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Preface

The 41st International Workshop on Graph-Theoretic Concepts in Computer Science
(WG 2015) was held in Garching near Munich in Germany, during June 17–19, 2015.
The WG conference series has a long tradition. Since 1975, it has taken place 23 times
in Germany, four times in The Netherlands, three times in France, twice in Austria and
in the Czech Republic, as well as once in each of Italy, Slovakia, Switzerland, Norway,
the UK, Greece, and Israel. The WG conferences aim to connect theory and practice by
demonstrating how graph-theoretic concepts can be applied to various areas of com-
puter science and by extracting new graph problems from applications. Their goal is to
present new research results and to identify and explore directions of future research.
WG 2015 had 79 submissions. Each submission was carefully reviewed by three
members of the Program Committee. The Program Committee then accepted 32 papers
for presentation at WG 2015.

TheWG 2015 Best Paper Award, sponsored by Springer, was awarded to Konstantinos
Stavropoulos and his co-authors Martin Grohe, Stephan Kreutzer, Roman Rabinovich,
and Sebastian Siebertz, for their paper on “Colouring and Covering Nowhere Dense
Graphs.” The program also included three inspiring invited talks: Daniel Paulusma
(Durham University, UK) gave a talk on “Open Problems on Graph Coloring for Special
Graph Classes,” Shmuel Zaks (Technion, Haifa, Israel) spoke “On the Complexity of
Approximation and On-line Scheduling Problems with Applications to Optical Net-
works,” and Rolf Niedermeier (TU Berlin, Germany) presented “Parameterized Algo-
rithmics for Graph Modification Problems: On Interactions with Heuristics.”

We would like to thank all the authors of the papers submitted to WG 2015, the
speakers of the 32 contributed and the three invited talks, the members of the Program
Committee, and all the 130 external reviewers. Special thanks also go to the Leibniz
Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences and Humanities
for providing space and support for the sessions and the coffee breaks, and to the
members of the local Organizing Committee and the members of the Chair for Efficient
Algorithms of the Technical University of Munich (TUM), whose effort made the
conference run smoothly and led to such a successful event. Finally, we want to express
our thanks for the financial support we received from Springer for the best paper award
and from Deutsche Forschungsgemeinschaft (DFG) for (most of) the conference
participants.

May 2016 Ernst W. Mayr
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Parameterized Algorithmics for Graph
Modification Problems: On Interactions

with Heuristics

Christian Komusiewicz, André Nichterlein, and Rolf Niedermeier(B)

Institut für Softwaretechnik und Theoretische Informatik,
TU Berlin, Berlin, Germany

{christian.komusiewicz,andre.nichterlein,rolf.niedermeier}@tu-berlin.de

Abstract. In graph modification problems, one is given a graph G and
the goal is to apply a minimum number of modification operations (such
as edge deletions) to G such that the resulting graph fulfills a certain
property. For example, the Cluster Deletion problem asks to delete
as few edges as possible such that the resulting graph is a disjoint union of
cliques. Graph modification problems appear in numerous applications,
including the analysis of biological and social networks. Typically, graph
modification problems are NP-hard, making them natural candidates for
parameterized complexity studies. We discuss several fruitful interactions
between the development of fixed-parameter algorithms and the design
of heuristics for graph modification problems, featuring quite different
aspects of mutual benefits.

1 Introduction

Graph modification problems lie in the intersection of algorithmics, graph the-
ory, and network analysis.1 Formally, a graph modification problem is given as
follows.

Graph Modification

Input: A graph G = (V,E), a graph property Π, and an integer k ∈ N.
Question: Can G be transformed with at most k modification operations

into a graph satisfying Π?

Herein, graph modification operations include edge deletions, insertions, and
contractions, and vertex deletions. Classic examples for Π are “being edgeless”
(this is known as Vertex Cover when the allowed modification operation
is vertex deletion) and “being a disjoint union of cliques” (this is known as
Cluster Editing when the allowed modification operations are edge deletion
and insertion).

1 Also refer to the 2014 Dagstuhl Seminar 14071 on “Graph Modification Problems”
organized by Hans L. Bodlaender, Pinar Heggernes, and Daniel Lokshtanov [5]. Liu
et al. [34] survey kernelization algorithms for graph modification problems.

c© Springer-Verlag Berlin Heidelberg 2016
E.W. Mayr (Ed.): WG 2015, LNCS 9224, pp. 3–15, 2016.
DOI: 10.1007/978-3-662-53174-7 1



4 C. Komusiewicz et al.

We will deal with simple and natural graph modification problems that are
motivated by real-world applications. In these applications, the common way of
solving these problems is via heuristics.

We present four main themes on how the interaction between parameterized
algorithmics and heuristics can take place, each time illustrated by some “key”
graph modification problems.

In Sect. 2, we consider a graph-based clustering problem that has been defined
only implicitly by means of a greedy heuristic [26]. We describe how a natural
NP-hard parameterized problem (referred to as Highly Connected Dele-

tion) can be derived from this, and how this leads to further insight into the
corresponding clustering approach [28].

In Sect. 3, starting with a practically successful heuristic for anonymizing
social networks [33] (the corresponding NP-hard problem is known as Degree

Anonymity), we describe how a closer inspection yields that either the cor-
responding approach provides optimal solutions in polynomial time or one can
derive a polynomial-size problem kernel with respect to the parameter maxi-
mum vertex degree of the underlying graph [23]. Moreover, we briefly indicate
how this led—in a feedback loop, so to speak—to improvements also for the
heuristic approach [21].

In Sect. 4, we study parameterized local search—the parameter is the degree
of locality [14]. Local search is a key technique in combinatorial optimization
and the design of “improvement heuristics”. We address both limitations and
prospects of this approach. We discuss, among others, the NP-hard example
problems Vertex Cover and Feedback Arc Set in Tournaments.

In Sect. 5, we finally discuss how one may speed up parameterized algorithms
by a clever use of heuristics. In particular, we discuss parameterization above
lower bounds derived from linear programming relaxations [35] (here the key
example is the NP-hard Vertex Cover problem), and the idea of programming
by optimization [22,27] (here the key example is the NP-hard Cluster Editing

problem). We draw some final conclusions in Sect. 6.

Preliminaries. We assume familiarity with fundamental concepts of graph the-
ory, algorithms, and complexity.

A parameterized problem is a set of instances of the form (I, k), where I ∈ Σ∗

for a finite alphabet Σ, and k ∈ N is the parameter. A parameterized problem Q
is fixed-parameter tractable, shortly FPT, if there exists an algorithm that on
input (I, k) decides whether (I, k) is a yes-instance of Q in time f(k) · |I|O(1),
where f is a computable function independent of |I|. A parameterized problem Q
is kernelizable if there exists a polynomial-time algorithm that maps an instance
(I, k) of Q to an instance (I ′, k′) of Q such that |I ′| ≤ λ(k) for some computable
function λ, k′ ≤ λ(k), and (I, k) is a yes-instance of Q if and only if (I ′, k′) is a
yes-instance of Q. The instance (I ′, k′) is called a kernel of (I, k).

A problem that is W[1]-hard does not admit a fixed-parameter algorithm,
unless the widely believed conjecture FPT �= W[1] fails.
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2 From Heuristics to Parameterized Problems

In the following, we illustrate how the consideration of heuristic algorithms may
lead to the definition of new interesting graph modification problems. Our exam-
ple concerns the interplay between two standard approaches for graph-based data
clustering.

One approach is to formalize desired properties of clusters and then to find a
clustering of the graph such that the output clusters fulfill these properties. This
clustering can be obtained by modifying the input graph for example by deleting
edges so that all remaining edges are only inside clusters. Starting with Cluster

Editing [19], there are by now numerous parameterized algorithmics studies on
graph modification problems related to clustering, varying on the cluster graph
definition [4,11,15,20,32], the modification operation [29], or both [3]. Most of
the examples of variants of Cluster Editing evolved primarily from a graph-
theoretic interest.

Another approach is to define the clustering algorithmically, that is, to
describe an algorithm that outputs a clustering and to analyze the properties of
the clusters that are produced by the algorithm. In this section, we discuss how
the consideration of a popular and natural clustering algorithm due to Hartuv
and Shamir [26] leads to the definition of the graph modification problem Highly

Connected Deletion. This is our key example for how to obtain practically
motivated parameterized graph modification problems by a closer inspection of
known heuristics. The study of this new problem then may yield new challenges
for parameterized algorithmics and, furthermore, provide a better understanding
of the strengths and weaknesses of the original heuristic algorithms. We will first
discuss the original algorithm and then how we obtain the definition of Highly

Connected Deletion from this algorithm.
Hartuv and Shamir [26] posed the following connectivity demands on each

cluster: the edge connectivity λ(G) of a graph G is the minimum number of
edges whose deletion results in a disconnected graph, and a graph G with n
vertices is called highly connected if λ(G) > n/2.2 The algorithm by Hartuv and
Shamir [26] partitions the vertex set of the given graph such that each partition
set is highly connected by iteratively deleting the edges of a minimum cut in a
connected component that is not yet highly connected. The output clusters of
the algorithm are the connected components of the remaining graph which are
then highly connected. The definition of being highly connected ensures several
useful cluster properties, for example that at least half of the possible edges are
present within each cluster and that each cluster has diameter at most two [26].

While Hartuv and Shamir’s algorithm guarantees to output a partitioning
into highly connected subgraphs, it iteratively uses a greedy step to find small
edge sets to delete. As a consequence, it is not ensured that the partitioning
comes along with a minimum number of edge deletions making the resulting
graphs consist of highly connected components. This naturally leads to the edge

2 An equivalent characterization is that a graph is highly connected if each vertex has
degree greater than n/2 [9].
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deletion problem Highly Connected Deletion where the goal is to minimize
the number of edge deletions; this optimization goal is addressed only implicitly
by Hartuv and Shamir’s algorithm.

Highly Connected Deletion

Input: An undirected graph G = (V,E) and an integer k ∈ N.
Question: Is there an edge set E′ ⊆ E of size at most k such that in

G′ = (V,E \E′) all connected components are highly connected?

Input: k = 3 Solution:

Interestingly, in the worst case the algorithm by Hartuv and Shamir [26]
does not give a good approximation for the optimization version of Highly

Connected Deletion. Consider two cliques with vertex sets u1, . . . , un and
v1, . . . , vn, respectively, and the additional edges {ui, vi} for 2 ≤ i ≤ n. Then
these additional edges form a solution set of size n − 1; however, Hartuv and
Shamir’s algorithm will (with unlucky choices of minimum cuts) transform one
of the two cliques into an independent set by repeatedly cutting off one vertex,
thereby deleting n(n + 1)/2 − 1 edges.

The following theoretical results are known for Highly Connected Dele-

tion [28]. It is NP-hard even on 4-regular graphs and, provided the Exponential
Time Hypothesis (ETH) [30] is correct, cannot be solved in subexponential time.
On the positive side, there is a kernelization that can in polynomial time reduce
an instance to one containing at most 10 · k1.5 vertices, and an FPT algorithm
that solves Highly Connected Deletion in O(34k · k2 + nO(1)) time.

As to the relevance of parameterized algorithmics for Highly Connected

Deletion, one has to note that the mentioned FPT algorithm is impractical. In
terms of exact solutions, an integer linear programming formulation combined
with data reduction rules (partially coming from the kernelization results), how-
ever, performs reasonably well [28]. Even when relaxing the goal to find exact
solutions for Highly Connected Deletion, data reduction turned out to be
beneficial in combination with heuristics (improving running time and solution
quality) [28]. In a nutshell, the most practical contribution of parameterized
algorithmics in this example is the development of efficient and effective data
reduction rules, also helping to improve inexact solutions based on heuristics.
A further benefit of considering a formally defined edge modification problem
Highly Connected Deletion is that the objective is now independent of
a heuristic method used to find it. Thus, it becomes possible to evaluate the
biological quality of the objective [28].

As to potential for future research with respect to Highly Connected

Deletion, so far other modification operations combined with the used cluster
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graph model are unexplored. Improvements on the known kernelization for
Highly Connected Deletion may have direct practical impact. Moreover,
a first step to make the FPT algorithm more practical could be to devise a
faster FPT algorithm that relies only on branching (the current algorithm uses
dynamic programming in a subroutine). Finally, besides striving for improve-
ments with respect to the standard parameter “number of edge deletions”, the
investigation of other parameterizations may be interesting as well.

From a more general perspective, however, it remains to “remodel” further
heuristic algorithms into natural parameterized problems.

3 Interpreting Heuristics with FPT Methods

While in the previous section we derived a natural parameterized problem
(Highly Connected Deletion) from a simple and effective greedy heuris-
tic, in this section we demonstrate that the tools of parameterized complexity
analysis and, in particular, kernelization, may be beneficial in understanding
and improving a known heuristic on the one side, and in providing a rigorous
mathematical analysis on the other side. Here, we have examples in the con-
text of graph completion problems, our key example here being the Degree

Anonymity problem arising in the context of anonymizing social networks.
For many scientific disciplines, including the understanding of the spread of

diseases in a globalized world or power consumption habits with impacts on
energy efficiency, the availability of social network data becomes more and more
important. To respect privacy issues, there is a strong demand to anonymize the
associated data in a preprocessing phase [18]. If a graph contains only few vertices
with some distinguished feature, then this might allow the identification (and
violation of privacy) of the underlying real-world entities with that particular
feature. Hence, in order to ensure pretty good privacy and anonymity behavior,
every vertex should share its feature with many other vertices. In a landmark
paper, Liu and Terzi [33] (also see Clarkson et al. [10] for an extended version)
considered the vertex degrees as feature; see Wu et al. [41] for other features
considered in the literature. Correspondingly, a graph is called �-anonymous
if for each vertex there are at least � − 1 other vertices of the same degree.
Therein, different values of � reflect different privacy demands and the natural
computational task arises to perform few changes to a graph in order to make
it �-anonymous.

Degree Anonymity

Input: An undirected graph G = (V,E) and two integers k, � ∈ N.
Question: Is there an edge set S ⊆ (

V
2

)\E of size at most k such that G+S
is �-anonymous?
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Input: � = 2
k = 1

Solution:

The central parameterized complexity result for Degree Anonymity is that
it has a polynomial-size problem kernel when parameterized by the maximum
vertex degree Δ of the input graph [23]. In other words, there is a polynomial-
time algorithm that transforms any input instance into an equivalent instance
with O(Δ7) vertices. Indeed, one encounters a “win-win” situation when prov-
ing this result: Liu and Terzi’s heuristic strategy [33] finds an optimal solution
when the size k of a minimum solution is larger than 2Δ4. Hence, either one
can solve the problem in polynomial time or the solution size is “small”. As a
consequence, one can bound k in O(Δ4) and, hence, a polynomial kernel for
the combined parameter (Δ, k) actually is also a polynomial kernel only for Δ.
While this kernelization directly implies fixed-parameter tractability for Degree

Anonymity parameterized by Δ, there is also an FPT algorithm running in
O(ΔO(Δ4) + (k� + Δ)Δkn) time.

The ideas behind the “win-win” situation generalize to further graph comple-
tion problems where the task is to insert edges so that the degree sequence of the
resulting graph fulfills some prescribed property Π [17]. Furthermore, an exper-
imental evaluation of the usefulness of the theoretical results on the “win-win”
situation delivered encouraging results even beyond the theoretical guarantees,
that is, when k < 2Δ4 [21,40]. This led to an enhancement of the heuristic due
to Liu and Terzi [33] which substantially improves on the previously known the-
oretical and empirical running times. As for Highly Connected Deletion,
previously known heuristic solutions could be substantially improved in terms
of solution quality.

Finally, we mention in passing that making a graph �-anonymous was studied
from a parameterized point of view using also several other graph modification
operations [2,7,25]. All these studies are of purely theoretical nature and there
are only little positive algorithmic results; links with heuristic algorithm design
are missing.

From a general perspective, the quest arising from the findings for Degree

Anonymity is to provide further examples where parameterized complexity
analysis sheds new light on known heuristics, both theoretically and practically.
A good starting point might be the heuristic of Lu et al. [36] which clusters the
vertices and then anonymizes each cluster. Here, the question is whether such
a practical link between anonymization and clustering could be complemented
with theoretical results. Obviously, these studies should not be limited to prob-
lems arising in anonymization but to graph modification problems from different
application areas.
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4 Improving Heuristic Solutions with FPT Algorithms

Local search is a generic algorithmic paradigm that yields good heuristics for
many optimization problems. The idea is to start with any feasible solution
and then search for a better one in the local neighborhood of this solution.
This search is continued until a locally optimal solution is found. For graph
modification problems, a feasible solution S is any set of modification operations
that transforms the input graph into one that satisfies the graph property Π. The
local neighborhood of S is usually defined as the sets of modification operations
that can be obtained by adding and removing at most k vertices from S. This
type of neighborhood is called k-exchange neighborhood.

An obvious approach to obtain more powerful local search algorithms is to
reduce the running time needed for searching the local neighborhood. This could
enable a local search algorithm to examine larger neighborhoods and reduce
the likelihood to remain in a locally optimal but globally suboptimal solution.
Usually, the size of the k-exchange neighborhood in an n-vertex graph is upper-
bounded by nf(k) for some function f . In parameterized algorithmics, a natural
question is whether it is necessary to consider all elements of this neighborhood
or whether the neighborhood can be searched faster, that is, in f(k) ·nO(1) time.

For many vertex deletion problems this is not the case [14]. For example, in
the local search variant of Vertex Cover, one is given a vertex cover S, that
is, a vertex set S such that deleting S from a graph G results in an independent
set. The task is to find a smaller vertex cover S′ by adding and removing at
most k vertices from S.

Local Search Vertex Cover

Input: An undirected graph G = (V,E), a vertex cover S of G, and an
integer k ∈ N.

Question: Is there a vertex cover S′ ⊆ V such that |S′| < |S| and |(S \S′)∪
(S′ \ S)| ≤ k?

Input: |S| = 5
k = 3

Solution:

Unfortunately, unless W[1] = FPT, there is no FPT algorithm for Local

Search Vertex Cover parameterized by k [14]. Positive results were obtained
for special cases. For example, Local Search Vertex Cover and many other
local search variants of vertex deletion problems are fixed-parameter tractable on
planar graphs [14]. These results, however, are based on the technique of locally
bounded treewidth. As a consequence, the resulting algorithms might not be
useful in practice.
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Positive results were obtained for Feedback Arc Set in Tournaments

which is the problem of transforming a tournament, that is, a directed graph in
which every pair of vertices is connected by exactly one of the two possible arcs,
into an acyclic graph by a minimum number of arc deletions. Here, the local
search problem is fixed-parameter tractable. More precisely, given a set S of arc
deletions that makes a given tournament acyclic, it can be decided in 2O(

√
k log k) ·

nO(1) time whether there is a set S′ that can be obtained from S by adding and
removing at most k arcs [16].

This positive result seems to be rooted in the combinatorially restricted
nature of tournaments and not in the fact that Feedback Arc Set in Tour-

naments is an arc modification problem: The local search variant of the simi-
larly simple Cluster Editing problem is not fixed-parameter tractable unless
W[1] = FPT [13].

Summarizing, the natural idea of parameterized local search faces two major
obstacles. The first obstacle is that, as discussed above, many local search prob-
lems are probably not fixed-parameter tractable. The second obstacle is that,
so far, none of the parameterized local search algorithms for graph modification
problems have been shown to be useful in practice. One encouraging result was
obtained for Incremental List Coloring [24]. Here, the input is a graph
with a list-coloring that colors all graph vertices except one. The task is to
obtain a list-coloring that also colors v and disagrees with the old list-coloring
on at most c vertices. Thus, the new solution is searched within the neighbor-
hood of the old solution. This problem can be solved in kc · nO(1) time where k
is the maximum size of any color list in the input. The crucial observation is
that this local search-like approach can be embedded in a coloring heuristic that
outperforms the standard greedy coloring algorithm in terms of the coloring
number. Since Incremental List Coloring is W[1]-hard with respect to the
parameter c, the key to success seems to be the consideration of the combined
parameter (k, c).

A goal for future research should thus be to obtain similar success stories for
local search variants of graph modification problems. As demonstrated by Incre-

mental List Coloring, one promising route is the consideration of combined
parameters. From a more general perspective, the FPT algorithm for Incre-

mental List Coloring and parameterized local search have in common that
they use the power provided by allowing FPT running time—instead of poly-
nomial running time—to improve known heuristics. This approach, which has
been coined “turbo-charging heuristics” [12], has close connections to dynamic
versions of hard graph problems [1,12].

5 Heuristic Tuning of Parameterized Algorithms

Heuristics are often used to boost the performance of exact algorithms in prac-
tice. A prominent example here is the branch-and-bound concept where heuristic
lower and upper bounds restrict the search space for search-tree algorithms [38].
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Better heuristic bounds give a smaller search space and thus faster exact algo-
rithms. When analyzed in the classic complexity framework, the theoretical run-
ning time improvements due to the heuristic bounds are (if at all) marginal com-
pared to the speed-ups observed in practice. Here, parameterized algorithmics
can be used to give some theoretical explanation for experimental observations
by using the above-guarantee parameterization [37]. As the name suggests, the
parameter is the difference between the size of an optimal solution and a given
lower bound. Fixed-parameter tractability with respect to the above-guarantee
parameter then shows that the problem of finding a solution close to the lower
bound is “easy”. Thus, if the corresponding lower bound is close to the optimum,
then the corresponding algorithm using this lower bound is fast—in practice and
in theory.

An example for above-lower bound parameterization is Vertex Cover. One
lower bound on the size of a Vertex Cover is the value � of a linear program-
ming (LP) relaxation. The well-known LP relaxation is as follows:

Minimize
∑

v∈V

xv

subject to xu + xv ≥ 1, ∀{u, v} ∈ E

xv ≥ 0, ∀v ∈ V.

It is known that in an optimal solution for the LP relaxation each variable
has value 0, 1/2, or 1 [39].

Vertex Cover Above LP

Input: An undirected graph G = (V,E), an integer k ∈ N, and a ratio-
nal number � ∈ Q denoting the value of the LP relaxation.

Question: Is there a vertex subset S ⊆ V of size at most k such that G[V \S]
is edgeless?

Input: k = 3, � = 2.5

1/2

1/2

1/2

1

0

0

Solution:

Lokshtanov et al. [35] presented an algorithm solving Vertex Cover

Above LP in 2.32k−� · nO(1) time. On a high level, this algorithm starts with
the lower bound and uses, after some preprocessing, a standard search-tree
algorithm. Thus, a good lower bound allows not only in practice, but also in
theory for an efficient algorithm solving Vertex Cover. Moreover, the fixed-
parameter tractability result now may help explaining why heuristics can suc-
cessfully exploit the lower bound provided by the LP relaxation.

Another example for heuristic tuning of algorithms is programming by opti-
mization [27]. This is a helpful and powerful tool for developing fast implementa-
tions. Here, the basic idea is that the implementation leaves open several design
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choices for different parts of the algorithm—these are settled later when train-
ing the algorithm with real-world instances. Then, for the final configuration of
the implementation, let a program choose from the alternatives in such a way
that the performance is optimized on a representative set of instances. Here, the
automated optimizer can give an answer to the following questions:

– Given several alternative implementations for one subproblem (for example
different sorting algorithms or different lower bounds), which one should be
chosen?

– Should a certain data reduction rule be applied?
– What are the “best” values for certain “magic” or “hidden” constants? For

example, should a data reduction rule be applied in every second level of the
search tree or every fourth level?

The programming by optimization approach has led to a state-of-the-art solver
for Cluster Editing [22]. This solver combines one sophisticated data reduc-
tion rule and a branch-and-bound algorithm. The solver outperforms previ-
ous algorithms which are based on integer linear programming (ILP) and pure
branch-and-bound. Thus, with the help of programming by optimization, imple-
mentations of parameterized algorithms may successfully compete with ILP-
based algorithms.

On a high level, programming by optimization can be seen as a heuristic
counterpart to parameterized algorithmics: Parameterized algorithmics provides
theoretical bounds on the running time of algorithms and the effectiveness of
data reduction rules. These bounds depend on the parameter. Thus, to solve a
problem for a specific type of data, one should measure different parameters and
choose, based on this measurement, the most promising data reduction rules and
algorithms. With programming by optimization, this choice is made automati-
cally, based on the performance of the algorithm on a given representative set of
test instances. Furthermore, the choice is not based on the values of parameters
but directly on the efficiency of the corresponding algorithms on the test data.

A goal for future research is to further increase the benefit obtained by
combining the strengths of programming by optimization and parameterized
algorithmics. This could be done, for example, by first providing several FPT
algorithms for the same problem with different parameters and then using pro-
gramming by optimization to find a good strategy to pick the best algorithm
depending on the structure of an input instance.

6 Conclusions

As Karp [31] pointed out, one of the most pressing challenges in theoretical com-
puter science is to contribute to a better understanding why many heuristics work
so well in practice. In particular, a formal footing of the construction of heuristic
algorithms is considered highly desirable. This task is also closely connected to
(hidden) structure detection in real-world input instances. We discussed several
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routes to a beneficial interaction between heuristic and parameterized algorithm
design

To date, a clear majority of research results in parameterized algorithmics is
of purely theoretical nature. A natural way to increase the practical impact of
parameterized algorithmics is to seek fruitful interactions with the field of heuris-
tic algorithm design. We believe that particularly graph (modification) problems
may be a forerunner in offering numerous fruitful research opportunities in this
direction.

So far the strongest impact achieved by parameterized algorithmics on prac-
tical computing and heuristics is due to kernelization, and polynomial-time data
reduction techniques in general. Notably, often data reduction rules seemingly
not strong enough to provide kernelization results may still have strong practi-
cal impact. Moreover, a general route for future research is to develop heuristic
algorithms in parallel with performing a parameterized complexity analysis (par-
ticularly, in terms of kernelization). As results for graph modification problems
in this direction demonstrate, there are good prospects to win something in both
worlds.

Finally, in this paper we focused on NP-hard graph modification problems
for illustrative examples. It goes without saying that our general remarks and
observations are not limited to graph modification problems only but clearly
extend to further graph problems and fields beyond, e.g. string algorithms [8] or
computational social choice [6].

Acknowledgment. We are grateful to Till Fluschnik and Vincent Froese for feedback
to our manuscript.
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Abstract. For a given graph G and integer k, the Coloring problem is
that of testing whether G has a k-coloring, that is, whether there exists
a vertex mapping c : V → {1, 2, . . .} such that c(u) �= c(v) for every
edge uv ∈ E. We survey known results on the computational complexity
of Coloring for graph classes that are hereditary or for which some
graph parameter is bounded. We also consider coloring variants, such as
precoloring extensions and list colorings and give some open problems in
the area of on-line coloring.

1 Introduction

Graph coloring is a central topic in Computer Science due to a high number of
theoretical and practical applications. Within both structural and algorithmic
graph theory, many graph coloring variants and generalizations have been stud-
ied. Besides the well-known text-book of Toft and Jensen [65], several survey
papers appeared over the years. For instance, the survey of Tuza [70] considered
the graph coloring problem and variants of it, in which local restrictions are
imposed on the coloring (e.g. precoloring extensions and list colorings) whereas
the survey of Randerath and Schiermeyer [61] considered structural and com-
plexity aspects of graph colorings for hereditary graph classes.

As graph coloring and many of its variants are computationally hard on general
graphs, it is natural to restrict the input graph to some special graph class. This
topic has been extensively studied in the literature. A recent survey of Golovach
et al. [27] updated several parts of the two aforementioned survey papers [61,70]
and the survey of Chudnovsky [13] by primarily focussing on computational com-
plexity aspects of graph coloring for graph classes characterized by one or two
forbidden induced subgraphs. As noted by Golovach et al. [27], the task to collect
complexity results for graph coloring restricted to other graph classes might be
beyond the scope of a single paper. Our aim is therefore to discuss a number of
such results and open problems not mentioned in [27]. In particular we will identify
a number of gaps in existing complexity results.

The survey is organized as follows. In Sect. 2 we state some terminology.
Then, in Sect. 3, we consider the (classical) complexity of graph coloring, pre-
coloring extension and list colorings for a number of graph classes characterized
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by more than two forbidden induced subgraphs and also for some graph classes
for which some graph parameter is bounded. We discuss parameterized coloring
problems in Sect. 4 and on-line coloring problems in Sect. 5. We briefly consider
graph homomorphisms in Sect. 6.

Colouring

�-List Colouring

List �-Colouring

List Colouring

k-List Colouring

List k-Colouring

k-Precolouring Extension

k-Colouring

Precolouring Extension

Fig. 1. Relationships between Coloring and its variants as shown in [27]. An arrow
from one problem to another indicates that the latter is a special case of the former; k
and � are any two integers for which � ≥ k.

2 Preliminaries

A coloring of a graph G = (V,E) is a vertex mapping c : V → {1, 2, . . .} with the
additional condition that c(u) �= c(v) whenever uv ∈ E. We call c(u) the color
of u. If 1 ≤ c(u) ≤ k for all u ∈ V then c is also called a k-coloring of G. We say
that G is k-colorable if a k-coloring of G exists. The chromatic number χ(G) of G
is the smallest integer k for which G is k-colorable. The Coloring problem is
that of deciding whether a graph G is k-colorable for some given integer k. If k
is fixed (that is, not part of the input) we obtain the k-Coloring problem.

A k-precoloring of a graph G = (V,E) is a mapping cW : W → {1, 2, . . . k}
for some subset W ⊆ V . We say that a k-coloring c of G is an extension of a
k-precoloring cW of G if c(v) = cW (v) for each v ∈ W . For a given graph G, a
positive integer k and a k-precoloring cW of G, the Precoloring Extension

problem asks whether cW can be extended to a k-coloring of G. If k is fixed we
denote this problem as the k-Precoloring Extension problem.

A list assignment of a graph G = (V,E) is a function L with domain V such
that for each vertex u ∈ V , L(u) is a subset of {1, 2, . . . }. This set is called the
list of admissible colors for u. If L(u) ⊆ {1, . . . , k} for each u ∈ V then L is also
called a k-list assignment. The size of a list assignment L is the maximum list
size |L(u)| over all vertices u ∈ V . A coloring c respects L if c(u) ∈ L(u) for all
u ∈ V . This leads to the following three problems. Given a graph G with a list
assignment L, the List Coloring problem is that of testing whether G has a
coloring that respects L. If inputs are restricted to pairs (G,L) where L has size
at most � then we obtain the �-List Coloring problem, and if each L is a k-list
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assignment, we obtain the List k-Coloring problem. See Fig. 1 for a display
of the relationships between the seven problems defined above.

Let G be a graph and {H1, . . . , Hp} be a set of graphs. Then G is said to
be (H1, . . . , Hp)-free if G has no induced subgraph isomorphic to a graph in
{H1, . . . , Hp}. If p = 1, we may write that G is H1-free. The disjoint union
(V (G) ∪ V (H), E(G) ∪ E(H)) of two vertex-disjoint graphs G and H is denoted
by G + H and the disjoint union of r copies of a graph G is denoted by rG. The
complement G of a graph G has vertex set V (G) = V (G) and an edge between
two distinct vertices u and v if and only if u and v are not adjacent in G. We
denote the path and cycle on n vertices by Pn and Cn, respectively.

Let G be a connected graph. The distance d(u, v) between two vertices u and
v in G is the number of edges in a shortest path from u to v in G. The diameter
of G is the maximum of maxv d(u, v) over all vertices u in G. The radius of G is
the minimum of maxv d(u, v) over all vertices u in G.

Let p be a graph parameter and let G be a graph class. We say that G has
bounded p if there exists a constant c such that p(G) ≤ c for all G ∈ G.

3 Classical Complexity

The problems k-Coloring, k-Precoloring Extension, List k-Coloring

and k-List Coloring are polynomial-time solvable for general graphs if k ≤ 2
and NP-complete if k ≥ 3 [52,67]. As mentioned, we refer to the recent survey [27]
for an overview of known results for these problems when restricted to H-free
graphs and (H1,H2)-free graphs. In this section we consider a number of other
graph classes.

Cycle-free Graphs. A hole is a cycle of on at least four vertices. An antihole
is the complement of a hole. A cycle, hole or antihole is even if it contains an
even number of vertices; otherwise it is odd. An (anti)hole is long if it has at
least five vertices. A graph is odd-hole-free or odd-antihole-free if it contains
no induced odd holes or no induced odd antiholes, respectively. In a similar way
we define (even-)hole-free, (even-)antihole-free, long-hole-free, long-antihole-free,
odd-cycle-free and (odd-)anticycle-free graphs.

Grötschel et al. [30] proved that Coloring is polynomial-time solvable for
perfect graphs, or equivalently (due to the Strong Perfect Graph Theorem [14])
for graphs that are odd-hole-free and odd-antihole-free. Note that hole-free
graphs and antihole-free graphs are perfect. Hence Coloring is also polynomial-
time solvable for hole-free graphs and antihole-free graphs, and thus for cycle-free
graphs (forests) and anticycle-free graphs (coforests).

Král’ et al. [49] proved that Coloring is NP-complete for (2P2, C5)-free
graphs and also for (C3, C4, C5)-free graphs. Consequently, Coloring is NP-
complete for long-hole-free graphs and long-antihole-free graphs, and thus for
odd-hole-free graphs and odd-antihole free graphs. In contrast, Coloring is
polynomial-time solvable for odd-cycle-free graphs (bipartite graphs) and odd-
anticycle-free graphs (cobipartite graphs). If we change the parity of the forbid-
den cycles from odd to even, then we obtain two long-standing open problems;
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we refer to the survey of Vušković [68] for more on even-cycle-free graphs (even-
hole-free graphs).

Open Problem 1. Determine the complexity of Coloring for even-cycle-free
graphs and even-anticycle-free graphs.

Table 1. The complexity of k-Precoloring Extension and List k-Coloring on
Pt-free bipartite graphs for fixed k and t.

r k-Precoloring Ext. List k-Coloring

k = 3 k = 4 k = 5 k ≥ 6 k = 3 k = 4 k = 5 k ≥ 6

t ≤ 6 P P P P P P P P

t = 7 ? ? ? ? ? ? ? ?

t = 8 ? ? ? ? ? NP-c NP-c NP-c

t = 9 ? ? ? ? ? NP-c NP-c NP-c

t ≥ 10 ? NP-c NP-c NP-c ? NP-c NP-c NP-c

Bipartite and Chordal Bipartite Graphs. A graph is chordal bipartite if it is bipar-
tite and every induced cycle has exactly four vertices. Hujter and Tuza [41]
proved that Precoloring Extension is linear-time solvable on P5-free bipar-
tite graphs (which are chordal bipartite) and NP-complete for P6-free chordal
bipartite graphs. Kratochv́ıl [50] answered two of their open problems [40] by
proving that 3-Precoloring Extension is NP-complete for planar bipar-
tite graphs and that 5-Precoloring Extension is NP-complete for P14-free
bipartite graphs. The latter result was strengthened by Huang et al. [39], who
proved that, for all k ≥ 4, k-Precoloring Extension is NP-complete for
P10-free chordal bipartite graphs. The same authors [39] also proved that List

4-Coloring is NP-complete for P8-free chordal bipartite graphs.
Brandstädt et al. [5] proved that the class of (C3, P6)-free graphs has bounded

clique-width. By combining their result with results of Kobler and Rotics [48]
and Oum and Seymour [62] we find that, for all k ≥ 1, List k-Coloring

is polynomial-time solvable on (C3, P6)-free graphs (see also e.g. [39]). Table 1
summarizes the above results for Pt-free bipartite graphs.

Open Problem 2. Determine the complexity of the problems k-Precoloring
Extension and List k-Coloring for the missing cases in Table 1.

Huang et al. [39] posed the following two open problems.

Open Problem 3. Determine the complexity of the problems List 3-

Coloring and 3-Precoloring Extension for the class of chordal bipartite
graphs.
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Planar Graphs and Graphs of Bounded Vertex Degree. To recall two classic
results, Garey et al. [26] proved that 3-Coloring is NP-complete even for planar
graphs of maximum degree 4, whereas every planar graph is 4-colorable by the
Four Color Theorem [2]. Chleb́ık and Chleb́ıková [12] strengthened the afore-
mentioned result of Kratochv́ıl [50] for planar bipartite graphs by proving that
3-Precoloring Extension is NP-complete even for planar bipartite graphs of
maximum degree 4. The same authors [12] also showed that List 3-Coloring

is NP-complete for 3-regular planar bipartite graphs but that Precoloring

Extension is polynomial-time solvable for arbitrary graphs of maximum degree
at most 3.

Demange and de Werra [17] proved that 3-Precoloring Extension is
NP-complete for subgrids (which are induced subgraphs of grids and hence have
maximum degree at most 4) and that List 3-Coloring is NP-complete even
for subgrids of maximum degree at most 3, whereas Kratochv́ıl and Tuza [51]
showed that List Coloring is polynomial-time solvable for graphs of maximum
degree 2. Demange and de Werra [17] also proved that List 4-Coloring is NP-
complete for grids, and they posed the following open problem.

Open Problem 4. Determine the complexity of Precoloring Extension

for grids.

When consider graphs of bounded degree that are not necessarily planar a
full complexity classification is known (see [16]) for Coloring, List Color-

ing and Precoloring Extension and also for k-List Coloring, List k-
Coloring and k-Precoloring Extension. However, no dichotomy is known
for k-Coloring restricted to graphs of maximum degree at most d, but some
partial results have been obtained. Molloy and Reed [60] classified the com-
plexity for all pairs (k, d) for sufficiently large d, whereas Emden-Weinert et
al. [19] showed that k-Coloring is NP-complete for graphs of maximum degree
at most k + 	√k� − 1. By combining the latter result with Brooks’ Theorem [8],
we find that the smallest open case is the following problem.

Open Problem 5. Determine the complexity of 5-Coloring for graphs of
maximum degree 6.

Graphs of Bounded Diameter. By using a reduction from 3-Coloring via adding
dominating vertices one can easily show that k-Coloring is NP-complete for
graphs of diameter d for all pairs (k, d) with k ≥ 3 and d ≥ 2 except for two
notorious cases, namely (k, d) ∈ {(3, 2), (3, 3)}. Mertzios and Spirakis [57] settled
the case (k, d) = (3, 3). They proved that, for every 0 ≤ ε < 1, 3-Coloring is
NP-complete even for classes of triangle-free graphs G = (V,E) of diameter 3,
radius 2 and minimum degree δ = Θ(|V |ε).

We note that, for every k ≥ 1 and p ≥ 1, the problems k-Coloring and
k-Precoloring Extension are polynomially equivalent on the class of graphs
of diameter at most p. This can be seen as follows. Firstly, k-Coloring is a
special case of k-Precoloring Extension. Secondly, if we are given a graph G
of diameter at most p with a k-precoloring cW for some W ⊆ V (G), then we
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identify any two vertices of W that are colored alike. Afterwards all precolored
vertices have a distinct color and we add an edge between any two of them
that are not adjacent already. This results in a graph G′ of diameter p and a
k-precoloring c′

W ′ defined on some subset W ′ ⊆ V (G′), such that c′
W ′ can be

extended to a k-coloring of G′ if and only if cW can be extended to a k-precoloring
of G. Moreover, the set W ′ forms a clique of size at most k in G′ meaning that
we may just as well uncolor these vertices, that is, c′

W ′ can be extended to a
k-coloring of G′ if and only if G′ is k-colorable. Hence we only need to consider:

Open Problem 6. Determine the complexity of the problems 3-Coloring and
List 3-Coloring for graphs of diameter 2.

Graphs of Bounded Asteroidal Number. An asteroidal triple in a graph is a set
of three mutually non-adjacent vertices such that each two of them are joined
by a path that avoids the neighborhood of the third. An asteroidal set in a
graph G is an independent set S ⊆ V (G), such that every set of three ver-
tices of S forms an asteroidal triple. The asteroidal number is the size of a
largest asteroidal set in G. Note that graphs with asteroidal number at most 2
have no asteroidal triple. These graphs are also known as AT-free graphs. Sta-
cho [63] proved that 3-Coloring is polynomial-time solvable on AT-free graphs.
Later, Kratsch and Müller [53] extended this result by showing that even Listk-
Coloring is polynomial-time solvable on these graphs for every fixed integer
k ≥ 1. Marx [56] proved that Precoloring Extension is NP-complete for
proper interval graphs, which form a subclass of AT-free graphs. It follows from
a result of Jansen [42] (see [28]) that �-List Coloring (� ≥ 3) is NP-complete
for 3P1-free graphs, and thus for AT-free graphs. However, the following problem,
posed by Broersma et al. [7] in 1999, is still open.

Open Problem 7. Determine the complexity of Coloring for AT-free graphs.

Král’ et al. [49] proved that Coloring is NP-complete for 4P1-free graphs and
thus for graphs with asteroidal number at most 3.

Open Problem 8. Determine, for every k ≥ 3 and p ≥ 3, the complexity of
k-Coloring, k-Precoloring Extension and List k-Coloring on graphs
with asteroidal number at most p.

4 Parameterized Coloring Problems

A problem is called fixed-parameter tractable (FPT) if every instance (I, p) of it
can be solved in time f(p)|I|O(1) where f is a computable function that only
depends on p. If k-Coloring is polynomial-time solvable for some graph class G
for every integer k (and Coloring is not known to be polynomial-time solvable
for G) then k is a natural parameter to consider. We refer to [27] for a survey
on parameterized complexity results (and open problems) with this parameter
for classes of graphs characterized by one or two forbidden induced subgraphs.
Here, we only mention the following open problem of Kratsch and Müller [53].
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Open Problem 9. Is Coloring fixed-parameter tractable for AT-free graphs
when parameterized by k?

Because 3-Coloring is NP-complete in general, other parameters have been
considered. For instance, Marx [55] proved that PreColoring Extension

parameterized by the number of precolored vertices is W[1]-hard for interval
graphs. We survey a number of other results below (see also Table 2).

Arnborg and Proskurowski [3] proved that Coloring is FPT when para-
meterized by the treewidth of the input graph. Fellows et al. [21] showed that
Precoloring Extension and List Coloring are W[1]-hard with this para-
meter. On the positive side, List Coloring is polynomial-time solvable for any
graph class of bounded treewidth, as shown by Jansen and Scheffler [44].

It is known [15] that the clique-width of a graph G is at most 2tw(G)−1, where
tw(G) denotes the treewidth of G. Moreover, by combining results of Kobler and
Rotics [48] and Oum and Seymour [62], one finds that Coloring is polynomial-
time solvable for any graph class of bounded clique-width. Hence, it is natural to
research whether one can improve the FPT result for Coloring from treewidth
to clique-width. However, Fomin et al. [24] showed that Coloring is W[1]-hard
when parameterized by the clique-width of the input graph. We also note that
Precoloring Extension is NP-complete for distance-hereditary graphs [4],
which have clique-width at most 3 [29].

The vertex cover number of a graph G is the size of a smallest subset
U ⊆ V (G), such that G − U is edgeless. Fiala et al. [23] proved that, with
this parameter, Precoloring Extension is FPT and List Coloring is W[1]-
hard even for split graphs. It can be observed [23] that the treewidth of a graph
is at most its vertex cover number. Hence, the aforementioned result of Jansen
and Scheffler [44] implies that List Coloring is polynomial-time solvable for
any graph class of bounded vertex cover number.

The twin cover number of a graph G is the size of a smallest subset U ⊆ V (G),
such that every two adjacent vertices in G − U have the same closed neighbor-
hood in G; note that G−U is a disjoint union of cliques. Ganian [25] proved that
Precoloring Extension is FPT when parameterized by the twin cover num-
ber of the input graph. As the twin cover number of a graph is at most its vertex
cover number (by definition), this result strengthens the aforementioned result
of Fiala, Golovach and Kratochv́ıl [23]. For the same reason, List Coloring is
W[1]-hard when parameterized by the twin cover number.

The cluster vertex deletion number of a graph G is the size of a smallest
subset U ⊆ V (G), such that G − U is a disjoint union of cliques. Note that the
cluster vertex deletion number of a graph G is at most its twin cover number.
However, in contrast to the aforementioned FPT result of Ganian [25], Doucha
and Kratochv́ıl [18] proved that Precoloring Extension is W[1]-hard when
parameterized by the cluster vertex deletion number of the input graph. The
same authors [18] also showed that Coloring is FPT with this parameter. It
is easily seen that List Coloring is polynomial-time solvable for any graph
class G of bounded cluster vertex deletion number. We guess a coloring of the
set U of a graph G ∈ G that respects the given list of each vertex of U . We then
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remove all vertices of U from G after adjusting the lists of the vertices in G − U
accordingly. As G−U is a disjoint union of cliques we can solve List Coloring

in polynomial time (see e.g. [9]). Since |U | is bounded, the maximum number of
colorings of U that we need to guess is polynomial. Hence, the result follows.

For an integer c ≥ 1, the c-bounded cluster vertex deletion number of a
graph G is the size of a smallest subset U ⊆ V (G), such that G − U is a disjoint
union of cliques of size at most c. Doucha and Kratochv́ıl [18] proved that, for
every fixed integer c ≥ 1, Precoloring Extension is FPT when parameterized
by the c-bounded cluster vertex deletion number of the input graph.

Table 2. The complexity of Coloring, Precoloring Extension and List Color-

ing for various graph parameters. All problems are in XP for each parameter except
when para-NP-complete. The relationships, as given in [18], between rows 1–6 are:
1 ≤ 2 ≤ 4 ≤ 6 and 1 ≤ 3 ≤ 5 ≤ 6 and 3 ≤ 4, where x ≤ y means that parameter x is
bounded by (some function of) parameter y. Hence, membership in FPT or XP for a
problem with parameter x carries over to y, and W[1]-hardness for y carries over to x.

Coloring PrecoloringExt. List Col.

clique-width W[1]-hard para-NP-c para-NP-c

treewidth FPT W[1]-hard W[1]-hard

cluster vertex deletion number FPT W[1]-hard W[1]-hard

c-bounded cluster vertex deletion
number

FPT FPT W[1]-hard

twin cover number FPT FPT W[1]-hard

vertex cover number FPT FPT W[1]-hard

Recently, Aboulker et al. [1] considered the number pk of vertices of degree
at least k+1 of the graph G in an instance (G, k) of Coloring. This parameter
is motivated by Brooks’ theorem [8]: if pk(G) = 0 then G is k-colorable unless G
is a complete graph or an odd cycle. They showed that Coloring is FPT when
parameterized by pk.

We now discuss some graph classes that fall under the “distance from triv-
iality” framework, introduced by Guo et al. [31]. For a graph class F and an
integer p we define four classes of “almost F” graphs, i.e. graphs that are, in
some sense, “distance” p apart from F , namely the classes F +pe, F −pe, F +pv
and F − pv, which consist of all graphs that can be modified into a graph of
F by deleting at most p edges, adding at most p edges, deleting at most p ver-
tices and adding at most p vertices, respectively. As Grötschel et al. [30] proved
that Coloring is polynomial-time solvable on perfect graphs, Coloring was
studied from a parameterized point of view for various subclasses F of perfect
graphs. We survey a number of these results below. For every result mentioned,
p is the chosen parameter (see also Table 3 for an overview). In this context a
modulator of a graph is a set of at most p edges or vertices whose removal or
addition makes the graph a member of F .



24 D. Paulusma

Table 3. The complexity of Coloring, when parameterized by p, for classes close
to some subclass F of perfect graphs. The polynomial and FPT cases hold even if a
modulator is not part of the input.

+pe −pe +pv −pv

Bipartite para-NP-c P para-NP-c P

Chordal FPT FPT W[1]-hard P

Interval FPT FPT W[1]-hard P

Split FPT FPT W[1]-hard P

Comparability para-NP-c ? ? P

Complete P FPT FPT P

Cai [9] proved that Coloring is FPT on split+pe graphs and W[1]-hard for
split+pv graphs. The same author [9] also proved that whenever Coloring is
polynomial-time solvable on a graph class F that is closed under edge contraction
and a modulator is given, then Coloring is FPT on F −pe. As a result, Color-

ing is FPT for split−pe graphs, and also for interval−pe graphs1 and chordal−pe
graphs. Note that we obtain polynomial-time solvability for F − pv whenever
F is a class of perfect graphs closed under vertex deletion(as in that case it
holds that F − pv = F). Cai [9] also proved that Coloring is NP-complete
for bipartite+2v graphs and for bipartite+3e graphs but linear-time solvable
onbipartite+1v and bipartite+2e graphs. Marx [55] showed that Coloring is
FPT2 on interval+pe graphs and also on chordal+pe graphs but W[1]-hard for
interval+pv graphs and for chordal+pv graphs.

An (undirected) graph is a comparability graph if there exists an assign-
ment of exactly one direction to each of its edges such that (u,w) is a directed
edge whenever (u, v) and (v, w) are directed edges. Takenaga and Higashide [64]
proved that Coloring, restricted to comparability+pe graphs, is polynomial-
time solvable for p = 1 and NP-complete for p ≥ 2. They also proved that
Coloring is polynomial-time solvable on comparability−1e graphs.

Open Problem 10. Determine the complexity of Coloring for the classes of
comparability−pe graphs and comparability+pv graphs when parameterized by p.

We now consider the class of complete graphs. It is known that List Col-

oring is FPT for complete−pe graphs [28]. We observe that List Coloring

is polynomial-time solvable on complete+pe graphs and complete−pv graphs
(because such graphs are complete and List Coloring is polynomial-time solv-
able even on block graphs [4]). In contrast to the aforementioned W[1]-hardness

1 Villanger et al. [66] proved afterward that a modulator can be computed in FPT
time.

2 For the two FPT results it was proven later, namely by Cao [10] and Marx [54],
respectively, that a modulator does not have to be part of the input (but can be
computed in FPT time as well).
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results of Coloring for split+pv, interval+pv and chordal+pv graphs, it holds
that Coloring is FPT for complete+pv graphs, as shown by Cai [9]. Golovach
et al. [28] posed the following open problem.

Open Problem 11. Determine the complexity of List Coloring and Pre-

coloring Extension for complete+pv graphs when parameterized by p.

Jansen and Kratsch [43] and de Weijer [69] considered the k-Coloring problem
for various graph classes F + pv in order to obtain polynomial kernels (also
some negative results are shown, for instance, 3-Coloring on path+pv has no
polynomial kernel unless NP⊆ coNP/poly [43]).

5 On-Line Coloring

In this section we focus on the on-line setting of graph coloring. On-line coloring
algorithms were introduced by Gyárfás and Lehel [35] to model a rectangle
packing problem related to dynamical storage allocation. In this setting the
graph is presented vertex by vertex according to some externally determined
ordering. An on-line coloring algorithm irrevocably colors the vertices when they
come in by using a strategy that depends only on the subgraph induced by the
revealed vertices and their colors. A well-known example of an on-line coloring
algorithm is First-Fit which assigns, starting from the empty graph, each new
vertex the least color from {1, 2, . . .} that does not appear in its neighborhood.
We refer to the survey of Kierstead [45] for more details.

Non-surprisingly, the number of colors used by an on-line coloring algorithm
for an arbitrary graph G can be much larger than the chromatic number of G.
Below we define three measures for the performance of an on-line algorithm on
graphs of some specified class Gafter first giving some additional terminology.

Let AOL(G) be the (finite) set of all on-line coloring algorithms for a graph G.
Let Π(G) be the set of all permutations of the vertices of G. For A ∈ AOL(G)
and π ∈ Π(G), let χA(G, π) denote the number of colors used by A when the
vertices of G are presented to A according to π. The A-chromatic number χA(G)
of G is the largest number of colors used by A to color G, that is,

χA(G) = max
π∈Π(G)

χA(G, π).

An algorithm A is an on-line coloring algorithm for some graph class G if
A ∈ AOL(G) for every G ∈ G. We let AOL(G) be the set of on-line coloring
algorithms for G.

A natural performance measure for an on-line coloring algorithm, introduced
by Gyárfás and Lehel [35], is to determine whether the number of colors it uses
on any graph G ∈ G is bounded from above by a function that only depends
on the chromatic number of G. Formally, for a graph class G, we say that an
algorithm A ∈ AOL(G) is competitive if there exists a χ-bounding function f ,
that is, a function f such that

χA(G) ≤ f(χ(G)) for every G ∈ G.
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In that case G is said to be on-line χ- bounded. For example, the class of P4-free
graphs is on-line χ-bounded, because First-Fit colors every P4-free graph G
with χ(G) colors [35]. It is also known that First-Fit is competitive for inter-
val graphs with a linear χ-bounding function [46]. Consequently, the class of
interval graphs is on-line χ-bounded as well. Every class of graphs with bounded
independence number [11] is also on-line χ-bounded, just as the class of P5-free
graphs [33]. In fact, Gyárfás and Lehel [33] proved a stronger statement, namely
that the class of P5-free graphs is on-lineω-bounded, that is, there exists an on-
line coloring algorithm A and a function g, called an ω-bounding function, such
that χA(G) ≤ g(ω(G)) for every P5-free graph G. This result has been extended
by Kierstead et al. [47] who proved that, for every tree T of radius at most 2, the
class of T -free graphs is on-line ω-bounded (with a superexponential ω-bounding
function). As a special case of their result we find that the class of cocompa-
rability graphs is on-line ω-bounded. More recently, Felsner et al. [22] gave a
cubic ω-bounding function for a subclass of cocomparability graphs, namely for
the class of intersection graphs of convex sets spanned between two lines (their
algorithm uses the intersection representation as input).

Despite all the above results there exist many graph classes, such as the class
of trees [35], for which no competitive on-line coloring algorithm exists. These
negative results lead to a natural definition of a weaker form of competitiveness,
namely on-line competitiveness, which is defined as follows. The on-line chro-
matic number χOL(G) of G is the smallest number of colors used by any on-line
coloring algorithm for G, that is,

χOL(G) = min
A∈AOL(G)

χA(G).

Then, for a graph class G, an algorithm A ∈ AOL(G) is said to be on-line
competitive if there exists a function h such that

χA(G) ≤ h(χOL(G)) for every G ∈ G.

In that case G is said to be on-line χOL-bounded. This performance measure was
coined by Gyárfás et al. [32], who proved that the class of graphs with girth
at least 5 is on-line χOL-bounded, but results of this type have been obtained
before the term was formally introduced. For instance, Gyárfás and Lehel [34]
proved that, for any tree T , First-Fit uses χOL(T ) colors.

By combining known and new results, Broersma et al. [6] proved that, for all
bipartite graphs H on at most five vertices, the class of H-free bipartite graphs is
on-line χOL-bounded. If H has six or more vertices the situation is not clear. For
instance it is not known whether the class of C6-free bipartite graphs is on-line
χOL-bounded. In fact this is not even known for its subclass of chordal bipartite
graphs.

Open Problem 12. Is the class of chordal bipartite graphs on-lineχOL-bounded?

Now consider Pt-free bipartite graphs. Broersma et al. [6] proved that the
class of P7-free bipartite graphs is on-line χOL-bounded. The algorithm behind
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their result is based on a certain way of coloring the vertices of a complete
bipartite graph with classes {u1, . . . , um} and {v1, . . . , vm} minus a perfect
matching {u1v1, u2v2 . . . , umvm}. If the ordering is u1, v1, u2, v2, . . . , um, vm,
then First-Fit assigns colors 1, 1, 2, 2, . . . ,m,m, so m colors in total. However,
assigning colors 1, 1, 2, 3 to the first four vertices u1, v1, u2, v2 in this ordering
requires only three colors in total. The algorithm for P7-free bipartite graphs
expands on this approach and uses two disjoint lists of colors for the biparti-
tion classes of each connected component in the subgraph revealed so far. Then,
whenever two connected components are glued together by an incoming vertex,
it tries to prevent the “mixing” of these color lists as much as possible. Recently,
Micek and Wiechert refined and extended this approach. In this way they could
prove that the classes of P8-free bipartite graphs [58] and even P9-free bipartite
graphs [59] are on-line χOL-bounded. This leads to the following open problem.

Open Problem 13. Is the class of Pk-free bipartite graphs on-line χOL-
bounded for every k ≥ 1?

As P5-free graphs and P6-free bipartite graphs are on-line ω-bounded and on-line
χOL-bounded, respectively, the following problem from [6] is of interest as well.

Open Problem 14. Is the class of (C3, P6)-free graphs on-line χOL-bounded?

Solving Open Problems 12–14 may lead to new on-line χOL-bounded classes of
graphs. Unlike the competitive variant, no negative results are known.

Open Problem 15. Is the class of all graphs on-line χOL-bounded?

6 Conclusions

We surveyed a number of results and open problems for Coloring for restricted
graph classes. We did so both in an off-line and on-line setting and also consid-
ered the more general variants Precoloring Extension and List Coloring.
Another way of generalizing the concept of graph coloring is to consider graph
homomorphisms. A graph homomorphism from a graph G to a graph H is a
mapping f : V (G) → V (H) such that f(u)f(v) ∈ EH whenever uv ∈ EG. For a
fixed graph H, the problem H-Homomorphism tests whether a given graph G
allows a homomorphism to H. If we choose H to be the complete graph on k
vertices, then this problem is equivalent to k-Coloring. We refer to the survey
of Hell and Nešetřil [37] for more on graph homomorphisms.

The classical result in the area of graph homomorphisms is the Hell-Nešetřil
dichotomy theorem [38] which states that H-Homomorphism is solvable in poly-
nomial time if H is bipartite, and NP-complete otherwise. It is a natural question
whether tractability results can be obtained for non-bipartite graphs H when
the input is restricted to some graph class. Not so many results are known in this
direction for hereditary graph classes, but to give an example, Enright et al. [20]
proved that, for every fixed graph H, the list version of H-Homomorphism is
polynomial-time solvable for a superclass of graphs that contains the classes of
permutation graphs and interval graphs.
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Abstract. We present scheduling problems that stem from optical
networks, and discuss their complexity. We present lower bounds and
inapproximability results for several optimization problems. They include
offline and online scenarios, and concern problems that optimize the use
of components in the optical networks, specifically Add-Drop Multiplex-
ers (ADMs) and regenerators.

1 Introduction - Optical Networks

1.1 Background and Problem Definition

Background: Optical wavelength-division multiplexing (WDM) is the most
promising technology today that enables us to deal with the enormous growth of
traffic in communication networks, like the Internet. Optical fibers using WDM
technology can carry around 80 wavelengths (colors) in real networks and up to
few hundreds in testbeds. As satisfactory solutions have been found for various
coloring problems, the focus of studies shifts from the number of colors to the
hardware cost. These new measures provide better understanding for designing
and routing in optical networks.

A communication between a pair of nodes is done via a lightpath, which is
assigned a certain wavelength. In graph-theoretic terms, a lightpath is a simple
path in the network, with a color assigned to it. We concentrate on the hardware
cost, in terms of ADMs and regenerators.

ADMs: Each lightpath uses two Add-Drop Multiplexers (ADMs), one at each
endpoint. If two adjacent lightpaths, i.e. lightpaths sharing a common endpoint,
are assigned the same wavelength, then they can use the same ADM, provided
their concatenation is a simple path. An ADM may be shared by at most two
lightpaths. The total cost considered is the total number of ADMs. For a detailed
technical explanation see [14].

Stated in graph-theoretic terms, we are given a set of paths P, and need
to assign them colors, such that two edge-intersecting paths must get different
colors. (The issue of vertex-intersecting paths will not be discussed here.) Such
a color assignment is termed a legal coloring. Path that share an endpoint can
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get the same color. The cost is measured in terms of the total number of ADMs.
As each path is using two ADMs, one at each endpoint, the total number of
ADMs is 2|P|. When two paths that share an endpoint get the same color, we
save one ADM, so the cost is 2|P| minus the number of these savings. The goal
is to minimize the total number of ADMs. We thus the following minimization
problem:

ADM minimization (MinADM)

Input: A graph G = (V,E), a set P of simple paths in G.
Output: A legal coloring of P.
Objective: Minimize the number of ADMs.

Regenerators: The energy of the signal along a lightpath decreases and thus
amplifiers are used every fixed distance. Yet, as the amplifiers introduce noise
into the signal there is a need to place a regenerator every at most d hops.

The length of a lightpath is the number of edges it contains. The internal
vertices (resp. edges) of a lightpath or a path � are the vertices (resp. edges) in
� different from the first and the last one. Given an integer d, a lightpath � is d-
satisfied if there are no d consecutive internal vertices in � without a regenerator.
A set of lightpaths is d-satisfied if each of its lightpaths is d-satisfied. Given p
sets of lightpaths L1, . . . , Lp, with Li = {�i,j | 1 ≤ j ≤ xi} (that is, xi is the
number of lightpaths in the set Li), we consider the union of all lightpaths in the
p sets ∪Li = {�i,j | 1 ≤ i ≤ p, 1 ≤ j ≤ xi}. An assignment of regenerators is a
function reg : V ×∪Li → {0, 1}, where reg(v, �) = 1 if and only if a regenerator is
used at vertex v by lightpath �. When one set of lightpaths is given, the number
of regenerators put at node v is reg(v). We present two problems.

The first problem considers a scenario where we are given a finite set of p
possible traffic patterns (each given by a set of lightpaths), and our objective is
to place the minimum number of regenerators at the nodes so that each of the
traffic patterns is satisfied. Thus, given p ≥ 1 sets of lightpaths, and a distance
d ≥ 1, we need to determine the smallest number of regenerators that d-satisfy
each of the p sets. Formally, for two fixed integers d, p ≥ 1, the optimization
problem we study is defined as follows.

(d, p)-Total Regenerators ((d, p)-TR)

Input: An undirected graph G = (V,E) and p sets of lightpaths L =
{L1, . . . , Lp}.

Output: A function reg : V × ∪Li → {0, 1} s.t. each lightpath in ∪Li

is d-satisfied.

Objective: Minimize
∑

v∈V reg(v) (reg(v) = max1≤i≤p

∑
�∈Li

reg(v, �)).

When p = 1 (that is, when there is a single set of requests) the problem
is trivially solvable in polynomial time, as the regenerators can be placed for
each lightpath independently. The case d = 1 is not interesting either, as for
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each internal vertex v ∈ V and each � ∈ ∪Li, reg(v, �) = 1, so there is only one
feasible solution, which is optimal.

The second problem deals with the case where there is a limit imposed by the
technology on the number of regenerators that can be placed in a network node
[5,11]. We denote this limit by k and refer to the case where this limit is not likely
to be reached by any regenerator placement as k = ∞. When k = ∞ we consider
the regenerator location problem (Rlp) where the objective is to minimize the
number of nodes that are assigned regenerators. When k is bounded there are
inputs for which there is no feasible regenerator placement that satisfies both
conditions. For example, consider the case d = 2 and k = 1, and three identical
lightpaths u − v − w − x. Each of these lightpaths must have a regenerator
either at v or w, and this is clearly impossible. In this case we consider the Path
Maximization Problem (MaxPATH) that seeks for regenerator placements that
serve as many lightpaths as possible, as follows:

Path Maximization (MaxPATH)

Input: An undirected graph G = (V,E), a set P of paths in G, d, k ≥ 1.
Output: A regenerator assignment reg for which reg(v) ≤ k for every
node v ∈ V .
Objective: Maximize the number of paths of P that are d-satisfied.

Approximation Algorithms: Given an NP-hard minimization problem Π,
we say that a polynomial-time algorithm A is an α-approximation algorithm
for Π, with α ≥ 1, if for any instance of Π, algorithm A finds a feasible solu-
tion with cost at most α times the cost of an optimal solution. In complexity
theory, the class APX (Approximable) contains all NP-hard optimization prob-
lems that can be approximated within a constant factor. The subclass PTAS

(Polynomial Time Approximation Scheme) contains the problems that can be
approximated in polynomial time within a ratio 1+ε for any fixed ε > 0. In some
sense, these problems can be considered to be easy NP-hard problems. Since,
assuming P �= NP, there is a strict inclusion of PTAS in APX (for instance,
Minimum Vertex Cover ∈ APX \ PTAS), an APX-hardness result for a
problem implies the non-existence of a PTAS unless P = NP.

Online Algorithms: An online minimization algorithm is said to be c-
competitive if for any input, it produces a solution that is at most c times
that used by an optimal offline algorithm (see [4]).

The motivation for the online scenario in the context of optical networks
stems from the need to utilize the cost of use of the optical network. We assume
that the switching equipment (ADMs or regenerators) is already installed in the
network. Once a lightpath arrives, we need to assign it a color, and our target
is to optimize the objective function.

1.2 Previous Work

We list below some previous works regarding optimization problems for ADMs
and regenerators.
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ADMs: Minimizing the number of ADMs in optical networks is a main research
topic in recent studies. The problem was introduced in [14] for the ring topology.
An approximation algorithm for the ring topology with approximation ratio of
3
2 was presented in [7], and was improved in [9,21] to 10

7 + ε and 10
7 , respectively.

For general topology [8] described an algorithm with approximation ratio of
8
5 . The same problem was studied in [6] and an algorithm with an approximation
ratio of 3

2 + ε was presented. This algorithm is further analyzed in [13].
The problem of online path coloring is studied in earlier works, such as [16].

The problem studied in these works has a different objective function, namely
the number of colors.

Regenerators: Placement of regenerators in optical networks has become an
active area in recent years. Most of the researches have focused on the tech-
nological aspects of the problems. Moreover, heuristics and simulations have
been performed in order to reduce the number of regenerators are performed in
(e.g., [5,10,15,19,22,24,25]). The regenerator location problem (Rlp) was shown
to be NP-complete in [5], followed by heuristics and simulations. In [11] theoret-
ical results for the offline version of Rlp are presented. The authors study four
variants of the problem, depending on whether the number k of regenerators per
node is bounded, and whether the routings of the requests are given. Regarding
the complexity of the problem, they present polynomial-time algorithms and
NP-completeness results for a variety of special cases.

We note that while considering the path topology, Rlp has implications
for the following scheduling problem: Assume a company has n cars and that
car i needs to be serviced within every at most d days between day ai and
bi. Furthermore, assume that the garage can serve at most k cars per day and
charges a certain cost each time the garage is used. The objective is to service
the cars in the fewest number of days and hence minimizing the number of times
the garage is used.

Other objective functions have also been considered in the context of regen-
erator placement. e.g., in [17] the problem of minimizing the total number of
regenerators is studied under other settings.

2 In This Paper

We present scheduling problems that stem from optical networks, and discuss
their complexity. We present lower bounds and inapproximability results for
several optimization problems. They include offline and online scenarios, and
concern problems that optimize the use of components in the optical networks,
specifically ADMs and regenerators.

We start with the (d, p)-Total Regenerators ((d, p)-TR) problem. In schedul-
ing this corresponds to the case where we have p sets of jobs, each needs a
service within d time units (d−satisfied), and we need to place a smallest num-
ber of machines such that for each set A, each of the jobs in A is d-satisfied.
In [17] we provided hardness results and approximation algorithms for the (d, p)-
TR problem. We proved that for any fixed integers d, p ≥ 2, (d, p)-TR does not
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admit a PTAS unless P = NP, even if the underlying graph G has maximum
degree at most 3, and the lightpaths have length at most 2d. We complemented
this hardness result with a constant-factor approximation algorithm with ratio
min{p,Hd·p−1/2}, where Hn =

∑n
i=1

1
i is the n-th harmonic number. We proved

that (d, p)-TR is polynomial-time solvable in paths when all the lightpaths share
the first (or the last) edge, as well as when the maximum number of lightpaths
sharing an edge is bounded. In this paper we show that (d, p)-TR does not admit
a PTAS; this result is presented in Sect. 3.

We then study the online version of the ADM minimization (MinADM)
problem. This corresponds to scheduling jobs to machines, where the cost is
associated with opening a machine, closing a machine, or moving a machine
from one job to another. In [20] we showed a competitive ratio of 7

4 for any
network topology, including rings of size at least four, 5

3 for a triangle network,
and 3

2 for a path topology, and showed that these results are best possible. In
this paper we present the lower bound of 3

2 for a path topology; this result is
presented in Sect. 4.

We continue by discussing the online version of the Path Maximization
(MaxPATH) problem, following [18]. When there is a bound on the number
of regenerators in a single node, there is not necessarily a solution for a given
input. We distinguish between feasible inputs and infeasible ones. For the latter
case our objective is to satisfy the maximum number of lightpaths. For a path
topology we consider the case where d = 2, and show a lower bound of

√
l/2

for the competitive ratio (where l is the number of internal nodes of the longest
lightpath) on infeasible inputs, and a tight bound of 3 for the competitive ratio
on feasible inputs.In scheduling this corresponds to the case where we are given
a set of predetermined routes in a network whose topology is a graph G, with
servers at the nodes (a server can serve only one user), and a positive integer
d. Each route represents a user, who is satisfied when it can use a server every
at most d consecutive edges.In this paper we present the above-mentioned lower
bounds of

√
l/2 for the competitive ratio for general instances which may be

infeasible, and the tight bound of 3 for the competitive ratio of deterministic
online algorithms for feasible instances; these results are presented in Sect. 5.

Last we consider the problem of minimizing the number of regenerators, in
the case where one regenerator can serve up to g lightpaths. This corresponds
to the notion of grooming in optical networks. In scheduling this corresponds
to the case in which up to g jobs can be processed simultaneously by a single
machine. The goal is to assign the jobs to machines so that the total busy time
is minimized. The problem is known to be NP-hard already for g = 2. Following
[12], we present an algorithm whose competittive ratio is between 3 and 4; this
is shown in Sect. 6.

3 (d, p)-Total Regenerators

In this section we prove that, unless P = NP, (d, p)-TR does not admit a PTAS

for any d, p ≥ 2, even if the underlying graph G has maximum degree at most 3
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and the lightpaths have length O(d). Before this, we need two technical results
to be used in the reductions.

Minimum Vertex Cover is known to be APX-hard in cubic graphs [2].
By a simple reduction, we prove in the following lemma that Minimum Vertex

Cover is also APX-hard in a class of graphs with degree at most 3 and high
girth, which will be used in the sequel.

Lemma 1. Minimum Vertex Cover is APX-hard in the class of graphs H
obtained from cubic graphs by subdividing each edge twice.

Proof. Given a cubic graph G, let H the graph obtained from G by subdividing
each each twice. That is, each edge {u, v} gets replaced by 3 edges {u, ue},
{ue, ve}, and {ve, v}, where ue, ve are two new vertices. We now claim that

OPTVC(H) = OPTVC(G) + |E(G)| , (1)

where OPTVC indicates the size of a minimum vertex cover. Indeed, let SG ⊆
V (G) be a vertex cover of G. We proceed to build a vertex cover SH of H of
size |SG| + |E(G)|. First, include in SH all the vertices in SG. Then, for each 3
edges {u, ue}, {ue, ve}, and {ve, v} of H corresponding to edge {u, v} ∈ E(G),
the edge {ue, ve} is not covered by SG, and at least one of {u, ue} and {ve, v} is
covered by SG. Therefore, adding either ue or ve to SH covers the three edges
{u, ue}, {ue, ve}, and {ve, v}. This procedure defines a vertex cover of H of size
|SG| + |E(G)|. Conversely, let SH ⊆ V (H) be a vertex cover of H, and let us
construct a vertex cover SG of G of size at most |SH | − |E(G)|. We shall see
that we can construct SG from SH by decreasing the cardinality of SH by at
least one for each edge of G. Indeed, consider the three edges {u, ue}, {ue, ve},
and {ve, v} of H corresponding to an edge e = {u, v} ∈ E(G). Note that at least
one of ue and ve belongs to SH . If both ue, ve ∈ SH , add either u or v to SG if
none of u, v was already in SG. Otherwise, if exactly one of ue and ve (say, ue)
belongs to SH , then at least one of u and v must also belong also to SH , and do
not add any new vertex to SG.

Note that as G is cubic, each vertex in a solution SG covers exactly 3 edges,
so |E(G)| ≤ 3 · OPTVC(G).

In order to prove the lemma, assume for contradiction that there exists a
PTAS for Minimum Vertex Cover in H. That is, for any ε > 0, we can find
in polynomial time a solution SH ⊆ V (H) such that |SH | ≤ (1+ε) ·OPTVC(H).
By the above discussion, we can find a solution SG ⊆ V (G) such that

|SG| ≤ |SH | − |E(G)|
≤ (1 + ε) · OPTVC(H) − |E(G)|
= (1 + ε) · (OPTVC(G) + |E(G)|) − |E(G)|
= (1 + ε) · OPTVC(G) + ε · |E(G)|
≤ (1 + ε) · OPTVC(G) + 3ε · OPTVC(G)
= (1 + 4ε) · OPTVC(G) ,
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Fig. 1. (a) A two-coloring of the edges of the Petersen graph (grey and black) such
that each monochromatic component is a path of length at most 5. (b) Construction of
the lightpaths from a path of length 2 for several values of d, in the proof of Theorem 2.
Full dots correspond to vertices of the Vertex Cover instance (called black in the
proof).

where we have used Eq. (1) and the fact that |E(G)| ≤ 3 · OPTVC(G). That is,
the existence of a PTAS for Minimum Vertex Cover in the class of graphs
H would imply the existence of a PTAS in the class of cubic graphs, which is a
contradiction by [2] unless P = NP. ��

It is known that the edges of any cubic graph can be two-colored such that
each monochromatic connected component is a path (of any length) [1]. In fact,
solving a conjecture of Bermond et al. [3], Thomassen proved [23] a stronger
result: the edges of any cubic graph can be two-colored such that each mono-
chromatic connected component is a path of length at most 5 (see Fig. 1(a) for an
example). In addition, the aforementioned colorings can be found in polynomial
time [1,23]. Note that in such a coloring of a cubic graph, each vertex appears
exactly once as an endpoint of a path, and exactly once as an internal vertex
of another path. We next show that these results can be easily strengthened for
the family of graphs H defined in Lemma 1.

Lemma 2. Let H be the class of graphs obtained from cubic graphs by subdivid-
ing each edge twice. The edges of any graph in H can be two-colored in polynomial
time such that each monochromatic connected component is a path of length at
most 2.

Proof. Let H ∈ H be a graph obtained from a cubic graph G by subdividing
each each twice. That is, edge {u, v} of G gets replaced by 3 edges {u, ue},
{ue, ve}, and {ve, v} in H. Find a two-coloring of the edges of G such that each
monochromatic connected component is a path, using [1] or [23]. To color the
edges of H, do the following for each edge {u, v} of G: color {u, ue} and {ve, v}
with the same color as {u, v}, and color {ue, ve} with the other color. It is then
easy to check that each monochromatic connected component of the obtained
two-coloring of H is a path of length at most 2. ��

We now present the main results of this section. For the sake of presentation,
we first present in Theorem 1 the result for the case d = p = 2, and then we
show in Theorem 2 how to extend the reduction to any fixed d, p ≥ 2.

Theorem 1. (2, 2)-TR does not admit a PTAS unless P = NP, even if G has
maximum degree at most 3 and the lightpaths have length at most 4.
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Proof. The reduction is from Minimum Vertex Cover (VC for short) in the
class of graphs H obtained from cubic graphs by subdividing each edge twice,
which does not admit a PTAS by Lemma 1 unless P = NP. Note that by
construction any graph in H has girth at least 9. Given a graph H ∈ H as
instance of VC, we proceed to build an instance of (2, 2)-TR. We set G = H,
so G has maximum degree at most 3.

To define the two sets of lightpaths L1 and L2, let {E1, E2} be the parti-
tion of E(H) given by the two-coloring of Lemma 2. Therefore, each connected
component of H[E1] and H[E2] is a path of length at most 2. Each such path
in H[E1] (resp. H[E2]) will correspond to a lightpath in L1 (resp. L2), which
we proceed to define. A key observation is that, as the paths of the two-coloring
have length at most 2, if any endpoint v of such a path P had one neighbor in
V (P ), it would create a triangle, a contradiction to the fact that the girth of H
is at least 9. Therefore, as the vertices of H have degree 2 or 3, any endpoint v
of a path P has at least one neighbor in V (H) \ V (P ).

We are now ready to define the lightpaths. Let P be a path with endpoints
u, v, and let u′ (resp. v′) be a neighbor of u (resp. v) in V (H) \ V (P ), such
that u′ �= v′ (such distinct vertices u′, v′ exist because P has length at most 2
and H has girth at least 9; in fact we only need H to have girth at least 5).
The lightpath associated with P consists of the concatenation of {u′, u}, P , and
{v, v′}. Therefore, the length of each lightpath is at most 4. This completes the
construction of the instance of (2, 2)-TR. Observe that since we assume that
d = 2, regenerators must be placed in such a way that all the internal edges
of a lightpath (that is, all the edges except the first and the last one) have a
regenerator in at least one of their endpoints. We can assume without loss of
generality that no regenerator serves at the endpoints of a lightpath, as the
removal of such regenerators does not alter the feasibility of a solution. Note
that in our construction, each vertex of G appears as an internal vertex in at
most two lightpaths, one (possibly) in L1 and the other one (possibly) in L2, so
we can assume that reg(v) ≤ 1 for any v ∈ V (G).

We now claim that OPTVC(H) = OPT(2,2)−TR(G, {L1, L2}).
Indeed, let first S ⊆ V (H) be a vertex cover of H. Placing one regenerator

at each vertex belonging to S defines a feasible solution to (2, 2)-TR in G with
cost |S|, as at least one endpoint of each internal edge of each lightpath contains
a regenerator. Therefore, OPTVC(H) ≥ OPT(2,2)−TR(G, {L1, L2}).

Conversely, suppose we are given a solution to (2,2)-TR in G using r regen-
erators. Since E1 and E2 are a partition of E(G) = E(H) and the set of
internal edges of the lightpaths in L1 (resp. L2) is exactly E1 (resp. E2), the
regenerators placed at the endpoints of the internal edges of the lightpaths
constitute a vertex cover of H of size at most r. Therefore, OPTVC(H) ≤
OPT(2,2)−TR(G, {L1, L2}).

Summarizing, since OPTVC(H) = OPT(2,2)−TR(G, {L1, L2}) and any feasi-
ble solution to OPT(2,2)−TR(G, {L1, L2}) using r regenerators defines a vertex
cover of H of size at most r, the existence of a PTAS for (2, 2)-TR would imply
the existence of a PTAS for Vertex Cover in the class of graphs H, which is
a contradiction by Lemma 1, unless P = NP. ��
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The result can be extended to general values of d and p (for details see [17]):

Theorem 2. (d, p)-TR does not admit a PTAS for any d ≥ 2 and any p ≥ 2
unless P = NP, even if the underlying graph G satisfies Δ(G) ≤ 3 and the
lightpaths have length at most 2d.

4 Online ADMs Minimization

Theorem 3. For any ε > 0, there is no (32 − ε)-competitive deterministic algo-
rithm for path topology.

Proof. Let G be a path with 2k nodes u1, v1, u2, v2, ..., uk, vk, u1 < v1 < u2 <
v2 < ... < uk < vk. Let ALG be any deterministic algorithm. The value of k will
be determined later.

The adversary works in two phases. In the first phase the input is a1, a2, ..., ak

where ∀i, ai = (ui, vi). In the second phase the input depends on the decisions
made by ALG during the first phase. Let w(ai) be the color assigned by the
algorithm to path ai. For every 1 ≤ i < k, if w(ai) = w(ai+1) then the input
contains two paths bi = (u1, ui+1) and b′

i = (vi, vk), otherwise the input contains
one path ci = (vi, ui+1).

Let 0 ≤ x ≤ k − 1 be the number of times w(ai) = w(ai+1) is satisfied. Then
w(ai) �= w(ai+1) is satisfied k − 1 − x times.

During the first phase the algorithm uses 2k ADMs, one for each node.
For the paths bi and b′

i, let λ = w(ai)(= w(ai+1)). λ is not feasible neither
for bi nor for b′

i. Then the algorithm assigns other colors to bi and b′
i, and it uses

4 ADMs, for a total of 4x ADMs.
For the path ci, let λ = w(ai) and λ′ = w(ai+1)(�= λ), coloring ci with one of

these colors ALG uses one ADM, otherwise it uses 2 ADMs. Therefore for the
paths ci, ALG uses at least k − 1 − x ADMs.

Summing up, we get that ALG uses at least 2k+4x+(k−1−x) = 3(k+x)−1
ADMs.

On the other hand the following solution is possible. For any consecutive
paths ci, ci+1, ..., ci+j color such that w(bi−1) = w(ai) = w(ci) = w(ai+1) =
w(ci+1) = ... = w(ci+j) = w(ai+j+1) = w(b′

i+j+1). This solutions use 2k + 2x
ADMs, one ADM at each ui, vi, x additional ADMs at u1, and x additional
ADMs at vk.

Therefore the competitive ratio of ALG is at least 3(k+x)−1
2(k+x) = 3

2 − 1
2(k+x) ≥

3
2 − 1

2k . For any ε > 0 we can choose k > 1
2ε , so that the competitive ratio of

ALG is bigger then 3
2 − ε. ��

5 Online Path Maximization

We consider the simple instance of the MaxPATH problem, i.e. the case where
the network is a path, d = 2, and at most one regenerator can be place in one
location.
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We say that an instance is feasible, if there is a regenerator assignment that
d-satisfies all the paths in P, and infeasible otherwise. We show that if the
input instance is infeasible, no online algorithm (for MaxPATH) has a small
competitive ratio; precisely, we show that no online algorithm is better than√

l/2-competitive, where l is the length of the longest path in the input. We
then focus on feasible instances.

For infeasible instances we have the following result:

Lemma 3. Consider the path topology. For k = 1 and d = 2, any deterministic
online algorithm for MaxPATH has a competitive ratio at least

√
l/2, where l

is the number of internal vertices of the longest path.

Proof. The adversary first releases a path of length l+1 with l internal vertices.
The online algorithm has to satisfy this path,otherwise, the competitive ratio
is unbounded. Then the adversary releases

√
l paths along the first path each

with
√

l (disjoint) internal vertices. If the online algorithm does not satisfy any
of these paths, the competitive ratio is at least

√
l and we are done. Suppose x

of these paths are satisfied. In order to make the first path and these x paths
2-satisfied, there is one regenerator placed in each node along these x paths. For
each of these x paths P , the adversary releases

√
l/2 paths along P each with

two (disjoint) internal vertices. The online algorithm is not able to satisfy any
of these short paths and the total number of 2-satisfied paths is x + 1. On the
other hand, the optimal offline algorithm satisfies all the paths except the first
path of length l, i.e.,

√
l +x

√
l/2 paths. As a result, the competitive ratio of the

online algorithm is (x+2)
√

l
2(x+1) >

√
l/2. ��

We now consider feasible instances, that is, instances, where there exists a
placement of regenerators such that all paths are satisfied. We prove that, for
feasible instances, there is a tight bound of 3 for the competitive ratio. Here we
show a lower bound of 3 for the competitive ratio of every deterministic online
algorithm for feasible instances. We also show (see [18]) an online algorithm
which achieves the competitive ratio of 3.

Note that a regenerator assignment 2-satisfies a path P if and only if it con-
stitutes a vertex cover of the edges of P , except its first and last edges. Therefore,
in this section, for simplicity we assume that the leftmost and rightmost edges
of the paths have been removed and a regenerator assignment is a vertex cover
of the edges of the paths.

Theorem 4. Any deterministic online algorithm for MaxPATH has a compet-
itive ratio at least 3 even when the instance is restricted to feasible ones on path
topologies and k = 1, d = 2.

Proof. We will prove that, for every ε > 0, there exist infinitely many inputs
such that every algorithm has competitive ratio at least 3−ε. Choose an integer
n, such that 2

n+1 < ε. The adversary provides initially a path P0 with 13n − 2
edges. The algorithm must satisfy the path P0, since otherwise the adversary
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stops and the competitive ratio is infinite. We divide P0 into n subpaths Pi,
i = 1, 2, . . . , n, with 11 edges each, where between two consecutive subpaths
there exist two edges.

Consider any such subpath Pi, i = 1, 2, . . . , n. Suppose that there exist two
edges ab and cd of Pi, where {a, b}∩{c, d} = ∅, such that reg(a, P0) = reg(b, P0) =
reg(c, P0) = reg(d, P0) = 1. Then the adversary provides next the paths Pi,1 =
(a, b) and Pi,2 = (c, d). These two paths Pi,1 and Pi,2 cannot be satisfied, since
each of the vertices a, b, c, d has a regenerator for path P0. So the competitive
ratio of the algorithm is at least 3.

We thus can assume that there do not exist such edges ab and cd for any
of the Pi’s. That is, there exist at most three consecutive vertices u1, u2, u3 of
Pi, such that reg(u1, P0) = reg(u2, P0) = reg(u3, P0) = 1, while for every other
edge uu′ of Pi, there exists a regenerator for P0 either on vertex u or on vertex
u′. Then, there exist five consecutive vertices vi

1, v
i
2, v

i
3, v

i
4, v

i
5 of Pi, such that

reg(vi
1, P0) = reg(vi

3, P0) = reg(vi
5, P0) = 1 and reg(vi

2, P0) = reg(vi
4, P0) = 0.

The adversary now provides the path P ′
i = (vi

2, v
i
3, v

i
4). Thus, since

reg(vi
3, P0) = 1 and reg(vi

2, P0) = reg(vi
4, P0) = 0, the only way that the algorithm

can satisfy P ′
i is to place regenerators for P ′

i at the vertices vi
2 and vi

4 (that is,
reg(vi

2, P
′
i ) = reg(vi

4, P
′
i ) = 1).

The adversary proceeds as follows. In the case where the algorithm chooses
not to satisfy the path P ′

i , the adversary does not provide any other path that
shares edges with Pi. Otherwise, if the algorithm satisfies P ′

i , then the adversary
provides the paths P ′′

i = (vi
1, v

i
2) and P ′′′

i = (vi
4, v

i
5) (see Fig. 2). In this case,

reg(vi
2, P

′
i ) = reg(vi

4, P
′
i ) = 1 and reg(vi

1, P0) = reg(vi
5, P0) = 1, and thus the

paths P ′′
i and P ′′′

i remain unsatisfied by the algorithm.
We now show that this instance is indeed feasible. Actually, we show that

even the instance that includes P0, all the paths P ′
i = (vi

2, v
i
3, v

i
4), all the

paths P ′′
i = (vi

1, v
i
2) and all the paths P ′′′

i = (vi
4, v

i
5) is feasible. To see this,

we put regenerators at the nodes vi
1, v

i
3, v

i
5, that will satisfy P ′′

i = (vi
1, v

i
2),

P ′
i = (vi

2, v
i
3, v

i
4) P ′′′

i = (vi
4, v

i
5), respectively. We then put regenerators at all

other nodes (including the nodes vi
2, v

i
4), which clearly satisfies P0.

Denote by h the number of subpaths Pi, for which the adversary adds the
path P ′

i , P ′′
i and P ′′′

i . Thus the number of subpaths Pi, for which the adversary
adds P ′

i , but not P ′′
i or P ′′′

i , is n−h. The total number of paths that the adversary
provided is thus 1 + 3h + (n − h) = 1 + n + 2h. The number of paths satisfied
by the algorithm is 1 + h. That is, the competitive ratio of the algorithm is
1+n+2h

1+h = 3 + n−2−h
1+h . Therefore, since h ≤ n, it follows that the competitive

Fig. 2. Adversary for Lemma 4. (a) The online assignment where P ′′ and P ′′′ cannot
be satisfied. (b) The optimal assignment where all paths are satisfied.
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ratio of the algorithm is at least 3− 2
1+n > 3−ε. Since this holds for every ε > 0,

it follows that any deterministic online algorithm has competitive ratio at least
3. This completes the proof of the lemma. ��

6 Minimization of Regenerators with Grooming (Parallel
Scheduling)

6.1 Preliminaries

We consider a scheduling problem in which a bounded number of jobs can be
processed simultaneously by a single machine. The input is a set of n jobs
J = {J1, . . . , Jn}. Each job, Jj , is associated with an interval [sj , cj ] along
which it should be processed. Also given is the parallelism parameter g ≥ 1,
which is the maximal number of jobs that can be processed simultaneously by a
single machine. Each machine operates along a contiguous time interval, called
its busy interval, which contains all the intervals corresponding to the jobs it
processes. The goal is to assign the jobs to machines so that the total busy time
is minimized.

The problem is known to be NP-hard already for g = 2. We present an
algorithm whose competitive ratio is between 3 and 4.

Unless specified otherwise, we use lowercase letters for indices and upper
case letters for jobs, time intervals and machines; also, calligraphic characters
are used for sets of jobs, sets of intervals and sets of machines.

Definition 1. Given a time interval I = [s, c], the length of I is len(I) =
c − s. This extends to a set I of intervals; namely, the length of I is len(I) =∑

I∈I len(I).

Definition 2. For a set I of intervals we define the span of I as span(I) =
len(∪I).

Note that span(I) ≤ len(I) and equality holds if and only if I is a set of
pairwise disjoint intervals. Because jobs are given by time intervals, we use the
above definitions also for jobs and sets of jobs, respectively.

Definition 3. For any instance J and parallelism parameter g ≥ 1, OPT (J )
denotes the cost of an optimal solution, that is, a solution in which the total busy
time of the machines is minimized.

The next observation gives two immediate lower bounds for the cost of any
solution. Observation For any instance J and parallelism parameter g ≥ 1, the
following bounds hold:

– The parallelism bound: OPT (J ) ≥ len(J )
g .

– The span bound: OPT (J ) ≥ span(J ).
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The parallelism bound holds since g is the maximum parallelism that can be
achieved in any solution. The span bound holds since at any time t ∈ ∪J at
least one machine is working.

W.l.o.g., we assume that the interval graph induced by the jobs is connected;
otherwise, the problem can be solved by considering each connected component
separately. Clearly, in any optimal solution, no machine is busy during intervals
with no active jobs. w.l.o.g. we assume that each machine is busy along a con-
tiguous interval. Given any solution we denote by Ji the set of jobs assigned to
machine Mi by the solution. The cost of Mi is the length of its busy interval,
i.e. busyi = span(Ji).

6.2 Algorithm FirstFit

In this section we present an algorithm for general instances and show that its
approximation ratio is between 3 and 4.

Algorithm FirstFit schedules the jobs greedily by considering them one after
the other, from longest to shortest. Each job is scheduled to the first machine it
can fit.

1. Sort the jobs in non-increasing order of length, i.e., len(J1) ≥
len(J2) ≥ . . . ≥ len(Jn).

2. Consider the jobs by the above order: assign the next job, Jj , to the
first machine that can process it, i.e., find the minimum value of i ≥ 1
such that, at any time t ∈ Jj , Mi is processing at most g − 1 jobs. If
no such machine exists, then open a new machine for Jj .

We show that algorithm FirstFit is a 4-approximation algorithm. Formally,

Theorem 5. For any instance J , FirstF it(J ) ≤ 4 · OPT (J ).

Proof. The proof is based on the following observation (see [12]):

Observation: Let J be a job assigned to machine Mi by FirstFit, for some i ≥ 2.
For any machine Mk, (k < i), there is at least one time ti,k(J) ∈ J and a set
si,k(J) of g jobs assigned to Mk such that, for every J ′ ∈ si,k(J), it holds that
(a) ti,k(J) ∈ J ′, and (b) len(J ′) ≥ len(J).

The following key lemma (for a proof see [12]) is needed in the proof of
Theorem 5:

Lemma 4. For any i ≥ 1, len(Ji) ≥ g
3span(Ji+1).

Proof. Combining the span bound and Lemma4 we can now complete the analy-
sis of the algorithm.By definition, all the jobs in Ji+1 are assigned to one
machine, i.e. Mi+1. For such a set the cost of the assignment is exactly its
span. Thus, FirstF it(Ji+1) = busyi+1 = span(Ji+1) ≤ 3

g len(Ji). Let m ≥ 1 be
the number of machines used by FirstFit. Then
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m∑

i=2

FirstF it(Ji) =
m−1∑

i=1

FirstF it(Ji+1)

≤ 3
g

m−1∑

i=1

len(Ji)

<
3
g

m∑

i=1

len(Ji) =
3
g
len(J ) ≤ 3 · OPT (J )

where the last inequality follows from the parallelism bound.
Now, using the span bound, we have that FirstF it(J1) = busy1 = span(J1)

≤ span(J ) ≤ OPT (J ). Therefore, FirstF it(J ) ≤ 4 · OPT (J ) . ��
Theorem 6. For any ε > 0, there are infinitely many instances J having infi-
nitely many input sizes, such that FirstFit(J ) > (3 − ε) · OPT (J ).

Proof. Consider the instance J depicted in Fig. 3.
For this instance OPT uses one machine in the interval [0, 1], one machine in

the interval [2 − 2ε′, 3 − 2ε′], and g − 1 machines in the interval [1 − ε′, 2 − ε′],
for a total cost of OPT (J ) = g + 1. In contrast, FirstFit may use g machines
in the interval [0, 3 − 2ε′] for a total cost of FirstFit(J ) = (3 − 2ε′)g = (3 −
2ε′) g

g+1OPT (J ). Choosing g and ε′ appropriately (for example, ε′ = ε/4 and
g ≥ 6/ε − 1) we get that FirstFit(J ) > (3 − ε)OPT (J ) . ��

Fig. 3. Lower bound scenario

Combining Theorems 5 and 6, we get:

Theorem 7. The approximation ratio of FirstFit is between 3 and 4.
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7. Călinescu, G., Wan, P.-J.: Traffic partition in wdm/sonet rings to minimize sonet
ADMs. J. Comb. Optim. 6(4), 425–453 (2002)

8. Eilam, T., Moran, S., Zaks, S.: Lightpath arrangement in survivable rings to min-
imize the switching cost. IEEE J. Sel. Area Commun. 20(1), 172–182 (2002)

9. Epstein, L., Levin, A.: Better bounds for minimizing SONET ADMs. In: 2nd Work-
shop on Approximation and Online Algorithms, Bergen, Norway, September 2004

10. Fedrizzi, R., Galimberti, G.M., Gerstel, O., Martinelli, G., Salvadori, E., Saradhi,
C.V., Tanzi, A., Zanardi, A.: Traffic independent heuristics for regenerator
site selection for providing any-to-any optical connectivity. In: Proceedings of
IEEE/OSA Conference on Optical Fiber Communications (OFC) (2010)

11. Flammini, M., Marchetti-Spaccamela, A., Monaco, G., Moscardelli, L., Zaks, S.:
On the complexity of the regenerator placement problem in optical networks.
IEEE/ACM Trans. Networking 19(2), 498–511 (2011)

12. Flammini, M., Monaco, G., Moscardelli, L., Shachnai, H., Shalom, M., Tamir, T.,
Zaks, S.: Minimizing total busy time in parallel scheduling with application to
optical networks. Theor. Comput. Sci. 411(40–42), 3553–3562 (2010)

13. Flammini, M., Shalom, M., Zaks, S.: On minimizing the number of ADMs in a
general topology optical network. In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167,
pp. 459–473. Springer, Heidelberg (2006)

14. Gerstel, O., Lin, P., Sasaki, G.: Wavelength assignment in a WDM ring to minimize
cost of embedded SONET rings. In: INFOCOM 1998, Seventeenth Annual Joint
Conference of the IEEE Computer and Communications Societies (1998)

15. Kim, S.W., Seo, S.W.: Regenerator placement algorithms for connection establish-
ment in all-optical networks. IEEE Proc. Commun. 148(1), 25–30 (2001)

16. Leonardi, S., Vitaletti, A.: Randomized lower bounds for online path coloring. In:
Rolim, J.D.P., Serna, M., Luby, M. (eds.) RANDOM 1998. LNCS, vol. 1518, pp.
232–247. Springer, Heidelberg (1998)

17. Mertzios, G.B., Sau, I., Shalom, M., Zaks, S.: Placing regenerators in optical net-
works to satisfy multiple sets of requests. IEEE Trans. Networking 20(6), 1870–
1879 (2012)

18. Mertzios, G.B., Shalom, M., Wong, P.W.H., Zaks, S.: Online regenerator place-
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Abstract. We generalize two well-known game-theoretic models by
introducing multiple partners matching games, defined by a graph G =
(N,E), with an integer vertex capacity function b and an edge weight-
ing w. The set N consists of a number of players that are to form a set
M ⊆ E of 2-player coalitions ij with value w(ij), such that each player
i is in at most b(i) coalitions. A payoff is a mapping p : N ×N → R with
p(i, j) + p(j, i) = w(ij) if ij ∈ M and p(i, j) = p(j, i) = 0 if ij /∈ M . The
pair (M,p) is called a solution. A pair of players i, j with ij ∈ E \ M
blocks a solution (M,p) if i, j can form, possibly only after withdrawing
from one of their existing 2-player coalitions, a new 2-player coalition in
which they are mutually better off. A solution is stable if it has no block-
ing pairs. We give a polynomial-time algorithm that either finds that no
stable solution exists, or obtains a stable solution. Previously this result
was only known for multiple partners assignment games, which corre-
spond to the case where G is bipartite (Sotomayor 1992) and for the
case where b ≡ 1 (Biro et al. 2012). We also characterize the set of sta-
ble solutions of a multiple partners matching game in two different ways
and initiate a study on the core of the corresponding cooperative game,
where coalitions of any size may be formed.

1 Introduction

Consider a group of soccer teams participating in a series of friendly games
with each other off-season. Suppose each team has some specific target number
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of games it wants to play. For logistic reasons, not every two teams can play
against each other. Each game brings in some revenue, which is to be shared by
the two teams involved. The revenue of a game may depend on several factors,
such as the popularity of the two teams involved or the soccer stadium in which
the game is played. In particular, at the time when the schedule for these games
is prepared, the expected gain may well depend on future outcomes in the current
season (which are in general difficult to predict [15]). In this paper, we assume
for simplicity that the revenues are known. Is it possible to construct a stable
fixture of games, that is, a schedule such that there exist no two unmatched
teams that are better off by playing against each other? Note that this could
require them to first cancel one of their others games in order not to exceed their
targets.

The above example describes the problem introduced in this paper. We model
it as follows. A multiple partners matching game is a triple (G, b, w), where
G = (N,E) is a finite undirected graph on n vertices and m edges with no loops
and no multiple edges, b : N → Z+ is a nonnegative integer function called
a vertex capacity function, and w : E → R+ is a nonnegative edge weighting.
The set N is called the player set. There exists an edge ij ∈ E if and only
if players i, j can form a 2-player coalition. A set M ⊆ E is a b-matching if
every player i is incident to at most b(i) edges of M . So, a b-matching is a set
of 2-player coalitions, in which no player is involved in more 2-player coalitions
than described by her capacity. If ij ∈ M then i and j are matched by M .
With M we associate a binary vector xM : E → {0, 1} called the characteristic
function of M , which is defined by xM (ij) = 1 for all ij ∈ M and xM (ij) = 0
for all ij ∈ E \ M . Then we can write

∑
j:ij∈E xM (ij) ≤ b(i) for all i ∈ N as an

alternative way to state the capacity condition. The value of a 2-player coalition
i, j with ij ∈ E is given by w(ij).

A nonnegative function p : N × N → R+ is a payoff with respect to M if
p(i, j) + p(j, i) = w(ij) for ij ∈ M and p(i, j) = p(j, i) = 0 for ij /∈ M ; we also
say that M and p are compatible. Note that p prescribes how the value w(ij)
of a 2-player coalition {i, j} is distributed amongst i and j, ensuring that non-
coalitions between two players yield a zero payoff. A pair (M,p), where M is a
b-matching and p is a payoff compatible with M , is a solution for (G, b, w). If M
is a 1-matching (i.e., a matching) then, for each i ∈ N , we have p(i, j) > 0 for at
most one player j �= i, which must be matched to i. Hence, if b ≡ 1, we assume,
with slight abuse of notation, that p is a nonnegative function defined on N .

Let (M,p) be a solution. Two players i, j with ij ∈ E \ M may decide to
form a new 2-player coalition if they are “better off”, even if one or both of
them must first leave an existing 2-player coalition in M (in order not to exceed
their individual capacity). To describe this formally we define a utility function
up : N → R+, related to payoff p. If i is saturated by M , that is, if i is incident
with b(i) edges in M , then we let up(i) = min{p(i, j) | xM (ij) = 1} be the
worst payoff p(i, j) of any 2-player coalition i is involved in. Otherwise, i is
unsaturated by M and we define up(i) = 0. A pair i, j with ij ∈ E \ M blocks
(M,p) if up(i)+up(j) < w(ij). We say that (M,p) is stable if it has no blocking
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pairs, or equivalently, if every edge ij ∈ E \ M satisfies the stability condition
up(i) + up(j) ≥ w(ij). We can now define our problem formally:

Stable Fixture with Payments (SFP)
Instance: A multiple partners matching game (G, b, w)
Question: Does (G, b, w) have a stable solution?

So far, we modelled only situations in which 2-player coalitions can be formed.
Allowing coalitions of any size is a natural and well-studied setting in the area of
Cooperative Game Theory. Moreover, as we will discuss, there exist close rela-
tionships between stable solutions and their counterpart in the second setting,
the so-called core allocations, which we define below.

A cooperative game with transferable utilities (TU-game) is a pair (N, v),
where N is a set of n players and a value function v : 2N → R+ with v(∅) = 0.
It is usually assumed that the grand coalition N is formed. Then the central
problem is how to allocate the total value v(N) to the individual players in N .
In this context, a payoff (or allocation) is a vector p ∈ R

N with p(N) = v(N),
where we write p(S) =

∑
i∈S p(i) for S ⊆ N . The core of a TU-game consists of

all allocations p ∈ R
N satisfying

p(S) ≥ v(S), ∅ �= S ⊆ N
p(N) = v(N) (1)

A core allocation is seen as reasonable, because it offers no incentive for a subset
of players to leave the grand coalition and form a coalition on their own. However,
a TU-game may have an empty core. Hence, the most interesting computational
complexity questions (given an input game) are:

1. Is the core nonempty?
2. Can we exhibit a vector in the core – provided there is any?
3. Does a given vector p ∈ R

N belong to the core?

In the literature both polynomial-time and NP-hardness results are known for
each of these three questions (see e.g. [7]). An efficient algorithm for answering
question 3 implies that questions 1–2 can be solved in polynomial time as well.
This follows from the work of Grötschel et al. [11,12] who proved, by refining
the ellipsoid method of Khachiyan [16], that an efficient algorithm for solving
the separation problem for a polyhedron P implies a polynomial-time algorithm
that either finds that P is empty, or obtains a vector of P .

We define the TU-game (N, v) that corresponds with a multiple partners
matching game (G, b, w) by setting, for every S ⊆ N ,

v(S) = w(MS) =
∑

e∈MS

w(e),

where MS is a maximum weight b-matching in the subgraph of G induced by S
(we define v(S) = 0 if S induces an edgeless graph). We say that (N, v) is defined
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on (G, b, w) but, unless confusion is possible, we may also call (N, v) a multiple
partners matching game. If we say that the payoff vector p of a stable solution
is a core allocation, we mean that the total payoff vector pt ∈ R

N defined by
pt(i) =

∑
ij∈E p(i, j) for all i ∈ N is a core allocation.

Example. Let G be the 4-vertex cycle v1v2v3v4v1. We define a vertex capacity
function b by b(v1) = b(v2) = 1 and b(v3) = b(v4) = 2, and an edge weighting
w by w(v1v2) = 3 and w(v2v3) = w(v3v4) = w(v4v1) = 1. The pair (M,p) with
M = {v1v2, v3v4} and p(v1, v2) = p(v2, v1) = 3

2 , p(v3, v4) = p(v4, v3) = 1
2 and

p(v2, v3) = p(v3, v2) = p(v4, v1) = p(v1, v4) = 0 is a solution for the multiple
partners matching game (G, b, w). Note that up(v1) = up(v2) = 3

2 and up(v3) =
up(v4) = 0. We find that (M,p) is even a stable solution, because up(v2) +
up(v3) = 3

2 ≥ 1 = w(v2v3) and up(v4) + up(v1) = 3
2 ≥ 1 = w(v4v1) (note that

we only need to verify the stability condition for edges outside the matching).
Moreover, the total payoff vector pt given by pt(v1) = pt(v2) = 3

2 and pt(v3) =
pt(v4) = 1

2 is readily seen to be a core allocation of the corresponding TU-game.
In Sect. 3 we will give an example of a multiple partners matching game with no
stable solutions for which the corresponding TU-game has a nonempty core.

Before stating our results for multiple partners matching games in both settings
we first discuss some existing work. As we will see, our model in both settings
generalizes (or relaxes) several well-known models.

Known Results. The first model that we discuss is related to the famous stable
marriage problem (SM), defined by Gale and Shapley [9] as follows. Given sets
I and J of men and women, respectively, let each player have a strict preference
ordering over the opposite set of players. A set of marriages is a matching in the
underlying bipartite graph with partition classes I and J . Such a matching is
stable if there is no unmarried pair, who would prefer to marry each other instead
of a possible other partner. Gale and Shapley [9] proved that every instance of
this problem has a stable matching and gave a linear-time algorithm that finds
one. The main assumptions in this model are

(i) monogamy: each player is matched to at most one other player (1-matching);
(ii) opposite-sex: every match is between players from I and J (bipartiteness);
(iii) no dowry: only cardinal preferences are considered (no payments).

Dropping one or more of these three conditions leads to seven new models,
one of which corresponds to our model of multiple partner matching games,
namely the one, in which none of the three conditions (i)–(iii) is imposed. Below
we briefly survey the other six models (see also Table 1).

In the first three models that we discuss, payments are not allowed. Hence,
the notion of a (core) allocation is meaningless for these three models.

Not (i). If we allow bigamy, that is, if we allow general b-matchings instead of only
1-matchings, we obtain the many-to-many stable matching problem, which gen-
eralizes the stable marriage problem. The problem variant, in which we demand
that b(i) = 1 for each player i ∈ I, is called the college admission problem [9],
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Table 1. The eight different models; “mp” stands for “multiple partners”, and the
highlighted case is the new model introduced and considered in this paper.

Opposite-sex Different-sex allowed

Monogamy No dowry SM (stable marriage) SR (stable roommates)

Dowry SMP & assignment game SRP & matching game

Bigamy allowed No dowry many-to-many stable matching SF (stable fixtures)

Dowry MPA & mp assignment game SFP & mp
matching game

which is also known as the many-to-one stable matching problem [22] and as the
hospital/residents problem [20]. Gale and Shapley [9] proved that every instance
of the college admission problem has a stable matching and gave a linear-time
algorithm that finds one. Bäıou and Balinski [1] proved these two results for the
(more general) many-to-many stable matching problem.

Not (ii). If we allow same-sex marriages, so the underlying graph may be non-
bipartite, then we get the stable roommates problem (SR), also defined by Gale
and Shapley [9]. They proved that, unlike the previously discussed models, in
this model a stable matching does not always exist. Irving [13] gave a linear-time
algorithm for finding a stable matching (if there exists one).

Not (i) & (ii). Allowing bigamy and same-sex marriages leads to the stable fix-
tures problem (SF), which generalizes the stable roommates problem. Hence,
a stable matching does not always exist. Irving and Scott [14] gave a linear-
time algorithm for finding a stable matching (if there exists one). Cechlárová
and Fleiner [5] defined the more general multiple activities problem, in which the
underlying graph may have multiple edges. They proved that even in this setting
a stable matching can be found in polynomial time (if there exists one). More-
over, they also showed that this problem can be reduced to SR by a polynomial
size graph construction.

In the remaining three models we allow payments to individual players.

Not (iii). If we allow dowry then we obtain an assignment game, which is a
multiple partners matching game (G, b, w) where G is bipartite and b ≡ 1. In
this case the SFP problem is known as the stable marriage problem with payments
(SMP). Koopmans and Beckmann [18] proved that every instance of SMP has
a stable solution. Shapley and Shubik [23] proved that every core allocation is a
payoff vector in a stable solution and vice versa. Consequently, every assignment
game has a nonempty core. It is possible to obtain a stable solution in polynomial
time and also to give affirmative answers to questions 1–3 about the core of an
assignment game; in the next paragraph we explain that this holds even if we
allow same-sex marriages.

Not (ii) & (iii). If we allow dowry and same-sex marriages then we obtain a
matching game, which is a multiple partners matching game (G, b, w) where
b ≡ 1. In this case the SFP problem is called the stable roommates problem with
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payments (SRP). The following two observations are well-known [4,8] and easy to
verify. First, a payoff p is a core allocation of a matching game if and only if there
exists a matching M , such that (M,p) is a stable solution. Second, for matching
games, the coalitions in the system of inequalities (1) may be restricted to 2-
player coalitions. The latter means that question 3, on core membership, can be
answered in linear time. We also obtain polynomial-time algorithms for solving
questions 1–2, about core nonemptiness, and finding a core allocation, and thus
finding a stable solution; the restriction to 2-player coalitions even allows one
to use the ellipsoid method of Khachiyan [16] directly. In a previous paper [4],
we circumvented the ellipsoid method and presented an O(nm + n2 log n)-time
algorithm that either finds that the core is empty, or obtains a core allocation.

Not (i) & (iii). If we allow dowry and bigamy then we obtain a multiple partners
assignment game, which is a multiple partners matching game (G, b, w) where
G is bipartite. In this case the SFP problem is called the multiple partners
assignment problem (MPA). Just as matching games, multiple partners assign-
ment games generalize assignment games. Sotomayor proved the following, which
answers questions 1–2 positively (the answer to question 3 is still open).

Theorem 1 ([24]). Every multiple partners assignment game has at least one
stable solution, which can be found in polynomial time. Moreover, for every stable
solution (M,p) it holds that M has maximum weight, p is a core allocation and
every other maximum weight b-matching is compatible with p.

Our Results. In Sect. 2 we will prove that SFP is polynomial-time solvable.
This generalizes the aforementioned corresponding results for SRP and MPA,
respectively. Our proof technique is based on a reduction to MPA. Moreover,
we characterize the set of stable solutions for a given instance of SFP via a
reduction to SRP. We do this via linear programming techniques that show a
close relationship between optimal solutions in the dual LP for SFP and stable
solutions in the reduced instance of SRP.

In Sect. 3 we first prove that also for multiple partners matching games, the
payoff vectors in stable solutions are always core allocations. We then prove that
core membership, which corresponds to question 3, is polynomial-time solvable
for multiple partner matching games defined on a triple (G, b, w) with b ≤ 2, that
is, with b(i) ≤ 2 for all i ∈ N . Due to the aforementioned result of Grötschel
et al. [11,12] we also obtain efficient answers to questions 1–2 (for b ≤ 2). In our
proof, we make a connection to the tramp steamer problem [17].

Finally, in Sect. 4, we give some directions for future work.

2 Stable Fixtures with Payments

In order to prove our results we will use two known results as lemmas.

Lemma 1 ([3]). If (M,p) is a stable solution of an instance (G, 1, w) of SRP
then M has maximum weight, and every maximum weight matching M ′ of G is
compatible with p.



The Stable Fixtures Problem with Payments 55

Lemma 2 ([19]). Let G be a graph with vertex capacity function b and edge
weighting w. Then it is possible to find a maximum-weight b-matching of G in
O(n2m log(n2/m)) time.

2.1 Characterizing Stable Solutions of SFP

In this subsection we show a correspondence of stable solutions of an instance
(G, b, w) of SFP with stable solutions of a corresponding instance (G′, 1, w′) of
SRP, where G′ is a graph of size O(n3), and with integral optimal solutions of
an LP relaxation.

We first explain how to construct (G′, 1, w′); see also Fig. 1. Our construction
is based on a well-known construction, which was introduced by Tutte [25] for
nonbipartite graphs with no edge weights. For each player i ∈ N with capacity
b(i) we create b(i) copies, i1, i2, . . . ib(i) in N ′. For each edge ij ∈ E we create
four players, ij , ij , ji, ji, with edges isij for s = 1 . . . b(i), ijij , ijji, jiji and jij

t

for t = 1 . . . b(j), each with weight w(ij). This completes our construction. We
write G′ = (N ′, E′). Note that G′ is bipartite if and only if G is bipartite. Hence,
our construction also reduces an instance of MPA to an instance of SMP.

wi j

wi j

wi j wi j wi j

wi j
wi j wi j

wi j

j

i

i

1

2

i j ji j ii j

j

j

j
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3
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[2] [3]

Fig. 1. The construction of an SPR instance (G′, 1, w′) from a SFP instance (G, b, w).

Given an instance (G, b, w) of SFP, we formulate the corresponding primal
LP, denoted by Primal-(G, b, w), as follows.

max
∑

ij∈E

w(ij)x(ij) (P-obj)

subject to
∑

j:ij∈E

x(ij) ≤ b(i) for each i ∈ N (a)

0 ≤ x(ij) ≤ 1 for each ij ∈ E. (b)

The integral solutions of this LP are the b-matchings of instance (G, b, w).
We now formulate the dual LP, denoted by Dual-(G, b, w).

min
∑

i∈N

b(i)y(i) +
∑

ij∈E

d(ij) (D-obj)
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subject to y(i) + y(j) + d(ij) ≥ w(ij) for each ij ∈ E, (a’)
where 0 ≤ y(i) for all i ∈ N, and 0 ≤ d(ij) for all ij ∈ E.

Note that for an optimal dual solution (y, d), it holds that d(ij) = [w(ij) −
y(i) − y(j)]+ (where the latter notation means max{w(ij) − y(i) − y(j), 0}).

We are now ready to prove our main result.

Theorem 2. Let (G, b, w) be an instance of SFP. The following statements are
equivalent.

1. (G, b, w) has a stable solution.
2. (G′, 1, w′) has a stable solution.
3. Primal-(G, b, w) has an integral optimal solution.

Proof. We prove in three separate statements that 1 implies 2, 2 implies 3 and
3 implies 1.

1⇒2. Given a stable solution (M,p) of (G, b, w), we define (M ′, p′) of (G′, 1, w′)
as follows. Recall that we define p′ as a function on N , as b ≡ 1. The payments
of the copies will be the same as the minimum payments of the original players,
that is, for each i ∈ N , let p′(is) = up(i) for every s = 1 . . . b(i). For each ij ∈ M ,
if j is i’s s-th partner for some s ∈ {1 . . . b(i)} and i is j’s t-th partner for some
t ∈ {1 . . . b(j)} then let isij ∈ M ′, ijji ∈ M ′ and jij

t ∈ M ′ with the following
payments: p′(ij) = p(i, j) and p′(ij) = w(ij)−up(i), and similarly p′(ji) = p(j, i)
and p′(ji) = w(ij) − up(j). For each ij ∈ E \ M , let ijij , jiji ∈ M ′ with
p′(ij) = min{up(i), w(ij)} and p′(ij) = w(ij)−min{up(i), w(ij)}, and similarly
p′(ji) = w(ij) − min{up(j), w(ij)} and p′(ji) = min{up(j), w(ij)}. We observe
that (M ′, p′) is a solution for (G′, 1, w′). In order to prove that (M ′, p′) is a stable
solution we have to check the stability condition for each edge not in M ′. As
up′(i) = p′(i) for any i ∈ N ′, this comes down to checking whether p′(i)+p′(j) ≥
w(ij) for all i, j ∈ N ′. For each edge isij not in M ′ there are two cases. In the first
case, when p′(ij) = w(ij) − up(i), the condition is satisfied by equality, because
p′(is) = up(i). In the other case, we have p′(ij) = w(ij) − min{up(i), w(ij)}, so
p′(is) + p′(ij) = up(i) + w(ij) − min{up(i), w(ij)} ≥ w(ij). For each edge ijij
not in M ′, p′(ij) = w(ij) − up(i) and p′(ij) = p(i, j), so p′(ij) + p′(ij) ≥ w(ij)
as up(i) ≤ p(i, j). Finally, if ijji is not in M ′ then in the first case, when any
payoff of the middle players is w(ij), the requirement is trivially true, and in the
second case when the payoffs of both players differ from w(ij) the stability of
(M,p) implies that p′(ij) + p′(ji) = up(i) + up(j) ≥ w(ij).

2⇒3. Suppose that (M ′, p′) be a stable solution for (G′, 1, w′). We will first prove
that (M ′, p′) can be transformed into a stable solution (M ′′, p′) of (G′, 1, w′),
where M ′′ is a matching that we may obtain by the above reduction from
(G, b, w) to (G′, 1, w′). From Lemma 1 we know that M ′ is a maximum weight
matching in (G′, 1, w′). For a player set X let E(X) denote the set of edges
incident to any player in X. Let Eij = E({ij , ij , ji, ji}). Considering the edge
set Eij , either three or two edges should be contained in a maximum weight
matching M ′. If |Eij ∩ M ′| = 3 then M ′ should contain ijji, isij for some
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s ∈ {1, . . . , b(i)} and jij
t for some t ∈ {1, . . . , b(j)}. Let M ′′ contain the same

edges in this case. If |Eij ∩ M ′| = 2 then let {ijij , jiji} ⊆ M ′′. Therefore
M ′′ is a maximum weight matching, and from Lemma 1, (M ′′, p′) is a stable
solution in (G′, 1, w′), which can be obtained from a reduction from (G, b, w)
to (G′, 1, w′), as described in the first part of our proof. Now we note that
p′(is) = p′(it) for any indices s, t ∈ {1 . . . b(i)}. This is because p′(is) < p′(it)
would imply that p′(is) > 0, so is must be covered by M ′, say, isīj ∈ M ′, where
p′(is)+p′(īj) = w(ij), and hence ir īj would be blocking, a contradiction. There-
fore we can set y(i) = p′(is) for every copy is of i ∈ N , as this is well-defined.
Together with d(ij) = [w(ij) − y(i) − y(j)]+ for any ij ∈ E we get a feasible
solution (y, d) of Dual-(G, b, w). Now we define an integral feasible solution x
of Primal-(G, b, w) as follows. Let x(ij) = 1 if ijji ∈ M ′′ and x(ij) = 0 other-
wise. We prove that (y, d) and x are both optimal solutions as they satisfy the
complementary slackness conditions.

– If
∑

j:ij∈E x(ij) < b(i) then some copy of i ∈ N , say is, is unmatched in M ′′,
therefore y(i) = p′(is) = 0.

– If x(ij) < 1 for some ij ∈ E then ijji /∈ M ′′ and therefore y(i) + y(j) ≥
p′(ij) + p′(ji) ≥ w(ij), where the first inequality is implied by the stability
condition for isij /∈ M ′′ and jtji /∈ M ′′, and the second inequality is implied
by the stability condition for ijji /∈ M ′′. As a consequence d(ij) = [w(ij) −
y(i) − y(j)]+ = 0 should hold.

– If x(ij) > 0 then ijji ∈ M ′′ and therefore y(i)+ y(j) ≤ p′(ij)+ p′(ji) = w(ij),
where the inequality is implied by the stability condition for ijij /∈ M ′′ and
jiji /∈ M ′′. As a consequence d(ij) = w(ij)−y(i)−y(j) and the dual condition
(a’) is binding.

Hence x is an optimal integral solution for Primal-(G, b, w), as required.

3⇒1. From an optimal solution x of Primal-(G, b, w) and optimal dual solution
(y, d) of Dual-(G, b, w) we create a stable solution (M,p) for (G, b, w) as follows.
Let M be the b-matching defined by the characteristic function x. For each
ij ∈ M we choose ξ(i, j) ≥ 0 and ξ(j, i) ≥ 0 with ξ(i, j) + ξ(j, i) = d(ij) and
define p(i, j) = y(i)+ ξ(i, j), and otherwise we define p(i, j) = 0. These are valid
payments, as x(ij) = 1 implies p(i, j) + p(j, i) = y(i) + ξ(i, j) + y(j) + ξ(j, i) =
y(i) + y(j) + d(ij) = w(ij), where the last equality is coming from the fact
that condition (a’) is binding. Now we show that up(i) ≥ y(i) for every i ∈ N .
If i is unsaturated by M then up(i) = y(i) = 0 again by the complementary
slackness condition for y(i). If i is saturated then for every ij ∈ M we have
p(i, j) ≥ y(i) by our setting of p(i, j), and therefore up(i) ≥ y(i) by the definition
of up(i). Finally, if ij /∈ M then x(ij) < 1 implies d(ij) = 0. Consequently,
up(i) + up(j) ≥ y(i) + y(j) ≥ w(ij), where the last equality is due to the fact
that (a’) is tight. This completes our proof. �
Remark 1. From the proof of Theorem 2 we note that there is a one-to-one
correspondence between the stable payments in an SFP instance (G, b, w) and
the utilities of some of the players in its reduced SPR instance (G′, 1, w′),
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namely a pair (M,p) is a stable solution for (G, b, w) if and only if there exists
a stable solution (M ′, p′) for (G′, 1, w′) with p′(ij) = p(i, j) for every ij ∈ M .

Remark 2. Assume (G, b, w) is a solvable instance of SFP. Then there is a one-
to-one correspondence between the dual variables y of an optimal solution (y, d)
of Dual-(G, b, w) and the stable payoffs of the players’ copies in the reduction G′.

2.2 Solving SFP Efficiently

In order to solve SFP on an instance (G, b, w), we construct the instance (G′,1, w′)
of SRP. This takes O(n3) time as we may assume without loss of generality that
b(i) ≤ n for all i ∈ N and thus |V (G′)| =

∑
i∈N b(i)+4m = O(n2) and |E(G′)| ≤∑

i∈N b(i)n+3m ≤ n3+3m = O(n3). We then use the aforementioned algorithm
of Biró et al. [4] to compute in O(n′m′+n′2 log n′) = O(n5) time a stable solution
for (G′, 1, w′) or else conclude that (G′, 1, w′) has no stable solution. In the first
case we can modify the stable solution into a stable solution of (G, b, w) in O(n3)
time, as described in the proof of Theorem 2. In the second case, Theorem 2 tells
us that (G, b, w) has no stable solution. The total running time is O(n5). Below
we present an algorithm that solves SFP in O(n2m log(n2/m)) time.

A half-b-matching in a graph G = (N,E) with an integer vertex capacity
function b and an edge weighting w is an edge mapping f that maps each edge e
to a value in {0, 1

2 , 1}, such that
∑

e:v∈e f(e) ≤ b(v) for each v ∈ N . The weight
of f is w(f) =

∑
e∈E w(e)f(e).

Let (G, b, w) be an instance of SFP. We define its duplicated instance (Ĝ, b̂, ŵ)
of MPA as follows. We replace each player i of G by two players i′ and i′′ in
Ĝ with the same capacities, that is, we set b̂(i′) = b̂(i′′) = b(i). Moreover, we
replace each edge ij by two edges i′j′′ and i′′j′ with half-weights, that is, we set
ŵ(i′j′′) = ŵ(i′′j′) = 1

2w(ij).
In a previous work [4], three of us proved the following statement for instances

of SRP only. In our next theorem we generalize this result for instances of SFP
by using similar arguments (proof omitted due to space restrictions).

Theorem 3. An instance (G, b, w) of SFP admits a stable solution if and only
if the maximum weight of a b-matching in G is equal to the maximum weight of
a half-b-matching in G.

We note that the maximum weight of a b-matching can be computed in
O(n2m log(n2/m)) time, as described in Lemma 2. The maximum weight of a
half-b-matching can be computed in the same running time, since the maximum
weight of a half-b-matching in (G, b, w) is the same as the maximum weight of
a b-matching in a duplicated bipartite graph (Ĝ, b̂, ŵ), as explained in the proof
of Theorem 3. This leads to the following result.

Theorem 4. SFP can be solved in O(n2m log(n2/m)) time.
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3 Core Properties

We first present the following result, which is in line with corresponding results
for the other models and thus shows that the notion of stability is well defined
with respect to the core definition. We omit the proof due to page restrictions.

Proposition 1. The payoff vector of every stable solution of a multiple partners
matching game is a core allocation.

In contrast to our results in Sect. 2, the analysis of the core cannot be reduced
to the the case in which we have unit vertex capacities. We illustrate this by
giving the following example that shows that the core of a multiple partners
matching game can be nonempty whilst there exist no stable solutions.

Example 1. Take a diamond, that is, a cycle on three vertices s1, s2, s3 to which
we add a fourth vertex u with edges s2u and s3u. We set b(si) = 2 for i = 1, 2, 3
and b(u) = 1, and w ≡ 1. Then Theorem 3 tells us that a stable solution does
not exist, since the maximum weight of a b-matching is 3, whilst the maximum
weight of a half-b-matching is 3 1

2 (for the latter, take f(s1s2) = f(s1s3) = 1 and
f(s2s3) = f(s2u) = f(s3u) = 1

2 ). However, the total payoff vector pt defined
by pt(si) = 1 for i = 1, . . . , 3 and pt(u) = 0, which corresponds to, say, the
b-matching M = {s1s2, s1s3, s2s3} with payments p(s1, s2) = 1, p(s2, s3) = 1
and p(s3, s1) = 1 and zero payments for the other edges is in the core.

Moreover, the core of a multiple partners matching game may be empty. This is
clear for b ≡ 1 (for instance, take a triangle on three vertices and let w ≡ 1) but
may also be the case for b �= 1. We illustrate the latter by presenting the following
example, which shows that the core of a b-matching game may be empty even if
b ≡ 2.

Example 2. Take a net, that is, a cycle on three vertices s1, s2 and s3 to which
we add a pendant (degree 1) vertex ti to si for i = 1, 2, 3. We set b ≡ 2 and
w ≡ 1. Then v(N) = 4. We may assume without loss of generality that p(ti) = 0
for i = 1, 2, 3. Then, by symmetry, p(si) = 4

3 for i = 1, 2, 3. Take the coalition
S = {s1, s2, t1, t2}. It holds that p(S) = 2 × 4

3 < 3 = v(S) and thus the core of
this game is empty.

In what follows, we analyze the case b(i) ≤ 2 for i = 1, ..., n. Note that a player
i with b(i) = 0 necessarily gets 0 payoff in any core allocation, so the problem
reduces trivially to G\{i}. For this reason we assume b(i) ≥ 1 for all i ∈ N in
the following.

Our main result is that answering question 3, on testing core membership,
can be done in polynomial time, hereby answering question 3 positively. Recall
that this implies the existence of a polynomial-time algorithm that either finds
that the core is empty, or else obtains a core allocation. As mentioned in Sect. 1,
our algorithm uses an algorithm that solves the tramp steamer problem, which
we formally define below, as a subproblem.
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Let G = (N,E) be a graph with an edge weighting p : E → R+ called the
profit function and an edge weighting w : E → R+ called the cost function. Let
C = (NC , EC) be a (simple) cycle of G. The profit-to-cost ratio for a cycle C

is p(C)
w(C) where we write p(C) = p(EC) and w(C) = w(EC). The tramp steamer

problem is that of finding a cycle C with maximum profit-to-cost ratio. This
problem is well-known to be polynomial-time solvable both for directed and
undirected graphs (see [17], or [21] for a treatment of more general “fractional
optimization” problems).

Lemma 3. The tramp steamer problem can be solved in polynomial time.

We are now ready to prove the main result of this section.

Theorem 5. It is possible to test in polynomial time if an allocation is in the
core of a multiple partners matching game defined on a triple (G, b, w) with b ≤ 2.

Proof. Let (N, v) be a multiple partners matching game defined on a triple
(G, b, w), where b(i) ≤ 2 for all i ∈ N . Given S ⊆ N , a maximum weight
b-matching in G[S] is composed of cycles and paths. Hence the core can be
alternatively described by the following (slightly smaller) set of constraints:

p(C) ≥ w(C), for all cycles C ∈ C
p(P ) ≥ w(P ), for all paths P ∈ P
p(N) = v(N).

(2)

Here, C stands for the set of simple cycles C ⊆ E in G with b(i) = 2 for all
i ∈ V (C). Similarly, P stands for the set of simple paths P with b(i) = 2 for all
inner points on P .

Given p ∈ R
N , we can of course easily check whether p(N) = v(N) holds by

computing a maximum weight b-matching in G, which can be done in polynomial
time by Lemma 2. Thus we are left with the inequalities for cycles and paths
in (2).

We deal with the cycles first. Let N2 := {i ∈ N | b(i) = 2} and G2 := G[N2].
In the induced graph G2 = (N2, E2), we “discharge” the given allocations p(i)
to the edges by setting p(i, j) := (p(i) + p(j))/2 for every edge ij in G2. This
defines an edge weighting p : E2 → R such that, obviously, the core constraints
for cycles are equivalent to

max
C∈C

w(C)
p(C)

≤ 1,

where the maximum is taken over all cycles in G2. Hence we obtained an instance
of the tramp steamer problem, which is polynomial-time solvable by Lemma 3.
Note that by solving the above minimization problem we either find that all
cycle constraints in (2) are satisfied or we end up with a particular cycle C cor-
responding to a violated core inequality. (The latter is of particular importance
if we intend to use the “membership oracle” as a subroutine for the ellipsoid
method.)
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In what follows, we thus assume that all cycle constraints in (2) are satisfied
by the given vector p ∈ R

N and turn to the path constraints. We process these
separately for all possible endpoints i0, j0 ∈ N (with i0 �= j0) and all possible
lengths k = 1, ..., n − 1. Let Pk(i0, j0) ⊆ P denote the set of (simple) i0 − j0-
paths of length k in G. We construct a corresponding auxiliary graph Gk(i0, j0),
a subgraph of G × Pk+1, the product of G with a path of length k. To this end,
let N

(1)
2 , ..., N

(k−1)
2 be k − 1 copies of N2. The vertex set of Gk(i0, j0) is then

{i0, j0} ∪ N
(1)
1 ∪ ... ∪ N

(k−1)
2 . We denote the copy of i ∈ N2 in N

(r)
2 by i(r). The

edges of Gk(i0, j0) and their weights w̄ can then be defined as

(i0, j(1)) for i0j ∈ E with weight w̄(i0j) := p(i0) + p(j)/2 − w(i0j)
(i(r−1), j(r)) for ij ∈ E with weight w̄(ij) := (p(i) + p(j))/2 − w(ij)
(i(k−1), j0) for ij0 ∈ E with weight w̄(ij0) := p(i)/2 + p(j0) − w(ij0).

We claim that p(P ) ≥ w(P ) holds for all P ∈ P if and only if the (w.r.t. w̄)
shortest i0−j0–path in Gk(i0, j0) has weight ≥ 0 for all i0 �= j0 and k = 1, .., n−1.
Then what is left to do, in order to verify whether p(P ) ≥ w(P ) holds for all
P ∈ P, is to solve O(n3) instances of the shortest path problem, each of which
have size O(n2) by using the well-known Bellman-Ford algorithm [2].

First suppose some P ∈ P has p(P ) < w(P ). Let i0 and j0 denote its end-
points and let k denote its length. Then P ∈ Pk(i0, j0) corresponds to an i0−j0-
path P̄ in Gk(i0, j0) of weight w̄(P̄ ) < 0. Now we will show that p(P ) ≥ w(P )
for all P ∈ P implies w̄(P̄ ) ≥ 0 for all i0 − j0-paths P̄ in any Gk(i0, j0). Indeed,
an i0 − j0-path P̄ visiting players i0, i

(1)
1 , ..., i

(k−1)
k−1 , j0 corresponds to a simple

i0 − j0 path P ⊆ E in G plus possibly a number of cycles C1, ..., Cs ⊆ E. Fur-
thermore, by definition of w̄, we have w̄(P̄ ) = p(P )−w(P )+

∑
i p(Ci)−w(Ci) ≥

p(P )−w(P ), as we assume that p(C) ≥ w(C) holds for all cycles. Hence, indeed,
w̄(P̄ ) ≥ 0, as claimed. �

4 Future Work

We finish our paper with some directions for future research. Our reduction from
SFP to SRP might be used to generalize more known results from SRP to SFP.
For instance, can we generalize the path to stability result of Biró et al. [3] for
SRP to be valid for SFP as well?

We do not know the answers for questions 1–3 on the core of multiple partners
matching games (G, b, w) when b(i) ≥ 3 for some player i. In particular, we tend
to believe that testing core membership is NP-hard (for example, the case b ≡ 3
looks close to the maximum 3-regular subgraph problem, which is NP-complete,
see e.g. [10]). However, we did not succeed in finding a proof. We recall that
testing core membership is also open for multiple partners assignment games
(except when b ≤ 2).

Chalkiadakis et al. [6] defined cooperative games with overlapping coalitions,
where players can be involved in coalitions with different intensities, leading to
three alternative core definitions. It would be interesting to study the problem
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of finding a stable solutions and questions 1–3 in these settings. To illustrate
this, suppose that the set of soccer teams from the example in Sect. 1 consists
of international teams. Then it seems realistic that the home team needs to
spend fewer days for playing the game than the visiting team, which must travel
from another country. Hence, every team now has a number of days for playing
friendly games instead of an upper limit (target) on the number of such games.
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1. Bäıou, M., Balinski, M.: Many-to-many matching: stable polyandrous polygamy
(or polygamous polyandry). Discrete Appl. Math. 101, 1–12 (2000)

2. Bellman, R.: On a routing problem. Q. Appl. Math. 16, 87–90 (1958)
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Abstract. A secure set S in a graph is defined as a set of vertices such
that for any X ⊆ S the majority of vertices in the neighborhood of
X belongs to S. It is known that deciding whether a set S is secure
in a graph is co-NP-complete. However, it is still open how this result
contributes to the actual complexity of deciding whether, for a given
graph G and integer k, a non-empty secure set for G of size at most
k exists. While membership in the class ΣP

2 is rather easy to see for
this existence problem, showing ΣP

2 -hardness is quite involved. In this
paper, we provide such a hardness result, hence classifying the secure set
existence problem as ΣP

2 -complete. We do so by first showing hardness for
a variantof the problem, which we then reduce step-by-step to secure set
existence. In total, we obtain eight new completeness results for different
variants of the secure set existence problem.

Keywords: Computational complexity · Complexity analysis · Secure
sets

1 Introduction

Secure sets in graphs were introduced by Brigham et al. [3] as a strengthening of
defensive alliances. Secure sets can be applied to, for instance, opinion research
for analyzing group behaviour and identifying insusceptible peer groups, or to
strategic settings where entities occupy spots on a map such that they can defend
themselves against attacks from neighbors. A secure set of a graph G = (V,E)
is a set S ⊆ V such that for each subset X ⊆ S, the number of vertices in
N [X] ∩ S is not less than the number of vertices in N [X] \ S, where N [X]
denotes the closed neighborhood of X in G, i.e., X together with all vertices
adjacent to X. The Secure Set problem, which we address in this paper, can
be specified as follows: Given a graph G = (V,E) and an integer k, does there
exists a non-empty secure set S of G such that |S| ≤ k?

It is known that deciding whether a given set S is secure in a graph is
co-NP-complete [6], indicating that the problem of finding (non-trivial) secure
sets is very hard. Unfortunately, the exact complexity of this problem has so far
remained unresolved. This is an unsatisfactory state of affairs because it leaves
the possibility open that existing approaches for solving the problem (e.g., [1]) are
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suboptimal in that they employ unnecessarily powerful programming techniques.
Hence we require a precise complexity-theoretic classification of the problem.

The main contribution of our paper is to show that Secure Set is ΣP
2 -

complete. Unlike the co-NP-hardness proof for secure set verificationof [6], which
uses a reduction from Dominating Set, we base our proof on a reduction from
a problem in the area of logic. To be specific, we first show that the canonical
ΣP

2 -complete problem Qsat2 can be reduced to a variant of Secure Set where
(i) vertices can be forced to be in or out of every solution, (ii) pairs of vertices
can be specified to indicate that every solution must contain exactly one element
of each such pair, and (iii) each solution contains exactly a given number of
elements. In order to prove the desired complexity result, we then successively
reduce this variant to the standard Secure Set problem.

Membership in the class ΣP
2 is obvious, as checking if a guessed candidate

is indeed a solution can be done with a call to an oracle for co-NP [6]; in fact,
[1] presents a poly-time reduction to Answer Set Programming [2] and thus
implicitly shows this result. Together with our corresponding hardness result,
it thus follows that Secure Set is ΣP

2 -complete, and it turns out that all the
problem variants we consider in this paper are ΣP

2 -complete.
We thus complete the picture of the precise complexity of the Secure Set

problem. Our results underline that Secure Set is among the few rather natural
problems in graph theory that are complete for the second layer of the polyno-
mial hierarchy(like, e.g., Clique Coloring [7] or 2-Coloring Extension [8]).
Therefore, our results allow us to conclude that approaches as suggested in [1] for
solving the problem are indeed adequate from a complexity-theoretic point of view.

2 Background

All graphs in this paper are simple. Given a graph G = (V,E), the open neigh-
borhood of a vertex v ∈ V , denoted by NG(v), is the set of all vertices adjacent
to v, and NG[v] = NG(v)∪{v} is called the closed neighborhood of v. Let S ⊆ V
be a set of vertices. We abuse notation by writing NG(S) and NG[S] to denote⋃

v∈S NG(v) and
⋃

v∈S NG[v], respectively. If it is clear from the context which
graph is meant, we write N(·) and N [·] instead of NG(·) and NG[·], respectively.

Definition 1. Given a graph G = (V,E), a set S ⊆ V is secure in G if for each
X ⊆ S it holds that |N [X] ∩ S| ≥ |N [X] \ S|.
We often write “S is secure” instead of “S is secure in G” if it is clear from
the context which graph is meant. By definition, the empty set is secure in any
graph. Thus, in the following decision problems we ask for secure sets of size at
least 1.

The following is our main problem:

Secure Set

Input: A graph G = (V,E) and an integer k with 1 ≤ k ≤ |V |
Question: Is there a set S ⊆ V with 1 ≤ |S| ≤ k that is secure?
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a b

c d e

Fig. 1. A graph with a minimum non-empty secure set indicated by circled nodes

Figure 1 shows a graph together with a minimum non-empty secure set S =
{a, b, c}. Observe that for any X ⊆ S the condition |N [X] ∩ S| ≥ |N [X] \ S| is
satisfied.

We now define three variants of the Secure Set problem that we require in
our proofs. Secure Set

F generalizes the Secure Set problem by designating
some “forbidden” vertices that may never be in any solution. This variant can
be formalized as follows:

Secure Set
F

Input: A graph G = (V,E), an integer k with 1 ≤ k ≤ |V | and a set
V� ⊆ V

Question: Is there a set S ⊆ V \ V� with 1 ≤ |S| ≤ k that is secure?

Secure Set
FN is a further generalization that, in addition, allows “necessary”

vertices to be specified that must occur in every solution.

Secure Set
FN

Input: A graph G = (V,E), an integer k with 1 ≤ k ≤ |V |, a set V� ⊆ V
and a set V� ⊆ V

Question: Is there a set S ⊆ V \ V� with V� ⊆ S and 1 ≤ |S| ≤ k that is
secure?

Finally, we introduce the generalization Secure Set
FNC. Here we may state

pairs of “complementary” vertices where any solution must contain exactly one
element of such a pair.

Secure Set
FNC

Input: A graph G = (V,E), an integer k with 1 ≤ k ≤ |V |, a set V� ⊆ V ,
a set V� ⊆ V and a set C ⊆ V 2

Question: Is there a set S ⊆ V \ V� with V� ⊆ S and 1 ≤ |S| ≤ k that is
secure and, for each pair (a, b) ∈ C, contains either a or b?

While the Secure Set problem asks for secure sets of size at most k, we
also consider the Exact Secure Set problem that concerns secure sets of size
exactly k. Note that a secure set may become insecure by adding or removing
elements, so this is a non-trivial problem variant. Analogously, we can also define
exact versions of the three generalizations of Secure Set presented above.
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Qsat2

Exact Secure Set
FNC

Exact Secure Set
FN

Exact Secure Set
F

Exact Secure Set

Secure Set
FNC

Secure Set
FN

Secure Set
F

Secure Set

Lemma 1

Lemma 2

Lemma 3

Theorem 1

Lemma 4

Theorem 1

Theorem 1

Theorem 1

Fig. 2. Reduction strategy for proving ΣP
2 -hardness of Secure Set

We often use the terms attackers and defenders of a subset X of a secure set
candidate S. By these we mean elements of N [X]\S and N [X]∩S, respectively.
To show that a subset X of a secure set candidate S is not a witness to S being
insecure, we sometimes employ the notion of matchings of the attackers of X
with dedicated defenders in N [X]∩S: If we are able to find an injective mapping
μ : N [X] \ S → N [X] ∩ S, then obviously |N [X] \ S| ≤ |N [X] ∩ S|. Given such
a matching μ, we say that a defender d repels an attack on X by an attacker a
whenever μ(a) = d. When we say that a set of defenders D can repel attacks on
X from a set of attackers A, we mean that there is a matching that assigns each
element of A a dedicated defender in D.

3 Complexity Results

We prove ΣP
2 -hardness of the Secure Set problem and several variants by a

chain of polynomial reductions from Qsat2. Our proof strategy is illustrated in
Fig. 2. In Theorem 1, we finally obtain ΣP

2 -completeness for eight problems.

Lemma 1. Exact Secure Set
FNC is ΣP

2 -hard.

Proof. We reduce from Qsat2 to Exact Secure Set
FNC. We are given a quan-

tified Boolean formula ϕ = ∃x1 . . . ∃xnx
∀y1 . . . ∀yny

ψ, where ψ is in 3-DNF and
contains nt terms. We assume that no term contains both a variable and its com-
plement (since such a term can never be satisfied) and that each term contains
at least one universally quantified variable (since ϕ is trivially true otherwise).

We construct an instance (G, k, V�, V�, C) of Exact Secure Set
FNC,

where the set of vertices of G = (V,E) is the union of the following sets:
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X = {x1, . . . , xnx
} X = {x1, . . . , xnx

} T = {t1, . . . tnt
}

Y = {y1, . . . , yny
} Y = {y1, . . . , yny

} T = {t1, . . . tnt
}

Y� = {y�
i,j , yi,j

� | 1 ≤ i ≤ ny, 1 ≤ j ≤ nt} Y ′
� = {y�

j | 1 ≤ j ≤ nt − 1}
Y� = {y�

i,j | 1 ≤ i ≤ ny, 1 ≤ j ≤ nt + 1} H = {d�
1 , d�

2 , t
�}

T� = {t1
�

, . . . tnt

�} T� = {t1
�

, . . . tnt

�} T ′ = {t′1, . . . , t
′
nt

}
T ′ = {t′1, . . . t′nt

} T ′
� = {t′�1 , . . . , t′�nt

} T ′� = {t′1
�

, . . . , t′nt

�}

Next we define the set of edges. In the following, whenever we speak of a literal
in the context of the graph G, we mean the vertex corresponding to that literal
(i.e., some xi, xi, yi or yi), and we proceed similarly for terms. Furthermore,
when we are dealing with a literal l, then l shall denote the complement of l. For
any term ti, let LX(ti) and LY (ti) denote the set of existentially and universally
quantified literals, respectively, in ti.

E =
{

(ti, t
�), (ti, ti

�), (t′i, t
′�
i ), (t′i, t

′
i

�
) | ti ∈ T

}
∪ (

T ′ × (Y ∪ Y )
)

∪
{

(l, ti
�), (l, ti) | ti ∈ T, l ∈ LX(ti)

}
∪

{
(l, t′i) | ti ∈ T, l ∈ LY (ti)

}

∪
{

(d�
1 , ti) | ti ∈ T, |LX(ti)| ≤ 1

}
∪

{
(d�

2 , ti) | ti ∈ T, LX(ti) = ∅
}

∪
{

(yi, y
�
i,j), (yi, yi,j

�) | 1 ≤ i ≤ ny, 1 ≤ j ≤ nt

}

∪
{

(yi, y�
i,j), (yi, y

�
i,j) | y�

i,j ∈ Y�
}

∪ (
Y ′

� × (Y ∪ Y )
)

Finally, we define V� = Y ∪ Y ∪ Y� ∪ Y ′
� ∪ T�, V� = Y� ∪ T� ∪ T ′

� ∪ T ′� ∪ H,
C = {(xi, xi) | 1 ≤ i ≤ nx} ∪ {(ti, ti), (ti, t′i), (t

′
i, t

′
i) | 1 ≤ i ≤ nt}, and k =

|V�| + nx + 2nt. For an illustration, see Fig. 3.
The following observations are crucial: Elements of X ∪ X are only adjacent

to vertices from T� and T . For any i, each element of X ∪ X is adjacent to
ti

� ∈ T� if and only if it is adjacent to ti ∈ T . Furthermore, for any i, j, if xi

or xi is adjacent to tj , then the term tj is falsified by setting the variable xi to
true or false, respectively. Finally, for any i, j, if yi or yi is adjacent to t′j , then
the term tj is falsified by setting the variable yi to true or false, respectively.

We claim that ϕ is true if and only if (G, k, V�, V�, C) is a positive instance
of Exact Secure Set

FNC. Since, for each ϕ, the corresponding instance
(G, k, V�, V�, C) can be constructed in time polynomial in the size of ϕ, ΣP

2 -
hardness follows.

“Only if” direction. If ϕ is true, then there is an assignment I to x1, . . . , xnx

such that, for all assignments extending I to y1, . . . , yny
, some term in ψ is

satisfied.
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t1
�

t2
�

t3
�

x1

�=
x1

x2

�=
x2

x3

�=
x3

d�
1 d�

2

t1

t2

t3

t
�

�= t′1

�= t′2

�= t′3

�=
t1

�=
t2

�=
t3

�=
t′1

�=
t′2

�=
t′3

y1

y1

y2

y2

(nt)

(nt + 1)

(nt − 1)

Fig. 3. Graph corresponding to the Qsat2 formula ∃x1∃x2∃x3 ∀y1∀y2
(
(¬x1 ∧ x2 ∧

y1) ∨ (x3 ∧ ¬y1 ∧ y2) ∨ (x3 ∧ ¬y1 ∧ ¬y2)
)
. “ �=” combines complementary vertices from

C. To avoid clutter, we omit labels for vertices Y�, Y ′
�, Y� , T�, T ′

� and T ′� , and we
draw some edges in a dashed style.

We define a set

S = V� ∪ {xi ∈ X | I(xi) = true} ∪ {xi ∈ X | I(xi) = false}
∪ {ti ∈ T , t′i ∈ T ′ | there is some l ∈ LX(ti) such that I �|= l}
∪ {ti ∈ T, t′i ∈ T ′ | for all l ∈ LX(ti) it holds that I |= l}.

We observe that |S| = k, V� ∩ S = ∅, V� ⊆ S, and that for any (a, b) ∈ C it
holds that a ∈ S if and only if b /∈ S. By construction, whenever some element
of X ∪ X is in S, then all its neighbors in T are in S; and whenever some ti is
in S, then some neighbor of ti in X ∪ X is in S.

We claim that S is a secure set in G. Let R be an arbitrary subset of S.
We show that R has at least as many defenders as attackers by matching each
attacker of R with a dedicated defender in N [R]∩S. We distinguish cases regard-
ing the origins of the attacks on R.

– We match each attacker ti
� ∈ T� with ti. Since ti

� attacks R, R must
contain some element of X ∪ X that is adjacent to ti

� and thus also to ti, so
ti ∈ N [R] ∩ S.

– Each attacker from X∪X ∪{d�
1 , d�

2 } is adjacent to some ti ∈ T ∩R. We match
that attacker with ti

�, which is adjacent to ti. Note that it cannot be the case
that ti is attacked by more than one vertex in X ∪ X ∪ {d�

1 , d�
2 } because ti

has exactly two neighbors from that set and would not be in S if neither of
these neighbors was in S.



70 B. Bliem and S. Woltran

– If t
� attacks R, then it attacks at least one element of T ∩R, which is adjacent

to some element of X∪X that is also in S. We match t
� with any such element

of X ∪ X.
– Any attack from some ti ∈ T on R must be on ti

�. Since ti /∈ S, ti
� is not

consumed for repelling an attack on ti, so we match ti with ti
�.

– If some t′�i ∈ T ′
� attacks R (by attacking t′i), we match t′�i with t′i.

– Analogously, we match each attacker t′i
� ∈ T ′� with t′i.

– If, for some i with 1 ≤ i ≤ ny, the vertices y�
i,j for 1 ≤ j ≤ nt + 1 attack R,

then we distinguish the following cases: If yi is in R, then the adjacent vertices
y�
i,j for 1 ≤ j ≤ nt are in the neighborhood of R, too. We then match each

y�
i,j with y�

i,j for 1 ≤ j ≤ nt, and we match y�
i,nt+1 with yi. Otherwise, yi is in

R, and we proceed symmetrically using yi,j
� and yi as matches.

– In order to account for attacks from T ′ ∪ T ′ on R, we distinguish two cases.
First, if for some i with 1 ≤ i ≤ ny, both yi and yi are in R, then, in the

step before, we have matched each y�
i,j with the respective y�

i,j or yi, but all
yi,j

� are still free. These vertices can repel all attacks from T ′ ∪ T ′, as there
are at most nt such attacks.

Otherwise, we show that there are at most nt − 1 attacks from T ′ ∪ T ′,
and they can be repelled using Y ′

�. Consider the (partial) assignment J that
assigns the same values to the variables x1, . . . , xnx

as the assignment I above,
and, for any variable yi, sets yi to true or false if R contains the vertex yi or
yi, respectively. By assumption we know that our assignment to x1, . . . , xnx

is such that for all assignments to y1, . . . , yny
some term ti in ψ is true. In

particular, it must therefore hold that J falsifies no existentially quantified
literal in ti. Then, by construction of S, the vertex t′i is not in S. We also know
that J falsifies no universally quantified literal in ti. But then the vertices from
Y ∪ Y adjacent to the vertex t′i are not in R due to our construction of J , so
t′i does not attack any vertex in R. From this it follows that there are at most
nt − 1 attacks from T ′ ∪ T ′ on R. We can repel all these attacks using the
vertices y�

1 , . . . , y�
nt−1.

This allows us to conclude |N [R] ∩ S| ≥ |N [R] \ S|. Therefore S is secure.
“If” direction. Suppose S is a secure set in G honoring the conditions

regarding forbidden, necessary and complementary vertices. If S contains some
l ∈ X ∪ X, then N(l) ∩ T ⊆ S, as the number of neighbors l has in T is equal
to the number of its other neighbors, which are all in T� and attack l since
T� ⊆ V�. If S contains some ti ∈ T , then ti must be adjacent to some element
of X ∪ X that is also in S. Otherwise ti would have three attackers (t� and two
vertices from X ∪ X ∪ {d�

1 , d�
2 }) but only two defenders (ti

� and itself).
We construct an interpretation I on the variables x1, . . . , xnx

that sets exactly
those xi to true where the corresponding vertex xi is in S, and we claim that
for each extension of I to the universally quantified variables there is a satisfied
term in ψ. To see this, suppose to the contrary that some assignment J to all
variables extends I but falsifies all terms in ψ. Then we define a set R consisting
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of all vertices yi such that J(yi) = true, all vertices yi such that J(yi) = false,
and all vertices in (T ′∪T ′)∩S that are adjacent to these vertices yi or yi. Clearly,
R is a subset of S. R has |R| defenders due to itself, nt − 1 defenders due to
Y ′

�, and ny · nt defenders due to N(R) ∩ Y�. This amounts to |N [R] ∩ S| =
|R| + nt − 1 + ny · nt.

a· · · aab

aab
1 · · · aab

n+1 aab
n+2 aab

n+3 aab
n+4

aab�
1 · · · aab�

n+1 aab�
n+2 aab�

n+3 aab�
n+4

�ab
bab b · · ·

babn+4 babn+3 babn+2 babn+1 · · · bab1

bab�
n+4 bab�

n+3 bab�
n+2 bab�

n+1 · · · bab�
1

Fig. 4. Gadget resulting from reducing an Exact Secure Set
FNC instance with

(a, b) ∈ C to an equivalent Exact Secure Set
FN instance. Dashed rounded rectangles

designate cliques.

On the other hand, there are nt attacks on R from T ′ ∪ T ′. This is because
for any term ti in ψ one of the following cases applies: (a) The term ti is falsified
already by I. Then t′i ∈ S and thus t′i /∈ S. The vertex t′i, however, is adjacent
to any element of Y ∪Y , so it attacks R. (b) The term ti is not falsified by I but
by J . Then t′i /∈ S, and LY (ti) contains some literal l with l ∈ N(t′i) and J |= l,
so l is in R and attacked by t′i.

In addition to these nt attackers, R has
∣
∣R ∩ (T ′ ∪ T ′)

∣
∣ attackers in N(R) ∩

(T ′
�∪T ′�), as well as ny ·(nt+1) attackers in Y�. Since |R| = ny+

∣
∣R ∩ (T ′ ∪ T ′)

∣
∣,

we obtain in total

|N [R] \ S| = nt +
∣
∣R ∩ (T ′ ∪ T ′)

∣
∣+ny · (nt +1) = |R|+nt +ny ·nt > |N [R] ∩ S|.

This contradicts S being secure, so for each extension of I to the universally
quantified vertices, ψ is true; hence ϕ is true. �
Lemma 2. Exact Secure Set

FN is ΣP
2 -hard.

Proof. We give a polynomial reduction from Exact Secure Set
FNC.

Let an instance of Exact Secure Set
FNC be given by G = (V,E), k > 0,

V� ⊆ V , V� ⊆ V and C ⊆ V 2, and let n = |V |. For each (a, b) ∈ C, we
introduce the set of new vertices Aab = {aab, bab,�ab} as well as, for any x ∈
{a, b}, sets of new vertices Cab

x � = {xab
1 , . . . , xab

n+1}, Dab
x � = {xab

n+2, . . . , x
ab
n+4},

Cab
x� = {xab�

1 , . . . , xab�
n+1} and Dab

x� = {xab�
n+2, . . . , x

ab�
n+4}; see also Fig. 4 how these

vertices are used. We now construct a graph G′ = (V ′, E′) as follows:

V ′ = V ∪
⋃

(a,b)∈C

(
Aab ∪ Cab

a �∪ Cab
b �∪ Cab

a� ∪ Cab
b� ∪ Dab

a �∪ Dab
b �∪ Dab

a� ∪ Dab
b�

)

E′ = E ∪
⋃

(a,b)∈C

⋃

x∈{a,b}

({(�ab, xab)} ∪ ({x} × Cab
x �) ∪ ({xab} × Dab

x �)

∪{(s, t) ∈ (Cab
x �∪ Cab

x� ∪ Dab
x �∪ Dab

x�)2 | s �= t})
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Finally, we define k′ = k+|C|·(n+6), V ′
� = V�∪⋃

(a,b)∈C(Cab
a�∪Cab

b�∪Dab
a�∪Dab

b�)
and V ′

� = V� ∪ ⋃
(a,b)∈C{�ab}).

The intention of our construction is, for each (a, b) ∈ C, x ∈ {a, b} and any
solution S, that (1) x ∈ S if and only if Cab

x � ∩ S �= ∅; (2) Cab
x � ∪ Dab

x � ⊆ S if
(Cab

x � ∪ Dab
x �) ∩ S �= ∅; (3) Dab

x � ∩ S �= ∅ if and only if xab ∈ S; (4) �ab ∈ S
and therefore aab ∈ S or bab ∈ S. Note that we have chosen

∣
∣Dab

x �

∣
∣ = 3 in

order to ensure the “if” direction of (3) by making sure xab has more neighbors
from Dab

x � than other neighbors (including itself). Furthermore, these conditions
imply that aab and bab cannot both be in S, as otherwise |S| > k′. We claim
that (G, k, V�, V�, C) is a positive instance of Exact Secure Set

FNC if and
only if (G′, k′, V ′

�, V ′
�) is a positive instance of Exact Secure Set

FN.
“Only if” direction. Let S ⊆ V \ V� be a secure set in G with |S| = k

and V� ⊆ S such that |S ∩ {a, b}| = 1 whenever (a, b) ∈ C. We construct
S′ = S∪⋃

(a,b)∈C, x∈S∩{a,b}({�ab, xab}∪Cab
x �∪Dab

x �) and observe that S′∩V ′
� = ∅,

V ′
� ⊆ S′, and |S′| = k′. Let X ′ be an arbitrary subset of S′. Since S is secure

and X ′ ∩ V ⊆ S, there is a matching μ : NG[X ′ ∩ V ] \ S → NG[X ′ ∩ V ] ∩ S. We
now construct a matching μ′ : NG′ [X ′] \ S′ → NG′ [X ′] ∩ S′. For any attacker v
of X ′ in G′, we distinguish three cases. (1) If v is some xab�

i ∈ Cab
x� ∪ Dab

x� for
some (a, b) ∈ C and x ∈ {a, b}, we set μ′(v) = xab

i . This element is in NG′ [X ′]
since all nodes in X ′ that v can attack are adjacent to it. (2) If v is aab or bab

for some (a, b) ∈ C, its only neighbor in X ′ can be �ab (by our construction
of S′), and we set μ′(v) = �ab. (3) Otherwise v is in NG[X ′ ∩ V ] \ S (by our
construction of S′). Since the codomain of μ is a subset of the codomain of μ′,
we may set μ′(v) = μ(v). Since μ′ is injective, each attack on X ′ in G′ can be
repelled by S′. Thus S′ is secure in G′.

“If” direction. Let S′ ⊆ V ′ \ V ′
� be a secure set in G′ with |S′| = k′ and

V ′
� ⊆ S′. First we make the following observations for each (a, b) ∈ C and

each x ∈ {a, b}: (a) If x ∈ S′, then Cab
x � ∩ S′ �= ∅, since x only has at most

n − 1 neighbors not in Cab
x �. (b) Similarly, if xab ∈ S′, then Dab

x � ∩ S′ �= ∅, as
xab only has one neighbor not in Dab

x �. (c) If some xab
i ∈ Cab

x � is in S′, then
Cab

x �∪ Dab
x �∪ {x} ⊆ S′, since xab

i has n + 4 attackers from Cab
x� ∪ Dab

x� and only
n+4 other neighbors. (d) If some xab

i ∈ Dab
x � is in S′, then Cab

x �∪Dab
x �∪{xab} ⊆ S′

for the same reason. So for any (a, b) ∈ C and x ∈ {a, b}, S′ contains either all
or none of {x, xab} ∪ Cab

x �∪ Dab
x �.

For each (a, b) ∈ C, S′ contains aab or bab, since �ab ∈ S′, whose neighbors
are aab and bab. It follows that |S′| > |C| · (n + 6) even if S′ contains only one
of each (a, b) ∈ C. If, for some (a, b) ∈ C, S′ contained both a and b, we could
derive a contradiction to |S′| = k′ because then |S′| > (|C| + 1) · (n + 6) > k′.
So S′ contains either a or b for any (a, b) ∈ C.

We construct the set S = S′ ∩ V and observe that |S| = k, V� ⊆ S,
V� ∩ S = ∅, and |S ∩ {a, b}| = 1 for each (a, b) ∈ C. Let X ⊆ S and X ′ = X ∪⋃

(a,b)∈C,x∈X∩{a,b} Cab
x �. For each Cab

x � in X ′, there are
∣
∣Cab

x �∪ Dab
x �

∣
∣ = n+4 addi-

tional defenders and
∣
∣Cab

x� ∪ Dab
x�

∣
∣ = n + 4 additional attackers of X ′ in G′ com-

pared to X in G; so |NG′ [X ′] ∩ S′|−|NG[X] ∩ S| = |NG′ [X ′] \ S′|− |NG[X] \ S|.
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a b � a

a2a1 a3

a�
1 a�

2 a�
3

b

Fig. 5. Transformation of a sample Secure Set
FN instance with k = 1 to an equivalent

Secure Set
F instance with k′ = 4. The dashed rounded rectangle designates a clique.

Clearly X ′ ⊆ S′, so |NG′ [X ′] ∩ S′| ≥ |NG′ [X ′] \ S′| as S′ is secure in G′. We con-
clude |NG[X] ∩ S| ≥ |NG[X] \ S|. Hence S is secure in G. �

Lemma 3. Exact Secure Set
F is ΣP

2 -hard.

Proof. We give a polynomial reduction from Exact Secure Set
FN.

Let an instance of Exact Secure Set
FN be given by G = (V,E), k > 0,

V� ⊆ V and V� ⊆ V . Let n = |V | and V � = V \(V� ∪V�). We assume k ≥ |V�|,
as the instance is trivially negative otherwise. We define for each v ∈ V � the set of
new vertices Cv = {v1, . . . , vn+1, v

�
1 , . . . , v�

n+1}, and we use shorthand notation
C

�

v = {v1, . . . , vn+1} and C�
v = {v�

1 , . . . , v�
n+1}. The intention is for each v�

i to
be forbidden and for each vi to be in a secure set if and only if v is in it at the
same time. We define the graph G′ = (V ′, E′) with V ′ = V ∪ ⋃

v∈V �Cv and

E′ = E ∪ {(v, u) | v ∈ V �, u ∈ C
�

v } ∪ {(s, t) ∈ C2
v | v ∈ V �, s �= t}.

Furthermore, we define V ′
� = V� ∪⋃

v∈V �C
�
v and k′ = |V�|+(k−|V�|) · (n+2).

An example for this construction is given in Fig. 5. We claim that (G, k, V�, V�)
is a positive instance of Exact Secure Set

FN if and only if (G′, k′, V ′
�) is a

positive instance of Exact Secure Set
F .

“Only if” direction. Let S ⊆ V \ V� be a secure set in G with |S| = k and
V� ⊆ S. We construct S′ = S ∪ ⋃

v∈S∩V �C
�

v . It holds that |S′| = |S| + (|S| −
|V�|) · (n + 1) = k + (k − |V�|) · (n + 1) = |V�| + (k − |V�|) · (n + 2) = k′. To
show that S′ is secure in G′, let X ′ ⊆ S′. Since S is secure in G and X ′ ∩V ⊆ S,
there is a matching μ : NG[X ′ ∩ V ] \ S → NG[X ′ ∩ V ] ∩ S. We now construct a
matching μ′ : NG′ [X ′] \ S′ → NG′ [X ′] ∩ S′. For any attacker a of X ′ in G′, we
distinguish two cases: If a is some is some v�

i ∈ C�
v for some v ∈ V �, there is

some vj ∈ C
�

v in X ′. We set μ′(v�
i ) = vi, which is in NG′ [X ′]∩S′ since C

�

v forms
a clique. Otherwise a is in NG[X ′ ∩ V ] \ S (by our construction of S′). Since the
codomain of μ is a subset of the codomain of μ′, we may set μ′(a) = μ(a). Since
μ′ is injective, each attack on X ′ in G′ can be repelled by S′. Thus S′ is secure
in G′.

“If” direction. Let S′ ⊆ V ′ \ V ′
� be a secure set in G′ with |S′| = k′. If S′

contains some vi ∈ C
�

v for some v ∈ V �, then {v} ∪ C
�

v ⊆ S′, as vi has n + 1
attackers in C�

v and only n + 1 neighbors not in C�
v . It is impossible for S′ to

contain some v ∈ V � but none of C
�

v , as v has at most n−1 neighbors not in C
�

v
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and |C �

v | = n+1. From these considerations we derive |S′| = |S′ ∩ V�|+|S′ ∩ V �|·
(n + 2). Since |V�| ≤ n, this implies |S′| mod (n + 2) = |S′ ∩ V�|. At the same
time, |S′| = k′ = |V�|+(k−|V�|)·(n+2), which implies |S′| mod (n+2) = |V�|.
We conclude |S′ ∩ V�| = |V�|, so V� ⊆ S′.

We construct S = S′ ∩ V and claim that it is secure in G. It is easy to see
that |S| = k; otherwise we would obtain a contradiction to |S′| = k′ as we have
seen that, for any v ∈ V �, S′ contains all elements of C

�

v ∪ {v} whenever it
contains any of them. Let X be an arbitrary subset of S. We construct X ′ =
X∪⋃

v∈X∩V �C
�

v and observe that each C
�

v we put into X ′ entails |C �

v | additional
defenders and

∣
∣C�

v

∣
∣ = |C �

v | additional attackers of X ′ in G′ compared to X
in G; so |NG′ [X ′] ∩ S′| − |NG[X] ∩ S| = |NG′ [X ′] \ S′| − |NG[X] \ S|. Clearly
X ′ ⊆ S′, so |NG′ [X ′] ∩ S′| ≥ |NG′ [X ′] \ S′| as S′ is secure in G′. Consequently,
|NG[X] ∩ S| ≥ |NG[X] \ S|. Hence S is secure in G. �
Lemma 4. Secure Set

F is ΣP
2 -hard.

Proof. We give a polynomial reduction from Exact Secure Set
F .

Let an instance of Exact Secure Set
F be given by G = (V,E), k > 0

and V� ⊆ V . Let n denote |V |. We define for each v ∈ V the sets of new
vertices A

�

v = {v0, v1, . . . , vn+1}, A�
v = {v�

0 , v�
1 , . . . , v�

n+1}, and denote by A+
v

the set A
�

v \{v0} and by Av the set A
�

v ∪A�
v . We also introduce the new vertices

W = {w1, . . . , wn} and F� = {f�
1 , . . . , f�

k }, and we write A0 to denote {v0 ∈
Av | v ∈ V } and B to denote A0 ∪ W ∪ F�. We define the graph G′ = (V ′, E′)
with V ′ = V ∪ W ∪ F� ∪ ⋃

v∈V Av and

E′ = E ∪ {(v, u) | v ∈ V, u ∈ A+
v } ∪ {(s, t) ∈ A2

v | v ∈ V, s �= t}
∪ {(s, t) ∈ B2 | s �= t}.

Furthermore, we define V ′
� = V� ∪ F� ∪ ⋃

v∈V A�
v and k′ = k · (n + 3) + n.

Our construction is illustrated in Fig. 6. For any v ∈ V , the intention for
vi is to be in a secure set if and only if v is in it. The intention behind the
clique formed by B is that W shall be part of any secure set and is used for
repelling attacks from F� and from those elements of A0 that are not in the
secure set. This enforces that all secure sets in G′ contain k elements of V . We
claim that (G, k, V�) is a positive instance of Exact Secure Set

F if and only
if (G′, k′, V ′

�) is a positive instance of Secure Set
F.

“Only if” direction. Let S ⊆ V \ V� be a secure set in G with |S| = k. We
construct S′ = S ∪ W ∪ ⋃

v∈S A
�

v and observe that |S′| = k′. Let X ′ be an
arbitrary subset of S′. Since S is secure and X ′ ∩ V ⊆ S, there is a matching
μ : NG[X ′ ∩ V ] \ S → NG[X ′ ∩ V ] ∩ S. We now construct a matching μ′ :
NG′ [X ′] \ S′ → NG′ [X ′] ∩ S′ by distinguishing three cases: (1) For any v ∈ V , if
any v�

i ∈ A�
v attacks X ′, there is some vj ∈ A

�

v in X ′. We set μ′(v�
i ) = vi, which

is in NG′ [X ′] ∩ S′ since A
�

v forms a clique. (2) If any of the 2n + k elements of
B attacks X ′, B ∩ X ′ �= ∅. By construction, |A0 ∩ S′| = k and W ⊆ S′, and we
know |W | = n. So there are exactly n attacks from B. They can all be repelled
using the n vertices in W , which are all in NG′ [X ′] ∩ S′ as B forms a clique. (3)
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a· · ·
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1

a2 a�
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b�
0

c�
0

d�
0

· · ·
· · ·
· · ·
· · ·
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b0

c0

d0

f�
1

f�
2

w1

w2

w3

w4

B

Fig. 6. For a sample instance of Exact Secure Set
F with V = {a, b, c, d} and k = 2,

the left hand side illustrates the gadget that forces either all or none of a, a0, . . . , an+1

to be in a solution of the resulting Secure Set
F instance, while the right hand side

illustrates the gadget that makes sure that at least k elements of V must be in each
solution. Dashed rounded rectangles indicate cliques. For a sample solution candidate
S′ with {a, a0, . . . , a5, b0, w1, . . . , w5} ⊆ S′, the dotted arrows indicate how attacks on
{a0, b0} can be repelled.

Any v ∈ V attacking X ′ is in NG[X ′ ∩V ]\S, due to our construction of S′. Since
the codomain of μ is a subset of the codomain of μ′, we may set μ′(v) = μ(v).
Clearly, μ′ is injective, so S′ can repel each attack on X ′ in G′. Thus S′ is secure
in G′.

“If” direction. Let S′ ⊆ V ′ \V ′
� be a secure set in G′ with 1 ≤ |S′| ≤ k′. First

we make the following observations: (a) If v ∈ S′ for some v ∈ V , then some
element of A+

v must be in S′ as well, since v has n + 1 neighbors in A+
v , while it

only has at most n − 1 neighbors not in A+
v . (b) If v0 ∈ S′ for some v ∈ V , then

some vi ∈ A+
v is in S′; otherwise v0 would have at least 2n + 3 + k attackers due

to Av \ {v0} and F�, while v0 has only 2n − 1 other neighbors (due to W and
A0 \ {v0}). (c) If vi ∈ S′ for some v ∈ V and vi ∈ A+

v , then A
�

v ∪ {v} ⊆ S′, since
vi has n+2 attackers from A�

v and only n+2 other neighbors (due to A
�

v \ {vi}
and v). (d) If wi ∈ S′ for some wi ∈ W , then v0 ∈ S′ for some v ∈ V ; otherwise
wi would have at least n + k attackers due to A0 ∪ F� and at most n defenders
(due to W ).

It follows that, for any v ∈ V , S′ contains either all or none of the elements in
{v, v0, v1, . . . , vn+1}. This implies that S′ cannot contain more than k elements
of V , since |S′| ≤ k′. Moreover, the case distinction shows that if any vertex is
in S′, then in particular some v ∈ V is in S′.

As S′ is not empty, we may conclude that v0 ∈ S′ for some v ∈ V . Since v0
has n + 2 attackers from A�

v , k attackers from F� and at least n − k attackers
from A0 (as at most k elements of A0 can be in S′), v0 in total has at least 2n+2
attackers. At the same time, v0 has n + 2 defenders from A

�

v (including itself),
at most n defenders from W , and no other defenders. So v0 has at most 2n + 2
defenders. This shows that S′ must contain W and at least k elements of V ;
otherwise v0 would have more attackers than defenders. It follows in particular
that S′ contains exactly k elements of V .
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We construct S = S′ ∩ V and observe that |S| = k and V� ∩ S = ∅.
Let X be an arbitrary subset of S. We construct X ′ = X ∪ ⋃

v∈X A+
v and

observe that each A+
v we put into X ′ entails |A �

v | additional defenders and∣
∣A�

v

∣
∣ = |A �

v | additional attackers of X ′ in G′ compared to X in G; so
|NG′ [X ′] ∩ S′| − |NG[X] ∩ S| = |NG′ [X ′] \ S′| − |NG[X] \ S|. We have X ′ ⊆ S′

and |NG′ [X ′] ∩ S′| ≥ |NG′ [X ′] \ S′| as S′ is secure in G′. It follows that
|NG[X] ∩ S| ≥ |NG[X] \ S|. This shows that S is secure in G.

We can now state the main result of the paper.

Theorem 1. The following problems are all ΣP
2 -complete: (a) Secure Set,

(b) Exact Secure Set, (c) Secure Set
F, (d) Exact Secure Set

F ,
(e) Secure Set

FN, (f) Exact Secure Set
FN, (g) Secure Set

FNC, and
(h) Exact Secure Set

FNC.

Proof. For membership in ΣP
2 , given an instance of one of the problems under

consideration, we guess a subset S of the vertices such that, depending on the
problem variant, the size of S is either at most k or exactly k, and S addi-
tionally respects the applicable conditions regarding forbidden, necessary and
complementary vertices. Checking that S is secure can be done with an NP
oracle [6].

We recall our proof strategy illustrated in Fig. 2. ΣP
2 -hardness of (h), (f), (d)

and (c) follows from Lemmas 1–4. ΣP
2 -hardness of (e) and (g) follows directly

from (c). We now show ΣP
2 -hardness of Secure Set (a) by a polynomial reduc-

tion from Secure Set
F (c). Let an instance of Secure Set

F be given by
G = (V,E), k > 0 and V� ⊆ V . For each f ∈ V�, we introduce new vertices
f1, . . . , f2k, and we define a graph G′ = (V ′, E′) with V ′ = V ∪{f1, . . . , f2k | f ∈
V�} and E′ = E ∪ {(fi, fj) | f ∈ V�, 1 ≤ i < j ≤ 2k} ∪ {(f, fi) | f ∈ V�, 1 ≤
i ≤ 2k}. The instance (G, k, V�) of Secure Set

F possesses the same solutions
as the instance (G′, k) of Secure Set: Each secure set S in G is also secure in
G′ because the subgraph of G induced by NG[S] is isomorphic to the subgraph
of G′ induced by NG′ [S]. On the other hand, a secure set S′ in G′ with |S′| ≤ k
cannot not contain any v ∈ {f, f1, . . . , f2k} for any f ∈ V�, as |N [v]| ≥ 2k + 1.
Hence S′ is also secure in G as the subgraphs induced by the respective neigh-
borhoods are again isomorphic. The same argument also proves ΣP

2 -hardness of
Exact Secure Set (b) by reduction from Exact Secure Set

F (d).

4 Conclusion

In this work, we have solved a complexity problem in graph theory that, to
the best of our knowledge, has remained open since the introduction of secure
sets [3]in 2007. We have shown that the problem of deciding whether, for a given
graph G and integer k, G possesses a non-empty secure set of size at most k is ΣP

2 -
complete. We moreover obtained ΣP

2 -completeness for seven further variants of
this problem. In future work, we would like to identify subclasses of graphs that
make the problems under consideration easier. Additionally,we plan to contribute
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results on the parameterized complexity of secure sets beyond the already known
fixed-parameter tractability result from [5]. In particular, we believe that recently
introduced classes (above NP) due to [4] are of interest for secure sets.
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2. Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance. Com-
mun. ACM 54(12), 92–103 (2011)

3. Brigham, R.C., Dutton, R.D., Hedetniemi, S.T.: Security in graphs. Discrete Appl.
Math. 155(13), 1708–1714 (2007)

4. de Haan, R., Szeider, S.: The parameterized complexity of reasoning problems
beyond NP. In: Proceedings of KR 2014, pp. 82–91 (2014)

5. Enciso, R.I., Dutton, R.D.: Parameterized complexity of secure sets. Congr. Numer.
189, 161–168 (2008)

6. Ho, Y.Y.: Global secure sets of trees and grid-like graphs. Ph.D. thesis, University
of Central Florida, Orlando, USA (2011)

7. Marx, D.: Complexity of clique coloring and related problems. Theor. Comput. Sci.
412(29), 3487–3500 (2011)

8. Szeider, S.: Generalizations of matched CNF formulas. Ann. Math. Artif. Intell.
43(1), 223–238 (2005)



Efficient Domination for Some Subclasses
of P6-free Graphs in Polynomial Time
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Abstract. Let G be a finite undirected graph. A vertex dominates itself
and all its neighbors in G. A vertex set D is an efficient dominating set
(e.d. for short) of G if every vertex of G is dominated by exactly one
vertex of D. The Efficient Domination (ED) problem, which asks for
the existence of an e.d. in G, is known to be NP-complete even for very
restricted graph classes such as P7-free chordal graphs. The ED problem
on a graph G can be reduced to the Maximum Weight Independent Set
(MWIS) problem on the square of G. The complexity of the ED prob-
lem is an open question for P6-free graphs and was open even for the
subclass of P6-free chordal graphs. In this paper, we show that squares
of P6-free chordal graphs that have an e.d. are chordal; this even holds
for the larger class of (P6, house, hole, domino)-free graphs. This implies
that ED/WeightedED is solvable in polynomial time for (P6, house, hole,
domino)-free graphs; in particular, for P6-free chordal graphs. Moreover,
based on our result that squares of P6-free graphs that have an e.d. are
hole-free and some properties concerning odd antiholes, we show that
squares of (P6, house)-free graphs ((P6, bull)-free graphs, respectively)
that have an e.d. are perfect. This implies that ED/WeightedED is solv-
able in polynomial time for (P6, house)-free graphs and for (P6, bull)-free
graphs (the time bound for (P6, house, hole, domino)-free graphs is bet-
ter than that for (P6, house)-free graphs). The complexity of the ED
problem for P6-free graphs remains an open question.

Keywords: Efficient domination · Chordal graphs · Hole-free graphs ·
(house, hole, domino)-free graphs · P6-free graphs · Polynomial-time
algorithm

1 Introduction

Let G = (V,E) be a finite undirected graph. A vertex v ∈ V dominates itself
and its neighbors. A vertex subset D ⊆ V is an efficient dominating set (e.d. for

c© Springer-Verlag Berlin Heidelberg 2016
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short) of G if every vertex of G is dominated by exactly one vertex in D. Note
that not every graph has an e.d.; the Efficient Dominating Set (ED) problem
asks for the existence of an e.d. in a given graph G. If a vertex weight function
ω : V → N is given, the Weighted Efficient Dominating Set (WED)
problem asks for a minimum weight e.d. in G, if there is one, or for determining
that G has no e.d. The importance of the ED problem mostly results from the
fact that the ED problem for a graph G is a special case of the Exact Cover
problem for hypergraphs (problem [SP2] of [13]); ED is the Exact Cover problem
for the closed neighborhood hypergraph of G.

For a graph F , a graph G is called F -free if G contains no induced subgraph
isomorphic to F .

We denote by G + H the disjoint union of graphs G and H. Let Pk denote a
chordless path with k vertices, and let 2Pk denote Pk +Pk, and correspondingly
for kP2. The claw is the 4-vertex tree with three vertices of degree 1.

Many papers have studied the complexity of ED on special graph classes -
see e.g. [7,16] for references. In particular, a standard reduction from the Exact
Cover problem shows that ED remains NP-complete for 2P3-free chordal graphs
and for bipartite graphs. Moreover, it is known to be NP-complete for line graphs
and thus, for claw-free graphs.

A linear forest is a graph whose components are paths; equivalently, it is a
graph that is cycle-free and claw-free. The NP-completeness of ED on chordal
graphs, on bipartite graphs and on claw-free graphs implies: If F is not a linear
forest, then ED is NP-complete on F -free graphs. This motivates the analysis of
ED/WED on F -free graphs for linear forests F . For F -free graphs, where F is
a linear forest, the only remaining open case is the complexity of ED on P6-free
graphs (see [3]).

The main results of this paper are the following:

– If G is (P6, HHD)-free and has an e.d., then G2 is chordal. Then using a
subsequently described reduction of ED/WED on G to the Maximum Weight
Independent Set (MWIS) problem on G2, we obtain a polynomial time solution
for ED/WED on this class of graphs, since MWIS is solvable in polynomial
time on chordal graphs. This also gives a dichotomy result for Pk-free chordal
graphs, since ED is NP-complete for P7-free chordal graphs.

– If G is P6-free and has an e.d., then G2 is hole-free. This does not yet imply
that ED for P6-free graphs is solvable in polynomial time, since the MWIS
problem for hole-free graphs is an open question but it leads to further results
on ED for subclasses of P6-free graphs.

– If G is P6-free and has an e.d., then odd antiholes in G2 have very special struc-
ture. Analyzing the structure of C4 realizations in G2, we obtain a polynomial
time solution of ED/WED for (P6, house)-free graphs and for (P6, bull)-free
graphs, since in this case, G2 is perfect if G has an e.d.
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2 Basic Notions and Results

2.1 Some Basic Notions

All graphs considered in this paper are finite, undirected and simple (i.e., without
loops and multiple edges). For a graph G, let V (G) or simply V denote its vertex
set and E(G) or simply E its edge set; throughout this paper, let |V | = n and
|E| = m. We can assume that G is connected (otherwise, ED can be solved
separately for its components); thus, m ≥ n−1. For U ⊆ V , let G[U ] denote the
subgraph of G induced by U .

For a vertex v ∈ V , N(v) = {u ∈ V | uv ∈ E} denotes its (open) neighbor-
hood, and N [v] = {v} ∪ N(v) denotes its closed neighborhood. A vertex v sees
the vertices in N(v) and misses all the others. Let dG(v, w) denote the distance
between v and w in G.

Let Pk denote a chordless path with k vertices, and let Ck denote a chordless
cycle with k vertices. Chordless cycles Ck with k ≥ 5 are called holes. The
complement graph P5 is also called house. Domino has six vertices and can be
obtained by adding a vertex y to a P5 x1, . . . , x5 with edges xixi+1, 1 ≤ i ≤ 4,
such that yx1 ∈ E, yx3 ∈ E, and yx5 ∈ E; see Fig. 1. A graph is chordal
if it is Ck-free for every k ≥ 4. A graph is (house, hole, domino)-free (HHD-
free for short) if it has no induced subgraph isomorphic to a house, hole or
domino. Obviously, chordal graphs are HHD-free, and G is (P6, HHD)-free if
and only if G is (P6, C5, C6, house, domino)-free. The importance of HHD-free
graphs as a natural generalization of chordal graphs is illustrated by various
characterizations of them such as: G is HHD-free if and only if G is (5, 2)-chordal
(see e.g. [5]).

Bull Domino Hole House Net

Fig. 1. Some special graphs.

2.2 Reducing the ED Problem on a Graph
to the MWIS Problem on its Square

The square of a graph G = (V,E) is the graph G2 = (V,E2) such that uv ∈ E2 if
and only if dG(u, v) ∈ {1, 2}. In [6,14,16], the following relationship between the
ED problem on a graph G and the maximum weight independent set (MWIS)
problem on G2 is used:
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Lemma 1. Let G = (V,E) be a graph and ω(v) := |N [v]| a vertex weight func-
tion for G. Then the following are equivalent for any subset D ⊆ V :

(i) D is an efficient dominating set in G.
(ii) D is a minimum weight dominating set in G with ω(D) = |V |.
(iii) D is a maximum weight independent set in G2 with ω(D) = |V |.

Thus, the ED problem on a graph class C can be reduced to the MWIS
problem on the squares of graphs in C. In [2], this is extended to the vertex-
weighted version WED of the ED problem.

3 Squares of (P6, HHD)-Free Graphs that have
an e.d. are Chordal

Obviously, the square of a chordal graph can contain a C4 as for example, the
complete 4-sun shows. If we additionally require that the graph is P6-free and has
an e.d., the situation is different: The main result of this section is Theorem1,
which shows that for any graph G that is (P6, HHD)-free and has an e.d., its
square G2 is chordal, i.e., Ck-free for every k ≥ 4. Theorem 2 in Sect. 4.1 shows
that G2 is Ck-free for every k ≥ 5 for the larger class of P6-free graphs, but its
proof is long and technically involved. For the special case of (P6, HHD)-free
graphs, we give a direct proof here since it is much shorter than the proof of
Theorem 2.

Theorem 1. If G is a (P6, HHD)-free graph that has an e.d., then G2 is chordal.

For the proof of Theorem 1, we first prove several lemmas. Let G be a (P6,
HHD)-free graph with an e.d. D. Suppose that G2 contains a chordless cycle Ck

C with vertices v1, . . . , vk, k ≥ 4; we call these the real vertices of C and denote
them by R(C) = {v1, . . . , vk}. For dG(vi, vi+1) = 2 (index arithmetic is modulo
k throughout this section), let xi be a common neighbor of vi and vi+1; we call
these xi vertices the auxiliary vertices of C and denote the set of these vertices
by A(C). Let V (C) = R(C)∪A(C) denote the set of vertices (real and auxiliary)
in G realizing a Ck C in G2; we call V (C) a cycle embedding.

Observation 1. For every i ∈ {1, . . . , k}, dG(vi, vi+1) ≤ 2. Also, dG(vi, vj) > 2
if vi and vj are not consecutive in the Ck C in G2. In particular, if
dG(vi, vi+1) = 1 then dG(vi+1, vi+2) = 2 and dG(vi−1, vi) = 2. Clearly, auxiliary
vertices are pairwise distinct, and for every xi, vjxi /∈ E for all j /∈ {i, i + 1}.

We claim that there are k distinct auxiliary vertices x1, . . . , xk in V (C):

Lemma 2. For all i ∈ {1, . . . , k}, dG(vi, vi+1) = 2.

Proof. Without loss of generality, suppose v1v2 ∈ E. Then dG(v2, v3) = 2 and
dG(vk, v1) = 2.

Case k = 4: If further v3v4 ∈ E, then V (C) induces either a C6 or a domino in
G which is a contradiction. Thus, dG(v3, v4) = 2 and there is a vertex x3.
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Since {v1, v2, x2, v3, x3, v4} does not induce a P6, we have x2x3 ∈ E.
Since {v2, v1, x4, v4, x3, v3} does not induce a P6, we have x3x4 ∈ E.
Since {v3, x2, v2, v1, x4, v4} does not induce a P6, we have x2x4 ∈ E.

Now, {v1, v2, x2, x3, x4} induces a house which is a contradiction. Thus, we
have dG(vi, vi+1) = 2 for all i ∈ {1, . . . , 4} and Lemma 2 holds for k = 4.

For k ≥ 5, since {vk, xk, v1, v2, x2, v3} does not induce a P6, we have xkx2 ∈
E. If xk and x2 have a common neighbor xi, 2 < i < k, then {v1, v2, x2, xk, xi}
induces a house; thus for all i with 2 < i < k, we have:

(∗) x2xi /∈ E or xkxi /∈ E.

Case k = 5: Without loss of generality, suppose dG(v3, v4) = 2.
Since {v1, v2, x2, v3, x3, v4} does not induce a P6, we have x2x3 ∈ E; thus,
x3x5 /∈ E by (∗).
Since {v1, v2, x2, x3, v4, v5} does not induce a P6, we have dG(v4, v5) = 2 and
thus, there is a vertex x4.
Since {v2, v1, x5, v5, x4, v4} does not induce a P6, we have x4x5 ∈ E, which
implies x2x4 /∈ E by (∗).
Since {x2, x3, v4, x4, x5} does not induce a C5, we have x3x4 ∈ E; but now,
G[{x2, x3, v4, x4, x5}] is a house, which is a contradiction. Thus, Lemma2 holds
for k = 5.

Case k > 5: Since {v4, v3, x2, xk, vk, vk−1} does not induce a P6, we have either
dG(v3, v4) = 2 or dG(vk, vk−1) = 2; without loss of generality, let dG(v3, v4) = 2
and there is a vertex x3.
Since {v4, x3, v3, x2, v2, v1} does not induce a P6, we have x2x3 ∈ E, which
implies x3xk /∈ E by (∗).
Since {v4, x3, x2, xk, vk, vk−1} does not induce a P6, we have dG(vk, vk−1) = 2
and thus, there is a vertex xk−1.
Since {vk−1, xk−1, vk, xk, v1, v2} does not induce a P6, we have xk−1xk ∈ E,
which implies x2xk−1 /∈ E by (∗).
Since {v4, x3, x2, xk, xk−1, vk−1} does not induce a C6 or P6, we have x3xk−1 ∈ E
and now G[{v1, v2, x2, xk, x3, xk−1}] is a domino, which is a contradiction. Thus,
Lemma 2 holds for k > 5. 	

Lemma 3. For all i ∈ {1, . . . , k}, xixi+1 ∈ E.

Proof. Without loss of generality, suppose to the contrary that x1x2 /∈ E. Then,
since {v1, x1, v2, x2, v3, x3} does not induce a P6, we have x1x3 ∈ E or x2x3 ∈ E.
If x1x3 ∈ E then x2x3 ∈ E, else {x1, v2, x2, v3, x3} induces a C5. Thus, x2x3 ∈ E.
Since {v1, x1, v2, x2, x3, v4} does not induce a P6, we have x1x3 ∈ E. But, now
{x1, v2, x2, v3, x3} induces a house, which is a contradiction; thus, x1x2 ∈ E and
Lemma 3 is shown. 	

Lemma 4. D ∩ {v1, . . . , vk, x1, . . . , xk} = ∅.
Proof. First suppose to the contrary that D ∩ {v1, . . . , vk} = ∅; without loss of
generality, let v1 ∈ D. Then v2 /∈ D and vk /∈ D, but they must be dominated
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by D-vertices, say d2, dk ∈ D with d2v2 ∈ E and dkvk ∈ E. Since dG(v2, vk) > 2,
d2 = dk. Also, d2 /∈ {x1, x2} and dk /∈ {xk−1, xk}. Now G[{d2, v2, x1, xk, vk, dk}]
is a P6, which is a contradiction. Thus, D ∩ {v1, . . . , vk} = ∅.

Now suppose to the contrary that D ∩ {x1, . . . , xk} = ∅; without loss of
generality, let x1 ∈ D. We know already that v3, vk /∈ D and thus, there is
d3 ∈ D with d3v3 ∈ E such that d3 /∈ {x2, x3}. If k = 4 and d3v4 ∈ E, then
G[{v3, d3, v4, x4, x1, v2}] is a P6; thus, d3v4 /∈ E. If k ≥ 5 then d3vk /∈ E since
dG(v3, vk) > 2. So there must be dk ∈ D with dkvk ∈ E such that dk = d3
and dk /∈ {xk−1, xk}. If x2xk /∈ E then G[{d3, v3, x2, x1, xk, vk}] is a P6, and if
x2xk ∈ E then G[{d3, v3, x2, xk, vk, dk}] is a P6, which is a contradiction. Thus,
Lemma 4 is shown. 	


For all i ∈ {1, . . . , k}, let di ∈ D be the vertex with divi ∈ E. We claim that
d1, . . . , dk are pairwise distinct:

Corollary 1. For all i ∈ {1, . . . , k}, di has exactly one neighbor in {v1, . . . , vk}.
Proof. As in Observation 1, a D-vertex cannot see both vi and vj if vi and
vj are not consecutive in the Ck C in G2. Suppose without loss of generality
d1 = d2, i.e., d1v1 ∈ E and d1v2 ∈ E. Then x1 can be replaced by d1 in the cycle
embedding and thus, d1 is an auxiliary vertex in D which contradicts Lemma 4. 	

Lemma 5. For all i ∈ {1, . . . , k}, dixi−1 /∈ E or dixi /∈ E.

Proof. Without loss of generality, assume that d1xk ∈ E and d1x1 ∈ E. Then
G[{d2, v2, x1, xk, vk, dk}] is a P6, which is a contradiction. 	

Lemma 6. For all i ∈ {1, . . . , k}, if dixi /∈ E then dixi+1 /∈ E, and if dixi−1 /∈
E then dixi−2 /∈ E.

Proof. Assume that dixi /∈ E and dixi+1 ∈ E. Then {di, vi, xi, xi+1, vi+1}
induces a house, which is a contradiction. Thus, if dixi /∈ E then dixi+1 /∈ E
and similarly, if dixi−1 /∈ E then dixi−2 /∈ E. 	

Lemma 7. For all i ∈ {1, . . . , k}, dixi /∈ E implies di+2xi+1 ∈ E and
di+2xi+2 /∈ E.

Proof. Assume without loss of generality that d1x1 /∈ E. Then, by Lemma 6,
d1x2 /∈ E and if d3x1 ∈ E then d3x2 ∈ E. Since {d1, v1, x1, x2, v3, d3} does not
induce a P6, we have d3x2 ∈ E or d3x1 ∈ E, which implies d3x2 ∈ E. Then, by
Lemma 5, d3x3 /∈ E. 	


For an odd hole, repeating the argument of Lemma7 on d3x3 /∈ E, and
so on, determines all the edges and non-edges between D-vertices and auxiliary
vertices. For C4 or an even hole, repeating the argument determines the edges for
every second D-vertex, but then a second round (using the fact that d2x2 /∈ E)
determines the remaining edges and non-edges.

Proof of Theorem1. First suppose that C is a C4 in G2. Then, since G is HHD-
free, we have x1x3 ∈ E or x2x4 ∈ E; without loss of generality say x1x3 ∈ E.
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Moreover, d1x1 /∈ E or d2x1 /∈ E; without loss of generality say d1x1 /∈ E.
Then by Lemma 7, d3x2 ∈ E (and thus, d2x2 /∈ E) and d3x3 /∈ E holds and
repeating the same arguments, we get d4x3 ∈ E, d4x4 /∈ E, and d2x1 ∈ E, but
now G[{d1, v1, x1, x3, v3, d3}] is a P6 which is a contradiction.

Now suppose that C is a Ck in G2 for some k ≥ 5. Then, since G is HHD-
free, there is an edge xixj ∈ E where j /∈ {i − 1, i + 1}. Then in the case that
dixi /∈ E (and thus also djxj /∈ E), G[{di, vi, xi, xj , vj , dj}] is a P6. The case
when di+1xi /∈ E is symmetric. Thus, we have a contradiction. This concludes
the proof of Theorem1. 	

Corollary 2. For (P6, HHD)-free graphs, the WED problem is solvable in poly-
nomial time.

Proof. By Lemma 1, the ED problem for G can be reduced to the MWIS prob-
lem for G2. By Theorem 1, G2 is chordal. By the result of Frank [9], the MWIS
problem can be solved in linear time for chordal graphs. Thus, for (P6, HHD)-
free graphs, the ED problem is solvable in polynomial time. By [2], the WED
problem can be solved in polynomial time for the same class. 	


4 Some Properties of P6-Free Graphs that have an e.d.

4.1 Squares of P6-Free Graphs that have an e.d. are Hole-Free

The main result of this subsection is Theorem 2 which shows that for any P6-
free graph G with an e.d., its square G2 is hole-free. This result is based on
the unpublished thesis [10]. It would imply that ED is solvable in polynomial
time for P6-free graphs if the MWIS problem for hole-free graphs is solvable in
polynomial time, but the complexity of the MWIS problem for hole-free graphs
is an open question. We will use Theorem 2, however, in subsequent sections for
finding a polynomial time solution for (P6, house)-free graphs ((P6, bull)-free
graphs, respectively).

Theorem 2. If G is a P6-free graph that has an e.d., then G2 is Ck-free for any
k ≥ 5.

4.2 Odd Antiholes in Squares of P6-Free Graphs that have an e.d.

Our main reason for considering odd antiholes in squares of P6-free graphs with
an e.d. is the famous Strong Perfect Graph Theorem [8] saying that a graph is
perfect if and only if it is odd-hole-free and odd-antihole-free. If one were able
to exclude odd antiholes in the squares of P6-free graphs with an e.d., it would
mean that G2 is perfect and thus, ED would be solvable in polynomial time for
P6-free graphs. Some partial results in this direction are described subsequently.

Throughout this subsection, let G = (V,E) be a P6-free graph with an e.d. D,
and let G2 = (V,E2). Let C be an odd antihole in G2 with real vertices R(C)
and auxiliary vertices A(C) as before. Since by Theorem 2, we know that C5
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is impossible in G2, we can assume that C is a C2k+1 for k ≥ 3. Obviously,
|D ∩ R(C)| ≤ 2 since the distance between any two D-vertices is at least 3; D
is an independent vertex set in G2, and the independence number of an odd
antihole is 2. The main result of this section, namely Theorem3, is based on [10]
and shows that no real vertex of an odd antihole C is in D:

Theorem 3. If G is a P6-free graph that has an e.d. D and C is an odd antihole
in G2, then |D ∩ R(C)| = 0.

4.3 C4 in Squares of P6-Free Graphs that have an e.d.

Let G = (V,E) be a P6-free graph with an e.d. D, and let G2 = (V,E2) as defined
above. By Theorem 2, we know that the square of a P6-free graph with an e.d.
is Ck-free for any k ≥ 5. For considering the ED problem on some subclasses
of P6-free graphs, it is useful to analyze how a C4 in G2 can be realized. In
particular, Lemma 13 is helpful in various cases, and Lemmas 11 and 12 are used
for solving ED on (P6,house)-free graphs.

As before, let C be a C4 in G2 with real vertices R(C) = {v1, v2, v3, v4} such
that vivi+1 are adjacent in G2 (index arithmetic is modulo 4), and with auxiliary
vertices A(C). Let the auxiliary vertex xi be a common neighbor of vi and vi+1;
xi ∈ A(C) if and only if vivi+1 /∈ E.

For this subsection, we assume that D ∩ R(C) = ∅. This assumption is
motivated by Theorem 3 which says for a P6-free graph G with an e.d. D, in an
odd antihole C of G2, no real vertex of C is in D; subsequently, we will consider
a C4 that is an induced subgraph of an odd antihole in G2 where G is a P6-free
graph with an e.d. Let di ∈ D denote the D-neighbor of vi. Clearly, vi and vi+2

have distinct D-neighbors for i = 1 and i = 2. There are the following types:

Type 1. R(C) is dominated by two D-vertices; say, v1, v2 are dominated by
d1 ∈ D, and v3, v4 are dominated by d3 ∈ D.

Type 1.1. v1v2 /∈ E, v3v4 /∈ E.

Lemma 8. For any C4 of type 1.1, v2v3 ∈ E and v1v4 ∈ E holds.

Type 1.2. v1v2 ∈ E, v3v4 /∈ E.
Since v1v2 ∈ E, we have v2v3 /∈ E and v1v4 /∈ E.

Lemma 9. For any C4 of type 1.2, d3x2 ∈ E and d3x4 ∈ E holds.

Type 1.3. v1v2 ∈ E, v3v4 ∈ E.
Since v1v2 ∈ E and v3v4 ∈ E, we have v2v3 /∈ E and v1v4 /∈ E.

Lemma 10. For any C4 of type 1.3, we have: If neither d1 nor d3 dominates
x2 then x2x4 ∈ E and either d1x4 ∈ E or d3x4 ∈ E.

Type 2. R(C) is dominated by three distinct D-vertices; say, v1, v2 are domi-
nated by d1 ∈ D, v3 is dominated by d3 ∈ D, and v4 is dominated by d4 ∈ D,
d3 = d4.

Type 2.1. v1v2 /∈ E.
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Lemma 11. For any C4 C of type 2.1, the following conditions hold:

(i) v3v4 /∈ E, v2v3 /∈ E, and v1v4 /∈ E. The auxiliary vertices x2, x3, x4 are
pairwise adjacent in G.

(ii) d1x3 ∈ E. Moreover, d1x2 /∈ E or d1x4 /∈ E, and d1x2 /∈ E implies d3x2 ∈
E, while d1x4 /∈ E implies d4x4 ∈ E.

Note that {d1, x2, x3, v2, v3} induces a house in G if d1x2 /∈ E, and thus, in
any case of type 2.1, G contains a house.

Type 2.2. v1v2 ∈ E. Then by the distance properties, v2v3 /∈ E and v1v4 /∈ E.

Lemma 12. For any C4 C of type 2.2, the following conditions hold:

(i) If v3v4 ∈ E then d4x2 ∈ E, d3x4 ∈ E and x2x4 ∈ E.
(ii) If v3v4 /∈ E then x2, x3, x4 are pairwise adjacent in G, d3x4 ∈ E or d3x3 ∈

E, and d4x2 ∈ E or d4x3 ∈ E. Moreover, d1x2 /∈ E or d1x4 /∈ E, d3x2 /∈ E
or d3x3 /∈ E, and d4x4 /∈ E or d4x3 /∈ E. At most one of x2, x4 is dominated
by a vertex d ∈ D, d = d1, d3, d4.

Note that in any case of type 2.2, G contains a house.

Type 3. R(C) is dominated by four pairwise distinct D-vertices d1, d2, d3, d4.
This type is excluded by the following:

Lemma 13. For at least one pair i, j ∈ {1, 2, 3, 4}, i = j, di = dj holds.

Corollary 3. If G is (P6, house)-free graph that has an e.d. D and C is a C4 in
G2 such that none of its real vertices is in D, then R(C) is dominated by exactly
two D-vertices.

5 ED for (P6, House)-Free Graphs and (P6, Bull)-Free
Graphs in Polynomial Time

Throughout this section, let G be a P6-free graph that has an e.d. D. The aim of
this section is to show that for (P6, house)-free graphs (for (P6, bull)-free graphs,
respectively), the ED problem is solvable in polynomial time. Independently, for
(P6, bull)-free graphs, ED was solved in polynomial time by Karthick [12] using
a different approach.

Theorem 4. If G is a (P6, house)-free graph that has an e.d., then G2 is odd-
antihole-free.

Proof. Let G be a (P6, house)-free graph with an e.d. D. Suppose to the con-
trary that G2 contains an odd antihole H with real vertices v1, v2, . . . , v2k+1,
k ≥ 3, that are consecutively co-adjacent (i.e., nonadjacent in G2). By The-
orem 3, D ∩ {v1, v2, . . . , v2k+1} = ∅ holds. Clearly, the neighborhood of any
vertex d ∈ D in H is a clique in G2, and the clique cover number of H in G2

is 3. Thus, the number of D-vertices dominating H is at least 3. Without loss
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of generality, let d1 dominate v1 and let d2 dominate v2. Since v1 and v2 are
co-adjacent in H, d1 = d2 holds. If there is a vertex d ∈ D, d = d1, d = d2
dominating a vertex in v4, v5, . . . , v2k, then there is a C4 in H that is dominated
by at least three D-vertices, which contradicts Corollary 3. Thus, assume that
d1 and d2 dominate all of v4, v5, . . . , v2k, and without loss of generality, let d
dominate v3. Then consider the C4 C induced by {v2, v3, v5, v6}. By assump-
tion, d1 and d2 dominate v5 and v6 and since v5 and v6 are co-adjacent in C,
the D-vertices dominating v5 and v6 are distinct. Thus, C has three distinct
D-vertices which contradicts Corollary 3. This shows Theorem 4. 	

Theorem 5. If G is a (P6, bull)-free graph that has an e.d., then G2 is odd-
antihole-free.

Proof. Let G be a (P6, bull)-free graph with an e.d. D, and suppose to the
contrary that G2 contains an odd antihole H with real vertices v1, v2, . . . , v2k+1,
k ≥ 3, that are consecutively co-adjacent. As before, D ∩ {v1, v2, . . . , v2k+1} = ∅
holds, by Theorem 3. We first show:

Claim 1. For every C4 in H with real vertices u1, u2, u3, u4, for exactly two
values of i, 1 ≤ i ≤ 4, uiui+1 ∈ E holds.

Proof of Claim 1. Let u1, u2, u3, u4 be a C4 in G2 with dG(ui, ui+1) ≤ 2 (as
before, let xi be a common neighbor of ui and ui+1 if uiui+1 /∈ E) and suppose
that for at most one i, uiui+1 ∈ E holds.

First suppose that there is exactly one edge uiui+1, say u1u2 ∈ E. Then
u2u3 /∈ E, u3u4 /∈ E, and u4u1 /∈ E. Since {u1, u2, x2, u3, x3, u4} does not induce
a P6, we have x2x3 ∈ E but, now {u2, x2, u3, x3, u4} induces a bull, which is a
contradiction.

Thus, for all i, uiui+1 /∈ E holds. We have seen already that if xixi+1 ∈ E for
some i, then {ui, xi, ui+1, ui+2, xi+1} induces a bull. Thus, for all i, xixi+1 /∈ E.
Since {u1, x1, u2, x2, u3, x3} does not induce a P6, we have x1x3 ∈ E and similarly
we have x2x4 ∈ E. By Lemmas 8 and 13, we know that the C4 has exactly three
D-vertices d1, d3, d4; say d1 sees u1 and u2, d3 sees u3, and d4 sees u4. Recall
that d1x2 /∈ E and d1x4 /∈ E since G is assumed to be bull-free.
Since {u1, d1, u2, x2, u3, d3} does not induce a P6, we have x2d3 ∈ E.
Since {u2, d1, u1, x4, u4, d4} does not induce a P6, we have x4d4 ∈ E.
Since {u2, x2, u3, x3, d3} does not induce a bull, we have x3d3 ∈ E.
Since {u1, x4, u4, x3, d4} does not induce a bull, we have x3d4 ∈ E, which is a
contradiction showing Claim 1. �

By Claim 1, every C4 in the odd antihole H of G2 has exactly two edges in E.
We apply this as follows:

Claim 2. For all i, 1 ≤ i ≤ 2k + 1, we have: If vivi+2 ∈ E then vi+1vi+3 ∈ E
(index arithmetic is modulo 2k+1). In particular, if for some i, vivi+2 ∈ E then
for all i, 1 ≤ i ≤ 2k + 1, vivi+2 ∈ E.

Proof of Claim 2. Let v1v3 ∈ E. Then, by the distance conditions, v1v4 /∈ E and
v3v2k+1 /∈ E. Considering the C4 in G2 induced by {v1, v3, v4, v2k+1}, we have
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v4v2k+1 ∈ E, which implies v5v2k+1 /∈ E. Considering the C4 in G2 induced by
{v1, v4, v5, v2k+1}, we have v5v1 ∈ E, which implies v5v2 /∈ E. Considering the
C4 in G2 induced by {v1, v2, v4, v5}, we have v2v4 ∈ E. Applying this repeatedly
along the odd antihole H, we obtain vivi+2 ∈ E for all i. �

Now first assume that for one i, vivi+2 ∈ E holds; say, v1v3 ∈ E. Then we
consider the C4s with v1, v2k+1 and the opposite pairs vi, vi+1, 3 ≤ i ≤ 2k−2, and
we obtain an alternating sequence of edges and non-edges for v1, i.e., v1vi ∈ E
for all odd i, 3 ≤ i ≤ 2k − 1 and v1vi /∈ E for all even i, 4 ≤ i ≤ 2k − 2,
and considering the C4 in G2 induced by {v1, v2k−2, v2k−1, v2k+1}, we obtain
v2k+1v2k−1 /∈ E, which contradicts Claim 2.

Thus, suppose that for all i, 1 ≤ i ≤ 2k + 1, vivi+2 /∈ E holds. Since by
assumption, every C4 has exactly two E-edges, we can assume that v1vi ∈ E
for some i. Then, by the distance conditions, v1vi−1 /∈ E, v1vi+1 /∈ E, viv2 /∈ E,
and viv2k+1 /∈ E. By the C4 argument, v2vi−1 ∈ E and v2k+1vi+1 ∈ E follows.
Repeatedly applying the distance argument and the C4 argument implies that
finally, for some j, vjvj+2 ∈ E, which is a contradiction that concludes the proof
of Theorem 5. 	

Corollary 4. For (P6, house)-free graphs and (P6, bull)-free graphs, the WED
problem is solvable in polynomial time.

Proof. First suppose that G is (P6, house)-free. By Theorem 2, for a P6-free
graph G with an e.d., G2 is hole-free. By Lemma 4, G2 is odd-antihole-free. If
G2 is odd-hole-free and odd-antihole-free then, by the Strong Perfect Graph
Theorem [8], G2 is perfect. By [11], MWIS is solvable in polynomial time for
perfect graphs. By Lemma 1, the ED problem on G can be transformed into the
MWIS problem on G2. Thus, ED is solvable in polynomial time on (P6, house)-
free graphs. By [2], the WED problem can be solved in polynomial time for the
same class.

Now suppose that G is (P6, bull)-free. By Lemma 5, G2 is odd-antihole-free,
and thus, G2 is perfect. Hence, WED is solvable in polynomial time on (P6,
bull)-free graphs by the same arguments as above. 	


6 Conclusion

The main results of this paper are Theorems 1, 2, 3, 4, and 5 solving ED in
polynomial time for P6-free chordal graphs, (P6, HHD)-free graphs, (P6, house)-
free graphs, (P6, bull)-free graphs, respectively.

For some other subclasses of P6-free graphs, ED has been solved in poly-
nomial time, such as for (P6, S1,2,2)-free graphs [7] and for (P6, S1,1,3)-free
graphs [12]; see also [4] where the time bound for ED on (P6, bull)-free graphs is
improved. Meanwhile, Karthick (private communication) also showed that ED
can be solved in polynomial time on (P6, net)-free graphs, which extends the
result for (P6, bull)-free graphs.

Conjecture [10]. If G is a P6-free graph that has an e.d., then G2 is perfect.
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Remark in Press. Very recently, Lokshtanov et al. [15] showed that the ED
problem on P6-free graphs can be solved in polynomial time, using a completely
different approach.
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We improve upon the above results both from the algorithmic and the
computational complexity point of view: We provide a novel algorithm
that provides an O( logn

log logn
)-approximation of the cost of the optimal

strategy. In addition, we show that finding an optimal strategy is NP-
hard even when the input tree is a spider of diameter 6, i.e., at most one
vertex has degree larger than 2.

1 Introduction

The design of efficient procedures for searching in a discrete structure is a funda-
mental problem in discrete mathematics [1,2] and computer science [10]. Search-
ing is a basic primitive for building and managing operations of an information
system as ordering, updating, and retrieval. The typical example of a search
procedure is binary search which allows to retrieve an element in a sorted list
of size n by only looking at O(log n) elements of the list. If no order can be
assumed on the list, then it is known that any procedure will have to look at the
complete list in the worst case. Besides these two well characterized extremes,
extensive work has also been devoted to the case where the underlying structure
of the search space is a partial order. Partial orders can be used to model lack
of information on the totally ordered elements of the search space [12] or can
naturally arise from the relationship among the elements of the search space, like
in hierarchies used to model knowledge representation [15], or in tree-like indices
for information retrieval of large databases [3]. For more about applications of
tree search see the end of this section.

In this paper, we focus on the case where the underlying search space is a
tree-like partially ordered set and tests have nonuniform costs. We investigate
the following problem.
The Tree Search Problem with non-uniform costs

Input: A tree T = (V,E), |V | = n, with non-negative rational costs assigned to
the edges defined by a c : e ∈ E �→ c(e) ∈ Q.

Output: A strategy that minimizes (in the worst case) the cost spent to identify
an initially unknown vertex x of T by using edge queries. An edge query e =
{u, v} ∈ E asks for the subtree Tu or Tv which contains x, where Tu and Tv

are the (maximal connected) components of T − e, including the vertex u and v
respectively. The cost of the query e is c(e). The cost of identifying a vertex x
is the sum of the costs of the queries asked.

More formally, a strategy for the Tree Search Problem with nonuniform costs
over the tree T is a decision tree D which is a rooted binary tree with |V | leaves
where every leaf � is associated with one vertex v ∈ V and every internal node1

ν ∈ V (D) is associated with one test e = {u, v} ∈ E. The outgoing edges from
ν are associated with the possible outcomes of the query, namely, to the case

1 For the sake of avoiding confusion between the input tree and the decision tree, we
will reserve the term vertex for the elements of V and the term node for the vertices
of the decision tree D.
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where the vertex to identify lies in Tu or Tv respectively. Every vertex has at
least one associated leaf. The actual identification process can be obtained from
D starting with the query associated to the root and moving towards the leaves
based on the answers received. When a leaf � is reached, the associated vertex
is output (see also Fig. 1 in the appendix for an example).

Given a decision tree D, for each vertex v ∈ V (T ), let costD(v) be the sum of
costs of the edges associated to nodes on the path from the root of D to the leaf
identifying v. This is the total cost of the queries performed when the strategy
D is used and v is the vertex to be identified.

In addition, let the cost of D be defined by

cost(D) = max
v∈V (T )

costD(v).

This is the worst-case cost of identifying a vertex of T by the decision tree D.
The optimal cost of a decision tree for the instance represented by the tree T
and the cost assignment c is given by

OPT (T, c) = min
D

cost(D),

where the min is over all decision trees D for the instance (T, c).

Previous Results and Related Work. The Tree Search Problem has been
first studied under the name of tree edge ranking [5,7,9,11,13], motivated by
multi-part product assembly. In [11] it was shown that in the case where the
tests have uniform cost, an optimal strategy can be found in linear time. A
linear algorithm for searching in a tree with uniform cost was also provided in
[14]. Independently of the above articles, the first paper where the problem is
considered in terms of searching in a tree is [3], where the more general problem
of searching in a poset was also addressed.

The variant considered here in which the costs of the tests are non-uniform
was first studied by Dereniowski [6] in the context of edge ranking. In this
paper, the problem was proved NP-complete for trees of diameter at most 10.
Dereniowski also provided an O(log n) approximation algorithm. In [4] Cicalese
et al. showed that the tree search problem with non-uniform costs is strongly NP-
complete already for input trees of diameter 6, or maximum degree 3, moreover,
these results are tight. In fact, in [4], a polynomial time algorithm computing
the optimal solution is also provided for diameter 5 instances and an O(n2) algo-
rithm for the case where the input tree is a path. For arbitrary trees, Cicalese
et al. provided an O( log n

log log log n )-approximation algorithm.

Our Result. Our contribution is both on the algorithmic and on the complexity
side. On the one hand, we provide a new approximation algorithm for the tree
search problem with non-uniform costs which improves upon the best known
guarantee given in [4]. In Sect. 3 we will prove the following result.

Theorem 1. There is an O(log n/ log log n)-approximation algorithm for the
Weighted Tree Search Problem that runs in polynomial time in n.
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A spider graph (henceforth simply referred to as a spider) is a tree with at
most one vertex of degree larger than 2.

In this paper, we also show that the tree search problem with non-uniform
costs is NP-hard already when the input tree is a spider of diameter 6.

More About Applications. We discuss some scenarios in which the problem
of searching in trees with non-uniform costs naturally arises.

Consider the problem of locating a buggy module in a program in which the
dependencies between different modules can be represented by a tree. For each
module we can verify the correct behavior independently. Such a verification may
consist in checking, for instance, whether all branches and statements in a given
module work properly. For different modules, the cost of using the checking proce-
dure can be different (here the cost might refer to the time to complete the check).
In such a situation, it is important to device a debugging strategy that minimizes
the cost incurred in order to locate the buggy module in the worst case.

Checking for consistency in different sites keeping distributed copies of tree-
like data structures (e.g., file systems) can be performed by maintaining at each
node some check sum information about the subtree rooted at that node. Tree
search can be used to identify the presence of “buggy nodes”, and efficiently
identifying the inconsistent part in the structure, rather than retransmitting or
exhaustively checking the whole data structure. In [3], an application of this
model in the area of information retrieval is also described.

Another example comes from a class of problems which is in some sense
dual to the previous ones: deciding the assembly schedule of a multi-part device.
Assume that the set of pairs of parts that must be assembled together can be
represented by a tree. Each assembly operation requires some (given) amount of
time to be performed and while assembling two pieces, the same pieces cannot
be involved in any other assembly operations. At any time different pairs of
parts can be assembled in parallel. The problem is to define the schedule of
assembly operations which minimize the total time spent to completely assembly
the device. The schedule is an edge ranking of the tree defined by the assembly
operations. By reversing the order of the assembly operation in the schedule we
obtain a decision tree for the problem of searching in the tree of the assembly
operation where each edge cost is equal to the cost of the corresponding assembly.

2 Basic Lower and Upper Bounds

In this section we provide some preliminary results which will be useful in the
analysis of our algorithm presented in the next section. We introduce some lower
bounds on the cost of the optimal decision tree for a given instance of the prob-
lem. We also recall two exact algorithms for constructing optimal decision trees
which were given in [4]. The first is an exponential time dynamic programming
algorithm which works for any input tree. The second is a quadratic time algo-
rithm for instances where the input tree is a path. Finally, we show a construction
of 2-approximation decision trees for spider graphs.
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Let T denote the input tree and c the cost function. It is not hard to see
that, given a decision tree D for T , we can extract from it a decision tree for the
instance of the problem defined on a subtree T ′ of T and the restriction of c to
the vertices in T ′. For this, we can repeatedly apply the following operation: if in
D there is a node ν associated with an edge e = {u, v}, such that Tu (resp. Tv)
is included T − T ′, then remove the node ν together with the subtree rooted at
the child of ν corresponding to the case where the vertex to identify is in Tu

(resp. Tv). Let D′ be the resulting decision tree when the above step cannot be
performed any more. Then, clearly cost(D′, c) ≤ cost(D, c). We have shown the
following (also observed in [4]).

Lemma 1. Let T ′ be a subtree of T . Then, OPT (T, c) ≥ OPT (T ′, c).

Another immediate observation is that for a given input tree T , the value
OPT (T, c) is monotonically non-decreasing with respect to the cost of any edge.
This is recorded in the following.

Lemma 2. Let c and c′ be cost assignments on a tree T such that c′(e) ≤ c(e)
for every e ∈ E(T ). Then, OPT (T, c) ≥ OPT (T, c′).

The next proposition shows that subdividing an edge cannot decrease the
cost of the optimal decision tree.

Proposition 1. Let c be a cost assignment on a tree T . Let v ∈ V (T ) have
exactly two neighbors u1, u2 ∈ V (T ). If T ′ is obtained from T − v by adding the
edge {u1, u2} and c′ is obtained from c by setting c′(u1u2) = min{c(u1v), c(u2v)},
then OPT (T, c) ≥ OPT (T ′, c′).

Proof. Let D be an optimal decision tree for the instance (T, c). Let us assume
without loss of generality that in D the node ν1 associated with e1 = {u1, v} is
an ancestor of the node ν2 associated with e2 = {u2, v}. Notice that one of the
children of ν2 is a leaf associated with the vertex v. Let D̃ be the subtree of D
rooted at the non-leaf child of ν2.

Let D′ be the decision tree obtained from D by associating the node ν1 to the
edge e = {u1, u2} and replacing the subtree rooted at ν2 with the subtree D̃.

It is not hard to see that D′ is a proper decision tree for T ′. We also have
that for any vertex z of T ′ which is associated to a leaf in D̃ it holds that
costD

′
(z) = costD(z) − c(e1) − c(e2) + c′(u1u2), and for any other vertex z of

T ′ we have costD
′
(z) = costD(z) − c(e1) + c′(u1u2) or costD

′
(z) ≤ costD(z). It

follows that OPT (T ′, c′) ≤ cost(D′) ≤ cost(D) = OPT (T, c). ��
The following two results from [4] provide exact algorithms for the construc-

tion of optimal strategies. More precisely, Proposition 2 provides an exponential
dynamic programming based algorithm for general trees. Theorem2 gives an
O(n2) time algorithm for the special case where the input tree is a path and will
be useful in the analysis of our main algorithm and also in Lemma3 regarding
the spider tree.



On the Tree Search Problem with Non-uniform Costs 95

Proposition 2 [4]. Let T be an edge-weighted tree on n vertices. Then an opti-
mal decision tree for T can be constructed in O(2nn) time.

The following theorem was proved by Cicalese et al. in [4] and will be useful
later in the analysis of our algorithm and also in the following lemma regarding
the spider tree.

Theorem 2 [4]. There is an O(n2) time algorithm that constructs an optimal
decision tree D for a given weighted path on n vertices.

Note that for a star T any decision tree D has the same cost, since all the
edges have to be asked in the worst case. Hence, for a tree T such that there is
only one node with degree greater than 1 we have OPT (T, c) =

∑
e∈E(T ) c(e),

for any cost function c.

Definition 1. A tree T is a spider if there is at most one vertex in T of degree
greater than two. We refer to this vertex as the head (or center) of the spider.
In the special case when all vertices have degree at most 2 then an arbitrarily
chosen vertex of degree 2 is designated to be the head of the spider. Moreover,
each path from the head of the spider to one of the leaves will be referred to as a
leg of the spider.

Lemma 3. Let T be a spider. Then there is an algorithm which computes a
2-approximate decision tree D for T and runs in time O(n2).

Proof. If T is a path, then by Theorem2 there exists an algorithm computing
the optimal decision tree in O(n2) time. Assume T is not a path. Then T con-
tains exactly one vertex v of degree at least three. Let Sv be the star induced
by v and the vertices adjacent to v. Let us denote by w1, . . . , wk the vertices
adjacent to v, where k = deg(v). By Theorem 2, for every i ∈ {1, . . . , k} we
construct the optimal decision tree Di for the path component Ci of T − v con-
taining wi in time O(|Ci|2). Note that the total running time for construction of
D1, . . . , Dk is O(n2). Finally, for Sv we compute the optimal decision tree Dv (in
O(n) time). The decision tree D for T is obtained from Dv by replacing the node
corresponding to wi by the root of Di for every i ∈ {1, . . . , k}. Clearly, the algo-
rithm runs in O(n2) time and cost(D) ≤ OPT (Sv, c)+max1≤i≤k{OPT (Ci, c)} ≤
2OPT (T, c). The last inequality follows because by Lemma1 both OPT (Sv, c)
and max1≤i≤k{OPT (Ci, c)} are lower bounds on OPT (T, c). ��

3 The Algorithm

In this section we present Algorithm TS for the tree search problem—we also
provide a pseudocode of the algorithm in the appendix.

Let n be the size of the input tree and t = 2�log log n�+2 be a parameter fixed
for the whole run of the algorithm. It holds that 2 log n ≤ t ≤ 4 log n.

The basic idea of our algorithm is to construct a subtree S of the input tree
T such that: (i) we can construct a decision tree for S whose cost is at most a
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constant times the cost of an optimal decision tree for S; (ii) each component of
T − S has size not larger than |T |/t.

This will allow us to build a decision tree for T by assembling the decision
tree for S with the decision trees recursively constructed for the components of
T − S. The constant approximation guarantee on S and the fact that, due to
the size of the subtrees on which we recur, we need at most O( logn

log log n ) levels of
recursion to show that our algorithm gives an O( logn

log log n ) approximation.

The Subtree S. We iteratively build subtrees S0 ⊂ S1 ⊂ · · · ⊂ St ⊆ T . Starting
with the empty tree S0, in every iteration i ∈ {1, . . . , t} we pick a centroid2 xi

of the largest component of the forest T − Si−1. The subtree Si is set to be the
minimal subtree containing xi and Si−1. If for some i we have that Si = T , then
we set S = Si = T and we stop the iterations. If all t iterations are completed,
then we set S = St.

We have the following lemma—which establishes (ii) above.

Lemma 4. If H is a component of T − S, then |H| ≤ |T |/ log |T |.
Proof. We prove by induction on k that after 2k iterations all components of
T −S2k have size at most |T |/2k−1. Let k = 0. We observe that by the definition
of centroid, after 1 = 2k iteration all components of T − S1 have size at most
|T |/2 ≤ 2|T | = |T |/2k−1. This establishes the basis of our induction.

Now fix some k > 0 and assume (induction hypothesis) that after 2k−1

iterations all components of T − S2k−1 have size at most |T |/2k−2. Among these
there are p ≤ 2k−1 components that have size at least |T |/2k−1. In the next
p iterations we will choose a centroid in each of these components, one by one.
Choosing a centroid in a component H splits H into parts that have size at most
half of H, thus after 2k = 2k−1 + p steps all components of T − S2k have size at
most |T |/2k−1.

Thus, if the process of constructing S is stopped after t = 2�log log n�+2 iter-
ations all components have size at most |T |/2�log log n�+1 ≤ |T |/ log n. On the
other hand, if the process of constructing S is stopped at some iteration i < t,
then it means that S = T and trivially |H| = 1. ��
The Decision Tree for S. Let X contain all xi for i ∈ {1, . . . , t} and vertices of
degree at least three in S. Note that |X| ≤ 2t − 2 for t ≥ 2 and |X| = 1 = 2t − 1
for t = 1. Indeed, by induction on k, this is true for k = 1, 2. Adding a new xi,
Si is a tree which is the union of Si−1 and a path reaching to xi, thus Si has at
most one more vertex of degree at least three than Si−1. Together with xi, |X|
increases by at most two in a step. Let Pu,v be the path of T whose endpoints
are vertices u and v.

We define an auxiliary tree Y on the vertex set X in which the paths of T
between the vertices of X are replaced by ‘shortcut’ edges. Vertices u, v ∈ X
form an edge of Y if u and v are the only vertices of X of the path Pu,v in

2 Recall that a centroid of a tree T is a vertex v such that any component of T − v
has size at most |T |/2.
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T with endpoints u and v. Let euv = arg mine∈Pu,v
c(e) (the edge of Pu,v with

minimal cost) and cY (uv) = c(euv). Let Z =
⋃

uv∈E(Y ) euv. By Proposition 2,
we can compute an optimal decision tree DY for Y in time O(22tt) which is
polynomial in n (Fig. 2).

Let DX be obtained from DY by changing the label of every internal node
from uv to euv, for each uv ∈ E(Y ). The tree DX is not a decision tree for
S, however, leaves of DX correspond to components of S − Z. Notice that
cost(DX) = cost(DY ) = OPT (Y, cY ).

Since every component C of S − Z contains at most one vertex of degree
at least three, every such component is a spider. By Lemma 3, a decision tree
DC for each such component C ∈ S − Z can be computed in O(n2) time with
approximation ratio 2.

We can now obtain the decision tree DS for S by replacing each leaf in DX

with the decision tree for the corresponding component in S − Z. We have

cost(DS)
OPT (S, c)

≤ cost(DX) + maxC∈S−Z cost(DC)
OPT (S, c)

≤ cost(DX)
OPT (Y, cY )

+ max
C∈S−Z

cost(DC)
OPT (C, c)

≤ 3, (1)

where the second inequality holds because a repeated application of Propo-
sition 1 implies OPT (Y, cY ) ≤ OPT (S, c) and Lemma 1 implies OPT (C, c) ≤
OPT (S, c).

Assembling the Pieces in the Decision Tree for T. Let v be a vertex in
S with a neighbor not in S, let Sv be the star induced by v and its neighbors
outside V (S).

Let Dv be a decision tree for Sv (notice that they all have the same cost).
For every neighbor w �∈ V (S) of v we compute recursively the decision tree
Dw for the component Hw of T − S containing w and replace the leaf node of
Dv associated to w with the root of Dw. The result is a decision tree D′

v for
the subtree of T including Sv and all the components of T − S including some
neighbor w of v.

In order to obtain a decision tree DT for T we now modify DS as follows: for
each vertex v in S with a neighbor not in S, replace the leaf in DS associated
with v with the decision tree D′

v computed above.

The Approximation Guarantee for DT . Let APP(T ) = cost(DT )
OPT (T,c) denote

the approximation ratio obtained by Algorithm TS on the instance (T, c). Let
APP(k) = max|T |≤k APP(T ).

Lemma 5. For any tree T on n vertices and any cost assignment c, we have
APP(T ) ≤ 4 log n/ log log n.

Proof. For every 1 ≤ k ≤ n let f(k) = max{1, 4 log k/ log log n}. We shall prove
by induction on k that APP (k) ≤ f(k), which implies the statement of the
lemma.
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If |T | ≤ t, then our algorithm builds an optimal decision tree, thus APP (k) =
1 ≤ f(k) for k ≤ t. This establishes the induction base.

Choose a tree T as in the statement of the lemma such that APP (T ) =
APP (n). Let S and Y be the substructures of T built by the algorithm as
described above. Let Ṽ be the set of vertices of S with some neighbor not in S.
For each w �∈ V (S) let Hw be the component of T − S containing w. Let H be
the set of components of T − S. Then, by construction, we have

APP(T ) =
ALG(T )
OPT (T )

(2)

≤ cost(DS) + maxv∈Ṽ cost(Dv) + maxw �∈V (S) cost(Dw)
OPT (T, c)

(3)

≤ cost(DS)
OPT (S, c)

+ max
v∈Ṽ

cost(Dv)
OPT (Sv, c)

+ max
w �∈V (S)

cost(Dw)
OPT (Hw, c)

(4)

≤ 4 + max
H∈H

ALG(H)
OPT (H, c)

= 4 + max
H∈H

{APP(H)} (5)

≤ 4 + max
H∈H

f(|H|) ≤ 4 + f(|T |/ log n) (6)

= 4 + f(n/ log n) = 4 +
4 log n

logn

log log n
=

4 log n

log log n
, (7)

where

– (4) follows from (3) because of OPT (S, c), OPT (Sv, c), OPT (Hw, c) ≤
OPT (T, c) (Lemma 1)

– (5) follows from (4) because of (1) we have cost(DS)
OPT (S,c) ≤ 3 and because any

decision tree for a star Sv has the same cost, hence also equal to OPT (Sv, c)
– in (6) the first inequality follows by induction and the second inequality by

Lemma 4
– (7) follows from (6) because of |T | = n and the definition of f(·). ��
Lemma 6. For a tree T on n vertices, the Algorithm TS builds the decision tree
DT in time polynomial in n.

Proof. If |T | ≤ t, then the algorithm builds an optimal decision tree for T in time
O(2t · t) = O(n4) using the construction from Proposition 2. Otherwise, every
iteration needed to build the subtree S (lines 7–11 of the algorithm) introduces
one new vertex xi and at most one other vertex of degree at least three, thus
|X| ≤ 2t − 1. Proposition 2 then implies that an optimal decision tree DY for
Y can be computed in time O(22t · 2t) which is polynomial in n. By Lemma 3,
the 2-approximation decision tree DH for H can be computed in O(n2) time.
Building the decision tree Dv for the stars Sv takes O(|Sv|) time (line 30). The
rest of the algorithm, not counting the recursion on line 34, needs time O(n2).
As the recursion is for a graph whose size is at most half of the original, the
overall algorithm running time is polynomial in n. ��

Lemmas 5 and 6 now imply Theorem 1.
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4 Tree Search with Non-uniform Costs is NP-hard on
Spider Graphs

In this section we provide a new hardness result which contributes to refining the
separation between hard and polynomial instances of the tree search problem
with non-uniform costs. We show that the problem of finding a minimum cost
decision tree is hard even for instances where the input graph is a spider and
the length of every leg is three.

Our reduction is from the NP-complete Balanced Partition problem [8, A3.2],
a special case of the Partition problem. The input of the Partition problem is
given by a set of numbers, {ai | i ∈ [m]}, and our goal is to find an index set
I such that

∑
i∈I ai =

∑
i/∈I ai. In the Balanced Partition problem it is further

required that |I| = m/2, i.e., there are the same number of numbers in both
parts of the partition. (This implies that for a non-trivial input m has to be
even.) Because of this, we can also suppose that all the numbers have roughly
the same size as adding a contant to each will not affect the set of solutions.
This implies that we can suppose that ai < 2aj and

∑
i∈I ai <

∑
i/∈I ai for any

|I| < m/2.
From a set of numbers {ai | i ∈ [m]} with the above properties, we construct

an instance (S, c) for the tree search problem with non-uniform costs, where S is
a spider. Each leg will correspond to a number. Therefore, we will speak of the
ith leg as the leg corresponding to the ith number. For each i ∈ [m], the ith leg
will consist of three edges: the one closest to the head will be called femur (and
referred to as fi), the middle edge will be called tibia (and referred to as ti), the
end will be called the tarsus (and referred to as si). The cost function is defined
as follows: For each i ∈ [m], we set c(fi) = 2ai; c(ti) = ai and c(si) = N , with
N =

∑
i∈[m] ai.

It is easy to see that in an optimal strategy, for each i ∈ [m] the tarsus is
always queried last among the edges on the ith leg. Given a decision tree D, we
denote by F the set of indices of the legs for which, in D, the node associated
with the query to the tibia is an ancestor3 of the node associated with the query
to the femur. Then, we have the following proposition, whose proof is omitted
from this extended abstract.

Proposition 3. There is an optimal decision tree D with F �= ∅ and such that:
(i) for any i ∈ F and j ∈ [m]\F the node of D associated with the jth femur

is an ancestor of the node associated with the ith tibia.
(ii) for any i, j ∈ F the node of D associated with the ith tibia is an ancestor

of the node associated with the jth femur.

By this proposition, we can assume that in the optimal decision tree D for at
least one leg of the spider the first edge queried is a tibia. In addition, in D, there
is a root to leaf path where first all femora not in F are queried, then all tibiae
in F , and finally all femora in F . Then, the cost of such a decision tree is given
3 A node ν is an ancestor of another node ν′ if ν lies on the path connecting ν′ to the

head.
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by the maximum of the cost of the above mentioned path (
∑

i/∈I 2ai +
∑

i∈I 3ai)
and the costs of the paths to the leaves on the legs, which either start with a
femur with index not in F (cost ≤ ∑

i/∈I 2ai+maxi/∈I ai+N) or with a tibia with
index in F (cost ≤ ∑

i/∈I 2ai +
∑

i∈I ai + N). This last value is indeed attained
for the leaf of the last leg starting with a tibia. Using the fact that for all i, j we
have ai < 2aj , this last value,

∑
i/∈I 2ai+

∑
i∈I ai+N , is always greater than the

cost for leaves on legs starting with femora,
∑

i/∈I 2ai + maxi/∈I ai + N if m ≥ 4.
Therefore, the cost of the optimal solution is given by the following expression

OPT (S, c) = min
∅⊂I⊆[m]

max

{
∑

i/∈I

2ai +
∑

i∈I

ai + N ;
∑

i/∈I

2ai +
∑

i∈I

3ai

}

.

Using N =
∑

i∈[m] ai, the two sums are equal if and only if
∑

i/∈I ai =
∑

i∈I ai. Therefore OPT (S, c) ≥ 5
2

∑
i∈[m] ai and equality holds if and only if∑

i/∈I ai =
∑

i∈I ai, which is only possible if |I| = m/2 (recall that we could
suppose

∑
i∈I ai <

∑
i/∈I ai for any |I| < m/2). This is equivalent to having a

Balanced Partition of the numbers, so we have finished the reduction.
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Emléktábla Workshop where we collaborated on this paper.

Appendix

Figures

b
a e

g
f

d

1
1

3

12

2

eb

bc eg

dc

ac

ef

ef

gb

d

ca

DT

Fig. 1. An example of the tree search problem, T is the input tree and D is a decision
tree with cost(D) = 7 = costD(a) = costD(c). If the vertices of the tree T represent the
parts of a device to assemble, the decision tree corresponds to the assembly procedure
that at time 0 joins e with b; then at time 3 joins b with c and e with g. At time 4 the
joining of d with c and e with f is started. Finally, at time 6 part a is joined with part
c and the procedure ends by time 7.
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Algorithm TS. Tree Search Algorithm
1: function Main(tree T , cost c)

2: t ← 2�log log |T |�+2

3: Output D ←TreeSearch(T, c, t)

4: end function
5: function TreeSearch(tree T , costs c, t)
6: if |T | ≤ t then return optimal decision tree DX for T computed by Proposition 2

7: S0 ← ∅
8: for all i = 1, . . . , t do
9: xi ← centroid of a maximum size component of T − Si−1

10: Si ← smallest subtree containing xi and Si−1

11: end for
12: S ← St

13: X ← {xi| i = 1, . . . , t} ∪ {v ∈ V (S)| degS(v) ≥ 3}
14: Y ← tree on vertex set X, uv ∈ E(Y ) iff X ∩ Pu,v = {u, v}
15: for all uv ∈ E(Y ) do
16: cY (uv) ← mine∈Pu,v c(e)

17: euv ← edge of Pu,v with minimum cost

18: end for

19: Z ← ⋃
uv∈E(Y ) euv

20: Compute optimal decision tree DY for (Y, cY ) by Proposition 2
21: for all uv ∈ E(Y ) do

22: Replace label of uv in DY by euv
23: end for
24: for all components H of Y − Z do

25: � H contains at most one vertex of degree 3 or more, i.e., H is a spider
26: Compute 2-approximate decision tree DH for H by Lemma 3

27: replace the leaf k ∈ DY corresponding to H by the root of DH

28: end for
29: for all v ∈ V (S) with a neighbor not in S do

30: Sv ← star induced by v and its neighbors outside of V (S)

31: Construct decision tree Dv for (Sv , c)
32: for all w ∈ Sv \ {v} do

33: U ← component of T − S containing w
34: Dw ← TreeSearch(U, c, t)

35: leaf of Dv corresponding to w ← root of Dw

36: end for
37: replace the leaf of DY associated to v by the root of Dv

38: end for

39: return DY

40: end function
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Fig. 2. An example of the tree S, the important set of vertices X and the auxiliary
tree Y in the construction of Sect. 3
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Abstract. We provide an O(n2) time algorithm computing a minimal
permutation completion of an arbitrary graph G = (V,E), i.e., a permu-
tation graph H = (V, F ) on the same vertex set, such that E ⊆ F and
F is inclusion-minimal among all possibilities.

1 Introduction

In graph modification problems, we are given an arbitrary input graph G and
the goal is to transform it, using a small number of “modifications”, into a graph
satisfying some property Π. Typically, modifications consist in adding and/or
removing edges and/or vertices. Here we consider the case where we are only
allowed to add edges to the input graph G = (V,E), transforming it into a
super-graph H = (V, F ), such that H belongs to some required class of graphs.

Probably the most famous problem of this kind is Minimum Fill-in, where
the goal is to add as few edges as possible in order to obtain a chordal graph H.
A graph is chordal if it has no induced cycles with four or more vertices. The
problem being NP-hard [15], it triggered the attention to a simpler one, where
we are only required to compute an inclusion-minimal chordal supergraph H
of G. Such a graph is called a minimal triangulation of G, and the Minimal

Triangulation problem has been known to be polynomial since 1976 [12,14].
The problem can be solved in time O(nm) [14], and when the graph is dense the
current best algorithm is the one of Heggernes et al. [7]. A detailed survey on
this problem is provided in [5].

Minimal completions into other graph classes have been intensively studied.
There are polynomial algorithms computing minimal completions into interval
graphs [4,11], proper interval graphs [13], split graphs [8], cographs [9] and com-
parability graphs [6]. The minimum versions of these problems are NP-complete
(see, e.g., the thesis of Mancini [10] for further discussion and references).

In this paper we consider the problem of minimal completions into permuta-
tion graphs. A graph is a permutation graph if we can assign to each vertex a
c© Springer-Verlag Berlin Heidelberg 2016
E.W. Mayr (Ed.): WG 2015, LNCS 9224, pp. 103–115, 2016.
DOI: 10.1007/978-3-662-53174-7 8
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segment, all segments having an endpoint on a “top” line and the other one on a
parallel “bottom” line, such that two vertices are adjacent if and only if the two
corresponding segments intersect. Such a representation is called a permutation
model of the graph. We give an O(n2) algorithm computing a minimal permu-
tation completion of an arbitrary graph. This is, to the best of our knowledge,
the first polynomial algorithm for the problem. Let us point out that computing
a permutation completion with a minimum number of edges is NP-hard [2].

Our result is based on a vertex-incremental approach, also used for other
types of completions. More specifically, we take the vertices of the input graph
one by one, in an arbitrary order, and at each step we add the new vertex xi to
the previously computed minimal permutation completion Hi−1. The new min-
imal permutation completion Hi is obtained by only adding edges between xi

and the rest of the graph. Very informally, if we are given a permutation model
of Hi−1, we need to insert the segment of xi in a minimal way. In Sect. 3 we
consider the case when Hi−1 has a unique permutation model and we provide
an efficient computation, in O(n) time, of such an insertion position. Somehow
surprisingly, even this task is non-trivial (the similar algorithm is very simple in
the case of minimal interval completions). Then we need to take into account
(Sect. 4) the fact that Hi−1 may have many different models, fortunately they are
all encoded in its modular decomposition. Eventually, we compute the modular
decomposition of the new completion Hi. This is done thanks to the algorithm
of Crespelle and Paul [3], which incrementally maintains the modular decompo-
sition of permutation graphs.

2 Preliminaries

Every graph G = (V,E) considered here will be finite, undirected, loopless and
simple. We denote V (G) the set of vertices of G and n = |V (G)|. The edge
between vertices x and y will arbitrarily be denoted either xy or yx. For a
subset S ⊆ V of vertices, we denote by G[S] the subgraph of G induced by S.

A graph G = (V,E) is a permutation graph if and only if it admits a permu-
tation model (π1, π2), i.e. two one-to-one mappings π1, π2 : V → {1, . . . , n} such
that two vertices x and y are adjacent in G if and only if (π1(x)−π1(y))(π2(x)−
π2(y)) < 0. An equivalent geometric definition of a permutation model for G
is to associate to each vertex x a segment, each segment having one endpoint
on a top line and the other on a parallel bottom line and all endpoints being
pairwise distinct, such that two vertices x and y are adjacent if and only if the
corresponding segments intersect. The correspondence between these two defin-
itions is that the order in which appear the endpoints on the top (resp. bottom)
line of the permutation model is the order defined by mapping π1 (resp. π2). We
equally use these two visions in the rest of the article, depending on which one
is more convenient for our purpose.

Note that a permutation model can be encoded by storing mappings π1 and
π2 as arrays, which uses O(n) space under the usual assumption that integers
smaller then n are stored in constant space. Then, the condition for x and y to
be adjacent can be tested in O(1) time by two comparisons of integers.
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Let now G = (V,E) be an arbitrary graph. A permutation completion of G
is a permutation graph H = (V, F ), on the same vertex set, such that E ⊆ F .
If, moreover, set F is inclusion-minimal under these constraints, we say that H
is a minimal permutation completion of G. In this paper we deal only with per-
mutation completions, thus we will sometimes simply refer to these completions
as (minimal) completions, omitting the term “permutation”.

Note that every graph G has a permutation completion: one can simply add
all the missing edges to G and observe that the complete graph is a permutation
graph. Permutation graphs are also hereditary, i.e., an induced subgraph of a
permutation graph is also a permutation graph (it is sufficient to restrict an
permutation model of the original graph to the vertices of the induced subgraph).

Our approach for computing a minimal completion of an arbitrary graph G
is incremental, in the sense that we take the vertices of G one by one, in an
arbitrary order (x1, . . . , xn), and at step i we compute a minimal permutation
completion Hi of Gi = G[{x1, . . . , xi}] from a minimal permutation completion
Hi−1 of Gi−1, by adding only edges incident to xi. This is possible thanks to the
following observation that is general to all hereditary graph classes that are also
stable by addition of a universal vertex, in particular for permutation graphs.

Lemma 1 (see, e.g., [11]). Let G be an arbitrary graph and let H be a minimal
permutation completion of G. Consider a new graph G′ = G + x, obtained by
adding to G a new vertex x adjacent to an arbitrary set N(x) of vertices of G.
There is a minimal permutation completion H ′ of G′ such that H ′ − x = H.

For any subset W ⊆ V (G) of vertices, we say that we fill W in H ′ if we make
all the vertices of W \ N(x) adjacent to x in the completion H ′ of G + x.

The New Problem. From now on, we consider the following problem, with slightly
modified notations.

Let G be a permutation graph, and let G+x be the graph obtained by adding
to G a new vertex x adjacent to some set N(x) of vertices of G. Our goal is to
compute a minimal permutation completion H of G + x such that H − x = G.

We will solve this problem in O(n) time, where n is the number of vertices of
G. As we shall see, graph G will be given together with its modular decomposition,
which is known to encode all its possible permutation models. Our algorithm will
compute the set N ′(x) ⊇ N(x) of neighbours of x in graph H, and will update
this data structure for the completion H, thanks to the algorithm of [3].

3 Minimal Completion Respecting a Permutation Model

Definition 1 (Minimal completion respecting a permutation model).
Given a permutation model (π1, π2) of a permutation graph G and a vertex x
to insert in G, a permutation completion H of G + x respects (π1, π2) if there
exists a permutation model of H such that removing x from it results in (π1, π2).
Moreover, if H is inclusion minimal among such completions, then H is called
a minimal permutation completion respecting (π1, π2).
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The goal of this section is an O(n) algorithm computing a minimal permu-
tation completion respecting a given permutation model of a graph G.

Theorem 1. Given a permutation model (π1, π2) of a permutation graph G and
a vertex x to insert in G together with its neighbourhood N(x), a minimal per-
mutation completion H of G + x respecting (π1, π2) can be computed in O(n)
time. The output is a permutation model of H.

This does not provide in general a minimal completion of G as a permuta-
tion graph may admit many different permutation models. Nevertheless, such a
completion is minimal when graph G is prime (in which case it admits a unique
permutation model, up to symmetries, and this is the only case where we will use
this approach in our global algorithm. However, the algorithm we design in this
section is not specific to prime graphs and we present it in the general setting.

In order to obtain a permutation model of H respecting (π1, π2), we extend
the definition of functions π1 and π2, initially defined from V (G) to {1, . . . , n},
to vertex x as well, in the following way.

Definition 2 (Insertion position). An insertion position of x in the permuta-
tion model (π1, π2) is a couple (π1(x), π2(x)) = (i+0.5, j+0.5) for some integers
i, j ∈ {0, . . . , n}.

Observe that for insertion position (π1(x), π2(x)) a necessary and sufficient
condition to give a permutation completion of G+x is that {z ∈ N(x) | π1(z) <
π1(x)} = {t ∈ N(x) | π2(t) > π2(x)}. We now characterise all such insertion
positions of x by a family of slots (Ij , Jj), i.e., couples of intervals, such that a
position Pos = (p1, p2) can be assigned to x in order to obtain a completion of
G + x if and only if (p1, p2) is contained in one of the slots (Ij , Jj). Moreover,
the intervals Ij (resp. Jj) will be pairwise disjoint. To this purpose, we adopt
the following notations, see their illustration on Fig. 1.

z1

J1J ’J2J’2J3J’3Jk
insJ

I1 I2 IkI’1 I’2 I’3I3

Iins

1a 2a 3a 4a 5a 6a 7a

1b2b3b4b5b6b7b

z2

J

I

y

1

Fig. 1. Some definitions and notations.

Let l = |N(x)|, a1, a2, . . . , al denote the neighbours of x in increasing order
in π1, i.e. π1(a1) < π1(a2) < · · · < π1(al), and b1, b2, . . . , bl denote the neighbours
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of x in decreasing order in π2, i.e. π2(bl) < · · · < π2(b2) < π2(b1). For 1 ≤ i ≤
l −1, we also denote Ai = {a1, . . . , ai} and Bi = {b1, . . . , bi}. We define V alid =
{i ∈ {1, . . . , l−1} | Ai = Bi}. Let k = |V alid|+2 and we denote the elements of
V alid by v2, v3, . . . , vk−1 in increasing order. Then, for any j ∈ {2, . . . , k−1}, let
Ij = [π1(avj

), π1(avj+1)] and Jj = [π2(bvj+1), π2(bvj
)] (cf. Fig. 1). We also denote

I1 = [0, π1(a1)], J1 = [π2(b1), n + 1], Ik = [π1(al), n + 1] and Jk = [0, π2(bl)].
Note that the intervals Ij , 1 ≤ j ≤ k, are pairwise disjoint and numbered from
left to right in π1, while the intervals Jj are pairwise disjoint and numbered from
right to left in π2.

With these notations, the insertion positions (π1(x), π2(x)) that define a
completion H of G + x (i.e., such that x is at least adjacent in H to all the
vertices of N(x)) are exactly the insertion positions such that π1(x) ∈ Ii and
π2(x) ∈ Ji, for some i ∈ {1, . . . , k}. Our next goal is to choose, among all
slots (Ii, Ji), an insertion slot (Iins, Jins) that will provide an optimal insertion
position (Definition 3). Then, through a sequence of lemmas, we prove that
this slot contains indeed a position providing a minimal permutation completion
compatible with our permutation model (Lemma 3).

Given an interval I, let l(I) (resp. r(I)) denote the left endpoint (resp. right
endpoint) of I. For any i ∈ {1, . . . , k − 1}, we define I ′

i = [r(Ii), l(Ii+1)] (cf.
Fig. 1), and I ′

k = ∅. Symmetrically, in π2, we denote J ′
i = [r(Ji+1), l(Ji)], and

J ′
k = ∅. Finally, we denote Îi = Ii ∪ I ′

i and Ĵi = Ji ∪ J ′
i .

Definition 3 (Forced, forwarding, insertion slot and vertex y). A vertex
z is forced if z ∈ N(x) or there exists i ∈ {1, . . . , k} such that π1(z) ∈ I ′

i and
π2(z) ∈ J ′

i .
We say that i ∈ {1, . . . , k} is forwarding if all vertices y such that π1(y) ∈⋃

1≤j≤i Îj and π2(y) ∈ ⋃
1≤j≤i Ĵj are forced. The insertion slot (Iins, Jins) is

defined by ins = min{i ∈ {1, . . . , k} | i is not forwarding} and we denote by y a
non-forced vertex that makes ins not forwarding.

First, note that forced vertices are adjacent to x in any completion of G + x
respecting (π1, π2). Of course, it may happen that all i are forwarding. In this
case, x is adjacent to all the vertices of G in any completion respecting (π1, π2).
Consequently, the unique minimal such completion is easily obtained by inserting
x in any arbitrary slot (Ii, Ji), with i ∈ {i, . . . , k}. In the following, we do not
consider this case anymore and we assume that there exists a slot i which is not
forwarding. Then, the insertion slot ins and the vertex y are well defined. Observe
that, by minimality of ins, we either have π1(y) ∈ Îins and π2(y) ∈ ⋃

1≤j≤ins Ĵj ,
or π2(y) ∈ Ĵins and π1(y) ∈ ⋃

1≤j≤ins Îj .
We make some crucial observations about the slot (Iins, Jins), that will allow

to prove that one can find a minimal completion by inserting x in this slot.

Lemma 2. There is a completion obtained by inserting x in the slot (Iins, Jins)
such that x is not adjacent to y in this completion.

Moreover, this holds exactly for insertion positions in a sub-slot (I, J) ⊆
(Iins, Jins) defined as follows. Denote I−

y = [0, π1(y)], I+y = [π1(y), n + 1], J−
y =

[0, π2(y)] and J+
y = [π2(y), n + 1]. We distinguish two cases:
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1. if π1(y) ∈ Iins or π2(y) ∈ Jins but not both, then there exists a unique α ∈
{−,+} s.t. Iins ∩ Iα

y 	= ∅ and Jins ∩ Jα
y 	= ∅, and we set (I, J) = (Iins ∩

Iα
y , Jins ∩ Jα

y );
2. otherwise, (π1(y), π2(y)) ∈ (Iins, Jins) and then there are two suitable slots

(I, J) = (Iins ∩ I−
y , Jins ∩ J−

y ) and (I, J) = (Iins ∩ I+y , Jins ∩ J+
y ).

Lemma 3. Let C be a completion obtained by inserting x in the slot (Iins, Jins)
such that x is not adjacent to y in the completion, and C is minimal among such
completions. Then, C is a minimal completion of G + x respecting (π1, π2).

Sketch of Proof. Such a completion C exists by Lemma 2. Remind that all the
completions respecting (π1, π2) are obtained by inserting x in some slot (Ii, Ji),
with 1 ≤ i ≤ k. Moreover, if i > ins it is straightforward to see that the comple-
tions obtained by inserting x in (Ii, Ji) make x adjacent to y and are therefore
not subgraphs of completion C. Now, let D be a completion obtained by insert-
ing x in (Ii, Ji) with i < ins. Consider the completion C ′ obtained by inserting
x at position (l(Iins) + 0.5, r(Jins) − 0.5) in (Iins, Jins). The fact that ins − 1 is
forwarding implies that C ′ is contained in D. If x is adjacent to y in C ′, clearly
D is not a subgraph of C. If x is not adjacent to y in C ′, then C ′ is not a strict
subgraph of C (by minimality of C), thus D is not a strict subgraph of C. �

All insertion positions in (Iins, Jins) avoiding to make x adjacent to y are
characterised by Lemma 2 as the insertion positions in a slot (I, J) of subintervals
of respectively Iins and Jins (actually two couples in the second case of the
lemma). Our next goal is to compute an optimal insertion position contained in
a given slot (I, J), Lemma 4 below. We need the following definition.

Definition 4 ((Rightmost) left-stable insertion position). Let (I, J) be
two intervals with endpoints in {0, . . . , n + 1}. An insertion position Pos =
(p1, p2) for x in (I, J) is left-stable if all vertices z such that l(I) < π1(z) < p1
(resp. l(J) < π2(z) < p2) satisfy π2(z) < p2 (resp. π1(z) < p1).

Moreover, there is a unique left-stable insertion position Pos, called the right-
most one, such that there is no left-stable insertion position Pos′ = (p′

1, p
′
2)

strictly on the right of Pos in (I, J), i.e. different from Pos and having p′
1 ≥ p1

and p′
2 ≥ p2.

The uniqueness of the rightmost left-stable insertion position comes from the
fact that two left-stable insertion positions (p1, p2) and (p′

1, p
′
2) that cross each

other define another left-stable insertion position (max{p1, p
′
1},max{p2, p

′
2})

which is strictly on the right of both of them.

Lemma 4. Let Pos = (p1, p2) be the rightmost left-stable insertion position in
(I, J). Then, the completion obtained by inserting x at position Pos is minimal
among completions obtained by insertion of x in (I, J).

Sketch of Proof. Let Pos′ be another insertion position in (I, J) and let C ′

(resp. C) be the completion obtained from Pos′ (resp. Pos). We distinguish
three cases to show that C ′ is not strictly contained in C. Firstly, if the segment
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of Pos′ crosses the one of Pos, then, because of the left-stability of Pos, in the
order where the endpoint of Pos is on the right side of the one of Pos′, there
is one vertex z whose segment crosses Pos′ and not Pos. Then, C ′ is not con-
tained in C. Now, if Pos′ is strictly on the left of Pos, the left-stability of Pos
implies that there is no vertex with one endpoint on the right of Pos and one
between Pos and Pos′. Then, C is contained in C ′ and the conclusion follows.
Finally, if Pos′ is strictly on the right of Pos, then, by definition of Pos, Pos′

is not left-stable. And since Pos is left-stable, there exists one vertex with one
endpoint between Pos and Pos′ and the other one on the right side of Pos′,
which implies that C ′ is not contained in C. �

The Algorithm. Our algorithm is in two steps. The first step determines the
insertion slot (Iins, Jins). To that purpose we first compute the slots (Ii, Ji)
defined above, in O(n) time as shown in [3]. Then, by increasing i, we scan
the vertices having one endpoint in the slot (Ii, Ji) until we find one non-forced
vertex y, which can be tested in O(1) time. We then have ins = i and a suitable
vertex y as in Definition 3. This takes O(n) time.

The second step inserts x in (Iins, Jins). completion is minimal among those
respecting (π1, π2). By Lemma 2, either there is a unique slot (I, J) that contains
the optimal insertion position, or there are two possible slots (Ir, Jr) and (Il, Jl)
such that the first one is on the right. In the first case, we find (by an algorithm
described a little below) the rightmost left-stable insertion position in (I, J), and
it is optimal by Lemma 4. In the second case, we compute the rightmost left-
stable insertion positions Posr and Posl in each of these slots (Ir, Jr) and (Il, Jl).
If the completion Cr obtained from Posr is included in the one Cl obtained
from Posl, then Lemma 4 ensures that Cr is minimal among the completions
respecting (π1, π2) and the algorithm returns Posr. Otherwise (when Cr is not
contained in Cl), the algorithm returns position Posl. The correctness of this
choice comes from the fact that if there exists a completion C ′ obtained by
insertion of x in (Ir, Jr) that is contained in Cl, one can show that Cr is also
necessarily contained in Cl. Note that inclusion of Cr into Cl can be easily tested
in O(n) time by scanning one order of the permutation model.

It remains to show how to compute the rightmost left-stable insertion
position in a slot (I, J) in O(n) time. We start from the left-stable position
(p1, p2) = (l(I) + 0.5, l(J) + 0.5) and while it preserves left-stability, we incre-
ment p1 (resp. p2) by one. When it is no longer possible, the vertices nextR(p1)
and nextR(p2) that are immediately on the right of p1 and p2 respectively satisfy
π2(nextR(p1)) > p2 and π1(nextR(p2)) > p1. We then start a search for the left-
most left-stable position which is strictly on the right of (p1, p2) in I, if it exists.
We set b2 ← π2(nextR(p1)) to that purpose, and also b1 ← π1(nextR(p2)), and
we increment both p1 and p2. We then continue to scan π1 (resp. π2) by iter-
atively incrementing p1 (resp. p2), without going beyond b1 (resp. b2), and for
every vertex z encountered in π1 (resp. π2) we set b2 ← max{b2, π2(z)} (resp.
b1 ← max{b1, π1(z)}). We proceed in this way simultaneously for p1 and p2 in
an asynchronous manner until we get both p1 = b1 −0.5 and p2 = b2 −0.5, when
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no further increment is possible. At this stage, if (p1, p2) is no longer in (I, J)
then the algorithm returns the previous left-stable position, say (pprev

1 , pprev
2 ),

and stops. Otherwise, (p1, p2) is the leftmost left-stable position on the right of
(pprev

1 , pprev
2 ) that we were looking for. Then, the algorithm continues to look for

other left-stable positions on the right of current (p1, p2) by starting again at
the beginning of this paragraph. When this process ends, we get the rightmost
left-stable position in (I, J). As every treatment during the scan of π1 and π2

takes constant time, the overall complexity is O(n). This achieves the proof of
Theorem 1.

4 General Minimal Completion of G + x

For our general algorithm computing a minimal permutation completion of G+x,
we consider the modular decomposition of G. For each node u of the modular
decomposition tree T , we denote by V [u] the subset of vertices of G appearing
in the subtree rooted in u, and by G[u] the subgraph of G induced by these
vertices. We will denote by G[u] + x the graph obtained from G[u] by adding x
with neighbourhood N(x) ∩ V [u].

A subset W ⊆ V (G) of vertices is said to be hit in G + x (resp. in a com-
pletion H of G + x) if it intersects the neighbourhood N(x) of x in G + x (resp.
the neighbourhood N ′(x) of x in H). If W is contained in N(x) (resp. N ′(x)), we
say that W is full in G + x (resp. H). If W is hit but not full, we say it is mixed.
We also say that a node u of the modular decomposition tree T of G is hit, full or
mixed according to the status of its associated set of vertices V [u]. When we omit
to precise it, the graph referred to in these notions is G + x. Observe that the set
of hit nodes of T can be computed in O(n) time by a bottom-up parsing of T .

For each node u of T , Pu = (Vu, Eu) denotes the corresponding quotient
graph. If u is a prime node, Pu is prime, and it is stored together with a per-
mutation model. If u is a series or parallel node, then graph Pu is a complete
graph, respectively an independent set.

In this section, it is more convenient to work with the geometric version of a
permutation model where each vertex is represented by a segment, all segments
have an extremity on the top line of the model and another one on the bottom
line. By [1], any permutation model of G[u] is obtained from a model of Pu by
expanding each segment corresponding to a vertex vi of Pu into a model of G[vi]
as follows. The segment of vi is enlarged into a parallelogram by enlarging its top
(resp. bottom) endpoint into a top (resp. bottom) edge, lying on the top (resp.
bottom) line of the permutation model. These expansions are such that the top
edges (resp. bottom edges) of the parallelograms are pairwise disjoint, and they
appear on the top (resp. bottom) line in the same order as the endpoints of the
segments. Therefore, for any pair of vertices vi and vj of Pu, the corresponding
parallelograms intersect if and only if vivj is an edge of Pu. Now, for each vi

(recall that vi is a child of u in the modular decomposition tree), we insert a
model of G[vi] into the parallelogram of vi.
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Definition 5 (Contracted graph Pu+x). The contracted graph Pu+x is the
graph obtained from Pu by adding the vertex x with neighbourhood NPu+x(x) =
{vi ∈ Vu | vi is hit}.

Let Hu be a minimal permutation completion of Pu + x. In order to obtain
a permutation completion of G[u] + x, we could consider each node vi adjacent
to x in Hu and fill the set V [vi] (i.e., make all vertices of V [vi] adjacent to x).
It is not hard to see that this construction yields a permutation completion of
G[u] + x. Indeed, take a permutation model Hmod

u of Hu, and expand, for each
node vj of Pu, the segment of vj into a parallelogram (the segment of x remains
unchanged). By inserting a model of G[vj ] into the parallelogram of vj , we obtain
a model for the completion of G[u] + x.

Such a completion is not necessarily minimal, because in the construction
above we can sometimes “shift” the top and/or bottom endpoint of segment x
inside a parallelogram and save some edges in the completion, by avoiding to
have the segment of x cross some of the segments inside this parallelogram. As we
shall see, there are at most two hit children vi of u for which we do not fill V [vi].
Depending on the cases, for such a child vi, either we can use any minimal permu-
tation completion of G[vi], or we have to use one which is minimal among those
satisfying an additional constraint, which we call an external-minimal permuta-
tion completion (see Definition 6 below). This is the reason why our algorithm
actually computes not just one but two permutation completions of G[u] + x
for each node u of the modular decomposition tree: one minimal permutation
completion and one external-minimal permutation completion.

Definition 6 (External-minimal permutation completion). A permuta-
tion completion H of G + x is said to be an external permutation completion if
H has a permutation model such that the bottom endpoint of segment x is the
leftmost among all bottom endpoints of the segments of the model.

If, moreover, H is minimal among all external completions, then H is called
an external-minimal permutation completion.

Since any model can be reversed from left to right or upside-down, in the
definition above we could replace “leftmost” by “rightmost” and “bottom” by
“top”.

The notion of representation defined below is central in the rest of the paper.
We use it to construct a minimal completion of G[u] + x from a minimal com-
pletion of Pu + x and minimal and external-minimal completions of G[vi] + x.

Definition 7 (Representation). Let Hu be a permutation completion of Pu +
x. A representation of Hu is a triplet (Hmod

u , vtop, vbot) or a couple (Hmod
u , vtop)

or a single element Hmod
u such that:

– Hmod
u is a permutation model of Hu, and

– vtop (resp. vbot) is a vertex of Pu that is adjacent to x in Hu and such that
the top (resp. bottom) endpoint of segment vtop (resp. vbot) is next to the top
(resp. bottom) endpoint of segment x in Hmod

u .
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Observe that we might have the situation that both vtop and vbot exist and
are equal. The following definition shows how to use a representation of Hu in
order to get a permutation completion of G[u] + x.

Definition 8 (Permutation completion resulting from a representa-
tion). Let Hu be a permutation completion of Pu +x. Consider a representation
R of Hu, with R = (Hu, vtop, vbot) or R = (Hu, vtop) or R = Hu, and assume
that we are given, for each node vα ∈ {vtop, vbot}, the neighbourhood N ′

α (resp.
Next

α ) of x in a minimal (resp. an external-minimal) permutation completion of
G[vα] + x.

We construct a vertex set N ′ (initially empty) as follows. For each vi ∈ Vu

adjacent to x in Hu and distinct from vtop and vbot, we add V [vi] to N ′. Then,
if at least one of vtop and vbot exists, we distinguish two cases:

1. if both vtop and vbot exist and vtop = vbot, we add N ′
top to N ′,

2. otherwise, i.e. if vbot does not exist or if both vtop and vbot exist and are not
equal, for each vα ∈ {vtop, vbot},we add Next

α to N ′.

The permutation completion of G[u] + x resulting from the representation R of
Hu is the one obtained from G[u] + x by filling N ′.

The above definition is correct as filling N ′ indeed results in a permutation
completion of G + x.

Finally, we refine the notion of representation for that of an optimal represen-
tation, based on a minimal permutation completion of Pu+x. The supplementary
conditions required for a representation to be optimal ensure that the resulting
permutation completion is minimal (Theorem 2 below).

Definition 9 (Optimal representation). Let Hu be a minimal permutation
completion of Pu + x. For each node vi of Pu, let N ′

i be the neighbourhood of x
in a minimal completion of G[vi] + x, and let Next

i be the neighbourhood of x in
an external-minimal completion of G[vi] + x.

1. If there is a representation R1 = (Hmod
u , vtop, vbot) of Hu such that vtop and

vbot are different and Next
top � V [vtop] and Next

bot � V [vbot], we say that Hu is
of the first type and R1 is an optimal representation of Hu.

2. If Hu is not of the first type, but there exists a representation R2 =
(Hmod

u ,vtop,vbot) of Hu such that vtop = vbot and N ′
top � V [vtop], we say

that Hu is of the second type and R2 is an optimal representation of Hu.
3. If Hu is not of the first or second type, but there exists a representation

R3 = (Hmod
u , vtop) such that Next

top � V [vtop], we say that Hu is of the third
type and R3 is an optimal representation of Hu.

4. If none of the above holds, we say that Hu is of the fourth type, and the
fourth-type optimal representation is simply Hmod

u , where Hmod
u is any model

of Hu.

We have a similar definition for producing an external-minimal completion
of G[u]+x. We now prove the combinatorial theorem which constitutes the base
of our algorithm for minimal permutation completion.
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Theorem 2. Let Hu be a minimal (resp. external-minimal) permutation com-
pletion of Pu +x and let R be an optimal (resp. external-optimal) representation
of Hu. Then, the permutation completion H of G[u] + x resulting from R is
minimal (resp. external-minimal).

Sketch of Proof. For lack of space, we only give a flavour of the proof in the case
where Hu is a minimal completion of Pu +x and Hu is of the first type. Assume
for contradiction that there is some permutation completion H ′ of G[u] + x
such that H ′ is a strict subgraph of H. Apply the following transformation to a
permutation model of H ′: keep the segment of x and for each node vi in Pu keep
only one vertex of V [vi] and choose it adjacent to x in H ′ if there exists one such
vertex in V [vi]. The model obtained is the one of a permutation completion H ′

u

of Pu + x. Applying the same process to a permutation model of H results in
a model Hmod

u of Hu defining an optimal representation of Hu of the first type.
Moreover, one can show that because H ′ is a subgraph of H, then H ′

u is also a
subgraph of Hu. Therefore, H ′

u = Hu by minimality of Hu. As a consequence,
for every node vi such that V [vi] is hit in H (hence vi is adjacent to x in Hu)
the set V [vi] is also hit in H ′ (because vi is adjacent to x in H ′

u).
Let now y be a vertex that is adjacent to x in H but not in H ′. Let vm be the

node of Pu such that y ∈ V [vm], necessarily vm is mixed in H ′. Observe that,
by construction (see Definition 8), since Hu is of the first type, then V [vtop] and
V [vbot] are mixed in H, and so in H ′ from what precedes. Also observe that in
any completion of G[u] + x, the only children vi of u such that V [vi] is mixed
are those whose parallelogram contains at least one endpoint of x. Then, in any
permutation model Hmod′

of H ′, the parallelogram of vm contains one endpoint
of x and only one, because the parallelograms of both vtop and vbot also contain
one endpoint of x and at least one of vtop and vbot is different from vm (vtop and
vbot are distinct since Hu is of the first type). Consequently, restricting Hmod′

to
V [vm] ∪ {x} shows that H ′[V [vm] ∪ {x}] is an external completion of G[vm] + x.
Moreover, by construction (see Definition 8), H[V [vm] ∪ {x}] is an external-
minimal completion of G[vm] + x, contradicting the fact that H ′[V [vm] ∪ {x}] is
a strict subgraph of H[V [vm]∪{x}]. This proves the theorem for the case where
Hu is of the first type. �

The Algorithm. Our O(n)-time algorithm computing a minimal permutation
completion of G + x proceeds by a bottom-up computation of two functions,
MinIns(u) and MinInsExt(u), for each node u. Function MinIns(u) computes
a minimal permutation completion of G[u] + x (with the corresponding neigh-
bourhood N(x)∩V [u]). It returns the neighbourhood N ′

u of x in this completion.
Function MinInsExt(u) computes a minimal-external permutation completion
of G[u] + x, i.e., it returns the neighbourhood Next

u of x in such a completion.
These functions will only be called on hit nodes, from bottom to top. Therefore
we can assume that, when we treat a node u, we already have computed the
sets N ′

v and Next
v for each hit child v of u in the modular decomposition tree T .

The case when u is a (hit) leaf is trivial: both functions return as neighbourhood
of x the vertex of G that labels this leaf. Now consider an internal node u, we
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show how to determine the type of Hu and an optimal (resp. external-optimal)
representation.

For lack of space, we do not describe the (easier) cases where node u is parallel
or series, but we sketch the case where u is prime. In this case, Pu admits a unique
permutation model (π1, π2) (up to symmetries) and therefore all completions Hu

of Pu+x respect (π1, π2). Then, we can get a minimal completion Hu by using the
algorithm of Theorem 1, in O(k) time, where k is the number of children of node
u in T . We have to pay attention to the fact that there may have other insertion
positions in (π1, π2) defining the same completion Hu, some of them possibly
resulting in a smaller type for Hu, in which case we must use one of smallest
type in order to get an optimal representation for Hu. Fortunately, Theorem 4
of [3] implies that there exists at most one other insertion position and that it
can be obtained from the first one in O(k) time. Consequently, our algorithm
simply computes the two possible insertion positions. For each of them, it checks
the two conditions Next

α � V [vα] and N ′
α � V [vα] for the vertices vα ∈ Vu that

have one endpoint next to one endpoint of x in π1 or in π2. Then, it decides
which one of the two insertion positions gives the smaller type and uses it in an
optimal representation R of Hu. Finally, we compute the set N ′

u of neighbours
of x in the completion resulting from R as in Definition 8. We do not detail the
computation of the set Next

u , which is similar and much simpler (in particular it
does not need the algorithm of Theorem 1).

With a careful implementation of the algorithm, we compute in O(n) time
the neighbourhood N ′ of x in a minimal completion H of G + x. Using the
algorithm of [3], we transform the modular decomposition of G into the one of
H in time O(n). By incrementally applying this algorithm we conclude:

Theorem 3. There is an O(n2) time algorithm computing a minimal permuta-
tion completion of an arbitrary input graph.
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Abstract. We consider the largest number of minimal separators a
graph on n vertices can have.

– We give a new proof that this number is in O
((

1+
√
5

2

)n
· n
)
.

– We prove that this number is in ω (1.4457n), improving on the pre-
vious best lower bound of Ω(3n/3) ⊆ ω(1.4422n).

This gives also an improved lower bound on the number of potential
maximal cliques in a graph. We would like to emphasize that our proofs
are short, simple, and elementary.

1 Introduction

For a graph G = (V,E), and two vertices a, b ∈ V , a vertex subset S ⊆ V \{a, b}
is an (a, b)-separator if a and b are in different connected components of G − S,
the graph obtained from G by removing the vertices in S. An (a, b)-separator
is minimal if it does not contain another (a, b)-separator as a subset. A vertex
subset S ⊂ V is a minimal separator in G if it is a minimal (a, b)-separator for
some pair of distinct vertices a, b ∈ V .

By sep(G), we denote the number of minimal separators in the graph G. By
sep(n), we denote the maximum number of minimal separators, taken over all
graphs on n vertices.

Potential maximal cliques are closely related to minimal separators, especially
in the context of chordal graphs. A graph is chordal if every induced cycle has
length 3. A triangulation of a graph G is a chordal supergraph of G obtained by
adding edges. A graph H is a minimal triangulation of G if it is a triangulation
of G and G has no other triangulation that is a subgraph of H. A vertex set is
a potential maximal clique in G if it is a maximal clique in at least one minimal
triangulation of G.

By pmc(G), we denote the number of potential maximal cliques in the
graph G. By pmc(n), we denote the maximum number of potential maximal
cliques, taken over all graphs on n vertices.

Minimal separators and potential maximal cliques have been studied exten-
sively [1–3,10,13,16,17,20–22]. Upper bounds on sep(n) are used to upper bound
the running time of algorithms for enumerating all minimal separators [1,17,21].
Bounds on both sep(n) and pmc(n) are used in analyses of algorithmic running
c© Springer-Verlag Berlin Heidelberg 2016
E.W. Mayr (Ed.): WG 2015, LNCS 9224, pp. 116–121, 2016.
DOI: 10.1007/978-3-662-53174-7 9
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a b

...

Fig. 1. Melon graphs have Ω(3n/3) minimal separators.

times for computing the treewidth and minimum fill-in of a graph [3,10,13],
and for computing a maximum induced subgraph isomorphic to a graph from a
family of bounded treewidth graphs [11].

Our Results. Fomin et al. [10] proved that sep(n) ∈ O (1.7087n). Fomin and
Villanger [13] improved the upper bound and showed that sep(n) ∈ O (ρn · n),
where ρ = 1+

√
5

2 = 1.6180 . . .1. We prove the same upper bound with simpler
arguments.

As for lower bounds, it is known [10] that sep(n) ∈ Ω(3n/3); see Fig. 1.
We improve on this lower bound by giving an infinite family of graphs with
ω (1.4457n) minimal separators. This answers an open question raised numerous
times (see, e.g., [9,10]), for example by Fomin and Kratsch [9, p. 100], who state

It is an open question, whether the number of minimal separators in
every n-vertex graph is O∗(3n/3).

Here, the O∗-notation is similar to the O-notation, but hides polynomial factors.
As a corollary, we have that there is an infinite family of graphs, all with

ω(1.4457n) potential maximal cliques. This answers another open question on
lower bounds for the number of potential maximal cliques in graphs. For example,
Fomin and Villanger [12] state

There are graphs with roughly 3n/3 ≈ 1.442n potential maximal
cliques [10]. Let us remind that by the classical result of Moon and Moser
[19] (see also Miller and Muller [18]) that the number of maximal cliques
in a graph on n vertices is at most 3n/3. Can it be that the right upper
bound on the number of potential maximal cliques is also roughly 3n/3? By
Theorem 3.2, this would yield a dramatic improvement for many moderate
exponential algorithms.

Preliminaries. We use standard graph notation from [4]. For an edge uv in a
graph G, we denote by G/uv the graph obtained from G by contracting the edge
uv, i.e., making u adjacent to NG({u, v}) and removing v.
1 The bound stated in [13] is O(1.6181n), but this stronger bound can be derived from

their proof.
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2 Upper Bound on the Number of Minimal Separators

Measure and Conquer is a technique developed for the analysis of exponential
time algorithms [7]. Its main idea is to assign a cleverly chosen (sometimes, by
solving mathematical programs [5,14,15]) potential function to the instance – a
so-called measure – to track several features of an instance in solving it. While
developed in the realm of exponential-time algorithms, it has also been used to
upper bound the number of extremal vertex sets in graphs (see, e.g., [6,8]).

Our new proof upper bounding sep(n) uses a measure that takes into account
the number of vertices of the graph and the difference in size between the sep-
arated components of the graph. This simple trick allows us to avoid several
complications from [13], including the use of the firefighter lemma (Lemma 3.1
in [13]), fixing the size of the separators, the discussion of “full components”,
and distinguishing between separators of size at most n/3 and at least n/3.

Theorem 1. sep(n) ∈ O(ρn ·n), where ρ = 1+
√
5

2 = 1.6180... is the golden ratio.

Proof. Let G = (V,E) be any graph on n vertices containing vertex a ∈ V . For
d ≤ |V |, an [a, d]-separation is a partition (A,S,B) of V such that

– a ∈ A,
– G[A] is connected,
– S is a minimal (a, b)-separator for some vertex b ∈ B, and
– |A| ≤ |B| − d.

Let sepa(G, d) denote the number of [a, d]-separations in G. By symmetry,
sepa(G, 0) upper bounds the number of minimal separators in G up to a fac-
tor O(n). To upper bound sepa(G, d), we will use the measure

μ(G, d) = |V (G)| − d.

The theorem will follow from the claim that sepa(G, d) ≤ ρμ(G,d) for 0 ≤ d ≤ |V |.
If μ(G, d) = 0, then d = |V | and sepa(G, d) = 0 since there is no A ⊆ V with

|A| ≤ 0 and a ∈ A. If dG(a) = 0, then there is at most one [a, d]-separation, which
is ({a}, ∅, V \ {a}). Therefore, assume μ(G, d) ≥ 1, a has at least one neighbor,
and assume the claim holds for smaller measures. Consider a vertex u ∈ N(a).
For every [a, d]-separation (A,S,B), either u ∈ S or u ∈ A. Therefore, we can
upper bound the [a, d]-separations (A,S,B) counted in sepa(G, d) with u ∈ S
by ρμ(G−{u},d) = ρμ(G,d)−1, and those with u /∈ S by ρμ(G/au,d+1) = ρμ(G,d)−2.
It remains to observe that ρμ(G,d)−1 + ρμ(G,d)−2 = ρμ(G,d). 	


3 Lower Bound on the Maximum Number
of Minimal Separators

In the melon graph in Fig. 1, each horizontal layer implies a choice between 3
vertices. Each such choice also ‘costs’ 3 vertices. The new construction improves
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the bound by adding vertical choices on top of the horizontal choices. This is
achieved by ‘sacrificing’ horizontal choices and adding 18 vertices for 126 hori-
zontal layers. For most minimal separators, two horizontal choices are sacrificed,
and their order matters, giving 126 · 125 possibilities, at the cost of 24 vertices
(18 new vertices and 6 from the horizontal choices). Since 126 · 125 > 324/3, this
gives more choices than the melon graph on the same number of vertices.

Theorem 2. sep(n) ∈ ω(1.4457n).

Proof. We prove the theorem by exhibiting a family of graphs {G1, G2, . . . } and
lower bounding their number of minimal separators.

Let p = 9 and q = 4. Let I = {1, . . . , 3}, J = {1, . . . ,
(
p
q

)}, and K =
{1, . . . , p}. The graph G1 is constructed as follows (see Fig. 2). Construct disjoint
vertex sets Vi = {vi,j : j ∈ J} for each i ∈ I, and the vertex sets U = {ui : i ∈ K}
and W = {wi : i ∈ K}. The vertex set of G1 is {a, b} ∪ U ∪ W ∪ ⋃

i∈I Vi. The
edge set of G1 is obtained by first adding the paths (v1,j , v2,j , v3,j) for all j ∈ J
and the edges {aui : i ∈ K} and {wib : i ∈ K}. Then, add edges between U and
V1 such that each vertex in V1 has q neighbors in U and no two vertices from
V1 have the same neighbors in U . This is possible, since there are

(
p
q

)
distinct

subsets of U of size q. Similarly, add edges between V3 and W such that each
vertex in V3 has q neighbors in W and no two vertices from V3 have the same
neighbors in W . The graph G�, � ≥ 2, is obtained from � disjoint copies of G1,
merging the copies of a, and merging the copies of b.

Let us now consider the sets Sr,s of minimal (a, b)-separators in G1 that
contain r vertices from U and s vertices from W . The separators in S0,0 con-
tain one vertex among {v1,j , v2,j , v3,j} for each j ∈ J , giving |S0,0| = 3|J|. The
separators in S0,s with s ≥ q contain s vertices from W , leaving

(
p
q

) − (
s
q

)
ver-

tices from V3 with at least one neighbor in W . For each such vertex v3,j , the
path to a is interrupted by selecting one vertex among {v1,j , v2,j , v3,j}. In total,
|S0,s| ≥ (

p
s

) · 3(pq)−(sq). Similarly, |Sr,0| ≥ (
p
r

) · 3(pr)−(rq). For r, s ≥ j, separators
containing SU ⊆ U and SW ⊆ W are not minimal if SU ⊆ SW or SW ⊆ SU .
Otherwise, SU ∪ SW can be extended to a minimal (a, b)-separator by select-
ing one vertex from {v1,j , v2,j , v3,j} for each j ∈ J such that v1,j has at least

a b

... ...

...

Fig. 2. The graph G1 has 126 vertices adjacent to a and 9 adjacent to b.
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one neighbor in U \ SU and v3,j has at least one neighbor in W \ SW . In total,

|Sr,s| ≥
((

p
r

) · (
p
s

) − (
p

max(r,s)

) · (
max(r,s)
min(r,s)

)) · 3(pq)−(rq)−(sq). Therefore, the number

of minimal separators of G1 is at least x = 3(pq) + 2 · ∑p
s=q

((
p
s

) · 3(pq)−(sq)
)

+
∑p

s=q

∑p
r=q

((
p
r

) · (
p
s

) − (
p

max(r,s)

) · (
max(r,s)
min(r,s)

)) · 3(pq)−(rq)−(s
q) > 2.4603 · 1063.

Minimal (a, b)-separators for G� are obtained by taking the union of min-
imal separators for the copies of G1. Their number is therefore at least x� =
x

n−2
3|J|+2|K| ∈ ω(1.4457n), where G� has n = �(3

(
p
q

)
+ 2p) + 2 vertices. 	


Based on results from [2], Bouchitté and Todinca [3] observed that the num-
ber of potential maximal cliques in a graph is at least the number of minimal
separators divided by the number of vertices n. Therefore, we arrive at the fol-
lowing corollary of Theorem2.

Corollary 1. pmc(n) ∈ ω(1.4457n).

4 Conclusion

We have given a simpler proof for the best known asymptotic upper bound on
sep(n), and we have improved the best known lower bound from Ω(3n/3) to
ω(1.4457n), thereby reducing the gap between the current best lower and upper
bound. Before our work, it seemed reasonable to believe that sep(n) could be
asymptotically equal to 3n/3, up to polynomial factors. We showed that this is
not the case, and we believe there is room to further improve the lower bound.
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Abstract. Consider the continuum of points along the edges of a net-
work, i.e., a connected, undirected graph with positive edge weights.
We measure the distance between these points in terms of the weighted
shortest path distance, called the network distance. Within this metric
space, we study farthest points and farthest distances. We introduce a
data structure supporting queries for the farthest distance and the far-
thest points on two-terminal series-parallel networks. This data structure
supports farthest-point queries in O(k +log n) time after O(n log p) con-
struction time, where k is the number of farthest points, n is the size
of the network, and p parallel operations are required to generate the
network.

1 Introduction

Consider a geometric network with positive edge weights. For any two points on
this network (i.e., points that may be vertices or in the interior of an edge), their
network distance is the weight of a weighted shortest-path connecting them.
Within this metric space, we study farthest points and farthest distances. We
introduce a data structure supporting queries for the farthest distance and the
farthest points on two-terminal series-parallel networks.

As a prototype application, imagine the task to find the ideal location for a
new hospital within the network formed by the streets of a city. One criterion for
this optimization would be the emergency unit response time, i.e., the worst-case
time an emergency crew needs to drive from the hospital to the site of an acci-
dent. However, a location might be optimal in terms of emergency unit response
time, but unacceptable with respect to another criterion such as construction
costs. We provide a data structure that would allow a decision maker to quickly
compare various locations in terms of emergency unit response time.

We obtain our data structure for two-terminal series-parallel networks by
studying simpler networks reflecting parallel structure (parallel-path) and serial
structure (bead-chains). Combining these insights, we support queries on flat
series-parallel networks (abacus). Finally, we decompose series-parallel networks
into a tree of nested abaci and combine their associated data structures.

c© Springer-Verlag Berlin Heidelberg 2016
E.W. Mayr (Ed.): WG 2015, LNCS 9224, pp. 122–137, 2016.
DOI: 10.1007/978-3-662-53174-7 10
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Our focus on supporting human decision makers with data structures deviates
from the common one-shot optimization problems in location analysis, where
we assume that only one factor determines suitable locations for some facility
in a network. Moreover, we illustrate new ways of exploiting different parallel
structures of networks that may be useful for tackling related problems.

1.1 Preliminaries

A network is defined as a simple, connected, undirected graph N = (V,E) with
positive edge weights. We write wuv to denote the weight of the edge uv ∈ E
that connects the vertices u, v ∈ V . A point p on edge uv subdivides uv into two
sub-edges up and pv with wup = λwuv and wpv = (1−λ)wuv, for some λ ∈ [0, 1].1

We write p ∈ uv when p is on edge uv and p ∈ N when p is on some edge of N .
The network distance between p, q ∈ N , denoted by dN (p, q), is measured as
the weighted length of a shortest path from p to q in N . We denote the farthest
distance from p by d̄N (p), i.e., d̄N (p) = maxq∈N dN (p, q). Accordingly, we say a
point p̄ on N is farthest from p if and only if dN (p, p̄) = d̄N (p).

We develop data structures supporting the following queries in a network N .
Given a point p on N , what is the farthest distance from p? What are the farthest
points from p in N? We refer to the former as farthest-distance query and to the
latter as farthest-point query. The query point p is represented by the edge uv
containing p together with the value λ ∈ [0, 1] such that wup = λwuv.

u v

x

parallel

u vu v

se
rie
s

(a) The operations. (b) A two-terminal series-parallel network.

Fig. 1. The operations (a) that generate two-terminal series-parallel networks (b).

The term series-parallel network stems from the following two operations
that are illustrated in Fig. 1. The series operation splits an existing edge uv into
two new edges ux and xv where x is a new vertex. The parallel operation creates
a copy of an existing edge. A network N is two-terminal series-parallel when its
underlying graph2 can be generated from a single edge uv using a sequence of
series and parallel operations; the vertices u and v are called terminals of N .
1 Observe that p /∈ V when λ ∈ (0, 1) in which case none of the sub-edges up and pv

are edges in E. When λ = 0 or λ = 1, the point p coincides with u and v, respectively.
2 The final graph is simple even if intermediate graphs have loops and multiple edges.
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We refer to the number of parallel operations required to generate N as the
parallelism of N and to the number of series operations as the serialism of N .

A network is called series-parallel when every bi-connected component is two-
terminal series-parallel with respect to any two vertices. In this work, we only
consider bi-connected networks; in future work, we shall adapt our treatment of
multiple bi-connected components from cacti [5] to series-parallel networks.

1.2 Related Work

Duffin [8] studies series-parallel networks to compute the resistance of circuit
boards. He characterizes three equivalent definitions of series-parallel networks
and establishes their planarity. Two-terminal series-parallel networks admit
linear time solutions for several problems that are NP-hard on general net-
works [3,16]. Since series-parallel networks have tree-with two [6], this applies to
all problems with efficient algorithms on networks with bounded treewidth [1].

A network Voronoi diagram subdivides a network depending on which site is
closest [12] or farthest [9,15] among a finite set of sites. Any data structure for
farthest-point queries on a network represents a network farthest-point Voronoi
diagram where all points on the network are considered sites [4].

A continuous absolute center is a point on a network with minimum farthest-
distance. Computing a continuous absolute center takes O(n) time on cacti [2]
and O(m2 log n) time on general networks [13]. As a by-product, we obtain all
continuous absolute centers of a series-parallel network in O(n log p) time.

1.3 Structure and Results

We introduce a data structure supporting queries for the farthest distance and
the farthest points on two-terminal series-parallel networks. We obtain this data
structure by isolating sub-structures of series-parallel networks: In Sects. 2 and 3,

Table 1. The traits of our data structures for queries in different types of networks,
with n vertices, m edges, k reported farthest points, and parallelism p.

Type Farthest-point query Size Construction time Reference

General O(k + log n) O(m2) O(m2 log n) [4]

Tree O(k) O(n) O(n) [5]

Cycle O(log n) O(n) O(n) [5]

Uni-Cyclic O(k + log n) O(n) O(n) [5]

Cactus O(k + log n) O(n) O(n) [5]

Parallel-Path O(k + log n) O(n) O(n) this work

Bead-Chain O(k + log n) O(n) O(n) this work

Abacus O(k + log n) O(n) O(n log p) this work

Series-Parallel O(k + log n) O(n) O(n log p) this work
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we study networks consisting of parallel paths and networks consisting of a cycle
with attached paths (bead-chains), respectively. In Sect. 4, we combine these
results into abacus networks, which are series-parallel networks without nested
structures. Finally, we combine these intermediate data structures to obtain our
main result in Sect. 5. Table 1 summarizes the characteristics of the proposed
data structures and compares them to previous results.

Due to space limitations, we provide the proofs for our claims in this work
with additional illustrations in an extended version of this paper [10].

2 Parallel-Path Networks

u v

Fig. 2. A parallel-path two-terminal
series-parallel network with paral-
lelism p = 7.

A parallel-path network consists of a bundle
of edge disjoint paths connecting two ver-
tices u and v, as illustrated in Fig. 2. In
terms of series-parallel networks, parallel-
path networks are generated from an edge
uv using a sequence of parallel operations
followed by a sequence of series operations.

Let P1, P2, . . . , Pp be the paths of
weighted lengths w1 ≤ w2 ≤ · · · ≤ wp

between the terminals u and v in a parallel-
path network N . Consider a shortest path
tree3 from a query point q ∈ N . As depicted in Fig. 3, there are three cases:
either all shortest paths from q reach v via u (left case), or all shortest paths
from q reach u via v (right case), or neither (middle case). We distinguish the
three cases using the following notation. Let x̄i denote the farthest point from
x ∈ {u, v} among the points of path Pi, i.e., x̄i is a point on Pi such that
d(x, x̄i) = maxy∈Pi

d(x, y). Together with Fig. 3, the next lemma justifies our
choice of the names left case, middle case, and right case.

Lemma 1. Consider a query q from the i-th path of a parallel-path network.

(i) We are in the left case when q lies on the sub-path from u to v̄i with q �= v̄i,
(ii) we are in the middle case when q lies on the sub-path from v̄i to ūi, and
(iii) we are in the right case when q lies on the sub-path from ūi to v with q �= ūi.

Using Lemma 1, we deal with the three cases as follows.

Left Case and Right Case. In the left case, every shortest path from q ∈ Pi

to any point outside of Pi leaves Pi through u. Hence, the farthest point from
q on Pj with j �= i is the farthest point ūj from u on Pj . The distance from

3 More precisely, we consider extended shortest path trees [15] which result from split-
ting each non-tree edge st of a shortest path tree into two sub-edges sx and xt,
where all points on sx reach the root through s and all points on xt reach the root
through t.
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u v

v̄i

ūj

ūi

q̄i
q

(a) The left case.

u v

q̄j

q̄1

q
v̄i

v̄j
ūj

ūi

(b) The middle case.

u v

v̄i

v̄j

ūi

q̄i
q

(c) The right case.

Fig. 3. The three cases for queries in parallel-path networks. Consider the shortest path
tree from a query point q ∈ Pi along the paths P1 (center), Pi (bottom), and Pj (top).
In the left case (a), we reach v via u. In the right case (c), we reach u via v. In the
middle case (b), neither holds, i.e., we enter path P1 from both terminals u and v.
Points colored red are reached fastest via a path through u or towards u along uv,
while points colored blue are reached fastest via a path through v or towards v along
uv. (Color figure online)

q to q̄j is d(q, q̄j) = d(q, u) + d(u, ūj) = wqu + w1+wj

2 . On the other hand, the
farthest point q̄i from q on Pi itself moves from ūi to v as q moves from u to
v̄i maintaining a distance of d(q, q̄i) = w1+wi

2 . Therefore, the farthest distance
from q in N is

d̄(q) = max
[
w1 + wi

2
, max

j �=i

(
wqu +

w1 + wj

2

)]

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

wqu +
w1 + wp

2
if i �= p

wqu +
w1 + wp−1

2
if i = p and

wp − wp−1

2
≤ wqu

w1 + wp

2
if i = p and

wp − wp−1

2
≥ wqu

.

The first case means that, for queries from anywhere other than Pp, the farthest
points lie on the u-v-paths of maximum length. The second and third case distin-
guish whether Pp contains a farthest point for queries from Pp itself. Accordingly,
we answer a farthest point query from q ∈ Pi in the left case as follows.

– If i �= p, we report all ūj where wj = wp and i �= j.
– If i = p and wp−wp−1

2 ≤ wqu, we report all ūj where wj = wp−1 and j �= p.
– If i = p and wp−wp−1

2 ≥ wqu, we report the farthest point q̄p from q on Pp

using a binary search along the sub-path of Pp from ūp to v.

The overlap between the last two cases covers the boundary case when a query
from Pp yields a farthest point on Pp itself and farthest points on other u-v-paths.

Swapping u and v above yields the procedure for the right case. Thus, answer-
ing farthest-point queries takes O(k + log n) time in the left and right cases.
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Middle Case. In the middle case, there are no farthest points from q on Pi

itself and every path Pj with j �= i contains points that we reach from q via
u as well as points that we reach from q via v. Let q̄j be the farthest point
from q along the cycle formed by Pj and Pi. Since the distance from q to q̄j is
d(q, q̄j) = wi+wj

2 , the farthest distance d̄(q) from q in N is

d̄(q) = max
j �=i

(
wi + wj

2

)
=

⎧
⎪⎨

⎪⎩

wi + wp

2
if i �= p

wp + wp−1

2
if i = p

.

The first case applies for queries from anywhere other than Pp who have their
farthest points on the longest u-v-paths, i.e., on the paths Pj with wj = wp.
The second case applies for queries from Pp who have their farthest points on
the second longest u-v-paths, i.e., on the paths Pj with wj = wp−1. Using binary
search, we can answer a farthest point query from q ∈ Pi in the middle case by
reporting the points q̄j on those k paths Pj that contain farthest points from q.
To improve the resulting query time of O(k log n), we take a closer look at the
position of q̄j relative to ūj and v̄j . As illustrated in Fig. 4, the farthest point q̄j

from q ∈ Pi along Pj moves from ūj to v̄j as q moves from v̄i to ūi.

Lemma 2. Let N be a parallel-path network with terminals u and v. For any
point x ∈ N , let x̄i denote the farthest point from x along the u-v-path Pi.

(i) The sub-path from v̄i to ūi has length d(u, v).
(ii) For every point q along the sub-path from v̄i to ūi, the sub-path from v̄i to q

has the same length as the sub-path from ūj to q̄j for any j �= i.

u v

q̄j

q
v̄i

v̄j
ūj

ūi

Fig. 4. The positions of the
points along the cycle Pi ∪ Pj

in Lemma 2.

Using Lemma 2, we interpret the searches
for q̄j on the sub-path from v̄j to ūj , as a sin-
gle search with a common key q̄ in multiple lists
(the v̄i-ūi-sub-paths) of comparable search keys
(the vertices along these sub-paths). Using O(n)
time, we construct a fractional cascading data
structure [7] supporting predecessor queries on
the sub-paths from v̄j to ūj for those paths Pj

where wj = wp−1.4

We answer a farthest-point query from q ∈ Pi

as follows. If i �= p, we locate and report q̄p along
Pp in O(log n) time. If i = p or wp = wp−1, the
remaining farthest points from q are the q̄j where

j �= i and wj = wp−1; we report them in O(k + log n) time using the fractional
cascading data structure. This query might report a point on Pi, which would be
q̄i for queries from outside Pi. For queries from within Pi, we omit this artifact.

Theorem 1. Let N be a parallel-path network with n vertices. There is a data
structure with O(n) size and O(n) construction time supporting O(k+log n)-time
farthest-point queries on N , where k is the number of farthest points.
4 We consider paths of length wp−1 instead of wp, because we treat Pp separately.
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3 Bead-Chain Networks

a1

b1

a2

b2

a3
b3

a4

b4

Fig. 5. A bead-chain with four arcs
(colored) around its cycle (black).
(Color figure online)

A bead-chain network consists of a main cycle
with attached arcs so that each arc returns
to the cycle before the next one begins. An
example is depicted in Fig. 5. Bead-chains are
series-parallel networks where we first subdi-
vide a cycle using series operations, then we
apply at most one parallel operation to each
edge of this cycle followed by series operations
that further subdivide the arcs and cycle.

Consider a bead-chain network N with
main cycle C and arcs α1, . . . , αs. Let ai and
bi be the vertices connecting C with the i-th
arc. Without loss of generality, the path βi

from ai to bi along C is at most as long as αi.
Otherwise, we swap the roles of αi and βi.

We first study the shape of the function d̂i(x) that describes the farthest
distance from points along the main cycle to any point on the i-th arc, i.e.,
d̂i(x) = maxy∈αi

d(x, y). When considering only the i-th arc, we have a parallel-
path network with three paths. Let x̄ denote the farthest point from x ∈ C on
C itself and let x̂i denote the farthest point from x on arc αi. From the analysis
in the previous section, we know that d̄i(x) has the shape depicted in Fig. 6.

ai

bi

āi

b̄i

b̂i

âix

x̂i

(a) The main cycle with αi (blue).

ai bi āi b̄i
ai

d(ai, âi)

d(āi, b̂i)

(b) The distance to x̂i.

Fig. 6. The shape of the function d̂i(x) describing the distance from x ∈ C to the
farthest point x̂i from x among the points on the i-th arc αi.

When walking along the main cycle, we encounter ai, bi, āi, and b̄i in this
order or its reverse. From ai to bi, the point x̂i moves from âi to b̂i maintaining
a constant distance. From bi to āi, the point x̂i stays at b̂i increasing in distance.
From āi to b̄i, the point x̂i moves from b̂i back to âi, again, at a constant distance.
Finally, x̂i stays at âi with decreasing distance when x moves from b̄i to ai.

Since the farthest distance changes at the same rate when we move towards
or away from the current farthest-point, the increasing and decreasing segments
of any two functions d̂i and d̂j have the same slope except for their sign.
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The height of the upper envelope D̂ of the functions d̂1, . . . , d̂s at q ∈ C
indicates the farthest distance from q to any point on the arcs and the i-th arc
contains a farthest point from q when d̂i coincides with D̂ at q. We construct D̂
in linear time using the shape of the functions d̂1, . . . , d̂s described above.

We need to consider an arc separately from the other arcs when it is too long.
We call an arc αi overlong when the path βi is longer then remainder γi of the
main cycle. Figure 7 illustrates an overlong arc αi with its function d̂i.

ai

bi

b̄i

āi

âi

b̂i

(a) An overlong arc (blue).

ai b̄i āi bi ai

d(ai, âi)

d(āi, b̂i)

(b) The farthest distance to an overlong arc.

Fig. 7. An overlong arc αi (blue) in a bead-chain network where βi (green) is longer
then the remaining cycle γi (orange). The shape of d̂i is the same as for non-overlong
arcs, but its high plateau may horizontally overlap with the high plateau of other arcs.
(Color figure online)

Lemma 3. Every bead-chain network N has at most one overlong arc and the
functions d̂1, . . . , d̂s of the remaining arcs α1, . . . , αs satisfy the following.

(i) The high plateaus of d̂1, . . . , d̂s appear in the order as their arcs α1, . . . , αs

appear along the cycle and no two high plateaus overlap horizontally.
(ii) The low plateaus of d̂1, . . . , d̂s appear in the order as their arcs α1, . . . , αs

appear along the cycle and no two low plateaus overlap horizontally.

As suggested by Lemma 3, we incrementally construct the upper envelope
of the functions d̂i corresponding to non-overlong arcs and treat a potential
overlong arc separately. When performing a farthest-point query from the cycle,
we first determine the farthest distance to the overlong arc and the farthest
distance to all other arcs. Depending on the answer we report farthest points
accordingly.

Lemma 4. Let α1, . . . , αs be the arcs of a bead-chain that has no overlong arc.
Computing the upper envelope D̂ of d̂1, . . . , d̂s takes O(s) time.

To answer a farthest-point query from q ∈ C, we need to find its farthest arcs,
i.e., the arcs containing farthest points from q. Suppose each point along the main
cycle C has exactly one farthest arc. Then we could subdivide C depending on
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which arc is farthest and answer a farthest-arc query by identifying the function
among d̂1, . . . , d̂s that defines the upper envelope D̂ on the sub-edge contain-
ing q. On the other hand, there could be multiple farthest arcs when several
functions among d̂1, . . . , d̂s have overlapping increasing or decreasing segments.
In this case, we could store the at most two farthest arcs from plateaus directly
with the corresponding segments of D̂. However, storing the farthest arcs from
increasing and decreasing segments directly would lead to a quadratic construc-
tion time. Instead, we rely on the following observation. An arc α is considered
relevant when there exists some point x ∈ C such that α is a farthest arc for x
and α is considered irrelevant when there is no such point on the main cycle.

Lemma 5. Let αi, αj, and αk be arcs that appear in this order in a bead-chain
without overlong arc. The arc αj is irrelevant when αi and αk are farthest arcs
from some query point q such that d̂i and d̂k are both decreasing/increasing at q.

Corollary 1. Let q be a point on the cycle of a bead-chain with no overlong arc.
The farthest arcs from q that correspond to decreasing/increasing segments of D̂
form one consecutive sub-list of the circular list of relevant arcs.

Using Corollary 1, we answer farthest-arc queries from the main cycle of
a bead-chain network without overlong arc as follows. When D̂ has a plateau
at the query point q, we report the at most two farthest arcs stored with this
plateau. When D̂ has an increasing/decreasing segment at q, we first report the
farthest arc α that is stored directly with this segment. We report the remaining
farthest arcs by cycling through the circular list of relevant arcs starting from α
in both directions until we reach a relevant arc that is no longer farthest from q.

Theorem 2. Let N be a bead-chain network with n vertices. There is a data
structure with O(n) size and O(n) construction time supporting O(k + log n)-
time farthest-point queries on N , where k is the number of farthest points.

4 Abacus Networks

An abacus is a network A consisting of a parallel-path network N with arcs
attached to its parallel paths, as illustrated in Fig. 8. Let P1, . . . , Pp be the
parallel paths of N and let Bi be the i-th parallel path with attached arcs.

We split farthest-point queries in an abacus into an inward query and an
outward query : an inward query considers farthest points on the bead-chain
containing the query point; an outward query considers farthest points on the
remaining bead-chains. We first perform the farthest distance version of inward
and outward queries before reporting farthest points where appropriate. Figure 9
illustrates how we treat inward and outward queries in the following.

For an inward query from q on Bi, we construct the bead-chain network B′
i

consisting of Bi with an additional edge from u to v of weight d(u, v), as illus-
trated in Fig. 9a. Since B′

i preserves distances from A, the farthest points from
q ∈ B′

i are the farthest points from q among the points on Bi in A.
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u v

Fig. 8. An abacus with the arcs (colored) attached to its parallel-path network (black).
(Color figure online)

For outward queries in an abacus, we distinguish the same three cases as
for parallel-path networks: we are in the left case when every shortest path tree
reaches u before v, we are in the right case when every shortest path tree reaches
v before u, and we are in the middle case otherwise. Analogously to Lemma 1,
the left case applies when we are within distance d(u, v̄i) from u and the right
case applies when we are within distance d(v, ūi) from v.

For an outward query from q ∈ Bi in the left case, q has the same farthest
points as u outside of Bi. During the construction of the networks B′

1, . . . , B
′
p

for inward queries, we determine a list Lj of the farthest points from u in B′
j .

Similarly to our treatment of the left case for parallel-path networks, we only
keep the list achieving the highest farthest distance and the lists achieving the
second highest farthest distance. With this preparation, answering the query
for q amounts to reporting the entries of the appropriate lists Lj with j �= i.

For middle case outward queries, we proceed along the following four steps:
First, we translate every outward query from an arc of Bi to an outward query
from the path Pi, i.e., we argue that it suffices to consider outward queries from
the parallel paths (Fig. 9d). Second, we translate outward queries from Pi to
outward queries from a virtual edge ẽ connecting the terminals (9e). Third, we
speed up queries from the virtual edge by superimposing the data structures for
the bead-chains B1 ∪ ẽ, . . . , Bp ∪ ẽ, i.e., by conceptually collapsing the parallel
chains (Fig. 9f). Finally, we recover the correct answer to the original outward
query from the answer obtained with an outward query from the virtual edge.

Lemma 6. Let α be an arc in an abacus and let β be the other path connecting
the endpoints of α. For every point q ∈ α in the middle case, there is a point
q′ ∈ β such that q′ has the same outward farthest points as q.

We introduce a virtual edge ẽ from u to v of length wp, i.e., the length of
the longest u-v-path Pp in the underlying parallel-path network, as illustrated
in Fig. 9e. Let ū be the farthest point from u on ẽ and let v̄ be the farthest point
from v on ẽ. From Lemma 2, we know that the sub-edge ūv̄ of ẽ has length
d(u, v) and, thus, the same length as the sub-path from ūi to v̄i on each parallel
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u

q
q̄

v

(a) An inward query.

u

v̄i
q

v

(b) The left case of an outward query.

u

ūi q

v

(c) The right case of an outward query.

u

q

v

(d) An outward query from an arc.

u

q

v

v̄ ūq̃

(e) Translating a query to the virtual edge.

u v

v̄ ūq̃

(f) Collapsing the chains.

Fig. 9. Inward (a) and outward (b–f) queries for the abacus network from Fig. 8. Inward
queries are answered in the bead-chain containing the query (a). Outward queries in the
side case are answered with queries form the terminals (b, c). Outward queries in the
middle case from arcs are translated to queries from the path (d) and then to queries
from a virtual edge (e). From the perspective of the virtual edge, we conceptually
collapse all bead-chains of the abacus to support virtual queries (f).
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path Pi. We translate an outward query from q ∈ Pi to a query from the unique
point q̃ on ẽ such that q̃ has the same distance to ū and to v̄ as q to ūi and to v̄i.

Lemma 7. For q ∈ Pi in the middle case, the farthest points from q in Pi ∪ Bj

are the farthest points from q̃ in ẽ ∪ Bj for every j �= i.

It would be too inefficient to inspect each bead-chain network Bj ∪ ẽ with
j �= i to answer an outward query from q ∈ Pi. Instead, we first determine
the upper envelopes of the farthest-arc distances D̂1, . . . , D̂p along ẽ in each
B1 ∪ ẽ, . . . , Bp ∪ ẽ and then compute their upper envelope U1 as well as their
second level U2, i.e., the upper envelope of what remains when we remove the
segments of the upper envelope. Computing the upper envelope and the second
level takes O(n log p) time, e.g., using plane sweep. Using fractional cascading,
we support constant time jumps between corresponding segments of U1 and U2.
The resulting structure occupies O(n) space, since each of the O(n) arcs along
any bead-chain contributes at most four bending points to U1 and U2.

We answer an outward query from q ∈ Pi in the middle case by translating
q to q̃. When the segment defining U1 at q̃ is from some arc α of Bj with j �= i,
then α contains an outward farthest point from q. When the segment defining
U1 at q̃ corresponds to an arc of Bi, then we jump down to U2, which leads us
to an arc containing an outward farthest point from q. We report the remaining
arcs with outward farthest points by walking q̃ along U1 and U2. In order to skip
long sequences of segments from Bi, we introduce pointers along U1 to the next
segment from another chain in either direction. Answering outward queries in
the middle case takes O(k + log n) time after O(n log p) construction time.

Theorem 3. Let N be an abacus with n vertices and p chains. There is a data
structure of size O(n) with O(n log p) construction time supporting farthest-point
queries on N in O(k + log n) time, where k is the number of farthest points.

5 Two-Terminal Series-Parallel Networks

Consider a two-terminal series-parallel network N . By undoing all possible series
operations and all possible parallel operations in alternating rounds, we reduce N
to an edge connecting its terminals and decompose N into paths that reflect its
creation history. The colors in Fig. 10 illustrate this decomposition.

Lemma 8. Let N be a series-parallel network with parallelism p and serialism s.
Identifying the terminals of N and reconstructing its creation takes O(s+p) time.

Once we know the terminals u and v of N , we compute the shortest path dis-
tances from u and from v in O(n log p) time.5 Consulting the creation history, we
determine a maximal parallel-path sub-network P of N with terminals u and v.
As illustrated in Figs. 11 and 12, every bi-connected component X of N that is
attached to some path of P between vertices a and b is again a two-terminal
5 The priority queue in Dijkstra’s algorithm manages never more than p entries.
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Fig. 10. A two-terminal series-parallel network with colors indicating the parallel oper-
ations in a potential creation history: starting with a single red edge, we create a parallel
yellow and a parallel blue edge. Then we subdivide the blue edge using series operations
until we create a parallel purple edge for one of the blue edges and so forth. (Color
figure online)

series-parallel network with terminals a and b. We recurse on these bi-connected
components. When this recursion returns, we know a longest a-b-path in X and
attach an arc from a to b of this length to P . The resulting network is an abacus A.
The abaci created during the recursion form a tree T with root A. Alongside with
this decomposition we also create our data structures for the nested abaci.

The size of the resulting data structure remains O(n), since the data structure
for each nested abaci consumes space linear in the number of its vertices and
each vertex in any nested abaci can be charged to one of the series or parallel
operations required to generate the original network.

Fig. 11. A two terminal series-parallel network with terminals marked as empty circles.
Replacing the three nested structures (blue, red, green) with arcs yields the abacus
network A shown at the root of the corresponding abacus tree in Fig. 12. Each colored
cycle consists of the shortest path and the longest path connecting the terminals of
each to-be-replaced structure; their weighted length determines the weight of the arcs
in A. (Color figure online)

We translate a query q to a query in the abacus A; queries from a bi-connected
component X attached to P in N will be placed on the corresponding arc of A.
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Fig. 12. The tree of nested abaci for the two-terminal series-parallel network from
Fig. 11. The inner nodes of this tree correspond to two-terminal networks with nested
structures that are indicated with colors; the leaves correspond to abacus networks
without nested structures. A query would start at the root abacus and cascade into
nested structures when necessary. For instance, when a query at the root abacus yields
a farthest point on the blue arc and a farthest point on the red arc, we would perform
subsequent queries in the abaci stored in the left and middle child of the root. (Color
figure online)
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Whenever the query in A returns a farthest point on some arc, we cascade the
query into the corresponding nested data structure. We add shortcuts to the
abacus tree T in order to avoid cascading through too many levels of T with-
out encountering farthest-points from the original query. This way, answering
farthest-point queries in N takes O(k + log n) time in total.

Theorem 4. Let N be a two-terminal series-parallel network with n vertices and
parallelism p. There is a data structure of size O(n) with O(n log p) construction
time that supports O(k+log n)-time farthest-point queries from any point on N ,
where k is the number of farthest points.

6 Conclusion and Future Work

In previous work, we learned how to support farthest-point queries by exploiting
the treelike structure of cactus networks [5]. In this work, we extended the arsenal
by techniques for dealing with parallel structures, as well. In future work, we aim
to tackle more types of networks such as planar networks, k-almost trees [11],
or generalized series-parallel networks [14]. Moreover, we are also interested in
lower bounds on the construction time of data structures supporting efficient
farthest-point queries to guide our search for optimal data structures.
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Abstract. An output-polynomial algorithm for the listing of minimal
dominating sets in graphs is a challenging open problem and is known to
be equivalent to the well-known Transversal problem which asks for an
output-polynomial algorithm for listing the set of minimal transversals in
hypergraphs. We give a polynomial delay algorithm to list the set of min-
imal dominating sets in chordal graphs, an important and well-studied
graph class where such an algorithm was not known. The algorithm uses
a new decomposition method of chordal graphs based on clique trees.

1 Introduction

A hypergraph H is a pair (V, E) where V is a finite set and E ⊆ 2V is called the set
of hyperedges. Hypergraphs generalize graphs where each hyperedge has size at
most 2. Given a hypergraph H := (V, E) and C ⊆ 2V , an output-polynomial algo-
rithm for C is an enumeration algorithm for C whose running time is bounded
by a polynomial depending on the sum of the sizes of H and C. One of the
central problem in the area of enumeration algorithm is the existence of an
output-polynomial algorithm for the set of minimal transversals in hypergraphs,
and is known as the Transversal problem or Hypergraph dualization. A minimal
transversal (or hitting set) in a hypergraph (V, E) is an inclusion-wise minimal
subset T of V that intersects with every hyperedge in E . The transversal prob-
lem has several applications in artificial intelligence [7,8], game theory [13,19],
databases [1–3], integer linear programming [2,3], to cite few. Despite the inter-
est in Transversal problem the best known algorithm is the quasi-polynomial
time algorithm by Fredman and Khachiyan [9] which runs in time O(N log(N))
where N is the cumulated size of the given hypergraph and its set of mini-
mal transversals. However, there exist several classes of hypergraphs where an
output-polynomial algorithm is known (see for instance [7,8,15] for some exam-
ples). Moreover, several particular subsets of vertices in graphs are special cases
of transversals in hypergraphs and for some of them an output-polynomial algo-
rithm is known, e.g., maximal independent sets, minimal vertex-covers, maximal
(perfect) matchings, spanning trees, etc.
c© Springer-Verlag Berlin Heidelberg 2016
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DOI: 10.1007/978-3-662-53174-7 11
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In this paper we are interested in the particular case of the Transversal
problem, namely the enumeration of minimal dominating sets in graphs (Dom-

Enum problem). A minimal dominating set in a graph is an inclusion-wise subset
D of the vertex set such that every vertex is either in D or has a neighbor
in D. In other words D is a minimal dominating set of G if it is a minimal
transversal of the closed neighborhoods of G, where the closed neighborhood of
a vertex x is the set containing x and its neighbors. Since in important graph
classes an output-polynomial algorithm for the Dom-Enum problem is a direct
consequence of already tractable cases for the Transversal problem, e.g., minor-
closed classes of graphs, graphs of bounded degree, it is natural to ask whether
an output-polynomial algorithm exists for the Dom-Enum problem. However,
it is proved in [15] that there exists an output-polynomial algorithm for the
Dom-Enum problem if and only if there exists one for the Transversal problem,
and this remains true even if we restrict the Dom-Enum problem to the co-
bipartite graphs. This is surprising, but has the advantage of bringing tools
from structural graph theory to this difficult problem and is particularly true
for the Dom-Enum problem since in several graph classes output-polynomial
algorithms were obtained using the structure of the graphs: graphs of bounded
clique-width [4], split graphs [15], interval and permutation graphs [16], line
graphs [14,17], etc.

Since the Dom-Enum problem in co-bipartite graphs is as difficult as the
Transversal problem and co-bipartite graphs are a subclass of hole-free graphs,
i.e., graphs with no cycles of length greater than or equal to 5, one can ask
whether by restricting ourselves to graphs without cycles of length greater than
4, which are exactly chordal graphs [6], one cannot expect an output-polynomial
algorithm. In fact for several subclasses of chordal graphs an output-polynomial
algorithm is already known, e.g., split graphs, chordal P6-free graphs [15], undi-
rected path graphs [14]. Furthermore, chordal graphs have a nice structure,
namely the well-known clique tree which has been used to solve several algo-
rithmic questions in chordal graphs. We prove the following.

Theorem 1. There exists a polynomial delay algorithm for the Dom-Enum

problem in chordal graphs which uses polynomial space.

An enumeration algorithm is polynomial delay if the maximum computation
time between two outputs is polynomial in the input size, thus polynomial delay
algorithm is output polynomial time. Notice that there exist problems where an
output-polynomial algorithm is known and no polynomial delay algorithm exists
unless P = NP [20].

Chordal graphs admit several linear structures (e.g., perfect elimination
ordering) and tree structures (e.g., clique trees). The existence of these struc-
tures makes many problems polynomially solvable in chordal graphs. For exam-
ple, using a clique tree we can split a chordal graph into several subgraphs by
removing a clique. This decomposition leads to a dynamic programming algo-
rithm for maximum independent set problem by considering the cases that each
vertex of the clique is included in the independent set, since any independent
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set can include at most one vertex of the clique. However, dominating set may
include several vertices in a clique, thus this approach is not applicable directly.
To the best of our knowledge, there is no good way to deal with this difficulty,
and this can explain why minimum dominating set problem is NP-complete. In
this paper, we propose to use an “anti-chain” of cliques to decompose chordal
graphs. The anti-chain decomposes a graph into several subgraphs, thus the solu-
tions with respect to the anti-chain are obtained by the combination of the solu-
tions of the subgraphs. Since the number of such subgraphs is limited, dynamic
programming approach does work. This approach is more powerful than usual
decomposition with cliques, in the sense that we can overcome the above diffi-
culty when dealing with the minimal dominating set enumeration problem, thus,
gives a new method for designing algorithms for chordal graphs.

2 Preliminaries

An algorithm is said to be output-polynomial if the running time is bounded by
a polynomial in the input and output sizes. The delay is the maximum com-
putation time between two outputs, pre-processing, and post-processing. If the
delay is polynomial in the input size, the algorithm is called polynomial delay.

We refer to [5] for our graph terminology. We deal only with finite simple
loopless undirected graphs. The vertex set of a graph G is denoted by VG and
its edge set by EG. An edge between two vertices x and y is denoted by xy (yx
respectively). Let G be a graph. The subgraph of G induced by X ⊆ VG, denoted
by G[X], is the graph (X, (X ˆ X) X EG). For a vertex x of G we denote by
NG(x) the set of neighbors of x, i.e., the set {y P VG | xy P EG}, and we let
NG[x], the closed neighborhood of x, be NG(x) Y {x}. For S ⊆ VG, let NG[S]
denote

⋃
xPS NG[x]. (We will remove the subscript when the graph is clear from

the context and this will be the case for all sub or superscripts in the paper.) We
say that a vertex x is dominated by a vertex y if x P NG[y]. A dominating set of
G is a subset D of VG such that every vertex of G is dominated by a vertex in D.
A dominating set is minimal if it includes no other dominating set. For D ⊆ VG,
a vertex y is a private neighbor of x P D if NG[y] X D = {x}; the set of private
neighbors of a vertex x P D is denoted by P (D,x). D ⊆ VG is an irredundant
set of G if P (D,x) �= ∅ for all x P D. D ⊆ VG is a minimal dominating set of G
if and only if D is a dominating set of G and D is an irredundant set.

A clique of G is a subset C of G that induces a complete graph, and a maximal
clique is a clique C of G such that C Y {x} is not a clique for all x P VG\C. We
denote by CG the set of maximal cliques of G.

For a rooted tree T , let us denote by �T the relation where u �T v if v is on
the unique path from the root to u; if u �T v then v is called an ancestor of u
and u a descendant of v. Two nodes u and v of a rooted tree T are incomparable
if u ��T v and v ��T u. Given a node u of a rooted T the subtree of T rooted at
u is the tree T [{v P VT | v �T u}] which is rooted at u.

A graph G is called chordal if it does not contain chordless cycles of length
greater than or equal to 4. From [11] with every chordal graph G, one can
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associate a tree that we denote by TG, called clique tree, whose nodes are the
maximal cliques of G and such that for every vertex x P VG the set TG(x) :=
{C P V (TG) | the maximal clique C contains x} is a subtree of TG. Moreover,
for every chordal graph G one can compute a clique tree in linear time (see for
instance [10]). In the rest of the paper all clique trees are considered rooted.

Let TG be a clique tree of a chordal graph G and let us denote its root by Cr.
For each C P CG, let us denote by Pa(C) its parent and let f(C) := C\Pa(C),
i.e., the set of vertices in C that are not in any maximal clique C ′ ancestor of
C. Notice that {f(C) | C P TG} is a partition of VG. For each vertex x P VG,
we denote by C(x) the maximal clique C satisfying x P f(C). Notice that C(x)
is uniquely defined since exactly one maximal clique C satisfies x P f(C). For
C P CG, the subtree rooted at C is denoted by TG(C), and the set of vertices⋃

C′PTG(C) f(C ′) is denoted by V (C).

Property 1. Any clique tree TG of a chordal graph G satisfies the following.
1. For each C P CG, and each x P VG\V (C) either ({x} ˆ f(C)) ⊆ EG or
({x} ˆ f(C)) X EG = ∅.
2. For any two incomparable C and C ′ in CG, we have (f(C)ˆf(C ′))XEG = ∅.

For S ⊆ VG, let C(S) denote the set {C(x) | x P S}, Up(S) the set of vertices
x in VG such that C(x) is a proper ancestor of a clique C P C(S) and Uncov(S)
be the vertex set Up(S)\NG[S], i.e., the set of vertices in Up(S) not dominated
by S. For a vertex x, Up(x) denotes Up({x}).

A subset A ⊆ VG is an antichain if (1) for any two vertices x and y in A we
have x /P Up(y) and y /P Up(x), (2) for each vertex z P VG\Up(A), A X (C(z) Y
Up(z)) �= ∅. Intuitively, A is an antichain if C(A) is a maximal set of pairwise
incomparable maximal cliques. Given S ⊆ VG, the top-set A(S) is defined as
the set of vertices of S included in the upmost cliques in C(S) that are not
descendants of any other in C(S), i.e., A(S) := {x P S | C(x) is in max

�T
{C(S)}}.

If S �= ∅, let L(S) be the set of maximal cliques C satisfying (1) no
descendant of C is in C(S), (2) some descendant of Pa(C) is in C(S). In other
words, L(S) is the set of upmost maximal cliques no descendant of which inter-
sects with C(S), i.e., L(S) := max

�T
{C P CG | C has no descendant in C(S)}. If

S = ∅, let L(S) be {Cr}. We denote by L′(S) the set max
�T

{C ′ P T (C) | C P
L(S) and C ′ X S = ∅}.

We suppose that any clique tree T is numbered by a pre-order of the visit
of a depth-first search. In this numbering, the numbers of the nodes in any
subtree forms an interval of the numbers. It is worth noticing that this ordering
is a linear extension of the descendant-ancestor relation. We say that a clique
is smaller than another clique when its number in the ordering is smaller than
the other’s. We also extend this numbering to the vertices of the corresponding
graph such that the number of a vertex x is smaller than that of a vertex y
whenever C(x) is smaller than C(y). We also say that a vertex is smaller than
another vertex if its number is smaller than the other’s. For a vertex set S,
tail(S) denotes the largest vertex in S. A prefix of a vertex set S is a subset
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S′ ⊆ S such that no vertex in S\S′ is smaller than tail(S′). A partial antichain
is a prefix of an antichain. We allow the ∅ to be a partial antichain.

Following this ordering of the vertices of a chordal graph G, a minimal dom-
inating set D is said to be greedily obtained if we initially let D := VG and
recursively apply the following rule: if D is not minimal, find the smallest vertex
x in D such that D\{x} is a dominating set and set D := D\{x}. Notice that
given a graph G there is one greedily obtained minimal dominating set.

3 When Simplicity Means NP-Hardness

A typical way for the enumeration of combinatorial objects is the backtracking
technique. We start from the emptyset, and in each iteration, we choose an
element x, and partition the problem into two subproblems: the enumeration of
those including x, and the enumeration of those not including x, and recursively
solve these enumeration problems. If we can check the so called Extension

Problem in polynomial time, then the algorithm is polynomial delay and uses
only polynomial space. The Extension Problem is to answer the existence of
an object including S and that does not intersect with X, where S is the set
(partial solution) that we have already chosen in the ancestor iterations, and
that includes all elements we decided to put in the output solution, and X is the
set that we decided not to include in the output solution.

It is known that the Extension Problem for minimal dominating set enu-
meration is NP-complete [18], and one can even prove that it is still NP-complete
in split graphs, which is a proper subclass of chordal graphs.

Proposition 1. The Extension Problem is NP-complete in split graphs.

Proof. It is proved in [18] that the following problem is NP-complete: Given
G and A ⊂ VG decide whether there exists a minimal dominating set of G
containing A. We reduce it to the Extension Problem in split graphs. Let G
be a graph, and let V ′

G := {x′ | x P VG} a disjoint copy of VG. We let Split(G)
be the split graph with vertex set VGYV ′

G where VG and V ′
G are respectively the

clique and the independent set in Split(G); now xy′ is an edge if x P NG[y]. Now
it is easy to check that asking whether there exists a minimal dominating set of
G that contains A ⊂ VG is equivalent to asking whether there exists a minimal
dominating set of Split(G) that contains A and does not intersect with V ′

G\A′

where A′ := NSplit(G)[A] X V ′
G. ��

Nevertheless, split graphs have a good structure and in the paper [15], it
is proved that if S Y X induces a clique the Extension Problem in split
graphs can be solved in polynomial time and this combined with the structure
of minimal dominating sets in split graphs lead to a polynomial delay algorithm
for the Dom-Enum problem in split graphs. Chordal graphs also have a good
tree structure induced by clique trees. Thus, by following this tree structure,
the Extension Problem seems to be solvable. In precise, we consider the
case in which a path P, from the root, of the clique tree satisfies that both
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V (C)X (S YX) �= ∅ and V (C) �⊆ (S YX) holds only for cliques C included in
P. In other words, the condition is that for any clique C �P P whose parent is in P,
either V (C)X(SYX) = ∅ (totally not determined) or V (C) ⊆ (SYX) (totally
determined) holds. The solutions are partially determined on the path P, and
thus the Extension Problem seems to be polynomial. However, Theorem 2
states that the problem is actually NP-complete.

Theorem 2. The Extension Problem is NP-complete in chordal graphs even
if a path P, from the root, of the clique tree satisfies that any child C of a clique
in P satisfies either V (C) X (S Y X) = ∅ or V (C) ⊆ (S Y X).

Proof. We reduce Sat to our problem. Let ϕ be an instance of Sat with x1,. . ., xn

the variables and c1, . . . , cm the clauses of ϕ. We construct a chordal graph as
follows. The vertex set of the graph is

{x1, . . . , xn, c1, . . . , cm, p1, . . . , pn, p̄1, . . . , p̄n, l1, . . . , ln}
⋃

{l̄1, . . . , l̄n, y1, . . . , yn, z1, . . . , zn, q1, . . . , qn, q̄1, . . . , q̄n},

where li and l̄i are literals representing respectively xi and x̄i (notice that if
one literal does not appear, the corresponding vertex is not created). Since with
every clique tree one can associate a unique chordal graph, we will construct
the clique tree of the chordal graph. For each 1 � i � n, we let C(li) and
C(l̄i) be the set of clauses containing the literal li and l̄i respectively. We let its
root be Cr := {c1, . . . , cm, p1, . . . , pn, p̄1, . . . , p̄n}. The other maximal cliques are
defined as follows. For each 1 � i � n, we let Cxi

= {xi, pi, p̄i}, Cyi
= {yi, xi},

Czi = {yi, zi}, Cqi = {qi, li}, Cq̄i = {q̄i, l̄i}, Cli = {li, pi} Y C(li), and Cl̄i =
{l̄i, p̄i}YC(l̄i) with the following parent-child relation: Cxi

, Cli and Cl̄i are the
children of Cr, Cyi

is the only child of Cxi
and Czi is the only child of Cyi

, Cqi

and Cq̄i are the only children of Cli and Cl̄i respectively. It is easy to check that
the constructed tree is indeed a clique tree. See Fig. 1 for an illustration.

We set S := {x1, . . . , xn, y1, . . . , yn} and X := {z1, . . . , zn, c1, . . . , cm} Y
{p1, . . . , pn, p̄1, . . . , p̄n} and P := {Cr}. For each 1 � i � n, we have by con-
struction V (Cxi

) ⊆ SYX, and (V (Cli)YV (Cl̄i))X (SYX) = ∅. Therefore, for
any maximal clique C child of Cr, either V (C)X(SYX) = ∅, or V (C) ⊆ (SYX)
holds, thus the condition of the statement holds.

One can easily check that any satisfiable assignment of ϕ leads to a minimal
dominating set containing S and that does not intersect X. Let us prove the
converse direction. We observe when we choose both li and l̄i in the dominating
set, xi loses its private neighbors. Thus, any minimal dominating set can include
at most one of them. On the other hand, exactly one of li and qi (resp., l̄i
and q̄i) must be included in any minimal dominating set, so that it dominates
li and qi (resp., l̄i and q̄i), and both must be private neighbors of the chosen
one. Moreover, to dominate each clause cj , at least one literal of cj has to be
included in any minimal dominating set. Hence, for any minimal dominating
set D including S and not intersect with X, the set of literals included in D
corresponds to a satisfiable assignment. Therefore, the answer of the Extension
Problem is yes if and only if ϕ has a satisfiable assignment. ��
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C1, . . . , Cm
p1, . . . , pn
p1, . . . , pn

Cr

x1, p1, p1

x1, y1

y1, z1

xn, pn, pn

xn, yn

yn, zn

. . .

. . .

. . .

︸ ︷︷ ︸

Variables

︸ ︷︷ ︸

Clauses

l1, p1, C(l1)

l1, q1

ln, pn, C(ln)

ln, qn

. . .

. . .

l1, p1, C(l1)

l1, q1

ln, pn, C(ln)

ln, qn

. . .

. . .

Fig. 1. An illustration of the construction of Theorem 2.

To overcome these difficulties, we will follow another approach. In fact
the NP-hardness comes from the fact that the root clique can have both un-
dominated vertices and private neighbors of several vertices of S. In the fol-
lowing, we will introduce a new strategy for the enumeration, that repeatedly
enumerates antichains in levelwise manner. Indeed for any minimal dominating
set D of a chordal graph G, one can easily check that the set A(D) is an antichain
that moreover dominates Up(A(D)). Our strategy consists in enumerating such
antichains and for each such antichain A enumerates the minimal dominating
sets D such that A(D) = A. Let’s be more precise in the forthcoming sections.

4 (K1,K2)-Extensions

From now on we consider a fixed chordal graph G and clique tree T of G with
root Cr so that we do not need to recall them in the statements. Let K1,K2 ⊆ Cr

be given disjoint sets that are decided to be included in the solution. Intuitively,
we are considering the subgraph induced by a subtree of the clique tree rooted at
Cr, and K1 and K2 are vertices that we already decided to include in the solution,
such that vertices in K2 have private neighbors outside the subgraph, and vertices
of K1 do not. Without confusion we denote K1YK2 by K. A (K1,K2)-extension
of a partial antichain A is a vertex set D such that (AYK) ⊆ D and D\(AYK) ⊆⋃

CPL(AYK)

V (C). Observe that if D is a (K1,K2)-extension of A, then A is a prefix

of A(D). When the partial antichain is not specified, (K1,K2)-extension is that
for the empty partial antichain. A (K1,K2)-extension D is feasible if it is a
dominating set and P (D,x) �= ∅ for all x P D\K2. A partial antichain A is
(K1,K2)-extendable if it has a feasible (K1,K2)-extension.

Let us briefly explain the ideas of the algorithm and why we introduce
(K1,K2)-extensions. We first observe that for any minimal dominating set D of
G, its top-set is an (∅, ∅)-extendable antichain. Moreover, D\A(D) is composed
of vertices below A(D), i.e., any vertex in D\A(D) is included in V (C)\C for
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some C P C(D). Using this, we can partition the minimal dominating sets accord-
ing to their top-sets. Since these top-sets are (∅, ∅)-extendable, we enumerate
all (∅, ∅)-extendable antichains, and for each (∅, ∅)-extendable antichain A,
enumerate all minimal dominating sets whose top-set is A. As by definition of
(K1,K2)-extendable for some disjoint K1,K2 ⊆ Cr, for each (∅, ∅)-antichain
A there is at least one minimal dominating set whose top-set is A. Therefore,
each output (∅, ∅)-antichain will give rise to a solution. This is one of the key
to polynomial delay.

Now for a minimal dominating set D and a clique C P C(A(D)), each vertex
x in D X (V (C) Y C) cannot have a private neighbor in another G[V (C ′) Y
C ′] for some other C ′ P C(A(D)). Therefore, we can treat each G[V (C) Y C]
independently. However, for each C P C(A(D)) the set D X (V (C) Y C) is not
necessarily a minimal dominating set of G[V (C)YC] since DXC may be equal
to a singleton {x} with x having a private neighbor in Up(A(D)). In such cases
we are looking in G[V (C)YC] a dominating set D′ of G[V (C)YC] containing x
where x does not necessarily have a private neighbor, but all the other vertices
in D′ do, i.e., D′ is a feasible (∅, {x})-extension in G[V (C) Y C] with clique
tree T (C). This situation is what exactly motivated the notion of (K1,K2)-
extensions.

Assume now we are given a pair (K1,K2) of disjoint sets in Cr and a (K1,K2)-
extendable antichain A. Now contrary to (∅, ∅)-antichains we can have a vertex
x in K := K1 Y K2 that belongs to several cliques in A. So we cannot indepen-
dently make recursive calls in G[V (C) Y C] for each C P C(A). But, for each
feasible (K1,K2)-extension of A and each C P C(A) the set D X (V (C) Y C)
is a feasible (K1

C ,K2
C)-extension of G[V (C) Y C] for some disjoint K1

C and K2
C

in (A Y K) X C. Now the whole task is to define for each C P C(A) the sets
K1

C and K2
C in (A Y K) X C in such a way that by combining all these feasible

(K1
C ,K2

C)-extensions we obtain a feasible (K1,K2)-extension of A, and also any
feasible (K1,K2)-extension can be obtained in that way. Actually, the way of
setting K1

C and K2
C is the key, and is described in the next section.

Let us prove some technical lemmas about (K1,K2)-extensions needed
for proving the correctness of our algorithm. For C P CG and x P C, let
F(C, x) := {C ′ �T C and C ′ P L′(x)}, and let DC(x) denotes a vertex set com-
posed of

1. Z ⊆ V (C) X
(

⋃

C′PF(C,x)

C ′
)

such that |Z X C ′| = |Z X f(C ′)| = 1 for all

C ′ P F(C, x),
2. a greedily obtained minimal dominating set of G[(V (C)\NG[x]) \ NG[Z]].

If x /P C, then we let DC(x) be a greedily obtained minimal dominating set
of G[V (C)].

Property 2. Let C P CG and let x P VG. Then DC(x) is an irredundant set in
G[V (C)] and every vertex in V (C)\NG[x] is dominated by DC(x).
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Proof. We first prove that DC(x) is irredundant. Since each minimal dominating
set is also an irredundant set, we can assume that x P C. By definition of Z we
have that {x} ˆ Z X EG = ∅. Moreover, by Property 1 (2) no two vertices
of Z are adjacent. Since by construction of DC(x)\Z no vertex in DC(x)\Z
is adjacent to a vertex of Z, we can conclude that for each z P Z we have
z P P (DC(x), z). Moreover, since (DC(x)\Z) X NG[Z] = ∅ and DC(x)\Z is
a minimal dominating set of G[(V (C)\NG[x]) \ NG[Z]], we can conclude that
P (DC(x), y) �= ∅ for all y P (DC(x)\NG[x]) \ NG[Z].

Let us now prove that V (C)\NG[x] is dominated by DC(x). If x /P C, then
DC(x) is a minimal dominating set of G[V (C)] and then we are done. So, assume
that x P C and let y P V (C)\NG[x]. Then C(y) is necessarily a descendant of a
clique C ′ P L′(x) and such that C ′ �T C. So, either y P NG[Z] or y /P NG[Z]. In
both cases, it is dominated by DC(x). ��

Given disjoint sets K1,K2 ⊆ Cr, D ⊆ VG\K and x P D Y K1, a vertex
y P P (D Y K,x) is said safe if either x = y, or the following two conditions are
satisfied

(S1) NG(y) X V (C) ⊆ NG[DC(y)] for all C P L′(D Y K) with y P C and,
(S2) for each z P NG[y] X Uncov(D Y K), there is C P L′(D Y K) such that

z P NG[DC(y)].

A vertex x P D is said safe if one of its private neighbors is safe.

Property 3. Let x P D Y K1 and let y P P (D Y K,x) be safe for x. Then
V (C)\{y} ⊆ NG[DC(y)] for all C P L′(D Y K) with y P C.

Proof. By Property 2 V (C)\NG[y] is dominated by DC(y). By definition of
safety NG(y) is dominated by DC(y). Therefore V (C)\{y} is dominated by
DC(y) for all C P L′(D Y K) with y P C. ��
Lemma 1. Let A be a partial antichain and let x P AYK1. For y P P (AYK,x)
that is non-safe, no (K1,K2)-extension D of A that is a dominating set satisfies
that y P P (D,x).

Proof. Since y is not safe, we have x �= y, and therefore y violates one of the
two conditions (S1) or (S2) to be safe. Suppose that (S1) is not satisfied, i.e.,
there is a clique C P L′(AYK), y P C such that there is a vertex z in (NG(y)X
V (C))\NG[DC(y)]. Thus, any (K1,K2)-extension D of A that is a dominating
set includes some vertices in NG[y] other than x, thus y is not a private neighbor
of x.

Suppose now that (S2) is not satisfied, i.e., there is a vertex z P NG[y] X
Uncov(A Y K) such that no clique C P L′(A Y K) satisfies z P NG[DC(y)].
It implies from the definition of DC(y) that no vertex in V (C)\NG[y] is adja-
cent to z in all cliques C P L′(A Y K). Thus, as in the previous case, in any
(K1,K2)-extension D of A, y is not a private neighbor of x unless D is not a
dominating set. ��
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Lemma 2. Let A be a partial antichain and let x P AYK1 be safe. Then there
is y P P (A Y K,x) that is safe and such that y P V (C(x)).

Proof. The statement holds if x P P (A Y K,x). If not, C(x) includes another
vertex in AYK, and it is adjacent to any vertex in NG[x]\V (C(x)) by Property 1.
Thus all its safe private neighbors are always in V (C(x)). ��
Lemma 3. A partial antichain A is (K1,K2)-extendable if and only if the fol-
lowing two conditions are satisfied

1. any vertex in Uncov(A Y K) is included in a clique of L′(A Y K),
2. all vertices in A Y K1 are safe.

Proof. Let A be a (K1,K2)-extendable partial antichain. If (1) is not satisfied,
there is a vertex z P Uncov(AYK) that is not included in any clique of L′(AYK),
and by definition of (K1,K2)-extension no (K1,K2)-extension of A can dominate
it. So (1) is always satisfied. Now, if (2) is not satisfied, there is a non-safe vertex
x in A Y K1, thus all y P P (A Y K,x) are non-safe. By Lemma 1 it follows that
P (D,x) = ∅ for each (K1,K2)-extension D of A that is a dominating set, and
then (2) is always satisfied.

Suppose now that the two conditions hold. For each x P AYK1 let us choose
one safe private neighbor and let us denote the set of all these safe private
neighbors by S. We consider a (K1,K2)-extension D generated from A Y K as
follows. First of all notice that from the definition of private neighbor and safety
for each C P L′(AYK), |CXS| � 1. So, let L1 := {C P L′(AYK) | |CXS| = 1}
and L0 := {C P L′(AYK) | |CXS| = 0}. It is clear that {L0,L1} is a bipartition
of L′(A Y K). Let z P S. Now let

D := (A Y K) Y
⎛

⎝
⋃

CPL1,CXS={y}
DC(y)

⎞

⎠ Y
(

⋃

CPL0

DC(z)

)

.

D is clearly a (K1,K2)-extension of A. By definition of DC(y) for each vertex
x P D\(AYK) we have that P (D,x) �= ∅. It is moreover easy to check that for
each x P AYK1, we have that SXP (AYK,x) P P (D,x). Thus, from Property 1,
P (D,x) �= ∅ for all x P D\K2. Each vertex in NG[A Y K] is dominated.
Moreover, since for each C P L0 we have z /P C, by definition of DC(z) we have
V (C) is also dominated. Now, let C P L1 and let C X S = {y}. We know from
Property 2 that V (C)\NG[y] is dominated by DC(y) and y is dominated by
A Y K since y is safe for some vertex in A Y K1. So, it remains to show that
NG(y) X V (C) is dominated. By the definition of safety we know that the two
conditions (S1) and (S2) are satisfied, i.e., NG(y) X V (C) is dominated. ��

As a corollary we have the following.

Lemma 4. For any partial antichain A one can check in polynomial time
whether A is (K1,K2)-extendable.
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Proof. By Lemma 3 it is enough to check if (1) all vertices in A Y K1 are safe
and (2) each vertex in Uncov(AYK) is included in a clique in L′(AYK). Since
(2) can be easily checked in polynomial time from G and a clique tree of G, it
remains to show that (1) can be checked in polynomial time. A vertex x P AYK1

is safe if either x P P (AYK1, x) or there exists a safe y P V (C(x))XP (AYK1, x)
by Lemma 2. But by the definition of safety for each y P V (C(x))XP (AYK1, x)
the conditions (S1) and (S2) are of course checkable in polynomial time from G
and a clique tree of G. ��

5 The Algorithm

Our enumeration strategy is composed of nested enumerations: enumeration of
(K1,K2)-extendable antichains, for each (K1,K2)-extendable antichain A and
each C P C(A) define K1

C and K2
C and enumerate all the feasible (K1

C ,K2
C)-

extensions, and finally the combinations of all these (K1
C ,K2

C)-extensions. Since
any minimal dominating set is a feasible extension of some (∅, ∅)-extendable
antichain, the completeness of the enumeration is trivial. The rest of the section
is as follows. We first show how to enumerate (K1,K2)-extendable antichains for
some fixed (K1,K2). Then we show, given a (K1,K2)-extendable antichain A,
how to define K1

C and K2
C for each C P C(A) and how to combine all the feasi-

ble (K1
C ,K2

C)-extensions in order to obtain all feasible (K1,K2)-extensions of A.
Before assuming that we can perform both tasks with polynomial delay and use
only polynomial space let us show that we can enumerate with polynomial delay
and in polynomial space all the feasible (K1,K2)-extensions.

Enumeration of (K1,K2)-Extensions. The algorithm for enumerating all the
feasible (K1,K2)-extensions, including the case of the root of the recursion, is
composed of the (K1,K2)-extendable antichain enumeration and of the enu-
meration of combinations of the feasible (K1

C ,K2
C)-extensions for appropriate

(K1
C ,K2

C). It can be described as follows.

Algorithm EnumKExtension(G, T ,K1,K2)
G:graph, T :clique tree

1. for each antichain A output by EnumAntichain(G, T ,K1,K2,∅) do
2. output each solution of EnumCombination(G, T ,K1,K2, A,AYK)
3. end for

Assume that EnumAntichain(G, T ,K1,K2, ∅) enumerates all (K1,K2)-
extendable antichains (Lemma 5) and EnumCombination(G, T ,K1,K2, A,AYK)
enumerates all feasible (K1,K2)-extensions of A (Lemma 8), both with polyno-
mial delay and use polynomial space. Then we have the following.

Theorem 3. The call EnumKExtension (G, T ,K1,K2) enumerates all feasible
(K1,K2)-extensions in polynomial delay and uses polynomial space.
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Proof. By definition for every feasible (K1,K2)-extension D the top-set A(D)
is a (K1,K2)-extendable antichain. So by Lemmas 5 and 8 below every fea-
sible (K1,K2)-extension is output. From the definition of (K1,K2)-extendable
antichains every call in Step 1 outputs at least one feasible (K1,K2)-extension.
Therefore, EnumKExtension (G, T ,K1,K2) enumerates all feasible (K1,K2)-
extensions. Furthermore, since the algorithms EnumAntichain(G, T ,K1,K2, ∅)
and EnumCombination(G, T ,K1,K2, A,AYK) run in polynomial delay and use
polynomial space we can conclude that EnumKExtension (G, T ,K1,K2) runs in
polynomial delay and uses polynomial space. ��
Enumeration of Antichains. Our strategy is to enumerate all (K1,K2)-
extendable partial antichains by an ordinary backtracking algorithm, that
repeatedly appends a vertex x to the current solution S with x > tail(S). In
this algorithm, any (K1,K2)-extendable partial antichain A is obtained from
A\tail(A). Since A\tail(A) is a prefix of A, any (K1,K2)-extendable partial
antichain is generated from another (K1,K2)-extendable partial antichain. This
implies that the set of (K1,K2)-extendable partial antichains satisfies a kind
of monotone property, and thus we can enumerate all (K1,K2)-extendable par-
tial antichains with passing through only (K1,K2)-extendable partial antichains.
The algorithm is described as follows.

Algorithm EnumAntichain(G, T ,K1,K2, A)
G:graph, T :clique tree, A:(K1,K2)-extendable partial antichain

1. if A is an antichain then output A;
2. for each vertex z > tail(A) do
3. if AY {z} is a (K1,K2)-extendable partial antichain then

call EnumAntichain(G, T ,K1,K2, AY {z})
4. end for

Lemma 5. The call EnumAntichain(G, T ,K1,K2, ∅) enumerates all (K1,K2)-
extendable antichains in polynomial delay and uses polynomial space.

Proof. Observe that for any (K1,K2)-extendable partial antichain A, A\tail(A)
is a (K1,K2)-extendable partial antichain. Thus, one can easily prove by induc-
tion that the iteration inputting A is recursively called only by the iteration
inputting A\tail(A). Therefore, all (K1,K2)-extendable partial antichains are
generated by this algorithm without repetition. For a (K1,K2)-extendable par-
tial antichain A, there is at least one feasible (K1,K2)-extension D. By the
definition of a feasible (K1,K2)-extension, A(D\K) is a (K1,K2)-extendable
antichain with A as a prefix. This implies that at least one descendant of any
iteration outputs an antichain, and every leaf of the recursion tree outputs an
antichain. Then, the delay is bounded by the maximum computation time of an
iteration multiplied by the depth of the recursion. The depth is at most |VG|,
thus the algorithm is polynomial delay since the loop at Step 2 runs at most n
times and the (K1,K2)-extendability check can be done in polynomial time by
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Lemma 4. Since the depth is bounded by |VG|, the algorithm uses obviously a
polynomial space. ��
Enumeration of Combinations. We now show, given a (K1,K2)-extendable
antichain A, how to enumerate with polynomial delay and in polynomial space
all feasible (K1,K2)-extensions of A by computing for each C P C(A) all the
(K1

C ,K2
C)-extensions of G[V (C)YC] for appropriate K1

C and K2
C and combining

all of them. Note that the set A is the top-set of any feasible (K1,K2)-extension
if and only if the (K1,K2)-extension is that of A. For pruning redundant partial
combinations, we introduce the notion of a partial (K1,K2)-extension.

A vertex set D ⊇ A Y K is called a partial (K1,K2)-extension of A if there
is a feasible (K1,K2)-extension D′ of A such that D\(A Y K) is a prefix of
D′\(A Y K), and all the vertices in V (C(x)) for x P A is dominated by D if
x is smaller than tail(D\(A Y K)). Our strategy is to enumerate all partial
(K1,K2)-extensions of A, similar to the antichain enumeration.

For a partial (K1,K2)-extension D of A, let C∗(D) be the largest clique C
in C(A) such that (D\(AYK))X V (C) �= ∅, and C∗(D) be the smallest clique
C in C(A) such that a vertex in V (C) is not dominated by D. Informally C∗(D)
is the last clique C P C(A) such that V (C) is dominated by D, and C∗(D) the
first clique in C(A) such that V (C) is not dominated by D.

To enumerate all partial (K1,K2)-extensions of A and find all (K1,K2)-
extensions of A, we start from D=AYK and repeatedly add a (K1

C∗(D),K
2
C∗(D))-

extension of G[V (C∗(D))YC∗(D)] to D for appropriate (K1
C∗(D),K

2
C∗(D)), while

keeping extendability. We now characterize the possible pairs (K1
C∗(D),K

2
C∗(D)).

Let Q(C ′) be the vertices x in K Y A that has no safe private neighbor in
V (C) Y C,C > C ′, and none of its private neighbor in P (K Y A Y D,x) is
included in Up(A)\C ′ or in V (C), C < C ′. In other words Q(C ′) is the set of
vertices in K Y A that we must give a private neighbor in V (C ′) Y C ′ for any
(K1,K2)-extension of A containing D.

Lemma 6. For a non-empty partial (K1,K2)-extension D, D X (V (C∗(D)) Y
C∗(D)) is a feasible (K ′

1,K
′
2)-extension in G[V (C∗(D)) Y C∗(D)] where K ′

1 =
Q(C∗(D)) and K ′

2 = ((A Y K) X C∗(D))\K ′
1.

Proof. By definitions of partial (K1,K2)-extension and of C∗, D X (V (C∗(D)Y
C∗(D)) dominates V (C∗(D)). Moreover, every vertex x in Q(C∗(D)) has a pri-
vate neighbor only in V (C∗(D)) Y C∗(D), and moreover x P C∗(D). Thus, the
statement holds. ��
Lemma 7. Let D be a partial (K1,K2)-extension of A and suppose that C∗(D)
exists. For any feasible (K ′

1,K
′
2)-extension D′ in G[V (C∗(D)) Y C∗(D)] where

K ′
1 = Q(C∗(D)), K ′

2 = ((A Y K) X C∗(D))\K ′
1, D Y D′ is a partial (K1,K2)-

extension of A.

Proof. As in the proof of Lemma 3, we choose one private neighbor for vertices
in A Y K that have safe private neighbors in V (C), C > C∗(D) and let S be
the set of these selected vertices. Then we let L1 := {C P L′(A Y K) | C >
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C∗(D), |C X S| = 1} and L0 := {C P L′(A Y K) | C > C∗(D), |C X S| = 0}. Let
z P S. Now let

D∗ := (A Y K Y D Y D′) Y
⎛

⎝
⋃

CPL1,CXS={y}
DC(y)

⎞

⎠ Y
(

⋃

CPL0

DC(z)

)

.

According to the proof of Lemma 3, D∗ is a feasible (K1,K2)-extension
of A. ��

We can now describe the algorithm.

Algorithm EnumCombination(G, T ,K1,K2, A,D)
G:graph, T :clique tree, A:(K1,K2)-extendable antichain
D: a partial (K1,K2)-extension of A

1. if C∗(D) does not exist then output D; return
2. K′

1 := Q(C∗(D)), K′
2 := ((A YK) X C∗(D))\K′

1

3. for each D′ output by EnumKExtension(G[V (C∗(D)) Y C∗(D)], T (C∗(D)),K′
1,K

′
2)

4. call EnumCombination(G, T ,K1,K2, A,D YD′)
5. end for

Lemma 8. The call EnumCombination(G, T ,K1,K2, A,A Y K) enumerates all
feasible (K1,K2)-extensions whose top-set is A in polynomial delay and uses
polynomial space.

Proof. From Lemma 6, the iteration of a partial (K1,K2)-extension D of A is
generated only from the iteration of D\(V (C∗(D)\C∗(D))). This assures that
the algorithm enumerates all partial (K1,K2)-extensions of A without duplica-
tion. From Lemma 7, there is at least one feasible (K1,K2)-extension D′ of A
including the partial (K1,K2)-extension D of A that is the input of the iteration.
Thus, all the leaf iterations of the recursion of this algorithm always outputs a
feasible (K1,K2)-extension of A. Now the delay is bounded by the maximum
computation time of an iteration multiplied by the depth of the recursion. The
depth is at most |VG|, thus the algorithm is polynomial delay since EnumKExten-
sion runs with polynomial delay. Since the depth is at most |VG|, the algorithm
is obviously polynomial space. ��
Proof (of Theorem 1). By definition every minimal dominating set of G is a
feasible (∅, ∅)-extension. Therefore, the call EnumKExtension (G, T , ∅, ∅) enu-
merates all minimal dominating sets in polynomial delay and polynomial space
by Theorem 3. ��

6 Conclusion

We have proved that one can list all the minimal dominating sets of a chordal
graph with polynomial delay and in polynomial space. The result enlarged the
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classes in that minimal dominating set enumeration is output-polynomially solv-
able. However, the problem is still open for several graph classes such as bipar-
tite graphs and unit-disk graphs. In particular, chordal bipartite graph admits
an output-polynomial algorithm [12]. Applying our decomposition technique to
chordal bipartite graphs is an interesting future research.
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Abstract. A transition in a graph is a pair of adjacent edges. Given a
graph G = (V, E), a set of forbidden transitions F ⊆ E × E and two
vertices s, t ∈ V , we study the problem of finding a path from s to t
which uses none of the forbidden transitions of F . This means that it
is forbidden for the path to consecutively use two edges forming a pair
in F . The study of this problem is motivated by routing in road networks
in which forbidden transitions are associated to prohibited turns as well
as routing in optical networks with asymmetric nodes, which are nodes
where a signal on an ingress port can only reach a subset of egress ports.
If the path is not required to be elementary, the problem can be solved in
polynomial time. On the other side, if the path has to be elementary, the
problem is known to be NP-complete in general graphs [Szeider 2003]. In
this paper, we study the problem of finding an elementary path avoiding
forbidden transitions in planar graphs. We prove that the problem is
NP-complete in planar graphs and particularly in grids. In addition, we
show that the problem can be solved in polynomial time in graphs with
bounded treewidth. More precisely, we show that there is an algorithm
which solves the problem in time O(kΔ2(3kΔ)2kn) in n-node graphs
with treewidth at most k and maximum degree Δ.

1 Introduction

Driving in New-York is not easy. Not only because of the rush hours and the taxi
drivers, but because of the no-left, no-right and no U-turn signs. Even in a “grid-
like” city like New-York, prohibited turns might force a driver to cross several
times the same intersection before eventually reaching their destination. In this
paper, we give hints explaining why it is difficult to deal with forbidden-turn
signs when driving in grid-like road networks.
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Let G = (V,E) be a graph. A transition in G is a pair of two distinct edges
incident to a same vertex. Let F ⊆ E × E be a set of forbidden transitions in
G. We say that a not necessarily elementary path P = (v0, . . . , vq) is F-valid
if it contains none of the transitions of F , i.e., {{vi−1, vi}, {vi, vi+1}} /∈ F for
i ∈ {1, . . . , q − 1}. Given G, F and two vertices s and t, the Path Avoiding
Forbidden Transitions (PAFT) problem consists in finding an F-valid s-t-path.

The PAFT problem arises in many contexts. In optical networks, nodes can
be highly asymmetric with respect to their switching capabilities as pointed
out in [2]. Indeed, an optical node might have some restrictions on its internal
connectivity and that, consequently, signal on a certain ingress port can only
reach a subset of the egress ports. As explained in [2,4,9], a node can be asym-
metrically configured for many reasons such as the limitation on the number
of physical ports of optical switch components and the low cost of asymmet-
ric nodes compared to symmetric ones. The existence of asymmetric nodes adds
some connectivity constraints in the network. This has motivated some studies to
re-investigate, under the assumption of the existence of asymmetric nodes, some
classical problems in optical network, such as routing [2,4,11] and protection
with node-disjoint paths [9]. These studies do not highlight the computational
complexity of the problems they consider. We point out here that the opti-
cal nodes configured asymmetrically can be modeled as vertices with forbidden
transitions and the routing problem is an application of PAFT. The study of
PAFT is also motivated by its relevance to vehicle routing. In road networks, it
is possible that some roads are closed due to traffic jams, construction, etc. It is
also frequent to encounter no-left, no-right and no U-turn signs at intersections.
These prohibited roads and turns can be modeled by forbidden transitions.

When the PAFT problem is studied, a distinction has to be made according
to whether the path to find is elementary (cannot repeat vertices) or non-
elementary. Indeed, PAFT can be solved in polynomial time [8] for the non-
elementary case while finding an elementary path avoiding forbidden transitions
has been proved NP-complete in [15]. In this paper, we study the elementary ver-
sion of the PAFT problem in planar graphs and more particularly in grids. Our
interest for planar graphs is motivated by the fact that they are closely related to
road networks. They are also an interesting special case to study while trying to
capture the difficulty of the problem. Furthermore, to the best of our knowledge,
this case has not been addressed before in the literature.

Related work. PAFT is a special case of the problem of finding a path avoiding
forbidden paths (PFP) introduced in [18]. Given a graph G, two vertices s and t,
and a set S of forbidden paths, PFP aims at finding an s-t-path which contains
no path of S as a subpath. When the forbidden paths are composed of exactly
two edges, PFP is equivalent to PAFT. Many papers address the non-elementary
version of PFP, proposing exact polynomial solutions [1,10,18]. The elementary
counterpart has been recently studied in [13] where a mathematical formulation
is given and two solution approaches are developed and tested. The computa-
tional complexity of the elementary PFP can be deduced from the complexity
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of PAFT which has been established in [15]. Szeider proved in [15] that finding
an elementary path avoiding forbidden transitions is NP-complete and gave a
complexity classification of the problem according to the types of the forbidden
transitions. The NP-completeness proof in [15] does not extend to planar graphs.

PAFT is also a generalization of the problem of finding a properly colored
path in an edge-colored graph (PEC). Given an edge-colored graph Gc and
two vertices s and t, the PEC problem aims at finding an s-t-path such that
any consecutive two edges have different colors. It is easy to see that PEC is
equivalent to PAFT when the set of forbidden transitions consists of all pairs of
adjacent edges that have the same color. The PEC problem is proved to be NP-
complete in directed graphs [7] which directly implies that the PAFT problem
is NP-complete in directed graphs1.

Contribution. Our main contribution is the proof that the PAFT problem is
NP-complete in grids. We also prove that the problem can be solved in time
O(kΔ2(3kΔ)2kn) in n-node graphs with treewidth at most k and maximum
degree Δ. In other words, we prove that the PAFT problem is FPT in k + Δ.
Our NP-completeness result strengthens the one of Szeider [15] established in
2003 and extends to the problem of PFP.

The paper is organized as follows. The problem of PAFT is formally stated
in Sect. 2. In Sect. 3, the problem is proven NP-complete in grids. A polynomial
time algorithm for graphs with bounded treewidth is presented in Sect. 4. Finally,
some directions for future work are presented in Sect. 5

2 Problem Statement

Let G = (V,E) be a graph. Given a subgraph H of G, a transition in H is a
(not ordered) set of two distinct edges of H incident to a same vertex. Namely,
{e, f} is a transition if e, f ∈ E(H), e �= f and e ∩ f �= ∅. Let T denote the set
of all transitions in G. Let F ⊆ T be a set of forbidden transitions. A transition
in A = T \ F is said allowed. A path is any sequence (v0, v1, · · · , vr) of vertices
such that vi �= vj for any 0 ≤ i < j ≤ r and ei = {vi, vi+1} ∈ E for any
0 ≤ i < r. Given two vertices s and t in G, a path P = (v0, v1, · · · , vr) is called
an s-t-path if v0 = s and vr = t. Finally, a path P = (v0, v1, · · · , vr) is F-valid if
any transition in P is allowed, i.e., {ei, ei+1} /∈ F for any 0 ≤ i < r.

Problem 1 (Problem of Finding a Path Avoiding Forbidden Transitions, PAFT).
Given a graph G = (V,E), a set F of forbidden transitions and two vertices
s, t ∈ V . Is there an F-valid s-t-path in G?

1 Note that, in [7], the authors state that their result can be extended to planar
graphs. However, there is a mistake in the proof of the corresponding Corollary 7:
to make their graph planar, vertices are added when edges intersect. Unfortunately,
this transformation does not preserve the fact that the path is elementary.
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3 NP-completeness in Grids

We start by proving that the PAFT problem is NP-complete in grids. We first
prove that it is NP-complete in planar graphs with maximum degree at most 8 by
a reduction from 3-SAT. Then, we propose simple transformations to reduce the
maximum degree and prove that the PAFT problem is NP-complete in planar
graphs with degree at most 4. Finally, we prove it is NP-complete in grids.

Lemma 1. The PAFT problem is NP-complete in planar graphs with maximum
degree 8.

sij xij yij zij tij

falseijtrueij

true′
ij false′

ij

αij

βij

γij

δij

BTij

RTij

BFij

RFij

Fig. 1. Example of the gadget-graph Gij for variable vi, and j ≤ m. Brown (resp.
green) edge is added if vi appears positively (resp., negatively) in Cj . If vi /∈ Cj , none
of the green nor brown edge appear. (Color figure online)

Proof. The problem is clearly in NP. We prove the hardness using a reduction
from the 3-SAT problem. Let Φ be an instance of 3-SAT, i.e., Φ is a boolean for-
mula with variables {v1, · · · , vn} and clauses {C1, · · · , Cm}. We build a grid-like
planar graph G where rows correspond to clauses and columns correspond to
variables. In what follows, the colors are only used to make the presentation eas-
ier. Moreover, we consider undirected graphs but, since the forbidden transitions
can simulate orientations, the figures are depicted with directed arcs for ease of
presentation. Please note also that we use a multigraph in the reduction for the
sake of simplicity. This multigraph can easily be transformed into a simple graph
without changing the maximum degree.

Gadget Gij. For any i ≤ n and j ≤ m, we define the gadget Gij depicted in
Fig. 1 and that consists of 4 edge-disjoint paths from sij to tij : two “blue” paths
BTij and BFij , and two “red” paths RTij and RFij defined as follows.

– RTij = (sij , αij , trueij , xij , true′
ij , yij , zij , tij);

– BTij = (sij , βij , trueij , xij , true′
ij , yij , zij , tij);

– RFij = (sij , xij , yij , γij , falseij , zij , false′
ij , tij);

– BFij = (sij , xij , yij , δij , falseij , zij , false′
ij , tij).
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The forbidden transitions Fij of the gadget Gij are defined in such a way
that the only way to go from sij to tij is by following one of the paths in
{BTij ,BFij ,RTij ,RFij}. It is forbidden to use any transition consisting of two
edges from two different paths of the set {BTij ,BFij ,RTij ,RFij}.

Intuitively, assigning the variable vi to True will be equivalent to choosing
one of the paths BTij or RTij (called positive paths) depicted with full lines in
Fig. 1. Respectively, assigning vi to False will correspond to choosing one of the
paths BFij or RFij (called negative paths) and depicted by dotted line in Fig. 1.

So far, it is a priori not possible to start from sij by one path and arrive
in tij by another path. In particular, the color by which sij is left must be
the same by which tij is reached. If Variable vi appears in Clause Cj , we add
one edge to Gij as follows. If vi appears positively in Cj , we add the brown
edge {αij , βij} that creates a “bridge” between BTij and RTij . Similarly, if vi

appears negatively in Cj , we add the green edge {γij , δij} that creates a “bridge”
between BFij and RFij . When the gadget Gij contains a brown (resp. green)
edge, all the transitions containing the brown (resp. green) edge are allowed;
this makes it possible to switch between the positive (resp. negative) paths BTij

and RTij (resp. BFij and RFij) when going from sij to tij . Hence, if vi appears
in Cj , it will be possible to start from sij with one color and arrive to tij with
a different one. Note that, the type of path (positive or negative) cannot be
modified between sij and tij .

The following easy claims characterize the Fij-valid sij-tij-paths in Gij .

Claim 1. The Fij-valid sij-tij-paths in Gij are RTij ,BTij ,RFij ,BFij and

– if variable vi appears positively in Clause Cj:
• the path RBTij that starts with the first edge {sij , αij} of RTij, then uses

brown edge {αij , βij} and ends with all edges of BTij but the first one;
• the path BRTij that starts with the first edge {sij , βij} of BTij, then uses

brown edge {αij , βij} and ends with all edges of RTij but the first one;
– if variable vi appears negatively in Clause Cj:

• the path RBFij that starts with the subpath (sij , xij , yij , γij) of RFij, then
uses green edge {γij , δij} and ends with the subpath of BFij that starts at
δij and ends at tij;

• the path BRFij that starts with the subpath (sij , xij , yij , δij) of BFij, then
uses green edge {δij , γij} and ends with the subpath of RFij that starts at
γij and ends at tij;

Claim 2. Let P be a Fij-valid sijtij-paths in Gij. Then, either

– P passes through trueij and true′
ij and does not pass through falseij nor

false′
ij, or

– P passes through falseij and false′
ij and does not pass through trueij nor

true′
ij.

Claim 3. Let P be a Fij-valid sijtij-paths in Gij. Then the first and last edges
of P have different colors if and only if P uses a green or a brown edge, i.e., if
P ∈ {RBTij ,BRTij ,RBFij ,BRFij}.
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Clause-graph Gj. For any j ≤ m, the Clause-gadget Gj is built by combining
the graphs Gij , i ≤ n, in a “line” (see Fig. 2). The subgraphs Gij are combined
from “left to right” (for i = 1 to n) if j is odd and from “right to left” (for i = n
to 1) otherwise. In more details, for any j ≤ m, Gj is obtained from a copy of
each gadget Gij , 1 ≤ i ≤ n, and two additional vertices sj and tj as follows:

– If j is odd, the subgraph Gj starts with a red edge {sj , s1j} and then, for
1 < i ≤ n, the vertices sij and ti−1,j are identified. Finally, there is a blue
edge from tnj to vertex tj .

– If j is even, the subgraph Gj starts with a blue edge {sj , snj} and then, for
1 < i ≤ n, the vertices tij and si−1,j are identified. Finally, there is a red edge
from t1j to vertex tj .

The forbidden transitions Fj include, besides all transitions in Fij , i =
1, . . . , n, new transitions which are defined such that, when passing from a gad-
get Gij to the next one, the same color must be used. This means that if we
enter a vertex tij = si,j+1 by an edge with a given color, the same color must
be used to leave this vertex. However, in such vertices, we can change the type
(positive or negative) of path.

Note that if we enter a Clause-graph with a red (resp. blue) edge, we can
only leave it with a blue (resp. red) edge. This means that a path must change
its color inside the Clause-graph, and must hence use a brown or green edge
in some gadget-graph. The use of a brown (resp. green) forces a variable that
appears positively (resp. negatively) in the clause to be set to true (resp. false)
and validates the Clause.

The key property of Gj relates to the structure of Fj-valid paths from sj

to tj , which we summarize in Claims 4 and 5.

Claim 4. Any Fj-valid path P from sj to tj in Gj consists of the concatena-
tion of:

Case j odd. the red edge {sj , s1j}, then the concatenation of Fij-valid paths
from sij to tij in Gij, for 1 ≤ i ≤ n in this order (from i = 1 to n), and
finally the blue edge {tnj , tj};

Case j even. the blue edge {sj , snj}, then the concatenation of Fij-valid paths
from sij to tij in Gij, for 1 ≤ i ≤ n in the reverse order (from i = n to 1),
and finally the red edge {t1j , tj}.

By the previous claim, for any Fj-valid path P from sj to tj , the colors of the
first and last edges differ. Hence, by Claim 3 and the definition of the allowed
transitions between two gadgets:

Claim 5. Any Fj-valid path P from sj to tj must use a green or a brown edge
in a gadget Gij for some 1 ≤ i ≤ n.
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t3j
t2j

v1 negative in Cj

assigned to True
v2 positive in Cj

assigned to True

v3 not appearing in Cj

assigned to False
v4 positive in Cj

assigned to True

s1j t1j t4j

sj

tj

Fig. 2. Case j odd. Clause-graph Gj for a clause Cj = v̄1 ∨ v2 ∨ v4 in a formula with
4 variables. The bold path corresponds to an assignment of v1, v2 and v4 to True, and
of v3 to False (Color figure online)

Main graph. To conclude, we have to be sure that the assignment of the
variables is coherent between the clauses. For this purpose, let us combine the
subgraphs Gj , j ≤ m, as follows (see Fig. 3). First, for any 1 ≤ j < m, let
us identify tj and sj+1. Then, some vertices (depicted in grey in Fig. 3) of Gij

are identified with vertices of Gi,j+1 in such a way that using a positive (resp.,
negative) path in Gij forces the use of the same type of path in Gi,j+1. That
is, the choice of the path used in Gij is transferred to Gi,j+1 and therefore it
corresponds to a truth assignment for Variable vi.

Namely, for each 1 ≤ j < m and for each 1 ≤ i ≤ n, we identify the vertices
truei,j+1 and false′

ij on the one hand, and the vertices true′
ij and falsei,j+1 on

the other hand to obtain the “grey” vertices. Finally, forbidden transitions F of
G, include, besides all transitions in Fj for j = 1, . . . ,m, new transitions which
are defined in order to forbid “crossing” a grey vertex, i.e., it is not possible to
go from Gi,j to Gi,j+1 via a grey vertex. The following claims present the key
properties of an F-valid path in G.

Claim 6. Any F-valid path P from s1 to tm in G consists of the concatenation
of Fj-valid paths from sj to tj in Gj from j = 1 to m.

Claim 7. Let P be an F-valid s1tm-path in G. Then, for any 1 ≤ i ≤ n, either

– for any 1 ≤ j ≤ m, the subpath of P between sij and tij passes through trueij

and true′
ij and does not pass through falseij nor false′

ij, or

sj

s1j
t1j t2j t3j t4j

tj = sj+1

s4,j+1t4,j+1

t3,j+1
t2,j+1

t1,j+1

tj+1

Fig. 3. Combining Cj = v̄1 ∨ v2 ∨ v4 and Cj+1 = v2 ∨ v̄3 ∨ v̄4 (Case j odd). (Color
figure online)
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– for any 1 ≤ j ≤ m, the subpath of P between sij and tij passes through falseij

and false′
ij and does not pass through trueij nor true′

ij.

Proof. By Claims 4 and 6, for any 1 ≤ i ≤ n and any 1 ≤ j ≤ m, there is a
subpath Pij of P that goes from sij to tij . Moreover, the paths Pij are pairwise
vertex-disjoint.

For 1 ≤ i ≤ n, by Claim 2, Pi1 either passes through truei1 and true′
i1, or

through falsei1 and false′
i1. Let us assume that we are in the first case (the

second case can be handled symmetrically). We prove by induction on j ≤ m
that Pij passes through trueij and true′

ij and does not pass through falseij nor
false′

ij .
Indeed, if P passes through trueij = false′

i,j+1 and true′
ij = falsei,j+1,

then Pi,j+1 cannot use falsei,j+1 nor false′
i,j+1 since Pij and Pi,j+1 are vertex-

disjoint. By Claim 2, Pi,j+1 passes through truei,j+1 and true′
i,j+1. �	

Note that (G,F) can be constructed in polynomial-time. Moreover, G is
clearly planar with maximum degree 8. Hence, the next claim allows to prove
Lemma 1.

Claim 8. Φ is satisfiable if and only if there is an F-valid s1-tm-path in G.

Proof. Let ϕ be a truth assignment which satisfies Φ. We can build an F-valid
s1-tm-path in G as follows. For each row 1 ≤ j ≤ m, we build a path Pj from
si to tj by concatenating the paths Pij , 1 ≤ j ≤ m, which are built as follows.
Among the variables that appear in Cj , let vk be the variable with the smallest
index, which satisfies the clause.

– For 1 ≤ i < k, if ϕ(vi) = true, then Pij = RTij if j is odd and Pij = BTij

if j is even, respectively. If ϕ(vi) = false, then Pij = RFij if j is odd, and
Pij = BFij if j is even.

– If ϕ(vk) = true, then Pij = RBTij if j is odd, and Pij = BRTij if j is even. If
ϕ(vk) = false, then Pij = RBFij if j is odd, and Pij = BRFij if j is even.

– For k < i ≤ n, if ϕ(vi) = true, then Pij = BTij if j is odd, and Pij = RTij

if j is even. If ϕ(vi) = false, then Pij = BFij if j is odd, and Pij = RFij

otherwise.

The path P obtained from the concatenation of paths Pj for 1 ≤ j ≤ m is an
F-valid path from s1 to tm.

Now let us suppose that there is an F-valid path P from s1 to tm. According
to Claim 7, for any 1 ≤ i ≤ n, for any 1 ≤ j ≤ m, P passes through trueij and
true′

ij or for any 1 ≤ j ≤ m, P passes through falseij and false′
ij . Let us then

consider the truth assignment ϕ of Φ such that for each 1 ≤ i ≤ n:

– If P uses trueij and true′
ij in all rows 1 ≤ j ≤ m, then ϕ(vi) = true.

– If P uses falseij and false′
ij in all rows 1 ≤ j ≤ m, then ϕ(vi) = false.

Thanks to Claim 7, ϕ is a valid truth assignment. We need to prove that ϕ
satisfies Φ. According to Claim 6, for each row 1 ≤ j ≤ m, P contains an Fj-
valid path Pj from sj to tj . Each path Pj uses a green or a brown edge as stated
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by Claim 3. With respect to the possible ways to use a green or a brown edge
which are stated in Claim 2, the use of a brown edge in Pj forces Pj (and hence
P ) to use, for a variable vi that appears positively in Cj , the vertices trueij and
true′

ij . Similarly, the use of a green edge in Pj forces Pj (and hence P ) to use,
for a variable vi that appears negatively in Cj , the vertices falseij and false′

ij .
This means that for each clause Cj , for one of the variables that appear in Cj

which we denote vi, ϕ(vi) = true (resp. ϕ(vi) = false) if vi appears positively
(resp. negatively) in Cj . Thus, the truth assignment ϕ satisfies Φ. �	
Lemma 2. The PAFT problem is NP-complete in planar graphs with maximum
degree 4.

Proof. The graph G used in the reduction of the proof of Lemma 1 is planar and
each vertex of G has either degree 8, degree 5 or degree at most 4. Let E be the
planar embedding of G that is obtained by embedding the smaller gadgets as in
Figs. 1, 2 and 3. We transform G into a planar graph G′ with maximum degree
4 and an associated set of forbidden transitions F ′ such that finding an F-valid
path in G is equivalent to finding an F ′-valid path in G′. The transformation
goes as follows.

Vertices of degree 5. The vertices of degree 5 in G are the vertices s1j and tnj

for j odd, and snj and t1j for j even. We transform these to vertices of degree 3
as follows. For j odd, we remove the two blue edges incident to s1j and the two
red edges incident to tnj . For j is even, we remove the two red edges incident
to snj and the two blue edges incident to t1j . The removed edges do not belong
to any allowed transitions around the vertices s1j , tnj , snj and t1j . Therefore,
their removal does not affect the elementary F-valid paths from s1 to tm.

Vertices of degree 8. We replace each vertex v of degree 8 by a gadget gv of
maximum degree 4. Gadget gv is designed such that it can be crossed at most
once by a path of G′ and only if the edges used to enter and leave gv correspond
to an allowed transition around v. According to its corresponding transitions
and to the planar embedding of its adjacent vertices, a vertex v of degree 8 of
G is of one of 3 different types. We present in what follows these types as well
as the corresponding gadget gv for each type.

Type 1: The edges incident to v are E(v) = {e, e′, f, f ′, g, g′, h, h′} and the
allowed transitions around v are A(v) = {{e, e′}, {f, f ′}, {g, g′}, {h, h′}}.
The edges incident to v appear in the planar embedding E as presented
in Fig. 4a. In the graph G, v is one of the vertices xij or zij , 1 ≤ i ≤ n,
1 ≤ j ≤ m.
In this case, gv is built as follows. For each α ∈ E(v), a vertex vα is created.
For each {α, β} ∈ A(v), vertices vα and vβ are linked with a path Pαβ of
length four. The four paths Pαβ , {α, β} ∈ A(v) are pairwise intersecting in
distinct vertices as illustrated in Fig. 4b. The allowed transitions in gv are
the transitions of the paths Pαβ , {α, β} ∈ A(v). Now to replace v with gv
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Fig. 4. Type 1

in G, each edge α ∈ E(v) of G is linked to vertex vα of gv. The gadget gv

is planar, and edges α ∈ E(v) are connected to it in the same “order” they
are connected to v in the planar embedding E of G as illustrated in Fig. 4.
Note the gadget gv cannot be crossed twice with the same path, i.e., no
path has two subpaths in gv, otherwise the path is not simple. Moreover,
gv can be crossed if and only if the edges used to enter and leave form an
allowed transition around v.

Type 2: The edges incident to v are E(v) = {e, e′, f, f ′, g, g′, h, h′} and the
allowed transitions around v are A(v) = {{e, e′}, {f, f ′}, {g, g′}, {h, h′}}.
The edges incident to v appear in the planar embedding E as presented
in Fig. 5a. In the graph G, v is one of the vertices trueij , true′

ij , falseij ,
false′

ij , or yij , 1 ≤ i ≤ n, 1 ≤ j ≤ m.
In this case, gv is built as follows. For each α ∈ E(v), a vertex vα is created.
For each {α, β} ∈ A(v), vertices vα and vβ are linked with a path Pαβ of
length 7. Each two of the four paths Pαβ , {α, β} ∈ A(v) intersect in two
different vertices as illustrated in Fig. 5b. The allowed transitions in gv are
the transitions of the paths Pαβ , {α, β} ∈ A(v). Now to replace v with gv

in G, each edge α ∈ E(v) of G is linked to vertex vα of gv. The gadget gv

is planar, and edges α ∈ E(v) are connected to it in the same “order” they
were connected to v in the planar embedding E of G as illustrated in Fig. 5.
Note that the gadget gv cannot be crossed twice with the same path, i.e.,
no path has two subpaths in gv, otherwise the path is not simple. Moreover,
gv can be crossed if and only if the edges used to enter and leave form an
allowed transition around v.

Type 3: The edges incident to v are E(v) = {e, e′, f, f ′, g, g′, h, h′} and the
allowed transitions around v are A(v) = {{e, e′}, {e, g′}, {f, f ′}, {f, h′},
{g, g′}, {g, e′}, {h, h′}, {h, f ′}}. The edges incident to v appear in the planar
embedding E as depicted in Fig. 6a. In the graph G, v is one of the vertices
sij , 1 ≤ i ≤ n, 1 ≤ j ≤ m.
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Fig. 5. Type 2

In this case, gv is built as follows. Let A1(v) = {{e, e′}, {f, f ′}, {g, g′},
{h, h′}}. For each {α, β} ∈ A1(v), vertices vα and vβ are linked with a
path Pαβ of length 6. Each two of the paths Pαβ intersect in one or two
vertices as illustrated in Fig. 6b. Furthermore, we add two edges linking the
paths Pee′ and Pgg′ , and Pff ′ and Phh′ , respectively, depicted by orange
edges in Fig. 6b. Now to replace v with gv in G, each edge α ∈ E(v) of G is
linked to vertex vα of gv. The gadget gv is planar, and edges i ∈ E(v) are
connected to it in the same “order” they were connected to v in the planar
embedding E of G as illustrated in Fig. 6.
For {α, β} ∈ A(v) \ A1(v), let α′ and β′ be the vertices such that
{α, α′}, {β, β′} ∈ A1(v). We define the path Pαβ , as the path which starts

Fig. 6. Type 3 (Color figure online)
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at vα, uses a subpath of Pαα′ , an orange edge and then a subpath of Pββ′

and then ends at vr.
Note that the gadget gv cannot be crossed twice with the same path, i.e.,
no path has two subpaths in gv, otherwise the path is not simple. Moreover,
gv can be crossed if and only if the edges used to enter and leave form an
allowed transition around v.

The graph G′ obtained from G after applying the transformations described
above is planar and has maximum degree 4. The set of forbidden transitions
F ′ consists of the transitions of the set F and the forbidden transitions of the
gadgets gv as described above.

Let us now suppose that there is an F-valid path P from s to t in G. Let
P ′ be the s-t-path of G′ constructed as follows: P ′ uses all edges used by P .
Furthermore, if P uses a degree 8 vertex with a transition {e, e′} then P ′ uses e,
subpath Pee′ , and e′. The path P ′ is F ′-valid.

Now, let us suppose that there is an F ′-valid path P ′ from s to t in G′. If
P ′ only uses edges from G, then it can be considered as an F-valid path from
s to t in G. If P ′ uses an edge that is not in G, then P ′ crosses one of the
gadgets gv. Gadgets gv are designed such that they can be crossed at most once
by a path because otherwise the path is not simple, furthermore, the edges used
to enter and leave the gadget form an allowed transition in G. This implies that
the intersection of each gadget gv with the path P ′ is either the empty set or
exactly one subpath of P ′. If it is a subpath then the edges surrounding it in P ′

form an allowed transition in G. We can then remove the edges of P ′ that do
not belong to G to obtain an F-valid path P in G.

Theorem 1. The problem of finding a path avoiding forbidden transitions is
NP-complete in grids.

Proof. To prove the theorem we use the notion of planar grid embedding [16].
A planar grid embedding of a graph G is a mapping Q of G into a grid such
that Q maps each vertex of G into a distinct vertex of the grid and each edge
e of G into a path of the grid Q(e) whose endpoints are mappings of vertices
linked by e. For every pair {e, e′} of edges of G, the corresponding paths Q(e)
and Q(e′) have no points in common, except, possibly, the endpoints. It has
been proved in [17], that if G = (V,E) is a planar graph such that |V | = n and
Δ ≤ 4, then a planar grid embedding of G in a grid of size at most 9n2 can be
found in polynomial-time. Let us consider an instance of the problem of finding
a path avoiding forbidden transitions in a planar graph G = (V,E) of maximum
degree at most 4 with a set of allowed transitions A (A = E × E \ F). Let Q be
a grid planar embedding of G into a grid K of size at most O(|V |2). Finding a
PAFT between two nodes s and t in G with the set A is equivalent to finding a
PAFT between the nodes Q(s) and Q(t) in K with the set of allowed transitions
A′ defined such that for each e ∈ E, all the transitions in the path Q(e) are
allowed, and for each {e, e′} ∈ A, the pair of edges of Q(e) and Q(e′), which
share a vertex, is an allowed transition. �	
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4 Parameterized Complexity

On the positive side, by using dynamic programming on a tree-decomposition of
the input graph, we prove that the problem is FPT when the parameter is the
sum of the treewidth and the maximum degree.

A tree-decomposition of a graph [14] is a way to represent G by a family
of subsets of its vertex-set organized in a tree-like manner and satisfying some
connectivity property. The treewidth of G measures the proximity of G to a
tree. More formally, a tree decomposition of G = (V,E) is a pair (T,X ) where
X = {Xt|t ∈ V (T )} is a family of subsets, called bags, of V , and T is a tree,
such that:

1.
⋃

t∈V (T ) Xt = V , and
2. for any edge uv ∈ E, there is a bag Xt (for some node t ∈ V (T )) containing

both u and v, and
3. for any vertex v ∈ V , the set {t ∈ V (T )|v ∈ Xt} induces a subtree of T .

The width of a tree-decomposition (T,X ) is maxt∈V (T )|Xt| − 1 and its size is
order |V (T )| of T . The treewidth of G, denoted by tw(G), is the minimum width
over all possible tree-decompositions of G.

Theorem 2 proves that when the treewidth of the graph is bounded, the
PAFT can be solved in polynomial time. Complete proof of the theorem can be
found in [12].

Theorem 2. The PAFT Problem is FPT when parameterized by k + Δ where
k is the treewidth and Δ is the maximum degree. In particular, given a tree-
decomposition of width k of the input graph, PAFT can be solved in time
O(kΔ2(3kΔ)2kn).

The Algorithm uses dynamic programming techniques and its key idea is
similar to the one used to find a Hamiltonian cycle in graphs with bounded
treewidth [3].

In more details, let G = (V,E) be a graph with bounded treewidth k, F
a set of forbidden transitions, and s and t two vertices of V . Let (T,X ) be a
tree-decomposition of width k of G rooted in an arbitrary node. Let G[A] be the
subgraph of G induced by the set of vertices A. For each u ∈ V (T ), we denote
by Xu,Tu and Vu the set of vertices of the bag corresponding to u, the subtree
of T rooted at u, and the set of vertices of the bags corresponding to the nodes
of Tu, respectively.

If there exists an F-valid path P from s to t, then the intersection of this path
with G[Vu] for a node u ∈ T consists of a set of paths avoiding forbidden transitions
each having both endpoints in Xu. If t ∈ Vu, then one of the paths has only one
endpoint in Xu. With respect to the parts of path P that are in G[Vu], vertices in
Xu can be partitioned into three subsets X0

u, X1
u, and X2

u which are the vertices
of degree 0, 1 and 2 in P ∩ G[Vu], respectively. Furthermore, a matching M of
X1

u decides which vertices are endpoints of the same subpath and a set of edges
S defines which edges incident to X1

u are in P . For each node u ∈ T and each
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subproblem (X0
u,X1

u,X2
u,M, S) where (X0

u,X1
u,X2

u) is a partition of Xu, M is a
matching of X1

u and S is a set of edges incident to the vertices of X1
u, we need to

check if there exists a set of paths avoiding forbidden transitions in Vu such that
their endpoints are exactly X1

u according to the matching M , they contain the
edges of S and the vertices of X2

u and they do not contain any vertex of X0
u. For

each node, we will need to solve at most 3k+1kkΔk subproblems; there are at most
3k+1 possible partitions of the vertices of Xu into the 3 different sets, kk possible
matchings for a set of k elements and Δ possible edges for each element of X1

u.

Complexity for planar graphs. The complexity of many dynamic program-
ming algorithms on graphs with bounded treewidth can be improved for planar
graphs using their planarity and properties. A speedup can usually be achieved,
by using instead of the classical tree-decompositions, new decompositions that
have been defined for planar graphs such as the sphere cut branch decomposi-
tion [6] and the geometric tree-decomposition [5]. In particular, these techniques
have been used to improve the complexity of the algorithm which solves the
Hamiltonian cycle problem in planar graphs from O((3k)k) to O(6k), where k is
the treewidth. This is primarily due to the fact that the number of matchings
to consider in such special tree-decompositions is bounded by 2k+1 as proved
in [6]. This is roughly due to the fact that, in these special tree-decompositions,
the vertices of a bag form a Jordan curve. This curve does not intersect with
the curves corresponding to the edges of the planar embedding of the graph.
Since in the matching we need to define, two matched vertices correspond to the
endpoints of a subpath and the subpaths cannot cross each other, the number of
valid matchings is bounded by a Catalan number. Taking this into consideration,
our algorithm can run in time O(kΔ2(6Δ)2kn)) for planar graphs.

5 Conclusion

We have proven that the problem of finding a path avoiding forbidden tran-
sitions is NP-complete even in well-structured graphs as grids. We have also
proved that PAFT can be solved in polynomial time when the treewidth is
bounded. We believe that the PAFT is actually W [1]-hard when parameterized
by the treewidth. Future work might focus on proving this conjecture. Another
interesting direction in the study of PAFT could be to consider the optimization
problem where the objective is to find a path with minimum number of forbidden
transitions and to investigate possible approximation solutions.
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Abstract. In 2-neighborhood bootstrap percolation on a graph G, an
infection spreads according to the following deterministic rule: infected
vertices of G remain infected forever and in consecutive rounds healthy
vertices with at least two already infected neighbors become infected.
Percolation occurs if eventually every vertex is infected. The maximum
time t(G) is the maximum number of rounds needed to eventually infect
the entire vertex set. In 2013, it was proved by Benevides et al. [10] that
t(G) is NP-hard for planar graphs and that deciding whether t(G) ≥ k is
polynomial time solvable for k ≤ 2, but is NP-complete for k ≥ 4. They
left two open problems about the complexity for k = 3 and for planar
bipartite graphs. In 2014, we solved the first problem [24]. In this paper,
we solve the second one by proving that t(G) is NP-complete even in grid
graphs with maximum degree 3. We also prove that t(G) is polynomial
time solvable for solid grid graphs with maximum degree 3. Moreover,
we prove that the percolation time problem is fixed parameter tractable
with respect to the parameter treewidth + k and maximum degree + k.
Finally, we obtain polynomial time algorithms for several graphs with
few P4’s, as cographs and P4-sparse graphs.

Keywords: 2-Neighbor bootstrap percolation · Maximum percolation
time · Grid graph · Fixed parameter tractability · Treewidth

1 Introduction

We consider a problem in which an infection spreads over the vertices of a con-
nected simple graph G following a deterministic spreading rule in such a way
that an infected vertex will remain infected forever. Given a set S ⊆ V (G) of
initially infected vertices, we build a sequence S0, S1, S2, . . . in which S0 = S and
Si+1 is obtained from Si using such spreading rule.

Under r-neighbor bootstrap percolation on a graph G, the spreading rule is
a threshold rule in which Si+1 is obtained from Si by adding to it the vertices of
G which have at least r neighbors in Si. We say that a set S infects a vertex v at
time i if v ∈ Si\Si−1. Let, for any set of vertices S and vertex v of G, tr(G,S, v)
be the minimum t such that v belongs to St or, if there is no t such that v
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belongs to St, then tr(G,S, v) = ∞. Also, we say that a set S0 infects G, or that
S0 is a percolating set of G, if eventually every vertex of G becomes infected,
that is, there exists a t such that St = V (G). If S is a percolating set of G,
then we define tr(G,S) as the minimum t such that St = V (G). Also, define the
percolation time of G as tr(G) = max{tr(G,S) : S is a percolating set of G}. In
this paper, we shall focus on the case where r = 2 and in such case we omit the
subscript of the notations tr(G,S) and tr(G). Also, from the notation t(G,S),
when the parameter G is clear from context, it will be omitted.

Bootstrap percolation was introduced by Chalupa, Leath and Reich [15] as a
model for certain interacting particle systems in physics. Since then it has found
applications in clustering phenomena, sandpiles [20], and many other areas of
statistical physics, as well as in neural networks [1] and computer science [19].

There are two broad classes of questions one can ask about bootstrap per-
colation. The first, and the most extensively studied, is what happens when the
initial configuration S0 is chosen randomly under some probability distribution?
For example, vertices are included in S0 independently with some fixed proba-
bility p. One would like to know how likely percolation is to occur, and if it does
occur, how long it takes. The answer to these questions is now well understood
for various types of graphs [5,7,8,13,22].

The second broad class of questions is the one of extremal questions. For
example, what is the smallest or largest size of a percolating set with a given
property? The size of the smallest percolating set in the d-dimensional grid, [n]d,
was studied by Pete and a summary can be found in [6]. Morris [25] and Riedl
[28] studied the maximum size of minimal percolating sets on the square grid [n]2

and the hypercube {0, 1}d, respectively, answering a question posed by Bollobás.
However, the problem of finding the smallest percolating set is NP-hard even on
subgraphs of the square grid [2] and it is APX-hard even for bipartite graphs
with maximum degree four [17]. Moreover, it is hard [16] to approximate within
a ratio O(2log

1−ε n), for any ε > 0, unless NP ⊆ DTIME(npolylog(n)).
Another type of question is: what is the minimum or maximum time that per-

colation can take, given that S0 satisfies certain properties? Recently, Przykucki
[27] determined the precise value of the maximum percolation time on the hyper-
cube 2[n] as a function of n, and Benevides and Przykucki [11,12] have similar
results for the square grid [n]2, also answering a question posed by Bollobás.
In particular, they have a polynomial time dynamic programming algorithm to
compute the maximum percolation time on rectangular grids [11].

Here, we consider the decision version of the Percolation Time Problem, as
stated below.

Percolation Time

Input: A graph G and an integer k.
Question: Is t(G) ≥ k?

In 2013, Benevides et al. [10], among other results, proved that the Percola-
tion Time Problem is polynomial time solvable for k ≤ 2, but is NP-complete
for k ≥ 4 and, when restricted to bipartite graphs, it is NP-complete for k ≥ 7.
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Moreover, it was proved that the Percolation Time Problem is NP-complete for
planar graphs. They left three open questions about the complexity for k = 3
in general graphs, the complexity for 3 ≤ k ≤ 6 in bipartite graphs and the
complexity for planar bipartite graphs.

In 2014, the first and the second questions were solved [24]: it was proved
that the Percolation Time Problem is O(mn5)-time solvable for k = 3 in general
graphs and, when restricted to bipartite graphs, it is O(mn3)-time solvable for
k = 3, it is O(m2n9)-time solvable for k = 4 and it is NP-complete for k ≥ 5.

In this paper, we solve the third question of [10]. We prove that the Per-
colation Time Problem is NP-complete for planar bipartite graphs. In fact, we
prove a stronger result: the NP-completeness for grid graphs, which are induced
subgraphs of grids, with maximum degree 3.

There are NP-hard problems in grid graphs which are polynomial time solv-
able for solid grid graphs. For example, the Hamiltonian cycle problem is NP-
complete for grid graphs [23], but it is polynomial time solvable for solid grid
graphs [30]. Motivated by the work of [11] for rectangular grids, we obtain in this
paper a polynomial time algorithm for solid grid graphs with maximum degree 3.

Finally, we prove several complexity results for t(G) in graphs with bounded
maximum degree and bounded treewidth, some of which implies fixed para-
meter tractable algorithms for the Percolation Time Problem. Moreover, we
obtain polynomial time algorithms for (q, q − 4)-graphs, for any fixed q, which
are the graphs such that every subset of at most q vertices induces at most
q − 4 P4’s. Cographs and P4-sparse graphs are exactly the (4, 0)-graphs and the
(5, 1)-graphs, respectively. These algorithms are fixed parameter tractable on the
parameter q.

2 Percolation Time Problem in Grid Graphs with Δ = 3

In this section, we prove that the Percolation Time Problem is NP-complete in
grid graphs with maximum degree Δ = 3. We also show that, when the graph is
a grid graph with Δ = 3 and k = O(log n), the Percolation Time Problem can
be solved in polynomial time. But, first, let us define a S-infection path and,
then, prove two lemmas that will be useful in the proofs.

Let t(G,S, v) be the time where S infects v in G or, if S does not infect v in G,
then let t(G,S, v) = ∞. Let S be a percolating set. A path P = v0, v1, . . . , vn

is a {S,G}-infection path if and only if, for all 0 ≤ i ≤ n − 1, t(G,S, vi) <
t(G,S, vi+1). In both notations, when the parameter G is clear from context, it
will be omitted

Note that if t(G,S, v) = k then there is a {S,G}-infection path v1, . . . , vk = v,
where each vertex vi is such that t(G,S, vi) = i. The next lemma, which is valid
for every graph with maximum degree 3, is the main technical lemma of this
section. Due to space restrictions, its proof will be omitted.

Lemma 1. Let G be any connected graph with Δ = 3 and k a non-negative
integer. Then, t(G) ≥ k if and only if G has an induced path P where either all
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vertices in V (P ) have degree 3 and |E(P )| ≥ 2k − 2 or all vertices in V (P ) have
degree 3, except for one of his extremities, which has degree 2, and |E(P )| ≥ k−1.

Before proving the NP-completeness result of this section, we use Lemma 1
to show that the Percolation Time Problem is polynomial time solvable for
k = O(log n) when the graph has maximum degree 3.

Theorem 1. If G is a graph with maximum degree 3, then deciding whether
t(G) ≥ k can be done in polynomial time for k = O(log n).

Proof (sketch of the proof). We can decide whether t(G) ≥ k by making use of a
modified version of the depth-first search. This version of the depth-first search
with maximum search depth l traverses all paths with l + 1 vertices starting
from some vertex v. For each v ∈ V (G), we will run this version of the depth-
first search starting in v. If d(v) = 2, we run the modified depth-first search
with maximum search depth k − 1. If d(v) = 3, we run the modified depth-first
search with maximum search depth 2k − 2. If there is a vertex v such that the
depth-first search that starts in v finds a path that is an induced path, reaches
the maximum depth and passes only by vertices of degree 3, except maybe for
v, then, by Lemma 1, t(G) ≥ k. Otherwise, t(G) < k.

Now, let us show that this algorithm runs in polynomial time. For each vertex
v in G, there is at most 3 ·2k−2 paths of length k in G that starts in v, for any k.
In this case, since k = O(log n), there are at most 3 · 2O(log n) = 3nO(1) paths of
length k in G that starts in v, which is a polynomial on n. Therefore, since the
depth-first search traverses all paths with length equals to the maximum depth
once for each vertex in V (G), then our algorithm runs in time O(n · 2k), which
is polynomial in n since k = O(log n). �

Thus, if k = O(log n), we can find whether t(G) ≥ k in polynomial time for
every graph G with Δ(G) = 3. However, the following theorem states that the
Percolation Time Problem is NP-complete, even when G is restricted to be a
grid graph with Δ = 3.

Theorem 2. Deciding whether t(G) ≥ k is NP-complete when the input G is
restricted to be a grid graph with Δ(G) ≤ 3.

Proof (sketch of the proof). Clearly, the problem is in NP. To prove that the
problem is also NP-hard, we obtained a reduction from the Longest Path problem
with input restricted to be grid graphs with maximum degree 3. The Longest
Path problem with input restricted to be grid graphs with maximum degree 3
is a NP-complete problem because the Hamiltonian Path Problem with input
restricted to be grid graphs with maximum degree 3 is also NP-complete [26] and
there is a trivial reduction from the Hamiltonian Path Problem to the Longest
Path problem that does not change the input graph: G has an Hamiltonian Path
if and only if G has a path greater or equal to n − 1.

Consider the following reduction from the Longest Path Problem’s instance
(G, k) where G is restricted to be a grid graph with maximum degree 3 to the
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Fig. 1. Grid graph with Δ = 3

Percolation Time Problem’s instance (G′, 3k + 2) where G′ is also a grid graph
with maximum degree 3: Multiply the scale of the grid G by three. Each edge in
G becomes a path in G′ with 4 vertices where the vertices at the extremities are
vertices that were originally in G. Let us call an original vertex the vertices in
G′ that were originally in G. After that, for each original vertex v, if d(v) < 3,
add to G′ 3 − d(v) vertices in any free position in the grid adjacent to v and
link them to v. Thus, after we do that, each original vertex has degree 3 in G′.
Henceforth, if a vertex in G′ is not an original vertex at this point, then we will
call it an auxiliary vertex. Note that each auxiliary vertex is adjacent to exactly
one original vertex and each original vertex is adjacent to 3 auxiliary vertices.

After that, for each auxiliary vertex v, add a new vertex adjacent to v in the
following manner: if the original neighbor of v is located above it, add a vertex
adjacent to v at his left position, if there is not one there already, and link it
to v. If the original neighbor of v is located below it, add a vertex adjacent to
v at his right position, if there is not one there already, and link it to v. If the
original neighbor of v is located at his left position, add a vertex adjacent to v
at the position below it, if there is not one there already, and link it to v. If the
original neighbor of v is located at his right position, add a vertex adjacent to v
at the position above it, if there is not one there already, and link it to v. The
Fig. 2 show how a 4× 4 block will look like in G′ before and after we add these
vertices.

Then, for each auxiliary vertex v, if d(v) = 2, add a new vertex adjacent to
v in the following position: if the original neighbor of v is at the left position of
v, add a vertex adjacent to v at his right position. If the original neighbor of v
is at the right position of v, add a vertex adjacent to v at his left position. If
the original neighbor of v is below v, add a vertex adjacent to v above v. If the
original neighbor of v is above v, add a vertex adjacent to v below v.
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Fig. 2. 4 × 4 block before and after addition of the auxiliary vertices’ neighbors

Thus, the construction of G′ is finished. Since G is a grid graph and, every
time an original vertex and an auxiliary vertex are in adjacent positions in the
grid, they are linked, then G′ is a grid graph.

Note that all original and auxiliary vertices have degree 3 and they are the
only vertices that have degree 3. Let us call corner vertex all the vertices that
have degree 2 in G′. Also, note that, for each corner vertex, there is exactly one
original vertex at distance 2 of it, and, for each original vertex, there is exactly
one corner vertex at distance 2 of it. This happens because each original vertex
has degree exactly three. Let f be the bijective function that maps each original
vertex to the corner vertex that is at distance 2 of it. The Fig. 3 shows the
reduction applied to the grid graph of the Fig. 1. It is worth noting that, in G′, a
path P that has only original and auxiliary vertices and starts with an original
vertex, it has length multiple of 3 if and only if it ends in an original vertex.
Also, for each 3 consecutive vertices of this path, two are auxiliary vertices and
one is an original vertex.

Now, let us prove that G has a path of length ≥ k if and only if t(G′) ≥ 3k+2.
Suppose that G is a grid graph with maximum degree 3 that has a path of

length ≥ k. Let us prove that t(G′) ≥ 3k+2. Since G has a path P of length ≥ k,
we have that G′ has an induced path P of length ≥ 3k that passes by the same
path that P passes, which implies that P passes only by original and auxiliary
vertices. Note that, when an auxiliary vertex is in P , his auxiliary neighbor is
also in P .

Let v and v′ be the extremities of P and f(v′) = q′. Since v is an original
vertex, then let w be any auxiliary neighbor of v that is not in V (P ). Note
that all neighbors of w, except v, are not in V (P ). Let r be the vertex auxiliary
neighbor of v′ that is in P and let P ′ be the induced path that we obtain
from P by adding w, by removing v′ and by adding all vertices in any smallest
path between r and q′, excluding r, that only have vertices not adjacent to w
and passes only by original and auxiliary vertices. Since P is an induced path
and we removed one vertex and added only one induced path that has either
1 or 3 vertices to create P ′, we have that P ′ is an induced path with length
≥ 3k+1 where all of its vertices have degree 3, except for q′, which has degree 2.
Therefore, by Lemma 1, we have that t(G′) ≥ 3k + 2.
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Fig. 3. Grid graph resulting from the reduction applied to the grid graph of the Fig. 1.

Now, suppose that G is a grid graph with maximum degree 3 such that,
when we apply the reduction to G to create G′, we have that t(G′) ≥ 3k + 2.
Let us prove that G has a path of length ≥ k. Since t(G′) ≥ 3k +2, applying the
Lemma 1, we have that G′ has an induced path P where either all vertices in
V (P ) have degree 3 and |E(P )| ≥ 6k + 2 or all vertices in V (P ) have degree 3,
except for one of his extremities, which has degree 2, and |E(P )| ≥ 3k + 1.

Firstly, suppose that G′ has an induced path P where all vertices in V (P )
have degree 3 and |E(P )| ≥ 6k + 2. Since, the only vertices that have degree 3
are the original and auxiliary vertices and for each three consecutive vertices in
P there is one original vertex and two auxiliary vertices, it is easy to see that P
has at least k + 1 original vertices and, thus, there is a path in G of length at
least k.

Finally, suppose that G′ has an induced path P where all vertices in V (P )
have degree 3, except for one of his extremities, which has degree 2, and |E(P )| ≥
3k+1. It is enough to analyze the case |E(P )| = 3k+1 because, if |E(P )| > 3k+1,
any subpath of P of length 3k + 1 that starts at the extremity of P that have
degree 2 is an induced path where all of his vertices have degree 3, except for
one of his extremities, which has degree 2, and has length 3k + 1. So, let us say
that P starts in the vertex that has degree 2. Since the only vertices that have
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degree 2 are corner vertices, then P starts with a corner vertex. Let q be that
corner vertex, let q′ = f−1(q) and let v be the other extremity of P .

Suppose that P passes by q′. Since P is an induced path, then q′ is the third
vertex of P . Since q and q′ are at distance 2 of each other and |E(P )| = 3k + 1,
then v is an auxiliary vertex which his neighbor that is an original vertex, say v′,
is not in P . Let us append v′ to P and remove all vertices between q and q′,
including q and excluding q′. So, since P starts at q′, an original vertex, ends
in v′, another original vertex, and has length 3k, then there is a path in G of
length greater or equal to k.

Now, suppose that P does not pass by q′. Since |E(P )| = 3k + 1, then v is
an auxiliary vertex which his neighbor that is an original vertex, say v′, is in P .
Let us remove q, appending q′ in his place, and v from P . Thus, since P starts
at q′, an original vertex, ends in v′, another original vertex, and has length 3k,
then there is a path in G of length greater or equal to k. �

3 Percolation Time Problem in Solid Grid Graphs
with Δ = 3

A solid grid graph is a grid graph in which all of his bounded faces have area one.
There are NP-hard problems in grid graphs that are polynomial time solvable
for solid grid graphs. For example, the hamiltonian cycle problem is NP-hard for
grid graphs [23], but, in 1997, it was proved that it is polynomial time solvable
for solid grid graphs [30]. Motivated by the work of [11] for rectangular grids,
we obtain in this section a polynomial time algorithm for solid grid graphs with
maximum degree 3. However, the Percolation Time Problem for solid grid graphs
with maximum degree 4 is still open.

Theorem 3. For any solid grid graph G with Δ = 3, t(G) can be found in
O(n2) time.

Proof (sketch of the proof). If a solid grid graph has Δ = 3, then, since it is K1,4-
free, it becomes a graph formed only by ladders Lk, which are grid graphs with
dimensions 2 × k, and by paths, possibly linking these ladders by the vertices in
their extremities. Let the extremities of a ladder be the four vertices that have
only two neighbors in the ladder and let all the other vertices be the vertices
internal to the ladder. In Fig. 4, there is an example of solid grid graph with
Δ = 3.

To find the percolation time of G, according to Lemma 1, it is enough to
find both the longest induced path that starts with a degree 2 vertex and, then,
passes only by vertices with degree 3, and the longest induced path that passes
only by vertices with degree 3. Thus, since all of G’s bounded faces have area
one and, besides the ladders, G is composed only by paths, the only difficulty
to calculate t(G) is to find the longest induced paths in the ladders between
any two extremities that passes only by vertices with degree 3. However, one
can easily calculate the longest induced paths between any two extremities of a
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Fig. 4. A solid grid graph with maximum degree 3.

ladder Lk: if the two extremities are neighbors, the length of the longest induced
paths between them is 1; if the two extremities are at distance k − 1, the length
of the longest induced paths between them is (k − t) + 2 · �(k − t + 1)/4� − 1 + t;
if the two extremities are at distance k, the length of the longest induced paths
between them is (k − t) + 2 · �(k − t − 1)/4� + t, where t is how many of the two
others extremities have degree 2.

So, first, we will transform G in a weighted graph G′ where G′ is the same
graph as G only with all the ladders replaced by weighted K4’s, where the weight
of an edge between two vertices in a K4 represents the length of a longest induced
path between the corresponding extremities of the ladders in G that passes only
by vertices with degree 3. The weight of all the other edges is 1. The Fig. 5
represents the transformation applied in the graph of the Fig. 4. Note that there
is exactly one induced path between any two vertices in G′, which length is equal
to the longest induced path between the same two vertices in G. It is not hard
to see that this transformation from G to G′ can be done in linear time.

In Algorithm 1, let w(u, v) be the weight of the edge (u, v). The algo-
rithm, for each vertex u ∈ V (G′) such that dG(u) ≥ 2, calls the function
LongestInducedPathFrom, which do a Depth-First Search to find the longest
induced path in G′ from u such that the last vertex is the only vertex in the
path that either has degree ≤ 2, besides perhaps the vertex u, or is in the neigh-
borhood of a vertex already in the path, and, then, it subtracts the length of the
found path by one. This is necessary because a longest induced path from some
vertex u in G can end in a vertex v internal to a ladder, but internal vertices of
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Fig. 5. The resulting graph of the transformation applied to the graph in the Fig. 4.

a ladder are not represented in G′. However, if that happens, since all vertices
internal to a ladder have degree 3, then v must be adjacent to some vertex at
the extremity of the ladder that has degree 2.

In any case, the resulting length corresponds to the length of the longest
induced path in G beginning in u, which last vertex has degree 3 and is not in
the neighborhood of any vertex already in the path. Then, it compares all these
values, according to the Lemma 1, to find t(G).

Since there is only one induced path between any two vertices in G′, we
have that the recursive function LongestInducedPathFrom takes the same time
as any Depth-First Search algorithm. Thus, since m = O(n), the Function
LongestInducedPathFrom takes O(n) time. Therefore, the Algorithm 1 takes
O(n2) time. �

4 Percolation Time Problem in Graphs with Bounded
Max Degree Δ ≥ 4

In Sect. 2 (Theorem 1), we proved that the Percolation Time Problem is poly-
nomial time solvable in grid graphs with Δ(G) ≤ 3 for k = O(log n). In this
section, we prove that this not happen for general graphs with fixed maximum
degree Δ ≥ 4, unless P = NP.

Theorem 4. Let Δ ≥ 4 be fixed. Deciding whether t(G) ≥ k is NP-complete for
graphs with bounded maximum degree Δ and any k ≥ logΔ−2 n.
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Algorithm 1. Algorithm that finds t(G) for any solid grid graph G with
Δ = 3
Algorithm MaximumTimeSolidGridΔ3(G)

G′ = Transform(G)
maxPercTime = 0
forall the u ∈ V (G′) such that dG(u) ≥ 2 do

if dG(u) = 2 then
percTimeU = LongestInducedPathFrom(G′, u)+1

else
percTimeU = �(LongestInducedPathFrom(G′, u)+2)/2�

if maxPercTime < percTimeU then
maxPercTime = percTimeU

return maxPercTime

Proof (sketch of the proof). We obtain a reduction from the variation of the
SAT problem where each clause has exactly three literals, each variable appears
in at most four clauses [29].

Given M clauses C = {C1, . . . , CM} on N variables X = {x1, . . . , xN} as an
instance of SAT, we denote the three literals of Ci by �i,1, �i,2 and �i,3. Note,
since any variable can only appear in at most 4 clauses, that N/3 ≤ M ≤ 4N/3.
So, first, let us show how to construct a graph G with maximum degree Δ. For
each clause Ci of C, add to G a gadget as the one in Fig. 6. Then, for each pair of
literals �i,a, �j,b such that one is the negation of the other, add a vertex y(i,a),(j,b)
and link it to either wA

i,a or wB
i,a and either wA

j,b or wB
j,b, but always respecting

the restriction where each one of the vertices wA
i,a, wB

i,a, wA
j,b and wB

j,b can only
have degree at most 4. Since each variable can appear in at most 4 clauses, it is
always possible to do that. Let Y be the set of all vertices y(i,a),(j,b) created this
way. Notice that y = |Y | ≤ 4N .

Then, add the maximum full (Δ − 2)-ary tree with root z such that the
number of leaves is less than y and, then, add a new vertex adjacent vertex
of degree one to each vertex in the tree. Let T be the tree that we have just
added and t be the set of vertices that we just added. After that, link each
leaf to at least one and at most Δ − 2 vertices in Y . Thus, each vertex in the
tree has degree Δ, except for the leaves, which have degree at most Δ, and z,
which has degree Δ − 1. Note that t = 2 · |V (T )| ≤ 2 · (Δ−2)y−1

Δ−3 ≤ 16N and
height(T ) = 	logΔ−2 y
.

Let c=(Δ−2)−8, α=xc, where x=max(41+	c
, 	1/c
), r=	logΔ−2(4Nα)
−
	logΔ−2 y
 and β = 4Nα/c − (39M + y + t + 2 + 2r). With some work, one can
prove that both r and β are non-negative integers.

If r > 0, add a path with r vertices, link one end to z and let q be the other
end. Also, add a new neighbor of degree one to each vertex that belongs to the
path. Let P ′ be the set of vertices in this path and his neighbors of degree one.
If r = 0, let q = z.
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Fig. 6. Gadget with infection times for each clause Ci.

Finally, add a path with β + 2 vertices and link one end to q. Let P be the
set of vertices in this path and let x be the vertex in P that is adjacent to q. By
our construction, since Δ ≥ 4, we have that G is a graph in which every vertex
has degree at most Δ.

Notice that any percolating set must contain a vertex of {ui,1, ui,2, ui,3} for
each clause Ci of C and all vertices that have degree 1. Thus, following similar
arguments presented in [24], it is possible to prove that the maximum percolation
time of the vertex z is height(T ) + 7 if and only if C is satisfiable, which implies
that the maximum percolation time of the vertex x is 	logΔ−2(4Nα)
+8 if and
only if C is satisfiable.

Then, we have that C is satisfiable if and only if t(G) ≥ 	logΔ−2(4Nα)
 + 8,
but, since n = |V (G)| = 39M + y + t + 2 + 2r + β, then 4Nα = c · n. Therefore,
since c = (Δ − 2)−8, C is satisfiable if and only if t(G) ≥ 	logΔ−2 n
. �

5 Fixed Parameter Tractability of the Percolation
Time Problem

We say that a decision problem is fixed parameter tractable (or just fpt) on some
parameter Ψ if there exists an algorithm (called fpt-algorithm) that solves the
problem in time f(Ψ)·nO(1), where n is the size of the input and f is an arbitrary
function depending only on the parameter Ψ .
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In this section, we show that the Percolation Time Problem is fixed parameter
tractable for the parameter tw(G) + k, for the parameter Δ(G) + k and for the
parameter q(G), where tw(G) is the treewidth of the graph and q(G) is the
minimum q ≥ 4 such that G is a (q, q − 4)-graph, which is a graph such that
every subset of at most q vertices induces at most q − 4 P4’s (cographs have
q(G) = 4 and P4-sparse graphs have q(G) = 5). These theorems will imply
that, if k is fixed, then deciding if t(G) ≥ k is linear time solvable for graphs
with bounded treewidth or bounded maximum degree. Moreover, they will imply
that determining the maximum percolation time is polynomial time solvable for
(q, q − 4)-graphs with fixed q.

Theorem 5. Percolation Time Problem is fixed parameter tractable with para-
meter tw(G) + k.

Proof (sketch of the proof). A consequence of the Courcelle’s theorem [18,21]
states that, if a decision problem on graphs can be expressed in a Monadic
Second Order (MSO) sentence ϕ, then this problem is fixed parameter tractable
in the parameter tw(G) + |ϕ|. Moreover, the running time is linear on the size
of the input. The Percolation Time Problem can be expressed by the following
MSO-sentence:

maxtimek := ∃w,X0, X1, . . . , Xk ∀x
(
x ∈ Xk

)
∧
⎛

⎝
∧

0≤i<k

(x ∈ Xi → x ∈ Xi+1)

⎞

⎠ ∧

∧
⎛

⎝
∧

0≤i<k

(x ∈ Xi+1\Xi) → ∃y, z(Exy ∧ Exz ∧ (y ∈ Xi) ∧ (z ∈ Xi))

⎞

⎠ ∧
(
w ∈ Xk\Xk−1

)
,

where Xi represents the set of vertices infected at time i, Exy is true if xy is
an edge (and false, otherwise) and ∧ is the and operator. This MSO sentence
asserts that all vertices are infected in time k, that a vertex infected in time
i remains infected in time i + 1, that a vertex infected in time i + 1, but not
infected in time i, has two neighbors infected in time i, and that there exists a
vertex w infected in time k but not infected in time k − 1. �

Theorem 6. Percolation Time Problem is fixed parameter tractable with para-
meter Δ(G) + k. Moreover, for fixed Δ, the Percolation Time Problem is
polynomial time solvable in graphs with bounded maximum degree Δ for k =
logΔ O(log n), if Δ ≥ 4, and for k = O(log n), if Δ = 3.

Proof (sketch of the proof). Let Δ = Δ(G) and let u ∈ V (G). Then |N≤k(u)| ≤
Δk and, consequently, the power set 2N≤k(u) has 2|N≤k(u)| ≤ 2Δk

sets. We claim
that t(G) ≥ k if and only if there is a vertex u and a percolating set S ⊇ N≥k(u)
such that t(G,S, u) = k.

If t(G) ≥ k, then there is a percolating set S′ that infects some vertex u at
time k. In [24], it was proved that, given a graph G, a set Q ⊆ V (G) and a
vertex z ∈ V (G)\S, if t(G,Q,w) ≥ k, then t(G,Q,w) ≥ t(G,Q ∪ {z}, w) ≥ k,
for any k and any w ∈ N≥k(z). Then, applying this result once for each vertex
in N≥k(u), the percolating set S = S′ ∪ N≥k(u) infects u also at time k.



182 T. Marcilon and R. Sampaio

On the other hand, if there is a percolating set S ⊇ N≥k(u) such that
t(G,S, u) = k, for some vertex u, then, trivially, t(G) ≥ k. Then the claim
is true.

Therefore, since for each vertex u and set S′ ⊆ N≤k−1(u), it takes O(km)
time to know whether the set S′ ∪ N≥k(u) infects u at time k, this equivalence
gives us an algorithm that decides whether t(G) ≥ k in time n·O(m+km·2Δk

) =
O(2Δk

kΔ · n2), since m = O(Δn). Notice that, if k = logΔ O(log n), then the
time is polynomial in n. Moreover, if Δ = 3, by Theorem 1, we are done. �

Finally, we prove the fixed parameter tractability for the parameter q(G). In
2014, Campos et al. [14] proved that determining the minimum percolating set is
fixed parameter tractable on the parameter q(G). Here, we prove the following.

Theorem 7. Percolation Time Problem is fixed parameter tractable on parame-
ter q(G). Moreover, t(G) ≤ q(G) + 3 for every graph G.

To prove this theorem, we use a graph decomposition, called primeval decom-
position, which is based on some graph operations: union, join, spider and p-
component. Below we define these operations and present the lemmas used to
obtain the maximum percolation time. Because of space restrictions, we omit
the proofs.

The union G = G1 ∪ G2 of two graph G1 and G2 is the graph such that
V (G) = V (G1) ∪ V (G2) and E(G) = E(G1) ∪ E(G2). The join G = G1 ∨ G2 is
the graph obtained from G1∪G2 by joining every vertex of G1 to every vertex of
G2. A spider (R,K, S) is a graph G = (R∪K∪S, E) such that K = {k1, . . . , kp}
and S = {s1, . . . , sp}, for p ≥ 2, induce a clique and a stable set, respectively;
either si is adjacent to kj if and only if i = j (a thin spider), or si is adjacent to
kj if and only if i �= j (a thick spider); and every vertex of R is adjacent to each
vertex of K and non-adjacent to each vertex of S.

Lemma 2 (union, join and spider). Let G, G1 and G2 be graphs. If G =
G1 ∪ G2, then t(G) = max{t(G1), t(G2)}. If G = G1 ∨ G2 and G1 and G2

have at least two vertices each, then t(G) ≤ 3. If G = G1 ∨ G2 and G2 has
exactly one vertex, then t(G) = diameter(G1)+1, if either G1 is disconnected or
contains three vertices u, v, w such that dist(u,w) = dist(v, w) = diameter(G1)
and there is no neighbor of u and v in a minimum path from u to w; otherwise,
t(G) = diameter(G1). If G is a spider, then t(G) ≤ 3. In all the three last cases,
t(G) can be found in the worst case in O(mn2) time.

A graph is p-connected if, for every partition of the vertex set into two parts
A and B, there is a crossing P4 (with vertices of A and B). A p-connected graph
is separable if it has a particular bipartition (H1,H2) such that every crossing
P4 wxyz satisfies x, y ∈ H1 and w, z ∈ H2 (such a bipartition is unique [3]).
A p-component of a graph is a maximal p-connected subgraph.

Given an arbitrary graph G′ and a separable p-connected graph H with
separation (H1,H2), let G′ � H be the graph obtained from G′ ∪ H by joining
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every vertex of G′ to every vertex of H1 and and to no vertex of H2. Note that
every spider (∅,K, S) is a separable p-connected graph with separation (K,S).

In [3], it was proved an important structural result for (q, q − 4)-graphs. If G
is a (q, q −4)-graph, then either G = G′ ∪G′′, or G = G′ ∨G′′, or G = G′ �H, or
G has less than q vertices, where G′ and G′′ are (q, q −4)-graphs and H is either
a spider (R,K, S) with R = ∅, or a separable p-connected (q, q − 4)-graph with
less than q vertices. This characterization leads to a graph decomposition, called
primeval decomposition, which can be obtained in linear time O(m + n) [4,9].

(a) (b)

Fig. 7. The two possibilities for the graph H+[C].

Lemma 3 (p-component). Let G′ be a (q, q − 4)-graph and let H be a sepa-
rable p-connected (q, q − 4)-graph with separation (H1,H2). If G = G′ � H, then
t(G) = t(H+), where H+ is the graph obtained from H by adding a set C of
x = min{|V (G′)|, 6} new vertices linked to all vertices of H1, not linked to any
vertices in H2, and, if x ≤ 6, let H+[C] and G′ be isomorphic graphs. If x ≥ 7:

– if G′ is a clique then let H+[C] be a clique Kx;
– if G′ is a stable set then let H+[C] also be a stable set;
– Otherwise, let H+[C] be isomorphic to the graph in Fig. 7(a), if G′ is not

connected, and let H+[C] be isomorphic to the graph in Fig. 7(b), if G′ is
connected.

As a consequence, if H has less than q vertices (fixed q ≥ 4), since |V (H+)| ≤
q + 5, then t(G) ≤ q + 3 and t(G) can be obtained in constant time ≤ 2qq (by
checking all subsets of vertices of H+). The two lemmas above, together with the
primeval decomposition of (q, q − 4)-graphs, imply a polynomial time algorithm
to determine the maximum percolation time of a (q, q − 4)-graph, for fixed q,
in O(mn2) time. This also implies that the Percolation Time Problem is fixed
parameter tractable for the parameter q(G).
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Abstract. We investigate the Minimum Eccentricity Shortest Path
problem in some structured graph classes. It asks for a given graph to
find a shortest path with minimum eccentricity. Although it is NP-hard
in general graphs, we demonstrate that a minimum eccentricity shortest
path can be found in linear time for distance-hereditary graphs (gen-
eralizing the previous result for trees) and in O(n3m) time for chordal
graphs.

1 Introduction

The Minimum Eccentricity Shortest Path problem asks for a given graph
G = (V,E) to find a shortest path P such that for each other shortest path Q,
eccG(P ) ≤ eccG(Q) holds. Here, the eccentricity of a set S ⊆ V in G is
eccG(S) = maxu∈V dG(u, S). This problem was introduced in [7]. It may arise
in determining a “most accessible” speedy linear route in a network and can
find applications in communication networks, transportation planning, water
resource management and fluid transportation. It was also shown in [6,7] that a
minimum eccentricity shortest path plays a crucial role in obtaining the best to
date approximation algorithm for a minimum distortion embedding of a graph
into the line. Specifically, every graph G with a shortest path of eccentricity r
admits an embedding f of G into the line with distortion at most (8r +2) ld(G),
where ld(G) is the minimum line-distortion of G (see [7] for details). Further-
more, if a shortest path of G of eccentricity r is given in advance, then such an
embedding f can be found in linear time.

Those applications motivate investigation of the Minimum Eccentricity
Shortest Path problem in general graphs and in particular graph classes. Fast
algorithms for it will imply fast approximation algorithms for the minimum line
distortion problem. Existence of low eccentricity shortest paths in structured
graph classes will imply low approximation bounds for those classes. For exam-
ple, all AT-free graphs (hence, all interval, permutation, cocomparability graphs)
enjoy a shortest path of eccentricity at most 1 [4], all convex bipartite graphs
enjoy a shortest path of eccentricity at most 2 [6].

In [7], the Minimum Eccentricity Shortest Path problem was investigated in
general graphs. It was shown that its decision version is NP-complete (even for
graphs with vertex degree at most 3). However, there are efficient approximation
c© Springer-Verlag Berlin Heidelberg 2016
E.W. Mayr (Ed.): WG 2015, LNCS 9224, pp. 189–202, 2016.
DOI: 10.1007/978-3-662-53174-7 14
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algorithms: a 2-approximation, a 3-approximation, and an 8-approximation for
the problem can be computed in O(n3) time, in O(nm) time, and in linear time,
respectively. Furthermore, a shortest path of minimum eccentricity r in general
graphs can be computed in O(n2r+2m) time. Paper [7] initiated also the study
of the Minimum Eccentricity Shortest Path problem in special graph classes by
showing that a minimum eccentricity shortest path in trees can be found in
linear time. In fact, every diametral path of a tree is a minimum eccentricity
shortest path.

In this paper, we design efficient algorithms for the Minimum Eccentric-
ity Shortest Path problem in distance-hereditary graphs and in chordal graphs.
We show that the problem can be solved in linear time for distance-hereditary
graphs (generalizing the previous result for trees) and in O(n3m) time for chordal
graphs.

Note that our Minimum Eccentricity Shortest Path problem is close but
different from the Central Path problem in graphs introduced in [13]. It asks
for a given graph G to find a path P (not necessarily shortest) such that any
other path of G has eccentricity at least eccG(P ). The Central Path problem
generalizes the Hamiltonian Path problem and therefore is NP-hard even for
chordal graphs [12]. Our problem is polynomial time solvable for chordal graphs.

2 Notions and Notations

All graphs occurring in this paper are connected, finite, unweighted, undirected,
loopless and without multiple edges. For a graph G = (V,E), we use n = |V |
and m = |E| to denote the cardinality of the vertex set and the edge set of G.
G[S] denotes the induced subgraph of G with the vertex set S.

The length of a path from a vertex v to a vertex u is the number of edges
in the path. The distance dG(u, v) of two vertices u and v is the length of
a shortest path connecting u and v. The distance between a vertex v and a
set S ⊆ V is defined as dG(v, S) = minu∈S dG(u, v). The eccentricity eccG(v) of
a vertex v is maxu∈V dG(u, v). For a set S ⊆ V , its eccentricity is eccG(S) =
maxu∈V dG(u, S). If no ambiguity arises, we will omit the subscript G. For a
vertex pair s, t, a shortest (s, t)-path P has minimal eccentricity, if there is no
shortest (s, t)-path Q with ecc(Q) < ecc(P ). Two vertices x and y are called
mutually furthest if dG(x, y) = ecc(x) = ecc(y). A vertex u is k-dominated by a
vertex v (by a set S ⊂ V ), if dG(u, v) ≤ k (dG(u, S) ≤ k, respectively).

The diameter of a graph G is diam(G) = maxu,v∈V dG(u, v). The diame-
ter diamG(S) of a set S ⊆ V is defined as maxu,v∈S dG(u, v). A pair of vertices
x, y of G is called a diametral pair if dG(x, y) = diam(G). In this case, every
shortest path connecting x and y is called a diametral path.

For a vertex v ∈ V , N(v) = {u ∈ V | uv ∈ E} is called the
open neighborhood, and N [v] = N(v) ∪ {v} the closed neighborhood of v.
Nr[v] = {u ∈ V | dG(u, v) ≤ r} denotes the disk of radius r around vertex v.
Additionally, L

(v)
r = {u ∈ V | dG(u, v) = i} denotes the vertices with distance r

from v. For two vertices u and v, I(u, v) = {w | dG(u, v) = dG(u,w) + dG(w, v)}
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is the interval between u and v. The set Si(s, t) = L
(s)
i ∩ I(u, v) is called

a slice of the interval from u to v. For any set S ⊆ V and a vertex v,
Pr(v, S) = {u ∈ S | dG(u, v) = dG(v, S)} denotes the projection of v on S.

A chord in a path is an edge connecting two non-consecutive vertices of the
path. A set of vertices S is a clique if all vertices in S are pairwise adjacent.
A graph is chordal if every cycle with at least four vertices has a chord. A graph
is distance-hereditary if the distances in any connected induced subgraph are the
same as they are in the original graph. For more definitions of these classes and
relations between them see [2].

3 A Linear-Time Algorithm for Distance-Hereditary
Graphs

Distance-hereditary graphs can be defined as graphs where each chordless path is
a shortest path [10]. Several interesting characterizations of distance-hereditary
graphs in terms of metric and neighborhood properties, and forbidden config-
urations were provided by Bandelt and Mulder [1], and by D’Atri and
Moscarini [5]. The following proposition lists the basic information on distance-
hereditary graphs that is needed in what follows.

Proposition 1 ([1,5]). For a graph G the following conditions are equivalent:

(1) G is distance-hereditary;
(2) The house, domino, gem (see Fig. 1) and the cycles Ck of length k ≥ 5 are

not induced subgraphs of G;
(3) For an arbitrary vertex x of G and every pair of vertices u, v ∈ L

(x)
k , that

are in the same connected component of the graph G[V \ L
(x)
k−1], we have

N(v) ∩ L
(x)
k−1 = N(u) ∩ L

(x)
k−1.

(4) (4-point condition) For any four vertices u, v, w, x of G at least two of the
following distance sums are equal: dG(u, v) + dG(w, x); dG(u,w) + dG(v, x);
dG(u, x) + dG(v, w). If the smaller sums are equal, then the largest one
exceeds the smaller ones at most by 2.

House Domino Gem

Fig. 1. Forbidden induced subgraphs in a distance-hereditary graph.
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As a consequence of statement (3) of Proposition 1 we get.

Corollary 1. Let P := P (s, t) be a shortest path in a distance-hereditary
graph G connecting vertices s and t, and w be an arbitrary vertex of G. Let
a be a vertex of Pr(w,P ) that is closest to s, and let b be a vertex of Pr(w,P )
that is closest to t. Then dG(a, b) ≤ 2 and there must be a vertex w′ in G adjacent
to both a and b and at distance dG(w,P ) − 1 from w.

As a consequence of statement (4) of Proposition 1 we get.

Corollary 2. Let x, y, v, u be arbitrary vertices of a distance-hereditary graph G
with v ∈ I(x, u), u ∈ I(y, v), and dG(u, v) > 1, then dG(x, y) = dG(x, v) +
dG(v, u)+ dG(u, y). That is, if two shortest paths share ends of length at least 2,
then their union is a shortest path.

Proof. Consider distance sums S1 := dG(x, v) + dG(u, y), S2 := dG(x, y) +
dG(u, v) and S3 := dG(x, u) + dG(v, y). Since dG(x, u) + dG(v, y) = dG(x, v) +
dG(u, y) + 2 dG(u, v), we have S3 > S1. Then, either S2 = S3 or S1 = S2 and
S3 − S1 ≤ 2. If the latter is true, then 2 ≥ S3 − S1 = dG(x, v) + dG(u, y) +
2 dG(u, v) − dG(x, v) − dG(u, y) = 2 dG(v, u) > 2 and a contradiction arises.
Thus, S2 = S3 and we get dG(x, y) = dG(x, v) + dG(v, u) + dG(u, y). 	

Lemma 1. Let x, y be a diametral pair of vertices of a distance-hereditary
graph G, and k be the minimum eccentricity of a shortest path in G. If for
some shortest path P = P (x, y), connecting x and y, ecc(P ) > k holds, then
diam(G) = dG(x, y) ≥ 2k. Furthermore, if dG(x, y) = 2k then there is a shortest
path P ∗ between x and y with ecc(P ∗) = k.

Proof. Consider a vertex v with dG(v, P ) > k. Let x′ be a vertex of Pr(v, P ) clos-
est to x, and y′ be a vertex of Pr(v, P ) closest to y. By Corollary 1, dG(x′, y′) ≤ 2
and there must be a vertex v′ in G adjacent to both x′ and y′ and at distance
dG(v, P ) − 1 from v. Let P (x, x′) and P (y′, y) be subpaths of P connecting
vertices x, x′ and vertices y, y′, respectively. Consider also an arbitrary shortest
path Q(v, v′) connecting v and v′ in G. By choices of x′ and y′, no chords in
G exist in paths P (x, x′) ∪ Q(v′, v) and P (y, y′) ∪ Q(v′, v). Hence, those paths
are shortest in G. Since x, y is a diametral pair, we have dG(x, x′) + dG(x′, y′) +
dG(y′, y) = dG(x, y) ≥ dG(x, v) = dG(x, x′) + 1 + dG(v′, v). That is, dG(y′, y) ≥
dG(v′, v) + 1 − dG(x′, y′). Similarly, dG(x′, x) ≥ dG(v′, v) + 1 − dG(x′, y′). Com-
bining both inequalities and taking into account that dG(v, v′) ≥ k, we get
dG(x, y) = dG(x, x′) + dG(x′, y′) + dG(y′, y) ≥ 2k + 2 − dG(x′, y′) ≥ 2k. Fur-
thermore, we have dG(x, y) ≥ 2k + 1 if dG(x′, y′) = 1 and dG(x, y) ≥ 2k + 2
if dG(x′, y′) = 0. Also, if dG(x, y) = 2k then dG(x′, y′) = 2, dG(v, v′) = k,
dG(x, x′) = dG(y, y′) = k − 1 and dG(v, x) = dG(v, y) = 2k.

Now assume that dG(x, y) = 2k. Consider sets S = {w ∈ V | dG(x,w) =
dG(y, w) = k} and Fx,y = {u ∈ V | dG(u, x) = dG(u, y) = 2k}. Let c ∈ S be a
vertex of S that k-dominates the maximum number of vertices in Fx,y. Consider
a shortest path P ∗ connecting vertices x and y and passing through vertex c.
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We will show that ecc(P ∗) = k. Let x′ (y′) be the neighbor of c in subpath of
P ∗ connecting c with x (with y, respectively).

Assume there is a vertex v in G such that dG(v, P ∗) > k. As in the first
part of the proof, one can show that dG(v, x′) = dG(v, y′) = k + 1, i. e., x′, y′ ∈
Pr(v, P ∗) and dG(v, P ∗) = k + 1. Furthermore, dG(v, x) = dG(v, y) = 2k, i. e.,
v ∈ Fx,y. Also, vertex v′, that is adjacent to x′, y′ and at distance k from v,
must belong to S. Since dG(v, c) > k but dG(v, v′) = k, by choice of c, there
must exist a vertex u ∈ Fx,y such that dG(u, c) ≤ k and dG(u, v′) > k. Since
dG(u, y) = dG(u, x) = 2k, dG(u, c) must equal k and both dG(u, x′) and dG(u, y′)
must equal k + 1.

Since dG(v, u) ≤ diam(G) = 2k and dG(v, y′) = dG(v, x′) = k + 1 =
dG(u, x′) = dG(u, y′), we must have a chord between vertices of a shortest
path P (v, v′) connecting v with v′ and vertices of a shortest path P (u, c)
connecting u with c. If no chords exist or only chord cv′ is present, then
dG(v, u) ≥ 2k + 1, contradicting with diam(G) = 2k. So, consider a chord ab
with a ∈ P (v, v′), b ∈ P (u, c), ab �= cv′, and dG(a, v′) + dG(b, c) is minimum.
We know that dG(a, v′) = dG(b, c) must hold since dG(u, v′) > k = dG(u, c)
and dG(v, c) > k = dG(v, v′). To avoid induced cycles of length k ≥ 5,
dG(a, v′) = dG(b, c) = 1 must hold. But then, vertices a, b, c, x′, v′ form either an
induced cycle C5, when c and v′ are not adjacent, or a house, otherwise. Note
that, by distance requirements, edges bv′, ca, bx′, and ax′ are not possible.

Contradictions obtained show that such a vertex v with dG(v, P ∗) > k is not
possible, i. e., ecc(P ∗) = k. 	

Lemma 2. In every distance-hereditary graph there is a minimum eccentricity
shortest path P (s, t) where s and t are two mutually furthest vertices.

Proof. Let k be the minimum eccentricity of a shortest path in G. Let Q :=
Q(s, t) = (s = v0, v1, . . . , vi, . . . , vq = t) be a shortest path of G of eccentric-
ity k with maximum q, that is, among all shortest paths with eccentricity k,
Q is a longest one. Assume, without loss of generality, that t is not a ver-
tex most distant from s. Let i ≤ q be the smallest index such that subpath
Q(s, vi) = (v0, v1, . . . , vi) of Q has also the eccentricity k. By choice of i, there
must exist a vertex v in G which is k-dominated only by vertex vi of Q(s, vi),
i. e., Pr(v,Q(s, vi)) = {vi} and dG(v,Q(s, vi)) = k. Let P (v, vi) be an arbitrary
shortest path of G connecting v with vi. By choice of i, no vertex of P (v, vi)\{vi}
is adjacent to a vertex of Q(s, vi) \ {vi}. Hence, path obtained by concatenating
Q(s, vi) with P (vi, v) is chordless and, therefore, shortest in G, and has eccentric-
ity k, too. Note that v is now a most distant vertex from s, i. e., dG(s, v) = ecc(s).
Since dG(s, v) > dG(s, t), a contradiction with maximality of q arises. 	


The main result of this section is the following.

Theorem 1. Let x, y be a diametral pair of vertices of a distance-hereditary
graph G, and k be the minimum eccentricity of a shortest path in G. Then, there
is a shortest path P between x and y with ecc(P ) = k.
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Proof. We may assume that for some shortest path P ′ connecting x and y,
ecc(P ′) > k holds (otherwise, there is nothing to prove). Then, by Lemma 1, we
have d(x, y) ≥ 2k.

Let Q := Q(s, t) = (s = v0, v1, . . . , vi, . . . , vq = t) be a shortest path of
G of eccentricity k such that s and t are two mutually furthest vertices (see
Lemma 2). Consider projections of x and y to Q. We distinguish between
three cases: Pr(x,Q) is completely on the left of Pr(y,Q) in Q; Pr(x,Q) and
Pr(y,Q) have a common vertex w; and the remaining case (see Corollary 1)
when Pr(x,Q) = {vi−1, vi+1} and Pr(y,Q) = {vi} for some index i.
Case 1: Pr(x,Q) is completely on the left of Pr(y,Q) in Q.
Let x′ be a vertex of Pr(x,Q) closest to t and y′ a vertex of Pr(y,Q) closest to
s. Consider an arbitrary shortest path P (x, x′) of G connecting vertices x and
x′, an arbitrary shortest path P (y′, y) of G connecting vertices y′ and y, and a
subpath Q(x′, y′) of Q(s, t) between vertices x′ and y′. We claim that the path
P of G obtained by concatenating P (x, x′) with Q(x′, y′) and then with P (y′, y)
is a shortest path of eccentricity k.

Indeed, by choice of x′, no edge connecting a vertex in P (x, x′) \ {x′} with a
vertex in Q(x′, y′)\{x′} can exist in G. Similarly, no edge connecting a vertex in
P (y′, y) \ {y′} with a vertex in Q(x′, y′) \ {y′} can exist in G. Since we also have
dG(x, y) ≥ 2k, dG(x,Q) ≤ k and dG(y,Q) ≤ k, no edge connecting a vertex in
P (y′, y) \ {y′} with a vertex in P (x, x′) \ {x′} can exist in G. Hence, chordless
path P = P (x, x′) ∪ Q(x′, y′) ∪ P (y′, y) is a shortest path of G.

Consider now an arbitrary vertex v of G. We want to show that dG(v, P ) ≤ k.
Since ecc(Q) = k, dG(v,Q) ≤ k. Consider the projection of v to Q. We may
assume that Pr(v,Q)∩Q(x′, y′) = ∅ and, without loss of generality, that vertices
of Pr(v,Q) are closer to s than vertex x′. Let v′ be a vertex of Pr(v,Q) closest
to x′. As before, by choices of v′ and y′, paths P (y, y′) ∪ Q(y′, v′) and P (v, v′) ∪
Q(y′, v′) are chordless and, therefore, are shortest paths of G (here P (v, v′) is
an arbitrary shortest path of G connecting v with v′). Since dG(v′, y′) ≥ 2, by
Corollary 2, dG(v, y) = dG(v, v′)+ dG(v′, y′)+ dG(y′, y). Hence, from dG(x, y) ≥
dG(y, v), dG(x, y) = dG(x, x′) + dG(x′, y) and dG(v, y) = dG(v, x′) + dG(x′, y),
we obtain dG(v, x′) ≤ dG(x, x′) ≤ k.
Case 2: Pr(x,Q) and Pr(y,Q) have a common vertex w.
In this case, we have dG(x, y) ≤ dG(x,w) + dG(y, w) ≤ k + k = 2k. Earlier
we assumed also that dG(x, y) ≥ 2k. Hence, diam(G) = dG(x, y) = 2k and the
statement of the theorem follows from Lemma 1.
Case 3: Remaining case when Pr(x,Q) = {vi−1, vi+1} and Pr(y,Q) = {vi} for
some index i.
In this case, we have dG(x, y) ≤ dG(x, vi−1) + 1 + dG(vi, y) ≤ 2k + 1. By
Lemma 1, we can assume that diam(G) = dG(x, y) = 2k + 1, i. e., dG(x, vi−1) =
dG(x, vi+1) = dG(vi, y) = k.

Let Q(s, vi−1) and Q(t, vi+1) be subpaths of Q connecting vertices s and vi−1

and vertices t and vi+1, respectively. Pick an arbitrary shortest path P (y, vi)
connecting y with vi. Since no chords are possible between Q(s, vi) \ {vi} and
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P (y, vi) \ {vi} and between Q(t, vi) \ {vi} and P (y, vi) \ {vi}, we have dG(y, t) =
dG(y, vi) + dG(vi, t) = k + dG(vi, t) and dG(y, s) = dG(y, vi) + dG(vi, s) =
k + dG(vi, s). Inequalities dG(x, y) ≥ dG(y, t) and dG(x, y) ≥ dG(y, s) imply
dG(vi+1, t) ≤ dG(vi+1, x) = k and dG(vi−1, s) ≤ dG(vi−1, x) = k. If both
dG(vi+1, t) and dG(vi−1, s) equal k, then dG(s, t) = 2k + 2 contradicting with
diam(G) = 2k + 1. Hence, we may assume, without loss of generality, that
dG(vi−1, s) ≤ k − 1. We will show that shortest path P := P (x, vi+1) ∪ P (vi, y)
has eccentricity k (here, P (x, vi+1) is an arbitrary shortest path of G connecting
x with vi+1).

Consider a vertex v in G and assume that Pr(v,Q) is strictly con-
tained in Q(t, vi+1). Denote by v′ the vertex of Pr(v,Q) that is closest to
s. Let P (v, v′) be an arbitrary shortest path connecting v and v′. As before,
P (v, v′) ∪ Q(v′, s) is a chordless path and therefore dG(v, s) = dG(v, vi+1) +
dG(vi+1, s). Since t is a most distant vertex from s, dG(s, v) ≤ dG(s, t). Hence,
dG(v, vi+1) + dG(vi+1, s) = dG(s, v) ≤ dG(s, t) = dG(s, vi+1) + dG(vi+1, t), i. e.,
dG(v, vi+1) ≤ dG(vi+1, t) ≤ k.

Consider a vertex v in G and assume now that Pr(v,Q) is strictly contained
in Q(s, vi−1). Denote by v′ the vertex of Pr(v,Q) that is closest to t. Let P (v, v′)
be an arbitrary shortest path connecting v and v′. Again, P (v, v′) ∪ Q(v′, t)
is a chordless path and therefore dG(v, t) = dG(v, vi) + dG(vi, t). Since s is a
most distant vertex from t, dG(t, v) ≤ dG(s, t). Hence, dG(v, vi) + dG(vi, t) =
dG(t, v) ≤ dG(s, t) = dG(s, vi) + dG(vi, t), i. e., dG(v, vi) ≤ dG(vi, s) ≤ k.

Thus, all vertices of G are k-dominated by P (x, vi+1) ∪ P (vi, y). 	

It is known [8] that a diametral pair of a distance-hereditary graph can be

found in linear time. Hence, according to Theorem 1, to find a shortest path of
minimum eccentricity in a distance-hereditary graph in linear time, one needs
to efficiently extract a best eccentricity shortest path for a given pair of end-
vertices. In what follows, we demonstrate that, for a distance-hereditary graph,
such an extraction can be done in linear time as well.

We will need few auxiliary lemmas.

Lemma 3. In a distance-hereditary graph G, for each pair of vertices s and t,
if x is on a shortest path from v to Πv = Pr(v, I(s, t)) and dG(x,Πv) = 1, then
Πv ⊆ N(x).

Proof. Let p and q be two vertices in Πv and dG(v,Πv) = r. By statement (3)
of Proposition 1, N(p) ∩ L

(v)
r−1 = N(q) ∩ L

(v)
r−1. Thus, each vertex x on a shortest

path from v to Πv with dG(x,Πv) = 1 (which is in N(p) ∩ L
(v)
r−1 by definition)

is adjacent to all vertices in Πv, i. e., Πv ⊆ N(x). 	

Lemma 4. In a distance-hereditary graph G, let Si(s, t) and Si+1(s, t) be two
consecutive slices of an interval I(s, t). Each vertex in Si(s, t) is adjacent to each
vertex in Si+1(s, t).

Proof. Consider statement (3) of Proposition 1 from perspective of t. Thus,
Si(s, t) ⊆ N(v) for each vertex v ∈ Si+1(s, t). Additionally, from perspective of
s, Si+1(s, t) ⊆ N(u) for each vertex u ∈ Si(s, t). 	
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Lemma 5. In a distance-hereditary graph G, if a projection Πv = Pr(v, I(s, t))
intersects two slices of an interval I(s, t), each shortest (s, t)-path intersects Πv.

Proof. Because of Lemma 3, there is a vertex x with N(x) ⊇ Πv and dG(v, x) =
dG(v,Πv) − 1. Thus, Πv intersects at most two slices of interval I(s, t) and
those slices have to be consecutive, otherwise x would be a part of the interval.
Let Si(s, t) and Si+1(s, t) be these slices. Note that dG(s, x) = i + 1. Thus,
by statement (3) of Proposition 1, N(x) ∩ Si(s, t) = N(u) ∩ Si(s, t) for each
u ∈ Si+1(s, t). Therefore, Si(s, t) ⊆ Πv, i. e., each shortest path from s to t
intersects Πv. 	


From the lemmas above, we can conclude that, for determining a shortest
(s, t)-path with minimal eccentricity, a vertex v is only relevant if dG(v, I(s, t)) =
ecc(I(s, t)) and the projection of v on the interval I(s, t) only intersects one slice.
Algorithm 1 uses this.

Algorithm 1. Computes a shortest (s, t)-path P with minimal eccentricity
for a given distance-hereditary graph G and a vertex pair s, t.
Input: A distance-hereditary graph G = (V, E) and two distinct vertices s

and t.
Output: A shortest path P from s to t with minimal eccentricity.
Compute the sets Vi = {v | dG(v, I(s, t)) = i} for 1 ≤ i ≤ ecc(I(s, t)).1

Each vertex v /∈ I(s, t) gets a pointer g(v) initialised with g(v) := v if v ∈ V1,2

and g(v) := ∅ otherwise.
for i := 2 to ecc(I(s, t)) do3

For each v ∈ Vi, select a vertex u ∈ Vi−1 ∩ N(v) and set g(v) := g(u).4

foreach v ∈ Vecc(I(s,t)) do5

If N(g(v)) intersects only one slice of I(s, t), flag g(v) as relevant.6

Set P := {s, t}.7

for i := 1 to dG(s, t) − 1 do8

Find a vertex v ∈ Si(s, t) for which the number of relevant vertices in N(v)9

is maximal.
Add v to P .10

Lemma 6. For a distance-hereditary graph G and an arbitrary vertex pair s, t,
Algorithm 1 computes a shortest (s, t)-path with minimal eccentricity in linear
time.

Proof. The loop in line 3 determines for each vertex v outside of the
interval I(s, t) a gate vertex g(v) such that N(g(v)) ⊇ Pr(v, I(s, t)) and
dG(v, I(s, t)) = dG(v, g(v)) + 1 (see Lemma 3). From Lemmas 5 and 4, it fol-
lows that for a vertex v which is not in Vecc(I(s,t)) or its projection to I(s, t) is
intersecting two slices of I(s, t), dG(v, P (s, t)) ≤ ecc(I(s, t)) for every shortest
path P (s, t) between s and t. Therefore, line 6 only marks g(v) if v ∈ Vecc(I(s,t))

and its projection Pr(v, I(s, t)) intersects only one slice. Because only one slice
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is intersected and each vertex in a slice is adjacent to all vertices in the consec-
utive slice (see Lemma 4), in each slice the vertex of an optimal (of minimum
eccentricity) path P can be selected independently from the preceding vertex.
If a vertex x of a slice Si(s, t) has the maximum number of relevant vertices in
N(x), then x is good to put in P . Indeed, if x dominates all relevant vertices
adjacent to vertices of Si(s, t), then x is a perfect choice to put in P . Else, any
vertex y of a slice Si(s, t) is a good vertex to put in P . Hence, P is optimal if the
number of relevant vertices adjacent to P is maximal. Thus, the path selected
in line 8 to line 10 is optimal. 	


Running Algorithm 1 for a diametral pair of vertices of a distance-hereditary
graph G, by Theorem 1, we get a shortest path of G with minimum eccentricity.
Thus, we have proven the following result.

Theorem 2. A shortest path with minimum eccentricity of a distance-hereditary
graph G = (V,E) can be computed in O(|V | + |E|) total time.

4 A Polynomial-Time Algorithm for Chordal Graphs

In what follows, we will show that the minimum eccentricity shortest path prob-
lem for chordal graphs can be solved in polynomial time.

For distance-hereditary graphs, we were able to show that there is a shortest
path with minimum eccentricity between a diametral pair of vertices. This is
not always the case for chordal graphs. Consider the graph G given in Fig. 2.
The only diametral path in G is from s to w. Because of u, it has eccentricity 3.
However, a shortest path from s to v containing t has eccentricity 2 which is
optimal for G.

u

vt

ws

Fig. 2. A chordal graph for which no diametral path has the optimal eccentricity.

To find an optimal path, we create a simpler graph H for given start and end
vertices s and t of a chordal graph G. Then, each shortest path P from s to t in
H has eccentricity at most 2. Additionally, if P has minimal eccentricity in H,
the corresponding path in G also has minimal eccentricity. Repeating this for
each vertex pair s, t in G, we can find the minimum eccentricity shortest path
of G.
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The following lemmas allow us to create H.

Lemma 7 ([3]). For every chordal graph G and any two of its vertices s and t,
each slice Si(s, t) is a clique.

Corollary 3. For each shortest path P from s to t in a chordal graph G,

ecc(I(s, t)) ≤ ecc(P ) ≤ ecc(I(s, t)) + 1.

Lemma 8 ([9]). Let G be a chordal graph. If for two distinct vertices x, y in a
disk Nr

G[v] there is a path P connecting them with P ∩ Nr
G[v] = {x, y}, then x

and y are adjacent.

Lemma 9. Let G be a chordal graph. For each vertex v /∈ I(s, t), if a pro-
jection Πv = Pr(v, I(s, t)) is not a clique, then each shortest path from s to t
intersects Πv.

Proof. Because Πv is not a clique, there are two distinct vertices ui ∈ Si(s, t)∩Πv

and uj ∈ Sj(s, t)∩Πv which are not adjacent to each other. Consider an arbitrary
shortest path Q from s to t and two vertices qi ∈ Si(s, t)∩Q and qj ∈ Sj(s, t)∩Q.
Because each slice is a clique (see Lemma 7), there is a path Q′ = {ui} ∪
Q(qi, qj) ∪ {uj} from ui to uj . Note that Πv is the intersection of I(s, t) with
the disk Nr

G[v] (for r = dG(v, I(s, t))). Thus, if Q and Πv do not intersect,
then Q′ ∩ Nr

G[v] = {ui, uj}. However, because ui and uj are not adjacent, this
contradicts with Lemma 8. Therefore, Q and Πv intersect. 	


The conclusion from Corollary 3 and Lemma 9 is that a vertex v is only
relevant for determining a minimal eccentricity shortest path from s to t, if
dG(v, I(s, t)) = ecc(I(s, t)) and the projection of v on I(s, t) intersects at most
two slices. Therefore, we can create a graph H for a given chordal graph G using
Algorithm 2. We call H a hedgehog graph for G.

Algorithm 2. Creates a hedgehog graph H from a given chordal graph G
for its vertex pair s, t.
Input: A chordal graph G = (VG, EG), and a vertex pair s, t.
Output: A hedgehog graph H = (VH , EH).
Initialise VH := ∅ and EH := ∅.1

Add IG(s, t) to H, i. e. VH := VH ∪ IG(s, t) and2

EH := EH ∪ {uv ∈ EG | u, v ∈ IG(s, t)}.
foreach v ∈ VG with dG(v, IG(s, t)) = eccG(IG(s, t)) do3

If PrG(v, IG(s, t)) intersects at most two slices of IG(s, t), then create a new4

vertex g(v), add to H, and connect it with every vertex in PrG(v, IG(s, t)),
i. e. VH := VH ∪ {g(v)} and EH := EH ∪ {ug(v) | u ∈ PrG(v, IG(s, t))}.
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Theorem 3. For a chordal graph G and a vertex pair s, t, let H be the hedgehog
graph of G created by Algorithm 2. A shortest (s, t)-path P in H has eccentricity 1
if and only if P has eccentricity eccG(IG(s, t)) in G.

Proof. Assume eccH(P ) = 1. Therefore, for all vertices g(v) ∈ VH \ IH(s, t),
P intersects the projection PrH(g(v), IH(s, t)). Based on the construction of H,
PrH(g(v), IH(s, t)) = PrG(v, IG(s, t)). Thus, dG(v, P ) = eccG(IG(s, t)) for all v ∈
VG with dG(v, IG(s, t)) = eccG(IG(s, t)) and projection PrG(v, IG(s, t)) intersect-
ing at most two slices of IG(s, t). For all other v ∈ VG, dG(v, P ) ≤ eccG(IG(s, t))
follows from Corollary 3 and Lemma 9. Thus, eccG(P ) = eccG(IG(s, t)).

Assume eccH(P ) > 1. Thus, there is a vertex v ∈ VH \ IH(s, t) such that
P does not intersect the projection PrH(g(v), IH(s, t)). Therefore, dG(v, P ) >
dG(v, IG(s, t)) = eccG(IG(s, t)). 	


For the analysis of the complexity of Algorithm 2, we assume that the
distance between any two vertices can be determined in constant time (i. e.,
the distance matrix of the graph is given). Computing the interval IG(s, t)
and eccG(IG(s, t)) can be done in O(m) total time. For a given vertex v,
dG(v, IG(s, t)) (line 3) and PrG(v, IG(s, t)) (line 4) can be calculated in O(n)
time by determining the distance to all vertices in IG(s, t). Repeating this for
all vertices in VG leads to a total runtime of O(n2).

After generating H, we need to determine if there is a shortest path from s
to t in H with eccentricity 1.

Algorithm 3. Finds a shortest (s, t)-path with minimal eccentricity in a
hedgehog graph H of a chordal graph.
Input: A hedgehog graph H = (V, E) of a chordal graph and a vertex pair s, t.
Output: A shortest path P from s to t with minimal eccentricity.
For each vertex v and each edge e in H, set ω(v) := 0 and ω(e) := 0.1

foreach u /∈ IH(s, t) do2

if NH(u) ⊆ Si(s, t) (for some i) then3

Set ω(v) := ω(v) + 1 for all v ∈ NH(u).4

else5

foreach vw ∈ E with dH(u, vw) = 1 and6

dH(s, u) = dH(s, v) + 1 = dH(s, w) do
ω(vw) := ω(vw) + 17

Find a shortest path P from s to t such that the sum of all vertex and edge8

weights of P is maximal.

Lemma 10. For a given vertex pair s, t and the corresponding hedgehog
graph H, Algorithm 3 determines a shortest (s, t)-path of H with minimal eccen-
tricity (one or two) in O(nm) time.
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Proof (Correctness). Let P be an arbitrary shortest path from s to t in H. We
say ω(P ) =

∑
u∈P ω(u) +

∑
vw∈E,vw∈P ω(vw) is the total weight of P . Because

H is based on a chordal graph, each slice of IH(s, t) is a clique. Thus, each path
from s to t has eccentricity at most 2. To proof the correctness of the algorithm,
we will show that the total weight of P is equal to the number of vertices adjacent
to P which are not part of the interval, i. e. ω(P ) = |NH [P ] \ IH(s, t)|.

The vertices of H can be partitioned into the following three sets: IH(s, t),
V1 containing all vertices x whose NH(x) intersects only one slice of IH(s, t),
and V2 containing all vertices x whose NH(x) intersects two slices of IH(s, t).

For each vertex u ∈ V1 the weight of every of its neighbors v is increased by 1
(line 4). Thus, ω(v) = |NH(v) ∩ V1|. Note that for v, v′ ∈ IH(s, t), dG(s, v) �=
dG(s, v′) implies NH(v) ∩ NH(v′) ∩ V1 = ∅. Therefore,

∑
v∈P ω(v) is the number

of vertices in V1 which are adjacent to P .
Let u ∈ V2 be a vertex such that NH(u) intersects the slices Si(s, t) and

Si+1(s, t). Then the weight of all edges vw from Si(s, t) to Si+1(s, t) which
intersect NH(u) is increased by 1 (line 7). Because the weight of an edge vw
is only increased if dH(s, u) = dH(s, v)+ 1 = dH(s, w), ω(vw) = |NH(vw)∩V2 ∩
L
(s)
i+1|. Therefore,

∑
vw∈E,vw∈P ω(vw) is the number of vertices in V2 which are

adjacent to P .
It follows that each vertex in NH [P ]\ IH(s, t) is counted exactly once for the

total weight of P . Therefore, P has eccentricity 1 if and only if ω(P ) = |V1∪V2|. 	

Proof (Complexity). Initialising the vertex and edge weights can be done in linear
time. For a vertex u /∈ IH(s, t), line 4 only updates the neighborhood of u. Thus,
the total runtime for line 4 is O(m).

Line 7 can be implemented in O(nm) time as follows. Let NH(u) intersect the
slices Si(s, t) and Si+1(s, t). First, update ω(vw′), for all vertices v ∈ Si(s, t) ∩
NH(u) and all w′ ∈ Si+1(s, t) ∩ NH(v). Also mark v as visited. Then, update
ω(v′w) for all vertices w ∈ Si+1(s, t) ∩ NH(u) and all v′ ∈ Si(s, t) ∩ NH(w)
where v′ is not marked as visited. Last, remove all marks from all vertices v ∈
Si(s, t) ∩ NH(u). For a given u, this runs in O(m) time. Thus, the total runtime
for line 7 is in O(nm).

Finding a shortest path P such that ω(P ) is maximal can be easily done in
linear time. Therefore, the overall runtime of Algorithm 3 is in O(nm). 	


Using the methods described above, we can now construct Algorithm 4 to
compute a minimum eccentricity shortest path in chordal graphs.

Theorem 4. Algorithm 4 computes a minimum eccentricity shortest path for a
given chordal graph in O(n3m) time.

Proof (Correctness). The algorithm creates a hedgehog graph H(s, t) for each
vertex pair s, t (line 3). Then it determines a shortest path P (s, t) from s to t
in H(s, t) with minimal eccentricity (line 4). By Theorem 3, P (s, t) is also a
shortest path with minimal eccentricity from s to t in G. Therefore, for at least
one pair s, t, the selected path P (s, t) is a minimum eccentricity shortest path
of G. Such a path is selected in line 5. 	
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Algorithm 4. Finds a shortest path P with minimum eccentricity for a
given chordal graph G.
Input: A chordal graph G = (V, E).
Output: A shortest path P with minimum eccentricity.
Calculate the pairwise distance for all vertices.1

foreach s, t ∈ V do2

Create a hedgehog graph H(s, t) of G for s and t using Algorithm 2.3

Find a shortest path P (s, t) with minimal eccentricity in H(s, t) using4

Algorithm 3.

Among all shortest paths P (s, t), select one for which eccG(P (s, t)) is minimal.5

Proof (Complexity). Calculating the pairwise distances between vertices (line 1)
can be done in O(nm) time. This allows to extract the distance between any
two vertices in constant time. Thus, H(s, t) can be created in O(n2) time. By
Lemma 10, finding a path with minimal eccentricity in H(s, t) runs in O(nm)
time. Therefore, the overall runtime for line 3 and line 4 is in O(n3m). The total
runtime for determining the eccentricities of all calculated paths to select the
minimum is in O(n2m). Thus, the algorithm runs in O(n3m) time. 	


5 Conclusion

We have investigated the Minimum Eccentricity Shortest Path problem for
distance-hereditary graphs and for chordal graphs. For distance-hereditary
graphs, we were able to present a linear time algorithm. For chordal graphs,
we gave an O(n3m) time algorithm.

The main reason for the large difference in the run-times of the two algorithms
is that the second one iterates over all vertex pairs of a chordal graph. We know
that, for general graphs, the problem remains NP-complete even if a start-end
vertex pair is given (see the reduction in [7]). Also, we have shown that there
is a shortest path with minimum eccentricity between every diametral pair of
vertices of a distance-hereditary graph (Theorem 1). This leads to the following
question: How hard is it to determine the start and end vertices of an optimal
path? This question applies to general graphs as well as to special graph classes
like chordal graphs.

Another interesting question is, for which other graph classes the problem
remains NP-complete or can be solved in polynomial time. The NP-completeness
proof in [7] uses a reduction from SAT. There is a planar version of 3-SAT
(see [11]). Does this imply that the problem remains NP-complete for planar
graphs?

Acknowledgement. This work was partially supported by the NIH grant R01
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Abstract. In Source Location (SL) problems the goal is to select a mini-
mum cost source set S ⊆ V such that the connectivity (or flow) ψ(S, v)
from S to any node v is at least the demand dv of v. In many SL problems
ψ(S, v) = dv if v ∈ S, so the demand of nodes selected to S is completely
satisfied. In a variant suggested recently by Fukunaga [7], every node v
selected to S gets a “bonus” pv ≤ dv, and ψ(S, v) = pv + κ(S \ {v}, v)
if v ∈ S and ψ(S, v) = κ(S, v) otherwise, where κ(S, v) is the maximum
number of internally disjoint (S, v)-paths. While the approximability of
many SL problems was seemingly settled to Θ(ln d(V )) in [20], for his
variant on undirected graphs Fukunaga achieved ratio O(k ln k), where
k = maxv∈V dv is the maximum demand. We improve this by achiev-
ing ratio min{p∗ ln k, k} · O(ln k) for a more general version with node
capacities, where p∗ = maxv∈V pv is the maximum bonus. In particular,
for the most natural case p∗ = 1 we improve the ratio from O(k ln k)
to O(ln2 k). To derive these results, we consider a particular case of the
Survivable Network (SN) problem when all edges of positive cost form
a star. We obtain ratio O(min{ln n, ln2 k}) for this variant, improving
over the best ratio known for the general case O(k3 ln n) of Chuzhoy and
Khanna [3].

In addition, we show that directed SL with unit costs is Ω(log n)-hard
to approximate even for 0, 1 demands, while SL with uniform demands
can be solved in polynomial time. Finally, we obtain a logarithmic ratio
for a generalization of SL where we also have edge-costs and flow-cost
bounds {bv : v ∈ V }, and require that the minimum cost of a flow of
value dv from S to every node v is at most bv.

1 Introduction

In Source Location (SL) problems, the goal is to select a minimum cost source set
S ⊆ V such that the connectivity from S to any node v is at least the demand
dv of v. Formally, the generic version of this problem is as follows.

c© Springer-Verlag Berlin Heidelberg 2016
E.W. Mayr (Ed.): WG 2015, LNCS 9224, pp. 203–218, 2016.
DOI: 10.1007/978-3-662-53174-7 15
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Source Location (SL)
Instance: A graph G = (V,E) with node-costs c = {cv : v ∈ V }, connectivity
demands d = {dv : v ∈ V }, and a source connectivity function ψ : 2V × V →
Z+, where Z+ denotes the set of non-negative integers.
Objective: Find a minimum cost source node set S ⊆ V such that ψ(S, v) ≥ dv

for every v ∈ V .

Several source connectivity functions ψ appear in the literature. To avoid
considering many cases, we suggest two generic types, that include previous
particular cases.

Definition 1. An integer set-function f on a groundset U is submodular if
f(A) + f(B) ≥ f(A ∩ B) + f(A ∪ B) for all A,B ⊆ U , and f is non-decreasing
if f(A) ≤ f(B) for all A ⊆ B ⊆ U .

Definition 2. Let G = (V,E) be a graph with node-capacities {qu : u ∈ V }. For
S ⊆ V and v ∈ V the (S, v)-q-connectivity λq

G(S, v) is the maximum number
of edge-disjoint paths from S \ {v} to v in G such that every node u ∈ V is an
internal node in at most qu paths. Given connectivity bonuses {pu ≥ qu : u ∈ V },
the (S, v)-(p, q)-connectivity λp,q

G (S, v) is defined by: λp,q
G (S, v) = pv + λq

G(S, v)
if v ∈ S, and λp,q

G (S, v) = λq
G(S, v) otherwise.

We will say that a source connectivity function ψ(S, v) is submodular if for
every v ∈ V , the function fv(S) = ψ(S, v) is submodular and non-decreasing;
ψ(S, v) is survivable if it is of the type ψ(S, v) = λp,q

G (S, v). The concept of q-
connectivity is essentially “mixed connectivity” (the case qu ∈ {0, k}) introduced
by Frank, Ibaraki, and Nagamochi [5], while (p, q)-connectivity combines it with
the connectivity function introduced recently by Fukunaga [7] (the case q ≡ 1).
The case of arbitrary node capacities includes additional connectivity versions
compared to [7], e.g., the edge-connectivity case.

It is not hard to see that every survivable source connectivity function ψ(S, v)
is submodular (see Sect. 4), but the inverse is not true in general. This gives only
two types of SL problems.

Submodular SL: The connectivity function ψ(S, v) is submodular.
Survivable SL: The connectivity function ψ(S, v) is survivable.

We list four source connectivity functions that appear in the literature. All
of them are submodular, and three of them are also survivable. Given an SL
instance let k = maxv∈V dv denote the maximum demand, and in the case of
Survivable SL let p∗ = maxu∈V pu denote the maximum connectivity bonus and
q∗ = minu∈V qu denote the minimum node capacity. In what follows assume that
1 ≤ qu ≤ pu ≤ k for all u ∈ V , and thus 1 ≤ p∗ ≤ k and 1 ≤ q∗ ≤ k holds.

1. λ-SL: λG(S, v) is the maximum number of pairwise edge-disjoint (S, v)-paths
if v /∈ S and λG(S, v) = ∞ otherwise.
This is Survivable SL with pu = qu = k for every u ∈ V .
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2. κ-SL: κ(S, v) is the maximum number of (S, v)-paths no two of which have a
common node in V \ (S ∪ v) if v /∈ S, and κ(S, v) = ∞ otherwise.

3. κ̂-SL: κ̂(S, v) is the maximum number of (S, v)-paths no two of which have a
common node in V \ {v} if v /∈ S, and κ̂(S, v) = ∞ otherwise.
This is Survivable SL with pu = k and qu = 1 for every u ∈ V .

4. κ′-SL: κ′(S, v) = κ̂(S, v) if v /∈ S and κ′(S, v) = pv + κ̂(S \ {v}, v) if v ∈ S.
This is Survivable SL with qu = 1 for every u ∈ V .

Table 1. Previous approximation ratios and lower bounds for SL problems. GC and
UC stand for general and uniform costs, GD and UD stand for general and uniform
demands, respectively.

c,d λ (p, q ≡ k) κ

Undirected Directed Undirected Directed

GC,GD Θ(ln d(V )) [2,20] Θ(ln d(V )) [2,20] Θ(ln d(V )) [2,20] Θ(ln d(V )) [2,20]

GC,UD in P [1] O(ln d(V )) [2] O(ln d(V )) [2] O(ln d(V )) [2]

UC,GD in P [1] O(ln d(V )) [2] O(ln d(V )) [2] O(ln d(V )) [2]

UC,UD in P [22] in P [10] O(ln d(V )) [2] O(ln d(V )) [2]

κ̂ (p ≡ k, q ≡ 1) κ′ (q ≡ 1)

GC,GD Θ(ln d(V )) [20] O(k ln k) [7] Θ(ln d(V )) [20] O(ln d(V )) [7] O(k ln k) [7] O(ln d(V )) [7]

GC,UD in P [17] in P [17]

UC,GD O(ln d(V )) [20] O(k) [9] O(ln d(V )) [20]

UC,UD in P [17] in P [17]

The known approximability status of SL problems with source connectivity
functions λ, κ, κ̂, κ′, is summarized in Table 1; see also a survey in [16]. The
approximability of λ, κ, κ̂-SL problems was settled to O(ln d(V )) in [20] (where
d(V ) =

∑
v∈V dv), while Fukunaga [7] showed that undirected κ′-SL admits ratio

O(k ln k). We prove the following.

Theorem 1. Submodular SL admits ratio O(ln d(V )). Undirected Survivable SL
admits ratio min{p∗ ln k, k} · O(ln(k/q∗)); furthermore, if q∗ = k (this is the
edge-connectivity case) then the ratio is exactly k.

Theorem 1 has several consequences. While ratio O(ln(d(V )) was known
for source connectivity functions λ,κ, κ̂ [20], our proof of a more general result
is simpler and shorter than the proof of each particular case. For undirected
graphs, the second part of Theorem 1 implies that Survivable SL problems admit
ratio O(k ln(k/q∗)) if p∗ ≥ k/ ln k (e.g., p∗ = k in λ-SL and κ̂-SL), and ratio
O(p∗ ln k ln(k/q∗)) if p∗ < k/ ln k (e.g., κ′-SL with p∗ = 1). In the case of λ-SL
we have q∗ = k which implies ratio exactly k. We note that ratio k for λ-SL
can be achieved by decomposing the problem into k problems with demands in
{0, �}, � = 1. . . . , k; each of these problems can be solved in polynomial time.
However, this algorithm is just a particular case of our algorithm.

Summarizing, we get the following result for connectivity functions λ, κ′.

Corollary 1. λ-SL admits ratio k and κ′-SL admits ratio O(p∗ ln2 k).
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To prove Theorem 1, we consider the following known problem.

Survivable Network (SN)
Instance: A graph G = (V,E) with edge-costs {ce : e ∈ E} and node
capacities {qu : u ∈ V }, and connectivity requirements r = {rsv : sv ∈ D} on
a set D of demand edges on V .
Objective: Find a minimum-cost subgraph G′ of G such that λq

G′(s, v) ≥ rsv

for every sv ∈ D.

Let k = maxsv∈D rsv denote the maximum requirement. For q ≡ k we get
the edge-connectivity version which admits ratio 2 due to Jain [11], while for
q ≡ 1 we get the node-connectivity version. SN admits a folklore ratio O(|D|),
and for directed graphs no better ratio is known. Undirected SN admits ratios
O

(
k3 log n

)
[3] for edge-costs, and O

(
k4 log2 n

)
for node-costs [18,23], and has

an Ω(max{{k1/4, |D|1/6}) approximation lower bound [14]. We consider the fol-
lowing particular case of SN, studied previously in [7,13].

Star-SN: the set F of edges in E of positive cost is a star with center a.

The Star-SN problem was defined in [13], where it was shown to admit ratio
O(ln n) for unit edge-costs. The study of this problem in [13] is motivated by the
observation that directed SN instances when (V, F ) is a complete graph with unit
edge costs (so called Connectivity Augmentation problem) can be reduced to Star-
SN with a loss of a factor of 2 in the approximation ratio. Fukunaga [7] observed
that κ′-SL is a special case of Star-SN. Hence the Star-SN problem is important, as
it generalizes several well known problems, and it is also a particular interesting
case of the SN problem. Our results for Star-SN substantially improve over the
best known ratios. These results are of independent interest, as they show that
Star-SN admits much better ratios than general SN.

Theorem 2. Star-SN admits approximation ratios O(ln n) for directed graphs,
and O(min{ln n, ln k ln(k/q∗)}) for undirected graphs.

We further study SL problems and prove the following.

Theorem 3. Directed Survivable SL for k = 1 and unit costs is Ω(log n)-hard to
approximate. Directed/undirected κ′-SL with uniform demands and with p ≡ 1
can be solved in polynomial time.

Finally, we consider the following generalization of Survivable SL. Given an
instance of Survivable SL and edge-costs c = {ce : e ∈ E}, let μp,q

G (S, v) denote
the minimum cost of an edge set F ⊆ E such that λp,q

(V,F )(S, v) ≥ dv, where
μp,q

G (S, v) = ∞ if no such edge set F exists (namely, if λp,q
G (S, v) < dv).

Survivable SL with Flow-Cost Bounds
Instance: As in Survivable SL, but in addition we are also given edge-costs
{ce : e ∈ E} and flow-cost bounds {bv ≤ c(E) : v ∈ V }.
Objective: As in Survivable SL, with an additional constraint μp,q

G (S, v) ≤ bv

for every v ∈ V .
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Theorem 4. Survivable SL with Flow-Cost Bounds admits approximation ratio
H(d(V )) + H(nc(E) − b(V )).

Theorem 4 will be proved in the full version, due to space limitation.

2 Relations Between SL and SN Problems

To explain the relation between SL and SN problems it would be convenient to
consider the augmentation version of the SN problem, with arbitrary connectivity
functions and allowing node-costs. Given a function w = {wu : u ∈ U} on a
groundset U and U ′ ⊆ U , let w(U ′) =

∑
u∈U ′ wu. If w is a cost function on U

and I is an edge-set on U , then the cost (or the node-costs) w(I) of I is the
cost of the set of the endnodes of I. Formally, we define the problem we need as
follows.

Network Augmentation (NA)
Input: A graph G = (V,E), an edge-set F on V , a cost function c on F or on
V , connectivity requirements r = {rsv : sv ∈ D} on a set D of demand edges
on V , and a family {fsv : 2F → Z+ : sv ∈ D} of connectivity functions.
Output: A min-cost edge-set I ⊆ F such that fsv(I) ≥ rsv for every sv ∈ D.

Note that here the connectivity functions fsv(I) differ from the source con-
nectivity functions in SL problems. As in the case of SL problems, we consider
two types of NA problems:

Submodular NA: connectivity functions fsv(I) are submodular and non-
decreasing.
Survivable NA: connectivity functions are fsv(I) = λq

G+I(s, v).

SN is a particular case of Survivable NA when E = ∅, but for edge-costs the
problems are equivalent. Here a survivable connectivity function may not be
submodular; indeed, we will obtain a logarithmic ratio for Submodular NA, while
Survivable NA has a polynomial approximation threshold. To see this, consider
the following simple example: V = {s, u, v}, E = ∅, F = {su, uv}, and f(I) =
fsv(I) = λ(V,I)(s, v) is just the edge connectivity function. Let A = {su} and
B = {sv}. Then f(A) = f(B) = 0 and f(A ∪ B) = 1, and the submodular
inequality in Definition 1 does not hold. However, we will show that if F is a
star, then in the case of directed graphs every survivable connectivity function
is submodular.

Let Rooted NA be a particular case of NA when D is a star with center s. As
we shall see, SL is equivalent to the node-costs version of the following particular
case of both Star-NA and Rooted NA.

Centered-NA: D,F are both stars with a common center s.

Fukunaga [7] made an important observation that κ′-SL is equivalent (via an
approximation ratio preserving reduction) to Survivable Centered-NA with edge-
costs and q ≡ 1. Here we further observe the following. For an edge-set/graph J
let δJ(X) denote the set of edges in J from X to V \ X.
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Lemma 1. For both directed and undirected graphs, Survivable SL is equivalent
to Survivable Centered-NA with node-costs such that δG(s) = ∅ and c(s) = 0.

Proof. Given a Survivable SL instance construct a Survivable Centered-NA
instance as follows: add to G a new node s of cost 0, and for every v ∈ V
set rsv = dv and put pv edges from s to v into F . Conversely, given a Survivable
Centered-NA instance construct a Survivable SL instance as follows. Remove s
from G, and for every v ∈ V set pv to be the number of edges in F from s to
v and dv = rsv. In both directions, it is easy to see that S is a solution to the
Survivable SL instance, if, and only if, the edge set I of all edges in F from s to
S is a solution to the Survivable Centered-NA instance, and clearly I and S have
the same node-cost. �

It is not hard to see that for Survivable Star-NA, approximation ratio ρ for
directed graphs implies ratio ρ for undirected graphs. This is achieved by a
standard reduction of bidirecting the edges of the undirected instance, removing
the directed edges entering the center a, and solving the problem on the obtained
directed instance. The same reduction works for Submodular Star-NA problems.
We omit the somewhat standard proof details.

The best known ratios for Survivable NA are O(k3 log n) for edge-costs [3], and
O

(
k4 log2 n

)
for node-costs [18,23]. The best known ratio for Survivable Rooted

NA are O(k log k) for edge-costs [18] and O
(
k2 log n

)
for node-costs [18,23], and

no better ratios were known even for Survivable Centered-NA, see [7] where ratio
O(k log k) for undirected Survivable Centered-NA was deduced in two ways: from
the ratio O(k log k) for Survivable Rooted NA [18], and via iterative rounding.
Our results for Star-NA, that imply Theorems 1 and 2, are summarized in the
following three statements.

Let H(j) denote the jth Harmonic number. The following lemma says that
Submodular Star-NA problems admit approximation ratio that is logarithmic in
terms of certain parameters α and β. These parameters are the maximum total
increase (namely, the sum of the increases) in connectivity of all pairs in D as a
result of taking a single edge (the parameter α) or a single node (the parameter
β) to the solution.

Lemma 2. For directed graphs, Submodular NA with edge costs admits ratio
H(α), and Submodular Star-NA with node costs admits ratio H(β), where

α = max
e∈F

∑

sv∈D

[min{fsv({e}), rsv} − fsv(∅)]

β = max
z∈V

∑

sv∈D

[min{fsv(δF (z)), rsv} − fsv(∅)].

The next lemma says that Survivable Star-NA is a particular case of Submod-
ular Star-NA, and thus the previous lemma can be applied. Moreover, the lemma
bounds the parameters α and β as above in terms of the Survivable Star-NA
instance ingredients r, D, and F .
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Lemma 3. For directed graphs, any Survivable Star-NA problem is a Submodular
NA problem, for which α ≤ |D| and β ≤ min{r(D), p∗|D|} holds, where here p∗

denotes the maximum number of parallel edges in F .

The above two lemmas imply ratio no better than O(ln |D|) = O(lnn) for
Survivable Star-NA. The next theorem, which is our main technical contribution,
says that for undirected graphs we can achieve ratio roughly O(p∗ ln2 k), which
may be much better that O(lnn) if the maximum requirement k = maxsv∈D rsv

and the maximum number p∗ of parallel edges in F are small.

Theorem 5. Undirected Survivable Star-NA admits ratio O(ln k ln(k/q∗)) for
edge-costs and min{p∗ ln k, k} · O(ln(k/q∗)) for node-costs; furthermore, in the
case of node costs and q∗ = k the ratio is exactly k.

The above three statements imply Theorem 2; combined with Lemma 1 they
also imply Theorem 1. Our ratios for Star-NA and SL are summarized Table 2.

Table 2. Approximation ratios for Star-NA and SL problems proved in this paper.

Submodular Survivable

directed undirected directed undirected

Star-NA
(edge-costs)

H(α) H(α) H(|D|) H(|D|)
O(ln k ln(k/q∗))

Star-NA
(node-costs)

H(β) H(β) H(min{r(D), p∗|D|}) H(min{r(D), p∗|D|})
min{p∗ ln k, k} ·
O(ln(k/q∗))

SL H(d(V )) H(d(V )) H(min{d(V ), p∗|V |}) H(min{d(V ), p∗|V |})
min{p∗ ln k, k} ·
O(ln(k/q∗))

We briefly mention the techniques we use to prove these statements. Lemma 2
is essentially an easy application of the greedy algorithm of Wolsey [24] for the
Submodular Cover problem. Parts of Lemma 3 were implicitly proved in [13], but
our proof is both more general and substantially simpler. Our main technical
contribution is Theorem 5. To prove this theorem, we consider the augmentation
version of Survivable Star-NA with edge-costs where the goal is to increase the
connectivity by one between the pairs in D. Using LP-scaling we show that ratio
ρ for the augmentation version implies ratio O(ρ ln k) for the edge-costs version of
the general problems, and ratio min{p∗ ln k, k} · O(ρ) for the node-costs version.
Then we design an O(ln(k/q∗))-approximation algorithm for the augmentation
version. This is achieved by formulating the augmentation problem as a Biset-
Family Edge-Cover problem, reducing the later problem to the problem of finding
a minimum cost vertex cover in a hypergraph, and using a theorem from [19] to
show that the maximum degree in the obtained hypergraph is O

(
(k/q∗)2

)
.
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3 Directed Submodular NA Problems (Lemma 2)

All graphs in this and the next sections are assumed to be directed. To prove
Lemma 2 we use a result due to Wolsey [24] about a performance of a greedy
algorithm for submodular covering problems. In a generic covering problem we
are given by a value oracle two set functions on a groundset U : a cost-function
c : 2U → R and a progress function g : 2U → Z. The goal is to find S ⊆ U
of minimum cost such that g(S) = g(U). The Submodular Cover problem is a
special case when the function g is submodular and non-decreasing, and c(S) =∑

v∈S c(v) for some c : U → R
+. Wolsey [24] proved that then, the greedy

algorithm, that starts with S = ∅ and as long as g(S) < g(U) repeatedely adds
to A an element u ∈ U \ S with maximum g(S∪{u})−g(S)

cu
, has approximation

ratio H (maxu∈U g({u}) − g(∅)).
We start with the case of edge-costs. Then the function g is defined in the

same way as in [13,20]: U = F and for I ⊆ F

g(I) =
∑

sv∈D

min{fsv(I), rsv}.

It is not hard to verify that g is non-decreasing, and that I is a feasible solution
to an NA instance if and only if g(I) = g(F ) = r(D). Also, for any e ∈ F

g({e}) − g(∅) =
∑

sv∈D

[min{fsv({e}), rsv} − fsv(∅)].

We show that g is submodular. It is known (c.f. [21]) that if h is sub-
modular, then min{h, r} is submodular for any constant r. Thus the function
hsv(I) = min{fsv(I), rsv} is submodular. As a sum of submodular functions is
also submodular, we obtain that g is submodular.

Now let us consider node-costs. For S ⊆ V let FS denote the set of edges in
F from a to S, and let f ′

sv(S) = fsv(FS). We have U = V and for S ⊆ V let

g′(S) =
∑

sv∈D

min{f ′
sv(S), rsv}.

As in the edge-costs case, it is not hard to verify that g′ is non-decreasing and
that S is a feasible solution to an NA instance if and only if g′(S) = g′(V ) = r(D).
Also, for any z ∈ V

g′({z}) − g′(∅) =
∑

sv∈D

[min{fsv(δF (z)), rsv} − fsv(∅)].

We show that g′ is submodular. We claim that the submodularity of f(I)
implies that f ′(S) is submodular. This is not true in general, but holds if F is
a star, and hence for Star-NA instances. More precisely, it is not hard to verify
the following statement, that finishes the proof of Lemma 2.
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Lemma 4. Let (V, F ) be a graph and let f be a submodular set function on F .
If F is a star with center a, then the set function f ′(S) = f(FS) defined on
V \ {a} is also submodular.

Proof. Let A,B ⊆ V \ {a}. It is easy to see that since F is a star then

FA ∩ FB = FA∩B FA ∪ FB = FA∪B.

Thus by the definition of f ′ and the submodularity of f we have

f ′(A) + f ′(B) = f(FA) + f(FB) ≥ f(FA ∩ FB) + f(FA ∪ FB)
= f(FA∩B) + f(FA∪B) = f ′(A ∩ B) + f ′(A ∪ B). �

4 Survivable Star-NA is a Submodular NA Problem (Lemma 3)

We start by showing that in the case of edge-costs, directed Survivable Star-NA is
a particular case of Submodular NA. Let s, v ∈ V and let f : 2F → Z be defined
by f(I) = λq

G+I(s, v), I ⊆ F . It is easy to see that f is non-decreasing and we
prove that if F is a star then f is submodular. For that, we use the following
known characterization of submodularity, c.f. [21]:

A set-function f on F is submodular if, and only if

f(I0 ∪ {e}) + f(I0 ∪ {e′}) ≥ f(I0) + f(I0 ∪ {e, e′}) ∀I0 ⊂ F, e, e′ ∈ F \ I0

Let us fix I0 ⊆ F . Revising our notation to G ← G + I0, F ← F \ I0, and
denoting h(I) = f(I0 ∪ I) − f(I0), we get that f is submodular if, and only if

h({e}) + h({e′}) ≥ h({e, e′}) ∀e, e′ ∈ F.

In our setting, F is a star and h(I) = λq
G+I(s, v) − λq

G(s, v) is the increase in
the (s, v)-q-connectivity as a result of adding I to G. Thus 0 ≤ h(I) ≤ |I|
for any I ⊆ F , so 0 ≤ h({e, e′}) ≤ 2. If h({e, e′}) = 0, then we are done; if
h({e, e′}) = 1, then we need to show that h({e}) = 1 or h({e′}) = 1; and if
h({e, e′}) = 2, then we need to show that h({e}) = 1 and h({e′}) = 1. We prove
a general statement, that implies the above; it says that if an augmenting edge
set I is a star that increases the st-connectivity by h, then there are h edges
in I that cover all minimum st-cuts, and thus each of these edges increases the
st-connectivity by 1.

Lemma 5. Let G = (V,E) be a directed graph with node capacities {qv : v ∈ V },
let I be a set of edges on V disjoint to E such that I is a star with center a, let
s, t ∈ V , and let h = λq

G+I(s, t) − λq
G(s, t). Then there is J ⊆ I of size |J | ≥ h

such that λq
G+{e}(s, t) = λq

G(s, t) + 1 for every e ∈ J .
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Proof. Since we consider directed graphs, it is sufficient to prove the lemma for
the case of edge-connectivity. For that, apply the following standard reduction
that eliminates node capacities: replace every v ∈ V \{s, t} by two nodes vin, vout

connected by qv parallel edges from vin to vout and replace every uv ∈ E ∪ I by
an edge from uout to vin. Hence we will prove the lemma for the edge connectivity
function λ.

Let us say that S ⊆ V is tight if s ∈ S, t /∈ S, and |δG(S)| = λG(s, t),
namely, if δG(S) is a minimum st-cut. Let F be the family of tight sets. By
Menger’s Theorem F is non-empty. It is also known that F is a ring family,
namely, the intersection of all the sets in F is nonempty, and if X,Y ∈ F then
X ∩Y,X ∪Y ∈ F . Thus F has a unique inclusion-minimal set Smin and a unique
inclusion-maximal set Smax, and Smin ⊆ Smax holds.

Let J = {av ∈ I : a ∈ Smin, v ∈ V \ Smax} be the set of edges in I that
go from Smin to V \ Smax. Each edge in J covers all members in F , hence by
Menger’s Theorem λG+{e}(s, t) = λG(s, t) + 1 for every e ∈ J .

It remains to prove that |J | ≥ h. We claim that since I is a star, then
λG+I(s, t) ≤ λG(s, t)+ |J |, hence |J | ≥ λG+I(s, t)−λG(s, t) = h. Note that from
Menger’s Theorem we have

λG+I(s, t) ≤ λG(s, t) + |δI(Smin)| λG+I(s, t) ≤ λG(s, t) + |δI(Smax)|
The first inequality implies that if δI(Smin) = ∅, then λG+I(s, t) = λG(s, t), and
thus we are done. Else, a ∈ Smin. In this case J = δI(Smax), since I is a star.
Then the second inequality implies λG+I(s, t) ≤ λG(s, t) + |J |, as claimed. �

Note that Lemma 5 does not hold if I is an arbitrary edge set. To see this,
consider the following example (this is the example given at the beginning of
Sect. 2): V = {s, u, t}, E = ∅, and I = {su, ut}. Then h = λG+I(s, t)−λG(s, t) =
1 − 0 = 1, but λG+{e}(s, t) = 0 for every e ∈ I.

We now bound the parameters α and β. The bound β ≤ r(D) is obvious,
while the other bounds on α and β follow from the simple observation that
for any s, v ∈ V , the set-function on F defined by f(I) = λq

G+I(s, v) has the
following properties: f({e}) ≤ 1 for any e ∈ F and f(δF (z)) ≤ |δF (z)| ≤ p∗ for
any z ∈ V .

The proof of Lemma 3 is now complete.

5 Undirected Survivable Star-NA (Theorem 5)

All graphs in this and the next section are assumed to be undirected. We start by
considering the edge-costs case, and then will show that it implies the node-costs
case by reductions. We need several definitions.

Definition 3. An ordered pair A = (A,A+) of subsets of a groundset V is
called a biset if A ⊆ A+; A is the inner part and A+ is the outer part of A,
and ∂A = A+ \ A is the boundary of A. An edge e covers a biset A if it has one
endnode in A and the other in V \ A+. For a biset A and an edge-set/graph J
let δJ(A) denote the set of edges in J covering A.
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Given an instance of Survivable NA and a biset A on V , let the requirement
of A be r(A) = max{ruv : uv ∈ δD(A)} if δD(A) �= ∅ and r(A) = 0 otherwise. By
the q-connectivity version of Menger’s Theorem (c.f. [12]), I ⊆ F is a feasible
solution to an Survivable NA instance if, and only if, |δI(A)| ≥ h(A) for every
bisets A on V , where h is a biset-function defined by

h(A) = max{r(A) − (q(∂A) + |δG(A)|), 0} (1)

Let Ph denote the polytope of “fractional edge-covers” of h, namely,

Ph =
{
x ∈ R

F : x (δF (A)) ≥ h(A) ∀ biset A on V, 0 ≤ xe ≤ 1 ∀e ∈ F
}

.

Let τ(h) denote the optimal value of a standard LP-relaxation for edge covering
h by a minimum cost edge set, namely, τ(h) = min

{∑
e∈F cexe : x ∈ Ph

}
.

As an intermediate problem, we consider Survivable NA instances when we
seek to increase the connectivity by 1 for every uv ∈ D, namely, when ruv =
λq

G(u, v) + 1 for all uv ∈ D.

D-Survivable NA (the edge-costs version)
Input: A graph G = (V,E) with node-capacities {qv : v ∈ V }, an edge set F
on V , a cost function c on F , and a set D of demand edges on V .
Output: Find a min-cost edge-set I ⊆ E such that λq

G+I(u, v) ≥ λq
G(u, v) + 1

for all uv ∈ D.

Given a D-Survivable NA instance, let us say that a biset A is tight if h(A) = 1,
where h is defined by (1). The D-Survivable NA problem is equivalent to the
problem of finding a minimum cost edge-cover of the family F = {A : h(A) = 1}
of tight bisets. Thus the following generic problem includes D-Survivable NA.

Biset-Family Edge-Cover
Input: A graph (V, F ) with edge-costs and a biset family F on V .
Output: Find a min-cost F-cover I ⊆ F .

For a biset-family F let τ(F) denote the optimal value of a standard LP-
relaxation for edge covering F by a minimum cost edge set, namely, τ(F) = τ(h)
where h is defined by h(A) = 1 if A ∈ F and h(A) = 0 otherwise.

The following statement considers the factor invoked by applying the so called
“backward augmentation” method due to [8]. Some parts of this statement are
known, but we will provide a proof for completeness of exposition.

Proposition 1. Suppose that D-Survivable Star-NA with edge-costs admits a
polynomial time algorithm that computes a solution of cost at most ρ(k)τ(F),
where F is the family of tight bisets. Then Survivable Star-NA admits a polyno-
mial time algorithm that computes a solution I such that:

– For edge-costs, c(I) ≤ τ(h) · ∑k
�=1

ρ(�)
k−�+1 , where h is defined by (1).

– For node-costs, c(I) ≤ opt · ∑k
�=1 ρ(�) · min

{
p∗

k−�+1 , 1
}
.
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Proof. We start with the edge-costs case. Consider the following sequential
algorithm. Start with I = ∅. At iteration � = 1, . . . , k, add to I and remove from
F an edge-set I� ⊆ F that increases by 1 the q-connectivity of G + I on the set of
demands

D� = {sv : λq
G+I(s, v) = r(s, v) − k + � − 1, sv ∈ D},

by covering the corresponding biset-family F� using the ρ-approximation
algorithm. After iteration �, we have λq

G+I(s, v) ≥ r(s, v) − k + � for all sv ∈ D.
Consequently, after k iterations λq

G+I(s, v) ≥ r(s, v) holds for all sv ∈ D, thus
the computed solution is feasible. The approximation ratio follows from the fol-
lowing two observations.

(i) c(I�) ≤ ρ(�) · τ(F�). This is so since λ(s, v) ≤ � − 1 for every sv ∈ D�, hence
the maximum requirement at iteration � is at most �.

(ii) τ(F�) ≤ τ(h)
k−�+1 . To see this, note that if A ∈ F� and x ∈ Ph then x(δ(A)) ≥

k − �+1, by Menger’s Theorem. Thus x/(k − �+1) is a feasible solution for
the LP-relaxation for edge-covering F�, of value c · x/(k − � + 1).

Consequently, c(I) =
∑k

�=1 c(I�) ≤ ∑k
�=1 ρ(�) · τ(h)

k−�+1 = τ(h) · ∑k
�=1

ρ(�)
k−�+1 .

Now let us consider the case of node-costs. Then we convert node-costs into
edge-costs by assigning to every edge e = av the cost c′(e) = c(v). Let opt′

denote the optimal solution value of the edge-costs instance obtained. Clearly,
opt ≤ opt′ ≤ p∗ ·opt. Note that any inclusion minimal solution to a D-Survivable
NA instance has no parallel edges. This implies that c(I�) ≤ ρ(�) · opt and that
c(I�) = c′(I�). The latter implies c(I�) = c′(I�) ≤ ρ(�) · opt′

k−�+1 ≤ ρ(�) ·opt · p∗

k−�+1 ,
and the statement for the node-costs case follows. �

In the next section we prove the following theorem, that together with
Proposition 1 finishes the proof of Theorem 5.

Theorem 6. Undirected D-Survivable Star-NA with edge-costs admits a polyno-
mial time algorithm that computes a solution I of cost τ(F) · O(ln(k/q∗)). Fur-
thermore, if D is a star then c(I) ≤ τ(F) · H

(
2
⌊

k−1
q∗

⌋
+ 1

)
.

6 Proof of Theorem 6

Recall that D-Survivable NA reduces to Biset-Family Edge-Cover with F being
the family of tight bisets; in the case of rooted requirements, when D is a star
with center s, it is sufficient to cover the biset-family

Fs = {A ∈ F : s ∈ V \ A+}.

Biset-families arising from Survivable NA instances have some special prop-
erties, that are summarized in the following definitions.

Definition 4. The intersection and the union of two bisets A,B is defined by
A ∩ B = (A ∩ B,A+ ∩ B+) and A ∪ B = (A ∪ B,A+ ∪ B+). The biset A \ B is
defined by A \ B = (A \ B+, A+ \ B). We write A ⊆ B and say that B contains
A if A ⊆ B and A+ ⊆ B+. Let CF denote the inclusion-minimal bisets in F .
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Definition 5. Two bisets A,B covered by an edge-set D are D-independent if
for any xx′, yy′ ∈ D such that xx′ covers A and yy′ covers B, {x, x′} ∩ ∂B �= ∅
or {y, y′}∩∂A �= ∅; otherwise, A,B are D-dependent. We say that a biset family
F is D-uncrossable if D covers F and if for any D-dependent A,B ∈ F the
following holds:

A ∩ B,A ∪ B ∈ F or A \ B,B \ A ∈ F . (2)

Similarly, given a set T ⊆ V of terminals, we say that A,B are T -independent
if A ∩ T ⊆ ∂B or if B ∩ T ⊆ ∂A, and A,B are T -dependent otherwise. We say
that F is T -uncrossable if T covers the set-family of the inner parts of F , and
if (2) holds for any T -dependent A,B ∈ F .

A biset-family F is symmetric if A ∈ F implies (V \A+, V \A) ∈ F . We will
use the the following statement, that was implicitly proved in [19].

Lemma 6 ([19]). The family F of tight bisets is symmetric and D-uncrossable;
if D is a star with leaf-set T then {A ∈ F : s /∈ A+} is T -uncrossable.

For a biset-family F let γF = max{|∂A| : A ∈ F} denote the maximum
size of the boundary of a biset in F . Note that if F is the family of tight bisets
then γF ≤ (k − 1)/q∗. Given an instance of Biset-Family Edge-Cover, we will
assume that the family C of the inclusion members of F can be computed in
polynomial time. We note that for F being the family of tight bisets, this step
can be implemented in polynomial time, c.f. [19]. Under this assumption, we
prove the following generalization of Theorem 6.

Theorem 7. For edge/node-costs, Biset-Family Edge-Cover with F being a star
admits a polynomial time algorithm that computes a cover I of F such that:

(i) c(I) ≤ H
(
(4γC + 1)2

)
· τ(F) if F is symmetric and D-uncrossable.

(ii) c(I) ≤ H(2γC +1)·τ(F) if F is T -uncrossable and a ∈ V \X+ for all A ∈ F .

In the rest of this section we prove Theorem 7.

Definition 6. A set U ⊆ V of nodes is a C-transversal of a hypergraph (set-
family) C on V if U intersects every set in C; if C is a biset-family then U should
intersect the inner part of every member of C. Given node costs {cv : v ∈ V },
let t∗(C) denote the minimum value of a fractional C-transversal, namely:

t∗(C) = min{
∑

v∈V

cvxv : x(C) ≥ 1 ∀C ∈ C, x(v) ≥ 0 ∀v ∈ V }.

In [19], the following is proved.

Theorem 8 ([19]). Let C be the family of the inclusion members of a biset
family F . Then the maximum degree in the hypergraph {C : C ∈ C} is at most:

(i) (4γC + 1)2 if F is D-uncrossable.
(ii) 2γC + 1 if F is T -uncrossable.
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Given a hypergraph (V, C) with node-costs, the greedy algorithm computes
in polynomial time a C-transversal U ⊆ V of cost c(U) ≤ H(Δ(C))t∗(C), where
Δ(C) is the maximum degree of the hypergraph (c.f. [15]).

The following statement is obvious.

Lemma 7. If an edge-set I covers a biset-family F then the set of endnodes of
I is a transversal of F .

Lemma 8. Let F be a biset family on V and I a star with center a on a transver-
sal U ⊆ V of F . Then I covers F in each one of the following cases.

(i) F is symmetric and a /∈ Γ (A) for all A ∈ F .
(ii) a ∈ V \ A+ for all A ∈ F .

Proof. Let A ∈ F . Then a ∈ A or a ∈ V \ A+. If a ∈ V \ A+, then since U is a
transversal of C, there is u ∈ U ∩ A. If a ∈ A, then if F is symmetric, then there
u ∈ U ∩ (V \ X+). In both cases, there is an edge au ∈ I, and it covers A. �

The algorithm as in Theorem 7, for both edge-costs and node-costs is as
follows, where in the case of node-costs we may assume that the cost of a is zero.

1. For every v ∈ V \ {a}, let ev be the minimum-cost edge incident to v, and
in the case of edge-costs define node-costs cv = mine∈δF (v) ce if δF (v) �= ∅,
and cv = ∞ otherwise.

2. Let C be the family of the inclusion members of F . With node-costs
{cv : v ∈ V }, compute a transversal U of C of cost c(U) ≤ H(Δ(C))t∗(C).

3. Return I = {ev : v ∈ U}.

The solution computed is feasible by Lemma 8. The approximation ratio
follows from Theorem 8 and Lemma 7.

This concludes the proof of Theorem 6, and thus also the proof of Theorem 5.

7 Proof of Theorem 3

Note that in the reduction in Lemma 1 we have the following.

– Uniform demands dv = k for all v ∈ V in Survivable SL correspond to require-
ments rsv = k for all v ∈ V \ {s} in Survivable Centered-NA.

– κ′-SL with p ≡ 1 corresponds to Survivable Centered-NA with edge costs.
– Unit node-costs in Survivable SL correspond to unit node-costs in Survivable
Centered-NA.

Directed Rooted Survivable NA with edge-costs and requirements rsv = k
for all v ∈ V \ {s} can be solved in polynomial time [6]; this implies that also
undirected Survivable Centered-NA with edge-costs and requirements rsv = k for
all v ∈ V \ {s} can be solved in polynomial time. Thus the same holds for κ′-SL
with p ≡ 1 and uniform demands.
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Frank [4] showed that directed Survivable Centered-NA with δG(s) = ∅ and
k = 1 is NP-hard. Using a slight modification of his reduction we can show that
the problem is in fact Set-Cover hard to approximate, and thus is Ω(log n)-hard
to approximate. Given an instance of Set-Cover, where a family A of sets needs
to cover a set B of elements, construct the corresponding directed bipartite
graph G′ = (A ∪ B,E′), by putting an edge from every set to each element it
contains. The graph G = (V,E) is obtained from G′ by adding M copies of B,
connecting A to each copy in the same way as to B, and adding a new node s.
Let F = {sv : v ∈ V }, c(e) = 1 for every e ∈ F , and rsv = 0 if v ∈ A and rsv = 1
otherwise. It is easy to see that if I ⊆ F is a feasible solution to the obtained
Survivable Centered-NA instance, then either I corresponds to a feasible solution
to the Set-Cover instance, or |I| ≥ M . The Ω(log n)-hardness follows for M large
enough, say |M | = (|A| + |B|)2, and |A| = |B|. Since for k = 1 all connectivity
functions of Survivable NA are equivalent, we get Ω(log n) hardness for directed
Survivable NA with k = 1 and unit costs.
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Abstract. The k-restricted edge-connectivity of a graph G, denoted by
λk(G), is defined as the minimum size of an edge set whose removal leaves
exactly two connected components each containing at least k vertices.
This graph invariant, which can be seen as a generalization of a mini-
mum edge-cut, has been extensively studied from a combinatorial point
of view. However, very little is known about the complexity of comput-
ing λk(G). Very recently, in the parameterized complexity community
the notion of good edge separation of a graph has been defined, which
happens to be essentially the same as the k-restricted edge-connectivity.
Motivated by the relevance of this invariant from both combinatorial and
algorithmic points of view, in this article we initiate a systematic study of
its computational complexity, with special emphasis on its parameterized
complexity for several choices of the parameters. We provide a number
of NP-hardness and W[1]-hardness results, as well as FPT-algorithms.

Keywords: Graph cut · k-restricted edge-connectivity · Good edge sep-
aration · Parameterized complexity · FPT-algorithm · polynomial kernel

1 Introduction

Motivation. The k-restricted edge-connectivity is a graph invariant that has
been widely studied in the literature from a combinatorial point of view [1,5,
16,21,30,31]. Since the classical edge-connectivity may not suffice to measure
accurately how connected a graph is after deleting some edges, Esfahanian and
Hakimi [15] proposed in 1988 the notion of restricted edge-connectivity. An edge-
cut S is called a restricted edge-cut if there are no isolated vertices in G−S. The
restricted edge-connectivity λ′(G) is the minimum cardinality over all restricted
edge-cuts S.

Inspired by the above definition, Fàbrega and Fiol [16] proposed in 1994 the
notion of k-restricted edge-connectivity, where k is a positive integer, generalizing
this notion. An edge-cut S is called a k-restricted edge-cut if every component
of G−S has at least k vertices. Assuming that G has k-restricted edge-cuts, the
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k-restricted edge-connectivity of G, denoted by λk(G), is defined as the minimum
cardinality over all k-restricted edge-cuts of G, i.e.,

λk(G) = min{|S| : S ⊆ E(G) is a k-restricted edge-cut}.

Note that for any graph G, λ1(G) is the size of a minimum edge-cut, and
λ2(G) = λ′(G). A connected graph G is called λk-connected if λk(G) exists. Let
[X,Y ] denote the set of edges between two disjoint vertex sets X,Y ⊆ V (G),
and let X denote the complement X = V (G)\X of vertex set X. It is clear that
for any k-restricted cut [X,X] of size λk(G), the graph G − [X,X] has exactly
two connected components.

Very recently, Chitnis et al. [6] defined the notion of good edge separation for
algorithmic purposes. For two positive integers k and �, a partition (X,X) of
the vertex set of a connected graph G is called a (k, �) -good edge separation if
|X|, |X| > k, |[X,X]| ≤ �, and both G[X] and G[X] are connected. That is, it
holds that λk(G) ≤ � if and only if G admits a (k − 1, �)-good edge separation.
Thus both notions, which have been defined independently and for which there
existed no connection so far, are essentially the same.

Good edge separations turned out to be very useful for designing parame-
terized algorithms for cut problems [6], by using a technique known as recur-
sive understanding, which basically consists in breaking up the input graph into
highly connected pieces in which the considered problem can be efficiently solved.
It should be mentioned that Kawarabayashi and Thorup [22] had defined before
a very similar notion for vertex-cuts and introduced the idea of recursive under-
standing. This technique has also been subsequently used in [9,23].

Very little is known about the complexity of computing the k-restricted edge-
connectivity of a graph, in spite of its extensive study in combinatorics. In this
article we initiate a systematic analysis on this topic, with special emphasis on
the parameterized complexity of the problem. In a nutshell, the main idea is
to identify relevant parameters of the input of some problem, and study how
the running time of an algorithm solving the problem depends on the chosen
parameters. See [12,17,27] for introductory textbooks to this area.

Our results. We consider two problems concerning the k-restricted edge-
connectivity of a graph. Namely, given a connected graph G and an integer k,
determining whether G is λk-connected or not, and determining the value of
λk(G), if it exists. This latter problem, which we call Restricted Edge-

connectivity (REC for short), can be seen as a generalization of computing a
Minimum Cut in a graph, which is polynomial-time solvable [28]. In Sect. 2 we
prove that it is NP-hard, even restricted to λk-connected graphs. In Sect. 3 we
study the parameterized complexity of the REC problem. More precisely, given
a connected graph G and two integers k and �, we consider the problem of deter-
mining whether λk(G) ≤ �. Existing results concerning good edge separations
imply that the problem is FPT when parameterized by k and �. We prove that it
is W[1]-hard when parameterized by k, and that it is unlikely to admit polyno-
mial kernels when parameterized by �. Moreover, we prove that deciding whether
a graph is λk-connected is FPT when parameterized by k. Finally, in Sect. 4 we
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also consider the maximum degree Δ of the input graph as a parameter, and we
prove that deciding whether a graph is λk-connected remains NP-complete in
graphs with Δ ≤ 5, and that the REC problem is FPT when parameterized by
k and Δ. Note that this implies, in particular, that the REC problem parame-
terized by k is FPT in graphs of bounded degree. Table 1 summarizes the results
of this article.

Table 1. Summary of our results, where Δ denotes the maximum degree of the input
graph G, and NPc (resp. NPh) stands for NP-complete (resp. NP-hard). The symbol
‘�’ denotes that the problem is not defined for that parameter.

Problem Classical Parameterized complexity with parameter

complexity k + � k � k + Δ � + Δ

Is G λk-
connected ?

NPc, even if
Δ ≤ 5
(Theorem 6)

FPT

(Theorem 2
by [6])

FPT (Theorem 4) � FPT

(Theorem 7)
�

λk(G) ≤ � ? NPh, even if G is
λk-connected
(Theorem 1)

FPT

(Theorem 2
by [6])

W[1]-hard
(Theorem 3)

No poly kernels
(Theorem 5)

FPT

(Theorem 7)
?

Remarks and further research. In view of Table 1, the main open question
is whether the REC problem is FPT when parameterized by �. In this direction,
it is worth noting that for the Minimum Bisection problem, which is strongly
related to the REC problem with parameter �, the non-existence of polynomial
kernels [29] was known before the problem was recently proved to be FPT [9]. In
fact, it was proved in [9] that the following more general problem, which is even
closer to the REC problem, is FPT with parameter �: Given a graph G and two
integers k and �, decide whether there exists a partition of V (G) into A and B
such that |A| = k and there are at most � edges between A and B.

Even when considering the combined parameter � + Δ, the parameterized
complexity of the REC problem is open. Our intuition is that adding Δ as a
parameter may not make the problem much easier, as for Minimum Bisection,
in terms of approximability the problem is as hard in 3-regular graphs as in
general graphs [2].

Other interesting questions are determining the existence of polynomial ker-
nels for the REC problem with parameter k + �, improving the bound on the
maximum degree in Theorem 6, and studying the (parameterized) complexity
of the REC problem in planar graphs and other sparse graph classes.

Finally, let us mention that Bonsma, Ueffing and Volkmann [5] defined an
extension of the minimum edge-degree of a graph for an integer k ≥ 2, called the
minimum k-edge-degree. This notion turns out to be related to the k-restricted
edge-connectivity of a graph. Due to this relation, in Appendix C we study the
parameterized complexity of computing the minimum k-edge-degree of a graph.

Notation. We use standard graph-theoretic notation; see for instance [10]. For
a graph G, let Δ(G) denote its maximum degree, and for a vertex v, its degree
in G is denoted by dG(v). If S ⊆ V (G), we define G − S = G[V (G)\S], and
if S ⊆ E(G), we define G − S = (V (G), E(G)\S). Unless stated otherwise,
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throughout the article n denotes the number of vertices of the input graph of
the problem under consideration. We will always assume that the input graphs
are connected.

2 Preliminary Results

Clearly, any connected graph G is λ1-connected, and λ1(G) can be computed in
polynomial time by a Minimum Cut algorithm (cf. [28]). However, for k ≥ 2,
there exist infinitely many connected graphs which are not λk-connected, such
as the graphs containing a cut vertex u such that every component of G −u has
at most k − 1 vertices (these graphs are called flowers in the literature [5], and
correspond exactly to stars when k = 2). Moreover, the problem of determining
whether a graph is λk-connected is hard. Indeed, given a graph G, if n is even
and k = n/2, by [13, Theorem 2.2] it is NP-complete to determine whether
G contains two vertex-disjoint connected subgraphs of order n/2 each. We can
summarize this discussion as follows.

Remark 1. Determining whether a connected graph is λk-connected is NP-
complete when k is part of the input.

In Sect. 4 we will strengthen the above hardness result to the case where the
maximum degree of the input graph is at most 5.

In this article we will be interested in the following optimization problem.

Restricted Edge-connectivity (REC)

Instance: A connected graph G = (V,E) and a positive integer k.
Output: λk(G), or a correct report that G is not λk-connected.

Note that Remark 1 implies that the above problem is NP-hard. Furthermore,
even if the input graph G is guaranteed to be λk-connected, computing λk(G)
remains hard, as shown by the following theorem.

Theorem 1. The REC problem is NP-hard restricted to λk-connected graphs.

Proof: We prove it for n even and k = n/2. The reduction is from the Minimum

Bisection problem1 restricted to connected 3-regular graphs, which is known
to be NP-hard [3]. Given a 3-regular connected graph G with even number of
vertices as instance of Minimum Bisection, we construct from it an instance
G′ of REC by adding two non-adjacent universal vertices v1 and v2. Note that
G′ is λn/2-connected, since any bipartition of V (G′) containing v1 and v2 in
different parts induces two connected subgraphs.

We claim that v1 and v2 should necessarily belong to different connected sub-
graphs in any optimal solution in G′. Indeed, let (V1, V2) be a bipartition of V (G)

1 Given a graph G with even number of vertices, the Minimum Bisection problem
consists in partitioning V (G) into two equally-sized parts minimizing the number of
edges with one endpoint in each part.
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such that |[V1, V2]| = λn/2(G′), and assume for contradiction that v1, v2 ∈ V1.
Since G is connected, there is a vertex u ∈ V2 with at least one neighbor in
V1\{v1, v2}. Let V ′

1 := V1∪{u}\{v2} and V ′
2 := V2∪{v2}\{u}, and note that both

G[V ′
1 ] and G[V ′

2 ] are connected. Since u has at least one neighbor in V1\{v1, v2}, G
is 3-regular, and v1 and v2 are non-adjacent and adjacent to all other vertices of
G′, it can be checked that |[V ′

1 , V
′
2 ]| ≤ |[V1, V2]|−1 = λn/2(G′)−1, contradicting

the definition of λn/2(G′).
Therefore, solving the REC problem in G′ corresponds exactly to solving the

Minimum Bisection problem in G, concluding the proof. ��

3 A Parameterized Analysis

The NP-hardness results of the previous section naturally lead to considering
parameterized versions of the problem. In this section we consider the following
three distinct parameterizations.

Parameterized Restricted Edge-connectivity (p-REC)

Instance: A connected graph G = (V,E) and two integers k and �.
Parameter 1: The integers k and �.
Parameter 2: The integer k.
Parameter 3: The integer �.

Question: λk(G) ≤ � ?

As mentioned in the introduction, determining whether λk(G) ≤ � corre-
sponds exactly to determining whether G admits a (k − 1, �)-good edge sep-
aration. This latter problem has been recently shown to be solvable in time
2O(min{k,�} log(k+�)) · n3 log n by Chitnis et al. [6, Lemma II.2].

Theorem 2 (Chitnis et al. [6]). The p-REC problem is FPT when parame-
terized by both k and �.

We would like to note that any improvement on the running time of the
algorithm behind Theorem 2 would answer an open question raised in [7,8], and
would have direct consequences and improve the algorithms described in [6,9,23].

As pointed out in [15,20], the p-REC problem can be solved in time O∗(n2k).
Roughly, the idea is to guess two sets of k vertices inducing a connected sub-
graph, contract them into two vertices s and t, and then call a polynomial-time
Minimum Cut algorithm between s and t (cf. [28]). In other words, it is in XP

when parameterized by k. The following theorem shows that this is essentially
the best algorithm we can hope for when the parameter is only k.

Theorem 3. The p-REC problem is W[1]-hard when parameterized by k.

Proof: We reduce from k-Clique, which is known to be W[1]-hard [12]. The
parameterized reduction is the same as the one given by Downey et al. in [11,
Theorem 2] to show the W[1]-hardness of the Cutting k Vertices from a

Graph problem, only the analysis changes.
Let G = (V,E) be an n-vertex graph for which we wish to determine whether

it has a k-clique. We construct a graph G′ as follows:
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(1) We start with a clique C of size n3 and n representative vertices correspond-
ing bijectively with the vertices of G.

(2) Every representative vertex v is connected to n2 − dG(v) arbitrary vertices
of C.

(3) If uv ∈ E(G) then uv ∈ E(G′).

Fig. 1. Illustration of the graph G′ in the proof of Theorem 3.

See Fig. 1 for an illustration of G′. Consider � = kn2−2
(
k
2

)
and take k ≤ n/2.

We claim that G has a k-clique if and only if G′ is a Yes-instance of p-REC.
Suppose first that K ⊆ V (G) is a k-clique in G. Obviously, K is connected in

G′ and has k vertices. On the other hand, G′ −K is also connected with at least
n3−|K| > k vertices. Finally, it is straightforward to check that |[K,V (G′)\K]| =
kn2 − 2

(
k
2

)
= �.

In the other direction, suppose G′ has a k-restricted edge-cut with at most
� edges, i.e., there exists K ⊆ V (G′) such that G[K] and G′ − K are connected,
|K| ≥ k, |V (G′) \K| ≥ k, and |[K,V (G′) \K]| ≤ �. Two cases need to be
distinguished.

Case 1. C ∩ K = ∅. Then every vertex of K must be a representative vertex.
Hence |[K,V (G′)\K]| = |K|n2 − 2|E(G′[K])| since every representative vertex
has degree n2. As by hypothesis |[K,V (G′)\K]| ≤ � = kn2 −2

(
k
2

)
, it follows that

|E(G′[K])| =
(
k
2

)
, hence K must be a k-clique.

Case 2. C ∩ K �= ∅. Note that for every bipartition (C1, C2) of C we have
that |[C1, C2]| ≥ n3 − 1 > �. Now suppose C ∩ (V (G′) \ K) �= ∅ and con-
sider the bipartition C1 = C ∩ K and C2 = C ∩ (V (G′) \ K) of C. Then
|[K,V (G′)\K]| ≥ |[C1, C2]| ≥ n3 − 1 > �, a contradiction. Therefore, we have
that C ∩ (V (G′)\K) = ∅. The proof concludes by applying Case 1 to V (G′)\K
instead of K. ��

In contrast to Theorem 3 above, we now prove that the problem of deter-
mining whether a connected graph G is λk-connected (which is NP-complete by
Remark 1) is FPT when parameterized by k. The proof uses the technique of
splitters introduced by Naor et al. [26], which has also been recently used for
designing parameterized algorithms in [6,9,23]. Our main tool is the following
lemma.
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Lemma 1 (Chitnis et al. [6]). There exists an algorithm that given a set U of
size n and two integers a, b ∈ [0, n], outputs in time 2O(min{a,b}·log(a+b)) · n log n
a set F ⊆ 2U with |F| = 2O(min{a,b}·log(a+b)) · log n such that for every two sets
A,B ⊆ U , where A ∩ B = ∅, |A| ≤ a, and |B| ≤ b, there exists a set S ∈ F with
A ⊆ S and B ∩ S = ∅.
Theorem 4. Given a connected graph G and a positive integer k, the problem
of determining whether G is λk-connected is FPT when parameterized by k.

Proof: We use the easy property that G is λk-connected if and only if G con-
tains two vertex-disjoint trees T1 and T2 such that |V (T1)| ≥ k and |V (T2)| ≥ k.
In order to apply Lemma 1, we take U = V (G) and a = b = k, obtaining in time
kO(k) · n log n the desired family F of subsets of vertices of G. Now, if such trees
T1 and T2 exist, then necessarily there exists a set S ∈ F such that V (T1) ⊆ S
and V (T2) ∩ S = ∅. Therefore, in order to determine whether G is λk-connected
or not, it suffices to check, for each set S ∈ F , whether both G[S] and G − S
contain a connected component with at least k vertices. (Note that for each such
set S ∈ F , this can be done in linear time.) Indeed, if such a set S exists, then
clearly G is λk-connected. Otherwise, by the property of the family F , G does
not contain two disjoint trees T1 and T2 of size k each, and therefore G is not
λk-connected. ��

Concerning the parameterized complexity of the p-REC problem, in view of
Theorems 2 and 3, it just remains to settle the case when the parameter is �
only. While we cannot prove whether the p-REC problem is FPT or not when
parameterized by �, we are able to prove that it does not admit polynomial
kernels, assuming that coNP ⊆ NP/poly.

Theorem 5. Unless coNP ⊆ NP/poly, the p-REC problem does not admit
polynomial kernels when parameterized by �.

Proof: The proof is strongly inspired by the one given by van Bevern et al. [29,
Theorem 3] to prove that the Minimum Bisection problem does not admit
polynomial kernels, which in turn resembles the proof given by Garey et al. [19]
to prove the NP-hardness of Minimum Bisection. The main difference with
respect to the proof given in [29] is that we need to make the appropriate mod-
ifications to guarantee that both parts left out by the edge-cut are connected,
which is not an issue in the Minimum Bisection problem.

We will first rule out the existence of polynomial kernels for the generalization
of p-REC where the edges have non-negative integer weights, and the objective
is to decide whether the input graph can be partitioned into two connected
subgraphs with at least k vertices each by removing a set of edges whose total
weight does not exceed �. We call this problem Edge-Weighted p-REC. Then
it will just remain to get rid of the edge weights. This is done in Appendix A.

As shown by Bodlaender et al. [4], in order to prove that Edge-Weighted

p-REC does not admit polynomial kernels when parameterized by � (assuming
that coNP ⊆ NP/poly), it is sufficient to define a cross composition from an NP-
hard problem to Edge-Weighted p-REC. In our case, the NP-hard problem is
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Maximum Cut (see [18]), which is defined as follows. Given a graph G = (V,E)
and an integer p, one has to decide whether V can be partitioned into two sets
A and B such that there are at least p edges with an endpoint in A and an
endpoint in B.

A cross composition from Maximum Cut to Edge-Weighted p-REC

parameterized by � consists in a polynomial-time algorithm that, given t
instances (G1, p1), . . . , (Gt, pt) of Maximum Cut, constructs an instance
(G∗, k, �) of Edge-Weighted p-REC such that (G∗, k, �) is a Yes-instance
if and only if one of the t instances of Maximum Cut is a Yes-instance, and
such that � is polynomially bounded as a function of max1≤i≤t |V (Gi)|. Similarly
to [29], we may safely assume that t is odd, that for each 1 ≤ i ≤ t we have
|V (Gi)| =: n and pi =: p, and that 1 ≤ p ≤ n2.

Given (G1, p), . . . , (Gt, p), we create G∗ as follows. Let w1 := 5n2 and w2 := 5.
For each graph Gi = (Vi, Ei) add to G∗ the vertices in Vi and a clique V ′

i with
|Vi| = n vertices whose edges have weight w1. Add an edge of weight w1 between
each vertex in Vi and each vertex in V ′

i . For each pair of vertices u, v ∈ Vi,
add the edge {u, v} to G∗ with weight w1 − w2 if {u, v} ∈ Ei, and with weight
w1 otherwise. Let s1i , s

2
i be two arbitrary distinct vertices in V ′

i , which we call
link vertices. For 1 ≤ i ≤ t − 1, add two edges with weight 1 between s1i and
s1i+1 and between s2i and s2i+1, and two edges with weight 1 between s1t and s11
and between s2t and s21. This completes the construction of G∗; see Fig. 2 for an
illustration. These 2t edges among distinct V ′

i ’s are called chain edges. Finally,
we set k := |V (G∗)|/2 and � := w1n

2 −w2p + 4. Note that k is not polynomially
bounded in terms of n, but this is not a problem since the parameter we consider
is �, which is bounded by 5n4. This construction can clearly be performed in
polynomial time in t · n. We claim that (G∗, k, �) is a Yes-instance of Edge-

Weighted p-REC if and only if there exists i ∈ {1, . . . , t} such that (Gi, p) is
a Yes-instance of Maximum Cut.

Fig. 2. Illustration of the graph G∗ in the proof of Theorem 5.

Assume first that there exists i ∈ {1, . . . , t} such that (Gi, p) is a Yes-
instance of Maximum Cut. Assume without loss of generality that i = 1, and
let V1 = A � B such that there are at least p edges in E1 between A and B.
We proceed to partition V (G∗) into two equally-sized sets A′ and B′ such that
both G∗[A′] and G∗[B′] are connected, and such that the total weight of the
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edges in G∗ with one endpoint in A′ and one endpoint in B′ is at most �. The
set A′ contains V1 ∩ A, any set of |B| vertices in V1 containing exactly one of
s11 and s21 (this is possible since 1 ≤ |B| ≤ n − 1), and

⋃�t/2�
i=2 Vi ∪ V ′

i . Then
B′ = V (G∗)\A′. Since t is odd, |A′| = |B′|. Let us now see that G∗[A′] is
connected. As 1 ≤ |A| ≤ n − 1, the set V1 ∩ A′ is connected to V ′

1 ∩ A′, which is
connected to V ′

2 since A′ contains exactly one of the link vertices s11 and s21. The
graph G∗[

⋃�t/2�
i=2 Vi ∪ V ′

i ] is clearly connected because of the chain edges, which
implies that G∗[A′] is indeed connected. The proof for the connectivity of G∗[B′]
is similar, using that V1 ∩B′ is connected to V ′

1 ∩B′ since 1 ≤ |B| ≤ n−1, which
is in turn connected to V ′

t since B′ contains exactly one of the link vertices s11
and s21. Finally, let us show that the total weight of the edges between A′ and
B′ is at most �. Note first that two chain edges incident to V ′

1 and two chain
edges incident to V ′

�t/2� belong to the cut defined by A′ and B′, and no other
chain edge belongs to the cut. Beside the chain edges, only edges in the graph
G∗[V1 ∪ V ′

1 ] are cut. Note that G∗[V1 ∪ V ′
1 ] is a clique on 2n vertices and each

of (V1 ∪ V ′
1) ∩ A′ and (V1 ∪ V ′

1) ∩ B′ contains n vertices. Since (G1, p) is a Yes-
instance of Maximum Cut, at least p of the edges of weight w1 − w2 belong to
the cut. Therefore, the total weight of the cut is at most w1n

2 − w2p + 4 = �.
Conversely, assume that for all i ∈ {1, . . . , t}, (Gi, p) is a No-instance of

Maximum Cut, and we want to prove that (G∗, k, �) is a No-instance of Edge-
Weighted p-REC. Let A � B be a partition of V (G∗) such that |A| = |B| and
both G∗[A] and G∗[B] are connected, and such that the weight of the edges
between A and B is minimized among all such partitions. For 1 ≤ i ≤ t, we let
ai := |(Vi ∪ V ′

i ) ∩ A|. Since for 1 ≤ i ≤ t, (Gi, p) is a No-instance of Maximum

Cut, any bipartition of Vi cuts at most p−1 edges. Therefore, the total weight of
the edges between (Vi∪V ′

i )∩A and (Vi∪V ′
i )∩B is at least w1ai(2n−ai)−(p−1)w2.

Since t is odd, necessarily at least one of the graphs Gi is cut by A�B. Assume
first that exactly one graph Gi is cut by A � B. Since |A| = |B|, we have that
ai = n, so the value of the cut is at least w1n

2 − (p− 1)w2 = w1n
2 − pw2 +w2 >

w1n
2 − pw2 + 4 = �, and thus (G∗, k, �) is a No-instance of Edge-Weighted

p-REC.
We claim that there is always exactly one graph Gi cut by A�B. Assume for

contradiction that it is not the case, that is, that there are two strictly positive
values ai, aj for some i �= j. By symmetry between A and B, we may assume
that ai+aj ≤ 2n. The total weight of the edges cut in G∗[Vi∪V ′

i ] and G∗[Vj ∪V ′
j ]

is at least

w1ai(2n − ai) − (p − 1)w2 + w1aj(2n − aj) − (p − 1)w2 =
2nw1(ai + aj) − w1(a2

i + a2
j ) − 2w2(p − 1).

Now we construct another solution of Edge-Weighted p-REC in G∗ where
the ai + aj vertices are cut in only one of Vi ∪ V ′

i and Vj ∪ V ′
j , say Vi ∪ V ′

i (note
that this is possible since ai+aj ≤ 2n). The connectivity of each of the two parts
of the newly obtained bipartition A′ � B′ of G∗ can be guaranteed as follows. If
ai + aj = 2n, then Vi ∪ V ′

i is entirely contained in A′ or B′, and both parts are
clearly connected. If ai + aj < 2n, then we choose (Vi ∪ V ′

i ) ∩ A′ such that it
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contains exactly one of s1i and s2i , which ensures the connectivity of both G∗[A′]
and G∗[B′]. Taking into account that each V ′

i has four incident chain edges, the
total weight of the edges cut in G∗[Vi ∪ V ′

i ] and G∗[Vj ∪ V ′
j ] by the new solution

is at most
w1(ai + aj)(2n − ai − aj) + 8 =
2nw1(ai + aj) − w1(a2

i + a2
j ) − 2w1aiaj + 8.

That is, the weight of the cut defined by A � B minus the weight of the cut
defined by A′ � B′ is at least

−2w2(p − 1) + 2w1aiaj − 8 =
2(w1aiaj − w2(p − 1) − 4) ≥

2(w1 − w2(n2 − 1) − 4) > 0,

where we have used that ai, aj ≥ 1, p ≤ n2, w1 = 5n2, and w2 = 5. In
other words, A′ � B′ defines a cut of strictly smaller weight, contradicting the
definition of A � B. ��

4 Considering the Maximum Degree as a Parameter

Towards understanding the parameterized complexity of the REC problem, one
may wonder whether considering the maximum degree of the input graph as
an extra parameter turns the problem easier (this is a classical approach in
parameterized complexity, see for instance [24,25]). We first prove that, from a
classical complexity point of view, bounding the degree of the input graph does
not turn the problem easier. Before stating the hardness result, we need the
define the 3-Dimensional Matching problem, 3DM for short.

An instance of 3DM consists of a set W = R ∪ B ∪ Y , where R,B, Y are
disjoint sets with |R| = |B| = |Y | = m, and a set of triples T ⊆ R × B × Y . The
question is whether there exists a matching M ⊆ T covering W , i.e., |M | = m
and each element of W = R ∪ B ∪ Y occurs in exactly one triple of M .

An instance of 3DM can be represented by a bipartite graph GI = (W ∪
T,EI), where EI =

⋃

t=(r,b,y)∈T

{{r, t}, {b, t}, {y, t}}.

It is known that 3DM is NP-complete even if each element of W appears in
2 or 3 triples only [13,14]. In [13, Theorem 2.2] it is proved that partitioning a
graph G into two connected subgraphs of equal size is NP-hard, using a reduction
from 3DM. It is worth noting that the graph constructed in the NP-hardness
reduction contains only two vertices of degree greater than five. In Theorem 6 we
appropriately modify the reduction of [13, Theorem 2.2] so that the constructed
graph has maximum degree at most 5. The proof can be found in Appendix B.

Theorem 6. Determining whether a connected graph G is λk-connected is NP-
complete when k is part of the input, even if the maximum degree of G is 5.

In order to understand to which extent the vertices of high degree make the
complexity of computing the restricted edge-connectivity of a graph hard, we
also consider the maximum degree of the input graph as a parameter for the
p-REC problem.
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Theorem 7. The p-REC problem is FPT when parameterized by k and the
maximum degree Δ of the input graph.

Proof: The algorithm is based on a simple exhaustive search. We use the prop-
erty that, for any graph G and any two integers k, �, λk(G) ≤ � if and only if G
contains two vertex-disjoint trees T1 and T2 with |V (T1)| ≥ k and |V (T2)| ≥ k,
such that there exists an edge set S in G with |S| ≤ � such that in G − S the
trees T1 and T2 belong to different connected components. Hence, we just have
to determine whether these trees exist in G or not. For doing so, for every pair
of distinct vertices v1 and v2 of G, we exhaustively consider all trees T1 and T2

with k vertices containing v1 and v2, respectively. Note that the number of such
trees is at most Δ2k. For every pair of vertex-disjoint trees T1 and T2, we proceed
as follows. We contract tree T1 (resp. T2) to a single vertex t1 (resp. t2), keeping
edge multiplicities, and then we run in the resulting graph a polynomial-time
Minimum Cut algorithm between t1 and t2 (cf. [28]). If the size of the returned
edge-cut is at most �, then T1 and T2 are the desired trees. Otherwise, we con-
tinue searching. It is clear that the overall running time of this algorithm is
O(Δ2k · nO(1)). ��

A Dealing with the Edge Weights in the Proof
of Theorem 5

As in [29], we show how to convert the instance (G∗, k, �) of Edge-Weighted p-
REC that we just constructed into an equivalent instance of p-REC such that
the resulting parameter remains polynomial in n. Given (G∗, k, �), we define
(Ĝ, k, �) as the instance of p-REC, where Ĝ is an unweighted graph obtained
from G∗ as follows. We replace each vertex v of G∗ with a clique Cv of size
w1+�+1, and for each edge {u, v} of G∗ with weight w, we add w pairwise disjoint
edges between the cliques Cu and Cv. Since no cut of size at most � in Ĝ can
separate a clique Cv introduced for a vertex v, it follows that (G∗, k, �) is a Yes-
instance of Edge-Weighted p-REC if and only if (Ĝ, k, �) is a Yes-instance
of p-REC. Finally, it is clear that the desired cut size � is still polynomial in n.

B Proof of Theorem 6

Given an instance (W,T ) of 3DM with W = R ∪ B ∪ Y , |R| = |B| = |Y | = m,
and T ⊆ R × B × Y such that each element of W appears in 2 or 3 triples only,
we define an n-vertex graph G = (V,E) with maximum degree 5 as follows (see
Fig. 3 for an illustration).

The set of vertices of G is

V = W ∪ T ∪ Ta ∪ Tb ∪ P ∪ {a},

where Ta = {ta1 . . . , ta|T |}, Tb = {b = tb1, t
b
2 . . . , tb|T |}, T = {t1 . . . , t|T |} is the set

of triples, and P =
⋃

σ∈W∪Tb∪{a}
Pσ, where Pσ = {(σ, t) : t = 1, . . . , nσ} with

na = (3m+ |T |)nb +5m− |T | − 1, nb = 2m3, and nσ = nb for every σ ∈ W ∪Tb.
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Fig. 3. Construction of the graph G in the proof of Theorem 6, with Δ(G) = 5.

The set of edges of G is

E = EI ∪ ETa
∪ ETb

∪ ET+

⋃

σ∈W∪Tb∪{a}
Eσ,

where ETa
= {{tai , tai+1} : 1 ≤ i ≤ |T | − 1}, ETb

= {{tbi , tbi+1} : 1 ≤ i ≤ |T | − 1},
ET+ = {{ti, tai }, {ti, t

b
i} : 1 ≤ i ≤ |T |}, and Eσ = {{σ, (σ, 1)}} ∪ {{(σ, t), (σ, t +

1)} : 1 ≤ t ≤ nσ − 1} ∪ {a, ta1} for every σ ∈ W ∪ Tb ∪ {a}.
Note that the maximum degree of G is indeed 5. Since n = 1 + 3m + 3|T | +

na + (3m + |T |)nb, we can observe that

n = 2(na + 1 + 2|T | − m).

Next, we show that for k = n/2, G is Yes-instance of the REC problem if
and only if T contains a matching covering W .

One direction is easy. Suppose first that T contains a matching M covering
W . Let S = {a}∪Pa ∪Ta ∪ (T\M). It is straightforward to check that |S| = n/2
and that G[S], G[V \S] are both connected.

Conversely, suppose that G can be partitioned into 2 connected subgraphs
G[S], G[V\S] with |S| = n/2. We can assume that a ∈ S, and then it follows that
Pa ⊆ S. Now |S\(Pa∪{a})| = 2|T |−m < 2m3 = nb since |T | ≤ m3. As Pσ ⊆ S if
and only if σ ∈ S ∩(W ∪Tb), then S ∩(W ∪Tb) = ∅ since |S\(Pa ∪{a})| < nb and
|Pσ| = nb for every σ ∈ W ∪Tb. Hence S\(Pa∪{a}) ⊆ T ∪Ta. Let M = (V\S)∩T .
Then |M | ≤ m since |S\(Pa ∪ {a})| = 2|T | − m. Finally, as G[V \S] is connected
and W ∪ Tb ⊆ V \S, it follows that |M | ≥ m. Hence |M | = m and M must be a
matching covering W .
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C Computing the Minimum k-edge-degree

As it has been already mentioned, a graph may not have k-restricted edge-cuts.
In fact, Esfahanian and Hakimi [15] showed that each connected graph G of
order n ≥ 4 except a star, is λ2-connected and satisfies λ2(G) ≤ ξ(G), where
ξ(G) is the minimum edge-degree of G defined as

ξ(G) = min{dG(u) + dG(v) − 2 : uv ∈ E(G)}.

Bonsma, Ueffing and Volkmann [5] defined an extension of the minimum
edge-degree of a graph G for an integer k ≥ 2, called the minimum k-edge-
degree, as follows:

ξk(G) = min{|[X,X]| : |X| = k and G[X] is connected}.

They proved that λk(G) ≤ ξk(G) for 1 ≤ k ≤ 3 and all graphs G aside from
a class of exceptions for k = 3 determined in [5]. Also in the same paper, the
authors give a number of examples, which show that λk(G) ≤ ξk(G) is not
true in general for k ≥ 4. In 2005, Zhang and Yuan [31] proved that, except
for the class of flowers, graphs with minimum degree greater than or equal to
k −1 are λk-connected. Moreover, for the same class of graphs they showed that
λk(G) ≤ ξk(G) (recall that a graph G with |V (G)| ≥ 2k is called a flower if it
contains a cut vertex u such that every component of G − u has order at most
k − 1).

Therefore, given the relation between the invariants λk and ξk, we are inter-
ested in the following parameterized problem.

Parameterized Minimum Edge-degree (p-MED)

Instance: A graph G = (V,E) and two positive integers k and �.
Parameter 1: The integers k and �.
Parameter 2: The integer k.
Parameter 3: The integer �.

Question: ξk(G) ≤ � ?

Similarly to what happens with the p-REC problem, the p-MED problem
is FPT with parameters k and �, and W[1]-hard with parameter k.

Theorem 8. The p-MED problem is FPT when parameterized by k and �.

Proof: The proof is based on a simple application of the splitters technique.
Note that given G, k, �, if ξk(G) ≤ � then G contains a vertex set X of size k
whose neighborhood in G − X, say NX , has size at most �. We apply Lemma 1
with U = V (G), a = k, and b = �, obtaining in time (k+�)O(k+�) ·nO(1) a family
F of subsets of V (G) with |F| = (k + �)O(k+�) · log n. If ξk(G) ≤ �, then there
exists S ∈ F containing X and disjoint from NX . Therefore, it suffices to check,
for every S ∈ F , whether G[S] contains a connected component X with |X| = k
and |[X,X]| ≤ �. ��
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Theorem 9. The p-MED problem is W[1]-hard when parameterized by k.

Proof: The reduction is inspired by the one given in [24] to prove the W[1]-
hardness of the Cutting � Vertices problem. Given an instance (G, k) of k-
Clique such that G is r-regular for some r ≥ k (the k-Clique problem is easily
seen to remain W[1]-hard with this assumption [24]), we define an instance of
p-MED as (G, k, �), with � := k(r − k + 1). It is then clear that G has a clique
of size k if and only if it has a vertex subset X such that |X| = k, G[X] is
connected, and |[X,X] ≤ k(r − k + 1). ��

We leave as an open problem the parameterized complexity of the p-MED

problem with parameter �.
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R. (eds.) WG 2013. LNCS, vol. 8165, pp. 76–87. Springer, Heidelberg (2013)

30. Yuan, J., Liu, A.: Sufficient conditions for λk-optimality in triangle-free graphs.
Discrete Math. 310, 981–987 (2010)

31. Zhang, Z., Yuan, J.: A proof of an inequality concerning k-restricted edge-
connectivity. Discrete Math. 304, 128–134 (2005)

http://www.lirmm.fr/~sau/Pubs/LA.pdf


Computational Geometry



Weak Unit Disk and Interval Representation
of Graphs

M.J. Alam1, S.G. Kobourov1, S. Pupyrev1,2(B), and J. Toeniskoetter1

1 Department of Computer Science, University of Arizona, Tucson, AZ, USA
spupyrev@gmail.com

2 Institute of Mathematics and Computer Science, Ural Federal University,

Yekaterinburg, Russia

Abstract. We study a variant of intersection representations with unit
balls: unit disks in the plane and unit intervals on the line. Given a planar
graph and a bipartition of the edges of the graph into near and far edges,
the goal is to represent the vertices of the graph by unit-size balls so that
the balls for two adjacent vertices intersect if and only if the correspond-
ing edge is near. We consider the problem in the plane and prove that it is
NP-hard to decide whether such a representation exists for a given edge-
partition. On the other hand, we show that series-parallel graphs (which
include outerplanar graphs) admit such a representation with unit disks
for any near/far bipartition of the edges. The unit-interval on the line
variant is equivalent to threshold graph coloring, in which context it is
known that there exist girth-3 planar graphs (even outerplanar graphs)
that do not admit such coloring. We extend this result to girth-4 planar
graphs. On the other hand, we show that all triangle-free outerplanar
graphs and all planar graphs with maximum average degree less than
26/11 have such a coloring, via unit-interval intersection representation
on the line. This gives a simple proof that all planar graphs with girth
at least 13 have a unit-interval intersection representation on the line.

1 Introduction

Intersection graphs of various geometric objects have been extensively studied
for their many applications [17]. A graph is a d-dimensional unit ball graph if
its vertices are represented by unit-size balls in R

d, and an edge exists between
two vertices if and only if the corresponding balls intersect. Unit ball graphs are
called unit disk graphs when d = 2 and unit interval graphs when d = 1. In this
paper we study weak unit ball graphs: given a graph G whose edges have been
partitioned into “near” and “far” sets, we wish to assign unit balls to the vertices
of G so that, for an edge (u, v) of G, the balls representing u and v intersect if
the edge (u, v) is near and do not intersect if the edge (u, v) is far. Note that if
(u, v) is not an edge of G, then the balls of u and v may or may not intersect.
We refer to such graphs as weak unit disk (d = 2) and weak unit interval graphs
(d = 1). A geometric representation of such graphs (particularly, a mapping of
the vertices to unit balls in R

2 or R), is called a weak unit disk representation
c© Springer-Verlag Berlin Heidelberg 2016
E.W. Mayr (Ed.): WG 2015, LNCS 9224, pp. 237–251, 2016.
DOI: 10.1007/978-3-662-53174-7 17
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or a weak unit interval representation; see Fig. 1. Near edges are shown as thick
line segments and far edges are dashed line segments and we use this convention
to distinguish near/far edges in the rest of the paper. Unit disk representations
allow us to represent the edges of a graph by spatial proximity, which is intuitive
from the point of view of human perception. Weak unit disk graphs also allow
to arbitrarily forbid edges between certain pairs of vertices, which is useful in
representation of “almost” unit disk graphs. It has been shown that weak unit
interval graphs can be used to compute unit-cube contact representations of
planar graphs [5,18].
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Fig. 1. (a) A graph with an edge-labeling and its weak unit interval representation.
(b, c) A graph with an edge-labeling and its weak unit disk representation. In the
figures we indicate near edges with solid lines and far edges with dashed lines.

Unit disk graphs have been extensively studied for their application to wire-
less sensor and radio networks. In such a network each sensor or radio can be
modeled as a device with a unit size broadcast range, which naturally induces a
unit disk graph by adding an edge whenever two ranges intersect. This setting
makes it easy to study various practical problems. For example, in the frequency
assignment problem the goal is to assign frequencies to radio towers so that
nearby towers do not interfere with each other [15]. A weakness of the unit disk
model is that it does not allow for interference between nodes (e.g., due to geog-
raphy) and it does not account for the possibility that a pair of nodes may not
be able to communicate (e.g., due to technological barriers). One attempt to
address this issue are quasi unit disk graphs [19], where each vertex is repre-
sented by a pair of concentric disks, one of radius r, 0 < r < 1, and the other of
radius 1. In this model, two vertices are connected by an edge if their radius-r
disks overlap, and do not have an edge if their radius-1 disks do not overlap.
The remaining edges are in or out of the graph on a case by case basis. In the
weak unit disk model such problems can be dealt with by simply deleting edges
between nodes which are nearby but whose ranges do not overlap (e.g., because
they are separated by a mountain range). This gives us more flexibility than
quasi unit disk graphs.
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Formally, an edge-labeling of a graph G = (V,E) is a map � : E → {N,F}. If
(u, v) ∈ E, then (u, v) is called near if �(u, v) = N , and otherwise (u, v) is called
far. In a unit disk (interval) representation I, each vertex v ∈ V is represented as
a disk (interval) centered at the point I(v) ∈ R

2 (R). We denote by ||I(u)−I(v)||
the distance between the points I(u) and I(v), and by a slight abuse of notation,
we also refer to I(v) as the disk (interval) representing v ∈ V . A weak unit disk
(interval) representation of G with respect to � is a representation I such that
for each edge (u, v) ∈ E, ||I(u) − I(v)|| ≤ t if and only if �(u, v) = N , for
some fixed unit t > 0 (in other words, the disks and intervals have diameter t).
Unless otherwise stated, we assume t = 1. We say that a graph is a total weak
unit disk (interval) graphs if it has an appropriate representation for all possible
edge-labelings.

Related Work: Weak unit ball graphs can be seen as a form of graph draw-
ing/labeling where a notion of “closeness” between vertices is used to define
edges, from a given set of permissible edges. There are many classes of graphs
defined on some notion of vertex closeness. For example, proximity graphs are
those that can be drawn in the plane such that every pair of adjacent vertices sat-
isfies some fixed notion of closeness, whereas every pair of non-adjacent vertices
satisfy some notion of farness [20]. Examples of proximity graphs are Gabriel
graphs, Delaunay triangulations, and relative neighborhood graphs. Gabriel
graphs, defined in the context of categorizing biological populations [13], can
be embedded in the plane so that for every pair of vertices (u, v), the disk with
u and v as antipodal points contains no other vertex if and only if (u, v) is an
edge. Recently, Evans et al. [10] studied region of influence graphs, where each
pair of vertices u, v in the plane is assigned a region R(u, v), and there is an
edge if and only if R(u, v) contains no vertices, except possibly u and v. They
generalize this class of graphs to approximate proximity graphs, where there are
parameters ε1 > 0 and ε2 > 0, such that a vertex other than u or v is contained
in R(u, v), scaled by 1/(1+ε1), if and only if (u, v) is an edge; the region R(u, v),
scaled by 1 + ε2, is empty if and only if (u, v) is not an edge. However there is
a significant difference between the notion of proximity graphs and the notion
of weak unit ball graphs. In proximity graphs the notion of closeness is defined
by two groups, namely adjacent and non-adjacent pairs of vertices, whereas for
weak unit ball graphs, there are three groups. Specifically, the near and far edges
in the input graph G represent vertex pairs with closeness and farness require-
ments, while all nonadjacent vertex pairs in G have no requirement on proximity.
Thus proximity graphs is more restricted than the weak unit ball graphs, in that
they can be modeled by weak unit ball graphs where the input graph is the
complete graph Kn.

Weak unit ball representability in 1D is related to the recently introduced
threshold-coloring problem [1] and we show that these two problems are in fact
equivalent. In this variant of graph coloring, integer colors are assigned to the
vertices so that endpoints of near edges differ by less than a given threshold,
while endpoints of far edges differ by more than the threshold. Deciding whether
a graph is threshold-colorable with respect to a given partition of edges into
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near and far is equivalent to the graph sandwich problem for unit-interval-
representability, which is known to be NP-hard [14]. Hence, deciding whether
a graph admits a weak unit interval representation with respect to a given edge-
labeling is also NP-hard. In fact, along the lines of argument used in [1], one can
prove that recognizing weak unit ball graphs with a given edge-labeling in any
dimension d = 1, 2, . . . is equivalent to the graph sandwich problem for unit-ball-
representability in dimension d. Note that the problem of recognizing weak unit
interval graphs is different than recognizing unit interval graphs, which can be
done in linear time [11]. It is known that planar graphs with girth (the length of
a shortest cycle in the graph) at least 10 are always threshold-colorable. Several
Archimedean lattices (which correspond to tilings of the plane by regular poly-
gons), and some of their duals, the Laves lattices, are also threshold-colorable [2]
for any edge-labeling. Hence, these graph classes are weak unit interval graphs.

Unit interval graphs are also related to threshold and difference graphs. In
threshold graphs there exists a real number S and for every vertex v there is
a real weight av so that (v, w) is an edge if and only if av + aw ≥ S [21].
A graph is a difference graph if there is a real number S and for every vertex
v there is a real weight av so that |av| < S and (v, w) is an edge if and only
if |av − aw| ≥ S [16]. Note that for both these classes the existence of an edge
is completely determined by the threshold S, while in our setting the edges
defined by the threshold (size of the ball) must also belong to the original (not
necessarily complete) graph. Threshold-colorability is also related to the integer
distance graph representation [9,12]. An integer distance graph is a graph with
the set of integers as vertex set and with an edge joining two vertices u and v if
and only if |u − v| ∈ D, where D is a subset of the positive integers.

Our Results: We introduce the notion of weak unit disk and interval rep-
resentations. While finding representations with unit intervals is equivalent to
threshold-coloring where some results are already known, the problem of weak
unit disk representability is new. We first show that recognizing weak unit disk
graphs is NP-hard. Note that the NP-hardness of the unit interval variant follows
from the results in [1].

We then consider subclasses of planar graphs that admit weak unit disk
(interval) representation. We show that every 2-reducible graph (as defined later)
has a weak unit disk representation for any edge-labeling. In particular, any
series-parallel graph (which includes all outerplanar graphs) has a weak unit
disk representation for any edge-labeling. For representation with unit intervals,
it follows from [1] that all planar graphs with girth at least 10 are total weak
unit interval graphs. We generalize the result by proving that graphs of bounded
maximum average degree have weak unit interval representations for any given
edge-labeling. In the other direction, we construct an example of a planar girth-
4 graph which is not a total weak unit interval graph, improving on the earlier
girth-3 example. Further, we show that dense planar graphs do not always admit
weak unit interval graph representation.

Finally we study outerplanar graphs. It is known that some outerplanar
graphs with girth 3 are not total weak unit interval graphs, and our example
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of girth-4 graph is not outerplanar. Thus, a natural question in this context is
whether every girth-4 outerplanar graph admits weak unit interval representa-
tion for any edge-labeling. We show that this is indeed the case.

2 Weak Unit Disk Graph Representations

First we consider the complexity of recognizing weak unit disk graphs.

Lemma 1. It is NP-hard to decide if a graph G with an edge-labeling � admits
a weak unit disk representation, even if the edges labeled N induce a planar
subgraph.

Proof. It is known that deciding whether a planar graph is a unit disk graph is
NP-hard [6]. Let n be the number of vertices of G, and define an edge-labeling �
of Kn by setting �(e) = N if and only if e is an edge of G. Clearly, a unit disk
representation of G is also a weak unit disk representation of Kn with respect
to � and vice versa. ��

Note that Lemma 1 only proves NP-hardness, and the problem of deciding
whether a graph with an edge-labeling has a weak unit disk representation is
not known to be in NP. The obvious approach is to use a weak unit disk rep-
resentation as a polynomial size certificate. Unfortunately, it has recently been
showed that unit disks graphs on n vertices may require 22

Θ(n)
bits for a unit

disk representation with integer coordinates [22].

Unit Disk Representation of Outerplanar and Related Graphs

Note that the class of weak unit disk graphs strictly contains the class of weak
unit interval graphs. For example, in Fig. 2, we provide a weak unit disk repre-
sentation of the sungraph for a particular edge-labeling, which does not admit
a weak unit interval representation. Our main goal here is to prove that every
series-parallel graph is a total weak unit disk graph. To this end, we study a
larger class of graphs, called 2-reducible graphs [25]. A simple graph G is a
2-reducible graph if one of the following holds:

1. G is an independent set;
2. G has an edge (u, v) such that v has degree at most 2, and the graph obtained

by contracting (u, v) and removing parallel edges is a 2-reducible graph.

Note that 2-reducible graphs are a subclass of 2-degenerate graphs, which are
graphs where every subgraph has a vertex with degree at most 2 [23]. For exam-
ple, the graph obtained by subdividing one edge of K4 is a 2-degenerate graph,
but not a 2-reducible graph.

Theorem 1. Every 2-reducible graph is a total weak unit disk graph.
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Fig. 2. (a) The sungraph has no weak unit interval representation, but (b) it has a weak
unit disk representation. Near/far edges are indicated with solid/dashed line segments.

Proof. We prove the theorem by induction on the number of edges in a graph.
Assume the inductive hypothesis that every 2-reducible graph G with m edges
has a weak unit disk representation I with respect to any edge-labeling � so
that (i) the disks have diameter t = 2 and (ii) for every edge (x, y) of G, 1 <
||I(x)−I(y)|| < 4. The base case m = 0 is trivial, so assume that the claim holds
for m > 0 and for any 2-reducible graph G′ with m′ < m edges. Now consider
an arbitrary 2-reducible graph G with m edges and an arbitrary edge-labeling �
of G.

If G has a vertex of degree 1, then the desired representation can be con-
structed by removing the vertex and considering a representation for the result-
ing graph. Hence, we assume that G has no degree-1 vertices. Then G has a
vertex v with exactly two neighbors u and w, such that contracting the edge
(u, v) results in a 2-reducible graph G′. We adopt the equivalent convention
that, instead of contracting (u, v), we delete v and add the edge (u,w) if it is
not already present. Clearly in G′ the number of edges m′ < m. Thus by the
inductive hypothesis, G′ has a weak unit disk representation I ′ with respect to
the edge-labeling � restricted to the edges of G′ (if edge (u,w) does not belong
to G, give it an arbitrary label). Furthermore, 1 < ||I ′(u)− I ′(w)|| < 4. Without
loss of generality, assume that I ′(u) = (0, 0) = p (say) and I ′(w) = (d, 0) = q
(say), where d > 0. Then 1 < d < 4. We construct a representation I of G
by setting I(x) = I ′(x) for every vertex x �= v. To compute the value of I(v),
consider the following four cases, based on the values of �(u, v) and �(w, v).

Case 1: �(u, v) = N , �(w, v) = N . If �(u,w) = N , i.e., the disks for u and w
intersect each other, then set I(v) to be the apex of an equilateral triangle with
pq as a side. The disk for v then intersect both the disks for u and w. Otherwise,
if �(u,w) = F , set I(v) = (0, d/2). Then ||I(u) − I(v)|| = ||I(w) − I(v)|| = d/2
and since d < 4, d/2 < 2. However since �(u,w) = F , we have d > 2; hence
d/2 > 1.
Case 2: �(u, v) = N , �(w, v) = F . Set I(v) to be (0,−t), where 1 < t < 2.
Case 3: �(u, v) = F , �(w, v) = N . Set I(v) to be (0, t), where d + 1 < t < d + 2.
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Case 4: �(u, v) = F , �(w, v) = F . Set I(v) to be the apex of an isosceles triangle
with height h and with pq as the base, where 2 < h < 3. Then ||I(u) − I(v)|| =
||I(w) − I(v)|| = d′ =

√
h2 + (d/2)2. Thus d′ > h > 2, so that the disks for u

and w do not intersect with the disk for v. Furthermore d < 4 and h < 3 imply
d′ < 4. ��

Series-parallel graphs are defined as the graphs that do not have K4 as a
minor [8]. Hence by definition, these graphs are closed under edge contraction.
It is also well-known that a series-parallel graph is subgraph of a 2-tree, which is
2-reducible, and that every outerplanar graph is a subgraph of a series parallel
graph. Thus, by Theorem 1, we have the following corollary.

Corollary 1. Every outerplanar and series-parallel graph is a total weak unit
disk graph.

3 Weak Unit Interval Graph Representations

In this section we study weak unit interval representability. Given a graph
G = (V,E), an edge-labeling � : E → {N,F}, and integers r > 0, t ≥ 0, G is
said to be (r, t)-threshold-colorable with respect to � if there exists a coloring
c : V → {1, . . . , r} such that for each edge (u, v) ∈ E, |c(u) − c(v)| ≤ t if and
only if �(u, v) = N . The coloring c is known as a threshold-coloring [1]. It is easy
to see that threshold-coloring is a special case of weak unit disk representation
when restricted to unit interval representation. As defined, threshold coloring
requires integer coordinates for the vertices. The next lemma shows that this
requirement does not significantly affect the correspondence between the two
problems.

Lemma 2. A graph G has a weak unit interval representation for an edge-
labeling � if and only if G is (r, t)-threshold-colorable with respect to � for integers
r > 0, t ≥ 0.

Proof. We first show that a threshold-coloring c with respect to an edge-labeling
� yields a weak interval representation for �. Indeed if c is an (r, t)-threshold-
coloring of G with respect to �, then for each vertex u of G, define an interval I(u),
which is centered at the point c(u) and has length t. Then for any pair of vertices
u, v of G, the intervals I(u) and I(v) intersect if and only if |c(u) − c(v)| ≤ t.
Since c is a threshold coloring, for any edge (u, v), |c(u) − c(v)| ≤ t if and only
if �(u, v) = N . Thus the set of intervals defines a weak interval representation of
G for �.

For the other direction, let I be a weak unit interval representation of G with
respect to �. We can then find a threshold coloring of G from I as follows. Let
c(u) be the center of the interval I(u) for each vertex u and let t be the length of
the intervals in I. Then by definition, for each edge (u, v) of G, |c(u) − c(v)| ≤ t
if and only if �(u, v) = N . However, the centers c(u) and the length t are not
necessarily integers. We now modify the representation so that the centers c(u)
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and the length t are all integers, while the weak interval representation property
is maintained. First increase the length of each interval by some ε > 0 so that
no two intervals intersect each other only at their endpoints. Choose ε so that
the intervals have rational lengths. Next perturb the center of each interval by
some ε′ < ε/2 so that each interval is centered at a rational point. Note that
for any two intervals I(u), I(v), we have that I(u) and I(v) intersect each other
after these modification if and only if they intersected each other before the
modification. Finally scale the representation so that the center of each interval
is an integer, and the length of the intervals is also an integer. Then the centers of
the intervals in the modified representation give a threshold-coloring (although
r and t may be large). ��

Since deciding threshold-colorability is NP-complete [1], so is the recognition
problem for weak unit interval graphs.

Lemma 3. It is NP-complete to decide if a graph with an edge-labeling admits a
weak unit interval representation

Next, we study weak unit interval representation for some graph classes. We
first present a method for representing graphs, which admit a decomposition into
a forest and a 2-independent set. By G[U ] we mean the subgraph of G induced
by the vertex set U ⊆ V . Recall that a subset I of vertices in a graph G is called
independent if G[I] has no edges. Similarly, I is called 2-independent if the
shortest path in G between any two vertices of I has length greater than 2. Such
decompositions have been applied to other graph coloring problems [2,3,24].

Lemma 4. Suppose G = (I ∪ F , E) is a graph such that I is 2-independent,
G[F ] is a forest, and I ∩ F = ∅. Then G is a total weak unit interval graph.

Proof. We assume that all intervals in the proof are centered at integer coor-
dinates and have length t = 1. Suppose � : E → {N,F} is an arbitrary edge-
labeling. For each v ∈ I, set I(v) = 0. Each vertex in G[F ] is assigned a point
from {−2,−1, 1, 2} as follows. Choose a component T of G[F ], and select a root
vertex w of T . If w is far from a neighbor in I, set I(w) = 2; otherwise, I(w) = 1.
Now perform breadth first search on T , assigning an interval for each vertex as
it is traversed. When we reach a vertex u �= w, it has one neighbor x in T which
has been processed, and at most one neighbor v ∈ I. If v exists, we choose the
interval I(u) = 1 if �(u, v) = N , and I(u) = 2 otherwise. Then, if the label of
edge (u, x) is not satisfied by ||I(u) − I(x)||, we multiply I(u) by −1. If v does
not exist, choose I(u) = 1 or −1 to satisfy the edge (u, x). By repeating the
procedure on each component of G[F ], we construct a representation of G. ��

Recall that the maximum average degree of a graph G is the maximum of
the average degree of each of its subgraphs H = (VH , EH), and it is given by
mad(G) = max(2|EH |/|VH |), where the maximum is taken over all subgraphs
of G. It is known that every planar graph G of maximum average degree mad(G)
strictly less than 26

11 can be decomposed into a 2-independent set and a forest [7].
Hence,
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Fig. 3. Decomposition of a graph into a nearly 2-independent set (red vertices) and a
forest (black vertices and edges). Thin blue are I-edges. (Color figure online)

Theorem 2. Every planar graph G with mad(G) < 26
11 is a total weak unit

interval graph.

We also note that a planar graph with girth g satisfies mad(G) < 2g
g−2 [4].

Therefore, a planar graph with girth at least 13 always has a weak unit interval
representation.

Next we present a generalization of Lemma 4, suitable for graphs which have
an independent set that is in some sense nearly 2-independent. The strategy is
to delete certain edges so the independent set becomes 2-independent, obtain a
unit interval representation using Lemma 4, and then modify it so that it is a
representation of the original graph. Formally, let I be an independent set in a
graph G. Suppose that for every vertex v ∈ I, there is at most one vertex u ∈ I
such that the distance between v and u in G is 2. Also suppose that there is only
one path with two edges connecting v to u. Then we call I nearly 2-independent.
The pair {u, v} is called an I-pair, and the edges of the path (u, x, v) connecting
u and v are called I-edges, which are associated with the I-pair {u, v}; see Fig. 3.

Lemma 5. Let G = (I ∪ F , E) be a graph, where I is a nearly 2-independent
set, G[F ] is a forest and I ∩F = ∅. Then G has a total weak unit interval graph.

Proof. Assume that all intervals in the proof are centered at integer coordinates
and have size t = 3. Suppose that � : E → {N,F} is an arbitrary edge-labeling
of G. Let E′ ⊆ E be a set such that for each I-pair {u, v}, exactly one of the
I-edges associated with {u, v} belongs to E′. Let G′ = (V,E −E′). Then clearly
I is 2-independent in G′ and G′[F ] is a forest; by Lemma 4, there exists a weak
unit interval representation I ′ of G′ for �.

We now modify I ′ to construct a weak unit interval representation I of G
with respect to �. First, for each vertex v ∈ V , set I(v) = 0 if I ′(v) = 0,
I(v) = 2 if I ′(v) = 1, and I(v) = 5 if I ′(v) = 2 (if I ′(v) is negative, do the same
but set I(v) negative). It is clear that I is a weak unit interval representation
of G′. Now, let (x, y) ∈ E′. One of these vertices, say x, is in I so I(x) = 0,
and I(y) ∈ {−5,−2, 2, 5}. Without loss of generality assume that I(y) > 0;
the case where I(y) < 0 is symmetric. Now it is possible that �(x, y) = N but
||I(x) − I(y)|| > 3 or that �(x, y) = F but ||I(x) − I(y)|| ≤ 3. In the first case,
we must have I(y) = 5. We modify I so that I(x) = 1 and I(y) = 4. Note that
y is still near to vertices with intervals centered at 2 or 5, and far from vertices
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with intervals centered at less than 1. Similarly, x is still close to the intervals at
−2, 0, or 2, but far from −5 and 5. Thus all the edges of E − E′ are satisfied by
the modification of I, and additionally the edge (x, y) is satisfied. In the second
case, we have I(y) = 2. We modify I so that I(x) = −1 and I(y) = 3. As
before, no edges which disagreed with the edge-labeling still disagree with the
edge-labeling.

Since I is nearly 2-independent, our modifications to the representation I
will not affect non-local vertices, as every vertex in I is adjacent to at most one
edge of E′. ��

Weak Unit Interval Representation of Outerplanar Graphs

It is known [1] that some outerplanar graphs containing triangles are not total
weak unit interval graphs, e.g., the sungraph in Fig. 2. Hence, we study weak
unit interval representability of triangle-free outerplanar graphs. We start with
a claim for girth 5.

Lemma 6. An outerplanar graph with girth 5 is a total weak unit interval graph.

Proof. We prove that girth-5 outerplanar graphs may be decomposed into a
forest and a 2-independent set using induction on the number of internal faces.
The result will follow from Lemma 4. The claim is trivial for a single internal
face, so assume that it is true for all girth-5 outerplanar graphs with k ≥ 1
internal faces. Let G be a girth-5 outerplanar graph with k + 1 internal faces.
Since G is outerplanar, it must have at least one face f = (v1, . . . , vl), l ≥ 5,
such that every vertex of f except v1, vl is of degree 2. Consider the graph G′

obtained by deleting v2, . . . , vl−1. The vertices of G′ have a decomposition into
a 2-independent set I and a set F such that G′[F ] is a forest. Now we will add
the vertices v2, . . . , vl−1 to either I or F so that I is a 2-independent set in G,
and G[F ] is a forest. If either of v1, vl belongs to I, then add all the remaining
vertices to F . Otherwise, add v3 to I and the rest to F . Since v1, vl are not in
I, v3 has distance at least 3 from any other element of I. ��

Next our goal is to show that a triangle-free outerplanar graph G always has
a weak unit interval representation for any edge-labeling. We assume that all
intervals are centered at integer coordinates and we use intervals of size t = 2.
Our strategy is to find a representation of G by a traversal in a depth-first search
manner of its weak dual graph G∗ (the planar dual minus the outerface). We
find intervals for all the vertices in each interior face of G as it is traversed
in G∗. Since we are considering triangle-free graphs, this implies that we take
an induced path Pn = (u1, u2, . . . , un) of G, n ≥ 4, where the two end vertices
u1 and un are already processed and we need to assign unit intervals to the
internal vertices u2, . . . , un−1 of Pn. Note that this path Pn along with the edge
(u, v) forms an internal face of G. We additionally maintain the invariant in our
representation that for each edge (u, v) of G, ||I(u)− I(v)|| ≤ 6. For a particular
edge-labeling � of Pn = (u1, . . . , un), call a pair of coordinates x, y feasible if
there is a weak unit interval representation I of Pn for � with t = 2, where
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I(u1) = x, I(un) = y, and for any i ∈ {1, . . . , n − 1}, ||I(ui) − I(ui+1)|| ≤ 6. We
first need the following three claims.

Claim 1. For any value of x ∈ {2, 3,−2,−3}, the pair 0, x is feasible for any
edge-labeling � of P3 = (u1, u2, u3).

Proof. Without loss of generality, we may assume that x > 0. We compute a
desired weak unit interval representation I with t = 2 for P3 with respect to �
as follows. Assign I(u1) = 0 and I(u3) = x. Assign I(u2) in such a way that
|I(u2)| = 2 if �(u1, u2) = N , and |I(u2)| = 3 if �(u1, u2) = F . Then choose the
sign of I(u2) to be the same as I(u3) if �(u2, u3) = N , and the opposite of I(u3)
if �(u2, u3) = F . ��
Claim 2. For any edge-labeling of P3 = (u1, u2, u3), either 0, 4 or 0, 6 are
feasible.

Proof. We compute a desired weak unit interval representation I with t = 2
for � as follows. If �(u1, u2) = l(u2, u3) = N , then I(u1) = 0, I(u2) = 2, and
I(u3) = 4. Otherwise, assign I(u1) = 0, I(u3) = 6, and I(u2) = 2, 3 or 4 when
(l(u1, u2), l(u2, u3)) have values (N,F ), (F, F ), and (F,N), respectively. ��
Claim 3. For any integer value of x ∈ [−6, 6], the pair 0, x is feasible for any
edge-labeling of Pn = (u1, u2, . . . , un), n ≥ 4.

Proof. Without loss of generality, let x ≥ 0. Consider first the case for n = 4.
Take a particular edge-labeling � of P4. For any integer value of 0 ≤ x ≤ 5,
there is at least one number y ∈ {2, 3,−2,−3} and at least one number z ∈
{2, 3,−2,−3} such that |x − y| ≤ 2 and 2 < |x − z| ≤ 6. In particular, it suffices
to choose for x = 0, y = 2, z = 3; for x = 1, 2, 3, 4, y = 2, z = −2 and for
x = 5, y = 3, z = 2. Thus if 0 ≤ I(u4) ≤ 5, and regardless of whether �(u3, u4)
is N or F , one can choose a value for I(u3) from {2, 3,−2,−3} respecting both
the edge-labeling of (u3, u4) and the property that ||I(u3) − I(u4)|| ≤ 6. Then
by Claim 1, 0 and x is feasible for the edge-labeling � of P4. A similar argument
shows that if �(u3, u4) = F , then 0 and x = 6 is feasible. On the other hand,
if x = 6 and �(u3, u4) = N , then both 4 and 6 are valid choices for I(u3). By
Claim 2, 0 and 6 is feasible for any edge-labeling � of P4.

Consider now the case with n > 4. Then assign coordinates I(u1) = 0,
I(un) = x and for i ∈ {n − 1, . . . , 4}, assign I(ui) ∈ [−6, 6] such that it respects
both �(ui, ui+1) and the property that ||I(ui) − I(ui+1)|| ≤ 6. Then a similar
argument as that for n = 4 can be used to extend this representation to u2

and u3. ��
The next corollary immediately follows from Claim 3.

Corollary 2. Any pair x, y with |x − y| ≤ 6, is feasible for any edge-labeling of
Pn = (u1, u2, . . . , un), n ≥ 4.

Theorem 3. Every triangle-free outerplanar graph is a total weak unit interval
graph.
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Proof. If G is not 2-connected, we augment it in the following way. Let v be a cut
vertex of G and let H1, . . . , Hk be the 2-connected components of G containing
v. For i ∈ {1, . . . , k−1}, let u be a neighbor of v in Hi, and w be a neighbor of v
in Hi+1. Add the path (u, x, w), where x is a new vertex. Clearly, any weak unit
interval representation of the new 2-connected graph is also a weak unit interval
representation of G, and the new graph is outerplanar with girth 4.

Now let G be a 2-connected triangle-free outerplanar graph with n > 4 ver-
tices embedded in the plane with every vertex on the outerface, and let � be
an arbitrary edge-labeling of G. We next compute a weak unit interval repre-
sentation of G for �. The proof is by induction on the number of vertices in G,
with the n-vertex cycle as a base case. Assume the inductive hypothesis that
every triangle-free outerplanar graph with fewer than n vertices is a total weak
unit interval graph. Further, assume that for such a graph G′ with any edge-
labeling �′, there is a weak unit interval representation of G′ for �′ where any two
neighbor vertices u and v satisfy ||I(u)− I(v)|| ≤ 6. Clearly if G has at least two
cycles, then G has a path Pk = (u1, . . . , uk), k ≥ 4 with deg(ui) = 2 for some
1 < i < k. The theorem follows from the inductive hypothesis and Corollary 2. ��

Planar Graphs without Weak Unit Interval Representations

Planar graphs with high edge density may not have weak unit interval repre-
sentations. First we prove the result for a wheel graph, defined as Wn, n ≥ 4,
formed by adding an edge from a vertex v1 to every vertex of an (n − 1)-cycle
(v2, . . . , vn, v2).

Lemma 7. A wheel graph is not a total weak unit interval graph.

Proof. Define an edge-labeling � of Wn by �(v2, vn) = F , �(v1, vi) = F for
3 ≤ i ≤ n − 1, and every other edge labeled N ; see Fig. 4(a). Suppose I is a
weak unit interval representation of Wn with respect to �. Since only one edge
of the triangle (v1, v2, vn) is far, I(v1) �= I(v2), hence assume that I(v1) < I(v2).
For 3 ≤ i ≤ n, if I(vi−1) > I(v1), we have I(vi) > I(v1), since �(vi−1, vi) = N
and either �(v1, vi−1) or �(v1, vi) is F . Then I(v1) < I(v2) ≤ I(v1) + 1, and
I(v1) < I(vn) ≤ I(v1) + 1, contradicting that �(v2, vn) = F and I is weak
interval representation. ��

Using Lemma 7, it is easy to see that any maximal planar graph with |V | ≥ 4
is not a weak unit interval graph. Indeed, consider such a graph G = (V,E) and a
vertex v ∈ V ; the neighborhood N(v) = {u | (v, u) ∈ E} together with v induces
a wheel subgraph. The observation leads to the following theorem.

Theorem 4. Any planar graph G with mad(G) ≥ 11
2 is not a total weak unit

interval graph.

Proof. To prove the claim, we show that a total weak unit interval planar graph
has at most 11|V |/4� − 6 edges.

Consider a vertex v of a weak unit interval planar graph G = (V,E) and
assume it is embedded in the plane. The neighborhood of v is acyclic; otherwise
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v1

v11 v2
v3v10

(a)

v2

v1
w2

w1

v0

u

w0

x

(b)

Fig. 4. (a) A wheel graph W11 with an edge-labeling, that has no weak unit interval
representation. (b) A girth-4 graph with an edge-labeling, that has no weak unit interval
representation.

v and its neighborhood induce a wheel, which by Lemma 7 is not a weak unit
interval graph. Thus the number of edges between any two neighbors of v is at
most deg(v)−1, where deg(v) is the degree of v. Denote the number for a vertex
v by s(v). Consider the sum, S =

∑
v s(v), taken over all vertices of G. It is easy

to see that S ≤ 2|E| − |V |.
Let T and T be the sets of triangular and non-triangular faces in an embed-

ding of G. For each triangle x ∈ T each of the edges in x is counted once in
S. Thus, 2|E| − |V | ≥ 3|T | ⇒ |T | ≤ (2|E| − |V |)/3. Counting both sides of the
edges we get 2|E| ≥ 3|T | + 4|T | ⇒ |T | + |T | ≤ (2|E| + |T |)/4 ≤ (8|E| − |V |)/12,
since |T | ≤ (2|E| − |V |)/3. Thus, from Euler’s formula |V | − |E| + |T | + |T | = 2,
we have |V | − |E| + (8|E| − |V |)/12 ≥ 2 ⇒ |E| ≤ 11|V |/4 − 6. ��

In [1] all examples of graphs without threshold-coloring (and thus not total
weak unit interval graphs) have girth 3. We strengthen the bound by proving
the following.

Lemma 8. There exist planar girth-4 graphs that are not total weak unit interval
graphs.

Proof. Consider the graph in Fig. 4(b) with the given edge-labeling. Suppose
there exists a weak unit interval representation I. Without loss of generality
suppose that I(w2) > I(u). Let us consider two cases. First, suppose I(v2) <
I(u). Since the edges (u, v2) and (u,w2) are labeled F , it must be that I(v2) <
I(u)−1 and I(u)+1 < I(w2). Then vertex x must be represented by an interval
near to both of these, which is impossible since ||I(v2) − I(w2)|| > 2.

Otherwise I(v2) > I(u). Then I(v1) ≥ I(v2) − 1 > I(u), and I(u) < I(w2)
implies that I(v1) < I(w2). Similarly, I(w1) < I(v2). Now, either I(w2) ≤ I(v2),
or I(v2) < I(w2). In the first case, w2 is near to v1 since I(v1) < I(w2) ≤ I(v2)
and ||I(v1) − I(v2)|| ≤ 1. The second case leads to a similar contradiction. ��
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4 Conclusion and Open Problems

In this paper we introduced the concept of weak intersection representation of
graphs and studied representations of planar graphs with unit disks and unit
intervals. A natural future direction is to consider weak intersection representa-
tions for other graph classes and/or with different geometric objects. Next we
list several interesting open problems.

1. Deciding whether a graph has a weak unit disk (interval) representation for
a given edge-labeling is NP-hard. However, the problem of deciding whether a
graph is a total weak unit disk (interval) graph is open, and it remains open
when restricted to planar graphs. Note that the class of total weak unit disk
(interval) planar graphs is not closed under taking minors, as subdividing
each edge of a planar graph three times results in a planar graph with girth
at least 10, which is a total weak unit interval graph.

2. Tightening the lower and upper bounds for maximum average degree of total
weak unit interval planar graphs, given in Theorems 2 and 4, is a challenging
open problem. Based on extensive computer experiments, we conjecture that
there are no total weak unit interval graphs with more than 2|V | − 3 edges.

3. We considered planar graphs, but little is known for general graphs. In par-
ticular, it would be interesting to find out whether the edge density of total
weak unit disk (interval) graphs is always bounded by a constant.

4. We proved that a graph has a weak unit interval representation for an edge-
labeling � if and only if it is (r, t)-threshold-colorable with respect to � for
integers r > 0, t ≥ 0, but in the proof, the values of r and t can be arbitrarily
large. It would be interesting to bound the values of r and t for any n-vertex
graph.

Acknowledgments. We thank Michalis Bekos, Gasper Fijavz, and Michael Kaufmann
for productive discussions about several variants of these problems.
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Abstract. Let 〈Gr, Gb〉 be a pair of plane st-graphs with the same vertex
set V . A simultaneous visibility representation with L-shapes of 〈Gr, Gb〉 is
a pair of bar visibility representations 〈Γr, Γb〉 such that, for every vertex
v ∈ V , Γr(v) and Γb(v) are a horizontal and a vertical segment, which
share an end-point. In other words, every vertex is drawn as an L-shape,
every edge of Gr is a vertical visibility segment, and every edge of Gb is a
horizontal visibility segment. Also, no two L-shapes intersect each other.
An L-shape has four possible rotations, and we assume that each vertex
is given a rotation for its L-shape as part of the input. Our main results
are: (i) a characterization of those pairs of plane st-graphs admitting such
a representation, (ii) a cubic time algorithm to recognize them, and (iii) a
linear time drawing algorithm if the test is positive.

1 Introduction

Let Gr and Gb be two plane graphs with the same vertex set. A simultaneous
embedding (SE) of 〈Gr, Gb〉 consists of two planar drawings, Γr of Gr and Γb of
Gb, such that every edge is a simple Jordan arc, and every vertex is the same point
both in Γr and in Γb. The problem of computing SEs has received a lot of attention
in the Graph Drawing literature, partly for its theoretical interest and partly for
its application to the visual analysis of dynamically changing networks on a com-
mon (sub)set of vertices. For example, it is known that any two plane graphs with
the same vertex set admit a SE where the edges are polylines with at most two
bends, which are sometimes necessary [8]. If the edges are straight-line segments,
the representation is called a simultaneous geometric embedding (SGE), and many
graph pairs do not have an SGE: a tree and a path [1], a planar graph and a match-
ing [6], and three paths [5]. On the positive side, the discovery of graph pairs that
have an SGE is still a fertile research topic. The reader can refer to the survey by
Bläsius, Kobourov and Rutter [21] for references and open problems.
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Only a few papers study simultaneous representations that adopt a drawing
paradigm different from SE and SGE. A seminal paper by Jampani and Lubiw
initiates the study of simultaneous intersection representations (SIR) [16]. In an
intersection representation of a graph, each vertex is a geometric object and there
is an edge between two vertices if and only if the corresponding objects intersect.
Let 〈Gr, Gb〉 be two graphs that have a subgraph in common. A SIR of 〈Gr, Gb〉
is a pair of intersection representations where each vertex in Gr∩Gb is mapped to
the same object in both realizations. Polynomial-time algorithms for testing the
existence of SIRs for chordal, comparability, interval, and permutation graphs
have been presented [4,15,16].

We introduce and study a different type of simultaneous representation,
where each graph is realized as a bar visibility representation and two segments
representing the same vertex share an end-point. A bar visibility representation
of a plane graph G is an embedding preserving drawing Γ where the vertices of
G are non-overlapping horizontal segments, and two segments are joined by a
vertical visibility segment if and only if there exists an edge in G between the
two corresponding vertices (see, e.g., [18,22]). A visibility segment has thickness
ε > 0 and does not intersect any other segment.

A simultaneous visibility representation with L-shapes of 〈Gr, Gb〉 is a pair
of bar visibility representations 〈Γr, Γb〉 such that for every vertex v ∈ V ,
Γr(v) and Γb(v) are a horizontal and a vertical segment that share an end-
point. In other words, every vertex is an L-shape, and every edge of Gr (resp.,
Gb) is a vertical (resp., horizontal) visibility segment. Also, no two L-shapes
intersect. A simultaneous visibility representation with L-shapes of 〈Gr, Gb〉
where the rotation of the L-shape of each vertex in V is defined by a function
Φ : V = , , , , is called a Φ-LSVR in the following. While this
definition does not assume any particular direction on the edges of Gr (resp.,
Gb), the resulting representation does induce a bottom-to-top (resp., left-to-
right) st-orientation. In this paper, we assume that Gr and Gb are directed and
this direction must be preserved in the visibility representation. Also, the two
graphs have been augmented with distinct (dummy) sources and sinks. More for-
mally, Gr = (V ∪{sr, tr}, Er) and Gb = (V ∪{sb, tb}, Eb) are two plane st-graphs
with sources sr, sb, and sinks tr, tb.

In terms of readability, this kind of simultaneous representation has the fol-
lowing advantages: (i) The edges are depicted as straight-line segments (as in
SGE) and the edge-crossings are rectilinear; (ii) The edges of the two graphs are
easy to distinguish, since they consistently flow from bottom to top for one graph
and from left to right for the other graph. Having rectilinear crossing edges is an
important benefit in terms of readability, as shown in [14], which motivated a
relevant amount of research on right-angle crossing (RAC) drawings, see [9] for
a survey.

Our main contribution is summarized by the following theorem.

Theorem 1. Let Gr and Gb be two plane st-graphs defined on the same set of n
vertices V and with distinct sources and sinks. Let Φ : V = , , , .
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There exists an O(n3)-time algorithm to test whether 〈Gr, Gb〉 admits a Φ-LSVR.
Also, in the positive case, a Φ-LSVR can be computed in O(n) time.

This result relates to previous studies on topological rectangle visibility
graphs [20] and transversal structures (see, e.g., [12,13,17,19]). Also, starting
from a Φ-LSVR of 〈Gr, Gb〉, we can compute a simultaneous RAC embedding of
the two graphs with at most two bends per edge, improving the general upper
bound by Bekos et al. [3] for those pairs of graphs that can be directed and
augmented to admit a Φ-LSVR.

The proof of Theorem 1 is based on a characterization described in Sect. 3,
which allows for an efficient testing algorithm presented in Sect. 4. Due to space
restrictions, some proofs are omitted or only sketched in the text; full proofs can
be found in [11].

2 Preliminaries

A graph G = (V,E) is simple, if it contains neither loops nor multiple edges. We
consider simple graphs, if not otherwise specified. A drawing Γ of G maps each
vertex of V to a point of the plane and each edge of E to a Jordan arc between its
two end-points. We only consider simple drawings, i.e., drawings such that the
arcs representing two edges have at most one point in common, which is either
a common end-vertex or a common interior point where the two arcs properly
cross. A drawing is planar if no two arcs representing two edges cross. A planar
drawing subdivides the plane into topologically connected regions, called faces.
The unbounded region is called the outer face. A planar embedding of a graph
is an equivalence class of planar drawings that define the same set of faces. A
graph with a given planar embedding is a plane graph. For a non-planar drawing,
we can still derive an embedding considering that the boundary of a face may
consist also of edge segments between vertices and/or crossing points of edges.
The unbounded region is still called the outer face.

A graph is biconnected if it remains connected after removing any one vertex.
A directed graph (a digraph for short) is biconnected if its underlying undirected
graph is biconnected. The dual graph D of a plane graph G is a plane multigraph
whose vertices are the faces of G with an edge between two faces if and only
if they share an edge. If G is a digraph, D is also a digraph whose dual edge
e∗ for a primal edge e is conventionally directed from the face, leftG(e), on the
left of e to the face, rightG(e), on the right of e. Since we also use the opposite
convention, we let D� (resp., D�) be the dual whose edges cross the primal
edges from left to right (resp., right to left).

A topological numbering of a digraph is an assignment, X, of numbers to
its vertices such that X(u) < X(v) for every edge (u, v). A graph admits a
topological numbering if and only if it is acyclic. An acyclic digraph with a single
source s and a single sink t is called an st-graph. In such a graph, for every vertex
v, there exists a directed path from s to t that contains v [22]. A plane st-graph is
an st-graph that is planar and embedded such that s and t are on the boundary
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of the outer face. In any st-graph, the presence of the edge (s, t) guarantees that
the graph is biconnected. In the following we consider st-graphs that contain
the edge (s, t), as otherwise it can be added without violating planarity. Let
G be a plane st-graph, then for each vertex v of G the incoming edges appear
consecutively around v, and so do the outgoing edges. Vertex s only has outgoing
edges, while vertex t only has incoming edges. This is a particular transversal
structure (see Sect. 3) known as a bipolar orientation [18,22]. Each face f of G is
bounded by two directed paths with a common origin and destination, called the
left path and right path of f . For all vertices v and edges e on the left (resp., right)
path of f , we let rightG(v) = rightG(e) = f (resp., leftG(v) = leftG(e) = f).

Tamassia and Tollis [22] proved the following lemma.

Lemma 1 [22]. Let G be a plane st-graph and let D� be its dual graph. Let u
and v be two vertices of G. Then exactly one of the following four conditions
holds: (i) G has a path from u to v, or (ii) from v to u; (iii) D� has a path from
rightG(u) to leftG(v), or (iv) from rightG(v) to leftG(u).

s

t

B(v)

T (v)

L(v)

R(v)
v

Fig. 1. Vertex sets B(v),
T (v), L(v), and R(v)
and their corresponding
regions of the plane.

Let v be a vertex of G, then denote by B(v)
(resp., T (v)) the set of vertices that can reach (resp.,
can be reached from) v. Also, denote by L(v) (resp.,
R(v)) the set of vertices that are to the left (resp.,
to the right) of every path from s to t through v.
By Lemma 1, these four sets partition the vertices of
G \ {v}. In every planar drawing of G, they are con-
tained in four distinct regions of the plane that share
point v. The vertices of B(v) are in the region delim-
ited by the leftmost and the rightmost paths from s to
v, while the vertices of T (v) are in the region delim-
ited by the leftmost and the rightmost paths from v
to t. Edge (s, t) separates the two regions containing
the vertices of L(v) and R(v), as in Fig. 1. Refer to [7] for further details.

3 Characterization

A transversal structure of a plane graph G, is a coloring and an orientation
of the inner edges (i.e., those edges that do not belong to the outer face) of
the graph that obey some local and global conditions. Transversal structures
have been widely studied and important applications have been found. Bipolar
orientations (also known as st-orientations) of plane graphs have been used to
compute bar visibility representations [18,22]. Further applications can be found
in [12,13,17,19], see also [10] for a survey.

To characterize those pairs of graphs that admit a Φ-LSVR, we introduce a
new transversal structure for the union of the two graphs (which may be non-
planar) and show that it is in bijection with the desired representation. In what
follows Gr = (Vr = V ∪ {sr, tr}, Er) and Gb = (Vb = V ∪ {sb, tb}, Eb) are two
plane st-graphs with duals D�

r and D�

b , respectively.
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Definition 1. Given Φ : V = , , , , a (4-polar) Φ-transversal is
a drawing of a directed (multi)graph on the vertex set V ∪ {sr, tr, sb, tb} whose
edges are partitioned into red edges, blue edges, and the four special edges (sr, sb),
(sb, tr), (tr, tb), and (tb, sr) forming the outer face, in clockwise order. In addi-
tion, the Φ-transversal obeys the following conditions:

c1. The red (resp., blue) edges induce an st-graph with source sr (resp., sb) and
sink tr (resp., tb).

c2. For every vertex u ∈ V , the clockwise order of the edges incident to u forms
four non-empty blocks of monochromatic edges, such that all edges in the
same block are either all incoming or all outgoing with respect to u. The four
blocks are encountered around u depending on Φ(u) as in the following table.

u u u u

fb(u)=rightb(u) fb(u)=rightb(u) fb(u)=leftb(u) fb(u)=leftb(u)
fr(u)=leftr(u) fr(u)=rightr(u) fr(u)=rightr(u) fr(u)=leftr(u)

c3. Only blue and red edges may cross and only if blue crosses red from left to
right.

A pair of plane st-graphs 〈Gr, Gb〉 admits a Φ-transversal if there exists a
Φ-transversal Grb such that restricting Grb \{sb, tb} to the red edges realizes the
planar embedding Gr and restricting Grb \ {sr, tr} to the blue edges realizes the
planar embedding Gb.

Let u be a vertex of V , then the edges of a single color enter and leave u by
the same face in the embedding of the other colored graph. In other words, as
condition c2 indicates, Φ(u) defines the face of Gb (resp., Gr), denoted by fb(u)
(resp., fr(u)), by which the edges of Gr (resp., Gb) incident to u enter and leave
u, in the Φ-transversal. Also, condition c3 implies that edges {(sr, sb), (sb, tr),
(tr, tb), (tb, sr)} are not crossed, because they are not colored.

In the remainder of this section we will prove the next theorem.

Theorem 2. Let Gr and Gb be two plane st-graphs defined on the same set of ver-
tices V and with distinct sources and sinks. Let Φ : V = , , , .
Then 〈Gr, Gb〉 admits a Φ-LSVR if and only if it admits a Φ-transversal.

The necessity of the Φ-transversal is easily shown. Let 〈Γr, Γb〉 be a Φ-LSVR
of 〈Gr, Gb〉 with two additional horizontal bars at the bottommost and topmost
sides of the drawing that represent sr and tr, and two additional vertical bars at
the leftmost and rightmost sides of the drawing that represent sb and tb. From
such a representation we can compute a Φ-transversal Grb as follows. Since the
four vertices sr, tr, sb, and tb are represented by the extreme bars in the drawing,
these four vertices belong to the outer face, and the four edges on the outer face
can be added without crossings. Also, we color red all inner edges represented
by vertical visibilities (directed from bottom to top), and blue all inner edges
represented by horizontal visibilities (directed from left to right). To see that
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�ucu cu

(a)

sr

tr

Br(v)

v

sb

tb

u
Tb(u)

(b)

Fig. 2. (a) The replacement of the L-shape, �u, for vertex u with its corner point cu
and the drawing of u’s adjacent edges with 2 bends per edge when constructing a
Φ-transversal from a Φ-LSVR. Only �u’s visibilities are shown. (b) Illustration for the
proof of Lemma 3: the case when u is in B(v) and v is in T (u).

conditions c1, c2 and c3 are satisfied, let Grb be a polyline drawing computed
as follows. Let cu be the corner of the L-shape, �u, representing vertex u. For
every edge (u, v), replace its visibility segment by a polyline from cu to cv that
has two bends, both contained in the visibility segment and each at distance
δ from a different one of its endpoints, for an arbitrarily small, fixed δ > 0.
See Fig. 2(a). Finally, replace every L-shape �u with its corner cu. Since each
bar visibility representation preserves the embedding of the input graph, c1 is
respected. Also, c2 and c3 are clearly satisfied by the embedding derived from
Grb. We remark that, by construction, each edge is represented by a polyline
with two bends and two edges cross only at right angles; this observation will be
used in Sect. 5.

To prove sufficiency, assume 〈Gr, Gb〉 admits a Φ-transversal Grb. We present
an algorithm, ΦLSVRDrawer, that takes as input Grb and returns a Φ-LSVR
〈Γr, Γb〉 of 〈Gr, Gb〉. We first recall the algorithm by Tamassia and Tollis (TT in
the following) to compute an embedding-preserving bar visibility representation
of a plane st-graph G [7,22]:

1. Compute the dual D� of G.
2. Compute a pair of topological numberings Y of G and X of D�.
3. Draw each vertex v as a horizontal bar with y-coordinate Y (v) and between

x-coordinates X(leftG(v)) and X(rightG(v)) − ε.
4. Draw each edge e = (u, v) as a vertical segment at x-coordinate X(leftG(e)),

between y-coordinates Y (u) and Y (v), and with thickness ε.

We are now ready to describe algorithm ΦLSVRDrawer.

Step 1: Compute the dual graphs D�

r of Gr and D�

b of Gb.
Step 2: Compute a pair of topological numberings nr of Gr and nb of Gb.
Step 3: Compute a pair of topological numberings n∗

r of D�

r and n∗
b of D�

b .
Step 4: Compute a bar visibility representation Γr of Gr by using the TT

algorithm with X(u) = Xr(u) = n∗
r(u) and Y (u) = Yr(u) = n∗

b(fb(u)) +
nr(u)δ, for each vertex u. Also, shift the horizontal segment for each vertex
u to the left by nb(u)δ.
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Step 5: Compute a bar visibility representation Γ ′
b of Gb by using the TT

algorithm with X(u) = Xb(u) = n∗
b(u) and Y (u) = Yb(u) = n∗

r(fr(u)) +
nb(u)δ, for each vertex u. Then turn Γ ′

b into a vertical bar visibility repre-
sentation, Γb, by drawing every horizontal segment ((x0, y), (x1, y)) in Γ ′

b as
the vertical segment ((y, x0), (y, x1)) in Γb. Finally, shift the vertical segment
for each vertex u up by nr(u)δ.

Lemma 2 guarantees that Yr and Yb are valid topological numberings, and
thus, that Γr and Γb are two bar visibility representations. Also, Lemma 3 ensures
the union of Γr and Γb is a Φ-LSVR. The shifts performed at the end of Steps
4–5 are to prevent the bars of two L-shapes from coinciding. The value δ > 0
is chosen to be less than ε and less than the smallest difference between distinct
numbers divided by the largest number from any topological numbering nr, nb,
n∗
r , or n∗

b . This choice of δ guarantees that all visibilities are preserved after the
shift, and that no new visibilities are introduced.

Lemma 2. Yr is a valid topological numbering of Gr and Yb is a valid topological
numbering of Gb.

Proof. Let (u, v) be a red edge from u to v. We know that nr(u) < nr(v). Let
e0, e1, . . . , ek be the blue edges crossed by (u, v) in Grb. Due to conditions
c2 and c3, there exists a path {fb(u) = rightb(e0), leftb(e0) = rightb(e1), . . . ,
leftb(ek−1) = rightb(ek), leftb(ek) = fb(v)} in D�

b . Thus, we also know that
n∗
b(fb(u)) ≤ n∗

b(fb(v)). Since Yr(u) = n∗
b(fb(u)) + nr(u)δ and δ > 0, it follows

that Yr(u) < Yr(v). A symmetric argument shows Yb(u) < Yb(v) if (u, v) is a
blue edge.

Lemma 3. Each vertex u of V is represented by an L-shape �u in 〈Γr, Γb〉 as
defined by the function Φ. Also no two L-shapes intersect each other.

Proof. Suppose Φ(u)= , as the other cases are similar. Then, fb(u) = rightb(u)
and fr(u) = leftr(u). The horizontal bar representing u in Γr is the segment
[p0(u), p1(u)], where the two points p0(u) and p1(u) are p0(u) = (n∗

r(leftr(u)) +
nb(u)δ, Yr(u)), and p1(u) = (n∗

r(rightr(u)) + nb(u)δ, Yr(u)). Note that
n∗
r(leftr(u)) < n∗

r(rightr(u)). The vertical bar representing u in Γb is the
segment [q0(u), q1(u)], where the two points q0(u) and q1(u) are q0(u) =
(Yb(u), n∗

b(rightb(u)) + nr(u)δ), and q1(u) = (Yb(u), n∗
b(leftb(u)) + nr(u)δ).

Note that n∗
b(rightb(u)) < n∗

b(leftb(u)). Since Yr(u) = n∗
b(fb(u)) + nr(u)δ =

n∗
b(rightb(u)) + nr(u)δ, the bottom coordinate of the vertical bar represent-

ing u matches the y-coordinate of the horizontal bar representing u. Since
Yb(u) = n∗

r(fr(u)) + nb(u)δ = n∗
r(leftr(u)) + nb(u)δ, the left coordinate of the

horizontal bar representing u matches the x-coordinate of the vertical bar rep-
resenting u. Thus the two bars form the L-shape .

We now show that no two L-shapes properly intersect each other. Suppose by
contradiction that the vertical bar of a vertex u, properly intersects the horizon-
tal bar of a vertex v. Based on Φ, the vertical bar of u involved in the intersection
is either a left vertical bar or a right vertical bar, and it is drawn at x-coordinate
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n∗
r(leftr(u)) + nb(u)δ or n∗

r(rightr(u)) + nb(u)δ, respectively. Suppose it is a left
vertical bar, as the other case is symmetric. Since u’s vertical bar properly inter-
sects v’s horizontal bar, we know by construction that n∗

r(leftr(v)) + nb(v)δ <
n∗
r(leftr(u)) + nb(u)δ < n∗

r(rightr(v)) + nb(v)δ. Proper intersection implies that
these inequalities are strict, that there is a path in the red dual D�

r from leftr(v)
to leftr(u) to rightr(v), and that the three faces are distinct. This implies that
u belongs either to Br(v) or to Tr(v), and it lies in the corresponding regions
of the plane, with fr(u) (and hence the start/end of curves representing blue
edges incident to u) inside the region. Similarly, by considering the blue dual
D�

b , n∗
b(rightb(u)) + nr(u)δ < n∗

b(fb(v)) + nr(v)δ < n∗
b(leftb(u)) + nr(u)δ, we

know that v belongs either to Bb(u), or to Tb(u), and it lies in the corresponding
regions of the plane, with fb(v) (and hence the start/end of curves represent-
ing red edges incident to v) inside the region. No matter which region, Br(v)
or Tr(v), vertex u lies in, or which region, Bb(u) or Tb(u), vertex v lies in, the
directed boundary of the blue region (Bb(u) or Tb(u)) containing v crosses the
directed boundary of the red region (Br(v) or Tr(v)) containing u from right to
left. This either violates c3 (if edges of the boundaries cross) or it violates c2 (if
the boundaries share a vertex). See also Fig. 2(b).

Theorem 3. Let Gr and Gb be two plane st-graphs defined on the same set of n
vertices V and with distinct sources and sinks. LetΦ : V = , , , .
If 〈Gr, Gb〉 admits a Φ-transversal, then algorithm ΦLSVRDrawer computes a Φ-
LSVR of 〈Gr, Gb〉 in O(n) time.

Proof. Lemmas 2 and 3 imply that ΦLSVRDrawer computes a Φ-LSVR of 〈Gr,Gb〉.
Computing the dual graphs and the four topological numberings (Steps 1–3),
as well as computing the two bar visibility representations and shifting each
segment (Steps 4–5), can be done in O(n) time, as shown in [7,22].

4 Testing Algorithm

In this section we show how to test whether two plane st-graphs with the same
set of vertices admit a Φ-LSVR for a given function φ. In [11] it is shown a
pair of graphs 〈Gr, Gb〉 that does not admit a Φ-LSVR for any function Φ. This
emphasizes the need for an efficient testing algorithm. Our algorithm exploits
the interplay between the primal of the blue (red) graph and the dual of the red
(blue) graph. Given the circular order of the edges around each vertex imposed
by the function φ, we aim to compute a suitable path in the red dual for each
blue edge. Such paths will then be used to route the blue edges. Finally, we check
that no two blue edges cross.

We first introduce a few definitions. Let G and D� be a plane st-graph and
its dual. Let f and g be two faces of G that share an edge e = (x, z) of G, such
that e belongs to the right (resp., left) path of f (resp., g). Let e∗ be the dual
edge in D� corresponding to e. Let w be a vertex on the right path of f (or,
equivalently, on the left path of g). Then w is cut from above (resp., below) by
e∗, if w precedes z (resp., succeeds x) along the right path of f , i.e., all vertices
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that precede z (including x) are cut from above, while all vertices that succeed
x (including z) are cut from below by e∗.

Let Gr and Gb be a pair of plane st-graphs with the same vertex set V and
with distinct sources and sinks. Let Φ : V = , , , . Recall that,
for a given vertex u of Gb, with the notation Lb(u), Rb(u), Tb(u) and Bb(u) we
represent the set of vertices to the left, to the right, that are reachable from, and
that can reach u in Gb, respectively (see Sect. 2). Then consider an edge e = (u, v)
of Gb and a path1 πe = {fr(u) = f0, e∗

0, f1, . . . , fk−1, e∗
k−1, fr(v) = fk} in D�

r ,
where fi (0 ≤ i ≤ k) are the faces traversed by the path, and e∗

i (0 ≤ i < k) are
the dual edges used by the path to go from fi to fi+1. Path πe is a traversing
path for e, if πe = {fr(u) = fr(v)}, or for all 0 ≤ i < k and all vertices w in the
right path of fi:

p1. If w ∈ Lb(u) then w is cut from below by e∗
i . See Fig. 3(a).

p2. If w ∈ Rb(u) then w is cut from above by e∗
i .

p3. If w ∈ Bb(u), then either Φ(w) = or Φ(w) = . Also, if Φ(w) = (resp.,
Φ(w) = ) then w is cut from above (resp., below) by e∗

i . See Fig. 3(b).
p4. If w ∈ Tb(v) (and thus w ∈ Tb(u)), then either Φ(w) = or Φ(w) = .

Also, if Φ(w) = (resp., Φ(w) = ) then w is cut from above (resp., below)
by e∗

i . See Fig. 3(c).
p5. If w ∈ Tb(u) and w /∈ Tb(v), then let (u, z) be an edge having u as end-vertex

and belonging to a path from u to w. If (u, z) is to the left (resp., right) of
any path from sb to tb through (u, v), then w is cut from below (resp., above)
by e∗

i . See Fig. 3(d).

We now show that if 〈Gr, Gb〉 admits a Φ-transversal, then for each blue edge
(the same argument would apply for red edges) there exists a unique traversing
path.

Lemma 4. Let Gr and Gb be two plane st-graphs with the same vertex set V and
with distinct sources and sinks. Let Φ : V = , , , . If 〈Gr, Gb〉
admits a Φ-transversal, then for every edge e of Gb there is a unique traversing
path πe in D�

r .

Proof. If 〈Gr, Gb〉 admits a Φ-transversal Grb, then for every edge e = (u, v) of
Gb there exists a path πe = {fr(u) = f0, e∗

0, f1, . . . , fk−1, e∗
k−1, fr(v) = fk} in

D�

r , which is the path used by e to go from fr(u) to fr(v) in Grb.
If f0 and fk coincide, then πe is a traversing path. Otherwise, if f0 and fk

coincide and πe is not a traversing path, we would have a cycle πe = {f0 =
fk, . . . , f0 = fk}, which is not possible since D�

r is acyclic, being the dual of a
plane st-graph.

If f0 and fk do not coincide, let w be a vertex in the right path of fi. First,
if w belongs to Lb(u), then it is cut from below. Otherwise, if w was cut from
above, since edge e = (u, v) cannot cross the right path of fi twice (by condition
c3), it would belong to Rb(u), a contradiction with the fact that the embedding
1 Since D�

r is a multigraph, to uniquely identify πe we specify the edges that are
traversed.
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Fig. 3. Illustration for the properties of a traversing path πe. (Color figure online)

of Gb is preserved. Thus p1 is respected by πe. With a symmetric argument we
can also prove p2.

Suppose now that w belongs to Bb(u). Then fr(w) = fi = leftr(w), otherwise
if fr(w) = fi+1 = rightr(w), an edge of the blue path from w to u would violate
c3. In other words, either Φ(w) = or Φ(w) = . Furthermore, if Φ(w) = ,
then w must be cut from above, while if Φ(w) = , then w must be cut from
below, as otherwise an edge of the blue path from sb to w must enter the region
delimited by the blue path from w to u, part of the blue edge (u, v), and part of
the (red) right path of fi, which violates the planarity of the embedding of Gb

or condition c3. Thus, πe obeys to p3.
If w belongs to both Tb(u) and Tb(v), then fr(w) = fi+1 = rightr(w), other-

wise if fr(w) = fi = leftr(w), an edge of the blue path from v to w would violate
c3. In other words, either Φ(w) = or Φ(w) = . Furthermore, if Φ(w) = ,
then w must be cut from above, while if Φ(w) = , then w must be cut from
below, as otherwise an edge of the blue path from w to tb must exit the region
delimited by the blue path from v to w, part of the blue edge (u, v), and part of
the (red) right path of fi, which again violates the planarity of the embedding
of Gb or condition c3. Thus, πe obeys to p4.

Let w belong to Tb(u) but not to Tb(v), and let (u, z) be an edge having u
as end-vertex and belonging to a path from u to w (there exists at least one
since w ∈ Tb(u)). Notice that z cannot coincide with v as w /∈ Tb(v). If (u, z) is
to the left (resp., right) of any path from sb to tb through (u, v), then w is cut
from below (resp., above) by e∗

i . Otherwise, recall that w /∈ Tb(v), the blue path
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from u to w would cross the leftmost (resp., rightmost) blue path from sb to tb
through (u, v), a contradiction with the planarity of Gb. Hence, πe obeys to p5.

So far we proved that πe is a traversing set. To prove that πe is unique, note
that any possible traversing path for e must start from f0 and leave this face.
Hence, any vertex w on the right path of f0 must be cut from either above or
below, according to properties p1–p5 (which cover all possible cases for w). The
only edge that can satisfy the cut condition for all vertices on the right path
of f0, is an edge e∗

0 whose corresponding red primal edge, denoted by (x, z), is
such that all vertices on the right path of f0 above x must be cut from below
and all those below z must be cut from above. Clearly, this edge is unique. By
repeatedly applying this argument for each face fi (0 ≤ i < k), the traversing
path πe is uniquely identified.

The next theorem concludes the proof of Theorem 1.

Theorem 4. Let Gr and Gb be two plane st-graphs with the same set of n ver-
tices V and with distinct sources and sinks. Let Φ : V = , , , .
There exists an O(n3)-time algorithm to test whether 〈Gr, Gb〉 admits a Φ-
transversal.

Proof skeetch. Our testing algorithm aims to compute (if it exists) a Φ-
transversal Grb for 〈Gr, Gb〉. We first fix the circular order of the edges restricted
to the blue edges (resp., red edges) around each vertex u of Grb to satisfy c1 and
to maintain the planar embedding of Gb (resp., Gr). We then fix the circular
order of the blue edges with respect to the red edges around each vertex u of
Grb to satisfy c2 (i.e., to obey Φ(u)). Then, we first check if for every blue edge
e there exists a traversing path πe; if so, we verify that by routing every blue
edge e through πe no two blue edges cross each other. If this procedure succeeds
then 〈Gr, Gb〉 admits Φ-transversal Grb. Indeed, by construction, the resulting
embedding of Grb satisfies conditions c1, c2 and c3 and it is such that restricting
Grb \ {sb, tb} to the red edges realizes the planar embedding Gr and restricting
Grb \ {sr, tr} to the blue edges realizes the planar embedding Gb. Otherwise,
either there exists a blue edge with no traversing path, or two traversing paths
are such that the two corresponding edges of Gb cross if routed through them. In
the first case 〈Gr, Gb〉 does not admit a Φ-transversal by Lemma 4. In the second
case, since the traversing paths are unique, condition c1 cannot be satisfied, and
again 〈Gr, Gb〉 does not admit a Φ-transversal.

The testing algorithm works in two phases as follows.
Phase 1. For every edge e = (u, v) ∈ Eb. If fr(u) = fr(v), we have found a

traversing path. Otherwise, we label each vertex on the right path of fr(u), by
A if it must be cut from above or by B if it must be cut from below, according
to properties p1–p5. Then we check if the sequence of labels along the path is a
nonzero number of A’s followed by a nonzero number of B’s. If so, then the dual
edge of the traversing path is the one whose corresponding primal edge has the
two end-vertices with different labels (which is unique). If this is not the case,
then a traversing path for e does not exist. In the positive case, we add the dual
edge we found and the next face we reach through this edge to πe and we iterate
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the algorithm until we reach either fr(v) or the outer face of D�

r . In the former
case πe is a traversing path for e, while in the latter case, since the edges of the
outer face of Grb cannot be crossed by definition of Φ-transversal, we have that
again no traversing path can be found.

Phase 2. We now check that by routing every edge e ∈ Eb through its corre-
sponding traversing path πe, no two of these edges cross each other. Consider the
dual graph D�

r , which is a plane st-graph. Construct a planar drawing Γ of D�

r .
Consider any two traversing paths πe and π′

e, which corresponds to two paths
in Γ , and let e = (u, v) and e′ = (w, z) be the two corresponding edges of Gb.
Denote by π̂e = {u} ∪ πe ∪ {v} and π̂′

e = {w} ∪ π′
e ∪ {z} the two enriched paths.

Enrich Γ by adding the four edges (x, fr(x)), where x ∈ {u, v, w, z}, in a planar
way respecting the original embedding of Gb. Consider now the subdrawing Γ ′

of Γ induced by π̂e ∪ π̂′
e. If e and e′ cross each other, then πe ∩ π′

e cannot be
empty. Moreover, the intersection πe ∩π′

e must be a single subpath, as otherwise
the two traversing paths would not be unique. Let f be the first face and let g
be the last face in this subpath. Let eu be the incoming edge of f that belongs
to the subpath of π̂e from u to f ; and let ew be the incoming edge of f that
belongs to the subpath of π̂′

e from w to f . Also, let ev be the outgoing edge of g
that belongs to the subpath of π̂e from g to v; and let ez be the outgoing edge of
g that belongs to the subpath of π̂′

e from g to z. Then e and e′ cross if and only
if walking clockwise along πe ∪ π′

e from f to g and back to f these four edges
are encountered in the circular order eu, ez, ev, ew. Note that, eu and ew may
coincide if u = w, and similarly for ev and ez.

5 Final Remarks and Open Problems

In this paper we have introduced and studied the concept of simultaneous visi-
bility representation with L-shapes of two plane st-graphs. We remark that it is
possible to include in our theory the case when the vertices can also be drawn as
rectangles. Nevertheless, this would not enlarge the class of representable pairs
of graphs. In fact, for every vertex v drawn as a rectangle Rv, we can replace Rv

with any L-shape by keeping only two adjacent sides of Rv in the drawing and
prolonging the visibilites incident to the removed sides of Rv. The converse is
not true. Indeed, roughly speaking, L-shapes can be nested, whereas rectangles
cannot. To give an example, if a vertex v must see a vertex u both vertically
and horizontally, this immediately implies that the two corresponding rectangles
need to overlap, while two L-shapes could instead be nested. Several extensions
of the model introduced in this paper can also be studied, e.g., the case where
every edge is represented by a T-shape, or more generally by a +-shape.

Our results can also be used to shed more light on the problem of computing
a simultaneous RAC embedding (SRE) [2,3]. Given two planar graphs with the
same vertex set, an SRE is a simultaneous embedding where crossings between
edges of the two graphs occur at right angles. Argyriou et al. proved that it is
always possible to construct an SRE with straight-line edges of a cycle and a
matching, while there exist a wheel graph and a cycle that do not admit such a
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representation [2]. This motivated recent results about SRE with bends along the
edges. Namely, Bekos et al. show that two planar graphs with the same vertex
set admit an SRE with at most six bends per edge in both graphs [3]. We observe
that any pair of graphs that admit a simultaneous visibility representation with
L-shapes also admits an SRE with at most two bends per edge. This is obtained
with the technique used in Sect. 3 to compute a Φ-transversal from a Φ-LSVR,
see Fig. 2(a). Thus, a new approach to characterize graph pairs that have SREs
with at most two bends per edge is as follows: Given two planar graphs with the
same vertex set, add to each of them a unique source and a unique sink, and
look for two st-orientations (one for each of the two graphs) and a function Φ
such that the two graphs admit a Φ-LSVR. In [11], we show an alternative proof
of another result by Bekos et al. that a wheel graph and a matching admit an
SRE with at most two bends for each edge of the wheel, and no bends for the
matching edges [3].

Three questions that stem from this paper are whether the time complexity
of the testing algorithm in Sect. 4 can be improved; what is the complexity of
deciding if two given plane st-graphs admit a Φ-LSVR for some function Φ, which
is not part of the input; and what is the complexity of deciding if two undirected
graphs admit a Φ-LSVR for some function Φ.
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Abstract. The goal of this paper is to give a new, abstract approach to
cover-decomposition and polychromatic colorings using hypergraphs on
ordered vertex sets. We introduce an abstract version of a framework by
Smorodinsky and Yuditsky, used for polychromatic coloring halfplanes,
and apply it to so-called ABA-free hypergraphs, which are a generaliza-
tion of interval graphs. Using our methods, we prove that (2k−1)-uniform
ABA-free hypergraphs have a polychromatic k-coloring, a problem posed
by the second author. We also prove the same for hypergraphs defined
on a point set by pseudohalfplanes. These results are best possible.

We also introduce several new notions that seem to be important for
investigating polychromatic colorings and ε-nets, such as shallow hitting
sets. We pose several open problems related to them. For example, is it
true that given a finite point set S on a sphere and a set of halfspheres F ,
such that {S ∩ F | F ∈ F} is a Sperner family, we can select an R ⊂ S
such that 1 ≤ |F ∩ R| ≤ 2 holds for every F ∈ F?

1 Introduction

The study of proper and polychromatic colorings of geometric hypergraphs has
attracted much attention, not only because this is a very basic and natural
theoretical problem but also because such problems often have important appli-
cations. One such application area is resource allocation, e.g., battery consump-
tion in sensor networks. Moreover, the coloring of geometric shapes in the plane
is related to the problems of cover-decomposability, conflict-free colorings and
ε-nets; these problems have applications in sensor networks and frequency assign-
ment as well as other areas. For surveys on these and related problems see [13,18].

In a (primal) geometric hypergraph polychromatic coloring problem, we are
given a natural number k, a set of points and a collection of regions in R

d, and
our goal is to k-color the points such that every region that contains at least
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m(k) points contains a point of every color, where m is some function that we
try to minimize. We call such a coloring a polychromatic k-coloring. In a dual
geometric hypergraph polychromatic coloring problem, our goal is to k-color
the regions such that every point which is contained in at least m(k) regions
is contained in a region of every color. In other words, in the dual version our
goal is to decompose an m(k)-fold covering of some point set into k coverings.
The primal and the dual versions are equivalent if the underlying regions are
the translates of some fixed set. For the proof of this statement and an extensive
survey of results related to cover-decomposition, see e.g., [13]. Below we mention
some of these results, stated in the equivalent primal form.

The most general result about translates of polygons is that given a fixed
convex polygon, there exists a c (that depends only on the polygon) such that
any finite point set has a polychromatic k-coloring such that any translate of
the fixed convex polygon that contains at least m(k) = c · k points contains a
point of every color [6]. Non-convex polygons for which such a finite m(k) (for
any k ≥ 2) exists have been classified [14,17].

As it was shown recently [16], there is no such finite m(2) for convex sets
with a smooth boundary, e.g., for the translates of a disc. However, it was also
shown in the same paper that for the translates of any unbounded convex set
m(2) = 3 is sufficient. In this paper we extend this result to every k, showing
that m(k) = 2k − 1 is an optimal function for unbounded convex sets.

For homothets of a given shape the primal and dual problems are not equiv-
alent. For homothets of a triangle (a case closely related to the case of translates
of octants [9,10]), there are several results, the current best are m(k) = O(k4.53)
in the primal version [2,11] and m(k) = O(k5.53) in the dual version [3]. For the
homothets of other convex polygons, in the dual case there is no finite m(2) [12],
and in the primal case only conditional results are known [11], namely, that the
existence of a finite m(2) implies the existence of an m(k) that grows at most
polynomially in k. In fact, it is even possible that for any polychromatic coloring
problem m(k) = O(m(2)).

For other shapes, cover-decomposability has been studied less, in these cases
the investigation of polychromatic-colorings is motivated rather by conflict-free
colorings or ε-nets. Most closely related to our paper, coloring halfplanes for
small values were investigated in [5,7,8], and polychromatic k-colorings in [19].
We generalize all the (primal and dual) results of the latter paper to pseudohalf-
planes. Note that translates of an unbounded convex set form a set of pseudo-
halfplanes, thus the above mentioned result about unbounded convex sets is a
special case of this generalization to pseudohalfplanes.

Besides generalizing earlier results, our contribution is a more abstract app-
roach to the above problems. Namely, we introduce the notion of ABA-free
families (see Definition 1) and shallow hitting sets (see Definition 5).
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1.1 Definitions and Statements of Main Results

Definition 1. A hypergraph H with an ordered vertex set is called ABA-free if
H does not contain two hyperedges A and B for which there are three vertices
x < y < z such that x, z ∈ A \ B and y ∈ B \ A.

A hypergraph with an unordered vertex set is ABA-free if its vertices have an
ordering with which the hypergraph is ABA-free.1

Remark 1. ABA-free hypergraphs were first defined in [16] under the name spe-
cial shift-chains, as they are a special case of shift-chains introduced in [15].

Example 2. An interval hypergraph is a hypergraph whose vertices are some
points of R, and hyperedges are some intervals from R, with the incidences pre-
served. By definition, every interval hypergraph is ABA-free and in fact every
ABA-free hypergraph is similar, in a way, to an interval hypergraph.

Example 3 [16]. Let S be a set of points in the plane with different x-coordina-
tes and let C be a convex set that contains a vertical halfline. Define a hypergraph
H whose vertex set is the x-coordinates of the points of S. A set of numbers X
is a hyperedge of H if there is a translate of C such that the x-coordinates of the
points of S contained in the translate is exactly X. The hypergraph H defined
this way is ABA-free.

Example 4. Let S be a set of points in the plane in general position. Define
a hypergraph H whose vertex set is the x-coordinates of the points of S. A set
of numbers X is a hyperedge of H if there is a positive halfplane H (i.e., that
contains a vertical positive halfline) such that the x-coordinates of the points of
S contained in H is exactly X. The hypergraph H defined this way is ABA-free.

The above examples show how to reduce geometric problems to abstract
problems about ABA-free hypergraphs. Observe that given an S, by choosing
an appropriately big parabola, all hyperedges defined by positive halfplanes is
also defined by some translate of this parabola, thus the first example is more
general than the second. Even more, as we will see later in Sect. 3, finite ABA-free
hypergraphs have an equivalent geometric representation with graphic pseudo-
line arrangements (sets are defined by the regions above the pseudolines, for the
definitions and details see Sect. 3) and both translates of the boundary of an
unbounded convex set and lines in the plane form graphic pseudoline arrange-
ments, showing again that the above examples are special cases of ABA-free
hypergraphs.

To study polychromatic coloring problems, we also introduce the following
definition, which is implicitly used in [19], but deserves to be defined explicitly
as it seems to be important in the study of polychromatic colorings.

1 While it might seem that using the same notion for ordered and unordered hyper-
graphs leads to confusion as by forgetting the ordering of an ordered hypergraph it
might become ABA-free, from the context it will always be perfectly clear what we
mean.
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Definition 5. A set R is a c-shallow hitting set of the hypergraph H if for every
H ∈ H we have 1 ≤ |R ∩ H| ≤ c.

Actually, almost all our results are based on shallow hitting sets.

Observation 6. An induced subhypergraph of an ABA-free hypergraph is also
ABA-free.

Our main results and the organization of the rest of this paper is as follows.
In Sect. 2 we prove (following closely the ideas of Smorodinsky and Yuditsky

[19]) that every (2k − 1)-uniform ABA-free hypergraph has a polychromatic
coloring with k colors. We then observe that the dual of this problem is equivalent
to the primal, which implies that the edges of every (2k − 1)-uniform ABA-free
hypergraph can be colored with k colors, such that if a vertex v is in a subfamily
Hv of at least m(k) = 2k − 1 of the edges of H, then Hv contains a hyperedge
from each of the k color classes.

In Sect. 3 we give an abstract equivalent definition (using ABA-free hyper-
graphs) of hypergraphs defined by pseudohalfplanes, and we prove that given a
finite set of points S and a pseudohalfplane arrangement H, we can k-color S
such that any pseudohalfplane in H that contains at least m(k) = 2k − 1 points
of S contains all k colors. Both results are sharp. Note that these results imply
the same for hypergraphs defined by unbounded convex sets.

In Sect. 5 we discuss dual and other versions of the problem. For example we
prove that given a pseudohalfplane arrangement H, we can k-color H such that
if a point p belongs to a subfamily Hp of at least m(k) = 3k − 2 of the pseudo-
halfplanes of H, then Hp contains a pseudohalfplane from each of the k color
classes. This result might not be sharp, the best known lower bound for m(k) is
2k − 1 [19]. We also discuss consequences about ε-nets on pseudohalfplanes.

We denote the symmetric difference of two sets, A and B, by AΔB, the
complement of a hyperedge F by F̄ and for a family F we use F̄ = {F̄ |F ∈ F}.
We will suppose (unless stated otherwise) that all hypergraph and point sets are
finite, and denote the smallest (resp. largest) element of an ordered set H by
min(H) (resp. max(H)).

2 ABA-free Hypergraphs

Suppose we are given an ABA-free hypergraph H on n vertices. As the hyper-
graph is ABA-free, for any pair of sets A,B ∈ H either there are a < b such that
a ∈ A \ B and b ∈ B \ A, or there are b < a such that a ∈ A \ B and b ∈ B \ A,
or none of them, but not both as that would contradict ABA-freeness.

Define A < B if and only if there are a < b such that a ∈ A\B and b ∈ B\A.
Define A ≤ B if and only if either A = B (as sets) or A < B. By the above
observation, this is well-defined, and it gives a partial ordering of the sets.

Definition 7. A vertex a is skippable if there exists an A ∈ H such that
min(A)< a < max(A) and a /∈ A. In this case we say that A skips a. A vertex
a is unskippable if there is no such A.
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Observation 8. If a vertex a is unskippable in some ABA-free hypergraph H,
then after adding the one-element edge {a} to H, it remains ABA-free.

Note that the following two lemmas show that the unskippable vertices of
an ABA-free hypergraph behave similarly to vertices on the convex hull of a
hypergraph on a point set defined by halfplanes. These two lemmas make it
possible to use the framework of [19] on ABA-free hypergraphs.

Lemma 9. If H is finite ABA-free, then every A ∈ H contains an unskippable
vertex.

Remark 2. Note that finiteness is needed, as the hypergraph whose vertex set is
Z and edge set is {Z \ {n} | n ∈ Z} is ABA-free without unskippable vertices.

Proof. Take an arbitrary set A ∈ H, suppose that it does not contain an unskip-
pable vertex, we will reach a contradiction. Call a ∈ A rightskippable if there is
a B ∈ H rightskipping a, that is for which a ∈ A \ B and there are b1, b2 ∈ B
such that b1 < a < b2 where b2 ∈ B \ A.

If A contains no unskippable vertex, max(A) must be rightskippable (any set
skipping max(A) must also rightskip max(A)). Also, min(A) cannot be rightskip-
pable, as otherwise A and the set B rightskipping min(A) would violate ABA-
freeness (we would get b1 < min(A) < b2 where b1, b2 ∈ B \ A,min(A) ∈ A \ B).
Therefore we can take the largest a ∈ A that is not rightskippable. By the
assumption, it is skipped by a set, call it B, i.e., b1 < a < b2 where b1, b2 ∈ B �� a.
Moreover, wlog., suppose that b2 is the smallest element of B which is bigger than
a. Since a is not rightskippable, b2 ∈ A must also hold. As b2 ∈ A is rightskip-
pable, there is a C such that c1 < b2 < c2 where c1, c2 ∈ C and b2 /∈ C, c2 /∈ A.
Wlog., suppose c1 is the largest element of C which is smaller than b2. If c1 < a,
then C would rightskip a, a contradiction. Thus, b1 < a ≤ c1, and from the
choice of b2 we conclude that c1 /∈ B. As c2 /∈ A, also c2 /∈ B, otherwise B would
rightskip a. Putting all together, we get c1 < b2 < c2, thus B and C contradict
ABA-freeness.

Recall that a hypergraph is called Sperner if no two of its sets (i.e., hyper-
edges) contain each other, we further assume in it that the hypergraph is non-
empty, i.e., it contains at least one edge.

Lemma 10. If H is finite, ABA-free and Sperner, then any minimal hitting set
of H that contains only unskippable vertices is 2-shallow.

Proof. Let R be a minimal hitting set of unskippable vertices. Assume to the
contrary that there exists a set A such that |A ∩ R| ≥ 3. Let l = min(A ∩ R)
and r = max(A ∩ R). There exists a third vertex l < a < r in A ∩ R. We claim
that R′ = R \ {a} hits all sets of H, contradicting its minimality. Assume on
the contrary that R′ is disjoint from some B ∈ H. As R must hit B, we have
R ∩ B = {a}. If there is a b ∈ B \ A such that l < b < r, that would contradict
the ABA-free property. If there is a b ∈ B such that b < l < a or a < r < b, that
would contradict that l and r are unskippable. Thus B ⊂ A, contradicting that
H is Sperner.
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Now we present the framework of [19] modified for ABA-free hypergraphs.
Our algorithm to give a polychromatic k-coloring of the vertices of an ABA-free
hypergraph with edges of size at least 2k − 1 is as follows.

Algorithm 11. At the beginning we are given an ABA-free hypergraph H with
edges of size at least 2k − 1.

Repeat k − 1 times (i = 1, . . . , k − 1) the general step i of the algorithm:
At the beginning of step i we have an ABA-free hypergraph H with edges

of size at least 2k − 2i + 1. If any hyperedge contains another, then delete the
bigger hyperedge. Repeat this until no hyperedge contains another, thus making
our hypergraph Sperner. Next, take the set of all unskippable vertices, which is a
hitting set by Lemma 9 and delete vertices from this set until it becomes a minimal
hitting set R. By Lemma 10 R is a 2-shallow hitting set, color its vertices with
the i-th color. Delete these vertices from H (the edges of the new hypergraph are
the ones induced by the remaining vertices). Using Observation 6, at the end of
this step i, we have an ABA-free hypergraph with edges of size at least 2k−2i−1.

After k − 1 iterations of the above, we are left with a 1-uniform hypergraph
whose vertices we can color with the k-th color.

Algorithm 11 implies the following theorem.

Theorem 12. Given a finite ABA-free H we can color its vertices with k colors
such that every A ∈ H whose size is at least 2k − 1 contains all k colors.

Notice that the above theorem is sharp, as taking H to be all subsets of size
2k − 2 from 2k − 1 vertices, in any coloring of the vertices, one color must occur
at most once and is thus missed by some hyperedge.

We state another corollary of Lemma 9 that we need later. Before that, we
need another simple claim.

Proposition 13. Suppose we insert a new vertex, v, somewhere into the
(ordered) vertex set of an ABA-free hypergraph, H, and add v to every edge that
contains a vertex before and another vertex after v, then we get an ABA-free
hypergraph.

Proof. We show that if in the new hypergraph, H′, two hyperedges A′ and B′

violate ABA-freeness, then we can find two hyperedges A and B in the original
hypergraph, H, that also violate ABA-freeness, which would be a contradiction.
We define A = A′ \ {v} and B = B′ \ {v}. If both A′ and B′ contain or do
not contain v, then by definition A and B also violate the condition. If, say,
v /∈ A′ and v ∈ B′, then without loss of generality we can suppose that all the
vertices of A = A′ are before v. This means that if there are x < y < z such that
x, z ∈ A′ \ B′ and y ∈ B′ \ A′, then necessarily v = z. But as B′ has an element
z′ that is bigger than v, we have x, z′ ∈ A \ B and y ∈ B \ A, a contradiction.

Lemma 14. If H is ABA-free, A ∈ H, then there is a vertex a ∈ A such that
H ∪ {A \ {a}} is also ABA-free.
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Proof. If |A| = 1, then trivially H can be extended with ∅. If |A| > 1, then we
proceed by induction on the size of A. Using Lemma 9, there is an unskippable
vertex v ∈ A. Delete this vertex from H to obtain some ABA-free Hv and let
Av = A \ {v}. Using induction on Av, there is an A′

v = Av \ {a} such that
Hv ∪ {A′

v} is also ABA-free. We claim that with A′ = A′
v ∪ {v} = A \ {a}, the

family H ∪ {A′} is also ABA-free.
Notice that adding back v to Hv is very similar to the operation of

Proposition 13, as v is unskippable in H. The only difference is that we might
also have to add it to some further hyperedges, ending in or starting at v. But a
hyperedge that contains v cannot violate the ABA-free condition with A′, since
it also contains v, so the corresponding hyperedges in Hv would also violate the
ABA-free condition.

Notice that with the repeated application of Lemma 14 we can extend any
ABA-free hypergraph, such that in any set A there is a vertex a for which {a}
is a singleton edge, implying that a is unskippable in A. Thus in fact Lemma 14
is equivalent to Lemma 9. Moreover, in Sect. 3, in the more general context of
pseudohalfplanes, it will be the abstract equivalent of a known and important
property of pseudohalfplanes.

We prove another interesting property of ABA-free hypergraphs before which
we need the following definition.

Definition 15. The dual of a hypergraph H, denoted by H∗, is such that its
vertices are the hyperedges of H and its hyperedges are the vertices of H with the
same incidences as in H.

Proposition 16. If H is ABA-free, then its dual H∗ is also ABA-free with
respect to some ordering of its vertices.

Proof. Take the partial order “<” of the hyperedges of H and extend this arbi-
trarily into a total order <∗. We claim that H∗ is ABA-free if its vertices are
ordered with respect to <∗. To check the condition, suppose for a contradic-
tion that Hx <∗ Hy <∗ Hz and a ∈ (Hx ∩ Hz) \ Hy and b ∈ Hy \ (Hx ∪ Hz).
Without loss of generality, suppose that a < b. But in this case Hz < Hy holds,
contradicting Hy <∗ Hz.

Corollary 17. The edges of every (2k − 1)-uniform ABA-free hypergraph can
be colored with k colors, such that if a vertex v is in a subfamily Hv of at least
m(k) = 2k − 1 of the edges of H, then Hv contains a hyperedge from each of the
k color classes.

Corollary 18. Any (2k−1)-fold covering of a finite point set with the translates
of an unbounded convex planar set is decomposable into k coverings.

3 Pseudohalfplanes

Here we extend a result of Smorodinsky and Yuditsky [19]. A pseudoline arrange-
ment is a finite collection of simple curves in the plane in general position (i.e., no
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three curves have a common point) such that any two are either disjoint or inter-
sect once and in the intersection point they cross. Some further definitions and
well-known results about pseudoline arrangements are collected below, which
can be found in [1]. We also recommend [4] where generalizations of classical
theorems are proved for topological affine planes.

An infinite pseudoline arrangement is such that cutting a pseudoline in two,
both parts are unbounded. A curve is graphic if it is the graph of a function,
i.e., an x-monotone infinite curve that intersects every vertical line of the plane.
A graphic pseudoline arrangement is such that every curve is graphic. We say that
two pseudoline arrangements are equivalent if there is a bijection between their
pseudolines such that the order in which a pseudoline intersects the other pseudo-
lines remains the same. A pseudohalfplane arrangement is an infinite pseudoline
arrangement, with a side of each pseudoline selected (note that the two sides of
a pseudoline are well-defined regions in this case).

Facts About Pseudoline Arrangements

I. (Levi Enlargement Lemma) Given a pseudoline arrangement, any two points
of the plane can be connected by a new pseudoline (if they are not connected
already).

II. Given a pseudoline arrangement, we can find a(n infinite) pseudoline
arrangement in which every pair of pseudolines intersects exactly once, and
the order in which a pseudoline intersects the other pseudolines remains the
same (ignoring the new intersections).

III. Given an infinite pseudoline arrangement, we can find an equivalent graphic
pseudoline arrangement.

From these facts it follows that in the definition of a pseudohalfplane we
can (and will) suppose that the underlying pseudoline arrangement is a graphic
pseudoline arrangement.

Notice that ABA-free hypergraphs are in a natural bijection with (graphic)
pseudoline arrangements and sets of points, such that each hyperedge corre-
sponds to the subset of points above a pseudoline.

Proposition 19. Given in the plane a set of points S (with all different x-
coordinates) and a graphic pseudoline arrangement L, define the hypergraph HS,L

with vertex set S such that for each pseudoline l ∈ L the set of points above l
is a hyperedge of HS,L. Then HS,L is ABA-free with the order on the vertices
defined by the x-coordinates.

Conversely, given an ABA-free hypergraph H, there exists a set of points S
and a graphic pseudoline arrangement L such that H = HS,L.

Proof. The first part is almost trivial, suppose that there are two hyperedges
A,B in HS,L having an ABA-sequence on the vertices corresponding to the
points a, b, c ∈ S. The pseudolines corresponding to the hyperedges A and B are
denoted by �A and �B . The pseudoline �A intersects the vertical line through a
below a, the vertical line through b above b and the vertical line through c above
c, while �A intersects these in the opposite way (above/below/above). Thus these



274 B. Keszegh and D. Pálvölgyi

p qp p qp

lB

lA

a

lB

lA

ab c b c

Fig. 1. Redrawing a lens to decrease the number of intersections

lines must intersect in the vertical strip between a and b and also in the strip
between b and c, thus having two intersections, a contradiction.

The second part of the proof is also quite natural. Given an ABA-free hyper-
graph H(V,E) with an ordering on V , we want to realize it with a planar point
set S and a graphic pseudoline arrangement L. Let S be |V | points on the x axis
corresponding to the vertices in V such that the order on V is the same as the
order given by the x-coordinates on S. From now on we identify the vertices of
V with the corresponding points of V .

For a given A ∈ H it is easy to draw an �A graphic curve for which the
points of S above �A are exactly in A. Draw a pseudoline �A for every A ∈ H,
such that there are finitely many intersections among these pseudolines, all of
them crossings. What we get is an arrangement of graphic curves, but it can
happen that they intersect more than twice. Now among such drawings take one
which has the minimal number of intersections, we claim that this is a pseudoline
arrangement.

Assume on the contrary, that there are two curves �A and �B intersecting
(at least) twice. Let two consecutive (in the x-order) intersection points be p
and q, where p has smaller x-coordinate than q. Without loss of generality, �A
is above �B close to the left of p and close to the right of q, while �A is below
�B in the open vertical strip between p and q. This structure is usually called a
lens, and we want to eliminate it in a standard way, decreasing the number of
intersections. We can change the part of �A and �B to the left of p (and to the
right from the intersection p′ next to and left of p if there is any) and change
their drawing locally around p (and p′ if it exists) such that we get rid of the
intersection at p, see Fig. 1. If there are no points of S between �A and �B and
to the left of p (and to the right of p′), then this redrawing does not change
the hyperedges defined by �A and �B , so we get a representation of H with less
intersections, a contradiction. Thus there is a point (p′ <)a < p below �A and
above �B . Similarly, there must be a point p < b < q above �A and below �B
and finally a point q < c below �A and above �B , otherwise we could redraw
the pseudolines with less intersections. These three points a < b < c contradict
the ABA-freeness of H as by the definition of the pseudolines, b ∈ A \ B and
a, c ∈ B \ A.

From these, it follows that the hypergraphs defined by points contained in
pseudohalfplanes have the following structure.
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Definition 20. A hypergraph H on an ordered set of points S is called a pseudo-
halfplane-hypergraph if there exists an ABA-free hypergraph F on S such that
H ⊂ F ∪ F̄ .

Note that F̄ is also ABA-free with the same ordering of the points. We refer
to the edges of a pseudohalfplane-hypergraph also as pseudohalfplanes.

Using Lemma 14 on a hyperedge of a pseudohalfplane-hypergraph, we get the
following.

Proposition 21. Given a pseudohalfplane-hypergraph H, and an edge A of H,
we can add a new hyperedge A′ contained completely in A that contains all but
one of the points of A, such that H remains a pseudohalfplane-hypergraph.

In the geometric setting this corresponds to the known and useful fact that
given a pseudohalfplane arrangement and a finite set of points A contained in the
pseudohalfplane H, we can add a new pseudohalfplane H ′ contained completely
in H that contains all but one of the points of A.

Now we show how to extend Theorem 12 to pseudohalfplane arrangements,
i.e., to the case when the points of S below a line also define a hyperedge.

Theorem 22. Given a finite set of points S and a pseudohalfplane arrangement
H, we can color S with k colors such that any pseudohalfplane in H that contains
at least 2k − 1 points of S contains all k colors. Equivalently, the vertices S of
a finite pseudohalfplane-hypergraph can be colored with k colors such that any
hyperedge containing at least 2k − 1 points contains all k colors.

We remark that a similar statement is not true for the union of two arbi-
trary ABA-free hypergraphs (instead of an ABA-free hypergraph and its com-
plement), in fact the union of two arbitrary ABA-free hypergraphs might not be
2-colorable, see [16] for such a construction.

4 Proof of Theorem22

Proof. Our proof is completely about the abstract setting, yet it translates nat-
urally to the geometric setting, also the figures illustrate the geometric interpre-
tations.

By definition there exists an ABA-free F such that H ⊂ F∪F̄ . Call U = H∩F
the upsets and D = H ∩ F̄ the downsets, observe that both U and D are ABA-
free.

Further, the unskippable vertices of U (resp. D) are called top (resp. bottom)
vertices. The top and bottom vertices are called the unskippable vertices of H.
Recall that by adding these unskippable vertices as one-element edges to H, H
remains to be a pseudohalfplane-hypergraph, as we can extend F and F̄ with the
appropriate hyperedge (this is a convenient way of thinking about top/bottom
vertices in the geometric setting, as seen later in the figures).
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Observation 23. If x is top and X is a downset and x ∈ X, then X contains
all vertices that are bigger or all vertices that are smaller than x. The same holds
if x is bottom, X is an upset and x ∈ X.

Lemma 24. If H is a finite Sperner pseudohalfplane-hypergraph, then any min-
imal hitting set of H that contains only unskippable vertices is 2-shallow.

Proof. Let R be a minimal hitting set of unskippable vertices. Suppose for a
contradiction that {a, b, c} ⊂ R ∩ X and a < b < c for some X ∈ H. Without
loss of generality, suppose that b is top. As R is minimal, let B be a set for which
B ∩ R = {b}. From Observation 23 it follows that B is an upset.

First suppose that X is an upset. As B �⊂ X, take a b2 ∈ B \ X. As B and
X are both upsets and thus have the ABA-free property, we have b2 < a or
c < b2. Without loss of generality, we can suppose c < b2. If c is top, {c} and
B violate ABA-freeness. See Fig. 2a. If c is bottom, then using Observation 23,
X contains all the vertices that are smaller than c. Take a set A �⊂ X for which
A ∩ R = {a}. This set must contain an a2 ∈ A \ X and so we must have c < a2.
If A is an upset, as it does not contain b and recall a < b < a2, A and {b} violate
ABA-freeness. See Fig. 2b. If A is a downset, as it does not contain c and recall
a < c < a2, A and {c} violate ABA-freeness, both cases lead to a contradiction.

The case when X is a downset is similar. Using Observation 23 for X and
{b} we can suppose without loss of generality that X contains all vertices that
are smaller than b. Take a set A �⊂ X for which A ∩ R = {a} and an a2 ∈ A \ X.
As X contains all vertices smaller than b, we have b < a2. A cannot be an upset,
as then it would contain b, so it is a downset. If b < a2 < c, then A and X
would violate ABA-freeness, thus we must have c < a2. This means c cannot
be bottom, so it is top. Using Observation 23, X contains all the vertices that
are smaller than c. But then B \ X must have an element that is bigger than c,
contradicting the ABA-freeness of B and {c}.

From here the rest of the proof is the same. Our algorithm to give a k-
coloring of the vertices of H such that every pseudohalfplane of size at least
2k − 1 contains all k colors is as follows. Using Proposition 21, it is enough to
consider pseudohalfplanes of size exactly 2k − 1. Apply Lemma 24 to select a
2-shallow hitting set R and color its vertices with the first color. Delete these
vertices and apply induction on k.
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5 The Dual Problem and Signed ABA-free Hypergraphs

We are also interested in coloring pseudohalfplanes with k colors such that all
points that are covered many times will be contained for each k colors in a
pseudohalfplane of that color. For example, we can also generalize the dual result
about coloring halfplanes of [19] to pseudohalfplanes.

Theorem 25. Given a pseudohalfplane arrangement H, we can color H with
k colors such that if a point p belongs to a subset Hp of at least 3k − 2 of the
pseudohalfplanes of H then Hp contains a pseudohalfplane of every color.

Theorem 25 follows from Theorem 29, that we will state and prove later.
However, instead of coloring pseudohalfplanes, we stick to coloring points

with respect to pseudohalfplanes and work with dual hypergraphs, where the
vertex-hyperedge incidences are preserved, but vertices become hyperedges and
hyperedges become vertices. Since we have already seen in Sect. 3 the equiva-
lence of our abstract definition and the standard definition of a pseudohalfplane
arrangement, we can use the well-known properties of the dual arrangement (see,
e.g., [1]) to obtain the following.

Proposition 26. A dual pseudohalfplane-hypergraph is a hypergraph H on an
ordered set of vertices S such that there exists a set X ⊂ S and an ABA-free
hypergraph F on S such that the edges of H are the edges FΔX for every F ∈ F .

Proof. Using Definition 20, let F be an ABA-free hypergraph that represents
the original pseudohalfplane-hypergraph, that is, every pseudohalfplane is equal
to a set F ∈ F or to a set F ∈ F̄ . Using Proposition 16, the dual of F is an
ABA-free hypergraph, F∗, whose vertices {vF : F ∈ F} correspond to the edges
of F (ordered in some way) and whose edges {fp : p ∈ S} correspond to the
vertices of F , with incidence relations preserved, i.e., fp = {vF : p ∈ F}. Now
we add also the set of vertices {vF̄ : F̄ ∈ F} corresponding to the edges of F̄ .
Each vertex vF̄ is put right after vertex vF in the order. The edges change in the
following way. As in F we have p /∈ F ∈ F if and only if p ∈ F̄ , in the dual the
corresponding edge is hp = {vF : p ∈ F} ∪ {vF̄ : p ∈ F̄} contains exactly one of
vF and vF̄ . First, without loss of generality, we can suppose that for every A ∈ F ,
H contains at least one of A ∈ F and Ā ∈ F̄ , otherwise we can delete A from F
too. Further, we can suppose that H contains exactly one of A ∈ F and Ā ∈ F̄ ,
as if it contains both, we can add another copy A′ of A to F (F is then a(n
ABA-free) multihypergraph) and regard Ā as Ā′. This way it can never happen
that both A ∈ H and Ā ∈ H, thus in the dual only one of the corresponding
vertices are present. Thus, we can relabel to wA the one vertex that is present in
H among vA and vĀ. After the relabeling we have V = {wA : A ∈ F}. Denote
by X the set of vertices of V for which wA = vĀ. Now an arbitrary edge hp =
{vF : p ∈ F} ∪ {vF̄ : p ∈ F̄} = {wF : p ∈ F ∩ X̄} ∪ {wF : p ∈ F̄ ∩ X} = f ′

pΔX,
where Δ denotes the symmetric difference of two sets and f ′

p = {wF : vF ∈ fP },
i.e., fp injected in the natural way into the relabeled set V . These f ′

p define the
same (up to this projection) ABA-free hyperedge G as F∗.
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Now we define a common generalization of the primal and dual definitions.

Definition 27. A signed pseudohalfplane-hypergraph is a hypergraph H on an
ordered set of vertices S such that there exists a set X ⊂ S and an ABA-free
hypergraph F on S such that the edges of H are some subset of {FΔX, F̄ΔX |
F ∈ F}.

It is easy to see that the dual of such a signed pseudohalfplane-hypergraph
is also a signed pseudohalfplane-hypergraph, just like in Proposition 16. Fur-
thermore, there is a nice geometric representation of such hypergraphs; H is a
signed pseudohalfplane-hypergraph if and only if there is a set of points, S, on
the surface of a sphere and a pseudohalfsphere arrangement F on the sphere such
that the incidences among S and F give H. (Here we omit the exact definition
of pseudohalfsphere arrangements, which are a generalization of a collection of
some halfspheres of a sphere. The interested reader can find it in [1].)

Another popular geometric representation on the plane, adding signs to lines
and points, is the following. The vertices correspond to a set of points in the
plane together with a direction (up or down), and the edges correspond to a
set of (x-monotone) pseudolines with a sign (+ or −). The hyperedge corre-
sponding to a positive pseudoline is the set of points that point towards the
pseudoline, while the hyperedge corresponding to a negative pseudoline is the
set of points that point away from the pseudoline. Positive pseudolines corre-
spond to F , negative pseudolines to F̄ , up points correspond to X and down
points correspond to X̄. With this interpretation, ABA-free hypergraphs have
only + and up signs, pseudohalfplane-hypergraphs have ± and up signs, dual
pseudohalfplane-hypergraphs have + and up/down signs.

In the next table we summarize the best known results about these hyper-
graphs, with respect to how many points each edge has to contain to have a
polychromatic k-coloring and the values of the smallest c for which there exists
a c-shallow hitting set for Sperner families.

Polychromatic k-coloring Shallow hitting set

ABA-free hypergraphs 2k − 1 (Theorem 12) 2 (Lemma 10)

Pseudohalfplane-hypergraphs 2k − 1 (Theorem 22) 2 (Lemma 24)

Dual pseudohalfplane-hypergraphs ≤ 3k − 2 (Theorem 25) ≤ 3 (Theorem 29)

Signed pseudohalfplane-hypergraphs ≤ 4k − 3 (Corollary 28) ?

We conjecture that even Sperner pseudohalfsphere arrangements have a 2-
shallow hitting set, which would also imply (using the framework described above
Theorem 12) that any family whose sets have size at least 2k − 1 admits a poly-
chromatic k-coloring, but we could not even prove for any constant c that a
c-shallow hitting set exists.

As we can find a polychromatic k-coloring of the points of X and X̄ indepen-
dently with respect to the sets of F and F̄ , respectively, of size at least 2k − 1
using Theorem 22, the following is true.
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Corollary 28. Given a finite set of points S on the sphere and a pseudohalf-
sphere arrangement H, we can color S with k colors such that any pseudohalf-
sphere in H that contains at least 4k − 3 points of S contains all k colors.
Equivalently, the vertices S of a finite signed pseudohalfplane-hypergraph can be
colored with k colors such that any hyperedge containing at least 4k − 3 points
contains all k colors.

To finish, we first need to prove the following theorem, which, using the usual
framework, will imply Theorem25.

Theorem 29. Every Sperner dual pseudohalfplane hypergraph has a 3-shallow
hitting set.

The proof of this result follows again closely the argument of [19] and the
interested reader can find it in the full version of the paper.

Acknowledgement. We would like to thank the anonymous referees for their several
useful suggestions and comments.
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Et tu mi fili, Brute?
(Julius Caesar)

Abstract. A system of sets forms an m-fold covering of a set X if every
point of X belongs to at least m of its members. A 1-fold covering is
called a covering. The problem of splitting multiple coverings into several
coverings was motivated by classical density estimates for sphere packings
as well as by the planar sensor cover problem. It has been the prevailing
conjecture for 35 years (settled in many special cases) that for every plane
convex body C, there exists a constant m = m(C) such that every m-
fold covering of the plane with translates of C splits into 2 coverings.
In the present paper, it is proved that this conjecture is false for the
unit disk. The proof can be generalized to construct, for every m, an
unsplittable m-fold covering of the plane with translates of any open
convex body C which has a smooth boundary with everywhere positive
curvature. Somewhat surprisingly, unbounded open convex sets C do not
misbehave, they satisfy the conjecture: every 3-fold covering of any region
of the plane by translates of such a set C splits into two coverings. To
establish this result, we prove a general coloring theorem for hypergraphs
of a special type: shift-chains. We also show that there is a constant c > 0
such that, for any positive integer m, every m-fold covering of a region
with unit disks splits into two coverings, provided that every point is
covered by at most c2m/2 sets.

1 Introduction

Let C be a family of sets in R
d, and let P ⊆ R

d. We say that C is an m-
fold covering of P if every point of P belongs to at least m members of C.
A 1-fold covering is called a covering. Clearly, the union of m coverings is an
m-fold covering. We will be mostly interested in the case when P is a large region
or the whole space R

d.
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Sphere packings and coverings have been studied for centuries, partially
because of their applications in crystallography, Diophantine approximation,
number theory, and elsewhere. The research in this field has been dominated
by density questions of the following type: What is the most “economical” (i.e.,
least dense) m-fold covering of space by unit balls or by translates of a fixed
convex body? It is suggested by many classical results and physical observations
that, at least in low-dimensional spaces, the optimal arrangements are typically
periodic, and they can be split into several lattice-like coverings [14,15]. Does a
similar phenomenon hold for all sufficiently “thick” multiple coverings, without
any assumption on their densities?

About 15 years ago, a similar problem was raised for large scale ad hoc sensor
networks; see Feige et al. [13], Buchsbaum et al. [6]. In the – by now rather
extensive – literature, it is usually referred to as the sensor cover problem. In
its simplest version it can be phrased as follows. Suppose that a large region
P is monitored by a set of sensors, each having a circular range of unit radius
and each powered by a battery of unit lifetime. Suppose that every point of P is
within the range of at least m sensors, that is, the family of ranges of the sensors,
C, forms an m-fold covering of P . If C can be split into k coverings C1, . . . ,Ck,
then the region can be monitored by the sensors for at least k units of time
(Fig. 1). Indeed, at time i, we can switch on all sensors whose ranges belong to
Ci (1 ≤ i ≤ k). We want to maximize k, in order to guarantee the longest possible
service. Of course, the first question is the following.

Problem 1 (Pach, 1980 [31]). Is it true that every m-fold covering of the plane
with unit disks splits into two coverings, provided that m is sufficiently large?

In a long unpublished manuscript, Mani and Pach [27] claimed that the
answer to this question was in the affirmative with m ≤ 33. Pach [35] warned
that this “has never been independently verified.” Winkler [42] even conjectured
that the statement is true with m = 4. For more than 30 years, the prevailing
conjecture has been that for any open plane convex body (i.e., bounded convex
set) C, there exists a positive integer m =m(C) such that every m-fold covering
of the plane with translates of C splits into two coverings. This conjecture was
proved in [32] for centrally symmetric convex polygons C. It took almost 25 years
to generalize this statement to all convex polygons [38,40]. Moreover, it was
proved by Aloupis et al. [3] and Gibson and Varadarajan [19] that in these
cases, for every integer k, every at least bk-fold covering splits into k coverings,
where b = b(C) is a suitable positive constant. See [33,34,36], for surveys.

Here we disprove the above conjecture by giving a negative answer to
Problem 1.

Theorem 1. For every positive integer m, there exists an m-fold covering of
the plane with open unit disks that cannot be split into 2 coverings.

Our construction can be generalized as follows.

Theorem 2. Let C be any open plane convex set, which has two parallel sup-
porting lines with positive curvature at their points of tangencies. Then, for every



Unsplittable Coverings in the Plane 283

Fig. 1. Two simple examples.

positive integer m, there exists an m-fold covering of the plane with translates
of C that cannot be split into 2 coverings.

As was mentioned above, for every open convex polygon Q, there exists a
smallest positive integer m(Q) such that every m(Q)-fold covering of the plane
with translates of Q splits into 2 coverings. We have that supm(Q) = ∞, where
the sup is taken over all convex polygons Q. Otherwise, we could approximate
the unit disk with convex n-gons with n tending to infinity. By compactness,
we would conclude that the unit disk C satisfies m(C) < +∞, which contradicts
Theorem 1.

Problem 2. Does there exist, for any n > 3, an integer m(n) such that every
convex n-gon Q satisfies m(Q) ≤m(n)?

For any triangle T , there is an affine transformation of the plane that takes
it into an equilateral triangle T0. Therefore, we have m(T ) = m(T0) and m(3)
is finite. For n = 4, Problem 2 is open.

In spite of our sobering negative answer to Problem 1 and its analogues in
higher dimensions (cp. [27]), there are important classes of multiple coverings
such that all of their members are splittable. According to our next, somewhat
counter-intuitive result, for example, any m-fold covering of Rd with unit balls
can be split into 2 coverings, provided that no point of the space is covered by
too many balls. (We could innocently believe that heavily covered points make
it only easier to split an arrangement.)
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Theorem 3. For every d ≥ 2, there exists a positive constant cd with the follow-
ing property. For every positive integer m, any m-fold covering of Rd with unit
balls can be split into two coverings, provided that no point of the space belongs
to more than cd2m/d balls.

Theorem 3 was one of the first geometric applications of the Lovász local
lemma [10], and it was included in [2]. Here, we establish a more general state-
ment (see Theorem 5.2).

One may also believe that unbounded convex sets behave even worse than
the bounded ones. It turns out, however, that this is not the case.

Theorem 4. Let C be an unbounded open convex set and let P be a finite set
of points in the plane. Then every 3-fold covering of P ⊂ R2 with translates of
C can be split into two coverings of P .

In fact, using a standard compactness argument, Theorem 4 also holds if
P is any compact set in the plane. However, Theorem 4 does not generalize to
higher dimensions. Indeed, it follows from the proof of Theorem 1 that, for every
positive integer m, there exists a finite family C of open unit disks in the plane
and a finite set P ⊂ R2 such that C is an m-fold covering of P that cannot be split
into two coverings. Consider now an unbounded convex cone C′ in R

3, whose
intersection with the plane R

2 is an open disk. Take a system of translates of
C′ such that their intersections with the plane coincide with the members of C.
These cones form an m-fold covering of P that cannot be split into two coverings.

For interesting technical reasons, the proof of Theorem 4 becomes much easier
if we restrict our attention to multiple coverings of the whole plane. In fact, in
this case, we do not even have to consider multiple coverings! Moreover, the
statement remains true in higher dimensions.

Proposition 5. Let C be an unbounded line-free open convex set in R
d. Then

every covering of Rd with translates of C can be split into two, and hence into
infinitely many, coverings.

The reason why we assume here that C is line-free (i.e., does not contain a
full line) is the following. If C contains a straight line, then it can be obtained
as the direct product of a line l and a (d − 1)-dimensional open convex set C′.
Any arrangement C of translates of C in R

d is combinatorially equivalent to
the (d − 1)-dimensional arrangement of translates of C′, obtained by cutting C
with a hyperplane orthogonal to l. In particular, the problem whether an m-fold
covering of Rd with translates of C can be split into two coverings reduces to
the respective question about m-fold coverings of Rd−1 with translates of C′.

Proposition 5 is false already in the plane without the assumption that
C is open. However, every 2-fold covering of the plane with translates of an
unbounded C can be split into two coverings. We omit the proof as it reduces
to a simple claim about intervals.

However, in higher dimensions, the similar claim is false.
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Theorem 6. There is a bounded convex set C′ ⊂ R
3 with the following prop-

erty. One can construct a family of translates of C = C′ × [0,∞) ⊂ R
4 which

covers every point of R4 infinitely many times, but which cannot be split into
two coverings.

Our construction is based on an example of Naszódi and Taschuk [30], and
explores the fact that the boundary of C′ can be rather “erratic.” We do not
know whether sufficiently thick coverings of R3 by translates of an unbounded
line-free convex set can be split into two coverings or not.

In the sequel, we will study the equivalent “dual” form of the above questions.
Consider a family C = {Ci ∶ i ∈ I} of translates of a set C ⊂ R

d that form an
m-fold covering of P ⊆ Rd. Suppose without loss of generality that C contains
the origin 0. For every i ∈ I, let ci denote the point of Ci that corresponds to
0 ∈ C. In other words, we have C = {C+ci ∶ i ∈ I}. Assign to each p ∈ P a translate
of −C, the reflection of C about the origin, by setting C∗p = −C +p. Observe that

p ∈ Ci ⇐⇒ ci ∈ C∗p .

In particular, the fact that C forms an m-fold covering of P is equivalent to
the following property: Every member of the family C∗ = {C∗p ∶ p ∈ P} contains
at least m elements of {ci ∶ i ∈ I}. Thus, Theorem 1 can be rephrased in the
following dual form.

Theorem 1’. For every m ≥ 2, there is a set of points P ∗ = P ∗(m) in the plane
with the property that every open unit disk contains at least m elements of P ∗,
and no matter how we color the elements of P ∗ with two colors, there exists a
unit disk such that all points in it are of the same color.

A set system not satisfying this condition is said to have property B (in
honor of Bernstein) or is 2-colorable (see [9,29,39]). Generalizations of this notion
are related to conflict-free colorings [12] and have strong connections, e.g., to
the theory of ε-nets, geometric set covers and to combinatorial game theory
[1,18,21,34,41].

The rest of this paper is organized as follows. In the next three sections, we
prove Theorem 1’ in 3 steps. In Sect. 2, we exhibit a family of non-2-colorable
m-uniform hypergraphs H(k, l). In Sect. 3, we construct planar “realizations” of
these hypergraphs, where the vertices correspond to points and the (hyper)edges
to unit disks, preserving the incidence relations. In Sect. 4, we extend this con-
struction, without violating the colorability condition, so that every disk contains
at least m points. The proof of a more general version of Theorem 3, using the
Lovász local lemma, can be found in Sect. 5. Finally, in Sect. 6 we make some
concluding remarks and mention a couple of open problems.

The proof of Theorem 2, a generalization of Theorem 1 to bounded plane
convex bodies with a smooth boundary, and the proofs of our results related to
multiple coverings with unbounded convex sets, Theorem 4, Proposition 5, and
Theorem 6, can be found in the full version of the paper available online.
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2 A Family of Non-2-colorable Hypergraphs H(k, l)

In this section we define, for any positive integers k and l, an abstract hypergraph
H(k, l) with vertex set V (k, l) and edge set E(k, l). The hypergraphs H(k, l) are
defined recursively. The edge set E(k, l) will be the disjoint union of two sets,
E(k, l) = ER(k, l) ⊍ EB(k, l), where the subscripts R and B stand for red and
blue. All edges belonging to ER(k, l) will be of size k, all edges belonging to
EB(k, l) will be of size l. In other words, H(k, l) is the union of a k-uniform and
an l-uniform hypergraph. If k = l =m, we get an m-uniform hypergraph (Fig. 2).

Definition 2.1. Let k and l be positive integers.

1. For k = 1, let V (1, l) be an l-element set.
Set ER(1, l) ∶= V (1, l) and EB(1, l) ∶= {V (1, l)}.

2. For l = 1, let V (k,1) be a k-element set.
Set ER(k,1) ∶= {V (k,1)} and EB(k,1) ∶= V (k,1).

3. For any k, l > 1, we pick a new vertex p, called the root, and let

V (k, l) ∶= V (k − 1, l) ⊍ V (k, l − 1) ⊍ {p},

ER(k, l) ∶= {e ∪ {p} ∶ e ∈ ER(k − 1, l)} ∪ER(k, l − 1),

EB(k, l) ∶= EB(k − 1, l) ⊍ {e ∪ {p} ∶ e ∈ EB(k, l − 1)}.

By recursion, we obtain that

∣V (k, l)∣ = (
k + l

k
) − 1,

∣ER(k, l)∣ = (
k + l − 1

k
), ∣EB(k, l)∣ = (

k + l − 1
l
),

∣E(k, l)∣ = ∣ER(k, l)∣ + ∣EB(k, l)∣ = (
k + l

k
).

Fig. 2. The hypergraph H(3,3) with (arbitrarily) 2-colored vertices. There is a blue
(dashed) set with 3 blue vertices or a red (solid) set with 3 red vertices. (Color figure
online)
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Lemma 2.2 ([37]). For any positive integers k, l, the hypergraph H(k, l) is not
2-colorable. Moreover, for every coloring of V (k, l) with red and blue, there is
an edge in ER(k, l) such that all of its k vertices are red or an edge in EB(k, l)
such that all of its l vertices are blue.

For completeness, here we include the proof of Lemma 2.2 from [37]. The
induction on two parameters, k and l, is similar to the proof of Ramsey’s theorem
by Erdős and Szekeres [11].

Proof. We will prove that for every coloring of V (k, l) with red and blue, there
is an edge in ER(k, l) such that all of its k vertices are red or an edge in EB(k, l)
such that all of its l vertices are blue.

Suppose first that k = 1. If any vertex in V (1, l) is red, then it is a red
singleton edge in H(1, l). If all vertices in V (1, l) are blue, then the (only) edge
V (1, l) ∈ EB(1, l) contains only blue points. Analogously, the assertion is true if
l = 1.

Suppose next that k, l > 1. Assume without loss of generality that the root p
is red. Consider the subhypergraph H(k − 1, l) ⊂ H(k, l) induced by the vertices
in V (k − 1, l). If it has a monochromatic red edge e ∈ ER(k − 1, l), then e∪ {p} ∈
ER(k, l) is red. If there is a monochromatic blue edge in EB(k − 1, l), then we
are again done, because it is also an edge in EB(k, l).

For other interesting properties of the hypergraphs H(k, l) related to hered-
itary discrepancy, see Matoušek [28].

3 Geometric Realization of the Hypergraphs H(k, l)

The aim of this section is to establish the following weaker version of Theorem 1’.

Theorem 1”. For every m ≥ 2, there exists a finite point set P = P (m) ⊂ R2 and
a finite family of unit disks C = C(m) with the property that every member of C
contains at least m elements of P , and no matter how we color the elements of
P with two colors, there exists a disk in C such that all points in it are of the
same color.

We realize the hypergraph H(k, l) defined in Sect. 2 with points and disks.
The vertex set V (k, l) is mapped to a point set P (k, l) ⊂ R

2, and the edge
sets, ER(k, l) and EB(k, l), to families of open unit disks, CR(k, l) and CB(k, l),
so that a vertex belongs to an edge if and only if the corresponding point is
contained in the corresponding disk. The geometric properties of this realization
are summarized in the following lemma.

Given two unit disks C,C′, let d(C,C′) denote the distance between their
centers. We fix an orthogonal coordinate system in the plane so that we can talk
about the topmost and the bottommost points of a disk.

Lemma 3.1. For any positive integers k, l and for any ε > 0, there is a finite
point set P = P (k, l) and a finite family of open unit disks C(k, l) = CR(k, l) ⊍
CB(k, l) with the following properties.
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1. Any disk C ∈ CR(k, l) (resp. CB(k, l)) contains precisely k (resp. l) points
of P .

2. For any coloring of P with red and blue, there is a disk in CR(k, l) such that
all of its points are red or a disk in CB(k, l) such that all of its point are blue.
In fact, P and C(k, l) realize the abstract hypergraph H(k, l) in the above
sense.

3. For the coordinates (x, y) of any point from P , we have −ε < x < ε and
−ε2 < y < ε2.

4. For the coordinates (x, y) of the center of any disk from CR(k, l), we have
−ε < x < ε and −ε2 < y − 1 < ε2.

5. For the coordinates (x, y) of the center of any disk from CB(k, l), we have
−ε < x < ε and −ε2 < y + 1 < ε2.

6. The topmost and the bottommost points of a disk C ∈ C(k, l) are not covered
by the closure of any other member of C(k, l).

Looking at our construction from “far away” the two families CR and CB look
like two touching disks, with all points of P very close to the touching point.
The segments connecting the centers of disks from different families are almost
vertical with all members of CR lying “above” all members of CB . We prove the
lemma by induction. Most conditions are needed for the induction to go through.
Condition 6 is an exception: it will be used in Sect. 4.

Proof. We give a recursive construction. We can assume that ε < 1/10. It is easy
to see that, for k = 1 or l = 1, there exists such a family of unit disks for any
ε > 0, see Fig. 3(a). The family C(2,2) is depicted in Fig. 3(b), where the main
idea of the induction may already be visible.

Suppose that k, l ≥ 2 and we have already constructed P (k − 1, l) and C(k −
1, l), and P (k, l − 1) and C(k, l − 1), for some ε(k − 1, l) < ε/100 and ε(k, l − 1) <
ε/100, respectively. To obtain P (k, l), we place the root p of H(k, l) into the
origin (0,0), and we shift (translate) P (k−1, l) and P (k, l−1) into new positions
such that their roots are at (−ε/3,−ε2/10) and (ε/3, ε2/10), respectively. With
a slight abuse of notation, the shifted copies will also be denoted P (k − 1, l) and
P (k, l−1). See Fig. 3. In this way, it is guaranteed that for the coordinates (x, y)
of any point of P , we have

−ε < −(ε/3 + ε(k − 1, l) + ε(k, l − 1)) < x < ε/3 + ε(k − 1, l) + ε(k, l − 1) < ε

and

−ε2 < −(ε2/10+ ε2(k − 1, l)+ ε2(k, l− 1)) < y < ε2/3+ ε2(k − 1, l)+ ε2(k, l− 1) < ε2.

Thus, property 3 of the lemma holds.
The family C(k, l) is defined as the union of two previously defined families,

C(k−1, l) and C(k, l−1), translated by the same vectors as P (k−1, l) and, resp.
P (k, l−1) were. Again, we use the same symbols to denote the translated copies.
To verify properties 4 and 5, we only have to repeat the above calculations,
with the y-coordinates being shifted 1 higher (resp. 1 lower).
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Fig. 3. The construction.
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Now we show that our set of points P (k, l) and set of disks C(k, l) realize the
hypergraphH(k, l) (properties 1 and 2). It is easy to see that if C ∈ CR(k−1, l)
and s ∈ P (k, l−1), then s ∉ C but p = (0,0) ∈ C. The coordinates of the center of
C are (−ε/3±ε(k−1, l),1−ε2/10±ε2(k−1, l)) (where here and in the following,
±z denotes a number that is between −z and z), so the distance of p from C is
at most (ε/3+ε(k−1, l))2 +(1−ε2/10+ε2(k−1, l))2 < 1. On the other hand, the
coordinates of s are (ε/3 ± ε(k, l − 1), ε2/10 ± ε2(k, l − 1)), thus the square of its
distance from the center of C is at least

(2ε/3 − ε(k − 1, l) − ε(k, l − 1))
2
+ (1 − 2ε2/10 − ε2(k − 1, l) − ε2(k, l − 1))

2
> 1.

Analogously, if C ∈ CB(k, l − 1) and s ∈ P (k − 1, l), then s ∉ C but p = (0,0) ∈ C.
Let C ∈ CR(k, l−1) and s ∈ P (k−1, l). We prove that p, s ∉ C. The coordinates

of the center of C are (ε/3±ε(k, l−1),1+ε2/10±ε(k, l−1)). Therefore, the distance
of p from the center of C is at least (ε/3−ε(k, l−1))2+(1+ε2/10−ε(k, l−1))2 > 1.
The calculation for s is similar in the case C ∈ CR(k − 1, l). Analogously, we
have that if C ∈ CB(k − 1, l) and s ∈ P (k, l − 1), then p, s ∉ C. As the disks
in C(k, l − 1) (resp. C(k − 1, l)) contain precisely the same points of P (k, l − 1)
(resp. P (k − 1, l), as before the shift, we have obtained a geometric realization
of H(k, l), and properties 1 and 2 hold.

It remains to prove that the topmost and the bottommost points of a disk
C ∈ C(k, l) are not covered by any other member of C(k, l) (property 6). Using
that our construction and disks are centrally symmetric, it is enough to prove
the statement for the topmost points. If C ∈ CR(k, l − 1), the coordinates of its
topmost point are (ε/3±ε(k, l−1),2+ε2/10±ε2(k, l−1)). If C ∈ CR(k−1, l), the
coordinates of its topmost point are ( − ε/3 ± ε(k − 1, l),2 − ε2/10 ± ε2(k − 1, l)).
If C ∈ CB(k, l−1), the coordinates of its topmost point are (ε/3± ε(k, l−1),−2+
ε2/10 ± ε2(k, l − 1)). If C ∈ CB(k − 1, l), the coordinates of its topmost point are
( − ε/3 ± ε(k − 1, l),−2 − ε2/10 ± ε2(k − 1, l)).

If C ∈ CR(k, l − 1), by the induction hypothesis, its topmost point cannot be
covered by any other disk from C(k, l − 1). Nor can it be covered by any other
disk, as the topmost points of all other disks are below it (i.e., have smaller
y-coordinates). If C ∈ CR(k − 1, l), then the square of the distance of its topmost
point from the center of some C′ ∈ CR(k, l − 1) is at least

(2ε/3 − ε(k, l − 1) − ε(k − 1, l))
2
+ (1 − 2ε2/10 − ε2(k, l − 1) − ε2(k − 1, l))

2
> 1.

If C ∈ CB(k, l−1), then the distance of its topmost point from the center of some
C′ ∈ CR(k − 1, l) is also at least

(2ε/3 − ε(k, l − 1) − ε(k − 1, l))
2
+ (1 − 2ε2/10 − ε2(k, l − 1) − ε2(k − 1, l))

2
> 1.

In all other cases, trivially, the corresponding distances are also larger than 1.
This completes the proof of property 6 and hence the lemma.
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4 Adding points to P – Proof of Theorem 1’

In this section, we extend the proof of Theorem 1” to establish Theorem 1’ (which
is equivalent to Theorem 1). Note that the only difference between Theorems 1”
and 1’ is that in the latter it is also required that every unit disk of the plane
contains at least m elements of the point set P ∗ = P ∗(m). The set P = P (m,m)
constructed in Lemma 3.1, does not satisfy this condition. In order to fix this,
we will add all points not in ∪C(m,m) to the set P (or rather a sufficiently dense
discrete subset of R

2
∖ ∪C(m,m)). In order to show that the resulting set P ∗

meets the requirements of Theorem 1’, all we have to show is the following.

Lemma 4.1. No (open) unit disk C ∉ C(k, l) is entirely contained in ∪C(k, l).

For future purposes, we prove this statement in a slightly more general form.
In what follows, we only assume that C is an open convex body with a unique
topmost point t and a unique bottommost point b, which divide the boundary
of C into two closed arcs. They will be referred to as the left boundary arc and
a right boundary arc.

Definition 4.2. A collection C of translates of C is said to be exposed if the
topmost and bottommost points of its members do not belong to the closure of
any other member of C.

By the last condition in Lemma 3.1, the collections of disks C(k, l) con-
structed in the previous section are exposed. We prove the following generaliza-
tion of Lemma 4.1.

Lemma 4.3. Let C be a finite exposed collection of translates of an open convex
body C with unique topmost and bottommost points. If C ∉ C, then C /⊆ ∪C.

For the proof, we need a simple observation.

Proposition 4.4. If the right boundary arcs of two translates of C intersect,
then the closure of one of the translates must contain the topmost or bottommost
point of the other.

Proof. Let C1 and C2 be the two translates, and let γi denote the closed convex
curve formed by the right boundary arc of Ci and the straight-line segment
connecting its two endpoints (the topmost and the bottommost points of Ci).
The curves γ1 and γ2 are translates of each other, and since they intersect, they
must cross twice. (At a crossing, one curve comes from the exterior of the other,
then it shares an arc with it, which may be a single point, and enters the interior.)
It cannot happen that both crossings occur between the right boundary arcs,
because they are convex and translates of each other. Therefore, one of the two
crossings involves the straight-line segment of one the curves, say, γ1. But since
the condition is that the right boundary arcs intersect, one of the two endpoints
of this straight-line segment, either the topmost or the bottommost point of C1,
lies in the closure of C2.
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Proof (of Lemma 4.3). Suppose, for contradiction, that C ⊆ ∪C. By removing
some members of C if necessary, we can assume that C is a minimal collection of
translates that covers C. Then C must have a point which belongs to (at least)
three translates, C1,C2,C3 ∈ C. None of the topmost and bottommost points
of these translates can be covered by C, otherwise, it would also be covered by
another member of C, contradicting the assumption that C is exposed.

Thus, C intersects either the left or the right boundary arc of every Ci.
Without loss of generality, suppose that C intersects the right boundary arcs
of C1 and C2. These right boundary arcs must intersect inside C, otherwise
C1 ∩ C ⊆ C2 ∩ C or C2 ∩ C ⊆ C1 ∩ C, and C would not be minimal. Therefore,
we can apply Proposition 4.4 to conclude that one of them must contain the
topmost or bottommost point of the other.

Remark 1. In the construction described in Lemma 3.1, every disk in C(m,m)
contains at most ∣P (m,m)∣ < 22m points. At the last stage, we added many new
points to P . We can keep the maximum number of points of P lying in a unit
disk bounded from above by a function f(m). What is the best upper bound?
The bound given by our construction depends on ε(m,m) ≤ 100−2mε(1,1).

5 Bounded Coverings

We prove Theorem 3 in a somewhat more general form. For the proof we need
the following consequence of the Lovász local lemma.

Lemma 5.1 (Erdős-Lovász [10]). Let k,m ≥ 2 be integers. If every edge
of a hypergraph has at least m vertices and every edge intersects at most
km−1

/4(k − 1)m other edges, then its vertices can be colored with k colors so
that every edge contains at least one vertex of each color.

Let C be a class of subsets of Rd. Given n members C1, . . . ,Cn of C, assign
to each point x ∈ Rd a characteristic vector c(x) = (c1(x), . . . , cn(x)), where
ci(x) = 1 if x ∈ Ci and ci(x) = 0 otherwise. The number of distinct characteristic
vectors shows how many “pieces” C1, . . . ,Cn cut the space into. The dual shatter
function of C, denoted by π∗C(n), is the maximum of this quantity over all n-
tuples C1, . . . ,Cn ∈ C. For example, when C is the family of open balls in R

d, it
is well known that

π∗C(n) ≤ (
n − 1

d
) +

d

∑
i=0

(
n

i
) ≤ nd, (1)

provided that 2 ≤ d ≤ n.

Theorem 5.2. Let C be a class of open sets in R
d with diameter at most D

and volume at least v. Let π(n) = π∗C(n) denote the dual shatter function of C,
and let Bd denote the unit ball in R

d. Then, for every positive integer m, any
m-fold covering of Rd with members of C splits into two coverings, provided that
no point of the space is covered more than v

(2D)dV olBd π−1(2m−3) times, where
V olBd is the volume of Bd.
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Proof. Given an m-fold covering of Rd in which no point is covered more than M
times, define a hypergraph H = (V,E), as follows. Let V consist of all members
of C that participate in the covering. To each point x ∈ Rd, assign a (hyper)edge
e(x): the set of all members of the covering that contain x. (Every edge is counted
only once.) Since every point x is covered by at least m members of C, every
edge e(x) ∈ E consists of at least m points.

Consider two edges e(x), e(y) ∈ E with e(x) ∩ e(y) ≠ ∅. Then there is
a member of C that contains both x and y, so that y must lie in the ball
B(x,D) of radius D around x. Hence, all members of the covering that con-
tain y lie in the ball B(x,2D) of radius 2D around x. Since the volume of
each of these members is at least v, and no point of B(x,2D) is covered
more than M times, we obtain that B(x,D) can be intersected by at most
MV olB(x,2D)/v = M(2D)dV olBd

/v members of the covering. By the defini-
tion of the dual shatter functions, those members of the covering that intersect
B(x,D) cut B(x,D) into at most π(M(2D)dV olBd

/v) pieces, each of which
corresponds to an edge of H. Therefore, for the maximum number N of edges of
H that can intersect the same edge e(x) ∈ E, we have

N ≤ π(M(2D)dV olBd
/v).

According to Lemma 5.1 (for k = 2), in order to show that the covering can
be split into two, i.e., the hypergraph H is 2-colorable, it is sufficient to assume
that N ≤ 2m−3. Comparing this with the previous inequality, the result follows.

In the special case where C is the class of unit balls in R
d, we have v = V olBd,

D = 2, and, in view of (1), π−1(z) ≥ z1/d. Thus, we obtain Theorem 3 with
cd = 2−2d−3/d.

If we want to decompose an m-fold covering into k > 2 coverings, then the
above argument shows that it is sufficient to assume that

π(M(2D)dV olBd
/v) ≤ km−1

/4(k − 1)m.

In case of unit balls, this holds for M ≤ ck,d(1+ 1
k−1
)
m/d with ck,d = k−1/d4−d−1/d.

Two sets are homothets of each other if one can be obtained from the other
by a dilation with positive coefficient followed by a translation. It is easy to
see [20] that for d = 2, the dual shatter function of the class C consisting of all
homothets of a fixed convex set C is at most n2

− n + 2 ≤ n2, for every n ≥ 2. In
this case, Theorem 5.2 immediately implies

Corollary 5.3. Every m-fold covering C of the plane with homothets of a fixed
convex set can be decomposed into two coverings, provided that no point of the
plane belongs to more than 2(m−11)/2 members of C.

Naszódi and Taschuk [30] constructed a convex set C in R
3 such that the dual

shatter function of the class of all translates of C cannot be bounded from above
by any polynomial of n. Therefore, for translates of C, the above approach breaks
down. We do not know how to generalize Theorem 3 from balls to arbitrary
convex bodies in R

d, for d ≥ 3.
For some related combinatorial results, see Bollobás et al. [5].
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6 Open Problems and Concluding Remarks

Theorem 2 states that, if C is a plane convex body with two antipodal points at
which the curvature is positive, then for every m, there exists an m-fold covering
of R2 with translates of C that does not split into two coverings. We also know
that this statement is false for any convex polygon. But what happens if C
“almost satisfies” the condition concerning the antipodal point pair?

Problem 3. Does there exist an integer m such that every m-fold covering of R2

with translates of an open semidisk splits into two coverings?

Another question, which surprisingly is widely open even in a completely
abstract setting, is the following.

Problem 4. Suppose that for a body C, there is an integer m such that every m-
fold covering of Rd with translates of C splits into two coverings. Does it follow
that for every k > 2, there is an integer mk such that every mk-fold covering of
R

d with translates of C splits into k coverings? Is it true that (for the smallest
such mk) even mk = OC(k)?

According to Theorem 4, every 3-fold cover of a finite point set by the trans-
lates of an unbounded open convex set splits into two coverings. Keszegh and
Pálvölgyi [25] recently extended this theorem to splitting any (3k − 2)-fold so-
called pseudohalfplane arrangement into k coverings. The 3k−2 can probably be
always improved to 2k − 1, which was done in special cases, e.g., for translates
of an unbounded open convex set.

As was stated in the introduction, for every triangle (in fact, for every convex
polygon) C, there is an integer m(C) such that every m-fold covering of the plane
with translates of C splits into two coverings. Keszegh and the Pálvölgyi [22]
extended this theorem to m-fold coverings with homothets of a triangle. (Two sets
are homothets of each other if one can be obtained from the other by a dilation
with positive coefficient followed by a translation.) Using the idea of the proof of
our Theorem 1, Kovács [26] has recently showed that the analogous statement
is false for homothets of any convex polygon with more than 3 sides. For further
results about decomposition of multiple coverings, see [4,5,7,8,19,23,24].
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Abstract. Given two graphs G and H, we say that G contains H as an
induced minor if a graph isomorphic to H can be obtained from G by a
sequence of vertex deletions and edge contractions. We study the com-
plexity of Graph Isomorphism on graphs that exclude a fixed graph
as an induced minor. More precisely, we determine for every graph H
that Graph Isomorphism is polynomial-time solvable on H-induced-
minor-free graphs or that it is isomorphism complete. Additionally, we
classify those graphs H for which H-induced-minor-free graphs have
bounded clique-width. Those two results complement similar dichotomies
for graphs that exclude a fixed graph as an induced subgraph, minor or
subgraph.

1 Introduction

Remaining unresolved, the algorithmic problem Graph Isomorphism persists
as a fundamental graph theoretic challenge which, despite generating ongoing
interest, has neither been shown to be NP-hard nor polynomial-time solvable.
The problem asks whether two given graphs are structurally the same, that is,
whether there exists an adjacency and non-adjacency preserving map from the
vertices of one graph to the vertices of the other graph.

Related work. In the absence of a result determining the complexity of the gen-
eral problem, considerable effort has been put into classifying the isomorphism
problem restricted to graph classes as being polynomial time tractable or poly-
nomial time equivalent to the general problem, i.e., GI-complete. Most graph
classes considered in these efforts are graph classes that are closed under some
basic operations. Operations that are typically considered are edge contrac-
tion, vertex deletion and edge deletion. A class of graphs closed under all of
these operations is said to be minor closed and can also be described as a class
of graphs avoiding a set of forbidden minors. As shown by Ponomarenko, the
Graph Isomorphism problem can be solved in polynomial time on H-minor
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free graphs for any fixed graph H [24]. This implies prior results on solvability
of graphs of bounded treewidth, planar graphs and bounded genus. The result
on minor closed graph classes was recently extended by Grohe and Marx to
H-topological minor free graphs [11], and Lokshtanov, Pilipczuk, Pilipczuk and
Saurabh [18] showed that the problem is actually fixed-parameter tractable on
graphs of bounded treewidth, an important class of minor-free graphs. When a
graph class is only required to be closed under some of the above named oper-
ations, isomorphism on such a graph class can sometimes be polynomial-time
solvable and sometimes be isomorphism complete. We say that a graph G is
H-free if it does not contain the graph H as an induced subgraph. When for-
bidding one induced subgraph, it is known that Graph Isomorphism can be
solved in polynomial time on H-free graphs if H is an induced subgraph of P4

(the path on 4 vertices) and GI-complete otherwise (see [2]). For two forbidden
induced subgraphs such a classification into graph isomorphism complete and
polynomial-time solvable cases turns out to be more complicated [17,25]. In the
case where we consider forbidden subgraphs (i.e., also allowing edge and ver-
tex deletions) there is a complete dichotomy for the computational complexity
of Graph Isomorphism on classes characterized by a finite set of forbidden
subgraphs, while there are intermediate classes defined by infinitely many for-
bidden subgraphs [20] (assuming that graph isomorphism is not polynomial time
solvable).

Our results. In this paper we consider graph classes closed under edge contraction
and vertex deletion (but not necessarily under edge deletion). The corresponding
graph containment relation is called induced minor. More precisely, a graph H is
an induced minor of a graph G if H can be obtained from G by repeated vertex
deletion and edge contraction. If no induced minor of G is isomorphic to H,
we say that G is H-induced-minor-free. We consider graph classes characterized
by one forbidden induced minor, and on these classes we study the computa-
tional complexity of the Graph Isomorphism problem and whether the value
of the parameter clique-width is bounded by some universal constant cH . The
isomorphism problem for such classes was first considered by Ponomarenko [24]
for the case where H is connected. In that paper two choices for the graph H
play a crucial role, namely choosing H to be the gem and choosing H to be
co-(P3 ∪ 2K1) (see Fig. 1). Forbidding either of these graphs as induced minor
yields a graph class with an isomorphism problem solvable in polynomial time.
However, to show polynomial time solvability for the gem, the proof of [24], due
to a common misunderstanding concerning the required preconditions, incor-
rectly relies on a technique of [14] to reduce the problem to the 3-connected case
(see Subsect. refsubsection:gem). To clarify the situation, we provide a proof
that avoids this reduction and instead use a reduction of the problem to the
2-connected case for which we provide a polynomial time isomorphism test. To
extend Ponomarenko’s theorem to the disconnected case, we provide a reduction
structurally different from the ones used previously, allowing us to treat the case
where H consists of a cycle with an added isolated vertex. Overall we extend
Ponomarenko’s results to obtain the following theorem (see Fig. 1 for the graphs
that are mentioned).
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gemco-(P3 ∪ 2K1)K4 P4

Fig. 1. The graphs K4, P4, co-(P3 ∪ 2K1) and the gem.

Theorem 1.1. Let H be a graph. The Graph Isomorphism problem on H-
induced-minor-free graphs is polynomial-time solvable if H is complete or an
induced subgraph of co-(P3 ∪ 2K1) or the gem, and GI-complete otherwise.

Our proofs rely on structural descriptions that also allow us to deter-
mine exactly which classes characterized by one forbidden induced minor have
bounded clique-width.

Theorem 1.2. Let H be a graph. The clique-width of the H-induced-minor-free
graphs is bounded if and only if H is an induced subgraph of co-(P3 ∪ 2K1) or
the gem.

While it is still open whether Graph Isomorphism is polynomial time solv-
able for graphs of bounded clique-width1, our theorems are in accordance with
the seemingly reoccurring pattern that the isomorphism problem for graphs of
bounded clique-width is polynomial time solvable, while there are graph classes
with unbounded clique width on which Graph Isomorphism is polynomial-time
solvable. For example, planar graphs, interval graphs, and permutation graphs
are such graph classes. Additionally, note that H-free graphs have bounded
clique-width if and only H is an induced subgraph of P4 [8] and that H-minor-
free graphs have bounded clique-width if and only if H is planar [15]. Recently,
Dabrowski and Paulusma gave a dichotomy for the clique-width of bipartite
H-free graphs [7], and initiated the study of clique-width on graphs that forbid
two graphs as induced subgraphs [8].

Structure of the paper. We first summarize well known observations about
induced-minor-free graphs, isomorphism and clique-width (Sect. 2). We then con-
sider classes that are characterized by one forbidden induced minor of size at
most 5 (Sect. 3). Finally we show that the observations of Sects. 2 and 3 resolve
all cases with forbidden induced minors of size at least 6 (Sect. 4). In this paper
all graphs that are considered are finite. Throughout the paper, we use standard
notation and terminology from Diestel [10].
1 Since the acceptance of this paper for the publication in the conference proceedings, a
preprint has become available addressing the graph isomorphism problem for graphs
of bounded clique width [12].
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2 Basic Observations

In this section, we summarize a few well-known basic observations about clique-
width and graph classes closed under induced minors.

2.1 Clique-Width

In [6], Courcelle and Olariu introduced the clique-width of graphs as a way of
measuring the complexity of minimal separators in a graph. Similarly to graphs
of bounded treewidth, it has been shown that a large class of problems can be
solved efficiently on graphs of bounded clique-width [5]. However, while Graph
Isomorphism has long been known to be solvable in polynomial time on graphs
of bounded treewidth [24], it is not currently known whether the problem is
tractable on graphs of bounded clique-width.

For any given graph G, the clique-width of G, denoted by cw(G), is defined as
the minimum number of labels needed to construct G by means of the following
4 operations: (i) creation of a new vertex v with label i; (ii) forming the disjoint
union of two labeled graphs G1 and G2; (iii) joining by an edge every vertex
labeled i to every vertex labeled j, where i �= j; (iv) renaming label i to label j.
In the remainder of the paper, we will be using the following well-known obser-
vations to derive upper bounds or lower bounds on the value of clique-width of
H-induced-minor-free graphs. See e.g., [13] for an overview of clique-width.

Theorem 2.1 ([6]). Let G be a graph and G its edge complement, then cw(G) ≤
2 · cw(G).

Theorem 2.2 ([19]). Let G be a graph and S a subset of the vertices of G. We
have cw(G − S) ≤ cw(G) ≤ 2|S|(cw(G − S) + 1) − 1.

Let G be a graph and u a vertex of G. The local complementation of G at u
is the graph obtained from G by replacing the subgraph induced by the neigh-
bors of u with its edge complement. The following observation follows from the
well-known facts that for any graph G, we have rw(G) ≤ cw(G) ≤ 2rw(G)+1 − 1
(see [23]), where rw denotes the rank-width, and that rank-width remains con-
stant under local complementations [22].

Observation 2.3. Let G and G′ be two graphs such that G′ can be obtained
from G by a sequence of local complementations, then cw(G) ≤ 2cw(G′)+1 − 1.

Theorem 2.4 ([4]). Let G and G′ be two graphs such that G′ can be obtained
from G by a sequence of edge subdivisions, i.e., replacing edges with paths of
length 2. Then cw(G) ≤ 2cw(G′)+1 − 1.

Theorem 2.5 ([1,19]). Let G be a graph and B the set of its biconnected com-
ponents. It holds that cw(G) ≤ t + 2, where t = maxB∈B{cw(B)}.

Finally, note that for any graph G, the clique-width of G is at most 3·2tw(G)−1,
where tw(G) denotes the treewidth of G [3].
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2.2 Some Tractable Cases

Lemma 2.6. If H is a complete graph, then Graph Isomorphism for H-
induced-minor-free graphs can be solved in polynomial time.

Lemma 2.7. Let H be a complete graph Kk. The H-induced-minor-free graphs
have bounded clique-width if and only if k ≤ 4.

Note that the lemma above is used to prove Theorem 1.2, but K4 is not
explicitly mentioned in the statement, due to the fact that K4 is an induced
subgraph of co-(P3 ∪ 2K2).

Lemma 2.8. If H is an induced subgraph of P4 then Graph Isomorphism for
the H-induced-minor-free graphs can be solved in linear time.

It is well known that P4-free graphs are exactly the graphs of clique-width
at most 2 (see [15]).

2.3 Some Intractable Cases

A split partition (C, I) of a graph G is a partition of V (G) into a clique C and an
independent set I. A split graph is a graph admitting a split partition. We say
a split graph is of restricted split type if it has a split partition (C, I) such that
each vertex in I has at most two neighbors in C. Note that a non-complete split
graph of restricted split type has minimum degree at most 2. The classes of co-
bipartite graphs and restricted split graphs are closed under vertex deletions and
edge contractions, and thus under induced minors. As also argued in [17,24], the
standard graph-isomorphism reductions to split graphs and co-bipartite graphs
explained in [2] imply the following lemmas.

Lemma 2.9. If H is not of restricted split type or H is not co-bipartite, then
Graph Isomorphism for the H-induced-minor-free graphs is GI-complete.

The reductions used in the lemma can be achieved by performing edge subdi-
visions and subgraph complementation. Subgraph complementation is the oper-
ation of complementing the edges of an induced subgraph. The clique-width of
graphs in the class obtained by applying subgraph complementation a constant
number of times is bounded if and only if it is bounded for graphs in the original
class [15]. Together with Theorem 2.4, this implies that restricted split graphs
and co-bipartite graphs obtained by the reductions from general graphs have
unbounded clique-width.

Corollary 2.10. If H is not of restricted split type or H is not co-bipartite,
then the H-induced-minor-free graphs have unbounded clique-width.

3 Graphs on at Most 5 Vertices

In this section we study graph classes characterized by a forbidden induced
minor H that has at most 5 vertices.
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3.1 The Graph K3 ∪ K1

We show that Graph Isomorphism is GI-complete on graphs that do not con-
tain K3 ∪K1 as an induced minor. Additionally, we show that these graphs have
unbounded clique-width.

Theorem 3.1. The Graph Isomorphism problem is isomorphism complete on
graphs that do not contain K3 ∪ K1 as an induced minor.

Theorem 3.2. The class of graphs that do not contain K3 ∪ K1 as an induced
minor does not have bounded clique-width.

3.2 The Gem

We now consider the class of graphs that do not contain the gem as an induced
minor (see Fig. 1). In [24] this class is also considered, however, there is an issue
with the proof for the fact that the isomorphism problem of graphs in this class
is polynomial-time solvable. More precisely, a common misunderstanding of how
the reduction to three connected components by Hopcroft and Tarjan [14] is
to be applied has happened. Indeed, the techniques of Hopcroft and Tarjan do
not show that graph isomorphism in a graph class C polynomial-time reduces to
graph isomorphism of 3-connected components in C, even if C is a minor closed
graph class. If this were the case then the class of split graphs of restricted type
would be polynomial-time solvable since the only 3-connected graphs of this type
are complete graphs. Additionally to C being minor closed, for the techniques
to be applicable it is necessary to solve the edge-colored isomorphism problem
for 3-connected graphs in C. However, edge-colored isomorphism is already GI-
complete on complete graphs.

We now provide a proof that isomorphism of graphs not containing the gem as
an induced minor is polynomial-time solvable without alluding to 3-connectivity.
For this we first need to extend the structural considerations for such graphs
performed in [24] for 3-connected graphs to biconnected graphs.

Let C be a subgraph of G. We say a vertex v in a vertex set M ⊆ V (G)\C has
exclusive attachment with respect to C among the vertices of M if N(v)∩C �= ∅
but there is no vertex v′ ∈ M \ {v} with (N(v) ∩ C) ∩ (N(v′) ∩ C) �= ∅. That is,
no other vertex of M shares a neighbor in C with v.

Lemma 3.3. Let G be a biconnected gem-induced-minor-free graph. Suppose C
is a biconnected subgraph of G with at least 3 vertices and M is a component
of G − C such that N(M) ∩ C �= C. If v ∈ M is a vertex with |N(v) ∩ C| = 1
then v has exclusive attachment.

Lemma 3.4. Let G be a biconnected gem-induced-minor-free graph. Suppose C
is a biconnected subgraph of G and M is a component of G−C with N(M)∩C �=
C and |N(M) ∩ C| ≤ 3. If there is no vertex x in M with |N(x) ∩ C| = 1 then
every vertex of M has a neighbor in C, and M is a P4-free graph.
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We call a vertex of a biconnected graph G a branching vertex if it has degree
at least 3.

Lemma 3.5. Let G be a biconnected gem-induced-minor-free graph that con-
tains the path P4 as an induced subgraph. Then at least one of the following two
options holds:

– G has an induced subgraph H which is a path containing at most 2 inner
vertices (of the path) that are branching vertices of G such that G − H is
disconnected, or

– G has an induced subgraph H which is a cycle containing at most 3 branch-
ing vertices of G such that for every connected component M of G − H we
have N(M) ∩ H �= H.

Let G be a graph with induced subgraphs H and K. We say that G is
sutured from H and K along V ⊆ V (H) and V ′ ⊆ V (K) if G is obtained in
the following way. First we require that |V | = |V ′|. We also require that V (H)∩
V (K) = V ∩ V ′. The graph G must then be formed from the (not necessarily
disjoint) union K ∪ H in the following way. We add edges that form a perfect
matching between vertices in V \ V ′ and V ′ \ V . Finally we may subdivide
the edges in the matching an arbitrary number of times, see Fig. 2. (Note that
if H and K are not induced subgraphs of G then it is not necessarily the case
that E(K[V ∩V ′]) = E(H[V ∩V ′]) but this will not be relevant in the following.)

H K

V V ′

Fig. 2. A suture of two graphs H and K.

Lemma 3.6. Let G be a biconnected gem-induced-minor-free graph. There exists
an induced subgraph H of G which is isomorphic to either a path or a cycle,
contains at most 4 branching vertices, and such that for every component M
of G − H the following holds: the graph G[M ∪ H] is sutured from H and some
graph K along V and V ′ such that K \ V ′ is P4-free. Moreover |V ′| ≤ 4 and
every vertex of K − V ′ has a neighbor in V ′.

Theorem 3.7. The Graph Isomorphism problem can be solved in polynomial
time on gem-induced-minor-free graphs.
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Proof. It is folklore that graph isomorphism of a hereditary graph class C reduces
to isomorphism of vertex-colored biconnected graphs in C (see for example [9]
or [21]). We thus assume that the input graphs are colored and biconnected.
If G is such a biconnected graph, we search for an induced subgraph H that
satisfies the assumptions of Lemma 3.6, that is, H is a path or a cycle with
at most 4 branching vertices such that for every component M of G − H we
know that G[M ∪ H] is a suture of H with a graph K along sets V and V ′ such
that K \ V ′ is P4-free. Moreover |V ′| ≤ 4 and every vertex in K − V ′ has a
neighbor in V ′. Each H is determined by the branch vertices, the leaves (if H
is a path) and choices of the paths of non-branching vertices connecting such
vertices.

Now suppose G1 and G2 are biconnected input graphs to the isomorphism
problem. Since there are only polynomially many possible choices for H, we
can find an induced graph H1 in G1 with said properties and test for every H2

in G2 whether there is an isomorphism that maps H1 to H2. To do so we iterate
over all isomorphisms ϕ from H1 to H2, there are only polynomially many,
and check whether such an isomorphism extends to an isomorphism from G1

to G2. To check whether such an isomorphism extends, it suffices to know which
component M1 of G1−H1 can be mapped isomorphically to which component M2

of G2 − H2 such that the isomorphism can be extended to an isomorphism
from G1[H1 ∪ M1] to G2[H2 ∪ M2] such that H1 is mapped to H2 in agreement
with ϕ.

Note that the mapping ϕ determines how vertices with exclusive attachment
in H1 must be mapped. Letting A1 be the set of vertices in M1 \ V (H1) with
exclusive attachment in V (H1), we then know where the vertices in A1 must be
mapped if ϕ can be extended to an isomorphism from M1 to M2. Considering
in turn the vertices of exclusive attachment in V (H1)∪A1 we obtain a set A2 of
vertices for the images of which there is again only one possible option. Repeating
this process we obtain a sequence of sets A1, . . . , At such that there are no
vertices in M0 − (A1 ∪ . . . ∪ At) that have exclusive attachment. (The set A1 ∪
. . .∪At contains the set V ′ \V if V ′ is the set along which M0 is sutured to H1.)
We are left with M1 − (A1 ∪ . . . ∪ At), a part of M1 that is P4-free and adjacent
to at most 4 vertices in V (H1) ∪ A1 ∪ . . . ∪ At whose images have already been
determined.

The isomorphism problem for vertex-colored P4-free graphs is solvable in
polynomial time (see [25]) and thus the problem for graphs obtained from P4-
free graphs by adding a bounded number of vertices can be solved in polynomial
time ([16, Theorem 1]). Using this algorithm the theorem follows. 
�
Theorem 3.8. If H is an induced subgraph of the gem, then the H-induced-
minor-free graphs have bounded clique-width.

3.3 The Graph co-(P3 ∪ 2K1)

In the following we will analyze the graphs that do not contain an induced
minor isomorphic to co-(P3 ∪ 2K1), the graph obtained from K5 by removing
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two incident edges. While it has already been shown in [24] that isomorphism
for such graphs reduces to isomorphism of graphs not containing the gem (and
is thus polynomially solvable), we provide a refinement of the proof in [24] for
this. We do this to obtain a finer structural description of these graphs, allowing
us to also bound the clique-width in the graph class.

Suppose G is a co-(P3 ∪ 2K1)-induced-minor-free graph. If G does not have
a Kt minor for some fixed t then G is in particular in the minor closed graph class
of Kt-minor free graphs, and, as described in the introduction, the isomorphism
problem can be solved in polynomial time for such graphs. Our strategy is thus
to find a Kt minor and use this to analyze the structure of G. In general, of
course, there is no constant bound on the number of vertices required to form
a Kt minor. However in a co-(P3 ∪ 2K1)-induced-minor-free graph there is such
a bound. We call a Kt minor compact if every bag has at most 2 vertices.

Lemma 3.9. If a co-(P3 ∪ 2K1)-induced-minor-free graph G has a Kt minor
for t ≥ 5 then G has a compact Kt minor.

Proof. Let M1, . . . ,Mt be the bags of a Kt minor in G such that the Mi are
inclusion minimal with respect to forming a Kt minor. That is, removing a
vertex from one of the Mi yields a minor different from Kt. We analyze the
structure of the minor. We say a vertex v is adjacent to a bag Mj if there exists
a vertex v′ ∈ Mj that is adjacent to v.

For a vertex v ∈ Mi define Mdeg(v) = |{Mj | j �= i,N(v) ∩ Mj �= ∅}| to
be the number of bags different from Mi adjacent to v. Using several steps we
will show that Mdeg(v) ≥ t − 2 for all v ∈ M1 ∪ M2 ∪ · · · ∪ Mt. We first argue
that in the case Mdeg(v) > 1 then Mdeg(v) ≥ t − 2. Indeed, if Mdeg(v) > 1
then consider the minor obtained by removing all vertices from Mi different
from v. If Mdeg(v) < t − 2 we can choose 2 bags which have vertices adjacent
to v and two bags which do not have such vertices. Using these bags and the
vertex v we obtain the forbidden induced minor co-(P3 ∪ 2K1). We call vertices
with Mdeg(v) = 0 inner vertices, those with Mdeg(v) = 1 low degree vertices
and we call vertices with Mdeg(v) ≥ t − 2 high degree vertices. Next we argue
that there are at most 2 high degree vertices in each bag. First, observe that if
Mi contains a vertex v such that Mdeg(v) = t−1, then v is the only vertex in Mi

and we are done. Therefore we may assume that every vertex v in Mi satisfies
Mdeg(v) ≤ t − 2 and Mi contains at least 2 high degree vertices. Then, there
are at least 2 such vertices, we can pick two vertices v, v′ in Mi which are not
adjacent to exactly the same bags, such that v is a high degree vertex and there
is a path from v to v′ in Mi that does not contain any other high degree vertex.
Since every bag different from Mi is adjacent to v or v′, removing all vertices
different from v and v′ and not lying on the path yields a Kt minor. Since the
bags M1, . . . ,Mt were chosen to be minimal, we conclude that there are at most
2 high degree vertices in each bag.

We further argue that there is no low degree vertex in Mi. Indeed, in case
there is at least one low degree vertex in Mi, we can choose a low degree ver-
tex v ∈ Mi and a vertex v′ ∈ Mi adjacent to a bag Mj with j �= i such that v
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is not adjacent to Mj and such that there exists a path in Mi of inner vertices
connecting v and v′. We remove all vertices in Mi different from v and v′ and
not on said path connecting them. We then move the vertex v′ from Mi to Mj .
We obtain the induced minor co-(K1,t−3 ∪ 2K1), which contains co-(P3 ∪ 2K1)
since t ≥ 5.

Finally we argue that there are no inner vertices. Indeed, by minimality we
can assume that every inner vertex v lies on a path between two high degree
vertices v1 and v2, say. We again remove all vertices different from v1 and v2
not on the path. We then move v1 to an adjacent bag Mj and v2 to an adjacent
bag Mj′ such that j �= j′. This is possible since the vertices have high degree.
Again we obtain a forbidden induced minor co-(K1,t−3 ∪ 2K1) as above.

Since there are only high degree vertices and since each bag can only contain
two such vertices, the minimal minor is compact. 
�
Lemma 3.10. If G is a biconnected co-(P3 ∪ 2K1) induced-minor-free graph
and M is a compact Kt minor with t ≥ 5 then G − M is (K2 ∪ K1)-free.

Corollary 3.11. If a biconnected co-(P3∪2K1)-induced-minor-free graph G has
a K8 minor then G is (K2 ∪ K1)-free.

Since the gem is biconnected, and thus every occurrence of a gem as induced
minor must occur within a biconnected component of a graph, the corollary is
a refinement of Ponomarenko’s result [24] that says that if a co-(P3 ∪ 2K1)-
induced-minor-free graph G has a K218+4-minor then it does not contain a gem
as induced minor.

Theorem 3.12. The Graph isomorphism problem for co-(P3 ∪ 2K1)-induced-
minor-free graphs can be solved in polynomial time.

To show that the co-(P3 ∪ 2K1)-induced-minor-free graphs have bounded
clique-width, we need the following fact, which was indirectly proven by van’t
Hof et al. in the proof of Theorem 9 in [26].

Theorem 3.13. For any graph F and for any planar graph H, there exists a
constant cF,H such that an F -minor-free graph of treewidth at least cF,H has H
as an induced minor.

Theorem 3.14. If H is an induced subgraph of co-(P3 ∪ 2K1), then the H-
induced-minor-free graphs have bounded clique-width.

3.4 The Remaining Graphs on at Most 5 Vertices

Now we study the remaining small graphs of at most five vertices. We show that
every case here can be reduced to some case we have already solved.

Lemma 3.15. Let H be a non-complete graph of 5 vertices. If H is neither co-
(P3 ∪ 2K1) nor the gem, then Graph Isomorphism for H-induced-minor-free
graphs is GI-complete.
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Lemma 3.16. Let H be a graph of at most 4 vertices. The Graph Isomor-
phism problem for H-induced-minor-free graphs is polynomial-time solvable if
H is an induced subgraph of either co-(P3 ∪ 2K1) or P4. Otherwise, it is GI-
complete.

The two lemmas above together imply the following theorem.

Theorem 3.17. Let H be a non-complete graph of at most 5 vertices. Then
Graph Isomorphism for H-induced-minor-free graphs is polynomial-time solv-
able if H is an induced subgraph of co-(P3 ∪ 2K1) or the gem; otherwise, it is
GI-complete.

The reductions we used above in order to show GI-completeness preserve the
property that the clique-width is unbounded (see Subsect. 2.3). Thus we have
the following corollary.

Corollary 3.18. Let H be a non-complete graph of at most 5 vertices. Then
the H-induced-minor-free graphs have bounded clique-width if and only if H is
an induced subgraph of co-(P3 ∪ 2K1) or the gem.

4 Non-complete Graphs on at Least 6 Vertices

In this section, we show that if H is not a complete graph and has at least
six vertices, then Graph Isomorphism for the H-induced-minor-free graphs is
GI-complete.

Lemma 4.1. If H is non-complete and contains a clique of size 5, then Graph
Isomorphism for H-induced-minor-free graphs is GI-complete.

Theorem 4.2. If H is a non-complete graph of size at least 6, then Graph
Isomorphism for H-induced-minor-free graphs is GI-complete.

Since the reductions that we used above in order to show GI-completeness
preserve the property that the clique-width is unbounded (see Subsect. 2.3), we
have the following corollary.

Corollary 4.3. If H is a non-complete graph of size at least 6, then H-induced-
minor-free graphs have unbounded clique-width.
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Abstract. A cograph is a graph without induced P4. A graph G is
(k, �) if its vertex set can be partitioned into at most k independent sets
and � cliques. Threshold graphs are cographs-(1, 1). We proved recently
that cographs-(2, 1) are their generalization and, as threshold graphs,
they can be recognized in linear time. graph sandwich problems for

property Π (Π-sp) were defined by Golumbic et al. as a natural gener-
alization of recognition problems. partitioned probe problems are
particular cases of graph sandwich problems. In this paper we show
that, similarly to probe threshold graphs and probe cographs,
probe cographs-(2, 1) and probe join of two thresholds are
recognizable in polynomial time. In contrast, although cograph-sp

and threshold-sp are polynomially solvable problems, we prove that
cograph-(2, 1)-sp and join of two thresholds -sp are NP-complete
problems.
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1 Introduction

Interval Probe Graphs were introduced by Zhang [1] in 1994 as a new graph
theoretic model and used in [2] and in [3] to model certain problems in phys-
ical mapping of DNA. We will use a well-known generalization of this concept
(as surveyed in [4]):
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Definition 1. Let G be a class of graphs. A graph G = (V,E) is a probe graph
if its vertex set can be partitioned into a set of probes P and an independent set
of nonprobes N , such that G can be embedded in a graph of G by adding edges
between certain nonprobes.

If the partition of the vertex set into probes P and nonprobes N is an input
data, then we call G a partitioned probe graph of G if G can be embedded into a
graph of G by adding some edges between nonprobe vertices. We call a graph H
obtained from G by adding some edges between vertices of N an embedding of
G. We denote a partitioned graph as G = (P +N,E), and when this notation is
used it is understood that we work with the partitioned problem. Moreover, we
refer to a probe problem for a class G as probe G. When we want to refer the
partitioned version, we use the notation pp-G.

In 1995, as a natural generalization of recognition problems, Golumbic,
Kaplan and Shamir [5] introduced the concept of a new decision problem: graph
sandwich problems, which we formulate below:
graph sandwich problem for property Π (Π-sp)

Input: Two graphs G1 = (V,E1) and G2 = (V,E2) such that E1 ⊆ E2.
Question: Is there a graph G = (V,E) satisfying property Π and such that
E1 ⊆ E ⊆ E2?

If such a graph exists, it is called sandwich graph. Each edge in E1 is a forced
edge, while each edge of E2 is called optional edge. Then, every edge that is
not in E2 is considered a forbidden edge. We will denote by G3 = (V,E3) the
complement graph of G2, and each edge in E3 will be a forbidden one. We can
then define graph sandwich problems accordingly to this perspective.

graph sandwich problem for property Π (Π-sp)

Input: A triple (V,E1, E3), where E1 ∩ E3 = ∅.
Question: Is there a graph G = (V,E) satisfying Π such that E1 ⊆ E and
E ∩ E3 = ∅?

This will be the definition we will adopt from now on when dealing with
Π-sp.

We have a clear relation between partitioned probe problems and graph

sandwich problems: the last generalizes the former. Thus, if the partitioned
version of a probe problem for a class G is known to be NP-complete, so will
be the graph sandwich problem for this class. Conversely, if the graph

sandwich problem is polynomially solvable, then the partitioned probe

problem is also in P.
Perfect Graphs attract a lot of attention in Graph Theory. In the seminal

paper of graph sandwich problems [5], Golumbic et al. worked only with
subclasses of perfect graphs, for instance, chordal graphs, cographs, threshold
graphs and split graphs, for which, except for chordal graphs, graph sand-

wich problems are polynomially solvable. They left some open problems, for
example when Π is “to be strongly chordal” or “to be chordal bipartite”. Both
were proved to be NP-complete in [6] and [7], respectively. But one problem they
left open, still remains open: perfect graph sandwich problem.
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In this work, we are particularly interested in one well-known subclass of
perfect graphs: cographs.

Definition 2 (Corneil et al. [8]). A cograph can be defined recursively as
follows:

1. The trivial graph K1 is a cograph;
2. If G1, G2, . . . , Gp are cographs, then G1 ∪ G2 ∪ . . . ∪ Gp is a cograph;
3. If G is a cograph, then Ḡ is a cograph.

There are at least 6 equivalent forms of characterizing a cograph [8], but one
of the well known is the characterization by forbidden subgraphs.

Theorem 1 (Corneil et al. [8]). A cograph is a graph without induced P4, i.e.
induced paths with 4 vertices.

Corneil in 1985 [9], presented the first, but not the only one, linear time
algorithm to recognize cographs [10,11].

Threshold graphs are a special case of cographs and split graphs. More for-
mally, a graph is a threshold graph if and only if it is both a cograph and a split
graph. Introduced by Chvátal and Hammer in 1977 [12], Theorem 2 characterizes
them.

Theorem 2 (Chvátal and Hammer [12]). For every graph G, the following
three conditions are equivalent:

1. G is threshold;
2. G has no induced subgraph isomorphic to 2K2, P4 or C4;
3. There is an ordering v1, v2, . . . , vn of vertices of G and a partition of

{v1, v2, . . . vn} into disjoint subsets P and Q such that:
– Every vj ∈ P is adjacent to all vertices vi with i < j,
– Every vj ∈ Q is adjacent to none of the vertices vi with i < j.

Thus, threshold graphs can be constructed from a trivial graph K1 by
repeated applications of the following two operations:

1. Addition of a single isolated vertex to the graph.
2. Addition of a single dominating vertex to the graph, i.e. a single vertex that

is adjacent to each other vertex.

In [13–15], Brandstädt et al. defined a special class of graphs named (k, �)-
graphs, i.e., graphs whose vertex set can be partitioned into at most k indepen-
dent sets and � cliques: a generalization of split graphs, which can be described
as (1, 1)-graphs. Moreover, they proved that the recognition problem for this
class of graphs is NP-complete for k or � at least 3 and polynomial, otherwise.
We already know how to fully classify (k, �)graph sandwich problems with
respect to the solution complexity, for integers k, �: the problem is NP-complete
for k + � ≥ 3 and polynomial, otherwise [16].
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For cograph-(k, �), there is a characterization by forbidden subgraphs [17].
Recently, we provided a structural characterization and decomposition for
cographs-(2, 1) which leads us to a linear time algorithm to recognize this class
of graphs, a generalization of threshold graphs, accordingly to the characteriza-
tion [18]. Before presenting this previous result, we make some helpful definitions.

Definition 3. A biclique is a complete bipartite graph.

Definition 4. The union of two graphs G = (VG, EG) and H = (VH , EH) is the
union of their vertex and edge sets: G ∪ H = (VG ∪ VH , EG ∪ EH).

Definition 5. The disjoint union of two graphs G=(VG, EG) and H =(VH , EH)
is the union of their vertex and edge sets when VG and VH are disjoint: G+H =
(VG + VH , EG + EH).

Definition 6. The join G ⊕ H of two graphs G = (VG, EG) and H = (VH , EH)
is their graph union with all the edges that connect the vertices of G with the
vertices of H, i.e., G ⊕ H = (VG ∪ VH , EG ∪ EH ∪ {uv : u ∈ VG, v ∪ VH}).

Theorem 3 (Couto et al. [18]). Let G be a graph. Then the following are
equivalent.

1. G is a cograph-(2,1).
2. G can be partitioned into a collection of maximal bicliques B = {B1, . . . , Bl}

and a clique K such that Bi = (Xi, Yi) and V (K) is the union of non-
intersecting sets K1 and K2 such that the following properties hold.
(a) There are no edges between vertices of Bi and Bj for i 	= j;
(b) Let L(v) be the list of bicliques in the neighborhood of v, ∀v ∈ V .

K1 = {v ∈ K|N(v) ∩ B ⊆ B1} = K1,1 ∪ K1,2 and
K2 = {v ∈ K|L(v) ≥ 2, Bi ∈ L(v) ⇔ Bi ⊆ N(v)}, where
K1,1 = {v ∈ K1|vx ∈ E(G),∀x ∈ X1} and
K1,2 = K1 \ K1,1 and it holds that uy ∈ E(G),∀u ∈ K1,2 and y ∈ Y1;

(c) G[X1 ∪ Y1 ∪ K1,1 ∪ K1,2] is the join of threshold graphs (K1,1, Y1) and
(K1,2,X1);

(d) There is an ordering v1, v2, . . . , v|K2| of K2’s vertices such that
N(vi) ⊆ N(vj), ∀i ≤ j and N(v) ⊆ N(v1), ∀v ∈ K1.

3. G is either a join of two threshold graphs or it can be obtained from the join
of two threshold graphs by the applications of any sequence of the following
operations:
– Disjoint union with a biclique;
– Join with a single vertex.

After providing this characterization, the question about probe cograph-

(2, 1) and pp-join of two thresholds complexities arose. In this paper we
prove that, similarly to probe cograph and pp-threshold, these two prob-
lems are polynomially solvable. Our next step was to consider the graph sand-

wich problem for both classes. Surprisingly, we got two new examples of the
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non-monotony of graph sandwich problems. Moreover, when dealing with
Theorem 3 to solve cograph-(2, 1)-sp, another interesting and motivating ques-
tion arose: Given a property Π for which Π-sp is known to be polynomially
solvable, is (Π ⊕ Π)-sp also in P?

In this paper, besides of recognizing in polynomial time probe cographs-

(2, 1) and pp-join of two thresholds, we answer the question above nega-
tively and we present the first NP-complete (Π ⊕ Π)-sp, with Π-sp in P: join
of two thresholds graph sandwich problem. With this result in hands,
we show, in Sect. 6, that cograph-(2, 1)-sp is also NP-complete. Both results
corroborate the fact that graph sandwich problems are not monotone.

2 Partitioned Probe Join of Two Threshold Graphs

The goal of this section is to prove that partitioned probe join of two

threshold graphs can be recognized in polynomial time. This result is appli-
cation of cograph-(2, 1)’s decomposition [18]. It will be used later in Sect. 3.

We define pp-join of two threshold graphs as follows:

partitioned probe join of two threshold graphs (pp-jtt)

Input: A graph G = (V,E) such that V = P +N where N is an independent set
called non-probe set and P is the probe set.
Question: Is there an edge set E′ whose edges have both extremes in N and so
that G′ = (V,E ∪ E′) is a join of two threshold graphs?

Next, we present some results and definitions from the literature.

Theorem 4 (Chvátal and Hammer [12]). Let G = (V,E) be a graph. Then
G is a threshold graph if and only if every induced subgraph has an isolated vertex
or a universal vertex.

Definition 7 (H.N. de Ridder [19]). A vertex x is probe threshold if either

1. x ∈ P and x is isolated or universal, or
2. x ∈ N and x is either isolated or x is adjacent to all probes of G.

Theorem 5 (H.N. de Ridder [19]). A partitioned graph G = (P + N,E) is a
probe threshold graph if and only if every induced subgraph has a probe threshold
vertex.

Similarly, we define:

Definition 8. Given a graph G = (V,E), a vertex x ∈ V is probe universal if
either

1. x ∈ P and x is universal, or
2. x ∈ N and x is adjacent to all probes of G.

Definition 9. Given a graph G = (V,E), a pair of vertices (x, y) is a probe
JTT pair if either
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1. x ∈ P , y ∈ P such that V = N(x) + N(y) with NP (x) and NP (y) com-
pletely adjacent, NN (x) and NP (y) completely adjacent, NN (y) and NP (x)
completely adjacent; or

2. x ∈ N , y ∈ N such that P = N(x) + N(y) with N(x) and N(y) completely
adjacent; or

3. x ∈ P , y ∈ N such that P = NP (x) + N(y) with N(x) and N(y) completely
adjacent and V \ (N(x) ∪ N(y)) and NP (x) completely adjacent.

Lemma 1. Let H1 and H2 be instances for pp-threshold such that there are
embeddings H ′

1 and H ′
2 for them. If H1 or H2 has a probe threshold vertex, then

H1 ⊕ H2 has a probe universal vertex.

Algorithm 1. Algorithm for solving pp-jtt

1 begin
2 while G has a probe universal vertex v do
3 V = V \ {v}
4 for each probe JTT pair (x, y) ∈ V do
5 if x, y ∈ P then
6 P ∩ VH1 = NP (y)
7 P ∩ VH2 = NP (x)
8 N ∩ VH1 = NN (y)
9 N ∩ VH2 = NN (x)

10 if x ∈ N and y ∈ P then
11 P ∩ VH1 = NP (y)
12 P ∩ VH2 = NP (x)
13 N ∩ VH1 = NN (y)
14 N ∩ VH2 = N \ VH1

15 if x, y ∈ N then
16 N ∩ VH1 = {x}
17 N ∩ VH2 = {y}
18 P ∩ VH1 = N(y)
19 P ∩ VH2 = N(x)
20 for each vertex v ∈ N \ {x, y} do
21 if N(v) = P ∩ VH1 then
22 N ∩ VH2 = N ∩ VH2 ∪ {v}
23 else
24 if N(v) = P ∩ VH2 then
25 N ∩ VH1 = N ∩ VH1 ∪ {v}
26 else
27 Go back to line 4

28 if G[VH1 ] = H1 and G[VH2 ] = H2 are pp-threshold then
29 return G is a pp-jtt

30 return G is not a pp-jtt
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Proof. It follows from the definitions.

Lemma 2. Let G = P + N be a graph without a probe universal vertex. If G is
pp-jtt, then G has a probe JTT pair.

Lemma 3. If G = P + N is pp-jtt without a probe universal vertex and has
a probe JTT pair (x, y), then, after placing x and y, there is only one way
of partitioning G into two feasible instances for pp-threshold H1 and H2,
i.e., instances that can have embeddings.

We can solve pp-jtt following Algorithm 1.
Now, we can state Theorem 6.

Theorem 6. partitioned probe join of two thresholds can be solved in
polynomial time.

3 Partitioned Probe Cographs-(2, 1)

In this section we work with partitioned probe cographs-(2, 1), which can
be formulated as follows:

partitioned probe cographs-(2, 1) (pp - cograph-(2, 1))
Input: A graph G = (V,E) such that V = P +N where N is an independent set
called the non-probe set and P is the probe set.
Question: Is there an edge set E′ whose edges have both extremes in N and such
that G′ = (V,E ∪ E′) is a cograph-(2, 1)?

In this section we prove that pp-cograph-(2, 1) is solvable in polynomial
time. In order to make it happen, we need the definition below.

Definition 10. An induced subgraph Bi = (Pi + Ni, Ei) of a partitioned graph
G = (P +N,E) is called probe-biclique if Bi[Pi] is a biclique (Xi, Yi) and Bi[Ni]
is an independent set (X ′

i, Y
′
i ) such that Ni(x) = Yi,∀x ∈ X ′

i and Ni(y) =
Xi,∀y ∈ Y ′

i .

Algorithm 2. Algorithm for solving pp-cograph-(2, 1)

1 begin
2 while G has a probe universal vertex v or an isolated probe-biclique Bi do
3 if G has a probe universal vertex v then
4 V = V \ {v}
5 if G has an isolated probe-biclique Bi then
6 V = V \ V (Bi)

7 if G is a pp-jtt graph then
8 return G is a pp-cograph-(2, 1)

9 return G is not a pp-cograph-(2, 1)
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Next, we present Algorithm 2 which is based on the decomposition presented
in item 3 of Theorem 3. It also uses some features of Sect. 2.

Theorem 7. partitioned probe cograph-(2, 1) can be solved in polynomial
time.

4 Probe Cographs-(2, 1)

In this section we prove that recognizing a probe cographs-(2, 1) is a polyno-
mial time solvable problem.

Theorem 8 deals with the unpartitioned version of probe cographs and
proves that, given a graph G, then G has a polynomial number of feasible par-
titions.

Theorem 8 (Chandler et al. [20]). Let G and G be connected and assume
that G is not a cograph. Then G is a probe cograph if and only if there are
two non-adjacent vertices x and y in G such that G is a probe cograph with probe
set P = N(x) + N(y) and non-probe set N = V \ P .

In addition, Theorem9 proves that it is possible to reduce the probe

cograph to the pp-cograph in linear time.

Theorem 9 (Chandler et al. [20]). The problem of recognizing probe

cographs can be reduced to the problem of recognizing partitioned probe

cographs in O(n + m) time.

These previous results allow us to state the following Theorem.

Theorem 10. The recognition of probe cographs-(2, 1) is a polynomial time
solvable problem.

5 Join of Two Thresholds Graph Sandwich Problem

In this section we prove that, even knowing that threshold graph sand-

wich problem is polynomially solvable [5], join of two thresholds graph

sandwich problem is NP-complete.
Proposition 1 is the key to prove that threshold-sp is a polynomial time

solvable problem and it will be very helpful in this work.

Proposition 1 (Golumbic, Kaplan and Shamir [5]). Let (V,E1, E3) be a
threshold sandwich instance and let v ∈ V be an isolated vertex in G1 or in G3.
There is a threshold sandwich for (V,E1, E3) if and only if there is a threshold
sandwich for (V,E1, E3)V \{v}.



320 F. Couto et al.

Next we define join of two threshold graph sandwich problem. We
remark we are considering that one of the thresholds of the join might be empty.

join of two threshold graph sandwich problem (jtt-sp)

Input: A triple (V,E1, E3), where E1 ∩ E3 = ∅.
Question: Is there a graph G = (V,E) which is a join of two threshold graphs
such that E1 ⊆ E and E ∩ E3 = ∅?

To prove the main result of this section, stated below, we make a polynomial
time reduction from the NP-complete problem monotone nae3sat [21], which
can be formulated as follows:

monotone not all equal 3-satisfiability (monotone nae3sat)
Input: A pair (X,C), where X = {x1, . . . , xn} is the set of variables, and C =
{c1, . . . , cm} is the collection of clauses over X such that each clause c ∈ C has
exactly 3 positive literals.
Question: Is there a truth assignment for X such that each clause has at least
one true and one false literal ?

Theorem 11. join of two thresholds graph sandwich problem is an
NP-complete problem.

Proof. In order to reduce monotone nae3sat to join of two thresholds-

sp we first construct a particular instance (V,E1, E3) of jtt-sp, from a generic
instance (X,C) of monotone nae3sat. Second, in Lemma 4 we prove that
if there is a sandwich graph which is the join of two threshold graphs for
(V,E1, E3), then there is a truth assignment satisfying each clause of (X,C)
such that in each clause we have at least one true and one false literal. Finally,
in Lemma 5 we prove that if there is a truth assignment satisfying each clause
of (X,C), an instance of monotone nae3sat, then there is a sandwich graph
for (V,E1, E3) which is the join of two threshold graphs.

Remark 1. Let G = (V,E) be a sandwich graph for (V,E1, E3) which is the join
of two threshold graphs H1,H2. If e = xy ∈ E3, then x, y are both either in H1

or in H2.

Remark 2. If G is the join of two threshold graphs, then G is a cograph. There-
fore, G has no induced P4.

Remark 3. If G is the join of two threshold graphs H1,H2 and G has an induced
C4 {a, b, c, d, a}, then {a, b, c, d, a} cannot be entirely contained in H1 or in H2.

Construction of the particular instance (V,E1, E3) for jtt-sp:
Variable gadget

– Vertices: For each variable xi ∈ X, i ∈ {1, . . . , n} add vertices xi
1, y

i
1, x

i
2, y

i
2.

For each time that a variable xi ∈ X, i ∈ {1, . . . , n} figures in a clause
cj , j ∈ {1, . . . , m}, add vertices cji , d

j
i , h

j
i .
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Fig. 1. Example of a particular instance (V, E1, E3) of jtt-sp obtained from the
instance of monotone nae 3sat: I = (X, C) = ({x1, x2, x3, x4, x5}, (x1 ∨ x2 ∨ x3) ∧
(x1 ∨ x4 ∨ x5)). Solid edges are forced E1-edges, dashed edges are forbidden E3-edges
and omitted edges are optional edges.

– For i ∈ {1, . . . , n} and j ∈ {1, . . . , m}, add the following forced edges:
{xi

1x
i
2, x

i
1y

i
2, x

i
2y

i
1, y

i
1y

i
2, c

j
id

j
i}.

– For i ∈ {1, . . . , n} and j ∈ {1, . . . , m}, add the following forbidden edges:
{xi

1y
i
1, x

i
2y

i
2, y

i
1c

j
i , y

i
1d

j
i , y

i
1h

j
i , c

j
ih

j
i , d

j
ih

j
i}

Clause gadget

– Vertices: For each clause cj ∈ C, j ∈ {1, . . . , m}, add vertices rj1, r
j
2, r

j
3.

– For j ∈ {1, . . . , m} add the following forced edges: {rj1r
j
2, r

j
1r

j
3, r

j
2, r

j
3}.

For each clause cj = (lj1 ∨ lj2 ∨ lj3) ∈ C, add to E1 edges hj
1r

j
1, h

j
2r

j
2, h

j
3r

j
3.

– Forbidden edges:
For each clause cj = (lj1 ∨ lj2 ∨ lj3) ∈ C, add to E3 edges hj

1r
j
2, h

j
2r

j
3, h

j
3r

j
1.

See Fig. 1 as an example.

Lemma 4. If there is a sandwich graph G = (V,E) which is the join of
two threshold graphs for the particular instance (V,E1, E3) constructed above,
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then there is a truth assignment satisfying each clause of (X,C), a generic
instance of monotone nae3sat.

Lemma 5. If there is a truth assignment satisfying each clause of (X,C), a
generic instance of monotone nae3sat, then there is a sandwich graph G =
(V,E) which is a join of two threshold graphs for (V,E1, E3).

6 Cograph-(2,1) Graph Sandwich Problem

In this section we prove that cograph-(2, 1)-sp is NP-complete as an application
of cograph-(2, 1) structural characterization we presented in [18]. This problem
can be formulated as follows:

cograph-(2, 1) graph sandwich problem (cograph-(2, 1)-sp)
Input: A triple (V,E1, E3), where E1 ∩ E3 = ∅.
Question: Is there a graph G = (V,E) which is a cograph-(2, 1) and such that
E1 ⊆ E and E ∩ E3 = ∅?

Theorem 12. cograph-(2, 1) graph sandwich problem is NP-complete.

Proof. In order to prove that cograph-(2, 1)-sp is an NP-complete problem, we
will make a polynomial time reduction from the NP-complete problem jtt-sp

(proved in Theorem 11). Let (V,E1, E3) be a generic instance for jtt-sp. We
assume that there is no vertex u such that NG3(u) = ∅, since the removal of
this kind of vertex does not affect the property of being a pp-jtt. First, we will
construct a particular instance (V ′, E′1, E′3) for cograph-(2, 1)-sp. Second, we
prove that if there is a join of two thresholds sandwich graph for (V,E1, E3),
then there is a cograph-(2, 1) sandwich graph for (V ′, E′1, E′3). Third, we prove
that if there is a cograph-(2, 1) sandwich graph for (V ′, E′1, E′3), then there is
a join of two thresholds sandwich graph for (V,E1, E3).

Construction of the particular instance (V ′, E′1, E′3) for cograph-(2, 1)-sp:

– V ′ = V ∪ {a, b, c, d},
– E′1 = E1 ∪ {ab, bc, cd, da} ∪ {xy|x ∈ V, y ∈ {a, b}}
– E′3 = E3 ∪ {ac, bd}

The next Lemmas complete Theorem 12’s proof.

Lemma 6. Let G = (V,E) be a graph with a universal vertex u. G is a join of
two thresholds graph if and only if G \ {u} is a join of two thresholds graph.

Lemma 7. If there is a join of two thresholds sandwich graph for (V,E1, E3),
then there is a cograph-(2, 1) sandwich graph for (V ′, E′1, E′3).

Lemma 8. If there is a cograph-(2, 1) sandwich for (V ′, E′1, E′3), then there is
a join of two thresholds sandwich graph for (V,E1, E3).
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7 Conclusions

In this paper, we proved that, similarly to probe cograph problem and par-

titioned probe threshold problem, probe cograph-(2, 1) problem and
partitioned probe join of two thresholds problem are polynomially
solvable. In contrast, we showed that, although threshold-sp and cograph

graph sandwich problem are polynomially solvable problems [5], join of

two thresholds graph sandwich problem and consequently cograph-

(2, 1) graph sandwich problem are NP-complete ones, contradicting all nat-
ural feelings around two well-known classes of graphs.
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Abstract. In [9] it was shown that nowhere dense classes of graphs admit
sparse neighbourhood covers of small degree. We show that a monotone
graph class admits sparse neighbourhood covers if and only if it is nowhere
dense. The existence of such covers for nowhere dense classes is established
through bounds on so-called weak colouring numbers.

The core results of this paper are various lower and upper bounds
on the weak colouring numbers and other, closely related generalised
colouring numbers. We prove tight bounds for these numbers on graphs
of bounded tree width. We clarify and tighten the relation between the
expansion (in the sense of “bounded expansion” [15]) and the various
generalised colouring numbers. These upper bounds are complemented
by new, stronger exponential lower bounds on the generalised colouring
numbers. Finally, we show that computing weak r-colouring numbers is
NP-complete for all r ≥ 3.

1 Introduction

Nowhere dense classes of graphs have been introduced by Nešetřil and Ossona
de Mendez [15,16] as a general model of “sparse” graph classes. They include
and generalise many other natural sparse graph classes, among them all classes
of bounded degree, classes of bounded genus, classes defined by excluded (topo-
logical) minors, and classes of bounded expansion. It has been demonstrated in
several papers, e.g., [2,9,15] that nowhere dense graph classes have nice algorith-
mic properties; many problems that are hard in general can be solved (more) effi-
ciently on nowhere dense graph classes. As a matter of fact, nowhere dense classes
are a natural limit for the efficient solvability of a wide class of problems [6,9,12].

In [9], it was shown that nowhere dense classes of graphs admit sparse neigh-
bourhood covers. Neighbourhood covers play an important role in the study of
distributed network algorithms and other application areas (see, for example,
[17]). The neighbourhood covers developed in [9] combine low radius and low
degree making them interesting for the applications outlined above. In this paper,
we prove a (partial) converse to the result of [9]: we show that monotone graph
classes (that is, classes closed under taking subgraphs) are nowhere dense if and
only if they admit sparse neighbourhood covers.

c© Springer-Verlag Berlin Heidelberg 2016
E.W. Mayr (Ed.): WG 2015, LNCS 9224, pp. 325–338, 2016.
DOI: 10.1007/978-3-662-53174-7 23
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Nowhere denseness has turned out to be a very robust property of graph
classes with various seemingly unrelated characterisations (see [8,15]), among
them characterisations through so-called generalised colouring numbers. These
are particularly relevant in the algorithmic context, because the existence of
sparse neighbourhood covers for nowhere dense classes is established through
such colouring numbers—the weak r-colouring numbers, to be precise—and the
value of these numbers is directly related to the degree of the neighbourhood
covers. Besides the weak r-colouring numbers wcolr(G) of graphs G we study the
r-colouring numbers colr(G) and the r-admissibility numbers admr(G). The two
families of colouring numbers where introduced by Kierstead and Yang in [11],
and the admissibility numbers go back to Kierstead and Trotter in [10] and were
generalised by Dvořák in [5]. All these numbers generalise the degeneracy, a.k.a.
colouring number, which is defined to be the minimum d such that there is a
linear order of the vertices of G in which every vertex has at most d smaller
neighbours. The name “colouring number” comes from the fact that graphs of
degeneracy d have a proper d + 1 colouring which can be computed efficiently
by a simple greedy algorithm. For the generalised r-colouring numbers, instead
of smaller neighbours of a vertex we count smaller vertices reachable by certain
paths of length r; the numbers differ by the kind of paths of length r considered.
We observe that with growing r the colouring numbers converge to the treewidth
of the graph.

The core results of this paper are various upper and lower bounds for
these families of colouring numbers. In particular, we prove tight bounds for
wcolr(G) for graphs G of bounded tree width. We clarify and tighten the rela-
tion between the expansion (in the sense of “bounded expansion” [15]) and
the various generalised colouring numbers and use it to prove that for every
ε > 0,wcolr(G) = O(r(1+ε)r) for graph classes of constant expansion, e.g. for
classes that exclude a (topological) minor. These upper bounds are comple-
mented by new, stronger exponential lower bounds on the generalised colouring
numbers. The lower bounds can already be achieved on graph classes of bounded
degree. As mentioned above, the bounds on the weak colouring numbers of graph
classes are directly related to the sparseness of the neighbourhood covers. Finally,
we show that computing weak r-colouring numbers is NP-complete for all r ≥ 3.

After giving some graph theoretic background in Sect. 2, we prove our various
bounds on the generalised colouring numbers in Sects. 3, 4 and 5. Section 6 is
devoted to sparse neighbourhood covers, and the NP-completeness result for the
weak colouring numbers is proved in Sect. 7.

2 Generalised Colouring Numbers

Our notation from graph theory is standard, we refer the reader to [3] for
background. All graphs in this paper are finite and simple, i.e. they do not
have loops or multiple edges between the same pair of vertices. A class of
graphs is monotone if it is closed under subgraphs. The radius rad(G) of G
is minu∈V (G) maxv∈V (G) distG(u, v). By NG

r (v) we denote the r-neighbourhood
of v in G, i.e. the set of vertices of distance at most r from v in G.
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We represent a linear order on V (G) as an injective function L : V (G) → N

and write Π(G) for the set of all linear orders on V (G).
Vertex u is weakly r-reachable from v with respect to the order L, if there is a

path P of length 0 ≤ � ≤ r from v to u such that L(u) ≤ L(w) for all w ∈ V (P ).
Let WReachr[G,L, v] be the set of vertices that are weakly r-reachable from v
with respect to L. If furthermore, all inner vertices w of P satisfy L(v) < L(w),
then u is called strongly r-reachable from v. Let SReachr[G,L, v] be the set of
vertices that are strongly r-reachable from v with respect to L.

The r-admissibility admr[G,L, v] of v with respect to L is the maximum
size k of a family {P1, . . . , Pk} of paths of length at most r in G that start
in v, end at a vertex w with L(w) ≤ L(v) and satisfy V (Pi) ∩ V (Pj) = {v} for
1 ≤ i �= j ≤ k. As we can always let the paths end in the first vertex smaller than
v, we can assume that the internal vertices of the paths are larger than v. Note
that admr[G,L, v] is an integer, whereas WReachr[G,L, v] and SReachr[G,L, v]
are sets of vertices.

The weak r-colouring number wcolr(G), the r-colouring number colr(G), and
the r-admissibility admr(G) are defined as

wcolr(G) = min
L∈Π(G)

max
v∈V (G)

|WReachr[G,L, v]|,

colr(G) = min
L∈Π(G)

max
v∈V (G)

|SReachr[G,L, v]|,

admr(G) = min
L∈Π(G)

max
v∈V (G)

admr[G,L, v].

It follows from the definitions that, for all r ∈ N, admr(G) ≤ colr(G) ≤
wcolr(G). Furthermore, adm1(G) ≤ adm2(G) ≤ . . . ≤ admn(G), wcol1(G) ≤
wcol2(G) ≤ . . . ≤ wcoln(G) = td(G) (where td(G) is the treedepth of G, see
e.g. [15]) and col1(G) ≤ col2(G) ≤ . . . ≤ coln(G) = tw(G) (where tw(G) is the
treewidth of G).

To see that coln(G) = tw(G), note that treewidth can be characterised by
elimination orders. An elimination order of a graph G is a linear order L on
V (G) with which we associate a sequence of graphs Gi. Let V (G) = {1, . . . , n}
and L(i) < L(j) for i < j, then G0 = G and for 0 < i ≤ n, V (Gi) = V (Gi−1)\{i}
and E(Gi) =

(
E(Gi−1) \ {{i, j} : j ≤ n

})
∪{{�, j} : {�, i}, {i, j} ∈ E(Gi−1)

}
,

i.e. we eliminate vertex i and make a clique out of the neighbours of i in Gi−1.
The width of the elimination order is one plus the maximum size of a clique over
all Gi. The elimination width of G is the minimum width over all possible widths
of elimination orders of G. It is well known that the treewidth of G is equal to
its elimination width. Let L′ be the reverse to L. An easy induction shows that
the neighbours of a vertex i in Gi−1 are exactly those of SReachn[G,L′, i]. It
follows that coln(G) = tw(G).

Furthermore, it was shown that the generalised colouring numbers are
strongly related, i.e. colr(G) ≤ (admr(G) − 1) · (admr(G) − 2)r−1 + 1 and
wcolr(G) ≤ admr(G)r (see for example [5], but note that in that work, paths of
length 0 are not considered for the r-admissibility).
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3 Admissibility and Expansion

For r ∈ N, an r-subdivision of a graph H is obtained from H by replacing edges
by pairwise internally disjoint paths of length at most r+1. If a graph G contains
a 2r-subdivision of H as a subgraph, then H is a topological depth-r minor of G,
written H 	t

r G. Recall that H is a topological minor of G (we write H 	t G)
if some subdivision of H is a subgraph of G, that is, if H 	t

r G for some r ∈ N.
The edge density of a graph G is ε(G) = |E(G)|/|V (G)|. Note that the average

degree of G is 2ε(G). A graph is k-degenerate if every subgraph has a vertex of
degree at most k. The maximum of the edge densities of all H 	t

r G is known as
the topological greatest reduced average density ∇̃r(G) of G with rank r.

A class C of graphs is nowhere dense if for all ε > 0 and all r ∈ N there is
an n0 ∈ N such that all n-vertex graphs G ∈ C with at least n0 vertices satisfy
∇̃r(G) ≤ nε. C is said to have bounded expansion if for every r there is a c(r)
such that ∇̃r(G) ≤ c(r) for all G ∈ C. It is easy to see that all classes of bounded
expansion are nowhere dense; the converse does not hold. We say that C has
constant expansion if there is a constant c such that ∇̃r(G) ≤ c for all r ∈ N

and G ∈ C.
The following theorem implies improvements of previous results from Kier-

stead and Yang [11] and Zhu [20] to the exponent of their upper bounds for
colouring numbers and the weak colouring numbers.

Theorem 3.1. Let G be a graph and let r ∈ N. Then admr(G) ≤ 2r
(∇̃r−1(G)

)3.

Every class that excludes a topological minor has constant expansion. This
includes familiar classes such as classes of bounded degree, bounded genus, and
bounded tree width. We obtain the following corollary.

Corollary 3.2. Let C be a graph class that excludes some fixed graph as a topo-
logical minor. Then for all G ∈ C we have admr(G) = O(r) and for every
ε > 0,wcolr(G) = O(r(1+ε)r).

For the proof of Theorem3.1 we need a lemma which is a variation of a
result of Dvořák [5]. For a set S ⊆ V (G) and v ∈ S, let br(S, v) be the maximum
number k of paths P1, . . . , Pk of length at most r from v to S with internal
vertices in V (G) \ S and with V (Pi) ∩ V (Pj) = {v} for 1 ≤ i �= j ≤ k.

Lemma 3.3 [5]. For all graphs G and r ∈ N, there exists a set S ⊆ V (G) such
that br(S, v) = admr(G) for all v ∈ S.

Proof. Assume that all S ⊆ V (G) contain a vertex v such that br(S, v) <
admr(G). We construct an order L(v1) < L(v2) < . . . < L(vn) of V (G)
as follows. If vi+1, . . . , vn have already been ordered, choose vi such that if
Si = {v1, . . . , vi}, then br(Si, vi) is minimal. Clearly, the r-admissibility of the
resulting order is one of the values br(Si, vi) occuring in its construction. This
implies admr(G) < admr(G), a contradiction. �
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Proof (of Theorem 3.1). Let G be a graph with ∇̃r−1(G) ≤ c, and let � := 2rc3+1.
Suppose for contradiction that admr(G) > �. By Lemma 3.3, there exists a set
S such that br(S, v) > � for all v ∈ S. For v ∈ S, let Pv be a set of paths from v
to S witnessing this, and let s := |S|.

Choose a maximal set P of pairwise internally vertex-disjoint paths of length
at most 2r−1 connecting pairs of vertices from S whose internal vertices belong
to V (G) \ S such that each pair of vertices is connected by at most one path.
Let H be the graph with vertex set S and edges between all vertices v, w ∈ S
connected by a path in P. Then H 	t

r−1 G and hence |P| = |E(H)| ≤ s · c. Let
M be the set of all internal vertices of the paths in P, and let m := |M |. Then
m ≤ s · c · (2r − 2).

Note that we not only have H 	t
r−1 G, but also H ′ 	t

r−1 G for all H ′ ⊆ H.
Thus ε(H ′) ≤ c, and therefore H ′ has a vertex of degree at most c/2. We claim
that H contains an independent set R of size �s/(c/2 + 1)�. We can iteratively
build the set as follows. Choose a vertex v of minimum degree and add it to
R. Delete v and all its neighbours from V (H) and continue inductively. Clearly
the resulting set R is independent in H. As all subgraphs of H have a vertex
of degree at most c/2, we delete at most c/2 + 1 vertices from S in each step.
Hence R has size at least �s/(c/2 + 1)�.

For every v ∈ S, we let Qv be the set of initial segments of paths in Pv

from v to a vertex in (M ∪ S) \ {v} with all internal vertices in V (G) \ (M ∪ S).
Observe that for u, v ∈ R the paths in Qv and Qu are internally disjoint, because
if Q ∈ Qu and Q′ ∈ Qv had an internal vertex in common, then Q ∪ Q′ would
contain a path of length at most 2r − 2 that is internally disjoint from all paths
in P, contradicting the maximality of P.

Let G′ be the union of all paths in P and all paths in Qv for v ∈ R, and
let H ′ be obtained from G′ by contracting all paths in

⋃
v∈R Qv to single edges.

Then H ′ 	t
r−1 G.

We have |V (H ′)| ≤ s + m ≤ s + s · c · (2r − 2) ≤ s · c · (2r − 1) and at
least |E(H ′)| ≥ �s/(c/2 + 1)� · � ≥ s · �/c edges. Thus ε(H ′) ≥ �/2rc2 > c. A
contradiction. �

4 The Colouring Numbers of Graphs of Bounded
Treewidth

A tree decomposition of a graph G is a pair (T,X), where T is a tree, X =
(Xt : t ∈ V (T )), is a family of subsets of V(G) (called bags) such that (i)⋃

t∈V (T ) Xt = V (G), (ii) for every edge {u, v} of G there exists t ∈ V (T ) with
u, v ∈ Xt and (iii) if r, s, t ∈ V (T ) and s is on the path of T between r and t,
then Xr ∩ Xt ⊆ Xs.

A graph has treewidth at most k if it admits a tree decomposition (T,X)
such that |Xt| ≤ k+1 for each t ∈ V (T ) and we write tw(G) for the treewidth of
G. We assume familiarity with the basic theory of tree decompositions as in [3].

It is well known that a graph of treewidth k has a tree decomposition (T,X)
of width k such that for every {s, t} ∈ E(T ) we have |Xs \ Xt| ≤ 1. We call
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such decompositions smooth. The following separation property of tree decom-
positions is well known.

Lemma 4.1. If r, s, t ∈ V (T ), u ∈ Xr and v ∈ Xt and s is on the path of T
between r and t, then every path from u to v in G uses a vertex contained in Xs.

For a tree decomposition (T,X) of G and a node s ∈ V (T ) we define a partial
order LT,s on V (T ) demanding that LT,s(t) ≤ LT,s(u) if t lies on the path from
s to u (i.e. LT,s is the standard tree order where s is minimum).

Theorem 4.2. Let tw(G) ≤ k. Then wcolr(G) ≤ (
r+k

k

)
.

Proof. Let (T,X) be a smooth tree decomposition of G of width at most k. Since
if G′ is a subgraph of G, then wcolr(G′) ≤ wcolr(G), w.l.o.g. we may assume that
G is edge maximal of treewidth k, i.e. each bag induces a clique in G. We choose
an arbitrary root s of T and let L′ be some linear extension of LT,s. For every
v ∈ V (G), let tv be the unique node of T such that L′(tv) = min{L′(t)|v ∈ Xt}
and define a linear ordering L of V (G) such that: (i) L′(tv) < L′(tu) ⇒ L(v) <
L(u), and (ii) if L′(tv) = L′(tu) (which is possible in the root bag Xs), break
ties arbitrarily.

Fix some v ∈ V (G) and let w ∈ WReachr[G,L, v]. By Lemma 4.1 and the
definition of L, it is immediate that tw lies on the path from tv to s in T .
Let u ∈ Xtv

be such that L(u) ≤ L(u′) for all u′ ∈ Xtv
. If tv = s, then

|WReachr[G,L, v]| ≤ k + 1 and we are done. Otherwise, as the decomposition is
smooth, L′(tu) < L′(tv). We define two subgraphs G1 and G2 of G as follows.
The graph G1 is induced by the vertices from the bags between s and tu, i.e.
by the set

⋃{Xt ∈ V (T ) : LT,s(t) ≤ LT,s(tu)}. The graph G2 is induced by⋃{Xt ∈ V (T ) : LT,s(tv) ≤ LT,s(t) < LT,s(tu)} \ V (G1).
Let Li be the restriction of L to V (Gi), for i = 1, 2, respectively. We

claim that if w ∈ WReachr[G,L, v], then w ∈ WReachr−1[G1, L1, u] ∪
WReachr[G2, L2, v]. To see this, let P = (v = v1, . . . , v� = w) be a shortest
path between v and w of length � ≤ r such that L(w) is minimum among all
vertices of V (P ).

We claim that L(v1) > . . . > L(v�) (and call P a decreasing path). This
implies in particular that all tvi

lie on the path from tv to s and that LT,s(tv1) ≥
. . . ≥ LT,s(tv�

) (non-equality may only hold in the last step, if we take a step in
the root bag).

Assume that the claim does not hold and let i be the first position with
L(vi) < L(vi+1). It suffices to show that we can find a subsequence (which is
also a path in G) Q = vi, vj , . . . , v of P with j > i+1. By definition of tvi+1 =: t,
Xt contains vi. (Indeed, there is an edge between vi and vi+1, which must be
contained in some bag, but vi+1 appears first in Xt counting from the root and
each bag induces a clique in G). Let t′ be the parent node of t. Xt′ also contains
vi, as the decomposition is smooth and vi+1 is the unique vertex that joins Xt.
But by Lemma 4.1, Xt′ is a separator that separates vi+1 from all vertices smaller
than vi+1. We hence must visit another vertex vj from Xt′ in order to finally
reach v. We can hence shorten the path as claimed.
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If L(w) ≤ L(u), then P goes through Xtu
by Lemma 4.1. Let u′ be the first

vertex of P that lies in Xtu
. We show that there is a shortest path from v to u′

that uses u as the second vertex. By assumption, v �= u. If {v, u′} ∈ E(G), then
{v, u′} must be contained in some bag Xt′ . By definition of tv, t′ = tv, as tv is
the first node of T on the path from s to tv containing v. By definition of u and
because (T,X) is smooth, u is the only vertex from tv that appears in tu. Thus
u′ = u, so the shortest path from v to u′ uses u. If the distance between v and
u′ is at least 2, a shortest path can be chosen as v, u, u′. Indeed u ∈ Xtu

∩ Xtv

and every bag induces a clique by assumption.
It follows that if L(w) ≤ L(u) and w ∈ WReachr[G,L, v], then there is

a shortest path from v to w that uses u as the second vertex. Thus w ∈
WReachr−1[G1, L1, u], as P is decreasing.

If L(w) > L(u), then P never visits vertices of G1. If P lies completely in
G2, we have w ∈ WReachr[G2, L2, v]. If P leaves G2, it visits vertices of G that
are contained only in bags strictly below tv. However, this is impossible, as P is
decreasing.

Hence |WReachr[G,L, v]| ≤ |WReachr−1[G1, L1, u]| + |WReachr[G2, L2, v]|.
The treewidth of G2 is at most k − 1, as we removed u from every bag. More
precisely, the tree decomposition (T 2,X2) of G2 of width at most k − 1 is the
restriction of (T,X) to G2, i.e. we take tree nodes t contained between tu and
tv (including tv and not including tu) and define X2

t = Xt ∩ V (G2).
For the induction base, recall that wcol1(G) equals the degeneracy of G plus

one and that every graph of treewidth ≤ k is k-degenerate. Furthermore, wcolr
of a tree is at most r + 1 (using any linearisation of the standard tree order).

We recursively define the following numbers w(k, r) such that w(k, 1) = k+1
for k ≥ 1, w(1, r) = r + 1 for r ≥ 1 and w(k, r) = w(k, r − 1) + w(k − 1, r) for
k, r > 1. By our above argumentation, |WReachr[G,L, v]| ≤ w(k, r). We observe
that this is the recursive definition of the binomial coefficients and conclude that
|WReachr[G,L, v]| ≤ (

r+k
k

)
. �

The proof of Theorem4.2 gives rise to a construction of a class of graphs
that matches the upper bound proven there. We construct a graph of treewidth
k and weak r-colouring number

(
k+r

k

)
whose tree decomposition has a highly

branching host tree. This enforces a path in the tree from the root to a leaf that
realises the recursion from the proof of Theorem 4.2.

Theorem 4.3. There is a family of graphs Gk
r with tw(Gk

r ) = k, such that
wcolr(Gk

r ) =
(
r+k

k

)
. In fact, for all r′ ≤ r, wcolr′(Gk

r ) =
(
r′+k

k

)
.

Proof. Fix r, k and let c =
(
r+k

k

)
. We define graphs G(k′, r′) for all r′ ≤ r, k′ ≤

k and corresponding tree decompositions T (k′, r′) = (T (k′, r′),X(k′, r′)) of
G(k′, r′) of width k′ with a distinguished root s(T (k′, r′)) by induction on k′

and r′. We will show that wcolr′(G(k′, r′)) ≤ (
r′+k′

k′
)
. We guarantee several

invariants for all values of k′ and r′ which will give us control over a sufficiently
large part of any order that witnesses wcolr′(G(k′, r′)) ≤ (

r′+k′

k′
)
.
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1. There is a bijection f : V (T (k′, r′)) → V (G(k′, r′)) such that f(s(T (k′, r′))) is
the unique vertex contained in Xs(T (k′,r′)) and if t is a child of t′ in T (k′, r′),
then f(t) is the unique vertex of Xt \ Xt′ . Hence any order defined on V (T )
directly translates to an order of V (G) and vice versa.

2. In any order L of V (G(k′, r′)) which satisfies wcolr(G(k′, r′)) ≤ c, there is
some root-leaf path P = t1, . . . , tm such that L(f(t1)) < . . . < L(f(tm)).

3. Every bag of T (k′, r′) contains at most k′ + 1 vertices.

It will be convenient to define the tree decompositions first and to define
the corresponding graphs as the unique graphs induced by the decomposition
in the following sense. For a tree T and a family of finite and non-empty sets
(Xt)t∈V (T ) such that if z, s, t ∈ V (T ) and s is on the path of T between z and t,
then Xz ∩Xt ⊆ Xs, we define the graph induced by (T, (Xt)t∈V (T )) as the graph
G with V (G) =

⋃
t∈V (T ) Xt and {u, v} ∈ E(G) if and only if u, v ∈ Xt for some

t ∈ V (T ). Then (T, (Xt)t∈V (T )) is a tree decomposition of G.
For k′ ≥ 1, r′ = 1, let T (k′, r′) =: T be a tree of depth k′ + 1 and branching

degree c with root s. Let LT,s be the natural partial tree order. Let f : V (T ) → V
be a bijection to some new set V . We define Xt := {f(t) : LT,s(t′) ≤ LT,s(t)}.
Let G(k′, r′) be the graph induced by the decomposition. The first and the third
invariants clearly hold. For the second invariant, consider a simple pigeonhole
argument. For every non-leaf node t, the vertex f(t) has c neighbours f(t′) in the
child bags Xt′ of t. Hence some f(t′) must be larger in the order. This guarantees
the existence of a path as required.

For k′ = 1, r′ ≥ 1, let T (k′, r′) =: T be a tree of depth r′ + 1 and branching
degree c with root s and let f be as before. Let Xs := {f(s)} and for each
t′ ∈ V (T ) with parent t ∈ V (T ) let Xt′ := {f(t), f(t′)}. Let G(k′, r′) be the
graph induced by the decomposition. All invariants hold by the same arguments
as above. Note that G1

1 is the same graph in both constructions and is hence
well defined.

Now assume that G(k′, r′ − 1) and G(k′ − 1, r′) and their respective tree
decompositions have been defined. Let T (k′, r′) be the tree which is obtained
by attaching c copies of T (k′ − 1, r′) as children to each leaf of T (k′, r′ − 1).
We define the bags that belong to the copy of T (k′, r′ − 1), exactly as those of
T (k′, r′ −1). To every bag of a copy of T (k′ −1, r′) which is attached to a leaf z,
we add f ′(z) (where f ′ is the bijection from T (k′, r′ − 1)). Let G(k′, r′) be the
graph induced by the decomposition.

It is easy to see how to obtain the new bijection f on the whole graph such
that it satisfies the invariant. It is also not hard to see that each bag contains at
most k′ + 1 vertices. For the second invariant, let P1 = t1, . . . , tm be some root-
leaf path in T (k′, r′ − 1) which is ordered such that L(f(t1)) < . . . < L(f(tm)).
Let v = f(tm) be the unique vertex in the leaf bag in which P1 ends. By the same
argument as above, this vertex has many neighbours s′ such that f−1(s′) is a
root of a copy of T (k′ −1, r′). One of them must be larger than v. In appropriate
copy we find a path P2 with the above property by assumption. We attach the
paths to find the path P = t1 . . . t� in T (k′, r′).
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We finally show that WReachr′ [G(k′, r′), L, f(t�)] = c. This is again shown
by an easy induction. Using the notation of the proof of Theorem4.2, we observe
that the graph G1 is isomorphic to G(k′, r′ −1) in G(k′, r′) and G2 is isomorphic
to G(k′ − 1, r′). Furthermore we observe that the number of vertices reached in
these graphs are exactly w(k′, r′−1) and w(k′−1, r′), so that the upper bound is
matched. Similarly one shows that wcolr′(G(k, r)) =

(
r′+k

k

)
. The theorem follows

by letting Gk
r := G(k, r). �

It is proven in [11,15] that for every graph G, wcolr(G) ≤ (colr(G))r. To
our knowledge, there is no example in the literature that verifies the exponential
gap between wcolr and colr. As colr(G) ≤ tw(G) and Gk

r contains a k + 1-
clique, Theorem 4.3 provides an example that is close to an affirmative answer
for arbitrarily large generalised colouring numbers, in a rather uniform manner.

Corollary 4.4. For every k ≥ 1, r ≥ 1, there is a graph Gk
r such that for all

1 ≤ r′ ≤ r we have colr′(Gk
r ) = k + 1 and wcolr′(Gk

r ) ≥ ( colr′ (Gk
r )

r′
)r′

.

5 High-Girth Regular Graphs

We want to explore if assuming constant expansion for a graph class (such as
classes excluding a topological minor) results to polynomial colouring numbers.
To this end, we would expect such classes to have exponential weak colouring
numbers, but it is much more unclear what the case for their colouring numbers
is (which can have an exponential gap with the weak colouring number). Sur-
prisingly, we prove that, in fact, even classes of bounded degree (which are of
the simplest classes that can exclude a topological minor) can’t have polynomial
colouring numbers. For this section, we let n := |V (G)|.
Theorem 5.1. Let G be a d-regular graph of girth at least 4g + 1, where d ≥ 7.

Then for every r ≤ g, colr(G) ≥ d
2

(
d−2
4

)2�logr�−1
.

Proof. For an ordering L of G, let Rr(v) = SReachr[G,L, v]\SReachr−1[G,L, v]
and Ur =

∑
v∈V (G) |Rr(v)|.

Suppose that r ≤ g and notice that for u,w ∈ Rr(v), we have that either
u ∈ R2r(w) or w ∈ R2r(u). Therefore, every vertex v ∈ V (G) contributes at least(|Rr(v)|

2

)
times to U2r. Moreover, since r ≤ g, for every u,w with u ∈ R2r(w)

there is at most one vertex v ∈ V (G) such that u,w ∈ Rr(v) (namely the middle
vertex of the unique (u, v)-path of length 2r in G). It follows that for every
r ≤ g, U2r ≥ ∑

v∈V (G)

(|Rr(v)|
2

)
= 1

2

∑
v∈V (G) |Rr(v)|2 − 1

2

∑
v∈V (G) |Rr(v)| ≥

1
2n

(∑
v∈V (G) |Rr(v)|

)2

− 1
2Ur = 1

2nU2
r − 1

2Ur where for the second inequality we
have used the Cauchy-Schwarz inequality.

Let cr = Ur

n . Then for every r ≤ g, we obtain c2r ≥ 1
2cr (cr − 1). But,

U1 =
∑

v∈V (G) |SReach1[G,L, v] \ {v}| = 1
2dn, so that c1 = d

2 > 3, since d ≥ 7.
By induction and because c2r ≥ 1

2cr (cr − 1), for every r = 2r′ ≤ g we have
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c2r ≥ cr ≥ 3, therefore cr ≥ c1 = d
2 . Again because c2r ≥ 1

2cr (cr − 1), for every
r = 2r′ ≤ g we have c2r ≥ 1

2c2r − 1
2cr ≥ 1

2c2r − 1
dc2r = d−2

2d c2r. Then for every

r = 2r′ ≤ g, it easily follows that cr ≥ d
2

(
d−2
4

)r−1

.

Finally, let Cr = 1
n

∑
v∈V (G) |SReachr[G,L, v]|. Then, Cr =

∑r
i=1 ci, hence

Cr ≥ c2�logr� ≥ d
2

(
d−2
4

)2�logr�−1
, and hence for every r ≤ g there exists a ver-

tex vr ∈ V (G) such that |SReachr[G,L, vr]| ≥ d
2

(
d−2
4

)2�logr�−1
. Since L was

arbitrary, the theorem follows. �
Unfortunately, our proof above makes sense only if d ≥ 7, which is also

best possible with this approach, since for d ≤ 6, we have c1 ≤ 3. Then for
the recurrence relation c2r = 1

2c2r − 1
2cr, we get c2i ≤ c2i−1 for every i and we

clearly cannot afford to have c2i non-increasing. Somewhat better constants can
be achieved if in the estimation of cr one uses that c2i ≥ c2i0 , for i ≥ i0 > 0,
instead of the relation c2i ≥ c1, as in our proof. Since d ≥ 7 would be still the
best that we would be able to do, we adopted the simpler approach for easier
readability.

Actually, by combining a known result for the ∇r (which stands for the expan-
sion function defined through the minor resolution, instead of the topolological
minor resolution that we use here for our purposes) of high-girth regular graphs
([4,15] Exercise 4.2) and ([20], Lemma 3.3), we get exponential lower bounds for
the weak colouring number of high-girth d-regular graphs, already for d ≥ 3. In
particular, for a 3-regular graph G of high enough girth, wcolr(G) ≥ 3 ·2�r/4�−1.
The methods above can be extended to get appropriate bounds in terms of their
degree for regular graphs of higher degree, but by adopting a more straightfor-
ward approach, we get better bounds for high-girth d-regular graphs for d ≥ 4.

Theorem 5.2. Let G be a d-regular graph of girth at least 2g + 1, where d ≥ 4.
Then for every r ≤ g,

wcolr(G) ≥ d

d − 3

((d − 1
2

)r

− 1
)

.

Proof. Let L be an ordering of G. For u, v ∈ V (G) with d(u, v) ≤ r, let Puv

be the unique (u, v)-path of length at most r, due to the girth of G. Let Sr =∑
v∈V (G) |Qr(v)|, where Qr(v) = WReachr[G,L, v] \ WReachr−1[G,L, v]. For

r ≤ g − 1, a vertex u ∈ Qr(v) and w ∈ N(v) \ V (Puv), it holds that either
w ∈ Qr+1(u) or u ∈ Qr+1(w). Notice that |N(v) \ V (Puv)| = d − 1 and that
Pvu and Puw are unique. Therefore, every pair of vertices v, u with u ∈ Qr(v)
corresponds to at least d − 1 pairs of vertices u,w with u ∈ Qr+1(w) or w ∈
Qr+1(u) and hence contributes at least d − 1 times to Sr+1. Since every path
of length r + 1 contains exactly two subpaths of length r, we have for every
r ≤ g − 1 that 2Sr+1 ≥ (d − 1)Sr. Let wr = Sr

n . Then, for every r ≤ g − 1 we
have wr+1 ≥ d−1

2 wr.

But,
∑

v∈V (G) |WReach1[G,L, v]−v| = 1
2dn, so that w1 = d

2 . It easily follows

that for every r ≤ g, wr ≥ d
2

(
d−1
2

)r−1
.
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Finally, let Wr = 1
n

∑
v∈V (G) |WReachr[G,L, v]|. Then, Wr =

∑r
i=1 wi ≥

∑r
i=1

d
2

(
d−1
2

)i−1
= d

d−3

( (
d−1
2

)r − 1
)
, and hence for every r ≤ g there exists a

vertex vr ∈ V (G) such that WReachr[G,L, vr]| ≥ d
d−3

( (
d−1
2

)r −1
)
. Since L was

arbitrary, the theorem follows. �
Remark 5.3. Notice that for every d-regular graph G and every radius r, we
have admr(G) ≤ Δ(G)+1 = d+1, so by Theorem5.1 for every d ≥ 7 and every
r ≤ g, the d-regular graphs of girth at least 2g + 1 verify the exponential gap
between admr,Δ(G) and colr,wcolr of the known relations from Sect. 2.

6 Neighbourhood Covers

Neighbourhood covers of small radius and small size play a key role in the
design of many data structures for distributed systems. For references about
neighbourhood covers, we refer the reader to [1].

For r ∈ N, an r-neighbourhood cover X of a graph G is a set of connected
subgraphs of G called clusters, such that for every vertex v ∈ V (G) there is
some X ∈ X with Nr(v) ⊆ X.

The radius rad(X ) of a cover X is the maximum radius of any of its clusters.
The degree dX (v) of v in X is the number of clusters that contain v. A class C
admits sparse neighbourhood covers if for every r ∈ N, there exists c ∈ N such
that for all ε > 0, there is n0 ∈ N such that for all G ∈ C of order at least
n0, there exists an r-neighbourhood cover of radius at most c · r and degree at
most |V (G)|ε. For any graph G, one can construct an r-neighbourhood cover of
radius 2r − 1 and degree 2k · |V (G)|1/r and asymptotically these bounds cannot
be improved [19].

Theorem 6.1 (Theorem 16.2.4 of [17,19]). For every r and k ≥ 3, there
exist infinitely many graphs G for which every r-neighbourhood cover of radius
at most k has degree Ω(|V (G)|1/k).

For restricted classes of graphs, better covers exist. The most general results
are that a class excluding a complete graph on t vertices as a minor admits an
r-neighbourhood cover of radius O(t2 ·r) and degree 2O(t)t! [1] and the following
result from [9].

Theorem 6.2 [9]. Let C be a nowhere dense class of graphs. There is a func-
tion f such that for all r ∈ N and ε > 0 and all graphs G ∈ C with |V (G)| ≥
f(r, ε), there exists an r-neighbourhood cover of radius at most 2r and maximum
degree at most |V (G)|ε. More precisely, if wcol2r(G) = d, then there exists an
r-neighbourhood cover of radius at most 2r and maximum degree at most d.

We show that for monotone classes the converse is also true. We first observe
that the lower bounds in Theorem 6.1 come from a well known somewhere dense
class.



336 M. Grohe et al.

Lemma 6.3. Let d ≥ 1, k ≥ 2 and let G be a graph of girth at least k + 1 and
edge density at least d. Then every 1-neighbourhood cover of radius at most k
has degree at least d.

Lemma 6.4 [13]. Let r ≥ 5. There are infinitely many graphs G of girth at least
4r with edge density at least c0 · |V (G)|1/(3(r−1)) for some constant c0 > 0.

Theorem 6.5. If C is somewhere dense and monotone, then C does not admit
sparse neighbourhood covers.

Proof. Let C be somewhere dense. Then for some s, all graphs H are topolog-
ical depth-s minors of a graph G ∈ C. Assume towards a contradiction that C
admits a sparse neighbourhood cover. Then for every G ∈ C there is an r · s-
neighbourhood cover of radius c ·s ·r (for some constant c) which for every ε > 0
has degree at most |V (G)|ε if G is sufficiently large. Fix some r ≥ 5.

Claim 1. If an s-subdivision of H admits an r · s-neighbourhood cover of radius
c · r · s and degree d, then H admits an r-neighbourhood cover of radius c · r · s
and degree d.

Proof. Let G be an s-subdivision of H and let X be an r · s-neighbourhood
cover of G. Let Y be the projected cover which for every X ∈ X has a cluster
Y (X) := X ∩ V (H)

Then Y is an r-neighbourhood cover of radius crs and degree d: Clearly, every
Y (X) is connected and has radius at most crs. Let v ∈ V (G). There is a cluster
X ∈ X such that NG

rs(v) ⊆ X. Then NH
r (v) = NG

rs(v) ∩ V (H) ⊆ X ∩ V (H) =
Y (X). Finally, the degree of Y is at most d, as every vertex v of H is exactly in
those clusters Y (X) with v ∈ X. This proves the claim. �

Let H be a large graph of girth greater than c · r · s with edge density
d = c0 · |V (H)|1/(crs) for some constant c0. Such H exists by Lemma 6.4 and
H does not admit an r · s-neighbourhood cover of radius c · r · s and degree d
by Lemma 6.3. As C is monotone, an s-subdivision of H is a graph G ∈ C with
|V (G)| ≤ |V (H)| + s · |E(H)| ≤ 2c0s|V (H)|1+1/(crs).

By assumption, G admits an r ·s-neighbourhood cover of radius at most c·r ·s
and degree at most |V (G)|ε for ε = 1/(2crs) if G is large enough. It follows from
Claim 1 that H has a cover of radius c · r · s and degree at most

|V (G)|ε ≤ (
2c0s|V (H)|1+1/(crs)

)ε = (2c0s)ε · |V (H)|ε+ε/(crs)

< c0|V (H)|2ε = c0|V (H)|1/(crs)

for sufficiently large H. A contradiction. �
We were informed by Nešetřil and Ossona de Mendez [14] that they found a

similar characterisation also for classes of bounded expansion.
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7 The Complexity of Computing wcolr(G)

Unlike computing the degeneracy of a graph G, i.e. wcol1(G) + 1, deciding
whether wcolr(G) = k turns out to be NP-complete for all r ≥ 3. The case
r = 2 remains an open question. Clearly, the problem is in NP, hence it remains
to show NP-hardness. The proof is a straightforward modification of a proof of
Pothen [18], showing that computing a minimum elimination tree height prob-
lem is NP-complete. It is based on a reduction from the NP-complete problem
Balanced Complete Bipartite subgraph (BCBS, problem GT24 of [7]):
given a bipartite graph G and a positive integer k, decide whether there are
two disjoint subsets W1,W2 ⊆ V (G) such that |W1| = |W2| = k and such that
u ∈ W1, v ∈ W2 implies {u, v} ∈ E(G). For a graph G, let Ḡ be its complement
graph.

Lemma 7.1. Let G = (V1 ∪ V2, E) be a bipartite n-vertex graph and let k ∈ N.
Then G has a balanced complete bipartite subgraph with partitions W1,W2 of size
k if and only if wcolr(Ḡ) = wcol3(Ḡ) ≤ n − k for all r ≥ 3.

Proof. Ḡ is the complement of a bipartite graph, i.e. V1 and V2 induce complete
subgraphs in Ḡ and there are possibly further edges between vertices of V1 and
V2. Thus, for any two vertices u, v which are connected in Ḡ by a path P , there is
a subpath of P between u and v of length at most 3. Hence wcolr(Ḡ) = wcol3(Ḡ)
for any r ≥ 3 and it suffices to show that G has a balanced complete bipartite
subgraph with partitions W1,W2 of size k if and only wcol3(Ḡ) = n − k.

First assume that there are sets W1 ⊆ V1,W2 ⊆ V2 with |W1| = |W2| = k and
such that for all u ∈ W1, v ∈ W2 there is an edge {u, v} ∈ E(G). Let L be some
order which satisfies L(u) < L(v) if u ∈ V (Ḡ) \ (W1 ∪W2) and v ∈ W1 ∪W2 and
L(v) < L(w) if v ∈ W1 and w ∈ W2. Then any vertex from V (Ḡ) \ (W1 ∪ W2)
weakly reaches at most n − 2k vertices and any vertex from Wi for 1 ≤ i ≤ 2
weakly reaches at most n − k vertices.

Now let L be an order with WReach3[Ḡ, L, v] ≤ n − k for all v ∈ V (G).
Assume without loss of generality that V (G) = {v1, v2, . . . , vn} with L(vi) <
L(vi+1) for all i < n. Denote by Ḡi the subgraph Ḡ[{vi, . . . , vn}] and let
V i
1 := V (Ḡi)∩V1 and V i

2 := V (Ḡi)∩V2. Let � ≥ 1 be minimal such that there is no
edge between V �

1 and V �
2 in Ḡ. It exists because one of V n

1 or V n
2 is empty. Clearly,

V �
1 and V �

2 induce a complete bipartite graph in G. Let j1 := |V �
1 | and j2 := |V �

2 |.
We show that j1, j2 ≥ k. It is easy to see that WReach3[Ḡ, L,w1] ≤ � + j1 for
the maximal element w1 ∈ V �

1 and WReach3[Ḡ, L,w2] ≤ � + j2 for the maxi-
mal element w2 ∈ V �

2 . We have j1 + j2 = n − � and, without loss of generality,
� + j1 ≤ � + j2 ≤ n − k. Hence j1 ≤ j2 ≤ n − � − k = j1 + j2 − k, which implies
both j1 ≥ k and j2 ≥ k. �

The above reduction is polynomial time computable, so we obtain the
following theorem.

Theorem 7.2. Given a graph G and k, r ∈ N, r ≥ 3, it is NP-complete to decide
whether wcolr(G) = k.
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Abstract. We show the following for every sufficiently connected graph
G, any vertex subset S of G, and given integer k: there are k disjoint odd
cycles in G containing each a vertex of S or there is set X of at most
3k− 3 vertices such that G−X does not contain any odd cycle that con-
tains a vertex of S. We prove this via an extension of Kawarabayashi and
Reed’s result about parity-k-linked graphs (Combinatorica 29, 215–225).
From this result it is easy to deduce several other well known results about
the Erdős-Pósa property of odd cycles in highly connected graphs. This
strengthens results due to Thomassen (Combinatorica 21, 321–333), and
Rautenbach and Reed (Combinatorica 21, 267–278), respectively. Fur-
thermore, we consider algorithmic consequences of our results.

Keywords: Cycles · Packing · Covering

AMS Subject Classification: 05C70

1 Introduction

We consider only finite and simple graphs. A family F of graphs has the Erdős-
Pósa property if there is a function f : N → N such that for every positive integer
k and every graph G, the graph G contains k disjoint subgraphs from F or there
is a set X of vertices of G with |X| < f(k) such that G−X contains no subgraph
from F . This notion has been introduced because Erdős and Pósa proved that
the family of cycles has the Erdős-Pósa property [7]. It is one facet of the duality
between packing and covering in graphs, which is one of the most fundamental
concepts in graph theory. There is a huge number of results about families of
graphs which have the Erdős-Pósa property. For example, Birmelé, Bondy, and
Reed [1] verified it for the family of cycles of length at least � for some integer �
and Robertson and Seymour [19] showed it for the family of graphs that contain
a fixed planar graph as a minor.

In contrast, the family of odd cycles does not have the Erdős-Pósa property.
In particular, there is a sequence of graphs (Gn)n∈N such that Gn does not
c© Springer-Verlag Berlin Heidelberg 2016
E.W. Mayr (Ed.): WG 2015, LNCS 9224, pp. 339–350, 2016.
DOI: 10.1007/978-3-662-53174-7 24
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contain two disjoint odd cycles, all odd cycles are of length Ω(
√

n), and every
set that intersects all odd cycles has cardinality at least Ω(

√
n) [17].

However, Thomassen [21] proved that the family of odd cycles has the
Erdős-Pósa property if we restrict ourselves to graphs with high connectivity.
Rautenbach and Reed [16] improved Thomassen’s connectivity bound from a
double-exponential to linear one. Later, Kawarabayashi and Reed [11] lowered this
bound to 24k, and Kawarabayashi and Wollan [13] improved this further to 31

2 k.
More than 50 years ago, Dirac [5] showed that in every k-connected graph G,

there is a cycle containing any prescribed set of k vertices. Later, Bondy and
Lovász [2] extended Dirac’s result and proved among other results along this
line that for every k-connected non-bipartite graph G, there is an odd cycle
containing any prescribed set of k − 1 vertices.

If one asks for many disjoint cycles through a prescribed set S of vertices it is
natural to start with disjoint cycles each containing at least one element of S. We
call such cycles S-cycles. Pontecorvi and Wollan [15] showed that the class of S-
cycles has the Erdős-Pósa property with f(k) = O(k log k), which improved the
quadratic bound from [10]. Bruhn et al. [3] proved that the class of all S-cycles
of length at least � has the Erdős-Pósa property with f(k, �) = O(�k log k). For
S = V (G), these results equal the Erdős-Pósa property for cycles and cycles of
length at least �, respectively.

Although, the Erdős-Pósa property does not hold for odd cycles, it is proved
in [9] that a half-integral version for the Erdős-Pósa property of odd S-cycles
holds. This generalizes a result of Reed [17], who proved the case S = V (G).

In this paper we continue the study of S-cycles by showing the following
theorem. We say a set of vertices X is an odd cycle cover of G if G−X is bipar-
tite. As mentioned above, the results in [11,13,16] show that linear connectivity
ensures that a graph has k vertex disjoint odd cycles or an odd cycle cover of
size 2k − 2. We show that a sufficiently connected graph has k vertex disjoint
odd S-cycles for any prescribed vertex set S of at least k vertices or has an odd
cycle cover of size 3k − 3.

Moreover, the bound of 3k − 3 is tight for any connectivity and this can be
seen as follows. Let G arise from a large complete bipartite graph with bipartition
(A,B) by adding the edges of a clique on 2k − 1 vertices to A and the edges of
a clique on k vertices to B. Let S be the set of k vertices in B containing the
k-clique. There do not exist k disjoint odd S-cycles, nor an odd cycle cover of
size 3k − 4 in G.

Theorem 1. For any integer k, any 50k-connected graph G, and any subset S
of at least k vertices of G, at least one of the following statements hold:

1. G contains k disjoint odd S-cycles.
2. There is a set X with |X| ≤ 3k − 3 such that G − X is bipartite.

In fact, we prove more detailed results than Theorem 1. These results in turn
imply the already known result that every 50k-connected graph G that fails to
have k disjoint odd cycles contains an odd cycle cover of size 2k − 2, which
corresponds to the case S = V (G) in [11,13,16].
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It is not difficult to see that there are arbitrarily highly connected graphs
that contain k disjoint odd cycles and an odd cycle cover of size less than 2k−2.
In this paper, we present an equivalent condition for 50k-connected graphs for
having k disjoint odd cycles and deduce the known Erdős-Pósa-type result from
this result.

The following decision problem is closely related to Theorem 1:

Given an integer k, a 50k-connected graph G and a set of vertices S.
Does G contain k disjoint odd S-cycles?

We present an algorithm running in O(f(k)nm)-time answering this question,
where n and m denote the number of vertices and edges of G, respectively.

Now, we turn our attention to linkage problems which appear to have a very
close relation to the results mentioned above. A graph is k-linked if for every
set of distinct vertices {s1, . . . , sk, t1, . . . , tk} there are disjoint paths P1, . . . , Pk

such that Pi connects si and ti. Moreover, a graph G is parity-k-linked if it is
k-linked and we can additionally specify whether the length of each Pi should
be odd or even for every 1 ≤ i ≤ k.

There are several results of the form if G is g1(k)-connected, then G is
k-linked. The best result is due to Thomas and Wollan [20] who proved that
g1(k) = 10k suffices. They even proved the following stronger result.

Theorem 2 ([20]). Every 2k-connected graph G with at least 5k|V (G)| edges is
k-linked.

Analogously, there are results of the form if G is g2(k)-connected and with-
out an odd cycle cover of size 4k − 4, then G is parity-k-linked. In particular,
Kawarabayashi and Reed [11] proved the following.

Theorem 3 ([11]). Every 50k-connected graph without an odd cycle cover of
size 4k − 4 is parity-k-linked.

The condition of having no small odd cycle cover is necessary and best pos-
sible – there are graphs of arbitrarily high connectivity and with an odd cycle
cover of size 4k − 4 that are not parity-k-linked. For example, consider a large
complete bipartite graph G with bipartition (A,B) where we add to A the edges
of a clique on 2k−1 vertices and we add to B the edges of a clique on 2k vertices
minus a perfect matching.

One can apply Theorem 3 almost directly to obtain that every 50k-connected
graph G without an odd cycle cover of size 4k −4 has k disjoint odd S-cycles for
any set S of at least k vertices. However, the bound on the size of the odd cycle
cover is not optimal. In this paper we prove a stronger version of Theorem 3,
reprove the Erdős-Pósa property for odd cycles for 50k-connected graphs, and
as the main result of this paper, we prove Theorem 1.

In addition, we prove several results on the way that may be of independent
interest.

The paper is organized as follows. In Sect. 2 we deal with the results concern-
ing the parity-k-linkage, in Sect. 3 we prove the results about the Erdős-Pósa
property for odd S-cycles, and in Sect. 4 we discuss algorithmic consequences of
our results.
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2 Highly Parity Linked Graphs

In the next theorem we explicitly characterize the obstruction for a 50k-connect-
ed graph and a set S = {s1, . . . , sk, t1, . . . , tk} of 2k distinct vertices for not
having k disjoint P1, . . . , Pk paths of prescribed length parity where Pi connects
si and ti.

Before we state the theorem, we introduce some definitions. A partition
(A,B) of G is partition of the vertex set into two sets A and B. For a par-
tition (A,B) of G, we denote by GA,B the graph G[A]∪G[B]. A partition (A,B)
of G is nice if there is a minimum odd cycle cover X of G for which (A\X,B\X)
is a bipartition of G − X such that a vertex of X is in A if and only if it has
more neighbors in B \X than in A\X. We say that a minimum odd cycle cover
X induces a nice partition (A,B) of G if (A \ X,B \ X) is a bipartition such
that a vertex of X is in A if and only if it has more neighbors in B \ X than in
A \ X. Note that every minimum odd cycle cover induces a nice partition.

Let (A,B) be nice partition of G and let S = {s1, . . . , sk, t1, . . . , tk} be a set
of 2k distinct vertices. A parity breaking matching for S (with respect to the
partition (A,B)) is a matching M such that M ⊆ E(GA,B) and there is no edge
rr′ ∈ M with r ∈ {si, ti} and r′ ∈ {sj , tj} for i �= j.

Theorem 4. Let k ∈ N. Let G be a 50k-connected graph and let S =
{s1, . . . , sk, t1, . . . , tk} be a set of 2k distinct vertices. Exactly one of the fol-
lowing two statements holds.

1. G contains k disjoint paths P1, . . . , Pk of any prescribed parity such that Pi

connects si and ti.
2. For all nice partitions of G, there is no parity breaking matching for S of size k.

There are plenty of consequences of Theorem 4. Firstly, it is easy to see that
it implies Theorem 5.

Theorem 5. Let k ∈ N and let G be a 50k-connected graph. Exactly one of the
following two statements holds.

1. G is k-parity linked.
2. There is a set {s1, . . . , sk, t1, . . . , tk} ⊂ V (G) such that for all nice partitions

of G, there is no parity breaking matching of size k.

Secondly, later we deduce Theorem 3. The third consequence (Corollary 1)
shows that the bound “4k − 4” in Theorem 3 can be strengthened to “2k − 2”
if {s1, . . . , sk, t1, . . . , tk} is an independent set. Note that both bounds “4k − 4”
and “2k − 2” are best possible, respectively. As a fourth consequence we prove
the Erdős-Pósa property for odd S-cycles (Theorem 1) in Sect. 3.

We say that G is parity-k-linked restricted to independent sets if for every
independent set of 2k vertices {s1, . . . , sk, t1, . . . , tk}, there are disjoint paths
P1, . . . , Pk such that Pi connects si and ti and we can choose whether the length
of Pi is odd or even.
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Corollary 1. Let k ∈ N and let G be a 50k-connected graph. At least one of the
following statements holds.

1. G is parity-k-linked restricted to independent sets.
2. There is a set X of 2k − 2 vertices such that G − X is bipartite.

Next, we mention two results needed in the proof of Theorem 4. The first
result is basically due to Mader and there is a slightly improved version in the
textbook of Diestel on page 13 [4].

Lemma 1 (Mader [14]). If G is a graph such that |E(G)|
|V (G)| ≥ 2k, then G contains

a (k + 1)-connected graph H such that |E(H)|
|V (H)| ≥ |E(G)|

|V (G)| − k.

Hence, if δ(G) ≥ 12k, then G contains a 2k-connected subgraph H such that
|E(H)|
|V (H)| ≥ 5k. Using Theorem 2, this implies in turn that the subgraph H is
k-linked.

Another result which is used in the proof of Theorem 4 is due to Geelen et al.
For a graph G and a set of vertices Z, a Z-path is a path P such that V (P ) ∩ Z
are exactly the end vertices of P .

Theorem 6 (Geelen et al. [8]). For any set Z of vertices of a graph G and
any positive integer � at least one of the following statements holds;

– there are � disjoint odd Z-paths or
– there is a vertex set X of order at most 2� − 2 such that G − X contains no

odd Z-path.

We proceed with the proof of Theorem 4 that leads to the several conse-
quences mentioned above.

Proof (Proof of Theorem 4). Suppose the first statement holds. Let (A,B) be
some nice partition of G. Let P1, . . . , Pk be disjoint paths where Pi is a si, ti-path
and we choose the parity of Pi to be even if exactly one vertex of {si, ti} belongs
to A and odd otherwise. Thus Pi contains at least one edge mi in E(GA,B).
Therefore, {m1, . . . ,mk} is a parity breaking matching for S of size k.

Next, suppose the second statement does not hold; that is, there is a nice
partition (A,B) of G with a parity breaking matching M = {m1, . . . ,mk}. If an
edge of M covers a vertex of {si, ti}, let mi = xiyi be this edge and choose xi, yi
such that si = xi or ti = yi. Let X be a minimum odd cycle cover of G that
induces the nice partition (A,B).

Suppose first that |X| < 8k. By the definition of a nice partition and the
fact that G is 50k-connected, we know that every vertex in a ∈ A has at
least 20k neighbors in B and so at least 12k in B \ X. The same holds vice
versa for the vertices in B. Therefore, we can find a set of 4k distinct vertices⋃k

i=1{s′
i, t

′
i, x

′
i, y

′
i} ⊂ V (G) \ (X ∪ ⋃k

i=1{si, ti, xi, yi}) such that z′ is a neighbor
of z for z ∈ ⋃k

i=1{si, ti, xi, yi} (symbolically written) and exactly one vertex of
the set {zi, z

′
i} belongs to A.
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Let G′ = G−(X∪⋃k
i=1{si, ti, xi, yi}). Thus G′ is 38k-connected and bipartite.

In addition, by Theorem 2, we obtain that G′ is 2k-linked.
For every i we proceed as follows. If our choice of the parity of Pi shall respect

the parity naturally given by the sides of the partition (A,B), then let P ′
i be a

path connecting s′
i and t′i in G′ and let Pi be the conjunction of sis

′
i, the path

P ′
i , and t′iti. Otherwise, let P ′

i be a path connecting s′
i and x′

i and P ′′
i be a path

connecting t′i and y′
i. If {si, ti} ∩ {xi, yi} = ∅, then let Pi be the conjunction of

sis
′
i, the path P ′

i , the path x′
ixiyiy

′
i, the path P ′′

i , and t′iti. If si = xi and ti �= yi,
then let Pi be the conjunction of siyiy

′
i, the path P ′′

i , and t′iti. If si �= xi and
ti = yi, then let Pi be the conjunction of sis

′
i, the path P ′

i , and x′
ixiti Finally, if

si = xi and ti = yi, then let Pi = siti.
As mentioned above, because G′ is 2k-linked, we can choose the correspond-

ing paths P ′
1, P

′′
1 ,. . ., P ′

k, P
′′
k in G′ to be pairwise disjoint and hence also P1,. . ., Pk

are pairwise disjoint.
It remains to show that if X has size at least 8k, then the first state-

ment holds. This part of the proof can basically be found in [11]. However,
we change some arguments which leads to a shorter proof. Let G′ = G −
{s1, . . . , sk, t1, . . . , tk} and let (A′, B′) be a partition of G′ such that |E(GA′,B′)|
is minimized. Note that δ(G′) ≥ 24k. By Lemma 1, there is a 4k-connected sub-
graph H of G′ with |E(H)| ≥ 10k|V (H)|. Moreover, by Theorem 2, the graph H
is 2k-linked. Let (AH , BH) be the (unique) bipartition of H such that AH ⊂ A′.

Theorem 6 guarantees a set Y with |Y | ≤ 6k − 6 that intersects all odd
AH -paths in G′ or 3k disjoint odd AH -paths in G′. Suppose that there is a set
Y of at most 6k − 6 vertices such that G′ − Y contains no odd AH -path. For
a contradiction, we assume that G′ − Y is not bipartite. Thus there is an odd
cycle C in G′ −Y . Since G′ is 48k-connected, G′ −Y is 2-connected. Hence there
are two disjoint AH -C-paths in G′. Note that the length of these paths could
be zero. Nevertheless, combining these two paths with one part of the cycle C
leads to an odd AH -path, which is a contradiction. This in turn implies that
S ∪ Y is an odd cycle cover of G of size at most 8k − 6, which is a contradiction
to the assumption |X| ≥ 8k. Thus Theorem 6 implies the existence of 3k odd
AH -paths.

Let P be one of these 3k odd AH -path. There is a natural partition of E(P ) into
H-paths. Because P is an odd AH -path, there is a subpath P ′ of P such that P ′

is an odd H-path and both endvertices of P ′ lie in the same side of the bipartition
of H or P ′ is an even H-path and exactly one endvertex of P ′ lies in AH .

Therefore, there is a set Q of 3k disjoint H-paths Q1, . . . , Q3k where the
length of Qi is odd if both endvertices lie in the same side of the bipartition of
H and even otherwise.

Since G is 50k-connected, there is a set of 2k disjoint paths P = {P1, . . . , P2k}
connecting {s1, . . . , sk, t1, . . . , tk} and H. Choose these paths such that they
intersect as few as possible paths from Q. Under this condition choose these
paths such that their edge intersection with Q is as large as possible. The lat-
ter condition implies that if Q ∈ Q has nonempty intersection with a path in
P – let z′, z′′ be the endvertices of Q, and let P be first path that intersects Q seen
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from the direction of z′ – then P follows the path Q up to z′ beside the case that
P is the only path intersecting Q, and P follows Q to z′′. Hence for every Q ∈ Q
that intersects a path in P, there is at least one path P ∈ P such that there is
vertex z that is an endvertex of P and Q. Therefore, the paths in P intersect at
most 2k paths in Q and hence there is a collection Q′ = {Q′

1, . . . , Q
′
k} ⊂ Q of k

paths such that Q ∩ P = ∅ for P ∈ P and Q ∈ Q′.
Since H is 2k-linked, we can find the desired disjoint paths of specified parity

connecting si and ti by using the paths P and then either directly linking the ends
in H of the paths belonging to si and ti or by using the path Q′

i in between. �
For a graph G, let a set of vertices X of G be a vertex cover of G if every

edge is incident to at least one vertex of X. Let the vertex cover number τ(G) of
G be the least number k such that G has a vertex cover X with |X| = k. Since
a vertex cover has to contain at least one vertex of every edge in a matching M ,
we have on the one hand |M | ≤ τ(G) for every matching M in G. On the other
hand, we observe the following.

If M is a maximal matching of G, then the vertices covered by
M form a vertex cover of G and hence τ(G) ≤ 2|M |. (1)

A graph G is τ -critical if τ(G − e) < τ(G) and τ(G − v) < τ(G) for every edge
e ∈ E(G) and every vertex v ∈ V (G). A result of Erdős and Gallai [6] says if G
is τ -critical, then τ(G) ≥ |V (G)|/2.

Having these definitions in mind we reprove Kawabarayashi’s and Reed’s
result and directly afterwards Corollary 1.

Proof (Proof of Theorem 3). Suppose that X is a minimum odd cycle cover and
|X| ≥ 4k − 3. We show by induction on k that G contains a parity breaking
matching for S. Let (A,B) be a nice partition induced by X. Note that X is a
minimum vertex cover of GA,B .

Suppose k = 1. Since |X| ≥ 1, the graph GA,B must contain an edge e and
e is a parity breaking matching.

Hence we may assume that k ≥ 2. Because 2k < 4k − 3, there is a vertex r
such that r ∈ X\{s1, . . . , sk, t1, . . . , tk}. Since X is minimum, r has a neighbor r′

in GA,B . If r′ /∈ {s1, . . . , sk, t1, . . . , tk}, we have τ(H−{s1, t1, r, r′}) ≥ 4(k−1)−3
and combining rr′ and the induction hypothesis, we conclude that G contains a
parity breaking matching M . Now we may assume that, by symmetry, r′ = s1.
However, using the same argument again, there is a parity breaking matching
for S. Applying Theorem 4 completes the proof. �
Proof (Proof of Corollary 1). Suppose that X is a minimum odd cycle cover and
|X| ≥ 2k−1. Fix some independent set S = {s1, . . . , sk, t1, . . . , tk} of 2k distinct
vertices. We show by induction on k that G contains a parity breaking matching
for S. Let (A,B) be a nice partition induced by X. Note that X is a minimum
vertex cover of GA,B .



346 F. Joos

In the following we show that there is a parity breaking matching of size k.
We proceed by induction on k. If k = 1, then GA,B contains an edge because
|X| ≥ 1 and this edge is a parity breaking matching of size 1.

Suppose GA,B − S contains no edges. This implies that GA,B is bipartite
with bipartition (V (GA,B) \ S, S). By König’s Theorem, the matching number
of GA,B equals the vertex cover number and hence GA,B contains a matching
M of size 2k − 1. Let N be the matching obtained from M by deleting one of
the matching edges sip and tiq if both exist in M . Therefore, |N | ≥ k and every
set of k edges of N is a parity breaking matching of size k.

In the following we may assume that GA,B−S contains edges. Suppose si is an
isolated vertex in GA,B . Let e = uv be an edge incident to ti if such an edge exists
otherwise let e be an edge in GA,B − S. By induction, τ(GA,B − {u, v, si, ti}) ≥
2k−3 and thus there exits a parity breaking matching M of size k−1. Combining
M and e leads to the desired matching.

Therefore, we may assume that every vertex in S has a neighbor in GA,B .
Induction can also be applied if |X| ≥ 2k by deleting s1, t1, and a neighbor of
s1 from GA,B . Thus we may assume |X| = 2k − 1.

Let G′
A,B be the induced subgraph of GA,B which is obtained from GA,B

by deleting all isolated vertices from GA,B . We may assume that the τ(G′
A,B −

e) < τ(G′
A,B) for every e ∈ E(G′

A,B) and τ(G′
A,B − r) < τ(G′

A,B) for every
r ∈ V (G′

A,B) \ S. Moreover, if τ(G′
A,B − si) = τ(G′

A,B), then let r be a neighbor
of ti and the statement follows by induction because τ(G′

A,B − {si, ti, r}) ≥
τ(G′

A,B) − 2. This implies that G′
A,B is a τ -critical graph.

Since S is an independent set, the complement of an independent set is
a vertex cover, and |X| = 2k − 1, we conclude that τ(G′

A,B) < n(G′
A,B)/2.

However, this contradicts a theorem of Erdős and Gallai mentioned before. �

3 Odd Cycles Through Prescribed Vertices

In this section we present several results concerning the Erdős-Pósa property
of odd S-cycles in highly connected graphs. This extends the results concerning
the Erdős-Pósa property of odd cycles in highly connected graphs. Furthermore,
assuming a slightly higher connectivity, we show how known results follow easily
from Theorem 4.

Lemma 2. Let k ∈ N and let G be a 50k-connected graph. Let S be a set of k
vertices. Exactly one of the following statements holds.

1. G contains k disjoint odd S-cycles.
2. For all nice partitions (A,B) of G, there is no matching M of size k in GA,B

where an edge in M covers at most one vertex of S.

In addition, if one nice partition of G has a matching as in 2, then all nice
partitions have such a matching.
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Proof. Suppose first that G contains k disjoint S-cycles and let (A,B) be a
partition of G. Since every odd cycle contains at least one edge of E(GA,B) and
by picking exactly one of these edges from every odd S-cycle, we get a matching
of size k in GA,B where one edge does not cover two vertices of S, which implies
that the second statement does not hold.

Next, we suppose that the second statement does not hold and let (A,B) be
a nice partition such that there is a matching M of size k in GA,B and one edge
in M does not cover two vertices of S.

Let T = {t1, . . . , tk} be a set of vertices distinct from S and distinct from the
vertices covered by M . By Theorem 4, there are disjoint paths P1, . . . , Pk with
prescribed parity such that Pi connects si and ti because M is a parity breaking
matching for {s1, . . . , sk, t1, . . . , tk}.

Let (Ã, B̃) be any partition of G. By suitably choosing the parity of Pi, every
path uses at least one edge in GÃ,B̃ and hence there is a matching in GÃ,B̃ of
size at least k such that each edge covers at most one vertex of S.

For every si, add to G a vertex s′
i such that N(si) = N(s′

i) and denote this
new graph by G′. Note that G′ is 50k-connected. Let (A′, B′) be a nice partition
of G′. As mentioned above, in the subgraph G of G′ for every partition (Ã, B̃),
the graph GÃ,B̃ contains a matching of size k such that each edge covers at most
one vertex of S, in particular, this holds for the partition induced by (A′, B′).
Let M be such a matching of size k. Note that M does not cover a vertex of the
set {s′

1, . . . , s
′
k}. Thus M is a parity breaking matching for S ∪ {s′

1, . . . , s
′
k} in

G′. By Theorem 4, there are disjoint paths P ′
1, . . . , P

′
k of odd length where P ′

i

joins si and s′
i.

By identifying si and s′
i, this in turn implies the existence of k disjoint odd

S-cycles C1, . . . , Ck in G where Ci contains si. �
After having proved Lemma 2, it is not difficult to prove the Erdős-Pósa

property of odd S-cycles in highly connected graphs.

Theorem 7. Let k ∈ N and let G be a 50k-connected graph. Let S be a set of k
vertices. At least one of the following statements holds.

1. G contains k disjoint odd S-cycles.
2. There is a set X with |X| = 2k − 2 + τ(G[S]) such that G − X is bipartite.

Proof. Let X be a minimum odd cycle cover. We may assume that |X| ≥ 2k−1+
τ(G[S]). Let (A,B) be nice partition of G and let Y be a minimum vertex cover of
S. Since X is a minimum vertex cover of GA,B , we conclude τ(GA,B−Y ) ≥ 2k−1.
Using (1), this in turn implies the existence of a matching M of size k in GA,B−Y
such that no vertex of M covers more than one vertex of S. Using Lemma 2,
this implies the existence of k disjoint odd S-cycles in G. �

Note that τ(G[S]) ≤ k − 1 and thus 2k − 2 + τ(G[S]) ≤ 3k − 3. Moreover,
the bound “2k − 2 + τ(G[S])” is sharp for every possible value of τ(G[S]) no
matter how large the connectivity of G is. To see this, let G arise from a large
complete bipartite graph with bipartition (A,B) by adding the edges of a clique
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on 2k − 1 vertices to A and the edges of a clique on τ vertices to B for some
1 ≤ τ ≤ k. Let S be a set of k vertices in B containing the τ -clique. Hence
τ(G[S]) = τ − 1, there do not exist k disjoint odd S-cycles, and there is no set
X of 2k − 3 + τ(G[S]) vertices such that G − X is bipartite.

In Theorem 7 we require that |S| = k. However, it is not difficult to extend
Theorem 7 to arbitrary subsets of V (G) as follows.

On the one hand, if |S| < k, then G does not contain k disjoint odd S-cycles
and one can remove (the small set) S from G to obtain a graph without an
odd S-cycle. Of course, one cannot hope for a small set X such that G − X is
bipartite because G could simply be a large clique.

On the other hand if |S| ≥ k, then let S′ ⊂ S such that |S′| = k. In the
case that G does not contain k disjoint odd S′-cycles, Theorem 7 implies the
existence of a set X of 3k−3 vertices such that G−X is bipartite, in particular,
G − X does not contain odd S-cycles. In addition, this proves Theorem 1.

We complete the paper with two results concerning the case S = V (G).

Corollary 2. Let k ∈ N and let G be a 50k-connected graph. Exactly one of the
following statements holds.

1. G contains k disjoint odd cycles.
2. For every nice partition (A,B), the graph GA,B does not contain a matching

of size k.

Proof. If the first statement holds, then the second does clearly not hold.
Suppose that the second statement does not hold. We may assume that

G contains an independent set of cardinality k, otherwise there are k disjoint
triangles in G. This can be seen as follows: Let x be any vertex in G. The
neighborhood of x contains an edge. Combining this edge with x leads to a
triangle. Repeating this argument k times, leads to the first statement. Thus G
contains an independent set S of cardinality k and we apply Lemma 2 to obtain
k disjoint odd (S-)cycles in G. �

The following corollary is already proven by Thomassen [21] and Rauten-
bach and Reed [16] with a higher connectivity bound. Later Kawarabayashi and
Reed [11] and Kawarabayashi and Wollan [13] improved this bound to 24k and
31
2 k, respectively.

Corollary 3. Let k ∈ N and let G be a 50k-connected graph. At least one of the
following statements holds.

1. G contains k disjoint odd cycles.
2. G contains a set X of 2k − 2 vertices such that G − X is bipartite.

Proof. Suppose the second statement does not hold. Let (A,B) a nice partition
of G induced by a minimum odd cycle cover X. Note that X is a minimum
vertex cover of GA,B and since |X| ≥ 2k − 1 by our assumption and by applying
(1), the graph GA,B contains a matching of size k. Because this holds for every
minimum odd cycle cover and so for every nice partition of G, the statement
follows by the previous corollary. �
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Clearly, assuming 50k-connectivity in our results in not the best function
in terms of k one can hope for. However, it is essentially best possible in that
sense as one can easily construct graphs that show that linear connectivity in
k is necessary. It would be interesting to know which connectivity is needed to
ensure that our results hold. It even seems possible that the approach via a
parity-k-linkage theorem cannot lead to the best connectivity bound.

4 Algorithmic Consequences

The problem of finding k disjoint odd cycles in a graph is known to be NP-
complete if k is part of the input. Moreover, it is fixed parameter tractable (an
algorithm is announced in [12]).

We also aim for an FPT-algorithm parameterized in k. Let us consider the
following problem:

Given an integer k, a 50k-connected graph G and a set of vertices S.
Does G contain k disjoint odd S-cycles? (2)

We briefly describe how our results lead to an algorithm for problem (2). Triv-
ially, we assume that |S| ≥ k. In [18] Reed, Smith and Vetta present an algorithm
for deciding whether a graph has an odd cycle cover of size at most p that runs in
O(g(p)mn)-time for some exponential function g. In addition, if this is the case,
the algorithm computes such an odd cycle cover. In order to solve our problem,
we use this algorithm to decide whether G has an odd cycle cover of size at most
3k −3. If this is not the case, then by Theorem 1 the graph G has k disjoint odd
S-cycles. Suppose now that G has an odd cycles cover of size at most 3k − 3.
It is straightforward to construct a nice partition (A,B) of G. Next we check
whether GA,B has a matching M of size k and a set S′ ⊆ S such that |S′| = k
and an edge of M covers at most one vertex of S′. This in turn answers (2) by
applying Lemma 2. Clearly, this algorithm runs in O(f(k)nm)-time.
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Combinatorica 27, 135–145 (2007)

2. Bondy, J.A., Lovász, L.: Cycles through specified vertices of a graph. Combinator-
ica 1, 117–140 (1981)

3. Bruhn, H., Joos, F., Schaudt, O.: Long cycles through prescribed vertices have the
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Abstract. We present a hereditary class of graphs of unbounded clique-
width which is well-quasi-ordered by the induced subgraph relation. This
result provides the negative answer to a question asked by Daligault,
Rao and Thomassé in [3].

1 Introduction

Well-quasi-ordering (wqo) is a highly desirable property and frequently discov-
ered concept in mathematics and theoretical computer science [6,10]. One of
the most remarkable recent results in this area is the proof of Wagner’s con-
jecture stating that the set of all finite graphs is well-quasi-ordered by the
minor relation [13]. This is, however, not the case for the induced subgraph
relation, since the set of cycles {Cn|n ≥ 3} forms an infinite antichain with
respect to this relation. On the other hand, the induced subgraph relation may
become a well-quasi-order when restricted to graphs in particular classes, such
as cographs [4] or k-letter graphs [12]. It is interesting to observe that in both
examples we deal with graphs of bounded clique-width, which is another prop-
erty of great importance in mathematics and computer science. Moreover, the
same is true for all available examples of hereditary graph classes which are
well-quasi-ordered by the induced subgraph relation (see e.g. [9]). This raises
an interesting question whether the clique-width is always bounded for graphs
in well-quasi-ordered hereditary classes. This question was formally stated as an
open problem (Problem 6) by Daligault, Rao and Thomassé in [3]. In the present
paper, we answer former question negatively by exhibiting a hereditary class of
graphs of unbounded clique-width which is well-quasi-ordered by the induced
subgraph relation.

Remark. The proposed result does not resolve Conjecture 5 of [3] assert-
ing that 2-well-quasi-orderability of a hereditary class implies its bounded
cliquewidth. Indeed, being 2-well-quasi-ordered is a stronger (more constrained)
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property than just being well-quasi-ordered. Therefore, the existence of a well-
quasi-ordered class of unbounded cliquewidth says nothing about existence of
such a 2-well-quasi-ordered class. In fact, we believe that the class considered in
this paper is not 2-well-quasi-ordered.

Our result shows that it is generally non-trivial to determine whether a given
problem definable in Monadic Second Order (mso) logic is polynomially solvable
on a wqo class, since unboundedness of clique-width does not allow a straight-
forward application of Courcelle et al.’s theorem [2]. This makes the wqo classes
an interesting object to study from the algorithmic perspective.

Graphs in the class introduced in this paper are dense (in particular, they
are P7-free). The density is a necessary condition, because an earlier result [1]
shows that for sparse graph classes (those where a large biclique is forbidden
as a subgraph) well quasi-orderability by induced subgraphs imply bounded
treewidth (and hence bounded clique-width). We believe that the result of [1] can
be strengthened by showing that well quasi-orderability by induced subgraphs
in sparse classes implies bounded pathwidth (and hence linear clique-width [7]).
Our result proved in the present paper shows a stark contrast between dense
and sparse graphs in this context.

The rest of the paper is structured as follows. In Sect. 2 we define the class
of graphs studied in this paper and state the main result. The unboundedness
of clique-width and well-quasi-orderability by induced subgraphs is proved in
Sects. 3 and 4, respectively. We use standard graph-theoretic notation as e.g. in
[5]. The notions of clique-width and well-quasi-ordering are introduced in respec-
tive sections where they are actually used.

2 The Main Result

In this section, we define the class D, which is the main object of the paper, and
state the main result.

Let P be a path with vertex set {1, . . . , n} with two vertices i and j being
adjacent if and only if |i − j| = 1. For vertex i, the largest 2k that divides i
is called the power of i and is denoted by q(i). For example, q(5) = 1, q(6) =
2, q(8) = 8, q(12) = 4. Add edges to P that connect i and j whenever q(i) = q(j).
We denote the graph obtained in this way by Dn. Figure 1 illustrates graph D16.

Clearly, the edges E(Dn) \ E(P ) form a set of disjoint cliques and we call
them power cliques. If a power clique Q contains a vertex i with q(i) = 2k we say
that Q corresponds to 2k. We call P the body of Dn, the edges of E(P ) the path
edges, and the edges of E(Dn) \ E(P ) the clique edges. The class D is the set of
all graphs Dn and all their induced subgraphs. In what follows we prove that

– clique-width of graphs in D is unbounded (Sect. 3),
– graphs in D are well-quasi-ordered by the induced subgraph relation (Sect. 4).

These two facts imply the following conclusion, which is the main result of the
paper.

Theorem 1. Within the family of hereditary graph classes, there exist classes
of unbounded clique-width which are well-quasi-ordered by the induced subgraph
relation.
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Fig. 1. Graph D16. To avoid shading the picture with many edges, cliques are repre-
sented as rectangular boxes.

3 Clique-Width is Unbounded in D
The clique-width of a graph G, denoted cwd(G), is the minimum number of
labels needed to construct the graph by means of the four graph operations:
creation of a new vertex, disjoint union of two labeled graphs, connecting vertices
with specified labels i and j, and renaming label i to label j. Every graph G
can be constructed by means of these four operations, and the process of the
construction can be described either by an algebraic expression or by a rooted
binary tree, whose leaves correspond to the vertices of G, the root corresponds
to G and the internal nodes correspond to the union operations.

Given a graph G and a subset U ⊂ V (G), we denote by U the set V (G)−U .
We say that two vertices x, y ∈ U are U -similar if N(x) ∩ U = N(y) ∩ U , i.e. if
x and y have the same neighbourhood outside of U . Clearly, the U -similarity is
an equivalence relation and we denote the number of similarity classes of U by
μG(U). Also, we denote

μ(G) = min
1
3n≤|U |≤ 2

3n
μG(U),

where n = |V (G)|. Our proof of the main result of this section is based on the
following lemma.

Lemma 1. For any graph G, μ(G) ≤ cwd(G).

Proof. Let T be an optimal decomposition tree, t a node of T and Ut the set
of vertices of G that are leaves of the subtree of T rooted at t. It is known
(see e.g. [11]) that cwd(G) ≥ μG(Ut) for any node t of T . According to a well
known folklore result, the binary tree T has a node t such that 1

3 |V (G)| ≤ |Ut| ≤
2
3 |V (G)|, in which case μG(Ut) ≥ μ(G). Hence the lemma. ��

Let U ⊆ V (Dn), and let P be the body of Dn. We denote by PU the subgraph
of P induced by U . In other words, PU is obtained from Dn[U ] by removing the
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clique edges. Since P is a path, PU is a graph every connected component of
which is a path.

Lemma 2. If PU has c + 1 connected components, then μDn
(U) ≥ c/2.

Proof. In the i-th connected component of PU , i ≤ c, we choose the last vertex
(listed along the path P ) and denote it by ui. The next vertex of P , denoted ui,
belongs to U . This creates a matching of size c with edges (ui, ui). Note that none
of (ui, uj) is a path edge for i < j. Among the chosen vertices of U at least half
have the same parity. Their respective matched vertices of U have the opposite
parity. Since the clique edges connect only the vertices of the same parity, we
conclude that at least c/2 vertices of U have pairwise different neighbourhoods
in U , i.e. μDn

(U) ≥ c/2. ��
Note that if PU has c connected components, then PU has at least c − 1

connected components. Therefore, in light of Lemma 2, it remains to consider
the case where both PU and PU have a limited number of connected components.
Taking into account the definition of μ(G) and Lemma 1 we can assume that both
U and U are ‘large’ (between one third and two third of |V (G)|), and hence each
of PU and PU has a ‘large’ connected component. In order to address this case
we use the following lemma which states that a large number of power cliques
intersecting both U and U implies a large value of μDn

(U).

Lemma 3. If there exist c different power cliques Q1, . . . , Qc each of which

(1) corresponds to a power of 2 greater than 1 and
(2) intersects both U and U

then μDn
(U) ≥ c.

Proof. Let ui and ui be some vertices in Qi, which belong to U and U , respec-
tively. Since all the vertices in M = {u1, u1, . . . , uc, uc} are even and two even
vertices are adjacent in Dn if and only if they belong to the same power clique,
M induces a matching in Dn with edges (ui, ui), i = 1, . . . , c. This implies that
u1, . . . , uc have pairwise different neighbourhoods in U , that is μDn

(U) ≥ c. ��
The only remaining ingredient to prove the main result of this section is the

following lemma.

Lemma 4. Let c be a constant and P ′ a subpath of P of length at least 2c+1.
Then P ′ intersects each of the power cliques corresponding to 21, . . . , 2c.

Proof. The statement easily follows from the fact that for a fixed k vertices v
with q(v) = 2k are of the form v = 2k(2p + 1). That is, they occur in P with
period 2k+1. ��

Now we are ready to prove the main result of this section.

Theorem 2. Letnand c benatural numbers such thatn ≥ 3((2c+1)(2c+1−1)+1).
Then cwd(Dn) ≥ c and hence the clique-width of graphs in D is unbounded.



Well-quasi-ordering Does Not Imply Bounded Clique-width 355

Proof. Let U be an arbitrary subset of vertices of Dn, such that n
3 ≤ |U | ≤ 2n

3 .
Note that the choice of U implies that the cardinalities of both U and U are at
least n

3 ≥ (2c + 1)(2c+1 − 1) + 1.
If PU has at least 2c+1 connected components, then by Lemma 2 μDn

(U) ≥ c.
Otherwise PU has less than 2c + 1 connected components and PU has less than
2c+2 connected components. By the pigeonhole principle, both graphs have con-
nected components of size at least 2c+1. Clearly, these connected components are
disjoint subpaths of P . By Lemma 4, the power cliques corresponding to 21, . . . , 2c

intersect both U and U , and hence, by Lemma 3, μDn
(U) ≥ c.

Since U has been chosen arbitrarily, we conclude that μ(Dn) ≥ c, and there-
fore, by Lemma 1, cwd(Dn) ≥ c, as required. ��

4 D is WQO by Induced Subgraphs

A binary relation ≤ on a set W is a quasi-order (also known as preorder) if it is
reflexive and transitive. Two elements x, y ∈ W are said to be comparable with
respect to ≤ if either x ≤ y or y ≤ x. Otherwise, x and y are incomparable. A set
of pairwise comparable elements is called a chain and a set of pairwise incompa-
rable elements an antichain. A quasi-order (W,≤) is a well-quasi-order (wqo) if
it contains neither infinite strictly decreasing chains nor infinite antichains.

In this section, we show that graphs in D are well-quasi-ordered by the
induced subgraph relation. In the proof we apply the celebrated Higman’s lemma
[8] which can be stated as follows.

For an arbitrary set M , let M∗ be the set of all finite sequences of ele-
ments of M . Any quasi-order ≤ on M defines a quasi-order 
 on M∗ as follows:
(a1, . . . , am) 
 (b1, . . . , bn) if and only if there is an order-preserving injection
f : {a1, . . . , am} → {b1, . . . , bn} with ai ≤ f(ai) for each i = 1, . . . ,m.

Lemma 5 [8]. If (M,≤) is a wqo, then (M∗,
) is a wqo.

Obviously, the induced subgraph relation contains no infinite strictly decreas-
ing chains. Therefore, to prove that this relation is a wqo on D we need to show
that for each infinite sequence G = G1, G2 . . . of graphs in D there are i, j such
that Gi is an induced subgraph of Gj .

We recall that V (Dn) is the set of integers 1, 2, . . . , n listed along the body
of Dn and any graph in D is an induced subgraph of Dn with some n. Among
all possible sets of integers inducing a graph (isomorphic to) G ∈ D we pick one
(arbitrarily) and identify V (G) with this set.

Any set of consecutive integers will be called an interval and any subgraph
of Dn induced by an interval will be called a factor. The number of elements in
an interval inducing a factor is called the length of the factor. If a graph G ∈ D
is not a factor, its vertex set can be split into maximal intervals and we call the
subgraphs of G induced by these intervals factor-components of G. The set of all
factor-components of G will be denoted F(G).

Lemma 6. If G contains graphs with arbitrarily long factor-components, then
G is not an antichain.
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Proof. Pick an arbitrary Gi and let n be the smallest number such that Gi is an
induced subgraph of Dn. By our assumption, there is Gj with factor-component
F of length at least 5n. Let us show that Dn is an induced subgraph of Gj . By
the transitivity of the induced subgraph relation, this will imply that Gi is an
induced subgraph of Gj .

Let 2k be the smallest power of 2 larger than n. Clearly, 2k+1 ≤ 4n. Hence,
by Lemma 4, there is a vertex y among the first 4n vertices of F with q(y) = 2k.
Let F ′ be the factor induced by the vertices of F starting at y + 1. Since F is of
length at least 5n and y is among the first 4n vertices of F , the length of F ′ is at
least n. Thus we can define an injective function f : V (Dn) → V (F ′) as follows:
f(z) = y+z for 1 ≤ z ≤ n. We claim that f is an induced subgraph isomorphism
from Dn to a subgraph of Gj . Clearly, f(z+1) = f(z)+1 for 1 ≤ z < n, hence it
remains to verify that adjacencies and non-adjacencies are preserved for vertices
z1, z2 of Dn such that z2 > z1 + 1. Clearly, in this case z1 and z2 are adjacent if
and only if q(z1) = q(z2). Moreover, since f(z2) > f(z1)+1, f(z2) and f(z1) are
adjacent if and only if q(f(z1)) = q(f(z2)). Below we prove that q(f(z)) = q(z)
for 1 ≤ z ≤ n and hence q(z1) = q(z2) if and only if q(f(z1)) = q(f(z2)),
implying the lemma.

Indeed, f(z) = y + z = 2kp + 2k1p1, where 2k1 = q(z) and p, p1 are odd
numbers. Since 2k1 ≤ n < 2k, k1 < k and hence y + z can be written as
2k1(2k−k1p + p1). Since k > k1, 2k−k1 is even and hence 2k−k1p + p1 is odd.
Consequently, q(y + z) = 2k1 , as required. ��

From now on, we assume the length of factor-components of graphs in G is
bounded by some constant c = c(G). In what follows we prove that in this case
G is not an antichain as well.

Let F be a factor. We say that a vertex u of F is maximal if q(u) ≥ q(v) for
each vertex v of F different from u.

Lemma 7. Every factor F of Dn contains precisely one maximal vertex.

Proof. Suppose that F contains two maximal vertices 2kp and 2k(p+r) for some
odd number p and even number r ≥ 2. Then F also contains the vertex 2k(p+1).
Clearly p+1 is an even number and hence q(2k(p+1)) ≥ 2k+1, which contradicts
the maximality of 2k. ��

In light of Lemma7, we denote the unique maximal vertex of F by m(F ).
Also, let s(F ) be the smallest vertex of F .

Now we define two equivalence relations on the set of factor graphs as follows.
We say that two factors F1 and F2 are

– t-equivalent if they are of the same length and m(F1)−s(F1) = m(F2)−s(F2),
– �-equivalent if q(m(F1)) = q(m(F2)).

We denote by Li the �-equivalence class such that q(m(F )) = 2i for every factor
F in this class. We also order the t-equivalence classes (arbitrarily) and denote
by Tj the j-th class in this order.
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Lemma 8. Let F be a factor of length at most c. Let v be a vertex of F different
from its maximal vertex m = m(F ). Then q(v) = q(|m − v|) and, in particular,
q(v) < c.

Proof. We can assume without loss of generality that v > m. Let k1, p1, k2, p2 be
such that m = 2k1p1 and v−m = 2k2p2, with p1, p2 being odd numbers. Observe
that k2 < k1. Indeed, otherwise v = 2k1p1 + 2k2p2 = 2k1(p1 + 2k2−k1p2), where
p1+2k2−k1p2 is a natural number. Therefore, q(v) ≥ 2k1 = q(m) in contradiction
either to the maximality of m or to Lemma 7.

Consequently, v = 2k1p1 +2k2p2 = 2k2(2k1−k2p1 +p2), where 2k1−k2p1 +p2 is
an odd number because of 2k1−k2p1 being even. Hence, q(v) = 2k2 = q(v − m).

Finally, since the length of F is at most c, we conclude that v − m < c, and
therefore q(v) = q(v − m) < c. ��
Corollary 1. Let F be a factor of length at most c. Let m be a vertex of F with
q(m) ≥ c. Then m is the maximal vertex of F .

Corollary 2. Let F1, F2 be two t-equivalent factors. Then there exists an iso-
morphism f from F1 to F2 such that:

(a) f(m(F1)) = m(F2);
(b) q(f(v)) = q(v) for all v ∈ V (F1) except possibly for m(F1).

Proof. We claim that the function f that maps the i-th vertex of factor F1

(starting from the smallest) to the i-th vertex of factor F2 is the desired iso-
morphism. Indeed, property (a) follows from the condition that the factors are
t-equivalent. Now property (a) together with Lemma8 implies property (b).
Finally, since adjacency between vertices in a factor is completely determined
by their adjacency in the body and by their powers, we conclude that f is, in
fact, isomorphism. ��

For a graph G ∈ D, we denote by Gi,j the set of factor-components of G
in Li ∩ Tj , and define a binary relation ≤ on graphs of D as follows: G ≤ H if
and only if |Gi,j | ≤ |Hi,j | for all i and j (clearly in this definition one can be
restricted to non-empty sets Gi,j).

Finally, for a constant c = c(G) we slightly modify the definition of ≤ to ≤c

as follows. We say that a mapping h : N → N is c-preserving if it is injective and
h(i) = i for all i ≤ �log c. Then G ≤c H if and only if there is a c-preserving
mapping h such that |Gi,j | ≤ |Hh(i),j | for all i and j.

The importance of the binary relation ≤c is due to the following lemma.

Lemma 9. Suppose the length of factor-components of G and H is bounded by
c and G ≤c H, then G is an induced subgraph of H.

Proof. We say that a factor F is low-powered if F ∈ Li, for some i ≤ �log c, i.e.
q(m(F )) ≤ c.

It can be easily checked that the definition of ≤c implies the existence of an
injective function φ : F(G) → F(H) that possesses the following properties:
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(1) φ maps each of the factors in F(G) to a t-equivalent factor in F(H);
(2) F ∈ F(G) is a low-powered factor if and only if φ(F ) is;
(3) φ preserves power of the maximal vertex for each of the low-powered factors,

i.e. q(m(F )) = q(m(φ(F ))) for every low-powered factor F ∈ F(G);
(4) for any two factors F1, F2 ∈ F(G), q(m(F1)) = q(m(F2)) if and only if

q(m(φ(F1))) = q(m(φ(F2))).

To show that G is an induced subgraph of H we define a witnessing function
that maps vertices of a factor F ∈ F(G) to vertices of φ(F ) ∈ F(H) according to
an isomorphism described in Corollary 2. This mapping guarantees that a factor
F of G is isomorphic to the factor φ(F ) of H. Therefore it remains to check that
adjacency relation between vertices in different factors is preserved under the
defined mapping.

Note that adjacency between two vertices in different factors is determined
entirely by powers of these vertices. Moreover, Corollary 2 and property (3) of φ
imply that our mapping preserves powers of all vertices except possibly maximal
vertices of power more that c. Therefore in order to complete the proof we need
only to make sure that in graph G a maximal vertex m of a factor F with
q(m) > c is adjacent to a vertex v in a factor different from F if and only if the
corresponding images of m and v are adjacent in H.

Taking into account Corollary 1 we derive that a maximal vertex with q(m) >
c is adjacent to a vertex v in a different factor if and only if v is maximal and
q(m) = q(v). Now the desired conclusion follows from Corollary 2 and properties
(2) and (4) of function φ. ��
Lemma 10. The set of graphs in D in which factor-components have size at
most c is well-quasi-ordered by the ≤c relation.

Proof. We associate with each graph G ∈ D containing no factor-component of
size larger than c a matrix MG = m(i, j) with m(i, j) = |Gi,j |.

Each row of this matrix corresponds to an �-equivalence class and we delete
any row corresponding to Li with i > �log c which is empty (contains only 0s).
This leaves a finite amount of rows (since G is finite).

Each column of MG corresponds to a t-equivalence class and we delete all
columns corresponding to t-equivalence classes containing factors of size larger
than c (none of these classes has a factor-component of G). This leaves precisely(
c+1
2

)
columns in MG.

We define the relation 
c on the set M of matrices constructed in this way
as follows. For M1,M2 ∈ M we say that M1 
c M2 if and only if there is a
c-preserving mapping β such that m1(i, j) ≤ m2(β(i), j) for all i and j.

It is not difficult to see that if MG1 
c MG2 , then G1 ≤c G2. Therefore,
if 
c is a well-quasi-order, then ≤c is a well-quasi-order too. The well-quasi-
orderability of matrices follows by repeated applications of Higman’s lemma.
First, we split each matrix M ∈ M into two sub-matrices M ′ and M ′′ so that
M ′ contains the first �log c rows and M ′′ contains the remaining rows. Let
M′ = {M ′|M ∈ M} and M = {M ′′|M ∈ M}
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To see that the set of matrices M′ is wqo we apply Higman’s lemma twice.
First, the set of rows is wqo since each of them is a finite word over the alphabet
of non-negative integers (which is wqo by the ordinary arithmetic ≤ relation).
Second, the set of matrices is wqo since each of them is a finite word over the
alphabet of rows. Similarly, the set of matrices M′′ is wqo.

Note that in both applications of Lemma5 to M′ and in the first application
to M′′, we considered sets of sequences of the same length. Hence, in this, case,
Higman’s lemma in fact implies the existence of two sequences one of them is
coordinate-wise smaller than the other, exactly what we need in these cases.

Finally, the set of matrices M is wqo since each of them is a word of two
letters over the alphabet M′ ∪ M′′ which is wqo. ��

Combining Lemmas 6 and 10, we obtain the main result of this section.

Theorem 3. D is wqo by the induced subgraph relation.
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Abstract. We say that a digraph H can be covered by k paths if there
exist k directed paths p1, p2, . . . , pk such that H = ∪k

i=1pi. In this work
we devise parameterized algorithms for embedding problems on digraphs
in the setting in which the host digraph G has directed pathwidth w
and the pattern digraph H can be covered by k paths. More precisely,
we show that the subgraph isomorphism, subgraph homeomorphism,
and two other related embedding problems can each be solved in time
2O(k·w log k·w) · |H|O(k·w) · |G|O(k·w). We note in particular that for con-
stant values of w and k, our algorithm runs in polynomial time with
respect to the size of the pattern digraph H. Therefore for the classes of
digraphs considered in this work our results yield an exponential speedup
with respect to the best general algorithm for the subgraph isomorphism
problem which runs in time O∗(2|H| · |G|tw(H)) (where tw(H) is the undi-
rected treewidth of H), and an exponential speedup with respect to the
best general algorithm for the subgraph homeomorphism problem which
runs in time |G|O(|H|).

Keywords: Directed pathwidth · Subgraph isomorphism · Subgraph
homeomorphism · Slice languages

1 Introduction

The problem of determining whether a structure can be embedded into another
is ubiquitous in mathematics and computer science. In the context of graph the-
ory, two notoriously hard variants of embedding problems have been extensively
studied. These are the subgraph isomorphism problem [1,9] and the subgraph
homeomorphism problem [10,12,14,15]. In this work we provide new parame-
terized algorithms for embedding problems on digraphs. Our parameters are the
directed pathwidth w of the host digraph G and the minimum number k of paths
necessary to cover all edges and vertices of the pattern digraph H. A distinctive
feature of our algorithms is that they work in polynomial time with respect to
the number of vertices of the pattern digraph H whenever the two parameters
w and k are held constant.

The notion of directed pathwidth is one of the earliest examples of directed
width measure. According to Barát [3] this concept was introduced by Reed,
c© Springer-Verlag Berlin Heidelberg 2016
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Robertson and Seymour in the mid-nineties with the aim of developing an algo-
rithmic metatheory suited for digraphs. There are several features that make the
directed pathwidth of a digraph occupy a special place among directed width
measures. First, this notion can be defined very naturally, via a slightly modifica-
tion of the traditional notion of undirected pathwidth. Second, directed pathwidth
is a generalization of its undirected counterpart. Indeed, if G is an undirected
graph, and G′ is obtained from G by replacing each of its edges by a pair of
directed edges oriented in opposite directions, then the directed pathwidth of
G′ coincides with the undirected pathwidth of G [3]. Third, this generalization
is strict. Digraphs of constant directed pathwidth may already have simultane-
ously unbounded undirected treewidth and clique-width. As a standard example
for this fact, consider the n×n grid in which all horizontal edges are directed from
left to right and all vertical edges are oriented upwards. This grid has directed
pathwidth 0, since any DAG has directed pathwidth 0. Nevertheless this grid has
undirected treewidth Ω(n) and clique-width Ω(n). This fact implies in particu-
lar that powerful algorithmic metatheorems such as those introduced in [2,4,5]
cannot be applied to classes of digraphs of constant directed pathwidth. Fourth,
many interesting combinatorial problems have been shown to be solvable in
polynomial time on digraphs of constant directed pathwidth [8]. Fifth, directed
pathwidth asymptotically lower bounds other important directed width mea-
sures such as, cycle rank [13], DAG-depth ddp(G) [11] and K-width Kw(G) [11].
Finally, given any constant w, one can determine in polynomial time whether
a digraph G has directed pathwidth at most w, and if this is the case, one can
construct a directed path decomposition in polynomial time [16].

The goal of this work is to extend the algorithmic theory of digraphs of
constant pathwidth by addressing embedding problems in which the pattern
digraph H is given in the input. We say that a digraph H = (V,E) can be
covered by k paths if there exist k directed paths p1, p2, . . . , pk in H such that
pi = (Vpi

, Epi
), V = ∪k

i=1Vi and E = ∪k
i=1Ei. Our main result states that

for each constants w and k, the subgraph isomorphism problem, the subgraph
homeomorphism problem, and two other related embedding problems can be
solved in polynomial time whenever the host digraph G has directed pathwidth
w and the pattern digraph H can be covered by k paths.

Theorem 1 (Main Theorem). Let G be a digraph of directed pathwidth w
and H be a digraph that can be covered by k paths. Each of the following four
problems can be solved in time 2O(k·w log k·w) · |H|O(k·w) · |G|O(k·w).

1. Determine whether H is isomorphic to a subgraph of G.
2. Determine whether a subdivision of H is isomorphic to a subgraph of G.
3. Determine whether H is isomorphic to a subdivision of a subgraph of G.
4. Determine whether a subdivision of H is isomorphic to a subdivision of a

subgraph of G.

Problem 1 is the classic subgraph isomorphism problem. The best parameter-
ized algorithm for general graphs runs in time O∗(2|H| · |G|tw(H)) where tw(H)
denotes the undirected treewidth of H [1,9]. We note that this running time
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depends exponentially on the number of vertices in H, whereas in our result,
for constant values of k and w, the dependence is polynomial on the number of
vertices of H.

Problem 2 is the classic subgraph homeomorphism problem. If the pattern
graph H is not fixed, this problem is NP-complete even if both graphs have
constant undirected treewidth [14]. For undirected graphs, the problem can be
solved in time f(|H|) · |G|3 for some function f(|H|) [12]. In other words, in the
undirected case, the problem is fixed parameter tractable with respect to the size
of the pattern graph H. For directed graphs however, it can be shown that the
subgraph homeomorphism problem is NP-complete even if the pattern graph H
consists only of two disjoint edges [10]. Thus not even an algorithm running in
time |G|O(|H|) is expected to exist for general digraphs assuming P �= NP . If
the host graph has directed treewidth t then the problem can be solved in time
|G|O(t·|H|) using techniques from [15]. Note that in our algorithm the exponent
of |G| does not depend on the size of H, but only on k and w.

In Problems 3 and 4 we address two interesting variants of embedding prob-
lems for digraphs that are related to notions of embedding encountered in topol-
ogy. Intuitively, Problem 3 asks whether the host digraph G can be slightly
deformed so that it can accomodate the pattern digraph H. In Problem 4 we
address a graph theoretic analog of the topological homeomorphism problem.
Intuitively, we ask whether a deformed version of the pattern digraph H can be
embedded into a deformed version of the host digraph G.

1.1 Proof Techniques

We will prove Theorem 1 using the framework of slice languages. This frame-
work was introduced in [6,7] and used to solve several problems in the partial
order theory of concurrency. Subsequently, slice languages were generalized to
the context of digraphs and used to provide the first algorithmic metatheorem for
digraphs of constant directed pathwidth [8]. In this work we will prove Theorem 1
by developing new machinery for the manipulation of slice languages.

Intuitively, a slice is a digraph S with special in-frontier and out-frontier
vertices which can be used for composition. A slice S1 can be glued to a slice S2 if
the out-frontier of S1 can be coherently matched with the in-frontier of S2. In this
case, the glueing gives rise to a bigger slice S1◦S2 which is obtained by matching
the out-frontier of S1 with the in-frontier of S2. A sequence U = S1S2 . . .Sn

where each two consecutive slices can be glued is called a slice decomposition.
After gluing each two consecutive slices in U we obtain a digraph

◦
U= S1 ◦S2 ◦

. . . ◦ Sn. Therefore, slices may be regarded as the basic constituents of digraphs
in the same way that letters are the basic constituents of words. We may define
infinite families of digraphs via finite automata that concatenate slices. We call
these automata, slice automata. In order to define infinite families of digraphs,
we associate two languages with each slice automaton A. The first, the slice
language L(A), is simply the set of all sequences of slices accepted by A. The
second, the graph language LG(A), is the set of all digraphs obtained by glueing
the slices in each sequence accepted by A.
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In [8] we introduced the notion of z-saturated slice automaton, a notion
that will be used recurrently in this work. We showed that given a digraph G
of directed pathwidth z, and a z-saturated slice automaton A generating only
digraphs that are the union of k paths, one can determine in time |G|O(k·z) ·
|A|O(1) whether some subgraphs of G is isomorphic to some digraph in the graph
language LG(A) represented by A. The caveat is that defining interesting families
of digraphs via z-saturated slice automata is a difficult task. To circumvent this
difficulty, we recurred to the monadic second order logic of graphs with edge set
quantifications (MSO2 Logic). We showed that for each given MSO2 sentence ϕ,
one can automatically construct a z-saturated slice automaton A(ϕ, k, z) whose
graph language LG(A(ϕ, k, z)) consists precisely of the set of digraphs that at
the same time are the union of k paths and satisfy ϕ. Using this result we were
able to show how to solve in polynomial time several natural and interesting
counting problems on digraphs of constant directed pathwidth.

Unfortunately, the construction of the automaton A(ϕ, k, z) given in [8] takes
time at least exponential on |ϕ|. Additionally, assuming that P �= PSPACE, there
is no algorithm that takes an MSO2 formula ϕ and constructs the automaton
A(ϕ, k, z) in polynomial time. This is due to the fact that the model checking
problem for MSO logic is PSPACE-complete even for strings [17], which can be
easily modeled in terms of graphs. Now suppose we want to solve the subgraph
homeomorphism problem using the construction in [8]. Even if it is easy to define
an MSO2 formula ϕsub

H whose models are precisely the subdivisions of a digraph
H, the construction of the automaton A(ϕsub

H , k, z) using the translation from
formulas to slice automata given in [8] would take exponential time on |ϕsub

H | and
hence exponential time on |H|. Note that a simple counting argument implies
that |ϕsub

H | = Ω(|H|) for almost all digraphs H.
One of the main technical contributions of this work is to show that for

each digraph H that can be covered by k paths one can construct in time
2O(k·z log k·z) · |H|O(k·z) a z-saturated slice automaton A(H, k, z) whose graph
language consists only of H itself, i.e., LG(A(H, k, z)) = {H}. Another contribu-
tion is to show that given any z-saturated slice automaton A one can construct
in time 2O(k·z log k·z)|A|O(1) a slice automaton sdiv(A) whose graph language
LG(A) consists precisely of the subdivisions of digraphs in LG(A). In particular
we have that LG(sdiv(A(H, k, z))) has also 2O(k·z log k·z) · |H|O(k·z) states. To
prove these results we will need to introduce new slice theoretic machinery. In
particular we will define several non-boolean operations that will allow us to per-
form surgical transformations on all digraphs represented by a slice language. In
this respect our work also represents a contribution to formal language theory.
In particular we believe that our techniques can be used in other contexts where
the goal is to develop graph theoretic algorithms via the manipulation of infinite
families of graphs.

2 Directed Pathwidth and Zig-Zag Number

A directed path decomposition [3] of a digraph G = (V,E) is a sequence X =
(X1,X2, . . . , Xr) of subsets of vertices G satisfying the following conditions.
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(i)
⋃r

i=1 Xi = V ,
(ii) If i < j < l then Xi ∩ Xl ⊆ Xj ,
(iii) For each edge e ∈ E there exist i, j ∈ {1, . . . , r} with i ≤ j such that the

source of e is in Xi and the target of e is in Xj .

The width of X is defined as max{|Xi| : 1 ≤ i ≤ n} − 1. The directed
pathwidth of a digraph G, denoted ddp(G), is defined as the minimum width
over all possible directed path decompositions of G. As a matter of comparison
we observe that the classic notion of undirected pathwidth is recovered when
Condition (iii) is replaced by

(iii’) For each edge e ∈ E there exists i ∈ {1, . . . , r} such that both endpoints
of e lie in Xi.

Next, we define the notion of z-topological ordering which can be used to
establish a connection between digraphs of constant directed pathwidth and
slice languages. Let G = (V,E) be a directed graph. For subsets of vertices
V1, V2 ⊆ V we let E(V1, V2) denote the set of edges with one endpoint in V1

and another endpoint in V2. We say that a linear ordering ω = (v1, v2, . . . , vn)
of the vertices of V is a z-topological ordering of G if for every directed sim-
ple path p = (Vp, Ep) in G and every i ∈ {1, . . . , n − 1}, we have that
|Ep ∩ E({v1 . . . , vi}, {vi+1, . . . , vn})| ≤ z. In other words, ω is a z-topological
ordering if for each i ∈ {1, . . . , n − 1}, each directed simple path of G enters or
leaves the set {v1, . . . , vi} at most z times. We say that a digraph G has zig-zag
number z if some ordering ω of the vertices of G is a z-topological ordering.

Theorem 2 ([8]). Let G be a digraph of directed pathwidth w. Then one can
construct in time |G|O(w) a z-topological ordering ω = (v1, . . . , vn) for G such
that z ≤ 2w + 1.

3 Slices and Slice Languages

A slice S = (V,E, ρ, ξ, s, t, [C, I,O]) is a digraph comprising a set of vertices V ,
a set of edges E, a vertex labeling function ρ : V → Γ1 for some finite set of
symbols Γ1, an edge labeling function ξ : E → Γ2 for some finite set of symbols
Γ2 and total functions s, t : E → V associating with each edge e ∈ E a source
vertex es and a target vertex et. Alternatively, we say that es and et are the
endpoints of e. The vertex set V is partitioned into three disjoint subsets: an
in-frontier I, a center C, and an out-frontier O. A slice is subject to the following
restrictions:

1. The frontier vertices of S are labeled by ρ with natural numbers in such a way
that no two vertices in the same frontier are labeled with the same number.

2. Each frontier vertex in I ∪ O is the endpoint of exactly one edge.
3. No edge has both endpoints in the same frontier.
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Fig. 1. A unit decomposition U = S1S2S3 and the digraph
◦
U= S1 ◦ S2 ◦ S3 which is

obtained by gluing each two adjacent slices in U. All slices in U are normalized. The
in-frontier of S1 is empty and the out-frontier of S3 is empty. The slices S4 and S5 and
ε are permutation slices. S4 is additionally an identity slice. ε is the empty slice.

From now on we let the source and target functions be implicit when defin-
ing a slice. When referring to a slice S = (V,E, ρ, ξ) with frontiers (I,O) we
mean that S has in-frontier I and out-frontier O. We say that a slice S with
frontiers (I,O) is normalized if ρ(I) = {1, . . . , |I|} and ρ(O) = {1, . . . , |O|}.
Non-normalized slices will play an important role later in this section when we
introduce the notion of sub-decomposition. Let i ∈ ρ(I). We say that a slice S is a
unit slice if S has at most one center vertex. Unit slices will play a very important
role in this work. We denote by e(I, i) the unique edge that has as one endpoint
the vertex of I labeled with i. Analogously, e(O, i) denotes the unique edge that
has as one endpoint the vertex in O labeled with i. A slice S1 = (V1, E2, ρ1, ξ1)
with frontiers (I1, O1) can be glued to a slice S2 = (V2, E2, ρ2, ξ2) with frontiers
(I2, O2) provided the following conditions are satisfied.

1. ρ1(O1) = ρ2(I2),
2. for each i ∈ ρ(O1), ξ1(e(O1, i)) = ξ2(e(I2, i)),
3. for each i ∈ ρ(O1), either the target of e(O1, i) lies in O1 and the source of

e(I2, i) in I2, or the source of e(O1, i) lies in O1 and the target of e(I2, i) in I2.

Intuitively, S1 can be glued to S2 if for each i ∈ ρ(O1), the edge e(O1, i) can
be matched with the edge e(I2, i) in such a way that the two edges agree both in
labeling (Condition 2) and direction (Condition 3). If S1 can be glued to S2, then
we let e(i,S1,S2) denote the edge that is obtained by fusing e(O1, i) with e(I2, i).
More precisely, if the target of e(O1, i) lies in O1 then we set e(S1,S2, i)s =
e(O1, i)s and e(S1,S2, i)t = e(I2, i)t. Otherwise, if the source of e(O1, i) lies
in O1, then we set e(S1,S2, i)s = e(I2, i)s and e(S1,S2, i)t = e(O1, i)t. If S1 can
be glued to S2 then the gluing gives rise to the slice S1◦S2 = (V3, E3, ρ3, ξ3) with
frontiers (I1, O2) where the vertex set is V3 = (V1 ∪ V2)\(O1 ∪ I2), and the edge
set is E3 = [(E1 ∪ E2)\{e(O1, i), e(I2, i) | i ∈ ρ(O1)}] ∪ {e(S1,S2, i) | i ∈ ρ(O1)}.

The labels of vertices and edges are inherited from the slice they come from.
More precisely for j ∈ {1, 2}, ρ3|V3∩Vj

= ρj |V3∩Vj
, ξ3|E3∩Ej

= ξj |E3∩Ej
and

ξ(e(S1,S2, i)) = ξ1(e(O1, i)) for each i ∈ ρ1(O1). We note that in the glueing
process the vertices belonging to the glued frontiers O1 and I2 are deleted, while
the center vertices of both slices and the vertices in I1 and O2 remain intact.
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3.1 Slice Languages

The width w(S) of a slice S with frontiers (I,O) is defined as max{|I|, |O|}.
A slice alphabet is any finite set Σ of slices. In particular for any natural num-
bers c, q, ν with c ≤ q, and any finite sets of labels Γ1, Γ2 we let Σ(c, q, ν, Γ1, Γ2)
be the slice alphabet formed by all slices of width at most c, with at most ν cen-
ter vertices, whose center vertices are labeled with elements from Γ1, edges are
labeled with elements from Γ2 and whose frontier vertices are labeled with num-
bers in {1, . . . , q}. We write Σ(c, q, Γ1, Γ2) as an abbreviation for Σ(c, q, 1, Γ1, Γ2)
and Σ(c, Γ1, Γ2) for the set of all unit normalized slices in Σ(c, c, 1, Γ1, Γ2).

If Σ is a slice alphabet, we denote by Σ∗ the free monoid generated by Σ.
In other words Σ∗ is simply the set of all sequences of slices taken from Σ. The
operation of the monoid is simply concatenation and should not be confused
with glueing. The identity of the monoid is simply the empty string λ for which
Sλ = S = λS and should not be confused with the empty slice ε. We say that a
slice is initial if its in-frontier is empty, and final if its out-frontier is empty. A slice
decomposition is a sequence D = S1S2 . . .Sn of slices such that S1 is initial, Sn

is final and such that Si can be glued to Si+1 for each i ∈ {1, . . . , n − 1}. The
width w(D) of D is defined as the maximum width of a slice in D. We let L(Σ)
denote the set of all slice decompositions in Σ∗. A slice language is any subset
L ⊆ L(Σ). Any slice decomposition D = S1S2 . . .Sn in a slice language L gives
rise to a digraph

◦
D= S1 ◦ S2 ◦ . . . ◦ Sn which is obtained by gluing each two

consecutive slices in D. Thus slice languages may be regarded as a syntactic way
of representing possibly infinite families of digraphs. Namely, the graph language
derived from L is defined as

LG = { ◦
D | D ∈ L}. (1)

In this work we will only be concerned with slice languages that can be effec-
tively represented. In particular we will be concerned with the class of regular
slice languages, which are those languages that can be represented via finite
automata over slice alphabets. We call these automata slice automata.

Definition 3 (Slice Automaton). A slice automaton over a slice alphabet
Σ is a finite automaton A = (Q,R, Q0, F ) where Q is a set of states, Q0 ∈ Q
is a set of initial states, F ⊆ Q is a set of final states, and R ⊆ Q × Σ × Q
is a transition relation such that the following conditions are satisfied for every
r, r′, r′′ ∈ Q and every S ∈ Σ.

1. if (r,S, r′) ∈ R and r ∈ Q0 then S is an initial slice,
2. if (r,S, r′) ∈ R and r′ ∈ F , then S is a final slice,
3. if (r,S, r′) ∈ R and (r′,S′, r′′) ∈ R, then S can be glued to S′.

We denote by L(A) the slice language accepted by A and by LG(A) the graph
language derived from L(A) according to Eq. 1. For instance, in Fig. 2 we depict
a slice automaton representing an infinite family of digraphs.

Given a slice alphabet Σ, we denote by A(Σ) the minimum deterministic
slice automaton generating the slice language L(Σ) consisting of all slice decom-
positions over Σ. It can be easily shown that A(Σ) has size O(|Σ|).
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Fig. 2. A slice automaton A, its slice language L(A) and the graph language LG(A)
which consists of all cycles of size at least two.

3.2 Sub-slices and Sub-decompositions

A sub-slice of S is a subgraph S′ of S which is itself a slice. Note that the
numbering of the frontier vertices of S′ is inherited from the numbering of the
frontier vertices of S. Thus even if S is a normalized slice, S′ may not be nor-
malized. Let D = S1S2 . . .Sn be a slice decomposition. A sub-decomposition
of D is a decomposition D′ = S′

1S
′
2 . . .S′

n such that S′
i is a sub-slice of Si for

each i ∈ {1, . . . , n}. Note that even if D is a normalized slice decomposition, a
sub-decomposition D′ of D may not be normalized (Fig. 3).

Fig. 3. A digraph H and one of its unit decompositions U. The digraph H ′ is a sub-
graph of H and the unit decomposition U′ is a sub-decomposition of U. Note that
some slices in U′ are not normalized. For instance, S′

3 is not normalized because even
though it has width 2, its frontier vertices are labeled with numbers from {2,3} and not
from {1,2}. Finally, note that since a sub-decomposition has the same number of slices
of the original decomposition, some of the slices occurring in it may be permutation
slices or even the empty slice, e.g., S′

3 and S′
5.

3.3 z-Saturated Slice Languages

Recall that a unit slice is a slice with at most one center vertex. A unit decom-
position is a slice decomposition U = S1S2 . . .Sn in which all slices are unit
slices. Most of the time we will use the letter U, possibly with subscripts, to
denote unit decompositions. We will denote by

◦
U the graph S1 ◦ S2 ◦ . . . ◦ Sn

derived from a unit decomposition U = S1S2 . . .Sn. We say that U is a unit
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Fig. 4. Two unit decompositions of the cycle on 4 vertices. The unit decomposition (i)
has zig-zag number 2 while the unit decomposition (ii) has zig-zag number 3.

decomposition of a digraph G if G =
◦
U. In general a digraph may have many

unit decompositions (Fig. 4).
Let H be a digraph with n vertices, ω = (v1, v2, . . . , vn) be a linear ordering

of the vertices of H and U = S1S2 . . .Sm ∈ L(Σ) be a unit decomposition of H
for some m ≥ n. We say that U is compatible with ω if there exists a sequence
j1 < j2 < . . . < jn of indices such that the vertex vi of H is the center vertex
of Sji . Observe that we need to use double sub-indexes jk because m may be
greater than n, since the unit decomposition U may have some slices with no
center vertex. We say that U has zig-zag number z if U is compatible with a
z-topological ordering of H. Intuitively, U has zig-zag number z if every simple
path in the digraph

◦
U crosses each frontier of each slice of U at most z times

(Fig. 4). A slice language L has zig-zag number z if each unit decomposition in
L has zig-zag number at most z. A slice language L ⊆ L(Σ) is z-saturated if for
each digraph H ∈ L all unit decompositions of H of zig-zag number z are in L.
More precisely, let ud(H,Σ, z) ⊆ L(Σ) denote the set of all unit decompositions
of H of zig-zag number z. Then L is z-saturated if

⋃

H∈LG

ud(H,Σ, z) ⊆ L. (2)

We say that a slice automaton has zig-zag number z if L(A) has zig-zag
number z. Analogously, A is z-saturated if L(A) is z-saturated. The following
proposition is the reason why z-saturated slice languages are important for us.
It says that if L and L′ are slice languages such that L has zig-zag number
z and L′ is z-saturated, then the graph language [L ∩ L′]G represented by the
intersection L ∩ L′ is precisely the intersection of the graph languages LG and
LG′ represented by L and L′ respectively.

Proposition 4 ([8]). Let L and L′ be slice languages over Σ. Let L have zig-zag
number z and L′ be z-saturated. Then (L ∩ L′)G = LG ∩ L′

G.

We observe that Proposition 4 is not true in general if none of the slice lan-
guages is z-saturated. As a simple example, let L = {U} and L′ = {U′} where
U and U′ are two distinct unit decompositions of the same graph H. Then
LG ∩ L′

G = {H} but L ∩ L′ = ∅.

4 High Level Proof of Theorem1

In this section we will state four results relating regular slice languages with
subgraphs and subdivisions of digraphs. Subsequently, we will use these results
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to prove Theorem 1. The proofs of these four results can be found in the full
version of this paper. We start by stating a lemma that says that given any
digraph G of zig-zag number z, one can construct in polynomial time a slice
automaton of zig-zag number z whose graph language contains all subgraphs of
G that are the union of k paths.

Lemma 5. Let G = (V,E) be a digraph and U ∈ L(Σ(|E|, Γ1, Γ2)) be a nor-
malized unit decomposition of G of zig-zag number z. Then one can construct
in time |G|O(k·z) a slice automaton A(U, k · z) over Σ(k · z, Γ1, Γ2) whose graph
language LG(A(U, k · z)) contains all subgraphs of G that are the union of k
paths.

We observe that the slice automaton A(G, k · z) constructed in Lemma 5
is not necessarily z-saturated. We also note that LG(A(G, k · z)) may contain
digraphs that are isomorphic to subgraphs of G that are not the union of k
paths. What is important in Lemma5 is that whenever a subgraph H of G can
be covered by k paths, there will be a unit decomposition U in L(A(G, k · z))
such that

◦
U= H.

The next lemma says that given any slice automaton A of zig-zag number z,
one can efficiently construct another slice automaton div(A) of zig-zag number
z whose graph language LG(div(A)) is the set of all subdivisions of digraphs in
LG(A). In other words, Lemma 6 below gives us a way to transform a concrete
representation of an infinite set of digraphs into a concrete representation of the
set of subdivisions of these digraphs.

Lemma 6. Let A be a slice automaton over Σ(c, Γ1, Γ2) of zig-zag number z.
Then one can construct in time O(c · |A|) a slice automaton div(A) of zig-zag
number z such that

LG(div(A)) = {H | ∃H ′ ∈ LG(A) such that H is a subdivision of H ′}.

We say that div(A) is the subdivision of A. We observe that even if the
slice automaton A is z-saturated, the slice automaton div(A) is not necessarily
z-saturated. The next theorem says that if H can be covered by k paths, then
one can construct in polynomial time a normalized slice automaton generating
precisely the unit decompositions of H of zig-zag number at most z.

Theorem 7. Let H be a digraph that can be covered by k paths. One can con-
struct in time 2O(k·z·log k·z) · |E|O(k·z) a slice automaton A(H, k, z) generating the
following z-saturated slice language over Σ(k · z, Γ1, Γ2):

L(A(H, k, z)) = {U | U has zig-zag number z,
◦
U= H} (3)

We observe that the graph H in Theorem 7 is fixed. Thus, while the slice
language L(A(H, k, z)) consists of all unit decompositions of H of zig-zag number
at most z, the graph language LG(A(H, k, z)) is simply the singleton {H}.

Finally, the next theorem says that given any z-saturated slice automaton
A one can construct in polynomial time a z-saturated slice automaton sdiv(A)
such that the graph language of sdiv(A) consists of all subdivisions of digraphs
in LG(A).
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Theorem 8. Let A be a z-saturated slice automaton over Σ(c, Γ1, Γ2). Then
one can construct in time 2O(c log c) · |A| a z-saturated slice automaton sdiv(A)
such that

LG(sdiv(A)) = {H | H is a subdivision of a digraph in LG(A)} (4)

There are two important differences between the slice automaton sdiv(A) of
Theorem 8 and the slice automaton div(A) of Lemma 6. The first is that sdiv(A)
preserves z-saturation, while div(A) does not. The second is that Theorem 8 can
only be applied if A is z-saturated, while Lemma 6 only requires that A has zig-
zag number z.

Now we are in a position to prove Theorem1 using Lemmas 5 and 6, and
Theorems 7 and 8. We will use these two lemmas and two theorems to reduce
the problems stated in Theorem 1 to a problem of non-emptiness of intersection
between a slice language of zig-zag number z and a z-saturated slice language.

Proof of Theorem 1. Let G = (V,E) be a host digraph with n vertices and
directed pathwidth w, and let H be a pattern digraph that can be covered by
k paths. Applying Theorem 2 we can construct in time |G|O(w) a z-topological
ordering ω = (v1, v2, . . . , vn) of G where z ≤ 2w + 1. Using ω we can construct
in linear time a normalized unit decomposition U = S1S2 . . .Sn of G of zig-zag
number z in which vi is the center vertex of Si.

1. By Lemma 5, the graph language LG(A(U, k · z)) of the slice automaton
A(U, k · z) contains all subgraphs of G that are the union of k paths. The
pattern digraph H can be covered by k paths. Additionally, by Theorem 7, the
graph language LG(A(H, k, z)) is simply the singleton {H}. Since A(U, k · z)
has zig-zag number z and A(H, k, z) is z-saturated, Proposition 4 implies that
H is a subgraph of G if and only if L(A(U, k · z) ∩ A(H, k, z)) is non-empty.
Since A(U, k ·z) has |G|O(k·z) states and A(H, k, z) has 2O(k·z log k·z) ·|H|O(k·z)

states, we have that the non-emptiness of intersection of these two automata
can be determined in time 2O(k·z log k·z) · |H|O(k·z) · |G|O(k·z).

2. By Theorem 8, a digraph H ′ belongs to the graph language LG(sdiv(A(H, k,
z))) if and only if H ′ is a subdivision of H. Observe that, since H can
be covered by k paths, each of its subdivisions is also the union of k
paths. Since sdiv(A(H, k, z)) is z-saturated, by Proposition 4, we have that
a subdivision of H is a subgraph of G if and only if the slice language
L(sdiv(A(H, k, z)) ∩ A(U, k · z)) is non-empty. Since sdiv(A(H, k, z)) has
2O(k·z log k·z) · |H|O(k·z) states, we have that the non-emptiness of the inter-
section above can be decided in time 2O(k·z log k·z) · |H|O(k·z) · |G|O(k·z).

3. By Lemma 6, the graph language LG(div(A(U, k ·z))) consists of all subdivi-
sions of subgraphs of G that are the union of k paths. Since div(A(U, k · z))
has zig-zag number z and A(H, k, z) is z-saturated, Proposition 4 implies that
a subdivision of H is isomorphic to a subgraph of G if and only if the slice
language L(A(H, k, z)∩div(A(U, k ·z))) is non-empty. Since div(A(U, k ·z))
has |G|O(k·z) states, we have that the non-emptiness of this intersection can
be tested in time 2O(k·z·log k·z) · |H|O(k·z) · |G|O(k·z).
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4. Since sdiv(A(H, k, z)) is z-saturated and div(A(U, k, z)) has zig-zag number
z, by Proposition 4 we have that a subdivision of H is isomorphic to a subdi-
vision of a subgraph of G if and only if the slice language of the intersection
div(A(U, k · z)) ∩ sdiv(A(H, k, z)) is non-empty. By similar arguments as
in the last three items, we have that the intersection can be tested in time
2O(k·z log k·z) · |H|O(k·z) · |G|O(k·z).

5 Conclusion

In this work we showed how to solve in polynomial time four variants of embed-
ding problems in which the host digraph has constant directed pathwidth, and
the pattern digraph can be covered by a constant number of directed paths.
Indeed we reduced all four problems to the problem of intersection of slice lan-
guages. To prove our main results we introduced new slice theoretic machinery
that may be of independent interest. In particular, the concept of z-saturation,
together with the new operations we defined on slice languages may have the
potential to shed new light on algorithmic questions on digraphs for which other
techniques such as dynamic programming do not provide an evident solution.
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Abstract. A square-free 2-matching in an undirected graph is a simple
2-matching without cycles of length four. In bipartite graphs, the max-
imum square-free 2-matching problem is well-solved. Previous results
include min-max theorems, polynomial combinatorial algorithms, poly-
hedral description with dual integrality, and discrete convex structure.

In this paper, we further investigate the structure of square-free
2-matchings in bipartite graphs to present new decomposition theorems,
which serve as an analogue of the Dulmage-Mendelsohn decomposition
for bipartite matchings and the Edmonds-Gallai decomposition for non-
bipartite matchings. We exhibit two canonical minimizers of the set func-
tion in the min-max formula, and a characterization of the maximum
square-free 2-matchings with the aid of these canonical minimizers.

Keywords: Matching theory · Square-free 2-matching · Dulmage-
Mendelsohn decomposition · Edmonds-Gallai decomposition

1 Introduction

For a simple undirected graph G = (V,E) and a positive integer k, a subset M
of E is a 2-matching if each vertex in V has at most two incident edges in M ,
and a 2-matching M is called Ck-free if it does not contain a cycle of length k or
less. The maximum Ck-free 2-matching problem is a problem of finding a Ck-free
2-matching of maximum size for given G and k. If a 2-matching has size |V |,
which shall be maximum, then it is called a 2-factor.

The larger k becomes, the closer a Ck-free 2-factor becomes to a Hamil-
ton cycle. Indeed, a main motivation of investigating the maximum Ck-free
2-matching problem is that it is a relaxation of the Hamilton cycle problem.
Utilizing matching theory has been one of the most effective approaches to
the Hamilton cycle problem and the traveling salesman problem (TSP), and
Ck-free 2-factors would provide a tighter relaxation of Hamilton cycles to 2-
factors. For instance, the most standard linear programming relaxation of the
TSP due to Dantzig, Fulkerson and Johnson [11] is exactly a fractional 2-
matching polytope with subtour elimination constraints added. Clearly, a Ck-
free 2-matching corresponds to an integer vector in the 2-matching polytope
c© Springer-Verlag Berlin Heidelberg 2016
E.W. Mayr (Ed.): WG 2015, LNCS 9224, pp. 373–387, 2016.
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satisfying the constraints arising from the subtours of length at most four. Thus,
analysis of Ck-free 2-matchings shall result in obtaining better lower bounds and
designing approximation algorithms for the TSP. In particular, for the graphic
traveling salesman problem and the minimum 2-edge connected spanning sub-
graph problem, Ck-free 2-matchings are directly applied to designing approxi-
mation algorithms. For these two problems, if a Ck-free 2-factor is found, then
(1 + 2/(k + 1))-approximation immediately follows. For a more elaborated use
of Ck-free 2-factors, see [6,7,9,25,40].

The complexity of the maximum Ck-free 2-matching problem varies due to k.
As stated above, the case k ≥ |V |/2 contains the Hamilton cycle problem and
hence is NP-hard, while the case k ≤ 2 is exactly the classical maximum simple
2-matching problem and hence is polynomially solvable. Moreover, Papadim-
itriou proved NP-hardness for the case k ≥ 5 (see [8]), whereas Hartvigsen [19]
proposed a combinatorial algorithm for the case k = 3. The case k = 4 is left
open.

The weighted version of the maximum Ck-free 2-matching problem is also of
interest. The NP-hardness of the case k ≥ 5 follows from that of the unweighted
version, while the case k = 2 is the classical maximum-weight simple 2-matching
problem and hence polynomially solvable. A nontrivial result is due to Vorn-
berger [42], who proved the NP-hardness of the case k = 4. The maximum-weight
C3-free 2-matching problem is still open.

In bipartite graphs, C4-free 2-matchings are often referred to as square-free
2-matchings, and in the present paper we mainly use this terminology. About
fifteen years after the above basic results, in 1999, Hartvigsen [20] proposed
a Tutte-type theorem characterizing bipartite graphs admitting a square-free
2-factor and a combinatorial algorithm. Király [26] gave a precise description
and proof of the Tutte-type theorem, and extended it to a min-max formula.
Since then, the maximum Ck-free 2-matching problem for the case k = 3, 4
has been studied actively. Frank [15] introduced the Kt,t-free t-matching prob-
lem in bipartite graphs, which is a generalization of the square-free 2-matching
problem in bipartite graphs, and presented a min-max formula. After that, a full
version [21] of [20] followed, and Pap [37] also gave a combinatorial algorithm for
the maximum square-free 2-matching problem in bipartite graphs, which slightly
differs from Hartvigsen’s algorithm and is extended to the maximum Kt,t-free
t-matching problem in bipartite graphs (see also [36]). Babenko [1] improved the
time complexity of Pap’s algorithm. We remark here that the min-max formula
in [15] differs from the formula in [21,26]. We will give a detailed comparison of
these two min-max formulas in Sect. 3.

For the weighted version of the maximum Ck-free 2-matching problem in
bipartite graphs, NP-hardness is proved for the case k ≥ 6 by Geelen [18] and for
the case k = 4 by Király (see [15]). On the other hand, for the case k = 4 and the
edge weight satisfies a property that the weight is vertex-induced on every square,
Makai [33] presented a linear programming formulation with dual integrality.
This formulation implies polynomial solvability via the ellipsoid method, and a
combinatorial algorithm for this case was given by Takazawa [39].
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Discrete convex structure of the Ck-free 2-matchings was first studied by
Cunningham [10], who proved that the set of the degree sequences of the Ck-free
2-matchings is a jump system [5] for the case k ≤ 3, and is not necessarily a
jump system for the case k ≥ 5. We remark that this result is consistent with
the polynomial solvability of the maximum Ck-free 2-matching problem. For
the case k = 4, Cunningham conjectured that the degree sequences of the C4-
free 2-matchings form a jump system, and later this was proved by Kobayashi,
Szabó and Takazawa [29]. In [29], it is also proved that the weighted square-free
2-matchings in bipartite graphs induce an M-concave function on a constant-
parity jump system [34] if and only if the edge weight is vertex-induced on every
square, which is also consistent with polynomial solvability.

Through these results, one could assert that the maximum square-free 2-
matching problem in bipartite graphs is indeed a well-solved case of the max-
imum Ck-free 2-matching problem. Apart from bipartite graphs, in subcubic
graphs C3- or C4-free 2-matchings become tractable as well. See [2,3,22,23,27,
28,30,42] for progress in subcubic graphs.

The purpose of the present paper is to deepen the theory of Ck-free 2-
matchings by investigating the structure of the square-free 2-matchings in bipar-
tite graphs. First we exhibit that the two min-max formulas in [21,26] and [15]
are essentially different in a sense that a vertex set minimizing the set function
in one formula is not necessarily a minimizer in the other. We then establish
decomposition theorems for square-free 2-matchings in bipartite graphs, which
serve as an analogue for the Dulmage-Mendelsohn decomposition for matchings
in bipartite graphs [12,13] and the Edmonds-Gallai decomposition for match-
ings in nonbipartite graphs [14,16,17]. Here we focus on the min-max formula
in [21,26], and we prove that two minimizers found by the algorithm in [21] are
canonical in some sense. With these two minimizers, we can characterize the
structure of the maximum square-free 2-matchings. We can know, e.g., which
vertices have degree two for every maximum square-free 2-matching, and which
edges belong in some maximum square-free 2-matching. These theorems sug-
gest that the maximum square-free 2-matching problem has similarity to the
maximum matching problem in both bipartite and nonbipartite graphs.

The rest of the paper is organized as follows. In Sect. 2, we review basic the-
orems for matchings in bipartite and nonbipartite graphs, such as the min-max
theorems and the Dulmage-Mendelsohn and Edmonds-Gallai decompositions.
In Sect. 3, we compare two min-max formulas for the maximum square-free 2-
matching problem in bipartite graphs, and review Hartvigsen’s algorithm [21].
Our decomposition theorems for square-free 2-matchings in bipartite graphs
appear in Sect. 4.

2 Min-Max and Decomposition Theorems for Matchings

In this section, we review the basic results of matchings in bipartite graphs and
nonbipartite matchings such as the min-max formulas, the Dulmage-Mendelsohn
decomposition, and the Edmonds-Gallai decomposition. For more detailed dis-
cussion, the readers are referred to [24,32,35,38].
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Let G = (V,E) be a simple undirected graph with vertex set V and edge
set E. For X ⊆ V , the complement of X is denoted by X̄, i.e., X̄ = V \ X.
For X ⊆ V and F ⊆ E, let F [X] denote the set of edges in F spanned by
X. A graph G′ = (V ′, E′) is a subgraph of G if V ′ ⊆ V and E′ ⊆ E. For a
subgraph H of G, the vertex and edge sets of H are denoted by V (H) and
E(H), respectively. For X ⊆ V , let G[X] = (X,E[X]), the subgraph induced by
X. For F ⊆ E and two disjoint vertex subsets X,Y ⊆ V , let F [X,Y ] denote the
set of all edges in F connecting X and Y . Let G[X,Y ] = (X ∪ Y,E[X,Y ]). If G
is bipartite, we often denote G = (V +, V −;E), where {V +, V −} is a partition
of V and every edge in E connects V + and V −. For X ⊆ V , let X+ = X ∩ V +

and X− = X ∩ V −.
For F ⊆ E and a vertex v ∈ V , the degree of F on v is the number of edges in

F incident to v and denoted by degF (v). A subset M of edges is called a matching
if degM (v) ≤ 1 for each v ∈ V . Recall that M is a 2-matching if degM (v) ≤ 2
for each v ∈ V , and a 2-factor if degM (v) = 2 for each v ∈ V . More generally,
for an integer vector b ∈ ZV , an edge subset M ⊆ E is called a b-matching if M
satisfies degM (v) ≤ bv for each v ∈ V , and a b-factor if degM (v) = bv for each
v ∈ V . For X ⊆ V , let b(X) =

∑
v∈X bv.

We remark that in the literature a b-matching with the above definition is
often called a simple b-matching, and in a b-matching multiplicities on edges are
allowed. In the present paper, since we only discuss subsets of edges and never
put multiplicities on edges, a b-matching always means a simple b-matching, even
if the term “simple” is omitted.

We begin with the classical min-max theorem for matchings in bipartite
graphs of Kőnig [31]. For a graph G = (V,E), X ⊆ V is called a vertex cover if
every edge in E is incident to at least one vertex in X.

Theorem 1 ([31]). For a bipartite graph G = (V,E), the maximum size of a
matching is equal to the minimum size of a vertex cover.

Theorem 1 is extended to the following min-max theorems for b-matchings
in bipartite graphs and matchings in nonbipartite graphs. A component of a
graph G is called odd if it consists of odd number of vertices, and let o(G)
denote the number of odd components in G. For X ⊆ V , G − X denotes the
subgraph obtained from G by deleting X and edges incident to at least one
vertex in X.

Theorem 2. Let G = (V,E) be a bipartite graph and b ∈ ZV . The maximum
size of a simple b-matching in G is equal to

min
X⊆V

{b(X̄) + |E[X]|}. (1)

Theorem 3 (Tutte-Berge formula [4,41]). The maximum size of a matching
in a graph G = (V,E) is equal to

1
2

min
X⊆V

{|V | + |X| − o(G − X)}. (2)
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We remark that Theorems 2 and 3 are extended to distinct min-max theorems
for the maximum square-free 2-matching problem in bipartite graphs, which are
described in Sect. 3.

The Dulmage-Mendelsohn decomposition [12,13] characterizes the maximum
matchings and minimum vertex covers in bipartite graphs. Roughly, a bipartite
graph is decomposed into three parts: one part is covered by an arbitrary maxi-
mum matching, i.e., an arbitrary maximum matching of the entire graph contains
a perfect matching of this part; and the other parts involve vertices missed by at
least one maximum matching and vertices which might be matched with those
vertices in a maximum matching. By this decomposition, we could know the
whole structure of the maximum matchings and minimum covers.

From the rich structure of the Dulmage-Mendelsohn decomposition, in The-
orem 4 below, we describe in detail the statements which are related to our
decomposition theorems for square-free 2-matchings. We provide this precise
description in order to offer a clear comparison of the Dulmage-Mendelsohn
decomposition and our decomposition theorems for square-free matchings, and
make the present paper self-contained.

Call an edge admissible if it belongs to some maximum matching. For X ⊆ V ,
let Γ (X) denote the set of vertices in V \ X adjacent to at least one vertex in
X, i.e., Γ (X) = {v ∈ V \ X | ∃u ∈ X,uv ∈ E}.

Theorem 4 For a bipartite graph G = (V,E), let D ⊆ V be the set of ver-
tices which are not covered by at least one maximum matching in G. Then, the
following statements hold.

(i) X1 = D̄+ ∪ Γ (D+) and X2 = Γ (D−) ∪ D̄− are minimum vertex covers.
(ii) For an arbitrary minimum vertex cover Y , it holds that X+

2 ⊆ Y + ⊆ X+
1

and X−
1 ⊆ Y − ⊆ X−

2 .
(iii) Each edge in E[X̄+

1 ,X−
1 ] and E[X+

2 , X̄−
2 ] is admissible.

(iv) G[X+
1 \ X+

2 ,X−
2 \ X−

1 ] has a perfect matching.
(v) M ⊆ E is a maximum matching in G if and only if it is composed of a

maximum matching in G[X̄+
1 ,X−

1 ], a maximum matching in G[X+
2 , X̄−

2 ],
and a perfect matching in G[X+

1 \ X+
2 ,X−

2 \ X−
1 ].

Indeed, the Dulmage-Mendelsohn decomposition includes a finer decompo-
sition of G[X+

1 \ X+
2 ,X−

2 \ X−
1 ], distributive lattice structure. For details, see,

e.g., [24,32,35].
The Edmonds-Gallai decomposition [14,16,17] characterizes a minimizer of

(2) which is canonical in some sense, and the structure of maximum matchings
in nonbipartite graphs. A component Q in a graph G is called factor-critical if
Q−{v} admits a perfect matching for each vertex v in Q. Roughly, by introducing
the concept of factor-critical components, the difficulty of nonbipartite matchings
clears up and almost reduces to the bipartite case. Below we provide a detailed
description as well, which would also help comparing the Edmonds-Gallai decom-
position and our decomposition theorems for square-free 2-matchings.
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Theorem 5 (Edmonds-Gallai decomposition [14,16,17]; see also [32]).
For a graph G = (V,E), let D ⊆ V be the set of vertices which are not covered
by at least one maximum matching, A ⊆ V \ D be the set of vertices adjacent
to at least one vertex in D, i.e., A = Γ (D), and C = V \ (D ∪ A). Then the
following statements hold.

(i) Each component in G[D] is factor-critical.
(ii) G[C] has a perfect matching.
(iii) In the bipartite graph obtained from G by deleting the vertices in C and

edges in E[A] and by contracting each component of G[D] to one vertex,
for each X ⊆ A it holds that |Γ (X)| > |X|.

(iv) If M is a maximum matching in G, then M contains a matching of size
(|V (Q)| − 1)/2 in each component Q of G[D] and a perfect matching of
G[C], and matches all vertices of A with vertices in distinct components of
G[D].

(v) The maximum size of a matching in G is equal to (|V | + |A| − o(G[D]))/2.

3 Min-Max Theorems and Algorithms for Square-Free
2-Matchings in Bipartite Graphs

In the sequel, we work on b-matchings in bipartite graphs, where bv ∈ {0, 1, 2}
for each vertex v. For a bipartite graph G = (V,E) and b ∈ {0, 1, 2}V , a square
is a subgraph forming a cycle of length four, and a b-matching in G is called
square-free if it does not contain a cycle of length four. Recall that we never put
multiplicities on edges in dealing with b-matchings, and note that a b-matching
with b ∈ {0, 1, 2}V is a vertex-disjoint collection of cycles and paths, and the
shortest length of a cycle in a bipartite graph is four.

In this section, we exhibit a comparison of the two min-max theorems
in [21,26] and [15], and review Hartvigsen’s algorithm [21] for square-free 2-
matchings in bipartite graphs.

3.1 Min-Max Theorems and Optimality Criteria

In a graph, a component consisting of an edge (resp., a square) is called an
edge-component (resp., square-component). For Z ⊆ V , denote the number of
square-components in G[Z] by c(Z), and the total number of isolated vertices,
edge-components and square-components in G[Z] by q(Z). For the maximum
square-free 2-matching problem in bipartite graphs, the following two min-max
theorems are established.

Theorem 6 ([21,26]). Let G = (V,E) be a bipartite graph and b ∈ {0, 1, 2}V .
The maximum size of a square-free b-matching in G is equal to

min
Z⊆V

{b(Z̄) + |Z| − q(Z)}. (3)
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Theorem 7 ([15]). Let G = (V,E) be a bipartite graph and b ∈ {0, 1, 2}V . The
maximum size of a square-free b-matching in G is equal to

min
Z⊆V

{b(Z̄) + |E[Z]| − c(Z)}. (4)

Intuitively, Theorem 6 is close to Theorem 3, as well as Theorem 7 resembles
Theorem 2. By putting bv = 2 for each v ∈ V and X = Z̄ in (3), we obtain

b(Z̄) + |Z| − q(Z) = 2|X| + |X̄| − q(X̄) = |V | + |X| − q(X̄), (5)

which is similar to (2).
Theorems 6 and 7 indeed differ from each other in that a minimizer of (3)

does not necessarily minimize (4), and vice versa. See Fig. 1 for an example,
where bv = 2 for each vertex v. Observe that the maximum size of a square-free
b-matching is six, Z1 = {v1, v2, v3, v4, v5, v6} attains six in (3) and seven in (4),
and Z2 = {v1, v2, v3, v4, v6} attains six in (4) and seven in (3).

v6 v5 v4

v1 v2 v3

Fig. 1. Z1 = {v1, v2, v3, v4, v5, v6} minimizes (3) and not (4), whereas Z2 =
{v1, v2, v3, v4, v6} minimizes (4) and not (3).

An advantage of Theorem 7 is that it is extended to a min-max theorem for
the maximum Kt,t-free t-matching problem in bipartite graphs [15], and further
to a linear programming formulation with dual integrality for the weighted Kt,t-
free t-matching problem in bipartite graphs, where the edge weight is vertex-
induced on each Kt,t [33,39]. On the other hand, in this paper we establish a
structure theorem (Theorem 10), which is based on Theorem 6 and reveals the
existence of some sort of canonical minimizers of (3), as with Theorem 4.

Theorem 6 implies optimality criteria for maximum square-free b-matchings
in G and minimizers of (3). For an arbitrary square-free b-matching M in G and
an arbitrary Z ⊆ V , it holds that |M [Z]| ≤ |Z|−q(Z) and |M [Z, Z̄]|+2|M [Z̄]| ≤
b(Z̄). Thus, if M is a maximum square-free b-matching and Z minimizes (3), it
holds that

|M [Z]| = |Z| − q(Z), (6)
|M [Z, Z̄]| = b(Z̄), (7)

M [Z̄] = ∅. (8)

Equation (6) further implies the following property of M and Z.
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(*) If a component in G[Z] consists of at least six vertices, then M contains
a 2-factor in this component. Otherwise, the component is either a single
vertex, a single edge in M , or a single square with three edges in M .

Also, (7) and (8) imply that

degM (v) = degM [Z,Z̄](v) = b(v) for each v ∈ Z̄. (9)

3.2 Hartvigsen’s Algorithm

For the maximum square-free 2-matching problem in bipartite graphs, several
combinatorial algorithms are designed [1,21,37,39], and they slightly differ from
each others. In this paper we discuss Hartvigsen’s algorithm [21], since the min-
imizer Z of (3) found by the algorithm in [21] plays a key role in our decom-
position theorem. It is also noteworthy that the minimizer Z of (3) found by
the algorithm in [21] is a minimizer of (4) as well, while the minimizers of (4)
implied in [1,37,39] do not necessarily minimize (3).

Let us briefly sketch the algorithm. Let G = (V +, V −;E) be a bipartite graph
and let M be an arbitrary square-free 2-matching in G. In the algorithm, we
augment M with the aid of alternating paths. Let bv = 2 for each v ∈ V + ∪ V −,
U+ = {u ∈ V + | degM (u) < bv} and U− = {v ∈ V − | degM (v) < bv}. We
execute the breadth-first search (BFS) to find a path P from U+ to U− such
that P starts with an edge in E \M , and edges in E \M and in M lie alternately
in P . In the BFS, if we reach an edge e ∈ E \ M and a square S such that
{e} = E(S) \ M = E(S) ∩ E(Pe), where Pe is the path from U+ to e obtained
in the BFS, we shrink S in the following manner. Let V (S) = {v+

1 , v+
2 , v−

1 , v−
2 },

where v+
1 , v+

2 ∈ V + and v−
1 , v−

2 ∈ V −. Then identify v+
1 and v+

2 to obtain a new
vertex v+

S , and v−
1 and v−

2 to obtain v−
S . All edges in E(S) are deleted, and edges

incident to v+
1 or v+

2 (resp., v−
1 or v−

2 ) are connected to v+
S (resp., v−

S ). Denote
the resulting bipartite graph by G̃ = (Ṽ +, Ṽ −; Ẽ), and reset b ∈ {1, 2}Ṽ +∪Ṽ −

by

bv :=

{
1 if v = v+

S or v = v−
S for some shrunk square S,

2 otherwise.
(10)

Now the objective becomes to find a maximum square-free b-matching in G̃. We
remark that multiple edges connecting the same pair of vertices may appear in
G̃, but M should contain at most one of those edges. Note also that shrunk
squares are vertex-disjoint, even if repeated shrinking of squares are executed.

If an alternating path P from U+ to U− without such an edge e and a
square S is found, then we update M := M
E(P ), which is a square-free 2-
matching with |M ′| = |M | + 1.

After augmentation, we execute expanding of each shrunk square, which
is the reverse operation of shrinking of a square. Let M̃ be a square-free
b-matching in G̃. Then, it is not difficult to see that we can obtain a square-
free 2-matching M in G by adding exactly three edges from each shrunk square
to M̃ .
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An entire description of the algorithm is as follows.

Algorithm Square-free

Input: A bipartite graph G = (V +, V −;E).
Output: A maximum square-free 2-matching M ⊆ E, and Z ⊆ V minimizing

both (3) and (4).
Step 0: Let M be an arbitrary square-free 2-matching in G and G̃ = G.
Step 1: In G̃, define b by (10) and let U+ = {u ∈ Ṽ + | degM (u) < bu} and

U− = {v ∈ Ṽ − | degM (v) < bv}. Construct an auxiliary directed graph G̃M

from G̃ by orienting the edges in E \ M from Ṽ + to Ṽ − and the edges in M
from Ṽ − to Ṽ +. Execute the BFS from U+ in G̃M . For an edge e, denote the
path from U+ to e obtained by the BFS by Pe. If an edge e ∈ Ẽ \ M and a
square S such that {e} = Ẽ(S) \ M = Ẽ(S) ∩ Ẽ(Pe) are found, then go to
Step 2. If a path P from U+ to U− without such an edge e and a square S is
found, then go to Step 3. Otherwise go to Step 4.

Step 2 (Shrinking): Shrink S and go to Step 1.
Step 3 (Augmentation): Update M :=M
Ẽ(P ), expand all shrunk squares,

and then go to Step 1.
Step 4 (Termination):

Obtaining M . Expand all shrunk squares and return M .
Obtaining Z. Let R ⊆ Ṽ + ∪ Ṽ − be the set of vertices reachable from U+ in

G̃M , and let Z = (Ṽ + ∩ R) ∪ (Ṽ − \ R).
For each v ∈ Ṽ − \R which is not contained in any shrunk square, if there
exist two edges in M connecting Ṽ + ∩ R and v, then reset Z := Z \ {v}.
For each v−

S ∈ Ṽ − \R of a shrunk square S, if there exists one edge in M̃

connecting Ṽ + ∩ R and v−
S , then reset Z := Z \ {v−

S }. (We remark that
v+
S ∈ Z always holds.)

In expanding each shrunk square S, reset Z by

Z :=

{
(Z \ {v+

S , v−
S }) ∪ V +(S) ∪ V −(S) if v−

S ∈ Z,

(Z \ {v+
S , v−

S }) ∪ V +(S) if v−
S �∈ Z.

(11)

After expanding all shrunk squares, return Z.

As is proved in [21], the output M is a maximum square-free 2-matching and Z
minimizes (3). It is also not difficult to check that Z minimizes (4) as well.

Theorem 8. Let M and Z be outputs of Algorithm Square-free. Then, M
is a maximum square-free 2-matching in G, and Z minimizes both (3) and (4).

4 Decomposition Theorems for Square-Free 2-Matchings
in Bipartite Graphs

In this section, we describe our main contribution, structure theorems for square-
free 2-matchings in bipartite graphs. Denote the minimizer of (3) obtained by
Algorithm Square-free by Z1. By replacing the roles of V + and V − in
Algorithm Square-free, we obtain another minimizer of (3), denoted by Z2.
We begin with showing a property of Z1 and Z2, which is stronger than (*).
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Proposition 1. For i = 1, 2, it holds that

– the components in G[Zi] is either a single vertex, a single edge, or a single
square, and

– for an arbitrary maximum square-free 2-matching M , all edges in E[Zi] except
for one edge from each square-component belong to M .

Proof. We only discuss Z1, since the same argument applies to Z2. Since Z1

and an arbitrary maximum square-free 2-matching M satisfy the property (*),
it suffices to prove that G[Z1] does not have a component with at least six
vertices. Suppose to the contrary that G[Z1] has such a component Q. Denote
the maximum square-free 2-matching found by Algorithm Square-free by
M∗. Then we have that V +(Q) ⊆ Z1 and M∗ contains a 2-factor in Q. This
implies that the vertices in V −(Q) cannot belong to Z1 (see Step 4 of Algo-

rithm Square-free) regardless of whether Q contains shrunk squares or not,
a contradiction. �

In the sequel, we denote the graph and square-free b-matching at the last
stage of Algorithm Square-free, for which neither shrinking nor augmen-
tation is executed, by G̃ = (Ṽ +, Ṽ −; Ẽ) and M̃ . For X ⊆ V , let X̃ denote the
subset of Ṽ corresponding to X.

We are now ready to describe our decomposition theorems. Following the
notation of the Edmonds-Gallai decomposition, define D,A,C ⊆ V by

D = Z+
1 ∪ Z−

2 , A = Z̄−
1 ∪ Z̄+

2 , C = V \ (D ∪ A). (12)

First, the following theorem characterizes the vertex set D.

Theorem 9. It holds that

D = {u ∈ V | ∃maximum square-free 2-matching M such that degM (u) ≤ 1}.
(13)

Proof. We only discuss the vertices in V +. The arguments straightforwardly
apply to the vertices in V −.

By (9), degM (u) = 2 holds for each u ∈ Z̄+
1 and an arbitrary maximum

square-free 2-matching M . We next show that, for each u ∈ Z+
1 , there exists a

maximum square-free 2-matching M such that degM (u) ≤ 1.
Let u ∈ Z+

1 be a vertex which is not contained in any shrunk square in G̃.
In G̃M̃ , there exists a path P from U+ to u. Let M̃ ′ = M̃
Ẽ(P ) to have
degM̃ ′(u) ≤ 1. By expanding all shrunk squares, we obtain another maximum
square-free 2-matching M ′ from M̃ ′ with degM ′(u) ≤ 1.

If u ∈ Z+
1 is shrunk into v+

S for some square S in G̃, let P be a path from
U+ to v+

S in G̃M̃ . Again let M̃ ′ = M̃
Ẽ(P ) to have degM̃ ′(v+
S ) = 0, and we

can expand all shrunk squares to obtain a maximum square-free 2-matching M ′

from M̃ ′ satisfying degM ′(u) ≤ 1. �
The following theorem corresponds to Theorem 4 (ii), and suggests that the

minimizers Z1 and Z2 are canonical.
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Theorem 10. For an arbitrary set Y ⊆ V minimizing (3), it holds that Z+
1 ⊆

Y + ⊆ Z+
2 and Z−

2 ⊆ Y − ⊆ Z−
1 .

Proof. We first prove that Z+
1 ⊆ Y +. For u ∈ Z+

1 , by Theorem 9 there exists
a maximum square-free 2-matching M satisfying degM (u) ≤ 1. On the other
hand, by (9), we have that degM (v) = 2 for every v ∈ Ȳ . Thus, u ∈ Y follows.

Next we prove that Y − ⊆ Z−
1 . Suppose to the contrary that there exists

v ∈ Y − \ Z−
1 . Let M∗ be a maximum square-free 2-matching found by Algo-

rithm Square-free. Since v �∈ Z−
1 , by (7) there exist two vertices u1, u2 ∈ Z+

1

such that u1v, u2v ∈ M∗. By the above argument, u1, u2 ∈ Z+
1 ⊆ Y + follows,

and let Q be a component in G[Y ] containing u1, u2, v. Since u1, u2 are reachable
from U+, it follows that M∗ does not contain a 2-factor in Q and thus Q is a
square by (*). Let v0 be the unique vertex in V −(Q) \ {v}, and without loss
of generality let u1v0 ∈ M∗ and u2v0 �∈ M∗. Since v0 has no adjacent vertex
in Y + \ {u1, u2}, and so as in Z+

1 \ {u1, u2}, it follows that v0 ∈ Z−
1 from (7).

This implies that a shrinking involving u2v0 should have occurred. If this shrink-
ing also involves v, then it contradicts that v �∈ Z−

1 and v0 ∈ Z−
1 . Otherwise,

the shrunk square contains a vertex in V + \ {u1, u2} adjacent to v0, again a
contradiction. �

Theorem 10 implies that, while we defined Z1 and Z2 by the output of Algo-

rithm Square-free, Z1 and Z2 are uniquely determined. Thus, our decompo-
sition {D,A,C} is also uniquely determined.

Finally, the following theorem is a counterpart of the Dulmage-Mendelsohn
decomposition for matchings in bipartite graphs (Theorem 4) and the Edmonds-
Gallai decomposition for matchings in nonbipartite graphs (Theorem 5).

Theorem 11. The following statements hold.

(i) The components in G[D] and G[D,C] is either a single vertex, a single
edge, or a single square.

(ii) Every edge in E[D,A] is admissible.
(iii) Shrink the squares in G[D] and G[D,C] in the same manner as in Algo-

rithm Square-free to obtain a new graph G′ = (V ′, E′), denote the
vertex subsets of V ′ corresponding to D,C by D′, C ′, and define b′ ∈
{1, 2}D′∪C′

by

b′
v =

⎧
⎪⎨

⎪⎩

1 if v = v+
S or v = v−

S for some shrunk square S,

or v belongs to an edge-component in G[D] or G[D,C],
2 otherwise.

(14)

Then,
(a) for arbitrary X ⊆ A, it holds that b′(Γ (X) ∩ D′) > 2|X|, and
(b) G′[C ′] has a b′-factor.

(iv) An arbitrary maximum square-free 2-matching M in G is composed of the
following edges:
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(a) in G[D] and G[D,C], M contains the single edge of each edge-
component, and exactly three edges from each square-component;

(b) for u ∈ A, M contains two edges connecting u and distinct components
in G[D]; and

(c) in G[C], M [C] corresponds to a b′-factor in G′[C ′].
(v) Both D ∪ C+ and D ∪ C− minimize both (3) and (4).

Proof. Assertion (v) directly follows from D ∪ C− = Z1 and D ∪ C+ = Z2.
We next prove (i) and (iv)(a). It suffices to deal with G[D] = G[D+,D−] and

G[D+, C−]. Let M∗ be the maximum square-free 2-matching found by Algo-

rithm Square-free. By Proposition 1, it suffices to prove that G[Z1] does not
have a square intersecting both D− and C−. Suppose to the contrary that G[Z1]
has such a square S. Then, S is not shrunk in G̃, and by (*) one vertex v ∈ Ṽ −(S)
has two incident edges in M∗ connecting v and Ṽ (S)+ ⊆ D+. Then v should
belong to A− (see Step 4 of Algorithm Square-free), a contradiction.

Assertion (iv)(b) is now straightforward from (7) and Assertions (i) and
(iv)(a).

We then prove (iii)(b) and (iv)(c). Since C+ ⊆ Z+
2 and C− ⊆ Z−

1 , it follows
from (9) that degM (v) = 2 for an arbitrary vertex v ∈ C and a arbitrary maxi-
mum square-free 2-matching M . Since M [A,C] = ∅ by (iv)(b), Assertions (iii)(b)
and (iv)(c) follow from (iv)(a).

Next we prove (iii)(a). It suffices to consider X ⊆ A− = Z̄−
1 . From (iv)(a)

and (iv)(b), it is clear that b′
u ≥ |M̃ [{u},X]| for each u ∈ Γ (X) ∩ D′. Suppose

that there exists a shortest path P from U+ to X̃ in G̃M̃ . Denote the last edge
of P by uv, where u ∈ Ṽ + and v ∈ Ṽ −. Then we have that bu > |M̃ [{u}, X̃]|,
which implies that b′(Γ (X) ∩ D′) is strictly larger than 2|X|. Suppose that P
does not exist, i.e., all vertices in X are deleted from Z in Step 4. In this case,
b′
u > |M̃ [{u}, X̃]| holds for each u ∈ Γ (X) ∩ D′, since u is reachable from U+,

i.e., u ∈ U+ or u has an extra edge in M reaching u from U+, and thus the
assertion follows.

Finally we prove (ii). We show that an edge e ∈ E[Z+
1 , V −\Z−

1 ] is admissible.
The same argument applies to edges in E[V + \ Z+

2 , Z−
2 ].

Suppose that e = uv ∈ Ẽ, i.e., e does not belong to shrunk squares, where
u ∈ Ṽ + and v ∈ Ṽ −. If e ∈ M̃ , then, from M̃ , we obtain a maximum square-free
2-matching containing e by expanding all shrunk squares. If e ∈ Ẽ \ M̃ , let P be
a shortest path from U+ to u in G̃M̃ , and let M̃ ′ = M̃
Ẽ(P ). Then, from M̃ ′,
we obtain a maximum square-free 2-matching M ′ in G such that e ∈ E \ M ′,
degM ′(u) ≤ 1 and degM ′(v) = 2 by expanding all shrunk squares. By adding
e to M ′ and deleting one of edges incident to v from M ′, we obtain another
maximum square-free 2-matching M ′′ (we can choose the deleted edge so that
M ′′ does not contain a square).

Suppose that e does not appear in Ẽ, i.e., e ∈ E(S) for some shrunk square S.
Let P be a path from U+ to v+

S . Then M̃ ′ = M̃
Ẽ(P ) is a new square-free
b-matching satisfying |M̃ ′| = |M̃ | and degM̃ ′(v+

S ) = 0. Now it is not difficult to
see that we can add e to M̃ ′ in expanding S. �
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Here let us describe how Assertions (i) and (iv)(a) in Theorem 11 relates to
Theorems 4 and 5. In Assertion (i) in Theorem 11, the components in G[D] are
analogue to the components in G[D] in Theorems 4 and 5, which are factor-
critical (in Theorem 4, every component in G[D] consists of a single vertex).
For a component Q which is either a single vertex, an edge-component or a
square-component, the maximum size of a square-free 2-matching in Q is equal
to |V (Q)| − 1, while the maximum size of a matching in a factor-critical compo-
nent Q′ is (|V (Q′)| − 1)/2. In particular, if Q is a square-component, for every
pair of u+ ∈ V +(Q) and u− ∈ V −(Q) there exists a maximum square-free 2-
matching MQ in Q satisfying degMQ

(u+) = degMQ
(u−) = 1 and degMQ

(v) = 2
for v ∈ V (Q) \ {u+, u−}. This would correspond to the fact that a factor-critical
component Q′ admits a perfect matching in Q′ − {v} for each vertex v in Q′.
Moreover, by Assertion (iv)(a), an arbitrary maximum square-free 2-matching
contains a maximum square-free 2-matching in each component in G[D], as is
the case for a maximum matching and the factor-critical components in G[D] in
Theorem 5 (iv).

The components in G[D,C] appear in neither the Dulmage-Mendelsohn nor
the Edmonds-Gallai decomposition. For edge-components in G[D,C], however,
their counterpart indeed exists in bipartite b-matchings, which corresponds to
the term |E[X]| in (1). The square-components in G[D,C] are specific to square-
free 2-matchings, but again are analogue to the edge-components in G[X] in
Theorem 2 in a sense that each square-component S contains three edges from
an arbitrary maximum square-free 2-matching by Assertion (iv)(a) and thus it
can be shrunk and dealt with just as an edge-component.

With the above analogy in mind, for the other assertions in Theorem 11 it
is not difficult to find their counterparts in Theorems 4 and 5.
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research and Zoltán Király for informing him of the history of the two min-max theo-
rems for the maximum square-free 2-matching problem in bipartite graphs. This work
is partially supported by JSPS KAKENHI Grant Numbers 25280004 and 26280001.

References

1. Babenko, M.A.: Improved algorithms for even factors and square-free simple b-
matchings. Algorithmica 64, 362–383 (2012)
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Abstract. A simple topological graph is a topological graph in which
any two edges have at most one common point, which is either their
common endpoint or a proper crossing. More generally, in a k-simple
topological graph, every pair of edges has at most k common points of
this kind. We construct saturated simple and 2-simple graphs with few
edges. These are k-simple graphs in which no further edge can be added.
We improve the previous upper bounds of Kynčl, Pach, Radoičić, and
Tóth [Comput. Geom., 48, 2015] and show that there are saturated
simple graphs on n vertices with only 7n edges and saturated 2-simple
graphs on n vertices with 14.5n edges. As a consequence, 14.5n edges is
also a new upper bound for k-simple graphs (considering all values of k).
We also construct saturated simple and 2-simple graphs that have some
vertices with low degree.

1 Introduction

Let G = (V,E) be a finite simple graph (E ⊆ V × V ). A drawing of G is a
map δ : V ∪ E → R

2 that is one-to-one on δ|V : V → R
2, i.e., δ assigns the

vertices of the graph to different points of the plane. Furthermore, we require
that δ|E : E → C, where C is a set of “nice” non-self-intersecting curves with two
boundary points of the plane. For example we might think of C as the set of all
Jordan curves or, more elementary, of the set of all simple polygonal curves. For
simplicity, we will not distinguish between an edge and the curve on which it
is embedded, and between a vertex and the point on which it is embedded. We
assume that for any e = xy ∈ E the edge δ(e) is a curve connecting δ(x) and δ(y)
and it doesn’t go through any other vertex, and also that any two different edges
meet at finitely many points and any meeting point — that is not a common
endvertex — is a proper crossing of the two curves.

The pair (G, δ), i.e., a graph with a drawing, is called a topological graph. A
topological graph (G, δ) is simple if in δ two edges have at most one common
point. More generally, the topological graph is called k-simple if in δ two edges
have at most k common points. For both simple and k-simple graphs we do not
c© Springer-Verlag Berlin Heidelberg 2016
E.W. Mayr (Ed.): WG 2015, LNCS 9224, pp. 391–405, 2016.
DOI: 10.1007/978-3-662-53174-7 28
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allow self-intersecting edges. A topological graph is a geometric graph if all its
edges are drawn as straight-line segments. Obviously, every geometric graph is
simple, provided that the vertices are placed in general position. Thus, every
graph has simple drawings.

For a graph property T , a graph G is T -saturated if G has property T ,
but the addition of any edge joining two non-adjacent vertices of G violates
property T . Often structures with property T are quite hard to grasp, but T -
saturated structures might have a more useful character. We direct the inter-
ested reader to applications of the saturation technique [1,4,6]. This notion can
be naturally extended to hypergraphs. A thorough survey by Faudree, Fau-
dree, and Schmitt [2] discusses the case when property T is “not having F as a
sub(hyper)graph”.

In this paper we study saturated k-simple topological graphs. These are topo-
logical graphs that are k-simple, but no edge can be added without violating
the k-simplicity of the drawing. Saturated planar drawings are triangulations
and have therefore due to Euler’s formula 3n − 6 edges. Recently, Kynčl, Pach,
Radoičić, and Tóth [5] started to investigate saturated simple k-simple graphs.
The maximum number of edges a saturated simple topological graph can have is
clearly

(
n
2

)
, since the geometric graph of Kn with points in convex position is a

simple drawing. The more intriguing questions ask about the minimum number
of edges for saturated k-simple topological graph. One of the main results of
Kynčl et al. [5] is a construction of sparse saturated simple and k-simple topo-
logical graphs. We denote by sk(n) the minimum number of edges a saturated
k-simple graph with n vertices can have. Their upper bound on sk(n) is a linear
function of n, for n being the number of vertices; see Table 1 for the bounds
obtained by Kynčl et al. [5]. The gap between the best known upper and lower
bounds for sk(n) is quite substantial. We only know that s1(n) ≥ 1.5n and that
sk(n) ≥ n [5].

Table 1. Old and new upper bounds for sk(n), the minimum number of edges in a
saturated k-simple graph with n vertices.

k 1 2 3 4 5 6,8,10 7 9, ≥ 11

Old upper bounds [5] 17.5n 16n 14.5n 13.5n 13n 9.5n 10n 7n

New upper bounds 7n 14.5n

Our Contribution. We improve the upper bounds for sk(n) for k = 1, 2. We do
this by showing that for any positive integer n there exists a saturated simple
topological graph with at most 7n edges (in Sect. 2), and a saturated 2-simple
graph with 14.5n edges (in Sect. 3). This result also implies that there are sat-
urated k-simple graphs with 14.5n edges for every k. See also Table 1 for a
comparison with the old bounds. Our proofs are constructive, i.e., we can give
the sparse saturated graphs.

We complete our results by studying local saturation of topological graphs.
Here, local saturation refers to drawings in which one (or several) vertices have a
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small vertex degree even though the full drawing might not be the sparsest. Such
observations might be helpful in further studies, e.g., if we want to investigate
techniques for proving lower bounds that are based on the minimum vertex
degree in saturated graphs. We show that there are arbitrarily large saturated
simple graphs that have a vertex of degree 4, and saturated simple graphs in
which 10 percent of the vertices have degree 5. For saturated 2-simple graphs
we can prove that there are drawings with minimum degree 12. The currents
lower bounds for sk(n) are obtained by bounding the minimum vertex degree
in saturated k-simple graphs [5]. Our results show the limits of this approach.
These results can be found in Sect. 4.

2 Saturated Simple Topological Graph with Few Edges

In this section we give a construction that generates a sparse saturated simple
graph. We start with defining a graph G, parametrized by �, with n = 6� vertices
and 9� − 6 edges. This graph is the backbone of our sparse saturated graph.

The drawing is best visualized on the surface of a long circular cylinder.
Figure 1 shows an unrolling of the cylinder into the plane. The cylinder is
obtained by cutting the drawing along the two dotted lines and gluing the top
and the bottom together. The vertices of the graph are placed in a 3×2�-grid-like
fashion. We draw the vertices together in pairs, with each vertex XL

i on the left
and the corresponding vertex XR

i on the right, for X = A,B,C and i = 1, . . . , �.
We refer to the vertices whose label have the subscript i as the i-th layer.

G is the union of

– three vertex-disjoint paths of blue edges connecting AL
1 AL

2 . . . AL
� , BL

1 BL
2 . . .

BL
� , and CL

1 CL
2 . . . CL

� ,
– three vertex-disjoint paths of red edges connecting AR

1 AR
2 . . . AR

� , BR
1 BR

2 . . .
BR

� , and CR
1 CR

2 . . . CR
� , and

– k disjoint cycles of green edges connecting AL
i BL

i CL
i .

We will first consider the graph GRB that omits the green edges, because
this graph is more symmetric: with the exception of the vertices X

L/R
1 and

X
L/R
� near the boundary, all vertices look identical. Apart from these boundary

effects, the drawing has a rotational symmetry, cyclically shifting the labels
A → B → C → A, a translational symmetry, shifting indices i up or down,
and a mirror symmetry, exchanging left with right and blue with red. The green
edges destroy this mirror symmetry: there are then two classes of vertices, the
blue vertices XL

i and the red vertices XR
i .

We will show that the maximum degree in any saturated drawing which
extends GRB is 16. The 16 potential neighbors of a typical vertex AL

i are shown in
Fig. 1. This establishes that there are saturated drawings with n vertices and less
than 8n edges. When the green edges are included, the three dash-dotted edges
in Fig. 1 become impossible. Thus, each blue vertex has 13 potential neighbors.
The red vertex AR

i+1, which can be taken as a representative of a typical red
vertex, loses AL

i as a potential neighbor. Thus, each red vertex has at most 15
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Fig. 1. The graph G on an unrolled cylinder, with the 16 potential neighbors of a
vertex. Green edges are dashed. The solid black edges show possible additional edges
for the vertex AL

i . (Color figure online)

potential neighbors. This improves the upper bound for the smallest number of
edges in a saturated drawings with n vertices to 7n.

Theorem 1. Let s(n) denote the minimum number of edges that a simple sat-
urated drawing with n vertices can have. Then s(n) ≤ 7n.

The remainder of this section is devoted to proving the above theorem. We
start with the analysis of the graph GRB .

Lemma 1. The 16 potential neighbors of a typical vertex AL
i in GRB are all

11 vertices of levels i − 1 and i (AL
i−1, B

L
i−1, C

L
i−1; AR

i−1, B
R
i−1, C

R
i−1; BL

i , CL
i ;

AR
i , BR

i , CR
i ) plus the 5 vertices AR

i−2; AL
i+1, B

L
i+1, C

L
i+1; AR

i+1.

When any of the neighbors listed above does not exist because i ≤ 2 or i = �,
the lemma still holds in the sense that the remaining vertices form the set of
potential neighbors. In the proofs, when we exclude an edge between, say, levels
i and j, our arguments will not use edges outside this range.

In the following we will look at the given drawing of GRB (or G) and argue
about the additional edges that can be drawn. The implicit assumption is that
these edges cannot cross any given edge more than once. Usually, we will regard a
new edge as a directed edge, starting at some vertex and trying to reach another
vertex.
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A belt is a substructure of our drawing. It is formed by the 12 vertices of
two successive layers with their 6 edges between them, see Fig. 2. This drawing
separates a large face on the left from a large face on the right. More precisely,
the belt is defined as the part of the plane (or the cylinder) which lies between
these two large faces.

CR
i+1

AR
i+1

CR
i+1

BR
i+1

CR
i+1

AR
i+1

CR
i+1

BR
i+1

CL
i+1

AL
i+1

CL
i+1

BL
i+1

CL
i+1

AL
i+1

CL
i+1

BL
i+1

CR
i

AR
i

CR
i

BR
i

CR
i

AR
i

CR
i

BR
i

CL
i

AL
i

CL
i

BL
i

CL
i

AL
i

CL
i

BL
i

outside

top

γL γR

βL βR

βL βR

αL

αR

γL γR

Fig. 2. Escape from a belt is difficult
(Lemma 2).

Fig. 3. The situation discussed in the proof
of Lemma 1 for left side neighbors.

We denote the six edges of the belt by αL, βL, γL, αR, βR, γR; as shown in
Fig. 2. Each edge is cut into six sections by the intersections with the other edges:
Two sections are little “stumps” at the end vertices. One section belongs to the
boundary between the belt and the outside. The remaining three sections form
the top part of the edge. We say that a new (directed) edge crosses a belt edge
from the outside or from the top if it crosses the boundary part or the top part
in the appropriate direction.

Lemma 2. In a simple drawing that contains GRB, the following holds: (1) If
an edge crosses a belt edge from the top or from the outside, it must terminate
inside the belt. (2) No edge can cross a belt.

Proof. We start with the following observation: If an edge crosses αL from the
outside or from the top, and it does not terminate at BL

i or at BR
i , then it must

later cross γL or γR from the top. This observation holds symmetrically for αR

instead of αL, and cyclically for the other four belt edges. Hence, any edge that
“enters” the belt from the outside has to continue by crossing another edge from
the belt from the top. There is no way to leave the belt without crossing some
edge twice. �	
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Fig. 4. Restricting the neighbors to the right.

After these preparations, we are ready to prove Lemma 1.

Proof of Lemma 1. Let us first look at the potential neighbors on the left side.
A connection from AL

i to levels j ≤ i − 3 is impossible, because it would have
to cross a belt. For the vertices at level i − 2 we observe the following (see Fig. 3
for the edge numbers we are referring to): When we start from AL

i we cannot
cross the right boundary of the belt formed by levels i − 1 and i, because then
we would have to cross the whole belt to reach level i − 2. If we cross edge 1
or 2 from the top, then, by Lemma 2, we are restricted to the belt defined by
level i − 1 and i. Thus we can regard edge 1 and 2 as closed from the top.
(These edges can later be crossed from the bottom.) We successively conclude
that the new edges must cross the shadowed parts of the edges 3, 4, 5, and 6.
The endpoints BR

i−2, B
L
i−2, A

L
i−2 of the edges 4, 5, and 6 cannot be taken. CL

i−2

and CR
i−2 are enclosed in a small face delimited by the edges 4, 5, and 6, and

cannot be reached. AR
i−2 is thus the only reachable vertex of level i − 2.

Let us turn to the potential neighbors on the right side. A connection from
AL

i to levels j ≥ i + 3 is impossible, because it would have to cross a belt.
Vertices at level i + 2 cannot be reached either, because (i) if we cross the edge
forming the left boundary of the belt spanned by the vertices of level i and i+1
we cannot cross this belt anymore and therefore cannot reach level i + 2, and
(ii) if we cross one of the edges in the face that contains AL

i from the top (edge
labeled 1 and 2 in Fig. 4(a), then, by Lemma 2, we are also restricted to this belt.
Thus we are restricted to the shaded region in Fig. 4a.

The vertices BR
i+1 and CR

i+1 also cannot be neighbors of AL
i . We discuss the

exclusion of CR
i+1 as a potential neighbor – the case for BR

i+1 is symmetric. The
edges incident to AL

i and CR
i+1, which we call the closed edges cannot be crossed.

The closed edges are depicted as thicker curves in Fig. 4b. Consider the portion
of the red edge πr that runs between AR

i and AR
i+1 above the closed edges (see

Fig. 4(b). The curve πr bounds a region below in which the remaining edges
bounding this region are parts of the closed edges. Hence, if we enter this region
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we cannot leave and therefore we cannot cross πr (see Fig. 4(b). Let us now
consider the partial edge πb that runs between BL

i+1 and BL
i above the closed

edges and πr. Again, there is a region whose boundary is part of the closed
edges and also πb. To enter and leave this region we have to cross either one of
the closed edges or πr, or we have to cross πb twice. Since all these options are
invalid, we have to avoid this region, and therefore are not allowed to cross πb.
We observe that the closed edges together with πb and πr leave AL

i and CR
i+1 in

different faces, which shows that these vertices cannot be neighbors unless we
cross one edge twice. �	

Now we turn back to G. The additional green edges exclude some of the
possible edges from the Lemma 1.

Lemma 3. 1. The 13 potential neighbors of a typical vertex AL
i in G are all

5 vertices of level i (BL
i , CL

i ; AR
i , BR

i , CR
i ), all but one vertex of level i − 1

(AL
i−1, B

L
i−1; AR

i−1, B
R
i−1, C

R
i−1) plus the 3 vertices AR

i−2; AL
i+1, C

L
i+1.

2. The 15 potential neighbors of a typical vertex AR
i in G are all 11 vertices of

levels i and i + 1 (BL
i , CL

i , AL
i ; BR

i , CR
i ; AL

i+1, B
L
i+1, C

L
i+1; AR

i+1, B
R
i+1, C

R
i+1)

plus the 4 vertices AR
i−1, B

R
i−1, C

R
i−1; AL

i+2.

The claim immediately follows from the next lemma, whose proof can be
found in the full version [3].

Lemma 4. In a simple extension of G, AR
i+1, CL

i−1 and BL
i+1 cannot be neighbors

of AL
i .

As a consequence of Lemma 3 the average degree in a saturated extension
of G is at most 14, which proves Theorem 1 when the number n of vertices is
a multiple of 6. A more careful analysis reveals that for any n ≥ 12 that is a
multiple of 6, there exists a saturated simple topological graph with n vertices
and at most 7n − 30 edges.

Our construction can be extended to any vertex size by cloning some vertices.
Take a saturated simple topological graph and any vertex P of it. Next to P we
add ρ new copies of P – the clones. Connect the neighbors of P to each clone
by edges that are non-intersecting perturbations of the edges incident to P . By
this we obtain a simple drawing. A saturation of this drawing can include as
additional edges only edges among P and its clones.

For n ≥ 12, we can write n as 6r + ρ where 0 ≤ ρ ≤ 5. If ρ = 0, we are done.
If ρ ≥ 1, then start with a construction for a saturated simple topological graph
with 6r vertices. Add ρ clones of its lowest-degree vertex P , and saturate. In our
construction, the lowest degree is 7. Cloning such a vertex ρ times adds up to
7ρ +

(
ρ+1
2

)
additional edges after saturation. Since ρ ≤ 5, the number of edges

is bounded by

7(6r) − 30 + 7ρ +
(
ρ+1
2

) ≤ 7(6r + ρ) − 30 + 15 = 7(6r + ρ) − 15 < 7n

The resulting simple topological graph proves Theorem 1 for n ≥ 12. If n ≤ 11,
then the bound of Theorem1 holds since even the complete graph has at most(
n
2

) ≤ 5n edges.
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3 Saturated 2-Simple Topological Graphs with Few Edges

3.1 The Grid-Block Configuration

To begin, we study a drawing of 6 edges (three red edges and three black edges)
as depicted in Fig. 5. The drawing consists of three disjoint edges represent-
ing the red edges r1, r2, and r3. The black edges are drawn, such that one
crosses (in order) r1, r2, r3, r1, r2, r3, the other r2, r3, r1, r2, r3, r1, and the last
one r3, r1, r2, r3, r1, r2. There are no other crossings in the drawing. Note that the
configuration superimposes a grid. We call such an arrangement of edges a grid-
block . These blocks have been used as so-called (3, 2)-grid-blocks by Kynčl et al.
as building blocks in their saturated graphs [5].

As done in the previous section we consider the graph as drawn on the cylin-
der. More precisely, we draw the graph inside a rectangle in which we identify
two sides in opposition (bottom side and top side), while the other sides are
named right side and left side. If an edge uses the transition across the bot-
tom/top edge we say that it wraps around. In the following we assume that the
grid-blocks are drawn such that only the black edges wrap around. We label
every face of the drawing of a grid-block with 2 numbers. These numbers refer
to the coordinates of the (dual) superimposed grid, with (0, 0) being the label
of the face that contains the two bottom most endpoints of the black edges on
the left side. All “vertical” coordinates are considered modulo 3.

Fig. 5. A grid-block with some labeled faces.

Kynčl et al. observed that every edge connecting the left with the right side
of the cylinder has to intersect the edges of grid-block at least 5 times. For
our construction we need a stronger statement which is presented in Lemma 5
(proven in the full version [3]).

Lemma 5. Let γ be a path crossing the grid-block that starts in face (0, i) and
ends in face (5, j) and that never visits the faces (0, ·), (5, ·) again. Then γ can
be transformed to a path γ̃ passing through the grid block keeping its endpoints
fixed, such that γ̃

1. crosses only the edges (with the same or smaller multiplicity) crossed by γ,
2. has 5 crossings with the grid-block,
3. first walks between the faces (0, i), 0 ≤ i ≤ 2, then crosses some black edges

to the right, passing from a face (a, i) to a face (a + 1, i), then crosses some
red edges upwards, passing from a face (a, i) to a face (a + 1, i + 1).
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3.2 A Blocking Configuration

We call the building blocks of the following constructions black block and red
block, see Fig. 6(a)-(b). We refer to the edges in the red (black) block as red
edges (black edges). Any two red edges, as well as any two black edges, cross
exactly twice. Note that after we have mirrored the red block it is isotopic to
the black block.

(a) (b)

(c)

Fig. 6. A black block (a), a red block (b), and a 3-block, formed by consecutive black,
red and again black blocks (c). (Color figure online)

We combine two black blocks and a red block as shown in Fig. 6(c) to obtain
a drawing that we call a 3-block . Since the red block differs from the black block
only by a reflection, the 3-block built form consecutive black-red-black blocks is
a mirror image of the 3-block built from consecutive red-black-red blocks.

The following theorem is the key observation that we need for the construc-
tion of the sparse 2-simple drawing.

Theorem 2. Any path connecting the left with the right sides of the cylinder
while passing through the 3-block crosses one of the edges forming the 3-block at
least 3 times.

Before proving the theorem we provide some helpful lemmas. We consider the
path as a walk on the graph, dual to the graph of the arrangement of the 3-block.
We label some of the faces of the arrangement as shown in Fig. 7. In particular,
for i = 0, 1, 2, we denote the faces containing the left endpoint of the red edges
ri as Li, and the faces containing the right endpoint as Ri. The edges of the left
black block are named bi and the edges of the right black block are named b′

i.
Finally, let LM i be the face that contains the right endpoint of bi, and let RM i

be the face that contains the left endpoint of b′
i. The region spanned by L0, L1

and L2 is denoted by L. We similarly define regions LM , RM and R.
Let γ be a path that passes through the 3-block. To facilitate the analysis

we subdivide the path γ into smaller pieces, which we call links. The links are
defined as follows:

link 1: from the start point (left) of γ to the last point of γ in L,
link 2: from the last point of γ in L to its first point in LM ,
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Fig. 7. A 3-block with some distinguished faces (capital letters) and edges. The red
edges forming the blocks are labeled bi, b

′
i and ri. The “zones” at which we subdivide

the path into links are labeled above the strip.

link 3: from the first point of γ in LM to its last point in RM ,
link 4: from the last point of γ in RM to its first point in R,
link 5: from the first point of γ in R to its (right) endpoint.

Before we proceed we check that the links are well defined, i.e., that the points
defining the links appear in order. For the links 1, 3 and 5 this holds trivially,
while to check it for links 2 (and, symmetric, 4), we need to prove that the last
point in L precedes the first point in LM :

Lemma 6. No path can visit the regions L → LM → L → LM in this order
without crossing some of the edges forming the 3-block at least 3 times.

Proof. The faces L and LM are separated by a grid-block. Passing through it
requires at least 5 crossings of its edges. Any path visiting L → LM → L → LM
would cross the grid-block at least 3 times, and hence it would cross the edges of
the grid-block at least 3 × 5 = 15 times. Since a grid-block is formed by 6 edges,
at least one of them will be crossed 3 times or more. �	

We continue by analyzing the path through the 3-block following its links.

Lemma 7. Any path passing the 3-block from left to right with the last point of
link 1 at Li crosses the edge bi+1 at least once or one of the edges bi and bi+2

at least twice at its first link (all indices modulo 3).

Proof. A path that ends in Li crosses either bi+1 or it crosses bi+2 while entering
from Li+1. Repeating this argument twice proves the lemma. �	

The following lemma summarizes the behavior of the path on the first two
links:

Lemma 8. Any path γ passing the 3-block that does not intersect any edge 3
times or more crosses the red edges rj, rj+1 before it first visits the region LM
at LM j.

Proof. We modify the path γ along link 2 following the simplification procedure
described in Lemma 5 to get a path γ̃. Lemma 5 also implies that the link 2 of γ̃
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consists of exactly 5 “steps”: first, 0 ≤ h ≤ 5 steps crossing the black edges →
to the right, followed by v = 5 − h steps crossing red edges ↗ upward.

Assume that the first point of link 2 of γ̃ lies inside the face Li. Then h
horizontal steps of link 2 cross the bi+1, bi, bi−1, . . . , bi+1−(h−1). Moreover,
Lemma 7 guarantees that already link 1 of the path γ̃ crossed either bi+1 once
or one of bi or bi+2 twice. Since γ̃ does not cross any of the black edges more
than twice, it follows that h ≤ 3. This, however, shows that v ≥ 2, which implies
that the path γ̃ crosses the red edges rj+1, rj before it reaches the last point of
its second link in face LM j . To finish the proof we recall that the path γ crosses
every edge of the 3-block at least as many times as γ̃ and that the last points of
the link 2 of γ and γ̃ coincide. �	
Proof of Theorem 2. We prove by contradiction, namely, we assume that there
is a path γ that passes through the 3-block while crossing every edge of the
3-block at most twice. Let LM j be the face where link 2 ends, and let RM � be
the face where link 4 starts. By Lemma 8 we know that γ crosses rj and rj+1

in link 1 and link 2. Since the structure of the link 4 and 5 coincides with the
structure of link 2 and 1 we can apply Lemma8 also to the last two links. Thus,
γ crosses r�−1, r� in link 4 and 5. A short case distinction (� might be either
j, j + 1, or j + 2) shows that γ cannot connect endpoints of link 2 and 4 via
link 3 without crossing at least one of the red edges 3 times; see Fig. 8. The
figure depicts all ways of how to possibly route the path γ in link 3. Each of the
possible continuations crosses some of the red edges rj , rj+1, rj−1 twice and is
blocked within one of the faces before it reaches the face RM �. As a consequence
the path γ cannot exists. �	

Fig. 8. Each row depicts a case. Black dots inside faces mark the faces LM j (left) and
RM � (right). Black crosses on red edges mark the edges that are, due to Lemma 8,
crossed by the path outside link 3. We color red edges black as soon as they are crossed
by the path γ twice and no more crossings are allowed. In the case � = j the path can
be continued in 3 different directions, in each of them the path is blocked after one
step. (Color figure online)
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3.3 A Sparse Saturated 2-Simple Drawing

We show now how to combine a sequence of 3-blocks to obtain a 2-simple satu-
rated drawing with few edges.

Theorem 3. Let s2(n) denote the minimum number of edges that a 2-simple
saturated drawing with n vertices can have. Then s2(n) ≤ 14.5n.

Proof. We consider the drawing that repeats the pattern shown in Fig. 9. The
drawing is formed by � consecutive black and red blocks; see Fig. 6. We have 6
vertices per block, thus 6� in total. Clearly, the drawing is 2-simple.

Fig. 9. A 2-simple drawing that does not allow too many edges to be added.

Now we add as many edges as possible without violating the 2-simplicity, so
that the drawing becomes saturated (this padding procedure is definitely not
unique). Theorem 2 implies that without violating the 2-simplicity any vertex
can be connected by an edge only to 29 other vertices. This implies that the
maximal number of edges in the resulting saturated 2-simple drawing is less
then or equal than 14.5n. For n not divisible by 6 our construction can be easily
adapted. We refer to the full version for details [3]. �	

4 Local Saturation

The lower bound in [5] on the number of edges in a saturated simple topological
graph is based on the following lemma.

Lemma 9 [5]. Let G be a simple topological graph with at least four vertices,
and let A be a vertex of degree at most two. Then G has a simple extension by
an edge incident to A.

This lemma implies that in a simple saturated topological graph with at
least four vertices, every vertex must have degree at least three, and hence the
number of edges is at least 1.5n. Can we improve the bound on the edge number
by strengthening the lower bound on the degree? The following considerations
establish a limit to this approach: There are saturated graphs with minimum
degree four.

We say that a vertex S in a simple topological graph is saturated if it cannot
be connected to a non-adjacent vertex while maintaining simplicity. The above
lemma implies that in a simple topological graph with at least four vertices, a
saturated vertex must have degree at least three.
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Observation 1. For any positive integer n ≥ 6, there is a simple topological
graph on n vertices with a saturated vertex of degree four.

...

...

Fig. 10. The boxy vertex of degree four is saturated.

The observation is due to the construction presented in Fig. 10. This example
is an extension of the case n = 6 from [5, Fig. 2]. The topmost vertex is saturated,
since only the straight edges are not incident to that vertex. It is easy to see,
that in order to connect a vertex p to the degree four, on has to cross an edge
incident to p before reaching p.

Fig. 11. In the simple topological graph above, the central vertex has degree 5, and it
cannot be connected by an edge to any point in the unbounded region while keeping
simplicity.

The following lemma presents a construction that realizes small vertex
degrees for many vertices.

Lemma 10. For any positive integer k, there is a saturated simple topological
graph on 10k vertices with k vertices of degree 5.
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Proof. The main idea of our construction is depicted in Fig. 11. A simple case
distinction verifies that no edge can connect the central vertex with a point on
the outer face without violating the simplicity of drawing.

Now, take k copies of the drawing in Fig. 11, and place them on the plane
next to each other such the interior faces of the copies are non-overlapping. The
k copies of the central vertex will remain degree-5 vertices no matter how we
saturate the graph. �	

To study local saturation in 2-simple case we use a slight modification of the
3-block introduced in Sect. 3; see Fig. 12. By the arguments given in the proof
of Theorem 2 the rightmost vertex can be connected to only 12 other vertices
(Fig. 12) and thus it cannot be connected to any vertex that belongs to the
leftmost (unbounded) face of the drawing without violating 2-simplicity.

The “unrolling” of this configuration from the cylinder to the plane (with
center of the unrolling in the rightmost vertex) is presented in Fig. 13. The
central vertex cannot be connected by an edge to any vertex that belongs to the

A

12 vertices reachable from A

Fig. 12. The rightmost vertex A cannot be connected to any vertex that belongs to
the leftmost (unbounded) face without violating 2-simplicity.

C

Fig. 13. Unrolling of Fig. 12 to the plane. The central vertex C corresponds to the
rightmost vertex A of Fig. 12.



Saturated Simple and 2-simple Topological Graphs with Few Edges 405

unbounded region without violating 2-simplicity, and so it has degree no larger
than 12 in any saturation. After placing k disjoint copies of this construction to
the plane next to each other we obtain the following result:

Lemma 11. For any positive integer k, there is a saturated 2-simple topological
graph on 16k vertices with k vertices of degree 12.
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Abstract. A graph is 1-planar, if it admits a 1-planar embedding, where
each edge has at most one crossing. Unfortunately, testing the 1-planarity
of a graph is known as NP-complete.

This paper initiates the study of the problem of the testing 2-planarity
of a graph, in particular, testing the “full-outer-2-planarity” of a graph.
A graph is outer-2-planar, if it admits an outer-2-planar embedding, that
is every vertex is on the outer boundary and no edge has more than
two crossings. A graph is fully-outer-2-planar, if it admits a fully-outer-
2-planar embedding, that is an outer-2-planar embedding such that no
crossing appears along the outer boundary. We present several struc-
tural properties of triconnected outer-2-planar graphs and fully-outer-2-
planar graphs, and prove that triconnected fully-outer-2-planar graphs
have a constant number of fully-outer-2-planar embeddings. Based on
these properties, we present linear-time algorithms for testing the fully-
outer-2-planarity of a graph G, whose vertex-connectivity is 1, 2 or at
least 3. The algorithm also produces a fully-outer-2-planar embedding of
a graph, if it exists. Moreover, we show that every fully-outer-2-planar
embedding admits a straight-line drawing.

1 Introduction

A recent research topic in topological graph theory generalises the notion of
planarity to sparse non-planar graphs with some specific crossings, or with some
forbidden crossing patterns. Examples include k-planar graphs (i.e., graphs that
can be embedded with at most k crossings per edge), k-quasi-planar graphs (i.e.,
graphs that can be embedded without k mutually crossing edges), RAC graphs
(i.e., graphs that can be embedded with right angle crossings), fan-crossing-free
graphs (i.e., graphs that can be embedded without fan-crossings), and fan-planar
graphs (i.e., graphs that can be embedded such that each edge is crossed by a
bundle of edges incident to a common vertex) [2,7,9,18,21]. Some mathematical
results are known for these graphs. Pach and Toth [21] proved that a 1-planar
graph with n vertices has at most 4n−8 edges. Agarwal et al. [2] (Ackerman [1])
showed that 3- and 4-quasi-planar graphs have linear number of edges. Fox
et al. [11] proved that k-quasi-planar graphs have at most O(n log1+o(1) n) edges.

For omitted proofs and figures, see the full version of this paper TR [17].
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Didimo et al. [9] showed that RAC graphs have at most 4n − 10 edges. Cheong
et al. [7] showed that fan-crossing free graphs have at most 4n − 8 edges, and
Kaufmann and Ueckerdt [7] showed that fan-planar graphs have at most 5n−10
edges.

Recently, algorithmics and complexity for such graphs have been investigated.
Grigoriev and Bodlaender, and Kohrzik and Mohar proved that testing the 1-
planarity of a graph is NP-complete [14,19]. Argyriou et al. proved that testing
whether a given graph is a RAC graph is NP-hard [3]. Testing fan-planariy of
graphs is NP-hard [6], even if a rotation system (i.e., the circular ordering of
edges for each vertex) is given [5].

On the positive side, Eades et al. [10] showed that the problem of testing the
maximal 1-planarity (i.e., addition of an edge destroys 1-planarity) of a graph
can be solved in linear time, if a rotation system is given. Hong et al. [15], and
Auer et al. [4] independently presented a linear time algorithm for testing the
outer-1-planarity (i.e., 1-planar graphs with every vertex is on the outer face)
of a graph. Bekos et al. presented a polynomial time algorithm for testing the
maximal outer-fan-planarity (i.e., fan-planar graphs with each vertex is on the
outer face and addition of an edge destroys outer-fan-planarity) [5].

This paper initiates the problem of testing the 2-planarity of a graph, in
particular, testing the fully-outer-2-planarity of a graph. An embedding γ of a
graph G in the plane is 2-planar, if no edge has more than two crossings. A
2-planar embedding of G is called outer-2-planar (O2PE), if each vertex is on
the outer boundary. An outer-2-planar embedding of G is called fully-outer-2-
planar (FO2PE), if no edge crossings appear along the outer boundary. A graph
G is 2-planar (resp., outer-2-planar, fully-outer-2-planar) if it admits a 2-planar
(resp., outer-2-planar, fully-outer-2-planar) embedding (see Fig. 1).

Fig. 1. (a) An FO2PE γ1 of a biconnected graph G1; (b) An FO2PE γ2 of a triconnected
graph G2; (c) An O2PE γ3 of a triconnected graph G3.

Note that the problem of testing the outer-2-planarity seems much harder
than testing the outer-1-planarity. For example, it was shown that outer-1-planar
graphs (say K4) are indeed planar graphs [4]. However, outer-2-planar graphs
(say K5) are non-planar-graphs. Also there is only one triconnected outer-1-
planar graph, K4, and it has unique outer-1-planar embedding [4,15]. However,
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we can show that there is a triconnected outer-2-planar graph which has expo-
nentially many outer-2-planar embeddings. Thus, the main thrust of this paper is
to devise a linear-time algorithm for testing the full-outer-2-planarity. Moreover,
the outer boundary of an FO2PE of a biconnected graph G is a Hamiltonian
cycle of G. Note that testing whether a given graph has a Hamiltonian cycle is
known to be NP-complete, even for cubic graphs [13].

We first prove several structural properties of outer-2-planar graphs and fully-
outer-2-planar graphs. Using these properties, we present a linear-time algorithm
for testing the fully-outer-2-planarity of a graph. The following theorem summa-
rizes our main results.

Theorem 1. There is a linear-time algorithm that tests whether a given graph is
fully-outer-2-planar, and computes a fully-outer-2-planar embedding of the graph
if it exists.

We use a connectivity approach to prove Theorem 1. The oneconnected case
is easy (see Theorem 4), and the biconnected case is more involved (see Theo-
rem5); the main contribution of this paper is to solve the triconnected case,. The
following theorem is the key to design linear-time algorithm for FO2PE.

Theorem 2. The number of all FO2PEs of a triconnected graph G is constant,
and the set of all FO2PEs of G can be generated in linear time.

Fary’s well-known theorem [12] shows that every plane graph admits
a straight-line drawing. Thomassen [22] presented forbidden subgraphs for
straight-line drawings of 1-plane graphs. Hong et al. [16] gave a linear-time algo-
rithm to construct a straight-line 1-planar drawing, if it exists. Nagamochi solved
the more general problem of straight-line drawability for wider class of embedded
graphs [20]. Here we show that every outer-2-plane graph admits a straight-line
drawing.

Theorem 3. Every outer-2-plane embedding admits a straight-line drawing.

2 Preliminaries

Let G = (V,E) be a graph, where n denotes |V | unless stated otherwise. Let
X,Y ⊆ V be subsets of vertices and F ⊆ E be a subset of edges. For a vertex
v, let E(v) denote the set of edges vu incident to v, deg(v) denote the degree
|E(v)| of v, N(v) denote the set of neighbors u of v, and N [v] = N(v)∪{v}. We
may indicate the underlying graph G in these notations in such a way that E(v)
is written as E(v;G). Let G−F denote the graph obtained from G by removing
the edges in F , and G − X denote the graph obtained from G by removing the
vertices in X together with the edges in ∪v∈XE(v). Let G/X denote the graph
obtained from a graph G by contracting the vertices in a subset X of vertices
into a single vertex, where any resulting loops and multiple edges are removed.
A vertex of degree d is called a degree-d vertex. A simple cycle of length k is
called a k-cycle, where a 3-cycle is called a triangle.
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A topological graph or embedding γ of a graph G is a representation of a graph
(possibly with multiple edges) in the plane, where each vertex is a point and each
edge is a Jordan arc between the points representing its endpoints. Two edges
cross if they have a point in common, other than their endpoints. The point
in common is a crossing. To avoid pathological cases, standard non-degeneracy
conditions apply: (i) two edges intersect at most one point; (ii) an edge does not
contain a vertex other than its endpoints; (iii) no edge crosses itself; (iv) edges
must not meet tangentially; (v) no three edges share a crossing point; and (vi)
no two edges that share an endpoint cross.

For an O2PE γ of a graph G = (V,E), we denote by ∂γ the outer boundary
of γ, which may pass through a crossing point made by two edges. An edge e ∈ E
is called an outer (resp., inner) edge of γ if the whole drawing of e is part of ∂γ
(resp., ∂γ passes through only the end-vertices of e). An edge may not be outer
or inner when a crossing on it appears along ∂γ. Let V∂γ , E∂γ and C∂γ denote
the sets of vertices, outer edges and crossings in ∂γ.

For two vertices u, v ∈ V , the boundary path traversed from u to v in the
clockwise order is denoted by ∂γ[u, v]. Let V∂γ [u, v], E∂γ [u, v] and C∂γ [u, v]
denote the sets of vertices, outer edges and crossings in ∂γ[u, v]. Also let
V∂γ(u, v] = V∂γ [u, v] − {u}, V∂γ [u, v) = V∂γ [u, v] − {v}, V∂γ(u, v) = V∂γ [u, v] −
{u, v}. We call the boundary path ∂γ[u, v] crossing-free if C∂γ [u, v] = ∅, i.e., it
consists of outer edges.

To solve the problem of finding an FO2PE γ of a graph G, we consider
the problem with an additional constraint such that a set B of specified edges
is required to appear along the boundary; i.e., B ⊆ E∂γ , and denote such an
instance by (G,B). An FO2PE of γ of G such that B ⊆ E∂γ is called an FO2PE
extension of (G,B), and an instance (G,B) is called extendible if it admits an
FO2PE extension.

3 Connected Graphs and Biconnected Graphs

We first observe that we can focus on biconnected graphs to design algorithms
for testing the (full) outer-2-planarity.

Theorem 4. A graph is outer-2-planar (resp., fully-outer-2-planar) if and only
if its biconnected components are outer-2-planar (resp., fully-outer-2-planar).

Thus, in what follows, we treat only biconnected graphs G as input. For a
permutation [v1, v2,. . ., vn] of the vertices of a biconnected graph G, let γ =
(G, [v1, v2,. . ., vn]) denote an embedding of G such that vertices v1, v2, . . . , vn

appear along ∂γ in the clockwise manner. We can easily observe that the number
of crossings on each edge in an O2PE γ is determined only by the ordering of
all vertices along ∂γ.

Our algorithm for the biconnected case uses the decomposition of a bicon-
nected graph G into triconnected components, also known as the SPQR tree,
defined by di Battista and Tamassia [8], which can be computed in linear time.
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Each triconnected component consists of real edges (i.e., edges in the origi-
nal graph) and virtual edges. (i.e., edges introduced during the decomposition
process, which represents the other triconnected components, sharing the same
virtual edges defined by cut-pairs).

In this paper, we use the SPR tree, a simplified version of the SPQR tree, and
treat the SPR tree as a rooted tree by choosing an arbitrary node as its root. Each
node ν in the SPR tree is associated with a graph called the skeleton of ν, denoted
by σ(ν), which corresponds to a triconnected component. There are three types
of nodes ν in the SPR tree: (i) S-node, where σ(ν) is a simple cycle with at least
three vertices; (ii) P-node, where σ(ν) consists of two vertices connected by at
least three edges; and (iii) R-node, where σ(ν) is a simple triconnected graph
with at least four vertices. The set of virtual edges in the skeleton of a node ν is
denoted by Evir(ν).

For a given biconnected graph G, we establish a recurrence relationship of
FO2PE problem instances (G,B) based on the SPR decomposition of G. In fact
we prove that G admits an FO2PE if and only if for each node ν in the SPR
decomposition of G, the instance (σ(ν), Evir(ν)) is extendible. We easily see that
for S-nodes ν (σ(ν), Evir(ν)) are cycles and always extendible.

The following theorem summarizes the main results in this section.

Theorem 5. A biconnected graph G = (V,E) admits an FO2PE if and only
if the following holds: for each P-node ν, |Evir(ν)| ≤ 2; and for each R-node
ν, (σ(ν), Evir(ν)) is extendible. Moreover, there is a linear-time algorithm for
constructing an FO2PE of G, if it exists.

4 Triconnected Graphs

In this section, we prove Theorem 2, i.e., every triconnected graph G has a con-
stant number of FO2PEs, and they can be generated in linear time. By applying
Theorem 2 to each triconnected graph (σ(ν), Evir(ν)) in Theorem 5, we see that
FO2PE testing for biconnected graphs can be done in linear time.

4.1 Sketch of Proof for Theorem2

To prove Theorem 2, we derive a recurrence structure over FO2PE problem
instances (G,B) for special local structures B, called “rims”. We first exam-
ine the structure of FO2PEs of triconnected graphs to prove that every FO2PE
γ of a triconnected graph G except for some small instances contains a special
local structure formed by three or four consecutive vertices along the boundary
of γ, called a “rim” (see Fig. 2(a)–(c)). We also prove that a given triconnected
graph G can have a constant number of subgraphs that can be a rim of some
FO2PE γ of G.

In order to find all FO2PEs of G, we choose each of these subgraphs as a
fixed partial embedding B and try to find an extension of instance (G,B) (the
union of extensions of (G,B) over all choices of B may contain a duplication of
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the FO2PE of G). To find all extensions of an instance (G,B) with a rim B, we
investigate the structure around the rim B to prove that some vertices or edges
adjacent to B must appear next to B along the boundary of any extensions of
an instance (G,B), and we identify a special subgraph structure called “frill”
(see Fig. 2(d)), which can be embedded in an FO2PE in two ways (i.e., frill is a
locally flippable embedding without destroying the whole FO2PE).

Based on these properties, we replace B with such vertices or edges to be
fixed next to B with a new rim B′ transforming G to another smaller tricon-
nected graph G′ so that (i) each extension γ of (G,B) can be obtained from
an extension γ′ of the new instance (G′, B′) by the reverse operation of the
transformation, if no frill appears next to B; or (ii) each extension γ of (G,B)
can be obtained from an extension γ′ of (G′, B′) by the reverse operation of
the transformation, and by the reverse operation followed by an operation for
flipping the frill in the embedding, if a frill appears next to B. In (i), there is a
one-to-one correspondence between the FO2PEs of (G,B) and those of (G′, B′),
while in (ii) two FO2PEs will be generated from each FO2PE of (G′, B′). This
establishes a reduction of an instance (G,B) of a rim B to a smaller instance
(G′, B′) of a rim B′, where B and B′ may be of different types among (3, 3)-rim,
(3, 4)-rim and 4-rim.

Given a triconnected instance G with n vertices, we directly generate all
possible embeddings of it when n ≤ 9 or reduce it to an instance (G′, B) with at
most seven vertices by a repeated application of the reduction step otherwise. In
the former, there are at most (9 − 1)! FO2PEs of G. In the latter, we will show
that the number of times that a “frill” appears during the reduction process is at
most 2, which implies that the number of all extensions of the instance (G′, B)
is at most 2 · 2 · (7− 1)!. Then the number of all FO2PEs of a given triconnected
instance G is at most max{8!, 4 · 6!}, which is constant.

For the time complexity, we use several different transformations to reduce
an instance (G,B) to a smaller instance (G′, B′) and most cases can be easily
executed in O(1) time, since in such cases we only need to examine a constant
number of vertics or edges adjacent to B to decide which transformation to be
applied. However, there are two special transformations (see Lemmas 10(iv) and
11(v)), where constructing (G′, B′) from (G,B) may take O(n) time to collect
the necessary information to determine (G′, B′). For these cases, we present a
sophisticated way of handling the transformation so that the reduction process
can still be executed in O(1) time. From the above, we will see that the total
running time for generating all FO2PEs of a given triconnected instance G can
be done in linear time.

4.2 Structural Results on Triconnected O2PE and FO2PE

We first present structural results on triconnected O2PE.

Lemma 1. Every O2PE of a triconnected graph G is quasi-planar unless G is
K3,3.
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Lemma 2. No triconnected graph G with a vertex of degree ≥ 5 admits an
O2PE.

Lemma 3. Let G = (V,E) be a triconnected graph which contains K4 as a
subgraph. If G admits an O2PE, then n ≤ 6.

By Lemmas 1 and 3, we obtain the following lemma.

Lemma 4. Let G be a triconnected graph with at least seven vertices. If G
admits an O2PE γ, then G contains no subgraph isomorphic to K4 and γ is
quasi-planar.

For an O2PE γ of a triconnected graph G = (V,E) with n ≥ 7, the cyclic
order [v1, v2, . . . , vn] of the vertices in ∂γ completely determines the embedding
γ by Lemma 4. In what follows, an O2PE γ of a graph G is simply denoted by
the cyclic order of the vertices in ∂γ.

For an inner edge uv in an FO2PE γ of a triconnected graph G, there is
an edge ab that crosses uv; i.e., ab joins a vertex a ∈ V∂γ(u, v) and a vertex
b ∈ V∂γ(v, u), since otherwise {u, v} would be a cut-pair.

4.3 Identifying a Constant Number of Candidate Partial
Embeddings

Let γ be an O2PE of a triconnected graph G. A triangle uvw is called a (3, 3)-
rim (resp., (3, 4)-rim) of γ if uv and vw are outer edges in γ and v is a degree-3
(resp., degree-4) vertex. A (3, 3)- or (3, 4)-rim is called a 3-rim. A 4-cycle uvv′w
is a 4-rim of γ if v and v′ are degree-3 vertices and uv, vv′ and vw are outer
edges in γ. A 3- or 4-rim is called a rim; see Fig. 2. We show that any FO2PE
of a triconnected graph G contains a rim.

Fig. 2. (a) a (3, 3)-rim B = [v1, v2, v3] with a degree-3 vertex v2; (b) a (3, 4)-rim
B = [v1, v2, v3] with a degree-4 vertex v2; (c) a 4-rim B = [v1, v2, v3, v4] with degree-3
vertices v2 and v3; (d) a frill e with span [s1, s2, s3, s4] such that s2 is the head and s3
is the tail of e.

Lemma 5. Any FO2PE γ of a triconnected graph G has a rim.
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Our algorithm for constructing an FO2PE of a given triconnected graph G
first generates triangles/4-cycles as rims of possible FO2PEs and tries to extend
each of the triangles/4-cycles into an FO2PE. By Lemma 2, we can assume that
a given triconnected graph G has a maximum degree at most 4. Then there
are O(n) triangles and 4-cycles for candidates of rims in an FO2PE of G. The
next lemma reduces the number of triangles/4-cycles to be generated as rims of
possible FO2PEs to a constant number.

Lemma 6. Let γ be an FO2PE of a triconnected graph G = (V,E) with n ≥ 10.

(i) Assume that G has a triangle, and let t1 be a triangle in G. Then ∂γ contains
a sequence [u, v, w] for the set of vertices u, v and w of some triangle t′ = uvw
sharing an edge with t1 (possibly t′ = t1) as its subsequence.

(ii) Assume that G has no triangle. Then G has a 4-cycle u1u2u3u4 with degree-
3 vertices u2 and u3 (by Lemma 5). Then ∂γ (or its reversal) contains
[u1, u2, u3, u4] (or [u3, u4, u1, u2] if deg(u4) = deg(u1) = 3) as its subse-
quence.

In an FO2PE γ of a triconnected graph G, an outer edge e joining a degree-3
vertex u and a degree-4 vertex v is called a frill if γ contains a subsequence
[s1, s2, s3, s4] with {s2, s3} = {u, v} such that s1s2s3 and s2s3s4 are triangles,
where the degree-4 vertex v (resp., degree-3 vertex u) is called the head (resp.,
tail) of the frill e (see Fig. 2(d)). We call [s1, s2, s3, s4] the span of frill e. An
operation of exchanging the positions of s2 and s3 in the cyclic order γ is called
flipping frill e. It is easy to observe that the cyclic order γ′ obtained from γ by
flipping a frill is also an FO2PE of G.

Lemma 7. Let γ be an FO2PE of a triconnected graph G = (V,E) with n ≥ 7.
Then there are at most two frills in γ, and if there are exactly two frills, then their
spans share at most one vertex. Moreover flipping a frill in γ never introduces a
new frill in the resulting cyclic order γ′.

We start with a triangle or 4-cycle fixed in Lemma6 as a rim of a possible
FO2PE of G, where the rim is a “partial embedding” of G. For a triangle uvw
(resp., a 4-cycle uvv′w) in a graph G, the instance where edges uv and vw
(resp., uv, vv′ and v′w) are required to appear as outer edges is given by (G,B)
with B = {uv, vw} (resp., B = {uv, vv′, v′w}). In what follows, we denote the
constraint B simply by a vertex sequence B = [u, v, w] (resp., B = [u, v, v′, w]).

Our next aim is to design a procedure for constructing a possible FO2PE of G
as an extension of the fixed rim. Suppose that Algorithm EXTEND(G,B) is a
procedure that returns all FO2PE extensions of (G,B). By executing such a pro-
cedure to each candidate of rims, we can enumerate all FO2PE of a triconnected
graph G in linear time (see [17] for detail).

4.4 Reducing Instances with Fixed Rims

In this section, we prove the following result by designing Algorithm
EXTEND(G,B).
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Lemma 8. For a triconnected instance (G,B) with a fixed rim, the maximum
number of FO2PE extensions of (G,B) is constant, and all FO2PE extensions
of (G,B) can be generated in O(n) time.

To prove Theorem 2, it suffices to show Lemma 8. We call an instance (G,B)
triconnected if G is triconnected. To prove the lemma, we establish a reduction
over triconnected instances (G,B) with fixed rims. We try to extend a given
partial embedding (G,B) by fixing some other vertices, and simplify the instance
with the newly fixed vertices into a triconnected instance (G′, B′) so that the
new instance (G′, B′) admits an FO2PE extension if and only if so does the
original instance.

For an instance (G,B), a sequence [s1, s2, . . . , sk] is called inevitable if any
FO2PE extension γ = [v1, v2, . . . , vn] of (G,B) contains the sequence as its sub-
sequence. Given an instance (G,B) with a fixed rim, we identify an inevitable
sequence or a frill contained in any FO2PE extension of (G,B) without gen-
erating all possible permutations of the vertices in G. Based on the identified
local structure of inevitable sequences or frills, we reduce (G,B) to a smaller
new instance (G′, B′) with a new fixed rim B′ such that (G,B) is extendible if
and only if so is (G′, B′).

When we construct a new instance (G′ = G/X,B′) by contracting a vertex
subset X in G into a single vertex v∗ and setting B′ to be the set V ′ of a new
triangle or 4-cycle, we call a vertex v ∈ X an attaching point of (G′, B′) if each
edge e = uv∗ ∈ E(v∗;G′) corresponds to an edge e ∈ E(v;G). We now show
how to reduce an instance with a fixed (3, 3)-rim.

Fig. 3. (a) a graph G such that v1 is a degree-3 vertex adjacent to w; (b) a new
instance (G′ = G/{v2, v3}, B′ = [w, v1, v

∗]) with a new (3, 3)-rim of triangle wv1v
∗

with a degree-3 vertex v1; (c) a graph G such that v1 is a degree-3 vertex not adjacent
to w; (d) a new instance (G′ = G/{z, v1}, B′ = [v∗, v2, v3]) with a new (3, 3)-rim of
triangle v∗v2v3 with a degree-3 vertex v2.

Lemma 9 ((3, 3)-rim reduction). Let (G,B) be a triconnected extendible
instance with n ≥ 7 for a fixed (3, 3)-rim B = [v1, v2, v3] with N(v2) =
{v1, v2, w}. Then one of the following conditions (i) and (ii) holds, and the
instance (G′, B′) defined in each condition is triconnected and extendible.
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(i) Assume that v1 or v3, say v1 is a degree-4 vertex adjacent to w (see Fig. 3(a)
and (b)). Then [w, v1, v2, v3] is inevitable to (G,B). Let G′ = G/{v2, v3} and
B′ = [w, v1, v

∗]. Any FO2PE extension of (G,B) is obtained by modifying
an FO2PE extension γ′ = [u1 = w, u2 = v1, u3 = v∗, u4, . . . , un′ ] of (G′, B′)
into γ = [w, v1, v2, v3, u4, . . . , un′ ].

(ii) Assume that v1 or v3, say v1 is a degree-3 vertex not adjacent to w
(see Fig. 3(c) and (d)). Then [z, v1, v2, v3] is inevitable to (G,B). Let
G′ = G/{z, v1} and B′ = [v∗, v2, v3]. Any FO2PE extension of (G,B) is
obtained by modifying any FO2PE extension γ′ = [u1 = v∗, u2 = v2, u3 =
v3, u4, . . . , un′ ] of (G′, B′) into γ = [z, v1, v2, v3, u4, . . . , un′ ].

Fig. 4. (a) a graph G such that z �∈ {w1, w2}; (b) a new instance (G′ = G/{z, v1}, B′ =
[v∗, v2, v3]) with a new (3, 4)-rim of triangle v∗v2v3 with a degree-4 vertex v2; (c) a graph
G such that z ∈ {w1, w2}; (d) a new instance (G′ = G/{z, v1}, B′ = [v∗, v2, v3]) with a
new (3, 3)-rim of triangle v∗v2v3 with a degree-3 vertex v2.

The next lemma shows how to reduce an instance with a fixed (3, 4)-rim.
Note that for an instance (G,B = [v1, v2, v3]) with N(v2) = {v1, v2, w1, w2} for
a (3, 4)-rim, we do not know the order of vertices w1 and w2 along the boundary
of an FO2PE extension of (G,B).

Lemma 10 ((3, 4)-rim reduction). Let (G,B) be a triconnected extendible
instance with n ≥ 7 for a fixed (3, 4)-rim B = [v1, v2, v3] with N(v2) =
{v1, v2, w1, w2}. Then one of the following conditions (i)–(iv) holds, and the
instance (G′, B′) defined in each condition is triconnected and extendible.

(i) Assume that v1 or v3, say v1 is a degree-3 vertex, where N(v1) = {v2, v3, z}.
(See Fig. 4.) Then [z, v1, v2, v3] is inevitable to (G,B). Let G′ = G/{v1, z}
and B′ = [v∗, v2, v3]. Any FO2PE extension of (G,B) is obtained by mod-
ifying an FO2PE extension γ′ = [u1 = v∗, u2 = v2, u3 = v3, u4, . . . , un′ ] of
(G′, B′) into γ = [z, v1, v2, v3, u4, . . . , un′ ].

(ii) Assume that a vertex v ∈ {v1, v3} is a degree-4 vertex adjacent to exactly one
of w1 and w2, say w ∈ {w1, w2}, and there is a pair of a degree-3 vertex z
and a vertex y such that vwz and wzy are triangles. Let v = v1 without loss
of generality. (See Fig. 5.) Then any FO2PE extension of (G,B) has zw as
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a frill. Let G′ = G/{y, z, w, v1} and B′ = [v∗, v2, v3]. Any FO2PE extension
of (G,B) is obtained by modifying an FO2PE extension γ′ = [u1 = v∗, u2 =
v2, u3 = v3, u4, . . . , un′ ] of (G′, B′) into γ = [y, z, w, v1, v2, v3, u4, . . . , un′ ]
and [y, w, z, v1, v2, v3, u4, . . . , un′ ].

(iii) Assume that a vertex v ∈ {v1, v3} is a degree-4 vertex adjacent to exactly
one of w1 and w2, say w ∈ {w1, w2}, but there is no pair of a degree-3 vertex
z and a vertex y such that vwz and wzy are triangles. Let (v, w) = (v1, w2)
without loss of generality. (See Fig. 6.) Then [w2, v1, v2, v3] is inevitable to
(G,B). Let G′ be the graph obtained from G by replacing edges v1v3 and
v2w2 with a new edge w2v3, and B′ = [w2, v1, v2, v3]. Any FO2PE extension
of (G,B) is obtained as an FO2PE extension γ′ = [u1, u2, u3, u4, . . . , un′ ]
of (G′, B′).

(iv) Assume that none of the above conditions (i)–(iii) holds and there is an
edge z1z2 ∈ E between two degree-3 vertices z1 ∈ N(w) and z2 ∈ N(w′) for
{w,w′} = {w1, w2} or a degree-4 vertex z ∈ N(w1) ∩ N(w2). (See Fig. 7.)
Then any FO2PE extension of (G,B) contains exactly one of [w, z1, z2, w

′]
and [w′, z2, z1, w] (or exactly one of [w, z, w′] and [w′, z, w]) as a sequence.
Let G′ be the graph obtained from G by removing vertex v2 and adding a new
edge w1w2, and B′ = [w, z1, z2, w

′] (or B′ = [w1, z, w2]). Vertices v1 and v3
appear consecutively in any FO2PE extension γ′ of (G′, B′). Any FO2PE
extension of (G,B) is obtained by modifying an FO2PE extension γ′ =
[u1 = v1, u2 = v3, u3, . . . , un′ ] of (G′, B′) into γ = [v1, v2, v3, u3, . . . , un′ ].

Fig. 5. (a) a graph G such that v1 is a degree-4 vertex adjacent to exactly one of w1 and
w2, say w2, and there is a pair of a degree-3 vertex z and a vertex y such that v1w2z
and w2zy are triangles; (b) a new instance (G′ = G/{y, z, w2, v1}, B′ = [v∗, v2, v3])
with a new (3, 3)-rim of triangle v∗v2v3 with a degree-3 vertex v2.

The next lemma provides how to reduce an instance with a fixed 4-rim.
Note that for an instance (G,B = [v1, v2, v3, v4]) with N(v2) = {v1, v3, w2} and
N(v3) = {v2, v4, w1} for a 4-rim, we see that w1 and w2 appear always in this
order after vertices v1, v2, v3, v4 appear along the boundary of any “quasi-planar”
FO2PE extension of (G,B).

Lemma 11 (4-rim reduction). Let (G,B) be a triconnected extendible
instance with n ≥ 7 for a fixed 4-rim B = [v1, v2, v3, v4] with N(v2) = {v1, v3, w2}
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Fig. 6. (a) a graph G such that v1 is a degree-4 vertex adjacent to exactly one of w1

and w2, say w2, but there is no pair of a degree-3 vertex z and a vertex y such that
v1w2z and w2zy are triangles; (b) a new instance (G′, B′ = [w2, v1, v2, v3]) with a new
4-rim of 4-cycle w2v1v2v3 with degree-3 vertices v1 and v2.

Fig. 7. (a) a graph G such that none of conditions (i)–(iii) in Lemma 10 holds and
there is an edge z1z2 ∈ E between two degree-3 vertices z1 ∈ N(w) and z2 ∈ N(w′)
for {w, w′} = {w1, w2}; (b) a new instance (G′, B′ = [w, z1, z2, w

′]) with a new 4-
rim of 4-cycle wz1z2w

′ with degree-3 vertices z1 and z2; (c) a graph G such that
none of conditions (i)–(iii) in Lemma 10 holds and there is a degree-4 vertex z ∈
N(w1) ∩ N(w2); (d) a new instance (G′, B′ = [w1, z, w2]) with a new (3, 4)-rim of
3-cycle wzw′ with a degree-3 vertex z.

Fig. 8. (a) a graph G such that v1 is a degree-4 vertex adjacent to w2, and there is
a pair of a degree-3 vertex z and a vertex y such that v1w2z and w2zy are triangles;
(b) a new instance (G′ = G/{y, z, w2, v1, v2}, B′ = [v∗, v3, v4]) with a new (3, 3)-rim of
triangle v∗v3v4 with a degree-3 vertex v3.
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and N(v3) = {v2, v4, w1} (possibly w1 = w2). Then one of the following condi-
tions (i)–(v) holds, and the instance (G′, B′) defined in each condition is tricon-
nected and extendible.

(i) Assume that v1 or v4, say v1 is a degree-3 vertex adjacent to neither of
w1 and w2. Then for z ∈ N(v1) − {v2, v3}, [z, v1, v2, v3, v4] is inevitable
to (G,B). Let G′ = G/{v1, z} and B′ = [v∗, v2, v3, v4]. Any FO2PE
extension of (G,B) is obtained by modifying an FO2PE extension γ′ =
[u1 = v∗, u2 = v2, u3 = v3, u4 = v4, u5, . . . , un′ ] of (G′, B′) into γ =
[z, v1, v2, v3, v4, u5, . . . , un′ ].

(ii) Assume that for (v, w) = (v1, w2) or (v4, w1), v is a degree-3 vertex adjacent
to w. Let (v, w) = (v1, w2) without loss of generality. Then [w2, v1, v2, v3, v4]
is inevitable to (G,B). Let G′ = G/{w2, v1, v2} and B′ = [v∗, v3, v4].
Any FO2PE extension of (G,B) is obtained by modifying an FO2PE
extension γ′ = [u1 = v∗, u2 = v3, u3 = v4, u4, . . . , un′ ] of (G′, B′) into
γ = [w2, v1, v2, v3, v4, u4, . . . , un′ ].

(iii) Assume that for (v, w) = (v1, w2) or (v4, w1), v is a degree-4 vertex adjacent
to w, and there is a pair of a degree-3 vertex z and a vertex y such that
vwz and wzy are triangles. Let (v, w) = (v1, w2) without loss of general-
ity. (See Fig. 8.) Then any FO2PE extension γ = [v1, v2, . . . , vn] of (G,B)
has zw2 as a frill. Let G′ = G/{y, z, w2, v1, v2} and B′ = [v∗, v3, v4]. Any
FO2PE extension of (G,B) is obtained by modifying an FO2PE exten-
sion γ′ = [u1 = v∗, u2 = v3, u3 = v4, u4, . . . , un′ ] of (G′, B′) into γ =
[y, z, w2, v1, v2, v3, v4, u4, . . . , un′ ] and [y, w2, z, v1, v2, v3, v4, u4, . . . , un′ ].

(iv) Assume that for (v, w) = (v1, w2) or (v4, w1), v is a degree-4 vertex adja-
cent to w, but there is no pair of a degree-3 vertex z and a vertex y such
that vwz and wzy are triangles. Let (v, w) = (v1, w2) without loss of gen-
erality. Then [w2, v1, v2, v3, v4] is inevitable to (G,B). Let G′ be the graph
obtained from G by replacing edges v1v4 and v2w2 with a new edge w2v4
and contracting v1 and v2 into a single vertex v∗, and B′ = [w2, v

∗, v3, v4].
Any FO2PE extension of (G,B) is obtained by modifying an FO2PE exten-
sion γ′ = [u1 = w2, u2 = v∗, u3 = v3, u4 = v4, u5, . . . , un′ ] of (G′, B′) into
γ = [w2, v1, v2, v3, v4, u5, . . . , un′ ].

(v) Assume that none of the above conditions (i)–(iv) holds, w1 	= w2, and there
is an edge z1z2 ∈ E between two degree-3 vertices z1 ∈ N(w1) and z2 ∈
N(w2) (resp., there is a degree-4 vertex z ∈ N(w1) ∩ N(w2)). (See Fig. 9.)
Then [w1, z1, z2, w2] (resp., [w1, z, w2]) is inevitable to (G,B). Let G′ be the
graph obtained from G by removing vertices v2 and v3 and adding a new edge
w1w2, and B′ = [w1, z1, z2, w2] (resp., B′ = [w1, z, w2]). Vertices v1 and v4
appear consecutively in any FO2PE extension γ′ of (G′, B′). Any FO2PE
extension of (G,B) is obtained by modifying an FO2PE extension γ′ =
[u1 = v1, u2 = v4, u3, . . . , un′ ] of (G′, B′) into γ = [v1, v2, v3, v4, u3, . . . , un′ ].

Note that in each of Lemmas 9, 10 and 11, constructing a new instance
(G′, B′) and modifying an FO2PE extension γ′ of (G′, B′) into an FO2PE exten-
sion γ of (G,B) can be executed in O(1) since G is a degree-bounded graph and
γ can be obtained by inserting a subsequence.
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Fig. 9. (a) a graph G such that none of conditions (i)–(iv) in Lemma 11 holds, w1 �=
w2, and there is an edge z1z2 ∈ E between two degree-3 vertices z1 ∈ N(w1) and
z2 ∈ N(w2); (b) a new instance (G′, B′ = [w1, z1, z2, w2]) with a new 4-rim of 4-cycle
w1z1z2w2 with degree-3 vertices z1 and z2; (c) a graph G such that none of conditions
(i)–(iv) in Lemma 11 holds, w1 �= w2, and there is a degree-4 vertex z ∈ N(w1) ∩ N(w2);
(d) a new instance (G′, B′ = [w1, z, w2]) with a new (3, 4)-rim of triangle w1zw2 with
degree-4 vertex z.

The Algorithm EXTEND(G,B), which takes a triconnected graph G and
a permutation B of vertices in a triangle uvw or a 4-cycle uvv′w with degree-
3 vertices v and v′, and outputs all FO2PE extensions of (G,B), is described
below.

Algorithm EXTEND(G, B)

Input: A triconnected simple graph G = (V, E) with n ≥ 7 and a permutation B of vertices in

a triangle uvw or a 4-cycle uvv′w with degree-3 vertices v and v′.
Output: All FO2PE extensions of (G, B).

1: if n ≤ 7 then

2: Return all FO2PE extensions γ of (G, B) (if any), or Return ∅ (otherwise);

3: else

/* Partial embedding B is specified as one of the following:

Case 1: B = [v1, v2, v3] for a triangle v1v2v3 with a degree-3 vertex v2,

where N(v2) = {v1, v3, w};

Case 2: B = [v1, v2, v3] for a triangle v1v2v3 with a degree-4 vertex v2,

where N(v2) = {v1, v3, w1, w2}; and

Case 3: B = [v1, v2, v3, v4] for a 4-cycle v1v2v3v4 with degree-3 vertices v2 and

v3, where N(v2) = {v1, v3, w2} and N(v3) = {v2, v4, w1} */

4: if Case 1 (resp., Case 2, 3) holds, but none of the conditions (i)–(ii) in Lemma 9

(resp., (i)–(iv) in Lemma 10 and (i)–(v) in Lemma 11) holds then

5: Return ∅;

6: else

7: Construct (G′, B′) according to the the conditions (i)–(ii) in Lemma 9

(resp., (i)–(v) in Lemmas 10 and 11) currently satisfied by (G, B);

8: if Γ :=EXTEND(G′, B′) �= ∅ then

9: Modify each γ′ ∈ Γ into an FO2PE extension γ of (G, B)

according to the operation in Lemma 9 (resp., Lemmas 10 and 11), where

two FO2PE extensions of (G, B) will be constructed from the same γ′
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for the cases (ii) in Lemma 10 and (iii) in Lemma 11;

10: Return all the resulting FO2PE extensions γ

11: else

12: Return ∅
13: end if

14: end if

15: end if.

Based on Algorithm EXTEND(G,B), we finally prove Lemma 8. We first
show that Algorithm EXTEND(G,B) correctly delivers all FO2PE extensions
of (G,B), if any. In line 8, Algorithm EXTEND(G′, B′) returns the set Γ of
all FO2PE extensions γ′ of (G′, B′). In line 9, all FO2PE extensions of (G,B)
can be obtained from Γ 	= ∅ according to the modifications stated in Lemmas 9,
10 and 11. Since Algorithm EXTEND(G′, B′) returns all FO2PE extensions
when n ≤ 7, we see by induction that EXTEND(G,B) correctly delivers all
FO2PE extensions of (G,B).

We next show that Algorithm EXTEND(G,B) delivers a constant number
of solutions. When n ≤ 7, the graph G has at most n − |B| ≤ 4 vertices to be
arranged along the boundary of a possible FO2PE extension of (G,B), and at
most 4! FO2PE extensions of (G,B) will be constructed. We construct exactly
one FO2PE extension γ of (G,B) from an FO2PE extension γ′ of (G′, B′),
except for the cases (ii) in Lemma 10 and (iii) in Lemma 11 wherein exactly two
FO2PE extensions, say γ1 and γ2 of (G,B) will be generated from the same
FO2PE extension γ′ of (G′, B′). Note that in this case, γ1 is obtained from γ2
by flipping a frill zw in the lemmas, and the frill in γi will be preserved in any
extensions obtained from γi until it is output as a final solution. By Lemma7, any
FO2PE of a graph can contain at most two frills, which means that generating
two FO2PE extensions in line 9 can occur at most twice. Therefore, Algorithm
EXTEND(G,B) delivers a constant number of FO2PE extensions of (G,B).

As we have already observed, constructing a new instance (G′, B′) and mod-
ifying an FO2PE can be done in O(1) time, Algorithm EXTEND(G,B) runs
in O(n) time.

This completes a proof of Lemma 8, thus proving Theorem2.
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Abstract. Any simple planar graph can be triangulated, i.e., we can
add edges to it, without adding multi-edges, such that the result is pla-
nar and all faces are triangles. In this paper, we study the problem of
triangulating a planar graph without increasing the pathwidth by much.
We show that if a planar graph has pathwidth k, then we can triangulate
it so that the resulting graph has pathwidth O(k) (where the factors are
1, 8 and 16 for 3-connected, 2-connected and arbitrary graphs). With
similar techniques, we also show that any outer-planar graph of path-
width k can be turned into a maximal outer-planar graph of pathwidth
at most 4k + 4. The previously best known result here was 16k + 15.

1 Introduction

Let G = (V,E) be an undirected simple graph that is planar, i.e., it has a
crossing-free drawing in the plane. G is called triangulated if all maximal regions
not intersecting the drawing are incident to three edges of G. (More detailed
definitions will be given in Sect. 2.) Any planar simple graph with n ≥ 3 vertices
can be triangulated by adding edges without destroying planarity.

In this paper, we study the problem of triangulating a planar graph G such
that the pathwidth of the resulting graph is proportional to the pathwidth of G.
Here, the pathwidth pw(G) of a graph G is a well-known graph parameter (defined
formally in Sect. 2). Graphs of small pathwidth have many applications. Many
graph problems can be solved in polynomial time if the pathwidth is constant.
(See e.g. [6].) The pathwidth also serves as lower bound on the height of planar
graph drawings [9]. Vice versa, some planar graphs G can be drawn with height
O(pw(G)), notably trees [14] and 2-connected outer-planar graphs [2].

The latter paper raised the question whether any outer-planar graph can be
made 2-connected by adding edges without increasing the pathwidth much. (For
if so, then all outer-planar graphs can be drawn with height O(pw(G)).) This
question was answered in the affirmative by Babu et al. [1], who showed that
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any outer-planar graph G can be made into a 2-connected outer-planar graph
G′ with pw(G′) ≤ 16pw(G) + 15.
Our results: In this paper, we improve on the result by Babu et al. and show
that we can add edges to any outer-planar graph G such that the result is a
2-connected outer-planar graph G′ with pw(G′) ≤ 4pw(G) + 4. But our tech-
nique is much more general. Rather than working with outer-planar graphs, we
prove that any planar 2-connected graph can be triangulated without increas-
ing the pathwidth if we allow multi-edges. We can also remove multi-edges; this
increases the pathwidth at most 8-fold. With much the same technique we can
also handle graphs with cut-vertices and make them 2-connected while increasing
the pathwidth (roughly) 16-fold. Outer-planar graphs can be handled as special
cases and give an even smaller increase in the pathwidth.
Related results: Many papers have dealt with how to triangulate a planar
graph under some additional constraint. For example, any 2-connected planar
graph can be triangulated so that the result is 4-connected (except for wheel-
graphs) [4]. Any k-outer-planar graph can be triangulated so that the result
is (k + 1)-outer-planar [3]. Any planar graph G with treewidth tw(G) can be
triangulated so that the result has treewidth max{3, tw(G)} [5]. Triangulating
planar graphs has also been studied while minimizing the maximum degree [12],
and relates to planar graph connectivity-augmentation problems (see e.g. [11]
and the references therein) since any triangulated graph is 3-connected.

2 Background

Let G = (V,E) be a graph with at least 3 vertices. G is called planar if it can
be drawn without crossing in the plane. A crossing-free drawing Γ of G defines
a cyclic order of edges at a vertex v by enumerating them in clockwise order
around v; we call such a set of orders a planar embedding of G. The maximal
regions of R

2 − Γ are called faces of the drawing; they can be read from the
planar embedding by computing the facial circuit, i.e., the order of vertices and
edges encountered while walking around the face in clockwise order. A graph G
is called outer-planar if G ∪ {z∗} is planar, where z∗ is a newly-added universal
vertex adjacent to all vertices of G.

A loop is an edge (v, v) for some vertex. A multi-edge is an edge (v, w) with
multiplicity μ ≥ 2, i.e., there exist μ copies of (v, w). A graph is called simple if it
has neither loops nor multi-edges. All input graphs in this paper are required to
be simple, but we sometimes add multi-edges in intermediate steps. (We never
add loops.) A multi-graph is a graph without loops (but possibly with multi-
edges). The underlying simple graph of a multi-graph is obtained by deleting all
but one copy of each multi-edge.
Connectivity: A multi-graph G is called connected if we can go from any vertex
v to any vertex w while walking along edges of G. The connected components of
a multi-graph are the maximal subgraphs that are connected. A multi-graph G
is called k-connected if it remains connected even after deleting k − 1 arbitrary
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vertices. If G is connected but not 2-connected, then G has a cut-vertex, i.e., a
vertex v such that G − v is not connected. A graph that is 2-connected, but not
3-connected, has a cutting pair, i.e., a pair of vertices v, w such that G − {v, w}
is not connected.

If S is a set of vertices, then let C ′
1, . . . , C

′
L be the connected components of

G − S (L = 1 if S was not a cut-set). Define for i = 1, . . . , L the cut-component
Ci of S to consist of C ′

i, the edges from C ′
i to S, and a complete graph added

between the vertices of S. Define int (Ci) := C ′
i = Ci −S to be the interior of Ci.

Triangulating: A face (in a planar graph in some planar embedding) is called a
triangle if its facial circuit contains three edges. A multi-graph G is called multi-
triangulated if it has a planar embedding such that all faces of G are triangles.
Such a graph may well have multi-edges, but duplicate copies of an edge must
use different routes (no facial circuit may consist of two copies of the same
edge). A graph G is called triangulated if it is multi-triangulated and simple. A
triangulated graph is 3-connected (and hence has a unique planar embedding,
up to reversal of all edge orders). A multi-triangulated graph G need not be 3-
connected, but it is 2-connected since n ≥ 3 and G has no loops. One can show
(see a detailed proof in the appendix) that the cutting pairs of G correspond
to multi-edges as follows: {u, v} is a cutting pair that has L cut-components if
and only if (u, v) is a multi-edge with multiplicity L. Further, G has at least one
edge that is not a multi-edge.

The idea of triangulating is to add edges to a graph until it is triangulated.
More formally, multi-triangulating a planar multi-graph G means adding edges
to G so that the result is multi-triangulated. Triangulating a planar multi-graph
G means to add edges to the underlying simple graph of G such that the result is
triangulated. In particular, this operation is allowed to delete copies of a multi-
edge from G.
Pathwidth: Let G be a multi-graph. Let X1, . . . , XN be sets of vertices of G;
we call these bags. We say that X1, . . . , XN is a path decomposition P of G if

– every vertex appears in at least one bag,
– for every edge (u, v) in G, at least one bag Xi contains both u and v, and
– for every vertex v in G, the bags containing v form an interval. Put differently,

if v ∈ Xi1 and v ∈ Xi2 then also v ∈ Xi for all i1 < i < i2.

Bags naturally imply an order; we write Xi � Xj if i ≤ j and Xi ≺ Xj if
i < j. The bag-size of such a path decomposition is max |Xi|. The width of such
a path decomposition is max |Xi| − 1. A graph is said to have pathwidth at most
k if it has a path decomposition of width k.

3 3-Connected Graphs

We first show how to multi-triangulate 2-connected graphs (which also triangu-
lates 3-connected graphs).
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Lemma 1. Let G be a planar 2-connected multi-graph with a planar embedding
for which any facial circuit has at least 3 edges. Then we can multi-triangulate
G without increasing the pathwidth and without changing the planar embedding.

Proof. 1 Fix a path decomposition P of G that has width pw(G). Let G+ be
the graph induced by P, i.e., G+ has the same vertices as G, but an edge (v, w)
for any pair of vertices that occur in a common bag. By properties of a path
decomposition G+ is an interval-graph, therefore chordal, therefore any simple
cycle C of length ≥ 4 has a chord (an edge between two non-consecutive vertices
of C). See Golumbic [10] for details of these concepts.

Let f be any facial circuit of G with 4 or more edges on it. By 2-connectivity
f is a simple cycle, and hence G+ contains a chord of C. Add this chord to G,
routing it inside f . The resulting graph is still planar and 2-connected and all
facial circuits have at least 3 edges, so repeat until G is multi-triangulated. �	

Our problem was motivated by planar graph drawing applications, where
often one starts by triangulating the planar graph (or adding edges to the outer-
planar graph to make it maximal outer-planar). For these applications, multi-
edges are a problem. For example usually one triangulates so that one can use
the canonical ordering [7] or a Schnyder wood [13], and these only exist for
simple triangulated planar graphs. Hence one wonders whether the same lemma
holds without allowing multi-edges. Thus, given a planar 2-connected graph, can
we triangulate it without increasing the pathwidth? This turns out to be false.
Consider a 4-cycle, which has pathwidth 2. The only way to triangulate a 4-cycle
without multi-edges is to turn it in K4, which has pathwidth 3.2 However, if G
was already 3-connected, then no multi-edges will happen.

Corollary 1. Let G be a 3-connected simple planar graph with n ≥ 3. Then we
can triangulate G without increasing the pathwidth.

Proof. Since G is simple, any face has at least 3 edges. Apply the previous lemma
to get a multi-triangulated graph G′. Adding edges cannot decrease connectiv-
ity, so G′ has no cutting pairs. Since multi-edges in multi-triangulated graphs
correspond to cutting pairs, hence G′ is simple. �	

4 2-Connected Graphs

We already know how to multi-triangulate 2-connected planar graphs with
Lemma 1. The hard part, done in this section, is how to convert such a multi-
triangulated graph into a triangulated one (i.e., remove the multi-edges and
replace them with others) without increasing the pathwidth much. We state the
required increase in terms of another parameter, c, because this will help to
obtain a smaller bound for outer-planar graphs later.
1 Babu et al. published a similar proof in an early version of [1], but omitted it in [1].
2 More generally, it was shown by Haiko Müller (private communication) that for any
k ≥ 2 there exists a planar graph of pathwidth k that cannot be triangulated without
increasing the pathwidth by at least 1.
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Lemma 2. Any multi-triangulated graph G can be triangulated, after possibly
changing the planar embedding, such that the resulting graph G′ has pathwidth
pw(G′) ≤ 2pw(G) + 1 + 2c.

Here c is the maximum number of cutting pairs that can exist in one bag, i.e.,
for any path decomposition P of width pw(G) and any bag Xi of P there are at
most c cutting pairs {u1, v1}, . . . , {uc, vc} such that {u1, v1, . . . , uc, vc} ⊆ Xi.

The rest of this section is devoted to the proof of this lemma. We first give
an outline of the proof. We add |Xi| + 2c “tokens” to each bag Xi of P; these
are place-holders for vertices that need to be added to bags later when adding
edges. These tokens are then redistributed so that in each bag Xi we have 2
tokens per cutting pair {u, v} ⊆ Xi, and one token for each cut-component
of {u, v} that “intersects” Xi in some sense. We then can read from the path-
decomposition how to re-arrange the planar embedding such that we can replace
a copy of a multi-edge by a new edge while using up only “few” tokens. In
particular, the above invariant on what tokens exist in bags continues to hold.
Repeating this until no multi-edges are left then gives the desired graph G′.
Since we had |Xi| + 2c tokens, the new bag-size is at most 2|Xi| + 2c, and hence
pw(G′) ≤ (2(pw(G) + 1) + 2c) − 1 = 2pw(G) + 1 + 2c.

For the detailed proof, fix one planar embedding of G such that all faces
are triangles. (We later change this embedding, but all faces will continue to be
triangles.) Fix one path decomposition P of G of width pw(G).
Assigning tokens: We assign tokens to a bag Xi of P as follows: (1) Add
one token to Xi for each vertex v in Xi; this is the vertex-token of v. (2) Add
two tokens to Xi for every cutting pair {u, v} with {u, v} ⊆ Xi; these are the
cutting-pair tokens, or the tokens of {u, v}.
Peripheral pairs: Let {u, v} be a cutting pair, and let C0, . . . , CL be its
cut components. One can show (see a detailed proof in the appendix) that for
i ∈ {0, . . . , L} the edges from v to int (Ci) occur consecutively in the clockwise
order of edges around v, surrounded by two copies of edge (u, v). See Fig. 1 for an
illustration. Let b�

i and br
i be the first and last neighbor of v within this interval

of edges to int (Ci). We call {b�
i , b

r
i } the peripheral pair of cut-component Ci.

Notice that b�
i = br

i if deg(b�
i) = 2 or (b�

i , v) is a multi-edge, but we use the term
“pair” even then for ease of wording.

Observation 1. Let G be a multi-triangulated graph that has a cutting pair
{u, v}. Let Ci and Cj be two different cut-components of {u, v}. For any choice
of α, β ∈ {�, r}, deleting one copy of (u, v) and adding (bα

i , bβ
j ) results in a multi-

triangulated graph (after possibly changing the planar embedding).

Proof. This follows from the results in [8]. In a nutshell, we can reverse and swap
cut-components until bα

i and bβ
j both face one copy of (u, v). Deleting this copy

gives a face with 4 edges; inserting edge (bα
i , bβ

j ) into this face gives a planar
graph where all faces are triangles. �	
Bag-intervals: Let {b�

i , b
r
i } be the peripheral-pair of a cut-component Ci of

a cutting pair {u, v}. Since G is multi-triangulated, {u, v, bα
i } forms a triangle
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Fig. 1. A multi-triangulated graph with a cutting pair {u, v} that has four cut-
components. Dotted red lines are paths assigned to peripheral pairs as in Lemma 3. We
can add edge (br1, b

r
3) if we swap C2 and C3 and reverse C3. (Color figure online)

for α ∈ {�, r}. By the properties of the path decomposition there must exist at
least one bag that contains all three vertices. Thus let X(bα

i ) be a bag containing
{u, v, bα

i }; choose an arbitrary one if there is more than one. So far the super-
scripts � and r for {b�

i , b
r
i } effectively meant “one” and “the other”, since we

can reverse the planar embedding of cut-component Ci. We now fix the super-
scripts such that X(b�

i) � X(br
i ), i.e., the bag of b�

i is left of the bag of br
i . The

left-open set of bags (X(b�
i),X(br

i )] := {X : X(b�
i) ≺ X � X(br

i )} is called the
bag-interval of peripheral pair {b�

i , b
r
i }. Notice that the bag-interval is empty if

X(b�
i) = X(br

i ); this will not pose problems. Occasionally we will also consider
the closed bag-interval {X : X(b�

i) � X � X(br
i )}.

Child-peripheral-pairs: So far all cut-components at a cutting pair have been
treated equally. For token-accounting-purposes, we introduce a hierarchy among
them. Fix one edge e of G that is not a multi-edge. For each cutting pair {u, v}
with cut-components C0, . . . , CL, the parent-component of {u, v} is the one that
contains edge e, while all other cut-components are called child-components.
Correspondingly we call a peripheral-pair of {u, v} a child-peripheral-pair if it
belongs to a child-component of {u, v}.
Redistributing tokens: Let B be the union, over all cutting pairs {u, v}, of
all the child-peripheral-pairs of {u, v}. We want to redistribute vertex-tokens to
child-peripheral-pairs, and for this we need an observation.

Lemma 3. Let B be the set of all child-peripheral pairs in a multi-triangulated
graph G. There exists a set of vertex-disjoint paths P1, . . . , P|B| in G such that
for any child-peripheral-pair {b�, br} in B, one of the paths connects b� with br.

Proof. Consider any child-peripheral-pair {b�
i , b

r
i }, say at cut-component Ci of

cutting pair {u, v}. Observe that there are three vertex-disjoint paths from b�
i

to br
i : one via u, one via v, and one within int (Ci) = Ci − {u, v} since the

latter is connected by definition of cut-components. Since (u, v) is an edge,
therefore {u, v, b�

i , b
r
i } with these paths form a subdivision of K4. If follows that
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{u, v, b�
i , b

r
i } all belong to one triconnected component, call it D. Since D is 3-

connected, there must exist a path P from b�
i to br

i within D − {u, v}, and this
is the path that we use for this child-peripheral pair.

It remains to argue that these paths are disjoint. Let {b′, b′′} be some other
child-peripheral-pair, say at cutting pair {u′, v′}, such that {b′, b′′, u′, v′} belong
to triconnected component D′ and we assigned a path P ′ in D′ −{u′, v′} to this
child-peripheral pair.

Recall that cutting pair {u, v} splits the graph into multiple cut-components.
One of those is Ci, the child-component that contained b�

i and br
i and therefore

also the triconnected component D and the path P . We have two cases:

– D′ is part of a cut-component of {u, v} other than Ci.
We know that child-cut-components are vertex-disjoint except for {u, v}.
Therefore D and D′ are vertex-disjoint except for perhaps {u, v}. Hence P
and P ′ are vertex-disjoint.

– D′ is part of the child-component Ci of {u, v}.
This implies that {u, v} �= {u′, v′}, since for each cutting pair, each cut-
component gets only one peripheral pair. (u = u′ or v = v′ is possible, but
not both.) Changing the point of view, now consider the cut-components of
{u′, v′}. Here D′ belongs to a child-component (because {b′, b′′} is a child-
peripheral-pair), but D belongs to the parent-component (since D′ belongs to
a child-component of {u, v}). Exchanging the roles of the two cutting pairs
hence shows as in the previous case that P and P ′ are vertex-disjoint. �	
We now redistribute vertex-tokens to child-peripheral pairs as follows. For

every child-peripheral-pair {b�, br}, find the path P connecting b� and br from
Lemma 3. For every vertex w ∈ P , declare the vertex-token of w to belong
to the child-peripheral-pair {b�, br}; we now call it a child-peripheral-pair token
and say that it belongs to {b�, br}. Since the paths of child-peripheral-pairs are
vertex-disjoint, every vertex-token is used at most once. By properties of a path
decomposition, the set of bags XP = {X : X contains a vertex of P} forms an
interval of bags since P is connected. Each bag in XP obtains at least one token
of {b�, br}. Since X(b�),X(br) ∈ XP , we therefore have:

Invariant 1. (1) For every child-peripheral-pair {b�, br}, every bag X in the bag-
interval (X(b�),X(br)] contains at least one token of {b�, br}. (2) For every cutting
pair {u, v}, every bag containing both u and v contains two tokens of {u, v}.
Adding edges: We now repeatedly delete one copy of a multi-edge (u, v) and
replace it with some edge (bα

i , bβ
j ) between two different cut-components of {u, v}.

Notice that no such edge can have existed before, so the sum of the multiplicities
of multi-edges decreases. By Observation 1, adding these edges maintains a multi-
triangulation. After repeated applications we hence end with a simple graph.
Throughout these edge additions, we maintain a valid path decomposition for
the graph by adding vertices to bags, if needed. This uses up some tokens, but
we do it in such a way that Invariant 1 is maintained and hence the pathwidth
is at most 2pw(G) + 1 + 2c.
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So let {u, v} be a cutting pair. Let C0, . . . , CL be the cut components of
{u, v}, with C0 the parent-component. For each component Ci, let {b�

i , b
r
i } be

the peripheral-pair of Ci. We distinguish cases.

1. There exists some i �= j, i > 0, j > 0 such that X(b�
i) ≺ X(b�

j) � X(br
i ) ≺

X(br
j). Put differently, there are two child components Ci and Cj whose closed

bag-intervals intersect, but neither one contains the other. See also Fig. 2.
Add an edge (b�

j , b
r
i ). Since both Ci and Cj are child-components, by the

invariant each bag X with X(b�
j) ≺ X � X(br

i ) contains one token of {b�
j , b

r
j}

and one token of {b�
i , b

r
i }. We use one of them to add b�

j to all these bags; then
b�
j and br

i share a bag, the bags containing b�
j continue to form an interval,

and we hence have a valid path decomposition for the new graph.
Adding the edge combines child-components Ci and Cj into one new child-
component C ′ with peripheral-pair {b�

i , b
r
j}. Since we used only one token in

each bag, all bags X with X(b�
i) ≺ X � X(br

j) have a peripheral-pair-token
left, which we now assign to C ′. So the invariant holds.

2. There exists some i �= j, i > 0, j > 0, such that X(b�
i) � X(b�

j) � X(br
j) �

X(br
i ). Put differently, there are two child components Ci and Cj whose closed

bag-intervals intersect, and one is inside the other. See also Fig. 2.
Add an edge (b�

i , b
�
j). Each bag X with X(b�

i) ≺ X � X(b�
j) contains a token

of {b�
i , b

r
i }. We use this to add b�

i to all these bags; then b�
i and b�

j share a
bag and the bags containing b�

i are consecutive, hence we have a valid path
decomposition of the new graph.
Adding the edge combines components Ci and Cj into one new component
C ′ with peripheral-pair {br

i , b
r
j}. Since we used only tokens in bags farther to

the left, all bags X with X(br
j) ≺ X � X(br

i ) still have the token of {b�
i , b

r
i },

and we assign these to the new peripheral-pair. So the invariant holds.
3. No two closed bag-intervals of two child-components intersect. After possible

renaming of the child components C1, . . . , CL, we may hence assume that
X(b�

1) � X(br
1) ≺ X(b�

2) � X(br
2) ≺ · · · ≺ X(b�

L) � X(br
L). (The bag-interval

of the parent-component may be anywhere in this order.) See also Fig. 3.
We will combine all cut components into one at once. Add edges (br

1, b
�
2),

(br
2, b

�
3), . . . , (b

r
L−1, b

�
L). To create a path decomposition for this, add br

i to
all bags X with X(br

i ) ≺ X � X(b�
i+1), for i = 1, . . . , L − 1. Pay for these

additions with the first token of (u, v). We know that each of these bag has
such a token, since X(b�

1) and X(br
L) contain {u, v} by definition, and the bags

between must contain {u, v} by properties of a path decomposition. Finally
add edge (b�

1, b
r
0). Create a path decomposition for this by adding b�

1 to all
bags from X(b�

1) to X(br
0), and pay for it with the second cutting-pair-token

of (u, v).
Observation 1 applies to all added edges, since the ends of each edge are
peripheral-vertices of two different cut-components, even after considering
that previous edge-additions merged some them. Hence the resulting graph
is a multi-triangulation after we deleted L copies of multi-edge (u, v).
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Fig. 2. Bag-intervals with peripheral-pair-tokens (shown with ∗). (Top) The closed bag-
intervals intersect, but neither contains the other. (Bottom) One closed bag-interval
contains the other.

Fig. 3. Replacing cutting-pair-tokens (shown with ◦) to combine all remaining cut-
components of cutting pair {u, v} if no closed bag-intervals intersect.

Since {u, v} ceases to be a cutting pair after adding these edges, the invariant
holds again since we only used tokens of {u, v}.

After repeatedly applying the above edge-additions to all cutting pairs, we hence
end with a triangulated graph and a path decomposition of width at most
2pw(G) + 1 + 2c as desired. This proves Lemma 2. �	
Lemma 4. Let G be a 2-connected planar graph with n ≥ 3 vertices. Then we
can triangulate G, after possibly changing the planar embedding, such that the
result has pathwidth at most 8pw(G) − 5.

Proof. By Lemma 1 we ca multi-triangulate G without increasing the pathwidth.
Call the result G1. By Lemma 2 we can triangulate G1 such that the resulting
graph G2 has pw(G2) ≤ 2pw(G1) + 1 + 2c = 2pw(G) + 1 + 2c.

It remains to bound c. Recall that this is the maximum number of cutting
pairs of G1 for which all vertices occur in one bag Xi (of some path decomposition
P of width pw(G1) = pw(G)). Each such cutting pair corresponds to a multi-edge
in G1. Let G[Xi] be the graph induced by Xi and Gs be its underlying simple
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graph. Each such cutting pair hence corresponds to an edge in Gs. Since Gs is
planar and simple and has |Xi| vertices, it has at most 3|Xi| − 6 ≤ 3(pw(G) +
1) − 6 = 3pw(G) − 3 edges if |Xi| ≥ 3. If |Xi| ≤ 2, then Gs has at most
1 ≤ 3pw(G) − 3 edges since pw(G) ≥ 2 (a graph of pathwidth 1 is a forest and
cannot be 2-connected). Thus either way Gs has at most 3pw(G)−3 edges, hence
c ≤ 3pw(G) − 3 and pw(G2) ≤ 2pw(G) + 1 + 2c ≤ 8pw(G) − 5 as desired. �	

5 2-Connecting an Outer-Planar Graph

Recall that the motivation for this paper was the question how to make an outer-
planar graph 2-connected by adding edges without increasing the pathwidth
much. A maximal outer-planar graph is a simple outer-planar graph to which
we cannot add edges without violating planarity, simplicity, or outer-planarity.
Such a graph is 2-connected for n ≥ 3.

Theorem 1. Let G be a simple connected outer-planar graph. Then we can add
edges to G, after possibly changing the planar embedding, to obtain a maximal
outer-planar graph G′ with pw(G′) ≤ 4pw(G) + 4.

Proof. If n = 1 then G is already maximal outer-planar, so assume n ≥ 2. Add
a universal vertex z∗ to G and call the result G1; we know that G1 is planar
and pw(G1) = pw(G) + 1 since we can add z∗ to all bags. Observe that G1 − v
is connected for any v �= z∗ since z∗ is adjacent to all vertices. Therefore any
cutting pair of G1 must include z∗.

Use Lemma 1 to multi-triangulate G1 without increasing pathwidth, and call
the result G2; we have pw(G2) = pw(G)+1. Now use Lemma 2 to triangulate G2,
and call the result G3. We have pw(G3) ≤ 2pw(G2) + 1 + 2c ≤ 2pw(G) + 3 + 2c.

Since any cutting pair includes z∗, we can get an improved bound for c as
follows. Let P2 be any path decomposition of G2 of width pw(G2) and let Xi

be any bag of P2; we have |Xi| ≤ pw(G2) + 1 = pw(G) + 2. If Xi contains
cutting pairs, then it must contain z∗. Each such cutting pair uses z∗ and one
other vertex in Xi, so there are at most |Xi| − 1 cutting pairs with both ends
in Xi, and c ≤ |Xi| − 1 ≤ pw(G) + 1. Putting it all together, we have pw(G3) ≤
2pw(G) + 3 + 2(pw(G) + 1) = 4pw(G) + 5.

Finally delete the added vertex z∗ to obtain G4, which has the same vertices
as G. Since z∗ was universal and G3 was triangulated, G4 is maximal outer-
planar. Since z∗ was universal, pw(G4) = pw(G3) − 1 ≤ 4pw(G) + 4 and hence
G4 satisfies all conditions on G′. �	

We note here that the bound can be improved to 4pw(G)+3 by delving into
the proofs of Lemmas 2 and 3 and observing that the vertex-token of z∗ will
never be used as child-peripheral-pair-token, since z∗ is in all cutting pairs. We
leave the details to the reader.
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6 All Graphs

We now show how to handle cutvertices and disconnected graphs.

Lemma 5. Any simple connected planar graph G with n ≥ 3 can be triangulated,
after possibly changing the planar embedding, so that the result has pathwidth at
most 16pw(G) + 3.

Proof. Let v1 be a cut-vertex of G. Add a new vertex z1 as follows.
Let C0, . . . , CL be the cut-components of

v1. Rearrange the planar embedding at v1
such that for each Cj the edges from v1 to Cj

are consecutive at v1. In consequence, there
now exists a face f1 that is incident to all cut-
components of v1. Insert a new vertex z1 in
face f1, and make it adjacent to v1 and to all
neighbors x of v1 that are on f1. Afterwards
v1 is no longer a cut-vertex, and z1 is also not
a cut-vertex.

We can obtain a path decomposition of G∪{z1} by taking one of G and adding
z1 to all bags that contains v1. This covers all new edges since all neighbors of
z1 are neighbors of v1.

Repeat the process in the resulting graph until there are no cut-vertices left.
Call the final graph G1. Since none of the new vertices were cut-vertices, we
added at most |Xi| new vertices to each bag Xi of a path decomposition of G.
Hence the bag-size at most doubles and pw(G1) ≤ 2pw(G) + 1.

Now multi-triangulate G1 with Lemma 2 and call the result G2. We have
pw(G2) ≤ 8pw(G1) − 5 ≤ 8(2pw(G) + 1) − 5 = 16pw(G) + 3.

Now we must remove the added vertices while keeping a triangulated graph,
and do this by contracting each into a suitable neighbor. Observe that the neigh-
bors of z1 form a simple cycle since G2 is triangulated. Hence these neighbors
induce a simple outer-planar 2-connected graph. It is well-known that every such
graph has a vertex of degree 2. Therefore z1 has a neighbor y1 such that y1 and
z1 have exactly two common neighbors (which are the third vertices on the faces
incident to edge (z1, y1)). Contract edge (z1, y1), i.e., delete z1 and re-route every
incident edge of z1 to end at y1 instead. Delete resulting loops and multi-edges.
Because z1 and y1 had exactly two neighbors in common, the resulting graph is
again triangulated. Repeat the process for the other added vertices.

At the end the graph G3 that results has the same vertices as G. It is well-
known that contraction of an edge does not increase pathwidth, so pw(G3) ≤
pw(G2) ≤ 16pw(G) + 3 as desired. �	

As for disconnected graphs, one can easily show the following:

Lemma 6. Let G be a planar graph. Then we can add edges to G so that the
resulting graph G′ is planar, connected, and pw(G′) = max{1, pw(G)}.
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Proof. Let C1, . . . , CL be the connected components of G. Each of them has
pathwidth at most pw(G) since they are subgraphs of G; let Pi be a path
decomposition of Ci of width at most pw(G). Start with path decomposition
P1. Append one new bag, into which we insert one arbitrary vertex v1 from the
last bag of P1 and one arbitrary vertex u2 from the first bag of P2. Then append
P2. Repeat with the remaining components: insert a new bag after the last bag
of Pi, give it one vertex vi from the last bag of Pi and one vertex ui+1 from the
first bag of Pi+1, and then append Pi+1. Clearly we get a path decomposition
P of G of width max{1, pw(G)}.

Define G′ to be the graph obtained by adding (ui, vi+1) to G, for i =
1, . . . , L − 1. Clearly P is also a path decomposition of G′, since we created
bags for each of these new edges. Also G′ is planar since adding an edge between
two vertices in different connected components cannot destroy planarity. This
shows the result. �	

Hence we can triangulate a disconnected planar graph G by first creating G′

and then triangulating G′.

7 Conclusion

In this paper, we studied how to add edges to a planar graph without increasing
the pathwidth much. We summarize all our results with the following:

Theorem 2. Let G be a simple planar graph with at least 3 vertices. Then we
can triangulate G such that the result G′ has

– pw(G′) = pw(G) if G is 3-connected,
– pw(G′) ≤ 8pw(G) − 5 if G is 2-connected,
– pw(G′) ≤ 16pw(G) + 3 otherwise.

It may also be of interest to observe that our construction does not change
a given path decomposition of the graph other than by adding more vertices
to some bags. On the other hand, our construction often changes the planar
embedding. Is it possible to triangulate a graph without increasing the pathwidth
much and without changing the planar embedding?

Following the steps of the proof, one can see that the triangulation can be
found in linear time, presuming that we are given a path decomposition of width
pw(G) in the form of the index of the first and last bag containing v for every
vertex v. There is no need to compute triconnected components: One can find
child-components via multi-edges, and the paths in Lemma3 are only needed for
accounting purposes and need not be computed.

The obvious open problem is to improve the factors, especially for 2-
connected graphs. There are planar graphs that cannot be triangulated without
increasing the pathwidth, but can every planar 2-connected graph G be trian-
gulated so that the result has pathwidth at most pw(G) + 1?
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It would also be of interest to study other width-parameters (such as the
carving width, bandwidth, clique-width, etc.) and ask whether planar graphs
can be triangulated while keeping the width-parameter asymptotically the same.

Finally, the concept of triangulating can be applied to graphs embedded in
surfaces of higher genus. In such surfaces, multi-edges do not imply cutting pairs,
and so already the equivalent of Corollary 1 fails. Can we triangulate graphs
embedded in a surface without increasing the pathwidth much?

A Properties of Multi-triangulated Graphs

In the main part of the paper, we used some properties of multi-triangulated
planar graphs. These are quite easy to derive, but we include detailed proofs
here for completeness’ sake.

Lemma 7. Let G be a multi-triangulated planar graph with n ≥ 3 vertices. Fix
an arbitrary planar embedding for which all faces are triangles. The following
holds:

1. G is 2-connected.
2. Any cutting pair {u, v} gives rise to a multi-edge (u, v).
3. For any multi-edge (u, v), {u, v} is a cutting pair, and the number of its cut-

components equals the multiplicity of the multi-edge.
4. Let {u, v} be a cutting pair with a cut-component C, and consider the cyclic

order of edges around u. Then the edges to int (C) appear consecutively, and
are preceded and succeeded by copies of (u, v).

Proof. Let S be a cut-set (i.e., either cut-vertex or cutting pair). Consider a ver-
tex v ∈ S. Assume for contradiction that in the clockwise order around v there
are two consecutive neighbors w1, w2 with w1 ∈ int (C1) and w2 ∈ int (C2) for two
different cut-components C1, C2 of S. Consider the face f that is between edges
(v, w1), (v, w2) at v. Since w1, w2 are in the interior of different cut-components,
we cannot have an edge (w1, w2). We must have w1 �= v �= w2, since other-
wise there would be a loop. Therefore face f is incident to at least 4 edges.
Contradiction.

Thus for any two cut-components of S, edges from v to the inside of the cut-
component cannot be consecutive. Thus, there must an edge between any two
cut-components (in the clockwise order around v) for which the other endpoint
is also in S. If |S| = 1 then such an edge would be a loop, a contradiction.
Therefore no cut-set can have size 1 and G is 2-connected; this proves (1).

If |S| = 2, say S is the cutting pair {u, v}, then the cut-components are
separated by copies of edge (u, v). If there are L cut-components C1, . . . , CL for
L ≥ 2, then there are at least L places in the clockwise order around v where
we switch from one cut-component to the next one, so we must have at least L
copies of (u, v). This proves (2).

Let e0, . . . , e�−1 be the copies of (u, v), enumerated in the clockwise order
around v. We have just shown � ≥ L. For i = 1, . . . , �, edges ei−1 and ei cannot
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be consecutive at v (where indices are modulo L), otherwise there would be a
face of degree 2. So there must be vertices other than u between ei−1 and ei.
Further, the cycle formed by ei−1 and ei separates everything on one side from
everything on the other side. So the subgraph between ei−1 and ei contains at
least one cut-component of {u, v}. It follows that � ≤ L, and so � = L. This
proves (3).

Since � = L, the subgraph between ei−1 and ei must contain exactly one cut-
component of {u, v}. Therefore in the cyclic order around v we alternate between
a copy of (u, v) and all edges to exactly one cut-component. This proves (4). �	
Lemma 8. Every multi-triangulated graph with n ≥ 3 has at least one edge that
is not a multiple edge.

Proof. Fix one arbitrary planar drawing Γ of G for which all facial circuits have
three edges. Nothing is to show if G is simple, so assume G has multi-edges. If
e1, e2 are two copies of a multi-edge, then their drawing defines a closed curve C.
This curve cannot be the boundary of a face since facial circuits have three edges.
In consequence, at least one vertex must be inside any closed curve defined by
two copies of a multi-edge.

Assume that e1, e2 has been chosen such that their closed curve encloses the
minimum possible number of vertices among all such pairs. Let v be a vertex
inside that curve, and let e be an edge incident to v. Then e must be simple by
choice of e1, e2. �	
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Abstract. A graph is called {claw, diamond}-free if it contains neither
a claw (a K1,3) nor a diamond (a K4 with an edge removed) as an induced
subgraph, or, equivalently, it is a line graph of a triangle-free graph. We
consider the parameterized complexity of the {claw, diamond}-free
Edge Deletion problem, where given a graph G and a parameter k, the
question is whether one can remove at most k edges from G to obtain a
{claw, diamond}-free graph. Our main result is that this problem admits
a polynomial kernel. We also show that, even on instances with maximum
degree 6, the problem is NP-complete and cannot be solved in time 2o(k) ·
|V (G)|O(1), assuming the Exponential Time Hypothesis.

1 Introduction

Graph modification problems form a wide class of problems, where one is asked to
alter a given graph using a limited number of modifications in order to achieve a
certain target property, for instance the non-existence of some forbidden induced
structures. Depending on the allowed types of modification and the choice of
the target property, one can consider a full variety of problems. Well-studied
problems that can be expressed in the graph modification paradigm are Vertex

Cover, Feedback Vertex Set, and Cluster Editing, among others.
It is natural to consider graph modification problems from the parameter-

ized perspective, since they have an innate parameter: the number of allowed
modifications, which is expected to be small in applications. As far as the set
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of allowed modifications is concerned, the most widely studied variants are ver-
tex deletion problems (allowing only removing vertices), edge deletion problems
(only removing edges), completion problems (only adding edges), and editing
problems (both adding and removing edges). It is very easy to see that as long as
the target property can be expressed as the non-existence of induced subgraphs
from some finite, fixed list of forbidden subgraphs F (in other words, belonging
to the class of F-free graphs), then all the four variants can be solved in time
ck · |V (G)|O(1) via a straightforward branching strategy, where the constant c
depends on F only. This observation was first pronounced by Cai [4].

From the perspective of kernelization, again whenever the property is char-
acterized by a finite list of forbidden induced subgraphs, then a standard appli-
cation of the sunflower lemma gives a polynomial kernel for the vertex deletion
variant. The same observation, however, does not carry over to the edge modifi-
cation problems. The reason is that altering one edge can create new obstacles
from F , which need to be dealt with despite not being contained in the original
graph G. Indeed, Kratsch and Wahlström [23] have shown a simple graph H on
7 vertices such that the edge deletion problem for the property of being H-free
does not admit a polynomial kernel unless NP ⊆ coNP/poly. Later, the same
conclusion was proved by Guillemot et al. [18] for H being a long enough path
or cycle.

This line of study was continued by Cai and Cai [5] (see also the full version
in the master’s thesis of Cai [6]), who took up an ambitious project of obtaining
a complete classification of graphs H on which edge modification problems for
the property of being H-free admit polynomial kernels. The project was very
successful: for instance, the situation for 3-connected graphs H is completely
understood, and among trees there is only a finite number of remaining unre-
solved cases. In particular, the study of Cai and Cai revealed that the existence
of a polynomial kernel for edge modification problems is actually a rare phenom-
enon that appears only for very simple graphs H.

One of the most tantalizing questions that is still unresolved is the case
H = K1,3, i.e., the Claw-free Edge Deletion problem (as well as the com-
pletion and editing variants). The study of this particular case is especially inter-
esting in light of the recent powerful decomposition theorem for claw-free graphs,
proved by Chudnovsky and Seymour [7]. For many related problems, having an
equivalent structural view on the considered graph class played a crucial role in
the design of a polynomial kernel, and hence there is hope for a positive result
in this case as well. For this reason, determining the existence of a polynomial
kernel for Claw-free Edge Deletion was posed as an open problem during
Workshop on Kernels (WorKer) in 2013, along with the same question for the
related Line Graph Edge Deletion problem [9].

Our results. As an intermediate step towards showing a polynomial kernel
for Claw-free Edge Deletion, we study a related variant, where we forbid
diamonds as well.1 By a diamond we mean a K4 with one edge removed, and
1 A more detailed discussion of the relation between these two problems is provided

in the conclusions section.
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{claw, diamond}-free graphs are exactly graphs that do not contain claws or
diamonds as induced subgraphs. This graph class is equal to the class of line
graphs of triangle-free graphs, and to the class of linear dominoes (graphs in
which every vertex is in at most two maximal cliques and every edge is in exactly
one maximal clique) [21,24].

In this paper, we consider the {claw, diamond}-free Edge Deletion

problem (cdf-ED for short) where, given a graph G and an integer k, one is
asked to determine whether there exists a subset F of the edges of G with |F | ≤ k
such that G − F is {claw, diamond}-free; such a set F is also called an HDS.

Our main result is that cdf-ED admits a polynomial kernel.

Theorem 1. cdf-ED admits a polynomial kernel.

In order to prove Theorem 1, we give a polynomial-time compression of cdf-ED
into a problem in NP. By a polynomial-time compression into an unparameter-
ized problem R we mean a polynomial-time algorithm that, given an instance
(G, k) of cdf-ED, outputs an equivalent instance y of R such that |y| ≤ f(k),
for some computable function f called the size of the compression.

Theorem 2. cdf-ED admits a polynomial-time compression algorithm into a
problem in NP, where the size of the compression is O(k24).

The problem in NP that Theorem 2 refers to actually is an annotated variant
of cdf-ED. Unfortunately, we are unable to express the annotations in a clean
manner using gadgets. Therefore, we compose the polynomial-time compression
of Theorem 2 with the NP-hardness reduction that we present for cdf-ED (see
Corollary 4 discussed below) in order to derive Theorem 1.

To prove Theorem 2, we apply the vertex modulator technique. We first
greedily pack edge-disjoint claws and diamonds in the input graph. If more than
k such obstacles can be packed, then we immediately infer that we are dealing
with a no-instance. Otherwise, we obtain a set X ⊆ V (G) with |X| ≤ 4k such
that every induced claw and diamond in G has at least one edge with both
endpoints in X; in particular, G − X is {claw, diamond}-free. This means that
we can start to examine the structure of G − X understood as a line graph of a
triangle-free graph: it consists of a number of maximal cliques (called henceforth
bags) that can pairwise share at most a single vertex, and for two intersecting
bags B1, B2 there is no edge between B1\B2 and B2\B1. Next, we prove that
the neighborhood of every vertex x ∈ X in G−X is contained only in at most 2
bags, which gives us at most 8k bags that are important from the viewpoint of
neighborhoods of vertices in X. The crux of the proof lies in observing that an
optimum deletion set F consists only of edges that are close to these important
bags. Intuitively, all the edges of F lie either in important bags or in bags adjacent
to the important ones. A more precise combinatorial analysis leads to a set
S ⊆ V (G) of size polynomial in k such that every edge of F has both endpoints in
S. After finding such a set S, a polynomial-time compression for the problem can
be constructed using a generic argument that works for every edge modification
problem with a finite list of forbidden induced subgraphs.
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On a high level, our approach uses a vertex modulator technique that is sim-
ilar to one used by Drange and Pilipczuk [13] for their recent polynomial kernel
for Trivially Perfect Editing. However, since we are dealing with a graph
class with fundamentally different structural properties, the whole combinatorial
analysis of the instance with the modulator X (which forms the main part of
the paper) is also fundamentally different. We also remark that Cai [6] obtained
a kernel for the Diamond-free Edge Deletion problem with O(k4) vertices.
However, the techniques used in that result seem unusable in our setting: their
core observation is that a diamond can either be already present in the original
graph G or be created by removing an edge of a K4, and thus one can analyze an
auxiliary ‘propagation graph’ with diamonds and K4s of the original graph G as
nodes. In our setting, we also forbid claws, and the core combinatorial properties
of this propagation graph become much too complicated to handle.

Finally, we complement our positive result by proving that cdf-ED is NP-
hard and does not admit a subexponential-time parameterized algorithm unless
the Exponential Time Hypothesis of Impagliazzo et al. [20] fails.

Theorem 3. There exists a polynomial-time reduction that, given an instance φ
of 3Sat with n variables and m clauses, outputs an instance (G, k) of cdf-

ED such that (a) (G, k) is a yes-instance if and only if φ is satisfiable, (b)
|V (G)|, k = O(n + m), and (c) Δ(G) = 6.

Corollary 4. Even on instances with maximum degree 6, cdf-ED is NP-
complete and does not admit algorithms with running time 2o(k) · |V (G)|O(1)

or 2o(|V (G)|) unless the Exponential Time Hypothesis fails.

Corollary 4 shows that, contrary to recent discoveries for a number of edge
modification problems related to subclasses of chordal graphs [2,3,12,16,17],
cdf-ED does not enjoy the existence of subexponential-time parameterized
algorithms. The reduction of Theorem 3 resembles constructions for similar edge
modification problems (see e.g. [12,13,22]): every variable is replaced by a cyclic
variable gadget that has to be completely broken by the solution in one of two
possible ways, and variable gadgets are wired together with constant-size clause
gadgets that verify the satisfaction of the clauses.

In this extended abstract, we provide an almost complete proof of Theorem 2,
with some simpler proofs expelled to the full version of the paper [10]. Due to
lack of space the proof of Theorem 3 is deferred to the full version entirely.

2 Preliminaries

Graphs. We consider finite, undirected, simple graphs G with vertex set V (G)
and edge set E(G). Edges {u, v} ∈ E(G) will be written as uv for short. For a
subset of vertices S ⊆ V (G), the subgraph of G induced by S, denoted G[S], is the
graph with vertex set S and edge set {uv ∈ E(G) | u, v ∈ S}. We write G−S for
G[V (G)\S]. For a subset of edges F ⊆ E(G), we write G−F for the subgraph of
G obtained by deleting F , that is, V (G−F ) = V (G) and E(G−F ) = E(G)\F .
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Two disjoint sets X,Y ⊆ V (G) are fully adjacent if for every x ∈ X and y ∈ Y ,
the vertices x and y are adjacent. If one of these sets is a singleton, say X = {v},
then we say that v and Y are fully adjacent.

For a vertex v ∈ V (G), the (open) neighborhood NG(v) of v is the set {u |
uv ∈ E(G)}. The closed neighborhood NG[v] of v is defined as NG(v) ∪ {v}. For
a subset of vertices S ⊆ V (G), we denote by EG(S) the set of edges of G with
both endpoints in S. In this work NG and EG will always pertain to the graph
named G, so we drop the subscript.

Cliques, claws and diamonds. A clique of G is a set of vertices that are pairwise
adjacent in G; we often identify cliques with the complete subgraphs induced by
them. A maximal clique is a clique that is not a proper subset of any other clique.
A claw is a graph on four vertices {c, u, v, w} with edge set {cu, cv, cw}, called
legs of the claw; we call c the center of the claw, and u, v, w the leaves of the claw.
When specifying the vertices of a claw we always give the center first. A diamond
is a graph on four vertices {u, v, w, x} with edge set {uv, uw, vw, vx,wx}.

Parameterized complexity. Parameterized complexity is a framework for refining
the analysis of a problem’s computational complexity by defining an additional
“parameter” as part of a problem instance. Formally, a parameterized problem is
a subset Q of Σ∗ ×N for some finite alphabet Σ. The problem is fixed parameter
tractable if there is an algorithm which solves an instance (x, k) of the problem
in time f(k) · |x|c, where f : N → N is any computable function and c is any
integer. If f(k) = 2o(k), we say the algorithm is a subexponential parameterized
algorithm. A kernelization algorithm for Q is an algorithm that takes an instance
(x, k) of Q and in time polynomial in |x|+k outputs an equivalent instance (x′, k′)
(i.e., (x, k) is in Q if and only if (x′, k′) is) such that |x′| ≤ g(k) and k′ ≤ g(k) for
some computable function g. If the size of the kernel g is polynomial, we say that
Q admits a polynomial kernel. We can relax this definition to the notion of a
compression algorithm, where the output is required to be an equivalent instance
y of some unparameterized problem Q′, i.e., (x, k) ∈ Q if and only if y ∈ Q′. The
upper bound g(k) on |y| will be then called the size of the compression. We refer
the reader to the books of Downey and Fellows [11] and of Flum and Grohe [14]
for a more rigorous introduction.

Forbidden induced subgraphs. Consider any finite family of graphs H. A graph
G is H-free if for every H ∈ H, G does not contain H as an induced subgraph.
An HDS (H-free deletion set) for G is a subset of edges F ⊆ E(G) such that
G − F is H-free. Whenever we talk about a minimal HDS, we mean inclusion-
wise minimality. H-free Edge Deletion is the parameterized problem asking,
for a graph G and a parameter k, whether G has an HDS of size at most k. In
Annotated H-free Edge Deletion we are additionally given a set S ⊆ V (G)
and the question is whether G has an HDS of size at most k that is contained
in E(S).

Let (G, k) be an instance of H-free Edge Deletion. Recall that we can
easily find a subset X of the vertices of G of size polynomial in k such that
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(in particular) G − X is H-free. We refer to such a set as a modulator of G. The
construction here is basically the same as in Lemma 3.3 of [13], and a slightly
stronger construction based on the Sunflower Lemma can be found in [15].

Lemma 5. (♠)2 Let c = max{|V (H)| : H ∈ H}. Then one can in polynomial
time either find a subset X ⊆ V (G) of size at most c · k such that every induced
H ∈ H in G has an edge in E(X), or conclude that (G, k) is a no-instance.

We finish this section by showing that it suffices to find a set S of vertices of size
polynomial in k such that every minimal solution (every minimal HDS of size
at most k) is contained in E(S). Given such a set, we can compress the H-free
Edge Deletion instance in polynomial time to an instance of the annotated
version with O(|S|c−1) vertices, where c = max{|V (H)| : H ∈ H} (we assume
c > 1, as otherwise the problem is trivial). Since the annotated version is in NP
(as an unparameterized problem), this compression, together with an algorithm
to obtain S, concludes the proof of Theorem 2. Note that we do not require
inclusion-wise minimal HDSs of size larger than k to be contained in E(S).

Lemma 6. (♠) There is an algorithm that, given an instance (G, k) of H-
free Edge Deletion and a set S ⊆ V (G) such that every inclusion-
wise minimal HDS of size at most k is contained in E(S), outputs
in polynomial time a set U , where S ⊆ U ⊆ V (G) and |U | ≤
O(|S|c−1), such that (G, k) is a yes-instance if and only if (G[U ], S, k) is a
yes-instance of Annotated H-free Edge Deletion.

3 Kernel

In this section, we prove Theorem 2. As discussed below the statement of
Theorem 2, this yields the proof of Theorem 1 and thus the kernel. Throughout,
let (G, k) to be an instance of {claw, diamond}-free Edge Deletion .

We first define a simple decomposition of {claw, diamond}-free graphs, which
follows from the fact that they are precisely the line graphs of triangle-free
graphs, as shown by Metelsky and Tyshkevich [24]. For a {claw, diamond}-free
graph G′, let B(G′) be the family of vertex sets, called bags, containing:

– every maximal clique of G′, and
– a singleton {v} for each simplicial vertex v of G′

(i.e., each vertex whose neighborhood is a clique).

Lemma 7. Let G′ be a {claw, diamond}-free graph. Consider the family B(G′)
of bags of G′. Then:

(a) every non-isolated vertex of G′ is in exactly two bags;
(b) for every edge uv ∈ E(G′) there is exactly one bag containing both u and v;

2 The proofs of statements marked with (♠) are postponed to the full version of the
paper [10].
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(c) every two bags have at most one vertex in common;
(d) if two bags A,B have a common vertex v, then there is no edge between A−v

and B − v.

Moreover, |B(G′)| ≤ |V (G′)| + |E(G′)| and the family B(G′) can be computed in
polynomial time.

Proof. From the definitions of Sect. 3 and Theorem 5.2 of [24] it follows that
{claw, diamond}-free graphs are precisely the linear r-minoes for r = 2, that is,
graphs G′ such that every vertex belongs to at most two maximal cliques and
every edge belongs to exactly one maximal clique. In particular every edge of G′

is contained in exactly one bag, which proves (b).
Let v be any non-isolated vertex of G′. If the neighborhood of v is a clique in

G′, then N [v] is the only maximal clique containing v – hence v is in exactly two
bags: the maximal clique and the singleton {v}, by definition. If the neighborhood
of v is not a clique, then v has neighbors a, b that are not adjacent – hence v
is contained in at least two bags: the maximal clique containing va and the
(different) maximal clique containing vb. As G′ is a linear 2-mino, v is not in
any other maximal clique. Since v is not simplicial, by the definition of B(G′)
we conclude that also in this case v is in exactly two bags. This concludes the
proof of (a).

Since all bags induce cliques in G′, two different bags cannot have more
than one vertex in common, as this would imply that an edge joining them is
contained in both of them. This proves (c).

Finally, if two bags A,B had a common vertex v and there was an edge between
a ∈ A − v and b ∈ B − v, then since A is a maximal clique not containing b, there
would be a vertex a′ ∈ A non-adjacent to b. But then the vertices a, a′, b, v would
induce a diamond subgraph in G′, a contradiction. This proves (d).

To see that |B(G′)| ≤ |V (G′)| + |E(G′)|, note that every bag of B(G′) is either
a singleton bag or it contains an edge. The number of singleton bags is bounded by
|V (G′)|, while the number of bags containing an edge is bounded by |E(G′)| due
to (b). In order to compute B(G′), it suffices to construct first singleton bags for
all simplicial and isolated vertices, and then for every edge of G add the unique
maximal clique containing it, constructed in a greedy manner. �	

Now run the algorithm of Lemma 5 on instance (G, k). In case the algorithm
concludes it is a no-instance, we return a trivial no-instance of Annotated

{claw, diamond}-free Edge Deletion as the output of the compression.
Otherwise, let X to be the obtained modulator; that is, X is a subset of V (G) of
size at most 4k such that every induced claw and diamond in G has an edge in
E(X). In particular, G − X is a {claw, diamond}-free graph, so using Lemma 7
we compute in polynomial time the family of bags B(G − X). When referring
to bags, we will refer to B(G − X) only, and implicitly use Lemma 7 to identify,
for each non-isolated vertex v in G − X, the two bags containing v, and for each
edge e of G − X, the bag containing e.

Knowing the structure of G − X, we proceed by describing the adjacencies
between X and G − X. The following definition will play a central role. For
x ∈ X, we call a bag B of G − X attached to x if:
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– B is fully adjacent to x, and
– if B = {v} for some vertex v which is not isolated in G − X, then the other

bag containing v is not fully adjacent to x.

We call a bag attached if it is attached to some x ∈ X. The next two proposi-
tions show that adjacencies between X and G − X are fully determined by the
attachment relation, see Fig. 1.

Fig. 1. Possible ways in which a vertex in X can neighbor a vertex v in G − X and
the two bags containing it.

Lemma 8. Let B ∈ B(G − X) be a bag such that some vertex x ∈ X has at
least two neighbors in B. Then B is attached to x.

Proof. Suppose x is adjacent to u, v ∈ B. If x was non-adjacent to some vertex
w ∈ B, then since B induces a clique, the vertices x, u, v, w would induce a
diamond subgraph in G (Fig. 2(a)). However, no edge of this induced diamond
would be in E(X), contradicting the properties of X as a modulator. Therefore,
all vertices of B are adjacent to x (and |B| > 1), so B is attached to x. �	
Lemma 9. Let v be a vertex in G − X adjacent to a vertex x ∈ X. Then there
is exactly one bag in B(G − X) that contains v and is attached to x.

Proof. If v is an isolated vertex in G − X, then {v} is the only bag containing v
and is by definition attached to x.

Otherwise, let A,B be the two bags containing v. If one of the bags is a
singleton, say A = {v}, then B, being unequal to A, contains some other vertices.
If at least one vertex of B\{v} is adjacent to x, then it follows from Lemma 8
that B is attached to x and A is not. Otherwise, i.e. if no vertices of B\{v} are
adjacent to x, then by definition A is attached to x and B is not.

It remains to consider the case when both A − v and B − v are not empty;
see Fig. 2, (b) and (c). Suppose that x is adjacent to a vertex a ∈ A − v and a
vertex b ∈ B −v. Then a, b are non-adjacent by Lemma 7(d), so vertices v, a, b, x
induce a diamond subgraph in G. However, no edge of this diamond is in E(X),
a contradiction.
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Suppose x is non-adjacent to a vertex a ∈ A − v and a vertex b ∈ B − v.
Then a, b are non-adjacent by Lemma 7(d), so vertices x, a, b, v induce a claw
subgraph in G. However, no edge of this claw is in E(X), again a contradiction.

Therefore, if x is adjacent to a vertex in A − v, then A is attached to x (by
Lemma 8) and x must be non-adjacent to all of B − v, implying B is not attached
to x. Otherwise, if x is non-adjacent to all vertices in A−v, then x must be adjacent
to every vertex of B − v. This means B is attached to x and A is not. �	

Fig. 2. Adjacencies between X and G − X that lead to a contradiction.

We can now limit the number of attached bags by 2|X|, which is linear in k.

Lemma 10. For any x ∈ X, there are at most two bags in B(G − X) attached
to x.

Proof. Let x ∈ X. We first show that bags attached to x must be pairwise
disjoint and non-adjacent. If two bags attached to x contained a common vertex
v, then v would be adjacent to x and, by Lemma 9, at most one of the bags
would be attached to x, a contradiction.

If there was an edge uv between two different bags attached to x, then its
endpoints u and v would be adjacent to x and, by Lemma 8, the bag containing
the edge uv would be attached to x. But we have just shown that bags attached to
x are disjoint, so no other bag attached to x could contain u or v, a contradiction.
Therefore, every two bags attached to x are disjoint and non-adjacent.

Suppose that there are three or more bags adjacent to x. Let u, v, w be any
vertices contained in three different bags. By the above observations, u, v, w are
pairwise different and non-adjacent. Hence, vertices x, u, v, w induce a claw in G
that has no edges in E(X), a contradiction. �	

Having limited the number of attached bags, we want to show that
unattached bags intersect solutions only in a simple way. The following tech-
nical proposition will help handle cases involving diamonds.
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Lemma 11. Let H be a subgraph (not necessarily induced) of G isomorphic to
a diamond. Let B ∈ B(G − X) be an unattached bag containing at least two
vertices of H. Then B contains all vertices of H.

Proof. Let u, v be two vertices of H in B. Let w be a vertex of H adjacent to
u and v in H (note that since H is a diamond, there always is such a vertex).
Then w is also adjacent to u and v in G. Vertex w cannot be in X, as otherwise
Lemma 8 would contradict the assumption that B is unattached. Hence, w is in
G−X. Let A be the bag containing the edge uw. If w was not in B, then B 
= A
and vw would be an edge going between v ∈ B −u and w ∈ A−u, contradicting
Lemma 7(d). Therefore, w ∈ B.

Repeating this argument for the fourth vertex of the diamond H and an
appropriate pair of vertices from {u, v, w}, all the vertices of H can be shown to
be in B. �	

It turns out that one may need to delete an edge of an unattached bag B,
but in this case the intersection of any minimal HDS F with the edges of B has
a very special structure: deleting the edges of F makes some of the vertices of
B isolated, whereas the rest of B remains a smaller clique. This will later allow
us to take only a limited number of unattached bags into account.

Lemma 12. Let F be a minimal HDS of G and let B ∈ B(G − X) be an
unattached bag. Then G[B] − F consists of a clique and a number of isolated
vertices.

Proof. Let B′ ⊆ B be the set of vertices that are not isolated in G[B] − F .
Consider the set F ′ = F\E(B′). The graph G − F ′ is obtained from G − F by
adding back all edges between vertices in B′. Thus the bag B induces in G − F ′

a clique on B′ plus isolated vertices B\B′. We claim that F ′ is an HDS. By the
minimality of F , this will imply that F = F ′ and hence the claim.

Suppose to the contrary that G − F ′ contains an induced claw or diamond
H. Since G−F contains neither an induced claw nor a diamond, H has an edge
e in F ∩ E(B′).

If H is a diamond in G − F ′, then since e has both endpoints in B, by
Lemma 11 we infer that all vertices of H are in B. But this contradicts that B
induces a clique plus isolated vertices in G − F ′.

If H is a claw in G − F ′, then let c be its center and v, u1, u2 its leaves, so
that e = cv. Since e ∈ E(B′), its endpoint c is in B′, meaning c is not isolated in
G[B]−F . Let w be a neighbor of c in G[B]−F . We show that vertices c, w, u1, u2

induce a claw in G − F . Consider where the leaves ui may be. If ui ∈ B (for
i = 1 or 2), then vertices c, v, ui induce two legs of a claw (a P3) in G[B] − F ′,
contradicting that G[B] − F ′ is a clique plus isolated vertices. If ui ∈ X, then
since ui is adjacent to c ∈ B and B is not attached, by Lemma 8 we have that ui

cannot be adjacent to w ∈ B in G. If ui ∈ G − (B ∪ X), then it is in the bag A
containing the edge cui and, by Lemma 7, ui ∈ A−c is not adjacent to w ∈ B−c
in G. In either case u1w and u2w are non-edges in G, thus also in G − F . By
assumption, u1u2 is a non-edge in G − F ′, thus also in G − F . We showed that
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ui 
∈ B, so cui ∈ E(G − F ′) are also edges in G − F . Finally, cw ∈ E(G[B])\F ,
so indeed the vertices c, w, u1, u2 induce a claw in G − F , a contradiction. �	
Lemma 13. If K is a clique in G with at least 2k + 2 vertices, then every HDS
F of G of size at most k satisfies F ∩ E(K) = ∅.
Proof. By contradiction, assume there exists uv ∈ F with u, v ∈ K. However,
then for every two distinct w1, w2 ∈ K\{u, v}, the subgraph induced in G−uv by
u, v, w1, w2 is a diamond. As |K| ≥ 2k +2, we can find k edge-disjoint diamonds
formed in this way in G−uv. Consequently, F needs to contains at least k edges
apart from uv, a contradiction. �	
Corollary 14. Let B ∈ B(G − X) be a bag with at least 2k + 2 elements. Then
for every HDS F of G of size at most k, F ∩ E(B) = ∅. If furthermore B is
attached to x ∈ X, then F ∩ E(B ∪ {x}) = ∅.
Proof. Follows directly from Lemma 13, since every bag B is a clique, if B is
attached to x ∈ X, then B ∪ {x} is a clique as well. �	
We are ready to present the main step of the compression procedure for cdf-ED.

Lemma 15. One can in polynomial time find a set S ⊆ V (G) of size O(k4)
such that every minimal HDS of size at most k is contained in E(S).

Proof. Call a bag small if it has less than 2k+2 vertices, big otherwise. We mark
every small attached bag, every small unattached bag that shares a vertex with
some small attached bag, and furthermore, for every vertex pair x, y ∈ X, we
mark up to k + 1 small unattached bags of size at least two that have a vertex
in N(x) ∩ N(y). We mark the following bags: every small attached bag, every
small unattached bag that shares a vertex with some small attached bag, for
every vertex pair x, y ∈ X, we mark up to k + 1 small unattached bags of size
at least two that have a vertex in N(x) ∩ N(y) (if there are more such bags, we
mark any k + 1 of them). Let S be the set of all vertices in marked bags and in
X. Let us first show that |S| = O(k4). By the construction of X in Lemma 5,
we have that |X| ≤ 4k. By Lemma 10, there are at most 2|X| attached bags.
Hence, there are at most 2|X| · (2k + 1) vertices in small attached bags. Since
each vertex of G − X is in at most two bags, there are at most 2|X| · (2k + 1)
small unattached bags that share a vertex with small attached bags. In the final
point we mark at most |X|2 · (k + 1) small bags. Therefore, we mark at most
2|X| + 2|X| · (2k + 1) + |X|2 · (k + 1) = O(k3) small bags in total. The set S\X
contains at most (2k + 1) times as many vertices in total, which together with
|X| ≤ 4k implies that |S| = O(k4).

We want to show that a minimal HDS never deletes any edges in unmarked
bags. Let Z be the set of edges that are either contained in a marked bag, or
in E(X), or connect a vertex of a marked bag with a vertex of X. Note that
Z ⊆ E(S), but the inclusion may be strict, due to an edge going between two
vertices of some marked bags that belongs to an unmarked bag. Let F be a
minimal HDS of size at most k. We will show that F ′ = F ∩ Z is also an HDS,
concluding the proof of the lemma.
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Claim 16. If a bag does not induce a clique plus isolated vertices in G − F ′,
then it is a small attached bag.

Proof. First consider G − F . By Lemma 12, every unattached bag induces a
clique plus isolated vertices in G − F . By Corollary 14, every big bag induces a
clique in G−F . Hence, if a bag does not induce a clique plus isolated vertices in
G − F , then it is a small attached bag. Suppose now that a bag does not induce
a clique plus isolated vertices in G − F ′. Then it necessarily contains an edge
of F ′ ⊆ Z and thus must be marked. We infer that this bag induces the same
subgraph in G − F as in G − F ′. Therefore, it must be small and attached. �	

Suppose to the contrary that G − F ′ contains an induced claw or diamond
H. Since G − F contained none, H must have an edge e ∈ F\F ′ = F\Z. We
consider the following cases depending on the location of e, each leading to a
contradiction; see Fig. 3.

Case 1: edge e has an endpoint in the modulator X.
Then e = vx for some x ∈ X and v ∈ V (G). If v ∈ X, then e ∈ E(X) ⊆ Z,
contradicting e ∈ F\Z. Otherwise, by Lemma 9, there is a bag B containing
v that is attached to x. Since e ∈ F , by Corollary 14 we infer that B has less
than 2k + 2 elements. But then B is a small, attached, and hence marked bag,
implying e ∈ Z, a contradiction.

Case 2: edge e has both endpoints in G − X (and thus e is in G − X).
Let B be the bag containing e. Since e ∈ F , B is a small bag by Corollary 14.
Since e 
∈ Z, B is not a marked bag. Since small attached bags are marked, B is
unattached. By Claim 16, B induces a clique plus isolated vertices in G − F ′.

Case 2a: H is a diamond (in G − F ′).
Then the endpoints of e are in B, hence by Lemma 11 all vertices of H are in
B. But B induces a clique plus isolated vertices in G − F ′, a contradiction.

Case 2b: H is a claw (in G − F ′).
Let c be the center of the claw H and let v, u1, u2 be its leaves, so that e = cv.
Let A be the other bag containing c.

If ui was in B (for i = 1 or 2), then B would not induce a clique plus isolated
vertices in G − F ′ because ui, c, v induces a P3, a contradiction.

If ui 
∈ X, then ui is in the bag containing cui but not in B, which means
that ui is in A. If both u1, u2 were not in X, then A would not induce a clique
plus isolated vertices in G − F ′ (because u1, c, u2 induces a P3). By Claim 16, A
would be a small attached bag that shares the vertex c with B, implying that
B is marked, a contradiction.

If exactly one leaf of the claw is in X, e.g., u1 ∈ X and u2 ∈ G−X, then u2 is
in A (as above). Because c is adjacent to u1 ∈ X, by Lemma 9 we infer that one
of A,B is attached to u1. Since B is unattached, A is attached to u1, so u1u2 is
an edge in G. Since u1u2 is not an edge in G − F ′, we have that u1u2 ∈ F ′ ⊆ F .
By Corollary 14 we infer that A is a small bag. It is also attached, and therefore
B is marked, again a contradiction.
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If both u1, u2 are in X, then note that B is an unattached bag of size at least
two that has a vertex (namely c) in the common neighborhood of u1 and u2.
By the definition of marked bags and as B was not marked in the third point,
at least k + 1 different marked bags B1, . . . , Bk+1 are unattached, have size at
least two, and have some vertex, respectively c1, c2, . . . , ck+1, in the common
neighborhood of u1 and u2. If ci = cj for some i, j with 1 ≤ i < j ≤ k + 1,
then Bi, Bj are the two bags that contain ci. Since ci is adjacent to u1, one
of those bags is attached to u1 by Lemma 9, a contradiction. Hence, ci 
= cj
for all 1 ≤ i < j ≤ k + 1. Let wi be any vertex different from ci in Bi. Since
Bi is unattached, wi is non-adjacent to u1 and u2 in G by Lemma 8. Clearly,
ci is adjacent to wi, u1, u2 in G. Therefore, vertices ci, wi, u1, u2 induce k + 1
edge-disjoint claws in G − u1u2. Since u1, u2 are leaves of the claw H in G − F ′,
they are non-adjacent in G − F . Hence, for each i with 1 ≤ i ≤ k + 1, one of the
edges ciwi, ciu1, ciu2 must be deleted by F . But |F | ≤ k, a contradiction. �	

Fig. 3. The different situations where a claw or diamond (thick blue edges and dashed
non-edges) might appear in G−F ′, each leading to a contradiction. (Color figure online)

We can now conclude the proof of Theorem 2: given an instance (G, k),
we first apply Lemma 15 to obtain a set S ⊆ V (G), then apply Lemma 6 to
the set S obtaining a set S ⊆ U ⊆ V (G), and return an instance (G[U ], S, k)
of Annotated H-free Edge Deletion. The correctness of this procedure
follows from Lemmata 6 and 15. Note that |S| = O(k4), thus |U | = O(k12) and
the adjacency matrix of the output instance can be encoded with O(k24) bits.
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4 Conclusions

In this paper we have charted the parameterized and kernelization complexity
of cdf-ED by proving that (i) the problem admits a polynomial kernel, and
(ii) the simple 5k · nO(1) branching algorithm following from the observation of
Cai [4] cannot be improved to a subexponential parameterized algorithm, unless
the ETH fails.

It should not be a surprise for the reader that the results of this paper were
obtained while working on kernelization for Claw-free Edge Deletion. In
this problem, by applying the same vertex modulator principle we arrive at the
situation where we have a modulator X ⊆ V (G) with |X| ≤ 4k, and G − X is a
claw-free graph. Then, one can use the structural theorem of Chudnovsky and
Seymour [7,8] (see also variants suited for algorithmic applications, e.g., [19]) to
understand the structure of G−X and of the adjacencies between X and G−X.
In essence, the structural theorem yields a decomposition of G − X into strips,
where each strip induces a graph from one of several basic graph classes; each
strip has at most two distinguished cliques (possibly equal) called ends, and
strips are joined together by creating full adjacencies between disjoint sets of
ends. Thus, the whole decomposition looks like a line graph, where every vertex
is replaced by a possibly larger strip; indeed, the degenerate case where all the
strips are single vertices exactly corresponds to the case of line graphs. As far as
base classes are concerned, probably the ones most important for understanding
the whole decomposition are proper interval graphs and graphs with independent
sets of size at most 2 or 3, in particular, co-bipartite graphs. Thus, we believe that
for the sake of showing a polynomial kernel for Claw-free Edge Deletion,
one needs to understand the three special cases when G − X is (a) a line graph,
(b) a proper interval graph, and (c) a co-bipartite graph.

We believe that the results of this paper present a progress towards this goal
by providing a toolbox useful for tackling case (a). In our proof we have used
in several places the fact that we exclude also diamonds. However, much of the
structural analysis can translated also to the case when only claws are forbidden,
so we hope that similar ideas can be also used for understanding case (a), and
consequently how the whole decomposition structure should be dealt with in
a polynomial kernel for Claw-free Edge Deletion. Unfortunately, we are
currently unable to make any significant progress in cases (b) and (c), of which
case (c) seems particularly difficult.

From another perspective, our positive result gives high hopes for the exis-
tence of a polynomial kernel for Line Graph Edge Deletion, which seems
much closer to the topic of this work than Claw-free Edge Deletion. The
problem is that {claw, diamond}-free graphs, or equivalently line graphs of
triangle-free graphs, have much nicer structural properties than general line
graphs. These properties, encapsulated in Lemma 7, were used several times
to simplify the analysis, which would become much more complicated in the
case of general line graphs. Also, note that in this paper the considered graph
class can be characterized using only two relatively simple forbidden induced
subgraphs. In the case of general line graphs, the classic characterization via
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forbidden induced subgraphs of Beineke [1] involves 9 different obstacles with
up to 6 vertices.
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Abstract. We study the problems Locating-Dominating Set and
Metric Dimension, which consist of determining a minimum-size set
of vertices that distinguishes the vertices of a graph using either neigh-
bourhoods or distances. We consider these problems when restricted to
interval graphs and permutation graphs. We prove that both decision
problems are NP-complete, even for graphs that are at the same time
interval graphs and permutation graphs and have diameter 2. While
Locating-Dominating Set parameterized by solution size is trivially
fixed-parameter-tractable, it is known that Metric Dimension is W [2]-
hard. We show that for interval graphs, this parameterization of Metric

Dimension is fixed-parameter-tractable.

1 Introduction

Combinatorial identification problems have been widely studied in various con-
texts. The common characteristic of these problems is that we are given a combi-
natorial structure, and we wish to distinguish (i.e. uniquely identify) its elements
by the means of a small set of selected elements. In this paper, we study two
such identification problems where the instances are graphs. In the Locating-

Dominating Set problem, we ask for a dominating set S such that the vertices
outside of S are distinguished by their neighbourhood within S. In Metric

Dimension, we wish to select a set S of vertices of a graph G such that every
vertex of G is uniquely identified by its distances to the vertices of S.
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These problems have been extensively studied since their introduction in
the 1970s and 1980s. They have been applied to various areas such as network
verification [2], fault-detection in networks [36], graph isomorphism testing [1]
or the logical definability of graphs [26].

Important Concepts and Definitions. All considered graphs are connected,
finite and simple. We denote by N [v], the closed neighbourhood of vertex v, and
by N(v) its open neighbourhood, i.e. N [v]\{v}. A vertex is universal if it is adja-
cent to all the vertices of the graph. A set S of vertices of G is a dominating set
if for every vertex v, there is a vertex x in S ∩N [v]. In the context of dominating
sets we say that a vertex x separates two distinct vertices u, v if it dominates
exactly one of them. Set S separates the vertices of a set X if all pairs of X
are separated by a vertex of S. Given a partial set S, we say that two distinct
vertices u, v need to be separated if S does not separate them. If the set S is
clear from context, then we simply say x, y need to be separated. The distance
between two vertices u, v is denoted d(u, v). The following two definitions are
the main concepts studied in this paper.

• (Slater [33,34]) A set L of vertices of a graph G is a locating-dominating set
if it is a dominating set and it separates the vertices of V (G) \ L.

• (Harary and Melter [21], Slater [32]) A set R of vertices of a graph G is a
resolving set if for each pair u, v of distinct vertices, there is a vertex x of R
with d(x, u) �= d(x, v).

The smallest size of a locating-dominating set of G is the location-domination
number of G, denoted γLD(G). The smallest size of a resolving set of G is the
metric dimension of G, denoted dim(G). The inequality dim(G) ≤ γLD(G),
relating these notions, holds for every graph G. If G has diameter 2, the two
concepts are almost the same, as then, one can check that γLD(G) ≤ dim(G)+1
holds. We consider the two associated decision problems:

Locating-Dominating Set

Instance: A graph G, an integer k.
Question: Is it true that γLD(G) ≤ k?

Metric Dimension

Instance: A graph G, an integer k.
Question: Is it true that dim(G) ≤ k?

We will study these problems on interval graphs and permutation graphs,
which are classic graph classes that have many applications and are widely stud-
ied. They can be recognized efficiently, and many problems can be solved effi-
ciently for graphs in these classes (see e.g. the book by Golumbic [19]). Given a
set S of (geometric) objects, the intersection graph G of S is the graph whose
vertices are associated to the elements of S and where two vertices are adjacent
if and only if the corresponding elements of S intersect. Then, S is called an
intersection model of G. An interval graph is the intersection graph of a set of
(closed) intervals of the real line. Given two parallel lines B and T , a permutation
graph is the intersection graph of segments of the plane which have one endpoint
on B and the other endpoint on T .
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Previous Work. The complexity of distinguishing problems has been studied by
many authors. Locating-Dominating Set was first proved to be NP-complete
in [7], a result extended to bipartite graphs in [5]. This was improved to pla-
nar bipartite unit disk graphs [29] and to planar bipartite subcubic graphs [14].
Locating-Dominating Set is hard to approximate within any o(log n) factor
(n is the order of the graph), with no restriction on the input graph [35]. This
result was extended to bipartite graphs, split graphs and co-bipartite graphs [14].
On the positive side, Locating-Dominating Set is constant-factor approx-
imable for bounded degree graphs [20], line graphs [14,15], interval graphs [4]
and is linear-time solvable for graphs of bounded clique-width (using Courcelle’s
theorem [8]). Furthermore, an explicit linear-time algorithm solving Locating-

Dominating Set on trees is known [33].
Metric Dimension, which has a non-local and more intricate flavour, was

widely studied as well, and has (re)gained a lot of attention within the last few
years. It was shown NP-complete in [18, ProblemGT61]. This result has recently
been extended to bipartite graphs, co-bipartite graphs, split graphs and line
graphs of bipartite graphs [11], to a special subclass of unit disk graphs [24],
and to planar graphs [9]. Polynomial-time algorithms for the weighted version
of Metric Dimension for paths, cycles, trees, graphs of bounded cyclomatic
number, cographs and partial wheels were given in [11]. A polynomial-time algo-
rithm for outerplanar graphs was designed in [9] and one for chain graphs in [12].
It was shown in [2] that Metric Dimension is hard to approximate within any
o(log n) factor for graphs of order n. This is even true for bipartite subcubic
graphs, as shown in [22,23].

In light of these results, the complexity of Locating-Dominating Set and
Metric Dimension for interval and permutation graphs is a natural open ques-
tion (as posed in [11,28] for Metric Dimension on interval graphs), since these
classes are standard candidates for designing efficient algorithms.

Let us say a few words about the parameterized complexity of these problems.
For standard definitions and concepts in parameterized complexity, we refer to
the books [10,30]. It is known that for Locating-Dominating Set, any graph
of order n and solution size k satisfies n ≤ 2k+k−1 [34]. Therefore, when parame-
terized by k, Locating-Dominating Set is trivially fixed-parameter-tractable
(FPT): first check whether the above inequality holds (if not, return “no”), and
if yes, use a brute-force algorithm checking all possible subsets of vertices. This
is an FPT algorithm. However, Metric Dimension (again parameterized by
solution size k) is W[2]-hard even for bipartite subcubic graphs [22,23]. Remar-
quably, the bound n ≤ Dk + k holds [6] (where n is the graph’s order, D its
diameter, and k is the size of a resolving set). Hence, for graphs of diameter
bounded by a function of k, the same arguments as the previous ones yield an
FPT algorithm for Metric Dimension. This holds, for example, for the class
of (connected) split graphs, which have diameter at most 3. Besides this, as
remarked in [23], no standard class of graphs for which Metric Dimension is
FPT was previously known.
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Our Results. We settle the complexity of Locating-Dominating Set and
Metric Dimension on interval and permutation graphs, showing that the two
problems are NP-complete even for graphs that are at the same time interval
graphs and permutation graphs and have diameter 2 (Sect. 2). Then, we present
a dynamic programming algorithm (using path-decomposition) to solve Metric

Dimension in FPT time on interval graphs (Sect. 3). Up to our knowledge, this
is the first nontrivial FPT algorithm for this problem. Due to space constraints,
some proofs are deferred to the full version of the paper [16].

2 Hardness Results

We will now reduce 3-Dimensional Matching, which is a classic NP-complete
problem [25], to Locating-Dominating Set on interval graphs.

3-Dimensional Matching

Instance: Three disjoint sets A, B and C each of size n, and a set T of
m triples of A × B × C.
Question: Is there a perfect 3-dimensional matching M ⊆ T of the
hypergraph (A ∪ B ∪ C, T ), i.e. a set of disjoint triples of T such that
each element of A ∪ B ∪ C belongs to exactly one of the triples?

2.1 Preliminaries and Gadgets

We first define the following dominating gadget (a path on four vertices). The
idea is to ensure that specific vertices are dominated locally, and therefore sep-
arated from the rest of the graph. We will use it extensively. The reduction is
described as an interval graph, but we then show that it is also a permutation
graph. In all that follows, we always consider interval graphs with an interval
representation.

Definition 1 (Dominating gadget). A dominating gadget D is a subgraph of
an interval graph G inducing a path on four vertices, and such that each interval
of V (G) \ V (D) either contains all intervals of V (D) or does not intersect any.

In the following, a dominating gadget will be represented as in Fig. 1(a).

D

u

v

D(uv)

Fig. 1. Representations of dominating gadget and choice pair.
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The following claim is easy to observe.

Claim 2. If G is an interval graph containing a dominating gadget D and S is
a locating-dominating set of G, then |S ∩ V (D)| ≥ 2.

If x1, x2, x3, x4 denote the vertices of D, the set SD = {x1, x4} is called the
standard solution for D. It is a locating-dominating set of D and if S is an
optimal locating-dominating set of G, then replacing S ∩ V (D) by the standard
solution SD, one can obtain an optimal locating-dominating set S′.

Definition 3 (Choice pair). A pair {u, v} of intervals is called a choice pair if
u, v both contain the intervals of a common dominating gadget (denoted D(uv)),
and such that none of u, v contains the other.

See Fig. 1(b) for an illustration of a choice pair. Intuitively, a choice pair gives
us the choice of separating it from the left or from the right: since none of u, v is
included in the other, the intervals intersecting u but not v can only be located
at one side of u; the same holds for v. In our construction, we will make sure
that, except for the choice pairs, all pairs of intervals will be easily separated
using domination gadgets. Our aim will then be to separate the choice pairs. We
have the following claim that follows directly from Claim 2:

Claim 4. Let S be a locating-dominating set of an interval graph G and {u, v}
be a choice pair in G. If the solution S ∩ V (D(uv)) for the dominating gadget
D(uv) is the standard solution, both vertices u and v are dominated, separated
from all vertices in D(uv) and from all vertices not intersecting D(uv).

We now define the central gadget of the reduction, the transmitter gadget.
Roughly speaking, it allows to transmit information across an interval graph.

Definition 5 (Transmitter gadget). Let P be a set of two or three choice
pairs in an interval graph G. A transmitter gadget Tr(P ) is a subgraph of G
consisting of a path on seven vertices {u, uv1, uv2, v, vw1, vw2, w} and five dom-
inating gadgets D(u), D(uv), D(v), D(vw), D(w) such that the following prop-
erties are satisfied:

• u and w are the only vertices of Tr(P ) that separate the pairs of P .
• The intervals of the dominating gadget D(u) (resp. D(v), D(w)) are included

in interval u (resp. v, w) and no interval of Tr(P ) other than u (resp. v, w)
intersects D(u) (resp. D(v), D(w)).

• Pair {uv1, uv2} is a choice pair and no interval of Tr(P ) \ (D(uv1, uv2) ∪
{uv1, uv2}) intersects both intervals of the pair. The same holds for pair
{vw1, vw2}.

• The choice pairs {uv1, uv2} and {vw1, vw2} cannot be separated by intervals
of G other than u, v and w.
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Figure 2 illustrates a transmitter gadget and shows the succinct graphical
representation that we will use. As shown in the figure, we may use a “box” to
denote Tr(P ). This box does not include the choice pairs of P but indicates where
they are situated. Note that the middle pair {y1, y2} could also be separated
(from the left) by u instead of w, or it may not exist at all if P contains only
two pairs.

The following claim shows how transmitter gadgets will be used in the main
reduction.

Claim 6. Let G be an interval graph with a transmitter gadget Tr(P ) and
let S be a locating-dominating set of G. We have |S ∩ Tr(P )| ≥ 11 and if
|S ∩ Tr(P )| = 11, then no pair of P is separated by a vertex in S ∩ Tr(P ).
Moreover, there exist two sets of vertices of Tr(P ), S−

Tr(P ) and S+
Tr(P ) of size 11

and 12 respectively, such that the following holds:

• The set S−
Tr(P ) dominates all the vertices of Tr(P ) and separates all the pairs

of Tr(P ) but no pairs in P .
• The set S+

Tr(P ) dominates all the vertices of Tr(P ), separates all the pairs of
Tr(P ) and all the pairs in P .

Proof. By Claim 2, we must have |S∩Tr(P )| ≥ 10 with 10 vertices of S belonging
to the dominating gadgets. In order that uv1, uv2 are separated, at least one
vertex of {u, uv1, uv2, v} belongs to S (recall that by definition the intervals
not in Tr(P ) cannot separate the choice pairs in Tr(P )), and similarly, for the
choice pair {vw1, vw2}, at least one vertex of {v, vw1, vw2, w} belongs to S.
Hence |S ∩ Tr(P )| ≥ 11 and if |S ∩ Tr(P )| = 11, vertex v must be in S and
neither u nor w are in S. Therefore, no pair of P is separated by a vertex in
S ∩ Tr(P ).

We now prove the second part of the claim. Let Sdom be the union of the
five standard solutions SD of the dominating gadgets of Tr(P ). Let S−

Tr(P ) =
Sdom ∪ {v} and S+

Tr(P ) = Sdom ∪ {u,w}. The set Sdom has 10 vertices and so
S−
Tr(P ) and S+

Tr(P ) have respectively 11 and 12 vertices. Each interval of Tr(P )
either contains a dominating gadget or is part of a dominating gadget and is
therefore dominated by a vertex in Sdom. Hence, pairs of vertices that are not
intersecting the same dominating gadget are clearly separated. By Claim 2, no
vertex in a dominating gadget D is dominated by all vertices of SD, hence a
vertex adjacent to the whole of D is separated from all the vertices of D. Also,
by Claim 2, all pairs of vertices inside a dominating gadget are separated by
Sdom. Therefore, the only remaining pairs to consider are the choice pairs. Note
that they are separated both at the same time either by v or by {u,w}. Hence
the two sets S−

Tr(P ) and S+
Tr(P ) are both dominating and separating the vertices

of Tr(P ). Moreover, since S+
Tr(P ) contains u and w, it also separates the pairs

of P . �	
We will call the sets S−

Tr(P ) and S+
Tr(P ) the tight and non-tight standard

solutions of Tr(P ).
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x1

x2

u

uv1

uv2

v

y1

y2

vw1

vw2

w

z1

z2

D(u)

D(uv)

D(v)

D(vw)

D(w)

Tr({x1, x2}, {y1, y2}, {z1, z2})

Fig. 2. Transmitter gadget Tr({x1, x2}, {y1, y2}, {z1, z2}) and its “box” representation.

2.2 The Main Reduction

We now describe the reduction. Each element x ∈ A ∪ B ∪ C is modelled by a
choice pair {fx, gx}. Each triple of T is modelled by a triple gadget:

Definition 7 (Triple gadget). Let T = {a, b, c} be a triple of T . The triple
gadget Gt(T ) is an interval graph consisting of four choice pairs p = {p1, p2},
q = {q1, q2}, r = {r1, r2}, s = {s1, s2} together with their associated dominating
gadgets D(p), D(q), D(r), D(s) and five transmitter gadgets Tr(p, q), Tr(r, s),
Tr(s, a), Tr(p, r, b) and Tr(q, r, c), where:

• a = {fa, ga}, b = {fb, gb} and c = {fc, gc};
• Except for the choice pairs, for each pair of intervals of Gt(T ), its two inter-

vals intersect different subsets of {D(p),D(q),D(r),D(s)};
• In each transmitter gadget Tr(P ) and for each choice pair π ∈ P , the intervals

of π intersect the same intervals except for the vertices u, v, w of Tr(P );
• The intervals of V (G)\V (Gt(T )) that are intersecting only a part of the gadget

intersect according to the transmitter gadget definition and do not separate
the choice pairs p, q, r and s.

An illustration of a triple gadget is given in Fig. 3. We remark that p, q, r
and s in Gt({a, b, c}), are all functions of {a, b, c} but to simplify the notations
we simply write p, q, r and s.

The proof of the following claim is similar to the proof of Claim 6.

Claim 8. Let G be a graph with a triple gadget Gt(T ) and S be a locating-
dominating set of G. We have |S ∩ Gt(T )| ≥ 65 and if |S ∩ Gt(T )| = 65, no
choice pair corresponding to a, b or c is separated by a vertex in S ∩ Gt(T ).
Moreover, there exist two sets of vertices of Gt(T ), S−

Gt(T ) and S+
Gt(T ) of size 65

and 66 respectively, such that the following holds.

• The set S−
Gt(T ) dominates all the vertices of Gt(T ) and separates all the pairs

of Gt(T ) but does not separate any choice pairs corresponding to {a, b, c}.
• The set S+

Gt(T ) dominates all the vertices of Gt(T ), separates all the pairs of
Gt(T ) and separates the choice pairs corresponding to {a, b, c}.
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p1
p2

q1
q2

r1
r2

s1
s2

fa
ga

fb
gb

fc
gc

D D D D D D D
Tr(p, q) Tr(r, s)

Tr(p, r, b)

Tr(q, r, c)

Tr(s, a)

Fig. 3. Triple gadget Gt(T ) with T = {a, b, c} together with the choice pairs of elements
a, b and c. We recall that these choice pairs and their dominating gadgets are not part
of Gt(T ).

Given an instance (A,B,C, T ) of 3-Dimensional Matching with |A| =
|B| = |C| = n and |T | = m, we construct the interval graph G = G(A,B,C, T )
as follows.

• As mentioned previously, to each element x of A ∪ B ∪ C, we assign a dis-
tinct choice pair {fx, gx} in G. The intervals of any two distinct choice pairs
{fx, gx}, {fy, gy} are disjoint and they are all in R

+.
• For each triple T = {a, b, c} of T we first associate an interval IT in R

− such
that for any two triples T1 and T2, IT1 and IT2 do not intersect1. Then inside
IT , we build the choice pairs {p1, p2}, {q1, q2}, {r1, r2}, {s1, s2}. Finally, using
the choice pairs already associated to elements a, b and c we complete this to
a triple gadget.

• When placing the remaining intervals of the triple gadgets, we must ensure
that triple gadgets do not “interfere”: for every dominating gadget D, no
interval in V (G)\V (D) must have an endpoint inside D. Similarly, the choice
pairs of each triple gadget or transmitter gadget must only be separated by
intervals among u, v and w of its corresponding private transmitter gadget.
For intervals of distinct triple gadgets, this is easily done by our placement of
the triple gadgets. To ensure that the intervals of transmitter gadgets of the
same triple gadget do not interfere, we proceed as follows. We place the whole
gadget Tr(p, q) inside interval u of Tr(p, r, b). Similarly, the whole Tr(r, s) is
placed inside interval v of Tr(p, r, b) and w of Tr(q, r, c). One has to be more
careful when placing the intervals of Tr(p, r, b) and Tr(q, r, c). In Tr(p, r, b),
we must have that interval u separates p from the right of p. We also place
u so that it separates r from the left of r. Intervals uv1, uv2 both start in r1,
so that u also separates uv1, uv2 without these intervals interfering with the
ones of r. Intervals uv1, uv2 continue until after pair s. In Tr(q, r, c), we place
u so that it separates q from the right, and we place w so that it separates
r from the right; intervals uv1, uv2, v lie strictly between q and r; intervals
vw1, vw2 intersect r1, r2 but stop before the end of r2 (so that w can separate
both pairs vw1, vw2 and r but without these pairs interfering). It is now easy
to place Tr(s, a) between s and a.

1 Note that the intervals IT are not part of the final construction.
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The graph G(A,B,C, T ) has 159m + 18n vertices and the interval represen-
tation described by our procedure can be obtained in polynomial time. We are
now ready to state the main result of this section.

Theorem 9. (A,B,C, T ) has a perfect 3-dimensional matching if and only if
G = G(A,B,C, T ) has a locating-dominating set with 65m + 7n vertices.

Theorem 9 shows that Locating-Dominating Set is NP-complete for
interval graphs. In fact, one can prove that the constructed graph G(A,B,C, T )
is also a permutation graph, see for example Fig. 4 for an illustration of the
transmitter gadget as a permutation diagram intersection model.

x1

x2 u

D(u)

uv1uv2

D(uv)

v

D(v)

vw2

vw1

D(uv)

w

D(w)

y2

y1 z1

z2

Fig. 4. Permutation diagram intersection model of a transmitter gadget.

Corollary 10. Locating-Dominating Set is NP-complete for graphs that
are both interval and permutation graphs.

2.3 Diameter 2 and Consequence for METRIC DIMENSION

We now describe a self-reduction for Locating-Dominating Set for graphs
with a universal vertex (hence, graphs of diameter 2), and a similar reduction
from Locating-Dominating Set to Metric Dimension.

Let G be a graph. Let f1(G) be the graph obtained from G by adding a
universal vertex u and a neighbour v of u of degree 1. Let f2(G) be the graph
obtained from G by adding two adjacent universal vertices u, u′ and two non-
adjacent vertices v and w that are only adjacent to u and u′. See Fig. 5 for an
illustration. One can show that γLD(f1(G)) = γLD(G) + 1, and dim(f2(G)) =
γLD(G) + 2.

G

u

v

f1(G)

G

u u

v w

f2(G)

Fig. 5. Two reductions for diameter 2.
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This implies the following two theorems.

Theorem 11. Let C be a class of graphs that is closed under the graph trans-
formation f1. If Locating-Dominating Set is NP-complete for graphs in C,
then it is also NP-complete for graphs in C that have diameter 2.

Theorem 12. Let C be a class of graphs that is closed under the graph transfor-
mation f2. If Locating-Dominating Set is NP-complete for graphs in C, then
Metric Dimension is also NP-complete for graphs in C that have diameter 2.

Since Theorems 11 and 12 can be applied to interval graphs and permutation
graphs, Corollary 10 implies the following.

Corollary 13. Locating-Dominating Set and Metric Dimension are NP-
complete for diameter 2-graphs that are both interval and permutation graphs.

3 METRIC DIMENSION is FPT on Interval Graphs

We now prove that Metric Dimension (parameterized by solution size) is
FPT on interval graphs. The algorithm is based on dynamic programming over
a path-decomposition.

Given an interval graph G, we can assume that in its interval model, all
endpoints are distinct, and that the intervals are closed. We define two natural
total orderings of V (G) based on this model: x <L y if and only if the left
endpoint of x is smaller then the left endpoint of y, and x <R y if and only if
the right endpoint of x is smaller than the right endpoint of y. We will work
with the fourth distance-power G4 of the input graph G which is also an interval
graph and has an interval model inducing the same orders <L and <R as G [17].

Our algorithm will use dynamic programming on a nice path-decomposition
of G4. The classic concepts of tree-decompositions and its “nice” variant, due to
Kloks [27].

Definition 14. A tree-decomposition of a graph G is a pair (T ,X ), where T
is a tree and X := {Xt : t ∈ V (T )} is a collection of subsets of V (G) (called
bags), and they must satisfy the following conditions:

(i)
⋃

t∈V (T ) Xt = V (G);
(ii) for every edge uv ∈ E(G), there is a bag of X that contains both u and v;
(iii) for every vertex v ∈ V (G), the set of bags containing v induces a connected
subtree of T .

Given a tree-decomposition of (T ,X ), the maximum size of a bag Xt over all
tree nodes t of T minus one is called the width of (T ,X ). The minimum width of
a tree-decomposition of G is the treewidth of G. The notion of tree-decomposition
has been used extensively in algorithm design, especially via dynamic program-
ming over the tree-decomposition.

We consider a rooted tree-decomposition by fixing a root of T and orienting
the tree edges from the root toward the leaves. A rooted tree-decomposition is
nice (see Kloks [27]) if each node t of T has at most two children and falls into
one of the four types:
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(i) Join node: t has exactly two children t1 and t2, and Xt = Xt1 = Xt2 .
(ii) Introduce node: t has a unique child t′, and Xt = Xt′ ∪ {v}.
(iii) Forget node: t has a unique child t′, and Xt = Xt′ \ {v}.
(iv) Leaf node: t is a leaf node in T .

Given a tree-decomposition, a nice tree-decomposition of the same width always
exists and can be computed in linear time [27].

If G is an interval graph, we can construct a tree-decomposition of G (in fact,
a path-decomposition) with special properties.

Proposition 15. Let G be an interval graph with clique number ω and an inter-
val model inducing orders <L and <R. Then, G has a nice tree-decomposition
(P,X ) of width ω − 1 that can be computed in linear time, where moreover:

(a) P is a path (hence there are no join nodes);
(b) every bag is a clique;
(c) going through P from the leaf to the root, the order in which vertices are

introduced in an introduce node corresponds to <L;
(d) going through P from the leaf to the root, the order in which vertices are

forgotten in a forget node corresponds to <R;
(e) the root’s bag is empty, and the leaf’s bag contains only one vertex.

Proof. Given a graph G, one can decide if it is an interval graph and, if so,
compute a representation of it in linear time [3]. This also gives us the ordered
set of endpoints of intervals of G.

To obtain (P,X ), we first create the leaf node t, whose bag Xt contains the
interval with smallest left endpoint. We then go through the set of all endpoints
of intervals of G, from the second smallest to the largest. Let t be the last created
node. If the new endpoint is a left endpoint �(I), we create an introduce node
t′ with Xt′ = Xt ∪ {I}. If the new endpoint is a right endpoint r(I), we create
a forget node t′ with Xt′ = Xt \ {I}. In the end we create the root node as a
forget node t with Xt = ∅ that forgets the last interval of G.

Observe that one can associate to every node t (except the root) a point
p of the real line, such that the bag Xt contains precisely the set of intervals
containing p: if t is an introduce node, p is the point �(I) associated to the
creation of t, and if t is a forget node, it is the point r(I)+ε, where ε is sufficiently
small and r(I) is the endpoint associated to the creation of t. This set forms a
clique, proving Property (b). Furthermore this implies that the maximum size
of a bag is ω, hence the width is at most ω − 1 (and at least ω − 1 since every
clique must be included in some bag).

Moreover it is clear that the procedure is linear-time, and by construction,
Properties (a), (c), (d), (e) are fulfilled.

Let us now show that (P,X ) is a tree-decomposition. It is clear that every
vertex belongs to some bag, proving Property (i) of Definition 14. Moreover
let u, v be two adjacent vertices of G, and assume u <L v. Then, consider the
introduce node of P where v is introduced. Since u has started before v but has
not stopped before the start of v, both u, v belong to Xt, proving Property (ii).
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Finally, note that a vertex v appears exactly in all bags starting from the bag
where v is introduced, until the bag where v is forgotten. Hence Property (iii) is
fulfilled, and the proof is complete. �	
Lemma 16. Let G be an interval graph with an interval model inducing orders
<L and <R, let d ≥ 1 be an integer and let (P,X ) be a tree-decomposition
of Gd obtained by Proposition 15 (recall that Gd is an interval graph, and it
has an intersection model inducing the same orders <L and <R [17]). Then the
following holds.

(a) Let t be an introduce node of (P,X ) with child t′, with Xt = Xt′ ∪ {v}.
Then, Xt contains every vertex w in G such that dG(v, w) ≤ d and w <L v.

(b) Let t′ be the child of a forget node t of (P,X ), with Xt = Xt′ \ {v}. Then,
Xt′ contains every vertex w in G such that dG(v, w) ≤ d and v <R w.

We now present the most crucial preliminary results necessary for our algo-
rithm. We first start with a definition related to the linear structure of an interval
graph that we will use extensively.

Definition 17. Given a vertex u of an interval graph G, the rightmost path
PR(u) of u is the path uR

0 , . . . , uR
p where u = uR

0 , for every uR
i (i ∈ {0, . . . , p−1})

uR
i+1 is the neighbour of uR

i with the largest right endpoint, and thus uR
p is the

interval in G with largest right endpoint. Similarly, we define the leftmost path
PL(u) = uL

0 , . . . , uL
q where for every uL

i (i ∈ {0, . . . , q−1}) uL
i+1 is the neighbour

of uL
i with the smallest left endpoint.

Note that PR(u) and PL(u) are two shortest paths from u to uR
p and uL

q ,
respectively. We say that a pair u, v of intervals in an interval graph G is sep-
arated by interval x strictly from the right (strictly from the left, respectively)
if x starts after both right endpoints of u, v (ends before both left endpoints of
u, v respectively). In other words, x is not a neighbour of any of u and v.

The next lemma is crucial for our algorithm.

Lemma 18. Let u, v, x be three intervals in an interval graph G and let i be
an integer such that x starts after both right endpoints of uR

i ∈ PR(u) and
vR
i ∈ PR(v). Then the three following facts are equivalent:

(1) x separates uR
i , vR

i ;
(2) for every j with 0 ≤ j ≤ i, x separates uR

j , vR
j ;

(3) for some j with 0 ≤ j ≤ i, x separates uR
j , vR

j .

A symmetric statement holds for PL(u).

We now define a distance-2 resolving set as a set S of vertices where for each
pair u, v of vertices at distance at most 2, there is a vertex x ∈ S such that
d(u, x) �= d(v, x). Thanks to this local version of resolving sets, we will manage
to “localize” the dynamic programming, as we will only need to distinguish pairs
of vertices that will be present together in one bag, as claimed by the following
lemma.
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Lemma 19. Any distance-2 resolving set of an interval graph is a resolving set.

Proof. Assume that S is not a resolving set. It means that there is a pair of
vertices u, v at distance at least 3 that are not separated by any vertex of S.
Among all such pairs, we choose one, say {u, v}, such that d(u, v) is minimized.
Without loss of generality, we assume that u ends before v starts.

Consider uR
1 (vL

1 , respectively), the interval intersecting u (v, respectively)
that has the largest right endpoint (smallest left endpoint, respectively). We have
uR
1 �= vL

1 (since d(u, v) ≥ 3) and d(uR
1 , vL

1 ) = d(u, v)−2 < d(u, v). By minimality,
uR
1 and vL

1 are separated by some vertex s ∈ S. But s does not separate u and
v, thus s /∈ {uR

1 , vL
1 }.

Without loss of generality, we can assume that d(uR
1 , s) < d(vL

1 , s). In par-
ticular, d(vL

1 , s) ≥ 2 and s ends before vL
1 starts. Thus there is a shortest path

from s to v finishing by vL
1 and so d(v, s) = d(vL

1 , s) + 1. However, we also have
d(u, s) ≤ d(uR

1 , s) + 1 ≤ d(vL
1 , s) < d(v, s). Hence s is separating u and v, a

contradiction. �	
The next lemma enables us to bound the size of the bags in our path-

decomposition, which will induce subgraphs of diameter 4 of G.

Lemma 20. Let G be an interval graph with a resolving set of size k, and let
B ⊆ V (G) be a subset of vertices such that for each pair u, v ∈ B, dG(u, v) ≤ d.
Then |B| ≤ 4dk2 + (2d + 3)k + 1.

We are now ready to describe our algorithm.

Theorem 21. Metric Dimension can be solved in time 2O(k4)n on interval
graphs, i.e. it is FPT on this class when parameterized by the solution size k.

Proof. Let (P,X ) be a path-decomposition of the interval graph G4 obtained
using Proposition 15. Our algorithm is a dynamic programming algorithm over
(P,X ).

Let t be a node of P. We let P(Xt) be the set of pairs of Xt that are at
distance at most 2 in G (by Lemma 19, these are the pairs that we need to
separate). For each node t of P, we compute a set of configurations using the
configurations of the child of t in P. A configuration contains full information
about the local solution on Xt, but also stores necessary information about
the vertex pairs that still need to be separated. More precisely, a configuration
C = (S, sep, toSepR, cnt) of t is a tuple where:

• S ⊆ Xt contains the vertices of the sought solution belonging to Xt;
• sep : P(Xt) → {0, 1, 2} assigns, to every pair in P(Xt), value 0 if the pair has

not yet been separated, value 2 if it has been separated strictly from the left,
and value 1 otherwise;

• toSepR : P(Xt) → {0, 1} assigns, to every pair in P(Xt), value 1 if the pair
needs to be separated strictly from the right (and it is not yet the case), and
value 0 otherwise;
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• cnt is an integer counting the total number of vertices in the partial solution
that has led to C.

Starting with the leaf of P, for each node our algorithm goes through all possi-
bilities of choosing S; however, sep, toSepR and cnt are computed along the way.
At each new visited node t of P, a set of configurations is constructed from
the configuration sets of the child of t. The algorithm makes sure that all the
information is consistent, and that configurations that will not lead to a valid
resolving set (or with cnt > k) are discarded.

The most crucial point of the algorithm is to use Lemma 18 to “localize”
the problem by reducing it to separating pairs inside the current bag Xt. More
precisely, for each pair u, v ∈ P(Xt), we can deduce from sep(u, v) and S whether
u, v are already separated from a previous step of the algorithm or by a solution
vertex of S ⊆ Xt. If this is not the case and if t is a forget node that forgets u
or v, then the pair u, v needs to be separated from the right in a future step of
the algorithm corresponding to a bag that does not not contain the pair u, v. By
Lemma 18, this will be done by separating some pair uR

i , vR
i (that will be present

together in a bag considered later), and hence we can set toSepR(uR
1 , vR

1 ) = 1.
The algorithm will then make sure that uR

i , vR
i are separated from the right by

carrying over this constraint until it is met, along PR(u) and PR(v).
The final step of the algorithm simply consists of checking whether, at the

root node, we obtained a configuration with cnt ≤ k. By Proposition 15(b),
every bag of (P,X ) is a clique of G4 (i.e. a subgraph of diameter at most 4
in G) and hence by Lemma 20, it has O(k2) vertices. Since there are 2O(|Xt|2)

configurations for a bag Xt and all computations are polynomial-time in terms
of |Xt|, the running time is indeed 2O(k4)n. �	

4 Conclusion

We proved that both Locating-Dominating Set and Metric Dimension

are NP-complete even for graphs of diameter 2 that are both interval and per-
mutation graphs. This is in contrast to related problems such as Dominating

Set, which is linear-time solvable on both classes. However, we do not know
their complexity for unit interval graphs or bipartite permutation graphs (note
that both problems are polynomial-time solvable on chain graphs, a subclass
of bipartite permutation graphs [12]). We also note that our reduction can be
adapted to related problems such as Identifying Code (see the full version of
this paper [16]).

Regarding our FPT algorithm for Metric Dimension on interval graphs,
we do not know whether the result holds for graph classes such as permutation
graphs or chordal graphs. The main obstacles for adapting our algorithm to
chordal graphs are (i) that Lemma 18, which is essential for our algorithm,
heavily relies on the two orderings induced by intersection models of interval
graphs, and (ii) that Lemma 19 is not true for chordal graphs.

Acknowledgments. We thank Adrian Kosowski for helpful discussions.
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Abstract. Hitting Set is a classic problem in combinatorial optimiza-
tion. Its input consists of a set system F over a finite universe U and
an integer t; the question is whether there is a set of t elements that
intersects every set in F . The Hitting Set problem parameterized by
the size of the solution is a well-known W[2]-complete problem in para-
meterized complexity theory. In this paper we investigate the complexity
of Hitting Set under various structural parameterizations of the input.
Our starting point is the folklore result that Hitting Set is polynomial-
time solvable if there is a tree T on vertex set U such that the sets in F
induce connected subtrees of T . We consider the case that there is a tree-
like graph with vertex set U such that the sets in F induce connected
subgraphs; the parameter of the problem is a measure of how treelike the
graph is. Our main positive result is an algorithm that, given a graph G
with cyclomatic number k, a collection P of simple paths in G, and an
integer t, determines in time 25k(|G|+ |P|)O(1) whether there is a vertex
set of size t that hits all paths in P. It is based on a connection to the
2-SAT problem in multiple valued logic. For other parameterizations we
derive W[1]-hardness and para-NP-completeness results.

1 Introduction

Hitting Set is a classic problem in combinatorial optimization that asks, given
a set system F over a finite universe U , and an integer t, whether there is a set
of t elements that intersects every set in F . It was one of the first problems to
be identified as NP-complete [15]. Parameterized complexity theory is a refined
view of computational complexity that aims to attack NP-hard problems by
algorithms whose running time is exponential in a problem-specific parameter
value, but polynomial in terms of the overall input size. The standard parame-
terization of Hitting Set by the size of the desired solution is unlikely to admit
such a fixed-parameter tractable algorithm, as it is W[2]-complete [8]. The goal
of this paper is to consider other parameterizations of Hitting Set, with the
aim of obtaining FPT algorithms. Our starting point is the folklore result that
Hitting Set is polynomial-time solvable when there is a tree T on vertex set U
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Table 1. Parameterized complexity overview for hitting subgraphs by the minimum
number of vertices, parameterized by measures of structure of the host graph.

Parameter Complexity for type of subgraphs to be hit

Path 3-leaf subtree

Cyclomatic number FPT, no kO(1) kernel Theorem2 W[1]-hard Theorem4

Feedback vertex number Para-NP-complete Theorem5 Para-NP-complete Theorem5

such that all sets S ∈ F induce connected subtrees of T . The Hitting Set

problem on such an instance can be solved by a greedy strategy (Sect. 2). Moti-
vated by this result, we consider whether Hitting Set can be solved efficiently
if there is a graph G that is close to being a tree, such that all S ∈ F induce
connected subgraphs of G. We therefore parameterize the problem by measures
of closeness of G to a tree, which forms an example of parameterizing by distance
from triviality [18].

Our Results. One way to measure how close a connected graph is to a tree
is to consider its cyclomatic number k := m − (n − 1). This is the size of a
minimum feedback edge set of the graph, i.e., of a minimum set of edges whose
removal breaks all cycles in the graph. As a tree has cyclomatic number zero, it
is natural to ask if Hitting Set can be solved efficiently if the set system F
can be represented by a graph G on vertex set U having small cyclomatic num-
ber, such that every set S ∈ F induces a connected subgraph of G. To decouple
the difficulty of finding a representation of F in this form from the problem of
exploiting this representation to solve Hitting Set, we consider the situation
when such a representation is given. In this setting, the problem can be phrased
more naturally in graph-theoretical terms: given a graph G of cyclomatic num-
ber k, a collection S of connected subgraphs of G, and an integer t, is there a
vertex set of size t that hits all subgraphs in S?

Our first result for the parameterization by cyclomatic number is a hardness
proof showing this problem to be W[1]-hard. In fact, we prove W[1]-hardness
even when all subgraphs in S are trees with at most three leaves. To establish
this hardness result we prove that a variation of 3-SAT in multiple valued logic
(see Sect. 2) is W[1]-hard, which may be of independent interest. Concretely, we
show the following. Given a set of n variables x1, . . . , xn that can take values
from 1 to N , and a formula that is a conjunction of clauses of size at most three,
where each literal is of the form xi ≥ c or xi ≤ c for c ∈ [N ], it is W[1]-hard
parameterized by n to determine whether there is an assignment to the variables
satisfying all clauses. This parameterized logic problem reduces to the discussed
structural parameterization of Hitting Set in a natural way.

The hardness result motivates us to place further restrictions on the problem
in search of fixed-parameter tractable cases. We consider the situation of hitting
a set P of simple paths in a graph G of cyclomatic number k. This corresponds
to Hitting Set instances where there is a graph G on U such that for all sets S
in F , there is a simple path in G on vertex set S. We prove that this problem is
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fixed-parameter tractable and can be solved in time 25k(|G| + |P|)O(1), which is
the main algorithmic result in this paper. The algorithm is based on a reduction
to 25k instances of the 2-SAT problem in multiple valued logic, which is known
to be polynomial-time solvable [3,17]. The reduction exploits the fact that in
tree-like parts of the graph, the local structure of minimum hitting sets can be
determined by greedily computed optimal hitting sets for subtrees of a tree. After
branching in 25k directions to determine the form of a solution, the interaction
between such canonical subsolutions is then encoded in a 2-SAT formula in
multiple valued logic, which can be evaluated efficiently.

There are several other parameters that measure the closeness of a graph
to a tree, such as the feedback vertex number and treewidth (cf. [9]). As these
parameters have smaller values than the cyclomatic number, one might hope to
extend the FPT result mentioned above to these parameters. However, we show
that this is impossible, unless P = NP. In particular, we prove that the problem
of hitting simple paths in a graph of feedback vertex number 2 is NP-complete,
showing the parameterizations by feedback vertex number and treewidth to be
para-NP-complete. Table 1 gives an overview of the results in this paper.

Related Work. Several authors [5,10,20] have considered problems parame-
terized by cyclomatic number; this is also known as parameterizing by feedback
edge set. In parameterized complexity, Hitting Set is often studied when the
sets to be hit have constant size. In this setting, several FPT algorithms and
kernelizations bounds are known [1,6,21]. The weighted Set Cover problem,
which is dual to Hitting Set, has been analyzed for tree-like set systems by
Guo and Niedermeier [12]. Recently, Lu et al. [16] considered Set Cover and
Hitting Set for set systems representable as subtrees of a (restricted type of)
tree, distinguishing polynomial-time and NP-complete cases.

Organization. Preliminaries are given in Sect. 2. The FPT algorithm for hitting
paths is developed in Sect. 3. Section 4 contains the hardness proofs. Due to space
restrictions, the proofs of statements marked (�) have been deferred to the full
version [14].

2 Preliminaries

Parameterized Complexity. A parameterized problem is a set Q ⊆ Σ∗ × N,
where Σ is a fixed finite alphabet. The second component of a tuple (x, k) ∈
Σ∗ ×N is the parameter. A parameterized problem is (strongly uniformly) fixed-
parameter tractable if there is an algorithm that decides every input (x, k) in
time f(k)|x|O(1). Evidence that a problem is not fixed-parameter tractable is
given by proving that it is W[1]-hard. We refer to one of the textbooks [8,11] for
more background.

Graphs. All graphs we consider are simple, undirected and finite. A graph G
consists of a set of vertices V (G) and edges E(G). Notation not defined here is
standard. For a set of vertices S we denote by NG(S) the set

⋃
v∈S NG(v)\S.
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A path in a graph G is a sequence of distinct vertices such that successive
vertices are connected by an edge. The first and last vertices on the path are its
endpoints, the remaining vertices are its interior vertices. Given a graph G and
a vertex subset S ⊆ V (G), the operation of identifying the vertices of S into a
new vertex z is performed as follows: delete the vertices in S and their incident
edges, and insert a new vertex z that is adjacent to NG(S), i.e., to all remaining
vertices of G that were adjacent to at least one member of S.

Proposition 1 (�). Let G be a connected graph of minimum degree at least
two with cyclomatic number k. The number of vertices in G with degree at least
three is bounded by 2k − 2.

Proposition 2 (�). Let G be a connected graph of minimum degree at least two
with cyclomatic number k and let S be the set of vertices of degree at least three.
If S �= ∅ then the number of connected components of G−S is at most k+|S|−1.

Hitting Set. A set system F ⊆ 2U can be viewed as a hypergraph whose vertices
are U and whose hyperedges are formed by the sets in F . A set system F is a
hypertree if there is a tree T on vertex set U such that every set in F induces
a subtree of T . Testing whether a set system is a hypertree, and constructing a
tree representation if this is the case, can be done in polynomial time [19].

We frequently use the fact that a minimum hitting set for a hypertree can be
found in polynomial time (cf. [12, Sect. 2] for a view from a dual perspective).
When a tree representation is known, a greedy algorithm can be used to find a
minimum hitting set. If we root the tree at a leaf and find a vertex v of maximum
depth for which there is a set S ∈ F whose members all belong to the subtree
rooted at v, then it is easy to show there is a minimum hitting set containing v.
Consequently, we may add v to the solution under construction, remove all sets
hit by v, and remove all elements in the subtree rooted at v from the universe.

This idea can be extended for the following setting. Suppose we have a
graph G that is isomorphic to a simple cycle and a set P of paths in G. To
find a minimum vertex set that hits all the paths in P, we try for each vertex v
of G whether there is a minimum solution containing it. After removing v and
the paths hit by v, the remaining structure is a hypertree since the cycle breaks
open when removing v. The minimum over all choices of v gives an optimal
hitting set. We will use this in our FPT algorithm to deal with a corner case.

Multiple Valued Logic. The hitting set problems we are interested in turn
out to be related to variations of the Satisfiability problem that have been
studied in the field of multiple valued logic. In a multiple valued logic, variables
can take on more values than just 0 and 1: there is a truth value set containing
the possible values. For our application, the truth value set is totally ordered;
it is a range of integers [N ] = {1, . . . , N}. A regular sign is a constraint of
the form ≥j or ≤j for j ∈ [N ]. By constraining variables with regular signs,
resulting in (generalized) literals of the form xi ≥ j or xi ≤ j, and combining
such literals with the usual logical connectives, one creates totally ordered regular
signed formulas. As expected, the satisfiability problem for such formulas is to
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determine whether every variable can be assigned a value in the range [N ] such
that the formula is satisfied. We shall be interested in the case of CNF formulas
with clauses having at most two (2-SAT) or at most three (3-SAT) literals.

n-Totally Ordered Regular Signed 3-SAT Parameter: n.
Input: A totally ordered regular signed 3-CNF formula with n variables and
truth value set [N ].
Question: Is the formula satisfiable?

For brevity we sometimes refer to this problem as n-TORS 3-SAT. We
also consider TORS 2-SAT, where clauses have at most two literals, which
is polynomial-time solvable [17]. In particular, TORS 2-SAT can be reduced
to the 2-SAT problem in classical logic [3, Sect. 3], which is well-known to be
solvable in linear time [2].

3 Algorithms

The goal of this section is to develop an FPT algorithm for the following para-
meterized problem.

Hitting Paths in a Graph Parameter: k.
Input: An undirected simple graph G with cyclomatic number k, an integer t,
and a set P of simple paths in G.
Question: Is there a set X ⊆ V (G) of size at most t that hits all paths in P?

The algorithm consists of two reductions. An instance of Hitting Paths

in a Graph is reduced to a hitting set problem on a more structured graph,
called a flower. An instance with such a flower structure can be reduced to a
polynomial-time solvable 2-SAT problem in multiple valued logic. This section
is structured as follows. We first describe the flower structure and the reduction
to 2-SAT in Sect. 3.1. Afterward we show how to build an FPT algorithm from
this ingredient, in Sect. 3.2.

3.1 Hitting Paths in Flowers

The key notion in this section is that of a flower graph, which is a graph G with
a distinguished vertex z called the core such that all connected components
of G − {z} are paths R1, . . . , Rn of which no interior vertex is adjacent to z.
These paths are called petals of the flower. When working with flower graphs
we will assume an arbitrary but fixed ordering of the petals as R1, . . . , Rn, as
well as an orientation of each petal Ri as consisting of vertices ri,1, . . . , ri,|V (Ri)|.
For ease of discussion we will interpret each petal to be laid out from left to
right in order of increasing indices. We will give an FPT branching algorithm
that reduces Hitting Paths in a Graph to solving several instances of the
following more restricted problem.
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Hitting Paths in a Flower with Budgets

Input: A flower graph G with core z and petals R1, . . . , Rn, a set of simple
paths P = {P1, . . . , Pm} in G, and a budget function b : [n] → N≥1.
Question: Is there a set X ⊆ V (G)\{z} that hits all paths in P such
that |X ∩ V (Ri)| = b(i) for all i ∈ [n]?

We show that Hitting Paths in a Flower with Budgets can be solved
in polynomial time. The following notion will be instrumental to analyze the
structure of solutions to this problem.

Definition 1. Let Ri be a petal of an instance (G, z,P, b) of Hitting Paths

in a Flower with Budgets and let 1 ≤ � ≤ |V (Ri)|. The canonical �-th
solution for petal Ri is defined by the following process.

1. If there is a path in P that is contained entirely within {ri,1, . . . , ri,�−1}, then
define the canonical �-th solution to be NIL.

2. Otherwise, initialize Xi,� as the singleton set containing ri,�.
(a) While there is a path in P that is contained entirely within Ri and is

not intersected by Xi,�, consider a path among this set that minimizes the
index j′ of its right endpoint and add ri,j′ to Xi,�.

(b) While |Xi,�| < b(i) and Y := {ri,�, . . . , ri,|V (Ri)|}\Xi,� �= ∅, add the
highest-indexed vertex from Y to Xi,�. (Recall that b(i) is the budget for
petal Ri.)

(c) If |Xi,�| = b(i), the canonical �-th solution is Xi,�. If |Xi,�| �= b(i), define
the canonical �-th solution to be NIL.

A set Xi ⊆ V (Ri) is a canonical solution for petal Ri if there is an integer �
for which Xi is the canonical �-th solution for Ri. A canonical solution is well
defined if it is not NIL. A solution X to the instance (G, z,P, b) is globally
canonical if X ∩ Ri is a well-defined canonical solution for all i.

Figure 1 illustrates these concepts. For a set Xi ⊆ V (Ri) we will denote
by max(Xi) the highest index of any vertex in Xi, i.e., the index of the rightmost
vertex of Xi. Similarly, we denote by min(Xi) the index of the leftmost vertex
of Xi. The following observations about the procedure will be useful.

Observation 1. If Xi,� is a well-defined canonical solution, then min(Xi,�) = �.

Observation 2. Let Xi,� result from Definition 1, and assume that Step 1 does
not apply and that Step 2b is never triggered during the procedure. Partition
the interval {ri,�, . . . , ri,max(Xi,�)} into |Xi,�| maximal subpaths that each end at
a vertex of Xi,� and contain no other vertices of Xi,�. Then, for every such
subpath R′ except the singleton subpath {ri,�}, there is a path in P contained
entirely within R′.

The main strategy behind our reduction of Hitting Paths in a Flower

with Budgets to TORS 2-SAT will be as follows. We will show that, if a solu-
tion to the hitting set problem exists, then there is a globally canonical solution.
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Fig. 1. (a) A flower graph with 4 petals and core z. (b) A 9-vertex petal whose end-
points are adjacent to z. The target paths within the petal that must be hit by a
solution are drawn stacked on top of each other. (c) The set {3, 8} is the 3-rd canonical
solution of size 2 for the petal, with respect to the target paths drawn in (b). The
corresponding partition of {3, . . . , 8} into two subpaths described in Observation 2 is
shown above the petal. It includes the singleton path {3}. The canonical 1-st solution
of size 2 is NIL, since the procedure of Definition 1 produces the set Xi,� = {1, 6, 9},
which is too large and is rejected in Step 2c.

Such a solution can be fully characterized by indicating, for each petal, the index
of the canonical solution on the petal (i.e., the leftmost vertex of the petal that is
in the solution). Hence finding a solution reduces to finding a choice of canonical
solutions on the petals. It turns out that for every path P ∈ P, one can create a
signed 2-clause on the variables controlling the choices on two petals, such that the
path is hit by the selected solution if and only if the indices of the canonical sub-
solutions satisfy the 2-clause. This allows the hitting set problem to be modeled
by TORS 2-SAT. We now formalize these ideas.

Lemma 1 (�). Let (G, z,P, b) be an instance of Hitting Paths in a

Flower with Budgets and let Ri be a petal. The indices for which Ri has a
well-defined canonical solution form a contiguous set of integers.

As the procedure of Definition 1 can be implemented in polynomial time, the
set of indices for which a petal has a canonical solution can be computed in
polynomial time. We continue describing the structure of canonical solutions.

Lemma 2 (�). Let (G, z,P, b) be an instance of Hitting Paths in a

Flower with Budgets and let Ri be a petal. If �1 < �2, and the �1-
th and the �2-th canonical solutions are well-defined as Xi,�1 and Xi,�2 ,
then max(Xi,�1) ≤ max(Xi,�2).

We now establish that the hitting set problem has a globally canonical solu-
tion, if it has a solution at all. The proof exploits the fact that, after selecting
the leftmost vertex of a petal to be used in the hitting set, removing it from the
graph, and removing the paths hit by this vertex from the graph, the remainder
of the petal turns into a pendant path that connects to the rest of the graph
at vertex z. The hitting set problem has a greedy solution within this resulting
path, which reflects the structure of the canonical solution. Formalizing this line
of reasoning is tedious but straight-forward.
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Lemma 3 (�). Let (G, z,P, b) be an instance of Hitting Paths in a

Flower with Budgets having petals R1, . . . , Rn. If the instance has a solu-
tion X ′, then it has a globally canonical solution X.

Lemma 4 (�). Let (G, z,P, b) be an instance of Hitting Paths in a

Flower with Budgets. There is a polynomial-time algorithm that, given a
path P (not necessarily contained in P) which is a suffix or a prefix of a petal Ri,
either correctly determines that no well-defined canonical solution for Ri hits P ,
or produces a literal of the form xi ≥ c or xi ≤ c for c ∈ N≥1, such that the
following holds.

1. If X is a globally canonical solution for the instance that hits P and con-
tains the �-th canonical solution for petal Ri, then the literal is satisfied by
setting xi = �.

2. If xi = � satisfies the literal and the �-th canonical solution Xi,� is well-defined,
then P is hit by Xi,�.

Using the lemmata developed so far, we can present a polynomial-time algo-
rithm for the problem in flower graphs.

Theorem 1. Hitting Paths in a Flower with Budgets can be solved in
polynomial time.

Proof. We show how to reduce an instance (G, z,P, b) with petals (R1, . . . , Rn)
to an equivalent instance of the polynomial-time solvable TORS 2-SAT prob-
lem. The main work will be done by Lemma 4 to create the literals of the formula.
Let N := maxi∈[n] |V (Ri)| be the maximum size of a petal. The truth value set
for our multiple valued logic formula will be [N ]. We create a variable xi for
every petal i. The clauses in the formula are produced as follows.

1. For every petal index i ∈ [n], we compute the values of 1 ≤ � ≤ |V (Ri)|
for which the �-th canonical solution for petal Ri is well-defined, using the
procedure of Definition 1. By Lemma 1 these values form a contiguous interval,
say �1, . . . , �2. We add the singleton clause xi ≥ �1 to the formula, as well as
the singleton clause xi ≤ �2. If there is no well-defined canonical solution
for Ri then, by Lemma 3, the hitting set instance has no solution. In this case
we simply output the answer no.

2. For every path P ∈ P that is not contained entirely within a single petal
(i.e., for every path that contains the core vertex z of the flower) we do the
following. If P = {z} is the singleton path containing only vertex z, then we
output no as a solution is not allowed to contain vertex z; this path can never
be hit. Otherwise, let P1, P2 be the two connected components of P − {z}.
(In the exceptional case that P −{z} has only a single component because P
has z as an endpoint, take P1 = P2 to be equal to P − {z}.) For k ∈ {1, 2}
let Rik

be the petal containing Pk and invoke Lemma 4 on Pk with Rik
. If the

invocations for both values of k produce a literal, say φ1 and φ2, then add the
disjunction φ1 ∨ φ2 as a 2-clause to the formula. If one invocation concludes
that no well-defined canonical solution hits the path, but the other invocation
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produces a literal, then add a singleton clause with the latter literal. Finally, if
neither P1 nor P2 produces a literal, then neither of the subpaths of P −{z} is
hit by any well-defined canonical solution, and therefore the path P is not hit
by any canonical solution. (Recall that solutions are forbidden to contain z.)
Since, by Lemma 3, a canonical solution exists if a solution exists at all, it
follows that we can safely output no and halt.

The process above results in a totally ordered regular signed 2-SAT formula Φ
on n variables with O(n+|P|) clauses, which is polynomial in the size of the total
input. All numbers involved are in the range [N ] which is bounded by the order
of the input graph G. The reduction can therefore be performed in polynomial
time, and produces an instance of TORS 2-SAT of polynomial size, even when
encoding the numbers in unary. It remains to prove correctness of the reduction.

Claim (�). Formula Φ is satisfiable if and only if (G, z,P, b) has a solution.

The claim shows that to solve the hitting set problem, it suffices to check the
satisfiability of the polynomial-sized TORS 2-SAT instance. As the latter can
be done in polynomial time, this proves Theorem1. ��

3.2 Hitting Paths in Graphs

In this section we will show that an instance of Hitting Paths in a Graph can
be reduced to 25k instances of Hitting Paths in a Flower with Budgets.
By the results of the previous section, this leads to an FPT algorithm.

We will frequently use the following observation. It formalizes that if v is a
degree-one vertex in G and we are looking for a set that hits all paths in P, then
either there is a single-vertex path P = {v} ∈ P, forcing v to be in any solution,
or there is an optimal solution that does not contain v.

Observation 3. Let (G, k, t,P) be an instance of Hitting Paths in a Graph

and let v ∈ V (G) have degree at most one.

1. If the singleton path P = {v} is contained in P, then (G, k, t,P) is equivalent
to the instance obtained by decreasing t by one, removing v from the graph,
and removing all paths containing v from P.

2. Otherwise, (G, k, t,P) is equivalent to the instance obtained by removing v
from the graph and replacing every path P ∈ P by P\{v}.

The cyclomatic number is not affected by these operations.

For an instance (G,P, k, t) of Hitting Paths in a Graph and a vertex
subset S ⊆ V (G), the cost of the subgraph induced by S, denoted opt(S), is
defined as the minimum cardinality of a set that hits all paths P ∈ P for
which V (P ) ⊆ S. Equivalently, opt(S) is the minimum cardinality of a set
that hits all paths {P ∈ P | V (P ) ⊆ S} in the graph G[S]. Observe that if S
induces an acyclic subgraph of G, then this value is computable in polynomial
time as discussed in Sect. 2. To reduce the general Hitting Paths in a Graph

problem to the version with budget constraints discussed in the previous section,
the following lemma is useful for determining relevant values for the budgets.
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Lemma 5 (�). Let (G,P, k, t) be an instance of Hitting Paths in a Graph.
Let S be the vertices of degree unequal to two in G. There is a minimum-size
hitting set X for P such that, for every connected component C of G − S, we
have opt(C) ≤ |X ∩ V (C)| ≤ opt(C) + 1.

Using these ingredients we give an algorithm for Hitting Paths in a

Graph.

Theorem 2. Hitting Paths in a Graph parameterized by cyclomatic number
can be solved in time 25k · (|G| + |P|)O(1).

Proof. When presented with an input (G,P, k, t), the algorithm proceeds as
follows. First, as a preprocessing step, the algorithm repeatedly removes vertices
of degree at most one from the graph using Observation 3. If the resulting graph is
empty, then we can simply decide the problem: the answer is yes if and only if the
value of t was not decreased below zero by these operations. Otherwise we obtain
a graph with minimum degree at least two. While this graph is disconnected,
add an arbitrary edge between two distinct connected components. This does
not change the answer to the instance (the paths P to be hit are unchanged)
and leaves the cyclomatic number unchanged. From now on we therefore assume
that the instance we work with has minimum degree at least two and consists
of a connected graph. For ease of notation, we refer to instance resulting from
these steps simply as (G,P, k, t). If G consists of just a simple cycle (i.e., G is
2-regular) then we can decide the problem in polynomial time as discussed in
Sect. 2, so we focus on the case that the set S of vertices of degree at least three
is nonempty. By Proposition 1, the size of S is bounded by 2k. The main idea of
the algorithm is to use branching make two successive guesses.

– First, we guess which vertices from S are used in a solution. Concretely, we try
all subsets S′ ⊆ S and test whether there is a solution X for which X∩S = S′.

– For every such set S′, we do the following. By Lemma 5, there is a minimum-
size hitting set that intersects every component C of G − S (which is a path)
in either opt(C) or opt(C) + 1 vertices. Let C denote the set of these com-
ponents. By Proposition 2, we have |C| < k + |S| ≤ 3k. We now guess the
collection C′ ⊆ C of components C for which the solution uses opt(C) ver-
tices. Every guess C′ defines a budget b(C) for each component C ∈ C as
follows: b(C) = opt(C) if C ∈ C′, and b(C) = opt(C) + 1 otherwise.

Having guessed both S′ and C′, we create an instance of Hitting Paths

in a Flower with Budgets to verify whether there is a hitting set X for
the paths P such that X ∩ S = S′ and for all components C of G − S we
have |X ∩C| = b(C). Observe that these constraints on X completely determine
its size, which must be |S′| + ∑

C∈C b(C). Hence if the size exceeds t, then these
guessed sets will not lead to a hitting set of the desired size, and can therefore be
skipped. When we have a guess that leads to a hitting set size of at most t, we
aim to produce an instance of Hitting Paths in a Flower with Budgets

to check whether there is a solution consistent with the guesses. To this end,
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initialize G′ as a copy of G, and P ′ as a copy of P. We modify these structures
to create an input on a flower graph. Throughout these modifications there will
be a clear correspondence between components of G′ −S and those of C, so that
we may refer to the budgets of components C of G′−S. For each guess S′ and C′,
we proceed as follows.

1. Remove all the vertices of S′ from the graph G′ and remove all paths hit
by S′ from P ′.

2. For all paths P ∈ P ′ for which there is a component C of G′ − S such that
all vertices of C belong to P and b(C) > 0, remove P from the set P ′. All
hitting sets that contain b(C) vertices from C must hit P , so we can drop the
constraint P because we will introduce a budget constraint on C.

3. For all components C of G′ −S such that b(C) = 0, do the following. Remove
the vertices of C from the graph G′. For every P ∈ P ′, replace P by the sub-
graph P − V (C). This may cause the elements of P ′ to become disconnected
subgraphs, rather than paths, but this will be resolved in the next step.

4. The final step identifies several vertices in the graph into a single core vertex,
to obtain a flower structure. Concretely, update the graph G′ by identifying all
vertices of S\S′ into a single vertex z. Similarly, update every subgraph P ∈
P ′ by identifying all vertices of (S\S′) ∩ V (P ) into a single vertex z.

Let G∗,P∗ denote the resulting graph and system of subgraphs. Refer to
Fig. 2 for an illustration of these steps.

Claim 1 (�). G∗ is a flower with core z; all subgraphs in P∗ are simple paths.

The claim shows that we can use the structures G∗ and P∗ resulting from
the process above to formulate an instance of Hitting Paths in a Flower

with Budgets. To that end, we use G∗ as the flower graph, z as the core,
and P∗ as the set of paths to be hit. We number the connected components
of G∗ − {z}, which are the petals of the flower, as R1, . . . , Rn. Each such petal
corresponds to a connected component of G − S for which we assigned a budget
when guessing C′ ⊆ C; we define the budget function b∗ for the instance by
letting b∗(i) be b(Ci) where Ci is the component of G − S corresponding to Ri.
This results in a valid instance (G∗, z,P∗, b∗) of Hitting Paths in a Flower

with Budgets. For the correctness of the algorithm, the following claim is
crucial.

Claim 2 (�). For every guess of S′ ⊆ S and C′ ⊆ C, the following are equiva-
lent.

1. There is a hitting set X for the paths P in graph G such that X ∩S = S′ and
all components C of G − S satisfy |X ∩ C| = b(C).

2. The produced instance (G∗, z,P∗, b∗) of Hitting Paths in a Flower with

Budgets has a solution.

Using the claim, the final part of the algorithm becomes clear. For every
guess S′ ⊆ S and C′ ⊆ C that leads to a solution of size at most t, we construct
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Fig. 2. (a) A graph with cyclomatic number 5, whose vertices of degree ≥ 3 are S :=
{a, b, c, d}. (b) A simple path P in the graph. (c) Illustration of reduction Steps 1 and 4
in the algorithm for the guess S′ = {a, b}. Vertices a and b are deleted, while c and d
are identified into a single vertex z to obtain a flower structure. (d) Merging c and d
into z turns P into a cyclic subgraph P ′. The bottom right petal is contained entirely
within P ′. If its budget is positive, any solution hits P ′ in that petal, causing P to be
removed in Step 2. If its budget is zero, the vertices of the petal are removed from P ′

instead in Step 3, to eliminate the cycle.

the corresponding instance of Hitting Paths in a Flower with Budgets

and solve it using Theorem1. Since the flower instances are not larger than the
input instance, this can be done in time (|G|+ |P|)O(1) for every guess. As there
are 2|S| · 2|C| ≤ 22k · 23k options for S′ and C′ to check, the total running time
is bounded by 25k(|G| + |P|)O(1). If one of the Hitting Paths in a Flower

with Budgets instances has answer yes, then we output yes; otherwise we
output no. In one direction, the correctness of this approach follows from the
previous claim together with the facts that flower instances are only produced
when the size of the resulting hitting sets is at most t. For the other direction,
if (G,P, t, k) has a hitting set of size at most t, then by Lemma 5 there is a
minimum-cardinality hitting set X (whose size is at most t) whose intersection
with every component C of G−S is either opt(C) or opt(C)+1. In the branch
where S′ = X ∩ S and C′ consists of the components where we use opt(C)
vertices, this leads to a yes-instance of Hitting Paths in a Flower with

Budgets. This concludes the proof of Theorem2. ��
We remark that, while the previous theorem shows that Hitting Paths in

a Graph is fixed-parameter tractable parameterized by the cyclomatic number,
this problem is unlikely to admit a polynomial kernel. The general Hitting Set

problem parameterized by the number of universe elements n can be reduced
to an instance of Hitting Paths in a Graph with cyclomatic number O(n2):
if we let G be a complete n-vertex graph, which has cyclomatic number O(n2),
then we can model any subset of the universe as a simple path in G. Hence there
is a polynomial-parameter transformation from Hitting Set parameterized by
the universe size to Hitting Paths in a Graph parameterized by cyclomatic
number. Since Hitting Set parameterized by universe size has no polynomial
kernel unless NP ⊆ coNP/poly [7, Theorem 5.3], the same holds for Hitting

Paths in a Graph parameterized by cyclomatic number.
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4 Hardness Proofs

In this section we develop several hardness proofs. It turns out to be convenient
to first prove the W[1]-hardness of 3-SAT in multiple valued logic. A similar
result concerning the W[1]-hardness of not-all-equal 3-SAT was obtained inde-
pendently by Bringmann et al. [4], who studied the problem under the name
NAE-Integer-3-SAT.

Theorem 3 (�). The problem n-Totally Ordered Regular Signed

3-SAT is W[1]-hard.

Theorem 3 is used as the starting point for the next hardness proof.

Theorem 4. It is W[1]-hard to determine, given a graph G with cyclomatic
number k, a set S of subgraphs of G, each isomorphic to a tree with at most
three leaves, and an integer t, whether there is a set of t vertices in G that
intersects all subgraphs in S.

Proof. We give an FPT-reduction from n-TORS 3-SAT. Consider an instance
of that problem, consisting of a signed 3-CNF formula over variables x1, . . . , xn

whose truth value set is [N ]. We assume that there are no clauses that are
trivially satisfied (that contain literals xi ≤ c1 and xi ≥ c2 for c2 ≤ c1 + 1), as
they can be efficiently recognized and removed without changing the answer.

We construct a hitting set problem on a flower graph G that has a core z
and n petals R1, . . . , Rn. Each petal is a path on N vertices whose endpoints
are adjacent to z. It is easy to see that this gives a cyclomatic number of at
most k = n for the graph G, as removing the n edges from z to the last vertex
of each petal gives an acyclic graph. We seek a hitting set of size at most t := n.

Signed literals of the formula have the form xi ≤ c or xi ≥ c for c ∈ [N ]. We
associate every literal to a prefix or suffix of a petal: a literal xi ≤ c corresponds
to the prefix {ri,1, . . . , ri,c} of petal Ri, while a literal xi ≥ c corresponds to
the suffix {ri,c, . . . , ri,N}. For every clause C of the formula, we consider the
pre/suffixes associated to its literals. We add the subgraph SC that is induced
by their vertices, together with z, to the set S of subgraphs to be hit. Observe
that, since there are no clauses that are trivially satisfied, each such subgraph SC

induces a tree in G with at most three leaves. In addition, for every petal Ri

we add the path Ri as a subgraph to S. This concludes the description of the
hitting set instance.

Claim 3 (�). There is a hitting set of size at most t if and only if the formula
is satisfiable.

The claim shows the correctness of the reduction. It is a valid FPT-reduction
since it can be executed in polynomial time and the new parameter k equals
the old parameter n. Since n-Totally Ordered Regular Signed 3-SAT is
W[1]-hard by Theorem3, this concludes the proof. ��

By slightly modifying the construction, we can also obtain the following result
which shows that hitting paths in graphs is para-NP-complete [11] parameterized
by the feedback vertex number of the graph.
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Theorem 5 (�). It is NP-complete to determine, given a graph G with a
feedback vertex set of size two, a set P of simple paths in G, and an integer t,
whether there is a set of t vertices in G that intersects all paths in P.

We close this section on hardness by a discussion of subexponential-time
algorithms. The construction in Theorem 5 can be used to reduce an n-variable
instance of the classical 3-SAT problem (with binary variables) to the problem
of hitting simple paths in a graph of cyclomatic number O(n). This implies
that, assuming the exponential-time hypothesis [13], the dependence on k in
Theorem 2 cannot be improved to 2o(k).

5 Conclusion

We have analyzed the problem of hitting subgraphs of a restricted form within
a larger host graph, parameterized by structural measures of the host graph.
There are several research directions related to this work that remain unex-
plored. For example, we have not touched upon the issue of computing, given
a generic hitting set instance consisting of a set system F over a universe U ,
how complex graphs on vertex set U must be in which every set in F induces a
connected subgraph. What is the complexity of finding, given F and U , a graph
of minimum cyclomatic number that embeds F in this way? Alternatively, what
is the complexity of finding the minimum cyclomatic number of a graph G such
that for every set S ∈ F , there is a simple path in G on vertex set S? Efficient
algorithms for this task could be used to transform generic hitting set instances
into inputs of Hitting Paths in a Graph, on which Theorem2 can be applied.

One can also consider aggregate parameterizations of the hitting set problem
using the measure of structure introduced here. We have shown that Hitting

Paths in a Graph is FPT parameterized by the cyclomatic number. It is well
known that the general Hitting Set problem is FPT parameterized by the
number of sets, as it can be solved by dynamic programming. Suppose we have
a Hitting Set instance where there are k1 arbitrary sets, and there is a graph G
of cyclomatic number k2 such that the remaining sets correspond to paths in G.
Is Hitting Set parameterized by k1 + k2 FPT, when this structure is given?

Acknowledgments. We are grateful to Mark de Berg and Kevin Buchin for interest-
ing discussions that triggered this research.
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Abstract. A graph G = (V,E) is called equistable if there exist a pos-
itive integer t and a weight function w : V → N such that S ⊆ V is
a maximal stable set of G if and only if w(S) = t. Such a function w
is called an equistable function of G. For a positive integer k, a graph
G = (V,E) is said to be k-equistable if it admits an equistable function
which is bounded by k.

We prove that the problem of recognizing k-equistable graphs is fixed
parameter tractable when parameterized by k, affirmatively answering
a question of Levit et al. In fact, the problem admits an O(k5)-vertex
kernel that can be computed in linear time.

Keywords: Equistable graphs · Recognition algorithm · Fixed parame-
ter tractability

1 Introduction

The main notion studied in this paper is the class of equistable graphs, intro-
duced by Payan in 1980 [17] as a generalization of the well known and well
studied class of threshold graphs [1,9]. A stable (or independent) set in a (finite,
simple, undirected) graph G is a set of pairwise non-adjacent vertices. A maximal
stable set is a stable set not contained in any other stable set. A graph G = (V,E)
is said to be equistable if there exists a function ϕ : V → R+ such that for every
S ⊆ V , set S is a maximal stable set of G if and only if ϕ(S) :=

∑
x∈S ϕ(x) = 1.

Equivalently, G is equistable if and only if there exist a positive integer t and
a weight function w : V → N := {1, 2, 3, . . .} such that S ⊆ V is a maximal
stable set of G if and only if w(S) = t. Such a function w is called an equistable
function of G, while the pair (w, t) is called an equistable structure. Equistable
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graphs were studied in a series of papers [5–8,10,13–18]; besides threshold graphs
and cographs, they also generalize the class of general partition graphs [4,11,13].
The complexity status of recognizing equistable graphs is open, even the mem-
bership in NP of this problem is not known. No combinatorial characterization
of equistable graphs is known. Given a graph G and a function w : V (G) → N,
it is co-NP-complete to determine if w is an equistable function of G [14].

Levit et al. introduced in [8] the notion of k-equistable graphs. For a positive
integer k, a graph G = (V,E) is said to be k-equistable if it admits an equistable
function w : V → [k] := {1, . . . , k}. Such a weight function is called a k-equistable
function, and the corresponding structure (w, t) is a k-equistable structure. We
remark that there exist equistable graphs such that the smallest k for which the
graph is k-equistable is exponential in the number of vertices of G [14].

For a positive integer t, an equistable graph G = (V,E) is said to be target-
tequistable if it admits an equistable function w : V → N with equistable struc-
ture (w, t). Clearly, every target-t equistable graph is also t-equistable (but not
vice versa).

As mentioned above, the complexity of recognizing equistable graphs is open,
but it seems plausible that the problem could be NP-hard. It thus makes sense
to search ways to simplify the recognition problem. To this end, we consider the
following two parameterized problems related to equistability.

k-Equistability
Input: A graph G = (V,E), a positive integer k.

Parameter: k.
Question: Is G k-equistable?

Target-t Equistability

Input: A graph G = (V,E), a positive integer t.
Parameter: t.
Question: Is G target-t equistable?

Similarly as for the recognition of equistable graphs, it is not known whether
the above two problems are NP-hard, and whether they belong to NP.

Apart from being natural parameterizations of the equistability problem, the
first problem has been tackled before (in a non-parameterized variant) in a paper
by Levit et al. [8]. There they prove the following.

Theorem 1 (Levit et al. [8]). For every fixed k, there is an O(n2k) algorithm
to decide whether a given n-vertex graph is k-equistable. In case of a positive
instance, the algorithm also produces a k-equistable structure of G.

Also, the authors ask whether Theorem 1 can be strengthened in the sense
that there is an FPT algorithm for recognizing k-equistable graphs. We answer
this question affirmatively.
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More precisely, we prove the following results:

– There is an O(k5)-vertex kernel for the k-Equistability problem that
can be computed in linear time. This yields an FPT algorithm for the k-
Equistability problem of running time O(k9k+1 + m + n), given a graph
with n vertices and m edges. This affirmatively answers the question posed
by Levit et al. [8].

– The Target-t Equistability problem admits an O(t2)-vertex kernel, com-
putable in linear time. Moreover, there is an O(t3t+1 + m + n) time algorithm
to solve the Target-t Equistability problem.

The first result we prove in Sect. 5, and the second in Sect. 4.
In order to achieve the above mentioned running times of our FPT

algorithms, we present a refinement of the algorithm proposed by Levit et al. in
[8] in their proof of Theorem 1. This is done in Sect. 3.

2 Preliminaries

2.1 Twin Classes

Following [8], we say that vertices u and v of a graph G are twins if they have
exactly the same set of neighbors other than u and v. It is easy to verify that
the twin relation is an equivalence relation. We recall some basic properties of
the twin relation (see [8]):

Lemma 1. Let G = (V,E) be a graph. The twin relation is an equivalence
relation, and every equivalence class is either a clique or a stable set.

An equivalence class of the twin relation will be referred to as a twin class.
Twin classes that are cliques will be referred to clique classes, and the remaining
classes will be referred to as stable set classes. We say that two disjoint sets of
vertices X and Y in a graph G see each other if every vertex of X is adjacent to
every vertex of Y , and they miss each other if every vertex of X is non-adjacent
to every vertex of Y . A vertex x sees a set Y ⊆ V (G) \ {x} if the singleton {x}
sees Y , and similarly x misses Y if {x} misses Y . The set of all twin classes will
be denoted by Π(G) and referred to as the twin partition of G. The number of
twin classes of G will be denoted by π(G) = |Π(G)|. The following observation
is an immediate consequence of the fact that the twin classes are equivalence
classes under the twin relation.

Observation 2. Every two distinct twin classes either see each other or miss
each other.

By Observation 2, the quotient graph of G, denoted Q(G), is thus well defined:
Its vertex set is Π(G), and two twin classes are adjacent if and only if they see
each other in G. Given a graph G, it is possible to find in linear time the twin
partition Π(G), the quotient graph Q(G) and π(G), using any of the linear
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time algorithms for modular decomposition [2,12,19] and observing that one
can derive the twin classes from the modular decomposition tree.

The following two lemmas due to Levit et al. [8] show why twin partitions
are important in the study of equistable graphs.

Lemma 2. For every equistable function w of G and for every i, every set of
the form V w

i = {x ∈ V : w(x) = i} is a subset of a twin class of G. In particular,
if G is a k-equistable graph, then π(G) ≤ k.

Corollary 1. If G is a target-t equistable graph, then π(G) ≤ t.

Lemma 3. For every equistable function w of an equistable graph G and for
every clique class C there exists an i such that V w

i = C.

2.2 Parameterized Complexity

A decision problem parameterized by a problem-specific parameter k is called
fixed-parameter tractable if there exists an algorithm that solves it in time
f(k) · nO(1), where n is the instance size. Such an algorithm is called an FPT
algorithm. The function f is typically super-polynomial and depends only on k.
One of the main tools to design such algorithms is the kernelization technique.
A kernelization is a polynomial-time algorithm which transforms an instance
(I, k) of a parameterized problem into an equivalent instance (I ′, k′) of the same
problem such that the size of I ′ is bounded by g(k) for some computable function
g and k′ is bounded by a function of k. The instance I ′ is said to be a kernel of size
g(k). It is a folklore that a parameterized problem is fixed-parameter tractable
if and only if it admits a kernelization. In the remainder of this paper, the kernel
size is expressed in terms of the number of vertices. For more background on
parameterized complexity the reader is referred to Downey and Fellows [3].

3 A Refined XP-algorithm for k-EQUISTABILITY

In this section we propose a revised version of the algorithm of Levit et al. [8]
for checking whether a given graph is k-equistable. We implement some speed-
ups and give a more careful analysis of the running time. Let us remark that
this improvement does not speed up the running time when k is fixed, and it is
thus not relevant for the main result of Levit et al. [8]. However, the improved
running time is essential when the algorithm is applied to a kernelized instance,
for the k -Equistability resp. Target-t Equistability problem. We refrain
from formally restating the whole algorithm from [8] in order not to create
redundancy.

Theorem 3. Let G be a graph on n vertices and m edges, and let k ∈ N. Then
there is an algorithm of running time O(n+m+max{n2kk1−k, k3k+1}) to check
whether G is k-equistable. This algorithm computes a k-equistable structure, if
one exists, and the same holds if a target t is prescribed.
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We emphasize that unlike in the statement of Theorem 1, the constant hidden
in the O notation in Theorem 3 does not depend on k (in Theorem 3, k is not
restricted to be a constant).

Before we prove Theorem 3, we state the following observation.

Lemma 4. Let k, n ∈ N and let a ∈ N
k
0 with

∑k
i=1 ai = n. Then

k∏

i=1

(ai + 1) ≤ (n/k + 1)k .

Proof. If k = 1, the statement is immediate. So, let k > 1, and assume
the statement is true for k − 1. Let a ∈ N

k
0 with

∑k
i=1 ai = n. We know

that
∏k−1

i=1 (ai + 1) ≤ ((n − ak)/(k − 1) + 1)k−1, and thus
∏k

i=1(ai + 1) ≤
(ak + 1) · ((n − ak)/(k − 1) + 1)k−1. A straightforward calculation shows that
the right hand side is maximized (over ak ≥ 0) for ak = n/k. Thus,

k∏

i=1

(ai + 1) ≤
(n

k
+ 1

)
·
(

n − n
k

k − 1
+ 1

)k−1

=
(n

k
+ 1

)k

,

which completes the proof. ��
We can now prove Theorem 3.

Proof (of Theorem 3). Recall that by Lemma 2, any equistable weight function
for G assigns the same weight only to vertices of the same twin class. Following
the algorithm of Levit et al. [8], we proceed as follows. First, we compute in time
O(n+m) the twin partition of G and the quotient graph Q(G) (cf. Section 2.1).
Fix any ordering V (G) = {v1, . . . , vn} such that vertices in each twin class appear
consecutively in this ordering. Clearly, the permutation of the weights within a
twin class produces an equivalent weight function, i.e., a weight function is an
equistable function of G if and only if after any permutation of the weights within
a twin class we still have an equistable function. We aim to produce a family F
which contains all equistable functions up to permutations of the weights within
a twin class. It suffices to produce all mappings w : V (G) → [k] such that the
vertices in the set w−1(i), i ∈ [k], appear consecutively in the ordering of V (G).
Let K(n, k) be the number of partitions of [n] into k labeled intervals, where some
of the intervals may be empty. It is straightforward to verify that |F| is bounded
by K(n, k). A standard counting argument yields K(n, k) ≤ k! · (

n+k−1
n

)
.

The set F can be computed in time O(kk(n+k−1)k−1) as follows. Generate
all one-to-one mappings from the set [k − 1] to an (n+ k − 1)-element set. Using
the above ordering of V (G), each such mapping determines a partition of V (G).
If the partition refines the twin partition of G, then compute all the O(kk) one-
to-one mappings from the resulting set of (at most k) non-empty intervals to the
set [k]. Each of these mappings specifies, in a natural way, a function in F .

Let us now estimate more carefully the size of F . Let n̂ := max{n, k2}. We
have

k · (n̂ + k)k−1

n̂k
=

k

n̂
·
(

1 +
k

n̂

)k−1

≤ 1
k

·
(

1 +
1
k

)k−1

≤ e

k
,
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implying k · (n̂ + k)k−1 ≤ en̂k/k. We thus obtain

K(n, k) ≤ K(n̂, k) ≤ k! ·
(

n̂ + k − 1
n̂

)
= k · (n̂ + k − 1)!

n̂!
< k · (n̂ + k)k−1 ≤ en̂k

k
.

Thus, we have to consider only |F| = O(n̂k/k) many weight functions, which
can be computed in time O(kk(n + k − 1)k−1) = O((kn̂)k).

It remains to check if any of these O(n̂k/k) weight functions in F is an
equistable function. For every weight function w ∈ F , the algorithm from [8] first
computes the target value t by evaluating the w-weight of an arbitrary (fixed)
maximal stable set of G (see [8] for details); in our setting, this computation can
be implemented in time O(k). The algorithm then computes the set Xw of all
k-dimensional vectors x with integer coordinates such that 0 ≤ xi ≤ |w−1(i)| for
all i ∈ [k]. A vector x ∈ Xw represents the set of all subsets of V (G) such that
the number of vertices of w-weight i in the set equals xi.

Note that the number of vectors in Xw is bounded by
∏k

i=1(|w−1(i)| + 1),
which, by Lemma 4, is in turn bounded by (n̂/k + 1)k = O((n̂/k)k), for each
function w. For each vector x ∈ Xw, the algorithm then checks whether the
corresponding sets are of the right weight, that is, whether

∑k
i=1 ixi = t if and

only if the vector encodes a set of maximal stable sets. This latter condition can
be verified in time O(k2) using the quotient graph Q(G) (see [8] for details).

The running time of this algorithm is thus

O

(

n + m + (kn̂)k +
n̂k

k

(

k +
(

n̂

k

)k

k2

))

.

This expression simplifies to

O(n + m + n̂2kk1−k) = O(n + m + max{n2kk1−k, k3k+1}) ,

as desired.
We remark that, in case of a prescribed target value t, the above algorithm

can be modified in an obvious way to accept only those equistable functions
under which all maximal stable sets have total weight t. This completes the
proof. ��

4 An O(t2)-vertex Kernel for the TARGET-t
EQUISTABILITY Problem

Given a graph G, the following reduction rule is specified by a positive integer
r as a parameter.

r-Clique Reduction. If a clique class C contains more than r vertices, delete
from C all but r vertices.

The following lemma shows why r-Clique Reduction rule is safe for both prob-
lems, Target-t Equistability and k-Equistability.
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Lemma 5. Let G be a graph, T ⊆ N a finite set, C a clique class of G with
|C| > r where r := max T , and k a positive integer. Then, for every t ∈ T , graph
G is target-t k-equistable if and only if G′ is target-t k-equistable, where G′ is
a graph obtained after the r-Clique Reduction rule has been applied to G with
respect to the clique class C.

Proof. Let t ∈ T . First assume that G is target-t k-equistable, say with a k-
equistable structure (w, t). It is immediate that the restriction w′ of w to V (G′)
yields a k-equistable structure (w′, t) of G′. Therefore G′ is target-t k-equistable.

Now assume that G′ is target-t k-equistable, with a k-equistable structure
(w′, t). We define a function w : V (G) → {1, . . . , k} by extending w′ to the set
V (G). Indeed, we simply put w(u) := w′(u) for all u ∈ V (G′), and w(u) := w(v)
for all u ∈ C \ V (G′) where v ∈ C ∩ V (G′). The choice of v ∈ C ∩ V (G′) is
arbitrary, since w′ is constant on C ∩ V (G′) by Lemma 3.

We claim that (w, t) is an equistable structure of G. To show this, pick an
arbitrary maximal stable set X of G. Then |X ∩ C| ≤ 1, and so we may assume
that X ⊆ V (G′). Clearly X is a maximal stable set of G′, and so w′(X) = t.
Therefore w(X) = t.

Conversely, let X ⊆ V (G) be a set with w(X) = t. Since w(X ∩ C) ≤
w(X) = t, we have |X ∩ C| ≤ t. As w is constant on C and |C| > max T ≥ t, we
may w.l.o.g. assume that X ⊆ V (G′). Hence, w′(X) = w(X) = t, and so X is a
maximal stable set of G′. Thus, X is a maximal stable set of G which completes
the proof. ��

In particular, r-Clique Reduction rule is safe for the Target-t Equistabil-
ity problem. This is seen by putting k := t and T = {t} in the statement of
Lemma 5.

Theorem 4. The Target-t Equistability problem admits a kernel of at most
t2 vertices, computable in linear time. Moreover, there is an O(t3t+1 + m + n)
time algorithm to solve the Target-t Equistability problem, given a graph
with n vertices and m edges.

Proof. Let G be a graph on n vertices and m edges. Using one of the linear time
algorithms for modular decomposition [2,12,19], we can compute Π(G) and π(G)
in linear time. If π(G) > t, then we conclude that G is not target-t equistable,
by Corollary 1. Similarly, if there exists a stable set class S with |S| > t, then we
conclude that G is not target-t equistable. Also, we can apply r-Clique Reduction
rule with parameter t, to every clique class, in linear time. Afterward, the graph
has at most t2 vertices, which proves the first statement of the theorem.

Our FPT algorithm works as follows. First we compute in time O(m + n)
a kernel G′ with n′ ≤ t2 many vertices. Then we apply Theorem 3 to check
whether G′ is target-t equistable. For this, we can put k := t and decide
whether G′ is k-equistable with target t. We thus obtain a running time of
O(|V (G′)| + |E(G′| + max{n′2kk1−k, k3k+1})= O(t3t+1). ��
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5 An O(k5)-vertex Kernel for the k-EQUISTABILITY

Problem

This section is devoted to the proof of the following result.

Theorem 5. The k-Equistability problem admits an O(k5)-vertex kernel,
computable in linear time. Moreover, there is an O(k9k+1 + m + n) time algo-
rithm to solve the k-Equistability problem, given a graph with n vertices and
m edges.

Proof. Let us first prove that the second statement follows from the first one.
Assume that we can compute an O(k5)-vertex kernel for the k -Equistability
problem in linear time. By Theorem 3, we can then decide whether this kernel
is k-equistable in time O(k9k+1).

We now turn to the construction of the O(k5)-vertex kernel. In case of a no-
instance, our algorithm simply returns a non-equistable graph, say the 4-vertex
path P4. In what follows, we will assume that the input graph G satisfies π(G) ≤
k, since otherwise G is not k-equistable, by Lemma 2. The following claim is the
main step of our kernelization.

Claim 1. If there exist two distinct twin classes X and Y such that one of them
is a stable set and min{|X|, |Y |} ≥ k(k + 1), then G is not k-equistable.

Proof. Suppose for a contradiction that G is k-equistable, with an equistable
weight function w : V (G) → [k], and that there exist two distinct twin classes X
and Y with min{|X|, |Y |} ≥ k(k+1) such that X is a stable set. If the set X ∪Y
is contained in every maximal stable set of G, then X ∪ Y forms a twin class, a
contradiction. Thus, we may assume without loss of generality that there exists
a maximal stable set S of G such that X ⊆ S and Y � S.

Recall that Y is either a clique class or a stable set class. Since every clique
intersects every stable set in at most one vertex and every stable set class is
either entirely contained in S or disjoint from it, the fact that Y � S implies
|Y ∩ S| ≤ 1. Let i, j ∈ [k] be weights such that |{x ∈ X : w(x) = i}| ≥ k + 1,
and |{y ∈ Y : w(y) = j}| ≥ k + 1. Since j ≤ k, there exists a set X ′ of j vertices
in X of weight i. Since i ≤ k and |Y ∩ S| ≤ 1, there exists a set Y ′ of i vertices
in Y of weight j such that Y ′ ∩ S = ∅. Then, the set S′ = (S \ X ′) ∪ Y ′ is not a
stable set, since otherwise by Observation 2 the set S ∪ Y would be a stable set
properly containing S, contrary to the maximality of S. Note that w(S′) = w(S),
contradicting the assumption that w is an equistable weight function of G. ��

We consider the following two cases.

Case 1. Every twin class X with |X| ≥ k(k + 1) is a clique class.

In this case, every stable set class has less than k(k+1) vertices, which implies
that every maximal stable set of G contains at most k(k + 1) vertices from each
twin class and is thus of total size at most k2(k + 1). This implies that in every
k-equistable structure (w, t) of G, we have t ≤ k3(k + 1).
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We now perform r-Clique Reduction rule from Sect. 4 with r := k3(k+1). By
Lemma 5 applied with T = [r] and k, the application of r-Clique Reduction rule
is safe. When the rule can no more be applied, we have a graph G′ with at most
k twin classes, each of size at most k3(k+1). We are done since |V (G′)| = O(k5).

Case 2. There exists a stable set twin class X with |X| ≥ k(k + 1).

By Claim 1, we may assume that X is the unique twin class of size at least
k(k + 1) (since otherwise G is not k-equistable).

Note that V (G) \ X contains at most k − 1 twin classes, each containing less
than k(k + 1) vertices, hence |V (G) \ X| ≤ (k − 1)k(k + 1) ≤ k3.

Suppose first that X corresponds to an isolated vertex in the quotient graph
Q(G). If |X| < k5, then |V (G)| < k5 + k3 = O(k5) and we are done.

So suppose that |X| ≥ k5.

Claim 2. G is k-equistable if and only if it admits a k-equistable function that
is constant on X.

Proof. The if part being trivial, assume that G is k-equistable, and let (w, t) be
a k-equistable structure of G. Let i ∈ {1, . . . , k} be such that |Xw

i | ≥ k4, where
Xw

i = {v ∈ X : w(v) = i}. Now we define a weight function w′ that equals w
outside X, and is constantly i on X. We claim that w′ is a k-equistable function
of G. Clearly, w′ is bounded by k. Under w′, all maximal stable sets of G have
weight t′ := t − w(X) + w′(X).

The only possible problem is that w′(S) = t′ for some vertex set S that is
not a maximal stable set of G. In this case, we claim that r := |X \ S| ≤ k4. To
see this, suppose r > k4. Since |S \X| ≤ |V (G)\X| ≤ k3, we get w′(S \X) ≤ k4.
Therefore w′(S) = w′(X)−w′(X \S)+w′(S \X) ≤ i(|X|−r)+k4. But k4 < ir,
since i ≥ 1 and r > k4. Thus i(|X| − r) + k4 < i(|X| − r) + ir = i|X| ≤ t′, a
contradiction.

So, r ≤ k4, and since k4 ≤ |Xw
i | and w′ is constant on X we may assume

that X \ S ⊆ Xw
i . But this yields

w(S) = w′(S) − w′(X ∩ S) + w(X ∩ S)
= t′ − i(|X| − r) + w(X ∩ S)
= t′ − i(|X| − r) + w(X ∩ S) − ir + ir

= t′ − i|X| + (w(X ∩ S) + ir)
= t′ − w′(X) + (w(X ∩ S) + w(X \ S))
= t′ − w′(X) + w(X) = t.

A contradiction. ��
According to Claim 2, it suffices to test if G is k-equistable by considering

all possible functions w : V (G) → [k] that are constant on X, and test for each
of them whether it is a k-equistable function.
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Before that, we reduce size of X. For this, we compute a graph G′ from G
by deleting all but k4 many vertices from X. Note that, since X is a twin class,
G′ is unique up to isomorphism.

Claim 3. G is k-equistable if and only if G′ is k-equistable.

Proof. Let X ′ := X ∩ V (G′) and Y ′ := V (G′) \ X ′.
First we assume that G is k-equistable, say with an equistable structure

(w, t). By Claim 2, we may assume that w is constant on X, say w|X ≡ i. We now
consider the weight function w′ := w|V (G′) with target value t′ := t − i|X \ X ′|,
and claim that (w′, t′) is a k-equistable structure of G′. Since every maximal
stable set of G (resp., G′) contains X (resp., X ′) as a subset, it is straightforward
that every maximal stable set of G′ has weight t′. Suppose that there is a set
S ⊆ V (G′) with w(S) = t′ that is not a maximal stable set of G′. Then the
set S ∪ (X \ X ′) has total weight t, but is not a maximal stable set of G, a
contradiction. This proves that G′ is k-equistable.

Now we assume that G′ is k-equistable, say with an equistable structure
(w′, t′). By Claim 2 applied to G′, we may assume that w′ is constant on X ′,
say w′|X′ ≡ i. Consider the weight function w : V (G) → [k] defined as w(x) =
w′(x) for all x ∈ V (G′) and w(x) = i for all x ∈ X \ X ′ with target value
t := t′ + i|X \X ′|. We claim that (w, t) is a k-equistable structure of G. Again it
is straightforward that any maximal stable set of G has weight t. Suppose that
there is a set S ⊆ V (G) with w(S) = t that is not a maximal stable set of G.

Recall that |Y ′| ≤ (k − 1)k(k + 1) ≤ k3 and consequently w(Y ′) ≤ k4. If
|X \ S| > k4, we thus obtain

w(S) ≤ w(Y ′) + i|X| − i(k4 + 1)
≤ k4 + i|X| − (k4 + 1)
= i|X| − 1
< w(X) ≤ t,

a contradiction. Thus, |X \S| ≤ k4, and so we may assume that X \S ⊆ X ′. Let
S′ := S ∩ V (G′). Then w′(S′) = w(S) − i|X \ X ′| = t′, but S′ is not a maximal
stable set of G′. This is contradictory, and so G is k-equistable. ��
Proof. By Claim 3, it suffices to check whether G′ is k-equistable. Since
|V (G′)| ≤ k4 + k3 = O(k4), we are done.

Now, suppose that X corresponds to a non-isolated vertex in the quotient
graph Q(G). Then, there exists a twin class Y that sees X. Let S be a max-
imal stable set of G containing a vertex of Y . Then, S ⊆ V (G) \ X. Since
|V (G) \ X| ≤ k3, we have in particular that |S| ≤ k3.

If |X| > k|S|, then for every k-equistable function w of G and every maximal
stable set, say S′, such that X ⊆ S′, we have w(S′) ≥ |X| > k|S| ≥ w(S), hence
G is not k-equistable.

If |X| ≤ k|S|, then |V (G)| ≤ (k + 1)k3 = O(k4).
Since it is clear that the above algorithm runs in time O(n + m), the proof

is complete. ��
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6 Future Work

Several open problems surrounding our work remain, some of which we want to
mention here in order to stimulate research on this topic.

Firstly, we believe it is NP-hard to determine, given a graph G and an
integer k, whether G is k-equistable. It would be satisfying to see this proven,
especially for the purpose of this paper. As mentioned in the introduction, the
smallest such k (if existing) might have to be exponential in the number of
vertices of G [14], which might serve as a hint for the hardness of this problem.

The analogous question is open also for the problem of Target-t Equista-
bility: what is the computational complexity of determining, given a graph G
and an integer t, whether G is target-t equistable? Again, the smallest such t
(if existing) might have to be exponential in the number of vertices of the input
graph [14].

A different computational problem in this context would be the following:
given a graph G and a number k, does it admit an equistable weight function
using at most k different weights? Here, both the parameterized and classical
complexity are unknown. Although we did not study this problem in depth, our
impression is that it should be NP-hard, but FPT when parameterized by k. In
view of the results of the present paper, there might very well be a polynomial
kernel for this problem. Another problem that seems similar at first sight is
whether equistability is FPT when parameterized by π(G), the number of twin-
classes of G.

Apart from these recognition problems, it is apparently open whether the
maximum stable set problem is FPT in the class of equistable graphs. Here we
do at least know that this problem is APX-hard in this class [14].
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Abstract. In many graph problems, like Longest Induced Path,
Maximum Induced Forest, etc., we are given as input a graph G and
the goal is to compute a largest induced subgraph G[F ], of treewidth
at most a constant t, and satisfying some property P. Fomin et al. [12]
proved that this generic problem is polynomial on the class of graphs
Gpoly, i.e., the graphs having at most poly(n) minimal separators for some
polynomial poly, when property P is expressible in counting monadic sec-
ond order logic (CMSO).

Here we consider the class Gpoly + kv, formed by graphs of Gpoly to
which we may add a set of at most k vertices with arbitrary adjacen-
cies, called modulator. We prove that the generic optimization prob-
lem is fixed parameter tractable on Gpoly + kv, with parameter k, if
the modulator is also part of the input. The running time is of type
O (f(k + t, P) · nt+5 · (poly(n)2)

)
, for some function f .

1 Introduction

Many classical optimization problems on graphs, e.g., Maximum Independent

Set, Maximum Induced Forest (whose optimal solution is the complement
of a Minimum Feedback Vertex Set), Longest Induced Path and Maxi-

mum Induced Matching consist in finding a maximum induced subgraph G[F ]
of the input graph G such that G[F ] has a tree-like structure (i.e., the treewidth
is bounded by a constant) and satisfies some particular property P (like being a
path, a matching, etc.). All these properties are expressible in Counting Monadic
Second Order Logic (CMSO). We do not need in this paper the technical defin-
ition of CMSO formulae, for which the reader may refer to [10] or [12]. We only
need to keep in mind that many natural properties (connectivity, excluding a
fixed minor, etc.) are expressible in CMSO, and the fact that CMSO properties
are regular, in a sense to be defined in the next section.

Fomin et al. [12] introduced the following generic optimization problem called
Optimal Induced Subgraph for P and t, which encompasses those cited
above and many others. In this generic problem, t is an integer constant and P
is a property on graphs and vertex sets, expressible in CMSO.
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Optimal Induced Subgraph for P and t

Input: A graph G = (V,E)
Output: A pair (F,X) of vertex subsets X ⊆ F ⊆ V such that

– tw(G[F ]) ≤ t,
– P(G[F ],X) is true, and
– X is of maximum size under these constraints.

In the problems that we have mentioned, the vertex set X is equal to F .
Nevertheless, set X allows to optimize other criteria than the size of the induced
subgraph. E.g., in the Independent H-packing problem [8], we are given a
fixed family of graphs H, and the goal is to find an induced subgraph G[F ] with
a maximum number of connected components such that each of its components
is isomorphic to an element of H. For this problem, property P expresses the
constraints on the components of G[F ] and the fact that X intersects each such
component in exactly one vertex.

Consider a polynomial poly, and let Gpoly be the class of graphs such that,
for any G ∈ Gpoly, graph G has at most poly(n) minimal separators. (As usually,
we denote by n and m the number of vertices, respectively of edges of graph
G.) Fomin et al. [12] proved that, for any constant t and any CMSO property
P, problem Optimal Induced Subgraph for P and t is polynomial-time
solvable on class Gpoly.

The approach is based on the notion of potential maximal clique. Given an
arbitrary graph G = (V,E), a minimal triangulation H = (V, F ) is a minimal
chordal supergraph of G (recall that a graph is chordal if it contains no induced
cycle with four or more vertices). A potential maximal clique of G is a vertex
subset Ω inducing a maximal clique in some minimal triangulation of G. Poten-
tial maximal cliques are strongly related to minimal separators. Graphs in Gpoly

have O(n · (poly(n))2) potential maximal cliques [7], and the set of all these
objects can be enumerated in polynomial time. The algorithm of [12] takes as
input all the potential maximal cliques of the input graph. Then it proceeds by
dynamic programming on potential maximal cliques, constructs the induced sub-
graph G[F ] and in the meantime applies Courcelle’s theorem [9], in the version
proposed by Borie, Parker and Tovey [5], for testing CMSO properties on graphs
on bounded treewidth. Altogether, this solves the generic optimization problem.
Many graph classes, e.g., weakly chordal, circle, polygon-circle or circular-arc
graphs are known to be in Gpoly for some particular polynomial poly. Therefore,
the generic problem and all its particular instances are polynomial on all these
classes. We refer to [12] for further discussions on graph classes and applications
of the problem.

Our results. Our goal is to study the problem from a parameterized perspective,
for classes of graphs with “few” minimal separators, to which we are allowed to
add k vertices with arbitrary adjacencies. Let Gpoly + kv denote the class of
graphs G = (V,E) containing a vertex subset M ⊆ V of size at most k, such
that G − M ∈ Gpoly. The set M is called the modulator of G.
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Let Optimal Induced Subgraph for P and t on Gpoly +kv be the problem
Optimal Induced Subgraph for P and t on the graph class Gpoly + kv, with
parameter k. Moreover, we assume that the input graph G is given together with
a modulator M (see also Sect. 4 for discussions on this point). Our main result
is that problem Optimal Induced Subgraph for P and t on Gpoly + kv is
fixed-parameter tractable (FPT), i.e., there is an algorithm solving the problem
in time f(k) · nO(1) for some function f . More specifically, the running time is of
type O (

f(k + t,P) · nt+5 · (poly(n)2)
)
, where function f depends on property P

and on k + t (see also the Conclusion section for further discussions).

Theorem 1. Problem Optimal Induced Subgraph for P and t on Gpoly+
kv with parameter k is fixed-parameter tractable, when a modulator is also part
of the input.

A similar result was obtained by Fomin and the authors of this article [11],
on graphs with vertex cover at most k, i.e., formed by an independent set plus
at most k vertices. In this class, the number of potential maximal cliques is
4k · nO(1), hence the algorithm of [12] can be used as is. But, as shown in [11],
even for the class of graphs formed by a tree plus one vertex, or an induced
matching plus two vertices, the number of potential maximal cliques may be
exponential in n, therefore we need another approach.

A natural idea is to “guess” how the optimal solution intersects with the
modulator M . But we still need to carefully express how the rest of the solution
intersects with the graph G − M . Think, e.g., of the longest induced path prob-
lem: we need to make sure that the solution restricted to G − M forms indeed
a connected path with the selected vertices of the modulator. Our algorithm
extends, in a non-trivial way, the one of [12] in order to handle this situation.

We also point out that several authors considered classes of graphs of similar
flavor, e.g. Chordal + kv [19] and Split + kv [18], providing both FPT and
hardness results for various problems, parameterized by k.

2 Preliminaries

Treewidth, minimal triangulations and potential maximal cliques. Given a graph
G = (V,E), we denote by n the number of its vertices and by m the number
of its edges. G[C] denotes the subgraph of G induced by a vertex subset C,
and N(C) is the neighborhood of C in G. We say that a set of vertices C is
a connected component of G if G[C] is connected and C is inclusion-maximal
for this property. Given a set S ⊆ V , let G − S denote the graph G[V \ S].
If there are two distinct connected components C and D of G − S such that
N(C) = N(D) = S, we say that S is a minimal separator of G. The set of all
minimal separators of G is denoted ΔG.

A tree decomposition of graph G = (V,E) is a pair (T ,X ), where T is a tree
and X are vertex subsets of G, called bags. Moreover, each node i of the tree
corresponds to a bag Xi ∈ X , the bags cover all vertices and all edges of G, and
for each vertex x of G, the set of nodes {i | x ∈ Xi} form a connected subtree



502 M. Liedloff et al.

of T . The width of the decomposition is max{|Xi| − 1 | Xi ∈ X}. Finally, the
treewidth of G, denoted tw(G), is the minimum width among all mobile tree
decompositions of G.

A graph H is chordal if it has no induced cycle with four or more vertices. Let
G = (V,E) be an arbitrary graph. We say that H = (V, F ) is a triangulation of
G if H is a chordal super-graph of G (i.e., E ⊆ F ). If, moreover, H is inclusion-
minimal for this property, then H is a minimal triangulation of G. It is well-
known that chordal graphs have tree decompositions whose bags correspond to
maximal cliques (see, e.g., [15]). The treewidth of G is also equal to the minimum
integer w such that G has a (minimal) triangulation H, and each clique of H
has at most w + 1 vertices.

Proposition 1 (respecting triangulations [13]). Consider an arbitrary
graph G = (V,E) and let F ⊆ V be a set of vertices. For any minimal tri-
angulation TF of G[F ], there is a minimal triangulation TG of G such that TF

is an induced subgraph of TG.

A potential maximal clique of G is a vertex subset Ω such that Ω induces a
maximal clique in some minimal triangulation H of G. The set of all potential
maximal cliques of G is denoted ΠG. E.g., if G is a cycle, then its potential max-
imal cliques are exactly the triples of vertices. See also [6] for a characterization
of potential maximal cliques.

If Ω is a potential maximal clique, then the neighborhoods of the components
of G − Ω are exactly the minimal separators of G, contained in Ω.

Given a polynomial poly, let Gpoly denote the class of graphs having at most
poly(n) minimal separators. The minimal separators ΔG and the potential max-
imal cliques ΠG of these graphs can be listed in polynomial time, by [1] and [7]
respectively.

A pair (S,C) such that S is a minimal separator of G and C is a component
such that N(C) = S is called a full block associated to S. For convenience, we
will also consider the empty set as being a minimal separator of G = (V,E), and
the pair (∅, V ) is considered as a full block. Let (S,C) be a full block and Ω be
a potential maximal clique with S ⊂ Ω ⊆ S ∪ C. The triple (S,C,Ω) is called a
good triple. Our dynamic programming is based on full blocks and good triples,
which is again polynomially bounded on class Gpoly.

Terminal recursive graphs and regular properties. Graphs of bounded treewidth
can be defined recursively, based on a graph grammar. Let w be a non-negative
integer. A w-terminal graph is a triple (V, T,E), where (V,E) is a graph and T
is a totally ordered subset of V , of size at most w. The vertices of T are called
the terminals of the graph. Since T is totally ordered, we can speak of the ith
terminal, for i ≤ |T |.

The class of w-terminal recursive graphs is defined by the following opera-
tions. A base graph is a w-terminal recursive graph of the form (V, T,E) with
T = V . Hence it has at most w vertices, all of them being terminals.

The gluing operation takes two disjoint w-terminal recursive graphs G1 =
(V1, T1, E1) and G2 = (V2, T2, E2) and creates a new graph G = gluem(G1, G2),
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depending on a matrix m. The matrix m has two rows and at most w columns,
with elements in {0, 1 . . . , w}. The gluing operation takes the disjoint union of
G1 and G2, and then identifies the terminal number i in G1 (resp. in G2) to
terminal m1i (resp. m2i) in G. Each terminal of G1 (resp. G2) is mapped on at
most one terminal of G. We take mji = 0, for j ∈ {1, 2}, if terminal number i in
Gj does not exist or it is not mapped on any terminal of G.

The forget operation takes a w-terminal recursive graph G1 = (V, T,E) and
creates the graph G = forgetm(G1) with G = (V, T ′, E) such that T ′ is a subset
of T . The matrix m has only one row and |T | columns, and m1i specifies as before
that the ith terminal of G1 is mapped on terminal m1i of G. The mapping is
injective, and if m1i = 0 then the ith terminal of G1 is removed, in G, from the
set of terminals.

We point out that the number of possible different matrices and hence of
different operations is bounded by a function on w.

Proposition 2 (see [2,12]). Graph H = (V, T,E) is (w +1)-terminal recursive
if and only if there exists a tree decomposition of G = (V,E), of width at most
w, having T as one of its bags. Hence the grammar of (w+1)-terminal recursive
graphs constructs exactly the graphs of treewidth at most w (see [2,12]).

Let P(G,X) be a property assigning to each graph G and vertex subset X of
G a boolean value. We extend the gluing and forget operations to pairs (G,X)
in the natural way (see, e.g., [5,12]). In particular, when we perform a gluing on
(G1,X1) and (G2,X2), the result is a pair (G,X) where X is obtained by the
the gluing of X1 and X2. Therefore the intersections of sets X1 and X2 with the
terminals of G1 and respectively G2 must be coherent with the gluing, in the
sense that if two terminals x1 of G1 and x2 of G2 are identified in G, then we
either have x1 ∈ X1 and x2 ∈ X2, or we have x1 /∈ X1 and x2 /∈ X2.

Definition 1 (regular property). Property P is called regular if, for any
value w, we can associate a finite set C of classes and a homomorphism function
h, assigning to each w-terminal recursive graph G and to each vertex subset X
a class h(G,X) ∈ C such that:

1. If h(G1,X1) = h(G2,X2) then P(G1,X1) = P(G2,X2).
2. For each gluing operation gluem there exists a function �gluem : C × C → C

such that, for any two pairs (G1,X1) and (G2,X2),

h(gluem((G1,X1), (G2,X2)) = �gluem(h(G1,X1), h(G2,X2))

and for each operation forgetm there is a function �forgetm : C → C such
that, for any pair (G,X),

h(forgetm(G,X)) = �forgetm(h(G,X)).

The first condition separates the classes into accepting ones (i.e., classes c ∈ C
such that h(G,X) = c implies that P(G,X) is true) and rejecting ones (s.t.
h(G,X) = c implies that P(G,X) is false). In full words, the second condition
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states that, if we perform a glue (resp. forget) operation on two graphs (resp.
one graph) and corresponding vertex subsets, the homomorphism class of the
result can be obtained from the homomorphism classes of the graphs on which
these operations are applied. Therefore, if a w-terminal recursive graph is given
together with its expression in this grammar, and if moreover we know how to
compute the classes of the base graph, then the homomorphism class of the whole
graph, for a regular property P, can be obtained by dynamic programming. We
simply need to parse the expression from bottom to top and, at each node,
we compute the class of the corresponding sub-expression thanks to the second
condition of regularity. At the root, the property is true if and only if we are in
an accepting class.

Proposition 3 (Borie, Parker, and Tovey [5], Courcelle [9]). Any property
P(G,X) expressible by a CMSO formula is regular.

Moreover, the result of Borie, Parker, and Tovey shows how to compute
explicitly the set of classes, the homomorphism function for base graphs as well
as the composition functions �gluem and �forgetm . Altogether, this provides an
effective algorithm for checking the property in O(n) time.

The reader may try to express the homomorphism classes and function for
his/her favorite CMSO property. Let us consider the property “G[X] is con-
nected”. We can choose, as homomorphism h((V, T,E),X), the set of subsets of
T , which correspond to the intersections of T with components of G[X]. Observe
that each such subset Ti of T is encoded by the indices of its elements in the
ordered set T . Hence each homomorphism class will be a set of (disjoint) subsets
of {1, . . . , w}.

We may assume w.l.o.g. that the homomorphism class c = h(G,X), for
G = (V, T,E), encodes the intersection of X with the set of terminals. This is
not explicitly required by the definition of regular properties, but it can be done
since it only costs w bits to encode the number of the terminals contained in X.
Therefore we assume there is a function trm(c, T ) that, given a homomorphism
class c and an ordered set of terminals T returns the unique possible set X ∩ T ,
over all pairs (G = (V, T,E),X) mapped to c. Thanks to this function, when we
will glue two terminal recursive graphs with their corresponding vertex subsets,
we will be able to check that the gluing is coherent.

3 The Algorithm

Our goal is to provide an FPT algorithm for the problem Optimal Induced

Subgraph for P and t on Gpoly + kv, thus proving our Main Theorem 1.
Recall that in this problem, the input is a graph G ∈ Gpoly + kv, together with
a modulator M of size at most k.

We may assume w.l.o.g. that we also have as input the set ΠG′ of potential
maximal cliques of graph G′ = G − M . Indeed these objects can be computed
in polynomial time by [7].

The following easy observation is crucial for the correctness of our algorithm.
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Lemma 1 (compatibility lemma). Let G be the input graph, M be a vertex
subset, and (F,X) be an optimal solution for P and t. Let G′ = G − M and
F ′ = F \ M . There is a minimal triangulation TF ′ of G′[F ′] of width at most t,
and a minimal triangulation TG′ of G′ respecting TF ′ , i.e., such that TF ′ is the
subgraph induced by F ′ in TG′ .

Proof. Since G[F ] is of treewidth at most t, so is its subgraph G′[F ′]. Therefore it
exists a minimal triangulation TF ′ of G′[F ′] of width at most t. By Proposition 1
applied to graph G′ and to TF ′ , there is a minimal triangulation TG′ of G′,
respecting the minimal triangulation TF ′ . ��

We will “guess”, by brute force, the intersections of F and X with the mod-
ulator M . Let us fix FM = F ∩M and XM = X ∩M , with XM ⊆ FM . For each
such pair (FM ,XM ), we need to construct F ′ = F \ M and X ′ = X \ M such
that the pair (F,X) = (F ′∪FM ,X ′∪XM ) satisfies the constraints and X ′∪XM

is of maximum size under these conditions. (Eventually, the global solution is
obtained by trying all the 3k possible combinations for subsets XM ⊆ FM ⊆ M .)

Our algorithm will construct X ′ and F ′ by dynamic programming on minimal
separators and potential maximal cliques. The graph G[F ′ ∪ FM ] has to be of
treewidth at most t, and while we construct this graph we also need to check
property P on it. Unfortunately we will not be able to handle G[F ′ ∪ FM ] as a
(t+1)-terminal recursive graph. Instead, we will see it as a (t+kM +1)-terminal
recursive graph, where kM = |FM | (and we will explicitly check that tw(G[F ]) ≤
t). Informally, while we construct F ′, we also maintain some information on a
tree-decomposition of G′[F ′], of width at most t. To this decomposition, we
simply add the whole set FM in each bag, hence obtaining a tree-decomposition
of width at most t + kM of G[F ∪ FM ].

Now, on the (t + kM + 1)-terminal recursive graph G[F ′ ∪ FM ] having W ∪
FM as set of terminals for some W (W will be memorized during the dynamic
programming), we need to check the property P but also the fact that the graph
is of treewidth at most t. Therefore, let Q(H,Y ) be the property P(H,Y ) ∧
(tw(H) ≤ t). Property Q is also regular:

Lemma 2. Let P(G,X) be a regular property on graphs and vertex sets, and let
Q(G,X) be the property P(G,X) ∧ (tw(G) ≤ t). Property Q is regular.

Proof. As proven by Borie, Parker, and Tovey [5], if two properties P(G,X) and
P ′(G) are regular, then property Q(G,X) = P(G,X)∧P ′(G) is also regular. In
order to observe this, one can simply notice that the couple (hP(G,X), hP′(G))
formed by the respective classes of P and P ′ directly provides the homomorphism
class hQ(G,X) for property Q.

It remains to argue that property P ′(G) defined by “tw(G) ≤ t” is regular.
One classical argument is that the class of graphs of treewidth at most t is
minor-closed (see, e.g., [3] for a similar discussion). Hence, by the Graph Minors
theorem [21], the class is defined by a finite set of forbidden minors, denoted
Obs(t). Therefore, tw(G) ≤ t if and only if G has no minor among the graphs of
Obs(t). The property that a fixed graph is a minor of G is expressible in CMSO
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(see, e.g., [5]), hence the property “tw(G) ≤ t” is regular by Proposition 3.
In order to turn this argument into a completely constructive one, we must
build the obstruction set Obs(t) for graphs of treewidth at most t. This can be
done by brute force, thanks to the result of Lagergren [17] showing that such
obstructions are of size (number of vertices) at most f(t), for some function
doubly exponential in t5. Hence, one could enumerate all the graphs with number
of vertices bounded by this function, test the ones of treewidth strictly larger
than t and extract the minimal ones w.r.t. the minor relation. The output is
precisely Obs(t).

For our purpose, a better alternative is provided by the celebrated algorithm
of Bodlaender and Kloks [4]. This algorithm takes as input a graph of treewidth
at most w, for some constant w, and decides if this graph has treewidth at
most t. Its running time is O(n), and the hidden constant is single exponential
in a polynomial in w. Moreover, the algorithm precisely provides an effective
way for constructing the homomorphism class of property P ′(G) = (tw(G) ≤ t)
for (w + 1)-terminal recursive graphs. Such a class is addressed in [4] as a full
set of characteristics. Recall that, in our case, we need to construct these class
for (w + 1)-terminal recursive graphs where w ≤ t + k, k being the size of the
modulator M . Therefore, for computing the homomorphism classes for property
Q(G,X) = P(G,X) ∧ (tw(G) ≤ t) one can combine the Borie, Parker, and
Tovey approach (to obtain hP(G,X)) and the Bodlaender and Kloks approach
(to obtain hP′(G) for P ′(G) = (tw(G) ≤ t)), and the couple (hP(G,X), hP′(G))
is the homomorphism class hQ(G,X). ��

Our algorithm is an extension of the dynamic programming scheme proposed
by Fomin et al. [12], which considers the same optimization problem, without
the modulator M (and thus checking property P instead of Q). For a better
understanding we completely describe the new algorithm, trying to follow the
same notations as in [12], and we emphasize the points that differ from the result
of Fomin et al.

Recall that sets XM and FM are fixed, and XM ⊆ FM ⊆ M . We consider a
total order (v1, . . . , vn) on the vertices of G = (V,E). When we speak of a subset
T of vertices as a set of terminals, T is considered as the ordered set, with the
ordered induced by (v1, . . . , vn) on its vertices.

Definition 2 (partial compatible solution). Consider a full block (S,C) and
a good triple (S,C,Ω) of graph G′. Let W ⊆ S (resp. W ⊆ Ω) a vertex set of
size at most t+1. Let c be a homomorphism class for property Q on (t+kM +1)-
terminal recursive graphs. We say that a pair (F,X) is a partial solution com-
patible with (S,C,W, c) (resp. with (S,C,Ω,W, c)) if the following conditions
hold:

1. X ∩ M = XM , F ∩ M = FM , and X ⊆ F .
2. F \ M ⊆ S ∪ C and F ∩ S = W (resp. F ∩ Ω = W ).
3. H = (F,W ∪ FM , E(G[F ])) is a (t + kM + 1)-terminal recursive graph, and

the homomorphism class hQ(H,X) for property Q is exactly c.
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Fig. 1. (a) Partial solutions compatible with (S, C, W, c) (left), and (b) with
(S, C, Ω, W, c) (right). Set F is depicted in grey. Note that set W corresponds to F ∩S
in the first case, and to F ∩ Ω in the second case.

4. There is a minimal triangulation TF ′ of G′[F ′] (here F ′ = F \ M) and a
minimal triangulation TG′ of G′ respecting TF ′ , such that S is a minimal
separator (resp. Ω is a maximal clique) of TG′ .

With the same notations as above, let α(S,C,W, c) (resp. β(S,C,Ω,W, c))
be the maximum size of X over all partial solutions (F,X) compatible with
(S,C,W, c) (resp. (S,C,Ω,W, c)). The situation is depicted in Fig. 1. For simplic-
ity, we did not represent set X. The algorithm orders the full blocks (S,C) by the
size of S ∪ C. It proceeds by dynamic programming on full blocks (S,C) in this
order, and on good triples (S,C,Ω), computing all possible values α(S,C,W, c)
and β(S,C,Ω,W, c). The outline of Algorithm 1 is the same as in [12], the dif-
ferences appear in the details of the computations of α and β values.

Algorithm 1. Optimal Induced Subgraph for P and t on Gpoly + kv

Input: graph G = (V, E) and a modulator M of size at most k s.t. G′ = G−M

is in Gpoly; the potential maximal cliques of G′; sets XM ⊆ FM ⊆ M

Output: sets X ⊆ F ⊆ V (G) such that G[F ] has treewidth at most t,
P(G[F ], X) is true, X ∩ M = XM , F ∩ M = FM and, subject to these
constrains, X is of maximum size

Order all full blocks (S, C) of G′ by inclusion on S ∪ C;1

for all full blocks (S, C) in this order do2

for all good triples (S, C, Ω) of G′, all W ⊆ Ω of size ≤ t + 1 and all c ∈ C3

do

if Ω = S ∪ C then Compute β(S, C, Ω, W, c) using Eq. 1;4

;5

else Compute β(S, C, Ω, W, c) using Eqs. 3, 4, 5, and 6;6

;7

for all W ⊆ S of size ≤ t + 1 and all c ∈ C do8

Compute α(S, C, W, c) using Eq. 2;9

Compute an optimal solution using Eq. 7;10
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Base case: the good triple (S,C,Ω) is such that Ω = S ∪C. In this case the only
possible partial solutions (F,X) compatible with (S,C,Ω,W, c) correspond to
base graphs G[F ], where all vertices are terminals (see [12]). Hence F = W ∪FM

is also the set of terminals. Thus set X is unique (or might not exist), because
we must have X = trm(c,W ∪ FM ). For simplicity, we denote by G[W ∪ FM ]
the base graph (W ∪ FM ,W ∪ FM , E(G[F ∪ FM ])). We have:

β(S,C,Ω,W, c) =
{ |X| if there isX ⊆ W such that h(G[W ∪ FM ],X) = c

−∞ otherwise
(1)

S

C

W

F

W'

S

C

C1 C2

S1
S2

W

Fig. 2. Computing α form β (left), and β from α (right). Set M is not depicted for
simplicity.

Computing α from β. We aim to compute α(S,C,W, c) from β values on good
triples of type (S,C,Ω) (see also Fig. 2(a)).

Let (F,X) be an optimal solution compatible with (S,C,W, c) and F ′ =
F \ M . We denote by H the (t + kM + 1)-terminal recursive graph G[F ] with
W ∪ FM as set of terminals. By Definition 2, there is a minimal triangulation
TF ′ of F ′ and a minimal triangulation TG′ of G′ respecting TF ′ , such that S is
a minimal separator of TG′ . By [6], there is a potential maximal clique Ω of G′,
inducing a maximal clique in TG′ , and such that (S,C,Ω) form a good triple of
G′. Let W ′ = F ′ ∩Ω. The graph H ′, corresponding to G[F ] with set of terminals
W ′∪FM , is also a (t+kM +1)-terminal recursive graph (see Proposition 2, or [12]
for full details). Let c′ = h(H ′,X). Note that H = forgetW ′∪FM→W∪FM (H),
where the forget operation corresponds to the fact that the set of terminals
W ′ ∪ FM is reduced to W ∪ FM . Therefore, we have (see [12] for full details):

α(S,C,W, c) = max β(S,C,Ω,W ′, c′), (2)

where the maximum is taken over potential maximal cliques Ω such that
(S,C,Ω) is a good triple, all subsets W ′ ⊆ Ω of size at most t + 1 such that
W ′ ∩ S = W and all classes c′ ∈ C such that �forgetW ′∪FM →W∪FM

(c′) = c.
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Computing β from α. Let (S,C,Ω) be a good triple of G. Denote by C1, . . . , Cp

the components of G′ − Ω contained in C, and let Si be the neighborhood of
Ci in G′. The pairs (Si, Ci) are also full blocks (see [6] for more details) and
they have been processed by the algorithm before (S,C). Our goal is to compute
β(S,C,Ω,W, c). Let Wi = W ∩ Si, for all i ∈ {1, . . . p}. We will use, as in [12],
two intermediate functions γi and δi.

Let δi(S,C,Ω,W, c+i ) denote max |Xi| over the partial solutions (F+
i ,Xi)

compatible with (S,C,Ω,W, c+i ) and such that F+
i \ FM ⊆ Ω ∩ Ci. Let H+

i

be the graph G[F+
i ] with set of terminals W ∪ FM . Let also Hi be the graph

H+
i [Si ∪ Ci ∪ M ], with set of terminals Wi ∪ FM . Note that H+

i is obtained by
gluing Hi with the base graph G[W ∪FM ], with the “canonical” gluing, obtained
by identifying the vertices of Si from both sides. Let glueWi∪FM ;W∪FM denote
this gluing operation.

δi(S, C, Ω, W, c+i ) = max α(Si, Ci, Wi, ci)+|trm(cW , W ∪FM )\trm(ci, Wi∪FM )|, (3)

where the maximum is taken over all ci, cW ∈ C s.t. �glueWi∪FM ;W∪FM
(ci, cW ) =

c+i and cW = h(G[W ∪ FM ],XW ∪ XM ) for some XW ⊆ W . Here G[W ∪ FM ]
denotes the base graph with terminals W ∪ FM .

Notice the part |trm(cW ,W ∪FM )\ trm(ci,Wi ∪FM )| in the formula, which
avoids the overcounting of the vertices of Xi ∩ Si.

These partial solutions (F+
i ,X+

i ) corresponding to δi(S,C,Ω,W, c+i ) cannot
be glued together in one step, since we are only allowed to glue two graphs
at a time. Hence the need of the γ function which allows to add, one by one,
the partial solutions to the gluing. Now let γi(S,C,Ω,W, c) denote the size of
the optimal partial solution compatible with (S,C,Ω,W, c) and contained in
M ∪ Ω ∪ C1 · · · ∪ Ci. So we only consider the first i components, the partial
solution is the union of (F+

1 ,X+
1 ) to (F+

i ,X+
i ). By definition,

γ1(S,C,Ω,W, c) = δ1(S,Ω,C,W, c) (4)

We then compute γi, for i from 2 to p as follows.

γi(S,C,Ω,W, c)=max γi−1(S,C,Ω,W, c′)+δi(S,Ω,C,W, c′′)−|trm(c′,W ∪FM )|,
(5)

where the maximum is taken over all c′, c′′ ∈ C s. t. �glueW∪FM ;W∪FM
(c′, c′′) = c,

where the gluing operation is the canonical gluing, the set of terminals for both
arguments being W ∪ FM .

By definition of γp, we have

β(S,C,Ω,W, c) = γp(S,C,Ω,W, c). (6)

It remains to retrieve the optimal solution for the algorithm. The maximum is
taken over all accepting classes c, i.e., classes such that h(G,X) = c implies that
P(G,X):

max α(∅, V, ∅, c), (7)
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We refer to [12] for detailed proofs of correctness and for complexity issues.
Altogether, the algorithm takes time O(f(t+kM ,P) ·nt+4 · |ΠG′ |). The function
f(t+kM ,P) comes from the application of Proposition 3 on t+kM +1-recursive
graphs. By applying Algorithm 1 on all possible subsets XM ⊆ FM ⊆ F , we
have proved Theorem 1.

We point out that our algorithm really needs to keep track of the homomor-
phism classes of partial solutions (F,X) for property Q(G[F ],X) = P(G[F ],X)∧
(tw(G[F ]) ≤ t). A näıve approach would be to only keep the class hP(G[F ],X)
(for property P) and to reject partial solutions that do not satisfy tw(G[F ]) ≤ t.
We could have two different partial solutions (F,X) and (F ′,X) for the same
part of the graph (e.g., corresponding to the same parameters for function α),
such that hP(G[F ],X) = hP(G[F ′],X ′), and both tw(G[F ]) and tw(G[F ′]) are
at most t. Or, it may happen that one of the solution, say (F,X), can be extended
into a better one of type (F ∪F ′′,X ∪X ′′), while the other cannot because such
an extension(F ′ ∪ F ′′,X ′ ∪ X ′′) would violate the condition tw(G[F ′ ∪ F ′′]) ≤ t.

Of course our approach, keeping the class hQ(G[F ],X) for property Q,
ensures that if two partial solutions are of the same class, they are equivalent
w.r.t. extensions.

4 Conclusion and Discussion

We gave an FPT algorithm for the problem Optimal Induced Subgraph for

P and t on Gpoly +kv. The problem encompasses many classical ones [12]. As it
will be shown in the full version of the paper, the result can be extended to the
classes of graphs Gpoly − ke and Gpoly + ke (i.e., graphs of Gpoly minus or plus ar
most k edges), and the generic problem is polynomial on Gpoly −kv, if k is small.
One of the limits of our algorithm is that we explicitly need the modulator of
the input graph. Let us consider the following problem:

Deletion to Gpoly

Input: A graph G = (V,E) and a polynomial poly
Parameter: k
Output: A vertex subset M of size at most k, such that G − M is in Gpoly

Our main open question is the existence of an FPT algorithm for problem Dele-

tion to Gpoly. We recall that the problem Chordal deletion is FPT [20], but
on the other hand the problem Weakly chordal deletion is W [2]-hard [16].
The latter does not rule out the possibility that Deletion to Gpoly could be
FPT. Moreover, even an FPT approximation for Deletion to Gpoly would allow
us to conclude that the problem Optimal Induced Subgraph for P and t is
FPT on the class Gpoly + kv, without needing to require to have the modulator
M as part of the input.

Another direction for improvement concerns the complexity of our algorithm,
which is O (

f(k + t,P) · nt+5 · (poly(n)2)
)
. The dependency on P and t+k comes

from Courcelle’s theorem (Proposition 3), applied for deciding property P on
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graphs of treewidth t + k. As shown by Frick and Grohe [14], function f can
be very huge, typically a tower of exponentials in t + k, the height of the tower
depending on the property to be checked. Our algorithm actually constructs an
induced subgraph of treewidth t, although we were only able to build a decom-
position of width t + k. In particular, if we do not need to check a particular
property P on the induced graph, but we only ask this graph to be of treewidth
at most t, then function f becomes (k+t)O((k+t)3) — coming from the algorithm
of Bodlaender and Kloks [4] that, given a graph and tree decomposition of width
k + t, checks whether the treewidth of the graph is at most t. For easier cases,
when t = 0 to t = 1, the function f becomes 2k and (k + t)O(k+t) respectively,
as we shall discuss in the full version. Also, for natural properties P, like “being
connected” or “being a path” one can perform the property checking using stan-
dard (ad-hoc) dynamic programming tools which avoid the heavy machinery of
Proposition 3. Again, the extra-cost becomes much more reasonable.

A natural and challenging question would be to separate the dependency on
t and k, typically to obtain a complexity of type f(t,P) · g(k) · nt+O(1), where
g would be a “more reasonable” function. For that purpose we would need to
construct the partial solutions as a (t+1)-terminal recursive graph, maybe by a
more clever way of dealing with the intersection between this solution and the
modulator.
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