Strong 8-bit Sboxes with Efficient Masking
in Hardware

Erik Boss', Vincent Grosso®, Tim Giineysu?, Gregor Leander!,
Amir Moradi'®™) | and Tobias Schneider!

! Horst Gortz Institute for IT Security,
Ruhr-Universitdt Bochum, Bochum, Germany
{erik.boss,vincent.grosso,gregor.leander,amir.moradi,
tobias.schneider-a7a}@rub.de
2 University of Bremen and DFKI, Bremen, Germany
tim.gueneysuQuni-bremen.de

Abstract. Block ciphers are arguably the most important crypto-
graphic primitive in practice. While their security against mathematical
attacks is rather well understood, physical threats such as side-channel
analysis (SCA) still pose a major challenge for their security. An effec-
tive countermeasure to thwart SCA is using a cipher representation that
applies the threshold implementation (TI) concept. However, there are
hardly any results available on how this concept can be adopted for
block ciphers with large (i.e., 8-bit) Sboxes. In this work we provide
a systematic analysis on and search for 8-bit Sbox constructions that
can intrinsically feature the TI concept, while still providing high resis-
tance against cryptanalysis. Our study includes investigations on Sboxes
constructed from smaller ones using Feistel, SPN, or MISTY network
structures. As a result, we present a set of new Sboxes that not only
provide strong cryptographic criteria, but are also optimized for TI. We
believe that our results will found an inspiring basis for further research
on high-security block ciphers that intrinsically feature protection against
physical attacks.

1 Introduction

Block ciphers are among the most important cryptographic primitives. Although
they usually follow ad-hoc design principles, their security with respect to known
attacks is generally well-understood. However, this is not the case for the security
of their implementations. The security of an implementation is often challenged
by physical threats such as side-channel analysis or fault-injection attacks. In
many cases, those attacks render the mathematical security meaningless. Hence,
it is essential that a cipher implementation incorporates appropriate counter-
measures against physical attacks. Usually, those countermeasures are developed
retroactively for a given, fully specified block cipher. A more promising approach
is including the possibility of adding efficient countermeasures into the design
from the very start.

© International Association for Cryptologic Research 2016

B. Gierlichs and A.Y. Poschmann (Eds.): CHES 2016, LNCS 9813, pp. 171-193, 2016.
DOI: 10.1007/978-3-662-53140-2_9

172 E. Boss et al.

For software implementations, this has been done. Indeed, a few ciphers
have been proposed that aim to address the issue of protection against phys-
ical attacks by facilitating a masked Sbox by design. The first example is cer-
tainly NOEKEON [18], other examples include Zorro [20], Picarro [33] and the
LS-design family of block ciphers [21].

For hardware implementations, the situation is significantly different. Here,
simple masking is less effective due to several side-effects, most notably glitches
(see [27]). As an alternative to simple masking, a preferred hardware counter-
measure against side-channel attacks is the so-called threshold implementation
(TT) [32], as used for the cipher FIDES [6]. TT is a masking variant that splits
any secret data into several shares, using a simple secret-sharing scheme. Those
shares are then grouped in non-complete subsets to be separately processed by
individual subfunctions. All subfunctions jointly correspond to the target func-
tion (i.e., the block cipher). Since none of the subfunctions depends on all shares
of the secret data at any time, it is intuitive to see that it is impossible to recon-
struct the secret by first-order side-channel observations. We provide a more
detailed description of the functionality of threshold implementations in Sect. 2.

Unfortunately, it is not trivial to apply the TT concept to a given block
cipher. The success of this process strongly depends on the complexity of the
cipher’s round function and its internal components. While the linear aspects of
any cipher are typically easy to convert to TI, this is not generally true for the
non-linear Sbox. For 4-bit Sboxes, it is possible to identify a corresponding TI
representation by exhaustive search [10]. However, for larger Sboxes, in particular
8-bit Sboxes, the situation is very different. In this case, the search space is far
too large to allow an exhaustive search. In fact, 8-bit Sboxes are far from being
fully understood, from both a cryptographic and an implementation perspective.

With respect to cryptographic strength against differential and linear attacks,
the AES Sbox (and its variants) can be seen as holding the current world record.
We do not know of any Sbox with better properties, but those might well exist.
Unfortunately, despite considerable effort, no T1 representation is known for the
AES Sbox that does not require any additional external randomness [7,9,31].

Our Contribution. In this paper we approach this problem of identifying crypto-
graphically strong 8-bit Sboxes that provide a straightforward TI representation.
More precisely, our goal is to give examples of Sboxes that come close to the
cryptanalytic resistance of the AES Sbox. Also, the straight application of the
TT concept to an Sbox should still lead to minimal resource and area costs. This
enables an efficient and low-cost implementation in hardware as well as bit-sliced
software.

In our work we systematically investigate 8-bit Sboxes that are constructed
based on what can be seen as a mini-cipher. Concretely, we construct Sboxes
based on either a Feistel-network (operating with two 4-bit branches and a 4-bit
Shox as the round function), a substitution permutation network or the MISTY
network. This general approach has already been used and studied extensively.
Examples of Sboxes constructed like this are used for example in the ciphers

Strong 8-bit Sboxes with Efficient Masking in Hardware 173

Crypton [25,26], ICEBERG [40], Fantomas [21], Robin [21] and Khazad [3].
A more theoretical study was most recently presented by Canteaut et al. in [16].

Our idea extends the previous work by combining those constructions aiming
at achieving strong cryptographic criteria with small Sboxes that are easy to
share and intrinsically support the TT concept. As a result of our investigation,
we present a set of different 8-bit Sboxes. These Sboxes are either (a) superior
to the known constructions from a cryptographic perspective but can still be
implemented with moderate resource requirements or (b) outperform all known
constructions in terms of efficiency in the application of the TI concept to the
Sbox, while still maintaining a comparable level of cryptographic strength with
respect to other known Sboxes. All our findings are detailed in Table 1.

Outline. This work is structured as follows. Preliminaries on well-known strate-
gies to construct Sboxes as well as the TI concept are given in Sect. 2. We discuss
the applicability of TT on known 8-bit Sboxes in Sect. 3. The details and results
of the search process are given in Sects. 4 and 5, respectively. We conclude with
Sect. 6.

2 Preliminaries

2.1 Cryptanalytic Properties for Sboxes

In this subsection we recall the tools used for evaluating the strength of Sboxes
with respect to linear, differential and algebraic properties. For this purpose, we
consider an n-bit Sbox S as a vector of Boolean functions: S = (fo,..., fn_1),
fi : F — Fa. We denote the cardinality of a set A by #A and the dot product

n—1

between two elements a,b € Fy by: (a,b) = >\ a;b;.

Non-linearity. To be secure against linear cryptanalysis [28] a cipher must
not be well-approximated by linear or affine functions. As the Sbox is generally
the only non-linear component in an SP-network, it has to be carefully chosen
to ensure a design is secure against linear attacks. For a given Sbox, the main
criterium here is the Hamming distance of any component function, i.e. a linear
combination of the f;, to the set of all affine functions. The greater this distance,
the stronger the Sbox with respect to linear cryptanalysis. The Walsh transform
Ws(a,b), defined as

We(a,b) i= 3 (=1)®s)+0:5@),

z€Fy

can be used to evaluate the correlation of a linear approximation (a,) # (0, 0).

More precisely,
1 Ws(a,b)
P((b, S(@) = (a,2)) = 5 + o pr.
The larger the absolute value of Wg(a,b), the better the approximation by the
linear function (a,x) (or the affine function (a,z) 4+ 1, in case Wg(a,b) < 0).

This motivates the following well known definition.

174 E. Boss et al.

Definition 1 (Linearity). Given a vectorial Boolean function S, its linearity
is defined as
Li = b)|.
in(8) = max [Ws(a, b)|

The smaller Lin(S), the stronger the Sbox is against linear cryptanalysis.

It is known that for any function S from F% to F3 it holds that Lin(S) >
2"2" [17]. Functions that reach this bound are called Almost Bent (AB) func-
tions. However, in the case n > 4 and n even, we do not know the minimal value
of the linearity that can be reached. In particular, for n = 8 the best known
non-linearity is achieved by the AES Sbox with Lin(S) = 32.

Differential Uniformity. A cipher must also be resistant against differential
cryptanalysis [5]. To evaluate the differential property of an Sbox, we consider
the set of all non-zero differentials and their probabilities (up to a factor 27").
That is, given a,b € Fy we consider

5s(a,b) == #{z € F2|| S(z +a) = S(z) + b},

which corresponds to 2™ times the probability of an input difference a prop-
agating to an output difference b through the function S. This motivates the
following well known definition.

Definition 2 (Differential Uniformity). Given a vectorial Boolean function
S, its differential uniformity is defined as

Diff(S) = géaoﬁ |05 (a,b)|.
The smaller Diff(S), the stronger the Sbox regarding differential cryptanalysis.
It is known that for Sboxes S that have the same number of input and output
bits it holds that Diff(S) > 2. Functions that reach that bound are called Almost
Perfect Nonlinear (APN). While APN functions are known for any number n of
input bits, APN permutations are known only in the case of n odd and n = 6.
In particular, for n = 8 the best known case is Diff (S) = 4, e.g., AES Sbox.

Algebraic Degree. The algebraic degree is generally considered as a good
indicator of security against structural attacks, such as integral, higher-order
differential or, most recently, attacks based on the division property.

Recall that any Boolean function f can be uniquely represented using its
Algebraic Normal Form (ANF):

flz) = Z ay ",
u€lFy

where % = H?;OI x}'*, with the convention 0° = 1. Now, the algebraic degree

can be defined as follows.

Strong 8-bit Sboxes with Efficient Masking in Hardware 175

Definition 3 (Algebraic Degree). The algebraic degree of f is defined as:

d = iy Ay 0p.

eg(f) = max {Zu ay # }

This definition can be extended to vectorial Boolean functions (Sboxes) as follows
deg(S) = Joax deg(f;).

For a permutation on Fy the maximum degree is n — 1. Lots of permutations
over FJ achieve this maximal degree. Again the AES Sbox is optimal in this
respect, i.e., the AES Sbox has the maximal degree of 7 for 8-bit permutations.

Affine Equivalence. An important tool in our search for good Sboxes is the
notion of affine equivalence. We say that two functions f and g are affine equiva-
lent if there exists two affine permutations A; and A, such that f = A; 0go As.
The importance of this definition is given by the well-known fact that both the
linearity and the differential uniformity are invariant under affine equivalence.
That is, two functions that are affine equivalent have the same linear and differ-
ential criteria.

2.2 Construction of 8-Bit Sboxes.

Apart from the AES Sbox, which is basically the inversion in the finite field
Fos, hardly any primary construction for useful, cryptographically strong, 8-bit
Sboxes is known.

However, several secondary constructions have been applied successfully.
Here, the idea is to build larger Sboxes from smaller Sboxes. For block ciphers
this principle was first introduced in MISTY [29].

Later, this approach was modified and extended. In particular, it was used
by several lightweight ciphers to construct Sboxes with different optimization
criteria, e.g., smaller memory requirements, more efficient implementation, invo-
lution, and easier software-level masking.

There are basically three known constructions, all of which can be seen as
mini-block ciphers: Feistel networks, the MISTY construction and SP-networks.
Figure 1 shows how these constructions build larger Sboxes from smaller Sboxes.
Note that the MISTY construction is a special case of the SPN. Indeed, the
MISTY construction is equivalent to SPN when F; = Id and the matrix A =

11

10)
(Pyor a small number of rounds, we can systematically analyze the crypto-
graphic properties of those constructions (see [16] for the most recent results).
However, for a larger number of rounds, a theoretical understanding becomes
increasingly more difficult in most cases.

Table 1 shows the different characteristics of 8-bit Sboxes known in the liter-
ature that are built from smaller Sboxes. We excluded the PICARO Sbox [33]

176 E. Boss et al.

[’j ||

(a) (b) (c)

Fig. 1. (a) Feistel (b) MISTY (c) SPN

from the list, since it is not a bijection. Furthermore, Zorro is also excluded since
the exact specifications of its structure are not publicly known. We refer often
to this table as it summarizes all our findings and achievements.

2.3 Threshold Implementations

The first attempts to realize Boolean masking in hardware were unsuccessful,
mainly due to glitches [27,30]. Combinatorial circuits which receive both the
mask and the masked data, i.e., secret sharing with 2 shares, most likely exhibit
first-order leakage. Threshold Implementation (TT) has been introduced to deal
with this issue and realize masking in glitchy circuits [32].

The TI concept has been extended to higher orders [8], but our target, in this
work, is resistance against first-order attacks. Hence, we give the T1 specifications
only with respect to first-order resistance. Let us assume a k-bit intermediate
value x of a cipher as one of its Sbox inputs (at any arbitrary round) and

represent it as © = (x1, ..., 2x). For n—1 order Boolean masking, is represented
n . .
by (z!,...,2"), where x = @ x' and each x' similarly denotes a k-bit vector
i=1
(@}, ..., zh).

Applying linear functions over Boolean-masked data is trivial, since L(x) =

n
@ L(z*). However, realization of the masked non-linear functions (Sbox) is gen-
i=1

é;ally non-trivial and is thus the main challenge for TI. As per the TI concepts,
at least n = t + 1 shares should be used to securely mask an Sbox with algebraic
degree t. Moreover, TT defines three additional properties:

Correctness. The masked Sbox should provide the output in a shared form

(y!,...,y™) with E_Blyi:y=S(m) and m > n.

Non-completeness. Each output share y/€{1~™} ig provided by a component
function f7(.) over a subset of the input shares. Each component function
f7€{Lm} () must be independent of at least one input share.

Uniformity. The security of most masking schemes relies on the uniform distri-
bution of the masks. Since in this work we consider only the cases with n = m
and bijective Sboxes, we can define the uniformity as follows. The masked Sbox

Strong 8-bit Sboxes with Efficient Masking in Hardware 177

with n X k input bits and n X k output bits should form a bijection. Otherwise,
the output of the masked Sbox (which is not uniform) will appear at the input of
the next masked non-linear functions (e.g., the Sbox at the next cipher round),
and lead to first-order leakage.

Indeed, the challenge is the realization of the masked Sboxes with high alge-
braic degree. If ¢ > 2, we can apply the same trick used in [32,34], i.e., by
decomposing the Sbox into quadratic bijections. In other words, if we can write
S : G o F, where both G and F' are bijections with ¢ = 2, we are able to imple-
ment the first-order TT of F' and G with the minimum number of shares n = 3.
Such a construction needs registers between the masked F' and G to isolate the
corresponding glitches.

After the decomposition, fulfilling all the TT requirements except uniformity
is straightforward. As a solution, the authors of [10] proposed to find affine
functions A; and As in such a way that F' : As o Q o A;. If we are able to
represent a uniform sharing of the quadratic function Q, applying A; on all
input shares, and As on all output shares gives us a uniform sharing of F'.

T1 of 4-bit Permutations. In [11] the authors analyze 4-bit permutations and
identify 302 equivalence classes. In the following, we use the same notation as
in [11] to refer to these classes. Out of these 302, six classes are quadratic. These
six quadratic functions, whose uniform TI can be achieved by direct sharing
or with simple correction terms (see [11]) are listed in Table2. We included
their minimum area requirements as the basis of our investigations in the next
sections. In contrast to the others, Qsgp also needs to be decomposed for uniform
sharing.

2.4 Design Architectures

Due to the high area overhead of threshold implementations (particularly the
size of the shared Shox), serialized architectures are favored, e.g. in [9,31,34, 38].
Our main target in this work is a serialized architecture in which one instance
of the Sbox is implemented. Furthermore, we focus on byte-wise serial designs
due to our underlying 8-bit Sbox target. In such a scenario, the state register
forms a shift register, that at each clock cycle shifts the state bytes through the
Sbox and makes use of the last Sbox output as feedback. Figure 2 depicts three
different architectures which we can consider. Note that extra logic is not shown
in this figure, e.g. the multiplexers to enable other operations like ShiftRows.

A shared Sbox with 3 shares should contain registers, e.g., PRESENT [34] and
AES [9,31]. As an example, if the shared Sbox contains 4 stages (see Fig. 2(a))
and forms a pipeline, all of the Sbox computations can be done in n + 3 clock
cycles, with n as the number of state bytes. We refer to this architecture as raw
in later sections. Note that realizing a pipeline is desirable. Otherwise, the Sbox
computations would take 3n 4 1 clock cycles.

As an alternative, we can use the state registers as intermediate registers
of the shared Sbox. Figure2(b) shows the corresponding architecture, where

178 E. Boss et al.

more multiplexers should be integrated to enable the correct operation (as an
example in Skinny [4]). In this case, all n shared Sboxes can be computed in
n clock cycles. It is noteworthy that such an optimization is not always fully
possible if intermediate registers of the shared Sbox are larger than the state
registers (e.g., in case of AES [9,31]).

If the Sbox has been constructed by k times iterating a function F, it is
possible to significantly reduce the area cost. Figure2(c) shows an example.
Therefore, similar to a raw architecture without pipeline, (k — 1)n + 1 clock
cycles are required for n Sboxes. This is not efficient in terms of latency, but is
favorable for low-throughput applications, where very low area is available and
in particular when SCA protection is desired. We refer to this architecture as
iterative.

(c) iterative

Fig. 2. Different serialized design architectures

3 Threshold Implementation of Known 8-bit Sboxes

Amongst 8-bit Sboxes, the AES TI Sbox has been widely investigated while
nothing about the TI of other Sboxes can be found in public literature. The
first construction of the AES TT Sbox was reported in [31]. The authors made
use of the tower-field approach of Canright [15] and represented the full circuit
by quadratic operations. By applying second-order Boolean masking, i.e., three
shares as minimum following the TI concept, all operations are independently
realized by TI. On the other hand, the interconnection between (and concatena-
tion of) uniform TT functions may violate the uniformity. Therefore, the authors
integrated several fresh random masks — known as remasking or applying virtual
shares [11] — to maintain the uniformity, in total 48 bits for each full Sbox. Since
the AES TI Sbox has been considered for a serialized architecture, the authors
formed a 4-stage pipeline design, which also increased the area by 138 registers.

Strong 8-bit Sboxes with Efficient Masking in Hardware 179

Later in [9] three more efficient variants of the AES TT Sbox were introduced.
The authors applied several tricks, e.g., increasing the number of shares to 4 and
5 and reduce them back to 3 in order to relax the fresh randomness requirements.
Details of all different designs are listed in Table 1. In short, the most efficient
design (called nimble) forms a 3-stage pipeline, where 92 extra registers and 32
fresh random bits are required.

CLEFIA. makes use of two 8-bit Sboxes Sy and S;. The

first one is formed by utilizing four different 4-bit bijec- ’—L‘ ’J—‘
tions and multiplication by 2 in GF(2?%) defined by polyno- SSo SSi
mial X% + X + 1. The entire SSy : E6CA872FB14059D3!, ¢ q
S5S7 : 640D2BA39CEF8751, SS; : B85EA64CF72310D9, and @ @
5S3 : A26D345E0789BFC1 are cubic and — based on the classi-
fication given in [11] — belong to classes Ca10, C163, C160, and ¥
Ci60 respectively. Unfortunately, all these classes are of non- |SS, SS5
alternating group and cannot be shared with 3 shares, i.e.,

no solution exists either by decomposition or remasking?. We

should use at least 4 shares (which is out of our focus), and its uniform sharing
with 4 shares also needs to be done in at least 3 stages. Therefore, a 4-share
version of TI Sy can be realized in 6 stages.

The second one is constructed following the AES Sbox, i.e., inversion in
GF(2%), but with a different primitive polynomial and affine transformations.
Based on the observations in [2,36], inversion in one field can be transformed to
another field by linear isomorphisms. Therefore, S; and the AES Sbox are affine
equivalent and all difficulties to realize the AES TI Sbox hold true for Sj.

4 Y

D

4
D
A

Crypton V0.5. utilizes two 8-bit Sboxes, Sy and S, in a 3-
round Feistel, as shown here. By swapping Py and P» the
Sbox Sy is converted to its inverse Sy. P; : AF4752E693C8D1B0
belongs to the cubic class Cags. Similar to the sub functions
of CLEFTA, it belongs to the non-alternating group and can-
not be shared with 3 shares. In short, at least 4 shares in
3 stages should be used. Further, Py : F968994C626A135F
and P, : 04842F8D11F72BEF are quadratic, non-bijective func-
tions, but that does not necessarily mean that their uniform sharing with 4 shares
does not exist. We have examined this issue by applying direct sharing [11], and
we could not find their uniform sharing with either 3 or 4 shares. In this case,
remasking is a potential solution. However, due to the underlying Feistel struc-
ture of Sy and Sp, the non-uniformity of the shared Py and P, does not affect
the uniformity of the resulting Sbox as long as the sharing of the Sbox input
is uniform. More precisely, Py output is XORed with the left half of the Sbox
input. If the input is uniformly shared, the input of P; is uniform regardless of
the uniformity of the Py output. See [8] and [11], where it is shown that a - b

! In the following we denote functions by a hexadecimal-string in which the first letter
denotes the first element of the look-up table implementing the function.
2 Alternatively, one can apply the technique presented in [24].

180 E. Boss et al.

Table 1. Criteria for the 8-bit Sboxes

Diff. | Lin. | Deg. | Iter. #?|AND #¢|Unprotected Threshold implementation® Type
Area [GE] Delay | Area [GE] Delay | Stage | Mask
itera.? [raw® |ns itera. [raw? ns #9 |#h
AES [19] |4 32 |7 32 [13] 236 |5.69 4244 [31] 5 48 |Inversion
3708 [9] 3 44
3653 [9] 3 44
2835 [9] 3 32
CLEFIA |10 56 7 4 shares 6 0 SPN
(Sg) [39]
CLEFIA |4 32 |7 like AES 3 32 Inversion
(S1) [39]
Crypton |8 64 5 68 1.76 4 shares 5 0 Feistel
V0.5 [25]
Crypton |10 64 6 111 2.40 4 shares 6 0 SPN
V1 [26]
ICEBERG 8 64 7 151 2.39 2115 1.67 |9 0 SPN
[40]
Fantomas| 16 64 5 11 130 |2.43 766 1.72 4 0 MISTY
[21]
Khazad 8 64 7 154 |2.48 2062 1.87 |9 0 SPN
13]
Robin 16 64 6 3 12 28 79 2.37 |319 1180 1.73 6 0 Feistel
[21]
Scream 8 64 6 12 87 2.38 2204 2.00 6 0 Feistel
v3 [22]
Whirlpool 8 56 7 146 |2.37 2203 2.08 9 0 SPN
[37]
SB; 16 64 6 8 16 8 57 1.38 |51 1189 1.09 |8 0 SPN
(BitP)
SBoy 16 64 4 2 12 46 99 1.99 253 631 1.70 2 0 SPN
(Mat)
SB3 8 60 7 4 24 48 198 |3.98 273 1498 2.10 4 0 SPN
(Mat)
SBy 8 56 |7 5 30 29 140 |4.09 202 1507 2.10 5 0 Feistel
SBp 10 60 7 9 27 12 95 3.19 78 1583 1.10 9 0 SPN
(BitP)
SBg 10 60 7 4 20 49 174 |4.78 226 1247 1.95 4 0 SPN
(Mat)

“With 3 shares

®Number of iterations of a unique function

“Number of AND gates, important for masked bit-sliced software implementations
9Excluding the required extra logic, e.g., multiplexers and registers

¢Fully combinatorial

fIncluding pipeline registers

I9Number of stages in the pipeline

hNumber of fresh mask bits required for each full Sbox

(AND gate) cannot be uniformly shared with 3 shares, but a-b+c¢ (AND+XOR)
can be uniform if a, b, and ¢ are uniformly shared. Therefore, a 4-share version
of TT Sy (resp. S1) can be realized in 5 stages.

Crypton V1. Sboxes are made of two 4-bit bijections Py
FEA1B58D9327064C, P, : BAD78E05F634192C and their inverse
in addition to a linear layer in between. Py and its inverse P;
belong to the cubic class Ca7g, which can be uniformly shared
with 3 and 4 shares but in 3 stages. Both P; and its inverse
P ! are affine equivalent to the non-alternating cubic class Cags,
that — as given above — must be shared at least with 4 shares.
Therefore, in order to share each Crypton V1 Sbox, 4 shares in
a construction with 6 stages should be used.

Strong 8-bit Sboxes with Efficient Masking in Hardware 181

ICEBERG. is formed by two 4-bit bijections Sy

D7329AC1FA5E60B8 and S; : 4AFCOD9BE6173582 in a 3-round
SPN structure, where permutation Pg is a bit permutation. Both
So and S; are affine equivalent to the cubic class Co7g, which
needs at least 3 stages to be uniformly shared with 3 shares.
Therefore, a uniform sharing of the ICEBERG Sbox with 3
shares can be realized in 9 stages without any fresh randomness.
Amongst the smallest decompositions, we suggest Ay o Qagy ©
A3 o Q294 o A2 o 9294 o A1 for SO with A1 : B038F47CD65E921A,
A; . C6824EOAD7935F1B, Az : 3DB50E8679F14AC2, Ay

AC24E860BD35F971, and for S; with A; : 63EB50D827AF149C,

As : D159F37BCO48E26A, A3 : 2AE608C43BF719D5, A, : C5814D09E7A36F2B,
and Qg4 : 0123456789BAEFDC.

Fantomas. utilizes one 3-bit bijection Ss

03615427 and one 5-bit bijection S; : 00,03, ’i

12,07, 14,17, 04,11, 0C, OF, 1F, 0B, 19, 1A, 08, 1C, 10, Ss F
1D, 02, 1B, 06, 0A, 16, OE, 1E, 13, 0D, 15, 09, 05, 18, 01 >

in a 3-round MISTY construction. Sz is affine wégGB L
equivalent to the quadratic class Q3, which can be Ss v |

uniformly shared with 3 shares in at least 2 stages. Y \\ G
As a decomposition, we considered S3 : Az o P v \\

Q)0 Ay 0 Qy 0 A, with A; : 07342516, Ay : 5] oL
02461357, A3 : 01235476, Q1 : 01234576, and 2 YYVVYY
Q5 : 01234675. v

The construction of S5, as shown here, consists
of 4 Toffoli gates and 4 XORs. The quadratic F' and G, as well as linear parts L
and Lo are correspondingly marked. Hence, we can decompose S5 : LooGoLjoF.
The uniform sharing of both F' and G can be found by direct sharing. Therefore,
the Fantomas Sbox can be uniformly shared with 3 shares in 4 stages, without
any fresh mask. Figure 3(a) depicts the block diagram representation, and the
area requirements are listed in Table 1. Each Sbox cannot be implemented iter-
atively, and each Sbox computation has a latency of 4 clock cycles. However, a

pipeline design can send out Sbox results in consecutive clock cycles, but with
a 4-clock-cycle latency.

Khazad. utilizes the Anubis Sbox, which is also based on a

3-round SPN. Two 4-bit bijections P : 3FE054BCDA967821 ’%‘ ’_éz_‘
and @ : 9E56A23CF04D7B18 in addition to a bit permuta-

tion layer form the 8-bit Sbox. Similar to ICEBERG, both
P and @ belong to the cubic class Ca7g. Therefore, the uni-
form sharing of the Khazad (resp. Anubis) Sbox can be real-
ized in 9 stages without fresh masks. For the decomposi-
tion, we suggest Ay o Qogq 0 Az 0 Qggq 0 Ag 0 Qggq 0 A for
P with A; : 04C862AE15D973BF, Ay : A2E680C4B3F791D5,
Az : 842EA60CB71D953F, A, : 80D5C491A2F7E6B3, and for

182 E. Boss et al.

@ with A; : 082A3B194C6ETF5D, A, : 3FB71D952EA60C84,
Asz : 19D53BF708C42AE6, A, : 0B38291A4F7C6D5E.

Robin. is constructed based on the 3-round Feistel, similar to Crypton V0.5, but
a single 4-bit bijection S, plays the role of all functions P;, P», and P3. Although
the swap of the nibbles in the last Feistel round is omitted, the Robin Sbox is
the only known 8-bit Sbox which can be implemented in an iterative fashion.
S4 : 086DEF7C4E2391BA has been taken from [41], known as the Class 13 Sbox. Sy
is affine equivalent to the cubic class Co23 and, as stated above, can be uniformly
shared with 3 shares in 2 stages. As one of the smallest solutions we considered
A50Q9940As0Qsgq0A; with A; : AE268CO4ABF379D15, Ay : CAS0A2ESD591B3F7,
Az : 20A8B93164ECFD75. Therefore, with no extra fresh randomness we can
realize uniform sharing of the Robin Sbox with 3 shares in 6 stages.

In order to implement this construction, we have four different options. A
block diagram of the design is shown in Fig. 3(b) (the registers filled by the gray
color are essential for pipeline designs).

— Tterative, w/o pipeline, each Sbox in 6 clock cycles.

Iterative, pipeline, each two Sboxes in 6 clock cycles.

— Raw, w/o pipeline, each Sbox in 6 clock cycles.

— Raw, pipeline, each 6 Sboxes in 6 clock cycles, each one with a latency of 6
clock cycles.

Note that extra control logic (such as multiplexers) is required for all iterative
designs which is excluded from Fig. 3(b) and Table1 for the sake of clarity.

Scream V3. is similar to that of Crypton V0.5, i.e., 3-round Feistel. Py,
and P, are replaced by two almost perfect nonlinear (APN) functions
APN1 : 020B300A1E06A452 and APN2 : 20B0O03AOE1604A25, and P; by
S1 : 02C75FD64E8931BA. Similar to Crypton V0.5, the two APN functions are
not bijective. However, they are cubic rather than quadratic. The source of these
two APNs is the construction given in [16]. We can decompose both of them
into two quadratic functions as APN1: Fo G and APN2: F o (®1) o G, with
F : 020B30A01E06A425 and G : 0123457689ABCDFE. By (@1) we represent an
identity followed by XOR with constant 1, i.e., flipping the least significant bit.
Uniform sharing of G with 3 shares can be easily achieved by direct sharing. F',
however, cannot be easily shared. F' consists of three 2-input AND gates which
directly give three output bits. To the best of our knowledge, F' cannot be uni-
formly shared without applying remasking. However, as stated for Crypton V0.5,
the non-uniformity of F' (in general APN1 and APN2) does not play any role
if S7 is uniformly shared.

S1 is affine equivalent to the cubic class Ca23 which can be uniformly shared
in 2 stages with 3 shares. Therefore, the Scream V3 Sbox can be shared by 3
shares in 6 stages, without any fresh random masks. There are many options
to decompose S7; as one of the smallest solutions we suggest S7 : Ag o Qagq ©
As 0 Qa9s 0 Ay with A; : 26AE159D37BF048C, A, : 4COSBE2A5D197F3B, Aj :
082A3B194C6ETF5D.

Strong 8-bit Sboxes with Efficient Masking in Hardware 183

Whirlpool. employs three different 4-bit bijections E, E~! and R in a customized
SPN. E : 1B9CD6F3E874A250 and its inverse are affine equivalent to the cubic
class Co7g, which can be uniformly shared with 3 shares in at least 3 stages.
R : 7CBDE49F638A2510 also belongs to the cubic class Ca7g. As given for ICE-
BERG and Khazad, Co7¢ needs 3 stages for a uniform sharing with 3 shares.
Hence, the entire Whirlpool Sbox can be uniformly shared

with 3 shares in 9 stages, without any extra randomness The
decomposition of R is similar to that of Khazad,

A4O QQQ4OA309294OA20Q2940A1 with A1 02138A9BCEDF4657 >P<t
As; : OC48A6E21D59B7F3, Az : C509E72BD418F63A, Ay
0A1B4E5F28396C7D. However, the decomposition of E and E~!

are more costly. One of the cheapest solutions is Ay o Qagyq © X

A3 0 Qo930 Ay 0 Qogq 0 Ay for E with A; : 048CAE2673FBD951, wf \V
A, : 80CAB3FTA2E691DS, A; : OB834AFC71A925EDE, A, : @ @
014589CD2367ABEF, and for E~! with A4 : A2FT76E3B80D54C19,

As; . A280E6C4B391F7D5, Az : 95F31D7B84E20C6A, Ay
2736AFBE05148D9C, and Qag3 : 0123457689CDEFBA.

Due to their required minimum 4 shares, except for CLEFIA, Crypton V0.5,
and Crypton V1, we have implemented TT for all the aforementioned Sboxes, and
have given their area requirements as well as the number of stages (clock cycles)
in Table 1. For the synthesis, we used Synopsys Design Compiler with the UMC-
L18G212T3 [42] ASIC standard cell library, i.e., UMC 0.18um technology node.
It is noteworthy that amongst all the Sboxes we covered, the Robin Sbox is the
only one which can be iteratively implemented. We should also emphasize that
Midori [1] and Skinny [4] (in their 128-bit versions) make use of 8-bit Sboxes.
Midori 8-bit Sboxes are made by concatenating two 4-bit Sboxes and the Skinny
one by four times iterating an 8-bit quadratic bijection. In both cases their
differential and linear properties are 64 and 128 respectively, which are notably
less compared to the strong 8-bit Sboxes listed in Table 1. Therefore, we did not
consider them in our investigations.

N

Table 2. Performance figures of 4 x 4 quadratic bijections with respect to their TI cost

Table Area [GE] | # of stages
Q% | 0123456789ABDCFE | 27 1
Q1, | 0123456789CDEFAB | 63 1
Q393 | 0123457689CDEFBA | 84 1
Q394 | 0123456789BAEFDC | 51 1

1

2

499 | 012345678ACEBOFD | 114
Q300 | 0123458967CDEFAB | 151

(Q12 0 Qu)

184 E. Boss et al.

ES
5

A3°Oros

B | B> | De

| 4004, | | | LG |
2204, :
v ¥
>N =
N> &
A\ 4 A. Y A3°Q294
B | B> |

P
F

(a) Fantomas (b) Robin

Fig. 3. Threshold implementation of Robin and Fantomas Sboxes, each signal repre-
sents 3 shares, the gray registers for pipeline variants

4 Finding TI-Compliant 8-bit Sboxes

Our goal is to find strong 8-bit Sboxes which can be efficiently implemented
as threshold implementations. To this end, we incorporate the idea of building
an 8-bit Sbox from smaller Sboxes in our search. In particular we aim to con-
struct a round function that can be easily shared and iterated to generate a
cryptographically strong Sbox. Easily shareable in our context refers to func-
tions for which an efficient uniform shared representation is known. Thus, if we
find a function with these properties, the resulting sequence of round functions
will be a good cryptographic Sbox which can be efficiently masked. As done
previously, we concentrate on the three basic constructions mentioned above:
Feistel, SPN, and MISTY. As the number of possible choices for SPN is too
large for an exhaustive search, we focus on two special cases for the linear layer
of the SP-network. First, instead of allowing general linear layers we focus on
bit-permutations only. Those have the additional advantage of being basically
for free, both in hardware and in a (bitsliced) software implementation. Second,
we focus on linear layers which correspond to matrix multiplications over Fig.
Those cover the MISTY construction as a special case.

In all cases, the building blocks for our round function are 4-bit Sboxes. As
described in Sect. 2, those Sboxes are well-analyzed and understood regarding
both their threshold implementation [11] and their cryptographic properties. To
minimize the number of required shares, we mainly consider functions with a

Strong 8-bit Sboxes with Efficient Masking in Hardware 185

maximum degree of two. Additional shares, otherwise, may increase the area or
randomness requirements for the whole circuit. In [11], six main quadratic per-
mutation classes are identified which are listed in Table 2. All existing quadratic
4-bit permutations are affine equivalent to one of those six. However, it should be
noted that permutations of class 93, cannot be easily shared with three shares
without decomposition or additional randomness. Therefore, we mainly focus on
the other classes from our search. Note that we include the identity function A3
in the case of the SPN construction. Since the identity function does not require
any area, round functions based on a combination of identity and one quadratic
4-bit permutation can result in very lightweight designs.

One important difference to all previous constructions listed in Table1 is
that we do consider higher number of iterations for our constructions. This is
motivated by two observations. First, it might allow to improve upon the crypto-
graphic criteria and second it might be beneficial to actually use a simpler round
function, in particular those that can be implemented in one stage, more often
than a more complicated round function with a smaller number of iterations.
As can be seen in Table 1 this approach of increasing the number of iterations is
quite successful in many cases.

Next we describe in detail the search for good Sboxes for each of the three
constructions we considered.

4.1 Feistel-Construction

As a first construction, we examine round functions using a Feistel-network sim-
ilar to Fig. 1(a). By the basic approach described below, we were able to exhaus-
tively investigate all possible constructions based on any 4-bit to 4-bit function
for any number of iterations between 1 and 5. This can be seen as an extension
(in the case of n = 4 and for identical round functions) to the results given in
[16] where up to 3 rounds have been studied.

However, such an exhaustive search is not possible in a naive way. As there
are 264 4-bit functions and checking the cryptographic criteria of an n-bit Sbox
requires roughly 22" basic operations, a naive approach would need more than
280 gperations.

Fortunately, this task can be accelerated by exploiting the distinct structure
of Feistel-networks while still covering the entire search space.

We recall the definition of a Feistel round for the function F : Fy — F3:

Feistel}, : F§ x FY — F3 x FY, (L,R) — (R&® F(L),L).
We denote by Feistely the nth functional power of Feistel}m ie.,

Feistel’s = Feistel}, o Feistel}, o - - - o Feistel}, .

To reduce the search space, we show below that if G = Ao F o A~! for an
invertible affine function A, then Feistely. is affine equivalent to Feistelf.

Thus, we can reduce our search space from all 264 functions, to roughly XY
functions. Indeed, Brinkmann classified all 4 to 4 bit functions up to extended

186 E. Boss et al.

affine equivalence [14]. There are 4713 equivalence classes up to extended affine
equivalence. Now, with the results given in the full version of the paper [12], it
is enough to consider all functions of the form A, o F'+ C, where A; is an affine
permutation and C'is any linear mapping on 4 bits. As Feistel’y , o4, ¢ is affine
equivalent to the function FeistelZQOAl0F0A20A51+C,0A;1 = Feistel} o a,0r 10>
this will exhaust all possibilities up to affine equivalence. Doing so, we reduce
the search space to:

#Sbores = 4713 - 2* - |GL(2,4)| - 216 ~ 21659, (1)

As this is still a large search space, we emplyed GPUs to tackle this task.

4.2 SPN-Construction with Bit-Permutations as the Linear Layer

In addition to Feistel-networks, we examined round functions which are similar
to Fig.1(c). However, A is replaced by an XOR with a constant followed by
an 8-bit permutation. Depending on F; and Fj, this construction can lead to
very lightweight round functions since constant addition and simple bit permu-
tations are very efficient in hardware circuits. For F; and F» we consider the
five quadratic permutations (listed in Table2) as well as the identity function
(denoted by A3). Obviously, we exclude the combination F; = Fy = A3. There
are 8! different 8-bit permutations and 256 possibilities for the constant addition.
If we looked for all combinations of all affine equivalents of the chosen functions,
we would have to test

#Sbozes = 256 - 8! - 35 - 322560* - 10 ~ 2105 (2)

Sboxes. This is clearly not feasible. Therefore, we decide to restrict the number
of possibilities for each of the two functions. In particular, we only consider the
representative for each class as presented in [11] without affine equivalents. This
reduces the search space to

#Sboxes = 256 - 8! - 35 - 10 ~ 232, (3)

which can be completely processed.

Similar to the Feistel-network, it is possible to further reduce the complexity
of the search. To this end, we first define the round function for this type of Sbox
as

BitPermp, , ¢ p : F§ x Fy — F3"
(L, R) = P((Fi(L)|| 2(R)) @ C),

where || denotes the concatenation of the two parts. Furthermore, it can be
trivially seen that for every combination of an 8-bit permutation P; and an 8-bit

Strong 8-bit Sboxes with Efficient Masking in Hardware 187

constant C7 there exist a complementary combination of an 8-bit permutation
P, and an 8-bit constant Cy with

Pi((LI|R) ® C1) = P,((R||L) & C3), YV R,L€Fy.

Thus, the search can be speeded up since BitPerm%h F.0,, p, 18 the same as
: 1
BitPermp, g ¢, p,- Therefore, we only need to check

#Sbores = 256 - 8! - 20 - 10 ~ 23! (4)

Sboxes for this type of round function.

4.3 SPN-Construction with Fig-linear Layers only

For the last type of construction, we consider another special case of the con-
struction depicted in Fig. 1(c). Here we restrict ourselves to the case where A
corresponds to a multiplication with a 2 x 2 matrix with elements from Fig.
Additionally, a constant is again added to the outputs of F; and F5. As noted
before, a special case of this construction is the MISTY technique.

For F; and F, we consider the five quadratic functions and the identity
function. Just like for the bit permutation round function, it is not feasible to
check all affine equivalents. Therefore, we limit our search to these functions.
The field multiplication is performed with the commonly used polynomial X4 +
X +1 [23]. Given that the matrix needs to be invertible and provide some form
of mixture between the two halves, this leaves us with 61200 possibilities for the
matrix multiplication. It is further possible to apply the same optimization as
for permutation-based round functions. Therefore, we need to check

#Sbores = 256 - 61200 - 20 - 10 ~ 231 (5)

Sboxes for this type of round function.

2 6 10

#lteration #lteration
(a) Differential Uniformity (b) Linearity

Fig. 4. The smallest achievable differential uniformity and linearity for each number
of iterations for round functions with Fig-linear layers and F; = Ag and (0)F» = Qi,
(*)FZ = Z112a (A)FQ = %93» (°)F2 = Q§194, (D)Fz = Q%99~

188 E. Boss et al.

5 Results

We completed the search for the three aforementioned types of round functions
with up to ten iterations.

The search for Feistel-networks for all 4713 classes takes around two weeks on
a machine with four NVIDIA K80s for a specific set of parameters. In particular,
the performance depends on the bounds defined by cryptographic properties
(differential uniformity) as well as the iteration count of the network. Note that,
with respect to cryptographic criteria, our search shows that for iterations < 5
no 8-bit balanced Feistel with identical round functions can have a linearity below
56 and a differential uniformity below 8.

Furthermore, the search for SPNs with bit permutations (resp. with Fyg-
linear layer) required around 48h (resp. 54 h) on one Intel Xeon CPU with 12
cores. It was possible to detect some very basic relations between the security,
number of iterations and area of the Sbox. Figure 4 shows the smallest differential
uniformity and linearity values which can be achieved for a specific number of
iterations using a round function based on the Fig-linear layer with constant
addition. As expected, the more iterations are applied, the higher resistance
against linear and differential cryptanalysis could be achieved. The size of each
of the considered quadratic permutations is given in Table 2. Bigger functions
like Q395 and Qag9 achieve good cryptographic properties with fewer iterations
than smaller functions like Q}. For the other combinations of (Fy, F») and types
of round functions the graphs behave similarly. Depending on the remaining
layers of the cipher and the targeted use case, a designer needs to find a good
balance between the parameters. In the following, we present a few selected
Sboxes optimized for different types of applications.

In our evaluation, we only consider Sboxes with differential uniformity at
most 16 and linearity of at most 64. These are the worst properties between
the observed constructed 8-bit Sboxes in Table 1. From the cryptographic stand-
point, our Sboxes should not be inferior to these functions. We identified the
following strong Sboxes that cover the most important scenarios.

— SB;: This Sbox possesses a very small round function. In a serial design the
round function is usually implemented only once to save area.

— SBs: This Shox is selected to enable an efficient implementation in a round-
based design. For this not only the size of the round function is important but
also the number of iterations. Additional iterations require additional instan-
tiations of the round function with a dedicated register stage. Furthermore,
this Sbox requires the least number of iterations and can be implemented with
a very low number of AND gates. Thus, it is also suited to masked software
implementations.

— SBj3: This Sbox has very good cryptographic properties and requires one less
iteration than SBy.

— SB,: This Sbox has very good cryptographic properties.

— SBy5: This Sbox is similar to SBy which has a small round function. However,
it trades area for better cryptographic properties.

Strong 8-bit Sboxes with Efficient Masking in Hardware 189

— SBg: This Sbox is similar to SBy that is optimized for raw implementations.
However, it trades area for better cryptographic properties.

5.1 Selected Sboxes

In this section, we supply the necessary information to implement the selected
Sboxes. For this, we first recall the basic structure of the round functions. Table 1
shows that our selected round functions consists of bit permutations and Fy¢-
linear layers. The structure of both types is similar to Fig. 1(c). We denote the
most (resp. least) significant four bits as L (resp. R). The round function Round :
F3 x F4 — F$ is then defined as

Round(L, B) = P((Fy(D)||F>(R)) & C),

where C' is an 8-bit constant and P(.) denotes either an 8-bit permutation or
an [Fg-linear layer. In Table 3, we describe a specific bit permutation with an
eight-element vector where each element denotes the new bit position, e.g., no
permutation is 01234567 whereas complete reversal is 76543210. The Fyg-linear
layer is realized as a multiplication with a 2 x 2 matrix with elements in Fyg.
Let us denote the most (resp. least) significant four input bits to the matrix
multiplication as Ly (resp. Rjs). The multiplication is then defined as

1\/[81]1\/[111(L]\/[7 Ry)=(E1- Ly @ Es - RM||E3 Ly ®Ey- Ry,

where Fy, Fs, B3, By € F1g are the elements of the chosen matrix. To describe
the linear layers of our Sboxes we give the specific [F1, Fs, E5, E4) for each matrix
in Table 3.

These parameters combined with the number of iterations enable the real-
izations of each Sbox. To increase efficiency of the TI the constant is added to
only one of the shares. In some cases, the area of the design can be reduced by
adding a particular constant to the two remaining shares. This is based on the
fact that an additional NOT gate can turn e.g., an AND gate to a smaller NAND
gate [35]. The following linear layer still needs to be applied to all shares. Table 3
contains this condensed description of the selected Sboxes. Further details for
each of them can be found in the full version of the paper [12].

For SBy, since it uses a Feistel-network, we construct the Sbox using the
round function H(z) = G(F(x)) ® A(z), where F' is taken from the 4713 equiv-
alence classes; G and A represent the linear and affine parts respectively. H, F,
G and A are all 4-bit to 4-bit functions. The full definition of the round is then
simply (L, R) — (R® H(L), L).

5.2 Comparison

Table 1 gives an overview of our results and we summarize the most important
observations in the following. The first observation is that our proposed designs
do not require fresh mask bits to achieve uniformity. This is an improvement over

190 E. Boss et al.

Table 3. Specifics of the selected Sboxes.

Fy Fy Const. (Hex) Parameter Type |Iterations
SB: | A | Q% 04 62750413 Perm. |8
SB: | Q393 | Q303 EE (2,4,4,2] Matrix | 2
SB; | Q%5 | Q2o 6C [2,2,3,11] Matrix | 4
SB; | Q7 | Q% 85 20647135 Perm. |9
SBs | Q393 | Q304 F8 [0,5,13,15] Matrix | 4

F G A Type | Iterations
SB,4 | 0001024704638EAD | 028A9B1346CEDF57 | 6273627351405140 | Feistel | 5

all TT types of the AES Sbox and some other Sboxes from Table 1. They need
up to 64 bits of randomness for one full Sbox. Given that modern ciphers usually
include multiple rounds with many Sboxes, this can add up to a significant
amount of randomness which needs to be generated.

Furthermore, all of our proposed Sboxes can be implemented iteratively. This
comes with the advantage that even the more complex designs, e.g., SB4 and
SBs5, can be realized with very few gates depending on the design architecture.
From all the other Sboxes in Table 1 this is only possible for Robin and its round
function requires more area than any of our proposed Sboxes.

In particular, SB; and SBs require the least area in their respective target
architectures (i.e., iterative and raw) out of all considered 8-bit Sboxes. The dif-
ference for the iterative architecture is especially large where SB; needs roughly
six times less area than the Robin Sbox.

SB; requires the least number of stages. Additionally, it requires only 12
AND gates for the whole Sbox which is very close to the best number, i.e., 11 for
Fantomas. This is an advantage for masked bit-sliced implementations making
SB; suitable for software and hardware designs. A more detailed discussion of
this aspect is given in the full version of the paper [12].

As expected, we did not find any Sbox with better cryptographic properties
than the AES Sbox. However, SB3 and SBy can still provide better resistance
against cryptanalysis attacks than most of the other considered Sboxes. This
comes at the cost of an increased area for the raw implementations. Nevertheless,
the required area is still smaller than any AES TI and their round function is
still smaller than Robin for iterative designs.

As depicted in Fig. 4, a trade-off between resources and cryptographic prop-
erties is possible. If SB; and SBs do not provide the desired level of security
and SB35 and SBy are too large, SB5 and SBg might be the best solution. Their
cryptographic properties are still better or equal than the competitors while the
area is significantly smaller than SB3 and SB,4. For the sake of completeness,
we included the area requirement of the unprotected implementation as well as
the latency of different designs in Table 1.

Strong 8-bit Sboxes with Efficient Masking in Hardware 191

Decryption usually requires the inverse of the Sbox. Therefore, it is important
that the Sbox inverse has comparably good properties to the original Sbox.
For SB, this is obvious since the Feistel-structure makes it straightforward to
construct the inverse. Therefore, inverse SB,4 has exactly the same properties as
SB,. For the other cases, this is not trivial. Nevertheless, the inverse of each of
our-considered quadratic functions is self-affine equivalent. For more information
the interested reader is referred to the full version of the paper [12].

6 Conclusion and Future Work

In this work we identified a set of six 8-bit S-boxes with highly useful proper-
ties using a systematic search on a range of composite Sbox constructions. Our
findings include 8-bit Sboxes that provide comparable or even higher resistance
against linear and differential cryptanalysis with respect to other 8-bit Sbox
but intrinsically support the TI concept without any external randommness. At
the same time our selected Sboxes come with a range of useful implementa-
tion properties, such as a highly efficient serialization option, or a very low area
requirement. Future work comprises extended criteria for the Sbox composition,
including diffusion layers beyond permutations.

Acknowledgements. This work is partly supported by the DFG Research Training
Group GRK 1817 Ubicrypt and the European Union’s Horizon 2020 research and
innovation programme under grant agreement No. 643161 (ECRYPT-NET).

References

1. Banik, S., Bogdanov, A., Isobe, T., Shibutani, K., Hiwatari, H., Akishita, T.,
Regazzoni, F.: Midori: a block cipher for low energy. In: Iwata, T., et al. (eds.)
ASTACRYPT 2015. LNCS, vol. 9453, pp. 411-436. Springer, Heidelberg (2015).
doi:10.1007/978-3-662-48800-3_17

2. Barkan, E., Biham, E.: In how many ways can you write Rijndael? In: Zheng,
Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 160-175. Springer, Heidelberg
(2002)

3. Barreto, P.S.L.M., Rijmen, V.: The Khazad legacy-level block cipher. Primitive
Submitted to NESSIE, 97 (2000)

4. Beierle, C., Jean, J., Kolbl, S., Leander, G., Moradi, A., Thomas Peyrin, Y., Sasaki,
P.S., Sim, S.M.: The Skinny family of block ciphers and its low-latency variant
mantis. CRYPTO 2016. LNCS. Springer, Berlin (2016). (to appear)

5. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. In:
Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2-21.
Springer, Heidelberg (1991)

6. Bilgin, B., Bogdanov, A., Knezevi¢, M., Mendel, F., Wang, Q.: FIDES: light-
weight authenticated cipher with side-channel resistance for constrained hardware.
In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp. 142-158.
Springer, Heidelberg (2013)

http://dx.doi.org/10.1007/978-3-662-48800-3_17

192

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

E. Boss et al.

Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.. A more effi-
cient AES threshold implementation. In: Pointcheval, D., Vergnaud, D. (eds.)
AFRICACRYPT. LNCS, vol. 8469, pp. 267-284. Springer, Heidelberg (2014)
Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: Higher-order threshold
implementations. In: Sarkar, P., Iwata, T. (eds.) ASTACRYPT 2014, Part II. LNCS,
vol. 8874, pp. 326-343. Springer, Heidelberg (2014)

Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: Trade-offs for threshold
implementations illustrated on AES. IEEE Trans. CAD Integr. Circ. Syst. 34(7),
1188-1200 (2015)

Bilgin, B., Nikova, S., Nikov, V., Rijmen, V., Stiitz, G.: Threshold implementations
of all 3 x 3 and 4 x 4 S-boxes. In: Prouff, E., Schaumont, P. (eds.) CHES 2012.
LNCS, vol. 7428, pp. 76-91. Springer, Heidelberg (2012)

Bilgin, B., Nikova, S., Nikov, V., Rijmen, V., Tokareva, N., Vitkup, V.: Threshold
implementations of small S-boxes. Cryptogr. Commun. 7(1), 3-33 (2015)

Boss, E., Grosso, V., Giineysu, T., Leander, G., Moradi, A., Schneider, T.: Strong
8-bit Sboxes with efficient masking in hardware. Cryptology ePrint Archive, Report
2016,/647 (2016). http://eprint.iacr.org/2016/647

Boyar, J., Peralta, R.: A new combinational logic minimization technique with
applications to cryptology. In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049, pp.
178-189. Springer, Heidelberg (2010)

Brinkmann, M.: EA classification of all 4 bit functions. Personal Communication
(2008)

Canright, D.: A very compact S-box for AES. In: Rao, J.R., Sunar, B. (eds.) CHES
2005. LNCS, vol. 3659, pp. 441-455. Springer, Heidelberg (2005)

Canteaut, A., Duval, S., Leurent, G.: Construction of lightweight S-boxes
using Feistel and MISTY structures. In: Dunkelman, O., et al. (eds.) SAC
2015. LNCS, vol. 9566, pp. 373-393. Springer, Heidelberg (2016). doi:10.1007/
978-3-319-31301-6_22

Chabaud, F., Vaudenay, S.: Links between differential and linear cryptanalysis. In:
De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 356-365. Springer,
Heidelberg (1995)

Daemen, J., Peeters, M., Van Assche, G., Rijmen, V.: Nessie proposal: NOEKEON.
In: 1st Open NESSIE Workshop, pp. 213-230 (2000)

Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Information Security and Cryptography. Springer, Berlin (2002)
Gérard, B., Grosso, V., Naya-Plasencia, M., Standaert, F.-X.: Block ciphers that
are easier to mask: how far can we go? In: Bertoni, G., Coron, J.-S. (eds.) CHES
2013. LNCS, vol. 8086, pp. 383-399. Springer, Heidelberg (2013)

Grosso, V., Leurent, G., Standaert, F.-X., Varici, K.: LS-designs: bitslice encryption
for efficient masked software implementations. In: Cid, C., Rechberger, C. (eds.)
FSE 2014. LNCS, vol. 8540, pp. 18-37. Springer, Heidelberg (2015)

Grosso, V., Leurent, G., Standaert, F.-X., Varici, K., Journault, A., Durvaux, F.,
Gaspar, L., Kerckhof, S.: SCREAM side-channel resistant authenticated encryption
with masking - Version 3. Submission to CAESAR Competition of Authenticated
Ciphers. https://competitions.cr.yp.to/round2/screamv3.pdf

Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED block cipher. In:
Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326-341. Springer,
Heidelberg (2011)

Kutzner, S., Nguyen, P.H., Poschmann, A.: Enabling 3-share threshold implemen-
tations for all 4-bit S-boxes. In: Lee, H.-S., Han, D.-G. (eds.) ICISC 2013. LNCS,
vol. 8565, pp. 91-108. Springer, Heidelberg (2014)

http://eprint.iacr.org/2016/647
http://dx.doi.org/10.1007/978-3-319-31301-6_22
http://dx.doi.org/10.1007/978-3-319-31301-6_22
https://competitions.cr.yp.to/round2/screamv3.pdf

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Strong 8-bit Sboxes with Efficient Masking in Hardware 193

Lim, C.H.: CRYPTON: a new 128-bit block cipher - specification and analysis.
NIST AES Proposal (1998)

Lim, C.H.: A revised version of CRYPTON - CRYPTON V1.0. In: Knudsen, L.R.
(ed.) FSE 1999. LNCS, vol. 1636, pp. 31-45. Springer, Heidelberg (1999)
Mangard, S., Pramstaller, N., Oswald, E.: Successfully attacking masked AES hard-
ware implementations. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659,
pp. 157-171. Springer, Heidelberg (2005)

Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386-397. Springer, Heidelberg (1994)
Matsui, M.: New block encryption algorithm MISTY. In: Biham, E. (ed.) FSE
1997. LNCS, vol. 1267, pp. 54-68. Springer, Heidelberg (1997)

Moradi, A., Mischke, O., Eisenbarth, T.: Correlation-enhanced power analysis col-
lision attack. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol.
6225, pp. 125-139. Springer, Heidelberg (2010)

Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the limits: a
very compact and a threshold implementation of AES. In: Paterson, K.G. (ed.)
EUROCRYPT 2011. LNCS, vol. 6632, pp. 69-88. Springer, Heidelberg (2011)
Nikova, S., Rijmen, V., Schléffer, M.: Secure hardware implementation of nonlinear
functions in the presence of glitches. J. Cryptol. 24(2), 292-321 (2011)

Piret, G., Roche, T., Carlet, C.: PICARO — a block cipher allowing efficient higher-
order side-channel resistance. In: Bao, F., Samarati, P., Zhou, J. (eds.) ACNS 2012.
LNCS, vol. 7341, pp. 311-328. Springer, Heidelberg (2012)

Poschmann, A., Moradi, A., Khoo, K., Lim, C.-W., Wang, H., Ling, S.: Side-
channel resistant crypto for less than 2,300 GE. J. Cryptol. 24(2), 322-345 (2011)
Poschmann, A.Y.: Lightweight cryptography: cryptographic engineering for a per-
vasive world. Ph.D. thesis, Ruhr University Bochum (2009)

Raddum, H.: More dual Rijndaels. In: Dobbertin, H., Rijmen, V., Sowa, A. (eds.)
AES 2005. LNCS, vol. 3373, pp. 142-147. Springer, Heidelberg (2005)

Rijmen, V., Barreto, P.S.L.M.: The WHIRLPOOL hash function. World-Wide Web
document, p. 72 (2001)

Shahverdi, A., Taha, M., Eisenbarth, T.: Silent simon: a threshold implementation
under 100 slices. In: HOST 2015, pp. 1-6. IEEE (2015)

Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-bit blockci-
pher CLEFIA (extended abstract). In: Biryukov, A. (ed.) FSE 2007. LNCS, vol.
4593, pp. 181-195. Springer, Heidelberg (2007)

Standaert, F.-X., Piret, G., Rouvroy, G., Quisquater, J.-J., Legat, J.-D.: ICEBERG:
an involutional cipher efficient for block encryption in reconfigurable hardware.
In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 279-299. Springer,
Heidelberg (2004)

Ullrich, M., De Canniere, C., Indesteege, S., Kiigiik, 0., Mouha, N., Preneel, B.:
Finding optimal bitsliced implementations of 4 x 4-bit S-boxes. In: Symmetric Key
Encryption Workshop, p. 20 (2011)

Virtual Silicon Inc.: 0.18 pm VIP Standard Cell Library Tape Out Ready, Part
Number: UMCL18G212T3, Process: UMC Logic 0.18 um Generic II Technology:
0.18 pm, July 2004

	Strong 8-bit Sboxes with Efficient Masking in Hardware
	1 Introduction
	2 Preliminaries
	2.1 Cryptanalytic Properties for Sboxes
	2.2 Construction of 8-Bit Sboxes.
	2.3 Threshold Implementations
	2.4 Design Architectures

	3 Threshold Implementation of Known 8-bit Sboxes
	4 Finding TI-Compliant 8-bit Sboxes
	4.1 Feistel-Construction
	4.2 SPN-Construction with Bit-Permutations as the Linear Layer
	4.3 SPN-Construction with F16-linear Layers only

	5 Results
	5.1 Selected Sboxes
	5.2 Comparison

	6 Conclusion and Future Work
	References

