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Et tu mi fili, Brute?
(Julius Caesar)

Abstract. A system of sets forms an m-fold covering of a set X if every
point of X belongs to at least m of its members. A 1-fold covering is
called a covering. The problem of splitting multiple coverings into several
coverings was motivated by classical density estimates for sphere packings
as well as by the planar sensor cover problem. It has been the prevailing
conjecture for 35 years (settled in many special cases) that for every plane
convex body C, there exists a constant m = m(C) such that every m-
fold covering of the plane with translates of C splits into 2 coverings.
In the present paper, it is proved that this conjecture is false for the
unit disk. The proof can be generalized to construct, for every m, an
unsplittable m-fold covering of the plane with translates of any open
convex body C which has a smooth boundary with everywhere positive
curvature. Somewhat surprisingly, unbounded open convex sets C do not
misbehave, they satisfy the conjecture: every 3-fold covering of any region
of the plane by translates of such a set C splits into two coverings. To
establish this result, we prove a general coloring theorem for hypergraphs
of a special type: shift-chains. We also show that there is a constant c > 0
such that, for any positive integer m, every m-fold covering of a region
with unit disks splits into two coverings, provided that every point is
covered by at most c2m/2 sets.

1 Introduction

Let C be a family of sets in R
d, and let P ⊆ R

d. We say that C is an m-
fold covering of P if every point of P belongs to at least m members of C.
A 1-fold covering is called a covering. Clearly, the union of m coverings is an
m-fold covering. We will be mostly interested in the case when P is a large region
or the whole space R

d.

The authors were completely convinced that the unit disk does not misbehave.
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Sphere packings and coverings have been studied for centuries, partially
because of their applications in crystallography, Diophantine approximation,
number theory, and elsewhere. The research in this field has been dominated
by density questions of the following type: What is the most “economical” (i.e.,
least dense) m-fold covering of space by unit balls or by translates of a fixed
convex body? It is suggested by many classical results and physical observations
that, at least in low-dimensional spaces, the optimal arrangements are typically
periodic, and they can be split into several lattice-like coverings [14,15]. Does a
similar phenomenon hold for all sufficiently “thick” multiple coverings, without
any assumption on their densities?

About 15 years ago, a similar problem was raised for large scale ad hoc sensor
networks; see Feige et al. [13], Buchsbaum et al. [6]. In the – by now rather
extensive – literature, it is usually referred to as the sensor cover problem. In
its simplest version it can be phrased as follows. Suppose that a large region
P is monitored by a set of sensors, each having a circular range of unit radius
and each powered by a battery of unit lifetime. Suppose that every point of P is
within the range of at least m sensors, that is, the family of ranges of the sensors,
C, forms an m-fold covering of P . If C can be split into k coverings C1, . . . ,Ck,
then the region can be monitored by the sensors for at least k units of time
(Fig. 1). Indeed, at time i, we can switch on all sensors whose ranges belong to
Ci (1 ≤ i ≤ k). We want to maximize k, in order to guarantee the longest possible
service. Of course, the first question is the following.

Problem 1 (Pach, 1980 [31]). Is it true that every m-fold covering of the plane
with unit disks splits into two coverings, provided that m is sufficiently large?

In a long unpublished manuscript, Mani and Pach [27] claimed that the
answer to this question was in the affirmative with m ≤ 33. Pach [35] warned
that this “has never been independently verified.” Winkler [42] even conjectured
that the statement is true with m = 4. For more than 30 years, the prevailing
conjecture has been that for any open plane convex body (i.e., bounded convex
set) C, there exists a positive integer m =m(C) such that every m-fold covering
of the plane with translates of C splits into two coverings. This conjecture was
proved in [32] for centrally symmetric convex polygons C. It took almost 25 years
to generalize this statement to all convex polygons [38,40]. Moreover, it was
proved by Aloupis et al. [3] and Gibson and Varadarajan [19] that in these
cases, for every integer k, every at least bk-fold covering splits into k coverings,
where b = b(C) is a suitable positive constant. See [33,34,36], for surveys.

Here we disprove the above conjecture by giving a negative answer to
Problem 1.

Theorem 1. For every positive integer m, there exists an m-fold covering of
the plane with open unit disks that cannot be split into 2 coverings.

Our construction can be generalized as follows.

Theorem 2. Let C be any open plane convex set, which has two parallel sup-
porting lines with positive curvature at their points of tangencies. Then, for every
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Fig. 1. Two simple examples.

positive integer m, there exists an m-fold covering of the plane with translates
of C that cannot be split into 2 coverings.

As was mentioned above, for every open convex polygon Q, there exists a
smallest positive integer m(Q) such that every m(Q)-fold covering of the plane
with translates of Q splits into 2 coverings. We have that supm(Q) = ∞, where
the sup is taken over all convex polygons Q. Otherwise, we could approximate
the unit disk with convex n-gons with n tending to infinity. By compactness,
we would conclude that the unit disk C satisfies m(C) < +∞, which contradicts
Theorem 1.

Problem 2. Does there exist, for any n > 3, an integer m(n) such that every
convex n-gon Q satisfies m(Q) ≤m(n)?

For any triangle T , there is an affine transformation of the plane that takes
it into an equilateral triangle T0. Therefore, we have m(T ) = m(T0) and m(3)
is finite. For n = 4, Problem 2 is open.

In spite of our sobering negative answer to Problem 1 and its analogues in
higher dimensions (cp. [27]), there are important classes of multiple coverings
such that all of their members are splittable. According to our next, somewhat
counter-intuitive result, for example, any m-fold covering of Rd with unit balls
can be split into 2 coverings, provided that no point of the space is covered by
too many balls. (We could innocently believe that heavily covered points make
it only easier to split an arrangement.)
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Theorem 3. For every d ≥ 2, there exists a positive constant cd with the follow-
ing property. For every positive integer m, any m-fold covering of Rd with unit
balls can be split into two coverings, provided that no point of the space belongs
to more than cd2m/d balls.

Theorem 3 was one of the first geometric applications of the Lovász local
lemma [10], and it was included in [2]. Here, we establish a more general state-
ment (see Theorem 5.2).

One may also believe that unbounded convex sets behave even worse than
the bounded ones. It turns out, however, that this is not the case.

Theorem 4. Let C be an unbounded open convex set and let P be a finite set
of points in the plane. Then every 3-fold covering of P ⊂ R2 with translates of
C can be split into two coverings of P .

In fact, using a standard compactness argument, Theorem 4 also holds if
P is any compact set in the plane. However, Theorem 4 does not generalize to
higher dimensions. Indeed, it follows from the proof of Theorem 1 that, for every
positive integer m, there exists a finite family C of open unit disks in the plane
and a finite set P ⊂ R2 such that C is an m-fold covering of P that cannot be split
into two coverings. Consider now an unbounded convex cone C′ in R

3, whose
intersection with the plane R

2 is an open disk. Take a system of translates of
C′ such that their intersections with the plane coincide with the members of C.
These cones form an m-fold covering of P that cannot be split into two coverings.

For interesting technical reasons, the proof of Theorem 4 becomes much easier
if we restrict our attention to multiple coverings of the whole plane. In fact, in
this case, we do not even have to consider multiple coverings! Moreover, the
statement remains true in higher dimensions.

Proposition 5. Let C be an unbounded line-free open convex set in R
d. Then

every covering of Rd with translates of C can be split into two, and hence into
infinitely many, coverings.

The reason why we assume here that C is line-free (i.e., does not contain a
full line) is the following. If C contains a straight line, then it can be obtained
as the direct product of a line l and a (d − 1)-dimensional open convex set C′.
Any arrangement C of translates of C in R

d is combinatorially equivalent to
the (d − 1)-dimensional arrangement of translates of C′, obtained by cutting C
with a hyperplane orthogonal to l. In particular, the problem whether an m-fold
covering of Rd with translates of C can be split into two coverings reduces to
the respective question about m-fold coverings of Rd−1 with translates of C′.

Proposition 5 is false already in the plane without the assumption that
C is open. However, every 2-fold covering of the plane with translates of an
unbounded C can be split into two coverings. We omit the proof as it reduces
to a simple claim about intervals.

However, in higher dimensions, the similar claim is false.
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Theorem 6. There is a bounded convex set C′ ⊂ R
3 with the following prop-

erty. One can construct a family of translates of C = C′ × [0,∞) ⊂ R
4 which

covers every point of R4 infinitely many times, but which cannot be split into
two coverings.

Our construction is based on an example of Naszódi and Taschuk [30], and
explores the fact that the boundary of C′ can be rather “erratic.” We do not
know whether sufficiently thick coverings of R3 by translates of an unbounded
line-free convex set can be split into two coverings or not.

In the sequel, we will study the equivalent “dual” form of the above questions.
Consider a family C = {Ci ∶ i ∈ I} of translates of a set C ⊂ R

d that form an
m-fold covering of P ⊆ Rd. Suppose without loss of generality that C contains
the origin 0. For every i ∈ I, let ci denote the point of Ci that corresponds to
0 ∈ C. In other words, we have C = {C+ci ∶ i ∈ I}. Assign to each p ∈ P a translate
of −C, the reflection of C about the origin, by setting C∗p = −C +p. Observe that

p ∈ Ci ⇐⇒ ci ∈ C∗p .

In particular, the fact that C forms an m-fold covering of P is equivalent to
the following property: Every member of the family C∗ = {C∗p ∶ p ∈ P} contains
at least m elements of {ci ∶ i ∈ I}. Thus, Theorem 1 can be rephrased in the
following dual form.

Theorem 1’. For every m ≥ 2, there is a set of points P ∗ = P ∗(m) in the plane
with the property that every open unit disk contains at least m elements of P ∗,
and no matter how we color the elements of P ∗ with two colors, there exists a
unit disk such that all points in it are of the same color.

A set system not satisfying this condition is said to have property B (in
honor of Bernstein) or is 2-colorable (see [9,29,39]). Generalizations of this notion
are related to conflict-free colorings [12] and have strong connections, e.g., to
the theory of ε-nets, geometric set covers and to combinatorial game theory
[1,18,21,34,41].

The rest of this paper is organized as follows. In the next three sections, we
prove Theorem 1’ in 3 steps. In Sect. 2, we exhibit a family of non-2-colorable
m-uniform hypergraphs H(k, l). In Sect. 3, we construct planar “realizations” of
these hypergraphs, where the vertices correspond to points and the (hyper)edges
to unit disks, preserving the incidence relations. In Sect. 4, we extend this con-
struction, without violating the colorability condition, so that every disk contains
at least m points. The proof of a more general version of Theorem 3, using the
Lovász local lemma, can be found in Sect. 5. Finally, in Sect. 6 we make some
concluding remarks and mention a couple of open problems.

The proof of Theorem 2, a generalization of Theorem 1 to bounded plane
convex bodies with a smooth boundary, and the proofs of our results related to
multiple coverings with unbounded convex sets, Theorem 4, Proposition 5, and
Theorem 6, can be found in the full version of the paper available online.
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2 A Family of Non-2-colorable Hypergraphs H(k, l)

In this section we define, for any positive integers k and l, an abstract hypergraph
H(k, l) with vertex set V (k, l) and edge set E(k, l). The hypergraphs H(k, l) are
defined recursively. The edge set E(k, l) will be the disjoint union of two sets,
E(k, l) = ER(k, l) ⊍ EB(k, l), where the subscripts R and B stand for red and
blue. All edges belonging to ER(k, l) will be of size k, all edges belonging to
EB(k, l) will be of size l. In other words, H(k, l) is the union of a k-uniform and
an l-uniform hypergraph. If k = l =m, we get an m-uniform hypergraph (Fig. 2).

Definition 2.1. Let k and l be positive integers.

1. For k = 1, let V (1, l) be an l-element set.
Set ER(1, l) ∶= V (1, l) and EB(1, l) ∶= {V (1, l)}.

2. For l = 1, let V (k,1) be a k-element set.
Set ER(k,1) ∶= {V (k,1)} and EB(k,1) ∶= V (k,1).

3. For any k, l > 1, we pick a new vertex p, called the root, and let

V (k, l) ∶= V (k − 1, l) ⊍ V (k, l − 1) ⊍ {p},

ER(k, l) ∶= {e ∪ {p} ∶ e ∈ ER(k − 1, l)} ∪ER(k, l − 1),

EB(k, l) ∶= EB(k − 1, l) ⊍ {e ∪ {p} ∶ e ∈ EB(k, l − 1)}.

By recursion, we obtain that

∣V (k, l)∣ = (
k + l

k
) − 1,

∣ER(k, l)∣ = (
k + l − 1

k
), ∣EB(k, l)∣ = (

k + l − 1
l
),

∣E(k, l)∣ = ∣ER(k, l)∣ + ∣EB(k, l)∣ = (
k + l

k
).

Fig. 2. The hypergraph H(3,3) with (arbitrarily) 2-colored vertices. There is a blue
(dashed) set with 3 blue vertices or a red (solid) set with 3 red vertices. (Color figure
online)
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Lemma 2.2 ([37]). For any positive integers k, l, the hypergraph H(k, l) is not
2-colorable. Moreover, for every coloring of V (k, l) with red and blue, there is
an edge in ER(k, l) such that all of its k vertices are red or an edge in EB(k, l)
such that all of its l vertices are blue.

For completeness, here we include the proof of Lemma 2.2 from [37]. The
induction on two parameters, k and l, is similar to the proof of Ramsey’s theorem
by Erdős and Szekeres [11].

Proof. We will prove that for every coloring of V (k, l) with red and blue, there
is an edge in ER(k, l) such that all of its k vertices are red or an edge in EB(k, l)
such that all of its l vertices are blue.

Suppose first that k = 1. If any vertex in V (1, l) is red, then it is a red
singleton edge in H(1, l). If all vertices in V (1, l) are blue, then the (only) edge
V (1, l) ∈ EB(1, l) contains only blue points. Analogously, the assertion is true if
l = 1.

Suppose next that k, l > 1. Assume without loss of generality that the root p
is red. Consider the subhypergraph H(k − 1, l) ⊂ H(k, l) induced by the vertices
in V (k − 1, l). If it has a monochromatic red edge e ∈ ER(k − 1, l), then e∪ {p} ∈
ER(k, l) is red. If there is a monochromatic blue edge in EB(k − 1, l), then we
are again done, because it is also an edge in EB(k, l).

For other interesting properties of the hypergraphs H(k, l) related to hered-
itary discrepancy, see Matoušek [28].

3 Geometric Realization of the Hypergraphs H(k, l)

The aim of this section is to establish the following weaker version of Theorem 1’.

Theorem 1”. For every m ≥ 2, there exists a finite point set P = P (m) ⊂ R2 and
a finite family of unit disks C = C(m) with the property that every member of C
contains at least m elements of P , and no matter how we color the elements of
P with two colors, there exists a disk in C such that all points in it are of the
same color.

We realize the hypergraph H(k, l) defined in Sect. 2 with points and disks.
The vertex set V (k, l) is mapped to a point set P (k, l) ⊂ R

2, and the edge
sets, ER(k, l) and EB(k, l), to families of open unit disks, CR(k, l) and CB(k, l),
so that a vertex belongs to an edge if and only if the corresponding point is
contained in the corresponding disk. The geometric properties of this realization
are summarized in the following lemma.

Given two unit disks C,C′, let d(C,C′) denote the distance between their
centers. We fix an orthogonal coordinate system in the plane so that we can talk
about the topmost and the bottommost points of a disk.

Lemma 3.1. For any positive integers k, l and for any ε > 0, there is a finite
point set P = P (k, l) and a finite family of open unit disks C(k, l) = CR(k, l) ⊍
CB(k, l) with the following properties.
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1. Any disk C ∈ CR(k, l) (resp. CB(k, l)) contains precisely k (resp. l) points
of P .

2. For any coloring of P with red and blue, there is a disk in CR(k, l) such that
all of its points are red or a disk in CB(k, l) such that all of its point are blue.
In fact, P and C(k, l) realize the abstract hypergraph H(k, l) in the above
sense.

3. For the coordinates (x, y) of any point from P , we have −ε < x < ε and
−ε2 < y < ε2.

4. For the coordinates (x, y) of the center of any disk from CR(k, l), we have
−ε < x < ε and −ε2 < y − 1 < ε2.

5. For the coordinates (x, y) of the center of any disk from CB(k, l), we have
−ε < x < ε and −ε2 < y + 1 < ε2.

6. The topmost and the bottommost points of a disk C ∈ C(k, l) are not covered
by the closure of any other member of C(k, l).

Looking at our construction from “far away” the two families CR and CB look
like two touching disks, with all points of P very close to the touching point.
The segments connecting the centers of disks from different families are almost
vertical with all members of CR lying “above” all members of CB . We prove the
lemma by induction. Most conditions are needed for the induction to go through.
Condition 6 is an exception: it will be used in Sect. 4.

Proof. We give a recursive construction. We can assume that ε < 1/10. It is easy
to see that, for k = 1 or l = 1, there exists such a family of unit disks for any
ε > 0, see Fig. 3(a). The family C(2,2) is depicted in Fig. 3(b), where the main
idea of the induction may already be visible.

Suppose that k, l ≥ 2 and we have already constructed P (k − 1, l) and C(k −
1, l), and P (k, l − 1) and C(k, l − 1), for some ε(k − 1, l) < ε/100 and ε(k, l − 1) <
ε/100, respectively. To obtain P (k, l), we place the root p of H(k, l) into the
origin (0,0), and we shift (translate) P (k−1, l) and P (k, l−1) into new positions
such that their roots are at (−ε/3,−ε2/10) and (ε/3, ε2/10), respectively. With
a slight abuse of notation, the shifted copies will also be denoted P (k − 1, l) and
P (k, l−1). See Fig. 3. In this way, it is guaranteed that for the coordinates (x, y)
of any point of P , we have

−ε < −(ε/3 + ε(k − 1, l) + ε(k, l − 1)) < x < ε/3 + ε(k − 1, l) + ε(k, l − 1) < ε

and

−ε2 < −(ε2/10+ ε2(k − 1, l)+ ε2(k, l− 1)) < y < ε2/3+ ε2(k − 1, l)+ ε2(k, l− 1) < ε2.

Thus, property 3 of the lemma holds.
The family C(k, l) is defined as the union of two previously defined families,

C(k−1, l) and C(k, l−1), translated by the same vectors as P (k−1, l) and, resp.
P (k, l−1) were. Again, we use the same symbols to denote the translated copies.
To verify properties 4 and 5, we only have to repeat the above calculations,
with the y-coordinates being shifted 1 higher (resp. 1 lower).
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Fig. 3. The construction.
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Now we show that our set of points P (k, l) and set of disks C(k, l) realize the
hypergraphH(k, l) (properties 1 and 2). It is easy to see that if C ∈ CR(k−1, l)
and s ∈ P (k, l−1), then s ∉ C but p = (0,0) ∈ C. The coordinates of the center of
C are (−ε/3±ε(k−1, l),1−ε2/10±ε2(k−1, l)) (where here and in the following,
±z denotes a number that is between −z and z), so the distance of p from C is
at most (ε/3+ε(k−1, l))2 +(1−ε2/10+ε2(k−1, l))2 < 1. On the other hand, the
coordinates of s are (ε/3 ± ε(k, l − 1), ε2/10 ± ε2(k, l − 1)), thus the square of its
distance from the center of C is at least

(2ε/3 − ε(k − 1, l) − ε(k, l − 1))
2
+ (1 − 2ε2/10 − ε2(k − 1, l) − ε2(k, l − 1))

2
> 1.

Analogously, if C ∈ CB(k, l − 1) and s ∈ P (k − 1, l), then s ∉ C but p = (0,0) ∈ C.
Let C ∈ CR(k, l−1) and s ∈ P (k−1, l). We prove that p, s ∉ C. The coordinates

of the center of C are (ε/3±ε(k, l−1),1+ε2/10±ε(k, l−1)). Therefore, the distance
of p from the center of C is at least (ε/3−ε(k, l−1))2+(1+ε2/10−ε(k, l−1))2 > 1.
The calculation for s is similar in the case C ∈ CR(k − 1, l). Analogously, we
have that if C ∈ CB(k − 1, l) and s ∈ P (k, l − 1), then p, s ∉ C. As the disks
in C(k, l − 1) (resp. C(k − 1, l)) contain precisely the same points of P (k, l − 1)
(resp. P (k − 1, l), as before the shift, we have obtained a geometric realization
of H(k, l), and properties 1 and 2 hold.

It remains to prove that the topmost and the bottommost points of a disk
C ∈ C(k, l) are not covered by any other member of C(k, l) (property 6). Using
that our construction and disks are centrally symmetric, it is enough to prove
the statement for the topmost points. If C ∈ CR(k, l − 1), the coordinates of its
topmost point are (ε/3±ε(k, l−1),2+ε2/10±ε2(k, l−1)). If C ∈ CR(k−1, l), the
coordinates of its topmost point are ( − ε/3 ± ε(k − 1, l),2 − ε2/10 ± ε2(k − 1, l)).
If C ∈ CB(k, l−1), the coordinates of its topmost point are (ε/3± ε(k, l−1),−2+
ε2/10 ± ε2(k, l − 1)). If C ∈ CB(k − 1, l), the coordinates of its topmost point are
( − ε/3 ± ε(k − 1, l),−2 − ε2/10 ± ε2(k − 1, l)).

If C ∈ CR(k, l − 1), by the induction hypothesis, its topmost point cannot be
covered by any other disk from C(k, l − 1). Nor can it be covered by any other
disk, as the topmost points of all other disks are below it (i.e., have smaller
y-coordinates). If C ∈ CR(k − 1, l), then the square of the distance of its topmost
point from the center of some C′ ∈ CR(k, l − 1) is at least

(2ε/3 − ε(k, l − 1) − ε(k − 1, l))
2
+ (1 − 2ε2/10 − ε2(k, l − 1) − ε2(k − 1, l))

2
> 1.

If C ∈ CB(k, l−1), then the distance of its topmost point from the center of some
C′ ∈ CR(k − 1, l) is also at least

(2ε/3 − ε(k, l − 1) − ε(k − 1, l))
2
+ (1 − 2ε2/10 − ε2(k, l − 1) − ε2(k − 1, l))

2
> 1.

In all other cases, trivially, the corresponding distances are also larger than 1.
This completes the proof of property 6 and hence the lemma.
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4 Adding points to P – Proof of Theorem 1’

In this section, we extend the proof of Theorem 1” to establish Theorem 1’ (which
is equivalent to Theorem 1). Note that the only difference between Theorems 1”
and 1’ is that in the latter it is also required that every unit disk of the plane
contains at least m elements of the point set P ∗ = P ∗(m). The set P = P (m,m)
constructed in Lemma 3.1, does not satisfy this condition. In order to fix this,
we will add all points not in ∪C(m,m) to the set P (or rather a sufficiently dense
discrete subset of R

2
∖ ∪C(m,m)). In order to show that the resulting set P ∗

meets the requirements of Theorem 1’, all we have to show is the following.

Lemma 4.1. No (open) unit disk C ∉ C(k, l) is entirely contained in ∪C(k, l).

For future purposes, we prove this statement in a slightly more general form.
In what follows, we only assume that C is an open convex body with a unique
topmost point t and a unique bottommost point b, which divide the boundary
of C into two closed arcs. They will be referred to as the left boundary arc and
a right boundary arc.

Definition 4.2. A collection C of translates of C is said to be exposed if the
topmost and bottommost points of its members do not belong to the closure of
any other member of C.

By the last condition in Lemma 3.1, the collections of disks C(k, l) con-
structed in the previous section are exposed. We prove the following generaliza-
tion of Lemma 4.1.

Lemma 4.3. Let C be a finite exposed collection of translates of an open convex
body C with unique topmost and bottommost points. If C ∉ C, then C /⊆ ∪C.

For the proof, we need a simple observation.

Proposition 4.4. If the right boundary arcs of two translates of C intersect,
then the closure of one of the translates must contain the topmost or bottommost
point of the other.

Proof. Let C1 and C2 be the two translates, and let γi denote the closed convex
curve formed by the right boundary arc of Ci and the straight-line segment
connecting its two endpoints (the topmost and the bottommost points of Ci).
The curves γ1 and γ2 are translates of each other, and since they intersect, they
must cross twice. (At a crossing, one curve comes from the exterior of the other,
then it shares an arc with it, which may be a single point, and enters the interior.)
It cannot happen that both crossings occur between the right boundary arcs,
because they are convex and translates of each other. Therefore, one of the two
crossings involves the straight-line segment of one the curves, say, γ1. But since
the condition is that the right boundary arcs intersect, one of the two endpoints
of this straight-line segment, either the topmost or the bottommost point of C1,
lies in the closure of C2.
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Proof (of Lemma 4.3). Suppose, for contradiction, that C ⊆ ∪C. By removing
some members of C if necessary, we can assume that C is a minimal collection of
translates that covers C. Then C must have a point which belongs to (at least)
three translates, C1,C2,C3 ∈ C. None of the topmost and bottommost points
of these translates can be covered by C, otherwise, it would also be covered by
another member of C, contradicting the assumption that C is exposed.

Thus, C intersects either the left or the right boundary arc of every Ci.
Without loss of generality, suppose that C intersects the right boundary arcs
of C1 and C2. These right boundary arcs must intersect inside C, otherwise
C1 ∩ C ⊆ C2 ∩ C or C2 ∩ C ⊆ C1 ∩ C, and C would not be minimal. Therefore,
we can apply Proposition 4.4 to conclude that one of them must contain the
topmost or bottommost point of the other.

Remark 1. In the construction described in Lemma 3.1, every disk in C(m,m)
contains at most ∣P (m,m)∣ < 22m points. At the last stage, we added many new
points to P . We can keep the maximum number of points of P lying in a unit
disk bounded from above by a function f(m). What is the best upper bound?
The bound given by our construction depends on ε(m,m) ≤ 100−2mε(1,1).

5 Bounded Coverings

We prove Theorem 3 in a somewhat more general form. For the proof we need
the following consequence of the Lovász local lemma.

Lemma 5.1 (Erdős-Lovász [10]). Let k,m ≥ 2 be integers. If every edge
of a hypergraph has at least m vertices and every edge intersects at most
km−1

/4(k − 1)m other edges, then its vertices can be colored with k colors so
that every edge contains at least one vertex of each color.

Let C be a class of subsets of Rd. Given n members C1, . . . ,Cn of C, assign
to each point x ∈ Rd a characteristic vector c(x) = (c1(x), . . . , cn(x)), where
ci(x) = 1 if x ∈ Ci and ci(x) = 0 otherwise. The number of distinct characteristic
vectors shows how many “pieces” C1, . . . ,Cn cut the space into. The dual shatter
function of C, denoted by π∗C(n), is the maximum of this quantity over all n-
tuples C1, . . . ,Cn ∈ C. For example, when C is the family of open balls in R

d, it
is well known that

π∗C(n) ≤ (
n − 1

d
) +

d

∑
i=0

(
n

i
) ≤ nd, (1)

provided that 2 ≤ d ≤ n.

Theorem 5.2. Let C be a class of open sets in R
d with diameter at most D

and volume at least v. Let π(n) = π∗C(n) denote the dual shatter function of C,
and let Bd denote the unit ball in R

d. Then, for every positive integer m, any
m-fold covering of Rd with members of C splits into two coverings, provided that
no point of the space is covered more than v

(2D)dV olBd π−1(2m−3) times, where
V olBd is the volume of Bd.



Unsplittable Coverings in the Plane 293

Proof. Given an m-fold covering of Rd in which no point is covered more than M
times, define a hypergraph H = (V,E), as follows. Let V consist of all members
of C that participate in the covering. To each point x ∈ Rd, assign a (hyper)edge
e(x): the set of all members of the covering that contain x. (Every edge is counted
only once.) Since every point x is covered by at least m members of C, every
edge e(x) ∈ E consists of at least m points.

Consider two edges e(x), e(y) ∈ E with e(x) ∩ e(y) ≠ ∅. Then there is
a member of C that contains both x and y, so that y must lie in the ball
B(x,D) of radius D around x. Hence, all members of the covering that con-
tain y lie in the ball B(x,2D) of radius 2D around x. Since the volume of
each of these members is at least v, and no point of B(x,2D) is covered
more than M times, we obtain that B(x,D) can be intersected by at most
MV olB(x,2D)/v = M(2D)dV olBd

/v members of the covering. By the defini-
tion of the dual shatter functions, those members of the covering that intersect
B(x,D) cut B(x,D) into at most π(M(2D)dV olBd

/v) pieces, each of which
corresponds to an edge of H. Therefore, for the maximum number N of edges of
H that can intersect the same edge e(x) ∈ E, we have

N ≤ π(M(2D)dV olBd
/v).

According to Lemma 5.1 (for k = 2), in order to show that the covering can
be split into two, i.e., the hypergraph H is 2-colorable, it is sufficient to assume
that N ≤ 2m−3. Comparing this with the previous inequality, the result follows.

In the special case where C is the class of unit balls in R
d, we have v = V olBd,

D = 2, and, in view of (1), π−1(z) ≥ z1/d. Thus, we obtain Theorem 3 with
cd = 2−2d−3/d.

If we want to decompose an m-fold covering into k > 2 coverings, then the
above argument shows that it is sufficient to assume that

π(M(2D)dV olBd
/v) ≤ km−1

/4(k − 1)m.

In case of unit balls, this holds for M ≤ ck,d(1+ 1
k−1
)
m/d with ck,d = k−1/d4−d−1/d.

Two sets are homothets of each other if one can be obtained from the other
by a dilation with positive coefficient followed by a translation. It is easy to
see [20] that for d = 2, the dual shatter function of the class C consisting of all
homothets of a fixed convex set C is at most n2

− n + 2 ≤ n2, for every n ≥ 2. In
this case, Theorem 5.2 immediately implies

Corollary 5.3. Every m-fold covering C of the plane with homothets of a fixed
convex set can be decomposed into two coverings, provided that no point of the
plane belongs to more than 2(m−11)/2 members of C.

Naszódi and Taschuk [30] constructed a convex set C in R
3 such that the dual

shatter function of the class of all translates of C cannot be bounded from above
by any polynomial of n. Therefore, for translates of C, the above approach breaks
down. We do not know how to generalize Theorem 3 from balls to arbitrary
convex bodies in R

d, for d ≥ 3.
For some related combinatorial results, see Bollobás et al. [5].
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6 Open Problems and Concluding Remarks

Theorem 2 states that, if C is a plane convex body with two antipodal points at
which the curvature is positive, then for every m, there exists an m-fold covering
of R2 with translates of C that does not split into two coverings. We also know
that this statement is false for any convex polygon. But what happens if C
“almost satisfies” the condition concerning the antipodal point pair?

Problem 3. Does there exist an integer m such that every m-fold covering of R2

with translates of an open semidisk splits into two coverings?

Another question, which surprisingly is widely open even in a completely
abstract setting, is the following.

Problem 4. Suppose that for a body C, there is an integer m such that every m-
fold covering of Rd with translates of C splits into two coverings. Does it follow
that for every k > 2, there is an integer mk such that every mk-fold covering of
R

d with translates of C splits into k coverings? Is it true that (for the smallest
such mk) even mk = OC(k)?

According to Theorem 4, every 3-fold cover of a finite point set by the trans-
lates of an unbounded open convex set splits into two coverings. Keszegh and
Pálvölgyi [25] recently extended this theorem to splitting any (3k − 2)-fold so-
called pseudohalfplane arrangement into k coverings. The 3k−2 can probably be
always improved to 2k − 1, which was done in special cases, e.g., for translates
of an unbounded open convex set.

As was stated in the introduction, for every triangle (in fact, for every convex
polygon) C, there is an integer m(C) such that every m-fold covering of the plane
with translates of C splits into two coverings. Keszegh and the Pálvölgyi [22]
extended this theorem to m-fold coverings with homothets of a triangle. (Two sets
are homothets of each other if one can be obtained from the other by a dilation
with positive coefficient followed by a translation.) Using the idea of the proof of
our Theorem 1, Kovács [26] has recently showed that the analogous statement
is false for homothets of any convex polygon with more than 3 sides. For further
results about decomposition of multiple coverings, see [4,5,7,8,19,23,24].
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11. Erdős, P., Szekeres, G.: A combinatorial problem in geometry. Compos. Math. 2,
463–470 (1935)

12. Even, G., Lotker, Z., Ron, D., Smorodinsky, S.: Conflict-free colorings of simple
geometric regions with applications to frequency assignment in cellular networks.
SIAM J. Comput. 33(1), 94–136 (2003)
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15. Tóth, G., Kuperberg, W.: A survey of recent results in the theory of packing and
covering. In: Pach, J. (ed.) New Trends in Discrete and Computational Geometry.
Algorithms and Combinatorics, vol. 10, pp. 251–279. Springer, Heidelberg (1993)

16. Fulek, R.: Personal communication (2010). See also in [36]
17. Fulek, R., Hubai, T., Keszegh, B., Nagy, Z., Rothvoß, T., Vizer, M.: Personal

communication (2010)
18. Gebauer, H., Gebauer, H.: Disproof of the neighborhood conjecture with implica-

tions to SAT. Combinatorica 32(5), 573–587 (2012)
19. Gibson, M., Varadarajan, K.: Optimally decomposing coverings with translates of

a convex polygon. Discrete Comput. Geom. 46(2), 313–333 (2011)
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