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Abstract. In many graph problems, like Longest Induced Path,
Maximum Induced Forest, etc., we are given as input a graph G and
the goal is to compute a largest induced subgraph G[F ], of treewidth
at most a constant t, and satisfying some property P. Fomin et al. [12]
proved that this generic problem is polynomial on the class of graphs
Gpoly, i.e., the graphs having at most poly(n) minimal separators for some
polynomial poly, when property P is expressible in counting monadic sec-
ond order logic (CMSO).

Here we consider the class Gpoly + kv, formed by graphs of Gpoly to
which we may add a set of at most k vertices with arbitrary adjacen-
cies, called modulator. We prove that the generic optimization prob-
lem is fixed parameter tractable on Gpoly + kv, with parameter k, if
the modulator is also part of the input. The running time is of type
O (f(k + t, P) · nt+5 · (poly(n)2)

)
, for some function f .

1 Introduction

Many classical optimization problems on graphs, e.g., Maximum Independent
Set, Maximum Induced Forest (whose optimal solution is the complement
of a Minimum Feedback Vertex Set), Longest Induced Path and Maxi-
mum Induced Matching consist in finding a maximum induced subgraph G[F ]
of the input graph G such that G[F ] has a tree-like structure (i.e., the treewidth
is bounded by a constant) and satisfies some particular property P (like being a
path, a matching, etc.). All these properties are expressible in Counting Monadic
Second Order Logic (CMSO). We do not need in this paper the technical defin-
ition of CMSO formulae, for which the reader may refer to [10] or [12]. We only
need to keep in mind that many natural properties (connectivity, excluding a
fixed minor, etc.) are expressible in CMSO, and the fact that CMSO properties
are regular, in a sense to be defined in the next section.

Fomin et al. [12] introduced the following generic optimization problem called
Optimal Induced Subgraph for P and t, which encompasses those cited
above and many others. In this generic problem, t is an integer constant and P
is a property on graphs and vertex sets, expressible in CMSO.
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Optimal Induced Subgraph for P and t

Input: A graph G = (V,E)
Output: A pair (F,X) of vertex subsets X ⊆ F ⊆ V such that

– tw(G[F ]) ≤ t,
– P(G[F ],X) is true, and
– X is of maximum size under these constraints.

In the problems that we have mentioned, the vertex set X is equal to F .
Nevertheless, set X allows to optimize other criteria than the size of the induced
subgraph. E.g., in the Independent H-packing problem [8], we are given a
fixed family of graphs H, and the goal is to find an induced subgraph G[F ] with
a maximum number of connected components such that each of its components
is isomorphic to an element of H. For this problem, property P expresses the
constraints on the components of G[F ] and the fact that X intersects each such
component in exactly one vertex.

Consider a polynomial poly, and let Gpoly be the class of graphs such that,
for any G ∈ Gpoly, graph G has at most poly(n) minimal separators. (As usually,
we denote by n and m the number of vertices, respectively of edges of graph
G.) Fomin et al. [12] proved that, for any constant t and any CMSO property
P, problem Optimal Induced Subgraph for P and t is polynomial-time
solvable on class Gpoly.

The approach is based on the notion of potential maximal clique. Given an
arbitrary graph G = (V,E), a minimal triangulation H = (V, F ) is a minimal
chordal supergraph of G (recall that a graph is chordal if it contains no induced
cycle with four or more vertices). A potential maximal clique of G is a vertex
subset Ω inducing a maximal clique in some minimal triangulation of G. Poten-
tial maximal cliques are strongly related to minimal separators. Graphs in Gpoly

have O(n · (poly(n))2) potential maximal cliques [7], and the set of all these
objects can be enumerated in polynomial time. The algorithm of [12] takes as
input all the potential maximal cliques of the input graph. Then it proceeds by
dynamic programming on potential maximal cliques, constructs the induced sub-
graph G[F ] and in the meantime applies Courcelle’s theorem [9], in the version
proposed by Borie, Parker and Tovey [5], for testing CMSO properties on graphs
on bounded treewidth. Altogether, this solves the generic optimization problem.
Many graph classes, e.g., weakly chordal, circle, polygon-circle or circular-arc
graphs are known to be in Gpoly for some particular polynomial poly. Therefore,
the generic problem and all its particular instances are polynomial on all these
classes. We refer to [12] for further discussions on graph classes and applications
of the problem.

Our results. Our goal is to study the problem from a parameterized perspective,
for classes of graphs with “few” minimal separators, to which we are allowed to
add k vertices with arbitrary adjacencies. Let Gpoly + kv denote the class of
graphs G = (V,E) containing a vertex subset M ⊆ V of size at most k, such
that G − M ∈ Gpoly. The set M is called the modulator of G.
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Let Optimal Induced Subgraph for P and t on Gpoly +kv be the problem
Optimal Induced Subgraph for P and t on the graph class Gpoly + kv, with
parameter k. Moreover, we assume that the input graph G is given together with
a modulator M (see also Sect. 4 for discussions on this point). Our main result
is that problem Optimal Induced Subgraph for P and t on Gpoly + kv is
fixed-parameter tractable (FPT), i.e., there is an algorithm solving the problem
in time f(k) · nO(1) for some function f . More specifically, the running time is of
type O

(
f(k + t,P) · nt+5 · (poly(n)2)

)
, where function f depends on property P

and on k + t (see also the Conclusion section for further discussions).

Theorem 1. Problem Optimal Induced Subgraph for P and t on Gpoly+
kv with parameter k is fixed-parameter tractable, when a modulator is also part
of the input.

A similar result was obtained by Fomin and the authors of this article [11],
on graphs with vertex cover at most k, i.e., formed by an independent set plus
at most k vertices. In this class, the number of potential maximal cliques is
4k · nO(1), hence the algorithm of [12] can be used as is. But, as shown in [11],
even for the class of graphs formed by a tree plus one vertex, or an induced
matching plus two vertices, the number of potential maximal cliques may be
exponential in n, therefore we need another approach.

A natural idea is to “guess” how the optimal solution intersects with the
modulator M . But we still need to carefully express how the rest of the solution
intersects with the graph G − M . Think, e.g., of the longest induced path prob-
lem: we need to make sure that the solution restricted to G − M forms indeed
a connected path with the selected vertices of the modulator. Our algorithm
extends, in a non-trivial way, the one of [12] in order to handle this situation.

We also point out that several authors considered classes of graphs of similar
flavor, e.g. Chordal + kv [19] and Split + kv [18], providing both FPT and
hardness results for various problems, parameterized by k.

2 Preliminaries

Treewidth, minimal triangulations and potential maximal cliques. Given a graph
G = (V,E), we denote by n the number of its vertices and by m the number
of its edges. G[C] denotes the subgraph of G induced by a vertex subset C,
and N(C) is the neighborhood of C in G. We say that a set of vertices C is
a connected component of G if G[C] is connected and C is inclusion-maximal
for this property. Given a set S ⊆ V , let G − S denote the graph G[V \ S].
If there are two distinct connected components C and D of G − S such that
N(C) = N(D) = S, we say that S is a minimal separator of G. The set of all
minimal separators of G is denoted ΔG.

A tree decomposition of graph G = (V,E) is a pair (T ,X ), where T is a tree
and X are vertex subsets of G, called bags. Moreover, each node i of the tree
corresponds to a bag Xi ∈ X , the bags cover all vertices and all edges of G, and
for each vertex x of G, the set of nodes {i | x ∈ Xi} form a connected subtree
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of T . The width of the decomposition is max{|Xi| − 1 | Xi ∈ X}. Finally, the
treewidth of G, denoted tw(G), is the minimum width among all mobile tree
decompositions of G.

A graph H is chordal if it has no induced cycle with four or more vertices. Let
G = (V,E) be an arbitrary graph. We say that H = (V, F ) is a triangulation of
G if H is a chordal super-graph of G (i.e., E ⊆ F ). If, moreover, H is inclusion-
minimal for this property, then H is a minimal triangulation of G. It is well-
known that chordal graphs have tree decompositions whose bags correspond to
maximal cliques (see, e.g., [15]). The treewidth of G is also equal to the minimum
integer w such that G has a (minimal) triangulation H, and each clique of H
has at most w + 1 vertices.

Proposition 1 (respecting triangulations [13]). Consider an arbitrary
graph G = (V,E) and let F ⊆ V be a set of vertices. For any minimal tri-
angulation TF of G[F ], there is a minimal triangulation TG of G such that TF

is an induced subgraph of TG.

A potential maximal clique of G is a vertex subset Ω such that Ω induces a
maximal clique in some minimal triangulation H of G. The set of all potential
maximal cliques of G is denoted ΠG. E.g., if G is a cycle, then its potential max-
imal cliques are exactly the triples of vertices. See also [6] for a characterization
of potential maximal cliques.

If Ω is a potential maximal clique, then the neighborhoods of the components
of G − Ω are exactly the minimal separators of G, contained in Ω.

Given a polynomial poly, let Gpoly denote the class of graphs having at most
poly(n) minimal separators. The minimal separators ΔG and the potential max-
imal cliques ΠG of these graphs can be listed in polynomial time, by [1] and [7]
respectively.

A pair (S,C) such that S is a minimal separator of G and C is a component
such that N(C) = S is called a full block associated to S. For convenience, we
will also consider the empty set as being a minimal separator of G = (V,E), and
the pair (∅, V ) is considered as a full block. Let (S,C) be a full block and Ω be
a potential maximal clique with S ⊂ Ω ⊆ S ∪ C. The triple (S,C,Ω) is called a
good triple. Our dynamic programming is based on full blocks and good triples,
which is again polynomially bounded on class Gpoly.

Terminal recursive graphs and regular properties. Graphs of bounded treewidth
can be defined recursively, based on a graph grammar. Let w be a non-negative
integer. A w-terminal graph is a triple (V, T,E), where (V,E) is a graph and T
is a totally ordered subset of V , of size at most w. The vertices of T are called
the terminals of the graph. Since T is totally ordered, we can speak of the ith
terminal, for i ≤ |T |.

The class of w-terminal recursive graphs is defined by the following opera-
tions. A base graph is a w-terminal recursive graph of the form (V, T,E) with
T = V . Hence it has at most w vertices, all of them being terminals.

The gluing operation takes two disjoint w-terminal recursive graphs G1 =
(V1, T1, E1) and G2 = (V2, T2, E2) and creates a new graph G = gluem(G1, G2),
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depending on a matrix m. The matrix m has two rows and at most w columns,
with elements in {0, 1 . . . , w}. The gluing operation takes the disjoint union of
G1 and G2, and then identifies the terminal number i in G1 (resp. in G2) to
terminal m1i (resp. m2i) in G. Each terminal of G1 (resp. G2) is mapped on at
most one terminal of G. We take mji = 0, for j ∈ {1, 2}, if terminal number i in
Gj does not exist or it is not mapped on any terminal of G.

The forget operation takes a w-terminal recursive graph G1 = (V, T,E) and
creates the graph G = forgetm(G1) with G = (V, T ′, E) such that T ′ is a subset
of T . The matrix m has only one row and |T | columns, and m1i specifies as before
that the ith terminal of G1 is mapped on terminal m1i of G. The mapping is
injective, and if m1i = 0 then the ith terminal of G1 is removed, in G, from the
set of terminals.

We point out that the number of possible different matrices and hence of
different operations is bounded by a function on w.

Proposition 2 (see [2,12]). Graph H = (V, T,E) is (w +1)-terminal recursive
if and only if there exists a tree decomposition of G = (V,E), of width at most
w, having T as one of its bags. Hence the grammar of (w+1)-terminal recursive
graphs constructs exactly the graphs of treewidth at most w (see [2,12]).

Let P(G,X) be a property assigning to each graph G and vertex subset X of
G a boolean value. We extend the gluing and forget operations to pairs (G,X)
in the natural way (see, e.g., [5,12]). In particular, when we perform a gluing on
(G1,X1) and (G2,X2), the result is a pair (G,X) where X is obtained by the
the gluing of X1 and X2. Therefore the intersections of sets X1 and X2 with the
terminals of G1 and respectively G2 must be coherent with the gluing, in the
sense that if two terminals x1 of G1 and x2 of G2 are identified in G, then we
either have x1 ∈ X1 and x2 ∈ X2, or we have x1 /∈ X1 and x2 /∈ X2.

Definition 1 (regular property). Property P is called regular if, for any
value w, we can associate a finite set C of classes and a homomorphism function
h, assigning to each w-terminal recursive graph G and to each vertex subset X
a class h(G,X) ∈ C such that:

1. If h(G1,X1) = h(G2,X2) then P(G1,X1) = P(G2,X2).
2. For each gluing operation gluem there exists a function �gluem : C × C → C

such that, for any two pairs (G1,X1) and (G2,X2),

h(gluem((G1,X1), (G2,X2)) = �gluem(h(G1,X1), h(G2,X2))

and for each operation forgetm there is a function �forgetm : C → C such
that, for any pair (G,X),

h(forgetm(G,X)) = �forgetm(h(G,X)).

The first condition separates the classes into accepting ones (i.e., classes c ∈ C
such that h(G,X) = c implies that P(G,X) is true) and rejecting ones (s.t.
h(G,X) = c implies that P(G,X) is false). In full words, the second condition
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states that, if we perform a glue (resp. forget) operation on two graphs (resp.
one graph) and corresponding vertex subsets, the homomorphism class of the
result can be obtained from the homomorphism classes of the graphs on which
these operations are applied. Therefore, if a w-terminal recursive graph is given
together with its expression in this grammar, and if moreover we know how to
compute the classes of the base graph, then the homomorphism class of the whole
graph, for a regular property P, can be obtained by dynamic programming. We
simply need to parse the expression from bottom to top and, at each node,
we compute the class of the corresponding sub-expression thanks to the second
condition of regularity. At the root, the property is true if and only if we are in
an accepting class.

Proposition 3 (Borie, Parker, and Tovey [5], Courcelle [9]). Any property
P(G,X) expressible by a CMSO formula is regular.

Moreover, the result of Borie, Parker, and Tovey shows how to compute
explicitly the set of classes, the homomorphism function for base graphs as well
as the composition functions �gluem and �forgetm . Altogether, this provides an
effective algorithm for checking the property in O(n) time.

The reader may try to express the homomorphism classes and function for
his/her favorite CMSO property. Let us consider the property “G[X] is con-
nected”. We can choose, as homomorphism h((V, T,E),X), the set of subsets of
T , which correspond to the intersections of T with components of G[X]. Observe
that each such subset Ti of T is encoded by the indices of its elements in the
ordered set T . Hence each homomorphism class will be a set of (disjoint) subsets
of {1, . . . , w}.

We may assume w.l.o.g. that the homomorphism class c = h(G,X), for
G = (V, T,E), encodes the intersection of X with the set of terminals. This is
not explicitly required by the definition of regular properties, but it can be done
since it only costs w bits to encode the number of the terminals contained in X.
Therefore we assume there is a function trm(c, T ) that, given a homomorphism
class c and an ordered set of terminals T returns the unique possible set X ∩ T ,
over all pairs (G = (V, T,E),X) mapped to c. Thanks to this function, when we
will glue two terminal recursive graphs with their corresponding vertex subsets,
we will be able to check that the gluing is coherent.

3 The Algorithm

Our goal is to provide an FPT algorithm for the problem Optimal Induced
Subgraph for P and t on Gpoly + kv, thus proving our Main Theorem 1.
Recall that in this problem, the input is a graph G ∈ Gpoly + kv, together with
a modulator M of size at most k.

We may assume w.l.o.g. that we also have as input the set ΠG′ of potential
maximal cliques of graph G′ = G − M . Indeed these objects can be computed
in polynomial time by [7].

The following easy observation is crucial for the correctness of our algorithm.
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Lemma 1 (compatibility lemma). Let G be the input graph, M be a vertex
subset, and (F,X) be an optimal solution for P and t. Let G′ = G − M and
F ′ = F \ M . There is a minimal triangulation TF ′ of G′[F ′] of width at most t,
and a minimal triangulation TG′ of G′ respecting TF ′ , i.e., such that TF ′ is the
subgraph induced by F ′ in TG′ .

Proof. Since G[F ] is of treewidth at most t, so is its subgraph G′[F ′]. Therefore it
exists a minimal triangulation TF ′ of G′[F ′] of width at most t. By Proposition 1
applied to graph G′ and to TF ′ , there is a minimal triangulation TG′ of G′,
respecting the minimal triangulation TF ′ . ��

We will “guess”, by brute force, the intersections of F and X with the mod-
ulator M . Let us fix FM = F ∩M and XM = X ∩M , with XM ⊆ FM . For each
such pair (FM ,XM ), we need to construct F ′ = F \ M and X ′ = X \ M such
that the pair (F,X) = (F ′∪FM ,X ′∪XM ) satisfies the constraints and X ′∪XM

is of maximum size under these conditions. (Eventually, the global solution is
obtained by trying all the 3k possible combinations for subsets XM ⊆ FM ⊆ M .)

Our algorithm will construct X ′ and F ′ by dynamic programming on minimal
separators and potential maximal cliques. The graph G[F ′ ∪ FM ] has to be of
treewidth at most t, and while we construct this graph we also need to check
property P on it. Unfortunately we will not be able to handle G[F ′ ∪ FM ] as a
(t+1)-terminal recursive graph. Instead, we will see it as a (t+kM +1)-terminal
recursive graph, where kM = |FM | (and we will explicitly check that tw(G[F ]) ≤
t). Informally, while we construct F ′, we also maintain some information on a
tree-decomposition of G′[F ′], of width at most t. To this decomposition, we
simply add the whole set FM in each bag, hence obtaining a tree-decomposition
of width at most t + kM of G[F ∪ FM ].

Now, on the (t + kM + 1)-terminal recursive graph G[F ′ ∪ FM ] having W ∪
FM as set of terminals for some W (W will be memorized during the dynamic
programming), we need to check the property P but also the fact that the graph
is of treewidth at most t. Therefore, let Q(H,Y ) be the property P(H,Y ) ∧
(tw(H) ≤ t). Property Q is also regular:

Lemma 2. Let P(G,X) be a regular property on graphs and vertex sets, and let
Q(G,X) be the property P(G,X) ∧ (tw(G) ≤ t). Property Q is regular.

Proof. As proven by Borie, Parker, and Tovey [5], if two properties P(G,X) and
P ′(G) are regular, then property Q(G,X) = P(G,X)∧P ′(G) is also regular. In
order to observe this, one can simply notice that the couple (hP(G,X), hP′(G))
formed by the respective classes of P and P ′ directly provides the homomorphism
class hQ(G,X) for property Q.

It remains to argue that property P ′(G) defined by “tw(G) ≤ t” is regular.
One classical argument is that the class of graphs of treewidth at most t is
minor-closed (see, e.g., [3] for a similar discussion). Hence, by the Graph Minors
theorem [21], the class is defined by a finite set of forbidden minors, denoted
Obs(t). Therefore, tw(G) ≤ t if and only if G has no minor among the graphs of
Obs(t). The property that a fixed graph is a minor of G is expressible in CMSO
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(see, e.g., [5]), hence the property “tw(G) ≤ t” is regular by Proposition 3.
In order to turn this argument into a completely constructive one, we must
build the obstruction set Obs(t) for graphs of treewidth at most t. This can be
done by brute force, thanks to the result of Lagergren [17] showing that such
obstructions are of size (number of vertices) at most f(t), for some function
doubly exponential in t5. Hence, one could enumerate all the graphs with number
of vertices bounded by this function, test the ones of treewidth strictly larger
than t and extract the minimal ones w.r.t. the minor relation. The output is
precisely Obs(t).

For our purpose, a better alternative is provided by the celebrated algorithm
of Bodlaender and Kloks [4]. This algorithm takes as input a graph of treewidth
at most w, for some constant w, and decides if this graph has treewidth at
most t. Its running time is O(n), and the hidden constant is single exponential
in a polynomial in w. Moreover, the algorithm precisely provides an effective
way for constructing the homomorphism class of property P ′(G) = (tw(G) ≤ t)
for (w + 1)-terminal recursive graphs. Such a class is addressed in [4] as a full
set of characteristics. Recall that, in our case, we need to construct these class
for (w + 1)-terminal recursive graphs where w ≤ t + k, k being the size of the
modulator M . Therefore, for computing the homomorphism classes for property
Q(G,X) = P(G,X) ∧ (tw(G) ≤ t) one can combine the Borie, Parker, and
Tovey approach (to obtain hP(G,X)) and the Bodlaender and Kloks approach
(to obtain hP′(G) for P ′(G) = (tw(G) ≤ t)), and the couple (hP(G,X), hP′(G))
is the homomorphism class hQ(G,X). ��

Our algorithm is an extension of the dynamic programming scheme proposed
by Fomin et al. [12], which considers the same optimization problem, without
the modulator M (and thus checking property P instead of Q). For a better
understanding we completely describe the new algorithm, trying to follow the
same notations as in [12], and we emphasize the points that differ from the result
of Fomin et al.

Recall that sets XM and FM are fixed, and XM ⊆ FM ⊆ M . We consider a
total order (v1, . . . , vn) on the vertices of G = (V,E). When we speak of a subset
T of vertices as a set of terminals, T is considered as the ordered set, with the
ordered induced by (v1, . . . , vn) on its vertices.

Definition 2 (partial compatible solution). Consider a full block (S,C) and
a good triple (S,C,Ω) of graph G′. Let W ⊆ S (resp. W ⊆ Ω) a vertex set of
size at most t+1. Let c be a homomorphism class for property Q on (t+kM +1)-
terminal recursive graphs. We say that a pair (F,X) is a partial solution com-
patible with (S,C,W, c) (resp. with (S,C,Ω,W, c)) if the following conditions
hold:

1. X ∩ M = XM , F ∩ M = FM , and X ⊆ F .
2. F \ M ⊆ S ∪ C and F ∩ S = W (resp. F ∩ Ω = W ).
3. H = (F,W ∪ FM , E(G[F ])) is a (t + kM + 1)-terminal recursive graph, and

the homomorphism class hQ(H,X) for property Q is exactly c.
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S

C

W

F

M

FM

S

C

W

F

M

FM

Fig. 1. (a) Partial solutions compatible with (S, C, W, c) (left), and (b) with
(S, C, Ω, W, c) (right). Set F is depicted in grey. Note that set W corresponds to F ∩S
in the first case, and to F ∩ Ω in the second case.

4. There is a minimal triangulation TF ′ of G′[F ′] (here F ′ = F \ M) and a
minimal triangulation TG′ of G′ respecting TF ′ , such that S is a minimal
separator (resp. Ω is a maximal clique) of TG′ .

With the same notations as above, let α(S,C,W, c) (resp. β(S,C,Ω,W, c))
be the maximum size of X over all partial solutions (F,X) compatible with
(S,C,W, c) (resp. (S,C,Ω,W, c)). The situation is depicted in Fig. 1. For simplic-
ity, we did not represent set X. The algorithm orders the full blocks (S,C) by the
size of S ∪ C. It proceeds by dynamic programming on full blocks (S,C) in this
order, and on good triples (S,C,Ω), computing all possible values α(S,C,W, c)
and β(S,C,Ω,W, c). The outline of Algorithm 1 is the same as in [12], the dif-
ferences appear in the details of the computations of α and β values.

Algorithm 1. Optimal Induced Subgraph for P and t on Gpoly + kv

Input: graph G = (V, E) and a modulator M of size at most k s.t. G′ = G−M

is in Gpoly; the potential maximal cliques of G′; sets XM ⊆ FM ⊆ M

Output: sets X ⊆ F ⊆ V (G) such that G[F ] has treewidth at most t,
P(G[F ], X) is true, X ∩ M = XM , F ∩ M = FM and, subject to these
constrains, X is of maximum size

Order all full blocks (S, C) of G′ by inclusion on S ∪ C;1

for all full blocks (S, C) in this order do2

for all good triples (S, C, Ω) of G′, all W ⊆ Ω of size ≤ t + 1 and all c ∈ C3

do

if Ω = S ∪ C then Compute β(S, C, Ω, W, c) using Eq. 1;4

;5

else Compute β(S, C, Ω, W, c) using Eqs. 3, 4, 5, and 6;6

;7

for all W ⊆ S of size ≤ t + 1 and all c ∈ C do8

Compute α(S, C, W, c) using Eq. 2;9

Compute an optimal solution using Eq. 7;10
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Base case: the good triple (S,C,Ω) is such that Ω = S ∪C. In this case the only
possible partial solutions (F,X) compatible with (S,C,Ω,W, c) correspond to
base graphs G[F ], where all vertices are terminals (see [12]). Hence F = W ∪FM

is also the set of terminals. Thus set X is unique (or might not exist), because
we must have X = trm(c,W ∪ FM ). For simplicity, we denote by G[W ∪ FM ]
the base graph (W ∪ FM ,W ∪ FM , E(G[F ∪ FM ])). We have:

β(S,C,Ω,W, c) =
{

|X| if there isX ⊆ W such that h(G[W ∪ FM ],X) = c
−∞ otherwise

(1)

S

C

W

F

W'

S

C

C1 C2

S1
S2

W

Fig. 2. Computing α form β (left), and β from α (right). Set M is not depicted for
simplicity.

Computing α from β. We aim to compute α(S,C,W, c) from β values on good
triples of type (S,C,Ω) (see also Fig. 2(a)).

Let (F,X) be an optimal solution compatible with (S,C,W, c) and F ′ =
F \ M . We denote by H the (t + kM + 1)-terminal recursive graph G[F ] with
W ∪ FM as set of terminals. By Definition 2, there is a minimal triangulation
TF ′ of F ′ and a minimal triangulation TG′ of G′ respecting TF ′ , such that S is
a minimal separator of TG′ . By [6], there is a potential maximal clique Ω of G′,
inducing a maximal clique in TG′ , and such that (S,C,Ω) form a good triple of
G′. Let W ′ = F ′ ∩Ω. The graph H ′, corresponding to G[F ] with set of terminals
W ′∪FM , is also a (t+kM +1)-terminal recursive graph (see Proposition 2, or [12]
for full details). Let c′ = h(H ′,X). Note that H = forgetW ′∪FM→W∪FM (H),
where the forget operation corresponds to the fact that the set of terminals
W ′ ∪ FM is reduced to W ∪ FM . Therefore, we have (see [12] for full details):

α(S,C,W, c) = max β(S,C,Ω,W ′, c′), (2)

where the maximum is taken over potential maximal cliques Ω such that
(S,C,Ω) is a good triple, all subsets W ′ ⊆ Ω of size at most t + 1 such that
W ′ ∩ S = W and all classes c′ ∈ C such that �forgetW ′∪FM →W∪FM

(c′) = c.
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Computing β from α. Let (S,C,Ω) be a good triple of G. Denote by C1, . . . , Cp

the components of G′ − Ω contained in C, and let Si be the neighborhood of
Ci in G′. The pairs (Si, Ci) are also full blocks (see [6] for more details) and
they have been processed by the algorithm before (S,C). Our goal is to compute
β(S,C,Ω,W, c). Let Wi = W ∩ Si, for all i ∈ {1, . . . p}. We will use, as in [12],
two intermediate functions γi and δi.

Let δi(S,C,Ω,W, c+i ) denote max |Xi| over the partial solutions (F+
i ,Xi)

compatible with (S,C,Ω,W, c+i ) and such that F+
i \ FM ⊆ Ω ∩ Ci. Let H+

i

be the graph G[F+
i ] with set of terminals W ∪ FM . Let also Hi be the graph

H+
i [Si ∪ Ci ∪ M ], with set of terminals Wi ∪ FM . Note that H+

i is obtained by
gluing Hi with the base graph G[W ∪FM ], with the “canonical” gluing, obtained
by identifying the vertices of Si from both sides. Let glueWi∪FM ;W∪FM denote
this gluing operation.

δi(S, C, Ω, W, c+i ) = max α(Si, Ci, Wi, ci)+|trm(cW , W ∪FM )\trm(ci, Wi∪FM )|, (3)

where the maximum is taken over all ci, cW ∈ C s.t. �glueWi∪FM ;W∪FM
(ci, cW ) =

c+i and cW = h(G[W ∪ FM ],XW ∪ XM ) for some XW ⊆ W . Here G[W ∪ FM ]
denotes the base graph with terminals W ∪ FM .

Notice the part |trm(cW ,W ∪FM )\ trm(ci,Wi ∪FM )| in the formula, which
avoids the overcounting of the vertices of Xi ∩ Si.

These partial solutions (F+
i ,X+

i ) corresponding to δi(S,C,Ω,W, c+i ) cannot
be glued together in one step, since we are only allowed to glue two graphs
at a time. Hence the need of the γ function which allows to add, one by one,
the partial solutions to the gluing. Now let γi(S,C,Ω,W, c) denote the size of
the optimal partial solution compatible with (S,C,Ω,W, c) and contained in
M ∪ Ω ∪ C1 · · · ∪ Ci. So we only consider the first i components, the partial
solution is the union of (F+

1 ,X+
1 ) to (F+

i ,X+
i ). By definition,

γ1(S,C,Ω,W, c) = δ1(S,Ω,C,W, c) (4)

We then compute γi, for i from 2 to p as follows.

γi(S,C,Ω,W, c)=max γi−1(S,C,Ω,W, c′)+δi(S,Ω,C,W, c′′)−|trm(c′,W ∪FM )|,
(5)

where the maximum is taken over all c′, c′′ ∈ C s. t. �glueW∪FM ;W∪FM
(c′, c′′) = c,

where the gluing operation is the canonical gluing, the set of terminals for both
arguments being W ∪ FM .

By definition of γp, we have

β(S,C,Ω,W, c) = γp(S,C,Ω,W, c). (6)

It remains to retrieve the optimal solution for the algorithm. The maximum is
taken over all accepting classes c, i.e., classes such that h(G,X) = c implies that
P(G,X):

max α(∅, V, ∅, c), (7)
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We refer to [12] for detailed proofs of correctness and for complexity issues.
Altogether, the algorithm takes time O(f(t+kM ,P) ·nt+4 · |ΠG′ |). The function
f(t+kM ,P) comes from the application of Proposition 3 on t+kM +1-recursive
graphs. By applying Algorithm 1 on all possible subsets XM ⊆ FM ⊆ F , we
have proved Theorem 1.

We point out that our algorithm really needs to keep track of the homomor-
phism classes of partial solutions (F,X) for property Q(G[F ],X) = P(G[F ],X)∧
(tw(G[F ]) ≤ t). A näıve approach would be to only keep the class hP(G[F ],X)
(for property P) and to reject partial solutions that do not satisfy tw(G[F ]) ≤ t.
We could have two different partial solutions (F,X) and (F ′,X) for the same
part of the graph (e.g., corresponding to the same parameters for function α),
such that hP(G[F ],X) = hP(G[F ′],X ′), and both tw(G[F ]) and tw(G[F ′]) are
at most t. Or, it may happen that one of the solution, say (F,X), can be extended
into a better one of type (F ∪F ′′,X ∪X ′′), while the other cannot because such
an extension(F ′ ∪ F ′′,X ′ ∪ X ′′) would violate the condition tw(G[F ′ ∪ F ′′]) ≤ t.

Of course our approach, keeping the class hQ(G[F ],X) for property Q,
ensures that if two partial solutions are of the same class, they are equivalent
w.r.t. extensions.

4 Conclusion and Discussion

We gave an FPT algorithm for the problem Optimal Induced Subgraph for
P and t on Gpoly +kv. The problem encompasses many classical ones [12]. As it
will be shown in the full version of the paper, the result can be extended to the
classes of graphs Gpoly − ke and Gpoly + ke (i.e., graphs of Gpoly minus or plus ar
most k edges), and the generic problem is polynomial on Gpoly −kv, if k is small.
One of the limits of our algorithm is that we explicitly need the modulator of
the input graph. Let us consider the following problem:

Deletion to Gpoly

Input: A graph G = (V,E) and a polynomial poly
Parameter: k
Output: A vertex subset M of size at most k, such that G − M is in Gpoly

Our main open question is the existence of an FPT algorithm for problem Dele-
tion to Gpoly. We recall that the problem Chordal deletion is FPT [20], but
on the other hand the problem Weakly chordal deletion is W [2]-hard [16].
The latter does not rule out the possibility that Deletion to Gpoly could be
FPT. Moreover, even an FPT approximation for Deletion to Gpoly would allow
us to conclude that the problem Optimal Induced Subgraph for P and t is
FPT on the class Gpoly + kv, without needing to require to have the modulator
M as part of the input.

Another direction for improvement concerns the complexity of our algorithm,
which is O

(
f(k + t,P) · nt+5 · (poly(n)2)

)
. The dependency on P and t+k comes

from Courcelle’s theorem (Proposition 3), applied for deciding property P on
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graphs of treewidth t + k. As shown by Frick and Grohe [14], function f can
be very huge, typically a tower of exponentials in t + k, the height of the tower
depending on the property to be checked. Our algorithm actually constructs an
induced subgraph of treewidth t, although we were only able to build a decom-
position of width t + k. In particular, if we do not need to check a particular
property P on the induced graph, but we only ask this graph to be of treewidth
at most t, then function f becomes (k+t)O((k+t)3) — coming from the algorithm
of Bodlaender and Kloks [4] that, given a graph and tree decomposition of width
k + t, checks whether the treewidth of the graph is at most t. For easier cases,
when t = 0 to t = 1, the function f becomes 2k and (k + t)O(k+t) respectively,
as we shall discuss in the full version. Also, for natural properties P, like “being
connected” or “being a path” one can perform the property checking using stan-
dard (ad-hoc) dynamic programming tools which avoid the heavy machinery of
Proposition 3. Again, the extra-cost becomes much more reasonable.

A natural and challenging question would be to separate the dependency on
t and k, typically to obtain a complexity of type f(t,P) · g(k) · nt+O(1), where
g would be a “more reasonable” function. For that purpose we would need to
construct the partial solutions as a (t+1)-terminal recursive graph, maybe by a
more clever way of dealing with the intersection between this solution and the
modulator.

Acknowledgements. We would like to thank Fedor Fomin and Nicolas Nisse for
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7. Bouchitté, V., Todinca, I.: Listing all potential maximal cliques of a graph. Theor.
Comput. Sci. 276(1–2), 17–32 (2002)

8. Cameron, K., Hell, P.: Independent packings in structured graphs. Math. Program.
105(2–3), 201–213 (2006)

9. Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of
finite graphs. Inf. Comput. 85(1), 12–75 (1990)



512 M. Liedloff et al.

10. Courcelle, B., Engelfriet, J.: Graph Structure and Monadic Second-Order Logic.
Cambridge University Press, Cambridge (2012)

11. Fomin, F.V., Liedloff, M., Montealegre, P., Todinca, I.: Algorithms parameter-
ized by vertex cover and modular width, through potential maximal cliques. In:
Ravi, R., Gørtz, I.L. (eds.) SWAT 2014. LNCS, vol. 8503, pp. 182–193. Springer,
Heidelberg (2014)

12. Fomin, F.V., Todinca, I., Villanger, Y.: Large induced subgraphs via triangulations
and CMSO. SIAM J. Comput. 44(1), 54–87 (2015)

13. Fomin, F.V., Villanger, Y.: Finding induced subgraphs via minimal triangulations.
In: STACS 2010, LIPIcs, pp. 383–394. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik (2010)

14. Frick, M., Grohe, M.: The complexity of first-order and monadic second-order logic
revisited. Ann. Pure Appl. Logic 130(1–3), 3–31 (2004)

15. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press,
New York (1980)

16. Heggernes, P., van’t Hof, P., Jansen, B.M.P., Kratsch, S., Villanger, Y.: Parame-
terized complexity of vertex deletion into perfect graph classes. Theor. Comput.
Sci. 511, 172–180 (2013)

17. Lagergren, J.: Upper bounds on the size of obstructions and intertwines. J. Comb.
Theor. Ser. B 73(1), 7–40 (1998)

18. Mancini, F.: Minimum fill-in and treewidth of split+ke and split+kv graphs. Dis-
crete Appl. Math. 158(7), 747–754 (2010)

19. Marx, D.: Parameterized coloring problems on chordal graphs. In: Downey, R.G.,
Fellows, M.R., Dehne, F. (eds.) IWPEC 2004. LNCS, vol. 3162, pp. 83–95. Springer,
Heidelberg (2004)

20. Marx, D.: Chordal deletion is fixed-parameter tractable. Algorithmica 57(4), 747–
768 (2010)

21. Robertson, N., Seymour, P.D.: Graph minors. XX. Wagner’s conjecture. J. Comb.
Theor. Ser. B 92(2), 325–357 (2004). Special Issue Dedicated to Professor W.T.
Tutte


	Beyond Classes of Graphs with ``Few'' Minimal Separators: FPT Results Through Potential Maximal Cliques
	1 Introduction
	2 Preliminaries
	3 The Algorithm
	4 Conclusion and Discussion
	References


