
The Maximum Time of 2-neighbour
Bootstrap Percolation in Grid Graphs

and Parametrized Results

Thiago Marcilon(B) and Rudini Sampaio

Dept. Computação, Universidade Federal do Ceará, Fortaleza, Brazil
{thiagomarcilon,rudini}@lia.ufc.br

Abstract. In 2-neighborhood bootstrap percolation on a graph G, an
infection spreads according to the following deterministic rule: infected
vertices of G remain infected forever and in consecutive rounds healthy
vertices with at least two already infected neighbors become infected.
Percolation occurs if eventually every vertex is infected. The maximum
time t(G) is the maximum number of rounds needed to eventually infect
the entire vertex set. In 2013, it was proved by Benevides et al. [10] that
t(G) is NP-hard for planar graphs and that deciding whether t(G) ≥ k is
polynomial time solvable for k ≤ 2, but is NP-complete for k ≥ 4. They
left two open problems about the complexity for k = 3 and for planar
bipartite graphs. In 2014, we solved the first problem [24]. In this paper,
we solve the second one by proving that t(G) is NP-complete even in grid
graphs with maximum degree 3. We also prove that t(G) is polynomial
time solvable for solid grid graphs with maximum degree 3. Moreover,
we prove that the percolation time problem is fixed parameter tractable
with respect to the parameter treewidth + k and maximum degree + k.
Finally, we obtain polynomial time algorithms for several graphs with
few P4’s, as cographs and P4-sparse graphs.

Keywords: 2-Neighbor bootstrap percolation · Maximum percolation
time · Grid graph · Fixed parameter tractability · Treewidth

1 Introduction

We consider a problem in which an infection spreads over the vertices of a con-
nected simple graph G following a deterministic spreading rule in such a way
that an infected vertex will remain infected forever. Given a set S ⊆ V (G) of
initially infected vertices, we build a sequence S0, S1, S2, . . . in which S0 = S and
Si+1 is obtained from Si using such spreading rule.

Under r-neighbor bootstrap percolation on a graph G, the spreading rule is
a threshold rule in which Si+1 is obtained from Si by adding to it the vertices of
G which have at least r neighbors in Si. We say that a set S infects a vertex v at
time i if v ∈ Si\Si−1. Let, for any set of vertices S and vertex v of G, tr(G,S, v)
be the minimum t such that v belongs to St or, if there is no t such that v

c© Springer-Verlag Berlin Heidelberg 2016
E.W. Mayr (Ed.): WG 2015, LNCS 9224, pp. 169–185, 2016.
DOI: 10.1007/978-3-662-53174-7 13



170 T. Marcilon and R. Sampaio

belongs to St, then tr(G,S, v) = ∞. Also, we say that a set S0 infects G, or that
S0 is a percolating set of G, if eventually every vertex of G becomes infected,
that is, there exists a t such that St = V (G). If S is a percolating set of G,
then we define tr(G,S) as the minimum t such that St = V (G). Also, define the
percolation time of G as tr(G) = max{tr(G,S) : S is a percolating set of G}. In
this paper, we shall focus on the case where r = 2 and in such case we omit the
subscript of the notations tr(G,S) and tr(G). Also, from the notation t(G,S),
when the parameter G is clear from context, it will be omitted.

Bootstrap percolation was introduced by Chalupa, Leath and Reich [15] as a
model for certain interacting particle systems in physics. Since then it has found
applications in clustering phenomena, sandpiles [20], and many other areas of
statistical physics, as well as in neural networks [1] and computer science [19].

There are two broad classes of questions one can ask about bootstrap per-
colation. The first, and the most extensively studied, is what happens when the
initial configuration S0 is chosen randomly under some probability distribution?
For example, vertices are included in S0 independently with some fixed proba-
bility p. One would like to know how likely percolation is to occur, and if it does
occur, how long it takes. The answer to these questions is now well understood
for various types of graphs [5,7,8,13,22].

The second broad class of questions is the one of extremal questions. For
example, what is the smallest or largest size of a percolating set with a given
property? The size of the smallest percolating set in the d-dimensional grid, [n]d,
was studied by Pete and a summary can be found in [6]. Morris [25] and Riedl
[28] studied the maximum size of minimal percolating sets on the square grid [n]2

and the hypercube {0, 1}d, respectively, answering a question posed by Bollobás.
However, the problem of finding the smallest percolating set is NP-hard even on
subgraphs of the square grid [2] and it is APX-hard even for bipartite graphs
with maximum degree four [17]. Moreover, it is hard [16] to approximate within
a ratio O(2log

1−ε n), for any ε > 0, unless NP ⊆ DTIME(npolylog(n)).
Another type of question is: what is the minimum or maximum time that per-

colation can take, given that S0 satisfies certain properties? Recently, Przykucki
[27] determined the precise value of the maximum percolation time on the hyper-
cube 2[n] as a function of n, and Benevides and Przykucki [11,12] have similar
results for the square grid [n]2, also answering a question posed by Bollobás.
In particular, they have a polynomial time dynamic programming algorithm to
compute the maximum percolation time on rectangular grids [11].

Here, we consider the decision version of the Percolation Time Problem, as
stated below.

Percolation Time
Input: A graph G and an integer k.
Question: Is t(G) ≥ k?

In 2013, Benevides et al. [10], among other results, proved that the Percola-
tion Time Problem is polynomial time solvable for k ≤ 2, but is NP-complete
for k ≥ 4 and, when restricted to bipartite graphs, it is NP-complete for k ≥ 7.



The Maximum Time of 2-neighbour Bootstrap Percolation 171

Moreover, it was proved that the Percolation Time Problem is NP-complete for
planar graphs. They left three open questions about the complexity for k = 3
in general graphs, the complexity for 3 ≤ k ≤ 6 in bipartite graphs and the
complexity for planar bipartite graphs.

In 2014, the first and the second questions were solved [24]: it was proved
that the Percolation Time Problem is O(mn5)-time solvable for k = 3 in general
graphs and, when restricted to bipartite graphs, it is O(mn3)-time solvable for
k = 3, it is O(m2n9)-time solvable for k = 4 and it is NP-complete for k ≥ 5.

In this paper, we solve the third question of [10]. We prove that the Per-
colation Time Problem is NP-complete for planar bipartite graphs. In fact, we
prove a stronger result: the NP-completeness for grid graphs, which are induced
subgraphs of grids, with maximum degree 3.

There are NP-hard problems in grid graphs which are polynomial time solv-
able for solid grid graphs. For example, the Hamiltonian cycle problem is NP-
complete for grid graphs [23], but it is polynomial time solvable for solid grid
graphs [30]. Motivated by the work of [11] for rectangular grids, we obtain in this
paper a polynomial time algorithm for solid grid graphs with maximum degree 3.

Finally, we prove several complexity results for t(G) in graphs with bounded
maximum degree and bounded treewidth, some of which implies fixed para-
meter tractable algorithms for the Percolation Time Problem. Moreover, we
obtain polynomial time algorithms for (q, q − 4)-graphs, for any fixed q, which
are the graphs such that every subset of at most q vertices induces at most
q − 4 P4’s. Cographs and P4-sparse graphs are exactly the (4, 0)-graphs and the
(5, 1)-graphs, respectively. These algorithms are fixed parameter tractable on the
parameter q.

2 Percolation Time Problem in Grid Graphs with Δ = 3

In this section, we prove that the Percolation Time Problem is NP-complete in
grid graphs with maximum degree Δ = 3. We also show that, when the graph is
a grid graph with Δ = 3 and k = O(log n), the Percolation Time Problem can
be solved in polynomial time. But, first, let us define a S-infection path and,
then, prove two lemmas that will be useful in the proofs.

Let t(G,S, v) be the time where S infects v in G or, if S does not infect v in G,
then let t(G,S, v) = ∞. Let S be a percolating set. A path P = v0, v1, . . . , vn

is a {S,G}-infection path if and only if, for all 0 ≤ i ≤ n − 1, t(G,S, vi) <
t(G,S, vi+1). In both notations, when the parameter G is clear from context, it
will be omitted

Note that if t(G,S, v) = k then there is a {S,G}-infection path v1, . . . , vk = v,
where each vertex vi is such that t(G,S, vi) = i. The next lemma, which is valid
for every graph with maximum degree 3, is the main technical lemma of this
section. Due to space restrictions, its proof will be omitted.

Lemma 1. Let G be any connected graph with Δ = 3 and k a non-negative
integer. Then, t(G) ≥ k if and only if G has an induced path P where either all



172 T. Marcilon and R. Sampaio

vertices in V (P ) have degree 3 and |E(P )| ≥ 2k − 2 or all vertices in V (P ) have
degree 3, except for one of his extremities, which has degree 2, and |E(P )| ≥ k−1.

Before proving the NP-completeness result of this section, we use Lemma 1
to show that the Percolation Time Problem is polynomial time solvable for
k = O(log n) when the graph has maximum degree 3.

Theorem 1. If G is a graph with maximum degree 3, then deciding whether
t(G) ≥ k can be done in polynomial time for k = O(log n).

Proof (sketch of the proof). We can decide whether t(G) ≥ k by making use of a
modified version of the depth-first search. This version of the depth-first search
with maximum search depth l traverses all paths with l + 1 vertices starting
from some vertex v. For each v ∈ V (G), we will run this version of the depth-
first search starting in v. If d(v) = 2, we run the modified depth-first search
with maximum search depth k − 1. If d(v) = 3, we run the modified depth-first
search with maximum search depth 2k − 2. If there is a vertex v such that the
depth-first search that starts in v finds a path that is an induced path, reaches
the maximum depth and passes only by vertices of degree 3, except maybe for
v, then, by Lemma 1, t(G) ≥ k. Otherwise, t(G) < k.

Now, let us show that this algorithm runs in polynomial time. For each vertex
v in G, there is at most 3 ·2k−2 paths of length k in G that starts in v, for any k.
In this case, since k = O(log n), there are at most 3 · 2O(log n) = 3nO(1) paths of
length k in G that starts in v, which is a polynomial on n. Therefore, since the
depth-first search traverses all paths with length equals to the maximum depth
once for each vertex in V (G), then our algorithm runs in time O(n · 2k), which
is polynomial in n since k = O(log n). �

Thus, if k = O(log n), we can find whether t(G) ≥ k in polynomial time for
every graph G with Δ(G) = 3. However, the following theorem states that the
Percolation Time Problem is NP-complete, even when G is restricted to be a
grid graph with Δ = 3.

Theorem 2. Deciding whether t(G) ≥ k is NP-complete when the input G is
restricted to be a grid graph with Δ(G) ≤ 3.

Proof (sketch of the proof). Clearly, the problem is in NP. To prove that the
problem is also NP-hard, we obtained a reduction from the Longest Path problem
with input restricted to be grid graphs with maximum degree 3. The Longest
Path problem with input restricted to be grid graphs with maximum degree 3
is a NP-complete problem because the Hamiltonian Path Problem with input
restricted to be grid graphs with maximum degree 3 is also NP-complete [26] and
there is a trivial reduction from the Hamiltonian Path Problem to the Longest
Path problem that does not change the input graph: G has an Hamiltonian Path
if and only if G has a path greater or equal to n − 1.

Consider the following reduction from the Longest Path Problem’s instance
(G, k) where G is restricted to be a grid graph with maximum degree 3 to the



The Maximum Time of 2-neighbour Bootstrap Percolation 173

Fig. 1. Grid graph with Δ = 3

Percolation Time Problem’s instance (G′, 3k + 2) where G′ is also a grid graph
with maximum degree 3: Multiply the scale of the grid G by three. Each edge in
G becomes a path in G′ with 4 vertices where the vertices at the extremities are
vertices that were originally in G. Let us call an original vertex the vertices in
G′ that were originally in G. After that, for each original vertex v, if d(v) < 3,
add to G′ 3 − d(v) vertices in any free position in the grid adjacent to v and
link them to v. Thus, after we do that, each original vertex has degree 3 in G′.
Henceforth, if a vertex in G′ is not an original vertex at this point, then we will
call it an auxiliary vertex. Note that each auxiliary vertex is adjacent to exactly
one original vertex and each original vertex is adjacent to 3 auxiliary vertices.

After that, for each auxiliary vertex v, add a new vertex adjacent to v in the
following manner: if the original neighbor of v is located above it, add a vertex
adjacent to v at his left position, if there is not one there already, and link it
to v. If the original neighbor of v is located below it, add a vertex adjacent to
v at his right position, if there is not one there already, and link it to v. If the
original neighbor of v is located at his left position, add a vertex adjacent to v
at the position below it, if there is not one there already, and link it to v. If the
original neighbor of v is located at his right position, add a vertex adjacent to v
at the position above it, if there is not one there already, and link it to v. The
Fig. 2 show how a 4× 4 block will look like in G′ before and after we add these
vertices.

Then, for each auxiliary vertex v, if d(v) = 2, add a new vertex adjacent to
v in the following position: if the original neighbor of v is at the left position of
v, add a vertex adjacent to v at his right position. If the original neighbor of v
is at the right position of v, add a vertex adjacent to v at his left position. If
the original neighbor of v is below v, add a vertex adjacent to v above v. If the
original neighbor of v is above v, add a vertex adjacent to v below v.



174 T. Marcilon and R. Sampaio

Fig. 2. 4 × 4 block before and after addition of the auxiliary vertices’ neighbors

Thus, the construction of G′ is finished. Since G is a grid graph and, every
time an original vertex and an auxiliary vertex are in adjacent positions in the
grid, they are linked, then G′ is a grid graph.

Note that all original and auxiliary vertices have degree 3 and they are the
only vertices that have degree 3. Let us call corner vertex all the vertices that
have degree 2 in G′. Also, note that, for each corner vertex, there is exactly one
original vertex at distance 2 of it, and, for each original vertex, there is exactly
one corner vertex at distance 2 of it. This happens because each original vertex
has degree exactly three. Let f be the bijective function that maps each original
vertex to the corner vertex that is at distance 2 of it. The Fig. 3 shows the
reduction applied to the grid graph of the Fig. 1. It is worth noting that, in G′, a
path P that has only original and auxiliary vertices and starts with an original
vertex, it has length multiple of 3 if and only if it ends in an original vertex.
Also, for each 3 consecutive vertices of this path, two are auxiliary vertices and
one is an original vertex.

Now, let us prove that G has a path of length ≥ k if and only if t(G′) ≥ 3k+2.
Suppose that G is a grid graph with maximum degree 3 that has a path of

length ≥ k. Let us prove that t(G′) ≥ 3k+2. Since G has a path P of length ≥ k,
we have that G′ has an induced path P of length ≥ 3k that passes by the same
path that P passes, which implies that P passes only by original and auxiliary
vertices. Note that, when an auxiliary vertex is in P , his auxiliary neighbor is
also in P .

Let v and v′ be the extremities of P and f(v′) = q′. Since v is an original
vertex, then let w be any auxiliary neighbor of v that is not in V (P ). Note
that all neighbors of w, except v, are not in V (P ). Let r be the vertex auxiliary
neighbor of v′ that is in P and let P ′ be the induced path that we obtain
from P by adding w, by removing v′ and by adding all vertices in any smallest
path between r and q′, excluding r, that only have vertices not adjacent to w
and passes only by original and auxiliary vertices. Since P is an induced path
and we removed one vertex and added only one induced path that has either
1 or 3 vertices to create P ′, we have that P ′ is an induced path with length
≥ 3k+1 where all of its vertices have degree 3, except for q′, which has degree 2.
Therefore, by Lemma 1, we have that t(G′) ≥ 3k + 2.



The Maximum Time of 2-neighbour Bootstrap Percolation 175

Fig. 3. Grid graph resulting from the reduction applied to the grid graph of the Fig. 1.

Now, suppose that G is a grid graph with maximum degree 3 such that,
when we apply the reduction to G to create G′, we have that t(G′) ≥ 3k + 2.
Let us prove that G has a path of length ≥ k. Since t(G′) ≥ 3k +2, applying the
Lemma 1, we have that G′ has an induced path P where either all vertices in
V (P ) have degree 3 and |E(P )| ≥ 6k + 2 or all vertices in V (P ) have degree 3,
except for one of his extremities, which has degree 2, and |E(P )| ≥ 3k + 1.

Firstly, suppose that G′ has an induced path P where all vertices in V (P )
have degree 3 and |E(P )| ≥ 6k + 2. Since, the only vertices that have degree 3
are the original and auxiliary vertices and for each three consecutive vertices in
P there is one original vertex and two auxiliary vertices, it is easy to see that P
has at least k + 1 original vertices and, thus, there is a path in G of length at
least k.

Finally, suppose that G′ has an induced path P where all vertices in V (P )
have degree 3, except for one of his extremities, which has degree 2, and |E(P )| ≥
3k+1. It is enough to analyze the case |E(P )| = 3k+1 because, if |E(P )| > 3k+1,
any subpath of P of length 3k + 1 that starts at the extremity of P that have
degree 2 is an induced path where all of his vertices have degree 3, except for
one of his extremities, which has degree 2, and has length 3k + 1. So, let us say
that P starts in the vertex that has degree 2. Since the only vertices that have



176 T. Marcilon and R. Sampaio

degree 2 are corner vertices, then P starts with a corner vertex. Let q be that
corner vertex, let q′ = f−1(q) and let v be the other extremity of P .

Suppose that P passes by q′. Since P is an induced path, then q′ is the third
vertex of P . Since q and q′ are at distance 2 of each other and |E(P )| = 3k + 1,
then v is an auxiliary vertex which his neighbor that is an original vertex, say v′,
is not in P . Let us append v′ to P and remove all vertices between q and q′,
including q and excluding q′. So, since P starts at q′, an original vertex, ends
in v′, another original vertex, and has length 3k, then there is a path in G of
length greater or equal to k.

Now, suppose that P does not pass by q′. Since |E(P )| = 3k + 1, then v is
an auxiliary vertex which his neighbor that is an original vertex, say v′, is in P .
Let us remove q, appending q′ in his place, and v from P . Thus, since P starts
at q′, an original vertex, ends in v′, another original vertex, and has length 3k,
then there is a path in G of length greater or equal to k. �

3 Percolation Time Problem in Solid Grid Graphs
with Δ = 3

A solid grid graph is a grid graph in which all of his bounded faces have area one.
There are NP-hard problems in grid graphs that are polynomial time solvable
for solid grid graphs. For example, the hamiltonian cycle problem is NP-hard for
grid graphs [23], but, in 1997, it was proved that it is polynomial time solvable
for solid grid graphs [30]. Motivated by the work of [11] for rectangular grids,
we obtain in this section a polynomial time algorithm for solid grid graphs with
maximum degree 3. However, the Percolation Time Problem for solid grid graphs
with maximum degree 4 is still open.

Theorem 3. For any solid grid graph G with Δ = 3, t(G) can be found in
O(n2) time.

Proof (sketch of the proof). If a solid grid graph has Δ = 3, then, since it is K1,4-
free, it becomes a graph formed only by ladders Lk, which are grid graphs with
dimensions 2 × k, and by paths, possibly linking these ladders by the vertices in
their extremities. Let the extremities of a ladder be the four vertices that have
only two neighbors in the ladder and let all the other vertices be the vertices
internal to the ladder. In Fig. 4, there is an example of solid grid graph with
Δ = 3.

To find the percolation time of G, according to Lemma 1, it is enough to
find both the longest induced path that starts with a degree 2 vertex and, then,
passes only by vertices with degree 3, and the longest induced path that passes
only by vertices with degree 3. Thus, since all of G’s bounded faces have area
one and, besides the ladders, G is composed only by paths, the only difficulty
to calculate t(G) is to find the longest induced paths in the ladders between
any two extremities that passes only by vertices with degree 3. However, one
can easily calculate the longest induced paths between any two extremities of a



The Maximum Time of 2-neighbour Bootstrap Percolation 177

Fig. 4. A solid grid graph with maximum degree 3.

ladder Lk: if the two extremities are neighbors, the length of the longest induced
paths between them is 1; if the two extremities are at distance k − 1, the length
of the longest induced paths between them is (k − t) + 2 · �(k − t + 1)/4� − 1 + t;
if the two extremities are at distance k, the length of the longest induced paths
between them is (k − t) + 2 · �(k − t − 1)/4� + t, where t is how many of the two
others extremities have degree 2.

So, first, we will transform G in a weighted graph G′ where G′ is the same
graph as G only with all the ladders replaced by weighted K4’s, where the weight
of an edge between two vertices in a K4 represents the length of a longest induced
path between the corresponding extremities of the ladders in G that passes only
by vertices with degree 3. The weight of all the other edges is 1. The Fig. 5
represents the transformation applied in the graph of the Fig. 4. Note that there
is exactly one induced path between any two vertices in G′, which length is equal
to the longest induced path between the same two vertices in G. It is not hard
to see that this transformation from G to G′ can be done in linear time.

In Algorithm 1, let w(u, v) be the weight of the edge (u, v). The algo-
rithm, for each vertex u ∈ V (G′) such that dG(u) ≥ 2, calls the function
LongestInducedPathFrom, which do a Depth-First Search to find the longest
induced path in G′ from u such that the last vertex is the only vertex in the
path that either has degree ≤ 2, besides perhaps the vertex u, or is in the neigh-
borhood of a vertex already in the path, and, then, it subtracts the length of the
found path by one. This is necessary because a longest induced path from some
vertex u in G can end in a vertex v internal to a ladder, but internal vertices of



178 T. Marcilon and R. Sampaio

1

5 44 3

1

6

1 55 1

6

3

1 44 1

5

4

1 33 1

4

2

1 33 1

2

5

1 44 1

5

2

1 33 1

4

Fig. 5. The resulting graph of the transformation applied to the graph in the Fig. 4.

a ladder are not represented in G′. However, if that happens, since all vertices
internal to a ladder have degree 3, then v must be adjacent to some vertex at
the extremity of the ladder that has degree 2.

In any case, the resulting length corresponds to the length of the longest
induced path in G beginning in u, which last vertex has degree 3 and is not in
the neighborhood of any vertex already in the path. Then, it compares all these
values, according to the Lemma 1, to find t(G).

Since there is only one induced path between any two vertices in G′, we
have that the recursive function LongestInducedPathFrom takes the same time
as any Depth-First Search algorithm. Thus, since m = O(n), the Function
LongestInducedPathFrom takes O(n) time. Therefore, the Algorithm 1 takes
O(n2) time. �

4 Percolation Time Problem in Graphs with Bounded
Max Degree Δ ≥ 4

In Sect. 2 (Theorem 1), we proved that the Percolation Time Problem is poly-
nomial time solvable in grid graphs with Δ(G) ≤ 3 for k = O(log n). In this
section, we prove that this not happen for general graphs with fixed maximum
degree Δ ≥ 4, unless P = NP.

Theorem 4. Let Δ ≥ 4 be fixed. Deciding whether t(G) ≥ k is NP-complete for
graphs with bounded maximum degree Δ and any k ≥ logΔ−2 n.



The Maximum Time of 2-neighbour Bootstrap Percolation 179

Algorithm 1. Algorithm that finds t(G) for any solid grid graph G with
Δ = 3
Algorithm MaximumTimeSolidGridΔ3(G)

G′ = Transform(G)
maxPercTime = 0
forall the u ∈ V (G′) such that dG(u) ≥ 2 do

if dG(u) = 2 then
percTimeU = LongestInducedPathFrom(G′, u)+1

else
percTimeU = �(LongestInducedPathFrom(G′, u)+2)/2�

if maxPercTime < percTimeU then
maxPercTime = percTimeU

return maxPercTime

Proof (sketch of the proof). We obtain a reduction from the variation of the
SAT problem where each clause has exactly three literals, each variable appears
in at most four clauses [29].

Given M clauses C = {C1, . . . , CM} on N variables X = {x1, . . . , xN} as an
instance of SAT, we denote the three literals of Ci by �i,1, �i,2 and �i,3. Note,
since any variable can only appear in at most 4 clauses, that N/3 ≤ M ≤ 4N/3.
So, first, let us show how to construct a graph G with maximum degree Δ. For
each clause Ci of C, add to G a gadget as the one in Fig. 6. Then, for each pair of
literals �i,a, �j,b such that one is the negation of the other, add a vertex y(i,a),(j,b)
and link it to either wA

i,a or wB
i,a and either wA

j,b or wB
j,b, but always respecting

the restriction where each one of the vertices wA
i,a, wB

i,a, wA
j,b and wB

j,b can only
have degree at most 4. Since each variable can appear in at most 4 clauses, it is
always possible to do that. Let Y be the set of all vertices y(i,a),(j,b) created this
way. Notice that y = |Y | ≤ 4N .

Then, add the maximum full (Δ − 2)-ary tree with root z such that the
number of leaves is less than y and, then, add a new vertex adjacent vertex
of degree one to each vertex in the tree. Let T be the tree that we have just
added and t be the set of vertices that we just added. After that, link each
leaf to at least one and at most Δ − 2 vertices in Y . Thus, each vertex in the
tree has degree Δ, except for the leaves, which have degree at most Δ, and z,
which has degree Δ − 1. Note that t = 2 · |V (T )| ≤ 2 · (Δ−2)y−1

Δ−3 ≤ 16N and
height(T ) = 	logΔ−2 y
.

Let c=(Δ−2)−8, α=xc, where x=max(41+	c
, 	1/c
), r=	logΔ−2(4Nα)
−
	logΔ−2 y
 and β = 4Nα/c − (39M + y + t + 2 + 2r). With some work, one can
prove that both r and β are non-negative integers.

If r > 0, add a path with r vertices, link one end to z and let q be the other
end. Also, add a new neighbor of degree one to each vertex that belongs to the
path. Let P ′ be the set of vertices in this path and his neighbors of degree one.
If r = 0, let q = z.



180 T. Marcilon and R. Sampaio

ui,1

wA
i,1 wB

i,1

ui,2

wA
i,2

wB
i,2

ui,3

wA
i,3

wB
i,3

0

5

6

6 6

6

6 5

5

1

2

3

4

4

3

4

5

5

5

4

5

Fig. 6. Gadget with infection times for each clause Ci.

Finally, add a path with β + 2 vertices and link one end to q. Let P be the
set of vertices in this path and let x be the vertex in P that is adjacent to q. By
our construction, since Δ ≥ 4, we have that G is a graph in which every vertex
has degree at most Δ.

Notice that any percolating set must contain a vertex of {ui,1, ui,2, ui,3} for
each clause Ci of C and all vertices that have degree 1. Thus, following similar
arguments presented in [24], it is possible to prove that the maximum percolation
time of the vertex z is height(T ) + 7 if and only if C is satisfiable, which implies
that the maximum percolation time of the vertex x is 	logΔ−2(4Nα)
+8 if and
only if C is satisfiable.

Then, we have that C is satisfiable if and only if t(G) ≥ 	logΔ−2(4Nα)
 + 8,
but, since n = |V (G)| = 39M + y + t + 2 + 2r + β, then 4Nα = c · n. Therefore,
since c = (Δ − 2)−8, C is satisfiable if and only if t(G) ≥ 	logΔ−2 n
. �

5 Fixed Parameter Tractability of the Percolation
Time Problem

We say that a decision problem is fixed parameter tractable (or just fpt) on some
parameter Ψ if there exists an algorithm (called fpt-algorithm) that solves the
problem in time f(Ψ)·nO(1), where n is the size of the input and f is an arbitrary
function depending only on the parameter Ψ .



The Maximum Time of 2-neighbour Bootstrap Percolation 181

In this section, we show that the Percolation Time Problem is fixed parameter
tractable for the parameter tw(G) + k, for the parameter Δ(G) + k and for the
parameter q(G), where tw(G) is the treewidth of the graph and q(G) is the
minimum q ≥ 4 such that G is a (q, q − 4)-graph, which is a graph such that
every subset of at most q vertices induces at most q − 4 P4’s (cographs have
q(G) = 4 and P4-sparse graphs have q(G) = 5). These theorems will imply
that, if k is fixed, then deciding if t(G) ≥ k is linear time solvable for graphs
with bounded treewidth or bounded maximum degree. Moreover, they will imply
that determining the maximum percolation time is polynomial time solvable for
(q, q − 4)-graphs with fixed q.

Theorem 5. Percolation Time Problem is fixed parameter tractable with para-
meter tw(G) + k.

Proof (sketch of the proof). A consequence of the Courcelle’s theorem [18,21]
states that, if a decision problem on graphs can be expressed in a Monadic
Second Order (MSO) sentence ϕ, then this problem is fixed parameter tractable
in the parameter tw(G) + |ϕ|. Moreover, the running time is linear on the size
of the input. The Percolation Time Problem can be expressed by the following
MSO-sentence:

maxtimek := ∃w,X0, X1, . . . , Xk ∀x
(
x ∈ Xk

)
∧
⎛
⎝ ∧

0≤i<k

(x ∈ Xi → x ∈ Xi+1)

⎞
⎠ ∧

∧
⎛
⎝ ∧

0≤i<k

(x ∈ Xi+1\Xi) → ∃y, z(Exy ∧ Exz ∧ (y ∈ Xi) ∧ (z ∈ Xi))

⎞
⎠ ∧

(
w ∈ Xk\Xk−1

)
,

where Xi represents the set of vertices infected at time i, Exy is true if xy is
an edge (and false, otherwise) and ∧ is the and operator. This MSO sentence
asserts that all vertices are infected in time k, that a vertex infected in time
i remains infected in time i + 1, that a vertex infected in time i + 1, but not
infected in time i, has two neighbors infected in time i, and that there exists a
vertex w infected in time k but not infected in time k − 1. �

Theorem 6. Percolation Time Problem is fixed parameter tractable with para-
meter Δ(G) + k. Moreover, for fixed Δ, the Percolation Time Problem is
polynomial time solvable in graphs with bounded maximum degree Δ for k =
logΔ O(log n), if Δ ≥ 4, and for k = O(log n), if Δ = 3.

Proof (sketch of the proof). Let Δ = Δ(G) and let u ∈ V (G). Then |N≤k(u)| ≤
Δk and, consequently, the power set 2N≤k(u) has 2|N≤k(u)| ≤ 2Δk

sets. We claim
that t(G) ≥ k if and only if there is a vertex u and a percolating set S ⊇ N≥k(u)
such that t(G,S, u) = k.

If t(G) ≥ k, then there is a percolating set S′ that infects some vertex u at
time k. In [24], it was proved that, given a graph G, a set Q ⊆ V (G) and a
vertex z ∈ V (G)\S, if t(G,Q,w) ≥ k, then t(G,Q,w) ≥ t(G,Q ∪ {z}, w) ≥ k,
for any k and any w ∈ N≥k(z). Then, applying this result once for each vertex
in N≥k(u), the percolating set S = S′ ∪ N≥k(u) infects u also at time k.



182 T. Marcilon and R. Sampaio

On the other hand, if there is a percolating set S ⊇ N≥k(u) such that
t(G,S, u) = k, for some vertex u, then, trivially, t(G) ≥ k. Then the claim
is true.

Therefore, since for each vertex u and set S′ ⊆ N≤k−1(u), it takes O(km)
time to know whether the set S′ ∪ N≥k(u) infects u at time k, this equivalence
gives us an algorithm that decides whether t(G) ≥ k in time n·O(m+km·2Δk

) =
O(2Δk

kΔ · n2), since m = O(Δn). Notice that, if k = logΔ O(log n), then the
time is polynomial in n. Moreover, if Δ = 3, by Theorem 1, we are done. �

Finally, we prove the fixed parameter tractability for the parameter q(G). In
2014, Campos et al. [14] proved that determining the minimum percolating set is
fixed parameter tractable on the parameter q(G). Here, we prove the following.

Theorem 7. Percolation Time Problem is fixed parameter tractable on parame-
ter q(G). Moreover, t(G) ≤ q(G) + 3 for every graph G.

To prove this theorem, we use a graph decomposition, called primeval decom-
position, which is based on some graph operations: union, join, spider and p-
component. Below we define these operations and present the lemmas used to
obtain the maximum percolation time. Because of space restrictions, we omit
the proofs.

The union G = G1 ∪ G2 of two graph G1 and G2 is the graph such that
V (G) = V (G1) ∪ V (G2) and E(G) = E(G1) ∪ E(G2). The join G = G1 ∨ G2 is
the graph obtained from G1∪G2 by joining every vertex of G1 to every vertex of
G2. A spider (R,K, S) is a graph G = (R∪K∪S, E) such that K = {k1, . . . , kp}
and S = {s1, . . . , sp}, for p ≥ 2, induce a clique and a stable set, respectively;
either si is adjacent to kj if and only if i = j (a thin spider), or si is adjacent to
kj if and only if i �= j (a thick spider); and every vertex of R is adjacent to each
vertex of K and non-adjacent to each vertex of S.

Lemma 2 (union, join and spider). Let G, G1 and G2 be graphs. If G =
G1 ∪ G2, then t(G) = max{t(G1), t(G2)}. If G = G1 ∨ G2 and G1 and G2

have at least two vertices each, then t(G) ≤ 3. If G = G1 ∨ G2 and G2 has
exactly one vertex, then t(G) = diameter(G1)+1, if either G1 is disconnected or
contains three vertices u, v, w such that dist(u,w) = dist(v, w) = diameter(G1)
and there is no neighbor of u and v in a minimum path from u to w; otherwise,
t(G) = diameter(G1). If G is a spider, then t(G) ≤ 3. In all the three last cases,
t(G) can be found in the worst case in O(mn2) time.

A graph is p-connected if, for every partition of the vertex set into two parts
A and B, there is a crossing P4 (with vertices of A and B). A p-connected graph
is separable if it has a particular bipartition (H1,H2) such that every crossing
P4 wxyz satisfies x, y ∈ H1 and w, z ∈ H2 (such a bipartition is unique [3]).
A p-component of a graph is a maximal p-connected subgraph.

Given an arbitrary graph G′ and a separable p-connected graph H with
separation (H1,H2), let G′ � H be the graph obtained from G′ ∪ H by joining



The Maximum Time of 2-neighbour Bootstrap Percolation 183

every vertex of G′ to every vertex of H1 and and to no vertex of H2. Note that
every spider (∅,K, S) is a separable p-connected graph with separation (K,S).

In [3], it was proved an important structural result for (q, q − 4)-graphs. If G
is a (q, q −4)-graph, then either G = G′ ∪G′′, or G = G′ ∨G′′, or G = G′ �H, or
G has less than q vertices, where G′ and G′′ are (q, q −4)-graphs and H is either
a spider (R,K, S) with R = ∅, or a separable p-connected (q, q − 4)-graph with
less than q vertices. This characterization leads to a graph decomposition, called
primeval decomposition, which can be obtained in linear time O(m + n) [4,9].

(a) (b)

Fig. 7. The two possibilities for the graph H+[C].

Lemma 3 (p-component). Let G′ be a (q, q − 4)-graph and let H be a sepa-
rable p-connected (q, q − 4)-graph with separation (H1,H2). If G = G′ � H, then
t(G) = t(H+), where H+ is the graph obtained from H by adding a set C of
x = min{|V (G′)|, 6} new vertices linked to all vertices of H1, not linked to any
vertices in H2, and, if x ≤ 6, let H+[C] and G′ be isomorphic graphs. If x ≥ 7:

– if G′ is a clique then let H+[C] be a clique Kx;
– if G′ is a stable set then let H+[C] also be a stable set;
– Otherwise, let H+[C] be isomorphic to the graph in Fig. 7(a), if G′ is not

connected, and let H+[C] be isomorphic to the graph in Fig. 7(b), if G′ is
connected.

As a consequence, if H has less than q vertices (fixed q ≥ 4), since |V (H+)| ≤
q + 5, then t(G) ≤ q + 3 and t(G) can be obtained in constant time ≤ 2qq (by
checking all subsets of vertices of H+). The two lemmas above, together with the
primeval decomposition of (q, q − 4)-graphs, imply a polynomial time algorithm
to determine the maximum percolation time of a (q, q − 4)-graph, for fixed q,
in O(mn2) time. This also implies that the Percolation Time Problem is fixed
parameter tractable for the parameter q(G).



184 T. Marcilon and R. Sampaio

References

1. Amini, H.: Bootstrap percolation in living neural networks. J. Stat. Phys. 141(3),
459–475 (2010)

2. Araújo, R., Sampaio, R., Santos, V., Szwarcfiter, J.: The convexity of induced
paths of order three and applications: complexity aspects. Discrete Appl. Math.
(2015, to appear)

3. Babel, L., Olariu, S.: On the structure of graphs with few P4’s. Discrete Appl.
Math. 84, 1–13 (1998)

4. Babel, L., Kloks, T., Kratochv́ıl, J., Kratsch, D., Müller, H., Olariu, S.: Efficient
algorithms for graphs with few P4’s. Discrete Math. 235, 29–51 (2001)

5. Balogh, J., Bollobás, B., Duminil-Copin, H., Morris, R.: The sharp threshold for
bootstrap percolation in all dimensions. Trans. Amer. Math. Soc. 364(5), 2667–
2701 (2012)

6. Balogh, J., Pete, G.: Random disease on the square grid. Random Struct. Algo-
rithms 13, 409–422 (1998)

7. Balogh, J., Bollobás, B., Morris, R.: Bootstrap percolation in three dimensions.
Ann. Probab. 37(4), 1329–1380 (2009)

8. Balogh, J., Bollobás, B., Morris, R.: Bootstrap percolation in high dimensions.
Combin. Probab. Comput. 19(5–6), 643–692 (2010)

9. Baumann, S.: A linear algorithm for the homogeneous decomposition of graphs.
Report No. M-9615, Zentrum Mathematik. Technische Universität München (1996)

10. Benevides, F., Campos, V., Dourado, M.C., Sampaio, R.M., Silva, A.: The maxi-
mum time of 2-neighbour bootstrap percolation: algorithmic aspects. In: The Sev-
enth European Conference on Combinatorics, Graph Theory and Applications,
Series CRM, vol. 16, pp. 135–139. Scuola Normale Superiore (2013)

11. Benevides, F., Przykucki, M.: Maximum percolation time in two-dimensional boot-
strap percolation. Submitted (2014). http://arxiv.org/abs/1310.4457v1

12. Benevides, F., Przykucki, M.: On slowly percolating sets of minimal size in boot-
strap percolation. Electron. J. Comb. 20(2), 46 (2013)

13. Bollobás, B., Holmgren, C., Smith, P.J., Uzzell, A.J.: The time of bootstrap per-
colation with dense initial sets. Ann. Probab. 42(4), 1337–1373 (2014)

14. Campos, V., Sampaio, R., Silva, A., Szwarcfiter, J.: Graphs with few P4s under the
convexity of paths of order three. Discrete Appl. Math. (2015, to appear). http://
dx.doi.org/10.1016/j.dam.2014.05.005

15. Chalupa, J., Leath, P.L., Reich, G.R.: Bootstrap percolation on a Bethe lattice. J.
Phys. C 12(1), 31–35 (1979)

16. Chen, N.: On the approximability of influence in social networks. SIAM J. Discrete
Math. 23(3), 1400–1415 (2009)

17. Coelho, E.M.M., Dourado, M.C., Sampaio, R.M.: Inapproximability results for
graph convexity parameters. In: Kaklamanis, C., Pruhs, K. (eds.) WAOA 2013.
LNCS, vol. 8447, pp. 97–107. Springer, Heidelberg (2014)

18. Courcelle, B., Makowsky, J., Rotics, U.: On the fixed parameter complexity of
graph enumeration problems definable in monadic second order logic. Discrete
Appl. Math. 108, 23–52 (2001)

19. Dreyer, P.A., Roberts, F.S.: Irreversible k-threshold processes: graph-theoretical
threshold models of the spread of disease and of opinion. Discrete Appl. Math.
157(7), 1615–1627 (2009)

20. Fey, A., Levine, L., Peres, Y.: Growth rates and explosions in sandpiles. J. Stat.
Phys. 138, 143–159 (2010)

http://arxiv.org/abs/1310.4457v1
http://dx.doi.org/10.1016/j.dam.2014.05.005
http://dx.doi.org/10.1016/j.dam.2014.05.005


The Maximum Time of 2-neighbour Bootstrap Percolation 185

21. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg
(2010)

22. Holroyd, A.E.: Sharp metastability threshold for two-dimensional bootstrap per-
colation. Probab. Theor. Relat. Fields 125(2), 195–224 (2003)

23. Itai, A., Papadimitriou, C.H., Szwarcfiter, J.L.: Paths in grid graphs. SIAM J.
Comput. 11, 676–686 (1982)

24. Marcilon, T., Nascimento, S., Sampaio, R.: The maximum time of 2-neighbour
bootstrap percolation: complexity results. In: Kratsch, D., Todinca, I. (eds.) WG
2014. LNCS, vol. 8747, pp. 372–383. Springer, Heidelberg (2014)

25. Morris, R.: Minimal percolating sets in bootstrap percolation. Electron. J. Comb.
16(1), 20 (2009)

26. Papadimitriou, C.H., Vazirani, U.V.: On two geometric problems related to the
travelling salesman problem. J. Algorithms 5(2), 231–246 (1984)

27. Przykucki, M.: Maximal percolation time in hypercubes under 2-bootstrap perco-
lation. Electron. J. Comb. 19(2), 41 (2012)

28. Riedl, E.: Largest minimal percolating sets in hypercubes under 2-bootstrap per-
colation. Electron. J. Comb. 17(1), 13 (2010)

29. Tovey, C.A.: A simplified NP-complete satisfiability problem. Discrete Appl. Math.
8(1), 85–89 (1984)

30. Umans, C., Lenhart, W.: Hamiltonian cycles in solid grid graphs. In: Proceedings of
the 38th Annual Symposium on Foundations of Computer Science (FOCS), 1997,
Miami, USA, pp. 496–505. IEEE Computer Society, Washington, DC (1997)


	The Maximum Time of 2-neighbour Bootstrap Percolation in Grid Graphs and Parametrized Results
	1 Introduction
	2 Percolation Time Problem in Grid Graphs with = 3
	3 Percolation Time Problem in Solid Grid Graphs with = 3
	4 Percolation Time Problem in Graphs with Bounded Max Degree 4
	5 Fixed Parameter Tractability of the Percolation Time Problem
	References


