Friberg et  al. 1990; Kittayanond et  al. 1992; 
Lieckfeldt et al. 1993; Kuempel et al. 1998).

9.5	 �Evaluation of Skin 
Permeability In Vitro

The ability to measure skin permeability is of 
utmost importance for percutaneous absorption and 
transdermal delivery applications. Several methods 
have been proposed to quantify skin permeability.
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9.5.1	 �Diffusion Measurements

Diffusion cells are by far the oldest and most 
commonly used apparatus in measuring perme-
ation of solutes across the skin. A typical diffu-
sion cell assembly contains a donor chamber 
coupled to a receiver chamber by means of a 
spring clamp or screw. The membrane, in this 
case skin, whose permeability is to be assessed, is 
sandwiched between the donor and receiver 
chambers such that the SC is exposed to the 
donor and the epidermis/dermis to the receiver. A 
solute whose permeability across skin is to be 
measured is placed in the donor chamber by for-
mulating it in a suitable solvent. Appearance of 
the solute in the receiver chamber is periodically 
monitored using appropriate analytical methods. 
The rate of appearance of the solute in the 
receiver chamber is then expressed as a permea-
bility profile in the form amount vs. time.

9.5.1.1	 �Theory
A number of relationships have been used to 
describe the permeation of drugs across skin. 
While the basis for these relationships can be 
complex, the amount of solute (Mt) crossing the 
skin in time t can be related to skin permeability 
(P) by a reasonably straightforward relation.

For an infinite dose of solute in the donor,

	

M C KL
Dt

L

Dn t

Lt
n

= - -
-æ

è
ç

ö

ø
÷

é

ë
ê

ù

û
ú

=

¥

å0 2 2
1

2 2

2

1

6

2

p
p

exp

	(9.1)

where C0 is the concentration of the solute in the 
donor chamber, K is the partition coefficient, or 
log P of the solute into skin (SC), D is the effec-
tive diffusion coefficient across the skin, L is the 
path length of diffusion.

At steady state t ®¥( ) , Eq. (9.1) above can 
be rewritten in a simpler form as
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This represents the permeability profile of a sol-
ute diffusing across skin. The slope of this profile 
provides flux of the solute across skin,
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The permeability profile is linear in time but 

exhibits a lag time, 
t
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The terms K, D and L are grouped together 

and defined as a single term, P
KD
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permeability. Solute permeability can then be 
estimated from flux of the solute across the skin 
and its concentration in the donor chamber.
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Several simplifying assumptions have been made 
in deriving this relationship (Foreman and Kelly 
1976; Osborne 1986). Nevertheless, Eq. (9.4) 
above provides a straightforward way of deter-
mining skin permeability to different solutes by 
measuring their flux.

9.5.1.2	 �Model Solutes
The solute, whose permeability is to be assessed 
across the skin, needs to be detected in the 
receiver chamber by means of appropriate ana-
lytical methods. These may include spectrome-
try, chromatography, biochemical methods such 
as ELISA, western blots, etc. The solute itself 
may be labeled using a fluoropore or radioisotope 
for direct detection. Care needs to be taken that 
labeling of the solute does not alter its physico-
chemical properties, which may affect skin per-
meability resulting in misleading conclusions.

9.5.1.3	 �Diffusion Cells
A wide variety of diffusion cell systems have been 
developed for measuring solute permeation through 
membranes (Frantz 1990; Bronaugh and Collier 
1991; Gummer and Maibach 1991; Friend 1992). 
The most common configurations are vertical cells, 
where the donor chamber is atop the receiver cham-
ber separated by the membrane in between, and 
horizontal diffusion cells where the donor and 
receiver chamber are arranged side-by-side. Mixing 
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of the chambers to create homogeneous compart-
ments is critical in horizontal diffusion cells. In case 
of vertical diffusion cells, mixing is not critical. 
However, a homogeneous well-mixed receiver 
chamber better mimics in vivo conditions and pre-
vents the formation of a static boundary layer of 
high-solute concentration in the receiver chamber. 
Formation of unmixed zones is especially critical 
when assessing the permeability of a hydrophobic 
solute in an aqueous receiver compartment (Tsuruta 
1977; Bronaugh and Stewart 1984, 1986). Efficient 
mixing can be obtained using small magnetic stir 
bars. Flow-through diffusion cells in which the 
receptor fluid is continuously refreshed to mimic 
in vivo sink conditions (i.e., metabolism and diffu-
sion into the subdermal vasculature) have also been 
used successfully (Ainsworth 1960). Temperature 
control of the diffusion cell can be attained using 
water jackets or simply submerging the entire cell 
assembly into a water bath. For studying perme-
ation of highly hydrophobic compounds, solubiliz-
ing solvents can be added to the aqueous receiver 
chamber. These include Triton X-lOO (Bronaugh 
and Stewart 1984), bovine serum albumin (Brown 
and Ulsamer 1975), Poloxamer 188 (Hoelgaard and 
Mollgaard 1982), PEG 400 (Valia et al. 1984), and 
ethanol (Scott et al. 1986). Caution needs to be exer-
cised when using solubilizing agents that they do 
not alter inherent membrane properties. Hydration 
effect on membrane integrity needs to be consid-
ered when assessing solute permeability over 
extended periods of time. Some studies have 
reported that long-term hydration in rodent skin, 
and in particular hairless mouse skin, can lead to 
changes in permeation rates (Whitton and Everall 
1973; Bond and Barry 1988a, b, c, d; Hinz et al. 
1989). Finally, the area of diffusion of the donor 
chamber has been shown to have some effects on 
the permeation rates (Karande and Mitragotri 
2003). Water penetration into the skin introduces a 
lateral strain at the edges of the donor chamber due 
to swelling. This scales as the strain edge available 
per unit area and results in higher observed perme-
ation rates in smaller donor chambers.

	(a)	 Horizontal diffusion cells
Several designs have been suggested and 

used successfully for this type of diffusion cell. 
These include the T-shape configuration 

(Washitake et al. 1980), L-shape configuration 
(Dyer et al. 1979; Tojo et al. 1985a), glass con-
ical flasks configuration (Wurster et al. 1979), 
vertical membrane, equi-compartment diffu-
sion cell with high area to volume ratio (Flynn 
and Smith 1971), glass diffusion cells with 
steel mesh (Southwell and Barry 1983), Valia–
Chien cells (Tojo et  al. 1985a, b), and flow 
through system with central inlet and periph-
eral effluent ports (Astley and Levine 1976). In 
recent years, several modified versions of these 
early designs have been used (Morell et  al. 
1996; Aramaki et al. 2003; Bakand et al. 2006; 
Soni et al. 2006; Tas et al. 2007).

	(b)	 Vertical cells
Vertical diffusion cells are closer to 

in  vivo situation in obtaining permeability 
data across the skin (Friend 1992). The 
Coldman cell represents the earliest of all 
vertical diffusion cells (Coldman et al. 1969). 
A glass cell with a side arm for sampling and 
stir bar for mixing forms the receiver cham-
ber. Skin is sandwiched between the donor 
and receiver using a clamp. Whitton et  al. 
studied a similar cell with the sampling arm 
located at the bottom of the receiver (Whitton 
and Everall 1973). The Franz diffusion cell 
remains the most widely studied vertical dif-
fusion cell today (Franz 1978). The original 
design had poor mixing properties which 
have been addressed in subsequent modifica-
tions (Nacht et al. 1981; Loftsson 1982; Kao 
et al. 1983; Dugard et al. 1984; Hawkins and 
Reifenrath 1986; Gummer et  al. 1987; 
Tiemessen et  al. 1989). In the past two 
decades several modifications of the Coldman 
cell have been used successfully. These 
include the release cells (Morell et al. 1996), 
enhancer cells (Bosman et al. 1996), Kelder 
cells in combination with the Automatic 
Sample Preparation with Extraction Columns 
system (Bosman et  al. 1996), Oak Ridge 
National Laboratory Skin Permeability 
Chamber (Holland et  al. 1984), and Ussing 
type chambers (Li et al. 2006; Ito et al. 2007).

	(c)	 Skin Flaps
In addition to the conventional diffusion 

systems discussed above, novel in vitro sys-
tems that measure effect of perfusion rates on 
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solute permeation have also been designed. 
Isolated Perfused Porcine Skin Flap (IPPSF) 
is a model system of porcine skin flap per-
fused by the caudal superficial epigastric 
artery and its associated veins and mounted 
on a diffusion cell (Williams et  al. 1990; 
Riviere et al. 1991). Bovine udder is used in 
a similar fashion for permeation studies 
(Kietzmann et al. 1993).

9.5.2	 �Tape Stripping

Tape stripping is a technique that has been found 
useful in dermatopathological and dermatophar-
macological research for selectively or at times 
exhaustively removing the SC (Surber et  al. 
1999). Typically, an adhesive tape is applied to 
the skin and removed abruptly. This application 
can be repeated between 10 and 100 times (Sheth 
et  al. 1987; Ohman and Vahlquist 1994). The 
observation that skin may serve as a reservoir for 
chemicals was first reported in 1955 (Malkinson 
and Ferguson 1955). Drugs like corticosteroids 
were shown to localize within the SC (Vickers 
1963; Carr and Wieland 1966). These observa-
tions led to the use of the tape stripping tech-
nique in investigating the barrier and reservoir 
function of the skin (Rougier et  al. 1983; Tojo 
and Lee 1989). This technique is now being 
increasingly used in measuring drug concentra-
tion and its concentration profile in the SC 
(Pershing et  al. 1990; Pellett et  al. 1997; Shah 
et al. 1998).

9.5.2.1	 �Theory
Solute diffusion in the SC can be described by 
Fick’s law (Crank 1975) as follows

	

¶
¶

=
¶
¶

C

t
D

C

x
s s

2

2
	

(9.5)

where D is the average solute diffusion coeffi-
cient in the SC, Cs is the solute concentration in 
the SC, and x is the distance from the SC surface. 
Eq. (9.1) can be solved with the following bound-
ary conditions:

	

C x KC

C x L
s

s

=( ) =
=( ) =
0

0
0

	

where x = 0 corresponds to the SC surface and 
x = L corresponds to the end of the SC, K is the 
average solute partition coefficient in the SC, and 
C0 is the donor concentration of the solute. The 
resulting equation for solute concentration in the 
SC, Cs is given as follows (Crank 1975):
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where C∞ is the solute concentration in SC at 
steady state (C

KC
¥ = 0

2
). For short times, i.e., 

low values of 
Dt

L2 , Eq. (9.6) can be simplified as
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Using the definition of permeability P, the above 
Eq. (9.7) further simplifies to
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Equation (9.8) shows that the solute concentra-
tion in the SC measured at short times is propor-
tional to its steady-state permeability. 
Accordingly, solute concentration can be mea-
sured via tape stripping in the SC to infer its 
steady-state permeability. An analytical tech-
nique such as high-performance liquid chroma-
tography (HPLC) or an immunoassay or 
radioimmunoassay is required in conjunction to 
accurately determine solute concentration. 
Several studies have successfully applied this 
method to determine the skin permeability of a 
wide range of solutes (Stinchcomb et  al. 1999; 
Alberti et al. 2001a, b, c; Moser et al. 2001).

9.5.3	 �Impedance Spectroscopy

Methods based on measuring solute diffusion 
across skin may not always provide the sensitiv-
ity required to measure small perturbations in 
skin permeability or follow permeability 
changes over short intervals of time. Electrical 
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measurements across the SC provide improved 
sensitivity (Dugard and Scheuple 1973). 
Electrical properties of SC parallel those of per-
meability and play a dominant role in the con-
trol of current flow (Lawler et al. 1960; Tregear 
1966). A review of factors governing the pas-
sage of electricity across skin has been pre-
sented by Tregear (Tregear 1966).

9.5.3.1	 �Theory
Flow of ions across skin under an electric field is 
analogous to diffusion of solutes under a chemi-
cal gradient. Current across skin can thus be 
related to permeability of skin. Skin and its 
appendages can be represented by an equivalent 
circuit containing a resistance R shunted by 
capacitance C (Lackermeier et  al. 1999). The 
impedance, Z, of this equivalent skin model can 
be represented as
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where f is the frequency of the applied alternating 
current (AC) signal. A formal porous pathway 
theory based on Nernst–Planck flux equations 
and the Nernst–Einstein relations for ideal solu-
tions has been developed that relates skin imped-
ance to skin permeability (Lakshminarayanaiah 
1965; Srinivasan and Higuchi 1990; Li et  al. 
1998, 1999; Tezel et al. 2003).

A simplified correlation between skin resistiv-
ity, R, and skin permeability, P, is provided by 
Tang et al. (2001) as

	 log log logP C R= - 	 (9.10)

where C is dependent on the properties of the sol-
ute and the solvent in which it is dissolved.

The impedance of intact skin is in the range of 
several hundred kilo ohms (kΩ). As the skin is 
permeabilized, impedance drops finally attaining 
a value of ~1 kΩ, which corresponds to removal 
of the entire barrier (Naik et  al. 2001). Skin 
impedance measurements have been used to 
study the effect of sonophoresis (Mitragotri et al. 
1996; Tezel et  al. 2001; Paliwal et  al. 2006), 
iontophoresis (Burnette and Bagniefski 1988; 

Kalia et  al. 1996; Kumar and Lin 2008), and 
chemical enhancers on skin permeability 
(Karande et al. 2004; Karande et al. 2006a, b).

In comparison to diffusion measurements of 
solute permeability in diffusion cells, electrical 
impedance measurements are relatively simpler, 
faster, and more sensitive. Impedance-based per-
meability assessment provides direct readout of 
barrier integrity and does not require subsequent 
analysis, which may be tedious, time consuming, 
and expensive. Also, since these measurements 
can be performed rapidly and by use of auto-
mated systems the throughput of impedance-
based assays is significantly larger compared to 
diffusion cells. Karande et al. have described the 
design of an impedance based high-throughput 
assay to determine the effect of chemical perme-
ation enhancers on skin permeability (Karande 
et  al. 2004, 2006a, b). This system, in  vitro 
impedance Guided High Throughput (INSIGHT) 
screen, is capable of assessing thousands of for-
mulations per day for their ability to modulate 
skin permeability. The authors discovered syner-
gistic formulations of permeation enhancers 
using this screen, which were capable of deliver-
ing a biologically active hormone across the skin 
at therapeutically relevant doses. One downside 
of using impedance to assess skin permeability is 
that impedance serves only as a surrogate mea-
sure of actual skin permeability. The actual flux 
of a solute needs to be assessed by conventional 
diffusion methods.

9.5.4	 �Infrared Spectroscopy

Transport of solute molecules in the skin can be 
studied using spectroscopic techniques. Fourier 
transform infrared (FTIR) spectroscopy has been 
used extensively in determining skin structure, 
properties, hydration, and effect of permeation 
enhancers (Potts and Francoeur 1993; Moore and 
Rerek 1998; Karande et  al. 2005; Mendelsohn 
et al. 2006).

9.5.4.1	 �Theory
FTIR spectroscopy is used to track solute mol-
ecules in the epidermis by recording their 
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molecular vibrations. The integrated absor-
bance of these vibrations is directly propor-
tional to the amount of solute present in the 
skin. Depth-dependant profiling of the solute 
in the skin can be achieved by attenuated total 
reflectance (ATR)-FTIR spectroscopy. ATR-
FTIR spectroscopy generally provides infor-

mation in the superficial 1–2 μm layer of the 
skin. Repeated tape stripping can be used to 
scan successive layers of the skin for solute 
penetration. Transport properties for the solute 
can then be obtained from an unsteady state 
solution for Eq. (9.5) given as (Pirot et  al. 
1997)
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where C(x) is the concentration of solute at a 
depth x from skin surface and C0 is the concentra-
tion of the solute at the skin surface. L is the total 
thickness of skin and D is the effective diffusivity 
of the solute in skin. The rate per unit area at 
which the solute diffuses out of the skin can be 
obtained by differentiation of Eq. (9.11) as 
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. Further, integration of this rate 

with time yields the total amount of solute diffus-
ing across skin in a given time. This information 
can be used to obtain the permeability profile of 
the solute and hence its permeability across the 
skin. Several assumptions have been made in 
deriving this correlation that is discussed in Pirot 
et al. (1997). One downside of using ATR-FTIR 
spectroscopy is that the solute to be monitored 
needs to be IR active and have a signature distinct 
from those of the SC components. This limitation 
can, in theory, be overcome using spectral correc-
tion techniques (Naik et al. 2001).

Several other methods have been used to study 
permeation and absorption of material into and 
across skin. Xiao et al. have used Raman micros-
copy and imaging to track penetration of phos-
pholipids in skin (Xiao et al. 2005a, b). Williams 
et  al. provide a critical comparison of different 
Raman spectroscopy techniques and their appli-
cation in vivo (Williams et al. 1993). Sonavane 
et  al. have used a combination of UV-vis spec-
troscopy, X-ray spectroscopy, and inductive cou-
pled mass spectroscopy to track permeation of 
gold nanoparticles in the rat skin (Sonavane et al. 
2008). Other groups have used photoacoustic 
spectroscopy for studying permeation of 
Carbopol 940 and transdermal gels (Christ et al. 

2001; Rocha et  al. 2007; Rossi et  al. 2008). 
Remittance spectroscopy and photothermal 
deflection are a few of the other methods that 
have been suggested in this area (Gotter et  al. 
2008).

9.5.5	 �Trans Epidermal Water Loss

Mammalian skin has evolved to regulate the 
transport of material into and out of the body. 
One of the primary functions of skin is to regu-
late the loss of water from the body. It follows, 
then, that the quantitative measure of water loss 
from the skin is indicative of its barrier integrity. 
A device, such as an evaporimeter, that can ade-
quately and accurately measure the water vapor 
flux at the skin surface, and hence the rate of 
trans-epidermal water loss (TEWL), can be used 
to assess barrier integrity of the skin. A quantita-
tive correlation between TEWL and skin perme-
ability has been reported (Rougier et  al. 1989) 
and is found to be consistently reproducible 
in vivo and in vitro (Pinnagoda et al. 1989, 1990). 
Several studies have reported the use of TEWL to 
assess the effect of permeation enhancers on skin 
permeability (Loden 1992; Kanikkannan and 
Singh 2002; Luzardo-Alvarez et  al. 2003; 
Tokudome and Sugibayashi 2004). A compre-
hensive review of their findings is provided by 
Levin and Maibach (Levin and Maibach 2005). 
This review also sheds light on possible reasons 
why two particular studies did not observe 
quantitative correlation between percutaneous 
absorption and TEWL (Tsai et al. 2001; Chilcott 
et  al. 2002). Recent literature continues to pro-
vide opposing views on the use of TEWL as a 
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measure of skin barrier integrity (Fluhr et  al. 
2006; Netzlaff et  al. 2006a). Nevertheless, sev-
eral commercial devices based on this principle 
are readily available today for laboratory work.

9.6	 �Evaluation of Skin 
Permeability In Vivo

In vivo methods for quantification of solute per-
meation across the skin serve as a gold standard 
in transdermal drug delivery. Such methods can 
potentially eliminate variables associated with 
using excised human or animal skin, surrogate 
endpoints as well as faithfully reproduce meta-
bolic, pharmacokinetic, and pharmacodynamic 
behavior of the drug molecule. Wherever possi-
ble, and practically feasible, in  vivo measure-
ments are considered reliable and superior to 
measurements made on model systems in vitro.

9.6.1	 �Diffusion Measurements

Diffusion cells have been designed that can be 
filled with drug solution and strapped on to an 
animal in vivo or the arm of a human volunteer 
(Wurster and Kramer 1961; Quisno and Doyle 
1983; Leopold and Lippold 1992). Such a sys-
tem allows one to study the passive permeation 
of a solute across the skin in vivo in much the 
same way as diffusion cells with excised skin 
or model membranes. Different endpoints can 
then be used to quantify permeation rates 
across the skin.

9.6.1.1	 �Systemic Bioavailability
A solute whose percutaneous absorption is to be 
measured is applied topically to the skin and its 
concentration measured in blood plasma or urine 
over a period of time. These amounts generally 
tend to be very low and hence a sensitive detec-
tion technique such as radiolabeling with 3H or 
14C is necessary (Wester et  al. 1983; Gschwind 
et al. 2008). Caution needs to be exercised when 
using such techniques if the drug is susceptible to 
metabolism. Metabolism can lead to by-products 
that have significantly different pharmacokinetics 

and pharmacodynamics than the parent com-
pound and can give misleading results.

9.6.1.2	 �Surface Loss
Alternate approach to determine in vivo percuta-
neous absorption is to measure the loss of solute 
from the surface as it penetrates the skin. This 
can be achieved when all residual material, con-
tained in a reservoir, can be recovered. Difference 
between concentration or amount at time zero 
and at time of recovery provides an estimate of 
amount absorbed. Generally, the method used to 
detect the residual amount needs to be sensitive 
enough, especially in supersaturated systems, as 
the reservoir can be infinitely large when com-
pared to the amount absorbed. Also, this method 
assumes that the skin does not act as a reservoir, 
which in itself can be a poor assumption.

9.6.2	 �Pharmacological Response

A good method to assess percutaneous absorp-
tion is to measure the biological or pharmaco-
logical response to the drug. Vasoconstriction can 
be used as an endpoint to measure transdermal 
delivery of topically applied corticosteroids 
(Barry 1983) and vasodilation as an endpoint for 
topically applied nicotinates (Le and Lippold 
1995). Laser Doppler flowmetry (LDF) has been 
used to study absorption of prostaglandin E1 
(PGE1) (Foldvari et  al. 1998), methylnicotinate 
(Wilkin et  al. 1985; Poelman et  al. 1989), and 
minoxidil (Wester et al. 1984) in vivo by measur-
ing changes in cutaneous microcirculation. 
Reduction in blood glucose levels has been used 
as an endpoint to determine the efficacy of trans-
dermal delivery of insulin (Mitragotri et al. 1995; 
Chen et al. 2006). The downside of this method is 
that it works only for drugs that have a detectable 
biological endpoint and can tend to be more qual-
itative than quantitative.

9.6.3	 �Other Approaches

Several of the methods discussed above for 
in  vitro skin barrier assessment can be adopted 
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for in  vivo measurements with little or no 
modification at all. Tape stripping and TEWL 
measurements in particular are attractive for 
in  vivo measurements as they are relatively 
straightforward and minimally invasive or nonin-
vasive. The amount of solute that penetrates the 
SC can be quantified in vivo, in humans, by tape 
stripping with an appropriate adhesive tape (Tsai 
et al. 1991). In case of animal studies, in vivo, it 
is possible to quantify penetration in deeper skin 
layers by sacrificing the animal and harvesting its 
skin. The concentration profiles can then be used 
to determine solute permeability as suggested in 
Eq. (9.8). Umemura et al. have used tape strip-
ping in vivo in healthy human subjects to deter-
mine the pharmacokinetics of topically applied 
maxacalcitol from an ointment and lotion 
(Umemura et  al. 2008). Puglia et  al. have used 
tape stripping to quantify skin penetration of 
lipid nanoparticles (Puglia et al. 2008). A review 
of tape-stripping methods in determining percu-
taneous absorption in  vivo is provided by 
Herkenne et  al. (Herkenne et  al. 2008). Several 
reports have documented the use of TEWL to 
assess the barrier integrity after treatment with 
physical or chemical enhancers of skin permea-
bility (Atrux-Tallau et al. 2008; Kolli and Banga 
2008). Maibach et al. have documented the effect 
of successive tape strippings on TEWL in vivo in 
human subjects as well as compared two differ-
ent configurations for devices measuring TEWL 
(Zhai et al. 2007). Xhauflaire-Uhoda et al. have 
used TEWL measurements to study barrier repair 
after the application of miconazole nitrate and 
tape stripping (Xhauflaire-Uhoda et  al. 2006). 
Among the various spectroscopic techniques, 
ATR-FTIR spectroscopy has been used exten-
sively in tracking solute permeation in the skin 
(Ayala-Bravo et al. 2003; Tsai et al. 2003; Curdy 
et al. 2004; Escobar-Chavez et al. 2005; Remane 
et  al. 2006). A comprehensive review of ATR-
FTIR spectroscopy and its use in in vivo studies 
appears in Naik et al. (Naik et al. 2001). Raman 
spectroscopy, similar in principle to FTIR spec-
troscopy, has also been used in studying transder-
mal solute penetration in vivo. A big advantage 
of Raman spectroscopy is that it does not require 
tape stripping of the skin for depth profiling and 

is thus a truly noninvasive technique. Stamatas 
et al. have used in vivo confocal Raman micro-
spectroscopy to study the uptake of vegetable oils 
and paraffin oil in infants (Stamatas et al. 2008). 
Pudney et  al. have demonstrated the use of 
Raman spectroscopy to obtain depth profiles of 
trans-retinol in the epidermis for 10 h after appli-
cation in an in vivo setting (Pudney et al. 2007). 
Caspers et  al. have used confocal Raman spec-
troscopy to detect dimethyl sulfoxide in the SC 
(Caspers et al. 2002). For both techniques, ATR-
FTIR and Raman spectroscopy, the molecule of 
interest should have an active IR signature of suf-
ficient intensity that is distinct from the signa-
tures of skin components. An additional drawback 
of using Raman spectroscopy is that it can only 
provide relative concentrations as against abso-
lute amounts of the diffusing solute in different 
layers of the skin. Impedance spectroscopy is a 
highly sensitive and relatively straightforward 
technique that can be used in vivo to assess skin 
barrier integrity. Curdy et  al. have used imped-
ance spectroscopy to follow barrier recovery 
after the application of iontophoresis (Curdy 
et  al. 2002). Dujardin et  al. describe the use of 
impedance measurements to assess effects of 
electroporation on barrier function in vivo in rats 
(Dujardin et al. 2002). Kalia et al. have looked at 
the effect of surfactant treatment and iontophore-
sis on skin impedance in  vivo (Kalia and Guy 
1997).

In addition, several other techniques have 
been utilized to quantify in  vivo transdermal 
delivery (Herkenne et  al. 2008). These include 
creation of suction blisters and punch biopsies. 
Although relatively straightforward, these are 
painful and invasive procedures that are less pop-
ular in studying percutaneous absorption of sol-
utes, especially in human subjects. Recently, 
microdialysis has been suggested as a novel tech-
nique to measure the diffusion of solutes across 
the skin (Kreilgaard 2002; Mathy et al. 2005). A 
thin probe perfused with a physiological solution 
is implanted under the dermis where, on equili-
bration, it can exchange material with the extra-
cellular tissue components by passive diffusion. 
The perfusate from the probe can then be ana-
lyzed for the solute diffusing across the skin. A 
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time-based concentration profile of the solute dif-
fusing across the skin into the probe can be used 
to determine the pharmacokinetics of the solute. 
A practical challenge associated with this method 
is the careful and reproducible insertion of the 
probe in the deeper layers of the skin. Also, 
extremely sensitive detection methods are 
required to analyze the small amounts of material 
obtained from the perfusate.

�Conclusion

The field of transdermal drug delivery research 
has come of age and is rich with opportunities 
and promises. A combination of improved 
representative systems that meet regulatory 
considerations and capture relevant biophysi-
cal properties of the skin, reliable and accurate 
quantification methods, as well as innovative 
skin permeabilization strategies will expedite 
the appearance of transdermal delivery sys-
tems in this new century.
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