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Abstract. The goal of this paper is to give a new, abstract approach to
cover-decomposition and polychromatic colorings using hypergraphs on
ordered vertex sets. We introduce an abstract version of a framework by
Smorodinsky and Yuditsky, used for polychromatic coloring halfplanes,
and apply it to so-called ABA-free hypergraphs, which are a generaliza-
tion of interval graphs. Using our methods, we prove that (2k−1)-uniform
ABA-free hypergraphs have a polychromatic k-coloring, a problem posed
by the second author. We also prove the same for hypergraphs defined
on a point set by pseudohalfplanes. These results are best possible.

We also introduce several new notions that seem to be important for
investigating polychromatic colorings and ε-nets, such as shallow hitting
sets. We pose several open problems related to them. For example, is it
true that given a finite point set S on a sphere and a set of halfspheres F ,
such that {S ∩ F | F ∈ F} is a Sperner family, we can select an R ⊂ S
such that 1 ≤ |F ∩ R| ≤ 2 holds for every F ∈ F?

1 Introduction

The study of proper and polychromatic colorings of geometric hypergraphs has
attracted much attention, not only because this is a very basic and natural
theoretical problem but also because such problems often have important appli-
cations. One such application area is resource allocation, e.g., battery consump-
tion in sensor networks. Moreover, the coloring of geometric shapes in the plane
is related to the problems of cover-decomposability, conflict-free colorings and
ε-nets; these problems have applications in sensor networks and frequency assign-
ment as well as other areas. For surveys on these and related problems see [13,18].

In a (primal) geometric hypergraph polychromatic coloring problem, we are
given a natural number k, a set of points and a collection of regions in R

d, and
our goal is to k-color the points such that every region that contains at least
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m(k) points contains a point of every color, where m is some function that we
try to minimize. We call such a coloring a polychromatic k-coloring. In a dual
geometric hypergraph polychromatic coloring problem, our goal is to k-color
the regions such that every point which is contained in at least m(k) regions
is contained in a region of every color. In other words, in the dual version our
goal is to decompose an m(k)-fold covering of some point set into k coverings.
The primal and the dual versions are equivalent if the underlying regions are
the translates of some fixed set. For the proof of this statement and an extensive
survey of results related to cover-decomposition, see e.g., [13]. Below we mention
some of these results, stated in the equivalent primal form.

The most general result about translates of polygons is that given a fixed
convex polygon, there exists a c (that depends only on the polygon) such that
any finite point set has a polychromatic k-coloring such that any translate of
the fixed convex polygon that contains at least m(k) = c · k points contains a
point of every color [6]. Non-convex polygons for which such a finite m(k) (for
any k ≥ 2) exists have been classified [14,17].

As it was shown recently [16], there is no such finite m(2) for convex sets
with a smooth boundary, e.g., for the translates of a disc. However, it was also
shown in the same paper that for the translates of any unbounded convex set
m(2) = 3 is sufficient. In this paper we extend this result to every k, showing
that m(k) = 2k − 1 is an optimal function for unbounded convex sets.

For homothets of a given shape the primal and dual problems are not equiv-
alent. For homothets of a triangle (a case closely related to the case of translates
of octants [9,10]), there are several results, the current best are m(k) = O(k4.53)
in the primal version [2,11] and m(k) = O(k5.53) in the dual version [3]. For the
homothets of other convex polygons, in the dual case there is no finite m(2) [12],
and in the primal case only conditional results are known [11], namely, that the
existence of a finite m(2) implies the existence of an m(k) that grows at most
polynomially in k. In fact, it is even possible that for any polychromatic coloring
problem m(k) = O(m(2)).

For other shapes, cover-decomposability has been studied less, in these cases
the investigation of polychromatic-colorings is motivated rather by conflict-free
colorings or ε-nets. Most closely related to our paper, coloring halfplanes for
small values were investigated in [5,7,8], and polychromatic k-colorings in [19].
We generalize all the (primal and dual) results of the latter paper to pseudohalf-
planes. Note that translates of an unbounded convex set form a set of pseudo-
halfplanes, thus the above mentioned result about unbounded convex sets is a
special case of this generalization to pseudohalfplanes.

Besides generalizing earlier results, our contribution is a more abstract app-
roach to the above problems. Namely, we introduce the notion of ABA-free
families (see Definition 1) and shallow hitting sets (see Definition 5).
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1.1 Definitions and Statements of Main Results

Definition 1. A hypergraph H with an ordered vertex set is called ABA-free if
H does not contain two hyperedges A and B for which there are three vertices
x < y < z such that x, z ∈ A \ B and y ∈ B \ A.

A hypergraph with an unordered vertex set is ABA-free if its vertices have an
ordering with which the hypergraph is ABA-free.1

Remark 1. ABA-free hypergraphs were first defined in [16] under the name spe-
cial shift-chains, as they are a special case of shift-chains introduced in [15].

Example 2. An interval hypergraph is a hypergraph whose vertices are some
points of R, and hyperedges are some intervals from R, with the incidences pre-
served. By definition, every interval hypergraph is ABA-free and in fact every
ABA-free hypergraph is similar, in a way, to an interval hypergraph.

Example 3 [16]. Let S be a set of points in the plane with different x-coordina-
tes and let C be a convex set that contains a vertical halfline. Define a hypergraph
H whose vertex set is the x-coordinates of the points of S. A set of numbers X
is a hyperedge of H if there is a translate of C such that the x-coordinates of the
points of S contained in the translate is exactly X. The hypergraph H defined
this way is ABA-free.

Example 4. Let S be a set of points in the plane in general position. Define
a hypergraph H whose vertex set is the x-coordinates of the points of S. A set
of numbers X is a hyperedge of H if there is a positive halfplane H (i.e., that
contains a vertical positive halfline) such that the x-coordinates of the points of
S contained in H is exactly X. The hypergraph H defined this way is ABA-free.

The above examples show how to reduce geometric problems to abstract
problems about ABA-free hypergraphs. Observe that given an S, by choosing
an appropriately big parabola, all hyperedges defined by positive halfplanes is
also defined by some translate of this parabola, thus the first example is more
general than the second. Even more, as we will see later in Sect. 3, finite ABA-free
hypergraphs have an equivalent geometric representation with graphic pseudo-
line arrangements (sets are defined by the regions above the pseudolines, for the
definitions and details see Sect. 3) and both translates of the boundary of an
unbounded convex set and lines in the plane form graphic pseudoline arrange-
ments, showing again that the above examples are special cases of ABA-free
hypergraphs.

To study polychromatic coloring problems, we also introduce the following
definition, which is implicitly used in [19], but deserves to be defined explicitly
as it seems to be important in the study of polychromatic colorings.

1 While it might seem that using the same notion for ordered and unordered hyper-
graphs leads to confusion as by forgetting the ordering of an ordered hypergraph it
might become ABA-free, from the context it will always be perfectly clear what we
mean.
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Definition 5. A set R is a c-shallow hitting set of the hypergraph H if for every
H ∈ H we have 1 ≤ |R ∩ H| ≤ c.

Actually, almost all our results are based on shallow hitting sets.

Observation 6. An induced subhypergraph of an ABA-free hypergraph is also
ABA-free.

Our main results and the organization of the rest of this paper is as follows.
In Sect. 2 we prove (following closely the ideas of Smorodinsky and Yuditsky

[19]) that every (2k − 1)-uniform ABA-free hypergraph has a polychromatic
coloring with k colors. We then observe that the dual of this problem is equivalent
to the primal, which implies that the edges of every (2k − 1)-uniform ABA-free
hypergraph can be colored with k colors, such that if a vertex v is in a subfamily
Hv of at least m(k) = 2k − 1 of the edges of H, then Hv contains a hyperedge
from each of the k color classes.

In Sect. 3 we give an abstract equivalent definition (using ABA-free hyper-
graphs) of hypergraphs defined by pseudohalfplanes, and we prove that given a
finite set of points S and a pseudohalfplane arrangement H, we can k-color S
such that any pseudohalfplane in H that contains at least m(k) = 2k − 1 points
of S contains all k colors. Both results are sharp. Note that these results imply
the same for hypergraphs defined by unbounded convex sets.

In Sect. 5 we discuss dual and other versions of the problem. For example we
prove that given a pseudohalfplane arrangement H, we can k-color H such that
if a point p belongs to a subfamily Hp of at least m(k) = 3k − 2 of the pseudo-
halfplanes of H, then Hp contains a pseudohalfplane from each of the k color
classes. This result might not be sharp, the best known lower bound for m(k) is
2k − 1 [19]. We also discuss consequences about ε-nets on pseudohalfplanes.

We denote the symmetric difference of two sets, A and B, by AΔB, the
complement of a hyperedge F by F̄ and for a family F we use F̄ = {F̄ |F ∈ F}.
We will suppose (unless stated otherwise) that all hypergraph and point sets are
finite, and denote the smallest (resp. largest) element of an ordered set H by
min(H) (resp. max(H)).

2 ABA-free Hypergraphs

Suppose we are given an ABA-free hypergraph H on n vertices. As the hyper-
graph is ABA-free, for any pair of sets A,B ∈ H either there are a < b such that
a ∈ A \ B and b ∈ B \ A, or there are b < a such that a ∈ A \ B and b ∈ B \ A,
or none of them, but not both as that would contradict ABA-freeness.

Define A < B if and only if there are a < b such that a ∈ A\B and b ∈ B\A.
Define A ≤ B if and only if either A = B (as sets) or A < B. By the above
observation, this is well-defined, and it gives a partial ordering of the sets.

Definition 7. A vertex a is skippable if there exists an A ∈ H such that
min(A)< a < max(A) and a /∈ A. In this case we say that A skips a. A vertex
a is unskippable if there is no such A.



270 B. Keszegh and D. Pálvölgyi

Observation 8. If a vertex a is unskippable in some ABA-free hypergraph H,
then after adding the one-element edge {a} to H, it remains ABA-free.

Note that the following two lemmas show that the unskippable vertices of
an ABA-free hypergraph behave similarly to vertices on the convex hull of a
hypergraph on a point set defined by halfplanes. These two lemmas make it
possible to use the framework of [19] on ABA-free hypergraphs.

Lemma 9. If H is finite ABA-free, then every A ∈ H contains an unskippable
vertex.

Remark 2. Note that finiteness is needed, as the hypergraph whose vertex set is
Z and edge set is {Z \ {n} | n ∈ Z} is ABA-free without unskippable vertices.

Proof. Take an arbitrary set A ∈ H, suppose that it does not contain an unskip-
pable vertex, we will reach a contradiction. Call a ∈ A rightskippable if there is
a B ∈ H rightskipping a, that is for which a ∈ A \ B and there are b1, b2 ∈ B
such that b1 < a < b2 where b2 ∈ B \ A.

If A contains no unskippable vertex, max(A) must be rightskippable (any set
skipping max(A) must also rightskip max(A)). Also, min(A) cannot be rightskip-
pable, as otherwise A and the set B rightskipping min(A) would violate ABA-
freeness (we would get b1 < min(A) < b2 where b1, b2 ∈ B \ A,min(A) ∈ A \ B).
Therefore we can take the largest a ∈ A that is not rightskippable. By the
assumption, it is skipped by a set, call it B, i.e., b1 < a < b2 where b1, b2 ∈ B �� a.
Moreover, wlog., suppose that b2 is the smallest element of B which is bigger than
a. Since a is not rightskippable, b2 ∈ A must also hold. As b2 ∈ A is rightskip-
pable, there is a C such that c1 < b2 < c2 where c1, c2 ∈ C and b2 /∈ C, c2 /∈ A.
Wlog., suppose c1 is the largest element of C which is smaller than b2. If c1 < a,
then C would rightskip a, a contradiction. Thus, b1 < a ≤ c1, and from the
choice of b2 we conclude that c1 /∈ B. As c2 /∈ A, also c2 /∈ B, otherwise B would
rightskip a. Putting all together, we get c1 < b2 < c2, thus B and C contradict
ABA-freeness.

Recall that a hypergraph is called Sperner if no two of its sets (i.e., hyper-
edges) contain each other, we further assume in it that the hypergraph is non-
empty, i.e., it contains at least one edge.

Lemma 10. If H is finite, ABA-free and Sperner, then any minimal hitting set
of H that contains only unskippable vertices is 2-shallow.

Proof. Let R be a minimal hitting set of unskippable vertices. Assume to the
contrary that there exists a set A such that |A ∩ R| ≥ 3. Let l = min(A ∩ R)
and r = max(A ∩ R). There exists a third vertex l < a < r in A ∩ R. We claim
that R′ = R \ {a} hits all sets of H, contradicting its minimality. Assume on
the contrary that R′ is disjoint from some B ∈ H. As R must hit B, we have
R ∩ B = {a}. If there is a b ∈ B \ A such that l < b < r, that would contradict
the ABA-free property. If there is a b ∈ B such that b < l < a or a < r < b, that
would contradict that l and r are unskippable. Thus B ⊂ A, contradicting that
H is Sperner.
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Now we present the framework of [19] modified for ABA-free hypergraphs.
Our algorithm to give a polychromatic k-coloring of the vertices of an ABA-free
hypergraph with edges of size at least 2k − 1 is as follows.

Algorithm 11. At the beginning we are given an ABA-free hypergraph H with
edges of size at least 2k − 1.

Repeat k − 1 times (i = 1, . . . , k − 1) the general step i of the algorithm:
At the beginning of step i we have an ABA-free hypergraph H with edges

of size at least 2k − 2i + 1. If any hyperedge contains another, then delete the
bigger hyperedge. Repeat this until no hyperedge contains another, thus making
our hypergraph Sperner. Next, take the set of all unskippable vertices, which is a
hitting set by Lemma 9 and delete vertices from this set until it becomes a minimal
hitting set R. By Lemma 10 R is a 2-shallow hitting set, color its vertices with
the i-th color. Delete these vertices from H (the edges of the new hypergraph are
the ones induced by the remaining vertices). Using Observation 6, at the end of
this step i, we have an ABA-free hypergraph with edges of size at least 2k−2i−1.

After k − 1 iterations of the above, we are left with a 1-uniform hypergraph
whose vertices we can color with the k-th color.

Algorithm 11 implies the following theorem.

Theorem 12. Given a finite ABA-free H we can color its vertices with k colors
such that every A ∈ H whose size is at least 2k − 1 contains all k colors.

Notice that the above theorem is sharp, as taking H to be all subsets of size
2k − 2 from 2k − 1 vertices, in any coloring of the vertices, one color must occur
at most once and is thus missed by some hyperedge.

We state another corollary of Lemma 9 that we need later. Before that, we
need another simple claim.

Proposition 13. Suppose we insert a new vertex, v, somewhere into the
(ordered) vertex set of an ABA-free hypergraph, H, and add v to every edge that
contains a vertex before and another vertex after v, then we get an ABA-free
hypergraph.

Proof. We show that if in the new hypergraph, H′, two hyperedges A′ and B′

violate ABA-freeness, then we can find two hyperedges A and B in the original
hypergraph, H, that also violate ABA-freeness, which would be a contradiction.
We define A = A′ \ {v} and B = B′ \ {v}. If both A′ and B′ contain or do
not contain v, then by definition A and B also violate the condition. If, say,
v /∈ A′ and v ∈ B′, then without loss of generality we can suppose that all the
vertices of A = A′ are before v. This means that if there are x < y < z such that
x, z ∈ A′ \ B′ and y ∈ B′ \ A′, then necessarily v = z. But as B′ has an element
z′ that is bigger than v, we have x, z′ ∈ A \ B and y ∈ B \ A, a contradiction.

Lemma 14. If H is ABA-free, A ∈ H, then there is a vertex a ∈ A such that
H ∪ {A \ {a}} is also ABA-free.
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Proof. If |A| = 1, then trivially H can be extended with ∅. If |A| > 1, then we
proceed by induction on the size of A. Using Lemma 9, there is an unskippable
vertex v ∈ A. Delete this vertex from H to obtain some ABA-free Hv and let
Av = A \ {v}. Using induction on Av, there is an A′

v = Av \ {a} such that
Hv ∪ {A′

v} is also ABA-free. We claim that with A′ = A′
v ∪ {v} = A \ {a}, the

family H ∪ {A′} is also ABA-free.
Notice that adding back v to Hv is very similar to the operation of

Proposition 13, as v is unskippable in H. The only difference is that we might
also have to add it to some further hyperedges, ending in or starting at v. But a
hyperedge that contains v cannot violate the ABA-free condition with A′, since
it also contains v, so the corresponding hyperedges in Hv would also violate the
ABA-free condition.

Notice that with the repeated application of Lemma 14 we can extend any
ABA-free hypergraph, such that in any set A there is a vertex a for which {a}
is a singleton edge, implying that a is unskippable in A. Thus in fact Lemma 14
is equivalent to Lemma 9. Moreover, in Sect. 3, in the more general context of
pseudohalfplanes, it will be the abstract equivalent of a known and important
property of pseudohalfplanes.

We prove another interesting property of ABA-free hypergraphs before which
we need the following definition.

Definition 15. The dual of a hypergraph H, denoted by H∗, is such that its
vertices are the hyperedges of H and its hyperedges are the vertices of H with the
same incidences as in H.

Proposition 16. If H is ABA-free, then its dual H∗ is also ABA-free with
respect to some ordering of its vertices.

Proof. Take the partial order “<” of the hyperedges of H and extend this arbi-
trarily into a total order <∗. We claim that H∗ is ABA-free if its vertices are
ordered with respect to <∗. To check the condition, suppose for a contradic-
tion that Hx <∗ Hy <∗ Hz and a ∈ (Hx ∩ Hz) \ Hy and b ∈ Hy \ (Hx ∪ Hz).
Without loss of generality, suppose that a < b. But in this case Hz < Hy holds,
contradicting Hy <∗ Hz.

Corollary 17. The edges of every (2k − 1)-uniform ABA-free hypergraph can
be colored with k colors, such that if a vertex v is in a subfamily Hv of at least
m(k) = 2k − 1 of the edges of H, then Hv contains a hyperedge from each of the
k color classes.

Corollary 18. Any (2k−1)-fold covering of a finite point set with the translates
of an unbounded convex planar set is decomposable into k coverings.

3 Pseudohalfplanes

Here we extend a result of Smorodinsky and Yuditsky [19]. A pseudoline arrange-
ment is a finite collection of simple curves in the plane in general position (i.e., no
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three curves have a common point) such that any two are either disjoint or inter-
sect once and in the intersection point they cross. Some further definitions and
well-known results about pseudoline arrangements are collected below, which
can be found in [1]. We also recommend [4] where generalizations of classical
theorems are proved for topological affine planes.

An infinite pseudoline arrangement is such that cutting a pseudoline in two,
both parts are unbounded. A curve is graphic if it is the graph of a function,
i.e., an x-monotone infinite curve that intersects every vertical line of the plane.
A graphic pseudoline arrangement is such that every curve is graphic. We say that
two pseudoline arrangements are equivalent if there is a bijection between their
pseudolines such that the order in which a pseudoline intersects the other pseudo-
lines remains the same. A pseudohalfplane arrangement is an infinite pseudoline
arrangement, with a side of each pseudoline selected (note that the two sides of
a pseudoline are well-defined regions in this case).

Facts About Pseudoline Arrangements

I. (Levi Enlargement Lemma) Given a pseudoline arrangement, any two points
of the plane can be connected by a new pseudoline (if they are not connected
already).

II. Given a pseudoline arrangement, we can find a(n infinite) pseudoline
arrangement in which every pair of pseudolines intersects exactly once, and
the order in which a pseudoline intersects the other pseudolines remains the
same (ignoring the new intersections).

III. Given an infinite pseudoline arrangement, we can find an equivalent graphic
pseudoline arrangement.

From these facts it follows that in the definition of a pseudohalfplane we
can (and will) suppose that the underlying pseudoline arrangement is a graphic
pseudoline arrangement.

Notice that ABA-free hypergraphs are in a natural bijection with (graphic)
pseudoline arrangements and sets of points, such that each hyperedge corre-
sponds to the subset of points above a pseudoline.

Proposition 19. Given in the plane a set of points S (with all different x-
coordinates) and a graphic pseudoline arrangement L, define the hypergraph HS,L

with vertex set S such that for each pseudoline l ∈ L the set of points above l
is a hyperedge of HS,L. Then HS,L is ABA-free with the order on the vertices
defined by the x-coordinates.

Conversely, given an ABA-free hypergraph H, there exists a set of points S
and a graphic pseudoline arrangement L such that H = HS,L.

Proof. The first part is almost trivial, suppose that there are two hyperedges
A,B in HS,L having an ABA-sequence on the vertices corresponding to the
points a, b, c ∈ S. The pseudolines corresponding to the hyperedges A and B are
denoted by �A and �B . The pseudoline �A intersects the vertical line through a
below a, the vertical line through b above b and the vertical line through c above
c, while �A intersects these in the opposite way (above/below/above). Thus these
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Fig. 1. Redrawing a lens to decrease the number of intersections

lines must intersect in the vertical strip between a and b and also in the strip
between b and c, thus having two intersections, a contradiction.

The second part of the proof is also quite natural. Given an ABA-free hyper-
graph H(V,E) with an ordering on V , we want to realize it with a planar point
set S and a graphic pseudoline arrangement L. Let S be |V | points on the x axis
corresponding to the vertices in V such that the order on V is the same as the
order given by the x-coordinates on S. From now on we identify the vertices of
V with the corresponding points of V .

For a given A ∈ H it is easy to draw an �A graphic curve for which the
points of S above �A are exactly in A. Draw a pseudoline �A for every A ∈ H,
such that there are finitely many intersections among these pseudolines, all of
them crossings. What we get is an arrangement of graphic curves, but it can
happen that they intersect more than twice. Now among such drawings take one
which has the minimal number of intersections, we claim that this is a pseudoline
arrangement.

Assume on the contrary, that there are two curves �A and �B intersecting
(at least) twice. Let two consecutive (in the x-order) intersection points be p
and q, where p has smaller x-coordinate than q. Without loss of generality, �A
is above �B close to the left of p and close to the right of q, while �A is below
�B in the open vertical strip between p and q. This structure is usually called a
lens, and we want to eliminate it in a standard way, decreasing the number of
intersections. We can change the part of �A and �B to the left of p (and to the
right from the intersection p′ next to and left of p if there is any) and change
their drawing locally around p (and p′ if it exists) such that we get rid of the
intersection at p, see Fig. 1. If there are no points of S between �A and �B and
to the left of p (and to the right of p′), then this redrawing does not change
the hyperedges defined by �A and �B , so we get a representation of H with less
intersections, a contradiction. Thus there is a point (p′ <)a < p below �A and
above �B . Similarly, there must be a point p < b < q above �A and below �B
and finally a point q < c below �A and above �B , otherwise we could redraw
the pseudolines with less intersections. These three points a < b < c contradict
the ABA-freeness of H as by the definition of the pseudolines, b ∈ A \ B and
a, c ∈ B \ A.

From these, it follows that the hypergraphs defined by points contained in
pseudohalfplanes have the following structure.
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Definition 20. A hypergraph H on an ordered set of points S is called a pseudo-
halfplane-hypergraph if there exists an ABA-free hypergraph F on S such that
H ⊂ F ∪ F̄ .

Note that F̄ is also ABA-free with the same ordering of the points. We refer
to the edges of a pseudohalfplane-hypergraph also as pseudohalfplanes.

Using Lemma 14 on a hyperedge of a pseudohalfplane-hypergraph, we get the
following.

Proposition 21. Given a pseudohalfplane-hypergraph H, and an edge A of H,
we can add a new hyperedge A′ contained completely in A that contains all but
one of the points of A, such that H remains a pseudohalfplane-hypergraph.

In the geometric setting this corresponds to the known and useful fact that
given a pseudohalfplane arrangement and a finite set of points A contained in the
pseudohalfplane H, we can add a new pseudohalfplane H ′ contained completely
in H that contains all but one of the points of A.

Now we show how to extend Theorem 12 to pseudohalfplane arrangements,
i.e., to the case when the points of S below a line also define a hyperedge.

Theorem 22. Given a finite set of points S and a pseudohalfplane arrangement
H, we can color S with k colors such that any pseudohalfplane in H that contains
at least 2k − 1 points of S contains all k colors. Equivalently, the vertices S of
a finite pseudohalfplane-hypergraph can be colored with k colors such that any
hyperedge containing at least 2k − 1 points contains all k colors.

We remark that a similar statement is not true for the union of two arbi-
trary ABA-free hypergraphs (instead of an ABA-free hypergraph and its com-
plement), in fact the union of two arbitrary ABA-free hypergraphs might not be
2-colorable, see [16] for such a construction.

4 Proof of Theorem22

Proof. Our proof is completely about the abstract setting, yet it translates nat-
urally to the geometric setting, also the figures illustrate the geometric interpre-
tations.

By definition there exists an ABA-free F such that H ⊂ F∪F̄ . Call U = H∩F
the upsets and D = H ∩ F̄ the downsets, observe that both U and D are ABA-
free.

Further, the unskippable vertices of U (resp. D) are called top (resp. bottom)
vertices. The top and bottom vertices are called the unskippable vertices of H.
Recall that by adding these unskippable vertices as one-element edges to H, H
remains to be a pseudohalfplane-hypergraph, as we can extend F and F̄ with the
appropriate hyperedge (this is a convenient way of thinking about top/bottom
vertices in the geometric setting, as seen later in the figures).
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Fig. 2. Proof of Lemma 24

Observation 23. If x is top and X is a downset and x ∈ X, then X contains
all vertices that are bigger or all vertices that are smaller than x. The same holds
if x is bottom, X is an upset and x ∈ X.

Lemma 24. If H is a finite Sperner pseudohalfplane-hypergraph, then any min-
imal hitting set of H that contains only unskippable vertices is 2-shallow.

Proof. Let R be a minimal hitting set of unskippable vertices. Suppose for a
contradiction that {a, b, c} ⊂ R ∩ X and a < b < c for some X ∈ H. Without
loss of generality, suppose that b is top. As R is minimal, let B be a set for which
B ∩ R = {b}. From Observation 23 it follows that B is an upset.

First suppose that X is an upset. As B �⊂ X, take a b2 ∈ B \ X. As B and
X are both upsets and thus have the ABA-free property, we have b2 < a or
c < b2. Without loss of generality, we can suppose c < b2. If c is top, {c} and
B violate ABA-freeness. See Fig. 2a. If c is bottom, then using Observation 23,
X contains all the vertices that are smaller than c. Take a set A �⊂ X for which
A ∩ R = {a}. This set must contain an a2 ∈ A \ X and so we must have c < a2.
If A is an upset, as it does not contain b and recall a < b < a2, A and {b} violate
ABA-freeness. See Fig. 2b. If A is a downset, as it does not contain c and recall
a < c < a2, A and {c} violate ABA-freeness, both cases lead to a contradiction.

The case when X is a downset is similar. Using Observation 23 for X and
{b} we can suppose without loss of generality that X contains all vertices that
are smaller than b. Take a set A �⊂ X for which A ∩ R = {a} and an a2 ∈ A \ X.
As X contains all vertices smaller than b, we have b < a2. A cannot be an upset,
as then it would contain b, so it is a downset. If b < a2 < c, then A and X
would violate ABA-freeness, thus we must have c < a2. This means c cannot
be bottom, so it is top. Using Observation 23, X contains all the vertices that
are smaller than c. But then B \ X must have an element that is bigger than c,
contradicting the ABA-freeness of B and {c}.

From here the rest of the proof is the same. Our algorithm to give a k-
coloring of the vertices of H such that every pseudohalfplane of size at least
2k − 1 contains all k colors is as follows. Using Proposition 21, it is enough to
consider pseudohalfplanes of size exactly 2k − 1. Apply Lemma 24 to select a
2-shallow hitting set R and color its vertices with the first color. Delete these
vertices and apply induction on k.
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5 The Dual Problem and Signed ABA-free Hypergraphs

We are also interested in coloring pseudohalfplanes with k colors such that all
points that are covered many times will be contained for each k colors in a
pseudohalfplane of that color. For example, we can also generalize the dual result
about coloring halfplanes of [19] to pseudohalfplanes.

Theorem 25. Given a pseudohalfplane arrangement H, we can color H with
k colors such that if a point p belongs to a subset Hp of at least 3k − 2 of the
pseudohalfplanes of H then Hp contains a pseudohalfplane of every color.

Theorem 25 follows from Theorem 29, that we will state and prove later.
However, instead of coloring pseudohalfplanes, we stick to coloring points

with respect to pseudohalfplanes and work with dual hypergraphs, where the
vertex-hyperedge incidences are preserved, but vertices become hyperedges and
hyperedges become vertices. Since we have already seen in Sect. 3 the equiva-
lence of our abstract definition and the standard definition of a pseudohalfplane
arrangement, we can use the well-known properties of the dual arrangement (see,
e.g., [1]) to obtain the following.

Proposition 26. A dual pseudohalfplane-hypergraph is a hypergraph H on an
ordered set of vertices S such that there exists a set X ⊂ S and an ABA-free
hypergraph F on S such that the edges of H are the edges FΔX for every F ∈ F .

Proof. Using Definition 20, let F be an ABA-free hypergraph that represents
the original pseudohalfplane-hypergraph, that is, every pseudohalfplane is equal
to a set F ∈ F or to a set F ∈ F̄ . Using Proposition 16, the dual of F is an
ABA-free hypergraph, F∗, whose vertices {vF : F ∈ F} correspond to the edges
of F (ordered in some way) and whose edges {fp : p ∈ S} correspond to the
vertices of F , with incidence relations preserved, i.e., fp = {vF : p ∈ F}. Now
we add also the set of vertices {vF̄ : F̄ ∈ F} corresponding to the edges of F̄ .
Each vertex vF̄ is put right after vertex vF in the order. The edges change in the
following way. As in F we have p /∈ F ∈ F if and only if p ∈ F̄ , in the dual the
corresponding edge is hp = {vF : p ∈ F} ∪ {vF̄ : p ∈ F̄} contains exactly one of
vF and vF̄ . First, without loss of generality, we can suppose that for every A ∈ F ,
H contains at least one of A ∈ F and Ā ∈ F̄ , otherwise we can delete A from F
too. Further, we can suppose that H contains exactly one of A ∈ F and Ā ∈ F̄ ,
as if it contains both, we can add another copy A′ of A to F (F is then a(n
ABA-free) multihypergraph) and regard Ā as Ā′. This way it can never happen
that both A ∈ H and Ā ∈ H, thus in the dual only one of the corresponding
vertices are present. Thus, we can relabel to wA the one vertex that is present in
H among vA and vĀ. After the relabeling we have V = {wA : A ∈ F}. Denote
by X the set of vertices of V for which wA = vĀ. Now an arbitrary edge hp =
{vF : p ∈ F} ∪ {vF̄ : p ∈ F̄} = {wF : p ∈ F ∩ X̄} ∪ {wF : p ∈ F̄ ∩ X} = f ′

pΔX,
where Δ denotes the symmetric difference of two sets and f ′

p = {wF : vF ∈ fP },
i.e., fp injected in the natural way into the relabeled set V . These f ′

p define the
same (up to this projection) ABA-free hyperedge G as F∗.
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Now we define a common generalization of the primal and dual definitions.

Definition 27. A signed pseudohalfplane-hypergraph is a hypergraph H on an
ordered set of vertices S such that there exists a set X ⊂ S and an ABA-free
hypergraph F on S such that the edges of H are some subset of {FΔX, F̄ΔX |
F ∈ F}.

It is easy to see that the dual of such a signed pseudohalfplane-hypergraph
is also a signed pseudohalfplane-hypergraph, just like in Proposition 16. Fur-
thermore, there is a nice geometric representation of such hypergraphs; H is a
signed pseudohalfplane-hypergraph if and only if there is a set of points, S, on
the surface of a sphere and a pseudohalfsphere arrangement F on the sphere such
that the incidences among S and F give H. (Here we omit the exact definition
of pseudohalfsphere arrangements, which are a generalization of a collection of
some halfspheres of a sphere. The interested reader can find it in [1].)

Another popular geometric representation on the plane, adding signs to lines
and points, is the following. The vertices correspond to a set of points in the
plane together with a direction (up or down), and the edges correspond to a
set of (x-monotone) pseudolines with a sign (+ or −). The hyperedge corre-
sponding to a positive pseudoline is the set of points that point towards the
pseudoline, while the hyperedge corresponding to a negative pseudoline is the
set of points that point away from the pseudoline. Positive pseudolines corre-
spond to F , negative pseudolines to F̄ , up points correspond to X and down
points correspond to X̄. With this interpretation, ABA-free hypergraphs have
only + and up signs, pseudohalfplane-hypergraphs have ± and up signs, dual
pseudohalfplane-hypergraphs have + and up/down signs.

In the next table we summarize the best known results about these hyper-
graphs, with respect to how many points each edge has to contain to have a
polychromatic k-coloring and the values of the smallest c for which there exists
a c-shallow hitting set for Sperner families.

Polychromatic k-coloring Shallow hitting set

ABA-free hypergraphs 2k − 1 (Theorem 12) 2 (Lemma 10)

Pseudohalfplane-hypergraphs 2k − 1 (Theorem 22) 2 (Lemma 24)

Dual pseudohalfplane-hypergraphs ≤ 3k − 2 (Theorem 25) ≤ 3 (Theorem 29)

Signed pseudohalfplane-hypergraphs ≤ 4k − 3 (Corollary 28) ?

We conjecture that even Sperner pseudohalfsphere arrangements have a 2-
shallow hitting set, which would also imply (using the framework described above
Theorem 12) that any family whose sets have size at least 2k − 1 admits a poly-
chromatic k-coloring, but we could not even prove for any constant c that a
c-shallow hitting set exists.

As we can find a polychromatic k-coloring of the points of X and X̄ indepen-
dently with respect to the sets of F and F̄ , respectively, of size at least 2k − 1
using Theorem 22, the following is true.
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Corollary 28. Given a finite set of points S on the sphere and a pseudohalf-
sphere arrangement H, we can color S with k colors such that any pseudohalf-
sphere in H that contains at least 4k − 3 points of S contains all k colors.
Equivalently, the vertices S of a finite signed pseudohalfplane-hypergraph can be
colored with k colors such that any hyperedge containing at least 4k − 3 points
contains all k colors.

To finish, we first need to prove the following theorem, which, using the usual
framework, will imply Theorem25.

Theorem 29. Every Sperner dual pseudohalfplane hypergraph has a 3-shallow
hitting set.

The proof of this result follows again closely the argument of [19] and the
interested reader can find it in the full version of the paper.
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