
Benedikt Gierlichs
Axel Y. Poschmann (Eds.)

 123

LN
CS

 9
81

3

18th International Conference
Santa Barbara, CA, USA, August 17–19, 2016
Proceedings

Cryptographic Hardware
and Embedded Systems –
CHES 2016

Lecture Notes in Computer Science 9813

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Benedikt Gierlichs • Axel Y. Poschmann (Eds.)

Cryptographic Hardware
and Embedded Systems –
CHES 2016
18th International Conference
Santa Barbara, CA, USA, August 17–19, 2016
Proceedings

123

Editors
Benedikt Gierlichs
KU Leuven
Leuven
Belgium

Axel Y. Poschmann
NXP Semiconductors Germany GmbH
Hamburg
Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-662-53139-6 ISBN 978-3-662-53140-2 (eBook)
DOI 10.1007/978-3-662-53140-2

Library of Congress Control Number: 2016946628

LNCS Sublibrary: SL4 – Security and Cryptology

© International Association for Cryptologic Research 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer-Verlag GmbH Berlin Heidelberg

Preface

The 18th Conference on Cryptographic Hardware and Embedded Systems (CHES
2016) was held at the University of California at Santa Barbara, California, USA,
August 17–19, 2016. The conference was sponsored by the International Association
for Cryptologic Research and—after 2010 and 2013—it was the third time that CHES
was co-located with CRYPTO.

CHES 2016 received a record 148 submissions. Each paper was anonymously
reviewed by at least four Program Committee members in a double-blind peer-review
process. Submissions co-authored by PC members received at least five reviews. With
the help of 210 external reviewers our 47 Program Committee members wrote an
impressive total of 623 reviews. This year CHES continued the policy that submissions
needed to closely match the final versions published by Springer in length and format.
Additionally, we implemented a new paper submission policy whereby authors needed
to indicate conflicts of interest with Program Committee members. This mutual indi-
cation process led to the upfront identification of roughly five times more conflicts of
interest, and, consequently, to a more fair and smooth review process. The Program
Committee selected 30 papers for publication in these proceedings, corresponding to a
20% acceptance rate.

Several papers were nominated for the CHES 2016 best paper award. After voting,
the Program Committee gave the award to Differential Computation Analysis: Hiding
Your White-Box Designs Is Not Enough by Joppe W. Bos, Charles Hubain, Wil
Michiels, and Philippe Teuwen. The runners-up were Cache Attacks Enable Bulk Key
Recovery on the Cloud by Mehmet S. Inci, Berk Gulmezoglu, Gorka Irazoqui, Thomas
Eisenbarth, and Berk Sunar, and Software Implementation of Koblitz Curves Over
Quadratic Fields by Thomaz Oliveira, Julio López, Francisco Rodríguez-Henríquez.
All three were invited to submit extended versions to the Journal of Cryptology.

The technical program was completed by a panel discussion that provided valuable
feedback to the academic and industrial communities, and by an excellent invited talk
(jointly with CRYPTO 2016) by Paul Kocher from Cryptography Research, a Division
of Rambus.

As a continued tradition, CHES 2016 also featured a poster session and we are very
grateful to Billy Bob Brumley for chairing this aspect of the program. In addition, two
tutorials were given on the day preceding the conference: one by Victor Lomné on
Common Criteria Certification of a Smartcard: A Technical Overview and one by
Yuval Yarom on Micro-Architectural Side-Channel Attacks. For the second time a
CHES challenge was organized. We are very grateful to Ryad Benadjila, Emmanuel
Prouff, and Adrian Thillard for chairing the challenge selection process, and to Colin
O’Flynn for running the CHES 2016 challenge.

The review process was a challenging and time-consuming task. We sincerely thank
the Program Committee members as well as their external reviewers for the hard work
and many hours spent reviewing, assessing, and discussing. The submission process,

the review process, and the editing of the final proceedings were greatly simplified by
the software written by Shai Halevi and we thank him for his kind and immediate
support throughout the whole process.

We would also like to thank the General Chairs, Çetin Kaya Koç and Erkay Savaş,
local organizers Sally Vito and Whitney Morris (of UCSB Conference Services), Juan
Manuel Escalante, who designed the CHES 2016 memorabilia, and the webmaster,
Thomas Eisenbarth. Our thanks also go out to Matt Robshaw and Jonathan Katz, the
Program Chairs of CRYPTO 2016, for the successful collaboration and alignment
of the programs of CHES and CRYPTO. We are very grateful for the financial support
received from our many generous sponsors.

Finally, among the numerous people that contributed to the success of CHES 2016,
above all others are the authors who submitted their research papers to the conference.
Without them, this conference would not exist. We enjoyed chairing the Program
Committee and we hope you will enjoy these proceedings.

June 2016 Benedikt Gierlichs
Axel Y. Poschmann

VI Preface

CHES 2016

18th Conference on Cryptographic Hardware
and Embedded Systems

Santa Barbara, California, USA
August 17–19, 2016

Sponsored by the International Association for Cryptologic Research

General Chairs

Çetin Kaya Koç University of California at Santa Barbara, USA
Erkay Savaş Sabanci University, Turkey

Program Chairs

Benedikt Gierlichs KU Leuven, Belgium
Axel Y. Poschmann NXP Semiconductors, Germany

Program Committee

Josep Balasch KU Leuven, Belgium
Lejla Batina Radboud University, The Netherlands
Daniel J. Bernstein University of Illinois at Chicago, USA and Technische

Universiteit Eindhoven, The Netherlands
Guido Bertoni STMicroelectronics, Italy
Chen-Mou Cheng National Taiwan University, Taiwan
Hermann Drexler Giesecke & Devrient, Germany
Orr Dunkelman University of Haifa, Israel
Junfeng Fan Open Security Research, China
Sebastian Faust Ruhr-Universität Bochum, Germany
Viktor Fischer Jean Monnet University Saint-Etienne, France
Wieland Fischer Infineon Technologies, Germany
Henri Gilbert ANSSI, France
Christophe Giraud Oberthur Technologies, France
Daniel Holcomb University of Massachusetts Amherst, USA
Naofumi Homma Tohoku University, Japan
Michael Hutter Cryptography Research, USA
Kimmo Järvinen Aalto University, Finland
Marc Joye Technicolor, France
Lars R. Knudsen Technical University of Denmark, Denmark
Kerstin Lemke-Rust Bonn-Rhein-Sieg University of Applied Sciences,

Germany
Tancrède Lepoint CryptoExperts, France

Yang Li Nanjing University of Aeronautics and Astronautics, China
Roel Maes Intrinsic-ID, The Netherlands
Mitsuru Matsui Mitsubishi Electric, Japan
Marcel Medwed NXP Semiconductors, Austria
Amir Moradi Ruhr-Universität Bochum, Germany
Debdeep

Mukhopadhyay
Indian Institute of Technology Kharagpur, India

Elke De Mulder Cryptography Research, USA
David Naccache École normale supérieure, France
Elisabeth Oswald University of Bristol, UK
Daniel Page University of Bristol, UK
Thomas Peyrin Nanyang Technological University, Singapore
Emmanuel Prouff Safran Identity & Security, France
Francesco Regazzoni ALaRI, Lugano, Switzerland
Matthieu Rivain CryptoExperts, France
Alexander Schlösser NXP Semiconductors, Germany
Sergei Skorobogatov University of Cambridge, UK
Meltem Sönmez Turan NIST, USA
Marc Stöttinger Continental Teves, Germany
Berk Sunar Worcester Polytechnic Institute, USA
Hugues Thiebeauld eshard, France
Olivier Thomas Texplained, France
Mehdi Tibouchi NTT Secure Platform Laboratories, Japan
Steve Trimberger Xilinx, USA
Ingrid Verbauwhede KU Leuven, Belgium
Andre Weimerskirch University of Michigan, USA
Brecht Wyseur NAGRA, Switzerland

External Reviewers

Martin R. Albrecht
Guilherme Almeida
Gilles Van Assche
Jean-Philippe Aumasson
Aydin Aysu
Reza Azarderakhsh
Florian Bache
Thomas Baignères
Subhadeep Banik
Guillaume Barbu
Guy Barwell
Alberto Battistello
Sven Bauer
Georg T. Becker
Steffen Becker

Sonia Belaïd
Ryad Benadjila
Florent Bernard
Régis Bevan
Shivam Bhasin
Sarani Bhattacharya
Russ Bielawski
Begül Bilgin
Markus Bockes
Joppe Bos
Lilian Bossuet
Claudio Bozzato
Jakub Breier
Billy Bob Brumley
Samuel Burri

Martin Butkus
Rodrigo Portella do Canto
Claude Carlet
Pierre-Louis Cayrel
Gizem Selcan Cetin
Thomas Chabrier
Rajat Subhra Chakraborty
Ayantika Chatterjee
Urbi Chatterjee
Ricardo Chaves
Chien-Ning Chen
Cong Chen
Abdelkarim Cherkaoui
Jean-Michel Cioranesco
Ruan de Clercq

VIII CHES 2016

Thomas De Cnudde
Brice Colombier
Jean-Sébastien Coron
Guillaume Dabosville
Joan Daemen
Wei Dai
Poulami Das
Nicolas Debande
Jeroen Delvaux
Jintai Ding
Yarkin Doroz
Emmanuelle Dottax
Baris Ege
Thomas Eisenbarth
Guangjun Fan
Claudio Favi
Peter Felber
Magnus Gausdal Find
Matthieu Finiasz
Daisuke Fujimoto
Georges Gagnerot
Adriano Gaibotti
Jake Longo Galea
Benoit Gerard
Cezary Glowacz
Gilbert Goodwill
Louis Goubin
Aurélien Greuet
Vincent Grosso
Daniel Gruss
Frank K. Gürkaynak
Mike Hamburg
Ghaith Hammouri
Bill Hass
Wei He
Annelie Heuser
Lars Hoffmann
Yuan-Che Hsu
Ilia Iliashenko
Gorka Irazoki
Dirmanto Jap
Eliane Jaulmes
Tommi Junttila
Elif Bilge Kavun

Osnat Keren
Mehran Mozaffari

Kermani
Ilya Kizhvatov
Patrick Klapper
Miroslav Knezevic
Markus Kuhn
Tanja Lange
Sam Lauzon
Jenwei Lee
Gaëtan Leurent
Wen-Ding Li
Zhe Liu
Zheng Liu
Susanne Lohmann
Cuauhtemoc Mancillas

Lopez
Atul Luykx
Pieter Maene
Houssem Maghrebi
Cedric Marchand
Daniel Martin
Marco Martinoli
Daniel Masny
Pedro Maat Massolino
Luke Mather
Sanu Mathew
Ingo von Maurich
Silvia Mella
Filippo Melzani
Bart Mennink
Rafael Misoczki
Nicolas Moro
Zakari Najm
Ousmane Ndiaye
Ventzislav Nikov
Tobias Nink
Tobias Oder
Brisbane Ovilla
Erdinc Ozturk
Clara Paglialonga
Paolo Palmieri
Louiza Papachristodoulou
Kostas Papagiannopoulos

Sikhar Patranabis
Sylvain Pelissier
Hervé Pelletier
Jan Pelzl
Bo-Yuan Peng
Peter Pessl
Antonio de la Piedra
Thomas Prest
Christian Pilato
Gilles Piret
Thomas Plos
Ilia Polian
Thomas Pöppelmann
Frédéric de Portzamparc
Jürgen Pulkus
Christof Rempel
Joost Renes
Oscar Reparaz
Thomas Ricosset
Lionel Riviere
Molka ben Romdhane
Franck Rondepierre
Debapriya Basu Roy
Sujoy Sinha Roy
Markku-Juhani

O. Saarinen
Durga Prasad Sahoo
Kazuo Sakiyama
Peter Samarin
Fabrizio De Santis
Pascal Sasdrich
Falk Schellenberg
Werner Schindler
Tobias Schneider
Okan Seker
Hwajeong Seo
Siang Meng Sim
Daniel Smith-Tone
Martijn Stam
Francois-Xavier Standaert
Takeshi Sugawara
Ruggero Susella
Daisuke Suzuki
Pawel Swierczynski

CHES 2016 IX

Junko Takahashi
Ming Tang
Cihangir Tezcan
Loïc Thierry
Adrian Thillard
Elena Trichina
Toyohiro Tsurumaru
Yu-Hsiu Tung
Michael Tunstall
Rei Ueno
Thomas Unterluggauer
Praveen Kumar Vadnala

Felipe Valencia
Kerem Varici
Frederik Vercauteren
Vincent Verneuil
Karine Villegas
Jo Vliegen
Pim Vullers
An Wang
Erich Wenger
Mario Werner
Carolyn Whitnall
Alexander Wild

Antoine Wurcker
Mingfu Xue
Bohan Yang
Ville Yli-Maeyry
Mandel Yu
Shih-Chun Yu
Rina Zeitoun
Fan Zhang
Hailong Zhang
Zhenfei Zhang
Xinjie Zhao
Yongbin Zhou

X CHES 2016

Contents

Side Channel Analysis

Correlated Extra-Reductions Defeat Blinded Regular Exponentiation 3
Margaux Dugardin, Sylvain Guilley, Jean-Luc Danger, Zakaria Najm,
and Olivier Rioul

Horizontal Side-Channel Attacks and Countermeasures on the ISW
Masking Scheme. 23

Alberto Battistello, Jean-Sébastien Coron, Emmanuel Prouff,
and Rina Zeitoun

Towards Easy Leakage Certification . 40
François Durvaux, François-Xavier Standaert,
and Santos Merino Del Pozo

Simple Key Enumeration (and Rank Estimation) Using Histograms:
An Integrated Approach. 61

Romain Poussier, François-Xavier Standaert, and Vincent Grosso

Automotive Security

Physical Layer Group Key Agreement for Automotive Controller Area
Networks . 85

Shalabh Jain and Jorge Guajardo

– vatiCAN – Vetted, Authenticated CAN Bus . 106
Stefan Nürnberger and Christian Rossow

Invasive Attacks

Mitigating SAT Attack on Logic Locking . 127
Yang Xie and Ankur Srivastava

No Place to Hide: Contactless Probing of Secret Data on FPGAs 147
Heiko Lohrke, Shahin Tajik, Christian Boit, and Jean-Pierre Seifert

Side Channel Countermeasures I

Strong 8-bit Sboxes with Efficient Masking in Hardware 171
Erik Boss, Vincent Grosso, Tim Güneysu, Gregor Leander,
Amir Moradi, and Tobias Schneider

http://dx.doi.org/10.1007/978-3-662-53140-2_1
http://dx.doi.org/10.1007/978-3-662-53140-2_2
http://dx.doi.org/10.1007/978-3-662-53140-2_2
http://dx.doi.org/10.1007/978-3-662-53140-2_3
http://dx.doi.org/10.1007/978-3-662-53140-2_4
http://dx.doi.org/10.1007/978-3-662-53140-2_4
http://dx.doi.org/10.1007/978-3-662-53140-2_5
http://dx.doi.org/10.1007/978-3-662-53140-2_5
http://dx.doi.org/10.1007/978-3-662-53140-2_6
http://dx.doi.org/10.1007/978-3-662-53140-2_7
http://dx.doi.org/10.1007/978-3-662-53140-2_8
http://dx.doi.org/10.1007/978-3-662-53140-2_9

Masking AES with d þ 1 Shares in Hardware . 194
Thomas De Cnudde, Oscar Reparaz, Begül Bilgin, Svetla Nikova,
Ventzislav Nikov, and Vincent Rijmen

New Directions

Differential Computation Analysis: Hiding Your White-Box Designs is Not
Enough . 215

Joppe W. Bos, Charles Hubain, Wil Michiels, and Philippe Teuwen

Antikernel: A Decentralized Secure Hardware-Software Operating System
Architecture . 237

Andrew Zonenberg and Bülent Yener

Software Implementations

Software Implementation of Koblitz Curves over Quadratic Fields 259
Thomaz Oliveira, Julio López, and Francisco Rodríguez-Henríquez

QcBits: Constant-Time Small-Key Code-Based Cryptography 280
Tung Chou

lKummer: Efficient Hyperelliptic Signatures and Key Exchange
on Microcontrollers . 301

Joost Renes, Peter Schwabe, Benjamin Smith, and Lejla Batina

Cache Attacks

Flush, Gauss, and Reload – A Cache Attack on the BLISS Lattice-Based
Signature Scheme . 323

Leon Groot Bruinderink, Andreas Hülsing, Tanja Lange,
and Yuval Yarom

CacheBleed: A Timing Attack on OpenSSL Constant Time RSA 346
Yuval Yarom, Daniel Genkin, and Nadia Heninger

Cache Attacks Enable Bulk Key Recovery on the Cloud 368
Mehmet Sinan İnci, Berk Gulmezoglu, Gorka Irazoqui,
Thomas Eisenbarth, and Berk Sunar

Physical Unclonable Functions

Strong Machine Learning Attack Against PUFs with No Mathematical
Model . 391

Fatemeh Ganji, Shahin Tajik, Fabian Fäßler, and Jean-Pierre Seifert

XII Contents

http://dx.doi.org/10.1007/978-3-662-53140-2_10
http://dx.doi.org/10.1007/978-3-662-53140-2_10
http://dx.doi.org/10.1007/978-3-662-53140-2_11
http://dx.doi.org/10.1007/978-3-662-53140-2_11
http://dx.doi.org/10.1007/978-3-662-53140-2_12
http://dx.doi.org/10.1007/978-3-662-53140-2_12
http://dx.doi.org/10.1007/978-3-662-53140-2_13
http://dx.doi.org/10.1007/978-3-662-53140-2_14
http://dx.doi.org/10.1007/978-3-662-53140-2_15
http://dx.doi.org/10.1007/978-3-662-53140-2_15
http://dx.doi.org/10.1007/978-3-662-53140-2_16
http://dx.doi.org/10.1007/978-3-662-53140-2_16
http://dx.doi.org/10.1007/978-3-662-53140-2_17
http://dx.doi.org/10.1007/978-3-662-53140-2_18
http://dx.doi.org/10.1007/978-3-662-53140-2_19
http://dx.doi.org/10.1007/978-3-662-53140-2_19

Efficient Fuzzy Extraction of PUF-Induced Secrets: Theory and
Applications . 412

Jeroen Delvaux, Dawu Gu, Ingrid Verbauwhede, Matthias Hiller,
and Meng-Day (Mandel) Yu

Run-Time Accessible DRAM PUFs in Commodity Devices 432
Wenjie Xiong, André Schaller, Nikolaos A. Anagnostopoulos,
Muhammad Umair Saleem, Sebastian Gabmeyer, Stefan Katzenbeisser,
and Jakub Szefer

Side Channel Countermeasures II

On the Multiplicative Complexity of Boolean Functions and Bitsliced
Higher-Order Masking . 457

Dahmun Goudarzi and Matthieu Rivain

Reducing the Number of Non-linear Multiplications in Masking Schemes . . . 479
Jürgen Pulkus and Srinivas Vivek

Faster Evaluation of SBoxes via Common Shares . 498
Jean-Sébastien Coron, Aurélien Greuet, Emmanuel Prouff,
and Rina Zeitoun

Hardware Implementations

FourQ on FPGA: New Hardware Speed Records for Elliptic Curve
Cryptography over Large Prime Characteristic Fields. 517

Kimmo Järvinen, Andrea Miele, Reza Azarderakhsh, and Patrick Longa

A High Throughput/Gate AES Hardware Architecture by Compressing
Encryption and Decryption Datapaths — Toward Efficient CBC-Mode
Implementation . 538

Rei Ueno, Sumio Morioka, Naofumi Homma, and Takafumi Aoki

Efficient High-Speed WPA2 Brute Force Attacks Using Scalable Low-Cost
FPGA Clustering . 559

Markus Kammerstetter, Markus Muellner, Daniel Burian,
Christian Kudera, and Wolfgang Kastner

Fault Attacks

ENCOUNTER: On Breaking the Nonce Barrier in Differential Fault Analysis
with a Case-Study on PAEQ . 581

Dhiman Saha and Dipanwita Roy Chowdhury

Contents XIII

http://dx.doi.org/10.1007/978-3-662-53140-2_20
http://dx.doi.org/10.1007/978-3-662-53140-2_20
http://dx.doi.org/10.1007/978-3-662-53140-2_21
http://dx.doi.org/10.1007/978-3-662-53140-2_22
http://dx.doi.org/10.1007/978-3-662-53140-2_22
http://dx.doi.org/10.1007/978-3-662-53140-2_23
http://dx.doi.org/10.1007/978-3-662-53140-2_24
http://dx.doi.org/10.1007/978-3-662-53140-2_25
http://dx.doi.org/10.1007/978-3-662-53140-2_25
http://dx.doi.org/10.1007/978-3-662-53140-2_25
http://dx.doi.org/10.1007/978-3-662-53140-2_26
http://dx.doi.org/10.1007/978-3-662-53140-2_26
http://dx.doi.org/10.1007/978-3-662-53140-2_26
http://dx.doi.org/10.1007/978-3-662-53140-2_27
http://dx.doi.org/10.1007/978-3-662-53140-2_27
http://dx.doi.org/10.1007/978-3-662-53140-2_28
http://dx.doi.org/10.1007/978-3-662-53140-2_28

Curious Case of Rowhammer: Flipping Secret Exponent Bits Using Timing
Analysis. 602

Sarani Bhattacharya and Debdeep Mukhopadhyay

A Design Methodology for Stealthy Parametric Trojans and Its Application
to Bug Attacks . 625

Samaneh Ghandali, Georg T. Becker, Daniel Holcomb,
and Christof Paar

Author Index . 649

XIV Contents

http://dx.doi.org/10.1007/978-3-662-53140-2_29
http://dx.doi.org/10.1007/978-3-662-53140-2_29
http://dx.doi.org/10.1007/978-3-662-53140-2_30
http://dx.doi.org/10.1007/978-3-662-53140-2_30

Side Channel Analysis

Correlated Extra-Reductions Defeat Blinded
Regular Exponentiation

Margaux Dugardin1,2(B), Sylvain Guilley2,3, Jean-Luc Danger2,3,
Zakaria Najm4, and Olivier Rioul2,5

1 CESTI, Thales Communications and Security, 31000 Toulouse, France
2 LTCI, CNRS, Télécom ParisTech, Université Paris-Saclay, 75013 Paris, France

{margaux.dugardin,sylvain.guilley,jean-luc.danger,
olivier.rioul}@telecom-paristech.fr

3 Secure-IC SAS, 35510 Cesson-Sévigné, France
{sylvain.guilley,jean-luc.danger}@secure-ic.com

4 ST-Microelectronics, 13790 Rousset, France
zakaria.najm@st.com

5 CMAP, Ecole Polytechnique, Université Paris-Saclay, 91128 Palaiseau, France
olivier.rioul@polytechnique.edu

Abstract. Walter and Thomson (CT-RSA ’01) and Schindler (PKC
’02) have shown that extra-reductions allow to break RSA-CRT even
with message blinding. Indeed, the extra-reduction probability depends
on the type of operation (square, multiply, or multiply with a constant).
Regular exponentiation schemes can be regarded as protections since the
operation sequence does not depend on the secret.

In this article, we show that there exists a strong negative correlation
between extra-reductions of two consecutive operations, provided that
the first feeds the second. This allows to mount successful attacks even
against blinded asymmetrical computations with a regular exponenti-
ation algorithm, such as Square-and-Multiply Always or Montgomery
Ladder. We investigate various attack strategies depending on the con-
text—known or unknown modulus, known or unknown extra-reduction
detection probability, etc.—and implement them on two devices: a single
core ARM Cortex-M4 and a dual core ARM Cortex M0-M4.

Keywords: Side-channel analysis · Montgomery modular multipli-
cation · Extra-reduction leakage · Message blinding · Regular
exponentiation

1 Introduction

State of the Art of Timing Attacks. Any cryptographic algorithm in an embed-
ded system is vulnerable to side-channel attacks. Timing attacks on the RSA
Straightforward Method (RSA-SFM) were pioneered by Kocher [12]. The attack
consists in building “templates” whose distributions are compared to that of the
response. It is required that the cryptographic parameters be known since the
attack is profiled.
c© International Association for Cryptologic Research 2016
B. Gierlichs and A.Y. Poschmann (Eds.): CHES 2016, LNCS 9813, pp. 3–22, 2016.
DOI: 10.1007/978-3-662-53140-2 1

4 M. Dugardin et al.

Schindler [16] extended timing attacks to RSA with Chinese Remainder The-
orem (RSA-CRT) using chosen messages. This attack exploits a conditional
extra-reduction at the end of modular multiplications. Schindler and co-authors
carried out numerous improvements [1,2,17–20] in the case where the exponen-
tiation uses windows or exponent randomization.

Walter and Thompson [21] remarked that even when data is blinded, the
distribution of extra-reductions is different for a square and for a multiply. They
assumed that side-channel measurements such as power or timing during expo-
nentiation are sufficiently clean to detect the presence or absence of an extra-
reduction at each individual operation. Schindler [17] improved this attack by
also distinguishing multiplications by a constant from squarings and multiplica-
tions by non-fixed parameters.

Today’s Solutions. In order to protect the implementation from the above
attacks, a first solution consists in exponent randomization on top of mes-
sage blinding. Such a protection, however, is sensitive to carry leakage [9] and
amenable to other attacks like simple power analysis [7] (SPA). A second solu-
tion relies on regular exponentiation like Square-and-Multiply-Always (SMA, see
Algorithm 1) or Montgomery Ladder (ML, see Algorithm 2). Both algorithms
consist in a square and a multiply operation in each iteration i, yielding no
leakage to SPA.

Algorithm 1. Square and Multiply
Always Left-to-Right
Input: m, k = (klkl−1 . . . k0)2, p (kl = 1)
Output: mk mod p
1: R0 ← 1
2: R1 ← m
3: for i = l − 1 downto 0 do
4: R1 ← R1 × R1 mod p � Si

5: Rki ← R1 × m mod p � Mi

6: end for
7: return R1

Algorithm 2. Montgomery Ladder
Left-to-Right
Input: m, k = (klkl−1 . . . k0)2, p (kl = 1)
Output: mk mod p
1: R0 ← m
2: R1 ← R0 × R0 mod p � FS
3: for i = l − 1 downto 0 do
4: R¬ki ← R0 × R1 mod p � Mi

5: Rki ← Rki × Rki mod p � Si

6: end for
7: return R0

Contributions of This Paper. We show that despite message blinding and regular
exponentiation, it is still possible for an attacker to take advantage of extra-
reductions: A new bias is found, namely a strong negative correlation between
the extra-reduction of two consecutive operations. As shown in this paper, the
bias can be easily leveraged to recover which registers are written to (at line 5 of
Algorithm 1 or at lines 4 and 5 of Algorithm 2) which eventually leads to retrieve
the secret key. The advantages of this method are the following:

– messages are unknown; this captures general situations such as RSA with
OAEP or PSS padding and RSA input blinding [11, Sect. 10];

– RSA parameters can be unknown; hence RSA-CRT is also vulnerable;

Correlated Extra-Reductions Defeat Blinded Regular Exponentiation 5

– all binary exponentiation algorithms are vulnerable, even the regular ones like
Square and Multiply Always, Montgomery Ladder, etc.;

– our attack can also be applied to Elliptic Curve Cryptography (ECC).

From a mathematical viewpoint, we also provide a comprehensive framework for
studying the joint probabilities of extra-reductions in a sequence of multiplies
and squares.

Related Works. The “horizontal/vertical” side-channel attacks against blinded
exponentiation described in [6,10,24] also use the dependency between the
input/output of operands in square and multiply algorithms. Such attacks
exploit the vertical amplitude of the signal during the time duration. Our
work is thus complementary to these ideas since it considers a novel horizon-
tal exploitable bias.

Outline. The rest of the paper is organized as follows1. Section 2 recalls known
biases induced by extra-reductions in modular multiplication algorithms such
as the Montgomery modular multiplication. Our contribution starts at Sect. 3,
where the theoretical rationale for the strong negative correlation between extra-
reductions of two chained operations is presented. Section 4 shows how this bias
can be turned into a key recovery attack. Experimental validations for synthetic
and practical traces are in Sect. 5. Section 6 concludes.

2 State of the Art of Extra-Reductions Probabilities

This section reviews known results about extra-reductions and their probability
distributions. The results can be adapted easily to Barrett reduction or multi-
plication followed by reduction using the extended Euclid algorithm.

2.1 Montgomery Modular Multiplication: Definitions and Notations

Given two integers a and b, the classical modular multiplication a × b mod p
computes the multiplication a × b followed by the modular reduction by p.
Montgomery Modular Multiplication (MMM) transforms a and b into special
representations known as their Montgomery forms.

Definition 1 (Montgomery Transformation [14]). For any prime modu-
lus p, the Montgomery form of a ∈ Fp is φ(a) = a × R mod p for some constant
R greater than and co-prime with p.

In order to ease the computation, R is usually chosen as the smallest power
of two greater than p, that is R = 2�log2(p)�. Using the Montgomery form of
integers, modular multiplications used in modular exponentiation algorithms
(recall Algorithms 1 and 2) can be carried out using the Montgomery Modular
Multiplication (MMM):
1 A complete version containing auxiliary information is available in [8].

6 M. Dugardin et al.

Definition 2 Montgomery Modular Multiplication [14]). Let φ(a) and
φ(b) two elements of Fp in Montgomery form. The MMM of φ(a) and φ(b) is
φ(a) × φ(b) × R−1 mod p.

Algorithm 3 below shows that the MMM can be implemented in two steps: (i)
compute D = φ(a)×φ(b), then (ii) reduce D using Montgomery reduction which
returns φ(c). In Algorithm 3, the pair (R−1, v) is such that RR−1 − vp = 1.

Algorithm 3. Montgomery Reduction (Algorithm 14.32 of [13])
Input: D = φ(a) × φ(b)
Output: φ(c) = φ(a) × φ(b) × R−1 mod p
1: m ← (D mod R) × v mod R
2: U ← (D + m × p) ÷ R � Invariant: 0 ≤ U < 2p
3: if U ≥ p then
4: C ← U − p � Extra-reduction
5: else
6: C ← U
7: end if
8: return C

Definition 3 (Extra-Reduction). In Algorithm3, when the intermediate
value U is greater than p, a subtraction named eXtra-reduction occurs so as
to have a result C of the Montgomery multiplication between 0 and p − 1. We
set X = 1 in the presence of the eXtra-reduction, and X = 0 in its absence.

Most software implementations of modular arithmetic for large numbers
(such as OpenSSL and mbedTLS) use the MMM, where there is a final extra-
reduction. In mbedTLS, this extra-reduction is compensated. However, as shown
below in Sect. 5.2, an attacker is still able in practice to detect using some side-
channel which branch has been used (either line 4 or 6 of Algorithm3).

2.2 A Bias to Differentiate a Multiply from a Square

Proposition 1 (Probability of Extra-Reduction in a Multiply and
a Square Operation [16, Lemma 1]). Assuming uniform distribution of
operands, the probabilities of an extra-reduction in a multiply XMi

and in a
square XSi

at iteration i are

P(XMi
= 1) =

p

4R
and P(XSi

= 1) =
p

3R
. (1)

We note that extra-reductions are 33% more likely when the operation is a
square than when it is a multiply, irrespective of the ratio p

R ∈]12 , 1[. This allows
one to break unprotected exponentiation algorithms.

Correlated Extra-Reductions Defeat Blinded Regular Exponentiation 7

3 A Bias to Test the Dependency of Operations

3.1 Principle of Correlated Extra-Reductions

In regular exponentiation algorithms, differentiating a multiply from a square
does not allow SPA to distinguish the value of the exponent bits. Indeed, at
every iteration i (l − 1 ≥ i > 0 where i is decremented after each iteration),
multiply and square operations are carried out unconditionally. However, the
input value of each operation depends on the current exponent bit value ki.
Figure 1 illustrates the dependence or independence between the input/output
values of multiplication Mi and the input value of the following square Si−1 as a
function of the bit value ki during the SMA algorithm (Algorithm1). Intuitively,
when the output of Mi is equal to the input of Si−1, we can expect that the
extra-reductions in both operation are strongly correlated.

Sl−1 Ml−1 Sl−2 Ml−2 Sl−3 Ml−3 Sl−4 Ml−4

Ml−1 Sl−2

Ml−2 �= Sl−3

Ml−3 Sl−4

kl−1 = 1 kl−2 = 0 kl−3 = 1 kl−4 = 1

Fig. 1. Comparison between the output value of multiplication with the input of
the following square in the Square-and-Multiply-Always exponentiation algorithm
(Algorithm1).

For the ML algorithm (Algorithm 2), the Mi and Si−1 operations depends
directly on the two consecutive key bit values ki and ki−1. If the bit value ki−1

and its previous bit value ki are different then the output of multiplication
Mi and the input of square Si−1 are equal and yield strongly correlated extra-
reductions; in the opposite case they yield uncorrelated extra-reductions.

Definition 4 (Guess Notation). Let Gi be the “guess’ Boolean random vari-
able defined to be True (T) if the output of an operation at iteration i is equal
to the input of the next operation at iteration i − 1, and False (F) otherwise.

Also let XMi
be a random variable corresponding to the eXtra-reduction of the

MMM multiplication at iteration i and XSi−1 be a random variable corresponding
to the eXtra-reduction during the MMM square at iteration (i − 1).

Then P(XMi
,XSi−1 |Gi = T) is their joint probability when the output

value of the multiplication is equal to the input value of the square, and
P(XMi

,XSi−1 |Gi = F) is their joint probability when the output value of the
multiplication is not equal to the input value of the square.

8 M. Dugardin et al.

Table 1. Example of probabilities of eXtra-reduction XMi of multiply operation and
XSi−1 of square operation knowing the Boolean value Gi for RSA-1024-p. The first line
(correct guess) is applicable for both SMA and ML.

(xMi , xSi−1) (0,0) (1,0) (0,1) (1,1)

P(xMi , xSi−1 |Gi = T) 0.541575 0.191615 0.258276 0.008532

P(xMi , xSi−1 |Gi = F) for SMA 0.612756 0.120158 0.186803 0.080281

P(xMi , xSi−1 |Gi = F) for ML 0.586105 0.147246 0.213521 0.053128

The guess value Gi is linked to the key value depending on the regular expo-
nentiation algorithm. For SMA and for a bit ki, an attacker is able to estimate
the probabilities P̂(XMi

,XSi−1). This probability can be used to find the bit ki
as illustrated in Fig. 1 and explained in Sect. 4 below. For ML, Gi depends on
two consecutive key bits as explained also in Sect. 4.

We have estimated the joint probabilities P(XMi
,XSi−1 |Gi) using 1.000.000

random values for both SMA and ML algorithms and the example RSA-1024-p
defined in [8, Sect. 2.2] for this modulus for which the ratio p/R � 0.800907.
The values of the obtained probabilities are shown in Table 1.

It is important to notice that for each (xMi
, xSi−1) ∈ {0, 1}2, the condi-

tional joint probabilities are distinct: P(XMi
= xMi

,XSi−1 = xSi−1 |Gi = F) �=
P(XMi

= xMi
,XSi−1 = xSi−1 |Gi = T). Also for Gi = F in ML, it can be observed

that P(XMi
,XSi−1 |Gi) = p

4R × p
3R = P(XMi

)×P(XSi−1), which is consistent with
the fact the two operations XMi

and XSi−1 should be independent since they
are completely unrelated.

It should be emphasized that the leakage identified in Table 1 is fairly large,
since the Pearson correlations ρ of the two randoms variables are2:

ρ(XMi
,XSi−1 |Gi = T) ≈ −0.2535, (2)

ρ(XMi
,XSi−1 |Gi = F) ≈ +0.1510 in SMA, (3)

ρ(XMi
,XSi−1 |Gi = F) ≈ −0.0017 in ML. (4)

To the best of our knowledge, such correlations have not been observed previ-
ously. A few observations are in order:

– when a square follows a multiply, and if there has been an extra-reduction
in the multiplication, the result should be short, hence there is less chance
for an extra-reduction to occur in the following square. This accounts for the
negative correlation ρ(XMi

,XSi−1 |Gi = T);
– from Fig. 1 iteration i = l − 2 where ki = 0, we can see that one input of

the multiplication Mi equals the input of the following squaring Si−1. Since a
square and a multiplication share a common operand, provided it is sufficiently
large, both operations are likely to have an extra-reduction at the same time,
which accounts for the positive correlation ρ(XMi

,XSi−1 |Gi = F) for SMA;

2
ρ(XMi

, XSi−1
) =

Cov(XMi
,XSi−1

)

σXMi
σXSi−1

=
P(XMi

=1,XSi−1
=1)−(P(XMi

=1)×P(XSi−1
=1))

√
P(XMi

=1)(1−P(XMi
=1))

√
P(XSi−1

=1)(1−P(XSi−1
=1))

.

Correlated Extra-Reductions Defeat Blinded Regular Exponentiation 9

– when a square and a multiply handle independent data, the extra-reductions
are clearly also independent of each other, which explains the small value of
ρ(XMi

,XSi−1 |Gi = F) for ML.

As explained next, when extra-reductions can be detected reliably, the data-flow
can be analyzed accurately thereby defeating regular exponentiation protections.

3.2 Methodology to Analyze the Bias

In order to estimate the probability P(XMi
,XSi−1 |Gi), we first determine the

distribution of the output value after one MMM (following the method described
by Sato et al. [15]) and then compute the joint probability for each case.

Let A, B be two independent random variables uniformly distributed in [0, p[
(represented in Montgomery form); let C be equal to the MMM product of A and
B and U corresponds to the MMM product of A and B before eXtra-reduction
(if any). Variables C and U coincide with that of Algorithm 3. As a matter
of fact, an attacker cannot observe values, only extra-reductions which occur
during Montgomery reduction (at line 4 of Algorithm3). We use notations P for
probabilities and f for probability density functions (p.d.f.’s).

Figure 2 shows histograms for C and U obtained from one million simulations;
the binning consists of 100 bins of the interval [0, 2p[. It can be observed that

– the p.d.f. of C is uniform on [0, p[;
– the p.d.f. of U is a piecewise continuous function composed of a strictly increas-

ing part, a constant part and a strictly decreasing part;
– the two conditional p.d.f.’s of C knowing XMi

∈ {0, 1} (resp. XSi
∈ {0, 1})

are not uniform;
– for c ∈ [0, p[, one has f(C = c) = f(U = c) + f(U = c + p) by definition of U ;
– the maximum value of U is p + p2/R, which is strictly smaller than 2p.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

0 p2/R p R p+p2/R 2p

f(C)
f(C|XM=0)
f(C|XM=1)

f(U=u)
Theory for mult (Thm. 1)

XM=0 XM=1

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

0 p2/R p R p+p2/R 2p

f(C)
f(C|XS=0)
f(C|XS=1)

f(U=u)
Theory for square (Thm. 1)

XS=0 XS=1

Fig. 2. Distribution of the output value of Montgomery multiplication (left) and square
(right) for RSA-1024-p.

10 M. Dugardin et al.

Recall that we use the Montgomery reduction described in Algorithm3, where
the reduction modulo p is carried out after every multiplication. This is also
the case in [16,17], but not in [20,21] where the multiplicands lie in [0, R[. To
complement those works, we now derive a closed-form expression of the output
distribution of the Montgomery multiplication product and square (not found
in [16,17]).

3.3 Mathematical Derivations

This subsection provides a mathematical justification of the biases observed in
Table 1. In particular, it shows that such biases hold for all values of p and
R = 2�log2(p)�. Our closed-form expressions are derived as limits in distribution
when p → +∞ that we shall write as approximations.

Theorem 1 (P.d.f. of MMM Before Extra-Reduction3). Asymptotically
when modulus p is large, the result of a Montgomery multiplication before the
final extra-reduction (at line 2 of Algorithm3) have piecewise p.d.f. given by

fU (u) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Ru
p3

(
1 − ln(Ru

p2)
)

if 0 ≤ u ≤ p2

R ;
1
p if p2

R ≤ u ≤ p;
1
p − R(u−p)

p3

(
1 − ln(R(u−p)

p2)
)

if p ≤ u ≤ p + p2

R ;

0 otherwise.

(5)

The corresponding p.d.f. for the square is also in four pieces with the same inter-
vals for u, and differs only from the multiplication in that it is equal to

√
Ru/p2

when 0 ≤ u ≤ p2

R , and 1/p −
√

R(u − p)/p2 when p ≤ u ≤ p + p2

R .

The theoretical values of Theorem 1 nicely superimpose with experimentally
estimated p.d.f.’s as shown in Fig. 2.

Theorem 2 (Joint Probability of Extra-Reduction in Multiplication
Followed by a Square [see Footnote 3]). The following joint probabilities
do not depend on the iteration index i, where l − 1 ≥ i > 0.

When Gi = T :

P(XMi , XSi−1) XSi−1 = 0 XSi−1 = 1

XMi = 0 1 − 7
12

p
R

+ 1
48

(
p
R

)4 p
3R

− 1
48

(
p
R

)4

XMi = 1 p
4R

− 1
48

(
p
R

)4 1
48

(
p
R

)4

3 Proof of this theorem is given in [8].

Correlated Extra-Reductions Defeat Blinded Regular Exponentiation 11

When Gi = F in SMA:

P(XMi , XSi−1) XSi−1 = 0 XSi−1 = 1

XMi = 0 1 − 7
12

p
R

+ 1
8

(
p
R

)2 p
3R

− 1
8

(
p
R

)2

XMi = 1 p
4R

− 1
8

(
p
R

)2 1
8

(
p
R

)2

When Gi = F in ML:

P(XMi , XSi−1) XSi−1 = 0 XSi−1 = 1

XMi = 0 1 − 7
12

p
R

+ 1
12

(
p
R

)2 p
3R

− 1
12

(
p
R

)2

XMi = 1 p
4R

− 1
12

(
p
R

)2 1
12

(
p
R

)2

It can be easily checked that Theorem 2 accurately matches experimental
probability estimations given in Table 1.

Corollary 1. The corresponding correlation coefficients are

ρ(XMi
,XSi−1 |Gi = T) =

p4

48R4 − p2

12R2
√

p
4R

(
1 − p

4R

)
p
3R

(
1 − p

3R

) ,

ρ(XMi
,XSi−1 |Gi = F) =

p2

24R2
√

p
4R

(
1 − p

4R

)
p
3R

(
1 − p

3R

) in SMA,

ρ(XMi
,XSi−1 |Gi = F) = 0 in ML.

Proof. Apply Pearson’s correlation definition on the results of Theorem2. ��

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

1/2 3/4 1

R
S

A
-1

02
4-

n

br
ai

np
oo

lP
25

6r
1

R
S

A
-1

02
4-

q
R

S
A

-1
02

4-
p

P
-2

56

C
or

re
la

tio
n

be
tw

ee
n

X
M

i a
nd

 X
S

i-1

Ratio p/R

Guess = True
Guess = False (SMA)

Guess = False (ML)

Fig. 3. Pearson’s correlation between XMi and XSi−1 .

12 M. Dugardin et al.

When the guess is correct, ρ(XMi
,XSi−1 |Gi = T) is negative and increasingly

negative as p/R increases, where

− 3
16

√
5
7 ≈ −0.158 ≤ ρ(XMi

,XSi−1 |Gi = T) ≤ − 3
4
√
6

≈ −0.306.

When the guess is incorrect, either the correlation is null (in the case of ML), or
it is positive and increasing with p/R, where for 1/2 ≤ p/R ≤ 1,

1
2
√
5×7

≈ 0.085 ≤ ρ(XMi
,XSi−1 |Gi = F) ≤ 1

2
√
6

≈ 0.204.

The variations of the correlation coefficients between XMi
and XSi−1 in the three

scenarios of Corollary 1 are plotted in Fig. 3.
Figure 3 shows that the correlation difference between guesses True/False

is greater for the SMA algorithm than for the ML algorithm. Thus our attack
on SMA should outperform that on ML. Also notice that the larger the ratio
p/R, the larger the correlation difference; hence, we expect P-256 to be easier
to break than brainpoolP256r1 with our attack.

4 Exploiting the Bias Using Our Attack

The difference between the two Pearson correlations according to the guess
value Gi (Corollary 1) allows us to test whether some data produced by an oper-
ation is fed into the next operation. The bit value ki can be estimated using the
Pearson correlation ρ as a distinguisher, a threshold T depending of the knowl-
edge of the attacker and a decision function denoted by FALG which depends of
the regular exponentiation algorithm and the used distinguisher.

Attacker’s Method. An attacker calls Q times the cryptographic operation with
a static key k and measures the corresponding side-channel trace. For each trace
q ∈ {1, . . . , Q}, (l−1) pairs of extra-reductions (xq

Mi
, xq

Si−1
)l−1≥i>0 are captured.

The complete acquisition campaign is denoted (xMi
, xSi−1), and is a matrix of

size Q × (l − 1) pairs of bits. Notice that neither the input nor the output
of the cryptographic algorithm is required. For all i ∈ {l − 1, . . . , 1} and q ∈
{1, . . . , Q}, xq

Mi
is equal to 1 (resp. 0) if the eXtra-reduction is present (resp.

missing) during the multiplication Mi for query q. Similarly, xq
Si−1

is equal to 1
(resp. 0) if the eXtra-reduction is present (resp. missing) during the square Si−1

for query q. For each pair of random variable (XMi
,XSi−1), the attacker first

computes the estimated probability P̂(XMi
,XSi−1), using:

P̂(XMi
,XSi−1) =

1
Q

Q∑

q=1

1(XMi
=xq

Mi
)∧(XSi−1=xq

Si−1
). (6)

The attacker then computes the Pearson correlation4 ρ̂(XMi
,XSi−1) for each pair

(xMi
, xSi−1) ∈ {0, 1}2 using the estimated probability P̂(XMi

,XSi−1). Finally,

4
ρ̂(XMi

, XSi−1
) =

ˆCov(XMi
,XSi−1

)

σ̂XMi
σ̂XSi−1

=
P̂(XMi

=1,XSi−1
=1)−(P̂(XMi

=1)×P̂(XSi−1
=1))

√
P̂(XMi

=1)(1−P̂(XMi
=1))

√
P̂(XSi−1

=1)(1−P̂(XSi−1
=1))

.

Correlated Extra-Reductions Defeat Blinded Regular Exponentiation 13

she estimates the exponent bit ki with her knowledge corresponding to threshold
T and decision function FALG .

Attacker’s Knowledge. In public key cryptography, the attacker wants to recover
the private exponent in RSA or the private scalar in ECC. In our attacks, we
assume these secret values are static, as for instance in RSA-CRT decryption or
static Diffie-Hellman key agreement protocol.

– In RSA-SFM and ECC, the attacker knows the parameters p and R defined
in Sect. 2.1. In RSA-SFM, p is equal to the public modulus nRSA. In ECC,
p equals the characteristic of the finite field over which the elliptic curve is
defined. The attacker can compute the Pearson correlations ρ(XMi

,XSi−1 |Gi =
T) and ρ(XMi

,XSi−1 |Gi = F) using corollary 1. The threshold for the success-
ful attack is defined by:

T =
ρ(XMi

,XSi−1 |Gi = T) + ρ(XMi
,XSi−1 |Gi = F)

2
. (7)

– In RSA-CRT, the attacker does not know the parameters p and R defined
in Sect. 2.1, because the prime factors pRSA and qRSA are secret parame-
ters. Hence the determination of the probabilities by theory or simulation are
impossible. However, using the Q measurements (xMi

, xSi−1), the attacker is

able to determine the mean estimated probability ÊiP̂(XMi
,XSi−1) by5:

ÊiP̂(XMi
,XSi−1) =

∑l−1
i=1 P̂(XMi

,XSi−1)
l − 1

. (8)

The attacker then computes the mean estimated Pearson correlations using
the mean estimated probability (8), and the threshold for the successful attack
is defined by:

T =
ÊiP̂(XMi

= 1,XSi−1 = 1) − (ÊiP̂(XMi
= 1) × ÊiP̂(XSi−1 = 1))

√

ÊiP̂(XMi
= 1)ÊiP̂(XMi

= 0)
√

ÊiP̂(XSi−1 = 1)ÊiP̂(XSi−1 = 0)
. (9)

In fact, the threshold value T computed in (7) or (9) does not depend on i. The
indication of index i was kept as a reminder that the multiplication Mi is done
in the iteration which precedes that of the square Si−1.

Decision Function. The decision function depending of the regular algorithm
and the used distinguisher ρ is denoted as FALG . We detail this function for the
SMA (Algorithm 1) and ML (Algorithm 2) algorithms.

5 Notice that in some cases, e.g. if the key bits happen not to be balanced,
ÊiP̂(XMi , XSi−1) can be estimated in a less biased way using maxi{P̂(XMi , XSi−1)}−
mini{P̂(XMi , XSi−1)}.

14 M. Dugardin et al.

– In the SMA algorithm, the scalar bit ki decides whether the output of Mi

is the input of Si−1 or not (see Fig. 1). If the bit value ki equals 1, then the
square Si−1 depends on Mi (Gi = T), otherwise the output value of Mi is
different from the input value of Si−1 (Gi = F). Using the Sect. 3, we see
that ρ(XMi

,XSi−1 |Gi = T) < ρ(XMi
,XSi−1 |Gi = F), so the decision function

FSMA is defined by:

k̂i = FSMA(ρ, T) =

{
0 if ρ̂(XMi

,XSi−1) ≥ T ,

1 otherwise.
(10)

– For the Montgomery Ladder (ML) algorithm, the Mi and Si−1 operations do
not depend directly on the key bit value ki. The dependence comes from the
bit value ki−1 and the previous bit value ki. If the two bits value ki−1 and
ki are different then the output of multiplication Mi and the input of square
Si−1 are equal (Gi = T), otherwise these output/input are different (Gi = F).
Using Sect. 3, we see that ρ(XMi

,XSi−1 |Gi = T) < ρ(XMi
,XSi−1 |Gi = F), so

the decision function FML using the previously estimated bit k̂i−1 is defined
for each i (l − 1 > i ≥ 1) by:

k̂i = FML(k̂i−1, ρ, T) =

{
k̂i−1 if ρ̂(XMi

,XSi−1) ≥ T ,

¬k̂i−1 otherwise.
(11)

Regarding the second most significant bit kl−1 of the exponent, either both
values kl−1 = 0 and kl−1 = 1 are tested to recover the full secret key, or
our attack can be applied between the first square FS (defined at line 2 of
Algorithm 2) and the square Sl−1 (line 5 of Algorithm 2).

Algorithm 4. ρ-attack
Input: (xMi , xSi−1), a set of Q pairs of (l − 1) bits

Output: An estimation k̂ ∈ {0, 1}l−1 of the secret exponent
1: for i = l − 1 downto 1 do
2: P̂(XMi , XSi−1) ← 0
3: for q = 1 to Q do
4: P̂(XMi = xq

Mi
, XSi−1 = xq

Si−1
) ← P̂(XMi = xq

Mi
, XSi−1 = xq

Si−1
) + 1

5: end for
6: P̂(XMi , XSi−1) ← P̂(XMi , XSi−1) / Q � Normalization

7: Compute ρ̂(XMi , XSi−1) using P̂(XMi , XSi−1)
8: end for
9: Compute T depending on the attacker’s knowledge

10: for i = l − 1 downto 1 do
11: k̂i ← FALG

(
ρ̂(XMi , XSi−1), T

)
� Threshold

12: end for
13: return k̂

Correlated Extra-Reductions Defeat Blinded Regular Exponentiation 15

Summary of the Attack. To estimate the exponent k by k̂, we define two attacks:

– The attack named “ρ-attack-Hard”, knowing the values of P(XMi
,XSi−1 |Gi =

T) and P(XMi
,XSi−1 |Gi = F), using the threshold T computed by (7).

– The attack named “ρ-attack-Soft”, when the theoretical value P(XMi
,

XSi−1 |Gi) is unknown. It uses the estimated probability P̂(XMi
,XSi−1) to

compute the threshold T by (9).

Algorithm 4 describes the attack to recover a full key. Lines 1-8 correspond
to the computation of the estimated probabilities for each bit ki defined by (6).
Line 9 is the computation of the threshold: if the attack is ρ-attack-Hard the
attacker uses (7), otherwise the attack is ρ-attack-Soft and she uses (9). The
lines 10-12 compute the full estimated key using the decision function FALG ,
defined by the Eqs. (10) or (11).

5 Experimental Results

In the first part of this section, we detail a simulated attack which exploits
the bias (explained in Corollary 1) to determine the number of queries neces-
sary for the success of the attack. Then, we detail the side-channel part (local
timing analysis using power consumption and electromagnetic analysis to dis-
tinguish functional vs dummy subtractions) in order to detect whether an eXtra-
reduction is performed (X = 1) or not (X = 0) during the Montgomery reduction
(Algorithm 3).

5.1 Simulations

Let RSA-1024-p defined at [8, Sect. 2.2] the modulus p used in the SMA algo-
rithm (Algorithm 1). We generated one thousand random queries and saved
for all MMM the information whether an extra-reduction is done or not. The
length of static key k is 512 bits. As detailed in the ρ-attack (Algorithm 4)
we computed the estimated probabilities P̂(XMi

,XSi−1) and the estimated
Pearson correlation ρ̂(XMi

,XSi−1) to retrieve each ki. The estimated threshold
T computed by (9) in our simulation is equal to −0.06076, which is an excel-
lent approximation of the theoretical threshold (7). To retrieve each bit if the
exponent, we used the decision function FSMA described for ρ-attack in SMA
by (10).

Figure 4 shows the estimated Pearson correlation values ρ̂(XMi
,XSi−1) for

the first iterations. It can be easily seen that the estimated key value by this
sequence corresponds to 0×1000111110101110111010011 . . . = 0×11f5dd3 . . .
Our ρ-attack retrieves the 511 bits of the exponent using 1000 randoms queries
with success rate 100%.

Success Rate Curves. We implemented ρ-attack-Hard and ρ-attack-Soft in
the ideal case, i.e., without noise. The success rate to recover one bit of the
exponent is represented in Fig. 5, for both SMA and ML cases. Interestingly,

16 M. Dugardin et al.

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 492 494 496 498 500 502 504 506 508 510

E
st

im
at

ed
 ρ

i

ρ(XMi
, XSi-1

)
Threshold

ki=1

ki=0

Fig. 4. Estimated Pearson correlations using 1000 randoms queries for RSA-1024-p for
the first 20 iterations.

Fig. 5. Evolution of the success rate for the ρ-attack-Soft and the ρ-attack-Hard as
a function of the number Q of queries (upper bound is the maximum likelihood), for
RSA-1024-p.

ρ-attack-Hard and ρ-attack-Soft yield the same success rate, which happens to
be (very close to) the optimal value. This optimal value is that obtained with
the maximum likelihood distinguisher derived in [8].

The reason for the hard and soft attacks to have similar success probability is
that the online estimation of the threshold is very good. Indeed, in the example
of Fig. 5, the threshold T (Eq. (9)) is estimated based on 512Q traces, which
is huge (one needs only to estimate 4 probabilities to get the estimation of T).
So, in the rest of this section, we make no difference between the hard and soft
versions of the attacks from a success rate point of view.

The ρ-attacks are very close to the Maximum Likelihood attack for a similar
reason. Estimating the difference between two random variables of very little
dimensionality (recall that (XMi

,XSi−1) lives in {0, 1}2) can be done almost

Correlated Extra-Reductions Defeat Blinded Regular Exponentiation 17

P = 10% P = 20% P = 30% P = 40%

Fig. 6. Evolution of the success rate for the ρ-attack in function of queries Q using
p = RSA-1024-p for four increasing noise values.

equivalently in the proportional scale [23] (Pearson correlation) as in the context
of information theoretic attacks (maximum likelihood attack) [8].

We may also notice that as the distinguisher margin [22] is larger for SMA
than for ML (recall Fig. 3), the former attack requires less traces to reach a given
success rate.

In practical cases, detecting an extra-reduction using only one acquisition can
lead to errors. The probability to have an error is denoted by Pnoise. We show in
Fig. 6 that the attack continues to be successful (albeit with more traces) over
a large range of Pnoise values. Evidently when Pnoise = 50% the attack becomes
infeasible.

5.2 Experimental Detection of Extra-Reductions

Two Montgomery reduction implementations will be analyzed in this section.
We raise the following questions.

1. How to exploit the local timing to distinguish the eXtra-reduction using power
consumption measurements, on OpenSSL v1.0.1k-3 (6)?

2. How to exploit the difference between a real and a dummy final subtraction
using electromagnetic (EM) emanations, on mbedTLS v 2.2.0 (7)?

(1a) Experiment Setup in Power. The target is a dual core LPC43S37 micro-
controller fabricated in CMOS 90 nm Ultra Low Leakage process soldered on
an LPCXpresso4337 board, and running at its maximum frequency (208 MHz).
The side-channel traces where obtained measuring the instantaneous power con-
sumption with a PICOSCOPE 6402C featuring 256 MB of memory, 500 MHz
bandwidth and 5 GS/s sampling rate. We executed the private function of RSA

6 Latest stable version at the time of submission.
7 Latest version at the time of submission.

18 M. Dugardin et al.

in OpenSSL with the private primes parameters defined by RSA-1024-p and
RSA-1024-q in [8, Sect. 2.2]. The private modular exponentiation is RSA-CRT
with a regular algorithm.

(1b) OpenSSL Experiment. In OpenSSL (see Listing 1.1 in AppendixA), the
final subtraction is made when U is greater than p like described in Algorithm 3.
A simple power analysis using the delay (referred to as “SPA-Timing”) between
two MMM operations found whether the extra-reduction is present (X = 1)
or not (X = 0). On the Cortex M4 core, the delay between the Mi and Si−1

when XMi
= 1 is 41.4952 μs, whereas the delay when XMi

= 0 is 41.1875 μs.
For the square operation Si−1, the delay is 41.5637 μs when XSi−1 = 1 and it
is 41.2471 μs when XSi−1 = 0. All in one, the observable timing differences are
respectively 308 ns and 317 ns. When OpenSSL is offloaded on the Cortex M0
core of the LPC43S37, the timing difference is respectively 399 ns and 411 ns.
The success rate of this detection attack is 100 %, hence Pnoise = 0.

(2a) Experiment Setup in EM. The target device is an STM32F4 micro-
controller, which contains an ARM Cortex-M4 processor running at its maximum
frequency (168 MHz). For the acquisition, we used a Tektronix oscilloscope and
a Langer near field probe. The sampling frequency is 1 GSa/s with 50 MHz hard-
ware input low-pass filter enabled. The position of the probe was determined to
maximize the signal related to the activity of the hardware 32 × 32 processor.
We executed the private function of RSA in mbedTLS, with the private primes
parameters defined by RSA-1024-p and RSA-1024-q in [8, Sect. 2.2]. The private
modular exponentiation is RSA-CRT with a regular algorithm.

(2b) mbedTLS Experiment. In order to achieve constant-time MMM, mbedTLS
library implements a countermeasure using a dummy subtraction (see Listing 1.2
in AppendixA). In order to test the efficiency of the countermeasure, the duration
of the real and dummy subtraction were compared as shown in Fig. 7. The dura-
tions are the same. Therefore, the SPA-Timing attack is not practical anymore.

In a view to differentiate the two patterns, we use a horizontal side-channel
analysis [3], namely Pearson correlation (max-corr) [4] or the sum of the absolute
differences (min-abs-diff). We build two reference patterns of the real sub-
traction RP (X = 1) and dummy subtraction RP (X = 0), and compare these
patterns with one acquisition.

For this experiment, we use 500 acquisitions to build template RP (X = 1)
and again 500 acquisitions to make RP (X = 0). The detection attack using one
acquisition Ax where the extra-reduction X = x is considered successful:

– when ρ(Ax, RP (X = x)) > ρ(Ax, RP (X = ¬x)) for max-corr, and
– when E(|Ax − RP (X = x)|) < E(|Ax − RP (X = x)|) for min-abs-diff.

The success rate of the extra-reduction detection using 30000 acquisitions is
82.50 % for max-corr and 83.47 % for min-abs-diff, hence Pnoise < 20%.

Correlated Extra-Reductions Defeat Blinded Regular Exponentiation 19

XMi = 1 XMi = 0

-150

-100

-50

 0

 50

 100

 150

 0 5000 10000 15000 20000

E
M

Number of samples

Multiply
 Mi

extra-reduction of Mi
 XMi

=1
Square

 Si-1

-150

-100

-50

 0

 50

 100

 150

 0 5000 10000 15000 20000

E
M

Number of samples

Multiply
 Mi

extra-reduction of Mi
 XMi

=0
Square

 Si-1

Fig. 7. Electromagnetic acquisition focus on one real subtraction (left) and pattern of
one dummy subtraction (right) between two consecutive MMM operations.

5.3 Conclusions on Experiments

By combining the detection of extra-reductions using side-channel analysis
(Sect. 5.2) and the theoretical attack to decide whether or not there is a depen-
dency between various MMMs (Sect. 4), we deduce the number of queries Q
needed to recover the secret exponent k. Table 2 summaries the results.

Table 2. Summary of the number of queries (see Fig. 6(b)) to retrieve all key bits of a
secret exponent, as a function of side-channel detection method and regular exponen-
tiation algorithm.

Type of attack side-channel for detection SPA-Timing max-corr min-abs-diff

Detection probability for one query
= 1 − Pnoise

100% 82.50 % 83.47 %

Number of queries (SMA) ≈ 200 ≈ 10000 ≈ 10000

Number of queries (ML) ≈ 400 ≈ 20000 ≈ 20000

6 Conclusion

This paper has presented a new theoretical and practical attack against asym-
metrical computation with regular exponentiation using extra-reductions as a
side-channel. The working factor is the existence of a strong bias between the
extra-reductions during the Montgomery Modular Multiplication of two consecu-
tive operations. This new bias can be exploited in each regular binary algorithm,
because each iteration consists in a square and a multiply whose inputs depend
on the outputs of an operation from the previous iteration.

20 M. Dugardin et al.

The new attacks have been detailed on RSA but are also applicable to ECC
with appropriate customizations for various ECC implementations. As an exam-
ple [5] for addition madd-2004-hmv, the Z-coordinate in output of addition is
computed by a multiplication Z3 = Z1×T1 and for doubling dbl-2007-bl, the
Z-coordinate in input of doubling is a square ZZ = Z1 × Z1.

Acknowledgements. The authors would like to thank the anonymous reviewers for
their useful comments that improved the quality of the paper. The first author would
also like to thank François Dassance, Jean-Christophe Courrège and her colleagues for
the suggestion of the main idea of this paper and their valuable insights.

A Analysis of Extra-Reduction in OpenSSL and
MbedTLS Source Codes

The extra-reduction is explicit in the source code of OpenSSL, as shown in
Listing 1.1.

Listing 1.1. Extra-reduction in OpenSSL code. File crypto/bn/bn mont.c

309 i f (BN ucmp(ret , &(mont−>N)) >= 0)
310 {
311 i f (! BN usub (ret , ret ,&(mont−>N))) goto e r r ;
312 }

The big-number library of mbedTLS implements a protection against timing
attacks. A subtraction is also carried out: it is either functional or dummy, as
shown in Listing 1.2.

Listing 1.2. Extra-reduction in mbedTLS code. File library/bignum.c, function
mpi montmul

1500 i f (mpi cmp abs (A, N) >= 0)
1501 mpi sub hlp (n , N−>p , A−>p) ;
1502 else
1503 /∗ prevent t iming a t t a c k s ∗/
1504 mpi sub hlp (n , A−>p , T−>p) ;

Correlated Extra-Reductions Defeat Blinded Regular Exponentiation 21

References

1. Acıiçmez, O., Schindler, W.: A vulnerability in RSA implementations due to
instruction cache analysis and its demonstration on openSSL. In: Malkin, T. (ed.)
CT-RSA 2008. LNCS, vol. 4964, pp. 256–273. Springer, Heidelberg (2008)

2. Aciiçmez, O., Schindler, W., Koç, Ç.K.: Improving Brumley and Boneh timing
attack on unprotected SSL implementations. In: Atluri, V., Meadows, C., Juels,
A. (eds.) CCS 2005, pp. 139–146. ACM, New York (2005)

3. Bauer, A., Jaulmes, É., Prouff, E., Reinhard, J.-R., Wild, J.: Horizontal collision
correlation attack on elliptic curves - extended version. Cryptogr. Commun. 7(1),
91–119 (2015)

4. Belgarric, P., Bhasin, S., Bruneau, N., Danger, J.-L., Debande, N., Guilley, S.,
Heuser, A., Najm, Z., Rioul, O.: Time-frequency analysis for second-order attacks.
In: Francillon, A., Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 108–122.
Springer, Heidelberg (2014)

5. Bernstein, D.J., Lange, T.: Explicit formulas database. http://www.hyperelliptic.
org/EFD/

6. Clavier, C., Feix, B., Gagnerot, G., Roussellet, M., Verneuil, V.: Horizontal corre-
lation analysis on exponentiation. In: Soriano, M., Qing, S., López, J. (eds.) ICICS
2010. LNCS, vol. 6476, pp. 46–61. Springer, Heidelberg (2010)

7. Courrège, J.-C., Feix, B., Roussellet, M.: Simple power analysis on exponentiation
revisited. In: Gollmann, D., Lanet, J.-L., Iguchi-Cartigny, J. (eds.) CARDIS 2010.
LNCS, vol. 6035, pp. 65–79. Springer, Heidelberg (2010)

8. Dugardin, M., Guilley, S., Danger, J.-L., Najm, Z., Rioul, O.: Correlated extra-
reductions defeat blinded regular exponentiation - extended version. Cryptology
ePrint Archive, Report 2016/597 (2016). http://eprint.iacr.org/2016/597

9. Fouque, P.-A., Réal, D., Valette, F., Drissi, M.: The carry leakage on the ran-
domized exponent countermeasure. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008.
LNCS, vol. 5154, pp. 198–213. Springer, Heidelberg (2008)

10. Hanley, N., Kim, H.S., Tunstall, M.: Exploiting collisions in addition chain-based
exponentiation algorithms using a single trace. In: Nyberg, K. (ed.) CT-RSA 2015.
LNCS, vol. 9048, pp. 429–446. Springer, Heidelberg (2015)

11. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

12. Kocher, P.C.: On certificate revocation and validation. In: Hirschfeld, R. (ed.) FC
1998. LNCS, vol. 1465, pp. 172–177. Springer, Heidelberg (1998)

13. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptog-
raphy. CRC Press, Boca Raton (1996). http://www.cacr.math.uwaterloo.ca/hac/

14. Peter, L.: Montgomery: modular multiplication without trial division. Math. Com-
put. 44(170), 519–521 (1985)

15. Sato, H., Schepers, D., Takagi, T.: Exact analysis of montgomery multiplication.
In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT 2004. LNCS, vol. 3348,
pp. 290–304. Springer, Heidelberg (2004)

16. Schindler, W.: A timing attack against RSA with the Chinese Remainder Theorem.
In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 109–124. Springer,
Heidelberg (2000)

17. Schindler, W.: A combined timing and power attack. In: Naccache, D., Paillier, P.
(eds.) PKC 2002. LNCS, vol. 2274, pp. 263–279. Springer, Heidelberg (2002)

http://www.hyperelliptic.org/EFD/
http://www.hyperelliptic.org/EFD/
http://eprint.iacr.org/2016/597
http://www.cacr.math.uwaterloo.ca/hac/

22 M. Dugardin et al.

18. Schindler, W.: Exclusive exponent blinding may not suffice to prevent timing
attacks on RSA. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS, vol.
9293, pp. 229–247. Springer, Heidelberg (2015)

19. Schindler, W., Koeune, F., Quisquater, J.-J.: Improving divide and conquer attacks
against cryptosystems by better error detection/correction strategies. In: Honary,
B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 245–267. Springer,
Heidelberg (2001)

20. Schindler, W., Walter, C.D.: More detail for a combined timing and power attack
against implementations of RSA. In: Paterson, K.G. (ed.) Cryptography and Cod-
ing 2003. LNCS, vol. 2898, pp. 245–263. Springer, Heidelberg (2003)

21. Walter, C.D., Thompson, S.: Distinguishing exponent digits by observing modular
subtractions. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 192–207.
Springer, Heidelberg (2001)

22. Whitnall, C., Oswald, E.: A comprehensive evaluation of mutual information analy-
sis using a fair evaluation framework. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 316–334. Springer, Heidelberg (2011)

23. Whitnall, C., Oswald, E., Standaert, F.-X.: The myth of generic DPA..and the
magic of learning. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp. 183–
205. Springer, Heidelberg (2014)

24. Witteman, M.F., van Woudenberg, J.G.J., Menarini, F.: Defeating RSA multiply-
always and message blinding countermeasures. In: Kiayias, A. (ed.) CT-RSA 2011.
LNCS, vol. 6558, pp. 77–88. Springer, Heidelberg (2011)

Horizontal Side-Channel Attacks
and Countermeasures

on the ISW Masking Scheme

Alberto Battistello1(B), Jean-Sébastien Coron2, Emmanuel Prouff3,
and Rina Zeitoun1

1 Oberthur Technologies, Colombes, France
{a.battistello,r.zeitoun}@oberthur.com

2 University of Luxembourg, Luxembourg, Luxembourg
jean-sebastien.coron@uni.lu

3 Laboratoire d’Informatique de Paris 6 (LIP6), Sorbonne Universités,
UPMC Univ Paris 06, CNRS, INRIA, Équipe PolSys, 4 place Jussieu,

75252 Paris Cedex 05, France

Abstract. A common countermeasure against side-channel attacks con-
sists in using the masking scheme originally introduced by Ishai, Sahai
and Wagner (ISW) at Crypto 2003, and further generalized by Rivain
and Prouff at CHES 2010. The countermeasure is provably secure in the
probing model, and it was showed by Duc, Dziembowski and Faust at
Eurocrypt 2014 that the proof can be extended to the more realistic
noisy leakage model. However the extension only applies if the leakage
noise σ increases at least linearly with the masking order n, which is not
necessarily possible in practice.

In this paper we investigate the security of an implementation when
the previous condition is not satisfied, for example when the masking
order n increases for a constant noise σ. We exhibit two (template) hori-
zontal side-channel attacks against the Rivain-Prouff’s secure multiplica-
tion scheme and we analyze their efficiency thanks to several simulations
and experiments.

Eventually, we describe a variant of Rivain-Prouff’s multiplication
that is still provably secure in the original ISW model, and also heuris-
tically secure against our new attacks.

1 Introduction

Side-channel analysis is a class of cryptanalytic attacks that exploit the physical
environment of a cryptosystem to recover some leakage about its secrets. To
secure implementations against this threat, security developers usually apply
techniques inspired from secret sharing [Bla79,Sha79] or multi-party computation
[CCD88]. The idea is to randomly split a secret into several shares such that the
adversary needs all of them to reconstruct the secret. For these schemes, the

E. Prouff—Part of this work has been done at Safran Identity and Security, and
while the author was at ANSSI, France.

c© International Association for Cryptologic Research 2016
B. Gierlichs and A.Y. Poschmann (Eds.): CHES 2016, LNCS 9813, pp. 23–39, 2016.
DOI: 10.1007/978-3-662-53140-2 2

24 A. Battistello et al.

number of shares n in which the key-dependent data are split plays the role of
a security parameter.

A common countermeasure against side-channel attacks consists in using
the masking scheme originally introduced by Ishai, Sahai and Wagner (ISW)
[ISW03]. The countermeasure achieves provable security in the so-called probing
security model [ISW03], in which the adversary can recover a limited number of
intermediate variables of the computation. This model has been argued to be
practically relevant to address so-called higher-order side-channel attacks and it
has been the basis of several efficient schemes to protect block ciphers.

More recently, it has been shown in [DDF14] that the probing security of an
implementation actually implies its security in the more realistic noisy leakage
model introduced in [PR13]. More precisely, if an implementation obtained by
applying the compiler in [ISW03] is secure at order n in the probing model,
then [DFS15, Theorem3] shows that the success probability of distinguishing
the correct key among |K| candidates is bounded above by |K| · 2−n/9 if the
leakage Li on each intermediate variable Xi satisfies:

I(Xi;Li) � 2 · (|K| · (28n + 16))−2,

where I(·; ·) denotes the mutual information and where the index i ranges from
1 to the total number of intermediate variables.

In this paper we investigate what happens when the above condition is not
satisfied. Since the above mutual information I(Xi;Li) can be approximated
by k/(8σ2) in the Hamming weight model in F2k , where σ is the noise in the
measurement (see the full version of this paper [BCPZ16]), this amounts to
investigating the security of Ishai-Sahai-Wagner’s (ISW) implementations when
the number of shares n satisfies:

n > c · σ

As already observed in previous works [VGS14,CFG+10], the fact that the same
share (or more generally several data depending on the same sensitive value) is
manipulated several times may open the door to new attacks which are not
taken into account in the probing model. Those attacks, sometimes called hori-
zontal [CFG+10] or (Template) algebraic [ORSW12,VGS14] exploit the algebraic
dependency between several intermediate results to discriminate key hypotheses.

In this paper, we exhibit two (horizontal) side channel attacks against the
ISW multiplication algorithm. These attacks show that the use of this algorithm
(and its extension proposed by Rivain and Prouff in [RP10]) may introduce a
weakness with respect to horizontal side channel attacks if the sharing order n
is such that n > c · σ2, where σ is the measurement noise. While the first attack
is too costly (even for low noise contexts) to make it applicable in practice, the
second attack, which essentially iterates the first one until achieving a satisfying
likelihood, shows very good performances. For instance, when the leakages are
simulated by noisy Hamming weights computed over F28 with σ = 1, it recovers
all the shares of a 21-sharing. We also confirm the practicality of our attack with
a real life experiment on a development platform embedding the ATMega328

Horizontal Side-Channel Attacks and Countermeasures 25

processor (see the full version of this paper [BCPZ16]). Actually, in this context
where the leakages are multivariate and not univariate as in our theoretical
analyses and simulations, the attack appears to be more efficient than expected
and recovers all the shares of a n-sharing when n � 40.

Eventually, we describe a variant of Rivain-Prouff’s multiplication that is still
provably secure in the original ISW model, and also heuristically secure against
our new attacks. Our new countermeasure is similar to the countermeasure in
[FRR+10], in that it can be divided in two steps: a “matrix” step in which start-
ing from the input shares xi and yj , one obtains a matrix xi ·yj with n2 elements,
and a “compression” step in which one uses some randomness to get back to a
n-sharing ci. Assuming a leak-free component, the countermeasure in [FRR+10]
is proven secure in the noisy leakage model, in which the leakage function reveals
all the bits of the internal state of the circuit, perturbed by independent bino-
mial noise. Our countermeasure does not use any leak-free component, but is
only heuristically secure in the noisy leakage model (see Sect. 8.2 for our security
analysis).

2 Preliminaries

For two positive integers n and d, a (n, d)-sharing of a variable x defined over
some finite field F2k is a random vector (x1, x2, . . . , xn) over F2k such that x =∑n

i=1 xi holds (completeness equality) and any tuple of d−1 shares xi is a uniform
random vector over (F2k)d−1. If n = d, the terminology simplifies to n-sharing.
An algorithm with domain (F2k)n is said to be (n − 1)th-order secure in the
probing model if on input an n-sharing (x1, x2, . . . , xn) of some variable x, it
admits no tuple of n − 1 or fewer intermediate variables that depends on x.

We refer to the full version of this paper [BCPZ16] for the definitions of Signal
to Noise Ratio (SNR), Gaussian distribution, entropy and differential entropy.

3 Secure Multiplication Schemes

In this section, we recall the secure multiplication scheme over F2 introduced in
[ISW03] and its extension to any field F2k proposed in [RP10].

Ishai-Sahai-Wagner’s Scheme [ISW03]. Let x� and y� be binary values from
F2 and let (xi)1≤i≤n and (yi)1≤i≤n be n-sharings of x� and y� respectively. To
securely compute a sharing of c = x� ·y� from (xi)1≤i≤n and (yi)1≤i≤n, the ISW
method works as follows:

1. For every 1 ≤ i < j ≤ n, pick up a random bit ri,j .
2. For every 1 ≤ i < j ≤ n, compute rj,i = (ri,j + xi · yj) + xj · yi.
3. For every 1 ≤ i ≤ n, compute ci = xi · yi +

∑
j �=i ri,j .

The above multiplication scheme achieves security at order �n/2� in the probing
security model [ISW03].

26 A. Battistello et al.

The Rivain-Prouff Scheme. The ISW countermeasure was extended to F2k

by Rivain and Prouff in [RP10]. As showed in [BBD+15], the SecMult algorithm
below is secure in the ISW probing model against t probes for n ≥ t + 1 shares;
the authors also show that with some additional mask refreshing, the Rivain-
Prouff countermeasure for the full AES can be made secure with n ≥ t + 1
shares.

Algorithm 1. SecMult

Input: the n-sharings (xi)i∈[1..n] and (yj)j∈[1..n] of x� and y� respectively
Output: the n-sharing (ci)i∈[1..n] of x� · y�

1: for i = 1 to n do
2: for j = i + 1 to n do
3: ri,j ←$

F2k

4: rj,i ← (ri,j + xi · yj) + xj · yi

5: end for
6: end for
7: for i = 1 to n do
8: ci ← xi · yi

9: for j = 1 to n, j �= i do ci ← ci + ri,j

10: end for
11: return (c1, c1, . . . , cn)

In Algorithm 1, one can check that each share xi or yj is manipulated n times,
whereas each product xiyj is manipulated a single time. This gives a total of
3n2 manipulations that can be observed through side channels.

4 Horizontal DPA Attack

4.1 Problem Description

Let (xi)i∈[1..n] and (yi)i∈[1..n] be respectively the n-sharings of x� and y� (namely,
we have x� = x1+ · · ·+xn and y� = y1+ · · ·+yn). We assume that an adversary
gets, during the processing of Algorithm 1, a single observation of each of the
following random variables for 1 ≤ i, j ≤ n:

Li = ϕ(xi) + Bi (1)
L′

j = ϕ(yj) + B′
j (2)

L′′
ij = ϕ(xi · yj) + B′′

ij (3)

where ϕ is an unknown function which depends on the device architecture, where
Bi, B′

j are Gaussian noise of standard deviation σ/
√

n, and B′′
ij is Gaussian noise

with standard deviation σ. Namely we assume that each xi and yj is processed
n times, so by averaging the standard deviation is divided by a factor

√
n,

which gives σ/
√

n if we assume that the initial noise standard deviation is σ.
The random variables associated to the ith share xi and the jth share yj are
respectively denoted by Xi and Yj . Our goal is to recover the secret variable x�

(and/or y�).

Horizontal Side-Channel Attacks and Countermeasures 27

4.2 Complexity Lower Bound: Entropy Analysis of Noisy Hamming
Weight Leakage

For simplicity, we first restrict ourselves to a leakage function ϕ equal to the
Hamming weight of the variable being manipulated. In that case, the mutual
information I(X;L) between the Hamming weight of a uniform random variable
X defined over F2k and a noisy observation L of this Hamming weight can be
approximated as:

I(X;L) � k

8σ2
, (4)

if the noise being modeled by a Gaussian random variable has standard deviation
σ. This approximation, whose derivation is given in the full version of this paper
[BCPZ16], is only true for large σ.

To recover a total of 2n shares (n shares of x� and y� respectively) from 3n2

Hamming weight leakages (namely each manipulation leaks according to (1)-(3)
with ϕ = HW), the total amount of information to be recovered is 2n · k if we
assume that the shares are i.i.d. with uniform distribution over F2k . Therefore,
since we have a total of 3n2 observations during the execution of Algorithm 1,
we obtain from (4) that the noise standard deviation σ and the sharing order n
must satisfy the following inequality for a side channel attack to be feasible:

3 · n2 · k

8σ2
> 2n · k. (5)

We obtain an equality of the form n > c · σ2 for some constant c, as in a clas-
sical (vertical) side channel attack trying to recover x� from n observations of
intermediate variables depending on x� [CJRR99]. This analogy between hor-
izontal and vertical attacks has already been noticed in previous papers like
[CFG+10] or [BJPW13]. Note that in principle the constant c is independent
of the field degree k (which has also been observed in previous papers, see for
instance [SVO+10]).

4.3 Attack with Perfect Hamming Weight Observations

In the full version of this paper [BCPZ16], we consider the particular case of
perfect Hamming weight measurements (no noise), using a maximum likelihood
approach. We show that even with perfect observations of the Hamming weight,
depending on the finite-field representation, we are not always guaranteed to
recover the secret variable x�; however for the finite field representation used in
AES the attack enables to recover the secret x� for a large enough number of
observations.

4.4 Maximum Likelihood Attack: Theoretical Attack with the Full
ISW State

For most field representations and leakage functions, the maximum likelihood
approach used in the previous section recovers the i-th share of x� from an

28 A. Battistello et al.

observation of Li and an observation of (L′
j , L

′′
ij) for every j ∈ [1..n]. It extends

straightforwardly to noisy scenarios and we shall detail this extension in Sect. 5.1.
However, the disadvantage of this approach is that it recovers each share sepa-
rately, before rebuilding x� and y� from them. From a pure information theoretic
point of view this is suboptimal since (1) the final purpose is not to recover all
the shares perfectly but only the shared values and (2) only 3n observations are
used to recover each share whereas the full tuple of 3n2 observations brings more
information. Actually, the most efficient attack in terms of leakage exploitation
consists in using the joint distribution of (Li, L

′
j , L

′′
ij)i,j∈[1..n] to distinguish the

correct hypothesis about x� = x1 + x2 + · · · + xn and y� = y1 + y2 + · · · + yn.
As already observed in Sect. 3, during the processing of Algorithm 1, the

adversary may get a tuple (�ij)j∈[1..n] (resp. (�′
ij)i∈[1..n]) of n observations for

each Li (resp. each L′
j) and one observation �′′

ij for each L′′
ij . The full tuple of

observations (�ij , �
′
ij , �

′′
ij)i,j is denoted by �, and we denote by L the correspond-

ing random variable1. Then, to recover (x�, y�) from �, the maximum likelihood
approach starts by estimating the pdfs fL|X�=x�,Y �=y� for every possible (x�, y�),
and then estimates the following vector of distinguisher values for every hypoth-
esis (x, y):

d�
ML(�) .=

(
fL|(X�,Y �)(�, (x, y))

)

(x,y)∈F
2
2k

(6)

The pair (x, y) maximizing the above probability is eventually chosen.
At a first glance, the estimation of the pdfs fL|X�=x�,Y �=y� seems to be chal-

lenging. However, it can be deduced from the estimations of the pdfs associated
to the manipulations of the shares. Indeed, after denoting by px,y each probabil-
ity value in the right-hand side of (6), and by using the law of total probability
together with the fact that the noises are independent, we get:

22kn · px,y =
∑

x1,··· ,xn∈F
2k

x=x1+···+xn

∑

y1,··· ,yn∈F
2k

y=y1+···+yn

n∏

i,j=1

fLi|Xi
(�ij , xi) · fL′

j |Yj
(�′

ij , yj) · fL′′
ij |XiYj

(�′′
ij , xiyj).

Unfortunately, even if the equation above shows how to deduce the pdfs
fL|(X�,Y �)(·, (x�, y�)) from characterizations of the shares’ manipulations, a
direct processing of the probability has complexity O(22nk). By representing the
sum over the xi’s as a sequence of convolution products, and thanks to Walsh
transforms processing, the complexity can be easily reduced to O(n2n(k+1)). The
latter complexity stays however too high, even for small values of n and k, which
led us to look at alternatives to this attack.

1 In (1)–(3), it is assumed that the observations (�ij)j∈[1..n] and (�′
ij)i∈[1..n] are aver-

aged to build a single observation with noise divided by
√

n. This assumption is not
done here in order to stay as general as possible.

Horizontal Side-Channel Attacks and Countermeasures 29

5 First Attack: Maximum Likelihood Attack on a Single
Matrix Row

5.1 Attack Description

In this section, we explain how to recover each share xi of x� separately, by
observing the processing of Algorithm 1. Applying this attack against all the
shares leads to the full recovery of the sensitive value x� with some success
probability, which is essentially the product of the success probabilities of the
attack on each share separately.

Given a share xi, the attack consists in collecting the leakages on (yj , xi · yj)
for every j ∈ [1..n]. Therefore the attack is essentially a horizontal version of
the classical (vertical) second-order side-channel attack, where each share xi is
multiplicatively masked over F2k by a random yj for j ∈ [1..n].

The most efficient attack to maximize the amount of information recovered on
Xi from a tuple of observations �

.= �i, (�′
j , �

′′
ij)j∈[1..n] ←↩ L

.= Li, (L′
j , L

′′
ij)j∈[1..n]

consists in applying a maximum likelihood approach [CJRR99,GHR15], which
amounts to computing the following vector of distinguisher values:

dML(�) .=
(
fL|Xi

(�, x̂i)
)

x̂i∈F2k
(7)

and in choosing the candidate x̂i which maximizes the probability. We refer to
the full version of this paper [BCPZ16] for the derivation of each score fL|Xi

(�, x̂i)
in (7); we obtain:

f(L′
j ,L′′

ij)|Xi
((�′

j , �
′′
ij), x̂i) =

∑

y∈F2k

f(L′
j ,L′′

ij)|(Xi,Yj)((�
′
j , �

′′
ij), (x̂i, y)) · pYj

(y) , (8)

and similarly:

f(Li,L′′
ij)|Yj

((�i, �
′′
ij), ŷj) =

∑

x∈F2k

f(Li,L′′
ij)|(Xi,Yj)((�i, �

′′
ij), (x, ŷj)) · pXi

(x) . (9)

5.2 Complexity Analysis

As mentioned previously, given a share xi, the attack consists in collecting the
leakages on (yj , xi · yj) for every j ∈ [1..n]. Therefore the attack is essentially
an horizontal version of the classical (vertical) second-order side-channel attack.
In principle the number n of leakage samples needed to recover xi with good
probability (aka the attack complexity) should consequently be n = O(σ4)
[CJRR99,GHR15,SVO+10]. This holds when multiplying two leakages both
with noise having σ as standard deviation. However here the leakage on yj has
a noise with a standard deviation σ/

√
n instead of σ (thanks to the averaging

step). Therefore the noise of the product becomes σ2/
√

n (instead of σ2), which
gives after averaging with n measurements a standard deviation of σ2/n, and
therefore an attack complexity satisfying n = O(σ2), as in a classical first-order
side-channel attack.

30 A. Battistello et al.

5.3 Numerical Experiments

The attack presented in Sect. 5.1 has been implemented against each share xi of
a value x, with the leakages being simulated according to (1)–(3) with ϕ = HW.
For the noise standard deviation σ and the sharing order n, different values
have been tested to enlighten the relation between these two parameters. We
stated that an attack succeeds iff the totality of the n shares xi have been
recovered, which leads to the full recovery of x�. We recall that, since the shares
xi are manipulated n times, measurements for the leakages Li and L′

j have noise
standard deviations σ/

√
n instead of σ. For efficiency reasons, we have chosen

to work in the finite field F24 (namely k = 4 in previous analyses).
For various noise standard deviations σ with SNR = k(2σ)−2 (i.e. SNR =

σ−2 for k = 4), Table 1 gives the average minimum number n of shares required
for the attack to succeed with probability strictly greater than 0.5 (the averaging
being computed over 300 attack iterations). The attack complexity n = O(σ2)
argued in Sect. 5.2 is confirmed by the trend of these numerical experiments.
Undeniably, this efficiency is quickly too poor for practical applications where n
is small (clearly lower than 10) and the SNR is high (smaller than 1).

Table 1. First attack: number of shares n as a function of the noise σ to succeed with
probability > 0.5

σ (SNR) 0 (+∞) 0.2 (25) 0.4 (6.25) 0.6 (2.77) 0.8 (1.56) 1 (1)

n 12 14 30 73 160 284

6 Second Attack: Iterative Attack

6.1 Attack Description

From the discussions in Sect. 4.4, and in view of the poor efficiency of the previ-
ous attack, we investigated another strategy which targets all the shares simul-
taneously. Essentially, the core idea of our second attack described below is to
apply several attacks recursively on the xi’s and yj ’s, and to refine step by step
the likelihood of each candidate for the tuple of shares. Namely, we start by
applying the attack described in Sect. 5.1 in order to compute, for every i, a
likelihood probability for each hypothesis Xi = x (x ranging over F2k); then we
apply the same attack in order to compute, for every j, a likelihood probability
for each hypothesis Yj = y (y ranging over F2k) with the single difference that
the probability pXi

(x) in (9) is replaced by the likelihood probability which was
just computed2. Then, one reiterates the attack to refine the likelihood prob-
abilities (pXi

(x))x∈F2k
, by evaluating (8) with the uniform distribution pYj

(y)

2 Actually to get the probability of Xi | L instead of L | Xi, Bayes’ Formula is applied
which explains the division by the sum of probabilities in the lines 14 and 19 in
Algorithm 2.

Horizontal Side-Channel Attacks and Countermeasures 31

being replaced by the likelihood probability new-pYj
(y) which has been previ-

ously computed. The scheme is afterwards repeated until the maximum taken
by the pdfs of each share Xi and Yj is greater than some threshold β. In order
to have better results, we perform the whole attack a second time, by starting
with the computation of the likelihood probability for each hypothesis Yj = y
instead of starting by Xi = x.

We give the formal description of the attack processing in Algorithm2
(in order to have the complete attack, one should perform the while loop a
second time, by rather starting with the computation of new-pYj

(y) instead of
new-pXi

(x)).

6.2 Numerical Experiments

The iterative attack described in Algorithm 2 has been tested against leakages
simulations defined exactly as in Sect. 5.3. As previously we stated that an attack
succeeds if the totality of the n shares xi have been recovered, which leads to the
full recovery of x�. For various noise standard deviations σ with SNR = k(2σ)−2,
Table 2 gives the average minimum number of shares n required for the attack to
succeed with probability strictly greater than 0.5 (the averaging being computed
over 300 attack iterations). The first row corresponds to k = 4, and the second
row to k = 8 (the corresponding SNRs are SNR4 = σ−2 and SNR8 = (

√
2σ2)−1).

Numerical experiments yield greatly improved results in comparison to those
obtained by running the basic attack. Namely, in F24 , for a noise σ = 0, the
number of shares required is 2, while 12 shares were needed for the basic attack,
and the improvement is even more confirmed with a growing σ: for a noise
σ = 1, the number of shares required is 25, while 284 shares were needed for the
basic attack. It can also be observed that the results for shares in F24 and F28

are relatively close, the number of shares being most likely slightly smaller for
shares in F24 than in F28 . This observation is in-line with the lower bound in
(5), where the cardinality 2k of the finite field plays no role.

Table 2. Iterative attack: number of shares n as a function of the noise σ to succeed
with probability > 0.5 in F24 (first row) and in F28 (second row).

σ

(SNR4, SNR8)

0

(+∞, +∞)

0.2

(25, 17.67)

0.4 (6.25, 4.41) 0.6 (2.77, 1.96) 0.8 (1.56, 1.10) 1 (1, 0.7071)

n (for F24) 2 2 3 6 13 25

n (for F28) 5 6 8 11 16 21

7 Practical Results

In the full version of this paper [BCPZ16], we describe the result of practi-
cal experiments of our attack against a development platform embedding the
ATMega328 processor.

32 A. Battistello et al.

Algorithm 2. Iterative Maximum Likelihood Attack
Input: a threshold β, an observation �i of each Li, an observation �′

j of each L′
j and

one observation �′′
ij of each L′′

ij (the random variables being defined as in (1)-(3))
Output: a n-tuple of pdfs (pXi)i (resp. (pYi)i) such that, for every i ∈ [1..n],

at least one x̂i (resp. ŷj) satisfies pXi(x̂i) � β (resp. pYi(ŷj) � β)

1: for i = 1 to n do
2: for x ∈ F2k do # Initialize the likelihood of each candidate for Xi

3: pXi(x) = fLi|Xi
(�i, x)

4: end for
5: for y ∈ F2k do # Initialize the likelihood of each candidate for Yi

6: pYi(y) = fL′
i|Yi

(�′
i, yi)

7: new-pYi(y) = pYi(y)
8: end for
9: end for

10: while end �= n do
11: end ← 0
12: for i = 1 to n do
13: for x ∈ F2k do # Compute/Update the likelihood of each candidate for Xi

14: new-pXi(x) = 2−(2n+1)k pXi
(x)∑

x′∈F
2k

pXi
(x′)
∏n

j=1

∑
y∈F2k

new-pYj
(y)∑

y′∈F
2k

new-pYj
(y′) ·

fL′′
ij |XiYj

(�′′
ij , x · y)

15: end for
16: end for
17: for i = 1 to n do
18: for y ∈ F2k do # Compute/Update the likelihood of each candidate for Yi

19: new-pYi(y) = 2−(2n+1)k pYi
(y)∑

y′∈F
2k

pYi
(y′)
∏n

j=1

∑
x∈F2k

new-pXj
(x)∑

x′∈F
2k

new-pXj
(x′) ·

fL′′
ij |XiYj

(�′′
ij , x · y)

20: end for
21: end for
22: for i = 1 to n do
23: if maxx(new-pXi(x)) � β and maxy(new-pYi(y)) � β then
24: end + +
25: end if
26: end for
27: end while

8 A Countermeasure Against the Previous Attacks

8.1 Description

In the following, we describe a countermeasure against the previous attack against
the Rivain-Prouff algorithm. More precisely, we describe a variant of Algorithm1,
called RefSecMult, to compute an n-sharing of c = x� · y� from (xi)i∈[1..n]

and (yi)i∈[1..n]. Our new algorithm is still provably secure in the original ISW

Horizontal Side-Channel Attacks and Countermeasures 33

Algorithm 3. RefSecMult

Input: n-sharings (xi)i∈[1..n] and (yj)j∈[1..n] of x� and y� respectively
Output: an n-sharing (ci)i∈[1..n] of x� · y�

1: Mij ← MatMult((x1, . . . , xn), (y1, . . . , yn))
2: for i = 1 to n do
3: for j = i + 1 to n do
4: ri,j ←$

F2k

5: rj,i ← (ri,j + Mij) + Mji

6: end for
7: end for
8: for i = 1 to n do
9: ci ← Mii

10: for j = 1 to n, j �= i do ci ← ci + ri,j

11: end for
12: return (c1, c1, . . . , cn)

probing model, and heuristically secure against the horizontal side-channel attacks
described the in previous sections.

As observed in [FRR+10], the ISW and Rivain-Prouff countermeasures can
be divided in two steps: a “matrix” step in which starting from the input shares
xi and yj , one obtains a matrix xi · yj with n2 elements, and a “compression”
step in which one uses some randomness to get back to a n-sharing ci. Namely
the matrix elements (xi · yj)1≤i,j≤n form a n2-sharing of x� · y�:

x� · y� =

(
n∑

i=1

xi

)

·

⎛

⎝
n∑

j=1

yj

⎞

⎠ =
∑

1≤i,j≤n

xi · yj (10)

and the goal of the compression step is to securely go from such n2-sharing of
x� · y� to a n-sharing of x� · y�.

Our new countermeasure (Algorithm 3) uses the same compression step as
Rivain-Prouff, but with a different matrix step, called MatMult (Algorithm 4),
so that the shares xi and yj are not used multiple times (as when computing
the matrix elements xi · yj in Rivain-Prouff). Eventually the MatMult algorithm
outputs a matrix (Mij)1≤i,j≤n which is still a n2-sharing of x� · y�, as in (10);
therefore using the same compression step as Rivain-Prouff, Algorithm 3 outputs
a n-sharing of x� · y�, as required.

As illustrated in Fig. 1, the MatMult algorithm is recursive and computes the
n×n matrix in four sub-matrix blocs. This is done by splitting the input shares xi

and yj in two parts, namely X (1) = (x1, . . . , xn/2) and X (2) = (xn/2+1, . . . , xn),
and similarly Y (1) = (y1, . . . , yn/2) and Y (2) = (yn/2+1, . . . , yn), and recursively
processing the four sub-matrix blocs corresponding to X (u)×Y (v) for 1 ≤ u, v ≤
2. To prevent the same share xi from being used twice, each input block X (u)

and Y (v) is refreshed before being used a second time, using a mask refreshing
algorithm. An example of such mask refreshing, hereafter called RefreshMasks,
can for instance be found in [DDF14]; see Algorithm 5. Since the mask refreshing

34 A. Battistello et al.

Algorithm 4. MatMult

Input: the n-sharings (xi)i∈[1..n] and (yj)j∈[1..n] of x� and y� respectively
Output: the n2-sharing (Mij)i∈[1..n],j∈[1..n] of x� · y�

1: if n = 1 then
2: M ← [x1 · y1]
3: else
4: X (1) ← (x1, . . . , xn/2), X (2) ← (xn/2+1, . . . , xn)

5: Y (1) ← (y1, . . . , yn/2), Y (2) ← (yn/2+1, . . . , yn)

6: M (1,1) ← MatMult(X (1),Y (1))
7: X (1) ← RefreshMasks(X (1)), Y (1) ← RefreshMasks(Y (1))
8: M (1,2) ← MatMult(X (1),Y (2))
9: M (2,1) ← MatMult(X (2),Y (1))

10: X (2) ← RefreshMasks(X (2)), Y (2) ← RefreshMasks(Y (2))
11: M (2,2) ← MatMult(X (2),Y (2))

12: M ←
[
M (1,1) M (1,2)

M (2,1) M (2,2)

]

13: end if
14: return M

does not modify the xor of the input n/2-vectors X (u) and Y (v), each sub-matrix
block M (u,v) is still a n2/4-sharing of (⊕X (u)) · (⊕X (v)), and therefore the
output matrix M is still a n2-sharing of x� · y�, as required. Note that without
the RefreshMasks, we would have Mij = xi · yj as in Rivain-Prouff.

Algorithm 5. RefreshMasks
Input: a1, . . . , an

Output: c1, . . . , cn such that
∑n

i=1 ci =
∑n

i=1 ai

1: For i = 1 to n do ci ← ai

2: for i = 1 to n do do
3: for j = i + 1 to n do do
4: r ← {0, 1}k

5: ci ← ci + r
6: cj ← cj + r
7: end for
8: end for
9: return c1, . . . , cn

Since the RefreshMask algorithm has complexity O(n2), it is easy to see that
the complexity of our RefSecMult algorithm is O(n2 log n) (instead of O(n2)
for the original Rivain-Prouff countermeasure in Algorithm1). Therefore for
a circuit of size |C| the complexity is O(|C| · n2 log n), instead of O(|C| · n2)
for Rivain-Prouff. The following lemma shows the soundness of our RefSecMult
countermeasure.

Horizontal Side-Channel Attacks and Countermeasures 35

Lemma 1 (Soundness of RefSecMult). The RefSecMult algorithm, on input
n-sharings (xi)i∈[1..n] and (yj)j∈[1..n] of x� and y� respectively, outputs an n-
sharing (ci)i∈[1..n] of x� · y�.

Proof. We prove recursively that the MatMult algorithm, taking as input n-
sharings (xi)i∈[1..n] and (yj)j∈[1..n] of x� and y� respectively, outputs an n2-
sharing Mij of x� · y�. The lemma for RefSecMult will follow, since as in Rivain-
Prouff the lines 2 to 12 of Algorithm 3 transform a n2-sharing Mij of x� · y� into
a n-sharing of x� · y�.

The property clearly holds for n = 1. Assuming that it holds for n/2, since the
RefreshMasks does not change the xor of the input n/2-vectors X (u) and Y (v),
each sub-matrix block M (u,v) is still an n2/4-sharing of (⊕X (u)) · (⊕X (v)), and
therefore the output matrix M is still an n2-sharing of x� · y�, as required. This
proves the lemma. ��

x1
...

xn
2

xn
2 +1

...
xn

y1 . . . yn
2

yn
2 +1 . . . yn

⊗ ⊗R

R R

⊗ ⊗R

Fig. 1. The recursive MatMult algorithm, where R represents the RefreshMasks Algo-
rithm, and ⊗ represents a recursive call to the MatMult algorithm.

Remark 1. The description of our countermeasure requires that n is a power
of two, but it is easy to modify the countermeasure to handle any value of n.
Namely in Algorithm 4, for odd n it suffices to split the inputs xi and yj in two
parts of size (n − 1)/2 and (n + 1)/2 respectively, instead of n/2.

8.2 Security Analysis

Proven Security in the ISW Probing Model. We prove that our RefSecMult
algorithm achieves at least the same level of security of Rivain-Prouff, namely it

36 A. Battistello et al.

is secure in the ISW probing model against t probes for n ≥ t+1 shares. For this
we use the refined security model against probing attacks recently introduced
in [BBD+15], called t-SNI security. This stronger definition of t-SNI security
enables to prove that a gadget can be used in a full construction with n ≥
t + 1 shares, instead of n ≥ 2t + 1 for the weaker definition of t-NI security
(corresponding to the original ISW security proof). The authors of [BBD+15]
show that the ISW (and Rivain-Prouff) multiplication gadget does satisfy this
stronger t-SNI security definition. They also show that with some additional
mask refreshing satisfying the t-SNI property (such as RefreshMasks), the Rivain-
Prouff countermeasure for the full AES can be made secure with n ≥ t+1 shares.

The following lemma shows that our RefSecMult countermeasure achieves
the t-SNI property; we provide the proof in AppendixA. The proof is essentially
the same as in [BBD+15] for the Rivain-Prouff countermeasure; namely the
compression step is the same, and for the matrix step, in the simulation we can
assume that all the randoms in RefreshMasks are given to the adversary. The
t-SNI security implies that our RefSecMult algorithm is also composable, with
n ≥ t + 1 shares.

Lemma 2 (t-SNI of RefSecMult). Let (xi)1≤i≤n and (yi)1≤i≤n be the input
shares of the SecMult operation, and let (ci)1≤i<n be the output shares. For any
set of t1 intermediate variables and any subset |O| ≤ t2 of output shares such
that t1 + t2 < n, there exists two subsets I and J of indices with |I| ≤ t1 and
|J | ≤ t1, such that those t1 intermediate variables as well as the output shares
c|O can be perfectly simulated from x|I and y|J .

Heuristic Security Against Horizontal-DPA Attacks. We stress that the
previous lemma only proves the security of our countermeasure against t probes
for n ≥ t + 1, so it does not prove that our countermeasure is secure against the
horizontal-DPA attacks described in the previous sections, since such attacks use
information about n2 intermediate variables instead of only n − 1.

As illustrated in Fig. 1, the main difference between the new RefSecMult algo-
rithm and the original SecMult algorithm (Algorithm 1) is that we keep refreshing
the xi shares and the yj shares blockwise between the processing of the finite
field multiplications xi · yj . Therefore, as opposed to what happens in SecMult,
we never have the same xi being multiplied by all yj ’s for 1 ≤ j ≤ n. There-
fore an attacker cannot accumulate information about a specific share xi, which
heuristically prevents the attacks described in this paper.

Acknowledgments. We are very grateful to the anonymous CHES reviewers for
pointing a flaw in a previous version of our countermeasure in Sect. 8.

A Proof of Lemma 2

Our proof is essentially the same as in [BBD+15]. We construct two sets I and
J corresponding to the input shares of x� and y� respectively. We denote by

Horizontal Side-Channel Attacks and Countermeasures 37

Mij the result of the subroutine MatMult((x1, . . . , xn), (y1, . . . , yn)). From the
definition of MatMult and RefreshMasks, it is easy to see that each Mij can be
perfectly simulated from xi and yj ; more generally any internal variable within
MatMult can be perfectly simulated from xi and/or yj for some i and j; for this
it suffices to simulate the randoms in RefreshMasks exactly as they are generated
in RefreshMasks.

We divide the internal probes in 4 groups. The four groups are processed
separately and sequentially, that is we start with all probes in Group 1, and
finish with all probes in Group 4.

• Group 1: If Mii is probed, add i to I and J .
• Group 2: If ri,j or ci,j is probed (for any i = j), add i to I and J .

Note that after the processing of Group 1 and 2 probes, we have I = J ; we
denote by U the common value of I and J after the processing of Group 1 and
2 probes.

• Group 3: If Mij ⊕ ri,j is probed: if i ∈ U or j ∈ U , add {i, j} to both I and J .
• Group 4: If Mij is probed (for any i = j), then add i to I and j to J . If some

probe in MatMult requires the knowledge of xi and/or yj , add i to I and/or j
to J .

We have |I| ≤ t1 and |J | ≤ t1, since for every probe we add at most one index
in I and J . The simulation of probed variables in groups 1 and 4 is straight-
forward. Note that for i < j, the variable rij is used in all partial sums cik for
k ≥ j; moreover rij is used in rij ⊕Mij , which is used in rji, which is used in all
partial sums cjk for k ≥ i. Therefore if i /∈ U , then rij is not probed and does
not enter in the computation of any probed cik; symmetrically if j /∈ U , then rji

is not probed and does not enter in the computation of any probed cjk.
For any pair i < j, we can now distinguish 4 cases:

• Case 1: {i, j} ∈ U . In that case, we can perfectly simulate all variables rij ,
Mij , Mij ⊕ rij , Mji and rji. In particular, we let rij ← F2k , as in the real
circuit.

• Case 2: i ∈ U and j /∈ U . In that case we simulate rij ← F2k , as in the real
circuit. If Mij ⊕ ri,j is probed (Group 3), we can also simulate it since i ∈ U
and j ∈ J by definition of the processing of Group 3 variables.

• Case 3: i /∈ U and j ∈ U . In that case rij has not been probed, nor any variable
cik, since otherwise i ∈ U . Therefore rij is not used in the computation of any
probed variable (except rji, and possibly Mij⊕ri,j). Therefore we can simulate
rji ← F2k ; moreover if Mij ⊕ rij is probed, we can perfectly simulate it using
Mij ⊕ rij = Mji ⊕ rji, since j ∈ U and i ∈ J by definition of the processing of
Group 3 variables.

• Case 4: i /∈ U and j /∈ U . If Mij ⊕ ri,j is probed, since rij is not probed
and does not enter into the computation of any other probed variable, we can
perfectly simulate such probe with a random value.

38 A. Battistello et al.

From cases 1, 2 and 3, we obtain that for any i = j, we can perfectly simulate
any variable rij such that i ∈ U . This implies that we can also perfectly simulate
all partial sums cik when i ∈ U , including the output variables ci. Finally, all
probed variables are perfectly simulated.

We now consider the simulation of the output variables ci. We must show
how to simulate ci for all i ∈ O, where O is an arbitrary subset of [1, n] such
that t1 + |O| < n. For i ∈ U , such variables are already perfectly simulated,
as explained above. We now consider the output variables ci with i /∈ U . We
construct a subset of indices V as follows: for any probed Group 3 variable
Mij ⊕ rij such that i /∈ U and j /∈ U (this corresponds to Case 4), we put j in V
if i ∈ O, otherwise we put i in V . Since we have only considered Group 3 probes,
we must have |U | + |V | ≤ t1, which implies |U | + |V | + |O| < n. Therefore there
exists an index j� ∈ [1, n] such that j� /∈ U ∪ V ∪ O. For any i ∈ O, we can
write:

ci = Mii ⊕
⊕

j �=i

rij = ri,j� ⊕

⎛

⎝Mii ⊕
⊕

j �=i,j�

rij

⎞

⎠

We claim that neither ri,j� nor rj�,i do enter into the computation of any
probed variable or other ci′ for i′ ∈ O. Namely i /∈ U so neither ri,j� nor any
partial sum cik was probed; similarly j� /∈ U so neither rj�,i nor any partial
sum cj�,k was probed, and the output cj� does not have to be simulated since
by definition j� /∈ O. Finally if i < j� then Mi,j� ⊕ ri,j� was not probed since
otherwise j� ∈ V (since i ∈ O); similarly if j� < i then Mj�,i ⊕ rj�,i was
not probed since otherwise we would have j� ∈ V since j� /∈ O. Therefore,
since neither ri,j� nor rj�,i are used elsewhere, we can perfectly simulate ci by
generating a random value. This proves the Lemma.

References

[BBD+15] Barthe, G., Beläıd, S., Dupressoir, F., Fouque, P.-A., Grégoire, B.: Com-
positional verification of higher-order masking: application to a verifying
masking compiler. Cryptology ePrint Archive, Report 2015/506 (2015).
http://eprint.iacr.org/

[BCPZ16] Battistello, A., Coron, J.-S., Prouff, E., Zeitoun, R.: Horizontal side-channel
attacks, countermeasures on the ISW masking scheme. Cryptology ePrint
Archive, Report 2016/540 (2016). Full version of this paper http://eprint.
iacr.org/

[BJPW13] Bauer, A., Jaulmes, E., Prouff, E., Wild, J.: Horizontal and vertical side-
channel attacks against secure RSA implementations. In: Dawson, E. (ed.)
CT-RSA 2013. LNCS, vol. 7779, pp. 1–17. Springer, Heidelberg (2013)

[Bla79] Blakely, G.R.: Safeguarding cryptographic keys. In: National Computer
Conference, vol. 48, pp. 313–317. AFIPS Press, New York, June 1979

[CCD88] Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure
protocols (extended abstract). In: Simon, J. (ed.) Proceedings of 20th
Annual ACM Symposium on Theory of Computing, Chicago, Illinois, USA,
pp. 11–19. ACM, 2–4 May 1988

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

Horizontal Side-Channel Attacks and Countermeasures 39

[CFG+10] Clavier, C., Feix, B., Gagnerot, G., Roussellet, M., Verneuil, V.: Horizontal
correlation analysis on exponentiation. In: Soriano, M., Qing, S., López, J.
(eds.) ICICS 2010. LNCS, vol. 6476, pp. 46–61. Springer, Heidelberg (2010)

[CJRR99] Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches
to counteract power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999.
LNCS, vol. 1666, pp. 398–412. Springer, Heidelberg (1999)

[DDF14] Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: from probing
attacks to noisy leakage. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT
2014. LNCS, vol. 8441, pp. 423–440. Springer, Heidelberg (2014)

[DFS15] Duc, A., Faust, S., Standaert, F.-X.: Making masking security proofs con-
crete. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol.
9056, pp. 401–429. Springer, Heidelberg (2015)

[FRR+10] Faust, S., Rabin, T., Reyzin, L., Tromer, E., Vaikuntanathan, V.: Protect-
ing circuits from leakage: the computationally-bounded and noisy cases.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 135–156.
Springer, Heidelberg (2010)

[GHR15] Guilley, S., Heuser, A., Rioul, O.: A key to success - success expo-
nents for side-channel distinguishers. In: Biryukov, A., Goyal, V. (eds.)
INDOCRYPT 2015. LNCS, vol. 9462, pp. 270–290. Springer, Heidelberg
(2015)

[ISW03] Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against
probing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp.
463–481. Springer, Heidelberg (2003)

[ORSW12] Oren, Y., Renauld, M., Standaert, F.-X., Wool, A.: Algebraic side-
channel attacks beyond the hamming weight leakage model. In: Prouff, E.,
Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 140–154. Springer,
Heidelberg (2012)

[PR13] Prouff, E., Rivain, M.: Masking against side-channel attacks: a formal secu-
rity proof. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 142–159. Springer, Heidelberg (2013)

[RP10] Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In:
Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp.
413–427. Springer, Heidelberg (2010)

[Sha79] Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
[SVO+10] Standaert, F.-X., Veyrat-Charvillon, N., Oswald, E., Gierlichs, B., Medwed,

M., Kasper, M., Mangard, S.: The world is not enough: another look on
second-order DPA. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477,
pp. 112–129. Springer, Heidelberg (2010)

[VGS14] Veyrat-Charvillon, N., Gérard, B., Standaert, F.-X.: Soft analytical side-
channel attacks. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS,
vol. 8873, pp. 282–296. Springer, Heidelberg (2014)

Towards Easy Leakage Certification

François Durvaux(B), François-Xavier Standaert, and Santos Merino Del Pozo

ICTEAM/ELEN/Crypto Group, Université catholique de Louvain,
Louvain-la-Neuve, Belgium

francois.durvaux@gmail.com, {fstandae,santos.merino}@uclouvain.be

Abstract. Side-channel attacks generally rely on the availability of
good leakage models to extract sensitive information from cryptographic
implementations. The recently introduced leakage certification tests aim
to guarantee that this condition is fulfilled based on sound statistical
arguments. They are important ingredients in the evaluation of leaking
devices since they allow a good separation between engineering challenges
(how to produce clean measurements) and cryptographic ones (how to
exploit these measurements). In this paper, we propose an alternative
leakage certification test that is significantly simpler to implement than
the previous proposal from Eurocrypt 2014. This gain admittedly comes
at the cost of a couple of heuristic (yet reasonable) assumptions on the
leakage distribution. To confirm its relevance, we first show that it allows
confirming previous results of leakage certification. We then put forward
that it leads to additional and useful intuitions regarding the information
losses caused by incorrect assumptions in leakage modeling.

1 Introduction

Side-channel attacks are an important threat against the security of modern
embedded devices. As a result, the search for efficient approaches to secure cryp-
tographic implementations against such attacks has been an ongoing process over
the last 15 years. Sound tools for quantifying physical leakages are a central ingre-
dient for this purpose, since they are necessary to balance the implementation
cost of concrete countermeasures with the security improvements they provide.
Hence, while early countermeasures came with proposals of security evaluations
that were sometimes specialized to the countermeasure, more recent works have
investigated the possibility to consider evaluation methods that generally apply
to any countermeasure. The unified evaluation framework proposed at Euro-
crypt 2009 is a popular attempt in this direction [23]. It suggests to analyze
cryptographic implementations with a combination of information theoretic and
security metrics. The first ones aim at measuring the (worst-case) information
leakage independent of the adversary exploiting it, and are typically instantiated
with the Mutual Information (MI). The second ones aim at quantifying how effi-
ciently an adversary can take advantage of this leakage in order to turn it into
(e.g.) a key recovery, and are typically instantiated with a success rate.

In this context, an important observation is that most side-channel attacks,
and in particular any standard Differential Power Analysis (DPA) attack, require
c© International Association for Cryptologic Research 2016
B. Gierlichs and A.Y. Poschmann (Eds.): CHES 2016, LNCS 9813, pp. 40–60, 2016.
DOI: 10.1007/978-3-662-53140-2 3

Towards Easy Leakage Certification 41

a leakage model [13]. This model usually corresponds to an estimation of the leak-
age Probability Density Function (PDF), possibly simplified to certain statistical
moments. Since the exact distribution of (e.g.) power consumption or electro-
magnetic radiation measurements is generally unknown, it raises the problem
that any physical security evaluation is possibly biased by model errors. In other
words, security evaluations ideally require a perfect leakage model (so that all
the information is extracted from the measurements). But in practice models are
never perfect, so that the quality of the evaluation may highly depend on the
quality of the evaluator. This intuition can be captured with the notion of Per-
ceived Information (PI), that is nothing else than an estimation of the MI biased
by the side-channel evaluator’s model [19]. Namely, the MI captures the worst-
case security level of an implementation, as it corresponds to an (hypothetical)
adversary who can perfectly profile the leakage PDF. By contrast, the PI cap-
tures its practical counterpart, where actual (statistical) estimation procedures
are used by an evaluator, in order to profile the leakage PDF.

Picking up on this problem, Durvaux et al. introduced first “leakage certifica-
tion” methods at Eurocrypt 2014 [8]. Intuitively, leakage certification starts from
the fact that actual leakage models are obtained via PDF estimation, which may
lead to both estimation and assumption errors. As a result, and since it seems
hard to enforce that such estimated models are perfect, the best that one can
hope is to guarantee that they are “good enough”. For estimation errors, this is
easily verified using standard cross–validation techniques (in general, estimation
errors can anyway be made arbitrarily small by measuring more). For assumption
errors, things are more difficult since detecting them requires to find out whether
the estimated model is close to an (unknown) perfect model. Interestingly, the
Eurocrypt 2014 paper showed that indirect approaches allow determining if this
condition is respected, essentially by comparing the model errors caused by incor-
rect assumptions to estimation errors. That is, let us assume that an evaluator is
given a set of leakage measurements to quantify the security of a leaking imple-
mentation. As long as the assumption errors measured from these traces remain
small in front of the estimation errors, the evaluator is sure that any improvement
of his (possibly imperfect) assumptions will not lead to noticeable degradations
of the estimated security level – since the impact of improved assumptions will
essentially be hidden by the estimation errors. By contrast, once the assumption
errors become significant in front of estimation ones, it means that an improved
model is required to extract all the information from the measurements. Hence,
leakage certification allows ensuring that the modeling part of an evaluation is
sound (i.e. only depends on the implementation – not the evaluator).

In practice, the leakage certification test in [8] requires a number of tech-
nical ingredients. Namely, the evaluator first has to characterize the leakages
of the target implementation with a sampled (cumulative) distance distrib-
ution, and to characterize his model with a simulated (cumulative) distance
distribution. Working with distances allows exploiting a univariate goodness–
of–fit test even for leakages of large dimensionalities (i.e. it allows comparing
the univariate distances between multivariate leakages rather than comparing

42 F. Durvaux et al.

the multivariate leakages directly). The Cramér–von–Mises divergence is used
as a comparison tool in the Eurocrypt 2014 paper. Qualitatively, large diver-
gences between the sampled and simulated distributions essentially mean that
the assumptions are imperfect. Quantitatively, the evaluator then has to deter-
mine whether such divergences are significant, by verifying whether they can
be explained by assumption errors. This essentially requires computing the
p-values when testing the hypothesis that the estimated model is correct (which
again requires computing many simulated cumulative distance distributions).
Summarizing, the beauty of this approach lies in the fact that it only relies
on non-parametric estimations and requires no assumptions on the underlying
leakage distributions. But this also comes at the cost of quite computationally
intensive tools.

In this paper, we analyze solutions to mitigate the latter drawback, by inves-
tigating whether (computationally) cheaper and (conceptually) simpler certifica-
tion procedures can be obtained at the cost of mild assumptions on the statistical
distributions in hand. Two natural options directly come to mind for this pur-
pose, that both aim to avoid dealing with the (expensive to characterize) cumula-
tive leakage distributions directly. One possibility is to “summarize” the leakage
distribution with its MI/PI estimates (since they can be used as indicators of the
side-channel security level, as now proven in [7]). Another one is to analyze this
distribution “moments by moments”, motivated by the recent results in [16]. In
both cases, and following the approach in [8], the main idea remains to compare
actual leakage samples generated by a leaking implementation with hypothetical
ones generated with the evaluator’s model. Surprisingly, we show that the first
approach cannot work, because of situations where model errors in one statis-
tical moment (e.g. the mean) are reflected in another statistical moment (e.g.
the variance), which typically arises when using the popular stochastic mod-
els in [20], and actually corresponds to the context of epistemic noise discussed
in [12]. More interestingly, we also show that a moment-based approach provides
excellent results under reasonable assumptions, and can borrow from the “leak-
age detection tests” that are already used by evaluation laboratories [11,14]. The
resulting leakage certification method is significantly faster than the Eurocrypt
2014 one (and allows reproducing its experiments). We also show that it eas-
ily generalizes to masked implementations, and enables extracting very useful
intuitions on the origin of the leakages. Eventually, our new tools lead to simple
heuristics to approximate the information loss due to incorrect leakage models,
which remained an open problem in [8]. Summarizing, we simplify leakage cer-
tification into a set of easy–to–implement procedures, hopefully more attractive
for evaluation laboratories, of which we make the prototype implementations
available as open source to facilitate their dissemination [1].

Cautionary Note. This paper is about leakage certification, which is a different
problem than the leakage detection one discussed in [11,14] (despite we indeed
borrow some tools from leakage detection to simplify leakage certification). In
this respect, Goodwill et al.’s non specific t-test is a natural approach to leakage
detection, and allows determining if there is “some” leakage in an implementation,

Towards Easy Leakage Certification 43

independent of whether it can be exploited (e.g. how many traces do you need to
attack). By contrast, leakage certification aims to guarantee that a leakage model
that can be exploited in an attack (and, e.g. can be used to determine a key recov-
ery success rate) is close enough to the true leakage model. That is, it aims to make
evaluators confident that their attacks are close enough to the worst-case ones. So
leakage detection and certification are essentially complementary. Note that leak-
age models (and certification) are needed in any attempt to connect side-channel
analysis with cryptographic security guarantees (e.g. in leakage resilience [10]),
where we will always need an accurate evaluation of the security level, or to build
security graphs such as introduced in [27].

2 Background

2.1 Measurement Setup

We will consider both software and hardware experiments.
Our software experiments are based on measurements of an AES Furious

implementation1 run by an 8-bit Atmel AVR (ATMega644P) microcontroller at
a 20 MHz clock frequency. We monitored the voltage variations across a 22 Ω
resistor introduced in the supply circuit of our target chip. Acquisitions were per-
formed using a Lecroy WaveRunner HRO 66 oscilloscope running at 625 Msam-
ples/second and providing 8-bit samples. In practice, our evaluations focused on
the leakage of the first AES master key byte (but would apply identically to
any other enumerable target). Leakage traces were produced according to the
following procedure. Let x and s be our target input plaintext byte and subkey,
and y = x ⊕ s. For each of the 256 values of y, we generated 1000 encryption
traces, where the rest of the plaintext and key was random (i.e. we generated
256 000 traces in total, with plaintexts of the shape p = x||r1|| . . . ||r15, keys of
the shape κ = s||r16|| . . . ||r30, and the ri’s denoting uniformly random bytes). In
order to reduce the memory cost of our evaluations, we only stored the leakage
corresponding to the 2 first AES rounds (as the dependencies in our target byte
y = x ⊕ s typically vanish after the first round, because of the strong diffusion
properties of the AES). We will denote the 1000 encryption traces obtained from
a plaintext p including the target byte x under a key κ including the subkey s as:
AESκs

(px) � liy (with i ∈ [1; 1000]). Eventually, whenever accessing the points
of these traces, we will use the notation liy(τ) (with τ ∈ [1; 10 000], typically).
Subscripts and superscripts are omitted when clear from the context.

Our hardware experiments are based on a similar setup, but consider a
threshold implementation of PRESENT similar to the Profile-4 design described
in [17]. The leakage in such hardware implementations is mostly determined
by the distance between two consecutive values in a target register R. Hence,
we generated traces lit (with i ∈ [1; 100 000]) for the 256 possible transitions
t =: R(x1 ⊕ s) → R(x2 ⊕ s) between 4-bit intermediate results of the PRESENT
S-box computations. This larger evaluation set was motivated by the protected
1 Available at http://point-at-infinity.org/avraes/.

http://point-at-infinity.org/avraes/

44 F. Durvaux et al.

nature and larger noise of this implementation. Because of similar memory
constraints as in the software case, we limited our measurements to the first
PRESENT round. These measurements were taken at a 500 Msamples/second,
using the SAKURA-G board [2]. Our target device is a SPARTAN-6 FPGA.

2.2 PDF Estimation Methods

Side-channel attacks such as the standard DPA described in [13] require a leak-
age model. In general, such models correspond to estimations of the leakage
PDF (possibly simplified to certain statistical moments). In the following, we
will consider two important PDF estimation techniques for this purpose. For
convenience, we describe them with a profiling based on intermediate values
y’s as considered in our software experiments, but these tools can be applied
similarly to the transitions t’s considered in our hardware experiments.

Gaussian Templates. The Template Attack (TA) in [5] approximates the
leakages using a set of normal distributions. It assumes that each intermedi-
ate computation generates Gaussian-distributed samples. In our typical scenario
where the targets follow a key addition, we consequently use: P̂rmodel[ly|s, x] ≈
P̂rmodel[ly|s ⊕ x] ∼ N (μy, σ2

y), where the “hat” notation is used to denote the
estimation of a statistic. This approach requires estimating the sample means
and variances for each value y = x ⊕ s (and mean vectors / covariance matrices
in case of multivariate attacks). We denote the construction of such a model
with P̂r

ta

model ← Lp
Y , where Lp

Y is a set of Np traces used for profiling.

Regression-Based Models. To reduce the data complexity of the profiling, an
alternative approach proposed by Schindler et al. is to exploit Linear Regression
(LR) [20]. In this case, a stochastic model θ̂(y) is used to approximate the leakage
function and built from a linear basis g(y) = {g0(y), ..., gB−1(y)} chosen by the
adversary/evaluator (usually gi(y) are monomials in the bits of y). Evaluating θ̂(y)
boils down to estimating the coefficients αi such that the vector θ̂(y) =

∑
i αigi(y)

is a least-square approximation of the measured leakages Ly. In general, an inter-
esting feature of such models is that they allow trading profiling efforts for online
attack complexity, by adapting the basis g(y). That is, a simpler model with fewer
parameters will converge for smaller values of Np, but a more complex model can
potentially approximate the real leakage function more accurately. Compared to
Gaussian templates, another feature of this approach is that only a single vari-
ance (or covariance matrix) is estimated for capturing the noise (i.e. it relies on an
assumption of homoscedastic errors). Again, we denote the constructions of such
a model with P̂r

lr

model ← Lp
Y .

2.3 Evaluation Metrics

In this subsection, we recall a couple of useful evaluation metrics that have
been introduced in previous works on side-channel attacks and countermeasures.

Towards Easy Leakage Certification 45

For convenience, we again express these metrics for software (value-based) pro-
filing. But they can straightforwardly adapted to the transition-based case.

Correlation Coefficient. In view of the popularity of the Correlation Power
Analysis (CPA) distinguisher in the literature [4], a natural candidate evaluation
metric is Pearson’s correlation coefficient. In the non-profiled setting, an a-priori
(e.g. Hamming weight) model is used for computing the metric. The evaluator
then estimates the correlation between his measured leakages and the modeled
leakages of a target intermediate value. In our AES example, it would lead to
ρ̂(LY (τ),modelcpa(Y)). In practice, this estimation is performed by sampling
(i.e. measuring) Nt test traces from the leakage distribution (we denote the set
of these Nt test traces as Lt

Y). Next, and in order to avoid possible biases due
to an incorrect a-priori choice of leakage model, a natural solution is to extend
the previous proposal to the profiled setting. In this case, the evaluator will
start by estimating a model from Np profiling traces: ˆmodelcpa ← Lp

Y (with
Lp

Y ⊥⊥ Lt
Y). In practice, ˆmodelcpa can be seen as a simplification of the previous

Gaussian templates, that only includes estimates for the first-order moments of
the leakages. That is, for any time sample τ , we have ˆmodelcpa(y) = m̂1

y(τ) =
Êi(Li

y(τ)), with m̂1
y a first-order moment and Ê the sample mean operator.

Mutual and Perceived Information. In theory, the worst-case security level
of an implementation can be measured with a MI metric. Taking advantage of
the notations in Sect. 2.1 and considering the standard case where a key byte S
is targeted, it amounts to estimate the following quantity:

MI(S;X,L) = H[S] +
∑

s∈S
Pr[s]

∑

x∈X
Pr[x]

∑

liy∈Lt

Prchip[liy|s, x]. log2 Prchip[s|x, liy].

When summing over all s and x values, and a sufficiently large number of leak-
ages, the estimation tends to the correct MI. Yet, as mentioned in introduction,
the chip distribution Prchip[liy|s, x] is generally unknown to the evaluator. So in
practice, the best that we can hope is to compute the following PI:

P̂I(S;X,L) = H[S] +
∑

s∈S
Pr[s]

∑

x∈X
Pr[x]

∑

liy∈Lt

Prchip[liy|s, x]. log2 P̂rmodel[s|x, liy],

where P̂rmodel ← Lp
Y is typically obtained using the previous Gaussian templates

or LR-based models. Under the assumption that the model is properly estimated,
it is shown in [13] that the CPA and PI metrics are essentially equivalent in
the context of standard univariate side-channel attacks (i.e. exploiting a single
leakage point liy(τ) at a time). By contrast, only the PI naturally extends to
multivariate attacks. It can be interpreted as the amount of information leakage
that will be exploited by an adversary using an estimated model. So just as the
MI is a good predictor for the success rate of an ideal TA exploiting the perfect
model Prchip, the PI is a good predictor for the success rate of an actual TA
exploiting the “best available” model P̂rmodel obtained thanks to profiling.

46 F. Durvaux et al.

Moments-Correlating DPA. Eventually, and in order to extend the CPA
distinguisher to higher-order moments, the Moments-Correlating Profiled DPA
(MCP-DPA) has been introduced in [16]. It features essentially the same steps as
a profiled CPA. The only difference is that the adversary first estimates dth-order
statistical moments with his profiling traces, and then uses ˆmodel

d

mcp−dpa(y) =
m̂d

y(τ), with m̂d
y a dth-order moment. For concreteness, we will consider d’s up to

four (i.e. the sample mean for d = 1, variance for d = 2, skewness for d = 3 and
kurtosis for d = 4), which allows us discussing the relevant case-study of a masked
implementation with two shares. Yet, the tool naturally extends to any d. One
useful feature of this distinguisher is that it embeds the same “metric” intuition
as CPA: the higher the correlation estimated with MCP-DPA, the more efficient
the corresponding attack exploiting a moment of given order.

2.4 Estimating a Metric with Cross-validation

Estimating a metric α from a leaking implementation holds in two steps. First, a
model has to be estimated from a set of profiling traces Lp: ˆmodel ← Lp. Second,
a set of test traces Lt (following the true distribution Prchip) is used to estimate
the metric: α̂ ← (Lt, ˆmodel). As a result, two main types of errors can arise.
First, the number of traces in the profiling set may be too low to estimate the
model accurately (which corresponds to estimation errors). Second, the model
may not be able to accurately predict the distribution of samples in the test set,
even after intensive profiling (which then corresponds to assumption errors).

In order to verify that estimations in a security evaluation are sufficiently
accurate, the solution used in [8] is to exploit cross–validation. In general, this
technique allows gauging how well a predictive (here leakage) model performs
in practice. For k-fold cross–validations, the set of evaluation traces L is first
split into k (non overlapping) sets L(i) of approximately the same size. Let us
define the profiling sets L(j)

p =
⋃

i�=j L(i) and the test sets L(j)
t = L \ L(j)

p .
The sample metric is then repeatedly computed k times for 1 ≤ j ≤ k as
follows. First, we build a model from a profiling set: ˆmodel

(j) ← L(j)
p . Then we

estimate the metric with the associated test set α̂(j) ← (L(j)
t , ˆmodel

(j)
). Cross–

validation protects evaluators from obtaining too optimistic sample metric values
due to over-fitting, since the test computations are always performed with an
independent data set. Finally, the k outputs can be averaged in order to get an
unbiased metric estimate, and their spread characterizes the result’s accuracy.

3 A Motivating Negative Result

As mentioned in introduction, detecting assumption errors is generally more
challenging than detecting estimation errors (which is easily done with the pre-
vious cross–validation). Intuitively, it requires to investigate the likelihood that
samples obtained from a leaking device can indeed be explained by an estimated
model, which requires a (multivariate) goodness–of–fit test. Since such tests are

Towards Easy Leakage Certification 47

computationally intensive, an appealing alternative would be to check whether
the samples obtained from the leaking device lead to a PI that is at least close
enough to the MI: this would guarantee a good estimation of the security level.
But we again face the problem that the MI is unknown, which imposes trying
indirect approaches. That is, we would need an metric counterpart to the sam-
pled simulated distance distribution in [8], which would typically correspond to
the following Hypothetical (mutual) Information (HI):

ĤI(S;X,L) = H[S] +
∑

s∈S
Pr[s]

∑

x∈X
Pr[x]

∑

liy∈Lt

P̂rmodel[liy|s, x]. log2 P̂rmodel[s|x, liy].

Intuitively, this HI corresponds to the amount of information that would be
extracted from an hypothetical implementation that would exactly leak accord-
ing to the model P̂rmodel. In itself, the HI is useless to the evaluator, as it is
actually disconnected from the chip distribution. For example, even a totally
incorrect model (i.e. leading to a negative PI) would lead to a positive HI. By
contrast, we could hope that as long as the HI and PI are “close”, the assump-
tion errors are “small enough” for the number of measurements considered in the
security evaluation. Furthermore, we could use a simple hypothesis test to detect
non-closeness. For a number of traces N in the evaluation set, this would require
to compute estimates P̂I(S;X,L)(j) and ĤI(S;X,L)(j) with cross–validation,
and to check whether these estimates come from different (univariate) distrib-
utions. If they significantly differ, we would conclude that the model exhibits
assumption errors that degrade the estimated security level, in a similar fashion
as in [8].

Unfortunately, and despite it can detect certain assumption errors, this app-
roach cannot succeed in general. A simple counter–example can be explained in
the context of LR. Say an adversary estimates a model with a linear basis, which
leads to significant differences between the actual (mean) leakages and the ones
suggested by the model. Then, because of the homoscedastic error assumption,
the single variance of the LR-based model will reflect this error (i.e. capture
both physical noise and model error). As a result, whenever this type of error
increases, the PI will decrease (as expected) but the HI will also decrease (con-
trary to the MI). So testing the consistency between the PI and HI estimates
will not reveal the inconsistencies between the PI estimates and the true MI.

4 A New Method to Detect Assumption Errors

Despite negative, the previous counter–example suggests two interesting tracks
for simplifying leakage certification tests. First, summarizing a complete distri-
bution into representative metrics (e.g. such as the PI) allows taking advantage
of simpler statistical tests. Second, since the fact that the homoscedastic errors
assumption is not fulfilled implies that errors made in the estimation of cer-
tain statistical moments (or more generally, parameters) of a distribution are
reflected in other statistical moments of this distribution, a natural approach is

48 F. Durvaux et al.

to test the relevance of a model “moment by moment”. That is, for a number
of traces N in an evaluation set, one could verify that the moments estimated
from actual leakage samples are hard to tell apart from the moments estimated
from the model (with the same number of samples N). Based on this idea, our
simplified method to detect assumption errors will be based on the following two
hypotheses (one strictly necessary and the other optional but simplifying).

1. The leakage distribution is well represented by its statistical moments. This
corresponds to the classical “moment problem” in statistics, for which there
exist counter-examples (e.g. the log-normal distribution is not uniquely char-
acterized by its moments). So our (informal) assumption is that these counter-
examples will not be significant for our experimental case-studies.

2. The sampled estimates of our statistical moments are approximately
Gaussian-distributed. This directly derives from the central limit theorem and
actually depends on the number of samples used in the estimations (which
will become sufficient as the leakages become more noisy, e.g. in the case of
protected implementations that are most relevant for concrete investigations).

Let us add a couple of words of motivation for those assumptions.
First recall that we know from the previous results in [8] that leakage certi-

fication is possible without such assumptions, at the cost of somewhat involved
statistical reasoning and estimations. So it seems natural to investigate alter-
native (heuristic) paths allowing to reach similar conclusions. As will be shown
next, this is indeed the case of our simplified approach for a couple of relevant
scenarios. Second, statistical moments are at the core of the reasoning regarding
the masking countermeasure. That is, the security order of an implementation is
generally defined as the lowest informative moment in the leakage distribution
(minus one) – see [7] for an extensive discussion of this issue. Besides, many
concrete (profiled and non-profiled) side-channel attacks are based (implicitly or
explicitly) on parametric PDF estimation techniques that rely on the estimation
of moments (e.g. the Gaussian templates and LR-based models in Sect. 2.2, but
also second-order attacks such as [6,18]). So a certificative approach based on
an analysis of moments seems well founded in these cases.2 Eventually, contra-
dictions of this first hypothesis imply potential false negatives in leakage cer-
tification, but no false positives. So it remains that any detected assumption
error requires model improvement by the evaluator. Overall, and maybe most
importantly, we believe that the following tools open interesting research avenues
regarding the intuitive evaluation of leaking devices based on their moments.

2 Note that theoretical approches to guarantee that a distribution is well characterized
by its moments (such as Carleman’s condition [22]) typically apply when considering
an infinite number of them and in general, no distribution is determined by a finite
number of moments. So the restriction of our reasoning to specific classes of mean-
ingful distributions is in fact necessary for our approach to be sound. Besides, note
also that non-parametric PDF estimations may not suffer from assumption errors
(at the cost of a significantly increased estimation cost), so are out of scope here.

Towards Easy Leakage Certification 49

As for the Gaussian assumption, our motivation is even more pragmatic, and
relates to the observation that simple t-tests are becoming de facto standards in
the preliminary evaluation of leaking devices [11,14,21]. So we find it appealing
to rely on statistical tools that are already widespread in the CHES community,
and to connect them with leakage certification. As will be clear next, this allows
us to use the same evaluation method for statistical moments of different orders.
However, we insist that it is perfectly feasible to refine our approach by using a
well adapted test for each statistical moment (e.g. F-test for variances, . . .).

4.1 Test Specification

The main idea behind our new leakage certification method is to compare
(actual) dth-order moments m̂d

y estimated from the leakages with (simulated)
dth-order moments m̃d

y estimated from the evaluator’s model P̂rmodel (by sam-
pling this model). Thanks to our second assumption, this comparison can simply
be performed based on Student’s t-test. For this purpose, we need multiple esti-
mations of the moments m̂d

y and m̃d
y, that we will obtain thanks to an approach

inspired from Sect. 2.4 (although there is no cross–validation involved here).
More precisely, we start by splitting the full set of evaluation traces L into

k (non overlapping) sets of approximately the same size L(j), with 1 ≤ j ≤ k.
From these k subsets, we produce k estimates of (actual) dth-order moments
m̂

d,(j)
y , each of them from a set L(j). We then produce a set of simulated traces

L̃ that has the same size and corresponds to the same intermediate values as the
real evaluation set L, but where the leakages are sampled according to the model
that we want to evaluate. In other words, we first build the model P̂rmodel ← L,
and then generate a simulated set of traces L̃ ← P̂rmodel. Based on L̃, we produce
k estimates of (simulated) dth-order moments m̃

d,(j)
y , each of them from a set

L̃(j), as done for the real set of evaluation traces. From these real and simulated
moments estimates, we compute the following quantities:

μ̂d
y = Êj(m̂

d,(j)
y), σ̂d

y =
√

v̂arj(m̂
d,(j)
y),

μ̃d
y = Êj(m̃

d,(j)
y), σ̃d

y =
√

v̂arj(m̃
d,(j)
y),

where v̂ar is the sample variance operator. Eventually, we simply estimate the t
statistic (next denoted with Δd

y) as follows:

Δd
y =

μ̂d
y − μ̃d

y
√

(σ̂d
y)

2+(σ̃d
y)

2

k

.

The p-value of this t statistic within the associated Student’s distribution returns
the probability that the observed difference is the result of estimations issues:

p = 2 × (1 − CDFt(|Δd
y|, df)),

50 F. Durvaux et al.

where CDFt is the Student’s t cumulative distribution function, and df is its
number of freedom degrees.3 In other words, a small p-value indicates that the
model is incorrect with high probability. Concretely, the only parameter to set in
this test is the number of non overlapping sets k. Following [8], we used k = 10
which is a rather standard value in the literature. Note that increasing k has very
limited impact on the accuracy of our conclusions since all variance estimates
in the t-test are normalized by k. By contast it increases the time complexity of
the test (so keeping k reasonably small is in general a good strategy).

5 Simulated Experiments

In order to validate our moment-based certification method, we first analyze a
couple of simulated experiments, where we can control the assumption errors. In
particular, and in order to keep these simulations reasonably close to concrete
attacks, we consider four distinct scenarios. In the first one (reported in Fig. 1)
we investigate errors in the mean of the model distribution. The upper part of the
figure represents a non-parametric estimate of the true leakage distribution (with
histograms) and a leakage model P̂rmodel following a Gaussian distribution. The
middle part of the figure represents the estimated moments m̂

d,(j)
y (in blue) and

m̃
d,(j)
y (in red), in function of the number of traces used for their estimation, from

which we clearly see the error in the mean. The lower part of the figure represents
the evolution of our test’s p-value in function of the number of traces used for
certification. As expected, we directly detect an error in the mean (reflected
by a very small p-value for this moment), whereas the p-values of the other
moments remain erratic, reflecting the fact that (hypothetical) assumption errors
are not significant in front of estimation errors (i.e. do not lead to significant
information losses) for those moments. Similar figures corresponding to model
errors in the variance, skewness and kurtosis are reported in the ePrint version of
this work [9]. The last two cases typically correspond to the setting of a masked
implementation for which the true distribution is a mixture [25].

These results confirm the simplicity of the method. That is, as the num-
ber of measurements in the evaluation set increases, we are able to detect the
assumption errors in all cases. The only difference between the applications to
different moments is that errors on higher-order moments may be more difficult
to detect as the noise increases. This difference is caused by the same argument
that justifies the relevance of the higher-order masking countermeasure. Namely,
the sampling complexity when estimating the moments of a sufficiently noisy dis-
tribution increases exponentially in d. However, this is not a limitation of the
certification test: if such errors are not detected for a given evaluation set, it just
means that their impact is still small in front of assumption errors at this stage
of the evaluation. Besides, we note that the respective relevance of the model
errors on different moments will be further discussed in Sect. 7.
3 Student’s t distribution is a parametric probability density function whose only para-

meter is its number of freedom degrees, that can be directly derived from k and the
previous σ estimates as: df = (k − 1) × [(σ̂d

y)2 + (σ̃d
y)2]2/[(σ̂d

y)4 + (σ̃d
y)4].

Towards Easy Leakage Certification 51

-5 0 5 10
0

0.1

0.2

0.3

0.4

0.5
pdf

true distribution
biased model

0 500 1000 1500 2000 2500

2

2.5

3

3.5

4

4.5

mean

es
tim

at
ed

 m
om

en
ts

0 500 1000 1500 2000 2500

0.5

1

1.5

2

2.5

3

standard deviation

0 500 1000 1500 2000 2500

-1

-0.5

0

0.5

1

1.5

skewness

0 500 1000 1500 2000 2500

2

4

6

kurtosis

0 500 1000 1500 2000 2500
0

0.2

0.4

0.6

0.8

1

→ number of traces

p-
va

lu
e

0 500 1000 1500 2000 2500
0

0.2

0.4

0.6

0.8

1

→ number of traces
0 500 1000 1500 2000 2500

0

0.2

0.4

0.6

0.8

1

→ number of traces
0 500 1000 1500 2000 2500

0

0.2

0.4

0.6

0.8

1

→ number of traces

Fig. 1. Gaussian leakages, Gaussian model, error in the estimated mean. (Color figure
online)

6 Software Experiments

In order to obtain a fair comparison with the results provided in [8], we first
applied our new leakage certification method to the same case-study. Namely,
we used the measurement setup from Sect. 2.1 and evaluated the relevance of
two important profiling methods, namely the Gaussian TA and LR, for the most
informative time sample in our leakage traces (i.e. with maximum PI).

The main difference with the previous simulated experiments is that we now
have to test 256 models independently (each of them corresponding to a target
intermediate value y = x ⊕ s). Our results are represented in Fig. 2, where we
plot the p-values output by our different t-tests in greyscale, for four statistical
moments (i.e. the mean, variance, skewness and kurtosis). That is, each line in
this plot corresponds to the lower part of the previous Fig. 1. A look at the first
two moments essentially confirms the conclusions of Durvaux et al. More pre-
cisely, the Gaussian templates capture the measured leakages quite accurately
(for the 256,000 traces in our evaluation set). By contrast, the linear regression
quickly exhibits inconsistences. Interestingly, assumption errors appear both in
the means and in the variances, which corresponds to the expected intuition.
That is, errors in the means are detected because for most target intermediate
values, the actual leakage cannot be accurately predicted by a linear combina-
tion of the S-box output bits.4 And errors in the variances appear because the

4 This happens for the selected time sample because of pipelining effects in the AVR
microcontroller. Note that as in [8], the linear model did not exhibit any assumption
error for other time samples given the amount of measured traces.

52 F. Durvaux et al.

mean
ga

us
si

an
 te

m
pl

at
es

250 500 750 1000

0

50

100

150

200

255

variance

250 500 750 1000

0

50

100

150

200

255

skewness

250 500 750 1000

0

50

100

150

200

255

kurtosis

250 500 750 1000

0

50

100

150

200

255

lin
ea

r
re

gr
es

si
on

→ number of traces
250 500 750 1000

0

50

100

150

200

255

→ number of traces
250 500 750 1000

0

50

100

150

200

255

→ number of traces
250 500 750 1000

0

50

100

150

200

255

→ number of traces
250 500 750 1000

0

50

100

150

200

255

1

0.5

0

Fig. 2. Results of the new leakage certification test for software measurements.

LR-based models rely on the homoscedastic error assumption and capture both
physical noise and noise due to assumption errors in a single term.

By contrast, and quite intriguingly, a look at the last two moments
(i.e. skewness and kurtosis) also shows some differences with the results in [8].
That is, we remark that even for Gaussian templates, small model errors appear
in these higher-order moments. This essentially corresponds to the fact that our
measured leakages do not have perfectly key-independent skewness and kurtosis,
as we assume in Gaussian PDF estimations. This last observation naturally raises
the question whether these errors are significant, i.e. do they contradict the
results of the Eurocrypt 2014 leakage certification test? In the next section, we
show that it is not the case, and re-conciliate both approaches by investigating
the respective informativeness of the four moments in our new test.

7 Quantifying the Information Loss

Since Fig. 2 suggests the existence of (small) model errors in our Gaussian tem-
plates, that are due to an incorrect characterization of the third- and fourth-order
moments in our leakage traces, we now want to investigate whether these errors
are leading to significant information losses. Fortunately, our “per-moment” app-
roach to leakage certification also allows simple investigations in this direction
(which heuristically answers one of the open questions in [8], about the informa-
tion loss due to model errors). In particular, we can simply use the MCP-DPA
mentioned in Sect. 2.3 for this purpose. Roughly, this tool computes the correla-
tion between a simplified model (that corresponds to dth-order moments of the
leakage distribution) to samples raised to the power d (centered or standard-
ized if we consider centered and standardized moments). As discussed in [16],

Towards Easy Leakage Certification 53

the resulting estimated correlation features a “metric intuition”: the higher the
value of the MCP-DPA distinguisher computed for an order d, the more efficient
the MCP-DPA attack exploiting this statistical order of the leakage distribution.
Hence, computing the value of the MCP-DPA distinguisher for different values
of d should solve our problem, i.e. determine whether the moments for which
assumption errors are detected are (among) the most informative ones.

Concretely, we start by applying MCP-DPA in the traditional sense and
exploit cross–validation for this purpose, this time following exactly Sect. 2.4.
That is, the set of evaluation traces L is again split into k (non overlapping) sets
L(i) of approximately the same size, and we use profiling sets L(j)

p =
⋃

i�=j L(i)

and test sets L(j)
t = L\L(j)

p . We then repeatedly compute the dth-order moments
m̂

d,(j)
y ← L(j)

p , and the dth-order MCP-DPA distinguisher:

MCP-DPA(j)(d) = ρ̂
(
M̂

d,(j)
Y , (Ly)d ← L(j)

t

)
.

As previously mentioned, it corresponds to the sample correlation between the
random variable representing the estimated moments M̂d

Y , and the random vari-
able corresponding to the leakage samples coming from the test set Ly ← L(j)

t ,
raised to power d (possibly centered or standardized if we consider centered and
standardized moments). The k = 10 estimates for this MCP-DPA metric are
represented in the top part of Fig. 3. We additionally considered two slightly
tweaked versions of MCP-DPA, where we rather estimate Gaussian TA (resp.
LR-based) models P̂r

ta

model (resp. P̂r
lr

model), and consider the two (resp. one) key-
dependent moments from these models to compute the metric. These tweaked
MCP-DPAs are represented in the middle (resp. lower) part of the figure.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

re
al

moments-correlating DPA

mean
variance
skewness
kurtosis

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

G
T

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

→ correlation

LR

Fig. 3. MCP-DPA results for software measurements (with 256 × 1000 traces).

54 F. Durvaux et al.

Our main observations are as follows. First, the upper part of the figure
suggests that the most informative moments in our leakage traces are the mean
and variance. There is indeed a small amount of information in the skewness
and kurtosis. But by considering the classical rule–of–thumb that the number of
samples Ns required to perform a successful correlation-based attack is inversely
proportional to the square of its correlation coefficient, that is:

Ns ≈ c

ρ̂
(
M̂d

Y , (Ly)d
)2 ,

with c a small constant, we can see that the additional information gain in these
higher-order moments is very limited in our context. For example the value of
the mean-based MCP-DPA distinguisher (for which no assumption errors are
detected) is worth ≈ 0.74 in the figure, and the value of the kurtosis-based
MCP-DPA distinguisher (for which assumption errors are detected) is worth
≈ 0.02. Considering these two moments as independent information channels,
the loss caused by the assumption errors on the kurtosis can be approximated as

0.742

0.742+0.022 ≈ 0.999, meaning that improving the model so that the kurtosis is well
characterized could only (and ideally) lead to an attack requiring this fraction of
Ns to succeed (that is close to 1). This observation backs up the conclusions of the
generic leakage certification test in [8] that Gaussian templates are sufficiently
accurate for our evaluation set. Next, we see that TA-based and LR-based MCP-
DPA yield no information in the higher-order moments, which trivially derives
from the fact that they rely on a Gaussian assumption. Eventually, and quite
interestingly, we note that the information loss between LR-based models and
TA-based models can be approximated thanks to the correlation between their
moments. For example, and considering the means in Fig. 3, we can compute the
value of the LR-based MCP-DPA distinguisher – worth ≈ 0.48 in the figure – by
multiplying the value of the TA-based MCP-DPA distinguisher – worth ≈ 0.74 –
by ρ̂(M̂d,ta

Y , M̂d,lr
Y) – worth ≈ 0.65 in our experiments (i.e. by taking advantage

of the “product rule” for the correlation coefficient in [24]).
Those last tools are admittedly informal. Yet, we believe they provide a useful

variety of heuristics allowing evaluators to analyze the results of their certifica-
tion tests. In particular, they lead to easy–to–exploit intuitions regarding the
impact of model errors detected in moments of a given order. As discussed in
the beginning of Sect. 4, further formalizing these findings, and possibly putting
forward relevant scenarios where our simplified approach leads to significant
shortcomings, is an interesting scope for further research. Meanwhile, the next
section describes an open source code to demonstrate the implementation effi-
ciency of our new certification tests, and Sect. 9 complements these findings by
showing that the proposed certification method applies too in the more chal-
lenging context of (unprotected and) masked hardware implementations.

Towards Easy Leakage Certification 55

8 Open Source Code

The previous experiments can be carried out thanks to five scripts and function
files (in the Matlab format .m) available from [1] and described next:

1. main.m. This top-level script loads the leakage samples, changes their for-
mat, and calls the certification and display functions. The samples need to be
formatted because the code is vectorised for efficiency: samples usually come
as a disordered vector, i.e. regardless of the target intermediate values. We
reshape this sample vector into a matrix of which each column corresponds to
an intermediate value. That is, a Nt-by-256 matrix is created if 8-bit values
are investigated (with Nt the number of samples per target value).

2. moment based analysis.m. This function detects assumption errors with
our new certification test. For a given number of samples, the first four
moments are computed from the leakage samples and then compared to the
moments simulated from the two considered models, i.e. Gaussain templates
and LR-based. In order to avoid overfitting, cross-validation is involved at
each iteration. This function produces the results reported in Fig. 2.

3. plot grey graphs.m. This script displays the p-values as in Fig. 2.
4. mcpdpa.m. This function performs the MCP-DPA part of our analysis,

which is only computed for the maximum number of samples per target inter-
mediate values (i.e. Nt). Cross-validation is again exploited in order to avoid
overfitting. This function produces the results reported in Fig. 3.

5. plot mcpdpa.m. This scripts displays the MCP-DPA analysis of Fig. 3.

Two files in the Matlab data format .mat are also included in the demonstration
code. The first file, aes sbox.mat, is a table corresponding to the AES S-box
execution, and is solely used to build the linear regression model. The second
file, traces.mat, is a file containing the leakage samples in a vector traces, and
the associated target intermediate value y = x ⊕ k in a vector y.

From the time complexity point–of–view, this code is considerably more effi-
cient than the previous solution from [8]. Strict comparisons are hard to obtain
since our current implementations are prototype ones, and further optimizations
could be investigated. But roughly speaking, generating leakage certification
plots for 256 leakage models as in Fig. 2 is completed in seconds of computations
on a standard desktop computer, whereas it typically took hours with the Euro-
crypt 2014 tools. Since the cost of our heuristic leakage certification method is
essentially similar to the one of a CPA, it can easily be applied on full leakage
traces, in particular if some high performance computing can be exploited to
take advantage of the parallel nature of the certification problem [15].

9 Hardware Experiments

As usual in the evaluation of masked implementations, we first ran a preliminary
test by setting the masks to constant null values, which actually corresponds to
the case of an unprotected FPGA implementation of PRESENT. As mentioned

56 F. Durvaux et al.

in Sect. 2, the main difference between this hardware case study and the previous
software one is that the leakages now depend on transitions between consecutive
values in a target register. For the rest, the details about such attacks and their
relation with the underlying architecture (that can be found in [16,17]) are not
necessary to understand our following discussions.

As expected, the results of this preliminary test were essentially similar to
the ones of the unprotected software case. That is, we did not detect assumption
errors for the Gaussian templates with up to 256,000 measurements, while some
errors could be detected in the LR-based attacks. The only interesting bit of
information from this context is the lower MCP-DPA values observed (see the
Appendix in [9]), which can be associated to a higher noise level.

We next moved to the more meaningful case with random masks activated,
for which the leakage certification results are given in Fig. 4. Two main obser-
vations can be extracted from these plots. First, and as previously, LR-based
attacks exhibit model errors in the first two moments, that are not detected
with Gaussian templates. Second, and more importantly, we see that strong
errors are detected for the skewness and kurtosis, already quite early in our
evaluation set. This is expected since these two moments are not captured at all,
neither by our Gaussian templates, nor by LR-based attacks. However, since the
information in a (first-order) threshold implementation should lie in higher-order
(at least > 1) statistical moments, it naturally raises the question whether this
model imperfection is critical from a security evaluation point–of–view.

mean

10000 30000 50000

ga
us

si
an

 te
m

pl
at

es

0

50

100

150

200

255

variance

10000 30000 50000

0

50

100

150

200

255

skewness

10000 30000 50000

0

50

100

150

200

255

kurtosis

10000 30000 50000

0

50

100

150

200

255

→ number of traces
10000 30000 50000

lin
ea

r r
eg

re
ss

io
n

0

50

100

150

200

255

→ number of traces
10000 30000 50000

0

50

100

150

200

255

→ number of traces
10000 30000 50000

0

50

100

150

200

255

→ number of traces
10000 30000 50000

0

50

100

150

200

255

1

0.5

0

Fig. 4. Results of the new leakage certification test for masked hardware.

In order to answer this question, we again performed MCP-DPA attacks for
different statistical orders, as represented in Fig. 5. Interestingly, the upper plot
shows that, while there is no information in the first-order moments (as guaran-
teed by the first-order security property of threshold implementations), there is

Towards Easy Leakage Certification 57

indeed information in all the other moments. So we are actually in a case where
the leakage certification test suggests improvements, and tells the evaluator that
his (Gaussian) templates are not sufficient to extract all the information, while
LR-based attacks could not succeed at all (since they do estimate a single vari-
ance for all the profiled transitions). This raises interesting scopes for further
research, since profiling methods that easily incorporate such higher-moments
have not been much explored in the side-channel literature so far [3].

× 10-3
0 0.5 1 1.5 2 2.5 3 3.5 4

re
al

 (v
al

ue
)

moments-correlating DPA

mean
variance
skewness
kurtosis

→ correlation × 10-3
0 0.5 1 1.5 2 2.5 3 3.5 4

re
al

 (R
D

M
)

Fig. 5. MCP-DPA results for masked hardware (with 256 × 50,000 traces)

Besides, another interesting observation arises if, rather than simply plotting
the asymptotic MCP-DPA values, we also plot the Relative Distinguishing Margin
(RDM), defined in [28] as the distance between the correct key distinguisher value
and the value for the highest ranked alternative. As illustrated by the lower plot
of Fig. 5, this RDM is larger for the skewness than for the variance. This means
that while the variance is the most informative moment overall (i.e. assuming some
enumeration is possible as a post-processing after the attack [26]), the skewness is
more useful in case the adversary has to recover the key thanks to side-channel
measurements exclusively (since the nearest rival captured by the RDM is usually
the most difficult to distinguish from the good key).

Summarizing, these experiments confirm the applicability of our easy leakage
certification tests in a practically-relevant case study (i.e. a threshold implemen-
tation that is representative of state–of–the–art masking schemes). They also
put forward that combining MCP-DPA evaluations with the estimation of a
RDM metric allows extracting additional intuitions regarding the information
vs. computation tradeoff that is inherent to any side-channel attack.

58 F. Durvaux et al.

10 Conclusion

The evaluation of leaking devices against DPA attacks exploiting statistical mod-
els of leakage distributions implies answering two orthogonal questions:

1. Is the model used in the attack/evaluation correct?
2. How informative is the model used in the attack/evaluation?
The second question is highly investigated. It relates to the concrete security level
of an implementation given a model, e.g. measured with a number of samples
needed to recover the key. The first question is much less investigated and relates
to the risk of a “false sense of security”, i.e. evaluations based on non-informative
models despite informative leakages. Leakage certification allows evaluators to
guarantee that the models used in their DPA attacks are sufficiently accurate.
The simple tests we provide in this paper makes it possible to easily integrate
leakage certification in actual toolchains. We hope these results open the way
towards globally sound evaluations for leaking devices, where one first guaran-
tees that the models used in the attacks are correct, and then evaluates their
informativeness, which boil downs to compute their corresponding PI [7].

Interesting scopes for further research include the extension of the tools in
this paper to more case studies of protected implementations with higher-order
and multivariate leakages, and the investigation of the profiling errors due to the
characterization of different devices, possibly affected by variability [19].

Acknowledgements. François-Xavier Standaert Standaert is a research associate of
the Belgian Fund for Scientific Research (FNRS-F.R.S.). This work has been funded
in parts by the European Commission through the ERC project 280141 (acronym
CRASH) and by the ARC project NANOSEC.

References

1. http://perso.uclouvain.be/fstandae/PUBLIS/171.zip
2. http://satoh.cs.uec.ac.jp/sakura/index.html
3. Batina, L., Gierlichs, B., Prouff, E., Rivain, M., Standaert, F.-X., Veyrat-

Charvillon, N.: Mutual information analysis: a comprehensive study. J. Cryptol.
24(2), 269–291 (2011)

4. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

5. Chari, S., Rao, J.-R., Rohatgi, P.: Template attacks. In: Kaliski Jr., B.S., Kaya
Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer,
Heidelberg (2003)

6. Dabosville, G., Doget, J., Prouff, E.: A new second-order side channel attack based
on linear regression. IEEE Trans. Comput. 62(8), 1629–1640 (2013)

7. Duc, A., Faust, S., Standaert, F.-X.: Making masking security proofs concrete -
or how to evaluate the security of any leaking device. In: Oswald, E., Fischlin, M.
(eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 401–429. Springer, Heidelberg
(2015)

http://perso.uclouvain.be/fstandae/PUBLIS/171.zip
http://satoh.cs.uec.ac.jp/sakura/index.html

Towards Easy Leakage Certification 59

8. Durvaux, F., Standaert, F.-X., Veyrat-Charvillon, N.: How to certify the leakage
of a chip? In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol.
8441, pp. 459–476. Springer, Heidelberg (2014)

9. Durvaux, F., Standaert, F.-X., Del Pozo, S.M.: Towards easy leakage certification.
Cryptology ePrint Archive, Report 2015/537 (2015). http://eprint.iacr.org/

10. Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: 49th Annual
IEEE Symposium on Foundations of Computer Science, FOCS 2008, 25-28 October
2008, Philadelphia, PA, USA, pp. 293–302. IEEE Computer Society (2008)

11. Goodwill, G., Jun, B., Jaffe, J., Rohatgi, P.: A testing methodology for side
channel resistance validation. NIST Non-invasive Attack Testing Workshop
(2011). http://csrc.nist.gov/news events/non-invasive-attack-testing-workshop/
papers/08 Goodwill.pdf

12. Heuser, A., Rioul, O., Guilley, S.: Good is not good enough - deriving optimal dis-
tinguishers from communication theory. In: Batina, L., Robshaw, M. (eds.) CHES
2014. LNCS, vol. 8731, pp. 55–74. Springer, Heidelberg (2014)

13. Mangard, S., Oswald, E., Standaert, F.-X.: One for all - all for one: unifying stan-
dard differential power analysis attacks. IET Inf. Secur. 5(2), 100–110 (2011)

14. Mather, L., Oswald, E., Bandenburg, J., Wójcik, M.: Does my device leak infor-
mation? An a priori statistical power analysis of leakage detection tests. In: Sako,
K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 486–505.
Springer, Heidelberg (2013)

15. Mather, L., Oswald, E., Whitnall, C.: Multi-target DPA attacks: pushing DPA
beyond the limits of a desktop computer. In: Sarkar, P., Iwata, T. (eds.) ASI-
ACRYPT 2014. LNCS, vol. 8873, pp. 243–261. Springer, Heidelberg (2014)

16. Moradi, A., Standaert, F.-X.: Moments-correlating DPA. IACR Cryptology ePrint
Archive 2014:409 (2014)

17. Poschmann, A., Moradi, A., Khoo, K., Lim, C.-W., Wang, H., Ling, S.: Side-
channel resistant crypto for less than 2, 300 GE. J. Cryptol. 24(2), 322–345 (2011)

18. Prouff, E., Rivain, M., Bevan, R.: Statistical analysis of second order differential
power analysis. IEEE Trans. Comput. 58(6), 799–811 (2009)

19. Renauld, M., Standaert, F.-X., Veyrat-Charvillon, N., Kamel, D., Flandre, D.: A
formal study of power variability issues and side-channel attacks for nanoscale
devices. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 109–
128. Springer, Heidelberg (2011)

20. Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side channel
cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp.
30–46. Springer, Heidelberg (2005)

21. Schneider, T., Moradi, A.: Leakage assessment methodology. In: Güneysu, T.,
Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 495–513. Springer, Heidel-
berg (2015)

22. Spanos, A.: Probability Theory and Statistical Inference: Econometricmodeling
with Observational Data. Cambridge University Press, Cambridge (1999)

23. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of
side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 443–461. Springer, Heidelberg (2009)

24. Standaert, F.-X., Peeters, E., Rouvroy, G., Quisquater, J.-J.: An overview of power
analysis attacks against field programmable gate arrays. Proc. IEEE 94(2), 383–
394 (2006)

25. Standaert, F.-X., Veyrat-Charvillon, N., Oswald, E., Gierlichs, B., Medwed, M.,
Kasper, M., Mangard, S.: The world is not enough: another look on second-order

http://eprint.iacr.org/
http://csrc.nist.gov/news_events/non-invasive-attack-testing-workshop/papers/08_Goodwill.pdf
http://csrc.nist.gov/news_events/non-invasive-attack-testing-workshop/papers/08_Goodwill.pdf

60 F. Durvaux et al.

DPA. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 112–129. Springer,
Heidelberg (2010)

26. Veyrat-Charvillon, N., Gérard, B., Renauld, M., Standaert, F.-X.: An optimal key
enumeration algorithm and its application to side-channel attacks. In: Wu, H.,
Knudsen, L.R. (eds.) SAC 2012. LNCS, vol. 7707, pp. 390–406. Springer, Heidel-
berg (2013)

27. Veyrat-Charvillon, N., Gérard, B., Standaert, F.-X.: Security evaluations beyond
computing power. In: Nguyen, P.Q., Johansson, T. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 126–141. Springer, Heidelberg (2013)

28. Whitnall, C., Oswald, E.: A fair evaluation framework for comparing side-channel
distinguishers. J. Cryptogr. Eng. 1(2), 145–160 (2011)

Simple Key Enumeration (and Rank Estimation)
Using Histograms: An Integrated Approach

Romain Poussier1(B), François-Xavier Standaert1, and Vincent Grosso1,2

1 ICTEAM/ELEN/Crypto Group, Université catholique de Louvain,
Louvain-la-Neuve, Belgium

{romain.poussier,fstandae}@uclouvain.be
2 Horst Görtz Institute for IT Security,

Ruhr-Universität Bochum, Bochum, Germany
vincent.grosso@ruhr-uni-bochum.de

Abstract. The main contribution of this paper, is a new key enumer-
ation algorithm that combines the conceptual simplicity of the rank
estimation algorithm of Glowacz et al. (from FSE 2015) and the paral-
lelizability of the enumeration algorithm of Bogdanov et al. (SAC 2015)
and Martin et al. (from ASIACRYPT 2015). Our new algorithm is based
on histograms. It allows obtaining simple bounds on the (small) rounding
errors that it introduces and leads to straightforward parallelization. We
further show that it can minimize the bandwidth of distributed key test-
ing by selecting parameters that maximize the factorization of the lists of
key candidates produced by the enumeration, which can be highly bene-
ficial, e.g. if these tests are performed by a hardware coprocessor. We also
put forward that the conceptual simplicity of our algorithm translates
into efficient implementations (that slightly improve the state-of-the-art).
As an additional consolidating effort, we finally describe an open source
implementation of this new enumeration algorithm, combined with the
FSE 2015 rank estimation one, that we make available with the paper.

1 Introduction

Key enumeration and rank estimation algorithms have recently emerged as
an important part of the security evaluation of cryptographic implementa-
tions, which allows post-processing the side-channel attack outcomes and deter-
mine the computational security of an implementation after some leakage has
been observed. In this respect, key enumeration can be seen as an adversar-
ial tool, since it allows testing key candidates without knowledge of the master
key [4,8,10] (for example, it was an important ingredient of the best attack sub-
mitted to the DPA Contest v2 [5]). By contrast, rank estimation as an evaluation
tool since it requires the knowledge of the master key. Its main advantage is that
it allows efficiently gauging the security level of implementations for which enu-
meration is beyond reach (and therefore are not trivially insecure) [3,7,8,11,12].

Concretely, state-of-the-art solutions for key rank estimation are essentially
sufficient to analyze any (symmetric) cryptographic primitive. Algorithms such
c© International Association for Cryptologic Research 2016
B. Gierlichs and A.Y. Poschmann (Eds.): CHES 2016, LNCS 9813, pp. 61–81, 2016.
DOI: 10.1007/978-3-662-53140-2 4

62 R. Poussier et al.

as [3,7,8] typically allow estimating the rank of a 128- or 256-bit key with an
accuracy of less than one bit, within seconds of computation. By contrast, effi-
ciency remained a concern for key enumeration algorithms for some time, in
particular due to the inherently serial nature of the optimal algorithm of Veryat
et al. [10]. This situation evolved with the recent (heuristic) work of Bogdanov
et al. [4] and the more formal solution of Martin et al. [8]. In these papers, the
authors exploit the useful observation that by relaxing (a little bit) the opti-
mality requirements of enumeration algorithms (as one actually does in rank
estimation), it is possible to significantly improve their efficiency, and to make
them parallelizable. Since this relaxation is done by rounding the key (log) prob-
abilities (or scores) output by a side-channel attack, it directly suggests to try
adapting the histogram-based rank estimation algorithm from Glowacz et al. to
the case of key enumeration based on similar principles.

In this paper, we follow this track, and describe a new enumeration algo-
rithm based on histogram convolutions. As for rank estimation, using such simple
tools brings conceptual simplicity as an important advantage. Interestingly, we
show next that this simplicity also leads to several convenient features and nat-
ural optimizations of the enumeration problem. First, it directly leads to simple
bounds on the rounding errors introduced by our histograms (hence on the addi-
tional workload needed to guarantee optimal enumeration up to a certain rank).
Second, it allows straightforward parallelization between cores, since the work-
load of each core is directly available as the number of elements in each bin of our
histograms. Third, it outputs the keys as factorized lists, such that by adequately
tuning the enumeration parameters (i.e. the number of bins, essentially), we are
able to use our enumeration algorithm for distributed key testing with minimum
bandwidth (which is typically desirable if hardware/FPGA implementations are
used). In this respect, our experiments show that the best strategy is not always
to maximize the accuracy of the enumeration (especially when enumerating up to
large key ranks). We note that such features could also be integrated to other
recent enumeration algorithms (i.e. [8], and to some extent [4]). Yet, this would
require some adaptations while it naturally comes for free in our histogram-based
case. Eventually, the same observation essentially holds for the performances of
our algorithm, which slightly improve the state-of-the-art.

In view of the consolidating nature of this work, an important additional
contribution is an open source implementation of our key enumeration algorithm,
combined with the histogram-based rank estimation algorithm of FSE 2015, that
we make available with this paper in order to facilitate the dissemination of these
tools for evaluation laboratories [1].

2 Background

2.1 Algorithms Inputs

Details on how a side-channel attack extracts information from leakage traces are
not necessary to understand the following analysis. We only assume that for a n-
bit master key k, an attacker recovers information on Ns subkeys k0, ..., kNs−1 of

Simple Key Enumeration (and Rank Estimation) Using Histograms 63

length a = n
Ns

bits (for simplicity, we assume that a divides n). The side-channel
adversary uses the leakages corresponding to a set of q inputs Xq leading to a set
of q leakages Lq. As a result of the attack, he obtains Ns lists of 2a probabilities
Pi = Pr[k∗

i |Xq,Lq], where i ∈ [0, Ns − 1] and k∗
i denotes a subkey candidate

among the 2a possible ones. TA (Template Attacks) and LR (Linear Regression)-
based attacks directly output such probabilities. For other attacks such as DPA
(Differential Power Analysis) or CPA (Correlation Power Analysis), one can use
Bayesian extensions [10] or perform the enumeration directly based on the scores.
Note that in this last case, the enumeration result will be correct with respect
to the scores, but the corresponding side-channel attack is not guaranteed to be
optimal [9]. For simplicity, our following analyses are based only on the optimal
case where we enumerate based on probabilities. We leave the investigation of
the overheads due to score-based enumeration as an interesting scope for further
investigation. Eventually, the lists of probabilities are turned into lists of log
probabilities, denoted as LPi = log(Pi). This final step is used to get an additive
relation between probabilities instead of a multiplicative one.

2.2 Preprocessing

Key enumeration (and rank estimation) algorithms generally benefit from the
preprocessing which consists of merging m lists of probabilities Pi of size 2a

in order to generate a larger list P ′
i = merge(P0, P1, . . . , Pm−1), such that P ′

i

contains the 2m·a product of probabilities of the lists P0, P1, . . . , Pm−1. Taking
again the previous notations where the n bits of master key are split in Ns

subkeys of a bits, it allows to split them into N ′
s = Ns/m subkeys of m · a bits

(or close to it when m does not divide Ns). We denote the preprocessing merging
m lists as mergem, with merge1 meaning no merging. In the following, we assume
that such a preprocessing is performed by default and therefore always use the
notation N ′

s for the number of subkeys.

2.3 Toolbox

We now introduce a couple of tools that we use to describe our algorithms, using
the following notations: H will denote an histogram, Nb will denote a number
of bins, b will denote a bin and x a bin index.

Linear histograms. The function H = hist lin(LP,Nb) creates a standard his-
togram from a list of (e.g.) log probabilities LP and Nb linearly-spaced bins.
This is the same function as introduced in [9].

Convolution. This is the usual convolution algorithm which from two histograms
H1 and H2 of sizes n1 and n2 computes H1,2 = conv(H1,H2) where H1,2[k] =
∑k

i=0 H1[i]×H2[k−i]. It is efficiently implemented with a FFT in time O(n log n).
In the rest of the paper we consider that the indexes start at 0.

Getting the size of a histogram. We defined by size of(H) the function that
returns the number of bins of an histograms H.

64 R. Poussier et al.

Getting subkey candidates from a bin. We define K = get(H,x) as a function that
outputs the set of all subkeys contained in the bin of index x of an histogram H.
Such a set can contain up to 2m·a elements depending on the merging value.

3 Enumeration Algorithm

In this section, we describe our new key enumeration algorithm. Since we join an
open source code of this algorithm to the paper, our primary goal is to explain
its main intuition. For this purpose, we combine a specification of the different
enumeration steps with simple examples to help their understanding.

Concretely, our new key enumeration algorithm is an adaptation of the rank
estimation algorithm of Glowacz et al. [7]. As in this previous work, we use
histograms to efficiently represent the key log probabilities, and the first step
of the key enumeration is a convolution of histograms modeling the distribution
of our N ′

s lists of log probabilities. This step is detailed in Algorithm 1. In the
rest of the paper we will denote the initial histograms H0, ...,HN ′

s−1 and the
convoluted histograms H0:1, ...,H0:N ′

s−1 as written in the output of Algorithm 1.
For illustration, Fig. 1 shows an example of its application in the case of two 4-
bit subkeys of which the log probabilities are represented by a 7-bin histogram,
which are convoluted in the lower part of the figure.

Algorithm 1. Convolution.
Input. N ′

s lists of log probabilities LPi’s, and number of bins Nb.
Output. Histograms of the log probabilities of each sub-key: H0, . . . , HN′

s−1,
and their convolutions H0:1, . . . , H0:N′

s−1.
H0 ← hist lin(LP0, Nb);
H1 ← hist lin(LP1, Nb);
H0:1 ← conv(H0, H1);
for i = 2 to N ′

s − 1 do
Hi ← hist lin(LPi, Nb);
H0:i ← conv(Hi, H0,i−1);

end forreturn H = [H0, . . . , HN′
s−1, H0:1, . . . , H0:N′

s−1].

Based on this first step, our algorithm allows to enumerate keys that are
ranked between two bounds Bstart and Bstop. In the standard situation where
the adversary wants to enumerate starting from the most likely key, we set
Bstart = 0. However, there are at least two cases where other starting bounds
can be useful. First, it is possible that one wishes to continue an enumeration
that has been started previously. Second, and more importantly, the selection of
these bounds directly allows efficient parallel key enumeration, where the amount
of computation performed by each core is well balanced.

In order to enumerate all keys ranked between the bounds Bstart and Bstop,
the corresponding indexes of H0:N ′

s−1 have to be computed, as described in
Algorithm 2. It simply sums the number of keys contained in the bins starting

Simple Key Enumeration (and Rank Estimation) Using Histograms 65

Fig. 1. Histograms representing the log probabilities of two 4-bit subkeys and their
convolution. Upper left: H0 = [0, 3, 2, 1, 7, 2, 1]. Upper right: H1 = [3, 0, 4, 5, 0, 3, 1].
Bottom: H0:1 = [0, 9, 6, 15, 44, 20, 45, 52, 19, 27, 13, 5, 1].

from the most likely one, until we exceed Bstart and Bstop, and returns the
corresponding indexes xstart and xstop. That is, xstart (resp. xstop) refers to the
index of the bin where Bmin (resp. Bmax) is achieved (thus xstart ≥ xstop).

As in [7], a convenient feature of the histograms we use to represent the
key log probabilities is that they lead to simple bounds on the “enumeration
error” that is due to their rounding, hence on the additional workload needed
to compensate this error. Namely, if one wants to be sure to enumerate all the
keys of which the rank is between the bounds, then he should add �N ′

s

2 � to xstart

and substract it to xstop.1

Figure 2 illustrates the computation of these indexes using the same example
as in Fig. 1. In this case, the user wants to find the bins where the keys are
ranked between 10 and 100. By summing up the number of keys contained in
the bins of H0:1 from the right to the left, we find that the bin indexed 10 starts
with the rank 7 and the bin indexed 7 ends with the rank 117. Since the bin
indexes 11 and 6 are out of the bounds (10 and 100), we know that the dark
grey bins approximately contains the keys we want to enumerate, up to rounding
errors. Furthermore, by adding the light grey bins, we are sure that all the keys

1 The authors of [7] had a slightly worst bound of N ′
s instead of �N′

s
2

�. Indeed, they
rounded the sum of all the subkeys’ log probabilities, instead of summing the rounded
subkeys’ log probabilities.

66 R. Poussier et al.

Algorithm 2. Computation of the indexes’ bounds.
Input. Lower and upper bounds on the key rank Bstart, Bstop.
Output. Indexes of the bins between the bounds xstart, xstop.

xstart ← size of(H0:N′
s−1) − 1;

cntstart ← 0;
while cntstart < Bstart do

cntstart ← cntstart + H0:N′
s−1(xstart);

xstart ← xstart − 1;
end while
cntstop ← cntstart;
xstop ← xstart;
while cntstop < Bstop do

cntstop ← cntstop + HN′
s−1(xstop);

xstop ← xstop − 1;
end whilereturn xstart, xstop.

between the ranks 10 and 100, as would be produced by an optimal enumeration
algorithm (like [10]), are covered by the bins.

Fig. 2. Computation of the indexes’ bounds for Bmin = 10 and Bmax = 100.

Given the histogram of the key log probabilities and the indexes of the bounds
between which we want to enumerate, the enumeration simply consists in per-
forming a backtracking over all the bins between xstart and xstop. More precisely,
during this phase we recover the bins of the initial histograms (i.e. before con-
volution) that we used to build a bin of the convoluted histogram H0:N ′

s−1. For
a given bin b with index x of H0:N ′

s−1 corresponding to a certain log probability,
we have to run through all the non-empty bins b0, ...bN ′

s−1 of indexes x0, ...xN ′
s−1

of H0, ...,HN ′
s−1 such that x0 + ... + xN ′

s−1 = x. Each bi will then contain at
least one and at most 2m·a subkey(s) that we must enumerate. This leads to a
keyfactorization which is a table containing N ′

s subkey lists, such that each of
these lists contains up to 2m·a subkeys associated to the bin bi of the histogram
Hi. Any combination of N ′

s subkeys, each one being picked in a different list,
results in a master key having the same rounded probability. Eventually, each
time a factorization is completed, we call a fictive function process key which

Simple Key Enumeration (and Rank Estimation) Using Histograms 67

takes as input the result of this factorization. This function could test the keys
on-the-fly or send them to a third party for testing (this function is essentially
independent of the enumeration process).

Algorithm 3 describes more precisely this bin decomposition process. From
a bin index x0:i of H0:i, we find all the non empty bins of indexes xi of Hi such
that the corresponding bin of index x0:i − xi of H0:i−1 is non empty as well.
All the bins bi following this property will lead to valid subkeys for ki that we
add to the key factorization using the function get(Hi, bi). This is done for all
convolution results from the last histogram H0:N ′

s−1 to the first H0:1, which then
leads to a full key factorization.

Algorithm 3. Bin decomposition.
Input. H: the structure containing all the histograms output by Algorithm 1;

csh (current small hist): the index i of the current histogram Hi we target;
xbin: The bin index of H0:i we want to decompose.

Output. kf (key factorization): the array of N ′
s subkey lists containing factorized

keys.
Inline comments are given in Table 1

if csh == 1 then
x ← size of(H0) − 1;
while (x ≥ 0) & (x + size of(H1)) ≥ xbin) do � (1) and (2)

if H0(x) > 0 & H1(xbin − x) > 0 then � (3)
kf(1) ← get(H0, x);
kf(0) ← get(H1, xbin − x);
process key(kf);

end if
x ← x − 1;

end while
else

x ← size of(Hcsh) − 1;
while (x ≥ 0) & (x + size of(H0:csh−1) ≥ xbin) do � (4) and (5)

if Hcsh(x) > 0 & H0:csh−1(xbin − x) > 0 then � (6)
kf(csh) ← get(Hi, x);
Decompose bin(csh − 1, xbin − x, H, kf);

end if
x ← x − 1;

end while
end if

In order to help the understanding of Algorithm 3, we provide an example
of bin decomposition in Fig. 3. In this example, we want to enumerate all the
keys having their log probability in the 7th bin of H0:1 (represented with black
stripes in the bottom part of the figure). Since this bin is not empty, we know
that such keys exist. Hence, in order to enumerate all of them, we iterate over
all the bins b0 with indexes x0 of H0 and look if the corresponding bins b1 with
indexes 7 − x0 of H1 are non-zero (i.e. contain at least one key). Whenever this

68 R. Poussier et al.

Table 1. Comments for Algorithm 3.

(1) If x < 0 we looked at all the bins of H0

(2) If x > xbin − size of(H1) we looked at all the bins of H1.

(3) If H0(x) > 0 & H1(xbin − x) > 0 we have two non-zero bins such that
the sum of the indexes matches, thus we found valid subkeys lists for
k0 and k1.

(4) If x < 0 we looked at all the bins of Hcsh.

(5) If x > xbin − size of(H0:csh) we looked at all the bins of H0:csh.

(6) If Hcsh(x) > 0 & H0:csh−1(xbin−x) > 0 we have two non-zero bins such
that the sum of the indexes matches, thus we found a valid subkeys list
for kcsh

happens, we found a key factorization which corresponds to all the combinations
of the subkeys contained in the bin b0 of H0 and the bin b1 of H1. These possible
bin combinations are represented in the same color for H0 (resp. H1) in the top
left (resp. top right) part of the figure. The bins in white are those for which no
such combination is possible. For example, subkeys with log probability in the
fourth bin of H0 would require subkeys with log probability in the fifth bin of
H1 (so that 3 + 4 = 7), but this fifth bin of H1 is empty.

The generalization of this algorithm simply follows a recursive decomposition.
That is, in order to enumerate all the keys within a bin b of index x in H0:N ′

s−1,
we find two indexes xN ′

s−1 and x − xN ′
s−1 of HN ′

s−1 and H0:N ′
s−2 such that

the corresponding bins are not empty. All the keys in the bin index xN ′
s−1 of

HN ′
s−1 will be added to the key factorization. We then continue the recursion

with the bin x− xN ′
s−1 of H0:N ′

s−2 by finding two non-empty bin indexes xN ′
s−2

and x − xN ′
s−1 − xN ′

s−2 of H0:N ′
s−3, etc.

Finally, the main loop of our new enumeration is given in Algorithm 4. It
simply calls Algorithm 3 for all the bins of H0:N ′

s−1 which are between the
enumeration bounds.

Algorithm 4. Histogram-based enumeration.
Input. H: the structure containing all the histograms output by Algorithm 1;

xstart: the bin index of H0:N′
s−1 from which we start the enumeration;

xstop: the bin index of H0:N′
s−1 from which we end the enumeration.

Output. kf (key factorization) :the array of N ′
s subkey lists containing the factorized

keys.
for x = xstart to xstop do

Decompose bin(N ′
s − 1, x, H, kf);

end for

Simple Key Enumeration (and Rank Estimation) Using Histograms 69

Fig. 3. Enumeration with histogram for a (shifted) log probability of 7.

4 Open Source Code

For usability, we join an open source implementation of our key enumeration
algorithm to this paper. For completeness and in view of the similarity of the
techniques they exploit, we also include the key rank estimation algorithm of [7]
in this tool. The corresponding program is compiled using G++ and uses the
NTL library [2] in order to compute the histogram convolutions. It works on
Windows and Linux operating systems (and probably on MAC). In this section,
we describe the inputs and outputs that have to be set before running key enu-
meration and rank estimation. The code is provided as supplementary material
to the paper, with an example of utilization.

Note that while the previous section only describes the general idea of the
algorithm, its implementation contains a couple of additional optimizations,
typically involving precomputations, iterating only over non-zero bins of the
histograms and ordering the convolution, which allows significant performance
improvements.

Inputs of the Rank Estimation Algorithm.

– log proba: the Ns × 2a matrix encoded in double precision containing the
subkey log probabilities obtained during thanks to the attack.

– real key: the Ns-element vector containing the real subkeys values.

70 R. Poussier et al.

– nb bin : the number of bins for the initial histograms Hi.
– merge: the value of merging. A value of 1 will not do any merging. A value of

2 will merge lists by two, this gives us N ′
s = �Ns

2 � lists of 22a elements. The
current version supports only a maximum merging value of 3, which means
N ′

s = �Ns

3 � lists of 23a subkeys.

Inputs of the Key Enumeration Algorithm.

– All the inputs of the rank estimation algorithm (with real key being optional).
– bound start: the starting bound of the enumeration. If this is e.g. set to 210,

the enumeration will start from the closest bin of H0:N ′
s

such that at most
210 keys are contained in the next bins.

– bound stop: the ending bound of the enumeration. If this is e.g. set to 232,
the enumeration will start from the closest bin of H0:N ′

s
such that at least 232

keys are contained in the next bins.
– test key: this is a boolean value. If set to 1, the enumeration algorithm will

test the keys on-the-fly using an AES implementation, by recombining them
from the factorizations (and stop when the key is found); if set to 0, it will
keep the keys factorized, and the user should implement himself the way he
wants to test the keys in the process key function.

– texts: a 4 × Ns matrix containing two plaintexts and their associated cipher-
texts. These two plaintexts/ciphertexts are used to test on-the-fly if the cor-
rect key is found. This parameter does not have to be initialized if test key is
set to 0.

– to bound: This is a boolean value. If set to 1, the enumeration algorithm will
remove (resp. add) N ′

s

2 to index max (resp. index min) as described in the
previous section, to ensure that we enumerate all the keys between bound start
and bound stop.

– to real key: additional parameter for comparisons with previous works, that
can take 4 values in [0, 4]. If set to 0, this parameter is ignored. If set to
to 1, 2, 3, it allows the user to measure the timing of enumerating up to the
real key in different settings, ignore the value of bound start and test key and
enumerate up to the bin that contains the real key. It then requires real key
to be initialized. If set to 1, the keys will neither be recombined nor tested.
If set to 2, the keys are recombined but not tested with AES (it simply tests
if the key is equal to the real one provided by the user). If set to 3, the keys
are recombined and tested with the AES. If the real key rank is bigger than
bound end, the enumeration is aborted.

Algorithms Outputs.

– Rank estimation informations: returns the rank of the real key accord-
ing to its rounded log probabilities and the min and max bounds on the
actual rank of the real key. Also returns the time needed for rank estimation
(including the preprocessing time).

Simple Key Enumeration (and Rank Estimation) Using Histograms 71

– Enumeration informations: If the key has been found, returns the rank of
the real key according to its rounded log probabilities and the min and max
bounds on the actual rank of the real key. Also returns the time needed for
preprocessing and the time needed for enumeration.

Examples. Together with our code, we provide different examples of key enu-
meration which are written in a file main example.cpp and listed in Table 2. The
first example (first line in the table) enumerates all the keys of rounded rank
between 210 and 240 (taking the rounding bounds into account) and tests them
using a reference AES-128 software implementation. The second example enu-
merates all the keys of rounded rank between 20 and 240 without testing them.
A user would then have to define the way he wants to implement the process key
function (e.g. by sending the factorized lists to a powerful third testing party).
The last three examples enumerate all the keys up to the real one if its rounded
rank is lower than 232. For the third one, the recorded timing will correspond
to the enumeration time with factorization. For the fourth one, the recorded
timing will correspond to the enumeration time including the recombination of
the factorized lists. For the last one, the recorded timing will correspond to the
enumeration time with key testing (with our reference AES-128 implementation)
and thus with recombination.

Table 2. Running examples for key enumeration

to real key real key test key to bound texts bound start bound stop

0 optional 1 1 given 210 240 (1)

0 optional 0 0 − 20 240 (2)

1 needed − − − − 232 (3)

2 needed − − − − 232 (4)

3 needed − − − − 232 (5)

5 Performance Evaluations

In this section we evaluate the performances of our enumeration algorithm and
discuss its pros and cons compared to previous proposals. For this purpose, we
consider a setting of simulated leakages for an AES-128 implementation, which
has been previously used for comparison of other enumeration algorithms [4,8,
10]. Namely, we target the output of an AES S-box, leading to 16 leakages of the
form li = HW(S(xi, ki))+N for i ∈ [0, 15], with HW the Hamming weight leakage
function and N a random noise following a Gaussian distribution. We stress that
the main experimental criteria influencing the complexity of an enumeration is
the rank of the key (that we can control thanks to the noise variance). So other
experimental settings would not lead to significantly different conclusions with
respect to the performances of the enumeration algorithm.

72 R. Poussier et al.

Besides, the two main parameters of our algorithm are the number of bins
and the amount of merging. Intuitively, a smaller number of bins leads to a
faster execution time at the cost of an increased quantization error, and merging
accelerates the enumeration at the cost of more memory requirements and pre-
processing time. All the following experiments were performed with 256, 2048
and 65536 bins, and for an amount of merging of 1, 2 and 3. These values were
chosen to allow comparisons with the results of [8]. That is, 256 (resp. 2048 and
65536) bins is similar to choosing a precision of 8 (resp. 11 and 16) bits for
their algorithm. We limited the amount of merging to 3 because the memory
requirements of this preprocessing then becomes too large for our AES-128 case
study (a merging of 4 would require to store 4 × 232 × 8 bytes for the lists of log
probabilities in double precision).

5.1 Enumeration Accuracy

One convenient feature of our algorithm is its ability to compute easily the quan-
tization bounds related to the mapping from floating to integers. Since accuracy
is usually the main concern when enumerating keys, we start our evaluations
by analyzing the impact of the number of bins on these quantization bounds.
For this purpose, we first recall that these quantization errors are related to the
rounding, which was the key idea to improve the performance and parallelism of
recent works on enumeration. Hence, our goal is to find the level of quantization
errors that are acceptable from the enumeration accuracy point-of-view.

Figure 4 illustrates this impact for a precision of 256, 2048 and 65536 bins.
Since the impact of merging is minor for such experiments, we only report the
results with a merge1 preprocessing. The Y-coordinate represents the number of
keys one has to enumerate in order to guarantee an enumeration up to an exact
key rank given by the X-coordinate. Optimal enumeration is shown in black
(for which X = Y) and corresponds to the application of the algorithm in [10].
The red, blue and green curves respectively represent the maximum, average and
minimum results we found based on a sampling of 1000 enumeration experiments.
These experiments lead to two interesting observations. First, a lower precision
(e.g. 256 bins) leads to larger enumeration overheads for small key ranks, but
these overheads generally vanish as the key ranks increase. Second, increasing the
number of bins rapidly makes the enumeration (rounding) error low enough (e.g.
less than one bit) which is typically observed for the 2048- and 65536-bin cases,
especially for representative ranks (e.g. beyond 232) where the enumeration cost
becomes significant. This is in line with the observations made with histogram-
based rank estimation [7].

Note that other algorithms such as [4,8] lead to similar accuracies with similar
parameters (e.g. our 2048-bin case roughly corresponds to their 11-bit precision
case). Besides, finding bounds on the rounding error should be feasible for [8]
too, despite probably more involved than with histograms for which such bounds
come for free.

Simple Key Enumeration (and Rank Estimation) Using Histograms 73

0 10 20 30 40 50 60
0

10

20

30

40

50

60

key rank (log2)

n
u
m

b
er

o
f
k
ey

to
en

u
m

er
a
te

(l
o
g
2
)

0 10 20 30 40 50 60

key rank (log2)

0 10 20 30 40 50 60
0

10

20

30

40

50

60

key rank (log2)

n
u
m

b
er

o
f
k
ey

to
en

u
m

er
a
te

(l
o
g
2
)

max bound

mean bound

min bound

optimal (x=y)

Fig. 4. Enumeration overheads due to rounding errors with merge1 (i.e. no merging).
Upper left: 256 bins. Upper right: 2048 bins. Bottom: 65536 bins. (Color figure online)

5.2 Factorization

Another important feature of our method is its intrinsic ability to output fac-
torized keys instead of a single key at a time. Studying why and how this factor-
ization evolves with our main parameters is important for two reasons. Firstly,
it allows a better understanding of how our main parameters affect the per-
formances of histogram-based enumeration, since a better factorization always
reduces its amount of processing. Secondly, the number of keys per factorization
may be important for the key testing phase, e.g. in case one wants to distribute
the lists of key candidates to multiple (hardware) devices and therefore minimize
the bandwidth of this distributed part of the computations. This second point
will be discussed in Sect. 6.

Intuitively, increasing the amount of merging or decreasing the number of
bins essentially creates more collisions in the initial histograms, thus increases
the size of the factorized keys, and thus accelerates the enumeration process.

74 R. Poussier et al.

Interestingly, increasing the merging does not decrease the accuracy (by contrast
with decreasing of the number of bins). Hence, this type of preprocessing should
(almost) always be privileged up to the memory limits of the device on which
the enumeration algorithms is running.

To confirm this intuition, Fig. 5 illustrates an evaluation of the factorization
results for 256 (left) and 2048 (right) bins, and merging values from 1 to 3.
The top figures represent the number of keys per factorization (Y-coordinate).
The bottom figures represent the memory cost of the corresponding lists in
bytes (Y-coordinate). The dashed curves represent the average value (over 1000
experiments) and the plain curves represent the maximum that occurred on our
1000 experiments. As we can see, using 256 bins leads to a lot of collisions and
the merging value always amplifies the number of collisions. This increases the
number of keys per factorization along with the memory size of the corresponding
lists. The memory cost is anyway bounded by N ′

s × 2m·a, and the number of
keys per factorization by 2n = 2N

′
s·m·a (this extreme case would occur if all the

subkeys have the same rounded probability and thus are within the same bins for
all histograms Hi). We did not plot the results for 65536 bins since few collisions
appear (and thus not many of factorizations).

Note that the algorithm in [8] has a similar behavior as it stores the keys
having the same probabilities within a tree. So although the open source imple-
mentation joined to this previous work recombines the keys, it could also convert
this tree representation into a factorized representation that is more convenient
for distributed key testing with limited bandwidth.

5.3 Time Complexity

We finally discuss the performances of our algorithm in terms of timing. For
this purpose, all our experiments were performed using i7-3770 CPU running at
3.40 GHz with 16 GB of RAM on Ubuntu. We start by comparing our results
to the C++ implementation of the optimal key enumeration algorithm of Veyrat
et al. [10], and consider the costs of enumeration only (i.e. we exclude the key
testing and measure the time it takes to output factorized lists of keys). We then
discuss the comparison with the work of Martin et al. at the end of the section.

Results for 256 and 65536 bins are given in Fig. 6. The Y-coordinate rep-
resents the time (in seconds) taken to enumerate keys until finding the correct
one, for different ranks represented in the X-coordinate (in log2). As expected,
the enumeration time without key testing is extremely fast for a (low) precision
of 256 bins (in the upper part of the figure). For a merge1 preprocessing, it takes
less than 10 s to enumerate up to 235 on average. For a merge2 preprocessing,
it does not even take a second. The bottom part of the figure then shows the
results for 65536 bins with merge1 and merge2 preprocessings. Interestingly (and
exceptionally), using the merge2 preprocessing is worst than using merge1 in this
case. This is due to the fact that the 65536 bins do not bring enough collisions.

Simple Key Enumeration (and Rank Estimation) Using Histograms 75

0 5 10 15 20 25

100

101

102

103

104

105

106
n
b

k
ey

p
er

fa
ct

o
ri

za
ti

o
n

0 5 10 15 20 25

0 5 10 15 20 25

101

102

103

104

105

key rank (log2)

m
em

o
ry

co
st

(b
y
te

)

0 5 10 15 20 25

key rank (log2)

max merge3
max merge2
max merge1
mean merge3
mean merge2
mean merge1

Fig. 5. Key factorization for different levels of merging and number of bins. Left:
number of keys per factorization (top) and memory cost of the associated list in bytes
(bottom) for 256 bins. Right: same plots for 2048 bins.

Hence, we loose more by iterating over all the non-empty bins than what we win
from the collisions. Additional results for 2048 bins and other merging values
are given in Appendix A.

We next discuss a number of additional issues related to these performances.

Preprocessing and Memory. The preprocessing time and the memory
requirements of the algorithm are almost null for merge1 and merge2 preprocess-
ings (i.e. less than a second and less than 30 Mb). However, merge3 is more
expensive in time and memory. Indeed, the algorithm has to keep the merged
scores and the subkeys lists that fall into each bins in memory. In our exper-
iments done for an AES-128 implementation, we have to process 5 lists of 224

elements and one of 28. This requires approximatively 3.5 Gb of memory and 45 s
of preprocessing. As for the other key enumeration algorithm based on rounded
log probabilities (i.e. [4,8]), the memory requirements are independent of the
enumeration depth.

76 R. Poussier et al.

0 5 10 15 20 25 30
10−2

10−1

100

101

102

103

ti
m

e
in

se
co

n
d
s

(l
o
g
)

Veyrat et al.

Our’s samples.

Our’s mean

0 5 10 15 20 25 30

0 5 10 15 20 25 30
10−2

10−1

100

101

102

103

104

key rank (log2)

ti
m

e
in

se
co

n
d
s

(l
o
g
)

0 5 10 15 20 25 30

key rank (log2)

Fig. 6. Execution time for 256 and 65536 bins with factorized lists. The blue stars are
the samples for our algorithm, the red curve is the corresponding mean, and the black
curve is for the optimal enumeration algorithm in [10]. Upper left: 256 bins / merge1.
Upper right: 256 bins / merge2. Bottom left: 65536 bins / merge1. Bottom right: 65536
bins / merge2. (Color figure online)

Parallelization. Our algorithm allows a very natural parallelization with min-
imum communication. Namely, after H0:N ′

s−1 has been computed, if the user
wants to parallelize the enumeration among c cores, he simply has to split the
bins into c sets which will contain approximatively the same amount of keys, so
that each core will have approximatively the same workload. From our prelim-
inary experiments, the gain of such a parallelization is linear in the number of
threads, as expected.

Note that other key enumeration algorithms such as [4,8] can also be easily
parallelized, but balancing the effort done by each core may be slightly more
involved. This difference is again due to our treatment with histograms. That
is, while we can directly select the ranks between which we want to enumerate
with our starting and ending bounds, the solution in [8] rather has to select
the minimum and maximum probabilities of the keys between which we want
to enumerate, without a priori knowledge of the amount of keys it represents.

Simple Key Enumeration (and Rank Estimation) Using Histograms 77

So good balance between the cores requires an (admittedly light) preprocessing
to estimate the workload of the different cores. Besides, the heuristic nature of [4]
(which is not aimed at optimal enumeration) also makes it difficult to compare
from this point of view.

Comparison with the Enumeration Algorithm of Martin et al. To con-
clude this section, we add a comparison with the work in [8] and produce perfor-
mance evaluations using their Java open source (using their “shift to 1 trick” to
speed up the enumeration). We insist that this comparison is informal, since com-
paring implementations with different programming languages and optimization
efforts, and therefore is only aimed to highlight that the simplicity of our enumer-
ation algorithm reasonably translates into efficient implementations compared
to the best state-of-the-art enumeration algorithms.

Figure 7 shows our comparison results for both 8 and 11 bits of precision (cor-
responding to 256 and 2048 bins for our algorithm). Since the implementation
of Martin et al. measures the time to output the keys one by one (represented
by the red curve in the figure), we consider a similar scenario for our algorithm
(represented by the green curve in the figure). After some (quite irrelevant) time
overheads of the implementation from [8] for low key ranks, we see that both
algorithms reach a similar slope when the key ranks increase – yet with a sight
constant gain for our implementation. Furthermore, increasing the precision and
number of bins amplifies the initial overheads of the implementation from [8]
while making the performances of both algorithms more similar for larger ranks.
The additional black curve corresponds to the Java adaptation of the algorithm
in [10], which allows us to check consistency with the previous comparisons from
Martin et al. Since our algorithm allows to output factorized keys, we plotted in
blue the associated timing. Eventually, we have no timing comparison with the
work of [4] since the authors did not release their implementation. Extending
the comparing enumeration algorithms in a more systematic manner is anyway
an interesting scope for further research.

6 Application Scenarios

In this section we finally discuss the impact of our findings for an adversary
willing to exploit enumeration in concrete application scenarios, which comple-
ments the similar discussion that can be found in [4]. Without loss of generality
we focus on the case of the AES. We separate this discussion in the cases of
adversaries having either a small or big computing infrastructure to mount an
attack.

78 R. Poussier et al.

0 5 10 15 20 25 30 35
10−2

10−1

100

101

102

103

104

key depth (log2)

ti
m

e
in

se
co

n
d
s

(l
o
g
)

Martin et al.

Veyrat et al.

Our’s recombined merge1
Our’s factorized merge1

0 5 10 15 20 25 30 35

key depth (log2)

Fig. 7. Execution time for the java implementation of Veyrat et al., Martin et al. and
ours with 8 bits of precision (left) and 11 bits of precision (right). (Color figure online)

In the first case we assume a local attacker with only one “standard” com-
puter. Roughly, his computing power will be bounded by 240. In that case, he
will simply use all his available cores to launch the key enumeration with key
testing on-the-fly. Since it is likely that it will take more time to compute an
AES encryption than to output a key candidate, this adversary will prefer a
higher precision than a higher number of collisions. In that respect, and depend-
ing on the AES implementation’s throughput, using 2048 bins could be a good
tradeoff. Indeed, as the adversary’s computing power is bounded and as the AES
computation is the costly part, he should minimize the bounds overhead as seen
in Sect. 5.1. Since the merging value has no impact on the accuracy, this value
should always be maximized (ensuring we do not fall in a case where it slows
down the enumeration process as shown in Sect. 5.3).

By contrast, the strategy will be quite different if we assume the adversary
is an organization having access to a big computing infrastructure. For exam-
ple, let assume that this organization has powerful computer(s) to launch the
key enumeration along with many hardware AES implementations with limited
memory. The adversary’s computing power is now bounded by a much higher
capability (e.g. 264). As we saw in Sect. 5.1, the gap between the optimal enumer-
ation and the efficient one (using less bins) vanishes as we consider deeper key
ranks. In that case, the attacker should maximize the enumeration throughput
and minimize the bandwidth requirement (per single key), which he can achieve
by decreasing the number of bins and increasing the merging value as much as
possible (e.g. 256 bins with merge3). All the key factorizations would then be
sent to the hardware devices for efficient key testing. This could be done easily
since a factorized key can be seen as a small effort distributor as in [9,12].

Simple Key Enumeration (and Rank Estimation) Using Histograms 79

7 Related Work

A recent work from David et al. available on ePrint [6] allows one to enumerate
keys from real probabilities without the memory issue of the original optimal
algorithm from [10]. This gain comes at the cost of a loss of optimality which is
different from the one introduced by the rounded log-probabilities.

8 Conclusion

This paper provides a simple key enumeration algorithm based on histograms
along with an open source code implementing both the new enumeration method
and the rank estimation algorithm from FSE 2015. In addition to its simplicity,
this construction allows a sound understanding of the parameters influencing
the performances of enumeration based on rounded probabilities. Additional
convenient features include the easy computation of bounds for the rounding
errors, and easy to balance parallelization. Our experiments also illustrate how
to tune the enumeration for big distributed computing efforts with hardware
co-processors and limited bandwidth. We believe the combination of efficient
key enumeration and rank estimation algorithms are a tool of choice to help
evaluators to understand the actual security level of concrete devices, and the
actual capabilities of computationally enhanced adversaries.

Acknowledgements. François-Xavier Standaert is a research associate of the Belgian
Fund for Scientific Research. This work has been funded in parts by the ERC project
280141 (acronym CRASH), the ERA-Net CHIST-ERA project SECODE and the DFG
Research Training Group GRK 1817 Ubicrypt.

A Additional Time Complexites

Figure 8 shows timing results for different number of bins and amounts of merg-
ing. The two figures on the top are the results for 256 (left) and 65536 (right)
bins with merge3 which are lacking in Fig. 6. As for the 65536-bin case, we saw
in Fig. 6 that the merging can be detrimental (e.g. using merge1 was better than
using merge2) when not enough collision are occur. However we see that we still
benefit from using merge3 in that case. The 3 other figures show the results of
experiments with 2048 bins and a merge1 preprocessing (middle left), merge2
preprocessing (middle right) and merge3 preproicessing (bottom).

80 R. Poussier et al.

0 5 10 15 20 25 30
10−2

10−1

100

101

102

103

104

ti
m

e
in

se
co

n
d
s

(l
o
g
)

Veyrat et al.

Our’s samples

Our’s mean

0 5 10 15 20 25 30

0 5 10 15 20 25 30
10−2

10−1

100

101

102

103

ti
m

e
in

se
co

n
d
s

(l
o
g
)

0 5 10 15 20 25 30

0 5 10 15 20 25 30 35
10−2

10−1

100

101

102

103

key rank (log2)

ti
m

e
in

se
co

n
d
s

(l
o
g
)

Fig. 8. Additional execution times with factorized lists. Upper left: 256 bins / merge3.
Upper right: 65536 bins / merge3. Middle left: 2048 bins / merge1. Middle right: 2048
bins / merge2. Bottom: 2048 bins / merge3.

Simple Key Enumeration (and Rank Estimation) Using Histograms 81

References

1. http://perso.uclouvain.be/fstandae/PUBLIS/172.zip
2. http://www.shoup.net/ntl/
3. Bernstein, D.J., Lange, T., van Vredendaal, C.: Tighter, faster, simpler side-channel

security evaluations beyond computing power. IACR Cryptol. ePrint Arch. 2015,
221 (2015)

4. Bogdanov, A., Kizhvatov, I., Manzoor, K., Tischhauser, E., Witteman, M.: Fast
and memory-efficient key recovery in side-channel attacks. IACR Cryptol. ePrint
Arch. 2015, 795 (2015)

5. Clavier, C., Danger, J.-L., Duc, G., Elaabid, M.A., Gérard, B., Guilley, S., Heuser,
A., Kasper, M., Li, Y., Lomné, V., Nakatsu, D., Ohta, K., Sakiyama, K., Sauvage,
L., Schindler, W., Stöttinger, M., Veyrat-Charvillon, N., Walle, M., Wurcker, A.:
Practical improvements of side-channel attacks on AES: feedback from the 2nd
DPA contest. J. Cryptograph. Eng. 4(4), 259–274 (2014)

6. David, L., Wool, A.: A bounded-space near-optimal key enumeration algorithm for
multi-dimensional side-channel attacks. IACR Cryptol. ePrint Arch. 2015, 1236
(2015)

7. Glowacz, C., Grosso, V., Poussier, R., Schüth, J., Standaert, F.-X.: Simpler and
more efficient rank estimation for side-channel security assessment. In: Leander,
G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 117–129. Springer, Heidelberg (2015)

8. Martin, D.P., O’Connell, J.F., Oswald, E., Stam, M.: Counting keys in parallel
after a side channel attack. In: Iwata, T., et al. (eds.) ASIACRYPT 2015. LNCS,
vol. 9453, pp. 313–337. Springer, Heidelberg (2015)

9. Poussier, R., Grosso, V., Standaert, F.-X.: Comparing approaches to rank esti-
mation for side-channel security evaluations. In: Homma, N. (ed.) CARDIS
2015. LNCS, vol. 9514, pp. 125–142. Springer, Heidelberg (2016). doi:10.1007/
978-3-319-31271-2 8

10. Veyrat-Charvillon, N., Gérard, B., Renauld, M., Standaert, F.-X.: An optimal key
enumeration algorithm and its application to side-channel attacks. In: Knudsen,
L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 390–406. Springer, Heidelberg
(2013)

11. Veyrat-Charvillon, N., Gérard, B., Standaert, F.-X.: Security evaluations beyond
computing power. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 126–141. Springer, Heidelberg (2013)

12. Ye, X., Eisenbarth, T., Martin, W.: Bounded, yet sufficient? How to determine
whether limited side channel information enables key recovery. In: Joye, M.,
Moradi, A. (eds.) CARDIS 2014. LNCS, vol. 8968, pp. 215–232. Springer, Hei-
delberg (2015)

http://perso.uclouvain.be/fstandae/PUBLIS/172.zip
http://www.shoup.net/ntl/
http://dx.doi.org/10.1007/978-3-319-31271-2_8
http://dx.doi.org/10.1007/978-3-319-31271-2_8

Automotive Security

Physical Layer Group Key Agreement
for Automotive Controller Area Networks

Shalabh Jain(B) and Jorge Guajardo

Robert Bosch LLC, Research and Technology Center,
Pittsburgh, PA 15203, USA

{shalabh.jain,jorge.guajardomerchan}@us.bosch.com

Abstract. Distribution of cryptographic keys between devices commu-
nicating over a publicly accessible medium is an important component
of secure design for networked systems. In this paper, we consider the
problem of group key exchange between Electronic Control Units (ECUs)
connected to the Controller Area Network (CAN) within an automobile.
Typically, existing solutions map schemes defined for traditional network
systems to the CAN. Our contribution is to utilize physical properties of
the CAN bus to generate group keys. We demonstrate that pairwise
interaction between ECUs over the CAN bus can be used to efficiently
derive group keys in both authenticated and non-authenticated scenar-
ios. We illustrate the efficiency and security properties of the proposed
protocols. The scalability and security properties of our scheme are sim-
ilar to multi-party extensions of Diffie-Hellman protocol, without the
computational overhead of group operations.

Keywords: Automotive security · ECU keys · CAN bus · Group keys

1 Introduction

Modern automobiles, in conjunction with mechanical components, utilize several
electronic components (ECUs) for sensing, actuation, user interface and control.
The ECUs communicate over a shared medium known as the CAN bus. Over
the past decade, several ECUs that connect to external networks, e.g. via a
Bluetooth, cellular or a wired interface, have been added to the CAN bus. Such
interfaces enable remote access to the components on the internal network of the
car. While these may be utilized to enable several useful functions for the users,
e.g. emergency messaging systems, remote ignition, they can easily be misused
by a malicious attacker. The ease of attack, and damage due to adversarial
behavior has been demonstrated by several researchers over the past few years
in [6,19,22,24,28].

A common observation by the attackers in [6,22], is the lack of security
mechanisms in the CAN architecture. Traditional automobiles were designed as
standalone systems, intended for autonomous operation. Thus, latency and reli-
ability were the dominant criterion for network design. However, with increased
c© International Association for Cryptologic Research 2016
B. Gierlichs and A.Y. Poschmann (Eds.): CHES 2016, LNCS 9813, pp. 85–105, 2016.
DOI: 10.1007/978-3-662-53140-2 5

86 S. Jain and J. Guajardo

connectivity, there is a need to secure the internal network from external attack-
ers. The current automobile manufacturers utilize traditional network security
principles at the periphery (firewalls, access control), to secure the CAN access.
However, as demonstrated recently in [28], these techniques may not offer suffi-
cient protection. Further, such methods do not address the fundamental lack of
security in CAN messages.

Generally speaking, the attacks demonstrated thus far may be roughly
divided into two stages. First, the attackers compromise an ECU with a remote
interface and the ability to inject arbitrary messages on the CAN bus. Secondly,
the attackers communicate with a critical ECU over the CAN bus and influence
its behavior. The second stage is enabled by the broadcast nature of the internal
network and the lack of authentication. Typically, any operation in the second
stage requires knowledge of the internal bus protocol and message structure,
which has been simplified by the lack of encryption on the network.

It is clear that any security solution for CAN should include fundamental
protections such as source authentication and packet level encryption. Several
researchers, e.g. [8,14,26], have proposed methods to include these primitives in
the current CAN architecture. One of the fundamental requirements to enable
these primitives is the existence of cryptographic keys shared between the com-
municating ECUs. However, it is challenging to pre-install group keys during
production of the ECU or securely manage the keys over the long lifetime of a
vehicle. Thus, we require an efficient key generation and exchange protocol that
can be executed during the operation of the car to agree on secret keys.

To ensure minimal disturbance to critical operations on the CAN bus, the
key exchange protocol must be bandwidth efficient. Further, it must incur a low
computational overhead to accommodate a variety of ECU capabilities. Since
CAN messages are multicast, it is necessary for the protocol to support the
generation and update of group keys. In this paper, we propose such a protocol
by utilizing the physical properties of the CAN bus.

1.1 Our Contributions

We extend the two-party protocol proposed in [23] to the generalized group
scenario. Our contributions are as follows,

– We utilize the physical properties of the CAN bus to construct a group
key exchange protocol that is secure in the information-theoretic sense from
eavesdroppers.

– For the restricted scenario of computationally bounded adversaries, we pro-
pose a highly efficient tree based structure for our protocol that has logarith-
mic complexity for node addition and deletion.

– We propose an efficient authenticated group key exchange protocols that uti-
lizes only the pre-established trust between the individual ECUs and the
gateway.

Physical Layer Group Key Agreement 87

1.2 Related Work

CAN Security: In this work, we utilize the physical properties of the CAN
bus for exchange of keys. To the best of our knowledge, the first to utilize such
properties for key agreement are Müller and Lothspeich in [23]. Their work forms
the basis for our constructions and it will be reviewed in detail in Sect. 3. Security
for CAN networks, particularly authentication and integrity of messaging, has
been considered previously in [8,11,14,26,27]. However, this line of work assumes
that a shared key already exists.

(Group) Key Agreement: Distribution of group keys for both authenticated
and unauthenticated scenarios has been explored in literature for well over three
decades. Several schemes have been proposed based on varying assumptions of
adversarial behavior and initial setup. One of the earliest results in this direction,
Diffie-Hellman (DH) key exchange [7], uses the hardness of computing discrete-
log over prime order groups to generate keys between a pair of nodes. Steiner
et al. in [25] proposed an extension of DH to groups that uses a mixture of
point-to-point messages and broadcast messages. This was modified by authors
in [16–18,25], who utilize a tree based structure to improve communication effi-
ciency and support efficient addition/deletion of nodes. Authors in [29] reduce
communication and storage overhead by performing these group operations over
elliptic curves.

Several methods have also been proposed to generate authenticated group
keys, either by extension of the two-party protocols to groups or by using ideas
based on secret-sharing, e.g. [2,4,12,15]. These schemes have several desirable
properties such as provable security, perfect forward secrecy (PFS) and key inde-
pendence. Most schemes, e.g. [2,4,15,25,29], involve expensive group operations
over prime fields, and thus are not suitable for computationally constrained
devices on the CAN bus. Other protocols, e.g. [12], fail to provide security against
an adversary that can compromise the pre-shared secrets. This property is desir-
able for automotive networks, where some nodes may be easily compromised due
to open accessibility or lack of protections. Our protocol provides these security
properties. Our main differentiation from these lies in utilization of the physical
properties of the CAN bus as a substitute for the expensive operations.

1.3 Organization

The remainder of the paper is organized as follows. In Sect. 2, we describe the
system assumptions and the adversarial model. We present the scheme from [23]
in Sect. 3. We propose two extensions of this scheme that are secure against
passive adversaries in Sect. 4. In Sect. 5, we propose two alternative protocols
that provide cryptographic guarantees against active adversaries. We discuss
the security and performance issues of our schemes in Sect. 6.

88 S. Jain and J. Guajardo

2 Preliminaries

2.1 Notation

We adhere to the following notation for the paper. We denote a random n bit
value x sampled uniformly from the set {0, 1}n, consisting of all possible binary
strings of n bits, as x ← {0, 1}n. We denote by x := y, the assignment of the
value y to x.

For a binary string x ∈ {0, 1}∗, |x| represents the length of string and x′

represent the complement of the string. For an index set L ⊆ {1, . . . , |x|}, x(L)
refers to the substring with indices in L. If L consists of a single element, x(L)
simply refers to the Lth bit. Given two strings x, y ∈ {0, 1}∗, x || y denotes the
concatenation of the strings.

We denote by I(X ∧ Y), the mutual information between random variables
X and Y . I(X ∧ Y) = H(X) − H(X|Y), where H(X) is the entropy of X.

2.2 System Model and Assumptions

We consider the typical automotive network, comprising of ECUs connected
via a shared wired bus that acts as a broadcast medium. During arbitration,
the CAN bus allows multiple nodes to write simultaneously to the bus and
observe the overlapped bus output. This feature, typically used for contention
resolution, is essential for our scheme. Note that the current ECU design allows
simultaneous read and write only during the arbitration phase, and not in the
data phase. We assume that the CAN controller is sufficiently modified to allow
this functionality for the entire packet. This can be achieved either via hardware
or software modifications.

The typical CAN bus has two logical states, the dominant ‘0’ state, where
the bus is driven by a voltage, and the recessive ‘1’ state, where the bus is
grounded. If two nodes transmit a bit simultaneously, the effective state of the
bus is dominant ‘0’ if any of the nodes transmits a dominant signal. Thus, the
bus acts as a logical AND gate between inputs from the nodes. This property,
identified by authors in [23] to share sequence of bits between a pair of nodes,
forms the basis of our scheme and hence a central assumption for our work. Note
that though this work is in context of automotive networks, the scheme can be
applied to any wired bus architecture that exhibits this property.

Fig. 1. Example of nodes connected by a shared medium

Physical Layer Group Key Agreement 89

The typical CAN architecture, illustrated in Fig. 1, consists of one or more
powerful nodes that act as gateway nodes (GW). As described by the authors
in [22], current CAN architectures allow ECUs across different subnets to com-
municate transparently through the gateway. For our work, we assume each
node shares a trust relationship with the gateway in the form of a pre-shared
symmetric key. Thus nodeNi shares key Ki with the gateway (GW). Such a rela-
tionship can be established during the vehicle manufacturing process, or during
ECU installation by a mechanic.

For communication within a group, we assume a pre-existing communication
ordering between the nodes. In typical automotive scenarios, different ECUs have
well defined priority. Thus, the communication order may be pre-assigned based
on ECU identity/priority, or assigned by random arbitration over the shared
medium. Alternately, it can be defined in a common file, e.g. FIBEX file, and
shared with the ECUs. We assume that for any group configuration, the member
ECUs can determine their communication order.

Our protocols are based on simultaneous transmission by two nodes. Thus,
all interactions in our system are between ECU pairs. We refer to the node
that is earlier in the communication order as the primary or initiator node and
the other node as the secondary or responding node. CAN messages are orga-
nized in frames that consist of an identifier field followed by the data field. We
assume that the initiator uses the identifier to specify information about the key
exchange session (e.g. session identifier) and the responder uses this to initiate
simultaneous transmission of its message in the data field transmission phase.
This identifier allows the protocol to be resumed in case of interruption by a
ECU transmitting a ‘critical’ message for the automobile.

2.3 Adversarial Model

Several adversarial models have been proposed for key exchange protocols in
literature, e.g. CK model [5], or BR model [3]. It is typically assumed that the
adversary can record all messages transmitted on the bus, modify them, or insert
its own messages.

Here, we consider two adversarial scenarios. For the schemes in Sect. 4, we
restrict the adversarial behavior to passive observations. This model, though
unrealistic for typical networks, can be sufficient for all attacks on the CAN
bus. This is due to the inherent robustness that the CAN bus provides to active
adversaries. Detailed analysis for this is presented in Sect. 6.1.

For schemes in Sect. 5, we consider a powerful adversarial scenario, wherein
the adversary has complete control over the protocol execution. There, we argue
that our schemes provides cryptographic guarantees against such adversaries.
Due to the dependence of our scheme on physical properties of the bus, an
adversary with a high resolution oscilloscope may be able to obtain the keys
by probing the bus. Further, since our scheme does not have a practical imple-
mentation yet, it has not been analyzed for timing or power side-channels. We
consider such attacks outside the scope of this paper.

90 S. Jain and J. Guajardo

2.4 Cryptographic Assumptions

For our protocol, we assume the existence of an indexed family of pseudorandom
functions (PRF) [9], defined as,

Definition 1. For the security parameter n, the function g : {0, 1}n×{0, 1}n →
{0, 1}n is a family of pseudorandom functions, indexed by the first parameter that
satisfies the following conditions,

– For a randomly selected index k ← {0, 1}n, the function efficiently maps an
element from the domain {0, 1}n to the range {0, 1}n.

– (Security Condition). For an adversary that runs in polynomial (in secu-
rity parameter) time, the output of the PRF, where the first parameter is
randomly selected, is indistinguishable from random.

In practice, PRFs can be realized either via a block cipher or by a well-designed
efficient hash function with a random seed (as the index) as a part of the input.

Further, we utilize the definition of computational entropy of a random vari-
able X from [13], defined as HC(X) = k ⇐⇒ {X ∼C Y and H(Y) ≥ k}, i.e.
For a PPT process, X is computationally indistinguishable from a random vari-
able Y with true entropy greater than k. Clearly the following Lemma follows
from Definition 1.

Lemma 1. For a randomly selected k ← {0, 1}n, let Xi = g(k, i). Then
HC(Xi) = n, ∀i ∈ {0, 1}n. Further, for I ⊂ {0, 1}n, where |I| = r, HC(XI) =
rn, where XI denotes the concatenation of all Xi, i ∈ I.

2.5 Security Definition

We define the security of a key exchange scheme Π using the information theo-
retic notion from [21] as follows,

Definition 2. A key agreement protocol {SA, SB} = ΠA,B(1k) between two par-
ties A and B results in secret key outputs SA, SB at the respective parties. If the
protocol terminates correctly, we have |SA| = k, otherwise SA = SB = ∅. The
protocol can be said to be secure if the following hold

P1: The keys derived at the end match, Pr (SA �= SB) = 0.
P2: If the observations of the adversary is characterized as Z, we have I(SA ∧

Z) = 0.
P3: The key has entropy H(SA) = k.

Here, we make no assumptions about the computational capability of the adver-
sary. We argue a similar notion can be defined for computationally bounded
adversaries by replacing the quantities in Definition 2 with their computational
equivalent.

Definition 3. A key agreement protocol {SA, SB} = ΠA,B(1k) is ε-secure for
computationally bounded passive adversaries if the Definition 2 holds using the
notion of computational entropy, i.e. IC(SA ∧ Z) .= HC(SA) − HC(SA | Z) ≤ ε,
and HC(SA) ≥ k − ε.

Physical Layer Group Key Agreement 91

3 Two Party Plug-and-Secure (PnS) Protocol

The wired AND property of the CAN bus was first utilized by the authors in [23]
for key agreement between a pair of nodes. Since our protocols are based on their
scheme, we briefly describe it here. Our notation here differs from the original
work to maintain uniformity with the remainder of our protocols. For details
about implementation issues and synchronization, the reader is encouraged to
read [23].

Function: RetV al := fx(1n), x ∈ {A,B}

r ← {0, 1}n

RetV al := r

Protocol: PnS(1n, nodeA, nodeB, fA, fB)

1. nodeA and nodeB initialize secret strings as null, i.e. sA, sB := ∅.
2. nodeA and nodeB obtain random values a := fA(1n) and b := fB(1n).
3. Both nodes simultaneously write a, b to the bus and observe the bus output y.
4. Next similarly they write a′, b′ to the bus and observe the bus output z.
5. Let G = {1 ≤ j ≤ n | y(j) = 0 AND z(j) = 0}. This represents the set of secret

bits.
6. It can be easily verified that a(G) = b(G)′. The primary node (nodeA here) sets

sA := sA || a(G). The secondary node (nodeB here) sets the complementary
bits, i.e. sB := sB || b(G)′.

7. The string sA = sB is shared secret between nodeA and nodeB and is the result
of the subroutine.
When used as a subroutine, the protocol halts here.

8. If the length of the string is insufficient, i.e. |sA| = |sB | < n, the protocol repeats
from Step (2).

9. The final string sA = sB is shared secret between nodeA, nodeB of length n.

Protocol 1. Two party PnS protocol from [23]

Let PnS(1n, nodeA, nodeB, fA, fB) denote the Plug-and-Secure protocol
between nodeA and nodeB, where the security parameter 1n denotes the length,
n, of the shared secret key produced when the protocol terminates. We have
chosen to parameterize the random number generation (RNG) by the nodes
nodeA and nodeB, using the functions fA and fB respectively. This allows for
a uniform presentation of the protocols, while providing the flexibility to alter
the instantiation of the RNG across them. This advantage will become more
evident in the group protocols. The random number generators are private for
each of the nodes and maintain an independent and persistent state through the
protocol. This state is typically expressed as a counter that is initialized during
the first execution and incremented upon successive executions. We illustrate
the sequence of operations of the protocol from [23] as Protocol 1.

92 S. Jain and J. Guajardo

In the description of Protocol 1, we assumed that nodeA was the initiator
(primary node) and nodeB was the secondary node. Each node discards bits that
are leaked to the adversary. It can be seen from Step 5 that the bit positions
where either y or z are 1, correspond to indices of strings a and b that can be
determined by any eavesdropper. Thus they are no longer secret.

y(i) = 1 ⇔ a(i) = 1 AND b(i) = 1,
z(i) = 1 ⇔ a(i) = 0 AND b(i) = 0.

The messages to initiate the protocol, and the parameter negotiation to deter-
mine the desired key length are omitted here. Similarly, we do not specify the
key verification approach at the end of the protocol. A number of existing ini-
tialization and verification techniques can be used with the protocols. Here, our
goal is to present the fundamental building block that is the basis for our group
key protocol.

It is clear from the description that Protocol 1 is very efficient and it does not
require any expensive cryptographic operations. Further, it inherits the proper-
ties of contributory protocols such as Diffie-Hellman. This makes it highly suit-
able for the constrained ECU environments. Several properties of Protocol 1 will
be inherited by our group key protocols. We illustrate a few key properties here.

Security: We demonstrate that Protocol 1 is secure against computationally
unbounded passive adversaries.

Theorem 1. The protocol ΠA,B
Prot1(1

n) satisfies Definition 2, where ΠA,B
Prot1(1

n)
denotes Protocol 1 between nodeA and nodeB.

Proof. Denote by sA, the secret key at nodeA and by Y,Z, the complete obser-
vations of the adversary corresponding to Steps (3) and (4) respectively. The
Property (P2) can be simply verified by the correctness of the protocol upon ter-
mination. Further, H(sA) = n, as the samples were uniformly selected. Denote
by L as the set of indices of the random values output on the channel that
contributed to the bits of the key. Then we show Property (P2) as follows,

I(sA ∧ {Y, Z}) = I(sA ∧ {Y (L), Z(L)}) (bits are iid)

= nI(sA(l1) ∧ {Y (l1), Z(l1)}), l1 ∈ L (key bits are iid)

= n(H(sA(l1)) − H(sA(l1) | Y (l1), Z(l1))) = 0.

Key Independence: Successive invocation of fA and fB produce independent
random strings. Since each instance of key generation depends only on the out-
puts of fA, fB , the current key reveals no information about the past keys or
future keys.

Computational Definition: We define a computational version of Protocol 1
by using PRFs to generate the random values a and b. The changes required
are briefly summarized in Protocol 2. This protocol can be proved to be secure
against computationally bounded passive adversaries.

Physical Layer Group Key Agreement 93

Function: RetV al := fx(1n, s), x ∈ {A,B}

i: local persistent counter initialized to 0 during the first execution
RetV al := g(s, i)
i := i + 1

Protocol: CompPnS(1n, nodeA, nodeB, fA, fB)
All steps of Protocol (1) remain the same except Step 2 which changes to the fol-
lowing
2(a). nodeA and nodeB compute local random values ta ← {0, 1}n, tb ← {0, 1}n.
2(b). The nodes obtain the random values for the protocol execution as

a := fA(1n, ta) and b := fB(1n, tb).
8 (new). The protocol repeats from 2(b) of the new protocol.

Protocol 2. Computational version of the two party PnS

Theorem 2. The protocol ΠA,B
Prot2(1

n), satisfies Definition 3, where ΠA,B
Prot2(1

n)
denotes Protocol 2 between nodeA and nodeB.

Proof. The proof follows from the proof of Theorem1, by applying the compu-
tational definition of to conditional entropy. It will be included in the extended
version of this paper.

4 Group Key Agreement Schemes

In this section we introduce two new group key agreement protocols without
authentication. Though these can be viewed as a special case of the authenti-
cated protocol, they warrant separate treatment due to different complexity and
security properties.

The protocols presented here require a linear (in size of the group) number
of interactions for initial key establishment. Intuitively, the broadcast nature of
the CAN bus allows pairwise PnS interaction between successive nodes to be
sufficient for global key agreement. Once two nodes execute the PnS protocol,
they may be viewed as a single logical entity for any further transmissions by one
of these nodes, based the PnS output. Thus, each successive interaction increases
the size of the logical entity by one, until the whole group is created.

For the remainder of this paper, we assume that the group consists of M
nodes, {nodeN1, . . . , nodeNM}. For simplicity, we assume the communica-
tion sequence to be based on the lexicographic order, i.e. nodeN1-nodeN2-. . . -
nodeNM . We assume that the protocol initiation is triggered by the gateway
node with information about the group members and parameters. The ECUs
can determine their communication priority in a distributed manner based on
the group configuration.

94 S. Jain and J. Guajardo

4.1 Simple Group Protocol

We first consider the simple extension of Protocol 1 to the M node scenario.
The flow of messages to agree on the group key is illustrated in Protocol 3. The
correctness of the protocol can be understood by examining Step (3) of Protocol
3. The first time this step is executed between nodeN2 and nodeN3, there exists
a shared secret tN2 between nodeN1 and nodeN2. Since tN2 is the only value used
by nodeN2 in the PnS execution, the view of nodeN1 is the same as nodeN2.
Thus the secret shared by PnS execution between nodeN2 and nodeN3 can be
computed by nodeN1 independently, based on the observed bus outputs. Also
note that the bits of tN3 obtained at the end of this step is a subset of the bits
of tN1 , i.e. ∃I ⊆ {1, . . . , |tN1 |}, s.t tN3 = tN1(I).

Function: RetV al := fNi(1
n, s), 1 ≤ i ≤ M

if s �= ∅, RetV al := s
otherwise r ← {0, 1}n, RetV al := r

Protocol: SimpleGroup(1n, {nodeN1, . . . , nodeNM}, {fN1 , . . . , fNM })

1. Each node initializes the secret key string sNi = ∅, 1 ≤ i ≤ M .
2. The first pair of nodes executes PnS subroutine with a target string length

l = n · 2(M−1), to obtain the shared secret as

tN1,2 := PnS(1l, nodeN1, nodeN2, fN1(1
l, ∅), fN2(1

l, ∅)).

Each node maintains the temporary value of the PnS as tN1 = tN2 := tN1,2

respectively.
3. The next pair of nodes (nodeN2, nodeN3) executes PnS with the target length

l = |tN2 | to obtain the private results (or update the private results) as

tN2,3 := PnS(1l, nodeN2, nodeN3, fN2(1
l, tN2), fN3(1

l, ∅)).

4. All nodes prior to the currently active nodes update their private strings as the
output of the PnS result. In this case, as nodeN1 is the only node preceding
(nodeN2, nodeN3), it updates its private string tN1 as the output of the PnS
protocol between nodeN2 and nodeN3. Thus tN1 = tN2 = tN3 .

5. Protocol is repeated from Step (3) for each successive pair of nodes (nodeN3,
nodeN4), . . . , (nodeNM−2, nodeNM−1), (nodeNM−1, nodeNM).

6. All nodes update the shared keys as sNi = sNi || tNi , 1 ≤ i ≤ M .
7. If |sNM | < n, the protocol is repeated from Step (2) using l = (n−|sNM |)·2(M−1).

Protocol 3. Simple group key protocol for M nodes

For each repetition of this step between successive pairs of nodes, all nodes
prior to the active pair can derive the result of the protocol. Thus, once nodeNM

completes execution, all nodes share a common string. Though the implicit
backward-sharing of keys is a desirable property, the overall communication
efficiency of the protocol is low. To see this, observe that at each successive

Physical Layer Group Key Agreement 95

execution of Step 3, additional bits are leaked to an eavesdropper. Consider the
ith bit of the string sampled by nodeN1, aN1 := fN1(1

n, ∅). The probability that
this bit does not leak by the end of the protocol is simply 2−(M−1). Thus we
obtain that the expected communication complexity to generate a n bit secret
is exponential in the number of group elements, i.e. O(n · 2(M−1)).

Node Arrival and Departure: At the end of the protocol, each node knows
all random bits selected during the protocol. Thus, the departure of any node
requires re-execution of the complete protocol. For node arrival, it may appear
that the new node can simply be appended to the end of the chain. However, the
execution of PnS with the new node would leak several bits (half on average).
Thus, the whole protocol needs to be re-executed to compensate for the lost bits.
Thus, both addition and deletion operations incur exponential communication
cost, i.e. O(n · 2(M−1)). However, the new key maintains the property of key
independence.

Note that an alternative, more efficient protocol using PnS with information
theoretic security guarantees could be envisaged if we do not require the protocol
to be contributory, i.e. each node contributes to the randomness of the key. A
selected leader can simply engage in pairwise PnS with all other nodes and use
the derived keys as one-time pads to distribute a secret value. It is easy to
see that the computational complexity for key generation, node departure and
arrival for such a scheme would be linear, i.e. O(n · M). However all protocols
presented here are ‘contributory’ protocols.

Security: Since Protocol 3 simply extends Protocol 1, it has the advantage of
inheriting the security properties of Protocol 1. As each stage of the protocol is
secure against passive adversaries, the information theoretic security extends to
the whole protocol. Similarly, it can be simply observed that the key indepen-
dence property extends from each stage to the eventual protocol result.

4.2 Tree Based Group Protocol

The scheme presented in Sect. 4.1 provides ideal security guarantees at the cost
of efficiency. However, security against computationally bounded adversaries is
sufficient for practical systems. This relaxation enables the utilization of efficient
topologies for key agreement.

For key generation, the nodes are organized in a binary tree structure, e.g. as
shown in Fig. 2. The physical nodes (ECUs) are assigned to the leaf nodes of the
tree. The virtual nodes correspond to logical entities that can be emulated by
any physical leaf node in the subtree rooted at that node. For the algorithms in
this paper, we assume that the physical messages triggered by the virtual node
are sent by the leaf node in the subtree with the highest priority (leftmost node
of the tree in our model). The message flow for the key generation scheme is
detailed in Protocol 4.

96 S. Jain and J. Guajardo

Fig. 2. Tree structure of PnS operations

The structure of the scheme is similar to the previous protocol. However,
using the function g(·, ·) isolates successive PnS stages. Since the output of g(·, ·)
is indistinguishable from random, it can be used in place of the random sampling
in the original protocol. Secondly, as the leakage of output bits of g(·, ·) leaks no
information about the inputs, bits leaked at any stage do not influence the prior
stages. As a result of these properties, this scheme incurs a linear communication
overhead for initial key generation, i.e. O(n · M). The tree structure further
optimizes node addition and deletion.

Node Departure: A node in the network has knowledge of all the random
values generated and exchanged along the path, denoted as Pdr, from the node
to the root. Thus deletion of a node involves updating all the values known to
the node and re-execution of PnS with the updated values. For example in Fig. 2,
if nodeN4 departs the network, it is sufficient to update the random values at
nodeN3 and the virtual nodes V 1

3,4, V
2
1,2, root.

We assume that the departing node broadcasts its identity to the group.
Thus the nodes along Pdr and their siblings flag their values for updating. The
update progresses upwards from the affected leaf node. If a node lies directly
along Pdr, it uses the new PnS result from the child node for all future protocol
execution. All other nodes simply execute the PnS protocol with updated index
values (in f(·)).

At the end of the protocol, the value of the final PnS interaction is used as
the group secret shared by all nodes. The statistical independence of the output
of g(·, ·) for different inputs ensures that the new key is independent of the prior
shared sequence and unknown to the departing node. Further, it can be observed
that the computational complexity of this stage is simply O(n · log M).

Physical Layer Group Key Agreement 97

Function: Retval := fNi(1
n, s), 1 ≤ i ≤ M

i: local persistent counter initialized to 0 during the first execution
RetV al := g(s, i)
i := i + 1

Protocol: TreeGroup(1n, {nodeN1, . . . , nodeNM}, {fN1 , . . . , fNM })

1. Each leaf node initializes the private string tNi ← {0, 1}n, 1 ≤ i ≤ M .
2. The process starts at the leaf nodes. Each pair of siblings execute the complete

PnS protocol with target string length n, and the result is assigned to the private
string of the parent as

tV 1
i,i+1

:= PnS(1n, nodeNi, nodeNi+1, fNi(1
n, tNi), fNi+1(1

n, tNi+1)),

where i = 1, 3, Note: Here, we execute the complete PnS protocol. Thus the
output is of length n, i.e. |tV 1

i,i+1
| = n.

3. Step (2) is repeated at the next level of hierarchy, i.e. first level of virtual nodes
here, V 1

i,i+1, to generate the private strings for their parents.
4. The process of Step (3) continues till the virtual root node is reached. The

private string of the root node troot is the shared secret key between all nodes.

Protocol 4. Tree based group key protocol for M nodes

Node Arrival: Similar to the node departure scenario, a node arrival requires
creation of a path to the root and executing the PnS protocol with siblings of
the nodes along the new path.

For simplicity, we assume that the new node is temporarily assigned the
priority equivalent to a recently departed node or the lowest priority among
existing nodes in the group. This minimizes the changes to the tree structure
and the re-computations required to add a node. In cases where this is not
possible, we may add a node in the ‘pre-assigned’ order and modify the tree
hierarchy accordingly.

Consider the example in Fig. 2, where nodeNM+1 joins the network. This
requires updating the random values at nodeNM and the virtual nodes
V 1
M,M+1, V

2
3,4, root. This may be performed in a manner identical to the depart-

ing scenario. Thus, it can be observed that the new key will be independent of
the old key and the computational complexity is simply O(n · log M).

Security Discussion: The organization of the nodes in a tree structure does
not alter the role of the adversary. It simply modifies the order of participation
of the nodes. Intuitively, we argue that similar to Protocol 3, the security of
the series of PnS stages against a computationally bounded adversary can be
derived directly from Theorem 2.

98 S. Jain and J. Guajardo

5 Authenticated Group Key Agreement Schemes

We now consider the scenario where group members must be authenticated prior
to participation in the protocol. This requires some pre-established notion of
trust or identity that can be verified. As described in Sect. 2.2, we consider the
minimalistic scenario where each node shares a symmetric key with the gateway.

In our schemes, the gateway simply acts as a passive verifier of the operations.
The broadcast channel allows the gateway to monitor the protocol execution. We
ensure that the messages are a function of the shared keys Ki’s. This allows the
gateway to verify whether the messages used for the PnS protocol are from the
expected parties. We present two implementations of this approach that provide
a tradeoff between security and efficiency.

5.1 Authenticated Tree Based Protocol

First we utilize the efficient tree structure of Protocol 4 and add an authenti-
cation mechanism to it. This can be achieved via a simple modification to the
method of selection of random values by the leaf nodes. In Protocol 4, the leaf
nodes choose arbitrary random values for the initial sequence of PnS operations.
Here, we assume that GW provides a random value and all nodes use a function
of this random value and their shared key to bootstrap the PnS procedure.

Since the GW is aware of the random value and the shared keys, it can re-
create and thus verify all random strings used in the PnS operations. Note that
after the initiation of the protocol by GW, it only participates passively. If an
error is detected, the GW halts the protocol by transmitting an error message.
The detailed flow of messages for this is presented in Protocol 5.

As the structure of the protocol is similar to Protocol 4, it inherits the low
complexity and security properties of the unauthenticated protocol. However,
authenticated key exchange protocols may have an additional security require-
ment of Perfect Forward Secrecy (PFS), wherein the group key remains secret
even in the event of compromise of trust credentials, i.e. Ki. Protocol 5 however
fails to meet this requirement. In the event that an adversary compromises the
shared secret, it can reconstruct the random values used for PnS (similar to
GW) and hence learn the secret key from the transcripts. In the next section,
we provide a solution to this problem.

5.2 Authenticated Linear Group Protocol

In Protocol 5, all inputs used for computing the random values for PnS were
available to an adversary that compromises Ki. This was because one of the
inputs was broadcast by GW to initiate the protocol. Here instead of the broad-
cast message, the GW transfers the initial random value to nodeN1 through the
PnS protocol. This ensures that atleast one of the inputs is never leaked to the
adversary. However, as this requires the secret to be passed down the authen-
tication chain, it forces us to use a linear structure. The flow of the protocol is
illustrated as Protocol 6.

Physical Layer Group Key Agreement 99

Function: RetV al := fNi(1
n, s), 1 ≤ i ≤ M

i: local persistent counter initialized to 0 during the first execution
Output RetV al := g(s, i)
i := i + 1

Protocol: AuthTreeGroup(1n, {nodeN1, . . . , nodeNM}, {fN1 , . . . , fNM })

1. GW select a random sequence of n bits, i.e. tgw ← {0, 1}n and broadcasts it to
all group members.

2. Each leaf node of the tree initializes the private string tNi = g(Ki, tgw), 1 ≤ i ≤
M . Here, Ki is the key shared between nodeNi and the GW.

3. The process starts at the leaf nodes. Each pair of siblings execute the PnS
protocol with target string length n, and the result is assigned to the private
string of the parent as

tV 1
i,i+1

:= PnS(1n, nodeNi, nodeNi+1, fNi(1
n, tNi), fNi+1(1

n, tNi+1)),

where i = 1, 3, Note that we execute the complete PnS protocol here so that
the output is of length n, i.e. |tV 1

i,i+1
| = n.

4. Step (3) is repeated at the next level of hierarchy, i.e. first level of virtual nodes
here, V 1

i,i+1, to generate the private strings for the parents of the virtual nodes.
5. The process of Step (4) continues till the virtual root node is reached. The

private string of the root node troot is the shared secret key between all nodes.
6. The gateway monitors the broadcast messages and verifies the correctness. It

transmits an error message if the verification fails at any stage.

Protocol 5. Authenticated tree based group key protocol for M nodes

Whenever two nodes engage in the PnS protocol, the first node uses a function
of the random value from the previous stage, while the second node uses a fresh
random value concatenated with some authentication credentials. The value used
by the first node ensures that all nodes prior to it can re-create the PnS execution
and learn its outputs. The value of the second node will be authenticated by the
passively monitoring GW, before it is included in the chain.

To ensure security against compromise of Ki and still ensure verifiability, it is
required that the second node use some fresh randomness, unknown to everyone
else and the key Ki. It should be observed that successful authentication of the
messages of the second node requires the PnS protocol to be internally executed
atleast twice. In the first round, the fresh random value is extracted by GW
and in the second round it is authenticated. We argue that this will always be
the case as the probability that the PnS protocol is executed only once is 2−n,
i.e. when all bits of both the parties are complements of each other. Thus the
authentication process does not add communication overhead. Similar to the
previous schemes, the initial key generation has linear complexity, i.e. O(n ·M).

100 S. Jain and J. Guajardo

Function: RetV al := fx(1n,K, ctr, state), x ∈ {GW, nodeN1, . . . , nodeNM}

i: local persistent counter initialized to 0 during the first execution
l state: local persistent flag initialized to 0 during the first execution
if(l state �= state)

if(state == 2) i := −1
if(state == 1) i := 0
l state := state

if(i == −1) RetV al := ctr
else RetV al := g(K, ctr + i)
i := i + 1

Protocol: AuthLinearGroup(1n, {nodeN1, . . . , nodeNM}, {fN1 , . . . , fNM })

1. The GW is begins the protocol by acting as the first link in the PnS chain. The
GW chooses tGW ← {0, 1}n and nodeN1 chooses tN1 ← {0, 1}n to execute the
PnS protocol as

tGW,N1 = PnS(1n,GW, nodeN1, fGW (1n, tGW , 0, 1), fN1(1
n,KN1 , tN1 , 2)).

2. Next, nodeN2 chooses a random value tN2 ← {0, 1}n. nodeN1 performs PnS
with nodeN2 as

tN1,N2 = PnS(1n, nodeN1, nodeN2, fN1(1
n, tGW,N1 , 0, 1), fN2(1

n,KN2 , tN2 , 2)).

3. Step (2) is repeated between successive pairs of nodes till the final node is
reached. Denote by tNM−1,NM , the result of the final PnS operation. This is the
group key shared by all nodes.

4. The gateway monitors the broadcast messages and verifies the correctness. It
transmits an error message if the verification fails at any stage.

Protocol 6. Authenticated linear group key protocol for M nodes

Node Arrival and Departure: The addition of a node in a linear structure is
simple. We assume that the added node is temporarily (for the group) assigned
a lower priority than all other elements and thus, is to be added at the end of the
chain. Thus the addition of a new member simply requires one PnS operation
between the last node and the new member, i.e. complexity of O(1).

A departing node knows the secrets associated with all nodes that follow it.
Thus a node departure requires all nodes following the departing node to update
their key parameters. This may be performed by simply re-executing the PnS
protocol with updated index values, without the need of sampling fresh random
strings. Thus this incurs linear communication cost, i.e. O(n · M).

Physical Layer Group Key Agreement 101

6 Discussion

6.1 Security Properties

Though Sect. 5 describes schemes that are robust against arbitrary active adver-
saries, we argue that such an adversarial model is too restrictive for the automo-
tive scenarios. Operations of our protocol and the architecture of the CAN bus
restrict the actions of the adversary in our system. We argue that an active adver-
sary cannot successfully perform any operation, except eavesdropping, without
detection. Consider the following

1. Modification of a packet - The properties of the CAN bus allow only one
type of modification to the messages transmitted by the nodes. An adversary
can flip a recessive bit ‘1’ to a dominant bit ‘0’ by transmitting a voltage,
however not vice-versa. It can be verified that this simply results in a mis-
matched key at both parties. This can easily be detected by any key verifica-
tion method.

2. Inserting messages for active nodes - An active node, executing a pair-
wise session of the protocol, only accepts outputs on the bus that result
from superposition of its own signals with that of the partner. Thus consider
an adversary that attempts to compromise a session between nodeN1 and
nodeN2 by inserting a ‘specific’ message for nodeN2. However, this requires
that the adversary initiate a transmission from nodeN2. Assume that the
message transmitted by the adversary is madv, and that by nodeN2 is mN2 .
Thus the message recorded by nodeN2 is the logical AND of these messages,
i.e. madv∧mN2 . However, as the adversary has no control over mN2 , it cannot
insert a ‘specific’ packet. It can however choose and force bits to be 0. This
can be detected by key verification.

3. Inserting messages for passive nodes - In the group protocols, nodes that
have engaged in one pairwise session may update their local parameters based
on the output of the future sessions. An adversary may falsely emulate such
sessions. However, it can be demonstrated that the probability of ‘successfully’
inserting a n bit packet, i.e. a packet that is accepted as a valid input by the
passive node, is less than

(
3
4

)n.

Theorem 3. Let the adversary activate the protocol of a passive node by insert-
ing an arbitrary pair of strings b1, b2, where |b1| = |b2| = n, marked with the
session identifier of the currently active nodes. The passive nodes detect the
adversary with a probability greater than 1 −

(
3
4

)n.

Proof. Consider the scenario where nodeN2 and nodeN3 are actively engaging
in PnS and nodeN1 is the passive observer. Let tN1,2 be the string at nodeN1

as a result of its interaction with nodeN2. As described in Protocol 1, nodeN2

uses that string for interaction with nodeN3. Thus nodeN1 can simply verify the
bus output to and identify ‘unexpected’ behavior of the adversary as follows.
Consider the set of indices L where tN1,2 = 0, L = {l ≤ |tN1,2 ||tN1,2(i) = 0}.

The output on the bus as a result of the first PnS operation, corresponding
to indices in the set L, should be 0. This results simply from the AND operation

102 S. Jain and J. Guajardo

of the bus. Any deviation from this results in an error by nodeN1. Thus for the
message by adversary to be accepted, b1(L) should be 0, i.e. the adversary should
be able to estimate the position of all 0s in the string tN1,2 . Thus we obtain

Pr ({b1, b2} accepted) =
∑

k

Pr (Adv covers all 0 positions | |L| = k) ·

Pr(|L| = k)

=
n∑

k=0

(
1
2

)k

·
(

n

k

)(
1
2

)k (
1
2

)n−k

=
(

3
4

)n

4. Impersonation - The broadcast nature of the CAN bus ensures that any
transmitted message is delivered to all the nodes. Thus any spoofed or
replayed message by the adversary can be detected by the victim node and
an error flag can be raised. We assume that such detection can occur due to
the session IDs described earlier.

It is clear that Properties 1, 2, 3 are guaranteed by any PnS based key agreement
scheme for the CAN bus. A cryptographic method to guarantee Property (4) is
by utilizing the trust relation established with the gateway. An alternate way is to
increase ECU robustness and include a mechanism to identify spoofed messages
in the individual ECUs. For such cases, schemes that are secure against a passive
eavesdropper would also be secure against an active adversary. Thus the efficient
tree-based structure of Sect. 4 can be utilized to provide security against active
adversaries.

6.2 Performance

One of the main benefits of the our approach is its computational advantage
over the modular multiplications, as required for group schemes based on DH or
ECDH. The variants of the our protocols allow a tradeoff between the complexity
and bandwidth. Further, our schemes are based on pseudorandom functions,
which can be practically implemented either via the SHA family of hash functions
or a block cipher such as AES. Both these primitives are better suited for resource
constrained devices, compared to modular multiplication.

To understand the performance comparison of our scheme, consider the sce-
nario where the M nodes wish to generate a n bit key. Clearly, Protocol 3 requires
no cryptographic primitives, but has a high bandwidth overhead. Each round of
PnS using n bit inputs requires transmission of 2n bits on the bus (normal and
the complement). Further, scenarios that use the cryptographic primitives use 2
invocations of the function for each round. We summarize the overhead and some
properties of the protocols in Table 1. Authors in [10] evaluate the performance of
various cryptographic primitives on various automotive microcontrollers, namely
the S12X, a low end 16-bit automotive microcontroller from Freescale and the
TriCore chip, a high end 32-bit microcontroller from the AUDO family of Infi-
neon. The S12X family operates at 40 MHz while the Tricore chips can operate

Physical Layer Group Key Agreement 103

up to 180 MHz. For generating a key of length n = 128, we may utilize the SHA-
256 hash function in place of the PRF. It can be seen that performance of the
PRFs adds very little overhead of 3.145 ms and 0.045 ms respectively for each
invocation for our target input lengths.

Table 1. Performance of the proposed schemes

Property Protocol

3 4 5 6

Simple unauth. Tree-based unauth. Tree based auth. Linear auth.

Avg. no. of bits
Tx on bus

4n(2M−1 − 1) 4n(M − 1) 4n(M − 1) 4nM

Avg. of PRF
invocations

0 4(M − 1) 5M − 4 4M − 2

Node addition O(n2M) O(n logM) O(n logM) O(n)

Node deletion O(n2M) O(n logM) O(n logM) O(nM)

Due to the lack of implementation of state-of-the art key exchange schemes
based on ECDH, e.g. MQV [20], on comparable automotive microcontrollers,
we cannot present performance benchmarks for the group operations. However,
to the best of our knowledge, in all performance benchmarks in literature, the
group operations for ECDH with a comparable keysize (256 bits), implemented
in software without any dedicated hardware support, consume atleast one to
two orders higher time. Thus, we would assume that such a scaling would be
expected for the automotive microcontrollers as well, i.e. overhead of ≈100 ms.
Thus the performance advantage of our scheme is clear.

A typical implementation of the CAN bus operates at a rate of 125 kbits/s,
i.e. 1000 frames per second. Each frame of frame contains 8 bytes of data. Thus
on average, a PnS session between two nodes to generate a n = 128 bit key
would last over 8 frames, i.e. 8 ms, which is similar to the overhead using ECDH.

With improvements in technology, it is expected that the recommended
length of parameters for ECDH will increase significantly in the foreseeable
future [1]. The computational overhead of group operations due to such changes
has poor scaling in comparison to our group key protocols, which would scale
linearly with the key length. Further, as physicists bring quantum computing
into the practical realm, traditional EC-DH based schemes may be rendered
insecure. By contrast, PnS based schemes would remain secure.

6.3 Conclusion

We presented methods to efficiently generate group keys for nodes connected
via a shared bus, using physical layer properties. The methods utilize the nat-
ural wired AND operation provided by the bus architecture, in place of expensive

104 S. Jain and J. Guajardo

modular exponentiation operations typically required. The algorithmic complex-
ity of our scheme is equivalent to the most efficient key-agreement algorithm
available today. One of the most promising applications for this schemes is in
context of ECU networks inside an automobile. However, our assumptions are
sufficiently generic to map to a variety of wired networks. Thus, these schemes
can be utilized in different systems where low capability devices are present.

References

1. Cryptographic key length recommendations. http://www.keylength.com. Accessed
09 Feb 2016

2. Ateniese, G., Steiner, M., Tsudik, G.: Authenticated group key agreement and
friends. In: Proceedings of Conference on Computer and Communications Security,
pp. 17–26. ACM, New York (1998)

3. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg
(1994)

4. Bresson, E., Chevassut, O., Pointcheval, D.: Provably secure authenticated group
Diffie-Hellman key exchange. ACM Trans. Inf. Syst. Secur. 10(3), July 2007

5. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 453–474. Springer, Heidelberg (2001)

6. Checkoway, S., McCoy, D., Kantor, B., Anderson, D., Shacham, H., Savage, S.,
Koscher, K., Czeskis, A., Roesner, F., Kohno, T.: Comprehensive experimental
analyses of automotive attack surfaces. In: Proceedings of the USENIX Security
Symposium, August 2011

7. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theor.
22(6), 644–654 (1976)

8. Glas, B., Guajardo, J., Hacioglu, H., Ihle, M., Wehefritz, K., Yavuz, A.: Signal-
based automotive communication security and its interplay with safety require-
ments. In: Embedded Security in Cars (ESCAR), Europe, November 2012

9. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM 33(4), 792–807 (1986)

10. Groza, B., Murvay, S.: Efficient protocols for secure broadcast in controller area
networks. IEEE Trans. Ind. Inf. 9(4), 2034–2042 (2013)

11. Groza, B., Murvay, S., van Herrewege, A., Verbauwhede, I.: LiBrA-CAN: a light-
weight broadcast authentication protocol for controller area networks. In: Pieprzyk,
J., Sadeghi, A.-R., Manulis, M. (eds.) CANS 2012. LNCS, vol. 7712, pp. 185–200.
Springer, Heidelberg (2012)

12. Harn, L., Lin, C.: Authenticated group key transfer protocol based on secret shar-
ing. IEEE Trans. Comput. 59(6), 842–846 (2010)

13. Hastad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

14. Herrewege, A.V., Verbauwhede, I.: CANAuth - a simple, backward compatible
broadcast authentication protocol for CAN bus. In: ECRYPT Workshop on Light-
weight Cryptography 2011, Louvain-la-Neuve, BE, pp. 229–235 (2011)

15. Katz, J., Yung, M.: Scalable protocols for authenticated group key exchange.
In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 110–125. Springer,
Heidelberg (2003)

http://www.keylength.com

Physical Layer Group Key Agreement 105

16. Kim, Y., Perrig, A., Tsudik, G.: Group key agreement efficient in communication.
IEEE Trans. Comput. 53(7), 905–921 (2004)

17. Kim, Y., Perrig, A., Tsudik, G.: Communication-efficient group key agreement.
In: Proceedings of the Annual Working Conference on Information Security, pp.
229–244 (2001)

18. Kim, Y., Perrig, A., Tsudik, G.: Tree-based group key agreement. ACM Trans. Inf.
Syst. Secur. 7(1), 60–96 (2004)

19. Koscher, K., Czeskis, A., Roesner, F., Patel, S., Kohno, T., Checkoway, S., McCoy,
D., Kantor, B., Anderson, D., Shacham, H., Savage, S.: Experimental security
analysis of a modern automobile. In: Proceedings of the Symposium on Security
and Privacy, pp. 447–462, May 2010

20. Law, L., Menezes, A., Qu, M., Solinas, J., Vanstone, S.: An efficient protocol for
authenticated key agreement. Des. Codes Crypt. 28(2), 119–134 (2003)

21. Maurer, U.M.: Information-theoretically secure secret-key agreement by NOT
authenticated public discussion. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS,
vol. 1233, pp. 209–225. Springer, Heidelberg (1997)

22. Miller, C., Valasek, C.: A survey of remote automotive attack surfaces. Technical
report, IOActive Inc., Online Whitepaper: Accessed 09 Feb 2016

23. Müller, A., Lothspeich, T.: Plug-and-secure communication for CAN. CAN
Newsletter, pp. 10–14, December 2015

24. Rouf, I., Miller, R.D., Mustafa, H.A., Taylor, T., Oh, S., Xu, W., Gruteser, M.,
Trappe, W., Seskar, I.: Security and privacy vulnerabilities of in-car wireless net-
works: a tire pressure monitoring system case study. In: Proceedings of the USENIX
Security Symposium, pp. 323–338, August 2010

25. Steiner, M., Tsudik, G., Waidner, M.: Key agreement in dynamic peer groups.
IEEE Trans. Parallel Distrib. Syst. 11(8), 769–780 (2000)

26. Szilagyi, C., Koopman, P.: Low cost multicast authentication via validity voting
in time-triggered embedded control networks. In: Proceedings of the Workshop on
Embedded Systems Security. ACM, New York (2010)

27. Szilagyi, C., Koopman, P.: Flexible multicast authentication for time-triggered
embedded control network applications. In: Proceedings of the International Con-
ference on Dependable Systems and Networks, pp. 165–174. IEEE, June 2009

28. Valasek, C., Miller, C.: Remote exploitation of an unaltered passenger vehicle.
Technical report, IOActive Inc., Online Whitepaper: Accessed 09 Feb 2016

29. Wang, Y., Ramamurthy, B., Zou, X.: The performance of elliptic curve based group
Diffie-Hellman protocols for secure group communication over ad hoc networks. In:
Proceedings of the International Conference on Communications, vol. 5, pp. 2243–
2248 (2006)

– vatiCAN –
Vetted, Authenticated CAN Bus

Stefan Nürnberger(B) and Christian Rossow

CISPA, Saarland University, Saarbrücken, Germany
nuernberger@cs.uni-saarland.de, crossow@mmci.uni-saarland.de

Abstract. In recent years, several attacks have impressively demon-
strated that the software running on embedded controllers in cars can
be successfully exploited – often even remotely. The fact that compo-
nents that were hitherto purely mechanical, such as connections to the
brakes, throttle, and steering wheel, have been computerized makes digi-
tal exploits life-threatening. Because of the interconnectedness of sensors,
controllers and actuators, any compromised controller can impersonate
any other controller by mimicking its control messages, thus effectively
depriving the driver of his control.

The fact that carmakers develop vehicles in evolutionary steps rather
than as revolution, has led us to propose a backward-compatible authen-
tication mechanism for the widely used CAN vehicle communication
bus. vatiCAN allows recipients of a message to verify its authenticity via
HMACs, while not changing CAN messages for legacy, non-critical com-
ponents. In addition, vatiCAN detects and prevents attempts to spoof
identifiers of critical components. We implemented a vatiCAN prototype
and show that it incurs a CAN message latency of less than 4 ms, while
giving strong guarantees against non-authentic messages.

1 Introduction

In the highly competitive field of automobile manufacturing, only those have
survived who have adopted the art of extreme cost savings by establishing a well-
coordinated concert of manufacturers, suppliers and assemblers. It is this fragile
chain, which now turns out to be too static when it comes to cross-sectional
changes as would be needed by a radically new, secure architecture.

Even though security experts agree that an overhauled, security-focused
architecture is much-needed [2,10,16,17], carmakers simply cannot easily change
established designs. Arguably, two major obstacles are (1) the industry-wide
“never touch a running system” attitude, which originates in legislative burdens
and safety concerns, and (2) the overwhelming complexity of regulations in dif-
ferent jurisdictions of the world, which have fostered the outsourcing to highly
specialized suppliers. This effect is even more amplified due to the tendency of
acquisition rather than in-house innovation. As a result, desired functionalities
are put out to tender and the hardware and software is instead developed by a
long chain of suppliers. For example, Porsche claims to have the lowest manu-
facturing depth in the automotive industry with more than 80 % of production
c© International Association for Cryptologic Research 2016
B. Gierlichs and A.Y. Poschmann (Eds.): CHES 2016, LNCS 9813, pp. 106–124, 2016.
DOI: 10.1007/978-3-662-53140-2 6

– vatiCAN – Vetted, Authenticated CAN Bus 107

cost spent for supplier’s parts, while the remaining 20 % are spent on engine
production, the assembly, quality control and sale of their vehicles [3].

This is in contrast with the needed extensive architectural changes to imple-
ment at least some level of security. The lack of automotive security engineering
principles as opposed to the desktop computer world is not surprising. The most
widely used automotive communication protocol CAN 1 was designed to run in
isolation stowed away behind panels. Faulty hardware or damaged wires were the
only likely threat to such an isolated system. A deliberate manipulation could
only happen with physical access to the inside of the car. While these design prin-
ciples were absolutely adequate for safety requirements back then, modern cars
have meanwhile reached an almost incomprehensive complexity and moreover
violate the ancient isolation assumptions due to their promiscuous connectivity
such as Bluetooth audio, 3G Internet, WiFi, wireless sensors, RDS2, and TMC3.

It is not only potentially possible but it has been practically shown that vul-
nerabilities in these wireless connections exist [2]. An attacker can then write
arbitrary messages on the CAN bus, which connects the car’s computers, the so-
called Electronic Control Units (ECUs). While the culprit is indeed a vulnerable
ECU that can be compromised, the exploited fact is that the CAN topology is
a bus. This broadcast topology allows any connected device, including a com-
promised ECU, to send arbitrary control messages. The receivers have no way
of verifying the authenticity of the sender or the control data.

Contributions. In this paper, we propose vatiCAN, a framework for embedded
controllers connected to the CAN bus, which allows both senders and receivers
to authenticate exchanged data. First and most importantly, receivers can check
the authenticity of a received message. Second, senders can monitor the bus for
their own messages to detect fraudulent messages. In detail, vatiCAN provides

– Sender and message authentication in the CAN bus broadcast topology,
which prevents fake messages from illegitimate senders from being processed.

– Security against replay-attacks by incorporating a global nonce.
– Spoof detection of own messages in software by bus monitoring.
– Full backward compatibility as message payloads, sender IDs and most

importantly CAN transceiver chips are left unmodified, which allows legacy
devices to work without modifications.

– Spoof prevention of own messages is possible in hardware by changing bus
arbitration.

While the possible improvements on a legacy architecture are somewhat lim-
ited by the intended backward compatibility, this paper shows what can be
achieved when backward compatibility is the utmost goal. It thereby lays the
foundation for automakers to increase the status quo of security while adhering
to the established structures of minimal change.

1 Controller Area Network - Developed by BOSCH and Mercedes-Benz in 1983.
2 Radio Data System - digital payload for FM radio broadcast, e.g. station name.
3 Traffic Message Channel - Traffic information over FM radio for navigation systems.

108 S. Nürnberger and C. Rossow

2 Background

To address the need to connect different sensors, actuators and their controllers
with each other so that they can make informed decisions, BOSCH developed a
new communication bus in 1983 [7,13]. For example, the widespread traction
control system (TCS4) could use CAN to connect the necessary sensors (wheel
rotation) and actuators (brakes). The TCS monitors the wheel spin on each of
the four wheels and intentionally brakes individual wheels to get traction back
(see Fig. 1).

TCS
Brake 3

Brake 4Brake 2

Brake 1

RPM 1

RPM 2

RPM 3

RPM 4

CAN

(a) Topological Layout (b) Logical Layout

TCS

Brake 4

RPM 4RPM 3RPM 2RPM 1

Brake 3Brake 2Brake 1

Fig. 1. Bus Topology on the example of the Traction Control System (TCS): Sensors
(wheel RPM) are read as input while actuators (brakes) work as output.

CAN transmits so-called CAN frames consisting of a priority, the actual
message payload, its length (1 to 8 bytes), and a CRC checksum followed by an
acknowledgment flag (see Fig. 2).

Priority Length Payload ACKCRC
Data

Meta Data

11 bits 4 bits 16bits 1 bit

Fig. 2. A single CAN frame.

What makes CAN so widespread, are two important safety requirements it
fulfils:

(1) the acknowledgement of reception and
(2) the arbitration of sending order.

4 Also known as ESP - Electronic Stability Program.

– vatiCAN – Vetted, Authenticated CAN Bus 109

0x050

8

Priority/
Sender ID Length Data

10 F0 01 00 00 30 00 E1 0x1A0

4 E0 F0 00 FF Airbag

Brake (Front Left)

Fig. 3. Example CAN messages from the airbag and brake captured on a 2005 Volk-
swagen Passat B6.

Powertrain CAN
(500 kBit/s)

Comfort CAN
(100 kBit/s)

Infotainment CAN
(100 kBit/s)

Instrument Cluster

CAN
Gateway

Diagnostics CAN (OBD)
(500 kBit/s)

(500 kBit/s)

Fig. 4. Interconnected CAN buses through a CAN gateway in a VW Passat B6.
(source: “Volkwagen erWin Online”)

The acknowledgement of reception (1) is important because the sender of a
critical message must be sure that it has been processed. Additionally, messages,
which can only be sent one after the other, must be prioritized based on how
important they are (2). This ensures the hard real-time requirements of the
whole system.

The CAN bus achieves those two properties in hardware by using the electri-
cal concept of so-called dominant and recessive bits. Bits are always transmitted
synchronously at fixed time slots and dominant (logical 0) bits can overwrite
recessive bits (logical 1). This simple principle allows the sender to check if at
least one ECU has received the frame by reading the acknowledgement bit. Simi-
larly, the prioritization of frames is solved: Since each frame starts with its 11-bit
priority, the dominant bits overwrite the recessive priority bits of other frames
transmitted at the same time. Only the highest priority frame is received by all
the connected nodes, while a lower priority device automatically backs off when
a recessive bit has been overwritten by somebody else. The priority is at the
same the time CAN sender ID. Hence, if the airbag has sender ID 0x050 and
front left brakes have ID 0x1A0, then the airbag has a higher priority because
0x050 is numerically lower than 0x1A0 (see Fig. 3).

CAN buses have different standardized speeds ranging from 5 to 1000 kBit/s.
Most common are 500 kBit/s and 100 kBit/s, while 500 kBit/s networks have
higher demands in terms of cables and CAN bus tranciever chips. Depend-
ing on the make and model, there are several CAN buses in a modern car.

110 S. Nürnberger and C. Rossow

The most prominent reasons for having more than one CAN bus are (1) Clear
separation for safety reasons, (2) fault-tolerance in case one bus fails, (3) cost
reduction due to lower speed CAN buses where high-speed CAN buses are not
needed. An exemplary CAN bus network and its interconnectedness is depicted
in Fig. 4.

3 Design

3.1 Problem Statement

The steadily increasing number of components that are connected on the CAN
bus introduce a high likelihood that any of such components may be compro-
mised [4]. Unfortunately, such a compromise may have severe security (and there-
fore also safety) implications to the automotive network. Of all possible threats,
message spoofing remains one of the largest unsolved issued on the current CAN
bus designs. In the worst case, a compromised component may inject fake CAN
messages, e.g., messages that make the parking assistant turn the steering wheel.

In the current CAN design, there is no protection against these threats. First
of all, CAN has no scheme to verify the authenticity of the messages, i.e., neither
the sender information, nor the actual message payload. In principle, an attacker
that controls any component on the CAN bus, can thus

(a) spoof the identity of any other component (e.g., to escalate privileges), or
(b) send arbitrary payload (e.g., to perform malicious actions).

Our goal is to introduce authenticity schemes to CAN. First, we aim to
add sender authenticity to guarantee that CAN components can protect their
identity by denying messages that spoof their identity. Second, we plan to add
content authenticity to guarantee that a message was intentionally sent and its
content was neither manipulated nor replayed.

It may seem trivial to redesign CAN such that those features are added.
However, a practical solution faces several challenges:

C1 CAN has been designed primarily to match real-time characteristics of the
communication. Any security mechanism must not add unacceptable over-
heads that significantly increase latency or lead to message collisions.

C2 ECUs are typically microcontrollers with very constrained computational
power and storage space. Thus, heavy-duty crypto operations cannot be
performed as they would add an unacceptable overhead.

C3 CAN messages are limited to 8 bytes, which requires us to either squeeze
secure crypto into 64 bits or to use a higher level transmission protocol that
re-assembles longer messages that are spread across several CAN frames.

C4 Cryptographic keys must be individual per car to render extracting keys in
one car useless. Moreover, key agreement between ECUs must be dynamic
to allow for broken parts to be replaced.

– vatiCAN – Vetted, Authenticated CAN Bus 111

C5 Adapting all ECUs and all messages would be disproportionate as many
ECUs are non-critical and do not need to be protected. Further, chang-
ing messages would result in compatibility problems and enormous costs as
mass-produced components could otherwise no longer be used. To keep cost
down, as few ECUs as possible should be modified.

C6 Authenticated messages should be immune to replay attacks. However, intro-
ducing a global state is against the design principle of CAN, which is state-
less in order to tolerate packet loss.

Instead, our goal is to retrofit vatiCAN to CAN by adding a backward-
compatible security add-on for selected senders and messages. Our vatiCAN
add-on should not influence components that do not support the new security
mechanisms. Components that do support vatiCAN, on the other hand, will
benefit from the authenticity checks. Such a model allows for a gradual, evolu-
tionary change towards a more secure CAN standard and can at the same time
protect vital components, such as power steering, brakes and airbag, from the
beginning.

3.2 Threat Model

We assume an attacker who does not have physical access to the car but she can
fully compromise one (or a few) wireless ECUs that usually use several IDk k ∈
{0, . . . , 211} to send on the CAN bus. The attacker’s goal is to impersonate
another ECU with IDx with k �= x. After the compromise of ECU with IDk, the
attacker has full flexibility in sending arbitrary messages to the CAN bus, i.e.,
she can fake sender identities and chose any message payloads.

The attacker is assumed not to compromise the ECU for which she intends
to fake the packets—otherwise the attacker would already be using the genuine
sender and can likely extract any cryptographic key material from the compro-
mised devices and thus fake the identity regardless of any cryptographic scheme.
Instead, we protect the identities of critical devices that might be impersonated
(and not compromised) by an attacker.

In addition, we consider an attacker that can passively monitor the CAN
bus. She can observe and record all messages that have been broadcasted on the
CAN bus. This way, the attacker can also learn about components’ identities.

3.3 High Level Concept

In this section, we describe the individual features of vatiCAN that address the
challenges C1 through C5.

Message Organisation (C1, C5). The cryptographic authentication mecha-
nism that vatiCAN uses must be decoupled from the actual message to remain
backward compatibility. We opted for a separate message with a different sender
ID such that legacy devices still see the original message content from the sender

112 S. Nürnberger and C. Rossow

ID they expect (C5). As a side effect, the induced cryptographic performance
and bandwidth overhead only applies to critical messages that have been manu-
ally selected at development time. For those selected messages, their additional
authentication message is then sent from a different ID for which only vatiCAN-
aware recipients listen. The separation of messages also has the advantage that
the recipient experiences no delay when receiving the original, unmodified mes-
sage (C1) and can compute the necessary cryptographic authentication in par-
allel to the reception of the authentication message.

Special care must be taken when selecting the sender ID for the additional
authentication message from IDj for each legacy sender IDi. Since senders cor-
respond to priorities on the CAN bus, a careless selection of a new j may result
in other messages being delayed if the priority is too high or may lead to the
priority inversion problem if the priority is too low. We therefore choose the new
j = i + 1, which lowers the authentication’s priority by the smallest granularity
possible. Under the assumption that this new ID is not taken, this effectively
assigns the same priority to the authentication message as all other message
priorities are still lower or higher, respectively.

Message Authentication (C2, C3). vatiCAN supports content authentic-
ity, which cryptographically ensures that the sender was in possession of the
required and correct cryptographic key. As a cryptographic primitive, we chose
a light-weight keyed-Hash Message Authentication Code (HMAC) since sym-
metric cryptography fulfils our requirements and is more suitable for embedded
resource-constrained devices with real-time requirements. As underlying hash
function for the HMAC construction, we chose the Keccak algorithm that has
been standardized as SHA-3. According to the performance evaluation of hash
functions on the popular Atmel embedded microcontroller [1], Keccak is the
fastest hash function (C2). We chose the Keccak parameters to produce 64 bit
output with 128 bits of rate and capacity (r = c = 128). The input size of
128 bits was chosen to accommodate the original payload of up to 64 bits, the
sender ID and a nonce (see below).

For messages that have been selected for authentication at development time,
an additional HMAC CAN frame is sent from the sender j. The recipients can
then verify if the HMAC matches the content received earlier, and if so, accept
the message. This two-step process can also be used to pre-condition the upcom-
ing action (e.g. move brakes to the disk) as soon as the first un-authenticated,
legacy content has been received and then defer the actual command execution
(e.g., brake) until the authentication approval arrives. If the HMAC is invalid
or has not been received in a given time frame, the recipient can discard the
message and potentially issue a warning.

3.4 Replay Attacks (C6)

To prevent replay attacks, vatiCAN incorporates a nonce in the HMAC com-
putation. Otherwise an attacker could record a vital message and its HMAC and

– vatiCAN – Vetted, Authenticated CAN Bus 113

then replay both later. In contrast to other authentication schemes, we do not
require the nonce to be non-predictable but we require the nonce not to pro-
duce two messages with the same HMAC. Since we opted for not modifying the
original payload, we cannot distribute the nonce for each authenticated message.
To avoid an additional broadcast of the nonce, the sender and all receivers must
implicitly agree on the same nonce that must be different for each message. For
this purpose, we introduce a counter cj , which is specific for each sender j and
is incremented with each message sent by IDj . This ensures that the HMAC of
recurring CAN payloads is different each time. We chose sender-specific counters
rather than a global counter because some ECUs might not be online all the time
and most ECUs implement a hardware ID filter that only forwards CAN frames
from those IDs that are of interest to this particular ECU.

To account for the fact that messages might get lost or ECUs are temporarily
in power-safe mode, we additionally introduce the global Nonce Generator (NG).
The NG periodically broadcasts a random global nonce g, which shall be used
by all counters cj as their new value. This way, counters get synced up again
across different ECUs. In other words, on each broadcast of g, all ECUs reset
their cj = g and start counting from there with each message they send.

Consequently, the HMAC of the each message m is computed by the sender
(recall that i is the ID of the legacy sender, and j = i+1 is the ID of the HMAC
message) and by the recipient as follows:

h = HMAC(i | m | cj)
We incorporate the legacy sender i in the HMAC, such that no identical payloads
from different senders produce the same HMAC if they happen to share the same
key. Since messages on the CAN bus are received in the same order for all nodes,
choosing the right g is deterministic for all nodes. The g that was valid before
the legacy message from i was sent has to be used to verify the HMAC sent by
j in order to avoid race conditions.

The overall timing and message exchange is exemplified in Fig. 5, in which the
throttle sends a message that the engine validates. First, the NG broadcasts the
new nonce (761). Next, the throttle broadcasts the legacy message. Afterwards,
it computes the HMAC, using its legacy ID, the legacy message payload (30)
and the nonce. Simultaneously, the engine also computes the HMAC over the
message payload sent by the throttle. Finally, after the throttle broadcasts the
HMAC, the engine will verify if the computed HMAC values match.

Even though the attacker can receive the current nonce g, she is not in
possession of the necessary key to compute the HMAC. In other words, g is not
secret.

A nonce introduces a “state” in a protocol that is designed to be stateless to
accommodate for packet loss. Should a packet loss occur (e.g., damaged cables)
all subsequent HMACs could not be verified anymore until the next global nonce
g is broadcasted by the NG. Hence, the interval at which the NG broadcasts g at
the same time sets the deaf time, which is the maximum time an ECU might see
invalid HMACs after a hardware failure. A suggested frequency is every 50 ms,
which corresponds to an additional bus utilization of ≈1 % at 500 kBit/s.

114 S. Nürnberger and C. Rossow

Fig. 5. Timing of interaction between NG, legacy and authenticated messages.

Spoof Detection and Prevention. A first primitive of vatiCAN is to mit-
igate the risk that compromised components can fake the identity of other
components. To this end, we leverage the fact that CAN is a bus-oriented net-
work, and components thus receive messages from all other components on the
bus. In fact, if a component monitors the CAN communication, it can identify
spoofed messages by monitoring messages with its own sender identification. If
a component detects a message with its own sender ID, it must be a spoofed
message. Since messages transmitted by a CAN transceiver are not considered
received messages, this can be clearly distinguished. Once detected, this issue is
made available in software in the form of an exception. However, other recipients
might have already processed this message. This software solution is only suit-
able for detecting and, e.g., displaying a message to the driver. Alternatively, it is
also possible to drop a detected spoofed message by intentionally destroying the
CRC checksum. However, the CRC checksum part is usually processed in hard-
ware and hence deliberate destruction is only possible when the CAN transceiver
chip is modified. A difficulty of this approach is that the CAN messages have to
be destroyed before the transmission of the spoofed frame is completed. Luck-
ily, the sender information is at the start of each frame and is synchronously
processed for bus arbitration anyway. This means an early detection stage is
possible by invalidating the CRC bits using dominant bits (e.g. all zeros) while
a CAN frame is still being processed. This approach is similar to the already
implemented acknowledgement (see Sect. 2) in the CAN bus standard, which is
also set at the correct timing of the ACK bit during transmission. We assume
that (at least) the NG—which is the only component that needs to be added
for vatiCAN—is protected with such a hardware-assisted spoofing prevention
mechanism. Hence an attacker cannot impersonate the NG and inject arbitrary
nonces.

– vatiCAN – Vetted, Authenticated CAN Bus 115

Should a sender ID be shared between ECUs, the spoof detection described
above cannot be applied. A shared sender ID could be used for door ECUs that
simply send a message that the door is open. Each door has an ECU that uses
the same sender ID because it only matters that a door is open but not which.

Key Distribution (C4). According to the HMAC construction, the used cryp-
tographic key is either padded to the length of the hash function’s input block
size, or it is hashed if it is longer than the block size. To avoid an additional
hashing operation, we recommend setting the length of the cryptographic key
exactly to the length of the input block size of the hash function: 128 bits.

We also chose not to use one global key, but individual keys per ECU. Of
course, it is also possible to group ECUs that share the same key. This saves
precious flash memory at the expense of reduced security. Typically, ECUs form
logical clusters, e.g., all four wheel rotation sensor ECUs, and all four brake ECUs
form a logical cluster of traction control. vatiCAN leverages this and supports
assigning sets of IDs the same cryptographic key, bonding them to a group.

The most critical aspect is the key provisioning: the process of getting keys
into ECUs in the first place. The cryptographic key for each ECU or group needs
to be provisioned to each ECU that is part of that logical cluster. Generally, two
possibilities exist:

(a) During Assembly. The keys could be generated randomly during produc-
tion and automatically be injected into the flash memory of the correspond-
ing ECUs. However, this makes replacing ECUs after a fault or accident
more involved, as either keys have to be extracted from other ECUs or new
keys need to be generated and distributed to all clusters that the faulty
ECU communicates with.

(b) Key Agreement. Alternatively, keys can also be agreed upon using Diffie-
Hellman key exchange every time the car is turned on. However, this option
has several disadvantages: ECUs that switch on on-demand have to re-run
the key agreement. Moreover, man-in-middle attacks are possible without
certificates stored in the ECUs, which is not practical. And lastly, multi-
party key exchange is non-trivial for an embedded microcontroller.

This is why we chose option (a) to provision the keys during production of an
ECU. In case an ECU needs to be replaced, all other ECUs need to be updated
with the new key. Luckily, software updates through the on-board diagnostics
(OBD) port are commonplace and supported by most ECUs. This allows for
re-programming of keys without physically removing the ECUs from the car.
To protect against malicious key updates by compromised ECUs, the key provi-
sioning could be protected using asymmetric cryptography. For example, signed
updates are a viable option, despite the fact that they are relatively slow.

4 Implementation

We implemented a proof-of-concept of vatiCAN on the popular Atmel AVR
microcontrollers and used off-the-shelf automotive components, such as an

116 S. Nürnberger and C. Rossow

instrument cluster, that act as legacy devices. Our implementation is also avail-
able as download in the form of a library for the popular Arduino development
environment (see Appendix A).

4.1 Hardware Platform

As hardware platform, we used Atmel AVR microcontrollers, each of which is
connected to a Microchip MCP2515 CAN bus controller over SPI [11]. The
CAN bus is built on a work bench top and connects an off-the-shelf automobile
instrument cluster as symbolic legacy device. The bench top CAN test network
resembles a Hardware-in-the-Loop-Test (HIL), which is common in the automo-
bile industry [5]. We used this hardware to build the prototype (see Fig. 6):

Atmel AVR ATMega328p 8 bit microcontroller
(32 kB of flash, 2 kB of SRAM, 16 MHz)

Microchip MCP2515 CAN bus controller chip (3 TX / 2 RX
buffers)

Seat Ibiza instrument cluster From the 2009 model 6J
Logitech Formula GP Accelerator and brake pedals

Components of the topology of the HIL setup shown in Fig. 7 are:

(a) Electronic Throttle Control (ETC)
(b) Powertrain Control Module (PCM)
(c) Instrument cluster (speed, RPM, airbag warning, ABS warning).
(d) Auxiliary Simulator (AS) for airbag, brakes, and wheels.

The ETC reads the analog potentiometer mounted to the accelerator pedal
(0 % to 100 % pressed) and broadcasts the value on the CAN bus so that it can
be interpreted by the PCM. The PCM in turn simulates an internal combus-
tion engine and broadcasts engine RPM and oil temperature on the CAN bus.
The Seat Ibiza instrument cluster shows the engine RPM using an analog dial.

Fig. 6. Bench HIL setup with original instrument cluster ECU and re-engineered ETC
and PCM ECUs.

– vatiCAN – Vetted, Authenticated CAN Bus 117

Fig. 7. Hardware-in-the-Loop Test (HIL): ETC, PCM and AS.

The corresponding speed that the speedometer dial shows is being sent by the
AS and calculated from the engine RPM and currently selected (simulated) gear.

4.2 Secure Message Selection

The strong-suit of vatiCAN is its interoperability and backward-compatibility
with legacy devices that do not understand authenticated messages. For this rea-
son, we chose the original instrument cluster from a 2009 Seat Ibiza, which shows
speed and engine RPM despite being secured by vatiCAN. Not all exchanged
messages in the HIL were secured, because not all messages are vital. We chose
to secure the (1) throttle position message, (2) engine RPM, (3), wheel rotation
(vehicle speed), and (4) anti-lock brake controller

All the other messages needed to operate properly (see Appendix B) are not
authenticated as they are not vital.

4.3 Software Architecture

The vatiCAN library abstracts CAN bus access to sending and receiving mes-
sages, while received messages incorporate the notion of being authenticated or
not. The application using vatiCAN registers known sender IDs for authenti-
cated messages and two callbacks. One callback for receiving messages (legacy
and authenticated) and one for errors (authentication mismatch, timeouts).

For this purpose, the vatiCAN library keeps a list of authenticated sender
IDs i and thus can perform a look-up based on the sender ID for every received
CAN frame. Then, vatiCAN knows whether to expect an additional authenti-
cation CAN frame from j. All CAN frames are delivered immediately to the
application using the provided call-backs. However, CAN bus frames originat-
ing from senders not in the list of authenticated senders are flagged insecure
while frames originating from senders that should authenticate their messages
are flagged as not authenticated yet. If authentication messages are expected,
the HMAC calculation is started in the background. The application code using
vatiCAN can then decide whether to prepare or pre-compute intermediate steps
until the authentication message arrived and was verified. If the authentica-
tion message arrives, vatiCAN automatically compares the computed HMAC to
the received authentication message and either invokes the message reception

118 S. Nürnberger and C. Rossow

Fig. 8. CAN bus frame reception, message processing and the application.

call-back indicating an authenticated message, or invokes the error call-back if
the HMAC comparison failed. The message verification is designed in such a
way that the order of internal HMAC computation and authentication message
reception does not matter. Whichever completes last, triggers the comparison
and forwards either the message or an error to the application.

Since AVR ATmega microcontrollers do not support hardware multi-
threading, the background HMAC computation is implemented as an interrupt
service routine (ISR), which is triggered on CAN frame reception and defers
computations to a later point indicated by the application code. The interac-
tion diagram shown in Fig. 8 depicts the processing of a single, authenticated
message.

The implemented code consists of a vatiCAN CAN bus interface library writ-
ten in C++ and a hash function that currently uses the Keccak (SHA-3) imple-
mentation in assembler that was adapted from [1]. The C++ library consists of
only 314 lines of code, while the hash function in assembler consists of 250 lines
of code. The compiled code sizes can be found in the evaluation in Sect. 5.

5 Performance Evaluation

Fig. 9. Parallel computation of HMACs

We evaluated the performance in
terms of message reception delay, bus
congestion due to added CAN frames
and in terms of memory footprint.
The evaluation was conducted on
the hardware presented in Sect. 4. To
obtain time measurements, we used
the internal ATmega timer with a pre-
scaler of 64, which divides the used
16 Mhz clock speed in 250 kHz accu-
racy (4 µs accuracy). All experiments
have been conducted on the very com-
mon 500 kBit/s bus speed.

We then measured the time it takes to calculate a single HMAC for a CAN
frame, given nonce and sender ID as additional input. The HMAC calculation

– vatiCAN – Vetted, Authenticated CAN Bus 119

takes about 47,600 clock cycles or 2.95 ms for the used clock speed of 16 Mhz.
The total time the reception of a message is deferred due to the calculation of the
HMAC and comparison with the received authentication CAN frame is 3.3 ms.
That means, the look-up if the sender ID is in the list of secure senders plus the
string comparison of calculated and received HMAC make up for 0.35 ms. Note
that the application gets notified immediately after reception of the payload and
can start precomputations. This means that both the sender and receiver can
compute the HMAC of the payload in parallel.

Figure 9 illustrates the parallel computation. HMACS is the sender’s com-
putation of the HMAC including the currently valid nonce, while HMACR is the
receiver’s computation of the received message Msg. The HMAC computations
take place simultaneously on the receiver’s and sender’s side, as the receiver
starts computing the HMAC as soon as the plain text message Msg arrives.
The receiver then compares HMACR against HMACS to check if they match.
This parallel computation is a major benefit of HMAC compared to asymmet-
ric cryptographic message signatures, for which the receiver has to wait for the
signature before further validations.

Next, we measure the round-trip time for legacy vs. vatiCAN-secured CAN
frames. In case of legacy frames, one microcontroller broadcasts an 8-byte CAN
frame and another microcontroller receives the message and immediately broad-
casts another message. The time measured is the interval between sending the
first message and after receiving the response. For plain, unauthenticated 8-byte
CAN frames, the ping-pong time interval is 1.08 ms and consequently 2 mes-
sages were exchanged in total. For vatiCAN, 2 messages have to be sent and 2
messages have to be received. Both microcontrollers must calculate 2 HMACs
(one for sending, one for verification). The total time between sending the secure
message until after reception of the secure response is 4.5 ms.

Please note that the used ATmega 8 bit microcontrollers represent the lower
bound of an automotive performance evaluation. The common v850 32 bit micro-
controllers offer ≈2.6× the performance.

5.1 Bus Congestion

For safety reasons, it is important to know the limits of the CAN bus network in
terms of throughput in order to ensure that no messages get lost. Car manufac-
turers also use HIL tests to ensure a safety margin such that under all conceivable
conditions the maximum bandwidth and thus the maximum intended latency is
never exceeded. To measure the typical utilization of a heavily used bus, we
chose the 500 kBit/s instrument cluster CAN (see Fig. 4) because it combines
messages from the powertrain CAN bus, the infotainment CAN bus, and the
comfort CAN bus. Appendix B lists all recorded messages and their frequency
of occurrence in the VW Passat B6.

Due to the re-occurring nature of CAN messages, every 100 ms the same
messages were seen on the bus. Per second, 560 messages are sent with a total
payload of 4, 230 bytes (33, 840 bits). Due to the CAN frame overhead (start
bit, length bits, CRC, stuff bits etc.) each frame needs an additional 47 bits to

120 S. Nürnberger and C. Rossow

be transmitted. Hence, per second a total of 33, 840 + 560 · 47 = 60, 160 bits
are transmitted. We tested the maximum possible bandwidth under realistic
conditions by flooding the bus with 8-byte CAN frames. Counting whole CAN
frames (payload + header bits) we achieved a throughput of 448 kBit/s. Thus,
the measured utilization of 60.2 kBit/s corresponds to 13.4 % utilization. With
3 out of 13 senders protected by vatiCAN, per second 110 messages of the 560
total messages are protected. This accounts for additional 110 · (47 + 64) bits =
12, 210 bits. Thus, the total bus utilization increases to 72.4 kBit/s (16.2%).

5.2 Memory Footprint

The total vatiCAN library size is 2152 bytes of AVR instructions of which
678 bytes are attributed to the Keccak implementation and the remaining
1474 bytes are the surrounding vatiCAN message verification, HMAC and inter-
rupt logic. In addition, vatiCAN has to store an additional 32-bit word for the
sender’s nonce (4 byte) per sender ID. Even in the unlikely case that an ECU
expects 100 different vatiCAN sender IDs, this would result in mere 100*4=400
bytes.

6 Security Evaluation

The goal of an attacker is to inject a specific, potentially dangerous CAN frame
and to forge its HMAC. Since the attacker needs to forge an HMAC for one spe-
cific message (or a few specific messages), it does not suffice to find an arbitrary
collision in the underlying hash. Instead, the attacker’s goal is to find a concrete
collision or the actual cryptographic key.

We chose the Keccak (SHA-3) parameters (r = c = 128, n = 64) such that
it projects its input to 64 bits (8 byte CAN frame) output. While an output
size of merely 64 bits is significantly shorter than the typical length of SHA3’s
224 bits, the increased advantage of the attacker is offset by the limited validity
of a message due to the cyclic message nature of CAN bus and the invalidation
through the Nonce Generator NG.

The cryptographic strength of the used HMAC construction depends on the
length of the secret key and on the chosen output size. An attacker could record
a payload message and its corresponding HMAC. Using the known sender j and
the calculated nonce cj , she can then brute-force all possible keys until she finds
an input that matches the recorded HMAC. Because of the fixed 128 bit key,
an attacker would need 2127 tries on average. Hence, the success probability
Pkey = 2−127. The other option, to guess the output of the HMAC correctly
is Pout = 2−63 due to the 64 bit output length. Please note that the birthday
paradox in finding an arbitrary hash collision does not apply here, since the
attacker has to match a specific plaintext legacy payload. On the Atmega328p
running at 16 MHz, the computation of 232 HMACs would need 232 · 2.95 ms =
12, 670, 154 s = 146 days, which is well outside the validity period set by the NG.
Although a faster ECU could brute-force the HMAC quicker, this is likely not

– vatiCAN – Vetted, Authenticated CAN Bus 121

fast enough. Even though a dual-core 32-bit ARM 1 GHz (e.g., the infotainment
system) would be about 100x faster, it still takes 24 h to brute-force for a nonce
update interval of 50 ms.

It should be considered that an attacker might successfully compromise an
ECU on which a key is stored that is used for vatiCAN. If keys are grouped and
used on multiple ECUs, the attacker can use this key to generate valid HMACs
for any sender to which the group key belongs.

7 Related Work

The first paper that extensively demonstrated practical vulnerabilities of a mod-
ern automobile [10] was published in 2010 and has been cited many times in
academia and the press since. The authors demonstrated that it is possible to
inject code into ECUs, which are connected to various CAN buses. Further, they
demonstrated that bridging the CAN gateway is possible, effectively connecting
a less-critical to a highly-critical CAN bus. Further, they demonstrated that even
remote attacks exist that do not require physical access to the car [2].

Despite the ECUs being the culprit in terms of vulnerabilities, the under-
lying CAN bus makes a life-threatening attack feasible since a compromised
ECU may affect any other connected system. In recent years, several authenti-
cation methods for broadcast buses have been introduced. The closest related
work to vatiCAN is CANAuth [16]. CANAuth proposes a similar HMAC-based
authentication scheme, however, their goal was to incorporate the HMAC into
the payload CAN frame itself. They achieve this by basing their solution on
CAN+, a physical layer modification of the CAN protocol to achieve higher
data rates [18]. Since the additional CAN+ bits are stuffed in-between legacy
CAN bits, it is backward-compatible to CAN controllers, which do not support
CAN+. However, CAN+ would require new hardware to be used for the nodes
that should support CANAuth, and no such hardware exists yet. Our goal was
to update software only and to re-use existing hardware and CAN controllers.

Also purely theoretical work on the topic of CAN bus sender authentication
exists [17] that formalizes which cryptographic primitives are required to guaran-
tee secure communication between different ECUs – even across different buses.
The authors consider key distribution, PKIs and encrypted communication. In
contrast to our solution, their sender authenticity is proven using signature, i.e.
asymmetric cryptography. A similar solution to our spoofed message detection
has been presented in [12]. In contrast to invalidating the spoofed message by
destroying the CRC, the authors detect the spoofed message and immediately
send an error frame on the bus.

More general, the TESLA protocols [14,15] are designed to authenticate
a broadcast sender with symmetric cryptography. However, they use delayed
disclosure of keys, i.e. the sender uses uses a symmetric key for the HMAC
that nobody else knows. Consequently, at reception time, no receiver is able to
authenticate the packet until the key will be made available in a later packet.
This clearly violates our real-time challenge C1. While the improved version of

122 S. Nürnberger and C. Rossow

TESLA [14] supports immediate disclosure of the key, each packet incorporates
a hash of the succeeding packet to build a chain. This is clearly unsuited for
highly lively but predictable CAN bus traffic.

Finally, the AUTOSAR standard [6] also supports an HMAC-based message
authentication scheme. In contrast to vatiCAN, Autosar is not backward com-
patible, as Autosar uses higher level communication (PDUs) to which an HMAC
is appended. Moreover, Autosar does not support spoofing prevention.

8 Limitations and Future Work

Due to the rather restrictive payload of 8 bytes maximum, several protocols
have emerged that build on top of CAN to implement higher layers, such as
longer payloads and transmission control. Popular examples are KWP2000 [9]
or ISO TP [8], which are commonly used for software updates and ECU diag-
nostics. Using vatiCAN, especially for software updates originating from outside
the vehicle, makes sense. However, the current implementation which authenti-
cates every single CAN frame would induce an impractical bandwidth overhead.
A more elegant solution would be to authenticate the payload on the KWP2000
or ISO TP layer by attaching a digital signature.

While the achieved latency of only 3.3 ms on a simple microcontroller is
seemingly fast, for high motorway speeds, a few milliseconds make a difference
between life and death. Should vatiCAN be applied to active safety functions of
a car (e.g., collision avoidance through active braking), the induced latency of
3.3 ms results in a traveling distance of 0.9 m at motorway speed of 100 km

h .

9 Conclusion

The adaptation of new technology in the automobile sector is a cautious and slow
process. It is therefore important to change only a few parts, while the estab-
lished and reliable majority of components can be re-used. Therefore, vatiCAN
is designed to be backward-compatible to allow tried and trusted components to
rely on the same CAN messages without need for modification. However, those
parts for which a manufacturer decides to enhance security can be easily pro-
tected by means of a software upgrade, which uses vatiCAN instead of another
CAN bus interface library. Our vatiCAN implementation is able to deliver real-
time protection to ensure that a compromised ECU cannot be leveraged to fake
messages, which are potentially life-threatening. The induced latency of 3.3 ms
for authenticated messages is fast enough for most situations and shows the
practicality and feasibility of the approach. However, for highly timing-critical
functions, such as brakes, a millisecond delay might be unacceptable.

While the presented results should encourage automakers to implement what
is currently possible given a dated CAN bus architecture, it also shows the need
for a novel design to achieve stronger security claims and better performance.

– vatiCAN – Vetted, Authenticated CAN Bus 123

Acknowledgments. This work was supported by the German Ministry for Education
and Research (BMBF) through funding for the Center for IT-Security, Privacy and
Accountability (CISPA).

A Availability

Our vatiCAN implementation is available as free software download published
under the LGPL v2. We provide a library for the popular Arduino develop-
ment environment for Atmel’s AVR microcontrollers. Its source code is publicly
available at http://automotive-security.net/securecan

B VW Passat B6 CAN Messages

The following messages were captured on the instrument cluster CAN bus on a
VW Passat B6 and are reproduced in the HIL to have realistic bus utilization.

References

1. Balasch, J., et al.: Compact implementation and performance evaluation of hash
functions in ATtiny devices. In: Mangard, S. (ed.) CARDIS 2012. LNCS, vol. 7771,
pp. 158–172. Springer, Heidelberg (2013)

2. Checkoway, S., McCoy, D., Kantor, B., Anderson, D.,Shacham, H., Savage, S.,
Koscher, K., Czeskis, A., Roesner, F., Kohno, T., et al.: Comprehensive experi-
mental analyses of automotive attack surfaces. In: USENIX Security Symposium
(2011)

3. Dr. Ing. h.c. F. Porsche Aktiengesellschaft: Annual report 2004/2005.
http://www.porsche.com/filestore.aspx/default.pdf?pool=uk&type=download&
id=annualreport-200405&lang=none&filetype=default

4. Ebert, C., Jones, C.: Embedded software: facts, figures, and future. Computer 4,
42–52 (2009)

5. Hanselmann, H.: Hardware-in-the loop simulation as a standard approach for devel-
opment, customization, and production test of ECUs. Technical report, SAE Tech-
nical Paper (1993)

http://automotive-security.net/securecan
http://www.porsche.com/filestore.aspx/default.pdf?pool=uk&type=download&id=annualreport-200405&lang=none&filetype=default
http://www.porsche.com/filestore.aspx/default.pdf?pool=uk&type=download&id=annualreport-200405&lang=none&filetype=default

124 S. Nürnberger and C. Rossow

6. AUTOSAR Specifications 4.2 (2016). http://autosar.org
7. ISO. ISO 11898-1:2003 Road Vehicles – Controller Area Network (CAN) – Part

1: Data Link Layer and Physical Signalling. International Organization for Stan-
dardization (ISO), Geneva (1993)

8. ISO. ISO/DIS 15765-2 Road Vehicles – Diagnostic Communication Over Controller
Area Network (DoCAN) – Part 2: Transport Protocol and Network Layer Services.
International Organization for Standardization (ISO), Geneva (2011)

9. ISO. ISO 14230-2:2013 Road Vehicles – Diagnostic Communication Over K-Line
(DoK-Line) – Part 2: Data Link Layer. International Organization for Standard-
ization (ISO), Geneva (2013)

10. Koscher, K., Czeskis, A., Roesner, F., Patel, S., Kohno, T., Checkoway, S., McCoy,
D., Kantor, B., Anderson, D., Shacham, H., et al.: Experimental security analysis of
a modern automobile. In: IEEE Symposium on Security and Privacy, pp. 447–462
(2010)

11. Leens, F.: An introduction to I2C and SPI protocols. IEEE Instrum. Meas. Mag.
12(1), 8–13 (2009)

12. Matsumoto, T., Hata, M., Tanabe, M., Yoshioka, K., Oishi, K.: A method of pre-
venting unauthorized data transmission in controller area network. In: Vehicular
Technology Conference (VTC), pp. 1–5. IEEE (2012)

13. Navet, N., Simonot-Lion, F.: Automotive embedded systems handbook, CRC Press
(2008)

14. Perrig, A., Canetti, R., Song, D., Tygar, J.D.: Efficient and secure source authen-
tication for multicast. Netw. Distrib. Syst. Secur. Symp. (NDSS) 1, 35–46 (2001)

15. Perrig, A., Canetti, R., Tygar, J.D., Song, D.: Efficient authentication and signing
of multicast streams over lossy channels. In: IEEE Symposium on Security and
Privacy, pp. 56–73. IEEE (2000)

16. Van Herrewege, A., Singelee, D., Verbauwhede, I.: CANAuth – a simple, backward
compatible broadcast authentication protocol for CAN bus. In: 2011 ECRYPT
Workshop on Lightweight Cryptography (2011)

17. Wolf, M., Weimerskirch, A., Paar, C.: Security in automotive bus systems. In:
Proceedings of the Workshop on Embedded Security in Cars (ESCAR) (2004)

18. Ziermann, T., Wildermann, S., Teich, J.: CAN+: a new backward-compatible con-
troller area network (CAN) protocol with up to 16× higher data rates. In: 2009
Design, Automation & Test in Europe Conference & Exhibition, DATE 2009, pp.
1088–1093. IEEE (2009)

http://autosar.org

Invasive Attacks

Mitigating SAT Attack on Logic Locking

Yang Xie(B) and Ankur Srivastava

University of Maryland, College Park, USA
{yangxie,ankurs}@umd.edu

Abstract. Logic locking is a technique that has been proposed to pro-
tect outsourced IC designs from piracy and counterfeiting by untrusted
foundries. A locked IC preserves the correct functionality only when a
correct key is provided. Recently, the security of logic locking is threat-
ened by a new attack called SAT attack, which can decipher the correct
key of most logic locking techniques within a few hours [12] even for
a reasonably large number of keys. This attack iteratively solves SAT
formulas which progressively eliminate the incorrect keys till the circuit
unlocked. In this paper, we present a circuit block (referred to as Anti-
SAT block) to thwart the SAT attack. We show that the number of
SAT attack iterations to reveal the correct key in a circuit comprising
an Anti-SAT block is an exponential function of the key-size thereby
making the SAT attack computationally infeasible. Through our experi-
ments, we illustrate the effectiveness of our approach to securing modern
chips fabricated in untrusted foundries.

Keywords: Logic locking · SAT attack · Hardware IP protection

1 Introduction

Outsourced fabrication of integrated circuit (IC) enables IC design companies
to access advanced semiconductor technology at a low cost. Although it is cost-
effective, the outsourced design faces various security threats since the offshore
foundrymightnot be trustworthy.Without closemonitoring anddirect control, the
outsourced designs are vulnerable to various attacks such as Intellectual Property
(IP) piracy [10] and counterfeiting [3]. The malicious foundry can reverse-engineer
a GDSII layout file to obtain its gate-level netlist and claim the ownership of the
hardware IP design, or it can overbuild the IC and sell illegal copies into the mar-
ket. These security threats (also known as supply chain attacks) pose a significant
economic risk to most commercial IC design companies.

Logic locking is a technique that is proposed to thwart the aforementioned
supply chain attacks. The basic idea is to insert additional key-controlled logic
gates (key-gates), key-inputs and an on-chip memory into an IC design to hide
its original functionality, as shown in Fig. 1. The key-inputs are connected to the
on-chip memory and the locked IC preserves the correct functionality only when
a correct key is set to the on-chip memory. To prevent the untrusted foundry
from probing internal signals of a running chip, a tamper-proof chip protection
c© International Association for Cryptologic Research 2016
B. Gierlichs and A.Y. Poschmann (Eds.): CHES 2016, LNCS 9813, pp. 127–146, 2016.
DOI: 10.1007/978-3-662-53140-2 7

128 Y. Xie and A. Srivastava

Fig. 1. Logic locking techniques: (a) Overiew; (b) An original netlist; (c) XOR/XNOR
based logic locking; (d) MUX based logic locking; (e) LUT based logic locking.

shall be implemented. Recent years have seen various logic locking techniques
based on different key-gate types and key-gate insertion algorithms. Accord-
ing to the key-gate types, they can be classified into three major categories:
XOR/XNOR based logic locking [8,9,11], MUX based logic locking [7,9,13]
and Look-Up-Table (LUT) based logic locking [1,5,6], as shown in Fig. 1 (b-e).
Among all, the XOR/XNOR based logic locking has received the most atten-
tion mainly due to its simple structure and low performance overhead. Various
XOR/XNOR based logic locking algorithms have been proposed to identify the
optimal locations for inserting the key-gates, such as fault-analysis based inser-
tion [9] and interference-analysis based insertion [8]. The security objective of
these logic locking techniques is to increase the output corruptibility (i.e., pro-
duce more incorrect outputs for more input patterns) given an incorrect key, and
to prevent effective key-learning attacks.

The security of logic locking is threatened if the correct key values into the
key-gates are accessible to or can be learned within a practical time by the
malicious foundries. To learn the correct key, Subramanyan et al. [12] proposed
a satisfiability checking based attack (SAT attack) algorithm that can effectively
break most logic locking techniques proposed in [1,2,8,9,11] within a few hours
even for a reasonably large number of keys. The insight of SAT attack is to infer
the correct key using a small number of carefully selected input patterns and
their correct outputs observed from an activated functional chip (which can be
obtained from the open market). This set of correct input/output pairs together
ensures that only the correct key will be consistent with these observations.
The process of finding such input/output pairs is iteratively formalized as a
sequence of SAT formulas that can be solved by state-of-the-art SAT solvers. In
each of these iterations, the SAT formulation rules out a bunch of wrong key
combinations till it reaches a point where all the wrong keys have been removed.
The SAT attack is powerful as it guarantees that upon termination it can always
reveal the correct key. This guarantee can’t be achieved by other attacks on logic
locking such as the EPIC attack [7]. Hence in this paper we focus on the SAT
attack on logic locking.

Mitigating SAT Attack on Logic Locking 129

Fig. 2. SAT attack mitigation techniques: (a) Adding an AES circuit to increase the
time for solving a SAT formula [14]; (b) Adding our proposed Anti-SAT circuit block
to increase the number of SAT attack iterations.

Since the SAT attack needs to iteratively solve a set of circuit-based SAT
formulas to reveal the correct key, its efficiency is determined by two aspects:
(a) the execution time for solving a SAT formula in one iteration and (b) the
number of iterations required to reveal the correct key. The first aspect depends
on whether a locked circuit is easily solvable by a SAT solver (i.e., finding a
satisfiable assignment for the SAT formula based on this circuit). Based on this
idea, Yasin et al. [14] proposed adding an AES circuit (with a fixed AES key) to
enhance a locked circuit’s resistance to the SAT attack. The insight underlying
this proposal is shown in Fig. 2(a). A portion of key-inputs is firstly connected
to the AES inputs and the outputs of the AES are the actual key-inputs into
the locked circuit. As the AES circuit is hard to be solved by a SAT solver, the
SAT attack will fail to find a satisfiable assignment for the SAT attack formula
within a practical time limit. Although this approach can effectively increase the
SAT attack execution time, the AES circuit results in a significant performance
overhead since a standard AES circuit implementation requires a large number
of gates [4]. This makes the approach in [14] impractical.

In this paper, we propose a relatively lightweight circuit block (referred to as
Anti-SAT block) that can be embedded into a design to efficiently mitigate the
SAT attack. The basic structure of our Anti-SAT block is shown in Fig. 2(b).
While a portion of keys (key-inputs A) is connected to the original circuit to
obfuscate its functionality, another portion of keys (key-inputs B) is connected
to the Anti-SAT block to thwart the key-learning of SAT attack. The Anti-SAT
block is designed in a way that the total number of SAT attack iterations (and
thus the total execution time) to reveal the correct key in the Anti-SAT block is
an exponential function of the key-size in the Anti-SAT block. Therefore, it can
be integrated into a design to enhance its resistance to the SAT attack. The
contributions of this paper are summarized as follows:

– We propose an Anti-SAT circuit block to mitigate the SAT attack on logic
locking. We illustrate how to construct the functionality of the Anti-SAT block
and use a mathematically rigorous approach to prove that if chosen correctly,
the Anti-SAT block makes SAT attack computationally infeasible (exponential
in key-size).

130 Y. Xie and A. Srivastava

– The Anti-SAT block is integrated into a circuit to increase its resistance to
the SAT attack. To prevent the Anti-SAT block from being identified (and
removed by an attacker) we apply obfuscation techniques to hide the func-
tionality and structure of the Anti-SAT block.

– Rigorous analysis and experiments on 6 circuits from ISCAS85 and MCNC
benchmark suites have been conducted to validate the effectiveness of our
proposed technique against the SAT attack.

2 Background: SAT Attack

2.1 Attack Model

The SAT attack model [12] assumes that the attacker is an untrusted foundry
whose objective is to obtain the correct key of a locked circuit. The malicious
foundry has access to the following two components:

– A locked gate-level netlist, which can be obtained by reverse-engineering a
GDSII layout file. This is available because the fabrication is done by the
untrusted foundry which has the design details. The locked netlist is repre-
sented as Y = fl(X ,K) with primary inputs X , key inputs K and primary
outputs Y . Its SAT formula in conjunctive normal form (CNF) is represented
as C(X ,K ,Y).

– An activated functional chip, which can be obtained from open market. This
IC can be used to evaluate a set of input patterns and observe their correct
output patterns as a black box model Y = eval(X).

2.2 Attack Insight

The key idea of the SAT attack is to reveal the correct key using a small number
of carefully selected inputs and their correct outputs observed from an activated
functional chip. These special input/output pairs are referred to as distinguishing
input/output (I/O) pairs. Each distinguishing I/O pair can identify a subset of
wrong key combinations and all together they guarantee that only the correct
key can be consistent with these correct I/O pairs. This implies that a key
that correctly matches the inputs to the outputs for all the distinguishing I/O
pairs must be the correct key. The crux of the SAT attack is to find this set of
distinguishing I/O pairs by solving a sequence of SAT formulas.

Definition 1: (Wrong key combination). Consider the logic function Y =
fl(X ,K) and its CNF SAT formula C(X ,K ,Y). Let (X ,Y) = (X i,Y i),
where (X i,Y i) is a correct I/O pair. The set of key combinations WKi which
result in an incorrect output of the logic circuit (i.e.,Y i �= fl(X i,K), ∀K ∈
WKi) is called the set of wrong key combinations identified by the I/O pair
(X i,Y i). In terms of SAT formula, it can be represented as C(X i,K ,Y i) =
False, ∀K ∈ WKi.

Mitigating SAT Attack on Logic Locking 131

Definition 2: (Distinguishing input/output pair). As noted above, the
SAT attack shall solve a set of SAT formulas iteratively. In each iteration, it
shall find a correct I/O pair to identify a subset of wrong key combinations until
none of these are left. An I/O pair at i-th iteration is a distinguishing I/O pair
(X d

i ,Y
d
i), if it can identify a “unique” subset of wrong key combinations that

cannot be identified by the previous i − 1 distinguishing I/O pairs, i.e., WKi �⊂
(∪j=i−1

j=1 WKj), where WKi is the set of wrong key combinations identified by
the distinguishing I/O pair at i-th iteration.

The crux of the SAT attack algorithm relies on finding the distinguishing
I/O pairs iteratively to identify unique wrong key combinations (see Definition 2)
until no further ones can be found. At this point, the set of all distinguishing I/O
pairs together identifies all wrong key combinations thereby unlocking the circuit.
Then, the correct key is the one that satisfies the following SAT formula G:

G :=
λ∧

i=1

C(X d
i ,K ,Y d

i) (1)

where (X d
i ,Y

d
i) is the distinguishing I/O pair from i-th iteration and λ is the

total number of iterations. Basically it finds a key K which satisfies the correct
functionality for all the identified distinguishing I/O pairs. This must be the
correct key since no other distinguishing I/O pairs exist (see Definition 2).

Take the XOR/XNOR based locked circuit in Fig. 1(c) as an example. At first
iteration, the I/O pair (X d

1,Y
d
1) = (00, 10) is a distinguishing I/O pair because

it can rule out wrong key combinations K = (01), (10), and (11) as these
key combinations will result in incorrect outputs (y1y2) = (11), (00) and (01),
respectively. Since this single I/O observation has already ruled out all incorrect
key combinations, we have revealed the correct key K = (00). In general, a small
number of correct I/O pairs (compared to all possible I/O pairs) are usually
enough to infer the correct key [12]. As a result, the SAT attack is efficient
because it only requires a small number of iterations to find these distinguishing
I/O pairs.

2.3 Attack Algorithm

As noted above, the central theme of SAT attack algorithm is to iteratively find
distinguishing I/O pairs till no new ones can be found. To find such distinguishing
I/O pairs, the SAT attack algorithm iteratively formulates a SAT formula that
can be solved by SAT solvers. The SAT formula Fi at i-th iteration is:

Fi :=C(X ,K 1,Y 1) ∧ C(X ,K 2,Y 2) ∧ (Y 1 �= Y 2)

(
j=i−1∧

j=1

C(X d
j ,K 1,Y

d
j)) ∧ (

j=i−1∧

j=1

C(X d
j ,K 2,Y

d
j))

(2)

where C(X ,K ,Y) is the SAT formula (CNF form) for a locked circuit and
(X d

{1...i−1},Y
d
{1...i−1}) are the distinguishing I/O pairs that are found in pre-

vious i − 1 iterations. If satisfiable, an assignment for variables X , K 1, K 2,

132 Y. Xie and A. Srivastava

Algorithm 1. SAT Attack Algorithm [12]
Input: C and eval
Output: KC

1: i := 1;
2: Gi := True;
3: Fi := C(X ,K 1,Y 1) ∧ C(X ,K 2,Y 2) ∧ (Y 1 �= Y 2);
4: while sat[Fi] do
5: X d

i := sat assignmentX [Fi];
6: Y d

i := eval(X d
i);

7: Gi+1 := Gi ∧ C(X d
i ,K ,Y d

i);
8: Fi+1 := Fi ∧ C(X d

i ,K 1,Y
d
i) ∧ C(X d

i ,K 2,Y
d
i);

9: i := i + 1;
10: end while
11: KC := sat assignmentK (Gi);

Y 1, Y 2 will be generated. The first line in the formula (2) evaluates the circuit
functionality for a specific X = X d

i at two different key values K 1 and K 2 such
that the outputs are different (see Y 1 �= Y 2). This guarantees that the input
X = X d

i is capable of identifying two keys K 1, K 2 which produce different
outputs. Hence at least one of the two keys must be wrong. This in itself is
not enough to call X = X d

i as a distinguishing input because previous itera-
tion may have found another input assignment that could have differentiated
between K 1 and K 2. According to Definition 2, a distinguishing input in the
i-th iteration must find “unique” wrong key combinations that have not been
identified by previous i − 1 distinguishing I/O pairs. This condition is checked
by the SAT clauses in the second line. In the second line X d

j is the distinguish-
ing input identified in the previous j-th iteration and Y d

j is the corresponding
correct output. This correct output is know from the activated functional chip
obtained from the open market. The clauses in the second line guarantee that
the keys K 1 and K 2 which result in “different”outputs in line 1 of this formula
produce the “correct” outputs for all previous distinguishing I/O pairs. Hence
in this iteration we could identify at least one incorrect key combination which
previous iterations could not. Therefore by Definition 2 the input X d

i (obtained
from the SAT solver) and the corresponding “correct” output Y d

i = eval(X d
i)

(obtained from the activated chip) represent the i-th distinguishing I/O pair.
The SAT attack algorithm is shown in Algorithm1. Basically it starts by

first solving the line one of the formula (2) and as iterations progress it adds
the clauses comprised in line two of the formula (2). It stops when the resulting
SAT formula is unsatisfiable indicating no further distinguishing I/O pairs exist.
The correct key is obtained by finding a key value which satisfies the correct
I/O behavior of all the distinguishing I/O pairs. This algorithm is guaranteed
to find the correct key. Please refer to [12] for any further theoretical details.

Mitigating SAT Attack on Logic Locking 133

3 Efficiency Analysis of SAT Attack

The efficiency of SAT attack can be evaluated by the total execution time:

T =
λ∑

i=1

ti (3)

where λ is the total number of SAT attack iterations and ti is the SAT solving
time for i-th iteration. Consequently, the SAT attack can be mitigated if ti is
large and/or λ is large.

The SAT solving time ti is dependent on benchmark characteristics as well
as the efficiency of the SAT solver used. To increase ti, Yasin et al. [14] proposed
to add an AES circuit to protect the locked circuit, as shown in Fig. 2(a). As the
AES circuit is hard to be solved by a SAT solver, the SAT attack will fail to find
a satisfiable assignment for the SAT attack formula. Although this approach is
effective, the AES circuit leads to a large performance overhead since a standard
AES circuit implementation requires a large number of gates [4].

Increasing the number of iterations λ is another approach to mitigate the
SAT attack. λ depends on the key-size and key location in the locked circuit.
However, simply increasing the key-size or trying different key locations may
not effectively thwart the SAT attack. As shown in the SAT attack results [12],
even with large number of keys (50 % area overhead), for six previously proposed
key-gate insertion algorithms [1,2,8,9,11], 86 % benchmarks on average can still
be unlocked in 10 h.

4 Anti-SAT Block Design

To mitigate the SAT attack, we propose to insert a relatively light-weight circuit
block (referred to as Anti-SAT block) that can efficiently increase the number
of iterations λ so as to increase the total execution time T . Figs. 3(a) and 3(b)
illustrate two configurations of the proposed Anti-SAT block. They consist of two
logic blocks B1 = gl1(X ,K l1) and B2 = gl2(X ,K l2). These two logic blocks
share the same set of inputs X and their original functionalities (before locking)
g and g are complementary, but are locked with different keys (K l1 and K l2) at
different locations (l1 and l2). The one-bit output Y is the AND (for Fig. 3(a))
or OR (for Fig. 3(b)) operation of two logic blocks.

Constant-output Property : one basic property of Anti-SAT block is that when
the key vector is correctly set, the output Y is a constant (e.g. always equals to 0
for Fig. 3(a) or 1 for Fig. 3(b)). Otherwise, Y can output either 1 or 0 depending
on the inputs. This property enables it to be integrated into the original circuit.
As shown in Fig. 3(c), the inputs of Anti-SAT block X are from the wires in
the original circuit. The output Y is connected into the original circuit using an
XOR gate (or a XNOR gate + inverter). When a correct key is provided, the
output Y always equals to 0 (XOR gate behaves as a buffer) and thus will not
affect the functionality of the original circuit. If a wrong key is provided, Y can

134 Y. Xie and A. Srivastava

Fig. 3. Anti-SAT block configuration: (a) An Anti-SAT block that always outputs 0
if key values are correct; (b) An Anti-SAT block that always outputs 1 if key values
are correct. (c) Integrating the Anti-SAT block into a circuit.

be 1 for some inputs (XOR gate behaves as an inverter) and thus can produce
a fault in the original circuit.

In the subsequent sections, we provide details on constructing the Anti-SAT
block (i.e., the functionality of g) and its impact on SAT attack complexity. We
provide a rigorous mathematical analysis which give a provable lower bound to
the number of SAT attack iterations. For some constructions of g, this lower
bound is exponential in the number of keys thereby making the SAT-attack
complexity very high. In the remaining of this paper, we take Fig. 3(a) as the
configuration in our analysis and experiments (without loss of generality).

4.1 Construction of Anti-SAT Block

Now we describe how the Anti-SAT block can be constructed. Note that this
construction may not be unique and other constructions may also be feasible.
Consider the circuit illustrated in Fig. 4(a). Here a set of key-gates (XORs) are
inserted at the inputs of two logic blocks, so B1 = g(X ⊕ K l1) and B2 =
g(X ⊕ K l2), where |K l1| = |K l2| =n. Hence the key-size is 2n. The outputs B1

and B2 are fed into an AND gate and produce an output Y . As a result, we have
Y = g(X ⊕ K l1) ∧ g(X ⊕ K l2).

Note that here we are using only XOR gates as key-gates for the sake of ease
of explanation. The key-gates used in Fig. 4(a) could be either XOR or XNOR
gates based on a user-defined key. Similar to conventional XOR/XNOR base
logic locking [9], if a correct key-bit is 0, the key-gate can be XOR or XNOR +
inverter. If the key-bit is 1, the key-gate can be XNOR or XOR + inverter. The
usage of inverters can remove the association between key-gate types and key-
values (e.g. the correct key into an XOR gate can now be either 0 or 1). Moreover,
as discussed in [9], the synthesis tools can “bubble push” the inverters to their
fan-out gates and an attacker cannot easily identify which inverters are part of
the key-gates. Besides, the XOR/XNOR gates can be synthesized using other
gate types. Combined with obfuscation techqniues which will be discussed in
Sect. 4.4, the attacker cannot obtain the correct key-values based on the types
of gates connected to the key-inputs.

Mitigating SAT Attack on Logic Locking 135

Fig. 4. Anti-SAT block construction: (a) basic Anti-SAT block construction and (b)
one possible construction to ensure large number of SAT attack iterations.

Since the Anti-SAT block has 2n keys, the total number of wrong key com-
binations is 22n − c, assuming there exists c correct key combinations. Because
correct key input (for Fig. 4(a)) happens when i-th key from K l1 and i-th key
from K l2 have the same value, the number of correct key combinations c = 2n.

4.2 SAT Attack Complexity Analysis

Here we analyze the complexity of a SAT attack on the Anti-SAT block con-
struction of Fig. 4(a) (assuming this is the circuit being attacked to decode the
2n key bits).

Terminology. Given a Boolean function g(L) with n inputs, assuming there
exists p input vectors that make g equal to one (denote p as output-one count,
1 ≤ p ≤ 2n −1), we can classify the input vectors L into two groups LT and LF ,
where one group makes g = 1 and another makes g = 0:

LT = {L|g(L) = 1}, (|LT | = p)

LF = {L|g(L) = 0}, (|LF | = 2n − p)
(4)

The function g and its complementary function g are used to construct the
Anti-SAT block as shown in Fig. 4(a).

Theorem 1: Assuming the output-one count p of function g is sufficiently close
to 1 or sufficiently close to 2n − 1, the number of iterations needed by the SAT
attack (see λ in Eq. 3) to decipher the correct key is lower bounded by 2n.

Proof: As described in Sect. 2, the SAT attack algorithm will iteratively find
a distinguishing I/O pair (X d

i , Y d
i) to identify wrong key combinations in the

Anti-SAT block until all wrong key combinations are identified. In the i-th iter-
ation, the corresponding distinguishing I/O pair can identify a subset of wrong
key combinations, denoted as WKi. Notice that for any input combinations
(including the distinguishing inputs X d

i), the correct output (when provided the
correct key) is 0. Therefore, a wrong key combination K = (K l1,K l2) ∈ WKi

which was identified by (X d
i , Y d

i) must produce the Anti-SAT block output as 1.
This condition is described below.

136 Y. Xie and A. Srivastava

Y d
i = g(X d

i ⊕ K l1) ∧ g(X d
i ⊕ K l2) = 1.

⇔ (g(X d
i ⊕ K l1) = 1) ∧ (g(X d

i ⊕ K l2) = 0)

⇔ ((X d
i ⊕ K l1) ∈ LT) ∧ ((X d

i ⊕ K l2) ∈ LF)

(5)

Basically Eq. (5) states that the wrong key identified in the i-th iteration
must be such that its corresponding output Y should be 1. This implies that
both g and g must evaluate to 1. This means that the input to g, which is
X d

i ⊕ K l1, should be in LT and the input to g, which is X d
i ⊕ K l2, should be

in LF .
Since X d

i ⊕ K l1 is the input vector to g, for any given X d
i , we can always

find a key K l1 such that X d
i ⊕K l1 ∈ LT . Basically X d

i ⊕K l1 flips some of the
bits of X d

i (for which corresponding K l1 bits are 1) while keeping other bits the
same (for which corresponding K l1 bits are 0). Hence for a given X d

i , we can
always choose K l1 such that the resulting input to g is in LT . However note
that |LT | = p in (4). Hence for any given X d

i , we can select K l1 in p different
ways such that X d

i ⊕ K l1 ∈ LT .
Similarly, for any given X d

i , we can always find a key K l2 such that X d
i ⊕

K l2 ∈ LF . Note that |LF | = 2n −p in (4). Hence for any given X d
i , we can select

K l2 in 2n − p different ways such that X d
i ⊕ K l2 ∈ LF .

Now, as noted above, for a given X d
i , a wrong key K = (K l1,K l2) should

be such that X d
i ⊕K l1 ∈ LT and X d

i ⊕K l2 ∈ LF . The total number of ways in
which we can select a wrong key K = (K l1,K l2) are p · (2n − p).

Now in any given iteration i, for a given Xd
i , the maximum number of incor-

rect keys identified is p · (2n − p). This follows naturally from the discussion
above. The reason this is the maximum number because it is very much possible
that some of these keys were identified in previous iterations. Hence the total
number of “unique” incorrect keys UKi identified in iteration i is bounded by
p · (2n − p). This is noted in the equation below.

p · (2n − p) ≥ UKi (6)

where UKi is the number of unique incorrect keys identified at iteration i. The
SAT attack works by iteratively removing all incorrect keys till only the correct
ones are left (assuming after λ iterations). Hence the following holds true.

λ(p · (2n − p)) ≥
λ∑

i=1

UKi (7)

Since
∑λ

i=1 UKi is the total number of incorrect key combinations, its value
must be = 22n − c. The equation above can be rewritten as follows.

λ ≥ λl =
22n − c

p(2n − p)
(8)

Mitigating SAT Attack on Logic Locking 137

Here λl is the lower bound on λ. As noted in Fig. 4(a) the correct key happens
when the i-th bit from K1 and i-th bit from K2 have the same value. Hence
c = 2n. When p → 1 or p → 2n − 1, we have the lower bound as follows:

λl =
22n − 2n

p(2n − p)
→ 22n − 2n

1 × (2n − 1)
= 2n (9)

Hence Proved. Therefore, if we choose a g function such that p is either very
low or very high then the SAT attack would at least require an exponential
number of iterations in n. One possible choice of g is indicated in Fig. 4(b) where
g is chosen to be a simple AND gate. For AND gates p = 1 which clearly results
in exponential complexity of SAT attack. Experimental results to indicate that
shall be indicated subsequently. Moreover, we can see that the lower bound λl

is tight when p = 1 or p = 2n − 1. This is because that for a n-input Anti-SAT
block, the total number of input combinations is 2n so the number of iterations
to find distinguishing inputs is upper-bounded λ ≤ 2n. This combined with the
Eq. (9) shows that the lower bound is tight when p = 1 or p = 2n − 1.

4.3 Anti-SAT Block Location

When the Anti-SAT block is integrated into a circuit, a set of wires in the original
circuit are connected to the inputs X of the Anti-SAT block and the output Y
of the Anti-SAT block is integrated to a wire in the original circuit (as shown
in Fig. 3(c)). If X are connected to wires that are highly correlated (e.g. two
nets with identical logic), then the overall security of the block shall be reduced
because less possible input combinations can occur at the input of the Anti-SAT
block. The location for Y is also important. An incorrect key causes Y = 1 for
some inputs. This incorrect output must impact the overall functionality of the
original circuit. Otherwise the logic will continue to function correctly despite
wrong key inputs. In conclusion, the best location of the Anti-SAT block is
such the inputs X are highly independent and Y has high observability at the
POs (i.e., change in Y can be observed by the POs of the original circuit). The
impact of Anti-SAT block location on the overall security shall be evaluated in
the experiments.

4.4 Anti-SAT Block Obfuscation

Since the Anti-SAT block is independent of the locked circuit, it may be removed
or nullified by an attacker if it is identified, thereby leaving only the locked
circuit. Then, the SAT attack can be launched to unlock the circuit without the
Anti-SAT block. Note that a similar criticism is possible for the AES based logic
locking approach [14] which is very strong in presence of SAT attack but might
be easily circumvented by an attacked due to its large footprint. To prevent
such an identification and nullification, we apply both functional and structural
obfuscation techniques to obfuscate the Anti-SAT block such that it can be
covertly embedded in the original design.

138 Y. Xie and A. Srivastava

Functional Obfuscation. In the Anti-SAT block, the logic blocks g and g
have complementary functionality. An attacker can simulate the circuit and find
potential complementary pairs of signals leading to potential identification of
the Anti-SAT block. To prevent such attacks, we propose to insert additional
key-gates at internal wires of two logic blocks (and the internal wires of 2n
XOR/XNORs at the inputs since they can be synthesized using other gates) to
obfuscate their functionalities. With an incorrect key, the functionalities of these
two logic blocks are different and an attacker will fail to find the complementary
pairs of signals through simulation. Besides, the logic blocks g and g and the
key-gates can be synthesized using different logic gates to reduce their similarity.

Structural Obfuscation. Besides functional obfuscation, we need to obfus-
cate the structure of the Anti-SAT block to prevent any structure-based attacks
which are independent of functionality. In the Anti-SAT block, the internal wires
in g and g do not have connections with the locked circuit. This makes the Anti-
SAT block a relatively isolated and separable structure. When the size of the
Anti-SAT block is roughly known, it’s possible for an attacker to utilize a par-
titioning algorithm to partition the whole circuit into two parts while ensuring
that small partition has about the same size as the Anti-SAT block. If a large
portion of gates of the Anti-SAT block is moved to the small partition, then the
attacker will have less difficulty to identify the Anti-SAT block. In order to pre-
vent such attacks, we utilize the MUX-based logic locking (as shown in Fig. 1(d))
to increase the inter-connectivity between the locked circuit and the Anti-SAT
block. A set of two-input MUX gates is utilized to connect these two parts. One
input of the MUX is from a random wire w1 of the locked circuit and the other
input is from a random wire w2 of the Anti-SAT block. The output of MUX
replace the original signal (either w1 or w2) and is connected to the fan-outs
of either w1 or w2. The selection bit of MUX is the key-input. After inserting
the MUXes, the whole circuit is re-synthesized so as to obscure the boundary
between two parts. With more MUXes inserted, the interconnections between
the Anti-SAT block and the locked circuit will be increased and it’s difficult for
an attacker to partition and isolate the Anti-SAT block from the locked circuit,
which will be validated in Sect. 5.3.

Combined with Conventional Logic Locking Techniques. As noted
before, conventional logic locking techniques as indicated in Fig. 1 try to avoid
an unauthorized user who does not have a key from accessing the chip’s func-
tionality. They attempt to insert key gates in a way to force the chip to deviate
substantially from the actual functionality whenever a wrong key is provided.
These techniques are not immune to SAT attack (as noted in [12] and also
indicated in our simulations). While our Anti-SAT block can provide provable
measures to increasing the SAT attack complexity, they may not necessarily
cause substantial deviation in the chip functionality for incorrect keys. Hence
an unauthorized end user may still be able to use the chip correctly for “many”
inputs (but not all). Therefore, conventional logic locking techniques need to be

Mitigating SAT Attack on Logic Locking 139

Table 1. Impact of output-one count p on the security level of the n = 16-bit baseline
Anti-SAT block. Timeout is 10 h.

p 1 81 243 2187 30375 63349 65293 65455 65535

Iteration - 10675 4760 901 273 898 4647 - -

Time (s) timeout 16555.8 8746.12 174.743 3.24 307.104 12932.3 timeout timeout

Table 2. Impact input-size n on the security level of the baseline Anti-SAT block
(output-one count p = 1). Timeout is 10 h.

n 8 10 12 14 16

Iteration 255 1023 4095 16383 -

Time (s) 1.14569 20.024 324.727 4498.03 timeout

combined with our Anti-SAT block designs for achieving foolproof logic locking.
Moreover, the key-gates inserted at the original circuit can make the Anti-SAT
block less distinguishable with the original circuit. Without these key-gates in
the original circuit, an attacker has less difficulty to locate the Anti-SAT block
by inspecting the only key-inputs into the Anti-SAT block.

5 Experiments and Results

In this section, we evaluate the security level of our proposed Anti-SAT blocks.
The security level is evaluated by the number of SAT attack iterations as well as
the execution time to infer the correct key. The SAT attack tools and benchmarks
used are from [12]. The CPU time limit is set to 10 h as [12]. The experiments
are running on an Intel Core i5-2400 CPU with 16 GB RAM.

5.1 Anti-SAT Block Design

We firstly evaluate the security level of the Anti-SAT block with respect to
different design parameters: (a) the input-size n and output-one count p of func-
tion g and (b) the Anti-SAT block location. The n-bit baseline Anti-SAT
(BA) block is constructed using a n-input AND gate and a n-input NAND
gate (output-one count p = 1) as g and g to ensure large number of iterations.
However notice that this is not the only possible choice for g and g. As we
have shown in Sect. 4.2, other function g that has sufficiently large n and suf-
ficiently small (or large) p can also guarantee large number of iterations. The
key-gates (XOR/XNOR) are inserted at the inputs of g and g with key-size
|K l1| = |K l2| = n. Obfuscation techniques proposed in Sect. 4.4 are not applied
here but they will be evaluated in the Sect. 5.3 when the Anti-SAT block is
integrated into a circuit.

140 Y. Xie and A. Srivastava

Table 3. Impact of Anti-SAT block location on security level of the baseline n-bit
Anti-SAT blocks (n = 8, 12, 16) inserted at c1355 circuit. Timeout is 10 h. The random
case is averaged over 5 trials.

|K l1| = |K l2| = n 8 12 16

Random Avg. # Iteration 151 1748 11461

Avg. Time (s) 1.4296 162.529 10272.4

Secure # Iteration 255 4095 -

Time (s) 3.452 759.924 timeout

Input-size n and output-one count p. As shown in Eq. (8), the lower bound
of SAT attack iterations λl to unlock the Anti-SAT block is related to the input-
size n and output-one count p of function g.

If n is fixed, λl is maximized when p → 1 or p → 2n − 1. To evaluate the
impact of p, we replace some 2-input AND gates with 2-input OR gates in a
n = 16-bit baseline Anti-SAT block to gradually increase p. Table 1 illustrates
the impact of p on the security level of the 16-bit Anti-SAT block. For p = 1
and p = 216 −1 = 65535, the SAT attack algorithm fails to unlock the Anti-SAT
block in 10 h. This is because that it requires a large number of iterations (≈ 216)
to rule out all the incorrect key combinations. As p → 216/2 (the worst case),
the SAT attack begins to succeed using less and less iterations and execution
time. This result validates that when p is very small or very large for a fixed n,
the iterations λ will be large and the SAT attack will fail within a practical time
limit.

Moreover, as described in Sect. 4.2, λl is an exponential function of n when
p is very low (p → 1) or very high (p → 2n − 1). Table 2 shows the exponen-
tial relationship between λ and n when p = 1 for five baseline Anti-SAT block
(n = 8, 10, 12, 14, 16). It can be seen that as n increases, the simulated SAT iter-
ations and execution time grows exponentially. Besides, the number of iterations
validates that the lower bound λl is tight when p = 1, as discussed in Sect. 4.2.

Anti-SAT Block Location. As noted in Sect. 4.3, the Anti-SAT block location
may impact the its security in terms of SAT attack iterations and execution
time. We compare two approaches of integrating the Anti-SAT block with the
original circuit, namely secure integration and random integration. For the secure
integration, n inputs of the Anti-SAT block X are connected to n PIs of the
original circuit. The output Y is connected to a wire which is randomly selected
from wires that have the top 30 % observability. The randomness of the location
of Y can assist in hiding the output of the Anti-SAT block. For the random
integration, the inputs X are connected to random wires of the original circuit,
and the output Y is connected to a random wire. For both cases, the wire
for Y has a latter topological order than that of the wires for X to prevent
combinational loop. Table 3 compares two integration approaches when three
baseline Anti-SAT block of different sizes (n = 8, 12, 16) are integrated into the

Mitigating SAT Attack on Logic Locking 141

c1355 circuit from ISCAS85. It can be seen that for three Anti-SAT blocks,
secure integration is more secure than random integration as the former requires
more iterations (∼ 2×) and execution time (∼ 3×) for the SAT attack algorithm
to reveal the key. Therefore, in the following experiments, we adopt the secure
integration as the way to integrate the Anti-SAT block into a circuit.

5.2 Anti-SAT Block Application

We evaluate the security level of the Anti-SAT block when it’s applied to 6 cir-
cuits of different sizes from ISCAS85 and MCNC benchmark suites. The bench-
mark information is shown in Table 4. We compare three logic locking configu-
rations as follows:

– TOC13: The original circuit is locked using TOC13 logic locking algorithm [9]
which inserts XOR/XNOR gates into the circuit to obfuscate its functionality.
Figure 5 shows that TOC13 is effective in increasing the output corruptibility
(in terms of the Hamming distance (HD) between the output of an original
circuit and a locked circuit given a random key). Also, it can be seen that 5 %
overhead (ratio between # key-gates and # original gates) is roughly enough
to approach 50 % HD for all benchmarks.

– TOC13(5%) + n-bit BA: In this configuration, the original circuit is locked
with TOC13 with 5 % overhead. Besides, we integrate a n-bit baseline Anti-
SAT (BA) block into the locked circuit using the secure integration, i.e., the n
inputs of the Anti-SAT block are connected to n PIs of the original circuit, and
the output of the Anti-SAT block is connected to a wire in the original circuit
which is randomly selected from the wires that have the top 30 % observability.
For a n-bit BA, its key-size is kBA = 2n because 2n keys are inserted at the
inputs of g and g.

– TOC13(5%) + n-bit OA: In this configuration, the obfuscation techniques
proposed in Sect. 4.4 are applied to make the baseline Anti-SAT block less dis-
tinguishable from the locked circuit. In our experiment, we insert n MUXes to
increase the inter-connectivity between a n-bit baseline Anti-SAT block and
the locked circuit. Besides, we insert additional n XOR/XNOR gates at ran-
dom internal wires of the logic blocks g and g to obfuscate their functionality
to prevent the detection of complementary pairs of signals. Thus, the keys in
a n-bit obfuscated Anti-SAT (OA) block is kOA = 4n.

We compare the security level of three configurations when the same number
of keys are used in each configuration. We investigate the sensitivity of SAT
attack complexity on the increase of key-size. For TOC13, the increased keys are
inserted to the original circuit. For TOC13 (5 %) + n-bit BA/OA, the increased
keys are used in the Anti-SAT block and increasing the key-size also indicates
increasing the Anti-block size (in terms of input-size n) because we construct the
BA and OA with kBA = 2n and kOA = 4n, respectively. In this experiment, we
integrate the baseline Anti-SAT blocks of input-size nBA = 8, 10, 12, 14, 16, 18, 20

142 Y. Xie and A. Srivastava

Table 4. Benchmark information of 6 circuits
from ISCAS85 and MCNC benchmark suites and
the key-sizes of three logic locking configurations.

Circuit #PI #PO #Gates Key-size

TOC13 n-bit n-bit

(5%) BA OA

c1355 41 32 546 29 2n 4n

c1908 33 25 880 46

c3540 50 22 1669 86

dalu 75 16 2298 119

des 256 245 6473 336

i8 133 81 2464 130

Fig. 5. HD v.s. key-gate ratio for
TOC13 logic locking.

Fig. 6. SAT attack results on 6 benchmarks with three logic locking configurations:
TOC13 only, TOC13(5%) + BA, and TOC13(5%) + OA. Timeout is 10 h (3.6 × 104

s). The dashed line in the top figure (execution time) is the curve fitting result when
the SAT attack has time-outed after certain key-size.

and the obfuscated Anti-SAT blocks of input-size nOA = 4, 5, 6, 7, 8, 9, 10.
The input-size of BA is twice the size of OA (nBA = 2nOA) when their key-
sizes are the same kBA = kOA.

Mitigating SAT Attack on Logic Locking 143

Table 5. Percentage of a 14-bit obfuscated Anti-SAT block isolated to a small partition
when a min-cut partitioning algorithm is utilized. Area estimation error is percentage
error of an attacker’s estimation about the size of the Anti-SAT block.

Circuits Area estimation error

0% 5% 15% 25%

NO MUX With MUX No MUX With MUX No MUX With MUX No MUX With MUX

c1355 99.07% 0.00% 99.07% 0.93% 40.74% 0.93% 0.00% 0.00%

c1908 99.07% 0.93% 99.07% 0.00% 0.00% 0.93% 0.00% 0.00%

c3540 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

dalu 99.07% 0.00% 99.07% 0.00% 99.07% 0.00% 0.00% 0.00%

des 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

i8 100.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Average 66.20% 0.16% 66.20% 0.15% 23.30% 0.31% 0.00% 0.00%

The SAT attack result on three configurations w.r.t increasing key-size are
shown in Fig. 6. For each benchmark, the top figure shows the SAT attack exe-
cution time and the bottom figure shows the number of SAT attack iterations,
both in log scale. It can be seen that for TOC13, increasing the key-size can-
not effectively increase SAT attack complexity. For all benchmarks locked with
TOC13, they can be easily unlocked using at most 48 iterations and 8.48 s. On
the other hand, when the Anti-SAT blocks are integrated, the SAT attack com-
plexity increases exponentially with the key-size in the Anti-SAT block. This
holds for both the baseline Anti-SAT block and the obfuscated Anti-SAT block.
Also the results show that with the same key-size, the grow rate of n-bit OA is
slower than n-bit BA. This is because that for OA, a portion of keys are utilized
to obfuscate the design and the resulting OA is half the size as the BA (in terms
of n) as described earlier. Finally, we can see that for all benchmarks, the SAT
attack fails to unlock the circuits within 10 h when a 14-bit BA (kBA = 28) is
inserted or when a 10-bit OA (kOA = 40) is inserted.

5.3 Anti-SAT Obfuscation

In Sect. 4.4, we claim that the Anti-SAT block has a separable structure because
it has few interconnections with the locked circuit. When the size of the Anti-
SAT block is roughly known, it’s possible for an attacker to utilize a min-cut
partitioning algorithm to partition the whole circuit into two parts while ensur-
ing that small partition has about the same size as the Anti-SAT block. If a
large portion of gates of the Anti-SAT block is moved to the small partition, an
attacker will have less difficulty to identify the Anti-SAT block. In order to pre-
vent the Anti-SAT block from being identified, we propose to use MUX-based
logic locking to increase the inter-connectivity between the locked circuit and
the Anti-SAT block. Table 5 shows the percentage of gates of a n = 14-bit OA
(with or without MUXes) that are isolated to the small partition after min-cut
partitioning. The reason for using a 14-bit OA is because that it can achieve a
sufficiently large SAT attack time (according to the fitting result in Fig. 7 which
will be discussed later). Because the Anti-SAT block can be synthesized with

144 Y. Xie and A. Srivastava

different types of gates, it’s difficult for an attacker to obtain the exact size
of the Anti-SAT block. Therefore, we perform the partitioning algorithm while
assuming a certain area estimation error for the Anti-SAT block and analyze its
impact on the attack results.

As shown in Table 5, when the area estimation error is 0 % and no MUXes
are inserted, the Anti-SAT block in 4 circuits (c1355, c1908, dalu, and i8) can
be isolated. In these circuits, the percentages of gates of the Anti-SAT block iso-
lated by the partitioning algorithm are almost 100 %. However, with the increase
of area estimation error, the partitioning fails to isolate the Anti-SAT block.
Besides, when n = 14 MUXes are inserted to increase the inter-connectivity
between the Anti-SAT block and the locked circuit, the percentages of isolated
Anti-SAT block are almost 0 % for four assumptions of area estimation error.
This is because that the number of interconnections between the Anti-SAT block
and the locked circuit is increased and partitioning them will result in a large
cut-size, so the partitioning algorithm will avoid to separate the Anti-SAT block.

5.4 Performance Overhead of the Anti-SAT Block

In our construction, a n-bit obfuscated Anti-SAT block consists of logic blocks
g and g, a 2-input AND gate, 3n + 1 XOR/XNOR gates and n 2-input MUX
gates. These extra logic gates will introduce performance overhead such as area,
power and delay. Different implementation of g and g will result in different
overhead. The performance overhead will be increased when sub-optimal syn-
thesis is utilized to obfuscate the Anti-SAT block. In our experiments, we utilize
a n-bit AND gate and a n-bit NAND gate to implement the function g and g.
The estimated SAT attack complexity and area overhead of inserting a n-bit OA
into the des circuit are shown in Fig. 7. The overhead is evaluated in terms of
the ratio between the total size of extra gates and the total size of original gates.
It can be seen that a slight increase in area overhead can result in exponential
increase in SAT attack’s computation complexity. It’s also important to notice
that the design of the Anti-SAT block does not scale with the benchmark size; it
only scales with the attacker’s computation power. Compared to the technique

Fig. 7. SAT attack execution time (in log scale) and area overhead for the des circuit
integrated with n-bit obfuscated Anti-SAT. The original circuit is locked with TOC13
(5 % overhead). The blue dashed line is the fitting curve for CPU time.

Mitigating SAT Attack on Logic Locking 145

proposed in [14] which inserts an AES circuit to defend the SAT attack, our
proposed technique has much less overhead.

6 Conclusion

In this paper, we present a circuit block called Anti-SAT to mitigate the SAT
attack on logic locking. We show that the iterations required by the SAT attack
to reveal the correct key in the Anti-SAT block is an exponential function of the
key-size in the Anti-SAT block. The Anti-SAT block is integrated to a locked
circuit to increase its resistance against SAT attack. Compared to adding a large
hard-SAT circuit (e.g.AES), our proposed Anti-SAT block has a much smaller
overhead, which makes it a cost-effective technique to mitigate the SAT attack.

Acknowledgments. This work was supported by NSF under Grant No. 1223233 and
AFOSR under Grant FA9550-14-1-0351.

References

1. Baumgarten, A., Tyagi, A., Zambreno, J.: Preventing IC piracy using reconfig-
urable logic barriers. IEEE Des. Test Comput. 27(1), 66–75 (2010)

2. Dupuis, S., Ba, P.S., Di Natale, G., Flottes, M.L., Rouzeyre, B.: A novel hardware
logic encryption technique for thwarting illegal overproduction and hardware tro-
jans. In: 2014 IEEE 20th International On-Line Testing Symposium (IOLTS), pp.
49–54. IEEE (2014)

3. Guin, U., Huang, K., DiMase, D., Carulli, J.M., Tehranipoor, M., Makris, Y.:
Counterfeit integrated circuits: a rising threat in the global semiconductor supply
chain. Proc. IEEE 102(8), 1207–1228 (2014)

4. HelionTechnology: High performance AES (Rijndael) cores for ASIC (2015).
http://www.heliontech.com/downloads/aes asic helioncore.pdf

5. Khaleghi, S., Da Zhao, K., Rao, W.: IC piracy prevention via design withhold-
ing and entanglement. In: 2015 20th Asia and South Pacific Design Automation
Conference (ASP-DAC), pp. 821–826. IEEE (2015)

6. Liu, B., Wang, B.: Embedded reconfigurable logic for ASIC design obfuscation
against supply chain attacks. In: Proceedings of the Conference on Design, Automa-
tion and Test in Europe, p. 243. European Design and Automation Association
(2014)

7. Plaza, S.M., Markov, I.L.: Solving the third-shift problem in IC piracy with test-
aware logic locking. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 34(6),
961–971 (2015)

8. Rajendran, J., Pino, Y., Sinanoglu, O., Karri, R.: Security analysis of logic obfus-
cation. In: Proceedings of the 49th Annual Design Automation Conference, pp.
83–89. ACM (2012)

9. Rajendran, J., Zhang, H., Zhang, C., Rose, G.S., Pino, Y., Sinanoglu, O., Karri,
R.: Fault analysis-based logic encryption. IEEE Trans. Comput. 64(2), 410–424
(2015)

10. Rostami, M., Koushanfar, F., Karri, R.: A primer on hardware security: models,
methods, and metrics. Proc. IEEE 102(8), 1283–1295 (2014)

http://www.heliontech.com/downloads/aes_asic_helioncore.pdf

146 Y. Xie and A. Srivastava

11. Roy, J.A., Koushanfar, F., Markov, I.L.: Epic: Ending piracy of integrated circuits.
In: Proceedings of the Conference on Design, Automation and Test in Europe, pp.
1069–1074. ACM (2008)

12. Subramanyan, P., Ray, S., Malik, S.: Evaluating the security of logic encryption
algorithms. In: 2015 IEEE International Symposium on Hardware Oriented Secu-
rity and Trust (HOST), pp. 137–143. IEEE (2015)

13. Wendt, J.B., Potkonjak, M.: Hardware obfuscation using PUF-based logic. In:
Proceedings of the 2014 IEEE/ACM International Conference on Computer-Aided
Design, pp. 270–277. IEEE Press (2014)

14. Yasin, M., Rajendran, J., Sinanoglu, O., Karri, R.: On improving the security of
logic locking. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. PP(99), 1
(2015)

No Place to Hide: Contactless Probing
of Secret Data on FPGAs

Heiko Lohrke1(B), Shahin Tajik2(B), Christian Boit1, and Jean-Pierre Seifert2

1 Semiconductor Devices, Technische Universität Berlin, Berlin, Germany
lohrke@mailbox.tu-berlin.de, christian.boit@tu-berlin.de

2 Security in Telecommunications, Technische Universität Berlin, Berlin, Germany
{stajik,jpseifert}@sec.t-labs.tu-berlin.de

Abstract. Field Programmable Gate Arrays (FPGAs) have been the
target of different physical attacks in recent years. Many different coun-
termeasures have already been integrated into these devices to mitigate
the existing vulnerabilities. However, there has not been enough atten-
tion paid to semi-invasive attacks from the IC backside due to the fol-
lowing reasons. First, the conventional semi-invasive attacks from the IC
backside — such as laser fault injection and photonic emission analysis —
cannot be scaled down without further effort to the very latest nanoscale
technologies of modern FPGAs and programmable SoCs. Second, the
more advanced solutions for secure storage, such as controlled Physically
Unclonable Functions (PUFs), make the conventional memory-readout
techniques almost impossible. In this paper, however, novel approaches
have been explored: Attacks based on Laser Voltage Probing (LVP) and
its derivatives, as commonly used in Integrated Circuit (IC) debug for
nanoscale low voltage technologies, are successfully launched against a 60
nanometer technology FPGA. We discuss how these attacks can be used
to break modern bitstream encryption implementations. Our attacks
were carried out on a Proof-of-Concept PUF-based key generation imple-
mentation. To the best of our knowledge this is the first time that LVP
is used to perform an attack on secure ICs.

Keywords: FPGA security · Laser voltage probing · Physically unclon-
able function · Semi-invasive backside attack.

1 Introduction

Modern Field Programmable Gate Arrays (FPGAs) and programmable Sys-
tem on Chips (SoCs) are used nowadays in different critical applications. Since
most FPGAs and programmable SoCs store their configuration in SRAM cells,
they have to be configured in an untrusted field through bitstreams stored
in an external non-volatile memory (NVM) upon each power-on. Due to the
lack of protection against side-channel leakage in an adversarial environment,

H. Lohrke and S. Tajik— These authors contributed equally to this work.

c© International Association for Cryptologic Research 2016
B. Gierlichs and A.Y. Poschmann (Eds.): CHES 2016, LNCS 9813, pp. 147–167, 2016.
DOI: 10.1007/978-3-662-53140-2 8

148 H. Lohrke et al.

the transmission of the bitstream (even in an encrypted format) can expose the
design [23,30,31,46]. Furthermore, volatile Battery Backed RAMs (BBRAMs)
and eFuses, which can be used to store the secret key for decryption of
the bitstream, are unreliable and vulnerable to scanning electron microscopy
(SEM) [46].

FPGA vendors always attempt to add more advanced countermeasures to
their devices, to effectively mitigate physical attacks. While DPA vulnerabilities
of the decryption cores can be solved by DPA-resistant IP cores and asymmetric
authentication schemes, Physically Unclonable Functions (PUFs) can mitigate
the insecurity of eFuses and BBRAMs [46]. Moreover, different physical sensors
inside the FPGAs can monitor the environmental changes to detect glitching
and fault injection attacks. However, a proper physical protection against semi-
and fully-invasive attacks from the IC backside is still missing on these modern
platforms.

There are good reasons for FPGA vendors to be less concerned about the
security of the IC backside. First, the latest generations of SRAM-based FPGAs
are manufactured with 20 nm technology and the next generation of FPGAs
will be built with 16 and 14 nm technologies [13,19]. Yet, it has already been
demonstrated that, even for larger FPGA technologies such as 45 nm and 60 nm,
conventional semi-invasive attacks from the IC backside, such as Laser Fault
Injection (LFI) [39] and Photonic Emission Analysis (PEM) [41], are onerous
tasks. Therefore, such attacks cannot be scaled down efficiently along with the
trend of shrinking transistor technologies. Second, FPGA vendors believe that
integration of new storage solutions, such as PUFs, raises the security level of
key storage against backside attacks [7,25,35], as no key is stored permanently
on the chip to be read-out by the adversary.

Our Contribution. In this work we introduce a novel semi-invasive attack
against FPGAs using a known failure analysis technique, called Laser Voltage
Probing (LVP) [24]. We demonstrate how the attacker can use LVP and deriva-
tives to locate circuitry of interest, such as registers and ring oscillators (ROs), by
knowing or estimating the frequency of different operations. Estimation of afore-
mentioned frequency characteristics can be achieved by either having knowledge
of implementations or by performing power analysis in the frequency domain.
Moreover, we explain how LVP enables us to probe different volatile and on-die-
only signals and data streams on the chip without having any physical contact
to the wires or transistors. Besides, with the help of LVP one can characterize
high frequency signals, such as the output of ROs, which are used in RO PUFs
and True Random Number Generators (TRNGs). For our practical evaluation,
we consider a PUF in key generation mode inside an FPGA to decrypt the bit-
stream. The PoC implementation was realized on an FPGA manufactured in a
60 nm process technology. Due to lack of proper protection, we were able to per-
form our analysis from the IC backside. This work is presenting the first results
to evaluate the potential of LVP for possible future attacks on small technolo-
gies, where conventional backside semi-invasive attacks, such as PEM and LFI,
would require much more efforts.

No Place to Hide: Contactless Probing of Secret Data on FPGAs 149

(a) (b)

Fig. 1. (a) Bitstream encryption and decryption using a red key [46]. (b) Bitstream
encryption and decryption using a black key, PUF key and red key [35].

2 Background

2.1 FPGA Security During Configuration

Bitstream encryption is a conventional solution to prevent the piracy of IPs
during FPGA configuration. In this case a secret “red key” (i.e., an unencrypted
key) is transferred to the FPGA in a safe environment, see Fig. 1(a). This key will
be stored either in the Battery Backed RAM (BBRAM) or eFuses on the chip.
At the same time, the application design is encrypted by the red key and stored
in an external non-volatile memory (NVM). Each time the FPGA is powered up
in the untrusted field, the encrypted bitstream is transmitted to the chip and it
will be decrypted by the stored red key inside the chip. Although this technique
raises the security of the bitstream transmission against interception, it has been
shown that the decryption cores on different FPGAs, responsible for decoding
the bitstream, are vulnerable to electromagnetic (EM) and differential power
analysis (DPA) [23,30,31]. Moreover, the key storage technologies on FPGAs
such as eFuses are vulnerable to semi-invasive attacks and can be read out with
a scanning electron microscope (SEM) [46].

Utilizing updatable protected soft decryption cores and asymmetric authen-
tication can defeat non-invasive side-channel attacks, such as differential power
analysis (DPA) [35]. Moreover, Physically Unclonable Functions (PUFs) [15,34]
can remedy the shortcomings of insecure storage in modern FPGAs [46]. Instead
of storing the secret key in an insecure memory, PUFs exploit the manufacturing
variability on identical devices to generate virtually unique secret keys for each
device. Therefore, PUFs can be used for secure key generation and key obfusca-
tion in an untrusted environment, where the adversary has access to the device
and is able to launch a physical attack. In addition to key generation, PUFs can
be utilized as unique identifiers to restrict access to FPGAs and prevent cloning
and spoofing attacks [16,17,26,40].

PUF and DPA-resistant decryptors can be implemented either by dedicated
logic inside the FPGA (i.e., hard cores) or by configuring the FPGA logic cells
(i.e., soft cores). Although the principle of using PUFs for key obfuscation and
DPA-resistant decryptors to defeat physical attacks are similar among different

150 H. Lohrke et al.

FPGA vendors, the implementation details differ. In this work, we explain the
red key wrapping technique using soft PUFs and soft decryptors, which is used
by Xilinx SoCs [35]. The main idea is to generate a “black key” (i.e., an encrypted
key, which in itself is useless to an attacker), to generate the secret red key on
the fly during configuration. This black key can then be stored safely in an
insecure NVM and the red key will only exist as volatile, internal-only data.
The preparations for this technique are as follows. In the trusted field a boot
loader containing the red key and a soft PUF IP is transferred into the volatile
configuration SRAM of the FPGA. After the boot loader is loaded, the PUF is
configured on the programmable logic of the device and its responses are used
in conjunction with the red key to generate the black key [35], see Fig. 1(b).
The black key generated in this way can only be converted back to the red
key with the correct, chip-specific, internal-only PUF response (i.e., PUF key).
In the untrusted field an encrypted first stage boot loader with the black key,
the same soft PUF IP and a DPA-resistant decryption IP core is loaded into the
device. The chip-specific PUF response is then used to unwrap the black key and
generate the red key on the fly. Finally, the encrypted configuration bitstream is
transferred to the device and will be decrypted by the red key inside the FPGA.
In this way the decryption IP core can be updated against future side-channel
analysis threats. Furthermore, the soft PUF in conjunction with the black key
provides volatile, internal-only and updatable key storage, and therefore, the red
key is in memory only during the configuration of the device.

2.2 Current PUF Implementations

Current FPGA market leaders have already started to integrate PUFs into their
latest products [7,25,35]. Hard SRAM PUFs from Intrinsic-ID Inc. have already
been integrated into the Microsemi SmartFusion2 and IGLOO2 FPGAs [7] and
are going to be implemented on Altera Stratix 10 SoCs and FPGAs [25]. More-
over, Xilinx has patented a key generation technique based on hard RO PUFs
which might be used in their next generation FPGAs and SoCs [45]. Currently,
the Xilinx Zynq-7000 SoCs enables the user to implement soft PUF IP cores
as well as DPA-resistant soft decryptor IPs to protect the red key during con-
figuration [35]. Furthermore, selected Microsemi flash-based SmartFusion2 and
IGLOO2 FPGAs can be utilized as a Root of Trust to transfer soft PUF IP
cores to target SRAM-based FPGAs for secure authentication [26]. Soft PUFs
can be purchased from third-party developers, such as Verayo Inc. [6], Intrisic-ID
Inc. [4], Lewis Innovative Technology Inc. [5] and Helion Technology Limited. [3].

Since the implemented soft or hard PUFs inside of FPGAs are controlled
PUFs, where a non-invasive electrical access to the challenges and responses
of the PUFs is restricted by either physical or algorithmic countermeasures,
most of the reported modeling [9,14,37] and semi-invasive [29,33,42,43] attacks
in the literature are ineffective. In this case the unprocessed challenges can be
transmitted with the first stage boot loader to the FPGA, which will be processed
later on the device by non-linear functions and applied to the PUF. The response
of the PUF will also be generated and processed inside the device and cannot
be observed in a non-invasive way.

No Place to Hide: Contactless Probing of Secret Data on FPGAs 151

Fig. 2. Simplified illustration of LVP signal acquisition.

2.3 Laser Voltage Probing and Laser Voltage Imaging

Several techniques have been introduced into failure analysis to allow contactless
probing of Devices Under Test (DUTs). One category of such techniques uses
optical beams and is therefore, referred to as contactless optical probing. These
techniques allow failure analysis engineers to probe electrical signals through the
silicon backside and to also create 2D activity maps of active circuitry. Turnkey
solutions for optical probing are readily available from different manufactur-
ers, among them Hamamatsu Photonics, Checkpoint Technologies, DCG Sys-
tems (now part of FEI) and Semicaps. In the literature optical probing can be
referred to as Laser Voltage Probing (LVP), Electro Optical Probing (EOP),
Laser Timing Module (LTM) or Laser Time Probe (LTP). Acquisition of 2D
activity maps is similarly referred to as Laser Voltage Imaging (LVI), Electro
Optical Frequency Mapping (EOFM) or Signal Mapping Image (SMI). In this
paper we choose to refer to waveform probing as Laser Voltage Probing (LVP)
and to acquisition of 2D activity maps as Laser Voltage Imaging (LVI). Both
techniques together will be referred to as LVx.

The actual technical realisation of LVx varies depending on the manufac-
turer, however, the basic principles remain the same. For optical probing as
used in LVP a laser beam is focussed through the silicon backside, traverses the
active device area, is reflected of, for instance, metal structures and leaves the
device again through the silicon backside, see Fig. 2. The returning beam is then
fed to an optical detector to measure its intensity. Usually near infrared (NIR)
wavelengths are used to prevent the absorption of light by the silicon. Inside
the active area the electrical parameters of the device, such as electrical fields
and currents, lead to changes in the absorption coefficient and refractive index.
Because of this, the optical beam intensity is altered either directly through
absorption or in some cases indirectly through interference effects because of the
changed refractive index. Empirical studies have shown, that a linear approxi-
mation is often sufficient to describe the relationship between the voltage at the
electrical node and the reflected light signal. Therefore, the detector signal wave-
form recreates the electrical waveform from inside the device. This allows optical
probing of electrical waveforms by just pointing the laser beam at the electrical
node of interest. However, since the light modulation is very small (on the order
of 100 ppm) the detector signal usually needs to be averaged while the device
is running in a triggered loop to achieve a decent signal to noise ratio. As this
is just a rough sketch of the principles of optical probing, readers interested in

152 H. Lohrke et al.

a detailed discussion of the underlying physical interactions are referred to [24]
and the references mentioned therein.

On the other hand, optical frequency mapping, as used in Laser Voltage
Imaging (LVI), can be seen as an extension to optical probing as explained above.
In one typical LVI setup, the detector signal is not averaged but instead fed into
a spectrum analyzer, which is set to some frequency of interest and zero span.
Therefore, the spectrum analyzer effectively acts as a narrow frequency filter
with adjustable bandwidth. Using galvanometric x/y mirrors the laser beam is
then scanned across the device and the filter output of the spectrum analyzer
is sampled for every scanned pixel. Afterwards, a PC with appropriate software
is used to assemble the sampled frequency filter values into a 2D picture using
a grey-scale representation. If an electrical node operates at the frequency of
interest, it will modulate the light reflected of it with said frequency. This will
in turn lead to a detector signal modulated with this frequency, which will be
able to pass through the frequency filtering spectrum analyzer. Therefore all
nodes operating at this frequency will show up as white spots in the LVI image.
All nodes operating at a different frequency or areas which are not modulating
the laser light will stay black. It should be noted that it is enough if some
frequency component of the waveform present at the node can pass the frequency
filter. Hence, this method can be used to detect nodes operating with arbitrary
waveforms, as long as the first harmonic frequency or other strong frequency
components of that waveform can be determined. As soon as the nodes of interest
are found in this way, the galvanometric mirrors can be set to directly probe the
waveform of one specific node with Laser Voltage Probing using a stationary
beam within seconds. An advantage of LVI over LVP is, that for LVP waveform
acquisition a loop trigger signal is always needed, whereas for LVI the device can
be free-running.

In practice LVx systems are often incorporated into Laser Scanning Micro-
scopes (LSMs). LSMs acquire optical images by scanning a laser beam across
a sample and detecting the reflected light. They are therefore already equipped
with scanning mirrors and an optical illumination and detection path, and thus,
LVx systems can be used as an add-on.

3 Attack Scenario

We propose two LVP-based attacks against FPGAs during configuration. In the
first attack scenario we demonstrate how the adversary can probe the red, black
and PUF key using Laser Voltage Imaging (LVI). This allows the attacker to
extract the red key, and therefore, enables her to decrypt the encrypted bit-
stream offline, which can lead to reverse engineering or cloning of the design. In
the second attack, we will show how the attacker can characterize an RO PUF
based on a combination of LVI, Laser Voltage Probing (LVP) and power analy-
sis. Characterization of the individual oscillators of the RO PUF enables the
attacker to model the PUF, and therefore, to clone its functionality. Knowing
the approximate location of the key registers and the PUF components on the
chip is the main assumption of our proposed attacks.

No Place to Hide: Contactless Probing of Secret Data on FPGAs 153

Fig. 3. (a) Parallel generation of the red key, (b) serial generation of the red key.

3.1 Key Extraction

The principle of key generation inside an FPGA has been discussed in Sect. 2.1.
All three key values can be either shifted serially through a shift register or
they can be loaded into the registers in parallel based on the implementation,
see Fig. 3. We will first discuss the case, where the register values are loaded
and processed in parallel. In this case the attacker can utilize LVI directly to
extract all three values. As discussed in Sect. 2.3, LVI reveals nodes switching
with a certain frequency, or more precisely, having certain frequency components.
Therefore, to locate registers of interest, the attacker has to know a frequency or
frequency component, which reveals the registers and is ideally data-dependent.
Thus, she will need to take a look at the switching frequencies during red key
generation. It is evident that after power-on all registers are first initialized to
their default value by the reset circuitry. Following that, all black key registers
are loaded in parallel and the PUF circuit is started. As soon as the PUF has
finished generating its output, its values are also loaded onto the corresponding
registers simultaneously. In a final step, the red key, which is now available at the
XOR output, can be loaded onto all red key registers. Consequently, we can see
that all register blocks of interest (black key, PUF key, red key) receive data —
exactly once per power-on. This can be exploited to generate suitable frequency
components by placing the device in a reset loop. In such a scenario, the first
harmonic of the waveforms on these registers will be the reset frequency, as they
change their states once per reset. If we now take a detailed look at the data
dependency of these waveforms, we notice that there is a fundamental difference
between registers carrying a zero bit and registers carrying a one bit. In Fig. 4
the waveforms of two registers receiving a one and a zero bit as well as the
reset signal RST are depicted. For the register receiving a one bit (REGA) it is
evident that the register starts at logic low level and then changes its state, as
soon as the time needed for the preceding calculations (TCALC) has elapsed. As
soon as the reset input goes high, the register is reset and afterwards the power-
on cycle is restarted once reset goes low again. Since we can expect TCALC to
be constant for consecutive power-ons we can see that REGA’s period will be
TRST and we can expect its first harmonic to be at 1/TRST . For register REGB,

154 H. Lohrke et al.

RST

REGA

REGB

t

TRST

TRST

TCALC TCALC

Fig. 4. Waveforms of the reset signal (RST) and two registers, receiving a one (REGA)
and a zero (REGB) bit.

carrying a zero, the case is much simpler. REGB will not change its value at all,
and therefore, will not to have any harmonics at the reset frequency. Thus the
attacker can expect the registers carrying a one to modulate the reflected light
with a first harmonic of 1/TRST . Registers carrying a zero are expected to not
modulate the reflected light at all. The interaction will be the same for black
key, PUF key and red key register blocks. Although TCALC will change for each
register block, the first harmonic will still be at 1/TRST for all of them. Therefore,
to extract the register values the attacker can perform an LVI measurement on
the register block of interest while setting the spectrum analyzer filter frequency
to the reset loop frequency. If the LVI measurement is then grayscale encoded,
registers carrying a one are expected to show up white while registers carrying
a zero will remain black.

For the case of the serial implementation the situation is slightly different.
Here the data will be processed bit by bit and the individual registers in the
relevant register blocks will be connected together to form one shift register for
each block. The data bits will then be shifted out of the black key and PUF
key shift registers, passed through the XOR and shifted into the red key shift
register. As a result, each individual register would show a different waveform
depending on its position in the shift register and the actual data values. The
waveforms of the individual registers would still have the reset frequency as their
first harmonic, however, detecting the bit values can not be broken down to a
simple black/white distinction as for the parallel case. Nevertheless, the attacker
will still detect the registers of interest in an LVI image, although with varying
signal strength. Since she is able to determine the precise register locations this
way, she can then move on to directly probe the waveforms of individual registers
using Laser Voltage Probing (LVP). This might be a tedious task, depending on
the number of bits, however, she should be able to find the first register of each
shift register this way. As soon as the first register of the red key shift register is
found, the attacker can extract the key from its waveform, as the complete key
gets shifted through this register during calculation.

Therefore, using just LVI or a combination of LVI and LVP the attacker
should be able extract the key data regardless of the chosen implementation.

No Place to Hide: Contactless Probing of Secret Data on FPGAs 155

3.2 RO PUF Characterization

In order to characterize an RO PUF, the attacker has to be able to measure the
frequencies of the ring oscillators (ROs) with high precision. PUF characteri-
zation enables the attacker to clone the RO PUF. If the attacker can estimate
the frequency of the ROs at least approximately, she will be able to directly
take an LVI measurement at that specific frequency. This can be achieved by
electromagnetic or power analysis in the frequency domain. Using one of these
methods the attacker will not be able to observe individual RO frequencies, but
rather the superposition of all running ROs. Nevertheless, if she performs an LVI
measurement at this approximate frequency with a large enough bandwidth, she
should be able to see the nodes of the ROs in the LVI image. As soon as the
nodes of the ROs are identified in this way the attacker can proceed to probe
them individually. However, since the ROs are free-running, there is no trigger
signal available for waveform acquisition, and therefore conventional Laser Volt-
age Probing (LVP) will fail. Yet, the attacker is free to connect the reflected light
signal of the LVP directly to the spectrum analyzer of the LVP/LVI setup while
probing one individual RO. Through setting the spectrum analyzer to conven-
tional frequency sweep mode she will then be able to see the spectrum of the
reflected light signal. As the laser beam will just probe one node of one RO, the
waveform of that specific RO will be modulated onto the reflected light signal.
Thus, the precise frequency of that individual RO will be visible on the spectrum
analyzer. This will eliminate the need for a trigger signal and allow the attacker
to characterize that specific RO. She can then proceed to characterize the whole
RO PUF by pointing the laser at the nodes of the remaining individual ROs.

4 Setup

4.1 Device Under Test

The samples used for our experiments were Altera Cyclone IV FPGAs with part
number EP4CE6E22C8N manufactured in a 60 nm process [8]. In this sample all
Logic Elements (LEs) contain 4-input Lookup Tables (LUTs) and a dedicated
register. The device contains 6272 Logic Array Blocks (LAB) with 16 LEs each.
We chose the 144 pin TQFP package in order to simplify the sample preparation.
The first step of preparation was the removal of the exposed ground pad on the
backside of the package. The samples were then thinned by an Ultratec ASAP-1
polishing machine to a remaining silicon thickness of 25µm. However this step
would not have been necessary. Modern ICs only have to be depackaged and
are sufficiently thin as-is for NIR analysis, just leading to a lower signal level if
used directly. In the second step, the prepared samples were inversely soldered
to a custom PCB. Bond wires originally leading to the exposed ground pad were
then reconnected using silver conductive paint. A JTAG connection was used for
configuring the FPGA after power-on.

156 H. Lohrke et al.

counter

counter

subtract ?

en

en

Fig. 5. A simplified schematic of an RO pair in the RO PUF construction. After a
predefined period of oscillation, the states of both counters are compared to each other
to generate a binary response.

4.2 PoC FPGA Implementation

For our Proof-of-Concept we have implemented an RO PUF and a red key (See
Sect. 2.1.) calculation. To make the design less complex, we have connected the
outputs of the ROs directly to individual counters, see Fig. 5. Each RO in our
design has been realized with 21 inverters. All components of the ROs and the
counters have been placed manually inside the FPGA using the Altera Quartus
II integrated development environment. The LEs in every RO were placed as
close as possible, directly next to each other. We have emulated the rebooting
and configuration of the FPGA by adding a reset signal to our implementation.
The black key and PUF key in our design have 8-bit length. As discussed in
Sect. 3, unwrapping the black key can be carried out either in a parallel or serial
way. Hence, for the first scenario, we have implemented the red key generation
by XORing all values of the black key with the PUF key in parallel, see Fig. 3.
For the second scenario, we have realized two shift registers for the black key
and PUF key, where those values are shifted serially to an XOR gate and the
result is shifted into the red key registers.

4.3 Measurement Setup

The core of our optical setup (Fig. 6(a)) is a Hamamatsu “PHEMOS-1000” laser
scanning microscope. The PHEMOS is equipped with an optical probing and
frequency mapping option. This option consists of a highly stable laser light
source (Hamamatsu C12993), a Laser Voltage Probing and Laser Voltage Imag-
ing preamplifier (Hamamatsu C12323), an Agilent “Acqiris” digitizer card and
an Advantest U3851 spectrum analyzer. The laser light source emits radiation at
1319 nm which is input into the optical path, deflected by galvanometric mirrors
and then focussed through an objective lens into the backside of the DUT. The
reflected light from the DUT is passed on to a detector and the detector signal
is fed into the preamplifier. The signal leaving the preamplifier can then either
be routed to the spectrum analyzer for LVI or to the digitizer card for acquisi-
tion of LVP waveforms. For all measurements shown in this paper a Hamamatsu
50x/0.76NA lens with silicon thickness correction was used. The approximate
laser power with this lens on the DUT is 50 mW for 100 % laser power. Addi-
tionally 5x and 20x objective lenses were used for navigation. The whole optical
setup is controlled by a PC running the PHEMOS control software.

No Place to Hide: Contactless Probing of Secret Data on FPGAs 157

Fig. 6. Optical (a) and electrical (b) setup block diagram

Our electrical setup (Fig. 6(b)) is as follows: Two power supplies are con-
nected to the DUT. The first one (Agilent E3645A) provides VCCINT = 1.2V
(internal logic), the second one (Power Designs Inc. 2005) supplies VCCIO = 2.5V
(I/O) and VCCA = 2.5V (PLL and analog). All voltages were within recom-
mended levels [8]. A Rigol DG4162 two channel function generator produces
clock and reset signals which are fed into the DUT. The clock and reset signals
as well as an auxiliary DUT output are also connected to a LeCroy WaveMaster
8620 A oscilloscope for testing and control purposes. The reset signal is fur-
thermore fed into the Laser Voltage Probing (LVP) trigger input. To be able
to conduct basic power analysis in the frequency domain, a Software Defined
Radio (SDR) is AC-coupled to the VCCINT power rail. The SDR is an inexpen-
sive USB dongle which uses a Realtek RTL2832U chipset and a Rafael Micro
R820T tuner. For controlling the SDR, free and open source software is used.
“Gqrx” [2] is used for measurements with a spectral bandwidth below 2.4 MHz
and the python script “RTLSDR Scanner” [1] for higher bandwidths.

5 Results

5.1 Key Extraction

For our first measurements we used a parallel implementation as described in
Sect. 4.2. The black key was set to 10101101, the PUF key to 11011011 and the
resulting red key was 01110110. The measurement was conducted with 5 MHz
reset frequency and 50 MHz clock. Both were 50 % duty cycle and 2.4 V high
level and 0 V low level. The laser power was 10 % and the pixel dwell time 3.3 ms.
The filter frequency for LVI was set to the reset frequency and the bandwidth
to 300 Hz.

First, we performed an overview LVI image of an area containing all three
register blocks, see Fig. 7(a). There are clearly nodes whose waveforms contain
frequency components at the reset frequency, and therefore, give rise to an LVI
signal. Since it is known in which LABs the black key, PUF key and red key
registers have been placed, it is now straight forward to assign the blocks to their

158 H. Lohrke et al.

(a) (b)

Fig. 7. LVI images of the parallel implementation. (a) All three register blocks taking
part in the red key calculation. (b) Detail view of the individual register blocks. Dashed
lines denote the LE boundaries. Each LE is approx. 6µm in height.

respective keys. To analyze the data content of the registers, a higher resolution
is helpful. The measurement has thus been repeated on each register block while
applying a scanner zoom. The resulting LVI images can be seen in Fig. 7(b) and
the expected behaviour discussed in Sect. 3.1 is observed. As expected, registers
carrying a zero do not contribute to the LVI signal while registers carrying a
one can clearly contribute. We can see that there are slight differences in the
appearance of the nodes from measurement to measurement, which are probably
due to focus drift. Nevertheless, we can observe that the attacker is easily able
to extract the relevant values of the black key, PUF key and red key directly
from these LVI images. For the serial implementation we used the same basic
measurement setup. However, the reset signal and LVI frequency were modified
to be 1 MHz, as the serial implementation needs more clock cycles to execute.
The reset duty cycle was set to 58 % as a makeshift trigger delay, causing only
full bits to show up in the result before reset assertion. The laser power was
increased to 15 % and the pixel dwell time decreased to 1 ms. Following that, an
LVI image of the red key register block was taken, which is shown in Fig. 8. It
is evident that there is no simple black/white data dependency, as discussed in
Sect. 3.1. Still, we can see a difference in signal strength for the registers, with
the ones at the top giving less signal than the ones at the bottom. To get a rough
idea of which points could be promising for Laser Voltage Probing (LVP) we used
a fast Fourier transform calculator to analyze the amplitude of the first harmonic
component for different expected waveforms. We observed that for our case of
one to eight bits shifted with a comparatively large reset “dead time” following,
the waveforms with more bit shifts gave us a stronger first harmonic component.
Our conclusion was therefore that the lower half area was the most promising
to probe. Direct probing of the lower-half registers was successful and revealed
the lowest register to be the “shift-in” register. However, it was noticed that

No Place to Hide: Contactless Probing of Secret Data on FPGAs 159

Fig. 8. LVI image of the red key register block and probed waveforms for the serial
implementation. Reset assertion is marked by a dashed vertical line.

waveforms with a better signal to noise ratio could be acquired on the locations
right of the actual register area. We assume that these locations are associated
with routing and therefore the signal has already been buffered before reaching
them. Furthermore, these locations are more isolated signal-wise which also leads
to a better signal waveform. Hence, the final measurements were carried out on
these locations for the shift-in register and two other registers further down the
signal path. The resulting waveforms can be seen in Fig. 8. It is obvious that the
red key can be extracted from the lowest LVP waveform of the shift-in register by
an attacker. We acquired further waveforms while setting the integration number
down to 100.000 loops, which is the current limit in the PHEMOS software, and
were still able to distinguish the bit states easily. Therefore, we expect this
approach to work with even less loop counts, as soon as the limit is removed
from the software.

5.2 RO Characterization

For characterisation of the ring oscillators (ROs) we used the approach discussed
in 3.2. In this section we will demonstrate the frequency measurement for one of the
ROs. We first used the Software Defined Radio (SDR) to get a rough estimation for
the LVI frequency by taking a look at the superposition of all RO frequencies in the
spectral domain on the power rail. By slight adjustments of this estimate we were
then able to create LVI overview images of theLEs forming the differentROs, one of
which is depicted in Fig. 9(a). The parameters used for this LVI measurement were:
127.3539 MHz spectrum analyzer filter frequency, 60 % laser power, and 0.33 ms
pixel dwell time. The ROs showed much more short term frequency fluctuations
than the previously used conventional clock sources. Therefore, the LVI filter band-
width had to be set to 100 kHz to account for the more widespread RO spectrum.
After being able to identify the nodes of interest inside theLEs in thisway, the beam
was held stationary on one of them and the preamplified light detector signal was
fed into the spectrumanalyzer.The spectrumanalyzerwas then configured to show

160 H. Lohrke et al.

(a) (b)

Fig. 9. (a) LVI image of 8 LEs of an RO, each approx. 6µm in height. Dashed lines
denote the LE boundaries. Each LE shows multiple potential probing locations. (b)
LVP spectrum of the same RO.

the spectrum of this signal, which was modulated by the RO waveform present at
the electrical node. For this measurement the laser power was set slightly higher,
to 73 %, the spectrum analyzer frequency span to 1 MHz, resolution bandwidth to
30 kHz and video bandwidth to 10 Hz. The resulting spectrum in Fig. 9(b) shows
the RO frequency approximately 10 dBm above the noise floor. Thus, the attacker
is able to determine the current RO frequency precisely using only contactless opti-
cal probing methods. It should be noted that the resolution bandwidth mentioned
before is not the resolution to be expected for the frequency measurement. As the
attacker will only be interested in the average frequency of the RO, she is free to use
multiple frequency sweeps to get a smooth spectrum and determine its peak value.
The frequency of this peak value will then deliver the average frequency with a pre-
cision only depending on the number of averaged sweeps. By analysing the average
frequency acquired this way it can be seen that the RO frequency was shifted by
approximately 0.15 % when the laser power was increased from 60 % to 73 %. As
long as the individual ROs are probed in the same way with the same laser power,
this should not lead to problems for the attacker. Since the important question for
the attacker is just which RO is faster, characterizing the RO PUF will still be suc-
cessful if she takes care to probe all ROs in the same way, generating the same shift.
Nevertheless, we will discuss this aspect in detail in Sect. 6.

6 Discussion

6.1 Locating the Registers and IP Cores on the Chip

As mentioned in Sect. 3, knowing the approximate location of the key registers
and PUF IP core is the main assumption of our proposed attacks. Different
scenarios can be considered to understand how realistic this assumption is.

As discussed in Sect. 2.1, the soft PUF IP cores, black key and their place-
ments are transmitted in the first stage boot loader. If the first stage boot loader

No Place to Hide: Contactless Probing of Secret Data on FPGAs 161

or Boot0 is not encrypted, the attacker can intercept the boot loader on the
board and gain knowledge about the configuration of the PUF and the red and
black key registers. For instance, the Microsemi Root of Trust solution [26] per-
mits either the transfer of unencrypted or encrypted first stage boot loaders
to the target SRAM-based FPGA. If the boot loader is encrypted, it will be
decrypted by the hard dedicated AES core inside the target FPGA. While in
the unencrypted case the boot loader can be easily intercepted, for the encrypted
case DPA vulnerabilities of dedicated AES cores might be used to extract the
encryption key and decrypt the boot loader [23,30–32]. However, in the case of
asymmetric authentication as used by Xilinx SoCs, it is much harder for the
attacker to expose the boot loader configuration [32]. Because of the authenti-
cation, the attacker cannot launch a DPA attack against the hard AES core and
therefore might not be able to decrypt the first stage boot loader.

If the first stage boot loader cannot be intercepted, the attacker has to have
access to the used IP cores prior to the attack. Though difficult, it is conceivable
that the adversary can get access to the IP cores via an insider or by posing as
a potential customer to IP core suppliers. Having the IP cores, the attacker can
synthesize the PUF on an identical FPGA model and analyze the design either
in the IDE (if no obfuscation is used) or by looking at the generated bitstream
to find the circuitry of the interest.

If the attacker cannot get access to the IP cores, the attack will be more
difficult due to the unknown location of the circuitry of interest. In this case, if
the utilized soft PUF is an RO PUF, one could launch the attack proposed in
Sect. 3.2 to find the ROs and the counters connected to them on the chip. The
location of the RO PUF can then be a reference point to localize other parts
of the design inside the FPGA. Furthermore, one can estimate the operational
frequency of different registers to apply LVI and localize the related registers
individually on the chip. After a successful localization of the key registers, the
attacker can extract data from them by LVP/LVI based on the implementation
(See Sect. 5.1). In the case of a parallel implementation, if the key registers are
naively implemented in the right order (i.e., from LSB to MSB), the attacker
can easily extract the key by using LVI. Otherwise, if the keys are latched in an
obfuscated way, the attacker can only read the state of the permuted registers
and might not find the right order of the registers to assemble the key. For a
serial implementation, if the order of the registers is obfuscated, the attacker can
probe all registers to find the one through which the whole key is shifted.

The proposed attacks to key registers can in principle also be applied, if a
hard PUF and a hard AES are in use. In this case, the attacker has to reverse-
engineer the ASIC configuration circuit of the FPGA to locate the circuitry of
interest. Although the search space for the region of interest might be reduced,
the attacker has to probe and reverse-engineer more compact and dense ASIC
circuits in comparison to FPGA logic cells, which might be challenging.

162 H. Lohrke et al.

6.2 Feasibility and Scalability of the Attack

The process technology of FPGAs and programmable SoCs, which are support-
ing partial reconfiguration for soft PUF implementation, are equal to or smaller
than 60 nm. Since our LVI and LVP experiments have been carried out on an
FPGA with 60 nm technology, the question of the applicability of the same tech-
nique on smaller technologies might be raised. The real size of the transistors
is normally 7 to 8 times larger than the nominal technology node [18]. Besides,
the size of the LEs and the routing (intra and inter LEs) of FPGAs is much
larger than the size of the transistors, see Fig. 7. Hence, the optical resolution
requirements for data extraction are much less severe than for probing individual
transistors. Based on our measurements, the LE height in an Altera Cyclone IV
is about 6µm. The theoretical expected resolution of our laser spot is approxi-
mately 1µm2. Thus, optical probing should still be possible on an LE approx.
six times smaller. It is worth mentioning that for LVP and LVI typical FPGAs
are an advantageous target, as multiple transistors close together will carry the
same waveform in an LE.

There are also solutions for increasing the optical resolution of LVP and LVI
techniques. For instance, one can use solid immersion lenses (SILs) to get 2
to 3 times better resolution, which already enables single transistor probing at
14 nm [18]. Moreover, lasers with shorter wavelengths (e.g., in the visible light
spectrum) can be used to further increase the resolution [10,12]. However, in
the latter case, the substrate of the chip has to be thinned to 10µm or less to
prevent the absorption of the photons.

Meanwhile, it is still interesting to understand why other backside semi-
invasive attacks, such as PEM or LFI, have limited efficiency on small technolo-
gies in comparison to LVP and LVI. In the case of PEM, the photon emission
rate is proportional to the core voltage of the chip. However, the core voltage
of technologies smaller than 60 nm is too low [41] and the attacker therefore
has to integrate over a large number of iterations to capture enough photons for
analysis. LFI attacks on the other hand target mostly single memory cells, which
requires the system used for the attack to be able to resolve single transistors
on the chip.

6.3 Tamper Evidence

Tamper evidence is believed to be one of the main advantages of PUFs [27].
In other words, it is assumed that semi-invasive and fully-invasive attacks on
the PUF implementation alter the challenge-response behavior of the PUF, and
therefore, the secret information is lost. Tamper-evidence against fully-invasive
attacks is experimentally verified only for optical and coating PUF so far [36,47].
However, the core of most soft and hard PUFs are intrinsic PUFs (i.e., delay-
based PUFs and memory-based PUFs) [27]. Unfortunately, for these construc-
tions limited information on tamper-evidence is available in the PUF-related
literature. Fortunately, results on constructions similar to delay-based PUFs can
be found in the failure analysis literature. For instance, it has been reported that

No Place to Hide: Contactless Probing of Secret Data on FPGAs 163

mechanical stress from depackaging and substrate thinning have negligible effects
on the absolute and relative frequencies of ring oscillators (ROs) [11]. In another
experiment, it has been shown that removing most of the bulk silicon, down to
the bottom of the n-wells, does not alter the delays of the inverter chains [38].
Additionally, without affecting the challenge-response behavior of the PUFs,
different successful semi-invasive attacks have been reported on silicon intrin-
sic PUF instances in the literature [20,29,33,43,44]. On the other hand, PUF
developers do their best to mitigate the noisy response of the PUF by different
error correction techniques [22,28]. Therefore, if few CRPs are changed by the
physical tampering, they will be corrected by such error correction techniques.
Based on these results, depackaging the chip and thinning the substrate does
not destruct the target PUF.

Although passive semi-invasive attacks do not affect the behavior of the PUF,
the laser beam in our proposed attack can change the temperature of the tran-
sistors. Temperature variations have transient and reversible effects on the delay
and frequency of the inverter chains in arbiter PUFs and RO PUFs. In our
experiments, a shift of frequency has been observed while performing LVI and
LVP on the ROs. However, the attacker is still able to precisely characterize and
measure the frequencies of the ROs by performing LVI and LVP, if she takes
care to probe all ring oscillators under the same conditions. If the attacker is not
able to fulfill this requirement, she might also probe the registers of the counters
which are connected to the RO output. Assuming the counters or other circuitry
connected to the RO PUFs are located far enough away she will be able to
mount her attack without influencing the ROs. Finally she might take measure-
ments of one individual RO frequency for different laser powers and extrapolate
from that to the frequency for zero laser power. Therefore, a precise physical
characterization of the RO PUF is certainly feasible.

6.4 Countermeasures

Silicon light sensors have been proposed to detect the photons of the laser beam.
However, in our experiments we have used a laser beam which has a longer wave-
length than the silicon band gap. Hence, no electron-hole pairs will be generated
by the laser photons. A silicon photo sensor is therefore unlikely to trigger.

A potential algorithmic countermeasure can be randomization of the reset
states of the registers for the parallel implementation. As a result, the simple
black/white data distinction (see Sect. 3.1) would be severely impeded, as there
now would be switching activity during the reset loop on all registers. For the
serial case, a randomization of the relation of the outer reset signal to the internal
reset signal would destroy the needed trigger relationship and make waveform
probing on the registers impossible. Another simple countermeasure includes the
obfuscation of the key registers by randomizing their order, see Sect. 6.1.

Finally, the ROs in a ring oscillator network with virtually equal frequencies
can be placed in different areas of the FPGA. Using LVP will then slightly shift
the frequencies of ROs which are in or close to the probed area. Hence, the
frequency deviation of these ROs in comparison to the mean frequency of all

164 H. Lohrke et al.

ROs can be used to raise an alarm. Similarly, delay-based PUFs might be useful
as sensors, if their elements are placed in different regions of the chip.

7 Conclusion

In this paper, we have proposed novel semi-invasive attacks from the IC backside
using LVP and LVI techniques. We have demonstrated that these techniques
can be potentially used against modern FPGAs and programmable SoCs during
configuration. Based on these considerations, it becomes apparent that replacing
the eFuses or BBRAMS with controlled PUFs does not raise the security level of
key storage as high as one would expect in the first place. Even recent controlled
stateless PUF constructions [22] are vulnerable to contactless probing. Moreover,
while the size of the transistors is shrinking, novel inexpensive failure analysis
techniques are developed to debug and probe nanoscale manufactured circuits in
a semi-invasive and contactless way. It is worth mentioning that much less time is
required for optical contactless probing of different signals than for conventional
techniques, such as FIB microprobing [21]. Using our approach the amount of
time needed to probe multiple nodes is on the order of minutes while for FIB
microprobing it will be on the order of days. Furthermore, it is obvious that
our attack technique has the potential to directly probe the bitstream after on-
chip decryption, circumventing all security measures in place. However, there
are several requirements for probing such a large amount of data and finding
a suitable probing location in the much smaller and denser ASIC area, which
might not be fulfilled by a standard LVP setup. Nevertheless, we strongly believe
that future generations of FPGAs remain vulnerable to contactless probing, if
proper protections or countermeasures for the IC backside are not implemented.

Acknowledgements. This research was supported by the German Federal Ministry
of Education and Research in the project Photon FX2 and by the Helmholtz Research
School on Security Technologies. We would also like to acknowledge Hamamatsu Pho-
tonics for support. We gratefully thank Andreas Eckert and Helmar Dittrich at TU
Berlin for sample and PCB preparation.

References

1. Ear to Ear Oak. http://eartoearoak.com/software/rtlsdr-scanner/. Accessed 6
June 2016

2. Gqrx SDR. http://gqrx.dk. Accessed 6 June 2016
3. Helion Technology Limited. http://www.heliontech.com. Accessed 6 June 2016
4. Intrisic-ID Inc. https://www.intrinsic-id.com. Accessed 6 June 2016
5. Lewis Innovative Technology Inc. http://lewisinnovative.com. Accessed 6 June

2016
6. Verayo Inc. http://www.verayo.com. Accessed 6 June 2016
7. White Paper: Overview of Data Security Using Microsemi FPGAs and SoC

FPGAs. Microsemi Corporation, Aliso Viejo, CA (2013)

http://eartoearoak.com/software/rtlsdr-scanner/
http://gqrx.dk
http://www.heliontech.com
https://www.intrinsic-id.com
http://lewisinnovative.com
http://www.verayo.com

No Place to Hide: Contactless Probing of Secret Data on FPGAs 165

8. Altera: Cyclone IV Device Handbook. Altera Corporation, San Jose (2014)
9. Becker, G.T.: The gap between promise and reality: on the insecurity of XOR

arbiter PUFs. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS, vol.
9293, pp. 535–555. Springer, Heidelberg (2015)

10. Beutler, J.: Visible light LVP on bulk silicon devices. In: 41st International Sym-
posium for Testing and Failure Analysis, 1–5 November 2015. ASM (2015)

11. Boit, C., Kerst, U., Schlangen, R., Kabakow, A., Le Roy, E., Lundquista, T., Pau-
thnerb, S.: Impact of back side circuit edit on active device performance in bulk
silicon ICs. In: International Test Conference. vol. 2, p. 1236 (2005)

12. Boit, C., Lohrke, H., Scholz, P., Beyreuther, A., Kerst, U., Iwaki, Y.: Contactless
visible light probing for nanoscale ICs through 10 µm bulk silicon. In: Proceedings
of the 35th Annual NANO Testing Symposium - NANOTS 2015, pp. 215–221
(2015)

13. Davidson, A.: WP-01220-1.1: A New FPGA Architecture and Leading-Edge Fin-
FET Process Technology Promise to Meet Next-Generation System Requirements.
Altera Corporation, San Jose (2015)

14. Ganji, F., Tajik, S., Seifert, J.-P.: Why attackers win: on the learnability of XOR
arbiter PUFs. In: Conti, M., Schunter, M., Askoxylakis, I. (eds.) TRUST 2015.
LNCS, vol. 9229, pp. 22–39. Springer, Heidelberg (2015)

15. Gassend, B., Clarke, D., Van Dijk, M., Devadas, S.: Silicon physical random func-
tions. In: Proceedings of the 9th ACM Conference on Computer and Communica-
tions Security. pp. 148–160. ACM (2002)

16. Guajardo, J., Kumar, S.S., Schrijen, G.-J., Tuyls, P.: FPGA intrinsic PUFs and
their use for IP protection. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007.
LNCS, vol. 4727, pp. 63–80. Springer, Heidelberg (2007)

17. Güneysu, T., Markov, I., Weimerskirch, A.: Securely sealing multi-FPGA systems.
In: Choy, O.C.S., Cheung, R.C.C., Athanas, P., Sano, K. (eds.) ARC 2012. LNCS,
vol. 7199, pp. 276–289. Springer, Heidelberg (2012)

18. von Haartman, M.: Optical fault isolation and nanoprobing techniques for the
10nm technology node and beyond. In: 41st International Symposium for Testing
and Failure Analysis, November 1–5, 2015. ASM (2015)

19. Hansen, L.: White Paper WP470: Unleash the Unparalleled Power and Flexibility
of Zynq UltraScale+ MPSoCs. Xilinx, Inc., San Jose, CA (2015)

20. Helfmeier, C., Boit, C., Nedospasov, D., Seifert, J.P.: Cloning physically unclonable
functions. In: 2013 IEEE International Symposium on Hardware-Oriented Security
and Trust (HOST), pp. 1–6. IEEE (2013)

21. Helfmeier, C., Nedospasov, D., Tarnovsky, C., Krissler, J.S., Boit, C., Seifert,
J.P.: Breaking and entering through the silicon. In: Proceedings of the 2013 ACM
SIGSAC Conference on Computer Communications Security, pp. 733–744. ACM
(2013)

22. Herder, C., Ren, L., van Dijk, M., Yu, M.D.M., Devadas, S.: Trapdoor computa-
tional fuzzy extractors and stateless cryptographically-secure physical unclonable
functions. IEEE Trans. Dependable Secur. Comput. 2016(99), 1–1 (2016)

23. Hori, Y., Katashita, T., Sasaki, A., Satoh, A.: Electromagnetic side-channel attack
against 28-nm FPGA device. In: Pre-proceedings of WISA (2012)

24. Kindereit, U., Woods, G., Tian, J., Kerst, U., Leihkauf, R., Boit, C.: Quantitative
Investigation of laser beam modulation in electrically active devices as used in laser
voltage probing. IEEE Trans. Device Mater. Reliab. 7(1), 19–30 (2007)

25. Lu, T., Kenny, R., Atsatt, S.: White Paper WP-01252-1.0: Stratix 10 Secure Device
Manager Provides Best-in-Class FPGA and SoC Security. Altera Corporation, San
Jose, CA (2015)

166 H. Lohrke et al.

26. Luis, W., Richard Newell, G., Alexander, K.: Differential power analysis counter-
measures for the configuration of SRAM FPGAs. In: IEEE Military Communica-
tions Conference, MILCOM 2015–2015. pp. 1276–1283. IEEE (2015)

27. Maes, R.: Physically Unclonable Functions: Constructions: Properties and Appli-
cations. Springer, Heidelberg (2013)

28. Maes, R., van der Leest, V., van der Sluis, E., Willems, F.: Secure key generation
from biased PUFs. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS, vol.
9293, pp. 517–534. Springer, Heidelberg (2015)

29. Merli, D., Schuster, D., Stumpf, F., Sigl, G.: Semi-invasive EM attack on FPGA
RO PUFs and countermeasures. In: Proceedings of the Workshop on Embedded
Systems Security, p. 2. ACM (2011)

30. Moradi, A., Barenghi, A., Kasper, T., Paar, C.: On the vulnerability of FPGA
bitstream encryption against power analysis attacks: extracting keys from xilinx
virtex-II FPGAs. In: Proceedings of the 18th ACM Conference on Computer and
Communications Security. pp. 111–124. ACM (2011)

31. Moradi, A., Oswald, D., Paar, C., Swierczynski, P.: Side-channel attacks on the
bitstream encryption mechanism of altera stratix II: facilitating black-box analysis
using software reverse-engineering. In: Proceedings of the ACM/SIGDA Interna-
tional Symposium on Field Programmable Gate Arrays. pp. 91–100. ACM (2013)

32. Moradi, A., Schneider, T.: Improved Side-Channel Analysis Attacks on Xilinx Bit-
stream Encryption of 5, 6, and 7 Series, COSADE 2016, Graz, Austria, 14 April
2016

33. Nedospasov, D., Seifert, J.P., Helfmeier, C., Boit, C.: Invasive PUF analysis. In:
2013 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), pp.
30–38. IEEE (2013)

34. Pappu, R., Recht, B., Taylor, J., Gershenfeld, N.: Physical one-way functions.
Science 297(5589), 2026–2030 (2002)

35. Peterson, E.: White Paper WP468: Leveraging Asymmetric Authentication to
Enhance Security-Critical Applications Using Zynq-7000 All Programmable SoCs.
Xilinx, Inc., San Jose (2015)

36. Ravikanth, P.S.: Physical one-way functions. Ph.D. thesis, Massachusetts Institute
of Technology (2001)

37. Rührmair, U., Sehnke, F., Sölter, J., Dror, G., Devadas, S., Schmidhuber1, J.:
Modeling attacks on physical unclonable functions. In: Proceedings of the 17th
ACM Conference on Computer and Communications Security. pp. 237–249 (2010)

38. Schlangen, R., Leihkauf, R., Kerst, U., Lundquist, T., Egger, P., Boit, C.: Phys-
ical analysis, trimming and editing of nanoscale IC function with backside FIB
processing. Microelectron. Reliab. 49(9), 1158–1164 (2009)

39. Selmke, B., Brummer, S., Heyszl, J., Sigl, G.: Precise laser fault injections into
FPGA BRAMs in 90 nm and 45 nm feature size. In: 14th Smart Card Research
and Advanced Application Conference - CARDIS 2015 (2015)

40. Simpson, E., Schaumont, P.: Offline hardware/software authentication for reconfig-
urable platforms. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249,
pp. 311–323. Springer, Heidelberg (2006)

41. Tajik, S., Dietz, E., Frohmann, S., Dittrich, H., Nedospasov, D., Helfmeier, C.,
Seifert, J.P., Boit, C., Hübers, H.W.: Photonic side-channel analysis of arbiter
PUFs. J. Cryptol. 1–22 (2016). doi:10.1007/s00145-016-9228-6

42. Tajik, S., Dietz, E., Frohmann, S., Seifert, J.-P., Nedospasov, D., Helfmeier, C.,
Boit, C., Dittrich, H.: Physical characterization of arbiter PUFs. In: Batina, L.,
Robshaw, M. (eds.) CHES 2014. LNCS, vol. 8731, pp. 493–509. Springer, Heidel-
berg (2014)

http://dx.doi.org/10.1007/s00145-016-9228-6

No Place to Hide: Contactless Probing of Secret Data on FPGAs 167

43. Tajik, S., Ganji, F., Seifert, J.P., Lohrke, H., Boit, C.: Laser fault attack on phys-
ically unclonable functions. In: 2015 Workshop on Fault Diagnosis and Tolerance
in Cryptography (FDTC), IEEE (2015)

44. Tajik, S., Nedospasov, D., Helfmeier, C., Seifert, J.P., Boit, C.: Emission analysis of
hardware implementations. In: 2014 17th Euromicro Conference on Digital System
Design (DSD), pp. 528–534. IEEE (2014)

45. Trimberger, S.M.: Copy protection without non-volatile memory. US Patent
8,416,950 (2013)

46. Trimberger, S.M., Moore, J.J.: FPGA security: motivations, features, and applica-
tions. Proc. IEEE 102(8), 1248–1265 (2014)

47. Tuyls, P., Schrijen, G.-J., Škorić, B., van Geloven, J., Verhaegh, N., Wolters, R.:
Read-proof hardware from protective coatings. In: Goubin, L., Matsui, M. (eds.)
CHES 2006. LNCS, vol. 4249, pp. 369–383. Springer, Heidelberg (2006)

Side Channel Countermeasures I

Strong 8-bit Sboxes with Efficient Masking
in Hardware

Erik Boss1, Vincent Grosso1, Tim Güneysu2, Gregor Leander1,
Amir Moradi1(B), and Tobias Schneider1

1 Horst Görtz Institute for IT Security,
Ruhr-Universität Bochum, Bochum, Germany

{erik.boss,vincent.grosso,gregor.leander,amir.moradi,
tobias.schneider-a7a}@rub.de

2 University of Bremen and DFKI, Bremen, Germany
tim.gueneysu@uni-bremen.de

Abstract. Block ciphers are arguably the most important crypto-
graphic primitive in practice. While their security against mathematical
attacks is rather well understood, physical threats such as side-channel
analysis (SCA) still pose a major challenge for their security. An effec-
tive countermeasure to thwart SCA is using a cipher representation that
applies the threshold implementation (TI) concept. However, there are
hardly any results available on how this concept can be adopted for
block ciphers with large (i.e., 8-bit) Sboxes. In this work we provide
a systematic analysis on and search for 8-bit Sbox constructions that
can intrinsically feature the TI concept, while still providing high resis-
tance against cryptanalysis. Our study includes investigations on Sboxes
constructed from smaller ones using Feistel, SPN, or MISTY network
structures. As a result, we present a set of new Sboxes that not only
provide strong cryptographic criteria, but are also optimized for TI. We
believe that our results will found an inspiring basis for further research
on high-security block ciphers that intrinsically feature protection against
physical attacks.

1 Introduction

Block ciphers are among the most important cryptographic primitives. Although
they usually follow ad-hoc design principles, their security with respect to known
attacks is generally well-understood. However, this is not the case for the security
of their implementations. The security of an implementation is often challenged
by physical threats such as side-channel analysis or fault-injection attacks. In
many cases, those attacks render the mathematical security meaningless. Hence,
it is essential that a cipher implementation incorporates appropriate counter-
measures against physical attacks. Usually, those countermeasures are developed
retroactively for a given, fully specified block cipher. A more promising approach
is including the possibility of adding efficient countermeasures into the design
from the very start.

c© International Association for Cryptologic Research 2016
B. Gierlichs and A.Y. Poschmann (Eds.): CHES 2016, LNCS 9813, pp. 171–193, 2016.
DOI: 10.1007/978-3-662-53140-2 9

172 E. Boss et al.

For software implementations, this has been done. Indeed, a few ciphers
have been proposed that aim to address the issue of protection against phys-
ical attacks by facilitating a masked Sbox by design. The first example is cer-
tainly NOEKEON [18], other examples include Zorro [20], Picarro [33] and the
LS-design family of block ciphers [21].

For hardware implementations, the situation is significantly different. Here,
simple masking is less effective due to several side-effects, most notably glitches
(see [27]). As an alternative to simple masking, a preferred hardware counter-
measure against side-channel attacks is the so-called threshold implementation
(TI) [32], as used for the cipher FIDES [6]. TI is a masking variant that splits
any secret data into several shares, using a simple secret-sharing scheme. Those
shares are then grouped in non-complete subsets to be separately processed by
individual subfunctions. All subfunctions jointly correspond to the target func-
tion (i.e., the block cipher). Since none of the subfunctions depends on all shares
of the secret data at any time, it is intuitive to see that it is impossible to recon-
struct the secret by first-order side-channel observations. We provide a more
detailed description of the functionality of threshold implementations in Sect. 2.

Unfortunately, it is not trivial to apply the TI concept to a given block
cipher. The success of this process strongly depends on the complexity of the
cipher’s round function and its internal components. While the linear aspects of
any cipher are typically easy to convert to TI, this is not generally true for the
non-linear Sbox. For 4-bit Sboxes, it is possible to identify a corresponding TI
representation by exhaustive search [10]. However, for larger Sboxes, in particular
8-bit Sboxes, the situation is very different. In this case, the search space is far
too large to allow an exhaustive search. In fact, 8-bit Sboxes are far from being
fully understood, from both a cryptographic and an implementation perspective.

With respect to cryptographic strength against differential and linear attacks,
the AES Sbox (and its variants) can be seen as holding the current world record.
We do not know of any Sbox with better properties, but those might well exist.
Unfortunately, despite considerable effort, no TI representation is known for the
AES Sbox that does not require any additional external randomness [7,9,31].

Our Contribution. In this paper we approach this problem of identifying crypto-
graphically strong 8-bit Sboxes that provide a straightforward TI representation.
More precisely, our goal is to give examples of Sboxes that come close to the
cryptanalytic resistance of the AES Sbox. Also, the straight application of the
TI concept to an Sbox should still lead to minimal resource and area costs. This
enables an efficient and low-cost implementation in hardware as well as bit-sliced
software.

In our work we systematically investigate 8-bit Sboxes that are constructed
based on what can be seen as a mini-cipher. Concretely, we construct Sboxes
based on either a Feistel-network (operating with two 4-bit branches and a 4-bit
Sbox as the round function), a substitution permutation network or the MISTY
network. This general approach has already been used and studied extensively.
Examples of Sboxes constructed like this are used for example in the ciphers

Strong 8-bit Sboxes with Efficient Masking in Hardware 173

Crypton [25,26], ICEBERG [40], Fantomas [21], Robin [21] and Khazad [3].
A more theoretical study was most recently presented by Canteaut et al. in [16].

Our idea extends the previous work by combining those constructions aiming
at achieving strong cryptographic criteria with small Sboxes that are easy to
share and intrinsically support the TI concept. As a result of our investigation,
we present a set of different 8-bit Sboxes. These Sboxes are either (a) superior
to the known constructions from a cryptographic perspective but can still be
implemented with moderate resource requirements or (b) outperform all known
constructions in terms of efficiency in the application of the TI concept to the
Sbox, while still maintaining a comparable level of cryptographic strength with
respect to other known Sboxes. All our findings are detailed in Table 1.

Outline. This work is structured as follows. Preliminaries on well-known strate-
gies to construct Sboxes as well as the TI concept are given in Sect. 2. We discuss
the applicability of TI on known 8-bit Sboxes in Sect. 3. The details and results
of the search process are given in Sects. 4 and 5, respectively. We conclude with
Sect. 6.

2 Preliminaries

2.1 Cryptanalytic Properties for Sboxes

In this subsection we recall the tools used for evaluating the strength of Sboxes
with respect to linear, differential and algebraic properties. For this purpose, we
consider an n-bit Sbox S as a vector of Boolean functions: S = (f0, . . . , fn−1),
fi : Fn

2 → F2. We denote the cardinality of a set A by #A and the dot product
between two elements a, b ∈ F

n
2 by: 〈a, b〉 =

∑n−1
i=0 aibi.

Non-linearity. To be secure against linear cryptanalysis [28] a cipher must
not be well-approximated by linear or affine functions. As the Sbox is generally
the only non-linear component in an SP-network, it has to be carefully chosen
to ensure a design is secure against linear attacks. For a given Sbox, the main
criterium here is the Hamming distance of any component function, i.e. a linear
combination of the fi, to the set of all affine functions. The greater this distance,
the stronger the Sbox with respect to linear cryptanalysis. The Walsh transform
WS(a, b), defined as

WS(a, b) :=
∑

x∈F
n
2

(−1)〈a,x〉+〈b,S(x)〉,

can be used to evaluate the correlation of a linear approximation (a, b) �= (0, 0).
More precisely,

P(〈b, S(x)〉 = 〈a, x〉) =
1
2

+
WS(a, b)

2n+1
.

The larger the absolute value of WS(a, b), the better the approximation by the
linear function 〈a, x〉 (or the affine function 〈a, x〉 + 1, in case WS(a, b) < 0).

This motivates the following well known definition.

174 E. Boss et al.

Definition 1 (Linearity). Given a vectorial Boolean function S, its linearity
is defined as

Lin(S) = max
a,b �=0

|WS(a, b)|.

The smaller Lin(S), the stronger the Sbox is against linear cryptanalysis.
It is known that for any function S from F

n
2 to F

n
2 it holds that Lin(S) ≥

2
n+1
2 [17]. Functions that reach this bound are called Almost Bent (AB) func-

tions. However, in the case n > 4 and n even, we do not know the minimal value
of the linearity that can be reached. In particular, for n = 8 the best known
non-linearity is achieved by the AES Sbox with Lin(S) = 32.

Differential Uniformity. A cipher must also be resistant against differential
cryptanalysis [5]. To evaluate the differential property of an Sbox, we consider
the set of all non-zero differentials and their probabilities (up to a factor 2−n).
That is, given a, b ∈ F

n
2 we consider

δS(a, b) := #{x ∈ F
n
2‖ S(x + a) = S(x) + b},

which corresponds to 2n times the probability of an input difference a prop-
agating to an output difference b through the function S. This motivates the
following well known definition.

Definition 2 (Differential Uniformity). Given a vectorial Boolean function
S, its differential uniformity is defined as

Diff(S) = max
a�=0,b

|δS(a, b)|.

The smaller Diff(S), the stronger the Sbox regarding differential cryptanalysis.
It is known that for Sboxes S that have the same number of input and output

bits it holds that Diff(S) ≥ 2. Functions that reach that bound are called Almost
Perfect Nonlinear (APN). While APN functions are known for any number n of
input bits, APN permutations are known only in the case of n odd and n = 6.

In particular, for n = 8 the best known case is Diff(S) = 4, e.g., AES Sbox.

Algebraic Degree. The algebraic degree is generally considered as a good
indicator of security against structural attacks, such as integral, higher-order
differential or, most recently, attacks based on the division property.

Recall that any Boolean function f can be uniquely represented using its
Algebraic Normal Form (ANF):

f(x) =
∑

u∈F
n
2

auxu,

where xu =
∏n−1

i=0 xui
i , with the convention 00 = 1. Now, the algebraic degree

can be defined as follows.

Strong 8-bit Sboxes with Efficient Masking in Hardware 175

Definition 3 (Algebraic Degree). The algebraic degree of f is defined as:

deg(f) = max
u∈F

n
2

{
∑

i

ui, au �= 0

}

.

This definition can be extended to vectorial Boolean functions (Sboxes) as follows

deg(S) = max
0≤i≤n

deg(fi).

For a permutation on F
n
2 the maximum degree is n − 1. Lots of permutations

over F
n
2 achieve this maximal degree. Again the AES Sbox is optimal in this

respect, i.e., the AES Sbox has the maximal degree of 7 for 8-bit permutations.

Affine Equivalence. An important tool in our search for good Sboxes is the
notion of affine equivalence. We say that two functions f and g are affine equiva-
lent if there exists two affine permutations A1 and A2 such that f = A1 ◦ g ◦A2.
The importance of this definition is given by the well-known fact that both the
linearity and the differential uniformity are invariant under affine equivalence.
That is, two functions that are affine equivalent have the same linear and differ-
ential criteria.

2.2 Construction of 8-Bit Sboxes.

Apart from the AES Sbox, which is basically the inversion in the finite field
F28 , hardly any primary construction for useful, cryptographically strong, 8-bit
Sboxes is known.

However, several secondary constructions have been applied successfully.
Here, the idea is to build larger Sboxes from smaller Sboxes. For block ciphers
this principle was first introduced in MISTY [29].

Later, this approach was modified and extended. In particular, it was used
by several lightweight ciphers to construct Sboxes with different optimization
criteria, e.g., smaller memory requirements, more efficient implementation, invo-
lution, and easier software-level masking.

There are basically three known constructions, all of which can be seen as
mini-block ciphers: Feistel networks, the MISTY construction and SP-networks.
Figure 1 shows how these constructions build larger Sboxes from smaller Sboxes.
Note that the MISTY construction is a special case of the SPN. Indeed, the
MISTY construction is equivalent to SPN when F1 = Id and the matrix A =(
1 1
1 0

)
.

For a small number of rounds, we can systematically analyze the crypto-
graphic properties of those constructions (see [16] for the most recent results).
However, for a larger number of rounds, a theoretical understanding becomes
increasingly more difficult in most cases.

Table 1 shows the different characteristics of 8-bit Sboxes known in the liter-
ature that are built from smaller Sboxes. We excluded the PICARO Sbox [33]

176 E. Boss et al.

F1

(a)

F1

(b)

F2F1

A

(c)

Fig. 1. (a) Feistel (b) MISTY (c) SPN

from the list, since it is not a bijection. Furthermore, Zorro is also excluded since
the exact specifications of its structure are not publicly known. We refer often
to this table as it summarizes all our findings and achievements.

2.3 Threshold Implementations

The first attempts to realize Boolean masking in hardware were unsuccessful,
mainly due to glitches [27,30]. Combinatorial circuits which receive both the
mask and the masked data, i.e., secret sharing with 2 shares, most likely exhibit
first-order leakage. Threshold Implementation (TI) has been introduced to deal
with this issue and realize masking in glitchy circuits [32].

The TI concept has been extended to higher orders [8], but our target, in this
work, is resistance against first-order attacks. Hence, we give the TI specifications
only with respect to first-order resistance. Let us assume a k-bit intermediate
value x of a cipher as one of its Sbox inputs (at any arbitrary round) and
represent it as x = 〈x1, . . . , xk〉. For n−1 order Boolean masking, x is represented

by (x1, . . . ,xn), where x =
n⊕

i=1

xi and each xi similarly denotes a k-bit vector

〈xi
1, . . . , x

i
k〉.

Applying linear functions over Boolean-masked data is trivial, since L(x) =
n⊕

i=1

L(xi). However, realization of the masked non-linear functions (Sbox) is gen-

erally non-trivial and is thus the main challenge for TI. As per the TI concepts,
at least n = t+1 shares should be used to securely mask an Sbox with algebraic
degree t. Moreover, TI defines three additional properties:

Correctness. The masked Sbox should provide the output in a shared form

(y1, . . . ,ym) with
m⊕

i=1

yi = y = S(x) and m ≥ n.

Non-completeness. Each output share yj∈{1,...,m} is provided by a component
function fj(.) over a subset of the input shares. Each component function
fj∈{1,...,m}(.) must be independent of at least one input share.

Uniformity. The security of most masking schemes relies on the uniform distri-
bution of the masks. Since in this work we consider only the cases with n = m
and bijective Sboxes, we can define the uniformity as follows. The masked Sbox

Strong 8-bit Sboxes with Efficient Masking in Hardware 177

with n × k input bits and n × k output bits should form a bijection. Otherwise,
the output of the masked Sbox (which is not uniform) will appear at the input of
the next masked non-linear functions (e.g., the Sbox at the next cipher round),
and lead to first-order leakage.

Indeed, the challenge is the realization of the masked Sboxes with high alge-
braic degree. If t > 2, we can apply the same trick used in [32,34], i.e., by
decomposing the Sbox into quadratic bijections. In other words, if we can write
S : G ◦ F , where both G and F are bijections with t = 2, we are able to imple-
ment the first-order TI of F and G with the minimum number of shares n = 3.
Such a construction needs registers between the masked F and G to isolate the
corresponding glitches.

After the decomposition, fulfilling all the TI requirements except uniformity
is straightforward. As a solution, the authors of [10] proposed to find affine
functions A1 and A2 in such a way that F : A2 ◦ Q ◦ A1. If we are able to
represent a uniform sharing of the quadratic function Q, applying A1 on all
input shares, and A2 on all output shares gives us a uniform sharing of F .

TI of 4-bit Permutations. In [11] the authors analyze 4-bit permutations and
identify 302 equivalence classes. In the following, we use the same notation as
in [11] to refer to these classes. Out of these 302, six classes are quadratic. These
six quadratic functions, whose uniform TI can be achieved by direct sharing
or with simple correction terms (see [11]) are listed in Table 2. We included
their minimum area requirements as the basis of our investigations in the next
sections. In contrast to the others, Q300 also needs to be decomposed for uniform
sharing.

2.4 Design Architectures

Due to the high area overhead of threshold implementations (particularly the
size of the shared Sbox), serialized architectures are favored, e.g. in [9,31,34,38].
Our main target in this work is a serialized architecture in which one instance
of the Sbox is implemented. Furthermore, we focus on byte-wise serial designs
due to our underlying 8-bit Sbox target. In such a scenario, the state register
forms a shift register, that at each clock cycle shifts the state bytes through the
Sbox and makes use of the last Sbox output as feedback. Figure 2 depicts three
different architectures which we can consider. Note that extra logic is not shown
in this figure, e.g. the multiplexers to enable other operations like ShiftRows.

A shared Sbox with 3 shares should contain registers, e.g., PRESENT [34] and
AES [9,31]. As an example, if the shared Sbox contains 4 stages (see Fig. 2(a))
and forms a pipeline, all of the Sbox computations can be done in n + 3 clock
cycles, with n as the number of state bytes. We refer to this architecture as raw
in later sections. Note that realizing a pipeline is desirable. Otherwise, the Sbox
computations would take 3n + 1 clock cycles.

As an alternative, we can use the state registers as intermediate registers
of the shared Sbox. Figure 2(b) shows the corresponding architecture, where

178 E. Boss et al.

more multiplexers should be integrated to enable the correct operation (as an
example in Skinny [4]). In this case, all n shared Sboxes can be computed in
n clock cycles. It is noteworthy that such an optimization is not always fully
possible if intermediate registers of the shared Sbox are larger than the state
registers (e.g., in case of AES [9,31]).

If the Sbox has been constructed by k times iterating a function F , it is
possible to significantly reduce the area cost. Figure 2(c) shows an example.
Therefore, similar to a raw architecture without pipeline, (k − 1)n + 1 clock
cycles are required for n Sboxes. This is not efficient in terms of latency, but is
favorable for low-throughput applications, where very low area is available and
in particular when SCA protection is desired. We refer to this architecture as
iterative.

1F1 2 3 nF2

Sbox

F3F4

(a) raw

F31F4 2 3 nF2 F1

(b) interleaved

1F 2 3 n

(c) iterative

Fig. 2. Different serialized design architectures

3 Threshold Implementation of Known 8-bit Sboxes

Amongst 8-bit Sboxes, the AES TI Sbox has been widely investigated while
nothing about the TI of other Sboxes can be found in public literature. The
first construction of the AES TI Sbox was reported in [31]. The authors made
use of the tower-field approach of Canright [15] and represented the full circuit
by quadratic operations. By applying second-order Boolean masking, i.e., three
shares as minimum following the TI concept, all operations are independently
realized by TI. On the other hand, the interconnection between (and concatena-
tion of) uniform TI functions may violate the uniformity. Therefore, the authors
integrated several fresh random masks – known as remasking or applying virtual
shares [11] – to maintain the uniformity, in total 48 bits for each full Sbox. Since
the AES TI Sbox has been considered for a serialized architecture, the authors
formed a 4-stage pipeline design, which also increased the area by 138 registers.

Strong 8-bit Sboxes with Efficient Masking in Hardware 179

Later in [9] three more efficient variants of the AES TI Sbox were introduced.
The authors applied several tricks, e.g., increasing the number of shares to 4 and
5 and reduce them back to 3 in order to relax the fresh randomness requirements.
Details of all different designs are listed in Table 1. In short, the most efficient
design (called nimble) forms a 3-stage pipeline, where 92 extra registers and 32
fresh random bits are required.

CLEFIA. makes use of two 8-bit Sboxes S0 and S1. The
first one is formed by utilizing four different 4-bit bijec-
tions and multiplication by 2 in GF(24) defined by polyno-
mial X4 + X + 1. The entire SS0 : E6CA872FB14059D31,
SS1 : 640D2BA39CEF8751, SS2 : B85EA64CF72310D9, and
SS3 : A26D345E0789BFC1 are cubic and – based on the classi-
fication given in [11] – belong to classes C210, C163, C160, and
C160 respectively. Unfortunately, all these classes are of non-
alternating group and cannot be shared with 3 shares, i.e.,
no solution exists either by decomposition or remasking2. We
should use at least 4 shares (which is out of our focus), and its uniform sharing
with 4 shares also needs to be done in at least 3 stages. Therefore, a 4-share
version of TI S0 can be realized in 6 stages.

The second one is constructed following the AES Sbox, i.e., inversion in
GF(28), but with a different primitive polynomial and affine transformations.
Based on the observations in [2,36], inversion in one field can be transformed to
another field by linear isomorphisms. Therefore, S1 and the AES Sbox are affine
equivalent and all difficulties to realize the AES TI Sbox hold true for S1.

Crypton V0.5. utilizes two 8-bit Sboxes, S0 and S1, in a 3-
round Feistel, as shown here. By swapping P0 and P2 the
Sbox S0 is converted to its inverse S1. P1 : AF4752E693C8D1B0
belongs to the cubic class C295. Similar to the sub functions
of CLEFIA, it belongs to the non-alternating group and can-
not be shared with 3 shares. In short, at least 4 shares in
3 stages should be used. Further, P0 : F968994C626A135F
and P2 : 04842F8D11F72BEF are quadratic, non-bijective func-
tions, but that does not necessarily mean that their uniform sharing with 4 shares
does not exist. We have examined this issue by applying direct sharing [11], and
we could not find their uniform sharing with either 3 or 4 shares. In this case,
remasking is a potential solution. However, due to the underlying Feistel struc-
ture of S0 and S1, the non-uniformity of the shared P0 and P2 does not affect
the uniformity of the resulting Sbox as long as the sharing of the Sbox input
is uniform. More precisely, P0 output is XORed with the left half of the Sbox
input. If the input is uniformly shared, the input of P1 is uniform regardless of
the uniformity of the P0 output. See [8] and [11], where it is shown that a · b

1 In the following we denote functions by a hexadecimal-string in which the first letter
denotes the first element of the look-up table implementing the function.

2 Alternatively, one can apply the technique presented in [24].

180 E. Boss et al.

Table 1. Criteria for the 8-bit Sboxes

Diff. Lin. Deg. Iter. #b AND #c Unprotected Threshold implementationa Type
Area [GE] Delay Area [GE] Delay Stage Mask

itera.d rawe ns itera.d rawf ns #g #h

AES [19] 4 32 7 32 [13] 236 5.69 4244 [31] 5 48 Inversion

3708 [9] 3 44

3653 [9] 3 44

2835 [9] 3 32

CLEFIA
(S0) [39]

10 56 7 4 shares 6 0 SPN

CLEFIA
(S1) [39]

4 32 7 like AES 3 32 Inversion

Crypton
V0.5 [25]

8 64 5 68 1.76 4 shares 5 0 Feistel

Crypton
V1 [26]

10 64 6 111 2.40 4 shares 6 0 SPN

ICEBERG
[40]

8 64 7 151 2.39 2115 1.67 9 0 SPN

Fantomas
[21]

16 64 5 11 130 2.43 766 1.72 4 0 MISTY

Khazad
[3]

8 64 7 154 2.48 2062 1.87 9 0 SPN

Robin
[21]

16 64 6 3 12 28 79 2.37 319 1180 1.73 6 0 Feistel

Scream
v3 [22]

8 64 6 12 87 2.38 2204 2.00 6 0 Feistel

Whirlpool
[37]

8 56 7 146 2.37 2203 2.08 9 0 SPN

SB1 16 64 6 8 16 8 57 1.38 51 1189 1.09 8 0 SPN
(BitP)

SB2 16 64 4 2 12 46 99 1.99 253 631 1.70 2 0 SPN
(Mat)

SB3 8 60 7 4 24 48 198 3.98 273 1498 2.10 4 0 SPN
(Mat)

SB4 8 56 7 5 30 29 140 4.09 202 1507 2.10 5 0 Feistel

SB5 10 60 7 9 27 12 95 3.19 78 1583 1.10 9 0 SPN
(BitP)

SB6 10 60 7 4 20 49 174 4.78 226 1247 1.95 4 0 SPN
(Mat)

aWith 3 shares
bNumber of iterations of a unique function
cNumber of AND gates, important for masked bit-sliced software implementations
dExcluding the required extra logic, e.g., multiplexers and registers
eFully combinatorial
f Including pipeline registers
gNumber of stages in the pipeline
hNumber of fresh mask bits required for each full Sbox

(AND gate) cannot be uniformly shared with 3 shares, but a ·b+c (AND+XOR)
can be uniform if a, b, and c are uniformly shared. Therefore, a 4-share version
of TI S0 (resp. S1) can be realized in 5 stages.

Crypton V1. Sboxes are made of two 4-bit bijections P0 :
FEA1B58D9327064C, P1 : BAD78E05F634192C and their inverse
in addition to a linear layer in between. P0 and its inverse P−1

0

belong to the cubic class C278, which can be uniformly shared
with 3 and 4 shares but in 3 stages. Both P1 and its inverse
P−1
1 are affine equivalent to the non-alternating cubic class C295,

that – as given above – must be shared at least with 4 shares.
Therefore, in order to share each Crypton V1 Sbox, 4 shares in
a construction with 6 stages should be used.

Strong 8-bit Sboxes with Efficient Masking in Hardware 181

ICEBERG. is formed by two 4-bit bijections S0 :
D7329AC1F45E60B8 and S1 : 4AFC0D9BE6173582 in a 3-round
SPN structure, where permutation P8 is a bit permutation. Both
S0 and S1 are affine equivalent to the cubic class C270, which
needs at least 3 stages to be uniformly shared with 3 shares.
Therefore, a uniform sharing of the ICEBERG Sbox with 3
shares can be realized in 9 stages without any fresh randomness.
Amongst the smallest decompositions, we suggest A4 ◦ Q294 ◦
A3 ◦ Q294 ◦ A2 ◦ Q294 ◦ A1 for S0 with A1 : B038F47CD65E921A,
A2 : C6824E0AD7935F1B, A3 : 3DB50E8679F14AC2, A4 :
AC24E860BD35F971, and for S1 with A1 : 63EB50D827AF149C,
A2 : D159F37BC048E26A, A3 : 2AE608C43BF719D5, A4 : C5814D09E7A36F2B,
and Q294 : 0123456789BAEFDC.

Fantomas. utilizes one 3-bit bijection S3 :
03615427 and one 5-bit bijection S5 : 00, 03,
12, 07, 14, 17, 04, 11, 0C, 0F, 1F, 0B, 19, 1A, 08, 1C, 10,
1D, 02, 1B, 06, 0A, 16, 0E, 1E, 13, 0D, 15, 09, 05, 18, 01
in a 3-round MISTY construction. S3 is affine
equivalent to the quadratic class Q3

3, which can be
uniformly shared with 3 shares in at least 2 stages.
As a decomposition, we considered S3 : A3 ◦
Q1 ◦ A2 ◦ Q2 ◦ A1 with A1 : 07342516, A2 :
02461357, A3 : 01235476, Q1 : 01234576, and
Q2 : 01234675.

The construction of S5, as shown here, consists
of 4 Toffoli gates and 4 XORs. The quadratic F and G, as well as linear parts L1

and L2 are correspondingly marked. Hence, we can decompose S5 : L2◦G◦L1◦F .
The uniform sharing of both F and G can be found by direct sharing. Therefore,
the Fantomas Sbox can be uniformly shared with 3 shares in 4 stages, without
any fresh mask. Figure 3(a) depicts the block diagram representation, and the
area requirements are listed in Table 1. Each Sbox cannot be implemented iter-
atively, and each Sbox computation has a latency of 4 clock cycles. However, a
pipeline design can send out Sbox results in consecutive clock cycles, but with
a 4-clock-cycle latency.

Khazad. utilizes the Anubis Sbox, which is also based on a
3-round SPN. Two 4-bit bijections P : 3FE054BCDA967821
and Q : 9E56A23CF04D7B18 in addition to a bit permuta-
tion layer form the 8-bit Sbox. Similar to ICEBERG, both
P and Q belong to the cubic class C270. Therefore, the uni-
form sharing of the Khazad (resp. Anubis) Sbox can be real-
ized in 9 stages without fresh masks. For the decomposi-
tion, we suggest A4 ◦ Q294 ◦ A3 ◦ Q294 ◦ A2 ◦ Q294 ◦ A1 for
P with A1 : 04C862AE15D973BF, A2 : A2E680C4B3F791D5,
A3 : 842EA60CB71D953F, A4 : 80D5C491A2F7E6B3, and for

182 E. Boss et al.

Q with A1 : 082A3B194C6E7F5D, A2 : 3FB71D952EA60C84,
A3 : 19D53BF708C42AE6, A4 : 0B38291A4F7C6D5E.

Robin. is constructed based on the 3-round Feistel, similar to Crypton V0.5, but
a single 4-bit bijection S4 plays the role of all functions P1, P2, and P3. Although
the swap of the nibbles in the last Feistel round is omitted, the Robin Sbox is
the only known 8-bit Sbox which can be implemented in an iterative fashion.
S4 : 086D5F7C4E2391BA has been taken from [41], known as the Class 13 Sbox. S4

is affine equivalent to the cubic class C223 and, as stated above, can be uniformly
shared with 3 shares in 2 stages. As one of the smallest solutions we considered
A3 ◦Q294 ◦A2 ◦Q294 ◦A1 with A1 : AE268C04BF379D15, A2 : C480A2E6D591B3F7,
A3 : 20A8B93164ECFD75. Therefore, with no extra fresh randomness we can
realize uniform sharing of the Robin Sbox with 3 shares in 6 stages.

In order to implement this construction, we have four different options. A
block diagram of the design is shown in Fig. 3(b) (the registers filled by the gray
color are essential for pipeline designs).

– Iterative, w/o pipeline, each Sbox in 6 clock cycles.
– Iterative, pipeline, each two Sboxes in 6 clock cycles.
– Raw, w/o pipeline, each Sbox in 6 clock cycles.
– Raw, pipeline, each 6 Sboxes in 6 clock cycles, each one with a latency of 6

clock cycles.

Note that extra control logic (such as multiplexers) is required for all iterative
designs which is excluded from Fig. 3(b) and Table 1 for the sake of clarity.

Scream V3. is similar to that of Crypton V0.5, i.e., 3-round Feistel. P0,
and P2 are replaced by two almost perfect nonlinear (APN) functions
APN1 : 020B300A1E06A452 and APN2 : 20B003A0E1604A25, and P1 by
S1 : 02C75FD64E8931BA. Similar to Crypton V0.5, the two APN functions are
not bijective. However, they are cubic rather than quadratic. The source of these
two APNs is the construction given in [16]. We can decompose both of them
into two quadratic functions as APN1 : F ◦ G and APN2 : F ◦ (⊕1) ◦ G, with
F : 020B30A01E06A425 and G : 0123457689ABCDFE. By (⊕1) we represent an
identity followed by XOR with constant 1, i.e., flipping the least significant bit.
Uniform sharing of G with 3 shares can be easily achieved by direct sharing. F ,
however, cannot be easily shared. F consists of three 2-input AND gates which
directly give three output bits. To the best of our knowledge, F cannot be uni-
formly shared without applying remasking. However, as stated for Crypton V0.5,
the non-uniformity of F (in general APN1 and APN2) does not play any role
if S1 is uniformly shared.

S1 is affine equivalent to the cubic class C223 which can be uniformly shared
in 2 stages with 3 shares. Therefore, the Scream V3 Sbox can be shared by 3
shares in 6 stages, without any fresh random masks. There are many options
to decompose S1; as one of the smallest solutions we suggest S1 : A3 ◦ Q294 ◦
A2 ◦ Q294 ◦ A1 with A1 : 26AE159D37BF048C, A2 : 4C086E2A5D197F3B, A3 :
082A3B194C6E7F5D.

Strong 8-bit Sboxes with Efficient Masking in Hardware 183

Whirlpool. employs three different 4-bit bijections E, E−1 and R in a customized
SPN. E : 1B9CD6F3E874A250 and its inverse are affine equivalent to the cubic
class C278, which can be uniformly shared with 3 shares in at least 3 stages.
R : 7CBDE49F638A2510 also belongs to the cubic class C270. As given for ICE-
BERG and Khazad, C270 needs 3 stages for a uniform sharing with 3 shares.
Hence, the entire Whirlpool Sbox can be uniformly shared
with 3 shares in 9 stages, without any extra randomness. The
decomposition of R is similar to that of Khazad, i.e., R :
A4◦Q294◦A3◦Q294◦A2◦Q294◦A1 with A1 : 02138A9BCEDF4657,
A2 : 0C48A6E21D59B7F3, A3 : C509E72BD418F63A, A4 :
0A1B4E5F28396C7D. However, the decomposition of E and E−1

are more costly. One of the cheapest solutions is A4 ◦ Q294 ◦
A3 ◦ Q293 ◦ A2 ◦ Q294 ◦ A1 for E with A1 : 048CAE2673FBD951,
A2 : 80C4B3F7A2E691D5, A3 : 0B834FC71A925ED6, A4 :
014589CD2367ABEF, and for E−1 with A1 : A2F76E3B80D54C19,
A2 : A280E6C4B391F7D5, A3 : 95F31D7B84E20C6A, A4 :
2736AFBE05148D9C, and Q293 : 0123457689CDEFBA.

Due to their required minimum 4 shares, except for CLEFIA, Crypton V0.5,
and Crypton V1, we have implemented TI for all the aforementioned Sboxes, and
have given their area requirements as well as the number of stages (clock cycles)
in Table 1. For the synthesis, we used Synopsys Design Compiler with the UMC-
L18G212T3 [42] ASIC standard cell library, i.e., UMC 0.18μm technology node.
It is noteworthy that amongst all the Sboxes we covered, the Robin Sbox is the
only one which can be iteratively implemented. We should also emphasize that
Midori [1] and Skinny [4] (in their 128-bit versions) make use of 8-bit Sboxes.
Midori 8-bit Sboxes are made by concatenating two 4-bit Sboxes and the Skinny
one by four times iterating an 8-bit quadratic bijection. In both cases their
differential and linear properties are 64 and 128 respectively, which are notably
less compared to the strong 8-bit Sboxes listed in Table 1. Therefore, we did not
consider them in our investigations.

Table 2. Performance figures of 4×4 quadratic bijections with respect to their TI cost

Table Area [GE] # of stages

Q4
4 0123456789ABDCFE 27 1

Q4
12 0123456789CDEFAB 63 1

Q4
293 0123457689CDEFBA 84 1

Q4
294 0123456789BAEFDC 51 1

Q4
299 012345678ACEB9FD 114 1

Q4
300 0123458967CDEFAB 151 2 (Q12 ◦ Q4)

184 E. Boss et al.

Fig. 3. Threshold implementation of Robin and Fantomas Sboxes, each signal repre-
sents 3 shares, the gray registers for pipeline variants

4 Finding TI-Compliant 8-bit Sboxes

Our goal is to find strong 8-bit Sboxes which can be efficiently implemented
as threshold implementations. To this end, we incorporate the idea of building
an 8-bit Sbox from smaller Sboxes in our search. In particular we aim to con-
struct a round function that can be easily shared and iterated to generate a
cryptographically strong Sbox. Easily shareable in our context refers to func-
tions for which an efficient uniform shared representation is known. Thus, if we
find a function with these properties, the resulting sequence of round functions
will be a good cryptographic Sbox which can be efficiently masked. As done
previously, we concentrate on the three basic constructions mentioned above:
Feistel, SPN, and MISTY. As the number of possible choices for SPN is too
large for an exhaustive search, we focus on two special cases for the linear layer
of the SP-network. First, instead of allowing general linear layers we focus on
bit-permutations only. Those have the additional advantage of being basically
for free, both in hardware and in a (bitsliced) software implementation. Second,
we focus on linear layers which correspond to matrix multiplications over F16.
Those cover the MISTY construction as a special case.

In all cases, the building blocks for our round function are 4-bit Sboxes. As
described in Sect. 2, those Sboxes are well-analyzed and understood regarding
both their threshold implementation [11] and their cryptographic properties. To
minimize the number of required shares, we mainly consider functions with a

Strong 8-bit Sboxes with Efficient Masking in Hardware 185

maximum degree of two. Additional shares, otherwise, may increase the area or
randomness requirements for the whole circuit. In [11], six main quadratic per-
mutation classes are identified which are listed in Table 2. All existing quadratic
4-bit permutations are affine equivalent to one of those six. However, it should be
noted that permutations of class Q4

300 cannot be easily shared with three shares
without decomposition or additional randomness. Therefore, we mainly focus on
the other classes from our search. Note that we include the identity function A4

0

in the case of the SPN construction. Since the identity function does not require
any area, round functions based on a combination of identity and one quadratic
4-bit permutation can result in very lightweight designs.

One important difference to all previous constructions listed in Table 1 is
that we do consider higher number of iterations for our constructions. This is
motivated by two observations. First, it might allow to improve upon the crypto-
graphic criteria and second it might be beneficial to actually use a simpler round
function, in particular those that can be implemented in one stage, more often
than a more complicated round function with a smaller number of iterations.
As can be seen in Table 1 this approach of increasing the number of iterations is
quite successful in many cases.

Next we describe in detail the search for good Sboxes for each of the three
constructions we considered.

4.1 Feistel-Construction

As a first construction, we examine round functions using a Feistel-network sim-
ilar to Fig. 1(a). By the basic approach described below, we were able to exhaus-
tively investigate all possible constructions based on any 4-bit to 4-bit function
for any number of iterations between 1 and 5. This can be seen as an extension
(in the case of n = 4 and for identical round functions) to the results given in
[16] where up to 3 rounds have been studied.

However, such an exhaustive search is not possible in a naive way. As there
are 264 4-bit functions and checking the cryptographic criteria of an n-bit Sbox
requires roughly 22n basic operations, a naive approach would need more than
280 operations.

Fortunately, this task can be accelerated by exploiting the distinct structure
of Feistel-networks while still covering the entire search space.

We recall the definition of a Feistel round for the function F : Fn
2 → F

n
2 :

Feistel1F : Fn
2 × F

n
2 → F

n
2 × F

n
2 , (L,R) �→ (R ⊕ F (L), L).

We denote by FeistelnF the nth functional power of Feistel1F , i.e.,

FeistelnF = Feistel1F ◦Feistel1F ◦ · · · ◦ Feistel1F .

To reduce the search space, we show below that if G = A ◦ F ◦ A−1 for an
invertible affine function A, then FeistelnF is affine equivalent to FeistelnG.

Thus, we can reduce our search space from all 264 functions, to roughly XY
functions. Indeed, Brinkmann classified all 4 to 4 bit functions up to extended

186 E. Boss et al.

affine equivalence [14]. There are 4713 equivalence classes up to extended affine
equivalence. Now, with the results given in the full version of the paper [12], it
is enough to consider all functions of the form A1 ◦ F + C, where A1 is an affine
permutation and C is any linear mapping on 4 bits. As FeistelnA1◦F◦A2+C′ is affine
equivalent to the function Feisteln

A2◦A1◦F◦A2◦A−1
2 +C′◦A−1

2
= FeistelnA2◦A1◦F+C ,

this will exhaust all possibilities up to affine equivalence. Doing so, we reduce
the search space to:

#Sboxes = 4713 · 24 · |GL(2, 4)| · 216 � 246.50. (1)

As this is still a large search space, we emplyed GPUs to tackle this task.

4.2 SPN-Construction with Bit-Permutations as the Linear Layer

In addition to Feistel-networks, we examined round functions which are similar
to Fig. 1(c). However, A is replaced by an XOR with a constant followed by
an 8-bit permutation. Depending on F1 and F2, this construction can lead to
very lightweight round functions since constant addition and simple bit permu-
tations are very efficient in hardware circuits. For F1 and F2 we consider the
five quadratic permutations (listed in Table 2) as well as the identity function
(denoted by A4

0). Obviously, we exclude the combination F1 = F2 = A4
0. There

are 8! different 8-bit permutations and 256 possibilities for the constant addition.
If we looked for all combinations of all affine equivalents of the chosen functions,
we would have to test

#Sboxes = 256 · 8! · 35 · 3225604 · 10 � 2105 (2)

Sboxes. This is clearly not feasible. Therefore, we decide to restrict the number
of possibilities for each of the two functions. In particular, we only consider the
representative for each class as presented in [11] without affine equivalents. This
reduces the search space to

#Sboxes = 256 · 8! · 35 · 10 � 232, (3)

which can be completely processed.
Similar to the Feistel-network, it is possible to further reduce the complexity

of the search. To this end, we first define the round function for this type of Sbox
as

BitPerm1
F1,F2,C,P : Fn

2 × F
n
2 → F

2n
2

(L,R) �→ P
(
(F1(L)||F2(R)) ⊕ C

)
,

where || denotes the concatenation of the two parts. Furthermore, it can be
trivially seen that for every combination of an 8-bit permutation P1 and an 8-bit

Strong 8-bit Sboxes with Efficient Masking in Hardware 187

constant C1 there exist a complementary combination of an 8-bit permutation
P2 and an 8-bit constant C2 with

P1

(
(L||R) ⊕ C1

)
= P2

(
(R||L) ⊕ C2

)
, ∀ R,L ∈ F

n
2 .

Thus, the search can be speeded up since BitPerm1
F1,F2,C1,P1

is the same as
BitPerm1

F2,F1,C2,P2
. Therefore, we only need to check

#Sboxes = 256 · 8! · 20 · 10 � 231 (4)

Sboxes for this type of round function.

4.3 SPN-Construction with F16-linear Layers only

For the last type of construction, we consider another special case of the con-
struction depicted in Fig. 1(c). Here we restrict ourselves to the case where A
corresponds to a multiplication with a 2 × 2 matrix with elements from F16.
Additionally, a constant is again added to the outputs of F1 and F2. As noted
before, a special case of this construction is the MISTY technique.

For F1 and F2 we consider the five quadratic functions and the identity
function. Just like for the bit permutation round function, it is not feasible to
check all affine equivalents. Therefore, we limit our search to these functions.
The field multiplication is performed with the commonly used polynomial X4 +
X + 1 [23]. Given that the matrix needs to be invertible and provide some form
of mixture between the two halves, this leaves us with 61200 possibilities for the
matrix multiplication. It is further possible to apply the same optimization as
for permutation-based round functions. Therefore, we need to check

#Sboxes = 256 · 61200 · 20 · 10 � 231.5 (5)

Sboxes for this type of round function.

2 6 10

#Iteration

0

50

100

150

200

250

D
iff

.

(a) Differential Uniformity

2 6 10

#Iteration

0

50

100

150

200

250

Li
n.

(b) Linearity

Fig. 4. The smallest achievable differential uniformity and linearity for each number
of iterations for round functions with F16-linear layers and F1 = A4

0 and (�)F2 = Q4
4,

(∗)F2 = Q4
12, (�)F2 = Q4

293, (◦)F2 = Q4
294, (�)F2 = Q4

299.

188 E. Boss et al.

5 Results

We completed the search for the three aforementioned types of round functions
with up to ten iterations.

The search for Feistel-networks for all 4713 classes takes around two weeks on
a machine with four NVIDIA K80s for a specific set of parameters. In particular,
the performance depends on the bounds defined by cryptographic properties
(differential uniformity) as well as the iteration count of the network. Note that,
with respect to cryptographic criteria, our search shows that for iterations ≤ 5
no 8-bit balanced Feistel with identical round functions can have a linearity below
56 and a differential uniformity below 8.

Furthermore, the search for SPNs with bit permutations (resp. with F16-
linear layer) required around 48 h (resp. 54 h) on one Intel Xeon CPU with 12
cores. It was possible to detect some very basic relations between the security,
number of iterations and area of the Sbox. Figure 4 shows the smallest differential
uniformity and linearity values which can be achieved for a specific number of
iterations using a round function based on the F16-linear layer with constant
addition. As expected, the more iterations are applied, the higher resistance
against linear and differential cryptanalysis could be achieved. The size of each
of the considered quadratic permutations is given in Table 2. Bigger functions
like Q4

293 and Q4
299 achieve good cryptographic properties with fewer iterations

than smaller functions like Q4
4. For the other combinations of (F1, F2) and types

of round functions the graphs behave similarly. Depending on the remaining
layers of the cipher and the targeted use case, a designer needs to find a good
balance between the parameters. In the following, we present a few selected
Sboxes optimized for different types of applications.

In our evaluation, we only consider Sboxes with differential uniformity at
most 16 and linearity of at most 64. These are the worst properties between
the observed constructed 8-bit Sboxes in Table 1. From the cryptographic stand-
point, our Sboxes should not be inferior to these functions. We identified the
following strong Sboxes that cover the most important scenarios.

– SB1: This Sbox possesses a very small round function. In a serial design the
round function is usually implemented only once to save area.

– SB2: This Sbox is selected to enable an efficient implementation in a round-
based design. For this not only the size of the round function is important but
also the number of iterations. Additional iterations require additional instan-
tiations of the round function with a dedicated register stage. Furthermore,
this Sbox requires the least number of iterations and can be implemented with
a very low number of AND gates. Thus, it is also suited to masked software
implementations.

– SB3: This Sbox has very good cryptographic properties and requires one less
iteration than SB4.

– SB4: This Sbox has very good cryptographic properties.
– SB5: This Sbox is similar to SB1 which has a small round function. However,

it trades area for better cryptographic properties.

Strong 8-bit Sboxes with Efficient Masking in Hardware 189

– SB6: This Sbox is similar to SB2 that is optimized for raw implementations.
However, it trades area for better cryptographic properties.

5.1 Selected Sboxes

In this section, we supply the necessary information to implement the selected
Sboxes. For this, we first recall the basic structure of the round functions. Table 1
shows that our selected round functions consists of bit permutations and F16-
linear layers. The structure of both types is similar to Fig. 1(c). We denote the
most (resp. least) significant four bits as L (resp. R). The round function Round :
F
4
2 × F

4
2 �→ F

8
2 is then defined as

Round(L,R) = P
(
(F1(L)||F2(R)) ⊕ C

)
,

where C is an 8-bit constant and P (.) denotes either an 8-bit permutation or
an F16-linear layer. In Table 3, we describe a specific bit permutation with an
eight-element vector where each element denotes the new bit position, e.g., no
permutation is 01234567 whereas complete reversal is 76543210. The F16-linear
layer is realized as a multiplication with a 2 × 2 matrix with elements in F16.
Let us denote the most (resp. least) significant four input bits to the matrix
multiplication as LM (resp. RM). The multiplication is then defined as

MatMul(LM , RM) = (E1 · LM ⊕ E2 · RM ||E3 · LM ⊕ E4 · RM) ,

where E1, E2, E3, E4 ∈ F16 are the elements of the chosen matrix. To describe
the linear layers of our Sboxes we give the specific [E1, E2, E3, E4] for each matrix
in Table 3.

These parameters combined with the number of iterations enable the real-
izations of each Sbox. To increase efficiency of the TI the constant is added to
only one of the shares. In some cases, the area of the design can be reduced by
adding a particular constant to the two remaining shares. This is based on the
fact that an additional NOT gate can turn e.g., an AND gate to a smaller NAND
gate [35]. The following linear layer still needs to be applied to all shares. Table 3
contains this condensed description of the selected Sboxes. Further details for
each of them can be found in the full version of the paper [12].

For SB4, since it uses a Feistel-network, we construct the Sbox using the
round function H(x) = G(F (x)) ⊕ A(x), where F is taken from the 4713 equiv-
alence classes; G and A represent the linear and affine parts respectively. H, F ,
G and A are all 4-bit to 4-bit functions. The full definition of the round is then
simply (L,R) �→ (R ⊕ H(L), L).

5.2 Comparison

Table 1 gives an overview of our results and we summarize the most important
observations in the following. The first observation is that our proposed designs
do not require fresh mask bits to achieve uniformity. This is an improvement over

190 E. Boss et al.

Table 3. Specifics of the selected Sboxes.

F1 F2 Const. (Hex) Parameter Type Iterations

SB1 A4
0 Q4

294 04 62750413 Perm. 8

SB2 Q4
293 Q4

293 EE [2, 4, 4, 2] Matrix 2

SB3 Q4
293 Q4

299 6C [2, 2, 3, 11] Matrix 4

SB5 Q4
4 Q4

294 85 20647135 Perm. 9

SB6 Q4
293 Q4

294 F8 [0, 5, 13, 15] Matrix 4

F G A Type Iterations

SB4 0001024704638EAD 028A9B1346CEDF57 6273627351405140 Feistel 5

all TI types of the AES Sbox and some other Sboxes from Table 1. They need
up to 64 bits of randomness for one full Sbox. Given that modern ciphers usually
include multiple rounds with many Sboxes, this can add up to a significant
amount of randomness which needs to be generated.

Furthermore, all of our proposed Sboxes can be implemented iteratively. This
comes with the advantage that even the more complex designs, e.g., SB4 and
SB5, can be realized with very few gates depending on the design architecture.
From all the other Sboxes in Table 1 this is only possible for Robin and its round
function requires more area than any of our proposed Sboxes.

In particular, SB1 and SB2 require the least area in their respective target
architectures (i.e., iterative and raw) out of all considered 8-bit Sboxes. The dif-
ference for the iterative architecture is especially large where SB1 needs roughly
six times less area than the Robin Sbox.

SB2 requires the least number of stages. Additionally, it requires only 12
AND gates for the whole Sbox which is very close to the best number, i.e., 11 for
Fantomas. This is an advantage for masked bit-sliced implementations making
SB2 suitable for software and hardware designs. A more detailed discussion of
this aspect is given in the full version of the paper [12].

As expected, we did not find any Sbox with better cryptographic properties
than the AES Sbox. However, SB3 and SB4 can still provide better resistance
against cryptanalysis attacks than most of the other considered Sboxes. This
comes at the cost of an increased area for the raw implementations. Nevertheless,
the required area is still smaller than any AES TI and their round function is
still smaller than Robin for iterative designs.

As depicted in Fig. 4, a trade-off between resources and cryptographic prop-
erties is possible. If SB1 and SB2 do not provide the desired level of security
and SB3 and SB4 are too large, SB5 and SB6 might be the best solution. Their
cryptographic properties are still better or equal than the competitors while the
area is significantly smaller than SB3 and SB4. For the sake of completeness,
we included the area requirement of the unprotected implementation as well as
the latency of different designs in Table 1.

Strong 8-bit Sboxes with Efficient Masking in Hardware 191

Decryption usually requires the inverse of the Sbox. Therefore, it is important
that the Sbox inverse has comparably good properties to the original Sbox.
For SB4 this is obvious since the Feistel-structure makes it straightforward to
construct the inverse. Therefore, inverse SB4 has exactly the same properties as
SB4. For the other cases, this is not trivial. Nevertheless, the inverse of each of
our-considered quadratic functions is self-affine equivalent. For more information
the interested reader is referred to the full version of the paper [12].

6 Conclusion and Future Work

In this work we identified a set of six 8-bit S-boxes with highly useful proper-
ties using a systematic search on a range of composite Sbox constructions. Our
findings include 8-bit Sboxes that provide comparable or even higher resistance
against linear and differential cryptanalysis with respect to other 8-bit Sbox
but intrinsically support the TI concept without any external randomness. At
the same time our selected Sboxes come with a range of useful implementa-
tion properties, such as a highly efficient serialization option, or a very low area
requirement. Future work comprises extended criteria for the Sbox composition,
including diffusion layers beyond permutations.

Acknowledgements. This work is partly supported by the DFG Research Training
Group GRK 1817 Ubicrypt and the European Union’s Horizon 2020 research and
innovation programme under grant agreement No. 643161 (ECRYPT-NET).

References

1. Banik, S., Bogdanov, A., Isobe, T., Shibutani, K., Hiwatari, H., Akishita, T.,
Regazzoni, F.: Midori: a block cipher for low energy. In: Iwata, T., et al. (eds.)
ASIACRYPT 2015. LNCS, vol. 9453, pp. 411–436. Springer, Heidelberg (2015).
doi:10.1007/978-3-662-48800-3 17

2. Barkan, E., Biham, E.: In how many ways can you write Rijndael? In: Zheng,
Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 160–175. Springer, Heidelberg
(2002)

3. Barreto, P.S.L.M., Rijmen, V.: The Khazad legacy-level block cipher. Primitive
Submitted to NESSIE, 97 (2000)

4. Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Thomas Peyrin, Y., Sasaki,
P.S., Sim, S.M.: The Skinny family of block ciphers and its low-latency variant
mantis. CRYPTO 2016. LNCS. Springer, Berlin (2016). (to appear)

5. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. In:
Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21.
Springer, Heidelberg (1991)

6. Bilgin, B., Bogdanov, A., Knežević, M., Mendel, F., Wang, Q.: Fides: light-
weight authenticated cipher with side-channel resistance for constrained hardware.
In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp. 142–158.
Springer, Heidelberg (2013)

http://dx.doi.org/10.1007/978-3-662-48800-3_17

192 E. Boss et al.

7. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: A more effi-
cient AES threshold implementation. In: Pointcheval, D., Vergnaud, D. (eds.)
AFRICACRYPT. LNCS, vol. 8469, pp. 267–284. Springer, Heidelberg (2014)

8. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: Higher-order threshold
implementations. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part II. LNCS,
vol. 8874, pp. 326–343. Springer, Heidelberg (2014)

9. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: Trade-offs for threshold
implementations illustrated on AES. IEEE Trans. CAD Integr. Circ. Syst. 34(7),
1188–1200 (2015)

10. Bilgin, B., Nikova, S., Nikov, V., Rijmen, V., Stütz, G.: Threshold implementations
of all 3 × 3 and 4 × 4 S-boxes. In: Prouff, E., Schaumont, P. (eds.) CHES 2012.
LNCS, vol. 7428, pp. 76–91. Springer, Heidelberg (2012)

11. Bilgin, B., Nikova, S., Nikov, V., Rijmen, V., Tokareva, N., Vitkup, V.: Threshold
implementations of small S-boxes. Cryptogr. Commun. 7(1), 3–33 (2015)

12. Boss, E., Grosso, V., Güneysu, T., Leander, G., Moradi, A., Schneider, T.: Strong
8-bit Sboxes with efficient masking in hardware. Cryptology ePrint Archive, Report
2016/647 (2016). http://eprint.iacr.org/2016/647

13. Boyar, J., Peralta, R.: A new combinational logic minimization technique with
applications to cryptology. In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049, pp.
178–189. Springer, Heidelberg (2010)

14. Brinkmann, M.: EA classification of all 4 bit functions. Personal Communication
(2008)

15. Canright, D.: A very compact S-box for AES. In: Rao, J.R., Sunar, B. (eds.) CHES
2005. LNCS, vol. 3659, pp. 441–455. Springer, Heidelberg (2005)

16. Canteaut, A., Duval, S., Leurent, G.: Construction of lightweight S-boxes
using Feistel and MISTY structures. In: Dunkelman, O., et al. (eds.) SAC
2015. LNCS, vol. 9566, pp. 373–393. Springer, Heidelberg (2016). doi:10.1007/
978-3-319-31301-6 22

17. Chabaud, F., Vaudenay, S.: Links between differential and linear cryptanalysis. In:
De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 356–365. Springer,
Heidelberg (1995)

18. Daemen, J., Peeters, M., Van Assche, G., Rijmen, V.: Nessie proposal: NOEKEON.
In: 1st Open NESSIE Workshop, pp. 213–230 (2000)

19. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Information Security and Cryptography. Springer, Berlin (2002)

20. Gérard, B., Grosso, V., Naya-Plasencia, M., Standaert, F.-X.: Block ciphers that
are easier to mask: how far can we go? In: Bertoni, G., Coron, J.-S. (eds.) CHES
2013. LNCS, vol. 8086, pp. 383–399. Springer, Heidelberg (2013)

21. Grosso, V., Leurent, G., Standaert, F.-X., Varıcı, K.: LS-designs: bitslice encryption
for efficient masked software implementations. In: Cid, C., Rechberger, C. (eds.)
FSE 2014. LNCS, vol. 8540, pp. 18–37. Springer, Heidelberg (2015)

22. Grosso, V., Leurent, G., Standaert, F.-X., Varici, K., Journault, A., Durvaux, F.,
Gaspar, L., Kerckhof, S.: SCREAM side-channel resistant authenticated encryption
with masking - Version 3. Submission to CAESAR Competition of Authenticated
Ciphers. https://competitions.cr.yp.to/round2/screamv3.pdf

23. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED block cipher. In:
Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326–341. Springer,
Heidelberg (2011)

24. Kutzner, S., Nguyen, P.H., Poschmann, A.: Enabling 3-share threshold implemen-
tations for all 4-bit S-boxes. In: Lee, H.-S., Han, D.-G. (eds.) ICISC 2013. LNCS,
vol. 8565, pp. 91–108. Springer, Heidelberg (2014)

http://eprint.iacr.org/2016/647
http://dx.doi.org/10.1007/978-3-319-31301-6_22
http://dx.doi.org/10.1007/978-3-319-31301-6_22
https://competitions.cr.yp.to/round2/screamv3.pdf

Strong 8-bit Sboxes with Efficient Masking in Hardware 193

25. Lim, C.H.: CRYPTON: a new 128-bit block cipher - specification and analysis.
NIST AES Proposal (1998)

26. Lim, C.H.: A revised version of CRYPTON - CRYPTON V1.0. In: Knudsen, L.R.
(ed.) FSE 1999. LNCS, vol. 1636, pp. 31–45. Springer, Heidelberg (1999)

27. Mangard, S., Pramstaller, N., Oswald, E.: Successfully attacking masked AES hard-
ware implementations. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659,
pp. 157–171. Springer, Heidelberg (2005)

28. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

29. Matsui, M.: New block encryption algorithm MISTY. In: Biham, E. (ed.) FSE
1997. LNCS, vol. 1267, pp. 54–68. Springer, Heidelberg (1997)

30. Moradi, A., Mischke, O., Eisenbarth, T.: Correlation-enhanced power analysis col-
lision attack. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol.
6225, pp. 125–139. Springer, Heidelberg (2010)

31. Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the limits: a
very compact and a threshold implementation of AES. In: Paterson, K.G. (ed.)
EUROCRYPT 2011. LNCS, vol. 6632, pp. 69–88. Springer, Heidelberg (2011)

32. Nikova, S., Rijmen, V., Schläffer, M.: Secure hardware implementation of nonlinear
functions in the presence of glitches. J. Cryptol. 24(2), 292–321 (2011)

33. Piret, G., Roche, T., Carlet, C.: PICARO – a block cipher allowing efficient higher-
order side-channel resistance. In: Bao, F., Samarati, P., Zhou, J. (eds.) ACNS 2012.
LNCS, vol. 7341, pp. 311–328. Springer, Heidelberg (2012)

34. Poschmann, A., Moradi, A., Khoo, K., Lim, C.-W., Wang, H., Ling, S.: Side-
channel resistant crypto for less than 2,300 GE. J. Cryptol. 24(2), 322–345 (2011)

35. Poschmann, A.Y.: Lightweight cryptography: cryptographic engineering for a per-
vasive world. Ph.D. thesis, Ruhr University Bochum (2009)

36. Raddum, H.: More dual Rijndaels. In: Dobbertin, H., Rijmen, V., Sowa, A. (eds.)
AES 2005. LNCS, vol. 3373, pp. 142–147. Springer, Heidelberg (2005)

37. Rijmen, V., Barreto, P.S.L.M.: The WHIRLPOOL hash function. World-Wide Web
document, p. 72 (2001)

38. Shahverdi, A., Taha, M., Eisenbarth, T.: Silent simon: a threshold implementation
under 100 slices. In: HOST 2015, pp. 1–6. IEEE (2015)

39. Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-bit blockci-
pher CLEFIA (extended abstract). In: Biryukov, A. (ed.) FSE 2007. LNCS, vol.
4593, pp. 181–195. Springer, Heidelberg (2007)

40. Standaert, F.-X., Piret, G., Rouvroy, G., Quisquater, J.-J., Legat, J.-D.: ICEBERG:
an involutional cipher efficient for block encryption in reconfigurable hardware.
In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 279–299. Springer,
Heidelberg (2004)

41. Ullrich, M., De Cannière, C., Indesteege, S., Küçük, Ö., Mouha, N., Preneel, B.:
Finding optimal bitsliced implementations of 4×4-bit S-boxes. In: Symmetric Key
Encryption Workshop, p. 20 (2011)

42. Virtual Silicon Inc.: 0.18 µm VIP Standard Cell Library Tape Out Ready, Part
Number: UMCL18G212T3, Process: UMC Logic 0.18 µm Generic II Technology:
0.18 µm, July 2004

Masking AES with d + 1 Shares in Hardware

Thomas De Cnudde1(B), Oscar Reparaz1, Begül Bilgin1, Svetla Nikova1,
Ventzislav Nikov2, and Vincent Rijmen1

1 KU Leuven, ESAT-COSIC and iMinds, Leuven, Belgium
{thomas.decnudde,oscar.reparaz,begul.bilgin,svetla.nikova,

vincent.rijmen}@esat.kuleuven.be
2 NXP Semiconductors, Leuven, Belgium

venci.nikov@gmail.com

Abstract. Masking requires splitting sensitive variables into at least
d + 1 shares to provide security against DPA attacks at order d. To this
date, this minimal number has only been deployed in software imple-
mentations of cryptographic algorithms and in the linear parts of their
hardware counterparts. So far there is no hardware construction that
achieves this lower bound if the function is nonlinear and the underlying
logic gates can glitch. In this paper, we give practical implementations
of the AES using d + 1 shares aiming at first- and second-order security
even in the presence of glitches. To achieve this, we follow the condi-
tions presented by Reparaz et al. at CRYPTO 2015 to allow hardware
masking schemes, like Threshold Implementations, to provide theoreti-
cal higher-order security with d + 1 shares. The decrease in number of
shares has a direct impact in the area requirements: our second-order
DPA resistant core is the smallest in area so far, and its S-box is 50%
smaller than the current smallest Threshold Implementation of the AES
S-box with similar security and attacker model. We assess the security
of our masked cores by practical side-channel evaluations. The security
guarantees are met with 100 million traces.

Keywords: AES · DPA · Masking · Threshold implementation

1 Introduction

When cryptography is naively deployed in embedded devices, secrets can leak
through side-channel information such as instantaneous power consumption,
electromagnetic emanations or timing of the device. Ever since attacks based
on side-channels were discovered and investigated [3,17,18], several studies have
been performed to counter the exploitation of these vulnerabilities.

A popular way to strengthen cryptographic implementations against such
physical cryptographic attacks is masking [10]. It randomizes the internal compu-
tation and hence detaches the side-channel information from the secret-dependent
intermediate values. Masking is both provable secure [10,23] and practical. Mask-
ing has been shown to increase the difficulty of mounting side-channel attacks on
a wide range of cryptographic algorithms.
c© International Association for Cryptologic Research 2016
B. Gierlichs and A.Y. Poschmann (Eds.): CHES 2016, LNCS 9813, pp. 194–212, 2016.
DOI: 10.1007/978-3-662-53140-2 10

Masking AES with d + 1 Shares in Hardware 195

The basic principle of masking is to split each sensitive intermediate variable
of the cryptographic algorithm into multiple shares using secret sharing, and to
perform computations on these shares. From the moment that the input is split
until the shared output of the cryptographic algorithm is released, shares of the
sensitive intermediate variables are never combined in a way that these variables
are unmasked, i.e. the unshared sensitive variables are never revealed. Only after
the calculation has finished, the shared output is reconstructed to disclose its
unmasked value.

Masking is not unconditionally secure. A dth-order masked implementation
can be broken by a (d+1)th-order DPA attack. However, attacks of higher orders
are more difficult to carry out in practice due to the exponential increase in
number of measurements needed, so one typically guarantees only security up to
a certain order. We use the standard convention that a dth-order attack exploits
the dth-order statistical moment. This covers both univariate and multivariate
attacks.

Although provable secure, masking is in practice often not straightforward to
implement securely. In hardware, masking is delicate to implement since many
assumptions on the leakage behavior of logic gates are not fully met in practice.
In standard CMOS technology, glitches can diminish the security of a straight-
forward masked implementation [19]. There are masking schemes that cope with
this non-ideal behavior and can provide security under more realistic and easier
to meet assumptions. One example is Threshold Implementations.

1.1 Related Work

The Threshold Implementation (TI) technique which is based on Boolean mask-
ing has minimal assumptions on the underlying hardware platform [21]. More
precisely, it assumes that logic gates will glitch, and provides security even if
this happens. Due to its cost effectiveness, it has been applied to many cryp-
tographic algorithms including Keccak [7] and the standardized AES [14,20]
and PRESENT [22] symmetric-key algorithms. Recently, the security level of
TI has been extended to resist univariate attacks at any order [5]. To further
increase the security of TI against multivariate attacks, the use of remasking was
suggested in [26].

This consolidated masking scheme, hereon CMS, inherits all TI properties
and uses the remasking of ISW [16] to break the multivariate correlation between
the different clock cycles. Moreover, it has been shown in [26] that dth-order secu-
rity of any function can be achieved by only d+1 input shares using CMS which
is the theoretical lower bound in masking schemes. Until then, it was believed
that dth-order security on a non-ideal circuit can only be achieved by using more
than d + 1 shares if the function is nonlinear [5,24]. This bound on the number
of input shares sin was given as sin ≥ td + 1 for a function of algebraic degree t
in TI and sin ≥ 2d + 1 for a field multiplication in a complementary scheme [24]
which provides the same level of security using Shamir’s secret sharing. In this
paper, we use the words CMS and TI interchangeably.

196 T. De Cnudde et al.

There exist plenty masked AES implementations, hence we limit our intro-
duction to TIs. The first TI of AES presented in [20] requires 11.1 kGE. Later,
the hardware footprint of TI-AES is reduced to 8.1 kGE in a sequence of pub-
lications [4,6]. All these first-order TIs use functions with at least three input
shares, with the exception of the smallest TI-AES which uses two shares for
linear operations. A second-order TI of the AES S-box using six input shares
is presented in [14] and is shown to require 7.8 kGE. We emphasize that in all
these TIs, the number of input shares of the nonlinear operations are chosen to
be sin ≥ td + 1.

1.2 Contribution

We present the first Threshold Implementations in the form of the Consolidated
Masking Scheme using d+1 input shares. We present both a first-order (6.6 kGE)
and a second-order (10.4 kGE) secure implementation of AES. Our construction
is generic and can be extended to higher orders. The area reduction of our new
TIs compared to the smallest TIs of AES presented so far is shown to be 18 %
for first-order and approximately 45 % for second-order security at the cost of an
increase in the amount of required internal randomness. We observe negligible
(first-order) or no (second-order) difference in throughput compared to prior TIs.
We show the results of leakage detection tests with 100 million traces collected
from an FPGA implementation to back up the security claims.

Organization. In Sect. 2, we provide the notation and the theory of CMS. In
Sect. 3, we unfold the steps taken to mask AES using d + 1 shares. We present
the results of the side-channel analysis in Sect. 4. In Sect. 5, we discuss the imple-
mentation cost of our designs. We conclude the paper and propose directions for
future work in Sect. 6.

2 Preliminaries

2.1 Notation

We use small and bold letters to describe elements of GF(2n) and their sharing
respectively. We assume that any possibly sensitive variable a ∈ GF(2n) is split
into s shares (a1, . . . , as) = a, where ai ∈ GF(2n), in the initialization phase
of the cryptographic algorithm. A possible way of performing this initialization,
which we inherit, is as follows: the shares a1, . . . , as−1 are selected randomly
from a uniform distribution and as is calculated such that a =

∑
i∈{1,...,s} ai.

We refer to the jth bit of a as aj unless a ∈ GF(2). We use the same notation
to share a function f to s shares f = (f1, . . . , fs).

The number of input and output shares of f are denoted by sin and sout
respectively. We refer to field multiplication, addition and concatenation as ⊗,
⊕ and || respectively.

Masking AES with d + 1 Shares in Hardware 197

2.2 Consolidated Masking Scheme

We now give an overview of the construction of CMS. Figure 1 illustrates
the construction steps for the second-order sharing of a two input AND gate
(ab =

∑sin
i=1

∑sin
j=1 aibj) using sin = td + 1 = 5 shares on the left, with

a = (a1, a2, a3, a4, a5) and b = (b1, b2, b3, b4, b5), and using sin = d + 1 = 3
shares on the right, where we have a = (a1, a2, a3) and b = (b1, b2, b3). The
CMS construction is divided in several layers that we detail in the sequel.

Nonlinear layer N . This layer is composed of all the linear and nonlinear terms
(aibj for the AND-gate example) of the shared function, and hence responsi-
ble for the correctness of the sharing. A requirement is that this layer must
see uniformly shared inputs.

Linear layer L. This layer inherits non-completeness, the essence of TI. It ensures
that no more than d shares of a variable are used within each group of terms
to be XORed. If the number of input shares is limited to d + 1, the non-
completeness implies the use of only one share per unmasked value in each
group. We refer to [26] for more details.

Refreshing layer R. The multivariate security of a dth-order masking scheme
depends on the proper insertion of additional randomness to break depen-
dency between intermediates potentially appearing in different clock cycles.
One way of remasking is using sout bits of randomness for sout shares at the
end of L in a circular manner. The restriction of this layer can be relaxed
when first-order or univariate security is satisfactory.

Synchronization layer S. In a circuit with non-ideal gates, this layer ensures that
non-completeness is satisfied in between nonlinear operations. It is depicted
with a bold line in Fig. 1 and is typically implemented as a set of registers
in hardware. The lack of this layer causes leakage in subsequent nonlinear
operations.

Compression layer C. This layer is used to reduce the number of shares synchro-
nized in S. It is especially required when the number of shares after S is
different from the number of input shares of N .

For further clarification, we also describe the concept of uniformity, the dif-
ference between using d+1 shares or more and the limitations brought by using
d + 1 shares in the rest of this section.

Uniformity. Uniformity plays a role in the composition of sharings in the first-
order scenario. If the output of a shared function f is used as an input to a
nonlinear function g, the fact that f is a uniform sharing means that the input of
g is uniform without remasking. Thus, in this case, R is not required. Note that
satisfying uniformity when the outputs of multiple possibly uniformly shared
functions are combined has shown to be a difficult task [4].

The situation is very different in the higher-order scenario, and security issues
with composition can arise [26]. In this paper, we resort to R instead of focusing
on the gains of satisfying uniformity, even in the first-order case.

198 T. De Cnudde et al.

R1

R2
R3

R4

R5

R6

R7R8

R9

c1c2c3

a1

a2

a3

b1

b2 b3

a1

a1

a2

a2

a3

a3

b3

b3 b2

b2

b1

b1

R1

R2

R3 R4

R5

R6

R7R8

R9

c1c2c3

Nonlinear N
Linear L

Refreshing R
Compression C

c1 c2
c3

c4
c5

R1
R2

R3

R4

R5
R6

R7

R8

R9

R10

a4

a1

a4

a4

a3

a3
b3

b5a5

a4

b4
a5

b5

a2

b2
a4

b4

a3
b2

b3
a2

b1

b4

b4

b3

b4

b2
b2

a2

a2
b1

a1

b5

b1

a1

a1
b1

a5

b3a3

b1a3 b3a1

b2a5b5a2a5b5

Fig. 1. Second-order masking of a two-input AND gate with td + 1 = 5 shares (left)
and d + 1 = 3 shares (right)

Number of Input Shares. Using td+1 input shares originates from the rule-of-
thumb “combinations of up to d component functions fi should be independent
of at least one input share”. However, this is an overly strict requirement to
fulfill non-completeness. One can construct a sharing such that combinations of
up to d component functions are independent of at least one input share of each
variable, without imposing any condition on the index i. The resulting sharing
f is clearly secure since no combinations of up to d component functions reveals
all shares of a variable.

In this paper, we benefit from this observation and use d + 1 shares. This
incurs a significantly smaller area footprint, as will be shown later on. It is
however not obvious at first sight whether a construction with d + 1 shares is
necessarily smaller. As a matter of fact, there are many factors that work in
the opposite direction, i.e. the number of component functions fk is increased,
and there is a need for additional circuitry for the refreshing and compression
of the output shares. On the other hand, the shares fk are significantly smaller,
since they depend on fewer input bits. A classic result from Shannon [28] states
that almost all Boolean functions with d input bits require a circuit of size
Θ(2d/d). One can assume that the size of the component functions fk follows
this exponential dependency regarding the number of input shares. Thus, it may
pay off to have more component functions fk and additional circuitry to obtain
a smaller overall sharing.

Independent Input Sharing. Going from td + 1 to d + 1 shares imposes
slightly stronger conditions on the input shares. The most important additional
requirement compared to td+1 sharings is that the shared variables at the input
of a nonlinear function should be independent. The following extreme example

Masking AES with d + 1 Shares in Hardware 199

illustrates the problem: assume a first-order sharing of an AND gate with shared
inputs (a1, a2) and (b1, b2) which necessarily calculates the terms a1b2 and a2b1.
If these sharings are dependent, for the sake of the example say a = b, the term
a1b2 = a1a2 obviously leaks a. This example clearly breaks the joint uniformity
rule for a and b. Note that this does not necessarily imply the requirement of
unshared values to be independent.

3 Masking AES with d + 1 Shares

In what follows, we first describe in detail how the AES is masked with 3
shares using TI to achieve second-order security. The same principle applies to
higher orders, but care is required when applying the refreshing and compression
layer [26]. Then, we scale this construction down to achieve a first-order secure
implementation, and detail some further optimizations we can apply specifically
to the first-order secure case. As the following paragraph suggests, masking of
linear operations is straightforward and therefore, our discussion will focus on
the AES S-box.

Linear Components. The masking of the linear components of AES such as
ShiftRows, MixColumns and AddRoundKey are achieved by instantiating d + 1
state and key arrays. Each pair of state and key array is responsible for one
single share of the plaintext and key. Such a d + 1 sharing for linear operations
has already been used in prior masked AES implementations and hence we do
not provide further detail.

3.1 Second-Order TI of the AES S-box with 3 Shares

As in all previous TIs of the AES S-box [4,6,14,20], our masked implementa-
tion is based on Canright’s Very Compact S-box [9]. This allows for a fairer
comparison of the area reduction that comes from our masking strategy.

Figure 2 depicts the unmasked S-box with the specific subfield decomposi-
tions we adopt. Although it is possible to reduce the number of pipeline stages
of one S-box by merging Stage 3 and Stage 4 into an inversion in GF(24) [4,6],
we choose to rely on multiplications alone, since the number of component func-
tions equals (d + 1)t, i.e. we can achieve a lower area and a reduced randomness
consumption by using multiplications (t = 2) instead of inversions (t = 3). We
now go over the masked design in a stage by stage manner, where the stages are
separated by pipeline registers. The complete masked S-box is depicted in Fig. 3.

First Stage . The first operation occurring in the decomposed S-box performs
a change of basis through a linear map. Its masking requires instantiating this
linear map once for each share i. This mapping is implemented in combinational
logic and it maps the 8-bit input (a1

i , . . . , a
8
i) to the 8-bit output (y1

i , . . . , y
8
i) for

each share i as follows:

200 T. De Cnudde et al.

Fig. 2. Operations in the unmasked AES Sbox

y1
i = a8

i ⊕ a7
i ⊕ a6

i ⊕ a3
i ⊕ a2

i ⊕ a1
i

y2
i = a7

i ⊕ a6
i ⊕ a5

i ⊕ a1
i

y3
i = a7

i ⊕ a6
i ⊕ a2

i ⊕ a1
i

y4
i = a8

i ⊕ a7
i ⊕ a6

i ⊕ a1
i

y5
i = a8

i ⊕ a5
i ⊕ a4

i ⊕ a2
i ⊕ a1

i

y6
i = a1

i

y7
i = a7

i ⊕ a6
i ⊕ a1

i

y8
i = a7

i ⊕ a4
i ⊕ a3

i ⊕ a2
i ⊕ a1

i

Note that synchronizing the output values of the first stage with registers
is required for security. For simplicity, we explain what can go wrong in the
absence of these registers for the first-order case, but the same can be expressed
for any order d. Let’s consider the y2 and y6 bits of the output of the linear map.
The shares corresponding to those bits are then given by (y2

1 , y
2
2) and (y6

1 , y
6
2)

respectively. These two bits will go through the AND gates of the subsequent
GF(24) multiplier, which leads to the following term being computed at one
point:

y2
1y

6
2 = (a7

1 + a6
1 + a5

1 + a1
1)a

1
2

If there is no register between the linear map and the GF(24) multiplier, the
above expression is realized by combinational logic, which deals with a1

1 and a1
2

in a nonlinear way and causes leakage on a1 = (a1
1, a

1
2). Note that the problem

mentioned above does not happen in TIs with sin = td+1 shares, since the con-
servative non-completeness condition makes sure that each component function
is independent of at least one share (for d = 1). Hence, linear functions before
and after nonlinear component functions can be used without synchronization.
No remasking is required after this stage since the computed function is linear.

Second Stage . We consider the parallel application of nonlinear multiplication
and affine Square Scaling (Sq. Sc.) as one single function d = b⊗c⊕SqSc(b⊕c).
For the second order, the resulting equations are given by:

d1 = b1 ⊗ c1 ⊕ SqSc(b1 ⊕ c1)
d2 = b1 ⊗ c2
d3 = b1 ⊗ c3
d4 = b2 ⊗ c1
d5 = b2 ⊗ c2 ⊕ SqSc(b2 ⊕ c2)

d6 = b2 ⊗ c3
d7 = b3 ⊗ c1
d8 = b3 ⊗ c2
d9 = b3 ⊗ c3 ⊕ SqSc(b3 ⊕ c3)

Masking AES with d + 1 Shares in Hardware 201

24 bit

Linear Map

60 bit

GF(24) Multiplier

R9

GF(24) Sq. Sc.

72 bit

54 bit

R8 R7 R6 R5 R4 R3 R2 R1R1

GF(22) Multiplier GF(22) Sc.

GF(22) Multiplier GF(22) Multiplier

60 bit

GF(22) Inv.

GF(24) Multiplier GF(24) Multiplier

Inv. Linear Map

R9 R8 R7 R6 R5 R4 R3 R2 R1R1

R9 R8 R7 R6 R5 R4 R3 R2 R1R1

R9 R8 R7 R6 R5 R4 R3 R2 R1R1

Fig. 3. Structure of the second-order TI of the AES S-box

202 T. De Cnudde et al.

It is important to add the affine contribution from the Square Scaling to the mul-
tiplier output in such a way that the non-completeness property is not broken,
which leaves only one possibility for the construction. In previous works [4,6,20],
these two functions are treated separately, leading to more outputs at this stage.
By approaching the operations in the second stage in parallel, we obtain two
advantages. Firstly, we omit the extra registers for storing the outputs of both
sub-functions separately. Secondly, less randomness is required to achieve uni-
formity for the inputs of the next stage.

Before the new values are clocked in the register, we need to perform a mask
refreshing. This serves two purposes for higher-order TI. Firstly, it is required
to make the next stage’s inputs uniform and secondly, we require new masks
for the next stage’s inputs to provide multivariate security. The mask refreshing
uses a ring structure and has the advantage that the sum of fresh masks does
not need to be saved in an extra register. In addition, we use an equal number
of shares and fresh masks, which leads to a randomness consumption of 36 bits
for this stage. After the mask refreshing, a compression is applied to reduce the
number of output shares back to d + 1.

Third Stage. This stage is similar to the second stage. Here, the received nib-
bles are split in 2-bit couples for further operation. The Scaling operation (Sc)
replaces the similar affine Square Scaling and is executed alongside the multipli-
cation in GF(22). By combining both operations, we can share the total function
by taking again the non-completeness into account. Since a nonlinear multipli-
cation is performed on the 2-bit shares, remasking is required on its 9 outputs,
consuming a total of 18 bits of randomness.

Fourth Stage. The fourth stage is composed of an inversion and two parallel
multiplications in GF(22). The inversion in GF(22) is linear and is implemented
by swapping the bits using wires and comes at no additional cost. The outputs of
the multiplications are concatenated, denoted by || in Fig. 3, to form 4-bit values
in GF(24). The concatenated 4-bit values of the 9 outputs of the multipliers are
remasked with a total of 36 fresh random bits.

Fifth Stage. Stage 5 is similar to Stage 4. The difference of the two stages lies in
the absence of the inversion operation and the multiplications being performed
in GF(24) instead of GF(22). The concatenation of its outputs results in byte
values, which are remasked with 72 fresh random bits.

Sixth Stage. In the final stage of the S-box, the inverse linear map is performed.
By using a register between Stage 5 and Stage 6, we can remask the shares and
perform a compression before the inverse linear map is performed resulting in
only three instead of nine instances of inverse linear maps. As with the linear
map, no uniform sharing of its inputs is required for security. However, in the full
AES, this output will at some point reappear at the input of the S-box, where
it undergoes nonlinear operations again. This is why we insert the remasking.
Note that this register and the register right after the linear map can be merged
with the AES state registers.

Masking AES with d + 1 Shares in Hardware 203

3.2 First-Order TI of the AES S-Box with 2 Shares

To achieve a very compact first-order TI, we can scale down the general struc-
ture from Sect. 3.1. We can apply some optimizations to reduce the amount
of randomness consumed for the first-order implementation, since multivariate
security is not required anymore.

We start with the previous construction with the number of shares reduced
from sin = 3 to sin = 2. We now highlight the particular optimizations: parallel
operations in Stage 2 and 3 and modified refreshing.

Parallel Operations. The parallel linear and nonlinear operations from Stage 2
and 3 are altered in the following way:

d1 = b1 ⊗ c1 ⊕ SqSc(b1 ⊕ c1)
d2 = b1 ⊗ c2
d3 = b2 ⊗ c1
d4 = b2 ⊗ c2 ⊕ SqSc(b2 ⊕ c2)

Again, the ith output of both SqSc and Sc operations are combined with
output bi ⊗ ci of the multiplier in order to preserve non-completeness. While
this structure is similar to our second-order design, we consider this parallel
operation an optimization compared to other first-order TIs [4,6,20].

Modified Refreshing. The ring structure of the refreshing in the general, higher-
order case can be substituted with a less costly structure for first-order security.
This structure of the refreshing is shown in Fig. 4. This modification lowers the
randomness requirements from 4 to 3 units of randomness.1

4 Side-Channel Analysis Evaluation

In this section, we report on the practical side-channel analysis evaluation we
performed on our two designs: one core aiming at first-order security and the
other aiming at second-order security.

Preliminary Tests. A preliminary evaluation was carried out with the tool
from [25] in a simulated environment, allowing to refine our design. We then
proceed with the side-channel evaluation based on actual measurements.

4.1 Experimental Setup

Platform. We use a SASEBO-G board [2]. The SASEBO-G features two Xilinx
Virtex-II Pro FPGAs: an XC2VP7 to hold our cryptographic implementations
and an XC2VP30 for handling the communication between the board and the
measurement PC.
1 A unit of randomness is defined as a set of independent and uniformely distributed

bits with the field size of the wire as its cardinality.

204 T. De Cnudde et al.

S1

S2

S3

S4

R1

R2

R3

R4

R1

S1

S2

S3

S4

R1

R2

R3

R1 ⊕ R2 ⊕ R3

Fig. 4. Ring versus additive refreshing

Low Noise. We did our best to keep the measurement noise to the lowest possible
level. The platform itself is very low noise (DPA on an unprotected AES succeeds
with few tens of traces). We clock our designs at 3 MHz with a very stable
clock and sample at 1 GS/s with a Tektronix DPO 7254C oscilloscope. The
measurements cover 1.5 rounds of AES.

Synthesis. We used standard design flow tools (Xilinx ISE) to synthetize our
designs. We selected the KEEP HIERARCHY option during synthesis to prevent
optimizations over module boundaries that would destroy our (security critical)
design partitioning.

Randomness. The randomness required by our design is supplied by a PRNG
that runs on the crypto FPGA. The PRNG consists of a fully unrolled round-
reduced PRINCE [8] in OFB mode with a fresh key each masked AES execution.
Since our second-order implementation requires 162 fresh mask bits per clock
cycle, three parallel instantiations of the PRNG are used to supply the random-
ness. In the first-order case, one instance suffices. We interleave the execution of
the PRNG (in a single cycle) with every clock cycle of the masked AES in order
to decrease the impact of noise induced by the PRNG.

4.2 Methodology

We use leakage detection tests [11–13,15,27] to test for any power leakage of our
masked implementations. The fix class of the leakage detection is chosen as the
zero plaintext in all our evaluations.

Procedure. We follow the standard practice when testing a masked design.
Namely, we first turn off the PRNG to switch off the masking countermeasure.
The design is expected to show leakage in this setting, and this serves to confirm
that the experimental setup is sound (we can detect leakage). We then proceed
by turning on the PRNG. If we do not detect leakage in this setting, the masking
countermeasure is deemed to be effective.

Masking AES with d + 1 Shares in Hardware 205

(a) Power trace of the first-order imple-
mentation, PRNG inactive

(b) Power trace of the second-order im-
plementation, PRNG inactive

(c) Power trace of the first-order imple-
mentation, PRNG active

(d) Power trace of the second-order im-
plementation, PRNG active

Fig. 5. Average power traces

4.3 First-Order TI of AES

We first evaluate the first-order secure masked AES. Figures 5a and 5c show an
example of power traces when the PRNG is inactive and active respectively for
the first-order implementations. It is clear that the interleaved PRNG does not
overlap with AES. We now apply the leakage detection test.

PRNG Off. Fig. 6a shows the result of the t-test on the implementation without
randomness. First- (top) and second-order (bottom) results clearly show leaks
that surpass the confidence threshold of ±4.5. Thus, as expected, this setting is
not secure.

PRNG On. When we turn on the random number generator, our design shows no
first-order leakage with up to 100 million traces. The t-test statistic for the first
and second orders are plotted in Fig. 6b. In agreement with the security claim of
the design, the first-order trace does not show leakage. The second-order does.

206 T. De Cnudde et al.

-400

-200

0

t-
va
lu
e

-20

0

20

40

(a) 600k traces, PRNG off (b) 100M traces, PRNG on

Fig. 6. First- (top) and second-order (bottom) leakage detection test results for the
first-order implementation

(a) 600k traces, PRNG off (b) 100M traces, PRNG on

Fig. 7. First- (top), second- (middle) and third-order (bottom) leakage detection test
results for the second-order implementation

This is expected since the design does not provide second-order security (note
that sensitive variables are split among two shares).

4.4 Second-Order TI of AES

Figs. 5b and d show an average power consumption trace of the second-order
implementation for an inactive PRNG and for an active PRNG respectively.
We proceed with the evaluation using the leakage detection test.

Masking AES with d + 1 Shares in Hardware 207

PRNG Off. The evaluation results of the implementation without randomness
are given in Fig. 7a. As expected, first- (top), second- (middle) and third-order
(bottom) leaks are present.

PRNG On. When the masking is turned on by enabling the PRNG, we expect
our design to show no leakage in the first and second order.

The results of the t-test with 100 million traces are shown in Fig. 7b. As
expected, we only observe leakage in the third order. The t-values of the first-
and second-order tests never exceed the confidence threshold of ±4.5.

Bivariate Analysis. We also performed a second-order bivariate leakage detec-
tion test with centered product pre-processing. To alleviate the computational
complexity of this analysis, measurements span only one full S-box execution
and the sampling rate is lowered to 200 MS/s.

PRNG Off. The lower left corner of Fig. 8 shows the absolute t values for the
bivariate analysis of the unmasked implementation. As expected, leakages of
considerable magnitude (t values exceeding 100) are present and we conclude
that the measurement setup for the bivariate analysis is sound.

PRNG On. When the PRNG is switched on, the outcome of the test is different.
The absolute value of the resulting bivariate leakage when the masks are switched
on with 100 million traces is depicted in the upper right corner of Fig. 8. No
excursions of the t-values beyond ±4.5 occur and thus the test is passed.

One might ask if 100 million traces are enough. To gain some insight that this
(arbitrary) number is indeed enough, we refer back to the performed third-order
tests of Fig. 7b. We can see that third-order leakage is detectable, and thus we
can assert that bivariate second-order attacks are not the cheapest strategy for
an adversary. Therefore, the masking is deemed effective.

5 Implementation Cost

Table 1 lists the area costs of the individual components of our designs. Table 2
gives the full implementation costs of our designs and of related TIs. The area
estimations are obtained with Synopsys 2010.03 and the NanGate 45 nm Open
Cell Library [1].

Discussion. We now discuss the increase in implementation costs when going
from first- to second-order security and compare the results with similar designs
w.r.t. the area, the speed and the required randomness for an AES encryption.
Note that this discussion does not necessarily apply to other ciphers or imple-
mentations, e.g. lightweight block ciphers with small S-boxes might benefit from
keeping sin ≥ td+1 in nonlinear functions. For future comparisons, Table 3 gives
the implementation cost per S-box stage in function of the security order d.

208 T. De Cnudde et al.

Fig. 8. Bivariate analysis of second-order implementation, 100k traces, PRNG off (bot-
tom left), 100M traces, PRNG on (top right)

Area. Both the first- and the second-order masked AES cores are the smallest
available to this date. Moving from first-order to second-order security requires
an increase of 50 % in GE for linear functions and an increase of around 100 % for
nonlinear functions. The larger increase for nonlinear functions stems from the
quadratic increase of output shares as function of an increment in input shares,
resulting in more registers per stage.

Table 1. Area of different functions of the masked AES

Area [GEs]

Compile Compile ultra

First-order TI

S-box 1977 1872

AES key & State array 4472 4238

AES control 232 230

Total AES 6681 6340

Second-order TI

S-box 3796 3662

AES key & State array 6287 6258

AES control 366 356

Total AES 10449 10276

Masking AES with d + 1 Shares in Hardware 209

Table 2. Implementation cost of different TIs of AES

AES Area [GE]a S-box S-box Randomnessb Clock cyles

area [GE]a [bit]

Unprotected

[20] 2601/2421 233 1 - 226

1st-order

[20] 11114/11031 - /4244 5 48 266

[4] 9102/8172 3708/3004 4 44 246

[6] 11221/10167 3653/2949 4 44 246

[6] 8119/7282 2835/2224 4 32 246

This paper 6681/6340 1977/1872 6 54 276

2nd-order

[14]c 18602/14872 11174/7849 6 126 276

This paper 10449/10276 3796/3662 6 162 276
aUsing compile/compile ultra option. (The compile ultra option requires

careful application. To avoid optimizing over share boundaries, each sub-
module is compiled using compile ultra. The resulting netlists are then
given to a top module and synthesized with the regular compile option.
This way, the gates from the ASIC library are instantiated conform to the
KEEP HIERARCHY option.)

bPer S-box lookup
cArea estimation of a non-tested AES with tested S-box

Speed. The number of clock cycles for an AES encryption is equal for our first-
and second-order implementations. All previous first-order TIs have a faster
encryption because they have less pipeline stages in the S-box.

Randomness. Our first-order AES requires 54 bits of randomness per S-box
execution. For our second-order implementation, this number increases to 162
bits of randomness. These numbers are higher than previous TIs for both the

Table 3. Implementation cost per pipeline stage in function of the order d > 1

AES Number of masked bits Number of register bits

Stage 1 0 8(d + 1)

Stage 2 4(d + 1)2 4(d + 1)2 + 8(d + 1)

Stage 3 2(d + 1)2 2(d + 1)2 + 12(d + 1)

Stage 4 4(d + 1)2 4(d + 1)2 + 8(d + 1)

Stage 5 8(d + 1)2 8(d + 1)2

Stage 6 0 8(d + 1)

Total 18(d + 1)2 18(d + 1)2 + 44(d + 1)

210 T. De Cnudde et al.

first- and second-order implementations. For the first-order implementation, this
increase can be explained by noting that for a minimal sharing, no correction
terms can be applied to make the sharing uniform, hence explaining the need
for mask refreshing. For the second-order implementation, even more random-
ness is required per output share to achieve bivariate security. All shares of one
stage require randomness for both satisfying the uniformity and for statistical
independence of its following stage.

6 Conclusion

In this paper, two new hardware implementations of AES secure against dif-
ferential power analysis attacks were described. Both implementations use the
theoretical minimum number of shares in the linear and nonlinear operations by
following the conditions from Reparaz et al. [26]. The security of both designs
were validated by leakage detection tests in lab conditions.

In summary, our first-order implementation of AES requires 6340 GE, 54
bits of randomness per S-box and a total of 276 clock cycles. In comparison to
the previously smallest TI of AES by Bilgin et al. [6], an area reduction of 15%
is obtained. The number of clock cycles for an encryption is increased by 11%
and the required randomness is raised with 68%. The presented second-order
implementation of AES requires 10276 GE, 162 bits of randomness per S-box
and 276 clock cycles. Compared to the second-order TI-AES of [14], we obtain
a 53% reduction in area at the cost of a 28% increase in required randomness.
The number of clock cycles for an encryption stays the same.

While the area of these implementations are the smallest published for AES
to this date, the required randomness is substantially increased. Investigating
ways of reducing the randomness is essential for lightweight application. In future
work, paths leading to minimizing this cost will be researched. A second direction
for future work is to compare the security in terms of number of traces required
to perform a successful key retrieval between our implementations and the AES
in [6]. This can lead to better insights in the trade-off between security and
implementation costs for TIs with sin = d + 1 and sin = td + 1 shares.

Acknowledgments. The authors would like to thank the anonymous reviewers for
providing constructive and valuable comments. This work was supported in part by
NIST with the research grant 60NANB15D346, in part by the Research Council KU
Leuven (OT/13/071 and GOA/11/007) and in part by the European Unions Horizon
2020 research and innovation programme under grant agreement No. 644052 HEC-
TOR. Begül Bilgin is a Postdoctoral Fellow of the Fund for Scientific Research - Flan-
ders (FWO). Oscar Reparaz is funded by a PhD fellowship of the Fund for Scientific
Research - Flanders (FWO). Thomas De Cnudde is funded by a research grant of the
Institute for the Promotion of Innovation through Science and Technology in Flanders
(IWT-Vlaanderen).

Masking AES with d + 1 Shares in Hardware 211

References

1. NanGate Open Cell Library. http://www.nangate.com/
2. Research Center for Information Security, National Institute of AdvancedIndustrial

Science and Technology, Side-channel Attack Standard EvaluationBoard SASEBO-
G Specification. http://satoh.cs.uec.ac.jp/SASEBO/en/board/sasebo-g.html

3. Agrawal, D., Archambeault, B., Rao, J.R., Rohatgi, P.: The EM side-channel(s).
In: Kaliski, B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp.
29–45. Springer, Heidelberg (2002). http://dx.doi.org/10.1007/3-540-36400-5 4

4. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: A more effi-
cient AES threshold implementation. In: Pointcheval, D., Vergnaud, D. (eds.)
AFRICACRYPT 2014. LNCS, vol. 8469, pp. 267–284. Springer, Heidelberg (2014).
http://dx.doi.org/10.1007/978-3-319-06734-6 17

5. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: Higher-
order threshold implementations. In: Sarkar, P., Iwata, T. (eds.) ASI-
ACRYPT 2014. LNCS, vol. 8874, pp. 326–343. Springer, Heidelberg (2014).
http://dx.doi.org/10.1007/978-3-662-45608-8 18

6. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: Trade-offs for threshold
implementations illustrated on AES. IEEE Trans. CAD Integr. Circ. Syst. 34(7),
1188–1200 (2015). http://dx.doi.org/10.1109/TCAD.2015.2419623

7. Bilgin, B., Daemen, J., Nikov, V., Nikova, S., Rijmen, V., Van Assche, G.: Effi-
cient and first-order DPA resistant implementations of Keccak. In: Francillon,
A., Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 187–199. Springer,
Heidelberg (2014). http://dx.doi.org/10.1007/978-3-319-08302-5 13

8. Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knezevic, M., Knudsen, L.R.,
Leander, G., Nikov, V., Paar, C., Rechberger, C., Rombouts, P., Thomsen, S.S.,
Yalçin, T.: PRINCE - a low-latency block cipher for pervasive computing appli-
cations (full version). IACR Cryptology ePrint Archive 2012/529 (2012). http://
eprint.iacr.org/2012/529

9. Canright, D.: A very compact S-box for AES. In: Rao, J.R., Sunar, B.
(eds.) CHES 2005. LNCS, vol. 3659, pp. 441–455. Springer, Heidelberg (2005).
http://dx.doi.org/10.1007/11545262 32

10. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches
to counteract power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999.
LNCS, vol. 1666, pp. 398–412. Springer, Heidelberg (1999). http://dx.doi.org/
10.1007/3-540-48405-1 26

11. Cooper, J., DeMulder, E., Goodwill, G., Jaffe, J., Kenworthy, G., Rohatgi, P.:
Test vector leakage assessment (TVLA) methodology in practice. In: International
Cryptographic Module Conference (2013). http://icmc-2013.org/wp/wp-content/
uploads/2013/09/goodwillkenworthtestvector.pdf

12. Coron, J.-S., Kocher, P.C., Naccache, D.: Statistics and secret leakage. In: Frankel,
Y. (ed.) FC 2000. LNCS, vol. 1962, pp. 157–173. Springer, Heidelberg (2001).
http://dx.doi.org/10.1007/3-540-45472-1 12

13. Coron, J., Naccache, D., Kocher, P.C.: Statistics and secret leak-
age. ACM Trans. Embed. Comput. Syst. 3(3), 492–508 (2004).
http://doi.acm.org/10.1145/1015047.1015050

14. De Cnudde, T., Bilgin, B., Reparaz, O., Nikov, V., Nikova, S.: Higher-order thresh-
old implementation of the AES S-box. In: Homma, N., et al. (eds.) CARDIS
2015. LNCS, vol. 9514, pp. 259–272. Springer, Heidelberg (2016). doi:10.1007/
978-3-319-31271-2 16

http://www.nangate.com/
http://satoh.cs.uec.ac.jp/SASEBO/en/board/sasebo-g.html
http://dx.doi.org/10.1007/3-540-36400-5_4
http://dx.doi.org/10.1007/978-3-319-06734-6_17
http://dx.doi.org/10.1007/978-3-662-45608-8_18
http://dx.doi.org/10.1109/TCAD.2015.2419623
http://dx.doi.org/10.1007/978-3-319-08302-5_13
http://eprint.iacr.org/2012/529
http://eprint.iacr.org/2012/529
http://dx.doi.org/10.1007/11545262_32
http://dx.doi.org/10.1007/3-540-48405-1_26
http://dx.doi.org/10.1007/3-540-48405-1_26
http://icmc-2013.org/wp/wp-content/uploads/2013/09/goodwillkenworthtestvector.pdf
http://icmc-2013.org/wp/wp-content/uploads/2013/09/goodwillkenworthtestvector.pdf
http://dx.doi.org/10.1007/3-540-45472-1_12
http://doi.acm.org/10.1145/1015047.1015050
http://dx.doi.org/10.1007/978-3-319-31271-2_16
http://dx.doi.org/10.1007/978-3-319-31271-2_16

212 T. De Cnudde et al.

15. Goodwill, G., Jun, B., Jaffe, J., Rohatgi, P.: A testing methodology for side-
channel resistance validation. In: NIST Non-Invasive Attack Testing Workshop
(2011). http://csrc.nist.gov/news events/non-invasive-attack-testing-workshop/
papers/08 Goodwill.pdf

16. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003). http://dx.doi.org/10.1007/978-3-540-45146-4 27

17. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). http://dx.doi.org/10.1007/3-540-68697-5 9

18. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M.
(ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
http://dx.doi.org/10.1007/3-540-48405-1 25

19. Mangard, S., Pramstaller, N., Oswald, E.: Successfully attacking masked AES hard-
ware implementations. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659,
pp. 157–171. Springer, Heidelberg (2005). http://dx.doi.org/10.1007/11545262 12

20. Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the limits: a
very compact and a threshold implementation of AES. In: Paterson, K.G. (ed.)
EUROCRYPT 2011. LNCS, vol. 6632, pp. 69–88. Springer, Heidelberg (2011).
http://dx.doi.org/10.1007/978-3-642-20465-4 6

21. Nikova, S., Rijmen, V., Schläffer, M.: Secure hardware implementation of non-
linear functions in the presence of glitches. J. Cryptol. 24(2), 292–321 (2011).
http://dx.doi.org/10.1007/s00145-010-9085-7

22. Poschmann, A., Moradi, A., Khoo, K., Lim, C., Wang, H., Ling, S.: Side-channel
resistant crypto for less than 2, 300 GE. J. Cryptol. 24(2), 322–345 (2011).
http://dx.doi.org/10.1007/s00145-010-9086-6

23. Prouff, E., Rivain, M.: Masking against side-channel attacks: a for-
mal security proof. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 142–159. Springer, Heidelberg (2013).
http://dx.doi.org/10.1007/978-3-642-38348-9 9

24. Prouff, E., Roche, T.: Higher-order glitches free implementation of the AES
using secure multi-party computation protocols. In: Preneel, B., Takagi, T.
(eds.) CHES 2011. LNCS, vol. 6917, pp. 63–78. Springer, Heidelberg (2011).
http://dx.doi.org/10.1007/978-3-642-23951-9 5

25. Reparaz, O.: Detecting flawed masking schemes with leakage detection tests. In:
Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9813, pp. xx–yy. Springer, Heidelberg (2016)

26. Reparaz, O., Bilgin, B., Nikova, S., Gierlichs, B., Verbauwhede, I.: Consolidat-
ing masking schemes. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015.
LNCS, vol. 9215, pp. 764–783. Springer, Heidelberg (2015). http://dx.doi.org/
10.1007/978-3-662-47989-6 37

27. Schneider, T., Moradi, A.: Leakage assessment methodology. In: Güneysu, T.,
Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 495–513. Springer,
Heidelberg (2015). http://dx.doi.org/10.1007/978-3-662-48324-4 25

28. Shannon, C.: The synthesis of two-terminal switching circuits. Bell Syst. Tech. J.
28(1), 59–98 (1949)

http://csrc.nist.gov/news_events/non-invasive-attack-testing-workshop/papers/08_Goodwill.pdf
http://csrc.nist.gov/news_events/non-invasive-attack-testing-workshop/papers/08_Goodwill.pdf
http://dx.doi.org/10.1007/978-3-540-45146-4_27
http://dx.doi.org/10.1007/3-540-68697-5_9
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/11545262_12
http://dx.doi.org/10.1007/978-3-642-20465-4_6
http://dx.doi.org/10.1007/s00145-010-9085-7
http://dx.doi.org/10.1007/s00145-010-9086-6
http://dx.doi.org/10.1007/978-3-642-38348-9_9
http://dx.doi.org/10.1007/978-3-642-23951-9_5
http://dx.doi.org/10.1007/978-3-662-47989-6_37
http://dx.doi.org/10.1007/978-3-662-47989-6_37
http://dx.doi.org/10.1007/978-3-662-48324-4_25

New Directions

Differential Computation Analysis:
Hiding Your White-Box Designs is Not Enough

Joppe W. Bos1(B), Charles Hubain2, Wil Michiels1,3, and Philippe Teuwen2

1 NXP Semiconductors, Leuven, Belgium
{joppe.bos,wil.michiels}@nxp.com

2 Quarkslab, Paris, France
{chubain,pteuwen}@quarkslab.com

3 Technische Universiteit Eindhoven, Eindhoven, The Netherlands

Abstract. Although all current scientific white-box approaches of stan-
dardized cryptographic primitives are broken, there is still a large number
of companies which sell “secure” white-box products. In this paper, we
present a new approach to assess the security of white-box implemen-
tations which requires neither knowledge about the look-up tables used
nor any reverse engineering effort. This differential computation analy-
sis (DCA) attack is the software counterpart of the differential power
analysis attack as applied by the cryptographic hardware community.

We developed plugins to widely available dynamic binary instru-
mentation frameworks to produce software execution traces which con-
tain information about the memory addresses being accessed. To illus-
trate its effectiveness, we show how DCA can extract the secret key
from numerous publicly (non-commercial) available white-box programs
implementing standardized cryptography by analyzing these traces to
identify secret-key dependent correlations. This approach allows one to
extract the secret key material from white-box implementations signifi-
cantly faster and without specific knowledge of the white-box design in
an automated manner.

1 Introduction

The widespread use of mobile “smart” devices enables users to access a large vari-
ety of ubiquitous services. This makes such platforms a valuable target (cf. [48]
for a survey on security for mobile devices). There are a number of techniques
to protect the cryptographic keys residing on these mobile platforms. The solu-
tions range from unprotected software implementations on the lower range of the
security spectrum, to tamper-resistant hardware implementations on the other
end. A popular approach which attempts to hide a cryptographic key inside a
software program is known as a white-box implementation.

Ch. Hubain and Ph. Teuwen—This work was performed while the second and fourth
author were an intern and employee in the Innovation Center Crypto & Security at
NXP Semiconductors, respectively.

c© International Association for Cryptologic Research 2016
B. Gierlichs and A.Y. Poschmann (Eds.): CHES 2016, LNCS 9813, pp. 215–236, 2016.
DOI: 10.1007/978-3-662-53140-2 11

216 J.W. Bos et al.

Traditionally, people used to work with a security model where implementa-
tions of cryptographic primitives are modeled as “black boxes”. In this black box
model the internal design is trusted and only the in- and output are considered
in a security evaluation. As pointed out by Kocher et al. [32] in the late 1990s,
this assumption turned out to be false in many scenarios. This black-box may
leak some meta-information: e.g., in terms of timing or power consumption. This
side-channel analysis gave rise to the gray-box attack model. Since the usage of
(and access to) cryptographic keys changed, so did this security model. In two
seminal papers from 2002, Chow, Eisen, Johnson and van Oorschot introduce the
white-box model and show implementation techniques which attempt to realize
a white-box implementation of symmetric ciphers [16,17].

The idea behind the white-box attack model is that the adversary can be the
owner of the device running the software implementation. Hence, it is assumed
that the adversary has full control over the execution environment. This enables
the adversary to, among other things, perform static analysis on the software,
inspect and alter the memory used, and even alter intermediate results (similar to
hardware fault injections). This white-box attack model, where the adversary is
assumed to have such advanced abilities, is realistic on many mobile platforms
which store private cryptographic keys of third-parties. White-box implemen-
tations can be used to protect which applications can be installed on a mobile
device (from an application store). Other use-cases include the protection of dig-
ital assets (including media, software and devices) in the setting of digital rights
management, the protection of Host Card Emulation (HCE) and the protection
of credentials for authentication to the cloud. If one has access to a “perfect”
white-box implementation of a cryptographic algorithm, then this implies one
should not be able to deduce any information about the secret key material used
by inspecting the internals of this implementation. This is equivalent to a setting
where one has only black-box access to the implementation. As observed by [19]
this means that such a white-box implementation should resist all existing and
future side-channel attacks.

As stated in [16], “when the attacker has internal information about a cryp-
tographic implementation, choice of implementation is the sole remaining line of
defense.” This is exactly what is being pursued in a white-box implementation:
the idea is to embed the secret key in the implementation of the cryptographic
operations such that it becomes difficult for an attacker to extract informa-
tion about this secret key even when the source code of the implementation
is provided. Note that this approach is different from anti-reverse-engineering
mechanisms such as code obfuscation [5,36] and control-flow obfuscation [25]
although these are typically applied to white-box implementations as an addi-
tional line of defense. Although it is conjectured that no long-term defense
against attacks on white-box implementations exist [16], there are still a signifi-
cant number of companies selling secure white-box solutions. It should be noted
that there are almost no known published results on how to turn any of the
standardized public-key algorithms into a white-box implementation, besides a
patent by Zhou and Chow proposed in 2002 [61]. The other published white-box

DCA: Hiding Your White-Box Designs is Not Enough 217

techniques exclusively focus on symmetric cryptography. However, all such pub-
lished approaches have been theoretically broken (see Sect. 2 for an overview).
A disadvantage of these published attacks is that it requires detailed informa-
tion on how the white-box implementation is constructed. For instance, knowl-
edge about the exact location of the S-boxes or the round transitions might be
required together with the format of the applied encodings to the look-up tables
(see Sect. 2 on how white-box implementations are generally designed). Vendors
of white-box implementations try to avoid such attacks by ignoring Kerckhoffs’s
principle and keeping the details of their design secret (and change the design
once it is broken).

Our Contribution. All current cryptanalytic approaches require detailed
knowledge about the white-box design used: e.g. the location and order of the
S-boxes applied and how and where the encodings are used. This preprocess-
ing effort required for performing an attack is an important aspect of the value
attributed to commercial white-box solutions. Vendors are aware that their solu-
tions do not offer a long term defense, but compensate for this by, for instance,
regular software updates. Our contribution is an attack that works in an auto-
mated way, and it is therefore a major threat for the claimed security level of
the offered solutions compared to the ones that are already known.

In this paper we use dynamic binary analysis (DBA), a technique often used
to improve and inspect the quality of software implementations, to access and
control the intermediate state of the white-box implementation. One approach
to implement DBA is called dynamic binary instrumentation (DBI). The idea is
that additional analysis code is added to the original code of the client program
at run-time in order to aid memory debugging, memory leak detection, and
profiling. The most advanced DBI tools, such as Valgrind [46] and Pin [37],
allow one to monitor, modify and insert instructions in a binary executable.
These tools have already demonstrated their potential for behavioral analysis of
obfuscated code [52].

We have developed plugins for both Valgrind and Pin to obtain software
traces1: a trace which records the read and write accesses made to memory. These
software traces are used to deduce information about the secret embedded in a
white-box implementation by correlating key guesses to intermediate results. For
this we introduce differential computation analysis (DCA), which can be seen as
the software counterpart of the differential power analysis (DPA) [32] techniques
as applied by the cryptographic hardware community. There are, however, some
important differences between the usage of the software and hardware traces as
we outline in Sect. 4.

We demonstrate that DCA can be used to efficiently extract the secret key
from white-box implementations which apply at most a single remotely handled
external encoding. We apply DCA to the publicly available white-box challenges

1 The entire software toolchain ranging from the plugins, to the GUI, to the individual
scrips to target the white-box challenges as described in this paper is released as
open-source software: see https://github.com/SideChannelMarvels.

https://github.com/SideChannelMarvels

218 J.W. Bos et al.

of standardized cryptographic algorithms we could find; concretely this means
extracting the secret key from four white-box implementations of the symmetric
cryptographic algorithms AES and DES. In contrast to the current cryptanalytic
methods to attack white-box implementations, this technique does not require
any knowledge about the implementation strategy used, can be mounted without
much technical cryptographic knowledge in an automated way, and extract the
key significantly faster. Besides this cryptanalytic framework we discuss tech-
niques which could be used as countermeasures against DCA (see Sect. 6).

The main reason why DCA works is related to the choice of (non-) lin-
ear encodings which are used inside the white-box implementation (cf. Sect. 2).
These encodings do not sufficiently hide correlations when the correct key is used
and enables one to run side-channel attacks (just as in gray-box attack model).
Sasdrich et al. looked into this in detail [50] and used the Walsh transform (a
measure to investigate if a function is a balanced correlation immune function
of a certain order) of both the linear and non-linear encodings applied in their
white-box implementation of AES. Their results show extreme unbalance where
the correct key is used and this explain why first-order attacks like DPA are
successful in this scenario.

Independently, and after this paper appeared online, Sanfelix, de Haas and
Mune also presented attacks on white-box implementations [49]. On the one hand
they confirmed our findings and on the other hand they considered software fault
attacks which is of independent interest.

2 Overview of White-Box Cryptography Techniques

The white-box attack model allows the adversary to take full control over the
cryptographic implementation and the execution environment. It is not surpris-
ing that, given such powerful capabilities of the adversary, the authors of the orig-
inal white-box paper [16] conjectured that no long-term defense against attacks
on white-box implementations exists. This conjecture should be understood in
the context of code-obfuscation, since hiding the cryptographic key inside an
implementation is a form of code-obfuscation. It is known that obfuscation of
any program is impossible [3], however, it is unknown if this result applies to
a specific subset of white-box functionalities. Moreover, this should be under-
stood in the light of recent developments where techniques using multilinear
maps are used for obfuscation that may provide meaningful security guarantees
(cf. [2,10,22]). In order to guard oneself in this security model in the medium- to
long-run one has to use the advantages of a software-only solution. The idea is to
use the concept of software aging [27]: this forces, at a regular interval, updates
to the white-box implementation. It is hoped that when this interval is small
enough, this gives insufficient computational time to the adversary to extract
the secret key from the white-box implementation. This approach makes only
sense if the sensitive data is only of short-term interest, e.g. the DRM-protected
broadcast of a football match. However, the practical challenges of enforcing
these updates on devices with irregular internet access should be noted.

DCA: Hiding Your White-Box Designs is Not Enough 219

External Encodings. Besides its primary goal to hide the key, white-box
implementations can also be used to provide additional functionality, such as
putting a fingerprint on a cryptographic key to enable traitor tracing or harden-
ing software against tampering [42]. There are, however, other security concerns
besides the extraction of the cryptographic secret key from the white-box imple-
mentation. If one is able to extract (or copy) the entire white-box implementation
to another device then one has copied the functionality of this white-box imple-
mentation as well, since the secret key is embedded in this program. Such an
attack is known as code lifting. A possible solution to this problem is to use exter-
nal encodings [16]. When one assumes that the cryptographic functionality Ek is
part of a larger ecosystem then one could implement E′

k = G◦Ek ◦F−1 instead.
The input (F) and output (G) encoding are randomly chosen bijections such
that the extraction of E′

k does not allow the adversary to compute Ek directly.
The ecosystem which makes use of E′

k must ensure that the input and output
encodings are canceled. In practice, depending on the application, input or out-
put encodings need to be performed locally by the program calling E′

k. E.g. in
DRM applications, the server may take care of the input encoding remotely but
the client needs to revert the output encoding to finalize the content decryption.

In this paper, we can mount successful attacks on implementations which
apply at most a single remotely handled external encoding. When both the input is
received with an external encoding applied to it remotely and the output is com-
puted with another encoding applied to it (which is removed remotely) then the
implementation is not a white-box implementation of a standard algorithm (like
AES or DES) but of a modified algorithm (like G ◦AES ◦F−1 or G ◦DES ◦F−1).

General Idea. The general approach to implement a white-box program is
presented in [16]. The idea is to use look-up tables rather than individual com-
putational steps to implement an algorithm and to encode these look-up tables
with random bijections. The usage of a fixed secret key is embedded in these
tables. Due to this extensive usage of look-up tables, white-box implementations
are typically orders of magnitude larger and slower than a regular (non-white-
box) implementation of the same algorithm. It is common to write a program
that automatically generates a random white-box implementation given the algo-
rithm and the fixed secret key as input. The randomness resides in the randomly
chosen bijections to hide the secret key usage in the various look-up tables.

2.1 White-Box Results

White-Box Data Encryption Standard (WB-DES). The first publication
attempting to construct a WB-DES implementation dates back from 2002 [17]
in which an approach to create white-box implementations of Feistel ciphers
is discussed. A first attack on this scheme, which enables one to unravel the
obfuscation mechanism, took place in the same year and used fault injections [26]
to extract the secret key by observing how the program fails under certain errors.
In 2005, an improved WB-DES design, resisting this fault attack, was presented

220 J.W. Bos et al.

in [35]. However, in 2007, two differential cryptanalytic attacks [6] were presented
which can extract the secret key from this type of white-box [23,59]. This latter
approach has a time complexity of only 214.

White-Box Advanced Encryption Standard (WB-AES). The first app-
roach to realize a WB-AES implementation was proposed in 2002 [16]. In 2004,
the authors of [8] present how information about the encodings embedded in the
look-up tables can be revealed when analyzing the lookup tables composition.
This approach is known as the BGE attack and enables one to extract the key
from this WB-AES with a 230 time complexity. A subsequent WB-AES design
introduced perturbations in the cipher in an attempt to thwart the previous
attack [12]. This approach was broken [45] using algebraic analysis with a 217

time complexity in 2010. Another WB-AES approach which resisted the previ-
ous attacks was presented in [60] in 2009 and got broken in 2012 with a work
factor of 232 [44].

Another interesting approach is based on using the different algebraic struc-
ture for the same instance of an iterative block cipher (as proposed originally
in [7]). This approach [28] uses dual ciphers to modify the state and key repre-
sentations in each round as well as two of the four classical AES operations. This
approach was shown to be equivalent to the first WB-AES implementation [16]
in [33] in 2013. Moreover, the authors of [33] built upon a 2012 result [57] which
improves the most time-consuming phase of the BGE attack. This reduces the
cost of the BGE attack to a time complexity of 222. An independent attack, of
the same time complexity, is presented in [33] as well.

2.2 Prerequisites of Existing Attacks

In order to put our results in perspective, it is good to keep in mind the exact
requirements needed to apply the white-box attacks from the scientific litera-
ture. These approaches require at least a basic knowledge of the scheme which is
white-boxed. More precisely, the adversary needs to (1) know the type of encod-
ings that are applied on the intermediate results, and (2) know which cipher
operations are implemented by which (network of) lookup tables. The problem
with these requirements is that vendors of white-box implementations are typ-
ically reluctant in sharing any information on their white-box scheme (the so-
called “security through obscurity”). If that information is not directly accessible
but only a binary executable or library is at disposal, one has to invest a sig-
nificant amount of time in reverse-engineering the binary manually. Removing
several layers of obfuscation before retrieving the required level of knowledge
about the implementations needed to mount this type of attack successfully can
be cumbersome. This additional effort, which requires a high level of expertise
and experience, is illustrated by the sophisticated methods used as described
in the write-ups of the publicly available challenges as detailed in Sect. 5. The
differential computational analysis approach we outline in Sect. 4 does not need
to remove the obfuscation layers nor requires reverse engineering of the binary
executable.

DCA: Hiding Your White-Box Designs is Not Enough 221

3 Differential Power Analysis

Since the late 1990s it is publicly known that the (statistical) analysis of a power
trace obtained when executing a cryptographic primitive might correlate to, and
hence reveal information about, the secret key material used [32]. Typically, one
assumes access to the hardware implementation of a known cryptographic algo-
rithm. With I(pi, k) we denote a target intermediate state of the algorithm with
input pi and where only a small portion of the secret key is used in the compu-
tation, denoted by k. One assumes that the power consumption of the device at
state I(pi, k) is the sum of a data dependent component and some random noise,
i.e. L(I(pi, k))+δ, where the function L(s) returns the power consumption of the
device during state s, and δ denotes some leakage noise. It is common to assume
(see e.g., [39]) that the noise is random, independent from the intermediate state
and is normally distributed with zero mean. Since the adversary has access to the
implementation he can obtain triples (ti, pi, ci). Here pi is one plaintext input
chosen arbitrarily by the adversary, the ci is the ciphertext output computed
by the implementation using a fixed unknown key, and the value ti shows the
power consumption over the time of the implementation to compute the output
ciphertext ci. The measured power consumption L(I(pi, k)) + δ is just a small
fraction of this entire power trace ti.

The goal of an attacker is to recover the part of the key k by comparing
the real power measurements ti of the device with an estimation of the power
consumption under all possible hypotheses for k. The idea behind a Differential
Power Analysis (DPA) attack [32] (see [31] for an introduction to this topic) is
to divide the measurement traces in two distinct sets according to some prop-
erty. For example, this property could be the value of one of the bits of the
intermediate state I(pi, k). One assumes — and this is confirmed in practice by
measurements on unprotected hardware — that the distribution of the power
consumptions for these two sets is different (i.e., they have different means and
standard deviations). In order to obtain information about part of the secret
key k, for each trace ti and input pi, one enumerates all possible values for k
(typically 28 = 256 when attacking a key-byte), computes the intermediate value
gi = I(pi, k) for this key guess and divides the traces ti into two sets according
to this property measured at gi. If the key guess k was correct then the difference
of the subsets’ averages will converge to the difference of the means of the distri-
butions. However, if the key guess is wrong then the data in the sets can be seen
as a random sampling of measurements and the difference of the means should
converge to zero. This allows one to observe correct key guesses if enough traces
are available. The number of traces required depends, among other things, on
the measurement noise and means of the distributions (and hence is platform
specific).

While having access to output ciphertexts is helpful to validate the recovered
key, it is not strictly required. Inversely, one can attack an implementation where
only the output ciphertexts are accessible, by targeting intermediate values in
the last round. The same attacks apply obviously to the decryption operation.

222 J.W. Bos et al.

The same technique can be applied on other traces which contain other types
of side-channel information such as, for instance, the electromagnetic radiations
of the device. Although we focus on DPA in this paper, it should be noted
that there exist more advanced and powerful attacks. This includes, among
others, higher order attacks [41], correlation power analyses [11] and template
attacks [15].

4 Software Execution Traces

To assess the security of a binary executable implementing a cryptographic prim-
itive, which is designed to be secure in the white-box attack model, one can
execute the binary on a CPU of the corresponding architecture and observe its
power consumption to mount a differential power analysis attack (see Sect. 3).
However, in the white-box model, one can do much better as the model implies
that we can observe everything without any measurement noise. In practice such
level of observation can be achieved by instrumenting the binary or instrument-
ing an emulator being in charge of the execution of the binary. We chose the first
approach by using some of the available Dynamic Binary Instrumentation (DBI)
frameworks. In short, DBI usually considers the binary executable to analyze as
the bytecode of a virtual machine using a technique known as just-in-time com-
pilation. This recompilation of the machine code allows performing transforma-
tions on the code while preserving the original computational effects. DBI frame-
works, like Pin [37] and Valgrind [46], perform another kind of transformation:
they allow to add custom callbacks in between the machine code instructions
by writing plugins or tools which hook into the recompilation process. These
callbacks can be used to monitor the execution of the program and track specific
events. The main difference between Pin and Valgrind is that Valgrind uses an
architecture independent Intermediate Representation (IR) called VEX which
allows to write tools compatible with any architecture supported by the IR. We
developed (and released) such plugins for both frameworks to trace execution
of binary executables on x86, x86-64, ARM and ARM64 platforms and record
the desired information: namely, the memory addresses being accessed (for read,
write or execution) and their content. It is also possible to record the content
of CPU registers but this would slow down acquisition and increase the size of
traces significantly; we succeeded to extract the secret key from the white-box
implementations without this additional information. This is not surprising as
table-based white-box implementations are mostly made of memory look-ups
and make almost no use of arithmetic instructions (see Sect. 2 for the design
rationale behind many white-box implementations). In some more complex con-
figurations e.g. where the actual white-box is buried into a larger executable it
might be desired to change the initial behavior of the executable to call directly
the block cipher function or to inject a chosen plaintext in an internal applica-
tion programming interface (API). This is trivial to achieve with DBI, but for
the implementations presented in Sect. 5, we simply did not need to resort to
such methods.

DCA: Hiding Your White-Box Designs is Not Enough 223

The following steps outline the process how to obtain software traces and
mount a DPA attack on these software traces.

First Step. Trace a single execution of the white-box binary with an arbitrary
plaintext and record all accessed addresses and data over time. Although the
tracer is able to follow execution everywhere, including external and system
libraries, we reduce the scope to the main executable or to a companion library
if the cryptographic operations happen to be handled there. A common computer
security technique often deployed by default on modern operating systems is the
Address Space Layout Randomization (ASLR) which randomly arranges the
address space positions of the executable, its data, its heap, its stack and other
elements such as libraries. In order to make acquisitions completely reproducible
we simply disable the ASLR, as the white-box model puts us in control over the
execution environment. In case ASLR cannot be disabled, it would just be a
mere annoyance to realign the obtained traces.

Second Step. Next, we visualize the trace to understand where the block cipher
is being used and, by counting the number of repetitive patterns, determine
which (standardized) cryptographic primitive is implemented: e.g., a 10-round
AES-128, a 14-round AES-256, or a 16-round DES. To visualize a trace, we
decided to represent it graphically similarly to the approach presented in [43].
Figure 1 illustrates this approach: the virtual address space is represented on
the x-axis, where typically, on many modern platforms, one encounters the text
segment (containing the instructions), the data segment, the uninitialized data
(BSS) segment, the heap, and finally the stack, respectively. The virtual address
space is extremely sparse so we display only bands of memory where there is
something to show. The y-axis is a temporal axis going from top to bottom. Black
represents addresses of instructions being executed, green represents addresses of
memory locations being read and red when being written. In Fig. 1 one deduces
that the code (in black) has been unrolled in one huge basic block, a lot of
memory is accessed in reads from different tables (in green) and the stack is
comparatively so small that the read and write accesses (in green and red) are
barely noticeable on the far right without zooming in.

Third Step. Once we have determined which algorithm we target we keep the
ASLR disabled and record multiple traces with random plaintexts, optionally
using some criteria e.g. in which instructions address range to record activity.
This is especially useful for large binaries doing other types of operations we
are not interested in (e.g., when the white-box implementation is embedded in
a larger framework). If the white-box operations themselves take a lot of time
then we can limit the scope of the acquisition to recording the activity around
just the first or last round, depending if we mount an attack from the input or
output of the cipher. Focusing on the first or last round is typical in DPA-like
attacks since it limits the portion of key being attacked to one single byte at once,

224 J.W. Bos et al.

Fig. 1. Visualization of a software execution trace of a white-box DES implementation.
(Color figure online)

as explained in Sect. 3. In the example given in Fig. 1, the read accesses pattern
make it trivial to identify the DES rounds and looking at the corresponding
instructions (in black) helps defining a suitable instructions address range. While
recording all memory-related information in the initial trace (first step), we only
record a single type of information (optionally for a limited address range) in
this step. Typical examples include recordings of bytes being read from memory,
or bytes written to the stack, or the least significant byte of memory addresses
being accessed.

This generic approach gives us the best trade-off to mount the attack as fast
as possible and minimize the storage of the software traces. If storage is not a
concern, one can directly jump to the third step and record traces of the full
execution, which is perfectly acceptable for executables without much overhead,
as it will become apparent in several examples in Sect. 5. This naive approach
can even lead to the creation of a fully automated acquisition and key recovery
setup.

Fourth Step. In step 3 we have obtained a set of software traces consisting of
lists of (partial) addresses or actual data which have been recorded whenever an
instruction was accessing them. To move to a representation suitable for usual
DPA tools expecting power traces, we serialize those values (usually bytes) into
vectors of ones and zeros. This step is essential to exploit all the information we
have recorded. To understand it, we compare to a classical hardware DPA setup
targeting the same type of information: memory transfers.

When using DPA, a typical hardware target is a CPU with one 8-bit bus
to the memory and all eight lines of that bus will be switching between low
and high voltage to transmit data. If a leakage can be observed in the varia-
tions of the power consumption, it will be an analog value proportional to the
sum of bits equal to one in the byte being transferred on that memory bus.

DCA: Hiding Your White-Box Designs is Not Enough 225

(a)

(b)

Fig. 2. Figure (a) is a typical example of a (hardware) power trace of an unprotected
AES-128 implementation (one can observe the ten rounds). (b) is a typical example of
a portion of a serialized software trace of stack writes in an AES-128 white-box, with
only two possible values: zero or one.

Therefore, in such scenarios, the most elementary leakage model is the Ham-
ming weight of the bytes being transferred between CPU and memory. However,
in our software setup, we know the exact 8-bit value and to exploit it at best,
we want to attack each bit individually, and not their sum (as in the Ham-
ming weight model). Therefore, the serialization step we perform (converting
the observed values into vectors of ones and zeros) is as if in the hardware model
each corresponding bus line was leaking individually one after the other.

When performing a DPA attack, a power trace typically consists of sampled
analog measures. In our software setting we are working with perfect leakages
(i.e., no measurement noise) of the individual bits that can take only two possible
values: 0 or 1. Hence, our software tracing can be seen from a hardware perspec-
tive as if we were probing each individual line with a needle, something requiring
heavy sample preparation such as chip decapping and Focused Ion Beam (FIB)
milling and patching operations to dig through the metal layers in order to reach
the bus lines without affecting the chip functionality. Something which is much
more powerful and invasive than external side-channel acquisition.

When using software traces there is another important difference with tradi-
tional power traces along the time axis. In a physical side-channel trace, analog
values are sampled at a fixed rate, often unrelated to the internal clock of the
device under attack, and the time axis represents time linearly. With software
execution traces we record information only when it is relevant, e.g. every time
a byte is written on the stack if that is the property we are recording, and more-
over bits are serialized as if they were written sequentially. One may observe
that given this serialization and sampling on demand, our time axis does not
represent an actual time scale. However, a DPA attack does not require a proper

226 J.W. Bos et al.

time axis. It only requires that when two traces are compared, corresponding
events that occurred at the same point in the program execution are compared
against each other. Figure 2a and b illustrate those differences between traces
obtained for usage with DPA and DCA, respectively.

Fifth Step. Once the software execution traces have been acquired and shaped,
we can use regular DPA tools to extract the key. We show in the next section
what the outcome of DPA tools look like, besides the recovery of the key.

Optional Step. If required, one can identify the exact points in the execution
where useful information leaks. With the help of known-key correlation analysis
one can locate the exact “faulty” instruction and the corresponding source code
line, if available. This can be useful as support for the white-box designer.

To conclude this section, here is a summary of the prerequisites of our dif-
ferential computation analysis, in opposition to the previous white-box attacks’
prerequisites which were detailed in Sect. 2.2: (1) Be able to run several times
(a few dozens to a few thousands) the binary in a controlled environment. (2)
having knowledge of the plaintexts (before their encoding, if any), or of the
ciphertexts (after their decoding, if any).

5 Analyzing Publicly Available White-Box
Implementations

5.1 The Wyseur Challenge

As far as we are aware, the first public white-box challenge was created by
Brecht Wyseur in 2007. On his website2 one can find a binary executable con-
taining a white-box DES encryption operation with a fixed embedded secret
key. According to the author, this WB-DES approach implements the ideas
from [17,35] (see Sect. 2.1) plus “some personal improvements”. The interaction
with the program is straight-forward: it takes a plaintext as input and returns a
ciphertext as output to the console. The challenge was solved after five years (in
2012) independently by James Muir and “SysK”. The latter provided a detailed
description [54] and used differential cryptanalysis (similar to [23,59]) to extract
the embedded secret key.

Figure 3a shows a full software trace of an execution of this WB-DES chal-
lenge. On the left one can see the loading of the instructions (in black), since
the instructions are loaded repeatedly from the same addresses this implies that
loops are used which execute the same sequence of instructions over and over
again. Different data is accessed fairly linearly but with some local disturbances
as indicated by the large diagonal read access pattern (in green). Even to the
trained eye, the trace displayed in Fig. 3a does not immediately look familiar to
DES. However, if one takes a closer look to the address space which represents
2 See http://whiteboxcrypto.com/challenges.php.

http://whiteboxcrypto.com/challenges.php

DCA: Hiding Your White-Box Designs is Not Enough 227

(a) (b)

Fig. 3. (a) Visualization of a software execution trace of the binary Wyseur white-box
challenge showing the entire accessed address range. (b) A zoom on the stack address
space from the software trace shown in (a). The 16 rounds of the DES algorithm are
clearly visible. (Color figure online)

the stack (on the far right) then the 16 rounds of DES can be clearly distin-
guished. This zoomed view is outlined in Fig. 3b where the y-axis is unaltered
(from Fig. 3a) but the address-range (the x-axis) is rescaled to show only the
read and write accesses to the stack.

Due to the loops in the program flow, we cannot just limit the tracer to a
specific memory range of instructions and target a specific round. As a trace
over the full execution takes a fraction of a second, we traced the entire program
without applying any filter. The traces are easily exploited with DCA: e.g., if
we trace the bytes written to the stack over the full execution and we compute
a DPA over this entire trace without trying to limit the scope to the first round,
the key is completely recovered with as few as 65 traces when using the output
of the first round as intermediate value.

The execution of the entire attack, from the download of the binary challenge
to full key recovery, including obtaining and analyzing the traces, took less than
an hour as its simple textual interface makes it very easy to hook it to an attack
framework. Extracting keys from different white-box implementations based on
this design now only takes a matter of seconds when automating the entire
process as outlined in Sect. 4.

5.2 The Hack.lu 2009 Challenge

As part of the Hack.lu 2009 conference, which aims to bridge ethics and secu-
rity in computer science, Jean-Baptiste Bédrune released a challenge [4] which
consisted of a crackme.exe file: an executable for the Microsoft Windows plat-
form. When launched, it opens a GUI prompting for an input, redirects it to
a white-box and compares the output with an internal reference. It was solved
independently by Eloi Vanderbéken [58], who reverted the functionality of the
white-box implementation from encryption to decryption, and by “SysK” [54]
who managed to extract the secret key from the implementation.

228 J.W. Bos et al.

Our plugins for the DBI tools have not been ported to the Windows operating
system and currently only run on GNU/Linux and Android. In order to use our
tools directly we decided to trace the binary with our Valgrind variant and
Wine [1], an open source compatibility layer to run Windows applications under
GNU/Linux. Due to the configuration of this challenge we had full control on
the input to the white-box.

Visualizing the traces using our software framework clearly shows ten repeti-
tive patterns on the left interleaved with nine others on the right. This indicates
(with high probability) an AES encryption or decryption with a 128-bit key.
The last round being shorter as it omits the MixColumns operation as per the
AES specification. We captured a few dozen traces of the entire execution, with-
out trying to limit ourselves to the first round. Due to the overhead caused by
running the GUI inside Wine the acquisition ran slower than usual: obtaining a
single trace took three seconds. Again, we applied our DCA technique on traces
which recorded bytes written to the stack. The secret key could be completely
recovered with only 16 traces when using the output of the first round SubBytes
as intermediate value of an AES-128 encryption. As “SysK” pointed out in [54],
this challenge was designed to be solvable in a couple of days and consequently
did not implement any internal encoding, which means that the intermediate
states can be observed directly. Therefore in our DCA the correlation between
the internal states and the traced values get the highest possible value, which
explains the low number of traces required to mount a successful attack.

5.3 The SSTIC 2012 Challenge

Every year for the SSTIC, Symposium sur la sécurité des technologies de
l’information et des communications (Information technology and communica-
tion security symposium), a challenge is published which consists of solving
several steps like a Matryoshka doll. In 2012, one step of the challenge [40] was
to validate a key with a Python bytecode “check.pyc”: i.e. a marshalled object3.
Internally this bytecode generates a random plaintext, forwards this to a white-
box (created by Axel Tillequin) and to a regular DES encryption using the
key provided by the user and then compares both ciphertexts. Five participants
managed to find the correct secret key corresponding to this challenge and their
write-ups are available at [40]. A number of solutions identified the implemen-
tation as a WB-DES without encodings (naked variant) as described in [17].
Some extracted the key following the approach from the literature while some
performed their own algebraic attack.

Tracing the entire Python interpreter with our tool, based on either PIN or
Valgrind, to obtain a software trace of the Python binary results in a significant
overhead. Instead, we instrumented the Python environment directly. Actually,
Python bytecode can be decompiled with little effort as shown by the write-
up of Jean Sigwald. This contains a decompiled version of the “check.pyc” file
where the white-box part is still left serialized as a pickled object4. The white-
3 https://docs.python.org/2/library/marshal.html.
4 https://docs.python.org/2/library/pickle.html.

https://docs.python.org/2/library/marshal.html
https://docs.python.org/2/library/pickle.html

DCA: Hiding Your White-Box Designs is Not Enough 229

Fig. 4. Visualization of the stack reads and writes in the software execution trace
portion limited to the core of the Karroumi WB-AES.

box makes use of a separate Bits class to handle its variables so we added some
hooks to record all new instances of that particular class. This was sufficient.
Again, as for the Hack.lu 2009 WB-AES challenge (see Sect. 5.2), 16 traces were
enough to recover the key of this WB-DES when using the output of the first
round as intermediate value. This approach works with such a low number of
traces since the intermediate states are not encoded.

5.4 A White-Box Implementation of the Karroumi Approach

A white-box implementation of both the original AES approach [16] and the
approach based on dual ciphers by Karroumi [28] is part of the Master thesis by
Dušan Klinec [30]5. As explained in Sect. 2.1, this is the latest academic variant
of [16]. Since there is no challenge available, we used Klinec’s implementation
to create two challenges: one with and one without external encodings. This
implementation is written in C++ with extensive use of the Boost6 libraries
to dynamically load and deserialize the white-box tables from a file. An initial
software trace when running this white-box AES binary executable shows that
the white-box code itself constitutes only a fraction of the total instructions
(most of the instructions are from initializing the Boost libraries). From the
stack trace (see Fig. 4) one can recognize the nine MixColumns operating on
the four columns. Therefore we used instruction address filtering to focus on the
white-box core and skip all the Boost C++ operations.
5 The code be found at https://github.com/ph4r05/Whitebox-crypto-AES.
6 http://www.boost.org/.

https://github.com/ph4r05/Whitebox-crypto-AES
http://www.boost.org/

230 J.W. Bos et al.

Table 1. DCA ranking for a Karroumi white-box implementation when targeting the
output of the SubBytes step in the first round based on the least significant address
byte on memory reads.

target key byte

bit

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 256 255 256 255 256 253 1 256 256 239 256 1 1 1 255

1 1 256 256 256 1 255 256 1 1 5 1 256 1 1 1 1

2 256 1 255 256 1 256 226 256 256 256 1 256 22 1 256 256

3 256 255 251 1 1 1 254 1 1 256 256 253 254 256 255 256

4 256 256 74 256 256 256 255 256 254 256 256 256 1 1 256 1

5 1 1 1 1 1 1 50 256 253 1 251 256 253 1 256 256

6 254 1 1 256 254 256 248 256 252 256 1 14 255 256 250 1

7 1 256 1 1 252 256 253 256 256 255 256 1 251 1 254 1

All � � � � � � ✗ � � � � � � � � �

The best results were obtained when tracing the lowest byte of the memory
addresses used in read accesses (excluding stack). Initially we followed the same
approach as before: we targeted the output of the SubBytes in the first round.
But, in contrast to the other challenges considered in this work, it was not
enough to immediately recover the entire key. For some of the tracked bits of
the intermediate value we observed a significant correlation peak: this is an
indication that the first key candidate is very probably the correct one. Table 1
shows the ranking of the right key byte value amongst the guesses after 2000
traces, when sorted according to the difference of means (see Sect. 3). If the key
byte is ranked at position 1 this means it was properly recovered by the attack.
In total, for the first challenge we constructed, 15 out of 16 key bytes were ranked
at position 1 for at least one of the target bits and one key byte (key byte 6 in
the table) did not show any strong candidate. However, recovering this single
missing key-byte is trivial using brute-force.

It is interesting to observe in Table 1 that when a target bit of a given key byte
does not leak (i.e. is not ranked first) it is very often the worst candidate (ranked
at the 256th position) rather than being at a random position. This observation,
that still holds for larger numbers of traces, can also be used to recover the
key. In order to give an idea of what can be achieved with an automated attack
against new instantiations of this white-box implementation with other keys,
we provide some figures: The acquisition of 2000 traces takes about 800s on a
regular laptop (dual-core i7-4600U CPU at 2.10 GHz). This results in 3328 kbits
(416 kB) of traces when limited to the execution of the first round. Running
the attack requires less than 60 s. Attacking the second challenge with external
encodings gave similar results. This was expected as there is no difference, from
our adversary perspective, when applying external encodings or omitting them
since in both cases we have knowledge of the original plaintexts before any
encoding is applied.

DCA: Hiding Your White-Box Designs is Not Enough 231

5.5 The NoSuchCon 2013 Challenge

In April 2013, a challenge designed by Eloi Vanderbéken was published for the
occasion of the NoSuchCon 2013 conference7. The challenge consisted of a Win-
dows binary embedding a white-box AES implementation. It was of “keygen-me”
type, which means one has to provide a name and the corresponding serial to
succeed. Internally the serial is encrypted by a white-box and compared to the
MD5 hash of the provided name.

The challenge was completed by a number of participants (cf. [38,53]) but
without ever recovering the key. It illustrates one more issue designers of white-
box implementations have to deal with in practice: one can convert an encryption
routine into a decryption routine without actually extracting the key.

For a change, the design is not derived from Chow [16]. However, the white-
box was designed with external encodings which were not part of the binary.
Hence, the user input was considered as encoded with an unknown scheme and
the encoded output is directly compared to a reference. These conditions, with-
out any knowledge of the relationship between the real AES plaintexts or cipher-
texts and the effective inputs and outputs of the white-box, make it infeasible to
apply a meaningful DPA attack, since, for a DPA attack, we need to construct
the guesses for the intermediate values. Note that, as discussed in Sect. 2, this
white-box implementation is not compliant with AES anymore but computes
some variant E′

k = G ◦ Ek ◦ F−1. Nevertheless we did manage to recover the
key and the encodings from this white-box implementation with a new algebraic
attack, as described in [56]. This was achieved after a painful de-obfuscation of
the binary (almost completely performed by previous write-ups [38,53]), a step
needed to fulfill the prerequisites for such attacks as described in Sect. 2.2.

The same white-box is found among the CHES 2015 challenges8 in a Game-
Boy ROM and the same algebraic attack is used successfully as explained in [55]
once the tables got extracted.

6 Countermeasures Against DCA

In hardware, counter-measures against DPA typically rely on a random source.
The output can be used to mask intermediate results, to re-order instructions,
or to add delays (see e.g. [14,24,51]). For white-box implementations, we cannot
rely on a random source since in the white-box attack model such a source can
simply be disabled or fixed to a constant value. Despite this lack of dynamic
entropy, one can assume that the implementation which generates the white-
box implementation has access to sufficient random data to incorporate in the
generated source code and look-up tables. How to use this static random data
embedded in the white-box implementation?

7 See http://www.nosuchcon.org/2013/.
8 https://ches15challenge.com/static/CHES15Challenge.zip, preserved at https://

archive.org/details/CHES15Challenge

http://www.nosuchcon.org/2013/
https://ches15challenge.com/static/CHES15Challenge.zip
https://archive.org/details/CHES15Challenge
https://archive.org/details/CHES15Challenge

232 J.W. Bos et al.

Adding (random) delays in an attempt to misalign traces is trivially defeated
by using an address instruction trace beside the memory trace to realign traces
automatically. In [18] it is proposed to use variable encodings when accessing the
look-up tables based on the affine equivalences for bijective S-boxes (cf. [9] for
algorithms to solve the affine equivalence problem for arbitrary permutations).
As a potential countermeasure against DCA, the embedded (and possibly merged
with other functionality) static random data is used to select which affine equiv-
alence is used for the encoding when accessing a particular look-up table. This
results in a variable encoding (at run-time) instead of using a fixed encoding.
Such an approach can be seen as a form of masking as used to thwart classical
first-order DPA.

One can also use some ideas from threshold implementations [47]. A thresh-
old implementation is a masking scheme based on secret sharing and multi-party
computation. One could also split the input in multiple shares such that not all
shares belong to the same affine equivalence class. If this splitting of the shares
and assignment to these (different) affine equivalence classes is done pseudo-
randomly, where the randomness comes from the static embedded entropy and
the input message, then this might offer some resistance against DCA-like
attacks.

In practice, one might resort to methods to make the job of the adver-
sary more difficult. Typical software counter-measures include obfuscation, anti-
debug and integrity checks. It should be noted, however, that in order to mount
a successful DCA attack one does not need to reverse engineer the binary exe-
cutable. The DBI frameworks are very good at coping with those techniques and
even if there are efforts to specifically detect DBI [21,34], DBI becomes stealthier
too [29].

7 Conclusions and Future Work

As conjectured in the first papers introducing the white-box attack model, one
cannot expect long-term defense against attacks on white-box implementations.
However, as we have shown in this work, all current publicly available white-box
implementations do not even offer any short-term security since the differential
computation analysis (DCA) technique can extract the secret key within seconds.
We did not investigate the strength of commercially available white-box products
since no company, as far as we are aware, made a challenge publicly available
similar to, for instance, the RSA factoring challenge [20] or the challenge related
to elliptic curve cryptography [13].

Although we sketched some ideas on countermeasures, it remains an open
question how to guard oneself against these types of attacks. The countermea-
sures against differential power analysis attacks applied in the area of high-
assurance applications do not seem to carry over directly due to the ability of
the adversary to disable or tamper with the random source. If medium to long
term security is required then tamper resistant hardware solutions, like a secure
element, seem like a much better alternative.

DCA: Hiding Your White-Box Designs is Not Enough 233

Another interesting research direction is to see if the more advanced and
powerful techniques used in side-channel analysis from the cryptographic hard-
ware community obtain even better results in this setting. Examples include
correlation power analysis and higher order attacks.

References

1. Amstadt, B., Johnson, M.K.: Wine. Linux J. 1994(4) (1994). http://dl.acm.org/
citation.cfm?id=324681.324684, ISSN: 1075-3583

2. Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfuscation
against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 221–238. Springer, Heidelberg (2014)

3. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001)

4. Bédrune, J.-B.: Hack.lu 2009 reverse challenge 1 (2009). http://2009.hack.lu/index.
php/ReverseChallenge

5. Bhatkar, S., DuVarney, D.C., Sekar, R.: Address obfuscation: an efficient approach
to combat a broad range of memory error exploits. In: Proceedings of the 12th
USENIX Security Symposium. USENIX Association (2003)

6. Biham, E., Shamir, A.: Differential cryptanalysis of Snefru, Khafre, REDOC-II,
LOKI and Lucifer. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp.
156–171. Springer, Heidelberg (1992)

7. Billet, O., Gilbert, H.: A traceable block cipher. In: Laih, C.-S. (ed.) ASIACRYPT
2003. LNCS, vol. 2894, pp. 331–346. Springer, Heidelberg (2003)

8. Billet, O., Gilbert, H., Ech-Chatbi, C.: Cryptanalysis of a white box AES imple-
mentation. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp.
227–240. Springer, Heidelberg (2004)

9. Biryukov, A., Canniére, C., Braeken, A., Preneel, B.: A toolbox for cryptanalysis:
linear and affine equivalence algorithms. In: Biham, E. (ed.) EUROCRYPT 2003.
LNCS, vol. 2656, pp. 33–50. Springer, Heidelberg (2003)

10. Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all circuits via
generic graded encoding. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
1–25. Springer, Heidelberg (2014)

11. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

12. Bringer, J., Chabanne, H., Dottax, E.: White box cryptography: another attempt.
Cryptology ePrint Archive, Report 2006/468 (2006). http://eprint.iacr.org/2006/
468

13. Certicom: The certicom ECC challenge. https://www.certicom.com/index.php/
the-certicom-ecc-challenge

14. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to coun-
teract power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol.
1666, pp. 398–412. Springer, Heidelberg (1999)

15. Chari, S., Rao, J.R., Rohatgi, P.: Template attack. In: Kaliski Jr., B.S., Koç, Ç.K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003)

http://dl.acm.org/citation.cfm?id=324681.324684
http://dl.acm.org/citation.cfm?id=324681.324684
http://2009.hack.lu/index.php/ReverseChallenge
http://2009.hack.lu/index.php/ReverseChallenge
http://eprint.iacr.org/2006/468
http://eprint.iacr.org/2006/468
https://www.certicom.com/index.php/the-certicom-ecc-challenge
https://www.certicom.com/index.php/the-certicom-ecc-challenge

234 J.W. Bos et al.

16. Chow, S., Eisen, P.A., Johnson, H., van Oorschot, P.C.: White-box cryptography
and an AES implementation. In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS,
vol. 2595, pp. 250–270. Springer, Heidelberg (2003)

17. Chow, S., Eisen, P., Johnson, H., van Oorschot, P.C.: A white-box DES imple-
mentation for DRM applications. In: Feigenbaum, J. (ed.) DRM 2002. LNCS, vol.
2696, pp. 1–15. Springer, Heidelberg (2003)

18. de Mulder, Y.: White-box cryptography: analysis of white-box AES implementa-
tions. Ph.D. thesis, KU Leuven (2014)

19. Delerablée, C., Lepoint, T., Paillier, P., Rivain, M.: White-box security notions for
symmetric encryption schemes. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC
2013. LNCS, vol. 8282, pp. 247–264. Springer, Heidelberg (2014)

20. EMC Corporation: The RSA factoring challenge. http://www.emc.com/emc-plus/
rsa-labs/historical/the-rsa-factoring-challenge.htm

21. Falco, F., Riva, N.: Dynamic binary instrumentation frameworks: I know you’re
there spying on me. In: REcon (2012). http://recon.cx/2012/schedule/events/216.
en.html

22. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 54th
Annual IEEE Symposium on Foundations of Computer Science, FOCS, pp. 40–49.
IEEE Computer Society (2013)

23. Goubin, L., Masereel, J.-M., Quisquater, M.: Cryptanalysis of white box DES
implementations. In: Adams, C., Miri, A., Wiener, M. (eds.) SAC 2007. LNCS,
vol. 4876, pp. 278–295. Springer, Heidelberg (2007)

24. Goubin, L., Patarin, J.: DES and differential power analysis. In: Koç, Ç.K., Paar,
C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172. Springer, Heidelberg (1999)

25. Huang, Y., Ho, F.S., Tsai, H., Kao, H.M.: A control flow obfuscation method
to discourage malicious tampering of software codes. In: Lin, F., Lee, D., Lin,
B.P., Shieh, S., Jajodia, S. (eds.) Proceedings of the 2006 ACM Symposium on
Information, Computer and Communications Security, ASIACCS 2006, p. 362.
ACM (2006)

26. Jacob, M., Boneh, D., Felten, E.W.: Attacking an obfuscated cipher by injecting
faults. In: Feigenbaum, J. (ed.) DRM 2002. LNCS, vol. 2696, pp. 16–31. Springer,
Heidelberg (2003)

27. Jakobsson, M., Reiter, M.K.: Discouraging software piracy using software aging.
In: Sander, T. (ed.) DRM 2001. LNCS, vol. 2320, pp. 1–12. Springer, Heidelberg
(2002)

28. Karroumi, M.: Protecting white-box AES with dual ciphers. In: Rhee, K.-
H., Nyang, D.H. (eds.) ICISC 2010. LNCS, vol. 6829, pp. 278–291. Springer,
Heidelberg (2011)

29. Kirsch, J.: Towards transparent dynamic binary instrumentation using virtual
machine introspection. In: REcon (2015). https://recon.cx/2015/schedule/events/
20.html

30. Klinec, D.: White-box attack resistant cryptography. Master’s thesis, Masaryk Uni-
versity, Brno, Czech Republic (2013). https://is.muni.cz/th/325219/fi m/

31. Kocher, P., Jaffe, J., Jun, B., Rohatgi, P.: Introduction to differential power analy-
sis. J. Cryptogr. Eng. 1(1), 5–27 (2011)

32. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

33. Lepoint, T., Rivain, M., De Mulder, Y., Roelse, P., Preneel, B.: Two attacks on a
white-box AES implementation. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC
2013. LNCS, vol. 8282, pp. 265–286. Springer, Heidelberg (2014)

http://www.emc.com/emc-plus/rsa-labs/historical/the-rsa-factoring-challenge.htm
http://www.emc.com/emc-plus/rsa-labs/historical/the-rsa-factoring-challenge.htm
http://recon.cx/2012/schedule/events/216.en.html
http://recon.cx/2012/schedule/events/216.en.html
https://recon.cx/2015/schedule/events/20.html
https://recon.cx/2015/schedule/events/20.html
https://is.muni.cz/th/325219/fi_m/

DCA: Hiding Your White-Box Designs is Not Enough 235

34. Li, X., Li, K.: Defeating the transparency features of dynamic binary instrumenta-
tion. In: BlackHat US (2014). https://www.blackhat.com/docs/us-14/materials/
us-14-Li-Defeating-The-Transparency-Feature-Of-DBI.pdf

35. Link, H.E., Neumann, W.D.: Clarifying obfuscation: improving the security of
white-box DES. In: International Symposium on Information Technology: Cod-
ing and Computing (ITCC 2005), pp. 679–684. IEEE Computer Society (2005)

36. Linn, C., Debray, S.K.: Obfuscation of executable code to improve resistance to
static disassembly. In: Jajodia, S., Atluri, V., Jaeger, T. (eds.) Proceedings of the
10th ACM Conference on Computer and Communications Security, CCS 2003, pp.
290–299. ACM (2003)

37. Luk, C., Cohn, R.S., Muth, R., Patil, H., Klauser, A., Lowney, P.G., Wallace, S.,
Reddi, V.J., Hazelwood, K.M.: Pin: building customized program analysis tools
with dynamic instrumentation. In: Sarkar, V., Hall, M.W. (eds.) Proceedings of the
ACM SIGPLAN 2005 Conference on Programming Language Design and Imple-
mentation, pp. 190–200. ACM (2005)

38. Maillet, A.: Nosuchcon 2013 challenge - write up and methodology (2013). http://
kutioo.blogspot.be/2013/05/nosuchcon-2013-challenge-write-up-and.html

39. Mangard, S., Oswald, E., Standaert, F.: One for all - all for one: unifying standard
differential power analysis attacks. IET Inf. Secur. 5(2), 100–110 (2011)

40. Marceau, F., Perigaud, F., Tillequin, A.: Challenge SSTIC 2012 (2012). http://
communaute.sstic.org/ChallengeSSTIC2012

41. Messerges, T.S.: Using second-order power analysis to attack DPA resistant soft-
ware. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 238–251.
Springer, Heidelberg (2000)

42. Michiels, W.: Opportunities in white-box cryptography. IEEE Secur. Priv. 8(1),
64–67 (2010)

43. Mougey, C., Gabriel, F.: Désobfuscation de DRM par attaques auxiliaires. In:
Symposium sur la sécurité des technologies de l’information et des communica-
tions (2014). http://www.sstic.org/2014/presentation/dsobfuscation de drm par
attaques auxiliaires

44. De Mulder, Y., Roelse, P., Preneel, B.: Cryptanalysis of the Xiao–Lai white-box
AES implementation. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol.
7707, pp. 34–49. Springer, Heidelberg (2013)

45. De Mulder, Y., Wyseur, B., Preneel, B.: Cryptanalysis of a perturbated white-box
AES implementation. In: Gong, G., Gupta, K.C. (eds.) INDOCRYPT 2010. LNCS,
vol. 6498, pp. 292–310. Springer, Heidelberg (2010)

46. Nethercote, N., Seward, J.: Valgrind: a framework for heavyweight dynamic binary
instrumentation. In: Ferrante, J., McKinley, K.S., (eds.) Proceedings of the ACM
SIGPLAN 2007 Conference on Programming Language Design and Implementa-
tion, pp. 89–100. ACM (2007)

47. Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations against side-
channel attacks and glitches. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS,
vol. 4307, pp. 529–545. Springer, Heidelberg (2006)

48. Polla, M.L., Martinelli, F., Sgandurra, D.: A survey on security for mobile devices.
IEEE Commun. Surv. Tutor. 15(1), 446–471 (2013)

49. Sanfelix, E., de Haas, J., Mune, C.: Unboxing the white-box: practical attacks
against obfuscated ciphers. In: BlackHat Europe 2015 (2015). https://www.
blackhat.com/eu-15/briefings.html

50. Sasdrich, P., Moradi, A., Güneysu, T.: White-box cryptography in the gray box -
a hardware implementation and its side channels. In: FSE 2016, LNCS. Springer,
Heidelberg (2016, to appear)

https://www.blackhat.com/docs/us-14/materials/us-14-Li-Defeating-The-Transparency-Feature-Of-DBI.pdf
https://www.blackhat.com/docs/us-14/materials/us-14-Li-Defeating-The-Transparency-Feature-Of-DBI.pdf
http://kutioo.blogspot.be/2013/05/nosuchcon-2013-challenge-write-up-and.html
http://kutioo.blogspot.be/2013/05/nosuchcon-2013-challenge-write-up-and.html
http://communaute.sstic.org/ChallengeSSTIC2012
http://communaute.sstic.org/ChallengeSSTIC2012
http://www.sstic.org/2014/presentation/dsobfuscation_de_drm_par_attaques_auxiliaires
http://www.sstic.org/2014/presentation/dsobfuscation_de_drm_par_attaques_auxiliaires
https://www.blackhat.com/eu-15/briefings.html
https://www.blackhat.com/eu-15/briefings.html

236 J.W. Bos et al.

51. Schramm, K., Paar, C.: Higher order masking of the AES. In: Pointcheval, D. (ed.)
CT-RSA 2006. LNCS, vol. 3860, pp. 208–225. Springer, Heidelberg (2006)

52. Scrinzi, F.: Behavioral analysis of obfuscated code. Master’s thesis, University
of Twente, Twente, Netherlands (2015). http://essay.utwente.nl/67522/1/Scrinzi
MA SCS.pdf

53. Souchet, A.: AES whitebox unboxing: No such problem (2013). http://0vercl0k.
tuxfamily.org/bl0g/?p=253

54. SysK: Practical cracking of white-box implementations. Phrack 68: 14. http://
www.phrack.org/issues/68/8.html

55. Teuwen, P.: CHES2015 writeup (2015). http://wiki.yobi.be/wiki/CHES2015
Writeup#Challenge 4

56. Teuwen, P.: NSC writeups (2015). http://wiki.yobi.be/wiki/NSC Writeups
57. Tolhuizen, L.: Improved cryptanalysis of an AES implementation. In: Proceed-

ings of the 33rd WIC Symposium on Information Theory. Werkgemeenschap voor
Inform.-en Communicatietheorie (2012)

58. Vanderbéken, E.: Hacklu reverse challenge write-up (2009). http://baboon.rce.free.
fr/index.php?post/2009/11/20/HackLu-Reverse-Challenge

59. Wyseur, B., Michiels, W., Gorissen, P., Preneel, B.: Cryptanalysis of white-box
DES implementations with arbitrary external encodings. In: Adams, C., Miri, A.,
Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876, pp. 264–277. Springer, Heidelberg
(2007)

60. Xiao, Y., Lai, X.: A secure implementation of white-box AES. In: 2nd International
Conference on Computer Science and its Applications 2009, CSA 2009, pp. 1–6
(2009)

61. Zhou, Y., Chow, S.: System and method of hiding cryptographic private keys. 15
December 2009. US Patent 7,634,091

http://essay.utwente.nl/67522/1/Scrinzi_MA_SCS.pdf
http://essay.utwente.nl/67522/1/Scrinzi_MA_SCS.pdf
http://0vercl0k.tuxfamily.org/bl0g/?p=253
http://0vercl0k.tuxfamily.org/bl0g/?p=253
http://www.phrack.org/issues/68/8.html
http://www.phrack.org/issues/68/8.html
http://wiki.yobi.be/wiki/CHES2015_Writeup#Challenge_4
http://wiki.yobi.be/wiki/CHES2015_Writeup#Challenge_4
http://wiki.yobi.be/wiki/NSC_Writeups
http://baboon.rce.free.fr/index.php?post/2009/11/20/HackLu-Reverse-Challenge
http://baboon.rce.free.fr/index.php?post/2009/11/20/HackLu-Reverse-Challenge

Antikernel: A Decentralized Secure
Hardware-Software Operating System

Architecture

Andrew Zonenberg1(B) and Bülent Yener2

1 IOActive Inc., Seattle, WA 98105, USA
andrew.zonenberg@ioactive.com

2 Rensselaer Polytechnic Institute, Troy, NY 12180, USA
yener@cs.rpi.edu

Abstract. The “kernel” model has been part of operating system archi-
tecture for decades, but upon closer inspection it clearly violates the
principle of least required privilege. The kernel is a single entity which
provides many services (memory management, interfacing to drivers,
context switching, IPC) having no real relation to each other, and has
the ability to observe or tamper with all state of the system. This work
presents Antikernel, a novel operating system architecture consisting of
both hardware and software components and designed to be fundamen-
tally more secure than the state of the art. To make formal verification
easier, and improve parallelism, the Antikernel system is highly modu-
lar and consists of many independent hardware state machines (one or
more of which may be a general-purpose CPU running application or sys-
tems software) connected by a packet-switched network-on-chip (NoC).
We create and verify an FPGA-based prototype of the system.

Keywords: Network on chip · System on chip · Security · Operating
systems · Hardware accelerators

1 Introduction

The Antikernel architecture is intended to be more, yet less, than simply a “ker-
nel in hardware”. By breaking up functionality and decentralizing as much as
possible we aim to create a platform that allows applications to pick and choose
the OS features they wish to use, thus reducing their attack surface dramati-
cally compared to a conventional OS (and potentially experiencing significant
performance gains, as in an exokernel).1

Antikernel is a decentralized architecture with no system calls; all OS func-
tionality is accessed through message passing directly to the relevant service.
To create a process, the user sends a message to the CPU core he wishes to
run it on. To allocate memory, he sends a message to the RAM controller.

1 This paper is based on author 1’s doctoral dissertation research [1].

c© International Association for Cryptologic Research 2016
B. Gierlichs and A.Y. Poschmann (Eds.): CHES 2016, LNCS 9813, pp. 237–256, 2016.
DOI: 10.1007/978-3-662-53140-2 12

238 A. Zonenberg and B. Yener

Each of these nodes is self-contained and manages its own state internally
(although nodes are free to, and many will, request services from other nodes).

There is no “all-powerful” software; all functionality normally implemented
by a kernel is handled by unprivileged software or hardware. Even the hard-
ware is limited in capability; for example the flash controller has no access to
RAM owned by the CPU. By formally verifying the isolation and interprocess
communication, we can achieve a level of security which exceeds even that of a
conventional separation kernel: even arbitrary code execution on a CPU grants
no privileges beyond those normally available to userspace software. Escalation
to “ring 0” or “kernel mode” is made impossible due to the complete lack of
such privileges; unprivileged userspace runs directly on “bare metal”.

Thus Antikernel architecture unifies two previously orthogonal fields - hard-
ware accelerators and operating system (OS) security - in order to create a new
OS architecture which can enforce OS security policy at a much lower level than
previously possible. In contrast to the classical OS model, our system blurs or
eliminates many of the typical boundaries between software, hardware, kernels,
and drivers. Most uniquely, there is no single piece of software or hardware in our
architecture which corresponds to the kernel in a classical OS. The operating sys-
tem is instead an emergent entity arising out of the collective behavior of a series
of distinct hardware modules connected via message passing, which together pro-
vide all of the services normally provided by a kernel and drivers. Each hardware
device includes state machines which implement low-level resource management
and security for that particular device, and provides an API via message passing
directly to userspace. Applications software may either access this API directly
(as in an exokernel [2]) or through server software providing additional abstrac-
tions (as in a microkernel).

By decentralizing to this extent, and creating natural chokepoints for
dataflow between functional subsystems (as in a separation kernel [3,4]), we
significantly reduce the portion of the system which is potentially compromised
in the event of a vulnerability in any one part, and render API-hooking rootkits
impossible (since there is no syscall table to tamper with). In order to avoid
difficult-to-analyze side channels between multiple modules accessing shared
memory, we require that all communication between modules take place via
message passing (as in a multikernel [5]). This modular structure allows piece-
wise formal verification of the system since the dataflow between all components
is constrained to a single well-defined interface.

Unlike virtualization-based separation platforms (such as Qubes [6]), our
architecture does not require massive processing and memory overhead for each
security domain, and is thus well suited to running many security domains on
an embedded system with limited resources. Our architecture also scales to a
large number of mutually untrusting security domains, unlike platforms such as
ARM TrustZone [7] which provide one-way protection of a single domain.

We have tested the feasibility of the architecture by creating a proof-of-
concept implementation targeting a Xilinx FPGA, and report experimental results

Antikernel: A Decentralized Secure Hardware-Software OS Architecture 239

including formal correctness proofs for several key components. The prototype is
open source [8] to encourage verification of our results and further research.

2 Related Work

There are many examples in the literature of operating system components being
moved into hardware2 however the majority of these systems are focused on per-
formance and do not touch on the security implications of their designs at all.

Fundamentally, any hard-wired OS component has an intrinsic local secu-
rity benefit over an equivalent software version - it is physically impossible for
software to tamper with it. This brings an unfortunate corollary - it cannot
be patched if a design error, possibly with security implications, is discovered.
Extremely careful testing and validation of both the design and implementa-
tion is thus required. Furthermore, hardware OSes may not provide any global
benefits to security: If the hardware component does not perform adequate vali-
dation or authentication on commands passed to it from software, compromised
or malicious software can simply coerce the hardware into doing its bidding.
Next we briefly review some of the related work in this domain.

2.1 Security Agnostic Hardware Accelerations

Several researchers implemented hardware accelerators for various RTOS func-
tions: [9] proposes a distributed OS built into a network-on-chip, or NoC; [10]
proposes a basic RTOS which contains a simple hardware microkernel imple-
menting a scheduler, semaphores, and timers; [11] describes a microkernel-based
OS using a 2D mesh NoC. Each node is a CPU with a microkernel on it, run-
ning user processes and/or servers. [12] proposes a “hardware OS kernel”, or
HOSK, which is connected to a conventional (unmodified) RISC processor and
functions as an accelerator. [13] describes BORPH, an operating system for a
reconfigurable platform containing one or more CPUs and one or more recon-
figurable components such as FPGAs. It introduces the concept of a “hardware
process”, which is functionally equivalent to a conventional OS process.

While these approaches provide significant performance benefits compared
to a software-only implementation, there are no authentication or protection
capabilities built into them, thus they provide no security benefits.

2.2 Security-Focused Designs

[14] presents an FPGA-based implementation of a separation kernel. It describes
a distributed OS based on a “time-triggered network on chip” (TTNoC) connect-
ing a series of IP cores, each considered a separate partition within the system.
2 This paper uses the term “hardware OS” to refer to a series of state machines imple-

mented in silicon which provide operating system services to a computer. Some other
authors use the same term to refer to a very different concept: a component of an oper-
ating system (which is typically implemented in software) responsible for managing
partitions of an FPGA or other reconfigurable computing device.

240 A. Zonenberg and B. Yener

While the TTNoC provides complete and deterministic isolation between hosts
(i.e., no traffic sent by any other host can ever impact the ability of another to
communicate and thus there are no timing/resource exhaustion side channels)
it suffers from the lack of burst capabilities and does not scale well to systems
involving a large number of hosts (in a system with N nodes each one can only
use 1/N of the available bandwidth).

[15] describes a “zero-kernel operating system” or ZKOS. The general guiding
principles of “no all-powerful component”, “hardware-software codesign”, and
“safe design” are very similar to our work, as well as the conclusion that privi-
lege rings are an archaic and far too coarse-grained concept. The main difference
is that their system relies on “streams” (point-to-point one-way communications
links) and “gates” (similar to a syscall vector, allows one security domain to call
into another) for IPC and does not support arbitrary point-to-point communi-
cation. Furthermore, while threading and message passing are implemented in
hardware, the ZKOS architecture appears to be primarily software based with
minimal hardware support and does not support hardware processes/drivers.
Finally, BiiN [16] was the result of a joint Intel-Siemens project to develop
a fault-tolerant computer, which could be configured in several fault-tolerant
modes including paired lock-step CPUs. A capability-based security system is
used to control access to particular objects in memory or disk. The system archi-
tecture advocates heavy compartmentalization with each program divided up as
much as possible, and using protected memory between compartments (although
the goal was reliability against hardware faults through means such as error
correcting codes and lock-stepped CPUs, not security against tampering). No
mention of formal verification could be found in any published documentation.

3 Antikernel Network Architecture

At the highest logical level, an Antikernel-based system consists of a series of
nodes (userspace processes or hardware peripherals) organized in a quadtree3

and connected by a packet-switched NoC with 16-bit addressing.4 Hardware
and software components are indistinguishable to developers and are addressed
using the same message passing interface.

Each bottom-level leaf node is assigned a /16 subnet (a single address) and
corresponds to a single hardware module. The next level nodes are routers for /14

3 The choice of a quadtree was made purely for convenience of prototyping. Other
implementations of the Antikernel architecture could use an octree, 2D grid, add
direct sibling-to-sibling links to reduce load on the root, or use more esoteric topolo-
gies depending on system requirements.

4 For the remainder of this paper, NoC routing addresses are written in IPv6-style
hexadecimal CIDR notation. For example the subnet consisting of all possible
addresses is denoted 0000/0, 8002/16 is a single host, etc. The architecture can
be scaled to larger address sizes in the future if needed, however it is unlikely that
more than 65536 unique IP cores will be present in any SoC in the near future and
smaller addresses require less FPGA resources.

Antikernel: A Decentralized Secure Hardware-Software OS Architecture 241

subnets, followed by routers for /12 subnets, and so on. Routers are instantiated
as needed to cover active subnets only; if there are only four nodes in the system
the network will consist of a single top-level router with four children rather than
an eight-level tree. Nodes may also be allocated a subnet larger than a /16 if
they require multiple addresses: perhaps a CPU with support for four hardware
threads, with each thread as its own security domain, would use a /14 sized
subnet so that the remainder of the system can distinguish between the threads.

“The network” is actually two parallel networks specialized for different pur-
poses, as shown in Fig. 1. The RPC network transports fixed-size datagrams con-
sisting of one header word and three data words, and is optimized for low-latency
control-plane traffic. The DMA network transports variable size datagrams, and
is optimized for high-throughput data-plane traffic. Each node uses the same
address on both networks to ensure consistency, although individual nodes are
free to only use one network and disable their associated port on the other (for
example, node “n8002/16”). Entire routers for one network or the other may
be optimized out by the code generator if they have no children (for example,
there is no RPC router for the subnet 8004/14 as all nodes in that subnet are
DMA-only).

Fig. 1. Example routing topology showing RPC and DMA

A full link for either network contains two independent unidirectional
links, each consisting of a 32-bit data bus5 and several status flags. Since
the prototype is FPGA-based all network links are system-synchronous, how-
ever they could fairly easily be converted to source-synchronous for a globally-
asynchronous/locally synchronous (GALS) ASIC clocking structure.

Packets for both networks begin with a single-word layer-2 routing header
containing the 16-bit source and destination node addresses, followed by
protocol-specific layer-3 headers.6 Each network guarantees strict FIFO order-
ing, as well as reliable delivery, for any two endpoints.

5 Links could potentially scale to 64, 128, or larger multiples of 32 bits if higher
bandwidth is needed, however our prototype does not implement this.

6 There is no layer-2 header field to distinguish RPC and DMA traffic; since the net-
works are physically distinct the protocol can be trivially determined from context.
Alternate implementations of the architecture could potentially merge both proto-
cols into a single network with an additional header to specify the protocol.

242 A. Zonenberg and B. Yener

3.1 Remote Procedure Call (RPC)

An RPC message consists of the standard layer-2 routing header followed by an
ID indicating the operation to be performed (“call”), a type field (“op”), and
the message payload.

Any RPC transaction involves two nodes. The node which initiates the trans-
action is designated the master; the other is designated the slave. These roles
are not fixed and any node may choose to act as a master or slave at any time.

Interrupts. The simplest kind of RPC transaction is an interrupt7: a unidi-
rectional notification from master to slave. RPC interrupts are typically sent
to inform the slave that some long-running operation (such as a backgrounded
DMA write to slow flash memory) has completed at the master, or that an exter-
nal event took place (such as an Ethernet frame arriving, or a button pressed).
The call field of an interrupt packet is set to a value chosen by the master
describing the specific type of event; the data fields may or may not be signifi-
cant depending on the specific master’s application-layer protocol.

Function Calls. The second major kind of RPC transaction is a function call:
a request by the master that the slave take some action, followed by a result
from the slave. This result may be either a success/fail return value indicating
that the remote procedure call completed, or a retry request indicating that the
slave is too busy to accept new requests and that the call should be repeated
later.

The call field of a function call packet is set to a slave-dependent value
describing one of 256 functions the master wishes the slave to perform. The
meaning of the data fields is dependent on the slave’s application-layer protocol.

A return packet (including a retry) must have the same call value as the
incoming function call request to allow matching of requests to responses. The
meaning of the data fields is dependent on the slave’s application-layer protocol.

Although not implemented by any current slaves, the RPC call protocol
allows out-of-order (OoO) transaction processing (handling multiple requests in
the most efficient order, rather than that in which they were received).

Flow Control/Routing. The RPC protocol will function over links with arbi-
trary latency (and thus register stages may be added at any point on a long link
to improve timing), however a round-trip delay of more than one packet time
will reduce throughput since the transmitter must block until an ACK arrives
from the next-hop router before it can send the next packet. We plan to solve
this issue with credit-based flow control in a future revision.

7 Note that the term “interrupt” was chosen because these messages convey roughly
the same information that IRQs do in classical computer architecture. While the slave
node is free to interrupt its processing and act on the incoming message immediately,
it may also choose to buffer the incoming message and handle it later.

Antikernel: A Decentralized Secure Hardware-Software OS Architecture 243

The RPC router is a full crossbar which allows any of the five ports to send
to any other, with multiple packets in flight simultaneously. Each exit queue
maintains a round-robin counter which increments mod 5 each time a packet is
sent. In the event that two ports wish to send out the same port simultaneously,
the port identified by the counter is given max priority; otherwise the lowest
numbered source port wishing to send wins. This ensures baseline quality of
service (each port is guaranteed 20 % of the available bandwidth) while still
permitting bursting (a port can use up to 100 % of available bandwidth if all
others are idle).

3.2 Direct Memory Access (DMA)

Packet Structure and Semantics. A DMA packet consists of the standard
layer-2 routing header followed by a type field, data length, and a 32-bit address
indicating the target of the DMA operation. This is then followed by message
content (up to 512 32-bit words in our current prototype) for “read data” and
“write data” packets. The “read request” packet has no data field.

All write operations must be to an integral number of 32-bit words; byte
masking is not supported (although it could potentially be added in the future
by using some of the reserved bits in the DMA header). If byte-level write gran-
ularity is required this is typically implemented with a read-modify-write.

Since the DMA address field is 32 bits, a maximum of 4 GB may be addressed
within a single device (/16 subnet). Nodes requiring >4 GB of address space may
be assigned to larger subnets; for example a SD card controller might use a /14
subnet (4 routing addresses) to permit use of cards up to 16 GB (4× 4 GB).
When sending pointers between nodes it is necessary to send both the 16-bit
routing address and the 32-bit pointer. The resulting 48-bit physical address
uniquely identifies a single byte of data within the system.

Memory Read/Write. A memory read transaction consists of one packet
from master to slave, with the type field set to “read request”, the address set
to the location of the data being requested, and the length set to the number
of words being read. If the request is permitted by the slave’s security policy,
it responds with a packet of type “read data”. Address and length are set as in
the requested packet, and the data field contains the data being returned. If the
request is not permitted by policy, the slave returns an error code so that the
master knows no response is forthcoming.

A memory write consists of one packet from master to slave, with the type
field set to “write data” and length/address set appropriately. If the request is
permitted by the slave’s security policy, it responds with a “write complete”
RPC interrupt. This allows the master to implement memory-fencing semantics
for interprocess communication: to avoid potential race conditions, one cannot
send the pointer to another node (or change access controls on it) until the in-
flight write has completed. If the request is not permitted, the slave returns an
RPC error interrupt so that the master knows the underlying physical memory
has not been modified.

244 A. Zonenberg and B. Yener

Flow Control and Routing. The current DMA flow control scheme expects
a fixed single-cycle latency between routers with lock-step acknowledgement8.
The DMA router uses the same arbiter and crossbar modules as the RPC router,
although the buffers are somewhat larger.

4 Memory Management

One of the most critical services an operating system must provide is allowing
applications to allocate, free, and manipulate RAM. In the minimalistic environ-
ment of an exokernel there is no need for an OS to provide sub-page allocation
granularity, so we require nodes to allocate full pages of memory and manage
sub-page regions (such as for C’s malloc() function) in a userspace heap. If a
block larger than a page is required, the node must allocate multiple single pages
and map them sequentially to its internal address space.

Antikernel’s memory management enforces a “one page, one owner” model.
Shared memory is intentionally not supported, however data may be transferred
from one node to another in a zero-copy fashion by changing ownership of the
page(s) containing the data to the new user.

The Antikernel memory management API is extremely simple, in keeping
with the exokernel design philosophy. It consists of four RPC calls for manipu-
lating pages (“get free page count”, “allocate page”, “free page”, and “change
ownership of page”) as well as DMA reads and writes. A “write complete” RPC
interrupt is provided to allow nodes to implement memory fencing semantics
before chown()ing a page.

The data structures required to implement this API are extremely simple,
and thus easy to formally verify: a FIFO queue of free pages and an array
mapping page IDs to owner IDs. When the memory subsystem initializes, the
FIFO is filled with the IDs of all pages not used for the internal metadata and
the ownership array records all pages as owned by the memory manager.

Requesting the free page count simply returns the size of the free list FIFO.
Allocating a page fails if the free list is empty. If not, the first page address on
the FIFO is popped and returned to the caller; the ownership records are also
updated to record the caller as the new owner of the page. Freeing a page is
essentially the allocation procedure run in reverse. After checking that the caller
is the owner of the page, it is zeroized to prevent any data leakage between nodes,
then pushed onto the free list and the ownership records updated to record the
memory manager as the new owner of the page. Changing page ownership does
not touch the free list at all; after verifying that the caller is the owner of the
page the ownership records are simply updated with the new owner.

DMA reads and writes perform ownership checks and, if successful, return or
update the contents of the requested range. The current memory controller API
requires that all DMA transactions be aligned to 128-bit (4 word) boundaries,
be a multiple of 4 words in size, and not cross page boundaries.
8 We plan to extend this in the future in order to support variable latency for long-

range cross-chip links, as was done for RPC.

Antikernel: A Decentralized Secure Hardware-Software OS Architecture 245

The current prototype codebase contains two compatible implementations
of the Antikernel memory management API: BlockRamAllocator (backed
by on-die block RAM, parameterizable size) and NetworkedDDR2Controller
(backed by DDR2, currently fixed at 128 MB capacity with a 16-bit bus).
A parameterizable-depth allocator backed by DDR3 or QDR-II+ is planned,
but has not yet been implemented.

Since Antikernel’s architecture is inherently NUMA, multiple memory con-
trollers may be instantiated without causing problems as long as full 48-bit
pointers are used to avoid ambiguity.

5 SARATOGA Processor and Threading

The prototype CPU for Antikernel (named SARATOGA) is a high-performance
dual-issue in-order barrel processor using a modified version of the the MIPS-
1 instruction set with an 8-stage pipeline9 and a parameterizable number of
hardware threads.10 This produces the net effect of 8 virtual CPUs at 1/8 the
core clock rate, time-sharing the same two execution units.

The CPU can easily reach around 180 MHz on a Xilinx Artix-7 FPGA (-2
speed), and can be pushed to 200 with careful floorplanning of the L1 caches and
register file. Area is 5700 flipflops, 6400 LUTs, 2570 slices, and 44 RAMs for the
CPU itself. The reference system is 12800 flipflops, 15100 LUTs, 5900 slices, and
77 RAMs.11 This includes the standard Antikernel infrastructure (name server,
JTAG debug bridge, system info core), as well as a packet sniffer observing the
CPU’s RPC uplink to aid in system bring-up.

In addition to allocating one NoC address per hardware thread, the CPU
has a dedicated management address used for out-of-band control functionality.
This allows applications to request services from the CPU (for example starting
a new process, quitting, or modifying their page table). The first address of the
CPU’s subnet is used as the OoB management address. This ensures that any
node which queries the name server for the hostname of the processor will get the
management address. The high half of the subnet is used for thread addresses;
all other addresses in the low half of the subnet are unused and incoming packets
are dropped.

5.1 Thread Scheduler

The processor begins in the idle state; the run queue (a circular linked list)
is empty, with no threads running. A free-list of thread IDs is initialized to
contain every valid thread ID, and a bitmap of thread IDs is initialized to the
“unallocated” state. When a “create new process” message is received by the
9 The pipeline has two stages of instruction fetch, two of decode/register fetch, and

four of execution.
10 Any power of two ≥8 is legal; the default for synthesis is 32.
11 These numbers are for the default configuration with 32 threads, 2-way cache asso-

ciativity, 16 lines of 8 words per cache bank.

246 A. Zonenberg and B. Yener

CPU on its management address the free list is popped, the bitmap is updated
to reflect that this thread ID is allocated, and the thread ID is now available
for use (but is not yet scheduled). A simple hardware state machine loads the
statically linked ELF executable at the provided physical address, initializes the
thread, and requests that the scheduler append it to the run queue.

During execution, the CPU reads the current thread from the linked list and
schedules it for execution if possible, then goes on to the next thread in the
linked list the following cycle. If the thread is already in the pipeline (which may
be true if less than 8 threads are currently runnable) then it waits for one cycle
and tries again. If the thread is not in the run queue at all (which may be true if
the thread was just canceled, or if no threads are currently runnable), then the
CPU goes to the next thread and tries again the next cycle.

To delete a thread, it is removed from the linked list and pushed into the
free list, and the bitmaps are updated to reflect its state as free. The linked-list
pointers for the deleted thread are not changed; this ensures that if the CPU
is about to execute the thread being deleted it will correctly read the “next”
pointer and continue to a runnable thread the next clock cycle. (There are no
use-after-free problems possible due to the multi-cycle latency of the allocate
and free routines; by the time the freshly deleted thread can be reallocated the
CPU is guaranteed to have continued to a runnable thread.)

The architecture allows for a thread to very quickly remove itself from the
run queue without terminating (although the thread management API does not
currently provide a means for doing this). This will allow threads blocking on IO
or an L1 cache miss to be placed in a “sleep” state from which they can quickly
awake, but which does not waste CPU time.

5.2 Execution Units

SARATOGA has two execution units connected to separate ports on the register
file. Both are copies of the same Verilog module however some functionality is
left unconnected (and thus optimized out) in execution unit 1. Each execution
unit takes in two values from the register file during EXEC0, and outputs one
value to the register file during EXEC3.

During EXEC0, unit 0 may dispatch an RPC send or receive, or a memory
transaction. Results from RPC receives (if data is available), as well as memory
operations (in case of an L1 cache hit) are available during EXEC2. All ALU
operations other than integer division complete by EXEC1.

5.3 L1 Cache

The L1 cache for SARATOGA is split into independent I- and D-side banks,
and is fully parameterizable for levels of associativity, words per line, and lines
per thread. The default configuration is 2-way set associative and 16 lines of 8
32-bit words, for a total size of 1 KB instruction and 1 KB data cache per thread
(plus tag bits) and 32 KB overall. The cache is virtually addressed and there is
no coherency between the I- and D-side caches.

Antikernel: A Decentralized Secure Hardware-Software OS Architecture 247

The current cache is quite small per thread, which is likely to lead to a high
miss rate, but this is somewhat made up for by the ability of multithreading to
hide latency - if all 32 threads are active, a 31-cycle miss latency can be tolerated
with a penalty of only one skipped instruction. We have not yet implemented
performance counters for measuring cache performance; after this is added there
are likely to be numerous optimizations to the cache structure.

5.4 MMU

In order to speed prototyping a very simple MMU was created, consisting of a
software-controlled TLB with no external page tables. It supports a parameter-
izable number (the default is 32) of 2 KB pages of virtual memory per thread,
mapped consecutively starting at virtual address 0x40000000. Each thread has
a fully independent virtual address space, meaning that the total amount of vir-
tual memory addressable by all threads combined in the default configuration
is 32*32 pages, or 2 MB. This has been sufficient for initial prototyping; a full
MMU with a TLB and external page tables in RAM is planned for the future.
Since software accesses the MMU using an abstracted API via the CPU man-
agement port, it is possible to make arbitrary changes to the internal MMU and
TLB structure without breaking software compatibility.

Each page table entry consists of a valid bit, R/W/X permission flags, a 16-
bit node ID, and a 21-bit upper address within that node (low bits are implicit
zero). This allows the full 48 bits of physical address space to be used.

5.5 RPC Network Interface

In order to send an RPC message, the high half of the a0 register is loaded with
the “send” opcode; the low half of a0, as well as a1, a2, and a3, store the RPC
message. This is identical to the standard C calling convention for MIPS, which
makes implementation of the syscall() library function trivial. (The high half
of a0 is used as the opcode since this would normally be the source address of
the packet, but this is added by hardware). A syscall instruction then actually
sends the message.

Receiving an RPC message is essentially the same process in reverse. The
high half of a0 is loaded with the “receive” opcode and a syscall instruction
is executed. When a message is ready, it is written to v1, v0, k0, and k1. This
places the success/fail code and the first half-word of the return data in v0,
typically used for integer results in the MIPS C calling convention.

Since a new application starting up on a SARATOGA core does not nec-
essarily know the management address of its host CPU, we provide a means
for doing so through the syscall instruction. At any time, an application may
perform a syscall with the high half of a0 set to “get management address”
to set the v0 register to the current CPU’s management address. All other CPU
management operations are accessed via RPCs to the management address.

248 A. Zonenberg and B. Yener

5.6 ELF Loader with Code Signature Checking

To create a new process, a node sends a “create process” call to the CPU’s OoB
management port, specifying the physical address of the executable to run. The
management system begins by allocating a new thread context, returning failure
if all are currently in use.

If a thread ID was successfully obtained, the ELF loader then issues a DMA
read for sizeof(Elf32 Ehdr) bytes to the supplied physical address, expecting
to find a well formed ELF executable header. If the header is invalid (wrong
magic numbers, incorrect version, or not a big-endian MIPS executable file) an
error is returned.

If the header is well formed, the loader then looks at the e entry field to find
the address of the program’s entry point. This is fed into a FIFO of data to be
processed by the signature engine.12 It is important to hash headers, as well as
the contents of all executable pages, in order to ensure that a signed application
cannot be modified to start at a different address within the code, potentially
performing undesired actions.

The loader then checks the e phoff field to find the address of the program
header table, which stores the addresses of all segments in the program’s memory
image. It loops over the program header table and checks the p type field for
each entry. If the type is PT LOAD (meaning the segment is part of the loadable
memory image) then the loader reads the contents of the segment and feeds
them into the hashing engine and stores the virtual and physical addresses in
a buffer for future mapping. If the type is 0x70000005 (an unused value in the
processor-defined region of the ELF program header type specification) then the
segment is read into a buffer holding the expected signature. After all loadable
segments have been hashed, the signature is compared to the expected value. If
they do not match an error is returned and the allocated thread context is freed.

If the signature is valid, the list of address mappings is then fed to the
MMU. Note that the ELF loader is the only part of the processor which has
permission to set the PAGE EXECUTE permission on a memory page; permis-
sions for pages mapped by software through the OoB interface are ANDed with
PAGE READ WRITE before being applied. This means that it is impossible by design
for any unsigned code to ever execute as long as the physical memory backing
the executable cannot be modified externally (for example, by modifying the
contents of an external flash chip while the program is executing). With appro-
priate choices of access controls for on-chip memory, and use of encryption to
prevent tampering with off-chip memory, this risk can be mitigated. After the
initial memory mappings are created the program counter for the newly created
thread is set to the entry point address from the ELF header and the thread is
added to the run queue.

12 We used HMAC-SHA256 in the prototype due to FPGA capacity limitations, as
well as difficulty finding a suitable open source public key signature core. An actual
ASIC implementation would presumably use RSA or ECC signatures.

Antikernel: A Decentralized Secure Hardware-Software OS Architecture 249

5.7 Remote Attestation

SARATOGA supports a simple form of remote attestation. When an application
is loaded by the ELF loader, the signature is stored in a buffer associated with
the thread ID. At any time in the future, any NoC node may ask the CPU (via
RPC to the management interface) to return the signature associated with a
given thread context.

6 Security Analysis

6.1 Threat Model

Antikernel’s primary goal is to enforce compartmentalization between user-
space processes, and between user-space and the operating system. The focus is
on damage control, rather than preventing initial penetration. The attacker is
assumed to be remote so physical attacks are not considered. Existing antitem-
per techniques can, of course, be used along with the Antikernel architecture to
produce a system with some degree of robustness against physical tampering;
but it is important to note that no physical security is perfect and an attacker
with unrestricted physical access to the system is likely to be able to penetrate
any security given sufficient time and budget.

Antikernel is designed to ensure that following are not possible given that
an attacker has gained unprivileged code execution within the context of a user-
space application or service: (i) download a backdoor payload and configure it
to run after system restart, (ii) modify executable code in memory or persistent
storage, intercept/spoof/modify system calls or IPC of another process, (iii) read
or write private state of another process, or (iv) gain access to handles belonging
to another process by any means.

We consider an abstract RTL-level model of the system with ideal digital
signals in which it is not possible for the state of one register or input pin to
observe or modify the state of another except if they are connected through
combinatorial logic in the RTL netlist.13

6.2 Methodology and Goals

We have performed fairly extensive verification on the current prototype system
using a mix of simulation, hardware-in-loop (HiL) testing on our test cluster, and
formal methods. All tests are fully automated and re-run before every commit.
The general verification methodology begins by creating at least one HiL test
13 In practice it is sometimes possible for this property to be violated (for example by

DRAM read disturbance, as described in [17,18]). Such attacks exploit subtle layout-
vs-schematic (LVS) mismatches which are not picked up by automated tools. While
detecting these bugs is certainly an important task, it requires a level of solid-state
physics better suited to a journal of electrical engineering so we leave it as an open
research problem and focus on the computer science problem: ensuring safety of the
pre-layout netlist.

250 A. Zonenberg and B. Yener

for each module or subsystem being verified, supplemented by simulation tests
in some cases to speed the design cycle. The focus of this level of verification is
catching obvious bugs that occur when the module is used as intended. 100 % of
the modules in the project receive at least this level of verification.

In addition, the most critical subsystems are provably verified against a for-
mal model of the desired behavior. The choice of modules to verify is determined
by several factors including their importance to the security model (the worse
the impact of a bug, the more important provable correctness is) and their
complexity (simpler modules are easier to prove correct).14 The Verilog source
for formal/simulation testbenches, as well as the C++ test cases and top-level
modules for HiL testing, is included under the “tests” directory of the source
distribution.

6.3 Assumptions

All of the low-level proofs of correctness were performed on post-synthesis RTL
netlists using yosys [19]. We assume correctness of the temporal induction proof
system in yosys and the SAT solver.15 In other words, we assume that if the
post-synthesis netlist is inconsistent and one or more of the assertions in the
netlist are violated, that the solver will correctly detect the error and declare
the proof to not hold.

These proofs are only valid down to the RTL level for the current prototype.
The actual synthesis and place-and-route (PAR) of the prototype systems were
performed using Xilinx’s proprietary tools; correctness of these tools and the
FPGA silicon is assumed.16

It is assumed that the RPC network consists of a series of RPCv2Router
objects connected in a quadtree, with nodes under the routers. All of these nodes
must connect to the RPC network with either an RPCv2Router-Transceiver or
an RPCv2Transceiver object, configured as a leaf node (with the exception of
the multithreaded CPUs such as SARATOGA, which are treated as multiple
nodes under one router for the scope of the network-level proofs).

The DMA network is assumed to consist of a series of DMARouter objects
connected in a quadtree, and nodes under the routers. Each node must connect
to the DMA network with a DMATransceiver or DMARouterTransceiver object,
configured as a leaf node. As with the RPC network, multithreaded CPUs are a
special case and handled separately.

14 While full verification of the entire implementation is of course desirable, and a goal
we are working toward, it would require many man-years of additional effort. Addi-
tionally, several components of the design are still being optimized and improved,
making a correctnesss proof of the current code a waste of time.

15 MiniSAT by default, although different solvers can be configured at run time.
16 Since the FPGA microarchitecture is undocumented, equivalence checking on the

actual FPGA bitstream would not be possible without extensive reverse engineering
of the silicon. While an interesting problem, and one that researchers including
author 1 are actively working on [20], it is beyond the scope of this paper.

Antikernel: A Decentralized Secure Hardware-Software OS Architecture 251

Furthermore, it is assumed that if any node connects to both networks it
uses the same address on each, and that there is no information flow between
nodes outside of the NoC (for example, by wires that do not pass through a NoC
router, or off-die paths on the printed circuit board).

All of the test SoCs created as part of this paper were generated by our
nocgen tool, which is intended to enforce these requirements for the top-level
module, however its correctness has not yet been proven. Verifying that any par-
ticular generated source file (and the instantiated modules) meet these require-
ments is relatively easy to do by inspection. In the future we intend to create a
DRC tool which uses yosys to parse the actual RTL source for a particular SoC
and verifies that all of the on-chip topology requirements are met.

6.4 Networks

All four combinations of RPC and DMA transceivers (node or router at each
end) for a layer-2 link were formally verified using yosys.17

Each test case instantiates one transmitter and one receiver of the appro-
priate types, as well as testbench code. yosys is then run on each testbench to
synthesize to RTLIL intermediate representation, followed by invoking the SAT
solver to prove the assertions in the testbenches. If the solver declares that all
assertions pass, the proof is considered to hold.

While the testbenches are all slightly different due to the differences in inter-
face between router/client transceivers and RPC/DMA network protocols, their
basic operation is the same. When the test starts, all outputs are in the idle
state and remain so in the absence of external stimuli. When a transmit is
requested, the test logic stores the signals at the transceiver’s inputs and asserts
that the same data exits the receiver a fixed time later. The test also verifies
that attempts to transmit while the receiver is busy block until the receiver is
free (thus preventing dropped packets) and that the transceiver fully resets to
its original state after sending a packet.

It is also necessary to prove that packets are correctly forwarded to the
desired layer-3 destination by routers. We can map the quadtree directly to
routing addresses by allocating two bits of the address to each level of the tree.
Each router simply checks if the high bits match its subnet, forwards out the
downstream port identified by the next two bits if so, and otherwise forwards
out the upstream port. It is easy to see by inspection that this algorithm will
always lead to a correct tree traversal.

17 It is important to note that due to the large maximum packet size (512 words) it
was not possible to run the DMA network proofs to a steady state, thus the proof
is not complete. The current proof is artificially limited to examining state for the
first 64 cycles and shows that no assertions are violated during this time. Running
the solver on each proof takes about ten minutes on a single CPU core and uses
between three and ten gigabytes of RAM; given a sufficiently large amount of CPU
time and RAM there is no reason why the proof cannot be extended until a steady
state is reached.

252 A. Zonenberg and B. Yener

Since correct routing at the hop level combined with a valid quadtree topology
implies correct routing at the network level, and the previous proofs show that
link-layer forwarding is correct, the proof for correct end-to-end forwarding thus
reduces to showing that the router correctly implements the routing algorithm,
which is shown by another of our proofs (for the RPC network only).18

6.5 Name Server

Even if the layer-3 links between nodes are secure and packet misrouting is
impossible, if a rogue node can trick a target node into sending its traffic to the
wrong address, by causing the name server to report incorrect data, then MITM
attacks can still occur.

Avoiding this requires proving two properties: First, the name server must
always return the correct entry (if one exists) from its table when queried, or
an error if none exists. Second, the name server must only insert names into the
table, or remove them, if authorized by system security policy.

The top-level NOCNameServer module consists of several RAM blocks, an
RPC transceiver, an HMAC-SHA256 engine, a “target matching” system (which
compares outputs of the RAMs against a value being searched for), a mutex, and
the main control state machine.

We assume correctness of the RAM and prove correctness of the transceiver
separately. The mutex, target matching logic, and HMAC cores have undergone
conventional validation but do not have correctness proofs as of this writing.
Several correctness properties have been proven on the control state machine, as
described below.

We currently have a partial liveness proof on the name server, which shows
that two of the RPC calls will always terminate in constant time and return
the name server to the idle condition. It also shows that these two calls will
always behave as specified by the formal model, and will never modify any other
state. A liveness proof for the remaining opcodes in progress however it was not
complete as of this writing.

We have verified correct operation of the name server’s registration and
lookup functionality via conventional verification techniques, including auto-
mated unit testing, but have not yet completed a formal correctness proof.

Names for hardware nodes that are “baked” into the name table at logic
synthesis time require no further authentication since the source code of the SoC
18 Aside from the transceivers, the majority of the DMA network router is identical

to that of RPC, instantiating the same modules with the same configuration. The
only changes were adding an additional SRAM buffer and multiplexer for each port
since the DMA transceiver has separate memory channels for headers and packet
bodies, as opposed to the single channel for RPC. We believe that these changes are
sufficiently non-intrusive that the probability of them containing a security-critical
bug is very low. Although a full part-wise verification of the router (as was done for
RPC) is certainly possible, and should be performed before an Antikernel system is
actually deployed in a critical application, we believe that doing so at this stage of
development would be an inefficient use of research time.

Antikernel: A Decentralized Secure Hardware-Software OS Architecture 253

is trusted implicitly (and an attacker has no way to modify these addresses short
of an invasive silicon attack). Names being registered by a random NoC node
at run time, however, are not inherently trusted. In order to prevent malicious
name registrations, the name server requires a cryptographic signature to be
presented and validated before the name can be registered.

6.6 RAM Controller

There are two implementations of the RAM controller API, BlockRAMAllocator
and NetworkedDDR2Controller. Both are covered by an extensive conventional
(non-formal) verification suite in the current codebase. In order to ensure inter-
operability, the same compiled test binary is run on bitstreams containing both
RAM controller implementations and is verified to work properly with both.

7 Conclusions and Future Work

The overall goal of this research was to determine whether moving operating
system functionality into hardware is a practical means for improving operating
system security. We define a high-level architecture, Antikernel, for an operating
system which freely mixes hardware and software components as equal peers
connected by a packet-switched network. The architecture takes the ideal of
“least required privilege” to the extreme by having each node in the network
be a fully encapsulated system which manages its own security policy, and only
allows access to its internal state through a well-defined API.

The architecture draws inspiration from numerous existing operating system
architectures, such as the microkernel (minimal privileged functionality with
most services in userspace), the exokernel (drivers as very thin wrappers around
hardware providing nothing but security and sharing), and the separation kernel
(enforcing strong isolation between processes except through a defined interface).

Additionally, the modular structure of an Antikernel system is highly
amenable to piecewise formal verification. If we define security of the entire
system as the condition where all security properties of each node are upheld,
we can then prove security by proving security of the interconnect, as well as
proving that every node’s security policy is internally consistent (in other words,
policy cannot be violated by sending arbitrary messages to the NoC interface or
any external communications interfaces).

We hope that this work will serve to inspire future research at the intersection
of computer architecture and security, and lead to more convergent full-stack
design of critical systems. Blurring the lines between hardware and software
appears to be a promising architectural model and one warranting further study.
By releasing all of our source code we hope to encourage future work building
on our design. We intend to continue actively developing the project.

While the current prototype does show that hardware-based operating sys-
tems are practical and can be highly secure, it is far from usable in real-world
applications. Many features which are necessary in a real-world operating system

254 A. Zonenberg and B. Yener

could not be implemented due to limited manpower so effort was focused on the
most critical core features such as memory and process management.

The current prototype relies on the initialization code starting all software
applications in the same order (and thus receiving the same thread ID since
these are allocated in FIFO order every boot). A more stable system for binding
processes to IDs is, of course, desirable.

As of this writing, neither of the memory controller implementations have
been formally verified. No part of the CPU (other than the NoC transceivers) has
been formally verified to date. While SARATOGA’s architecture was designed
to minimize the risk of accidental data leakage between thread contexts, until full
verification is completed we cannot rule out the possibility that such a bug exists.
Eventually we would like to verify that the CPUs themselves correctly imple-
ment the semantics of our reduced MIPS-1 instruction set. If we then compiled
our application code with a formally verified C compiler (such as CompCert C
[21,22]) we could have full equivalency proofs from C down to RTL.19 This could
then be combined with verification of the C source code, resulting in fully verified
correct execution from application software all the way down to RTL.

Finally, our prototype is intended to be a proof of concept for hardware-based
compartmentalization at the OS level. As a result, we do not incorporate any of
the numerous defensive techniques in the literature for guarding against physical
tampering, hardware faults, or software-based exploits targeting userland. Cur-
rently, implementation of many useful subsystems (such as the networking stack
and filesystem) are missing major features or entirely absent. Although many
of the core components (such as the NoC) have been formally verified, many
higher-level components and peripherals have received basic functional testing
only and the full system should be considered research-grade. Further work could
explore integrating existing software-based mitigations with Antikernel.

The prototype prioritizes ease of verification and implementation over per-
formance: for example, the SARATOGA CPU uses a simple barrel scheduler
which has poor single-threaded performance, lacks support for out-of-order exe-
cution, and has very unoptimized logic for handling L1 cache misses. Although
these factors combine to cause a significant (order of magnitude) performance
reduction compared to a legacy system running the same ISA, these are due to
implementation choices rather than any inherent limitations of the architecture.
We conjecture that a more optimized Antikernel implementation could match or
even exceed the performance of existing OS/hardware combinations due to the
streamlined, exokernel-esque design.

Additionally, although backward compatibility with existing operating sys-
tems was explicitly not a design goal, we have done a small amount of work on
a POSIX compatibility layer. This is unlikely to ever reach “recompile and run”
compatibility with legacy software due to inherent architecture differences, but
we hope that it will help minimize porting effort.

19 The current CompCert compiler does not support the MIPS instruction set - only
x86, ARM, and PowerPC. We plan to explore adding formally verified MIPS code
generation to this or another verified C compiler in the future.

Antikernel: A Decentralized Secure Hardware-Software OS Architecture 255

References

1. Zonenberg, A.D.: Antikernel: a decentralized secure hardware-software operating
system architecture. Ph.D. dissertation, Rensselaer Polytechnic Institute (2015)

2. Engler, D.R., et al.: Exokernel: an operating system architecture for application-
level resource management. SIGOPS Oper. Syst. Rev. 29(5), 251–266 (1995)

3. Rushby, J.M.: Design and verification of secure systems. In: Proceedings of the 8th
ACM Symposium on Operating Systems Principles, pp. 12–21 (1981)

4. Martin, W., White, P., Taylor, F.S., Goldberg, A.: Formal construction of the
mathematically analyzed separation kernel. In: 15th IEEE International Confer-
ence Automated Software Engineering, ASE 2000, pp. 133–141 (2000)

5. Baumann, A., et al.: The multikernel: a new OS architecture for scalable multicore
systems. In: Proceedings of the ACM SIGOPS 22nd Symposium Operating Systems
Principles, New York, NY, USA, pp. 29–44 (2009)

6. Rutkowska, J., Wojtczuk, R.: Qubes OS Architecture, January 2010. http://files.
qubes-os.org/files/doc/arch-spec-0.3.pdf

7. ARM Ltd. TrustZone Technology (2014). http://www.arm.com/products/
processors/technologies/trustzone.php. Accessed 09 Apr 2015

8. Zonenberg, A.: Antikernel source repository, 18 March 2016. http://redmine.
drawersteak.com/projects/achd-soc/repository. Accessed 18 Mar 2016

9. Engel, M., Spinczyk, O.: A radical approach to network-on-chip operatingsys-
tems. In: 42nd Hawaii International Conference on System Sciences, HICSS 2009,
pp. 1–10, January 2009

10. Nordstrom, S., et al.: Application specific real-time microkernel in hardware. In:
14th IEEE-NPSS Real Time Conference 2005, p. 4, June 2005

11. Hu, W., Ma, J., Wu, B., Ju, L., Chan, T.: Distributed on-chip operating systemfor
network on chip. In: 2010 IEEE 10th International Conference on Computer and
Information Technology (CIT), pp. 2760–2767, 1 July 2010

12. Park, S., et al.: A hardware operating system kernel for multi-processor systems.
IEICE Electron. Express 5(9), 296–302 (2008)

13. So, H.K.-H., et al.: A unified hardware/software runtime environment for FPGA-
based reconfigurable computers using BORPH. In: Proceedings of the 4th Interna-
tional Conference Hardware/Software Codesign Systems Synthesis CODES+ISSS
2006, pp. 259–264 (2006)

14. Wasicek, V., et al.: A system-on-a-chip platform for mixed-criticality applications.
In: 2010 13th IEEE International Symposium on Object/Component/Service-
Oriented Real-Time Distributed Computing (ISORC), pp. 210–216, May 2010

15. Thomas, A., et al.: Towards a Zero-Kernel Operating System, 10 January
2013. http://www.infsec.cs.uni-saarland.de/hritcu/publications/zkos draft jan10
2013.pdf. Accessed 09 Apr 2015

16. BiiN Corporation. BiiN Systems Overview, Portland, OR, July 1988. http://
bitsavers.informatik.uni-stuttgart.de/pdf/biin/BiiN Systems Overview.pdf.
Accessed 09 Apr 2015

17. Kim, Y., et al.: Flipping bits in memory without accessing them: an experimen-
tal study of DRAM disturbance errors. In: 2014 ACM/IEEE 41st International
Symposium on Computer Architecture (ISCA), pp. 361–372, June 2014

18. Evans, C.: Project Zero: Exploiting the DRAM rowhammer bug to gain ker-
nel privileges, 9 March 2015. http://googleprojectzero.blogspot.com/2015/03/
exploiting-dram-rowhammer-bug-to-gain.html. Accessed 09 Apr 2015

19. Wolf, C.: Yosys open synthesis suite. http://www.clifford.at/yosys/

http://files.qubes-os.org/files/doc/arch-spec-0.3.pdf
http://files.qubes-os.org/files/doc/arch-spec-0.3.pdf
http://www.arm.com/products/processors/technologies/trustzone.php
http://www.arm.com/products/processors/technologies/trustzone.php
http://redmine.drawersteak.com/projects/achd-soc/repository
http://redmine.drawersteak.com/projects/achd-soc/repository
http://www.infsec.cs.uni-saarland.de/hritcu/publications/zkos_draft_jan10_2013.pdf
http://www.infsec.cs.uni-saarland.de/hritcu/publications/zkos_draft_jan10_2013.pdf
http://bitsavers.informatik.uni-stuttgart.de/pdf/biin/BiiN_Systems_Overview.pdf
http://bitsavers.informatik.uni-stuttgart.de/pdf/biin/BiiN_Systems_Overview.pdf
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://www.clifford.at/yosys/

256 A. Zonenberg and B. Yener

20. Zonenberg, A.: From Silicon to Compiler: Reverse-Engineering the Xilinx
XC2C32A, 22 July 2015. https://recon.cx/2015/slides/recon2015-18-andrew-
zonenberg-From-Silicon-to-Compiler.pdf. Accessed 02 Mar 2016

21. Blazy, S., Dargaye, Z., Leroy, X.: Formal verification of a C Compiler front-
end. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085,
pp. 460–475. Springer, Heidelberg (2006)

22. Boldo, S., et al.: A formally-verified C compiler supporting floating-point arith-
metic. In: 21st IEEE International Symposium Computer Arithmetic ARITH,
pp. 107–115. IEEE Computer Society Press (2013)

https://recon.cx/2015/slides/recon2015-18-andrew-zonenberg-From-Silicon-to-Compiler.pdf
https://recon.cx/2015/slides/recon2015-18-andrew-zonenberg-From-Silicon-to-Compiler.pdf

Software Implementations

Software Implementation of Koblitz Curves
over Quadratic Fields

Thomaz Oliveira1(B), Julio López2, and Francisco Rodŕıguez-Henŕıquez1

1 Computer Science Department, CINVESTAV-IPN, Mexico, Mexico
thomaz.figueiredo@gmail.com, jlopez@ic.unicamp.br

2 Institute of Computing, University of Campinas, Campinas, Brazil
francisco@cs.cinvestav.mx

Abstract. In this work, we retake an old idea presented by Koblitz in
his landmark paper [21], where he suggested the possibility of defining
anomalous elliptic curves over the base field F4. We present a careful
implementation of the base and quadratic field arithmetic required for
computing the scalar multiplication operation in such curves. In order
to achieve a fast reduction procedure, we adopted a redundant trinomial
strategy that embeds elements of the field F4m , with m a prime number,
into a ring of higher order defined by an almost irreducible trinomial. We
also report a number of techniques that allow us to take full advantage of
the native vector instructions of high-end microprocessors. Our software
library achieves the fastest timings reported for the computation of the
timing-protected scalar multiplication on Koblitz curves, and competi-
tive timings with respect to the speed records established recently in the
computation of the scalar multiplication over prime fields.

1 Introduction

Anomalous binary curves, generally referred to as Koblitz curves, are binary
elliptic curves satisfying the Weierstrass equation, Ea : y2 + xy = x3 + ax2 + 1,
with a ∈ {0, 1}. Since their introduction in 1991 by Koblitz [21], these curves have
been extensively studied for their additional structure that allows, in principle, a
performance speedup in the computation of the elliptic curve point multiplication
operation. As of today, the research works dealing with standardized Koblitz
curves in commercial use, such as the binary curves standardized by NIST [23] or
the suite of elliptic curves supported by the TLS protocol [4,9], have exclusively
analyzed the security and performance of curves defined over binary extension
fields F2m , with m a prime number (for recent examples see [1,5,32,36]).

Nevertheless, Koblitz curves defined over F4 were also proposed in [21]. We
find interesting to explore the cryptographic usage of Koblitz curves defined over

T. Oliveira, F. Henŕıquez—The authors would like to thank CONACyT (project
number 180421) for their funding of this research.
J. López—The author was supported in part by the Intel Labs University Research
Office and by a research productivity scholarship from CNPq Brazil.

c© International Association for Cryptologic Research 2016
B. Gierlichs and A.Y. Poschmann (Eds.): CHES 2016, LNCS 9813, pp. 259–279, 2016.
DOI: 10.1007/978-3-662-53140-2 13

260 T. Oliveira et al.

F4 due to their inherent usage of quadratic field arithmetic. Indeed, it has been
recently shown [3,25] that quadratic field arithmetic is extraordinarily efficient
when implemented in software. This is because one can take full advantage of the
Single Instruction Multiple Data (SIMD) paradigm, where a vector instruction
performs simultaneously the same operation on a set of input data items.

Quadratic extensions of a binary finite field Fq2 can be defined by means
of a monic polynomial h(u) of degree two irreducible over Fq. The field Fq2 is
isomorphic to Fq[u]/(h(u)) and its elements can be represented as a0 + a1u,
with a0, a1 ∈ Fq. The addition of two elements a, b ∈ Fq2 , can be performed as
c = (a0 + b0) + (a1 + b1)u. By choosing h(u) = u2 + u + 1, the multiplication of
a, b can be computed as, d = a0b0 + a1b1 + ((a0 + a1) · (b0 + b1) + a0b0)u. By
carefully organizing the code associated to these arithmetic operations, one can
greatly exploit the pipelines and their inherent instruction-level parallelism that
are available in contemporary high-end processors.

Our Contributions. In this work we designed for the first time, a 128-bit secure
and timing attack resistant scalar multiplication on a Koblitz curve defined over
F4, as they were proposed by Koblitz in his 1991 seminal paper [21]. We devel-
oped all the required algorithms for performing such a computation. This took us
to reconsider the strategy of using redundant trinomials (also known as almost
irreducible trinomials), which were proposed more than ten years ago in [6,10].
We also report what is perhaps the most comprehensive analysis yet reported
of how to efficiently implement arithmetic operations in binary finite fields and
their quadratic extensions using the vectorized instructions available in high-end
microprocessors. For example, to the best of our knowledge, we report for the
first time a 128-bit AVX implementation of the linear pass technique, which is
useful against side-channel attacks.

The remaining of this paper is organized as follows. In Sect. 2 we formally
introduce the family of Koblitz elliptic curves defined over F4. In Sects. 3 and 4
a detailed description of the efficient implementation of the base and quadratic
field arithmetic using vectorized instructions is given. We present in Sect. 5 the
scalar multiplication algorithms used in this work, and we present in Sect. 6 the
analysis and discussion of the results obtained by our software library. Finally,
we draw our concluding remarks and future work in Sect. 7.

2 Koblitz Curves over F4

Koblitz curves over F4 are defined by the following equation

Ea : y2 + xy = x3 + aγx2 + γ, (1)

where γ ∈ F22 satisfies γ2 = γ + 1 and a ∈ {0, 1}. Note that the number of
points in the curves E0(F4) and E1(F4) are, #E0(F4) = 4 and #E1(F4) = 6,
respectively. For cryptographic purposes, one uses Eq. (1) operating over exten-
sion fields of the form Fq, with q = 4m, and m a prime number. The set of affine

Software Implementation of Koblitz Curves over Quadratic Fields 261

points P = (x, y) ∈ Fq × Fq that satisfy Eq. (1) together with a point at infinity
represented as O, forms an abelian group denoted by Ea(F4m), where its group
law is defined by the point addition operation.

Since for each proper divisor l of k, E(F4l) is a subgroup of E(F4k), one has
that #E(F4l) divides #E(F4k). Furthermore, by choosing prime extensions m,
it is possible to find Ea(F4m) with almost-prime order, for instance, E0(F22·163)
and E1(F22·167). In the remaining of this paper, we will show that the aforemen-
tioned strategy can be used for the efficient implementation of a 128-bit secure
scalar multiplication on software platforms counting with 64-bit carry-less native
multipliers, such as the ones available in contemporary personal desktops.

The Frobenius map τ : Ea(Fq) → Ea(Fq) defined by τ(O) = O, τ(x, y) =
(x4, y4), is a curve automorphism satisfying (τ2 + 4)P = μτ(P) for μ = (−1)a

and all P ∈ Ea(Fq). By solving the equation τ2 + 4 = μτ , the Frobenius map
can be seen as the complex number τ = (μ ±

√
−15)/2.

2.1 The τ -adic Representation

Given a Koblitz curve Ea/F22m with group order #Ea(F22m) = h · ρ · r, where
h is the order #Ea(F4), r is the prime order of our subgroup of interest, and ρ
is the order of a group of no cryptographic interest.1 We can express a scalar
k ∈ Zr as an element in Z[τ] using the now classical partial reduction introduced
by Solinas [31], with a few modifications. The modified version is based on the
fact that τ2 = μτ − 4.

Given that the norm of τ is N(τ) = 4, N(τ −1) = h, N(τm −1) = h ·ρ ·r and
N((τm − 1)/(τ − 1)) = ρ · r, the subscalars r0 and r1 resulting from the partial
modulo function will be both of size approximately

√
ρ · r. As a consequence,

the corresponding scalar multiplication will need more iterations than expected,
since it will consider the order ρ of a subgroup which is not of cryptographic
interest.

For that reason, we took the design decision of considering that the input
scalar of our point multiplication algorithm is already given in the Z[τ] domain.
As a result, a partial reduction of the scalar k is no longer required, and the
number of iterations in the point multiplication will be consistent with the scalar
k size. If one needs to retrieve the equivalent value of the scalar k in the ring
Zr, this can be easily computed with one multiplication and one addition in Zr.
This strategy is in line with the degree-2 scalar decomposition method within
the GLS curves context as suggested in [12].

2.2 The Width-w τNAF Form

Assuming that the scalar k is specified in the Z[τ] domain, one can represent the
scalar in the regular width-w τNAF form as shown in Algorithm1. The length
of the representation width-w τNAF of an element k ∈ Z[τ] is discussed in [30].

1 Usually the order ρ is composite. Also, every prime factor of ρ is smaller than r.

262 T. Oliveira et al.

Algorithm 1. Regular width-w τ -recoding for m-bit scalar
Input: w, tw, αv = βv + γvτ for v = {±1, ±3, ±5, . . . , ±4w−1 − 1}, ρ = r0 + r1τ ∈ Z[τ]

with odd r0, r1

Output: ρ =

� m+2
w−1 �∑

i=0

viτ
i(w−1)

1: for i ← 0 to �m+2
w−1

� - 1 do
2: if w = 2 then
3: vi ← ((r0 − 4 · r1) mod 8) − 4
4: r0 ← r0 − vi

5: else
6: u ← (r0 + r1tw mod 22w−1) − 22(w−1)

7: if v > 0 then s ← 1 else s ← −1
8: r0 ← r0 − sβv, r1 ← r1 − sγv, vi ← sαv

9: end if
10: for j ← 0 to (w − 2) do
11: t ← r0, r0 ← r1 + (μ · r0)/4, r1 ← −t/4
12: end for
13: end for

14: if r0 �= 0 and r1 �= 1 then
15: vi ← r0 + r1τ
16: else
17: if r1 �= 0 then
18: vi ← r1
19: else
20: vi ← r0
21: end if
22: end if

Given a width w, after running Algorithm1, we have 22(w−1)−1 different
digits.2 As a result, it is necessary to be more conservative when choosing the
width w, when compared to the Koblitz curves defined over F2. For widths
w = 2, 3, 4, 5 we have to pre- or post-compute 2, 8, 32 and 128 points, respectively.
For the 128-bit point multiplication, we estimated that the value of the width w
must be at most four, otherwise, the costs of the point pre/post-processing are
greater than the addition savings obtained in the main iteration.

In addition, we must find efficient expressions of αv = v mod τw. The method
for searching the best expressions in Koblitz curves over F2 [33] cannot be directly
applied in the F4 case. Because of this, we manually provided αv representations
for w ∈ {2, 3, 4} and a = 1, which are our implementation parameters. The main
rationale for our representation choices was to minimize the number of field
arithmetic operations. In practice, we strive for reducing the required number
of full point additions by increasing the number of point doublings and mixed
additions, which have a cheaper computational cost.3 In Table 1 we present the
αv representatives along with the operations required to generate the multiples
of the base point.4

Therefore, one point doubling and one full addition are required to gener-
ate the points αv · P for w = 2, one point doubling, four full additions, three

2 We are considering only positive digits, since the cost of computing the negative
points in binary elliptic curves is negligible.

3 Full addition is defined as the addition of two points given in projective coordinates.
The mixed addition operation adds one point given in projective coordinates with
another given in affine coordinates.

4 Notice that the multiples αv ·P as shown in Table 1, must be computed out of order.
The order for computing the multiples is shown in roman numbers.

Software Implementation of Koblitz Curves over Quadratic Fields 263

Table 1. Representations of αv = v mod τw, for w ∈ {2, 3, 4} and a = 1 and the
required operations for computing αv. Here we denote by D, FA, MA, T the point
doubling, full addition, mixed addition and the Frobenius map, respectively. In addi-
tion, we consider that the point α1P is represented in affine coordinates. The order for
computing the points is given in roman numbers

w v v mod τw αv Operations Order

2 1 1 1 n/a I

3 3 3 t0 ← 2α1, α3 ← t0 + α1 (D + FA) II

3 1 1 1 n/a I

3 3 3 t0 ← 2α1, α3 ← t0 + α1 (D + FA) II

5 5 −τ − α15 α5 ← −t1 − α15 (MA) VIII

7 3τ + 3 τ2α3 + α3 α7 ← τ2α3 + α3 (FA + 2T) III

9 3τ + 5 α7 + 2 α9 ← α7 + t0 (FA) IV

11 3τ + 7 α9 + 2 α11 ← α9 + t0 (FA) V

13 −τ − 7 τ2 − α3 α13 ← t2 − α3 (MA) VII

15 −τ − 5 τ2 − 1 t1 ← τα1, t2 ← τt1, α15 ← t2 − α1 (MA + 2T) VI

4 1 1 1 n/a I

3 3 −τ3 − α61 α3 ← −t4 − α61 (MA) XXVI

5 5 −τ3 − α59 α5 ← −t4 − α59 (MA) XXVII

7 7 −τ3 − α57 α7 ← −t4 − α57 (MA) XXVIII

9 9 −τ3 − α55 α9 ← −t4 − α55 (MA) XXIX

11 11 −2τ2 + α43 α11 ← −t2 + α43 (FA) XXX

13 13 −2τ2 + α45 α13 ← −t2 + α45 (FA) XXXI

15 15 −2τ2 + α47 α15 ← −t2 + α47 (FA) XXXII

17 5τ − 11 −τ3 − α47 t4 ← τ2t3, α17 ← −t4 − α47 (MA + 2T) XIX

19 5τ − 9 −τ3 − α45 α17 ← −t4 − α47 (MA) XX

21 5τ − 7 −τ3 − α43 α17 ← −t4 − α45 (MA) XXI

23 5τ − 5 −τ3 − α41 α17 ← −t4 − α43 (MA) XXII

25 5τ − 3 −τ3 − α39 α17 ← −t4 − α41 (MA) XXIII

27 5τ − 1 −τ3 − α37 α17 ← −t4 − α39 (MA) XXIV

29 5τ + 1 −τ3 − α35 α17 ← −t4 − α37 (MA) XXV

31 −2τ − 9 2τ2 − 1 t2 ← τt1, α31 ← t2 − α1 (MA + T) XII

33 −2τ − 7 2τ2 + 1 α33 ← t2 + α1 (MA) XIII

35 −2τ − 5 −2τ − 5 α35 ← α37 − t0 (FA) VI

37 −2τ − 3 −2τ − 3 α37 ← α39 − t0 (FA) IV

39 −2τ − 1 −2τ − 1 t0 ← 2α1, t1 ← τt0, α39 ← −t1 − α1 (D + MA + T) II

41 −2τ + 1 −2τ + 1 α41 ← −t1 + α1 (MA) III

43 −2τ + 3 −2τ + 3 α43 ← α41 + t0 (FA) V

45 −2τ + 5 −2τ + 5 α45 ← α43 + t0 (FA) VII

47 −2τ + 7 −2τ + 7 α47 ← α45 + t0 (FA) VIII

49 −2τ + 9 −2τ + 9 α49 ← α47 + t0 (FA) IX

51 −2τ + 11 −2τ + 11 α51 ← α49 + t0 (FA) X

53 −2τ + 13 −2τ + 13 α53 ← α51 + t0 (FA) XI

55 3τ − 13 3τ − 13 t3 ← τα1, α55 ← t3 − α53 (MA + T) XIV

57 3τ − 11 3τ − 11 α57 ← t3 − α51 (MA) XV

59 3τ − 9 3τ − 9 α59 ← t3 − α49 (MA) XVI

61 3τ − 7 3τ − 7 α61 ← t3 − α47 (MA) XVII

63 3τ − 5 3τ − 5 α63 ← t3 − α45 (MA) XVIII

264 T. Oliveira et al.

mixed additions and four applications of the Frobenius map for the w = 3 case
and one point doubling, twenty full additions, eleven mixed additions and five
applications of the Frobenius map for the w = 4 case.

2.3 Security of the Koblitz Curves Defined over F4

Since the Koblitz curves defined over Ea(F4m) operate over quadratic extensions
fields, it is conceivable that Weil descent attacks [13,16] could possibly be effi-
ciently applied on these curves. However, Menezes and Qu showed in [22] that
the GHS attack cannot be implemented efficiently for elliptic curves defined over
binary extension fields Fq, with q = 2m, and m a prime number in [160, . . . , 600].
Further, a specialized analysis for binary curves defined over fields of the form
F4m reported in [14], proved that the only vulnerable prime extension in the
range [80, . . . , 256], is m = 127. Therefore, the prime extension used in this
work, namely, m = 149, is considered safe with respect to the state-of-the-art
knowledge of the Weil descent attack classes.

For a comprehensive survey of recent progress in the computation of the
elliptic curve discrete problem in characteristic two, the reader is referred to the
paper by Galbraith and Gaudry [11].

3 Base Field Arithmetic

In this section, we present the techniques used in our work in order to implement
the binary field arithmetic. We selected a Koblitz curve with the parameter a = 1
defined over F4m with m = 149. This curve was chosen because the order of its
subgroup of interest is of size 2254, which yields a security level roughly equivalent
to a 128-bit secure scalar multiplication.

3.1 Modular Reduction

One can construct a binary extension field F2m by taking a polynomial f(x) ∈
F2[x] of degree m which is irreducible over F2. It is very important that the
form of the polynomial f(x),admits an efficient modular reduction. The criteria
for selecting f(x) depends on the architecture where the implementation will be
executed as it was extensively discussed in [29].

For our field extension choice, we do not have degree-149 trinomials which
are irreducible over F2. An alternative solution is to construct the field through
irreducible pentanomials. Given an irreducible pentanomial f(x) = xm + xa +
xb +xc +1, the efficiency of the shift-and-add reduction method depends mostly
on the fact that the term-degree differences m−a, m−b and m−c, are all equal
to 0 modulo W , where W is the architecture word size in bits.

Using the terminology of [29], lucky irreducible pentanomials are the ones
where the three previously mentioned differences are equal to 0 modulo W .
Fortunate irreducible pentanomials are the ones where two out of the three
above differences are equal to 0 modulo W . The remaining cases are called

Software Implementation of Koblitz Curves over Quadratic Fields 265

ordinary irreducible pentanomials. Performing an extensive search with W = 8,
we found no lucky pentanomials, 189 fortunate pentanomials and 9491 ordinary
pentanomials for the extension m = 149.

The problem is that fortunate pentanomials make the modular reduction too
costly if we compare it with the field multiplication computed with carry-less
instructions. This is because we need to perform four shift-and-add operations
per reduction step. Besides, two of those operations require costly shift instruc-
tions, since they are shifts not divisible by 8.

3.2 Redundant Trinomials

As a consequence of the above analysis, we resorted to the redundant trinomials
strategy introduced in [6,10], also known as almost irreducible trinomials. Given
a non-irreducible trinomial g(x) of degree n that factorizes into an irreducible
polynomial f(x) of degree m < n, the idea is to perform the field reduction mod-
ulo g(x) throughout the scalar multiplication and, at the end of the algorithm,
reduce the polynomials so obtained modulo f(x). In a nutshell, throughout the
algorithm we represent the base field elements as polynomials in the ring F2[x]
reduced modulo g(x). At the end of the algorithm, the elements are reduced
modulo f(x) in order to bring them back to the target field F2149 . For the sake
of simplicity, throughout this paper, we will refer to those elements as field ele-
ments.

Since our target software platform counts with a native 64-bit carry-less
multiplier, an efficient representation of the field elements must have at most
192 bits, i.e, three 64-bit words. For that reason, we searched for redundant
trinomials of degree at most 192.

We selected the trinomial, g(x) = x192 + x19 + 1, for two reasons. First,
since our target architecture contains 128-bit vectorized registers, the difference
(m − a) > 128 allows us to perform the shift-and-add reduction in just two
steps. Second, the property m mod 64 = 0, which allows us to perform effi-
ciently the first part of the shift-and-add reduction. The steps to perform the
modular reduction are described in Algorithm 2.5 The reduction using 128-bit
registers is presented in Sect. 4, where we discuss our strategy for implementing
the arithmetic in the quadratic field extension.

Algorithm 2. Modular reduction by the trinomial g(x) = x192 + x19 + 1
Input: A 384-bit polynomial r(x) = F ·x320 +E ·x256 +D ·x192 +C ·x128 +B ·x64 +A

in F2[x] stored into six 64-bit registers (A - F).
Output: A 192-bit polynomial s(x) = r(x) mod g(x) = I · x128 + H · x64 + G stored

into three 64-bit registers (G - I).

1: G ← A ⊕ D ⊕ (F � 45) ⊕ ((D ⊕ (F � 45)) 	 19)
2: H ← B ⊕ E ⊕ (E 	 19) ⊕ (D � 45)
3: I ← C ⊕ F ⊕ (F 	 19) ⊕ (E � 45)

5 The symbols 	, � stand for bitwise shift of packed 64-bit integers.

266 T. Oliveira et al.

The overall cost of the modular reduction is ten xors and five bitwise shifts.
At the end of the scalar multiplication, we have to reduce the 192-bit polynomial
to an element of the field F2149 . Note that the trinomial g(x) = x192 + x19 + 1
factorizes into a 69-term irreducible polynomial f(x) of degree 149.

The final reduction is performed via the mul-and-add reduction which, exper-
imentally, performed more efficiently than the shift-and-add reduction.6 Con-
cisely, the mul-and-add technique consists in a series of steps which includes
shift operations (in order to align the bits in the registers), carry-less multipli-
cations and xor operations for eliminating the extra bits.

The basic mul-and-add step is described in Algorithm 3. Here, besides the
usual notation, we represent the 64-bit carry-less multiplication by the symbol
×ij , where i, j = {L,H}, with L and H representing the lowest and highest
64-bit word packed in a 128-bit register, respectively. For example, if one wants
to multiply the 128-bit register A lowest 64-bit word by the 128-bit register B
highest 64-bit word, we would express this operation as T ← A ×LH B.

Algorithm 3. Basic step of the mul-and-add reduction modulo the 69-term
irreducible polynomial f(x)
Input: A j-bit polynomial r(x) = B · x128 + A stored into two 128-bit registers (A,

B), for j ∈ [191, 148], the irreducible polynomial f(x) = F · x128 + E stored into
two 128-bit registers (E, F).

Output: A (j −3)-bit polynomial s(x) = D ·x128 +C stored into two 128-bit registers
(C, D).

1: T0 ← B � 21 (64-bit alignment)
2: T1 ← E ×LL T0

3: T2 ← E ×HL T0

4: T0 ← F ×LL T0

5: T1 ← T1 ⊕ (T2 	 64)
6: T0 ← T0 ⊕ (T2 � 64)
7: C ← A ⊕ T1

8: D ← B ⊕ T0

Algorithm 3 requires four xors, three bitwise shifts and three carry-less mul-
tiplications. In our particular case, the difference between the degrees of the
two most significant monomials of f(x) is three. Also, note that we need to
reduce 43 bits (191–148). As a result, it is required � 43

3 � = 15 applications of the
Algorithm 3 in order to conclude this reduction.

4 Quadratic Field Arithmetic

In this Section, the basic arithmetic operations in the quadratic field are pre-
sented. As usual, the quadratic field F22·149 was constructed by the degree two
monic polynomial h(u) = u2+u+1, and its elements are represented as a0+a1u,
with a0, a1 ∈ F2149 .

6 For a more detailed explanation of the shift-and-add and the mul-and-add reduction
methods to binary fields, see [5].

Software Implementation of Koblitz Curves over Quadratic Fields 267

4.1 Register Allocation

The first aspect to be considered is the element allocation into the architecture’s
available registers. In our case, we have to store two polynomials of 192 bits into
128-bit registers in such a way that it allows an efficient modular reduction and,
at the same time, it generates a minimum overhead in the two main arithmetic
operations, namely, the multiplication and squaring.

Let us consider an element a = (a0 + a1u) ∈ F22·149 , where a0 = C · x128 +
B · x64 + A and a1 = F · x128 + E · x64 + D are 192-bit polynomials, each one of
them stored into three 64-bit words (A-C, D-F). Also, let us have three 128-bit
registers Ri, with i ∈ {0, 1, 2}, which can store two 64-bit words each. In this
Section, we adopted the following notation, given a 128-bit register R, its most
and least significant packed 64-bit words, denoted respectively by S and T , are
represented as R = S|T . The first option is to rearrange the 384-bit element
a = (a0 + a1u) as,

R0 = A|B, R1 = C|D, R2 = E|F.

The problem with this representation is that a significant overhead is generated
in the multiplication function, more specifically, in the pre-computation phase
of the Karatsuba procedure (cf. Sect. 4.2 with the computation of V0,1, V0,2 and
V1,2). Besides, in order to efficiently perform the subsequent reduction phase,
we must temporarily store the polynomial terms into four 128-bit vectors, which
can cause a register overflow. A better method for storing the element a is to
use the following arrangement,

R0 = D|A, R1 = E|B, R2 = F |C.

Using this setting, there still exists some overhead in the multiplication and
squaring arithmetic operations, even though the penalty on the latter operation
is almost negligible. In the positive side, the terms of the elements a0, a1 do not
need to be rearranged and the modular reduction of these two base field elements
can be performed in parallel, as discussed next.

4.2 Multiplication

Given two F22·149 elements a = (a0 + a1u) and b = (b0 + b1u), with a0, a1, b0, b1
in F2149 , we perform the multiplication c = a · b as,

c = a · b = (a0 + a1u) · (b0 + b1u)
= (a0b0 ⊕ a1b1) + (a0b0 ⊕ (a0 ⊕ a1) · (b0 ⊕ b1))u,

where each element ai, bi ∈ F2149 is composed by three 64-bit words. The analysis
of the Karatsuba algorithm cost for different word sizes was presented in [35].
There, it was shown that the most efficient way to multiply three 64-bit word
polynomials s(x) = s2x

2+s1x+s0 and t(x) = t2x
2+t1x+t0 as v(x) = s(x) ·t(x)

is through the one-level Karatsuba method,

268 T. Oliveira et al.

V0 = s0 · t0, V1 = s1 · t1, V2 = s2 · t2,

V0,1 = (s0 ⊕s1) · (t0 ⊕ t1), V0,2 = (s0 ⊕s2) · (t0 ⊕ t2) V1,2 = (s1 ⊕s2) · (t1 ⊕ t2),

v(x) = V2 ·x4+(V1,2⊕V1⊕V2)·x3+(V0,2⊕V0⊕V1⊕V2)·x2+(V0,1⊕V0⊕V1)·x+V0,

which costs six multiplications and twelve additions. The Karatsuba algorithm
as used in this work is presented in Algorithm4.7

Algorithm 4. Karatsuba algorithm for multiplying three 64-bit word polyno-
mials s(x) and t(x)
Input: Six 128-bit registers Ri, with i ∈ {0 . . . 5}, containing the elements

R0 = t0|s0, R1 = t1|s1, R2 = t2|s2, R3 = (t0 ⊕ t1)|(s0 ⊕ s1), R4 = (t0 ⊕ t2)|(s0 ⊕ s2),
R5 = (t1 ⊕ t2)|(s1 ⊕ s2).

Output: Three 128-bit registers Ri, with i ∈ {6 . . . 8}, which store the value
v(x) = s(x) · t(x) = v5 · x320 + v4 · x256 + v3 · x192 + v2 · x128 + v1 · x64 + v0 as
R6 = v1|v0, R7 = v3|v2, R8 = v5|v4.

1: tmp0 ← R0 ×HL R0

2: tmp1 ← R1 ×HL R1

3: tmp2 ← R2 ×HL R2

4: tmp3 ← R3 ×HL R3

5: tmp4 ← R4 ×HL R4

6: tmp5 ← R5 ×HL R5

7: tmp5 ← tmp5 ⊕ tmp1

8: tmp5 ← tmp5 ⊕ tmp2

9: tmp1 ← tmp1 ⊕ tmp0

10: tmp4 ← tmp4 ⊕ tmp1

11: tmp4 ← tmp4 ⊕ tmp2

12: tmp3 ← tmp3 ⊕ tmp1

13: R6 ← (tmp3 	 64)
14: R8 ← (tmp5 � 64)
15: R7 ← ((tmp5, tmp3) � 64)

Algorithm 4 requires six carry-less instructions, six vectorized xors and three
bitwise shift instructions. In order to calculate the total multiplication cost, it
is necessary to include the Karatsuba pre-computation operations at the base
field level (twelve vectorized xors and six byte interleaving instructions) and
at the quadratic field level (six vectorized xors). Also, we must consider the
reorganization of the registers in order to proceed with the modular reduction
(six vectorized xors).

4.3 Modular Reduction

The modular reduction of an element a = (a0 + a1u), where a0 and a1 are
384-bit polynomials, takes nine vectorized xors and six bitwise shifts. The com-
putational savings of the previously discussed register configuration can be seen
when we compare the reduction of quadratic field elements, presented in Algo-
rithm5 with the modular reduction of the base field elements (see Algorithm 2).
The cost of reducing an element in F2149 in 64-bit registers is about the same as
the cost of the reduction of an element in F22·149 stored into 128-bit registers.
Thus, we achieved a valuable speedup of 100 %.
7 As before, the symbols 	, � stand for bitwise shift of packed 64-bit integers. The

symbol � stands for bytewise multi-precision shift.

Software Implementation of Koblitz Curves over Quadratic Fields 269

Algorithm 5. Modular reduction of the terms a0, a1 of an element a = (a0+a1u)
modulo g(x) = x192 + x19 + 1
Input: An element a = a0 + a1u = (F · x320 + E · x256 + D · x192 + C · x128 + B · x64 +

A)+(L ·x320+K ·x256+J ·x192+I ·x128+H ·x64+G)u, with the 64-bit words (A-L)
arranged in six 128-bit registers as R0 = G|A, R1 = H|B, R2 = I|C, R3 = J |D, R4 =
K|E, R5 = L|F

Output: Elements (a0, a1) mod g(x) = M · x128 + N · x64 + O, P · x128 + Q · x64+R,
with the 64-bit words (M-R) organized in three 128-bit registers as
R6 = R|O, R7 = Q|N, R8 = P |M

1: R8 ← R2 ⊕ R5

2: R7 ← R1 ⊕ R4

3: R8 ← R8 ⊕ (R5 	 19)
4: R7 ← R7 ⊕ (R4 	 19)
5: R8 ← R8 ⊕ (R4 � 45)

6: R7 ← R7 ⊕ (R3 	 45)
7: R6 ← R3 ⊕ (R5 � 45)
8: R6 ← R6 ⊕ (R6 	 19)
9: R6 ← R6 ⊕ R0

4.4 Squaring

Squaring is a very important function in the Koblitz curve point multiplication
algorithm, since it is the building block for computing the τ endomorphism.
In our implementation, we computed the squaring operation through carry-less
multiplication instructions which, experimentally, was an approach less expen-
sive than the bit interleaving method (see [15, Sect. 2.3.4]). The pre-processing
phase is straightforward, we just need to rearrange the 32-bit packed words of the
128-bit registers in order to prepare them for the subsequent modular reduction.

The pre- and post-processing phases require three shuffle instructions, three
vectorized xors and three bitwise shifts. The complete function is described in
Algorithm 6. Given 128-bit registers Ri, we depict the SSE 32-bit shuffle opera-
tion as R0 ← R1 � xxxx. For instance, if we compute R0 ← R1 � 3210, it just
maintains the 32-bit word order of the register R1, in other words, it just copies
R1 to R0. The operation R0 ← R1 � 2103 rotates the register R1 to the left by
32-bits. See [17,18] for more details.

4.5 Inversion

The inversion operation is computed via the Itoh-Tsujii method [19]. Given an
element c ∈ F2m , we compute c−1 = c(2

m−1−1)·2 through an addition chain,
which in each step computes the terms (c2

i−1)2
j · c2j−1 with 0 ≤ j ≤ i ≤ m − 1.

For the case m = 149, the following chain is used,

1 → 2 → 4 → 8 → 16 → 32 → 33 → 66 → 74 → 148.

This addition chain is optimal and was found through the procedure described
in [7]. Note that although we compute the inversion operation over polynomials
in F2[x] (reduced modulo g(x) = x192 + x19 + 1), we still have to perform the
addition chain with m = 149, since we are in fact interested in the embedded
F2149 field element.

270 T. Oliveira et al.

Algorithm 6. Squaring of an element a = (a0 + a1u) ∈ F22·149

Input: Element a = a0 + a1u = (C · x128 + B · x64 + A) + (F · x128 + E · x64 +
D)u ∈ F22·149 , with the 64-bit words (A-F) arranged in three 128-bit registers as
R0 = D|A, R1 = E|B, R2 = F |C

Output: Element a2 = c = c0 + c1u = (I · x128 + H · x64 + G) +
(L · x128 + K · x64 + J)u ∈ F22·149 , where both elements (c0, c1) ∈ F2[x] are reduced
modulo x192+x19+1. The 64-bit words (G-L) are arranged in three 128-bit registers
as R3 = J |G, R4 = H|K, R5 = I|L.

1: tmp0 ← R0 � 3120
2: tmp1 ← R1 � 3120
3: tmp2 ← R2 � 3120
4: aux0 ← tmp0 ×LL tmp0

5: aux1 ← tmp0 ×HH tmp0

6: aux2 ← tmp1 ×LL tmp1

7: aux3 ← tmp1 ×HH tmp1

8: aux4 ← tmp2 ×LL tmp2

9: aux5 ← tmp2 ×HH tmp2

10: R3, R4, R5 ← ModularReduction(aux0...5)
11: tmp0 ← R3 � 64
12: tmp1 ← R4 � 64
13: tmp2 ← R5 � 64
14: R3 ← R3 ⊕ tmp0

15: R4 ← R4 ⊕ tmp1

16: R5 ← R5 ⊕ tmp2

As previously discussed, in each step of the addition chain, we must cal-
culate an exponentiation c2

j

followed by a multiplication, where the value j
represents the integers that form the addition chain. Experimentally, we found
that when j ≥ 4, it is cheaper to compute the exponentiation through table
look-ups instead of performing consecutive squarings. Our pre-computed tables
process four bits per iteration, therefore, it is required � 192

4 � = 48 table queries
in order to complete the multisquaring function.

5 τ -and-add Scalar Multiplication

In this Section we discuss the single-core algorithms that compute a timing-
resistant scalar multiplication through the τ -and-add method over Koblitz curves
defined over F4. There are two basic approaches, the right-to-left and the left-
to-right algorithms.

5.1 Left-to-right τ -and-add

This algorithm is similar to the traditional left-to-right double-and-add method.
Here, the point doubling operation is replaced by the computationally cheaper τ
endomorphism. In addition, we need to compute the width w-τNAF representa-
tion of the scalar k and perform linear passes (cf. Sect. 5.3) in the accumulators
in order to avoid cache attacks [26,34]. The method is shown in Algorithm7.

The main advantage of this method is that the sensitive data is indirectly
placed in the points Pvi

. However, those points are only read and then added to
the unique accumulator Q. As a consequence, only one linear pass per iteration
is required before reading Pvi

. On the other hand, the operation τw−1(Q) must
be performed by successive squarings, since computing it through look-up tables
could leak information about the scalar k.

Software Implementation of Koblitz Curves over Quadratic Fields 271

Algorithm 7. Left-to-right regular w-TNAF τ -and-add on Koblitz curves
defined over F4

Input: A Koblitz curve Ea/F22m , a point P ∈ Ea(F22m) of order r, k ∈ Zr

Output: Q = kP

1: Compute ρ = r0 + r1τ = k partmod
(

τm−1
τ−1

)

2: Ensure that r0 and r1 are odd.

3: Compute the width-w regular τ -NAF of r0 + r1τ as
∑� m+2

w−1 +1�
i=0 viτ

i(w−1)

4: for v ∈ {1, 3, . . . 4w−1 − 1} do Compute Pv = αv · P end for
5: Q ← O
6: for i = m+2

w−1
+ 1 to 0 do

7: Q ← τw−1(Q)
8: Perform a linear pass to recover Pvi

9: Q ← Q ± Pvi

10: end for
11: Subtract P, τ(P) from Q if necessary
12: return Q = kP

5.2 Right-to-left τ -and-add

This other method processes the scalar k from the least to the most significant
digit. Taking advantage of the τ endomorphism, the GLV method is brought to
its full extent. This approach is presented in Algorithm8.

Algorithm 8. Right-to-left regular w-TNAF τ -and-add on Koblitz curves
defined over F4

Input: A Koblitz curve Ea/F22m , a point P ∈ Ea(F22m) of order r, k ∈ Zr

Output: Q = kP
1: Compute ρ = r0 + r1τ = k partmod (mod τm−1

τ−1
)

2: Ensure that r0 and r1 are odd.

3: Compute the width-w regular τ -NAF of r0 + r1τ as
∑� m+2

w−1 +1�
i=0 viτ

i(w−1)

4: for i ∈ {1, 3, . . . 4w−1 − 1} do Qi = O
5: for i = 0 to m+2

w−1
+ 1 do

6: Perform a linear pass to recover Qi

7: Qi ← Qi ± P
8: Perform a linear pass to store Qi

9: P ← τw−1(P)
10: Q ← O
11: for u ∈ {1, 3, . . . 4w−1 − 1} do Q = Q + αv · Qi

12: Subtract P, τ(P) from Q if necessary
13: return Q = kP

Here, we have to perform a post-computation in the accumulators instead of
precomputing the points Pi as in the previous approach. Also, the τ endomor-
phism is applied to the point P , which is usually public. For that reason, we can
compute τ with table look-ups instead of performing squarings multiple times.

272 T. Oliveira et al.

The downside of this algorithm is that the accumulators carry sensitive infor-
mation about the digits of the scalar. Also, the accumulators are read and
written. As a result, it is necessary to apply the linear pass algorithm to the
accumulators Qi twice per iteration.

5.3 Linear Pass

The linear pass is a method designed to protect sensitive information against
side-channel attacks associated with the CPU cache access patterns. Let us con-
sider an array A of size l. Before reading a value A[i], with i ∈ [0, l − 1], the
linear pass technique reads the entire array A but only stores, usually into an
output register, the requested data A[i]. In that way, the attacker does not know
which array index was accessed just by analyzing the location of the cache-miss
in his own artificially injected data. However, this method causes a considerable
overhead, which depends on the size of the array.

In this work, we implemented the linear pass method using 128-bit SSE
vectorized instructions and registers. For each array index j, we first copy j to a
register and compare this value with the current scalar k τNAF digit. The SSE
instruction pcmpeqq compares the values of two 128-bit registers A and B and
sets the resulting register C with bits one, if A and B are equal, and bits zero
otherwise. For that reason, we can use the register C as a mask: if j is equal to
the scalar k digit, the register C will contain only bits one. Then, by performing
logical operations between C and each of the array values A[j], we can retrieve
the requested data.

Experimental results shown that the implementation of the linear pass tech-
nique with SSE registers is more efficient than using 64-bit conditional move
instructions [25] by a factor of 2.125. The approach just described is presented
in Algorithm 9.

Algorithm 9. Linear pass using 128-bit AVX vectorized instructions
Input: An array A of size l, a requested index d, SSE 128-bit registers tmp, dst.
Output: The register dst containing A[d].
1: dst ← 0
2: for i ∈ {0, . . . , l − 1} do
3: tmp ← i
4: tmp ← compare(tmp, d)

(compare returns 1128 if the operands are equal and 0128 otherwise.)
5: tmp ← tmp ∧ A[i]
6: dst ← dst ⊕ tmp
7: end for

6 Results and Discussion

Our software library can be executed in any Intel platform, which comes with
the SSE 4.1 vector instructions and the 64-bit carry-less multiplier instruction

Software Implementation of Koblitz Curves over Quadratic Fields 273

pclmulqdq. The benchmarking was executed in an Intel Core i7 4770k 3.50
GHz machine (Haswell architecture) with the TurboBoost and HyperThreading
features disabled. Also, the library was coded in the GNU11 C and Assembly
languages.

Regarding the compilers, we performed an experimental analysis on the per-
formance of our code compiled with different systems: GCC (Gnu Compiler
Collection) versions 5.3, 6.1; and the clang frontend for the LLVM compiler
infrastructure versions 3.5 and 3.8. All compilations were done with the flags
-O3 -march=haswell -fomit-frame-pointer. For the sake of comparison, we
reported our timings for all of the previously mentioned compilers. However,
when comparing our code with the state-of-the-art works, we opted for the
clang/llvm 3.8, since it gave us the best performance.

6.1 Parameters

Given q = 2m, with m = 149, we constructed our base binary field Fq
∼=

F2[x]/(f(x)) with the 69-term irreducible polynomial f(x) described in Sect. 4.
The quadratic extension Fq2 ∼= Fq[u]/(h(u)) was built through the irreducible
quadratic h(u) = u2 + u + 1. However, our base field arithmetic was computed
modulo the redundant trinomial g(x) = x192 + x19 + 1, which has among its
irreducible factors, the polynomial f(x).

Our Koblitz curve was defined over Fq2 as E1/Fq2 : y2 + xy = x3 + ux2 + u,
and the group E1(Fq2) contains a subgroup of interest of order

r = 0x637845F7F8BFAB325B85412FB54061F148B7F6E79AE11CC843ADE1470F7E4E29,

which corresponds to approximately 255 bits. In addition, throughout our scalar
multiplication, we represented the points in λ-affine [20,28] and λ-projective [25]
coordinates. We selected an order-r base point P at random represented in
λ-affine coordinates.

6.2 Field and Elliptic Curve Arithmetic Timings

In Table 2, we present the timings for the base and the quadratic field arithmetic.
The multisquaring operation is used to support the Itoh-Tsujii addition chain,
therefore, it is implemented only in the field F2149 (actually, in a 192-bit poly-
nomial in F2[x]). In addition, we gave timings to reduce a 192-bit polynomial
element in F2[x] modulo f(x). Finally, all timings of operations in the quadratic
field include the subsequent modular reduction.

Applying the techniquespresented in [27],we sawthatourmachinehasamargin
of error of four cycles. This range is not of significance when considering the tim-
ings of the point arithmetic or the scalar multiplication. Nevertheless, for inexpen-
sive functions such as multiplication and squaring, it is recommended to consider
it when comparing the timings between different compilers.

274 T. Oliveira et al.

Table 2. Timings (in clock cycles) for the finite field operations in F22·149 using different
compiler families

Compilers Multiplication Squaring Multi-squaring Inversion Reduction

modulo f(x)

GCC 5.3 52 20 100 2,392 452

GCC 6.1 52 20 104 2,216 452

clang 3.5 64 24 100 1,920 452

clang 3.8 60 20 96 1,894 452

Table 3. The ratio between the arithmetic and multiplication in F2149 . The timings
were taken from the code compiled with the clang 3.8 compiler

Operations Squaring Multisquaring Inversion Reduction

modulo f(x)

operation / multiplication 0.33 1.60 31.56 7.53

In the following, we compare in Table 3 the base arithmetic operation timings
with the multiplication operation, which is the main operation of our library. The
ratio squaring/multiplication is relatively expensive. This is because the polyno-
mial g(x) = x192 + x19 + 1, does not admit a reduction specially designed for the
squaring operation. Furthermore, the multisquaring and the inversion operations
are also relatively costly. A possible explanation is that here, we are measuring
timings in a Haswell architecture, which has a computationally cheaper carry-less
multiplication when compared with the Sandy Bridge platform [18].

In Table 4 we give the timings of the point arithmetic functions. There, we
presented the costs of applying the τ endomorphism to an affine point (two
coordinates) and a λ-projective point (three coordinates). The reason is that,
depending on the scalar multiplication algorithm, one can apply the Frobenius
map on the accumulator (projective) or the base point (affine). In addition,
we report in Table 4, the mixed point doubling operation, which is defined as
follows. Given a point P = (xP , yP), the mixed-doubling function computes,
R = (XR, LR, ZR) = 2P . In other words, it performs a point doubling on an
affine point and returns the resulting point in projective representation. Such
primitive is useful in the computation of the τNAF representations αv = v mod
τw (see Sect. 2.2).

Table 4 also shows the superior performance of the clang compiler in the point
arithmetic timings, since the only operations where it has a clear disadvantage
are the full and mixed point doubling. However, those functions are rarely used
throughout a Koblitz curve scalar multiplication. In fact, they are used only
in the precomputing phase. Next, in Table 5, we show the relation of the point
arithmetic timings with the field multiplication.

Software Implementation of Koblitz Curves over Quadratic Fields 275

Table 4. Timings (in clock cycles) for point addition over a Koblitz curve E1/q2 using
different compiler families

Compilers Full Mixed Full Mixed τ endomorphism

Addition Addition Doubling Doubling 2 coord 3 coord

GCC 5.3 792 592 372 148 80 120

GCC 6.1 796 588 368 148 80 120

clang 3.5 768 580 404 164 84 124

clang 3.8 752 564 384 160 84 120

Table 5. The ratio between the timings of point addition and the field multiplication.
The timings were taken from the code compiled with the clang 3.8 compiler

Operations Full Mixed Full Mixed τ endomorphism

Addition Addition Doubling Doubling 2 coord 3 coord

operation /
multiplication

12.53 9.39 6.40 2.66 1.40 2.00

6.3 Scalar Multiplication Timings

Here the timings for the left-to-right regular w-τNAF τ -and-add scalar multipli-
cation, with w = 2, 3, 4 are reported. The setting w = 2 is presented in order to
analyze how the balance between the pre-computation and the main iteration
costs works in practice. Our main result lies in the setting w = 3. Also, among
the scalar multiplication timings, we show, in Table 6, the costs of the regular
recoding and the linear pass functions.

Table 6. A comparison of the scalar multiplication and its support functions timings
(in clock cycles) between different compiler families

Compilers Regular recoding Linear pass Scalar multiplication

w=2 w=3 w=4 w=2 w=3 w=4 w=2 w=3 w=4

GCC 5.3 1,656 2,740 2,516 8 40 240 100,480 72,556 90,020

GCC 6.1 1,792 2,688 2,480 8 44 240 99,456 71,728 89,740

clang 3.5 1,804 2,680 2,396 8 44 272 96,812 69,696 86,632

clang 3.8 1,808 2,704 2,376 8 40 264 95,196 68,980 85,244

Regarding the regular recoding function, we saw an increase of about 46%
in the 3-τNAF timings when comparing with the w = 2 case. The reason is
that, for the w = 3 case, we must compute a more complicated arithmetic. Also,
when selecting the digits, we must perform a linear pass in the array that stores

276 T. Oliveira et al.

them. Otherwise, an attacker could learn about the scalar k by performing a
timing-attack based on the CPU cache.

The linear pass function also becomes more expensive in the w = 3 case,
since we have more points in the array. However, in the m = 149 case, we have
to process 64 more iterations with the width w = 2, when compared with the
3-τNAF point multiplication (since the number of iterations depends on m and
w: m+2

w−1 + 2). As a result, the linear pass function overhead is mitigated by the
savings in mixed additions and applications of τ endomorphisms in the main
loop. Finally, our scalar multiplication measurements consider that the point
Q = kP is returned in the λ-projective coordinate representation. If the affine
representation is required, it is necessary to add about 2,000 cycles to the total
scalar multiplication timings.

6.4 Comparisons

In Table 7, we compare our implementation with the state-of-the-art works. Our
3-τNAF left-to-right τ -and-add point multiplication outperformed by 29.64%
the work in [24], which is considered the fastest protected 128-bit secure Koblitz
implementation. When compared with prime curves, our work is surpassed by
15.29% and 13.06% by the works in [8] and [2], respectively.

Table 7. Scalar multiplication timings (in clock cycles) on 128-bit secure ellitpic curves

Curve/Method Architecture Timings

Koblitz over F2283 (τ -and-add, 5-τNAF [24]) Haswell 99, 000

GLS over F22·127 (double-and-add, 4-NAF [25]) Haswell 61, 712

Twisted Edwards over F(2127−1)2 (double-and-add [8]) Haswell 59, 000

Kummer genus-2 over F2127−1 (Kummer ladder [2]) Haswell 60, 556

Koblitz over F4149 (τ-and-add, 2-τNAF (this work)) Haswell 96, 822

Koblitz over F4149 (τ-and-add, 3-τNAF (this work)) Haswell 69, 656

Koblitz over F4149 (τ-and-add, 4-τNAF (this work)) Haswell 85, 244

Skylake architecture. In addition, we present timings for our scalar multiplication
algorithms, also compiled with clang 3.8, in the Skylake architecture (Intel Core
i7 6700K 4.00 GHz). The results (in clock cycles) for the cases w = 2, 3, 4 are,
respectively, 71,138, 51,788 and 66,286.

7 Conclusion

We have presented a comprehensive study of how to implement efficiently Koblitz
elliptic curves defined over quaternary fields F4m , using vectorized instructions
on the Intel micro-architectures codename Haswell and Skylake.

Software Implementation of Koblitz Curves over Quadratic Fields 277

As a future work, we plan to investigate the use of 256-bit AVX2 registers
to improve the performance of our code. In addition, we intend to implement
the scalar multiplication algorithms in other architectures such as the ARMv8.
Finally, we would like to design a version of our point multiplication in the
multi-core and known point scenarios.

References

1. Aranha, D.F., Faz-Hernández, A., López, J., Rodŕıguez-Henŕıquez, F.: Faster
implementation of scalar multiplication on Koblitz curves. In: Hevia, A., Neven,
G. (eds.) LatinCrypt 2012. LNCS, vol. 7533, pp. 177–193. Springer, Heidelberg
(2012)

2. Bernstein, D.J., Chuengsatiansup, C., Lange, T., Schwabe, P.: Kummer strikes
back: new DH speed records. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014.
LNCS, vol. 8873, pp. 317–337. Springer, Heidelberg (2014)

3. Birkner, P., Longa, P., Sica, F.: Four-dimensional Gallant-Lambert-Vanstone scalar
multiplication. Cryptology ePrint Archive, Report 2011/608 (2011). http://eprint.
iacr.org/

4. Blake-Wilson, S., Bolyard, N., Gupta, V., Hawk, C., Moeller, B.: Elliptic Curve
Cryptography (ECC) cipher suites for Transport Layer Security (TLS). RFC
4492. Internet Engineering Task Force (IETF) (2006). https://tools.ietf.org/html/
rfc4492

5. Bluhm, M., Gueron, S.: Fast software implementation of binary elliptic curve cryp-
tography. J. Cryptogr. Eng. 5(3), 215–226 (2015)

6. Brent, R.P., Zimmermann, P.: Algorithms for finding almost irreducible and almost
primitive trinomials. In: Primes and Misdemeanours: Lectures in Honour of the
Sixtieth Birthday of Hugh Cowie Williams, Fields Institute, p. 212 (2003)

7. Clift, N.M.: Calculating optimal addition chains. Computing 91(3), 265–284 (2011)
8. Costello, C., Longa, P.: FourQ: four-dimensional decompositions on a Q-curve over

the mersenne prime. In: Iwata, T., et al. (eds.) ASIACRYPT 2015. LNCS, vol. 9452,
pp. 214–235. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48797-6 10

9. Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol version 1.2.
RFC 5246. Internet Engineering Task Force (IETF) (2008). https://tools.ietf.org/
html/rfc5246

10. Doche, C.: Redundant trinomials for finite fields of characteristic 2. In: Boyd, C.,
González Nieto, J.M. (eds.) ACISP 2005. LNCS, vol. 3574, pp. 122–133. Springer,
Heidelberg (2005)

11. Galbraith, S.D., Gaudry, P.: Recent progress on the elliptic curve discrete logarithm
problem. Des. Codes Cryptogr. 78(1), 51–72 (2016)

12. Galbraith, S.D., Lin, X., Scott, M.: Endomorphisms for faster elliptic curve cryp-
tography on a large class of curves. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 518–535. Springer, Heidelberg (2009)

13. Gaudry, P., Hess, F., Smart, N.P.: Constructive and destructive facets of Weil
descent on elliptic curves. J. Cryptol. 15, 19–46 (2002)

14. Hankerson, D., Karabina, K., Menezes, A.: Analyzing the Galbraith-Lin-Scott
point multiplication method for elliptic curves over binary fields. IEEE Trans.
Comput. 58(10), 1411–1420 (2009)

15. Hankerson, D., Menezes, A.J., Vanstone, S.: Guide to Elliptic Curve Cryptography.
Springer, Secaucus (2003)

http://eprint.iacr.org/
http://eprint.iacr.org/
https://tools.ietf.org/html/rfc4492
https://tools.ietf.org/html/rfc4492
http://dx.doi.org/10.1007/978-3-662-48797-6_10
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc5246

278 T. Oliveira et al.

16. Hess, F.: Generalising the GHS attack on the elliptic curve discrete logarithm
problem. LMS J. Comput. Math. 7, 167–192 (2004)

17. Intel Corporation: Intel Intrinsics Guide. https://software.intel.com/sites/
landingpage/IntrinsicsGuide/. Accessed 18 Feb 2016

18. Intel Corporation: Intel 64 and IA-32 Architectures Software Developers Manual
325462–056US (2015)

19. Itoh, T., Tsujii, S.: A fast algorithm for computing multiplicative inverses in
GF(2m) using normal bases. Inf. Comput. 78(3), 171–177 (1988)

20. Knudsen, E.W.: Elliptic scalar multiplication using point halving. In: Lam, K.-Y.,
Okamoto, E., Xing, C. (eds.) ASIACRYPT 1999. LNCS, vol. 1716, pp. 135–149.
Springer, Heidelberg (1999)

21. Koblitz, N.: CM-curves with good cryptographic properties. In: Feigenbaum, J.
(ed.) CRYPTO 1991. LNCS, vol. 576, pp. 279–287. Springer, Heidelberg (1992)

22. Menezes, A., Qu, M.: Analysis of the Weil descent attack of Gaudry, Hess and
smart. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 308–318.
Springer, Heidelberg (2001)

23. National Institute of Standards and Technology: Recommended elliptic curves for
federal government use. NIST Special Publication (1999). http://csrc.nist.gov/
csrc/fedstandards.html

24. Oliveira, T., Aranha, D.F., López, J., Rodŕıguez-Henŕıquez, F.: Fast point multi-
plication algorithms for binary elliptic curves with and without precomputation.
In: Joux, A., Youssef, A. (eds.) SAC 2014. LNCS, vol. 8781, pp. 324–344. Springer,
Heidelberg (2014)

25. Oliveira, T., López, J., Aranha, D.F., Rodŕıguez-Henŕıquez, F.: Two is the fastest
prime: lambda coordinates for binary elliptic curves. J. Cryptogr. Eng. 4(1), 3–17
(2014)

26. Page, D.: Theoretical use of cache memory as a cryptanalytic side-channel. Cryp-
tology ePrint Archive, Report 2002/169 (2002). http://eprint.iacr.org/

27. Paoloni, G.: How to benchmark code execution times on intel IA-32 and IA-64
instruction set architectures. Technical report, Intel Corporation (2010)

28. Schroeppel, R.: Cryptographic elliptic curve apparatus and method (2000). US
patent 2002/6490352 B1

29. Scott, M.: Optimal irreducible polynomials for GF (2m) arithmetic. Cryptology
ePrint Archive, Report 2007/192 (2007). http://eprint.iacr.org/

30. Solinas, J.A.: An improved algorithm for arithmetic on a family of elliptic curves.
In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 357–371. Springer,
Heidelberg (1997)

31. Solinas, J.A.: Efficient arithmetic on Koblitz curves. Des. Codes Cryptogr. 19(2–3),
195–249 (2000)

32. Taverne, J., Faz-Hernández, A., Aranha, D.F., Rodŕıguez-Henŕıquez, F., Hanker-
son, D., López, J.: Software implementation of binary elliptic curves: impact of
the carry-less multiplier on scalar multiplication. In: Preneel, B., Takagi, T. (eds.)
CHES 2011. LNCS, vol. 6917, pp. 108–123. Springer, Heidelberg (2011)

33. Trost, W.R., Xu, G.: On the optimal pre-computation of window τ -NAF for Koblitz
curves. Cryptology ePrint Archive, Report 2014/664 (2014). http://eprint.iacr.org/

34. Tsunoo, Y., Tsujihara, E., Minematsu, K., Miyauchi, H.: Cryptanalysis of block
ciphers implemented on computers with cache. In: International Symposium on
Information Theory and Its Applications, pp. 803–806. IEEE Information Theory
Society (2002)

https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://software.intel.com/sites/landingpage/IntrinsicsGuide/
http://csrc.nist.gov/csrc/fedstandards.html
http://csrc.nist.gov/csrc/fedstandards.html
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

Software Implementation of Koblitz Curves over Quadratic Fields 279

35. Weimerskirch, A., Paar, C.: Generalizations of the Karatsuba algorithm for efficient
implementations. Cryptology ePrint Archive, Report 2006/224 (2006). http://
eprint.iacr.org/

36. Wenger, E., Wolfger, P.: Solving the discrete logarithm of a 113-bit Koblitz curve
with an FPGA cluster. In: Joux, A., Youssef, A. (eds.) SAC 2014. LNCS, vol. 8781,
pp. 363–379. Springer, Heidelberg (2014)

http://eprint.iacr.org/
http://eprint.iacr.org/

QcBits: Constant-Time Small-Key
Code-Based Cryptography

Tung Chou(B)

Department of Mathematics and Computer Science, Technische Universiteit
Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

blueprint@crypto.tw

Abstract. This paper introduces a constant-time implementation for
a quasi-cyclic moderate-density-parity-check (QC-MDPC) code based
encryption scheme. At a 280 security level, the software takes 14 679 937
Cortex-M4 and 1 560 072 Haswell cycles to decrypt a short message, while
the previous records were 18 416 012 and 3 104 624 (non-constant-time)
cycles. Such speed is achieved by combining two techniques: 1) perform-
ing each polynomial multiplication in F2[x]/(xr − 1) and Z[x]/(xr − 1)
using a sequence of “constant-time rotations” and 2) bitslicing.

Keywords: McEliece · Niederreiter · QC-MDPC codes · Bitslicing ·
Software implementation

1 Introduction

In 2012, Misoczki et al. proposed to use QC-MDPC codes for code-based cryp-
tography [3]. The main benefit of using QC-MDPC codes is that they allow
small key sizes, as opposed to using binary Goppa codes as proposed in the orig-
inal McEliece paper [1]. Since then, implementation papers for various platforms
have been published; see [4,5] (for FPGA and AVR), [7,9] (for Cortex-M4), and
[11] (for Haswell, includes results from [4,5,7]).

One problem of QC-MDPC codes is that the most widely used decoding
algorithm, when implemented naively, leaks information about secrets through
timing. Even though decoding is only used for decryption, the same problem can
also arise if the key-generation and encryption are not constant-time. Unfortu-
nately, the only software implementation paper that addresses the timing-attack
issue is [7]. [7] offers constant-time encryption and decryption on a platform
without caches (for writable-memory).

This paper presents QcBits (pronounced “quick-bits”), a fully constant-time
implementation of a QC-MDPC-code-based encryption scheme. QcBits provides

This work was supported by the Netherlands Organisation for Scientic Research
(NWO) under grant 639.073.005 and by the Commission of the European Commu-
nities through the Horizon 2020 program under project number 645622 PQCRYPTO.
Permanent ID of this document: 172b0e150c3b6be91b0bdaa0870c1e7d. Date:
2016.03.13.

c© International Association for Cryptologic Research 2016
B. Gierlichs and A.Y. Poschmann (Eds.): CHES 2016, LNCS 9813, pp. 280–300, 2016.
DOI: 10.1007/978-3-662-53140-2 14

QcBits: Constant-Time Small-Key Code-Based Cryptography 281

Table 1. Performance results for QcBits, [7,9], and the vectorized implementation
in [11]. The “key-pair” column shows cycle counts for generating a key pair. The
“encrypt” column shows cycle counts for encryption. The “decrypt” column shows
cycle counts for decryption. For performance numbers of Qcbits, 59-byte plaintexts
are used to follow the eBACS [16] convention. For [9] 32-byte plaintexts are used.
Cycle counts labeled with * mean that the implementation for the operation is not
constant-time on the platform, which means that the worst-case performance can be
much worse (especially for decryption). Note that all the results are for 280 security
(r = 4801, w = 90, t = 84; see Sect. 2.1).

platform key-pair encrypt decrypt reference implementation scheme

Haswell 784 192 82 732 1 560 072 (new) QcBits clmul KEM/DEM

20 339 160 225 948 2 425 516 (new) QcBits ref KEM/DEM

*14 234 347 *34 123 *3 104 624 [11] McEliece

Sandy Bridge 2 497 276 151 204 2 479 616 (new) QcBits clmul KEM/DEM

44 180 028 307 064 3 137 088 (new) QcBits ref KEM/DEM

Cortex-A8 61 544 763 1 696 011 16 169 673 (new) QcBits ref KEM/DEM

Cortex-M4 140 372 822 2 244 489 14 679 937 (new) QcBits no-cache KEM/DEM

*63 185 108 *2 623 432 *18 416 012 [9] KEM/DEM

*148 576 008 7 018 493 42 129 589 [7] McEliece

constant-time key-pair generation, encryption, and decryption for a wide vari-
ety of platforms, including platforms with caches. QcBits follows the McBits
paper [17] to use a variant of the hybrid (KEM/DEM) Niederreiter encryption
scheme proposed in [13,14]. (The variant does not exactly follow the KEM/DEM
construction since there is an extra “KEM failed” bit passed from the KEM to
the DEM; see [17]) As a property of the KEM/DEM encryption scheme, the
software is protected against adaptive chosen ciphertext attacks, as opposed to
the plain McEliece or Niederreiter [2] encryption scheme. The code is written
in C, which makes it easy to understand and verify. Moreover, QcBits outper-
forms the performance results achieved by all previous implementation papers;
see below.

The reader should be aware that QcBits, in the current version, uses a 280-
security parameter set from [3]. Note that with some small modifications QcBits
can be used for a 2128 security parameter. However, I have not found good
“thresholds” for the decoder for 2128 security that achieves a low failure rate and
therefore decide not to include the code for 2128 security in the current version.
Also, the key space used is smaller than the one described in [3]. However, this
is also true for all previous implementation papers [4,5,7,9,11]. These design
choices are made to reach a low decoding failure rate; see Sects. 2.1 and 7 for
more discussions.

Performance Results. The performance results of QcBits are summarized
in Table 1, along with the results for [7,9], and the vectorized implementation
in [11]. In particular, the table shows performance results of the implementations
contained in Qcbits for different settings. The implementation “ref” serves as

282 T. Chou

the reference implementation, which can be run on all reasonable 64/32-bit plat-
forms. The implementation “clmul” is a specialized implementation that relies
on the PCLMULQDQ instruction, i.e., the 64 × 64 → 128-bit carry-less multiplica-
tion instruction. The implementation “no-cache” is similar to ref except that
it does not provide full protection against cache-timing attacks. Both “ref”
and ”clmul” are constant-time, even on platforms with caches. “no-cache” is
constant-time only on platforms that do not have cache for writable memory.
Regarding previous works, both the implementations in [11] for Haswell and [9]
for Cortex-M4 are not constant-time. [7] seems to provide constant-time encryp-
tion and decryption, even though the paper argues about resistance against
simple-power analysis instead of being constant-time.

On the Haswell microarchitecture, QcBits is about twice as fast as [11] for
decryption and an order of magnitude faster for key-pair generation, even though
the implementation of [11] is not constant-time. QcBits takes much more cycles
on encryption. This is mainly because QcBits uses a slow source of randomness;
see Sect. 3.1 for more discussions. A minor reason is that KEM/DEM encryp-
tion requires intrinsically some more operations than McEliece encryption, e.g.,
hashing.

For tests on Cortex-M4, STM32F407 is used for QcBits and [7], while [9]
uses STM32F417. Note that there is no cache for writable memory (SRAM)
on these devices. QcBits is faster than [9] for encryption and decryption. The
difference is even bigger when compared to [7]. The STM32F407/417 product
lines provide from 512 kilobytes to 1 megabyte of flash. [9] reports a flash usage
of 16 kilobytes, while the implementation no-cache uses 62 kilobytes of flash
when the symmetric primitives are included and 38 kilobytes without symmetric
primitives. See Sect. 2.3 for more discussions on the symmetric primitives.

It is important to note that, since the decoding algorithm is probabilistic,
each implementation of decryption comes with a failure rate. For QcBits no
decryption failure occurred in 108 trials. I have not found “thresholds” for the
decoding algorithm that achieves the same level of failure rate at a 2128 secu-
rity level, which is why QcBits uses a 280-security parameter set. For [11], no
decryption failure occurred in 107 trials. For [9] the failure rate is not indicated,
but the decoder seems to be the same as [11]. It is unclear what level of failure
rate [7] achieves. See Sect. 7 for more discussions about failure rates.

Table 2 shows performance results for 128-bit security. Using thresholds
derived from the formulas in [3, Section A] leads to a failure rate of 6.9·10−3 using
12 decoding iterations. Experiments show that there are some sets of thresholds
that achieve a failure rate around 10−5 using 19 decoding iterations, but this is
still far from 10−8; see Sect. 6 for the thresholds. Note that [9,11] did not specify
the failure rates they achieved for 128-bit security, and [7] does not have imple-
mentation for 128-bit security. It is reported in [3] that no decryption failure
occurred in 107 trials for all the parameter sets presented in the paper (includ-
ing the ones used for Tables 1 and 2), but they did not provide details such as
how many decoding iterations are required to achieve this.

QcBits: Constant-Time Small-Key Code-Based Cryptography 283

Table 2. Performance results for QcBits, [9], and the vectorized implementation in [11]
for 128-bit security (r = 9857, w = 142, t = 134; see Sect. 2.1). The cycle counts
for QcBits decryption are underlined to indicate that these are cycle counts for one
decoding iteration. Experiments show that QcBits can achieve a failure rate around
10−5 using 19 decoding iterations (see Sect. 6).

platform key-pair encrypt decrypt reference implementation scheme

Haswell 5 824 028 196 836 1 363 948 (new) QcBits clmul KEM/DEM

*54 379 733 *106 871 *18 825 103 [11] McEliece

Cortex-M4 750 584 383 6 353 732 7 436 655 (new) QcBits no-cache KEM/DEM

*251 288 544 *13 725 688 *80 260 696 [9] KEM/DEM

Comparison with Other Post-Quantum Public-Key Systems. In 2013,
together with Bernstein and Schwabe, I introduced McBits (cf. [17]), a constant-
time implementation for the KEM/DEM encryption scheme using binary Goppa
code. At a 2128 security level, the software takes only 60493 Ivy Bridge cycles
to decrypt. It might seem that QcBits is far slower than McBits. However, the
reader should keep in mind that McBits relies on external parallelism to achieve
such speed: the cycle count is the result of dividing the time for running 256
decryption instances in parallel by 256. The speed of QcBits relies only on
internal parallelism: the timings presented in Table 1 are all results of running
only one instance.

Lattice-based systems are known to be pretty efficient, and unfortunately
QcBits is not able to compete with the best of them. For example, the eBACS
website reports that ntruees439ep1, at a 2128 security level, takes 54940
Haswell cycles (non-constant-time) for encryption and 57008 for Haswell cycles
(non-constant-time) for decryption. Also, the recently published “Newhope”
paper [32] for post-quantum key exchange, which targets a 2128 quantum security
level, reports 115414 Haswell cycles (constant-time) for server-side key genera-
tion, 23988 Haswell cycles (constant-time) for server-side shared-secret compu-
tation, and 144788 Haswell cycles (constant-time) for client-side key generation
plus shared-secret computation.

It is worth noticing that using QC-MDPC codes instead of binary Goppa
codes allows smaller key sizes. [3] reports a public-key size of 601 bytes for a 280-
security parameter set (the one used for Table 1), 1233 bytes for a 2128-security
parameter set (the one used for Table 2), 4097 bytes for a 2256-security parameter
set. [17] reports 74624 bytes for a 280-security parameter set and 221646 bytes for
a 2128-security parameter set, and 1046739 bytes for a 2256-security parameter
set. The public-key size is 609 bytes for ntruees439ep1. The “message sizes”
for Newhope are 1824 bytes (server to client) and 2048 bytes (client to server).

The usage of binary Goppa code was proposed by McEliece in [1] in 1978,
along with the McEliece cryptosystem. After almost 40 years, nothing has really
changed the practical security of the system. The NTRU cryptosystem is almost
20 years old now. QC-MPDC-code-based cryptosystems, however, are still quite
young and thus require some time to gain confidence from the public.

284 T. Chou

2 Preliminaries

This section presents preliminaries for the following sections. Section 2.1 gives
a brief review on the definition of QC-MDPC codes. Section 2.2 describes the
“bit-flipping” algorithm for decoding QC-MDPC codes. Section 2.3 gives a spec-
ification of the KEM/DEM encryption scheme implemented by QcBits.

2.1 QC-MDPC Codes

“MDPC” stands for “moderate-density-parity-check”. As the name implies, an
MDPC code is a linear code with a “moderate” number of non-zero entries in a
parity-check matrix H. For ease of discussion, in this paper it is assumed H ∈
F
r×n
2 where n = 2r, even though some parameter sets in [3] use n = 3r or n = 4r.

H is viewed as the concatenation of two square matrices, i.e., H = H(0)|H(1),
where H(i) ∈ F

r×r
2 .

“QC” stands for “quasi-cyclic”. Being quasi-cyclic means that each H(i) is
“cyclic”. For ease of discussion, one can think this means

H
(k)
(i+1) mod r, (j+1) mod r = H

(k)
i,j ,

even though the original paper allows a row permutation on H. Note that being
quasi-cyclic implies that H has a fixed row weight w. The following is a small
parity-check matrix with r = 5, w = 4:

⎛

⎜
⎜
⎜
⎜
⎝

1 0 1 0 0 0 1 0 0 1
0 1 0 1 0 1 0 1 0 0
0 0 1 0 1 0 1 0 1 0
1 0 0 1 0 0 0 1 0 1
0 1 0 0 1 1 0 0 1 0

⎞

⎟
⎟
⎟
⎟
⎠

.

The number of errors a code is able to correct is often specified as t. Since
there is no good way to figure out the minimum distance for a given QC-MDPC
code, t is usually merely an estimated value.

Qcbits uses r = 4801, w = 90, and t = 84 matching a 280-security parameter
set proposed in [3]. However, Qcbits further requires that H(0) and H(1) have
the same row weight, namely w/2. This is not new, however, as all the previous
implementation papers [4,5,7,9,11] also restrict H in this way. For QcBits this
is a decision for achieving low failure rate; see Sect. 7 for more discussions on
this issue. Previous implementation papers did not explain why they restrict H
in this way.

2.2 Decoding (QC-)MDPC Codes

As opposed to many other linear codes that allow efficient deterministic decod-
ing, the most popular decoder for (QC-)MDPC code, the “bit-flipping” algo-
rithm, is a probabilistic one. The bit-flipping algorithm shares the same idea

QcBits: Constant-Time Small-Key Code-Based Cryptography 285

with so-called “statistical decoding” [19,21]. (The term “statistical decoding”
historically come later than “bit-flipping”, but “statistical decoding” captures
way better the idea behind the algorithm.)

Given a vector that is at most t errors away from a codeword, the algorithm
aims to output the codeword (or equivalently, the error vector) in a sequence
of iterations. Each iteration decides statistically which of the n positions of the
input vector v might have a higher chance to be in error and flips the bits at those
positions. The flipped vector then becomes the input to the next iteration. In
the simplest form of the algorithm, the algorithm terminates when Hv becomes
zero.

The presumed chance of each position being in error is indicated by the count
of unsatisfied parity checks. The higher the count is, the higher the presumed
chance a position is in error. In other words, the chance of position i being in
error is indicated by

ui = |{i | Hi,j = (Hv)i = 1}|.
In this paper the syndrome Hv will be called the private syndrome.

Now the remaining problem is, which bits should be flipped given the vector
u? In [3] two possibilities are given:

• Flip all positions that violate at least max({ui}) − δ parity checks, where δ
is a small integer, say 5.

• Flip all positions that violate at least Ti parity checks, where Ti is a precom-
puted threshold for iteration i.

In previous works several variants have been invented. For example, one variant
based on the first approach simply restarts decoding with a new δ if decoding
fails in 10 iterations.

QcBits uses precomputed thresholds. The number of decoding iterations is
set to be 6, and the thresholds are

29, 27, 25, 24, 23, 23.

These thresholds are obtained by interactive experiments. I do not claim that
these are the best thresholds. With this list of thresholds, no iteration failure
occurs in 108 decoding trials. See Sect. 6 for more details about the trials.

The best results in previous implementation papers [4,5,7,9,11] are achieved
by a variant of the precomputed-threshold approach. In each iteration of the
variant, the ui’s are computed in order. If the current ui is greater than or equal
to the precomputed threshold, vi is flipped and the syndrome is directly updated
by adding the i-th column of H to the syndrome. With this variant, [11] reports
that the average number of iterations is only 2.4.

QcBits always takes 6 decoding iterations, which is much more than 2.4.
However, the algorithms presented in the following sections allow QcBits to run
each iteration very quickly, albeit being constant-time. As the result, Qubits
still achieves much better performance results in decryption.

286 T. Chou

2.3 The Hybrid Niederreiter Encryption System for QC-MDPC
Codes

The KEM/DEM encryption uses the Niederreiter encryption scheme for KEM.
Niederreiter encryption is used to encrypt a random vector e of weight t, which
is then fed into a key-derivation function to obtain the symmetric encryption
and authentication key. The ciphertext is then the concatenation of the Nieder-
reiter ciphertext, the symmetric ciphertext, and the authentication tag for the
symmetric ciphertext. The decryption works in a similar way as encryption; see
for example [17] for a more detailed description. By default QcBits uses the
following symmetric primitives: Keccak [23], Salsa20 [25], and Poly1305 [24]. To
be more precise, QcBits uses Keccak with 512-bit outputs to hash e, and the
symmetric encryption and authentication key are defined to be the first and
second half of the hash value. For symmetric encryption and authentication,
QcBits uses Salsa20 with nonce 0 and Poly1305. Note that QcBits does not
implement Keccak, Salsa20, and Poly1305; it only provides an interface to call
these primitives. For the experiments results in Table 1, the implementations of
the symmetric primitives are from the SUPERCOP benchmarking toolkit. The
user can use their own implementations for the primitives, or even use some
other symmetric primitives (in this case the user has to change the hard-coded
parameters, such as key size of the MAC).

The secret key is a representation of a random parity-check matrix H. Since
the first row H gives enough information to form the whole matrix, it suffices to
represent H using an array of indices in {j | H

(0)
0,j = 1} and an array of indices

in {j | H
(1)
0,j = 1}. In each array the indices should not repeat, but they are not

required to be sorted. QcBits represents each array as a byte stream of length
w, where the i-th double byte is the little-endian representation of the i-th index
in the array. The secret key is then defined as the concatenation of the two byte
streams.

The public key is a representation of the row reduced echelon form of H.
The row reduced matrix is denoted as P . Niederreiter requires P (0) to be the
identity matrix Ir, or the key pair must be rejected. (Previous papers such as [7]
use P (1) = Ir, but using P (0) = Ir is equivalent in terms of security.) In other
words, P (1) contains all information of P (if P is valid). Note that P is also quasi-
cyclic; QcBits thus defines the public key as a byte stream of length �(r+7)/8�,
where the byte values are

(P (1)
7,0 P

(1)
6,0 . . . P

(1)
0,0)2, (P (1)

15,0P
(1)
14,0 . . . P

(1)
8,0)2, . . .

The encryption process begins with generating a random vector e of weight
t. The ciphertext for e is then the public syndrome s = Pe, which is represented
as a byte stream of length �(r + 7)/8�, where the byte values are

(s7s6 . . . s0)2, (s15s14 . . . s8)2,

For hashing, e is represented as a byte stream of length �(n + 7)/8� in a similar
way as the public syndrome. The 32-byte symmetric encryption key and the

QcBits: Constant-Time Small-Key Code-Based Cryptography 287

32-byte authentication key are then generated as the first and second half
of the 64-byte hash value of the byte stream. The plaintext m is encrypted
and authenticated using the symmetric keys. The ciphertext for the whole
KEM/DEM scheme is then the concatenation of the public syndrome, the cipher-
text under symmetric encryption, and the tag. In total the ciphertext takes
�(r + 7)/8� + |m| + 16 bytes.

When receiving an input stream, the decryption process parses it as the
concatenation of a public syndrome, a ciphertext under symmetric encryption,
and a tag. Then an error vector e′ is computed by feeding the public syndrome
into the decoding algorithm. If Pe′ = s, decoding is successful. Otherwise, a
decoding failure occurs. The symmetric keys are then generated by hashing e′

to perform symmetric decryption and verification. QcBits reports a decryption
failure if and only if the verification fails or the decoding fails.

3 Key-Pair Generation

This section shows how QcBits performs key-pair generation using multipli-
cations in F2[x]/(xr − 1). Section 3.1 shows how the private key is gener-
ated. Section 3.2 shows how key-pair generation is viewed as multiplications in
F2[x]/(xr −1). Section 3.3 shows how multiplications in F2[x]/(xr −1) are imple-
mented. Section 3.4 shows how squarings in F2[x]/(xr − 1) are implemented.

3.1 Private-Key Generation

The private-key is defined to be an array of w random 16-bit indices. QcBits
obtains random bytes by first reading 32 bytes from a source of randomness
and then expands the 32 bytes into the required length using salsa20. QcBits
allows the user to choose any source of randomness. To generate the performance
numbers on Ivy Bridge, Sandy Bridge, and Cortex-A8 in Table 1, /dev/urandom
is used as the source of randomness. To generate the performance numbers on
Cortex-M4 in Table 1, the TRNG on the board is used as in [9]. The RDRAND
instruction used by [11] is not considered for there are security concerns about
the instruction; see the Wikipedia page of RDRAND [26]. One can argue that there
is no evidence of a backdoor in RDRAND, but I decide not to take the risk.

3.2 Polynomial View: Public-Key Generation

For any matrix M , let Mi,: denote the vector (Mi,0,Mi,1, . . .) and similarly for
M:,i. In Sect. 2, the public key is defined as a sequence of bytes representing
P

(1)
:,0 , where P is the row reduced echelon form of the parity-check matrix H. A

simple way to implement constant-time public-key generation is thus to generate
H from the private key and then perform a Gaussian elimination. It is not hard
to make Gausssian elimination constant-time; see for example, [17]. However,
public-key generation can be made much more time- and memory-efficient when
considering it as polynomial operations, making use of the quasi-cyclic structure.

288 T. Chou

For any vector v of length r, let v(x) = v0 +v1x+ · · ·+vr−1x
r−1. As a result

of H(0) being cyclic, we have

H
(i)
j,: (x) = xjH

(i)
0,: (x) ∈ F2[x]/(xr − 1).

The Gaussian elimination induces a linear combination of the rows of H(0) that
results in P

(0)
0,: . In other words, there exists a set I of indices such that

1 =
∑

i∈I

xiH
(0)
0,: (x) = (

∑

i∈I

xi)H(0)
0,: (x),

P
(1)
0,: (x) =

∑

i∈I

xiH
(1)
0,: (x) = (

∑

i∈I

xi)H(1)
0,: (x).

In other words, the public key can be generated by finding the inverse of H
(0)
0,: (x)

in F2[x]/(xr − 1) and then multiplying the inverse by H
(1)
0,: (x). The previous

implementation papers [4,5,7,9,11] compute the inverse using the extended
Euclidean algorithm. The algorithm in its original form is highly non-constant-
time. [30] provides a way to make extended Euclidean algorithm constant-time;
so far it is unclear to me whether their algorithm is faster than simply using
exponentiation (see below).

In order to be constant-time, QcBits computes the inverse by carrying out
a fixed sequence of polynomial multiplications. To see this, first consider the
factorization of xr − 1 ∈ F2[x] as

∏
i

(
f (i)(x)

)pi , where each f (i) is irreducible.
F2[x]/(xr − 1) is then equivalent to

∏

i

F2[x]
/(

f (i)(x)
)pi

Since
∣
∣
∣
∣

(
F2[x]/

(
f (i)(x)

)pi
)∗∣∣

∣
∣ = 2deg(f

(i))·pi · (2deg(f
(i)) − 1)/2deg(f

(i))

= 2deg(f
(i))·pi − 2deg(f

(i))·(pi−1),

one may compute the inverse of an element in F2[x]/(xr − 1) by raising it to
power

lcm
(
2deg(f

(1))·p1 − 2deg(f
(1))·(p1−1), 2deg(f

(2))·(p2−1) − 2deg(f
(2))·(p2−1), . . .

)
− 1.

QcBits uses r = 4801. The polynomial x4801 − 1 can be factored into

(x + 1)f (1)f (2)f (3)f (4) ∈ F2[x],

where each f (i) is an irreducible polynomial of degree 1200. Therefore, QcBits
computes the inverse of a polynomial modulo x4801−1 by raising it to the power
lcm(2 − 1, 21200 − 1) − 1 = 21200 − 2.

QcBits: Constant-Time Small-Key Code-Based Cryptography 289

Raising an element in F2[x]/(x4801 − 1) to the power 21200 − 2 can be carried
out by a sequence of squarings and multiplications. The most naive way is to
use the square-and-multiply algorithm, which leads to 1199 squarings and 1198
multiplications. QcBits does better by finding a good addition chain for 21200−2.
First note that there is a systematic way to find a good addition chain for integers
of the form 2k − 1. Take 211 − 1 for example, the chain would be

1 → 102 → 112 → 11002 → 11112 → 111100002 → 111111112 → 11111111002
→ 11111111112 → 111111111102 → 111111111112.

This takes 10 doublings and 5 additions. Using the same approach, it is easy to
find an addition chain for 2109 − 1 that takes 108 doublings and 10 additions.
QcBits then combines the addition chains for 211 − 1 and 2109 − 1 to form an
addition chain for 211·109−1 = 21199−1, which takes 10·109+108 = 1198 doubling
and 5+10 = 15 additions. Once the (21199−1)-th power is computed, the (21200−
2)-th power can be computed using one squaring. In total, computation of the
(21200−2)-th power takes 1199 squarings and 15 multiplications in F2[x]/(x4801−
1).

Finally, with the inverse, P
(1)
0,: (x) can be computed using one multiplication.

The public key is defined to be a representation of P
(1)
:,0 instead of P

(1)
0,: . Qcbits

thus derives P
(1)
0,: from P

(1)
:,0 by noticing

P
(1)
0,j =

{
P

(1)
0,r−j if j > 0

P
(1)
0,0 if j = 0.

Note that the conversion from P
(1)
:,0 to P

(1)
0,: does not need to be constant-time

because it can be easily reversed from public data.

3.3 Generic Multiplication in F2[x]/(xr − 1)

The task here is to compute h = fg, where f, g ∈ F2[x]/(xr − 1). In QcBits, the
polynomials are represented using an array of �r/b� b-bit words in the natural
way. Take f for example (the same applies to g and h), the b-bit values are:

(fb−1fb−2 . . . f0)2, (f2b−1f2b−2 . . . fb)2,

The user can choose b to be 32 or 64, but for the best performance b should
be chosen according to the machine architecture. Let y = xb. One can view
this representation as storing each coefficient of the radix-y representation of
f using one b-bit integer. In this paper this representation is called the “dense
representation”.

Using the representation, we can compute the coefficients (each being a 2b-
bit value) of the radix-y representation of h, using carry-less multiplications
on the b-bit words of f and g. Once the 2b-bit values are obtained, the dense
representation of h can be computed with a bit of post-processing. To be precise,

290 T. Chou

given two b-bit numbers (αb−1αb−2 · · · α0)2 and (βb−1βb−2 · · · β0)2, a carry-less
multiplication computes the 2b-bit value (having actually only 2b − 1 bits)

⎛

⎝
⊕

i+j=2b−2

αiβj

⊕

i+j=2b−3

αiβj · · ·
⊕

i+j=0

αiβj

⎞

⎠

2

.

In other words, the input values are considered as elements in F2[x], and the
output is the product in F2[x].

The implementations clmul uses the PCLMULQDQ instruction to perform carry-
less multiplications between two 64-bit values. For the implementation ref and
no-cache, the following C code is used to compute the higher and lower b bits
of the 2b-bit value:

low = x * ((y >> 0) & 1);
v1 = x * ((y >> 1) & 1);
low ^= v1 << 1;
high = v1 >> (b-1);
for (i = 2; i < b; i+=2)
{

v0 = x * ((y >> i) & 1);
v1 = x * ((y >> (i+1)) & 1);
low ^= v0 << i;
low ^= v1 << (i+1);
high ^= v0 >> (b-i);
high ^= v1 >> (b-(i+1));

}

3.4 Generic Squaring in F2[x]/(xr − 1)

Squarings in F2[x]/(xr −1) can be carried out as multiplications. However, obvi-
ously squaring is a much cheaper operation as only �r/b� carry-less multiplica-
tions (actually squarings) are required.

The implementation clmul again uses the PCLMULQDQ instruction to perform
carry-less squarings of 64-bit polynomials. Following the section for interleaving
bits presented in the “Bit Twiddling Hacks” by Sean Eron Anderson [12], the
implementations ref and no-cache use the following C code twice to compute
the square of a 32-bit polynomial represented as 32-bit word:

x = (x | (x << 16)) & 0x0000FFFF0000FFFF;
x = (x | (x << 8)) & 0x00FF00FF00FF00FF;
x = (x | (x << 4)) & 0x0F0F0F0F0F0F0F0F;
x = (x | (x << 2)) & 0x3333333333333333;
x = (x | (x << 1)) & 0x5555555555555555;

By using the code twice we can also compute the square of a 64-bit polynomial.

QcBits: Constant-Time Small-Key Code-Based Cryptography 291

4 KEM Encryption

This section shows how QcBits performs the KEM encryption using multipli-
cations in F2[x]/(xr − 1). Section 4.1 shows how the error vector is generated.
Section 4.2 shows how public-syndrome computation is viewed as multiplications
in F2[x]/(xr − 1). Section 4.3 shows how these multiplications are implemented.

4.1 Generating the Error Vector

The error vector e is generated in essentially the same way as the private key.
The only difference is that for e we need t indices ranging from 0 to n − 1, and
there is only one list of indices instead of two. Note that for hashing it is still
required to generate the dense representation of e.

4.2 Polynomial View: Public-Syndrome Computation

The task here is to compute the public syndrome Pe. Let e(0) and e(1) be the
first and second half of e. The public syndrome is then

s = P (0)e(0) + P (1)e(1)

=
∑

i

P
(0)
:,i e

(0)
i +

∑

i

P
(1)
:,i e

(1)
i .

Since P is quasi-cyclic, we have

s(x) =
∑

i

xiP
(0)
:,0 (x)e(0)i +

∑

i

xiP
(1)
:,0 (x)e(1)i

= P
(0)
:,0 (x)e(0)(x) + P

(1)
:,0 (x)e(1)(x)

= e(0)(x) + P
(1)
:,0 (x)e(1)(x).

In other words, the private syndrome can be computed using one multiplication
in F2[x]/(xr − 1). The multiplication is not generic in the sense that e(1)(x) is
sparse. See below for how the multiplication is implemented in QcBits.

4.3 Sparse-Times-Dense Multiplications in F2[x]/(xr − 1)

The task here can be formalized as computing f (0) + f (1)g(1) ∈ F2[x]/(xr − 1),
where g(1) is represented in the dense representation. f (0) and f (1) are repre-
sented together using an array of indices in I = {i | f

(0)
i = 1}∪{i+r | f

(1)
i = 1},

where |I| = t.
One can of course perform this multiplication between f (1) and g(1) in a

generic way, as shown in Sect. 3.3. The implementation clmul indeed generates
the dense representation of f (1) and then computes f (1)g(1) using the PCLMULQDQ
instruction. [11] uses essentially the same technique. The implementations ref

292 T. Chou

and no-cache however, make use of the sparsity in f (0) and f (1); see below for
details.

Now consider the slightly simpler problem of computing h = fg ∈ F2[x]/(xr−
1), where f is represented as an array of indices in I = {i | fi = 1}, and g is in
the dense representation. Then we have

fg =
∑

i∈I

xig.

Therefore, the implementations ref and no-cache first set h = 0. Then, for each
i ∈ I, xig is computed and then added to h. Note that xig is represented as an
array of �r/b� b-bit words, so adding xig to h can be implemented using �r/b�
bitwise-XOR instructions on b-bit words.

Now the remaining problem is how to compute xig. It is obvious that xig
can be obtained by rotating g by i bits. In order to perform a constant-time
rotation, the implementation ref makes use of the idea of the Barrel shifter [27].
The idea is to first represent i in binary representation

(ik−1ik−2 · · · i0)2.

Since i � r−1, it suffices to use k = �lg(r−1)�+1. Then, for j from k−1 to lg b,
a rotation by 2j bits is performed. One of the unshifted vector and the shifted
vector is chosen (in a constant-time way) and serves as the input for the next j.
After dealing with all ik−1, ik−2, . . . , ilg b, a rotation of (ilg b−1ilg b−2 · · · i0)2 bits
is performed using a sequence of logical instructions.

To clarify the idea, here is a toy example for the case n = 40, b = 8. The
polynomial g is

(x8 + x10 + x12 + x14) + (x16 + x17 + x20 + x21) + (x24 + x25 + x26 + x27)

+ (x36 + x37 + x38 + x39),

which is represented in an array of 5 bytes as

000000002, 010101012, 001100112, 000011112, 111100002.

The goal is to compute xig where i = 0100112. Since �lg(40 − 1)� + 1 = 6, the
algorithm begins with computing a rotation of 1000002 = 32 bits, which can be
carried out by moving around the bytes. The result is

010101012, 001100112, 000011112, 111100002, 000000002.

Since the most significant bit is not set, the unshifted polynomial is chosen. Next
we proceed to perform a rotation of 0100002 = 16 bits. The result is

000011112, 111100002, 000000002, 010101012, 001100112.

Since the second most significant bit is set, we choose the rotated polynomial.
The polynomial is then shifted by 0010002 = 8 bits. However, since the third

QcBits: Constant-Time Small-Key Code-Based Cryptography 293

most significant bit is not set, the unshifted polynomial is chosen. To handle the
least significant lg b = 3 bits of i, a sequence of logical instructions are used to
combine the most significant 0112 and the least significant 1012 bits of the bytes,
resulting in

011000012, 111111102, 000000002, 000010102, 101001102.

Note that in [3] r is required to be a prime (which means r is not divis-
ible by b), so the example is showing an easier case. Roughly speaking, the
implementation ref performs a rotation as if the vector length is r − (r mod b)
and then uses more instructions to compensate for the effect of the r mod b
extra bits. The implementation no-cache essentially performs a rotation of
(ik−1ik−2 · · · ilg b0 · · · 0)2 bits and then performs a rotation of (ilg b−1ilg b−2 · · · i0)2
bits.

With the constant-time rotation, we can now deal with the original problem
of computing f (0) + f (1)g(1) ∈ F2[x]/(xr − 1). QcBits first sets h = 0. Then for
each i ∈ I, one of either 1 or g(1) is chosen according to whether i < r or not,
which has to be performed in a constant-time way to hide all information about
i. The chosen polynomial is then rotated by i mod r bits, and the result is added
to h. Note that this means the implementations ref and no-cache perform a
dummy polynomial multiplication to hide information about f (0) and f (1).

5 KEM Decryption

This section shows how QcBits performs the KEM decryption using multiplica-
tions in F2[x]/(xr − 1) and Z[x]/(xr − 1). The KEM decryption is essentially a
decoding algorithm. Each decoding iteration computes

• the private syndrome Hv and
• the counts of unsatisfied parity checks, i.e., the vector u, using the private

syndrome.

Positions in v are then flipped according the counts. Section 5.1 shows how
private-syndrome computation is implemented as multiplications in F2[x]/(xr −
1). Section 5.2 shows how counting unsatisfied parity checks is viewed as mul-
tiplications in Z[x]/(xr − 1). Section 5.3 shows how these multiplications in
Z[x]/(xr−1) are implemented. Section 5.4 shows how bit flipping is implemented.

5.1 Polynomial View: Private-Syndrome Computation

The public syndrome and the private syndrome are similar in the sense that
they are both computed by matrix-vector products where the matrices are quasi-
cyclic. For the public syndrome the matrix is P and the vector is e. For the private
syndrome the matrix is H and the vector is v. Therefore, the computation of the
private syndrome can be viewed as polynomial multiplication in the same way
as the public syndrome. That is, the private syndrome can be viewed as

H
(0)
:,0 (x)v(0)(x) + H

(1)
:,0 (x)v(1)(x) ∈ F2[x]/(xr − 1).

294 T. Chou

The computations of the public syndrome and the private syndrome are still
a bit different. For encryption the matrix P is dense, whereas the vector e is
sparse. For decryption the matrix H is sparse, whereas the vector v is dense.
However, the multiplications H

(i)
:,0 (x)v(i)(x) are still sparse-times-dense multi-

plications. QcBits thus computes the private syndrome using the techniques
described in Sect. 4.3.

Since the secret key is a sparse representation of H
(i)
0,: , we do not immediately

have H
(i)
:,0 . This is similar to the situation in public-key generation, where P

(1)
:,0

is derived from P
(1)
0,: . QcBits thus computes H

(i)
:,0 from H

(i)
0,: by adjusting each

index in the sparse representation in constant time.

5.2 Polynomial View: Counting Unsatisfied Parity Checks

Let s = Hv. The vector u of counts of unsatisfied parity checks can be viewed
as

uj =
∑

i

Hi,j · si ∈ Z
n,

where Hi,j and sj are treated as integers. In other words,

u =
∑

i

Hi,: · si ∈ Z
n.

Let u(0) and u(1) be the first and second half of u, respectively. Now we have:

(
u(0)(x), u(1)(x)

)
=

(
∑

i

xiH
(0)
0,: (x) · si,

∑

i

xiH
(1)
0,: (x) · si

)

=
(
H

(0)
0,: (x) · s(x),H(1)

0,: (x) · s(x)
)

∈ (Z[x]/(xr − 1))2 .

In other words, the vector u can be computed using 2 multiplications in
Z[x]/(xr − 1). Note that the multiplications are not generic: H

(i)
0,: (x) is always

sparse, and the coefficients of H
(i)
0,: (x) and s(x) can only be 0 or 1. See below for

how such multiplications are implemented in QcBits.

5.3 Sparse-Times-Dense Multiplications in Z[x]/(xr − 1)

The task can be formalized as computing fg ∈ Z[x]/(xr−1), where fi, gi ∈ {0, 1}
for all i, and f is of weight only w. f is represented as an array of indices in
If = {i|fi = 1}. g is naturally represented as an array of �r/b� b-bit values as
usual. Then we have

fg =
∑

i∈If

xig.

Even though all the operations are now in Z[x]/(xr−1) instead of F2[x]/(xr−1),
each xig can still be computed using a constant-time rotation as in Sect. 4.3.

QcBits: Constant-Time Small-Key Code-Based Cryptography 295

1011012

1010002

0001012

0000002

...

...

Non-bitsliced Bitsliced

0 . . . 1012

0 . . . 0002

0 . . . 1012

0 . . . 0112

0 . . . 0002

0 . . . 0112

8 bits

b

b bits

6

Fig. 1. Storage of b numbers of unsatisfied parity checks in non-bitsliced form and
bitsliced format.

Therefore, QcBits first sets h = 0, and then for each i ∈ I, xig is computed
using the constant-time rotation and then added to h. After all the elements in
I are processed, we have h = fg. Note that xig is represented as an array of
�r/b� b-bit words.

Now the remaining problem is how to add xig to h. A direct way to represent
h is to use an array of r bytes (it suffices to use 1 byte for each coefficient when
w/2 < 256, which is true for all parameter sets in [3] with n = 2r), each storing
one of the r coefficients. To add xig to h, the naive way is for each coefficient
of h to extract from the corresponding b-bit word the bit required using one
bitwise-AND instruction and at most one shift instruction, and then to add the
bit to the byte using one addition instruction. In other words, it takes around 3
instructions on average to update each coefficient of h.

QcBits does better by bitslicing the coefficients of h: Instead of using b bytes,
QcBits uses several b-bit words to store a group of b coefficients, where the i-
th b-bit word stores the i-th least significant bits of the b coefficients. Since the
column weight of H is w/2, it suffices to use �lg w/2�+1 b-bit words. To update b
coefficients of h, a sequence of logical operations is performed on the �lg w/2�+1
b-bit words and the corresponding b-bit word in xig. These logical instructions
simulate b copies of a circuit for adding a 1-bit number into a (�lg w/2� + 1)-bit
number. Such a circuit requires roughly �lg w/2� + 1 half adders, so updating b
coefficients takes roughly 2(�lg w/2� + 1) logical instructions on b-bit words.

Figure 1 illustrates how the b coefficients are stored when w = 90. In the non-
bitsliced approach b bytes are used. In the bitsliced approach �lg(90/2)�+1 = 6 b-
bit words are used, which account for 6b/8 bytes. Note that this means bitslicing
saves memory. Regarding the number of instructions, it takes (6 · 2)/b logical
instructions on average to update each coefficient. For either b = 32 or b = 64,
(6 · 2)/b is much smaller than 3. Therefore, bitslicing also helps to enhance
performance.

296 T. Chou

The speed that McBits [17] achieves relies on bitslicing as well. However, the
reader should keep in mind that QcBits, as opposed to McBits, makes use of
parallelism that lies intrinsically in one single decryption instance.

5.4 Flipping Bits

The last step in each decoding iteration is to flip the bits according to the
counts. Since QcBits stores the counts in a bitsliced format, bit flipping is also
accomplished in a bitsliced fashion. At the beginning of each decoding iteration,
the bitsliced form of b copies of −t is generated and stored in �lg w/2� + 1 b-bit
words. Once the counts are computed, −t is added to the counts in parallel using
logical instructions on b-bit words. These logical instructions simulate copies of a
circuit for adding (�lg w/2�+1)-bit numbers. Such a circuit takes (�lg w/2�+1)
full adders. Therefore, each ui + (−t) takes roughly 5(�lg w/2� + 1)/b logical
instructions.

The additions are used to generate sign bits for all ui − t, which are stored
in two arrays of �r/b� b-bit words. To flip the bits, QcBits simply XORs the
complement of b-bit words in the two arrays into v(0) and v(1). It then takes
roughly 1/b logical instructions to update each vi.

For w = 90, we have 5(�lg w/2� + 1)/b + 1b = 31/b, which is smaller than
1 for either b = 32 or b = 64. In contrast, when the non-bitsliced format is
used, the naive approach is to use at least one subtraction instruction for each
ui − t and one XOR instruction to flip the bit. One can argue that for the non-
bitsliced format there are probably better ways to compute u and perform bit
flipping. For example, one can probably perform several additions/subtractions
of bytes in parallel in one instruction. However, such an approach seems much
more expensive than one might expect as changes of formats between a sequence
of bits and bytes are required.

6 Experimental Results for Decoding

This section shows experimental results for QC-MDPC decoding under differ-
ent parameter sets. The decoding algorithm used is the precomputed-threshold
approach introduced in Sect. 2.2. The codes are restricted: H(0) and H(1) are
required to have the same row weight. r, w, t have same meaning as in Sect. 2.1.
sec indicates the security level. T is the list of thresholds. If not specified oth-
erwise, the thresholds are obtained using the formulas in [3, Appendix A]. S is
a list that denotes how many iterations the tests take. The summation of the
numbers in S is the total number of tests, which is set to either 108 first the
first three cases and 106 for the last case. The 108 (106) tests consist of 104

(103) decoding attempts for each of 104 (103) key pairs. The first number in
the list indicates the number of tests that fail to decode in #T iterations (i.e.,
in the total number of iterations). The second number indicates the number of

QcBits: Constant-Time Small-Key Code-Based Cryptography 297

tests that succeed after 1 iteration. The third number indicates the number of
tests that succeed after 2 iterations; etc. avg indicates the average number of
iterations for the successful tests.

r = 4801
w = 90
t = 84
sec = 80
T = [29, 27, 25, 24, 23, 23]
S = [0, 0, 752, 69732674, 30232110, 34417, 47]
avg = 3.30

The thresholds are obtained by interactive experiments. QcBits uses this
setting.

r = 4801
w = 90
t = 84
sec = 80
T = [28, 26, 24, 23, 23, 23, 23, 23, 23, 23]
S = [40060, 0, 9794, 87815060, 12079266, 51387, 3833, 519, 70, 10,
1]
avg = 3.12

r = 9857
w = 142
t = 134
sec = 128
T = [44, 42, 40, 37, 36, 36, 36, 36, 36, 36, 36, 36]
S = [689298, 0, 0, 86592, 53307303, 42797368, 2856446, 235479,
24501, 2651, 333, 26, 3]
avg = 4.46

r = 9857
w = 142
t = 134
sec = 128
T = [48, 47, 46, 45, 44, 43, 42, 42, 41, 41, 40, 40, 39, 39, 38,
38, 37, 37, 36]
S = [12, 0, 0, 0, 0, 0, 142, 78876, 578963, 290615, 43180, 6363,
1309, 336, 108, 54, 27, 7, 4, 4]
avg = 8.33

The thresholds are obtained by interactive experiments.

298 T. Chou

7 The Future of QC-MDPC-Based Cryptosystems

QcBits provides a way to perform constant-time QC-MDPC decoding, even on
platforms with caches. Moreover, decoding in QcBits is much faster than that in
previous works. However, the fact that the bit-flipping algorithm is probabilistic
can be a security issue. The security proofs in [13,14] do assume that the KEM
is able to decrypt a KEM ciphertext with “overwhelming probability”. As there
is no good way to estimate the failure rate for a given QC-MDPC code, the best
thing people can do is to run a large number of experiments. QcBits manages to
achieve no decoding failures in 108 trials. Indeed, 108 is not a trivial number, but
whether such level of failure rate is enough to keep the system secure remains
unclear, not to mention that this is for 80-bit security only. See Sect. 6 for more
detailed experimental results on failure rates.

One can probably mitigate the problem by reducing the failure rate. This may
be achieved by improving decoding algorithms or designing better parameter
sets. However, a more fundamental problem that has not been answered is how
low the failure rate should be in order to be secure.

Another probably less serious problem is that QcBits and all previous imple-
mentation papers [4,5,7,9,11] force the parity check matrix H to have equal
weights in H(0) and H(1), which is not the same as what was described in [3].
QcBits restricts the key space in this way to reduce the failure rate. Of course,
one can argue that even if the key space is not restricted, for a very high probabil-
ity H(0) and H(1) would still have the same weight. However, such an argument
is valid only if the adversary can only target one system. For an adversary who
aims to break one out of many systems, it is still unclear whether such restriction
affects the security. Hopefully researchers will spend time on this problem also.

References

1. McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. JPL
DSN Progress Report, pp. 114–116 (1978). http://ipnpr.jpl.nasa.gov/progress
report2/42-44/44N.PDF

2. Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. Probl.
Control Inf. Theor. 15, 159–166 (1986)

3. Misoczki, R., Tillich, J.-P., Sendrier, N., Barreto, P.S.L.M.: MDPC-McEliece: new
McEliece variants from moderate density parity-checkcodes, In: IEEE International
Symposium on Information Theory, pp. 2069–2073 (2013). http://eprint.iacr.org/
2012/409.pdf

4. Heyse, S., von Maurich, I., Güneysu, T.: Smaller keys for code-based cryptogra-
phy: QC-MDPC McEliece implementations on embedded devices. In: Bertoni, G.,
Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp. 273–292. Springer, Heidelberg
(2013)

5. von Maurich, I., Güuneysu, T.: Lightweight code-based cryptography: QC-
MDPC McEliece encryption on reconfigurable devices. In: DATE 2014 [6], pp.
1–6 (2014). https://www.sha.rub.de/media/sh/veroeffentlichungen/2014/02/11/
Lightweight Code-based Cryptography.pdf

http://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF
http://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF
http://eprint.iacr.org/2012/409.pdf
http://eprint.iacr.org/2012/409.pdf
https://www.sha.rub.de/media/sh/veroeffentlichungen/2014/02/11/Lightweight_Code-based_Cryptography.pdf
https://www.sha.rub.de/media/sh/veroeffentlichungen/2014/02/11/Lightweight_Code-based_Cryptography.pdf

QcBits: Constant-Time Small-Key Code-Based Cryptography 299

6. Fettweis, G., Nebel, W. (eds.): Design, Automation and Test in Europe Conference
and Exhibition, DATE 2014, Dresden, Germany, 24–28 March 2014. European
Design and Automation Association (2014). ISBN 978-3-9815370-2-4, See [5]

7. von Maurich, I., Güneysu, T.: Towards side-channel resistant implementations
of QC-MDPC McEliece encryption on constrained devices. In: Mosca, M. (ed.)
PQCrypto 2014. LNCS, vol. 8772, pp. 266–282. Springer, Heidelberg (2014)

8. Mosca, M. (ed.): Post-Quantum Cryptography. LNCS, vol. 8772. Springer, Berlin
(2014). See [7]

9. von Maurich, I., Heberle, L., Güneysu, T.: IND-CCA secure hybrid encryption
from QC-MDPC Niederreiter. In: PQCrypto 2016 [10] (2016)

10. Takagi, T. (ed.): Post-Quantum Cryptography. LNCS, vol. 9606. Springer, Berlin
(2016). See [9]

11. von Maurich, I., Oder, T., Güneysu, T.: Implementing QC-MDPC McEliece
encryption. ACM Trans. Embed. Comput. Syst. 14, 44 (2015)

12. Anderson, S.E.: Bit Twiddling Hacks (1997–2005). https://graphics.stanford.edu/
∼seander/bithacks.html

13. Persichetti, E.: Improving the efficiency of code-based cryptography. Ph.D. thesis,
University of Auckland (2012). http://persichetti.webs.com/publications

14. Persichetti, E.: Secure and anonymous hybrid encryption from coding theory. In:
Gaborit, P. (ed.) PQCrypto 2013. LNCS, vol. 7932, pp. 174–187. Springer, Heidel-
berg (2013)

15. Gaborit, P. (ed.): Post-Quantum Cryptography. LNCS, vol. 7932. Springer, Berlin
(2013). See [14]

16. Bernstein, D.J., Lange, T. (eds.): eBACS: ECRYPT Benchmarking of Crypto-
graphic Systems (2016). http://bench.cr.yp.to. Accessed 2 Feb 2016

17. Bernstein, D.J., Chou, T., Schwabe, P.: McBits: fast constant-time code-based
cryptography. In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086,
pp. 250–272. Springer, Heidelberg (2013)

18. Bertoni, G., Coron, J.-S. (eds.): CHES 2013. LNCS, vol. 8086. Springer, Heidelberg
(2013). ISBN 978-3-642-40348-4

19. Al Jabri, A.K.: A statistical decoding algorithm for general linear block codes. In:
[20], pp. 1–8 (2001)

20. Honary, B. (ed.): Cryptography and Coding. LNCS, vol. 2260. Springer, Heidelberg
(2001). ISBN 3-540-43026-1, See [19]

21. Overbeck, R.: Statistical decoding revisited. In: Batten, L.M., Safavi-Naini, R.
(eds.) ACISP 2006. LNCS, vol. 4058, pp. 283–294. Springer, Heidelberg (2006)

22. Batten, L.M., Safavi-Naini, R. (eds.): ACISP 2006. LNCS, vol. 4058. Springer,
Heidelberg (2006). ISBN 3-540-35458-1, See [21]

23. Bertoni, G., Daemen, J.: Peeters, M., Van Assche, G.: Keccak and the SHA-
3 standardization (2013). http://csrc.nist.gov/groups/ST/hash/sha-3/documents/
Keccak-slides-at-NIST.pdf

24. Bernstein, D.J.: The Poly1305-AES message-authentication code. In: FSE 2005
[28], pp. 32–49 (2005). http://cr.yp.to/papers.html#poly1305

25. Bernstein, D.J.: The Salsa20 family of stream ciphers. In: [29], pp. 84–97 (2008).
http://cr.yp.to/papers.html#salsafamily

26. Wikipedia: RdRand — Wikipedia. The Free Encyclopedia (2016). https://en.
wikipedia.org/wiki/RdRand. Accessed 2 Feb 2016

27. Wikipedia: Barrel Shifter — Wikipedia. The Free Encyclopedia (2016). https://
en.wikipedia.org/wiki/Barrel shifter. Accessed 2 Feb 2016

28. Gilbert, H., Handschuh, H. (eds.): FSE 2005. LNCS, vol. 3557. Springer, Heidelberg
(2005). ISBN:3-540-26541-4, See [24]

https://graphics.stanford.edu/~seander/bithacks.html
https://graphics.stanford.edu/~seander/bithacks.html
http://persichetti.webs.com/publications
http://bench.cr.yp.to
http://csrc.nist.gov/groups/ST/hash/sha-3/documents/Keccak-slides-at-NIST.pdf
http://csrc.nist.gov/groups/ST/hash/sha-3/documents/Keccak-slides-at-NIST.pdf
http://cr.yp.to/papers.html#poly1305
http://cr.yp.to/papers.html#salsafamily
https://en.wikipedia.org/wiki/RdRand
https://en.wikipedia.org/wiki/RdRand
https://en.wikipedia.org/wiki/Barrel_shifter
https://en.wikipedia.org/wiki/Barrel_shifter

300 T. Chou

29. Robshaw, M., Billet, O. (eds.): New Stream Cipher Designs. LNCS. Springer,
Heidelberg (2008). ISBN:978-3-540-68350-6, See [25]

30. Georgieva, M., de Portzamparc, F.: Toward secure implementation of McEliece
decryption, In: COSADE 2015 [31], pp. 141–156 (2015). http://eprint.iacr.org/
2015/271.pdf

31. Mangard, S., Poschmann, A.Y. (eds.): Constructive Side-Channel Analysis and
Secure Design. LNCS, vol. 9064. Springer, Heidelberg (2015). See [30]

32. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-Quantumkey Exchange—
A New Hope, The IACR ePrint Archive (2015). https://eprint.iacr.org/2015/1092

http://eprint.iacr.org/2015/271.pdf
http://eprint.iacr.org/2015/271.pdf
https://eprint.iacr.org/2015/1092

µKummer: Efficient Hyperelliptic Signatures
and Key Exchange on Microcontrollers

Joost Renes1(B), Peter Schwabe1, Benjamin Smith2, and Lejla Batina1

1 Digital Security Group, Radboud University, Nijmegen, The Netherlands
{j.renes,lejla}@cs.ru.nl, peter@cryptojedi.org

2 INRIA and Laboratoire d’Informatique de l’École polytechnique (LIX),
Palaiseau, France

smith@lix.polytechnique.fr

Abstract. We describe the design and implementation of efficient signa-
ture and key-exchange schemes for the AVR ATmega and ARM Cortex
M0 microcontrollers, targeting the 128-bit security level. Our algorithms
are based on an efficient Montgomery ladder scalar multiplication on
the Kummer surface of Gaudry and Schost’s genus-2 hyperelliptic curve,
combined with the Jacobian point recovery technique of Chung, Costello,
and Smith. Our results are the first to show the feasibility of software-
only hyperelliptic cryptography on constrained platforms, and represent
a significant improvement on the elliptic-curve state-of-the-art for both
key exchange and signatures on these architectures. Notably, our key-
exchange scalar-multiplication software runs in under 9520k cycles on
the ATmega and under 2640k cycles on the Cortex M0, improving on
the current speed records by 32 % and 75% respectively.

Keywords: Hyperelliptic curve cryptography · Kummer surface · AVR
ATmega · ARM Cortex M0

1 Introduction

The current state of the art in asymmetric cryptography, not only on microcon-
trollers, is elliptic-curve cryptography; the most widely accepted reasonable secu-
rity is the 128-bit security level. All current speed records for 128-bit secure key
exchange and signatures on microcontrollers are held—until now—by elliptic-
curve-based schemes. Outside the world of microcontrollers, it is well known
that genus-2 hyperelliptic curves and their Kummer surfaces present an attrac-
tive alternative to elliptic curves [1,2]. For example, at Asiacrypt 2014 Bernstein,
Chuengsatiansup, Lange and Schwabe [3] presented speed records for timing-
attack-protected 128-bit-secure scalar multiplication on a range of architectures

L. Batina— This work has been supported by the Netherlands Organisation for
Scientific Research (NWO) through Veni 2013 project 13114 and by the Technol-
ogy Foundation STW (project 13499 - TYPHOON &ASPASIA), from the Dutch
government. Permanent ID of this document: b230ab9b9c664ec4aad0cea0bd6a6732.
Date: 2016-04-07.

c© International Association for Cryptologic Research 2016
B. Gierlichs and A.Y. Poschmann (Eds.): CHES 2016, LNCS 9813, pp. 301–320, 2016.
DOI: 10.1007/978-3-662-53140-2 15

302 J. Renes et al.

with Kummer-based software. These speed records are currently only being sur-
passed by the elliptic-curve-based FourQ software by Costello and Longa [4]
presented at Asiacrypt 2015, which makes heavy use of efficiently computable
endomorphisms (i.e., of additional structure of the underlying elliptic curve).
The Kummer-based speed records in [3] were achieved by exploiting the compu-
tational power of vector units of recent “large” processors such as Intel Sandy
Bridge, Ivy Bridge, and Haswell, or the ARM Cortex-A8. Surprisingly, very little
attention has been given to Kummer surfaces on embedded processors. Indeed,
this is the first work showing the feasibility of software-only implementations
of hyperelliptic-curve based crypto on constrained platforms. There have been
some investigations of binary hyperelliptic curves targeting the much lower 80-
bit security level, but those are actually examples of software-hardware co-design
showing that using hardware acceleration for field operations was necessary to
get reasonable performance figures (see eg. [5,6]).

In this paper we investigate the potential of genus-2 hyperelliptic curves for
both key exchange and signatures on the “classical” 8-bit AVR ATmega archi-
tecture, and the more modern 32-bit ARM Cortex-M0 processor. The former has
the most previous results to compare to, while ARM is becoming more relevant
in real-world applications. We show that not only are hyperelliptic curves com-
petitive, they clearly outperform state-of-the art elliptic-curve schemes in terms
of speed and size. For example, our variable-basepoint scalar multiplication on a
127-bit Kummer surface is 31 % faster on AVR and 26 % faster on the M0 than
the recently presented speed records for Curve25519 software by Düll et al. [7];
our implementation is also smaller, and requires less RAM.

We use a recent result by Chung, Costello, and Smith [8] to also set new speed
records for 128-bit secure signatures. Specifically, we present a new signature
scheme based on fast Kummer surface arithmetic. It is inspired by the EdDSA
construction by Bernstein, Duif, Lange, Schwabe, and Yang [9]. On the ATmega,
it produces shorter signatures, achieves higher speeds and needs less RAM than
the Ed25519 implementation presented in [10].

Table 1. Cycle counts and stack usage in bytes of all functions related to the
signature and key exchange schemes, for the AVR ATmega and ARM Cortex M0
microcontrollers.

ATmega Cortex M0

Cycles Stack bytes Cycles Stack bytes

keygen 10 206 181 812 2 774 087 1 056

sign 10 404 033 926 2 865 351 1 360

verify 16 240 510 992 4 453 978 1 432

dh exchange 9 739 059 429 2 644 604 584

Our routines handling secret data are constant-time, and are thus naturally
resistant to timing attacks. These algorithms are built around the Montgomery

μKummer: Efficient Hyperelliptic Signatures 303

ladder, which improves resistance against simple-power-analysis (SPA) attacks.
Resistance to DPA attacks can easily be added to the implementation by ran-
domizing the scalar and/or Jacobian points. Re-randomizing the latter after each
ladder step would also guarantee resistance against horizontal types of attacks.

Source code. We place all of the software described in this paper into the public
domain, to maximize the reuseability of our results. The software is available at
http://www.cs.ru.nl/∼jrenes/.

2 High-Level Overview

We begin by describing the details of our signature and Diffie–Hellman schemes,
explaining the choices we made in their design. Concrete implementation details
appear in Sects. 3 and 4 below. Experimental results and comparisons follow in
Sect. 5.

2.1 Signatures

Our signature scheme, defined at the end of this section, adheres closely to the
proposal of [8, Sect. 8], which in turn is a type of Schnorr signature [11]. There
are however some differences and trade-offs, which we discuss below.

Group structure. We build the signature scheme on top of the group structure
from the Jacobian JC(Fq) of a genus-2 hyperelliptic curve C. More specifically,
C is the Gaudry–Schost curve over the prime field Fq with q = 2127 − 1 (cf.
Sect. 3.2). The Jacobian is a group of order #JC(Fq) = 24N , where

N = 2250 − 0x334D69820C75294D2C27FC9F9A154FF47730B4B840C05BD

is a 250-bit prime. For more details on the Jacobian and its elements, see Sect. 3.3.

Hash function. We may use any hash function H with a 128-bit security level.
For our purposes, H(M) = SHAKE128(M, 512) suffices [12]. While SHAKE128 has
variable-length output, we only use the 512-bit output implementation.

Encoding. At the highest level, we operate on points Q in JC(Fq). To minimize
communication costs, we compress the usual 508-bit representation of Q into a
256-bit encoding Q (see Sect. 3.3). (This notation is the same as in [9].)

Public generator. The public generator can be any element P of JC(Fq) such
that [N]P = 0. In our implementation we have made the arbitrary choice P =
(X2 + u1X + u0, v1X + v0), where

u1 = 0x7D5D9C3307E959BF27B8C76211D35E8A, u0 = 0x2703150F9C594E0CA7E8302F93079CE8,

v1 = 0x444569AF177A9C1C721736D8F288C942, v0 = 0x7F26CFB225F42417316836CFF8AEFB11.

http://www.cs.ru.nl/~jrenes/

304 J. Renes et al.

This is the point which we use the most for scalar multiplication. Since it remains
fixed, we assume we have its decompressed representation precomputed, so as
to avoid having to perform the relatively expensive decompression operation
whenever we need a scalar multiplication; this gives a low-cost speed gain. We
further assume we have a “wrapped” representation of the projection of P to the
Kummer surface, which is used to speed up the xDBLADD function. See Sect. 4.1
for more details on the xWRAP function.

Public keys. In contrast to the public generator, we assume public keys are
compressed: they are communicated much more frequently, and we therefore
benefit much more from smaller keys. Moreover, we include the public key in
one of the hashes during the sign operation [13,14], computing h = H(R||Q||M)
instead of the h = H(R||M) originally suggested by Schnorr [11]. This protects
against adversaries attacking multiple public keys simultaneously.

Compressed signatures. Schnorr [11] mentions the option of compressing signa-
tures by hashing one of their two components: the hash size only needs to be
b/2 bits, where b is the key length. Following this suggestion, our signatures
are 384-bit values of the form (h128||s), where h128 means the lowest 128 bits of
h = H(R||Q||M), and s is a 256-bit scalar. The most obvious upside is that sig-
natures are smaller, reducing communication overhead. Another big advantage
is that we can exploit the half-size scalar to speed up signature verification. On
the other hand, we lose the possibility of efficient batch verification.

Verification efficiency. The most costly operation in signature verification is
the two-dimensional scalar multiplication T = [s]P ⊕ [h128]Q. In [8], the authors
propose an algorithm relying on the differential addition chains presented in [15].
However, since we are using compressed signatures, we have a small scalar h128.
Unfortunately the two-dimensional algorithm in [8] cannot directly exploit this
fact, therefore not obtaining much benefit from the compressed signature. On
the other hand, we can simply compute [s]P and [h128]Q separately using the
fast scalar multiplication on the Kummer surface and finally add them together
on the Jacobian. Here [s]P is a 256-bit scalar multiplication, whereas [h128]Q is
only a 128-bit scalar multiplication. Not only do we need fewer cycles compared
to the two-dimensional routine, but we also reduce code size by reusing the
one-dimensional scalar multiplication routine.

The scheme. We now define our signature scheme, taking the above into account.

Key generation (keygen). Let d be a 256-bit secret key, and P the public
generator. Compute (d′||d′′) ← H(d) (with d′ and d′′ both 256 bits), then
Q ← [16d′]P . The public key is Q.

Signing (sign). Let M be a message, d a 256-bit secret key, P the pub-
lic generator, and Q a compressed public key. Compute (d′||d′′) ← H(d)
(with d′ and d′′ both 256 bits), then r ← H(d′′||M), then R ← [r]P , then
h ← H(R||Q||M), and finally s ← (r − 16h128d

′) mod N . The signature is
(h128||s).

μKummer: Efficient Hyperelliptic Signatures 305

Verification (verify). Let M be a message with a signature (h128||s) corre-
sponding to a public key Q, and let P be the public generator. Compute
T ← [s]P ⊕ [h128]Q, then g ← H(T ||Q||M). The signature is correct if
g128 = h128, and incorrect otherwise.

Remark 1. We note that there may be faster algorithms to compute the “one-
and-a-half-dimensional” scalar multiplication in verify, especially since we do
not have to worry about being constant-time. One option might be to adapt
Montgomery’s PRAC [16, Sect. 3.3.1] to make use of the half-size scalar. But
while this may lead to a speed-up, it would also cause an increase in code size
compared to simply re-using the one-dimensional scalar multiplication. We have
chosen not to pursue this line, preferring the solid benefits of reduced code size
instead.

2.2 Diffie-Hellman Key Exchange

For key exchange it is not necessary to have a group structure; it is enough to
have a pseudo-multiplication. We can therefore carry out our the key exchange
directly on the Kummer surface KC = JC/〈±〉, gaining efficiency by not pro-
jecting from and recovering to the Jacobian JC . If Q is a point on JC , then its
image in KC is ±Q. The common representation for points in KC(Fq) is a 512-bit
4-tuple of field elements. For input points (i. e. the generator or public keys),
we prefer the 384-bit “wrapped” representation (see Sect. 3.5). This not only
reduces key size, but it also allows a speed-up in the core xDBLADD subroutine.
The wrapped representation of a point ±Q on KC is denoted by ±Q.

Key exchange (dh exchange). Let d be a 256-bit secret key, and ±P the
public generator (respectively public key). Compute ±Q ← ±[d]P . The gen-
erated public key (respectively shared secret) is ±Q.

Remark 2. While it might be possible to reduce the key size even further to 256
bits, we would then have to pay the cost of compressing and decompressing,
and also wrapping for xDBLADD (see the discussion in [8, App. A]). We therefore
choose to keep the 384-bit representation, which is consistent with [3].

3 Building Blocks: Algorithms and Their Implementation

We begin by presenting the finite field F2127−1 in Sect. 3.1. We then define
the curve C in Sect. 3.2, before giving basic methods for the elements of JC
in Sect. 3.3. We then present the fast Kummer KC and its differential addition
operations in Sect. 3.4.

3.1 The Field Fq

We work over the prime finite field Fq, where q is the Mersenne prime

q := 2127 − 1.

306 J. Renes et al.

We let M, S, a, s, neg, and I denote the costs of multiplication, squaring, addi-
tion, subtraction, negation, and inversion in Fq. Later, we will define a special
operation for multiplying by small constants: its cost is denoted by mc.

For complete field arithmetic we implement modular reduction, addition, sub-
traction, multiplication, and inversion. We comment on some important aspects
here, giving cycle counts in Table 2.

We can represent elements of Fq as 127-bit values; but since the ATmega and
Cortex M0 work with 8- and 32-bit words, respectively, the obvious choice is to
represent field elements with 128 bits. That is, an element g ∈ Fq is represented
as g =

∑15
i=0 gi28i on the AVR ATmega platform and as g =

∑3
i=0 g′

i2
32i on the

Cortex M0, where gi ∈ {0, . . . , 28 − 1}, g′
i ∈ {0, . . . , 232 − 1}.

Working with the prime field Fq, we need integer reduction modulo q; this is
implemented as bigint red. Reduction is very efficient because 2128 ≡ 2 mod q,
which enables us to reduce using only shifts and integer additions. Given this
reduction, we implement addition and subtraction operations for Fq (as gfe add
and gfe sub, respectively) in the obvious way.

The most costly operations in Fq are multiplication (gfe mul) and squar-
ing (gfe sqr), which are implemented as 128 × 128-bit bit integer operations
(bigint mul and bigint sqr) followed by a call to bigint red. Since we are
working on the same platforms as [7] in which both of these operations are already
highly optimized, we took the necessary code from those implementations:

– On the AVR ATmega: The authors of [17] implement a 3-level Karatsuba
multiplication of two 256-bit integers, representing elements f of F2255−19 as
f =

∑31
i=0 fi28i with fi ∈ {0, . . . , 28 − 1}. Since the first level of Karatsuba

relies on a 128 × 128-bit integer multiplication routine named MUL128, we
simply lift this function out to form a 2-level 128 × 128-bit Karatsuba mul-
tiplication. Similarly, their 256 × 256-bit squaring relies on a 128 × 128-bit
routine SQR128, which we can (almost) directly use. Since the 256 × 256-bit
squaring is 2-level Karatsuba, the 128×128-bit squaring is 1-level Karatsuba.

– On the ARM Cortex M0: The authors of [7] use optimized Karatsuba mul-
tiplication and squaring. Their assembly code does not use subroutines, but
fully inlines 128×128-bit multiplication and squaring. The 256×256-bit mul-
tiplication and squaring are both 3-level Karatsuba implementations. Hence,
using these, we end up with 2-level 128 × 128-bit Karatsuba multiplication
and squaring.

The function gfe invert computes inversions in Fq as exponentiations, using
the fact that g−1 = gq−2 for all g in F×

q . To do this efficiently we use an addition
chain for q − 2, doing the exponentiation in 10M + 126S.

Finally, to speed up our Jacobian point decompression algorithms, we define
a function gfe powminhalf which computes g �→ g−1/2 for g in Fq (up to a
choice of sign). To do this, we note that g−1/2 = ±g−(q+1)/4 = ±g(3q−5)/4 in Fq;
this exponentiation can be done with an addition chain of length 136, using
11M+125S. We can then define a function gfe sqrtinv, which given (x, y) and
a bit b, computes (

√
x, 1/y) as (±xyz, xyz2) where z = gfe powminhalf(xy2),

μKummer: Efficient Hyperelliptic Signatures 307

choosing the sign so that the square root has least significant bit b. Including
the gfe powminhalf call, this costs 15M + 126S + 1neg.

Table 2. Cycle counts for our field implementation (including function-call overhead).

AVR ATmega ARM Cortex M0 Symbolic cost

bigint mul 1 654 410

bigint sqr 1 171 260

bigint red 438 71

gfe mul 1 952 502 M

gfe sqr 1469 353 S

gfe mulconst 569 83 mc

gfe add 400 62 a

gfe sub 401 66 s

gfe invert 169 881 46 091 I

gfe powminhalf 169 881 46 294 11M + 125S

gfe sqrtinv 178 041 48 593 15M + 126S + 1neg

3.2 The Curve C and Its Theta Constants

We define the curve C “backwards”, starting from its (squared) theta constants

a := −11, b := 22, c := 19, and d := 3 in Fq.

From these, we define the dual theta constants

A := a + b + c + d = 33, B := a + b − c − d = −11,

C := a − b + c − d = −17, D := a − b − c + d = −49.

Observe that projectively,

(1/a : 1/b : 1/c : 1/d) = (114 : −57 : −66 : −418),
(1/A : 1/B : 1/C : 1/D) = (−833 : 2499 : 1617 : 561).

Crucially, all of these constants can be represented using just 16 bits each. Since
Kummer arithmetic involves many multiplications by these constants, we imple-
ment a separate 16×128-bit multiplication function gfe mulconst. For the AVR
ATmega, we store the constants in two 8-bit registers. For the Cortex M0, the
values fit into a halfword; this works well with the 16×16-bit multiplication.
Multiplication by any of these 16-bit constants costs mc.

Continuing, we define e/f := (1 + α)/(1 − α), where α2 = CD/AB (we take
the square root with least significant bit 0), and thus

λ := ac/bd = 0x15555555555555555555555555555552,

μ := ce/df = 0x73E334FBB315130E05A505C31919A746,

ν := ae/bf = 0x552AB1B63BF799716B5806482D2D21F3.

308 J. Renes et al.

These are the Rosenhain invariants of the curve C, found by Gaudry and
Schost [18], which we are (finally!) ready to define as

C : Y 2 = fC(X) := X(X − 1)(X − λ)(X − μ)(X − ν).

The curve constants are the coefficients of fC(X) =
∑5

i=0 fiX
i: so f0 = 0, f5 = 1,

f1 = 0x1EDD6EE48E0C2F16F537CD791E4A8D6E, f2 = 0x73E799E36D9FCC210C9CD1B164C39A35,

f3 = 0x4B9E333F48B6069CC47DC236188DF6E8, f4 = 0x219CC3F8BB9DFE2B39AD9E9F6463E172.

We store the squared theta constants (a : b : c : d), along with (1/a : 1/b :
1/c : 1/d), and (1/A : 1/B : 1/C : 1/D); the Rosenhain invariants λ, μ, and ν,
together with λμ and λν; and the curve constants f1, f2, f3, and f4, for use in our
Kummer and Jacobian arithmetic functions. Obviously, none of the Rosenhain
or curve constants are small; multiplying by these costs a full M.

3.3 Elements of JC, compressed and decompressed

Our algorithms use the usual Mumford representation for elements of JC(Fq):
they correspond to pairs 〈u(X), v(X)〉, where u and v are polynomials over Fq

with u monic, deg v < deg u ≤ 2, and v(X)2 ≡ fC(X) (mod u(X)). We compute
the group operation ⊕ in JC(Fq) using a function ADD, which implements the
algorithm found in [19] (after a change of coordinates to meet their Assump-
tion 1)1 at a cost of 28M + 2S + 11a + 24s + 1I.

For transmission, we compress the 508-bit Mumford representation to a 256-
bit form. Our functions compress (Algorithm 1) and decompress (Algorithm 2)
implement Stahlke’s compression technique (see [20] and [8, Appendix A] for
details).

Algorithm 1. compress: compresses points on JC to 256-bit strings. Sym-
bolic cost: 3M + 1S + 2a + 2s. ATmega: 8 016 cycles. Cortex M0: 2 186
cycles.
Input:

〈
X2 + u1X + u0, v1X + v0

〉
= P ∈ JC .

Output: A string b0 · · · b255 of 256 bits.
1 w ← 4((u1 · v0 − u0 · v1) · v1 − v2

0) ; // 3M + 1S + 2a + 2s

2 b0 ← LeastSignificantBit(v1) ;
3 b128 ← LeastSignificantBit(w) ;
4 return b0||u0||b128||u1

3.4 The Kummer Surface KC

The Kummer surface of C is the quotient KC := JC/〈±1〉; points on KC corre-
spond to points on JC taken up to sign. If P is a point in JC , then we write

(xP : yP : zP : tP) = ±P

1 We only call ADD once in our algorithms, so for lack of space we omit its description.

μKummer: Efficient Hyperelliptic Signatures 309

Algorithm 2. decompress: decompresses 256-bit string to a point on JC .
Symbolic cost: 46M + 255S + 17a + 12s + 6neg. ATmega: 386 524 cycles
Cortex M0: 106 013 cycles
Input: A string b0 · · · b255 of 256 bits.
Output:

〈
X2 + u1X + u0, v1X + v0

〉
= P ∈ JC .

1 U1 = b129 · · · b256 as an element of Fq

2 U0 = b1 · · · b127 as an element of Fq

3 T1 ← U2
1 // 1S

4 T2 ← U0 − T1 // 1s

5 T3 ← U0 + T2 // 1a

6 T4 ← U0 · (T3 · f4 + (U1 · f3 − 2f2)) // 3M + 1a + 2s

7 T3 ← −T3 // 1neg

8 T1 ← T3 − U0 // 1s

9 T4 ← 2(T4 + (T1 · U0 + f1) · U1) // 2M + 3a

10 T1 ← 2(T1 − U0)) // 1a + 1s

11 T5 ← ((U0 − (f3 + U1 · (U1 − f4))) · U0 + f1)
2 // 2M + 1S + 2a + 2s

12 T5 ← T2
4 − 2T5 · T1 // 1M + 1S + 1a + 1s

13 (T6,T5) ← gfe sqrtinv(T5,T1, b1) // 19M + 127S + 2neg

14 T4 ← (T5 − T4) · T6 // 1M + 1s

15 T5 ← −f4 · T2 − ((T3 − f3) · U1) + f2 + T4 // 2M + 2s + 2a + 1neg

16 T6 = gfe powminhalf(4T6) // = 1/(2v1). 11M + 125S + 2a

17 V1 ← 2T5 · T6 // 1M + 1a

18 if b0 �= LeastSignificantBit(V1) then (V1,T6) ← (−V1, −T6) // 2neg

19 T5 ← (U1 · f4 + (T2 − f3)) · U0 // 2M + 1a + 1s

20 V0 ← (U1 · T4 + T5 + f1) · T6 // 2M + 2a

21 return
〈
X2 + U1X + U0,V1X + V0

〉

for its image in KC . To avoid subscript explosion, we make the following conven-
tion: when points P and Q on JC are clear from the context, we write

(x⊕ : y⊕ : z⊕ : t⊕) = ±(P ⊕ Q) and (x� : y� : z� : t�) = ±(P � Q).

The Kummer surface of this C has a “fast” model in P3 defined by

KC : E · xyzt =

(
(x2 + y2 + z2 + t2)

−F · (xt + yz) − G · (xz + yt) − H · (xy + zt)

)2

where

F =
a2 − b2 − c2 + d2

ad − bc
, G =

a2 − b2 + c2 − d2

ac − bd
, H =

a2 + b2 − c2 − d2

ab − cd
,

and E = 4abcd (ABCD/((ad − bc)(ac − bd)(ab − cd)))2 (see eg. [21? ,22]). The
identity point 〈1, 0〉 of JC maps to

±0JC = (a : b : c : d).

310 J. Renes et al.

Algorithm 3 (Project) maps general points from JC(Fq) into KC . The “special”
case where u is linear is treated in [8, Sect. 7.2]; this is not implemented, since
Project only operates on public generators and keys, none of which are special.

Algorithm 3. Project: JC → KC . Symbolic cost: 8M + 1S + 4mc + 7a
+ 4s. ATmega: 20 205 cycles. Cortex M0: 5 667 cycles.
Input:

〈
X2 + u1X + u0, v1X + v0

〉
= P ∈ JC .

Output: (xP : yP : zP : tP) = ±P ∈ KC .

1 (T1,T2,T3,T4) ← (μ − u0, λν − u0, ν − u0, λμ − u0) // 4s

2 T5 ← λ + u1 // 1a

3 T7 ← u0 · ((T5 + μ) · T3) // 2M + 1a

4 T5 ← u0 · ((T5 + ν) · T1) // 2M + 1a

5 (T6,T8) ← (u0 · ((μ + u1) · T2 + T2), u0 · ((ν + u1) · T4 + T4)) // 4M + 4a

6 T1 ← v2
0 // 1S

7 (T5,T6,T7,T8) ← (T5 − T1,T6 − T1,T7 − T1,T8 − T1) // 4s

8 return (a · T5 : b · T6 : c · T7 : d · T8) // 4mc

3.5 Pseudo-addition on KC

While the points of KC do not form a group, we have a pseudo-addition operation
(differential addition), which computes ±(P ⊕Q) from ±P , ±Q, and ±(P �Q).
The function xADD (Algorithm 4) implements the standard differential addition.
The special case where P = Q yields a pseudo-doubling operation.

To simplify the presentation of our algorithms, we define three operations on
points in P3. First, M : P3 × P3 → P3 multiplies corresponding coordinates:

M : ((x1 : y1 : z1 : t1), (x2 : y2 : z2 : t2)) �−→ (x1x2 : y1y2 : z1z2 : t1t2).

The special case (x1 : y1 : z1 : t1) = (x2 : y2 : z2 : t2) is denoted by

S : (x : y : z : t) �−→ (x2 : y2 : z2 : t2).

Finally, the Hadamard transform2 is defined by

H : (x : y : z : t) �−→ (x′ : y′ : z′ : t′) where

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x′ = x + y + z + t,

y′ = x + y − z − t,

z′ = x − y + z − t,

t′ = x − y − z + t.

Clearly M and S cost 4M and 4S, respectively. The Hadamard transform can
easily be implemented with 4a+4s. However, the additions and subtractions are
relatively cheap, making function call overhead a large factor. To minimize this
we inline the Hadamard transform, trading a bit of code size for efficiency.

2 Note that (A : B : C : D) = H((a : b : c : d)) and (a : b : c : d) = H((A : B : C : D)).

μKummer: Efficient Hyperelliptic Signatures 311

Algorithm 4. xADD: Differential addition on KC . Symbolic cost: 14M +
4S + 4mc + 12a + 12s. ATmega: 34 774 cycles. Cortex M0: 9 598 cycles.
Input: (±P, ±Q, ±(P � Q)) ∈ K3

C for some P and Q on JC .
Output: ±(P ⊕ Q) ∈ KC .

1 (V1,V2) ← (H(±P), H(±Q)) // 8a + 8s

2 V1 ← M(V1,V2) // 4M

3 V1 ← M(V1, (1/A : 1/B : 1/C : 1/D)) // 4mc

4 V1 ← H(V1) // 4a + 4s

5 V1 ← S(V1) // 4S

6 (C1,C2) ← (z� · t�, x� · y�) // 2M

7 V2 ← M((C1 : C1 : C2 : C2), (y� : x� : t� : z�)) // 4M

8 return M(V1,V2) // 4M

Lines 5 and 6 of Algorithm4 only involve the third argument, ±(P � Q);
essentially, they compute the point (y�z�t� : x�z�t� : x�y�t� : x�y�z�)
(which is projectively equivalent to (1/x� : 1/y� : 1/z� : 1/t�), but requires
no inversions; note that this is generally not a point on KC). In practice, the
pseudoadditions used in our scalar multiplication all use a fixed third argument,
so it makes sense to precompute this “inverted” point and to scale it by x� so
that the first coordinate is 1, thus saving 7M in each subsequent differential
addition for a one-off cost of 1I. The resulting data can be stored as the 3-tuple
(x�/y�, x�/z�, x�/t�), ignoring the trivial first coordinate: this is the wrapped
form of ±(P �Q). The function xWRAP (Algorithm 5) applies this transformation.

Algorithm 5. xWRAP: (x : y : z : t) �→ (x/y, x/z, x/t). Symbolic cost: 7M +
1I ATmega: 182 251 cycles. Cortex M0: 49 609 cycles.
Input: (x : y : z : t) ∈ P3

Output: (x/y, x/z, x/t) ∈ F3
q.

1 V1 ← y · z // 1M

2 V2 ← x/(V1 · t) // 2M + 1I

3 V3 ← V2 · t // 1M

4 return (V3 · z,V3 · y,V1 · V2) // 3M

Algorithm 6 combines the pseudo-doubling with the differential addition,
sharing intermediate operands, to define a differential double-and-add xDBLADD.
This is the fundamental building block of the Montgomery ladder.

4 Scalar Multiplication

All of our cryptographic routines are built around scalar multiplication in JC and
pseudo-scalar multiplication in KC . We implement pseudo-scalar multiplication
using the classic Montgomery ladder in Sect. 4.1. In Sect. 4.2, we extend this to
full scalar multiplication on JC using the point recovery technique proposed in [8].

312 J. Renes et al.

Algorithm 6. xDBLADD: Combined differential double-and-add. The dif-
ference point is wrapped. Symbolic cost: 7M + 12S + 12mc + 16a + 16s.
ATmega: 36 706 cycles. Cortex M0: 9 861 cycles.
Input: (±P, ±Q, (x�/y�, x�/z�, x�/t�)) ∈ K2

C × Fq.
Output: (±[2]P, ±(P ⊕ Q)) ∈ K2

C .
1 (V1,V2) ← (S(±P), S(±Q)) // 8S

2 (V1,V2) ← (H(V1), H(V2)) // 8a + 8s

3 (V1,V2) ← (S(V1), M(V1,V2)) // 4M+4S

4 (V1,V2) ←
(
M(V1, (

1
A

: 1
B

: 1
C

: 1
D

)), M(V2, (
1
A

: 1
B

: 1
C

: 1
D

))
)

// 8mc

5 (V1,V2) ← (H(V1), H(V2)) // 8a + 8s

6 return (M(V1, (
1
a

: 1
b

: 1
c

: 1
d
)), M(V2, (1 :

x�
y� :

x�
y� :

x�
t�))) // 3M + 4mc

Table 3. Operation and cycle counts of basic functions on the Kummer and Jacobian.

M S mc a s neg I ATmega Cortex M0

ADD 28 2 0 11 24 0 1 228 552 62 886

Project 8 1 4 7 8 0 0 20 205 5 667

xWRAP 7 0 0 0 0 0 1 182 251 49 609

xUNWRAP 4 0 0 0 0 0 0 7 297 2 027

xADD 14 4 4 12 12 0 0 34 774 9 598

xDBLADD 7 12 12 16 16 0 0 36 706 9 861

recoverGeneral 77 8 0 19 10 3 1 318 910 88 414

fast2genPartial 11 0 0 9 0 0 0 21 339 6 110

fast2genFull 15 0 0 12 0 0 0 29 011 8 333

recoverFast 139 12 4 70 22 5 1 447 176 124 936

compress 3 1 0 2 2 0 0 8 016 2 186

decompress 46 255 0 17 12 6 0 386 524 106 013

4.1 Pseudomultiplication on KC

Since [m](�P) = �[m]P for all m and P , we have a pseudo-scalar multiplication
operation (m,±P) �−→ ±[m]P on KC , which we compute using Algorithm 7
(the Montgomery ladder), implemented as crypto scalarmult. The loop of
Algorithm 7 maintains the following invariant: at the end of iteration i we have

(V1, V2) = (±[k]P,±[k + 1]P) where k =
∑β−1

j=i mj2β−1−i.

Hence, at the end we return ±[m]P , and also ±[m + 1]P as a (free) byproduct.
We suppose we have a constant-time conditional swap routine CSWAP(b, (V1, V2)),
which returns (V1, V2) if b = 0 and (V2, V1) if b = 1. This makes the execution of
Algorithm 7 uniform and constant-time, and thus suitable for use with secret m.

Our implementation of crypto scalarmult assumes that its input Kummer
point ±P is wrapped. This follows the approach of [3]. Indeed, many calls

μKummer: Efficient Hyperelliptic Signatures 313

Algorithm 7. crypto scalarmult: Montgomery ladder on KC . Uniform
and constant-time: may be used for secret scalars. The point is wrapped.
Symbolic cost: (4+7β)M+12βS+12βmc+16βa+16βs, where β = scalar
bitlength. ATmega: 9 513 536 cycles. Cortex: 2 633 662 cycles.
Input: (m =

∑β−1
i=0 mi2

i, (xP /yP , xP /zP , xP /tP)) ∈ [0, 2β) × F3
q for ±P in KC .

Output: (±[m]P, ±[m + 1]P) ∈ K2
C .

1 V1 ← (a : b : c : d)
2 V2 ← xUNWRAP(xP /yP , xP /zP , xP /tP) // = ±P. 4M

3 for i = 250 down to 0 do // 7βM + 12βS + 12βmc + 16βa + 16βs
4 (V1,V2) ← CSWAP(mi, (V1,V2))
5 (V1,V2) ← xDBLADD(V1,V2, (xP /yP , xP /zP , xP /tP))
6 (V1,V2) ← CSWAP(mi, (V1,V2))

7 return (V1,V2)

to crypto scalarmult involve Kummer points that are stored or transmitted
in wrapped form. However, crypto scalarmult does require the unwrapped
point internally—if only to initialize one variable. We therefore define a function
xUNWRAP (Algorithm 8) to invert the xWRAP transformation at a cost of only 4M.

Algorithm 8. xUNWRAP: (x/y, x/z, x/t) �→ (x : y : z : t). Symbolic cost:
4M. ATmega: 7 297 cycles. Cortex: 2 027 cycles.
Input: (u, v, w) ∈ F3

q s.t. u = xP /yP , v = xP /zP , w = xP /tP for ±P ∈ KC
Output: (xP : yP : zP : tP) ∈ P3

1 (T1,T2,T3) ← (v · w, u · w, u · v) // 3M

2 return (T3 · w : T1 : T2 : T3) // 1M

4.2 Point Recovery from KC to JC

Point recovery means efficiently computing [m]P on JC given ±[m]P on KC
and some additional information. In our case, the additional information is the
base point P and the second output of the Montgomery ladder, ±[m + 1]P .
Algorithm 9 (Recover) implements the point recovery described in [8]. This is
the genus-2 analogue of the elliptic-curve methods in [24–26].

We refer the reader to [8] for technical details on this method, but there is
one important mathematical detail that we should mention (since it is reflected
in the structure of our code): point recovery is more natural starting from the
general Flynn model K̃C of the Kummer, because it is more closely related to
the Mumford model for JC . Algorithm 9 therefore proceeds in two steps: first
Algorithms 10 (fast2genFull) and 11 (fast2genPartial) map the prob-
lem into K̃C , and then we recover from K̃C to JC using Algorithm 12
(recoverGeneral).

314 J. Renes et al.

Algorithm 9. Recover: From KC to JC . Symbolic cost: 139M + 12S +
4mc + 70a + 22s + 3neg + 1I. ATmega: 447 176 cycles. Cortex: 124 936
cycles.
Input: (P, ±P, ±Q, ±(P ⊕ Q)) ∈ JC × K3

C for some P, Q in JC .
Output: Q ∈ JC .

1 gP ← fast2genPartial(±P) // 11M + 9a

2 gQ ← fast2genFull(±Q) // 15M + 12a

3 gS ← fast2genPartial(±(P ⊕ Q)) // 11M + 9a

4 xD ← xADD(±P, ±Q, ±(P ⊕ Q)) // 14M + 4S + 4m c + 12a + 12s

5 gD ← fast2genPartial(xD) // 11M + 9a

6 return recoverGeneral(P, gP, gQ, gS, gD) // 77M+8S+19a+10s+3neg+1I

Since the general Kummer K̃C only appears briefly in our recovery procedure
(we never use its relatively slow arithmetic operations), we will not investigate
it in detail here—but the curious reader may refer to [27] for the general the-
ory. For our purposes, it suffices to recall that K̃C is, like KC , embedded in P3;
and the isomorphism KC → K̃C is defined (in eg. [8, Sect. 7.4]) by the linear
transformation

(xP : yP : zP : tP) �−→ (x̃P : ỹP : z̃P : t̃P) := (xP : yP : zP : tP)L,

where L is (any scalar multiple of) the matrix
⎛

⎜
⎜
⎜
⎝

a−1(ν − λ) a−1(μν − λ) a−1λν(μ − 1) a−1λν(μν − λ)
b−1(μ − 1) b−1(μν − λ) b−1μ(ν − λ) b−1μ(μν − λ)
c−1(λ − μ) c−1(λ − μν) c−1λμ(1 − ν) c−1λμ(λ − μν)
d−1(1 − ν) d−1(λ − μν) d−1ν(λ − μ) d−1ν(λ − μν)

⎞

⎟
⎟
⎟
⎠

,

which we precompute and store. If ±P is a point on KC , then ±̃P denotes its
image on K̃C ; we compute ±̃P using Algorithm 10 (fast2genFull).

Algorithm 10. fast2genFull: The map KC → K̃C . Symbolic cost: 15M+
12a. ATmega: 29 011 cycles. Cortex: 8 333 cycles.
Input: ±P ∈ KC
Output: ±̃P ∈ K̃C .

1 x̃P ← xP + (L12/L11)yP + (L13/L11)zP + (L14/L11)tP // 3M + 3a
2 ỹP ← (L21/L11)xP + (L22/L11)yP + (L23/L11)zP + (L24/L11)tP // 4M + 3a
3 z̃P ← (L31/L11)xP + (L32/L11)yP + (L33/L11)zP + (L34/L11)tP // 4M + 3a
4 t̃P ← (L41/L11)xP + (L42/L11)yP + (L43/L11)zP + (L44/L11)tP // 4M + 3a
5 return (x̃P : ỹP : z̃P : t̃P)

Sometimes we only require the first three coordinates of ±̃P . Algorithm 11
(fast2genPartial) saves 4M + 3a per point by not computing t̃P .

μKummer: Efficient Hyperelliptic Signatures 315

Algorithm 11. fast2genPartial: The map KC → P2. Symbolic cost:
11M + 9a. ATmega: 21 339 cycles. Cortex: 8 333 cycles.
Input: ±P ∈ KC .
Output: (x̃P : ỹP : z̃P) ∈ P2

1 x̃P ← xP + (L12/L11)yP + (L13/L11)zP + (L14/L11)tP // 3M + 3a
2 ỹP ← (L21/L11)xP + (L22/L11)yP + (L23/L11)zP + (L24/L11)tP // 4M + 3a
3 z̃P ← (L31/L11)xP + (L32/L11)yP + (L33/L11)zP + (L34/L11)tP // 4M + 3a
4 return (x̃P : ỹP : z̃P)

Algorithm 12. recoverGeneral: From K̃C to JC . Symbolic cost: 77M +
8S+19a+10s+3neg +1I. ATmega: 318 910 cycles. Cortex: 88 414 cycles.

Input: (P, ±̃P , ±̃Q, ˜±(P ⊕Q), ˜±(P �Q)) ∈ JC × K̃4
C for some P and Q in JC .

The values of t̃P , t̃⊕, and t̃� are not required.
Output: Q ∈ JC .

1 (Z1,Z2) ← (ỹP · x̃Q − x̃Q · ỹP , x̃P · z̃Q − z̃P · x̃Q) // 4M+2s

2 T1 ← Z1 · z̃P // 1M

3 mZ3 ← Z2 · ỹP + T1 // 1M + 1a

4 D ← Z22 · x̃P + mZ3 · Z1 // 2M + 1S + 1a

5 T2 ← Z1 · Z2 // 1M

6 T3 ← x̃P · x̃Q // 1M

7 E ← T3 · (T3 · (f2 · Z22 − f1 · T2) + t̃Q · D) // 5M + 1S + 1a + 1s

8 E ← E + mZ3 · x̃2
Q · (f3 · Z2 · x̃P + f4 · mZ3) // 5M + 1S + 2a

9 E ← E + mZ3 · x̃Q · (mZ3 · ỹQ − Z2 · x̃P · z̃Q) // 5M + 1a + 1s

10 X1 ← x̃P · (Z2 · v1(P) − Z1 · v0(P)) // 3M + 1s

11 T4 ← Z1 · ỹP + Z2 · x̃P // 2M + 1a

12 X2 ← T1 · v1(P) + T4 · v0(P) // 2M + 1a

13 C5 ← Z12 − T4 · x̃Q // 1M + 1S + 1s

14 C6 ← T1 · x̃Q + T2 // 1M + 1a

15 T5 ← z̃⊕ · x̃� − x̃⊕ · z̃� // 2M + 1s

16 X3 ← X1 · T5 − X2 · (x̃⊕ · ỹ� − ỹ⊕ · x̃�) // 4M + 2s

17 (X5,X6) ← (X3 · C5,X3 · C6) // 2M

18 X4 ← T3 · (X1 · (z̃⊕ · ỹ� − ỹ⊕ · z̃�) + T5 · X2) // 5M + 1a + 1s

19 (X7,X8) ← (X5 + Z1 · X4,X6 + Z2 · Z4) // 2M + 2a

20 T6 ← x̃⊕ · x̃� // 1M

21 E ← −T6 · T3 · (E · x̃2
P + (X1 · T3)2) // 5M + 2S + 1a + 1neg

22 (X9,X10) ← (E · X7,E · X8) // 2M

23 F ← X2 · (x̃⊕ · ỹ� + ỹ⊕ · x̃�) + X1 · (z̃⊕ · x̃� + x̃⊕ · z̃�) // 6M + 3a

24 F ← X1 · F + 2(X22 · T6) // 2M + 1S + 2a

25 F ← −2(F · D · T6 · T3 · T32 · x̃P) // 5M + 1S + 1a + 1neg

26 (U1,U0) ← (−F · ỹQ,F · z̃Q) // 2M + 1neg

27 Fi ← 1/(F · x̃Q) // 1M + 1I

28 (u′
1, u

′
0, v

′
1, v

′
0) ← (Fi · U1,Fi · U0,Fi · X9,Fi · X10) // 4M

29 return
〈
X2 + u′

1X + u′
0, v

′
1X + v′

0

〉

316 J. Renes et al.

4.3 Full Scalar Multiplication on JC

We now combine our pseudo-scalar multiplication function crypto scalarmult
with the point-recovery function Recover to define a full scalar multiplication
function jacobian scalarmult (Algorithm 13) on JC .

Algorithm 13. jacobian scalarmult: Scalar multiplication on JC , using
the Montgomery ladder on KC and recovery to JC . Assumes wrapped pro-
jected point as auxiliary input. Symbolic cost: (7β+143)M+(12β+12)S+
(12β + 4)mc + (70 + 16β)a + (22 + 16β)s + 3neg + I. ATmega: 9 968 127
cycles. Cortex: 2 709 401 cycles.
Input: (m, P, (xP /yP , xP /zP , xP /tP)) ∈ [0, 2β) × JC
Output: [m]P ∈ JC

1 (X0,X1) ← crypto scalarmult(m, (xP /yP , xP /zP , xP /tP))
// (7β + 4)M+12βS+12βmc+16βa+16βs

2 xP ← xUNWRAP((xP /yP , xP /zP , xP /tP)) // 4M

3 return Recover(P, xP,X0,X1) // 139M+12S+4mc+70a+22s+3neg+1I

Remark 3. jacobian scalarmult takes not only a scalar m and a Jacobian
point P in its Mumford representation, but also the wrapped form of ±P as an
auxiliary argument: that is, we assume that xP ← Project(P) and xWRAP(xP)
have already been carried out. This saves redundant Project and xWRAP calls
when operating on fixed base points, as is often the case in our protocols. Nev-
ertheless, jacobian scalarmult could easily be converted to a “pure” Jacobian
scalar multiplication function (with no auxiliary input) by inserting appropriate
Project and xWRAP calls at the start, and removing the xUNWRAP call at Line 2,
increasing the total cost by 11M + 1S + 4mc + 7a + 8s + 1I.

5 Results and Comparison

The high-level cryptographic functions for our signature scheme are named
keygen, sign and verify. Their implementations contain no surprises: they do
exactly what was specified in Sect. 2.1, calling the lower-level functions described
in Sects. 3 and 4 as required. Our Diffie-Hellman key generation and key exchange
use only the function dh exchange, which implements exactly what we specified
in Sect. 2.2: one call to crypto scalarmult plus a call to xWRAP to convert to the
correct 384-bit representation. Table 1 (in the introduction) presents the cycle
counts and stack usage for all of our high-level functions.

μKummer: Efficient Hyperelliptic Signatures 317

Code and compilation. For our experiments, we compiled our AVR ATmega code
with avr-gcc -O2, and our ARM Cortex M0 code with clang -O2 (the opti-
mization levels -O3, -O1, and -Os gave fairly similar results). The total program
size is 20 242 bytes for the AVR ATmega, and 19 606 bytes for the ARM Cor-
tex M0. This consists of the full signature and key-exchange code, including the
reference implementation of the hash function SHAKE128 with 512-bit output.3

Basis for comparison. As we believe ours to be the first genus-2 hyperelliptic
curve implementation on both the AVR ATmega and the ARM Cortex M0 archi-
tectures, we can only compare with elliptic curve-based alternatives at the same
128-bit security level: notably [7,29–31]. This comparison is not superficial: the
key exchange in [7,29,30] uses the highly efficient x-only arithmetic on Mont-
gomery elliptic curves, while [31] uses similar techniques for Weierstrass elliptic
curves, and x-only arithmetic is the exact elliptic-curve analogue of Kummer
surface arithmetic. To provide full scalar multiplication in a group, [31] appends
y-coordinate recovery to its x-only arithmetic (using the approach of [26]); again,
this is the elliptic-curve analogue of our methods.

Results for ARM Cortex M0. As we see in Table 4, genus-2 techniques give great
results for Diffie–Hellman key exchange on the ARM Cortex M0 architecture.
Compared with the current fastest implementation [7], we reduce the number
of clock cycles by about 27%, while roughly halving code size and stack space.
For signatures, the state-of-the-art is [31]: here we reduce the cycle count for the
underlying scalar multiplications by a very impressive 75%, at the cost of an
increase in code size and stack usage.

Table 4. Comparison of scalar multiplication routines on the ARM Cortex M0 archi-
tecture at the 128-bit security level. S denotes signature-compatible full scalar multi-
plication; DH denotes Diffie–Hellman pseudo-scalar multiplication.

Implementation Object Clock cycles Code size Stack

S,DH Wenger et al. [31] NIST P-256 ≈ 10 730 000 7 168 bytes 540 bytes

DH Düll et al. [7] Curve25519 3 589 850 7 900 bytes 548 bytes

DH This work KC 2 633 662 ≈ 4 328 bytes 248 bytes

S This work JC 2 709 401 ≈ 9 874 bytes 968 bytes

Results for AVR ATmega. Looking at Table 5, on the AVR ATmega architecture
we reduce the cycle count for Diffie–Hellman by about 32% compared with the
current record [7], again roughly halving the code size, and reducing stack usage
by about 80%. The cycle count for Jacobian scalar multiplication (for signatures)
is reduced by 71% compared with [31], while increasing the stack usage by 25%.
3 We used the reference C implementation for the Cortex M0, and the assembly imple-

mentation for AVR; both are available from [28]. The only change required is to the
padding, which must take domain separation into account according to [12, p. 28].

318 J. Renes et al.

Table 5. Comparison of scalar multiplication routines on the AVR ATmega archi-
tecture at the 128-bit security level. S denotes signature-compatible full scalar multi-
plication; DH denotes Diffie–Hellman pseudo-scalar multiplication. The implementa-
tion marked ∗ also contains a fixed-basepoint scalar multiplication routine, whereas
the implementation marked † does not report code size for the separated scalar
multiplication.

Implementation Object Cycles Code size Stack

DH Liu et al. [29] 256-bit curve ≈ 21 078 200 14 700 bytes∗ 556 bytes

S,DH Wenger et al. [31] NIST P-256 ≈ 34 930 000 16 112 bytes 590 bytes

DH Hutter, Schwabe [30] Curve25519 22 791 579 n/a† 677 bytes

DH Düll et al. [7] Curve25519 13 900 397 17 710 bytes 494 bytes

DH This work KC 9 513 536 ≈ 9 490 bytes 99 bytes

S This work JC 9 968 127 ≈ 16 516 bytes 735 bytes

Finally we can compare to the current fastest full signature implementa-
tion [10], shown in Table 6. We almost halve the number of cycles, while reducing
stack usage by a decent margin (code size is not reported in [10]).

Table 6. Comparison of signature schemes on the AVR ATmega architecture at the
128-bit security level.

Implementation Object Function Cycles Stack

Nascimento et al. [10] Ed25519 sig. gen 19 047 706 1 473 bytes

Nascimento et al. [10] Ed25519 sig. ver 30 776 942 1 226 bytes

This work JC sign 10 404 033 926 bytes

This work JC verify 16 240 510 992 bytes

References

1. Bernstein, D.J.: Elliptic vs. hyperelliptic, part 1 (2006). http://cr.yp.to/talks/2006.
09.20/slides.pdf

2. Bos, J.W., Costello, C., Hisil, H., Lauter, K.: Fast cryptography in genus 2. In:
Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
194–210. Springer, Heidelberg (2013). https://eprint.iacr.org/2012/670.pdf

3. Bernstein, D.J., Chuengsatiansup, C., Lange, T., Schwabe, P.: Kummer
strikes back: new DH speed records. In: Sarkar, P., Iwata, T. (eds.) ASI-
ACRYPT 2014. LNCS, vol. 8873, pp. 317–337. Springer, Heidelberg (2014).
https://cryptojedi.org/papers/#kummer

4. Costello, C., Longa, P.: FourQ: four-dimensional decompositions on aQ-
curve over the mersenne prime. In: Iwata, T., Cheon, J.H. (eds.) ASI-
ACRYPT 2015. LNCS, vol. 9452, pp. 214–235. Springer, Heidelberg (2015).
https://eprint.iacr.org/2015/565

http://cr.yp.to/talks/2006.09.20/slides.pdf
http://cr.yp.to/talks/2006.09.20/slides.pdf
https://eprint.iacr.org/2012/670.pdf
https://cryptojedi.org/papers/#kummer
https://eprint.iacr.org/2015/565

μKummer: Efficient Hyperelliptic Signatures 319

5. Batina, L., Hwang, D., Hodjat, A., Preneel, B., Verbauwhede, I.: Hard-
ware/Software Co-design for Hyperelliptic Curve Cryptography (HECC) on the
8051 μP . In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 106–
118. Springer, Heidelberg (2005). https://www.iacr.org/archive/ches2005/008.pdf

6. Hodjat, A., Batina, L., Hwang, D., Verbauwhede, I.: HW/SW co-design of
a hyperelliptic curve cryptosystem using amicrocode instruction set coproces-
sor. Integr. VLSI J. 40, 45–51 (2007). https://www.cosic.esat.kuleuven.be/
publications/article-622.pdf

7. Düll, M., Haase, B., Hinterwälder, G., Hutter, M., Paar, C., Sánchez, A.H.,
Schwabe, P.: High-speed curve25519 on 8-bit, 16-bit and 32-bit microcontrollers.
Des. Codes Crypt. 77, 493–514 (2015). http://cryptojedi.org/papers/#mu25519

8. Costello, C., Chung, P.N., Smith, B.: Fast, uniform, and compact scalar multi-
plication for elliptic curves and genus 2 Jacobians with applications to signature
schemes.Cryptology ePrint Archive, Report 2015/983 (2015). https://eprint.iacr.
org/2015/983

9. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.Y.: High-speed high-
security signatures. J. Cryptogr. Eng. 2, 77–89 (2012). https://cryptojedi.org/
papers/ed25519

10. Nascimento, E., López, J., Dahab, R.: Efficient and secure elliptic curve cryptogra-
phy for 8-bit AVR microcontrollers. In: Chakraborty, R.S., Schwabe, P., Solworth,
J. (eds.) SPACE 2015. LNCS, vol. 9354, pp. 289–309. Springer, Heidelberg (2015)

11. Schnorr, C.-P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg (1990)

12. Dworkin, M.J.:SHA-3 standard: Permutation-based hash and extendable-
outputfunctions.Technical report, National Institute of Standards and Technol-
ogy(NIST) (2015). http://www.nist.gov/manuscript-publication-search.cfm?pub
id=919061

13. Katz, J., Wang, N.: Efficiency improvements for signature schemes with tight secu-
rityreductions.In: Proceedings of the 10th ACM Conference on Computer and
Communications Security, CCS 2003, pp. 155–164. ACM (2003). https://www.
cs.umd.edu/∼jkatz/papers/CCCS03 sigs.pdf

14. Vitek, J., Naccache, D., Pointcheval, D., Vaudenay, S.: Computational alter-
natives to random number generators. In: Tavares, S., Meijer, H. (eds.)
SAC 1998. LNCS, vol. 1556, pp. 72–80. Springer, Heidelberg (1999).
https://www.di.ens.fr/ pointche/Documents/Papers/1998 sac.pdf

15. Bernstein, D.J.: Differential addition chains (2006). http://cr.yp.to/ecdh/
diffchain-20060219.pdf

16. Stam, M.: Speeding up subgroup cryptosystems. Ph.D. thesis, Technische
Universiteit Eindhoven (2003). http://alexandria.tue.nl/extra2/200311829.pdf?
q=subgroup

17. Hutter, M., Schwabe, P.: Multiprecision multiplication on AVR revisited. J. Cryp-
togr. Eng. 5, 201–214 (2015). http://cryptojedi.org/papers/#avrmul

18. Gaudry, P., Schost, E.: Genus 2 point counting over prime fields. J Symb Comput
47, 368–400 (2012). https://cs.uwaterloo.ca/∼eschost/publications/countg2.pdf

19. Hisil, H., Costello, C.: Jacobian coordinates on genus 2 curves. In: Sarkar, P., Iwata,
T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 338–357. Springer, Heidelberg
(2014). https://eprint.iacr.org/2014/385.pdf

20. Stahlke, C.: Point compression on jacobians of hyperelliptic curves
overFq.Cryptology ePrint Archive, Report 2004/030 (2004). https://eprint.
iacr.org/2004/030

https://www.iacr.org/archive/ches2005/008.pdf
https://www.cosic.esat.kuleuven.be/publications/article-622.pdf
https://www.cosic.esat.kuleuven.be/publications/article-622.pdf
http://cryptojedi.org/papers/#mu25519
https://eprint.iacr.org/2015/983
https://eprint.iacr.org/2015/983
https://cryptojedi.org/papers/ed25519
https://cryptojedi.org/papers/ed25519
http://www.nist.gov/manuscript-publication-search.cfm?pub_id=919061
http://www.nist.gov/manuscript-publication-search.cfm?pub_id=919061
https://www.cs.umd.edu/~jkatz/papers/CCCS03_sigs.pdf
https://www.cs.umd.edu/~jkatz/papers/CCCS03_sigs.pdf
https://www.di.ens.fr/pointche/Documents/Papers/1998_sac.pdf
http://cr.yp.to/ecdh/diffchain-20060219.pdf
http://cr.yp.to/ecdh/diffchain-20060219.pdf
http://alexandria.tue.nl/extra2/200311829.pdf?q=subgroup
http://alexandria.tue.nl/extra2/200311829.pdf?q=subgroup
http://cryptojedi.org/papers/#avrmul
https://cs.uwaterloo.ca/~eschost/publications/countg2.pdf
https://eprint.iacr.org/2014/385.pdf
https://eprint.iacr.org/2004/030
https://eprint.iacr.org/2004/030

320 J. Renes et al.

21. Chudnovsky, D.V., Chudnovsky, G.V.: Sequences of numbers generated by addition
in formal groups and new primality and factorization tests. Adv. Appl. Math. 7,
385–434 (1986)

22. Cosset, R.: Applications of theta functions for hyperelliptic curvecryptogra-
phy.Ph.D. thesis, Université Henri Poincaré - Nancy I (2011). https://tel.
archives-ouvertes.fr/tel-00642951/file/main.pdf

23. Gaudry, P.: Fast genus 2 arithmetic based on theta functions. J. Math. Cryptol.
1, 243–265 (2007). https://eprint.iacr.org/2005/314/

24. López, J., Dahab, R.: Fast multiplication on elliptic curves over GF (2m) without
precomputation. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp.
316–327. Springer, Heidelberg (1999)

25. Okeya, K., Sakurai, K.: Efficient elliptic curve cryptosystems from a scalar mul-
tiplication algorithm with recovery of the y-Coordinate on a Montgomery-Form
Elliptic Curve. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS,
vol. 2162, pp. 126–141. Springer, Heidelberg (2001)

26. Brier, E., Joye, M.: Weierstra elliptic curves and side-channel attacks. In: Naccache,
D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 335–345. Springer, Heidelberg
(2002). http://link.springer.com/content/pdf/10.1007%2F3-540-45664-3 24.pdf

27. Cassels, J.W.S., Flynn, E.V.: Prolegomena to a Middlebrow Arithmetic of Curves
of Genus 2, vol. 230. Cambridge University Press, Cambridge (1996)

28. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: The keccak sponge function
family (2016). http://keccak.noekeon.org/

29. Liu, Z., Wenger, E., Großschädl, J.: MoTE-ECC: energy-scalable ellip-
tic curve cryptography for wireless sensor networks. In: Boureanu, I.,
Owesarski, P., Vaudenay, S. (eds.) ACNS 2014. LNCS, vol. 8479, pp. 361–
379. Springer, Heidelberg (2014). https://online.tugraz.at/tug online/voe main2.
getvolltext?pCurrPk=77985

30. Hutter, M., Schwabe, P.: NaCl on 8-bit AVR microcontrollers. In: Youssef, A.,
Nitaj, A., Hassanien, A.E. (eds.) AFRICACRYPT 2013. LNCS, vol. 7918, pp.
156–172. Springer, Heidelberg (2013). http://cryptojedi.org/papers/#avrnacl

31. Wenger, E., Unterluggauer, T., Werner, M.: 8/16/32 shades of elliptic curve
cryptography on embedded processors. In: Paul, G., Vaudenay, S. (eds.)
INDOCRYPT 2013. LNCS, vol. 8250, pp. 244–261. Springer, Heidelberg (2013).
https://online.tugraz.at/tug online/voe main2.getvolltext?pCurrPk=72486

https://tel.archives-ouvertes.fr/tel-00642951/file/main.pdf
https://tel.archives-ouvertes.fr/tel-00642951/file/main.pdf
https://eprint.iacr.org/2005/314/
http://springerlink.bibliotecabuap.elogim.com/content/pdf/10.1007%2F3-540-45664-3_24.pdf
http://keccak.noekeon.org/
https://online.tugraz.at/tug_online/voe_main2.getvolltext?pCurrPk=77985
https://online.tugraz.at/tug_online/voe_main2.getvolltext?pCurrPk=77985
http://cryptojedi.org/papers/#avrnacl
https://online.tugraz.at/tug_online/voe_main2.getvolltext?pCurrPk=72486

Cache Attacks

Flush, Gauss, and Reload – A Cache Attack
on the BLISS Lattice-Based Signature Scheme

Leon Groot Bruinderink1(B), Andreas Hülsing1(B), Tanja Lange1(B),
and Yuval Yarom2,3(B)

1 Department of Mathematics and Computer Science,
Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, Netherlands
l.groot.bruinderink@tue.nl, andreas@huelsing.net, tanja@hyperelliptic.org

2 The University of Adelaide, Adelaide, Australia
3 NICTA, Sydney, Australia
yval@cs.adelaide.edu.au

Abstract. We present the first side-channel attack on a lattice-based
signature scheme, using the Flush+Reload cache-attack. The attack
is targeted at the discrete Gaussian sampler, an important step in the
Bimodal Lattice Signature Schemes (BLISS). After observing only 450
signatures with a perfect side-channel, an attacker is able to extract the
secret BLISS-key in less than 2 minutes, with a success probability of
0.96. Similar results are achieved in a proof-of-concept implementation
using the Flush+Reload technique with less than 3500 signatures.

We show how to attack sampling from a discrete Gaussian using CDT
or Bernoulli sampling by showing potential information leakage via cache
memory. For both sampling methods, a strategy is given to use this
additional information, finalize the attack and extract the secret key.
We provide experimental evidence for the idealized perfect side-channel
attacks and the Flush+Reload attack on two recent CPUs.

Keywords: SCA · Flush+Reload · Lattices · BLISS · Discrete Gaus-
sians

1 Introduction

The possible advent of general purpose quantum computers will undermine
the security of all widely deployed public key cryptography. Ongoing progress
towards building such quantum computers recently motivated standardization
bodies to set up programs for standardizing post-quantum public key primi-
tives, focusing on schemes for digital signatures, public key encryption, and key
exchange [7,18,23].

This work was supported in part by the Commission of the European Communi-
ties through the Horizon 2020 program under project number 645622 PQCRYPTO.
Permanent ID of this document: da245c8568290e4a0f45c704cc62a2b8.

c© International Association for Cryptologic Research 2016
B. Gierlichs and A.Y. Poschmann (Eds.): CHES 2016, LNCS 9813, pp. 323–345, 2016.
DOI: 10.1007/978-3-662-53140-2 16

324 Leon Groot Bruinderink, Andreas Hülsing, Tanja Lange, and Yuval Yarom

A particularly interesting area of post-quantum cryptography is lattice-based
cryptography; there exist efficient lattice-based proposals for signatures, encryp-
tion, and key exchange [1,3,9,15,21,26,37] and several of the proposed schemes
have implementations, including implementations in open source libraries [34].
While the theoretical and practical security of these schemes is under active
research, security of implementations is an open issue.

In this paper we make a first step towards understanding implementation
security, presenting the first side-channel attack on a lattice-based signature
scheme. More specifically, we present a cache-attack on the Bimodal Lattice
Signature Scheme (BLISS) by Ducas, Durmus, Lepoint, and Lyubashevsky from
CRYPTO 2013 [9], attacking a research-oriented implementation made available
by the BLISS authors at [8]. We present attacks on the two implemented methods
for sampling from a discrete Gaussian and for both successfully obtain the secret
signing key.

Note that most recent lattice-based signature schemes use noise sampled
according to a discrete Gaussian distribution to achieve provable security and a
reduction from standard assumptions. Hence, our attack might be applicable to
many other implementations. It is possible to avoid our attack by using schemes
which avoid discrete Gaussians at the cost of more aggressive assumptions [14].

1.1. The Attack Target. BLISS is the most recent piece in a line of work on
identification-scheme-based lattice signatures, also known as signatures without
trapdoors. An important step in the signature scheme is blinding a secret value
in some way to make the signature statistically independent of the secret key.
For this, a blinding (or noise) value y is sampled according to a discrete Gaussian
distribution. In the case of BLISS, y is an integer polynomial of degree less than
some system parameter n and each coefficient is sampled separately. Essentially,
y is used to hide the secret polynomial s in the signature equation z = y +
(−1)b(s ·c), where noise polynomial y and bit b are unknown to an attacker and
c is the challenge polynomial from the identification scheme which is given as
part of the signature (z, c).

If an attacker learns the noise polynomials y for a few signatures, he can
compute the secret key using linear algebra and guessing the bit b per signa-
ture. Actually, the attacker will only learn the secret key up to the sign but for
BLISS −s is also a valid secret key.

1.2. Our Contribution. In this work we present a Flush+Reload attack
on BLISS. We implemented the attack for two different algorithms for Gaussian
sampling. First we attack the CDT sampler with guide table, as described in [29]
and used in the attacked implementation as default sampler [8]. CDT is the
fastest way of sampling discrete Gaussians, but requires a large table stored in
memory. Then we also attack a rejection sampler, specifically the Bernoulli-based
sampler that was proposed in [9], and also provided in [8].

Flush, Gauss, and Reload 325

On a high level, our attacks exploit cache access patterns of the implemen-
tations to learn a few coefficients of y per observed signature. We then develop
mathematical attacks to use this partial knowledge of different yjs together with
the public signature values (zj , cj) to compute the secret key, given observations
from sufficiently many signatures.

In detail, there is an interplay between requirements for the offline attack
and restrictions on the sampling. First, restricting to cache access patterns that
provide relatively precise information means that the online phase only allows to
extract a few coefficients of yj per signature. This means that trying all guesses
for the bits b per signature becomes a bottleneck. We circumvent this issue by
only collecting coefficients of yj in situations where the respective coefficient of
s · cj is zero as in these cases the bit bj has no effect.

Second, each such collected coefficient of yj leads to an equation with some
coefficients of s as unknowns. However, it turns out that for CDT sampling
the cache patterns do not give exact equations. Instead, we learn equations
which hold with high probability, but might be off by ±1 with non-negligible
probability. We managed to turn the computation of s into a lattice problem
and show how to solve it using the LLL algorithm [20]. For Bernoulli sampling
we can obtain exact equations but at the expense of requiring more signatures.

We first tweaked the BLISS implementation to provide us with the exact
cache lines used, modeling a perfect side-channel. For BLISS-I, designed for 128
bits of security, the attack on CDT needs to observe on average 441 signatures
during the online phase. Afterwards, the offline phase succeeds after 37.6 seconds
with probability 0.66. This corresponds to running LLL once. If the attack does
not succeed at first, a few more signatures (on average a total of 446) are sampled
and LLL is run with some randomized selection of inputs. The combined attack
succeeds with probability 0.96, taking a total of 85.8 seconds. Similar results
hold for other BLISS versions. In the case of Bernoulli sampling, we are given
exact equations and can use simple linear algebra to finalize the attack, given a
success probability of 1.0 after observing 1671 signatures on average and taking
14.7 seconds in total.

To remove the assumption of a perfect side-channel we performed a proof-of-
concept attack using the Flush+Reload technique on a modern laptop. This
attack achieves similar success rates, albeit requiring 3438 signatures on average
for BLISS-I with CDT sampling. For Bernoulli sampling, we now had to deal
with measurement errors. We did this again by formulating a lattice problem
and using LLL in the final step. The attack succeeds with a probability of 0.88
after observing an average of 3294 signatures.

1.3. Structure. In Section 2, we give brief introductions to lattices, BLISS, and
the used methods for discrete Gaussian sampling as well as to cache-attacks.
In Section 3, we present two information leakages through cache-memory for
CDT sampling and provide a strategy to exploit this information for secret key
extraction. In Section 4, we present an attack strategy for the case of Bernoulli
sampling. In Section 5, we present experimental results for both strategies assum-

326 Leon Groot Bruinderink, Andreas Hülsing, Tanja Lange, and Yuval Yarom

ing a perfect side-channel. In Section 6, we show that realistic experiments also
succeed, using Flush+Reload attacks.

2 Preliminaries

This section describes the BLISS signature scheme and the used discrete
Gaussian samplers. It also provides some background on lattices and cache
attacks.

2.1. Lattices. We define a lattice Λ as a discrete subgroup of Rn: given m ≤ n
linearly independent vectors b1, . . . ,bm ∈ Rn, the lattice Λ is given by the set
Λ(b1, . . . ,bm) of all integer linear combinations of the bi’s:

Λ(b1, . . . ,bm) =

{
m∑

i=1

xibi | xi ∈ Z

}

.

We call {b1, . . . ,bm} a basis of Λ and define m as the rank. We represent the
basis as a matrix B = (b1, . . . ,bm), which contains the vectors bi as column
vectors. In this paper, we mostly consider full-rank lattices, i.e. m = n, unless
stated otherwise. Given a basis B ∈ Rn×n of a full-rank lattice Λ, we can apply
any unimodular transformation matrix U ∈ Zn×n and UB will also be a basis
of Λ. The LLL algorithm [20] transforms a basis B to its LLL-reduced basis B′

in polynomial time. In an LLL-reduced basis the shortest vector v of B′ satis-
fies ||v||2 ≤ 2

n−1
4 (|det(B)|)1/n and there are looser bounds for the other basis

vectors. Here || · ||2 denotes the Euclidean norm. Besides the LLL-reduced basis,
NTL’s [33] implementation of LLL also returns the unimodular transformation
matrix U, satisfying UB = B′.

In cryptography, lattices are often defined via polynomials, e.g., to take
advantage of efficient polynomial arithmetic. The elements in R = Z[x]/(xn +1)
are represented as polynomials of degree less than n. For each polynomial f(x) ∈
R we define the corresponding vector of coefficients as f = (f0, f1, . . . , fn−1).
Addition of polynomials f(x) + g(x) corresponds to addition of their coefficient
vectors f + g. Additionally, multiplication of f(x) · g(x) mod (xn + 1) defines a
multiplication operation on the vectors f · g = gF = fG, where F,G ∈ Zn×n

are matrices, whose columns are the rotations of (the coefficient vectors of) f,g,
with possibly opposite signs. Lattices using polynomials modulo xn +1 are often
called NTRU lattices after the NTRU encryption scheme [15].

An integer lattice is a lattice for which the basis vectors are in Zn, such as
the NTRU lattices just described. For integer lattices it makes sense to consider
elements modulo q, so basis vectors and coefficients are taken from Zq. We
represent the ring Zq as the integers in [−q/2, q/2). We denote the quotient ring
R/(qR) by Rq. When we work in Rq = Zq[x]/(xn + 1) (or R2q), we assume n is
a power of 2 and q is a prime such that q ≡ 1 mod 2n.

Flush, Gauss, and Reload 327

2.2. BLISS. We provide the basic algorithms of BLISS, as given in [9]. Details of
the motivation behind the construction and associated security proofs are given
in the original work. All arithmetic for BLISS is performed in R and possibly
with each coefficient reduced modulo q or 2q. We follow notation of BLISS and
also use boldface notation for polynomials.

By Dσ we denote the discrete Gaussian distribution with standard deviation
σ. In the next subsection, we will zoom in on this distribution and how to
sample from it in practice. The main parameters of BLISS are dimension n,
modulus q and standard deviation σ. BLISS uses a cryptographic hash function
H, which outputs binary vectors of length n and weight κ; parameters d1 and
d2 determining the density of the polynomials forming the secret key; and d,
determining the length of the second signature component.

Algorithm 2.1. BLISS Key Generation
Output: A BLISS key pair (A,S) with public key A = (a1,a2) ∈ R2

2q and secret key
S = (s1, s2) ∈ R2

2q such that AS = a1 · s1 + a2 · s2 ≡ q mod 2q
1: choose f,g ∈ R2q uniformly at random with exactly d1 entries in {±1} and d2

entries in {±2}
2: S = (s1, s2) = (f, 2g + 1)
3: if S violates certain bounds (details in [9]), then restart
4: aq = (2g + 1)/f mod q (restart if f is not invertible)
5: return (A,S) where A = (2aq, q − 2) mod 2q

Algorithm 2.1 generates correct keys because

a1 ·s1+a2 ·s2 = 2aq ·f+(q−2) ·(2g+1) ≡ 2(2g+1)+(q−2)(2g+1) ≡ q mod 2q.

Note that when an attacker has a candidate for key s1 = f, he can validate
correctness by checking the distributions of f and aq · f ≡ 2g + 1 mod 2q, and
lastly verifying that a1 · f + a2 · (aq · f) ≡ q mod 2q, where aq is obtained by
halving a1.

Signature generation (Algorithm 2.2) uses p = �2q/2d�, which is the highest
order bits of the modulus 2q, and constant ζ = 1

q−2 mod 2q. In general, with
�.�d we denote the d highest order bits of a number. In Step 1 of Algorithm 2.2,
two integer vectors are sampled, where each coordinate is drawn independently
and according to the discrete Gaussian distribution Dσ. This is denoted by
y ← DZn,σ.

In the attacks, we concentrate on the first signature vector z1, since z†
2 only

contains the d highest order bits and therefore lost information about s2 · c;
furthermore, A and f determine s2 as shown above. So in the following, we only
consider z1,y1 and s1, and thus will leave out the indices.

In lines 5 and 6 of Algorithm2.2, we compute s · c over R2q. However, since
secret s is sparse and challenge c is sparse and binary, the absolute value of
||s · c||∞ ≤ 5κ 	 2q, with || · ||∞ the �∞-norm. This means these computations
are simply additions over Z, and we can therefore model this computation as a

328 Leon Groot Bruinderink, Andreas Hülsing, Tanja Lange, and Yuval Yarom

Algorithm 2.2. BLISS Signature Algorithm
Input: Message μ, public key A = (a1, q − 2), secret key S = (s1, s2)
Output: A signature (z1, z

†
2, c) ∈ Zn

2q × Zn
p × {0, 1}n of the message μ

1: y1,y2 ← DZn,σ

2: u = ζ · a1 · y1 + y2 mod 2q
3: c = H(�u�d mod p, μ)
4: choose a random bit b
5: z1 = y1 + (−1)bs1 · c mod 2q
6: z2 = y2 + (−1)bs2 · c mod 2q
7: continue with a probability based on σ, ||Sc||, 〈z,Sc〉 (details in [9]), else restart
8: z†

2 = (�u�d − �u − z2�d) mod p
9: return (z1, z

†
2, c)

vector-matrix multiplication over Z:

s · c = sC,

where C ∈ {−1, 0, 1}n×n is the matrix whose columns are the rotations of chal-
lenge c (with minus signs matching reduction modulo xn +1). In the attacks we
access individual coefficients of s · c; note that the jth coefficient equals 〈s, cj〉,
where cj is the jth column of C.

For completeness, we also show the verification procedure (Algorithm 2.3),
although we do not use it further in this paper. Note that reductions modulo 2q
are done before truncating and reducing modulo p.

Algorithm 2.3. BLISS Verification Algorithm
Input: Message μ, public key A = (a1, q − 2) ∈ R2

2q, signature (z1, z
†
2, c)

Output: Accept or reject the signature
1: if z1, z

†
2 violate certain bounds (details in [9]), then reject

2: accept iff c = H(�ζ · a1 · z1 + ζ · q · c�d + z†
2 mod p, μ)

2.3. Discrete Gaussian Distribution. The probability distribution of a (cen-
tered) discrete Gaussian distribution is a distribution over Z, with mean 0 and
standard deviation σ. A value x ∈ Z is sampled with probability:

ρσ(x)
∑∞

y=−∞ ρσ(y)
,

where ρσ(x) = exp
(

−x2

2σ2

)
. Note that the sum in the denominator ensures that

this is actually a probability distribution. We denote the denominator by ρσ(Z).
To make sampling practical, most lattice-based schemes use three simplifi-

cations: First, a tail-cut τ is used, restricting the support of the Gaussian to
a finite interval [−τσ, τσ]. The tail-cut τ is chosen such that the probability
of a real discrete Gaussian sample landing outside this interval is negligible in

Flush, Gauss, and Reload 329

the security parameter. Second, values are sampled from the positive half of the
support and then a bit is flipped to determine the sign. For this the probability
of obtaining zero in [0, τσ] needs to be halved. The resulting distribution on the
positive numbers is denoted by D+

σ . Finally, the precision of the sampler is cho-
sen such that the statistical distance between the output distribution and the
exact distribution is negligible in the security parameter.

There are two generic ways to sample from a discrete Gaussian distribution:
using the cumulative distribution function [25] or via rejection sampling [11].
Both these methods are deployed with some improvements which we describe
next. These modified versions are implemented in [8]. We note that there are
also other ways [5,10,30,31] of efficiently sampling discrete Gaussians.

CDT Sampling. The basic idea of using the cumulative distribution function
in the sampler, is to approximate the probabilities py = P[x ≤ y| x ← Dσ],
computed with λ bits of precision, and save them in a large table. At sampling
time, one samples a uniformly random r ∈ [0, 1), and performs a binary search
through the table to locate y ∈ [−τσ, τσ] such that r ∈ [py−1, py). Restricting to
the non-negative part [0, τσ] corresponds to using the probabilities p∗

y = P[|x| ≤
y| x ← Dσ], sampling r ∈ [0, 1) and locating y ∈ [0, τσ]. While this is the most
efficient approach, it requires a large table. We denote the method that uses the
approximate cumulative distribution function with tail cut and the modifications
described next, as the CDT sampling method.

One can speed up the binary search for the correct sample y in the table,
by using an additional guide table I [6,19,29]. The BLISS implementation we
attack uses I with 256 entries. The guide table stores for each u ∈ {0, . . . , 255}
the smallest interval I[u] = (au, bu) such that p∗

au
≤ u/256 and p∗

bu
≥ (u+1)/256.

The first byte of r is used to select I[u] leading to a much smaller interval for the
binary search. Effectively, r is picked byte-by-byte, stopping once a unique value
for y is obtained. The CDT sampling algorithm with guide table is summarized
in Algorithm 2.4.

Bernoulli Sampling (Rejection Sampling). The basic idea behind rejection
sampling is to sample a uniformly random integer y ∈ [−τσ, τσ] and accept
this sample with probability ρσ(y)/ρσ(Z). For this, a uniformly random value
r ∈ [0, 1) is sampled and y is accepted iff r ≤ ρσ(y). This method has two huge
downsides: calculating the values of ρσ(y) to high precision is expensive and the
rejection rate can be quite high.

In the same paper introducing BLISS [9], the authors also propose a more effi-
cient Bernoulli-based sampling algorithm. We recall the algorithms used (Algo-
rithms 2.5, 2.6, and 2.7), more details are given in the original work. We denote
this method as Bernoulli sampling in the remainder of this paper.

The basic idea is to first sample a value x, according to the binary dis-
crete Gaussian distribution Dσ2 , where σ2 = 1

2 ln 2 (Step 1 of Algorithm 2.5).
This can be done efficiently using uniformly random bits [9]. The actual sample
y = Kx + z, where z ∈ {0, . . . , K − 1} is sampled uniformly at random and

330 Leon Groot Bruinderink, Andreas Hülsing, Tanja Lange, and Yuval Yarom

Algorithm 2.4. CDT Sampling With Guide Table
Input: Big table T [y] containing values p∗

y of the cumulative distribution function of
the discrete Gaussian distribution (using only non-negative values), omitting the
first byte. Small table I consisting of the 256 intervals

Output: Value y ∈ [−τσ, τσ] sampled with probability according to Dσ

1: pick a random byte r
2: let (Imin, Imax) = (ar, br) be the left and right bounds of interval I[r]
3: if (Imax − Imin = 1):
4: generate a random sign bit b ∈ {0, 1}
5: return y = (−1)bImin

6: let i = 1 denote the index of the byte to look at
7: pick a new random byte r
8: while (1):
9: Iz = � Imin+Imax

2
	

10: if (r > (ith byte of T [Iz])):
11: Imin = Iz

12: else if (r < (ith byte of T [Iz])):
13: Imax = Iz

14: else if (Imax − Imin = 1):
15: generate a random sign bit b ∈ {0, 1}
16: return y = (−1)bImin

17: else:
18: increase i by 1
19: pick new random byte r

Algorithm 2.5. Sampling from D+
Kσ for K ∈ Z

Input: Target standard deviation σ, integer K = � σ
σ2

+ 1	, where σ2 = 1
2 ln 2

Output: An integer y ∈ Z+ according to D+
Kσ2

1: sample x ∈ Z according to D+
σ2

2: sample z ∈ Z uniformly in {0, . . . , K − 1}
3: y ← Kx + z
4: sample b with probability exp

(
−z(z + 2Kx)/(2σ2)

)

5: if b = 0 then restart
6: return y

Algorithm 2.6. Sampling from DKσ

Output: An integer y ∈ Z according to DKσ2

1: sample integer y ← D+
Kσ (using Algorithm 2.5)

2: if y = 0 then restart with probability 1/2
3: generate random bit b and return (−1)by

K = � σ
σ2

+ 1�, is then distributed according to the target discrete Gaussian dis-
tribution Dσ, by rejecting with a certain probability (Step 4 of Algorithm2.5).
The number of rejections in this case is much lower than in the original method.
This step still requires computing a bit, whose probability is an exponential

Flush, Gauss, and Reload 331

Algorithm 2.7. Sampling a bit with probability exp(−x/(2σ2)) for x ∈ [0, 2�)
Input: x ∈ [0, 2�) an integer in binary form x = x�−1 . . . x0. Table ET with precom-

puted values ET[i] = exp(−2i/(2σ2)) for 0 ≤ i ≤ � − 1
Output: A bit b with probability exp(−x/(2σ2)) of being 1
1: for i = � − 1 to 0:
2: if xi = 1 then
3: sample Ai with probability ET[i].
4: if Ai = 0 then return 0
5: return 1

value. However, it can be done more efficiently using Algorithm 2.7, where ET
is a small table.

2.4. Cache Attacks. The cache is a small bank of memory which exploits
the temporal and the spatial locality of memory access to bridge the speed gap
between the faster processor and the slower memory. The cache consists of cache
lines, which, on modern Intel architectures, can store a 64-byte aligned block of
memory of size 64 bytes.

In a typical processor there are several cache levels. At the top level, closest
to the execution core, is the L1 cache, which is the smallest and the fastest of
the hierarchy. Each successive level (L2, L3, etc.) is bigger and slower than the
preceding level.

When the processor accesses a memory address it looks for the block con-
taining the address in the L1 cache. In a cache hit, the block is found in the
cache and the data is accessed. Otherwise, in a cache miss, the search continues
on lower levels, eventually retrieving the memory block from the lower levels or
from the memory. The cache then evicts a cache line and replaces its contents
with the retrieved block, allowing faster future access to the block.

Because cache misses require searches in lower cache levels, they are slower
than cache hits. Cache timing attacks exploit this timing difference to leak infor-
mation [2,13,22,24,27]. In a nutshell, when an attacker uses the same cache as a
victim, victim memory accesses change the state of the cache. The attacker can
then use the timing variations to check which memory blocks are cached and
from that deduce which memory addresses the victim has accessed. Ultimately,
the attacker learns the cache line of the victim’s table access: a range of possible
values for the index of the access.

In this work we use the Flush+Reload attack [13,36]. A Flush+Reload
attack uses the clflush instruction of the x86-64 architecture to evict a memory
block from the cache. The attacker then lets the victim execute before measuring
the time to access the memory block. If during its execution the victim has
accessed an address within the block, the block will be cached and the attacker’s
access will be fast. If, however, the victim has not accessed the block, the attacker
will reload the block from memory, and the access will take much longer. Thus,
the attacker learns whether the victim accessed the memory block during its

332 Leon Groot Bruinderink, Andreas Hülsing, Tanja Lange, and Yuval Yarom

execution. The Flush+Reload attack has been used to attack implementations
of RSA [36], AES [13,17], ECDSA [28,35] and other software [12,38].

3 Attack 1: CDT Sampling

This section presents the mathematical foundations of our cache attack on the
CDT sampling. We first explain the phenomena we can observe from cache
misses and hits in Algorithm 2.4 and then show how to exploit them to derive
the secret signing key of BLISS using LLL. Sampling of the first noise polynomial
y ∈ DZn,σ is done coefficientwise. Similarly the cache attack targets coefficients
yi for i = 0, . . . , n − 1 independently.

3.1. Weaknesses in Cache. Sampling from a discrete Gaussian distribution
using both an interval table I and a table with the actual values T , might leak
information via cache memory. The best we can hope for is to learn the cache-
lines of index r of the interval and of index Iz of the table lookup in T . Note
that we cannot learn the sign of the sampled coefficient yi. Also, the cache line of
T [Iz] always leaves a range of values for |yi|. However, in some cases we can get
more precise information combining cache-lines of table lookups in both tables.
Here are two observations that narrow down the possibilities:

Intersection: We can intersect knowledge about the used index r in I with
the knowledge of the access T [Iz]. Getting the cache-line of I[r] gives a
range of intervals, which is simply another (bigger) interval of possible val-
ues for sample |yi|. If the values in the range of intervals are largely non-
overlapping with the range of values learned from the access to T [Iz], then
the combination gives a much more precise estimate. For example: if the
cache-line of I[r] reveals that sample |yi| is in set S1 = {0, 1, 2, 3, 4, 5, 7, 8}
and the cache-line of T [Iz] reveals that sample |yi| must be in set S2 =
{7, 8, 9, 10, 11, 12, 13, 14, 15}, then by intersecting both sets we know that
|yi| ∈ S1 ∩ S2 = {7, 8}, which is much more precise information.

Last-Jump: If the elements of an interval I[r] in I are divided over two cache-
lines of T , we can sometimes track the search for the element to sample. If
a small part of I[r] is in one cache-line, and the remaining part of I[r] is in
another, we are able to distinguish if this small part has been accessed. For
example, interval I[r] = {5, 6, 7, 8, 9} is divided over two cache-lines of T :
cache-line T1 = {0, 1, 2, 3, 4, 5, 6, 7} and line T2 = {8, 9, 10, 11, 12, 13, 14, 15}.
The binary search starts in the middle of I[r], at value 7, which means line
T1 is always accessed. However, only for values {8, 9} also line T2 is accessed.
So if both lines T1 and T2 are accessed, we know that sample |yi| ∈ {8, 9}.

We will restrict ourselves to only look for cache access patterns that give
even more precision, at the expense of requiring more signatures:

Flush, Gauss, and Reload 333

1. The first restriction is to only look at cache weaknesses (of type Intersection
or Last-Jump), in which the number of possible values for sample |yi| is two.
Since we do a binary search within an interval, this is the most precision one
can get (unless an interval is unique): after the last comparisons (table lookup
in T), one of two values will be returned. This means that by picking either
of these two values we limit the error of |yi| to at most 1.

2. The probabilities of sampling values using CDT sampling with guide table I
are known to match the following probability requirement:

255∑

r=0

P[X = x | X ∈ I[r]] =
ρσ(x)
ρσ(Z)

. (1)

Due to the above condition, it is possible that adjacent intervals are partially
overlapping. That is, for some r, s we have that I[r] ∩ I[s] �= ∅. In practice,
this only happens for r = s+1, meaning adjacent intervals might overlap. For
example, if the probability of sampling x is greater than 1/256, then x has to
be an element in at least two intervals I[r]. Because of this, it is possible that
for certain parts of an interval I[r], there is a biased outcome of the sample.

The second restriction is to only consider cache weaknesses for which addi-
tionally one of the two values is significantly more likely to be sampled, i.e., if
|yi| ∈ {γ1, γ2} ⊂ I[r] is the outcome of cache access patterns, then we further
insist on

P[|yi| = γ1 | |yi| ∈ {γ1, γ2} ⊂ I[r]] � P[|yi| = γ2 | |yi| ∈ {γ1, γ2} ⊂ I[r]]

So we search for values γ1 so that P[|yi| = γ1 | |yi| ∈ {γ1, γ2} ⊂ I[r]] = 1 − α
for small α, which also matches access patterns for the first restriction. Then,
if we observe a matching access pattern, it is safe to assume the outcome of
the sample is γ1.

3. The last restriction is to only look at cache-access patterns, which reveal that
|yi| is larger than β · E[〈s, c〉], for some constant β ≥ 1, which is an easy
calculation using the distributions of s, c. If we use this restriction in our
attack targeted at coefficient yi of y, we learn the sign of |yi| by looking at
the sign of coefficient zi of z, since:

sign(yi) �= sign(zi) ↔ 〈s, c〉 > (yi + zi)

So by requiring that |yi| must be larger than the expected value of 〈s, c〉, we
expect to learn the sign of yi. We therefore omit the absolute value sign in
|yi| and simply write that we learn yi ∈ {γ1, γ2}, where the γ’s took over the
sign of yi (which is the same as the sign of zi).

There is some flexibility in these restrictions, in choosing parameters α, β.
Choosing these parameters too restrictively, might lead to no remaining cache-
access patterns, choosing them too loosely makes other parts fail.

In the last part of the attack described next, we use LLL to calculate short
vectors of a certain (random) lattice we create using BLISS signatures. We

334 Leon Groot Bruinderink, Andreas Hülsing, Tanja Lange, and Yuval Yarom

noticed that LLL works very well on these lattices, probably because the basis
used is sparse. This implies that the vectors are already relatively short and
orthogonal. The parameter α determines the shortness of the vector we look
for, and therefore influences if an algorithm like LLL finds our vector. For the
experiments described in Section 5, we required α ≤ 0.1. This made it possible
for every parameter set we used in the experiments to always have at least one
cache-access pattern to use.

Parameter β influences the probability that one makes a huge mistake when
comparing the values of yi and zi. However, for the parameters we used in the
experiments, we did not find recognizable cache-access patterns which corre-
spond to small yi. This means, we did not need to use this last restriction to
reject certain cache-access patterns.

3.2. Exploitation. For simplicity, we assume we have one specific cache access
pattern, which reveals if yi ∈ {γ1, γ2} for i = 0, . . . , n − 1 of polynomial y, and
if this is the case, yi has probability (1 − α) to be value γ1, with small α. In
practice however, there might be more than one cache weakness, satisfying the
above requirements. This would allow the attacker to search for more than one
cache access pattern done by the victim. For the attack, we assume the victim
is creating N signatures1 (zj , cj) for j = 1, . . . , N , and an attacker is gathering
these signatures with associated cache information for noise polynomial yj . We
assume the attacker can search for the specific cache access pattern, for which he
can determine if yji ∈ {γ1, γ2}. For the cases revealed by cache access patterns,
the attacker ends up with the following equation:

zji = yji + (−1)bj 〈s, cji〉, (2)

where the attacker knows coefficient zji of zj , rotated coefficient vectors cji of
challenge cj (both from the signatures) and yji ∈ {γ1, γ2} of noise polynomial
yj (from the side-channel attack). Unknowns to the attacker are bit bj and s.

If zji = γ1, the attacker knows that 〈s, cji〉 ∈ {0, 1,−1}. Moreover, with high
probability (1 − α) the value will be 0, as by the second restriction yji is biased
to be value γ1. So if zji = γ1, the attacker adds ξk = cji to a list of good vectors.
The restriction zji = γ1 means that the attacker will in some cases not use the
information in Eq. (2), although he knows that yji ∈ {γ1, γ2}.

When the attacker collects enough of these vectors ξk = cji; 0 ≤ i ≤ n−1, 1 ≤
j ≤ N, 1 ≤ k ≤ n, he can build a matrix L ∈ {−1, 0, 1}n×n, whose columns are
the ξk’s. This matrix satisfies:

sL = v (3)

for some unknown but short vector v. The attacker does not know v, so he cannot
simply solve for s, but he does know that v has norm about

√
αn, and lies in the

lattice spanned by the rows of L. He can use a lattice reduction algorithm, like
LLL, on L to search for v. LLL also outputs the unimodular matrix U satisfying
UL = L′. The attack tests for each row of U (and its rotations) whether it is

1 Here zj refers to the first signature polynomial zj1 of the jth signature (zj1, z
†
j2, cj).

Flush, Gauss, and Reload 335

sparse and could be a candidate for s = f. As stated before, correctness of a
secret key guess can be verified using the public key.

This last step does not always succeed, just with high probability. To make
sure the attack succeeds, this process is randomized. Instead of collecting exactly
n vectors ξk = cji, we gather m > n vectors, and pick a random subset of n
vectors as input for LLL. While we do not have a formal analysis of the success
probability, experiments (see Section 5) confirm that this method works and suc-
ceeds in finding the secret key (or its negative) in few rounds of randomization.

A summary of the attack is given in Algorithm3.1.

Algorithm 3.1. Cache-attack on BLISS with CDT Sampling
Input: Access to cache memory of a victim with a key-pair (A,S). Input parameters

n, σ, q, κ of BLISS. Access to signature polynomials (z1, z
†
2, c) produced using S.

Victim uses CDT sampling with tables T, I for noise polynomials y. Cache weakness
that allows to determine if coefficient yi ∈ {γ1, γ2} of y, and when this is the case,
the value of yi is biased towards γ1

Output: Secret key S
1: let k = 0 be the number of vectors collected so far and let M = [] be an empty list

of vectors
2: while (k < m): // collect m vectors ξk before randomizing LLL
3: collect signature (z1, z

†
2, c), together with cache information for each

coefficient yi of noise polynomial y
4: for each i = 0, . . . , n − 1:
5: if yi ∈ {γ1, γ2} (determined via cache information) and z1i = γ1:
6: add vector ξk = ci to M and set k = k + 1
7: while (1):
8: choose random subset of n vectors from M and construct matrix L

whose columns are those vectors from M
9: perform LLL basis reduction on L to get: UL = L′, where U is a

unimodular transformation matrix and L′ is LLL reduced
10: for each j = 1, . . . , n:
11: check if row uj of U has the same distribution as f and if (a1/2) ·

uj mod 2q has the same distribution as 2g + 1. Lastly verify if a1 ·
uj + a2 · (a1/2) · uj ≡ q mod 2q

12: return S = (uj , (a1/2) · uj mod 2q) if this is the case

4 Attack 2: Bernoulli Sampling

In this section, we discuss the foundations and strategy of our second cache
attack on the Bernoulli-based sampler (Algorithms 2.5, 2.6, and 2.7). We show
how to exploit the fact that this method uses a small table ET, leaking very
precise information about the sampled value.

336 Leon Groot Bruinderink, Andreas Hülsing, Tanja Lange, and Yuval Yarom

4.1. Weaknesses in Cache. The Bernoulli-sampling algorithm described in
Section 2.3 uses a table with exponential values ET[i] = exp(−2i/(2σ2)) and
inputs of bit-size � = O(log K), which means this table is quite small. Depend-
ing on bit i of input x, line 3 of Algorithm 2.7 is performed, requiring a table
look-up for value ET[i]. In particular when input x = 0, no table look-up is
required. An attacker can detect this event by examining cache activity of the
sampling process. If this is the case, it means that the sampled value z equals
0 in Step 2 of Algorithm 2.5. The possible values for the result of sampling are
y ∈ {0,±K,±2K, . . .}. So for some cache access patterns, the attacker is able to
determine if y ∈ {0,±K,±2K, . . .}.

4.2. Exploitation. We will use the same methods as described in Section 3.2,
but now we know that for a certain cache access pattern the coefficient yi ∈
{0,±K,±2K, . . .}, i = 0, . . . , n − 1, of the noise polynomial y. If max |〈s, c〉| ≤
κ < K, (which is something anyone can check using the public parameters
and which holds for typical implementations), we can determine yi completely
using the knowledge of signature vector z. When more signatures2 (zj , cj); j =
1, . . . , N are created, the attacker can search for the specific access pattern and
verify whether yji ∈ {0,±K,±2K, . . .}, where yji is the i’th coefficient of noise
polynomial yj .

If the attacker knows that yji ∈ {0,±K,±2K, . . .} and it additionally holds
that zji = yji, where zji is the i’th coefficient of signature polynomial zj , he
knows that 〈s, cji〉 = 0. If this is the case, the attacker includes coefficient vector
ζk = cji in the list of good vectors. Also for this attack the attacker will discard
some known yji if it does not satisfy zji = yji.

Once the attacker has collected n of these vectors ξk = cji; 0 ≤ i ≤ n−1, 1 ≤
j ≤ N, 1 ≤ k ≤ n, he can form a matrix L ∈ {−1, 0, 1}n×n, whose columns
are the ξk’s, satisfying sL = 0, where 0 is the all-zero vector. With very high
probability, the ξk’s have no dependency other than introduced by s. This means
s is the only kernel vector. Note the subtle difference with Eq. (3): we do not need
to randomize the process, because we know the right-hand side is the all-zero
vector. The attack procedure is summarized in Algorithm4.1.

4.3. Possible Extensions. One might ask why we not always use the knowledge
of yji, since we can completely determine its value, and work with a non-zero
right-hand side. Unfortunately, bits bj from Eq. 2 of the signatures are unknown.
This means an attacker has to use a linear solver 2N times, where N is the
number of required signatures (grouping columns appropriately if they come
from the same signature). For large N this becomes infeasible and N is typically
on the scale of n. By requiring that zji = yji, we remove the unknown bit bj

from the Eq. (2).

2 Again, zj refers to the first signature polynomial zj1 of the jth signature (zj1, z
†
j2, cj).

Flush, Gauss, and Reload 337

Algorithm 4.1. Cache-attack on BLISS with Bernoulli sampling
Input: Access to cache memory of victim with a key-pair (A,S). Input parameters

n, σ, q, κ of BLISS, with κ < K. Access to signatures (z1, z
†
2, c) produced using S.

Victim uses Bernoulli sampling with the small exponential table to sample noise
polynomial y

Output: Secret key S
1: let k = 0 be the number of vectors gained so far and let M = [] be an empty list

of vectors
2: while(k < n):
3: collect signature (z1, z

†
2, c) together with cache information for each

coefficient yi of noise polynomial y

4: for each i = 1, . . . , n do:
5: if yi ∈ {0, ±K, ±2K, ..} (according to cache information), and z1i =

yi then add coefficient vector ξk = ci as a column to M and set
k = k + 1

6: form a matrix L from the columns in M . Calculate kernel space of L. This gives a
matrix U ∈ Z�×n such that UL = 0, where 0 is the all-zero matrix

7: for each j = 1, . . . , � do: // we expect � = 1
8: check if row uj of U has the same distribution as f and if (a1/2) ·

uj mod 2q has the same distribution as 2g + 1. Lastly verify if a1 ·
uj + a2 · (a1/2) · uj ≡ q mod 2q

9: return S = (uj , (a1/2) · uj mod 2q) if this is the case
10: remove a random entry from M , put k = k − 1, goto step 2

Similar to the first attack, an attacker might also use vectors ξk = cji, where
〈s, cji〉 ∈ {−1, 0, 1}, in combination with LLL and possibly randomization. This
approach might help if fewer signatures are available, but the easiest way is to
require exact knowledge, which comes at the expense of needing more signa-
tures, but has a very fast and efficient offline part. Section 6.3 deals with this
approximate information.

5 Results with a Perfect Side-Channel

In this section we provide experimental results, where we assume the attacker
has access to a perfect side-channel: no errors are made in measuring the table
accesses of the victim. We apply the attack strategies discussed in the previous
two sections and show how many signatures are required for each strategy.

5.1. Attack Setting. Sections 3 and 4 outline the basic ideas behind cache
attacks against the two sampling methods for noise polynomials y used in the
target implementation of BLISS. We now consider the following idealized sit-
uation: the victim is signing random messages and an attacker collects these
signatures. The attacker knows the exact cache-lines of the table look-ups done
by the victim while computing the noise vector y. We assume cache-lines have
size 64 bytes and each element is 8 bytes large (type LONG). To simplify expo-
sition, we assume the cache-lines are divided such that element i of any table is
in cache-line �i/8�.

338 Leon Groot Bruinderink, Andreas Hülsing, Tanja Lange, and Yuval Yarom

Our test machine is an AMD FX-8350 Eight-Core CPU running at 4.1 GHz.
We use the research oriented C++ implementation of BLISS, made available by
the authors on their webpage [8]. Both of the analyzed sampling methods are
provided by the implementation, where the tables T, I and ET are constructed
dependent on σ. We use the NTL library [33] for LLL and kernel calculations.

The authors of BLISS [9] proposed several parameter sets for the signature
scheme (see full version [4, Table A.1]). We present attacks against all combi-
nations of parameter sets and sampling methods; the full results of the perfect
side-channel attacks are given in the full version [4, Appendix B].

5.2. CDT Sampling. When the signing algorithm uses CDT sampling as
described in Algorithm 2.4, the perfect side-channel provides the values of �r/8�
and �Iz/8� of the table accesses for r and Iz in tables I and T . We apply the
attack strategy of Section 3.

We first need to find cache-line patterns, of type intersection or last-jump,
which reveal that |yi| ∈ {γ1, γ2} and P[|yi| = γ1| |yi| ∈ {γ1, γ2}] = 1 − α with
α ≤ 0.1. One way to do that is to construct two tables: one table that lists
elements I[r], that belong to certain cache-lines of table I, and one table that
lists the accessed elements Iz inside these intervals I[r], that belong to certain
cache-lines of table T . We can then brute-force search for all cache weaknesses of
type intersection or last-jump. For example, in BLISS-I the first eight elements of
I (meaning I[0], . . . , I[7]) belong to the first cache-line of I, but for the elements
in I[7] = {7, 8}, the sampler accesses element Iz = 8, which is part of the
second cache-line of T . This is an intersection weakness: if the first cache-line of
I is accessed and the second cache-line of T is accessed, we know yi ∈ {7, 8}.
Similarly, one can find last-jump weaknesses, by searching for intervals I[r] that
access multiple cache-lines of T . Once we have these weaknesses, we need to use
the biased restriction with α ≤ 0.1. This can be done by looking at all bytes
except the first of the entry T [Iz] (this is already used to determine interval I[r]).
If we denote the integer value of these 7 bytes by T [Iz]byte �=1, then we need to
check if T [Iz] has property

(T [Iz])byte �=1/(256 − 1) ≤ α

(or (T [Iz])byte �=1/(256 − 1) ≥ (1 − α)). If one of these properties holds, then we
have yi ∈ {Iz − 1, Iz} and P[|yi| = Iz| |yi| ∈ {Iz − 1, Iz}] = 1 − α (or with Iz

and Iz − 1 swapped). For each set of parameters we found at least one of these
weaknesses using the above method (see the full version [4, Table B.1] for the
values).

We collect m (possibly rotated) coefficient vectors cj and then run LLL at
most t = 2(m − n) + 1 times, each time searching for s in the unimodular
transformation matrix using the public key. We consider the experiment failed if
the secret key is not found after this number of trials; the randomly constructed
lattices have a lot of overlap in their basis vectors which means that increasing t
further is not likely to help. We performed 1000 repetitions of each experiment
(different parameters and sizes for m) and measured the success probability psucc,
the average number of required signatures N to retrieve m usable challenges,

Flush, Gauss, and Reload 339

and the average length of v if it was found. The expected number of required
signatures E[N] is also given, as well as the running time for the LLL trials. This
expected number of required signatures can be computed as:

E[N] =
m

n · P[CP] · P[〈s1, c〉 = 0]
,

where CP is the event of a usable cache-access pattern for a coordinate of y.
From the results (given in the full version [4, Table B.2]) we see that, although

BLISS-0 is a toy example (with security level λ ≤ 60), it requires the largest
average number N of signatures to collect m columns, i.e., before the LLL trials
can begin. This illustrates that the cache-attack depends less on the dimension
n, but mainly on σ. For BLISS-0 with σ = 100, there is only one usable cache
weakness with the restrictions we made.

For all cases, we see that a small increase of m greatly increases the success
probability psucc. The experimental results suggest that picking m ≈ 2n suffices
to get a success probability close to 1.0. This means that one only needs more
signatures to always succeed in the offline part.

5.3. Bernoulli Sampling. When the signature algorithm uses Bernoulli sam-
pling from Algorithm 2.6, a perfect side-channel determines if there has been
a table access in table ET. Thus, we can apply the attack strategy given in
Section 4. We require m = n (possibly rotated) challenges ci to start the ker-
nel calculation. We learn whether any element has been accessed in table ET,
e.g., by checking the cache-lines belonging to the small part of the table. We
performed only 100 experiments this time, since we noticed that psucc = 1.0 for
all parameter sets with a perfect side-channel. This means that the probability
that n random challenges c are linearly independent is close to 1.0. We state the
average number N of required signatures in the full version [4, Table B.3]. This
time, the expected number is simply:

E[N] =

⎛

⎝

⎛

⎝
1

ρσ(Z)

�τσ/K�∑

x=−�τσ/K�
ρσ(xK)

⎞

⎠ · P[〈s1, c〉 = 0]

⎞

⎠

−1

for K = � σ
σ2

+1� and tail-cut τ ≥ 1. Note that the number of required signatures
is smaller for BLISS-II than for BLISS-I. This might seem surprising as one might
expect it to increase or be about the same as BLISS-I because the dimensions
and security level are the same for these two parameter sets. However, σ is
chosen a lot smaller in BLISS-II, which means that also value K is smaller. This
influences N significantly as the probability to sample values xK is larger for
small σ.

340 Leon Groot Bruinderink, Andreas Hülsing, Tanja Lange, and Yuval Yarom

6 Proof-of-Concept Implementation

So far, the experimental results were based on the assumption of a perfect side-
channel: we assumed that we would get the cache-line of every table look-up
in the CDT sampling and Bernoulli sampling. In this section, we reduce the
assumption and discuss the results of more realistic experiments using the Flu-
sh+Reload technique.

When moving to real hardware some of the assumptions made in Section 5
no longer hold. In particular, allocation does not always ensure that tables are
aligned at the start of cache lines and processor optimizations may pre-load
memory into the cache, resulting in false positives. One such optimization is
the spatial prefetcher, which pairs adjacent cache lines into 128-byte chunks and
prefetches a cache line if an access to its pair results in a cache miss [16].

6.1. FLUSH+RELOAD on CDT Sampling. Due to the spatial prefetcher,
Flush+Reload cannot be used consistently to probe two paired cache lines.
Consequently, to determine access to two consecutive CDT table elements, we
must use a pair that spans two unpaired cache lines. In the full version [4, Table
C.3], we show that when the CDT table is aligned at 16 bytes, we can always
find such a pair for BLISS-I. Although this is not a proof that our attack works
in all scenarios, i.e. for all σ and all offsets, it would also not be a solid defence to
pick exactly those scenarios for which our attack would not work, e.g., because
α could be increased.

The attack was carried out on an HP Elite 8300 with an i5-3470 processor.
running CentOS 6.6. Before sampling each coordinate yi, for i = 0, . . . , n−1, we
flush the monitored cache lines using the clflush instruction. After sampling the
coordinate, we reload the monitored cache lines and measure the response time.
We compare the response times to a pre-defined threshold value to determine
whether the cache lines were accessed by the sampling algorithm.

A visualization of the Flush+Reload measurements for CDT sampling
is given in Fig. 6.1. Using the intersection and last-jump weakness of the CDT
sampler in cache-memory, we can determine which value is sampled by the victim
by probing two locations in memory. To reduce the number of false positives, we
focus on one of the weaknesses (given in the full version [4, Table B.1]) as a target
for the Flush+Reload. This means that the other weaknesses are not detected
and we need to observe more signatures than with a perfect side-channel, before
we collect enough columns to start with the offline part of the attack.

We executed 50 repeated attacks against BLISS-I, probing the last-jump
weakness for {γ1, γ2} = {55, 56}. We completely recovered the private key in 46
out of the 50 cases. On average we require 3438 signatures for the attack, to
collect m = 2n = 1024 equations. We tried LLL five times after the collection
and considered the experiment a failure if we did not find the secret key in these
five times. We stress that this is not the optimal strategy to minimize the number
of required signatures or to maximize the success probability. However, it is an
indication that this proof-of-concept attack is feasible.

Flush, Gauss, and Reload 341

yi ∈ {γ1, γ2}

Fig. 6.1. Visualization of Flush+Reload measurements of table look-ups for BLISS-I
using CDT sampling with guide table I. Two locations in memory are probed, denoted
in the vertical axis by 0, 1, and they represent two adjacent cache-lines. For inter-
val I[51] = [54, 57], there is a last-jump weakness for {γ1, γ2} = {55, 56}, where the
outcome of |yi| is biased towards γ1 = 55 with α = 0.0246. For each coordinate (the
horizontal axis), we get a response time for each location we probe: dark regions denote
a long response time, while lighter regions denote a short response time. When both of
the probed locations give a fast response, it means the victim accessed both cache-lines
for sampling yi. In this case the attacker knows that |yi| ∈ {55, 56}; here for i = 8 and
i = 41.

6.2. Other Processors. We also experimented with a newer processor (Intel
core i7-5650U) and found that this processor has a more aggressive prefetcher.
In particular, memory locations near the start and the end of the page are more
likely to be prefetched. Consequently, the alignment of the tables within the page
can affect the attack success rate. We find that in a third of the locations within
a page the attack fails, whereas in the other two thirds it succeeds with proba-
bilities similar to those on the older processor. We note that, as demonstrated in
the full version [4, Table B.1], there are often multiple weaknesses in the CDT.
While some weaknesses may fall in unexploitable memory locations, others may
still be exploitable.

6.3. FLUSH+RELOAD on Bernoulli Sampling. For attacking BLISS using
Bernoulli sampling, we need to measure if table ET has been accessed at all.
Due to the spatial prefetcher we are unable to probe all of the cache lines of
ET. Instead, we flush all cache lines containing ET before sampling and reload
only even cache lines after the sampling. Flushing even cache lines is required for
the Flush+Reload attack. We flush the odd cache lines to trigger the spatial
prefetcher, which will prefetch the paired even cache lines when the sampling
accesses an odd cache line. Thus, flushing all of the cache lines gives us a complete
coverage of the table even though we only reload half of the cache lines.

Since we do not get error-free side-channel information, we are likely to collect
some c with 〈s, ci〉 �= 0 as columns in L. Instead of computing the kernel (as in
the idealized setting) we used LLL (as in CDT) to handle small errors and we
gathered more than n columns and randomized the selection of L.

We tested the attack on a MacBook air with the newer processor (Intel
core i7-5650U) running Mac OS X El Capitan. We executed 50 repeated attacks
against BLISS-I, probing three out of the six cache lines that cover the ET table.
We completely recovered the private key in 44 of these samples. On average we
required 3294 signatures for the attack to collect m = n + 100 = 612 equations.

342 Leon Groot Bruinderink, Andreas Hülsing, Tanja Lange, and Yuval Yarom

The experiment is considered a failure if we did not find the secret key after
trying LLL five times.

6.4. Conclusion. Our proof-of-concept implementation demonstrates that in
many cases we can overcome the limitations of processor optimizations and
perform the attack on BLISS. The attack, however, requires a high degree of
synchronization between the attacker and the victim, which we achieve by mod-
ifying the victim code. For a similar level of synchronization in a real attack
scenario, the attacker will have to be able to find out when each coordinate is
sampled. One possible approach for achieving this is to use the attack of Gul-
lasch et al. [13] against the Linux Completely Fair Scheduler. The combination
of a cache attack with the attack on the scheduler allows the attacker to monitor
each and every table access made by the victim, which is more than required for
our attacks.

7 Discussion of Candidate Countermeasures

In this paper we presented cache attacks on two different discrete Gaussian
samplers. In the following we discuss some candidate countermeasures against
our specific attacks but note that other attacks might still be possible. A standard
countermeasure against cache-attacks are constant-time accesses.

Constant-time table accesses, meaning accessing every element of the table
for every coordinate of the noise vector, were also discussed (and implemented)
by Bos et al. [3] for key exchange. This increased the number of table accesses
by about two orders of magnitude. However, in the case of signatures the tables
are much larger than for key exchange: a much larger standard deviation for the
discrete Gaussian distribution is required. For 128 bits of security, a standard
deviation σ = 8/

√
2π ≈ 3.19 suffices for key exchange, resulting in a table size of

52 entries. In contrast, BLISS-I uses a standard deviation of σ = 215, resulting in
a table size of 2580 entries. It therefore seems that this countermeasure induces
significant overhead for signatures: at least as much as for the key exchange.
It might be the case that constant-time accesses to a certain part of the table
is already sufficient as a countermeasure against our attack, but it is unclear
how to do this precisely. One might think that constant-time accesses to table
I in the CDT sampler is already sufficient as a countermeasure. In this case,
the overhead is somewhat smaller, since I contains 256 entries. However, the
last-jump weakness only uses the knowledge of accesses in the T table, which is
still accessible in that case.

In the case of the Bernoulli-based sampler, doing constant-time table accesses
does not induce that much overhead: the size of table ET is about � ≈ 2 log K.
This means swapping line 2 and 3 of Algorithm 2.7 might prevent our attack as all
elements of ET are always accessed. Note that removing line 4 of Algorithm 2.7
(and returning 0 or 1 at the end of the loop) does not help as a countermeasure.
It does make the sampler constant-time, but we do not exploit that property.
We exploit the fact that table accesses occur, depending on the input.

Flush, Gauss, and Reload 343

A concurrent work by Saarinen [32] discusses another candidate counter-
measure: the VectorBlindSample procedure. The VectorBlindSample procedure
basically samples m vectors of discrete Gaussian values with a smaller standard
deviation, shuffles them in between, and adds the results. The problem of directly
applying our attack is that we need side-channel information of all summands
for a coefficient. The chances for this are quite small. However, it does neither
mean that other attacks are not possible nor that it is impossible to adapt our
attack.

Acknowledgements. The authors would like to thank Daniel J. Bernstein and Léo
Ducas for fruitful discussions and suggestions.

References

1. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange -
a new hope. IACR Cryptology ePrint Archive 2015/1092 (2015)

2. Bernstein, D.J.: Cache-timing attacks on AES (2005). Preprint available at http://
cr.yp.to/antiforgery/cachetiming-20050414.pdf

3. Bos, J.W., Costello, C., Naehrig, M., Stebila, D.: Post-quantum key exchange for
the TLS protocol from the ring learning with errors problem. In: S&P 2015, pp.
553–570. IEEE Computer Society (2015)

4. Groot Bruinderink, L., Hülsing, A., Lange, T., Yarom, Y.: Flush, Gauss, and
reload - a cache attack on the BLISS lattice-based signature scheme. IACR Cryp-
tology ePrint Archive 2016/300 (2016)

5. Buchmann, J., Cabarcas, D., Göpfert, F., Hülsing, A., Weiden, P.: Discrete Ziggu-
rat: a time-memory trade-off for sampling from a Gaussian distribution over the
integers. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC 2013. LNCS, vol. 8282,
pp. 402–418. Springer, Heidelberg (2014)

6. Chen, H.-C., Asau, Y.: On generating random variates from an empirical distrib-
ution. AIIE Trans. 6(2), 163–166 (1974)

7. Chen, L., Liu, Y.-K., Jordan, S., Moody, D., Peralta, R., Perlner, R., Smith-Tone,
D.: Report on post-quantum cryptography. NISTIR 8105, Draft, February 2016

8. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: BLISS: Bimodal Lattice
Signature Schemes (2013). http://bliss.di.ens.fr/

9. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and
bimodal Gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I.
LNCS, vol. 8042, pp. 40–56. Springer, Heidelberg (2013)

10. Dwarakanath, N.C., Galbraith, S.D.: Sampling from discrete Gaussians for lattice-
based cryptography on a constrained device. Appl. Algebra Eng. Commun. Com-
put. 25(3), 159–180 (2014)

11. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Dwork, C. (ed.) STOC 2008, pp. 197–206. ACM
(2008)

12. Gruss, D., Spreitzer, R., Mangard, S.: Cache template attacks: Automating attacks
on inclusive last-level caches. In: Jung, J., Holz, T. (eds.) USENIX Security 2015,
pp. 897–912. USENIX Association (2015)

13. Gullasch, D., Bangerter, E., Krenn, S.: Cache games – bringing access-based cache
attacks on AES to practice. In: S&P 2011, pp. 490–505. IEEE Computer Society
(2011)

http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://bliss.di.ens.fr/

344 Leon Groot Bruinderink, Andreas Hülsing, Tanja Lange, and Yuval Yarom

14. Güneysu, T., Lyubashevsky, V., Pöppelmann, T.: Practical lattice-based cryptog-
raphy: a signature scheme for embedded systems. In: Prouff, E., Schaumont, P.
(eds.) CHES 2012. LNCS, vol. 7428, pp. 530–547. Springer, Heidelberg (2012)

15. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosys-
tem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer,
Heidelberg (1998)

16. Intel Corporation. Intel 64 and IA-32 Architectures Optimization Reference Man-
ual, April 2012

17. Irazoqui, G., Inci, M.S., Eisenbarth, T., Sunar, B.: Wait a minute! A fast, cross-
VM attack on AES. In: Stavrou, A., Bos, H., Portokalidis, G. (eds.) RAID 2014.
LNCS, vol. 8688, pp. 299–319. Springer, Heidelberg (2014)

18. ETSI Quantum-Safe Cryptography (QSC) ISG. Quantum-safe cryptography. ETSI
working group (2015). http://www.etsi.org/technologies-clusters/technologies/
quantum-safe-cryptography

19. L’Ecuyer, P.: Non-uniform random variate generations. In: Lovric, M. (ed.) Inter-
national Encyclopedia of Statistical Science, pp. 991–995. Springer, Heidelberg
(2011)

20. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational
coefficients. Math. Ann. 261(4), 515–534 (1982)

21. Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryp-
tion. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer,
Heidelberg (2011)

22. Liu, F., Yarom, Y., Ge, Q., Heiser, G., Lee, R.B.: Last-level cache side-channel
attacks are practical. In: S&P 2015, pp. 605–622. IEEE Computer Society (2015)

23. NSA. NSA Suite B Cryptography. NSA website (2015). https://www.nsa.gov/ia/
programs/suiteb cryptography/

24. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: the
case of AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1–20.
Springer, Heidelberg (2006)

25. Peikert, C.: An efficient and parallel Gaussian sampler for lattices. In: Rabin, T.
(ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 80–97. Springer, Heidelberg (2010)

26. Peikert, C.: Lattice cryptography for the internet. In: Mosca, M. (ed.) PQCrypto
2014. LNCS, vol. 8772, pp. 197–219. Springer, Heidelberg (2014)

27. Percival, C.: Cache missing for fun and profit. In: BSDCan 2005 (2005)
28. van de Pol, J., Smart, N.P., Yarom, Y.: Just a little bit more. In: Nyberg, K. (ed.)

CT-RSA 2015. LNCS, vol. 9048, pp. 3–21. Springer, Heidelberg (2015)
29. Pöppelmann, T., Ducas, L., Güneysu, T.: Enhanced lattice-based signatures on

reconfigurable hardware. In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS,
vol. 8731, pp. 353–370. Springer, Heidelberg (2014)

30. Pöppelmann, T., Güneysu, T.: Towards practical lattice-based public-key encryp-
tion on reconfigurable hardware. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC
2013. LNCS, vol. 8282, pp. 68–86. Springer, Heidelberg (2014)

31. Roy, S.S., Vercauteren, F., Verbauwhede, I.: High precision discrete Gaussian sam-
pling on FPGAs. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC 2013. LNCS,
vol. 8282, pp. 383–401. Springer, Heidelberg (2014)

32. Saarinen, M.-J.O.: Arithmetic coding and blinding countermeasures for ring-LWE.
IACR Cryptology ePrint Archive 2016/276 (2016)

33. Shoup, V.: NTL: a library for doing number theory (2015). http://www.shoup.
net/ntl/

34. strongSwan. strongSwan 5.2.2 released, January 2015. https://www.strongswan.
org/blog/2015/01/05/strongswan-5.2.2-released.html

http://www.etsi.org/technologies-clusters/technologies/quantum-safe-cryptography
http://www.etsi.org/technologies-clusters/technologies/quantum-safe-cryptography
https://www.nsa.gov/ia/programs/suiteb_cryptography/
https://www.nsa.gov/ia/programs/suiteb_cryptography/
http://www.shoup.net/ntl/
http://www.shoup.net/ntl/
https://www.strongswan.org/blog/2015/01/05/strongswan-5.2.2-released.html
https://www.strongswan.org/blog/2015/01/05/strongswan-5.2.2-released.html

Flush, Gauss, and Reload 345

35. Yarom, Y., Benger, N.: Recovering OpenSSL ECDSA nonces using the Flush+
Reload cache side-channel attack. IACR Cryptology ePrint Archive 2014/140
(2014)

36. Yarom, Y., Falkner, K.: Flush+Reload: a high resolution, low noise, L3 cache
side-channel attack. In: Fu, K., Jung, J. (eds.) USENIX Security 2014, pp. 719–732.
USENIX Association (2014)

37. Zhang, J., Zhang, Z., Ding, J., Snook, M., Dagdelen, Ö.: Authenticated key
exchange from ideal lattices. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT
2015. LNCS, vol. 9057, pp. 719–751. Springer, Heidelberg (2015)

38. Zhang, Y., Juels, A., Reiter, M.K., Ristenpart, T.: Cross-tenant side-channel
attacks in PaaS clouds. In: CCS 2014, pp. 990–1003. ACM (2014)

CacheBleed: A Timing Attack on OpenSSL
Constant Time RSA

Yuval Yarom1(B), Daniel Genkin2, and Nadia Heninger3

1 The University of Adelaide and NICTA, Adelaide, Australia
yval@cs.adelaide.edu.au

2 Technion and Tel Aviv University, Tel Aviv, Israel
danielg3@cs.technion.ac.il

3 University of Pennsylvania, Philadelphia, USA
nadiah@cis.upenn.edu

Abstract. The scatter-gather technique is a commonly implemented
approach to prevent cache-based timing attacks. In this paper we show
that scatter-gather is not constant time. We implement a cache timing
attack against the scatter-gather implementation used in the modular
exponentiation routine in OpenSSL version 1.0.2f. Our attack exploits
cache-bank conflicts on the Sandy Bridge microarchitecture. We have
tested the attack on an Intel Xeon E5-2430 processor. For 4096-bit RSA
our attack can fully recover the private key after observing 16,000 decryp-
tions.

Keywords: Side-channel attacks · Cache attacks · Cryptographic
implementations · Constant-time · RSA

1 Introduction

1.1 Overview

Side-channel attacks are a powerful method for breaking theoretically secure
cryptographic primitives. Since the first works by Kocher [33], these attacks
have been used extensively to break the security of numerous cryptographic
implementations. At a high level, it is possible to distinguish between two types
of side-channel attacks, based on the methods used by the attacker: hardware-
based attacks, which monitor the leakage through measurements (usually using
dedicated lab equipment) of physical phenomena such as electromagnetic radia-
tion [43], power consumption [31,32], or acoustic emanation [22], and software-
based attacks, which do not require additional equipment but rely instead on
the attacker software running on or interacting with the target machine. Exam-
ples of the latter include timing attacks which measure timing variations of
cryptographic operations [7,16,17] and cache attacks which observe cache access
patterns [40,41,49].

Percival [41] published in 2005 a cache attack, which targeted the OpenSSL [39]
0.9.7c implementation of RSA. In this attack, the attacker and the victim pro-
grams are colocated on the same machine and processor, and thus share the
c© International Association for Cryptologic Research 2016
B. Gierlichs and A.Y. Poschmann (Eds.): CHES 2016, LNCS 9813, pp. 346–367, 2016.
DOI: 10.1007/978-3-662-53140-2 17

CacheBleed: A Timing Attack on OpenSSL Constant Time RSA 347

same processor cache. The attack exploits the structure of the processor cache by
observing minute timing variations due to cache contention. The cache consists
of fixed-size cache lines. When a program accesses a memory address, the cache-
line-sized block of memory that contains this address is stored in the cache and
is available for future use. The attack traces the changes that the victim program
execution makes in the cache and, from this trace, the attacker is able to recover
the private key used for the decryption.

In order to implement the modular exponentiation routine required for per-
forming RSA public and secret key operations, OpenSSL 0.9.7c uses a sliding-
window exponentiation algorithm [11]. This algorithm precomputes some values,
called multipliers, which are used throughout the exponentiation. The access
pattern to these precomputed multipliers depends on the exponent, which, in
the case of decryption and digital signature operations, should be kept secret.
Because each multiplier occupies a different set of cache lines, Percival [41] was
able to identify the accessed multipliers and from that recover the private key.
To mitigate this attack, Intel implemented a countermeasure that changes the
memory layout of the precomputed multipliers. The countermeasure, often called
scatter-gather, interleaves the multipliers in memory to ensure that the same
cache lines are accessed irrespective of the multiplier used [14]. While this coun-
termeasure ensures that the same cache lines are always accessed, the offsets of
the accessed addresses within these cache lines depend on the multiplier used
and, ultimately, on the private key.

Both Bernstein [7] and Osvik et al. [40] have warned that accesses to different
offsets within cache lines may leak information through timing variations due to
cache-bank conflicts. To facilitate concurrent access to the cache, the cache is
often divided into multiple cache banks. Concurrent accesses to different cache
banks can always be handled, however each cache bank can only handle a limited
number of concurrent requests—often a single request at a time. A cache-bank
conflict occurs when too many requests are made concurrently to the same cache
bank. In the case of a conflict, some of the conflicting requests are delayed.
While timing variations due to cache-bank conflicts are documented in the Intel
Optimization Manual [28], no attack exploiting these has ever been published. In
the absence of a demonstrated risk, Intel continued to contribute code that uses
scatter-gather to OpenSSL [23,24] and to recommend the use of the technique
for side-channel mitigation [12,13]. Consequently, the technique is in widespread
use in the current versions of OpenSSL and its forks, such as LibreSSL [35]
and BoringSSL [10]. It is also used in other cryptographic libraries, such as the
Mozilla Network Security Services (NSS) [38].

1.2 Our Contribution

In this work we present CacheBleed, the first side-channel attack to systemati-
cally exploit cache-bank conflicts. In Sect. 3 we describe how CacheBleed creates
contention on a cache bank and measures the timing variations due to conflicts
and in Sect. 4 we use CacheBleed in order to attack the scatter-gather imple-
mentation of OpenSSL’s modular exponentiation routine. After observing 16,000

348 Y. Yarom et al.

RSA decryptions or signing operations, we are able to recover 60 % of the secret
exponent bits. To find the remaining bits we adapt the Heninger-Shacham algo-
rithm [25] for the information we collect with CacheBleed. In order to achieve full
key extraction, our attack requires about two CPU hours. Parallelizing across
multiple CPUs, we achieved key extraction in only a few minutes. See Sect. 5 for
a more complete discussion.

1.3 Targeted Software and Hardware

Software. In this paper we target the modular exponentiation operation as
implemented in OpenSSL version 1.0.2f which was the latest version of OpenSSL
prior to our disclosure to OpenSSL. As mentioned above, similar (and thus
potentially vulnerable) code can be found in several forks of OpenSSL such as
LibreSSL [35] and BoringSSL [10]. Other cryptographic libraries, such as the
Mozilla Network Security Services (NSS) [38] use similar techniques and may be
vulnerable as well.

Hardware. Our attacks exploit cache-bank conflicts present in Intel Sandy
Bridge Processor family. We ran our experiments on an Intel Xeon E5-2430
processor which is a six-core Sandy Bridge machine with a 2.20 GHZ clock. Our
target machine is running CentOS 6.7 installed with its default parameters and
with huge pages enabled.

Disclosure and Mitigation. We have reported our results to the developers of
OpenSSL, LibreSSL, NSS, and BoringSSL. We worked with the OpenSSL devel-
opers to evaluate and deploy countermeasures to prevent the attacks described
in this paper (CVE-2016-0702). These countermeasures were subsequently incor-
porated into OpenSSL 1.0.2g and BoringSSL. The LibreSSL development team
notified us that they are still working on a patch. The current version (2.4.0)
appears to remain vulnerable. For NSS, our attack was documented under
Mozilla bug 1252035. The bug documentation indicates that the fix is sched-
uled to be included in version 3.24.

2 Background

2.1 OpenSSL’s RSA Implementation

RSA [44] is a public-key cryptosystem which supports both encryption and dig-
ital signatures. To generate an RSA key pair, the user generates two prime
numbers p, q and computes N = pq. Next, given a public exponent e (OpenSSL
uses e = 65537), the user computes the secret exponent d ≡ e−1 mod φ(N).
The public key is the integers e and N and the secret key is d and N . In text-
book RSA encryption, a message m is encrypted by computing me mod N and
a ciphertext c is decrypted by computing cd mod N .

CacheBleed: A Timing Attack on OpenSSL Constant Time RSA 349

Algorithm 1. Fixed-window exponentiation

input : window size w, base a, modulus k, n-bit exponent b =
∑�n/w�

i=0 2wi · bi
output: ab mod k

//Precomputation
a0 ← 1
for j = 1, . . . , 2w − 1 do

aj ← aj−1 · a mod k
end

//Exponentiation
r ← 1
for i = �n/w� − 1, . . . , 0 do

for j = 1, . . . , w do
r ← r2 mod k

end
r ← r · abi mod k

end
return r

RSA-CRT. RSA decryption is often implemented using the Chinese remainder
theorem (CRT), which provides a speedup over exponentiation mod n. Instead
of computing cd mod n directly, RSA-CRT splits the secret key d into two parts
dp = d mod (p − 1) and dq = d mod (q − 1), and then computes two parts of the
message as mp = cdp mod p and mq = cdq mod q. The message m can then be
recovered from mp and mq using Garner’s formula [21]:

h = (mp − mq)(q−1 mod p) mod p and m = mq + hq.

The main operation performed during RSA decryption is the modular expo-
nentiation, that is, calculating ab mod k for some secret exponent b. Several
algorithms for modular exponentiation have been suggested. In this work we are
interested in the two algorithms that OpenSSL has used.

Fixed-Window Exponentiation. In the fixed-window exponentiation algo-
rithm, also known as m-ary exponentiation, the n-bit exponent b is represented
as an �n/w� digit integer in base 2w for some chosen window size w. That is,
b is rewritten as b =

∑�n/w�−1
i=0 2wi · bi where 0 ≤ bi < 2w. The pseudocode

in Algorithm 1 demonstrates the fixed-window exponentiation algorithm. In the
first step, the algorithm precomputes a set of multipliers aj = aj mod k for
0 ≤ j < 2w. It then scans the base 2w representation of b from the most signifi-
cant digit (b�n/w�−1) to the least significant (b0). For each digit bi it squares an
intermediate result w times and then multiplies the intermediate result by abi .
Each of the square or multiply operations is followed by a modular reduction.

Sliding-Window Exponentiation. The sliding-window algorithm represents
the exponent b as a sequence of digits bi such that b =

∑n−1
i=0 2i · bi, with bi

350 Y. Yarom et al.

being either 0 or an odd number 0 < bi < 2w. The algorithm first precomputes
a1, a3, . . . a2w−1 as in the fixed-window case. It then scans the exponent from the
most significant to the least significant digit. For each digit, the algorithm squares
the intermediate result. For non-zero digit bi, it also multiplies the intermediate
result by abi .

The main advantages of the sliding-window algorithm over the fixed-window
algorithm are that, for the same window size, sliding window needs to precom-
pute half the number of multipliers, and that fewer multiplications are required
during the exponentiation. The sliding-window algorithm, however, leaks the
position of the non-zero multipliers to adversaries who can distinguish between
squaring and multiplication operations. Furthermore, the number of squaring
operations between consecutive multipliers may leak the values of some zero
bits. Up to version 0.9.7c, OpenSSL used sliding-window exponentiation. As part
of the mitigation of the Percival [41] cache attack, which exploits these leaks,
OpenSSL changed their implementation to use the fixed-window exponentiation
algorithm.

Since both algorithms precompute a set of multipliers and access them
throughout the exponentiation, a side-channel attack that can discover which
multiplier is used in the multiplication operations can recover the digits bi and
from them obtain the secret exponent b.

2.2 The Intel Cache Hierarchy

We now turn our attention to the cache hierarchy in modern Intel processors.
The cache is a small, fast memory that exploits the temporal and spatial locality
of memory accesses to bridge the speed gap between the faster CPU and slower
memory. In the processors we are interested in, the cache hierarchy consists of
three levels of caching. The top level, known as the L1 cache, is the closest to the
execution core and is the smallest and the fastest cache. Each successive cache
level is larger and slower than the preceding one, with the last-level cache (LLC)
being the largest and slowest.

Cache Structure. The cache stores fixed-sized chunks of memory called cache
lines. Each cache line holds 64 bytes of data that come from a 64-byte aligned
block in memory. The cache is organized as multiple cache sets, each consisting
of a fixed number of ways. A block of memory can be stored in any of the ways of
a single cache set. For the higher cache levels, the mapping of memory blocks to
cache sets is done by selecting a range of address bits. For the LLC, Intel uses an
undisclosed hash function to map memory blocks to cache sets [30,37,50]. The
L1 cache is divided into two sub caches: the L1 data cache (L1-D) which caches
the data the program accesses, and the L1 instruction cache (L1-I) which caches
the code the program executes. In multi-core processors, each of the cores has a
dedicated L1 cache. However, multithreaded cores share the L1 cache between
the two threads.

CacheBleed: A Timing Attack on OpenSSL Constant Time RSA 351

Cache Sizes. In the Intel Sandy Bridge microarchitecture, each of the L1-D
and L1-I caches has 64 sets and 8 ways to a total capacity of 64 · 8 · 64 = 32, 768
bytes. The L2 cache has 512 sets and 8 ways, with a size of 256 KiB. The L2
cache is unified, storing both data and instructions. Like the L1 cache, each core
has a dedicated L2 cache. The L3 cache, or the LLC, is shared by all of the cores
of the processor. It has 2,048 sets per core, i.e. the LLC of a four core processor
has 8,192 cache sets. The number of ways varies between processor models and
ranges between 12 and 20. Hence the size of the LLC of a small dual core
processor is 3 MiB, whereas the LLC of an 8-cores processor can be in the order
of 20 MiB. The Intel Xeon E5-2430 processor we used for our experiments is a 6-
core processor with a 20-way LLC of size 15 MiB. More recent microarchitectures
support more cores and more ways, yielding significantly larger LLCs.

Cache Lookup Policy. When the processor attempts to access data in mem-
ory, it first looks for the data in the L1 cache. In a cache hit, the data is found
in the cache. Otherwise, in a cache miss, the processor searches for the data in
the next level of the cache hierarchy. By measuring the time to access data, a
process can distinguish cache hits from misses and identify whether the data was
cached prior to the access.

2.3 Microarchitectural Side-Channel Attacks

In this section we review related works on microarchitectural side-channel timing
attacks. These attacks exploit timing variations that are caused by contention
on microarchitectural hardware resources in order to leak information on the
usage of these resources, and indirectly on the internal operation of the victim.
Acıiçmez and Seifert [5] distinguish between two types of channels: those that
rely on a persistent state and those that exploit a transient state. Persistent-state
channels exploit the limited storage space within the targeted microarchitectural
resource. Transient-state channels, in contrast, exploit the limited bandwidth of
the targeted element.

Persistent-State Attacks. The Prime+Probe attack [40,41] is an example
of a persistent-state attack. The attack exploits the limited storage space in cache
sets to identify the sets used for the victim’s data. The attacker preloads data to
the cache and allows the victim to execute before measuring the time to access
the preloaded data. When the victim accesses its data it is loaded into the cache,
replacing some of the attacker’s preloaded data. Accessing data that has been
replaced will take longer than accessing data still in the cache. Thus the attacker
can identify the cache sets that the victim has accessed. Persistent-state channels
have targeted the L1 data cache [7,15,40,41], the L1 instruction cache [1,4,
51], the branch prediction buffer [2,3], the last-level cache [27,29,36,46,49], and
DRAM open rows [42]. The Prime+Probe attack was used to recover the
accessed multipliers in the sliding-window exponentiation of OpenSSL 0.9.7c [41]
and of GnuPG 1.4.18 [27,36].

352 Y. Yarom et al.

Transient-State Attacks. Transient-state channels have been investigated
mostly within the context of covert channels, where a Trojan process tries to
covertly exfiltrate information. The idea dates back to Lampson [34] who sug-
gests that processes can leak information by modifying their CPU usage. Covert
channels were also observed with shared bus contention [26,48], Acıiçmez and
Seifert [5] are the first to publish a side-channel attack based on a transient
state. The attack monitors the usage of the multiplication functional unit in a
hyperthreaded processor. Monitoring the unit allows an attacker to distinguish
between the square and the multiply phases of modular exponentiation. The
attack was tested on a victim running fixed-window exponentiation, so no secret
information was obtained.

Another transient-state channel uses bus contention to leak side-channel
information [47]. By monitoring the capacity of the memory bus allocated to the
attacker, the attacker is able to distinguish the square and the multiply steps.
Because the attack of [47] was only demonstrated in a simulator, the question
of whether actual hardware leaks such high-resolution information is still open.

2.4 Scatter-Gather Implementation

One of the countermeasures Intel recommends against side-channel attacks is to
avoid secret-dependent memory access at coarser than cache line granularity [12,
13]. This approach is manifested in the patch Intel contributed to the OpenSSL
project to mitigate the Percival [41] attack. The patch1 changes the layout of
the multipliers in memory. Instead of storing the data of each of the multipliers
in consecutive bytes in memory, the new layout scatters each multiplier across
multiple cache lines [14]. Before use, the fragments of the required multiplier are
gathered to a single buffer which is used for the multiplication. Figure 1 contrasts
the conventional memory layout of the multipliers with the layout used in the
scatter-gather approach. This scatter-gather design ensures that the order of
accessing cache lines when performing a multiplication is independent of the
multiplier used.

Because Intel cache lines are 64 bytes long, the maximum number of multi-
pliers that can be used with scatter-gather is 64. For large exponents, increasing
the number of multipliers reduces the number of multiply operations performed
during the exponentiations. Gopal et al. [23] suggest dividing the multipliers into
16-bit fragments rather than into bytes. This improves performance by allowing
loads of two bytes in a single memory access, at the cost of reducing the max-
imum number of multipliers to 32. Gueron [24] recommends 32-bit fragments,
thus reducing the number of multipliers to 16. He shows that the combined
savings from the reduced number of memory accesses and the smaller cache
footprint of the multipliers outweighs the performance loss due to the added
multiplications required with less multipliers.

1 https://github.com/openssl/openssl/commit/46a643763de6d8e39ecf6f76fa79b
4d04885aa59.

https://github.com/openssl/openssl/commit/46a643763de6d8e39ecf6f76fa79b4d04885aa59
https://github.com/openssl/openssl/commit/46a643763de6d8e39ecf6f76fa79b4d04885aa59

CacheBleed: A Timing Attack on OpenSSL Constant Time RSA 353

Fig. 1. Conventional (left) vs. scatter-gather (right) memory layout.

The OpenSSL Scatter-Gather Implementation. The implementation of
exponentiation in the current version of OpenSSL (1.0.2f) deviates slightly from
the layout described above. For 2048-bit and 4096-bit key sizes the implementa-
tion uses a fixed-window algorithm with a window size of 5, requiring 32 mul-
tipliers. Instead of scattering the multipliers in each cache line, the multipliers
are divided into 64-bit fragments, scattered across groups of four consecutive
cache lines. (See Fig. 2.) That is, the table that stores the multipliers is divided
into groups of four consecutive cache lines. Each group of four consecutive cache
lines stores one 64-bit fragment of each multiplier. To avoid leaking informa-
tion on the particular multiplier used in each multiplication, the gather process
accesses all of the cache lines and uses a bit mask pattern to select the ones
that contain fragments of the required multiplier. Furthermore, to avoid copy-
ing the multiplier data, the implementation combines the gather operation with
the multiplication. This spreads the access to the scattered multiplier across the
multiplication.

Key-Dependent Memory Accesses. Because the fragments of each multi-
plier are stored in a fixed offset within the cache lines, all of the scatter-gather
implementations described above have memory accesses that depend on the mul-
tiplier used and thus on the secret key. For a pure scatter-gather approach, the
multiplier is encoded in the low bits of the addresses accessed during the gather
operation. For the case of OpenSSL’s implementation, only the three least sig-
nificant bits of the multiplier number are encoded in the address while the other
two bits are used as the index of the cache line within the group of four cache
lines that contains the fragment.

We note that because these secret-dependent accesses are at a finer than
cache line granularity, the scatter-gather approach has been considered secure
against side-channel attacks [24].

354 Y. Yarom et al.

Fig. 2. The memory layout of the multipliers table in OpenSSL

2.5 Intel L1 Cache Banks

With the introduction of superscalar computing in Intel processors, cache band-
width became a bottleneck for processor performance. To alleviate the issue,
Intel introduced a cache design consisting of multiple banks [6]. Each of the
banks serves part of the cache line specified by the offset in the cache line. The
banks can operate independently and serve requests concurrently. However, each
bank can only serve one request at a time. When multiple accesses to the same
bank are made concurrently, only one access is served, while the rest are delayed
until the bank can handle them.

Fog [18] notes that cache-bank conflicts prevent instructions from executing
simmultaneously on Pentium processors. Delays due to cache-bank conflicts are
also documented for other processor versions [19,20,28].

Both Bernstein [7] and Osvik et al. [40] mention that cache-bank conflicts
cause timing variations and warn that these may result in a timing channel
which may leak information about low address bits. Tromer et al. [45] note
that while scatter-gather has no secret-dependent accesses to cache lines, it does
have secret-dependent access to cache banks. Bernstein and Schwabe [8] demon-
strate timing variations due to conflicts between read and write instructions
on addresses within the same cache bank and suggest these may affect crypto-
graphic software. However, although the risk of side-channel attacks based on
cache-bank conflicts has been identified long ago, no attacks exploiting them
have ever been published.

3 The CacheBleed Attack

We now proceed to describe CacheBleed, the first side-channel attack to system-
atically exploit cache-bank conflicts. The attack identifies the times at which a

CacheBleed: A Timing Attack on OpenSSL Constant Time RSA 355

victim accesses data in a monitored cache bank by measuring the delays caused
by contention on the cache bank.

In our attack scenario, we assume that the victim and the attacker run con-
currently on two hyperthreads of the same processor core. Thus, the victim and
the attacker share the L1 data cache. Recall that the Sandy Bridge L1 data cache
is divided into multiple banks and that the banks cannot handle concurrent load
accesses. The attacker issues a large number of load accesses to a cache bank
and measures the time to fulfill these accesses. If during the attack the victim
also accesses the same cache bank, the victim accesses will contend with the
attacker for cache bank access, causing delays in the attack. Hence, when the
victim accesses the monitored cache bank the attack will take longer than when
the victim accesses other cache banks.

To implement CacheBleed we use the code in Listing 1. The bulk of the code
(Lines 4–259) consists of 256 addl instructions that read data from addresses
that are all in the same cache bank. (The cache bank is selected by the low bits
of the memory address in register r9.) We use four different destination registers
to avoid contention on the registers themselves. Before starting the accesses, the
code takes the value of the current cycle counter (Line 1) and stores it in register
r10 (Line 2). After performing 256 accesses, the previously stored value of the
cycle counter is subtracted from the current value, resulting in the number of
cycles that passed during the attack.

1 rdtscp
2 movq %rax , %r10
3
4 addl 0x000(%r9) , %eax
5 addl 0x040(%r9) , %ecx
6 addl 0x080(%r9) , %edx
7 addl 0x0c0(%r9) , %ed i
8 addl 0x100(%r9) , %eax
9 addl 0x140(%r9) , %ecx

10 addl 0x180(%r9) , %edx
11 addl 0x1c0(%r9) , %ed i

.

.

.
256 addl 0 xf00(%r9) , %eax
257 addl 0 xf40(%r9) , %ecx
258 addl 0 xf80(%r9) , %edx
259 addl 0 x fc0(%r9) , %ed i
260
261 rdtscp
262 subq %r10 , %rax

Listing 1. Cache-Bank Collision Attack Code

356 Y. Yarom et al.

We run the attack code on an Intel Xeon E5-2430 processor—a six-core Sandy
Bridge processor, with a clock rate of 2.20 GHz. Figure 3 shows the histogram of
the running times of the attack code under several scenarios.2

Scenario 1: Idle. In the first scenario, idle hyperthread, the attacker is the only
program executing on the core. That is, one of the two hyperthreads executes
the attack code while the other hyperthread is idle. As we can see, the attack
takes around 230 cycles, clearly showing that the Intel processor is superscalar
and that the cache can handle more than one access in a CPU cycle.

Scenario 2: Pure Compute. The second scenario has a victim running a
computation on the registers, without any memory access. As we can see, access
in this scenario is slower than when there is no victim. Because the victim does
not perform memory accesses, cache-bank conflicts cannot explain this slowdown.
Hyperthreads, however, share most of the resources of the core, including the
execution units, read and write buffers and the register allocation and renaming
resources [20]. Contention on any of these resources can explain the slowdown
we see when running a pure-compute victim.

Scenario 3: Pure Memory. At the other extreme is the pure memory victim,
which continuously accesses the cache bank that the attacker monitors. As we
can see, the attack code takes almost twice as long to run in this scenario. The
distribution of attack times is completely distinct from any of the other scenarios.
Hence identifying the victim in this scenario is trivial. This scenario is, however,
not realistic—programs usually perform some calculation.

Scenarios 4 and 5: Mixed Load. The last two scenarios aim to measure a
slightly more realistic scenario. In this case, one in four victim operations is a
memory access, where all of these memory accesses are to the same cache bank.
In this scenario we measure both the case that the victim accesses the monitored
cache line (mixed-load) and when there is no cache-bank contention between
the victim and the attacker (mixed-load–NC). We see that the two scenarios
are distinguishable, but there is some overlap between the two distributions.
Consequently, a single measurement may be insufficient to distinguish between
the two scenarios.

In practice, even this mixed-load scenario is not particularly realistic. Typical
programs will access memory in multiple cache banks. Hence the differences
between measurement distributions may be much smaller than those presented
in Fig. 3. In the next section we show how we overcome this limitation and
correctly identify a small bias in the cache-bank access patterns of the victim.

2 For clarity, the presented histograms show the envelope of the measured data.

CacheBleed: A Timing Attack on OpenSSL Constant Time RSA 357

0%
5%

10%
15%
20%
25%
30%
35%
40%

 200 250 300 350 400 450 500

N
um

be
r

of
 C

as
es

Time (cycles)

Idle hyperthread
Pure compute

Mixed load---NC
Mixed load

Pure memory

Fig. 3. Distribution of time to read 256 entries from a cache bank.

4 Attacking the OpenSSL Modular Exponentiation
Implementation

To demonstrate the technique in a real scenario, we use CacheBleed to attack
the implementation of the RSA decryption in the current version of OpenSSL
(version 1.0.2f). This implementation uses a fixed-window exponentiation with
w = 5. As discussed in Sect. 2.4 OpenSSL uses a combination of the scatter-
gather technique with masking for side-channel attack protection. Recall that
the multipliers are divided into 64-bit fragments. These fragments are scattered
into 8 bins along the cache lines such that the three least significant bits of
the multiplier select the bin. The fragments of a multiplier are stored in groups
of four consecutive cache lines. The two most significant bits of the multiplier
select the cache line out of the four in which the fragments of the multiplier are
stored. See Fig. 2. The multiplication code selects the bin to read using the least
significant bits of the multiplier. It then reads a fragment from the selected bin
in each of the four cache lines and uses masking to select the fragment of the
required multiplier. Because the multiplication code needs to access the multi-
plier throughout the multiplication, the cache banks of the bin containing the
multiplier are accessed more often than other cache banks. We use CacheBleed
to identify the bin and, consequently, to find the three least significant bits of
the multiplier.

Identifying Exponentiations. We begin by demonstrating that it is possible
to identify the exponentiation operations using cache-bank conflicts. Indeed,
using the code in Listing 1, we create a sequence of measurements of cache-bank
conflicts. As mentioned in Sect. 3, the difference between the distributions of
measurements in similar scenarios may be very small. Consequently, a single
measurement is unlikely to be sufficient for identifying the bin used in each
multiplication. To distinguish the distributions, we create multiple sequences
and average the measurements at each trace point to get a trace of the average
measurement time. Figure 4 shows the traces of measurements of two bins, each
averaged over 1,000 decryptions using a 4096-bit key.

358 Y. Yarom et al.

 260

 270

 280

 290

 300

 310

 320

 0 20000 40000 60000 80000 100000

T
im

e
(C

yc
le

s)

Measurement number

Bin 0
Bin 1

Fig. 4. Measurement trace of OpenSSL RSA decryption

 290

 292

 294

 296

 298

 300

 302

 304

 1000 1100 1200 1300 1400 1500

Multiplications

T
im

e
(C

yc
le

s)

Measurement number

Bin 1 Bin 3 Bin 5 Bin 7

Fig. 5. Measurement trace of OpenSSL RSA decryption—detailed view (Color figure
online)

The figure clearly shows the two exponentiations executed as part of the
RSA-CRT calculation. Another interesting feature is that the measurements for
the two bins differ by about 4 cycles. The difference is the result of the OpenSSL
modular reduction algorithm, which accesses even bins more often than odd bins.
Consequently, there is more contention on even bins, and measurements on even
bins take slightly longer than those on odd bins.

Identifying Multiplication Operations. Next, we show that is also possible
to identify the individual multiplication operations performed during the mod-
ular exponentiation operation. Indeed, Fig. 5 shows a small section of the traces
of the odd bins. In these traces, we can clearly see the multiplication operations
(marked with arrows) as well as the spikes for each of the squaring and mod-
ular reduction operations. Recall that the OpenSSL exponentiation repeatedly
calculate sequences of five modular squaring and reduction operations followed
by a modular multiplication.

CacheBleed: A Timing Attack on OpenSSL Constant Time RSA 359

 295

 295.5

 296

 296.5

 297

 297.5

 298

 41100 41200 41300 41400 41500 41600

T
im

e
(C

yc
le

s)

Measurement number

Bin 1 Bin 3 Bin 5 Bin 7

Fig. 6. CacheBleed average trace towards the end of the exponentiation

Identifying Multiplier Values. Note that in the second and fourth multipli-
cations, the measurements in the trace of bin 3 (yellow) take slightly longer than
the measurements of the other bins. This indicates that the three least signifi-
cant digits of the multiplier used in these multiplications are 011. Similarly, the
spike in the green trace observed during the third multiplication indicates that
the three least significant bits of the multiplier used are 001. This corresponds
to the ground truth where the multipliers used in the traced sections are 2, 11,
1, 11.

As we can see, we can extract the multipliers from the trace. However, there
are some practical challenges that complicate both the generation of the traces
and their analysis. We now discuss these issues.

Aligning CacheBleed Measurement Sequences for Averaging. Recall
that the traces shown in Fig. 5 are generated by averaging the sequences of
CacheBleed measurements over 1,000 decryptions. When averaging, we need to
ensure that the sequences align with each other. That is, we must ensure that
each measurement is taken in the same relative time in each multiplication.

To ensure that the sequences are aligned, we use the Flush+Reload
attack [49] to find the start of the exponentiation. Once found, we start
collecting enough CacheBleed measurements to cover the whole exponentia-
tion. Flush+Reload has a resolution of about 500 cycles, ensuring that the
sequences start within 500 cycles, or up to two measurements, of each other.

Relative Clock Drift. Aligning the CacheBleed sequences at the start of the
exponentiation does not result in a clean signal. This is because both the victim
and the attacker are user processes, and they may be interrupted by the oper-
ating system. The most common interruption is due to timer interrupts, which

360 Y. Yarom et al.

 295

 295.5

 296

 296.5

 297

 297.5

 298

 41100 41200 41300 41400 41500 41600

T
im

e
(C

yc
le

s)

Measurement number

Bin 1 Bin 3 Bin 5 Bin 7

Fig. 7. Measurement trace after a lowpass filter

on Linux-based operating systems happen every millisecond. Since each modu-
lar exponentiation in the calculation of a 4096-bit RSA-CRT decryption takes
5 ms, we experience 5 to 6 timer interrupts during the exponentiation. Timer
interrupts can be easily identified because serving them takes over 5,000 cycles,
whereas non-interrupted measurements take around 300 cycles. Consequently, if
a measurement takes more than 1,000 cycles, we assume that it was interrupted
and therefore discard it.

The attacker, however, does not have exact information on the interrupts that
affect the victim, resulting in clock drift between the attacker and the victim.
As we progress through the exponentiation, the signal we capture becomes more
noisy. Figure 6 shows the signal towards the end of the exponentiation. As we
can see, the multiplications are barely visible.

To reduce noise, we pass the signal through a low-pass filter, which removes
high frequencies from the signal and highlights the behavior at the resolution of
one multiplication. Figure 7 shows the result of passing the above trace through
the filter. It is possible to clearly identify three multiplications, using bins 7, 5
and 1.

Aligning Traces of Multiple Bins. As discussed above, measurements in
even bins are slower on average than measurements in odd bins. This creates
two problems. The first is that we need to normalize the traces before compar-
ing them to find the multiplier. The second problem is that we use the measure-
ments as a virtual clock. Consequently, when we measure over a fixed period
of time, traces of even bins will be shorter, i.e., have fewer measurements, than
traces of odd bins. This create a clock shift between traces belonging to even
bins and traces belonging to odd bins, which increases as the exponentiation
progresses. In order to normalize the trace length, we remove element 0 of the

CacheBleed: A Timing Attack on OpenSSL Constant Time RSA 361

 0
 500

 1000
 1500
 2000
 2500
 3000

 100 200 300 400 500 600

A
m

pl
itu

de

Frequency

Bin 1 Bin 2

Fig. 8. The frequency spectrum of a trace

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 40000 40500 41000 41500 42000

N
or

m
al

is
ed

 T
im

e
(C

yc
le

s)

Resampled measurement number

Bin 0
Bin 1

Bin 2
Bin 3

Bin 4
Bin 5

Bin 6
Bin 7

7 7 7 4 0 1 2 4 6 7 5 1 7 3 3

Fig. 9. Normalized resampled traces

frequency domain. This effectively subtracts the trace’s average from each trace
measurement, thereby making all the traces be at the same length.

We then find the frequency of multiplications in the trace by looking at the
frequency domain of the trace. Figure 8 shows the frequency spectrum of two of
the traces. For a 4096-bit key, OpenSSL performs two exponentiations with 2048-
bit exponents. With a window size of 5, there are 2048/5 ≈ 410 multiplications.
As we can see, there is a spike around the frequency 410 matching the number
of multiplications. Using the frequency extracted from the trace, rather than the
expected number of multiplications, allows us to better adjust to the effects of
noise at the start and end of the exponentiation which might otherwise result in
a loss of some multiplications.

Partial Key Extraction. We use CacheBleed to collect 16 traces, one for
each of the 8 bins in each of the two exponentiations. Each trace is the aver-
age of 1,000 sequences of measurements, totalling 16,000 decryption operations.
Figure 9 shows a sample of the analyzed traces, i.e. after averaging, passing
through a low-pass filter, normalizing the signal and resampling. As we can see,
the used bins are clearly visible in the figure.

362 Y. Yarom et al.

We manage to recover the three least significant bits of almost all of the
multipliers. Due to noise at the start and the end of the exponentiations, we
miss one or two of the leading and trailing multiplications of each exponentiation.
Next, in Sect. 5, we show that the information we obtain about the three least
significant bits of almost all of the multipliers is enough for key extraction.

5 Recovering the RSA Private Key

Successfully carrying out the attack in the previous sections for a 4096-bit
modulus allowed us to learn the three least significant bits of every window
of five bits for the Chinese remainder theorem coefficients dp = d mod p − 1
and dq = d mod q − 1. In this section, we describe how to use this knowledge
to recover the full private RSA key. We use the techniques of Heninger and
Shacham [25] and İnci et al. [27].

Solving for the Modular Multipliers. We have partial knowledge of the
bits of dp and dq, where each satisfies the relation edp = 1 + kp(p − 1) and
edq = 1 + kq(q − 1) for positive integers kp, kq < e. In the common case of
e = 65537, this leaves us with at most 232 possibilities for pairs of kp, kq to
test. Following [27], the kp and kq are related, so we only need to search 65,537
possible values of kp.

We start by rearranging the relations on dp and dq to obtain edp−1−kp = kpp
and edq − 1 − kq = kqq. Multiplying these together, we obtain the relation

(edp − 1 + kp)(edq − 1 + kq) = kpkqN. (1)

Reducing modulo e yields (kp − 1)(kq − 1) ≡ kpkqN mod e.
Thus, given a value for kp we can solve for the unique value of kq mod e. We

do not have enough information about dp and dq to deduce further information,
so we must test all e values of kp.

Branch and Prune Algorithm. For each candidate kp and kq, we will use
Eq. 1 to iteratively solve for dp and dq starting from the least or most significant
bits, branching to generate multiple potential solutions when bits are unknown
and pruning potential solutions when known bits contradict a given solution. In
contrast to [25], the bits we know are not randomly distributed. Instead, they
are synchronized to the three least significant bits of every five, with one or
two full windows of five missing at the least and most significant positions of
each exponent. This makes our analysis much simpler: when a bit of dp and dq is
unknown at a location i, we branch to generate two new solutions. When a bit of
dp and dq is known at a particular location, using the same heuristic assumption
as in [25], an incorrect solution will fail to match the known bit of dp and dq
with probability 0.5. When kp and kq are correct, we expect our algorithm to
generate four new solutions for every pair of unknown bits, and prune these to a
single correct solution at every string of three known bits. When kp and kq are
incorrect, we expect no solutions to remain after a few steps.

CacheBleed: A Timing Attack on OpenSSL Constant Time RSA 363

Empirical Results. We tested key recovery on the output of our attack run
on a 4096-bit key, which correctly recovered the three least significant bits of
every window of five, but missed the two least significant windows and one most
significant window for both dp and dq. We implemented this algorithm in Sage
and ran it on a Cisco UCS Server with two 2.30 GHz Intel E5-2699 processors
and 128 GiB of RAM. For the correct values of kp and kq, our branch-and-
prune implementation recovered the full key in 1 second on a single core after
examining 6,093 candidate partial solutions, and took about 160 ms to eliminate
an incorrect candidate pair of kp and kq after examining an average of 1,500
candidate partial solutions. A full search of all 65,537 candidate pairs of kp
and kq parallelized across 36 hyperthreaded cores took 3.5 min. We assumed
the positions of the missing windows at the most and least significant bits were
known. If the relative positions are unknown, searching over more possible offsets
would increase the total search time by a factor of 9.

6 Mitigation

Countermeasures for the CacheBleed attack can operate at the hardware, the
system or the software level. Hardware-based mitigations include increasing the
bandwidth of the cache banks. Our attack does not work on Haswell processors,
which do not seem to suffer from cache-bank conflicts [20,28]. But, as Haswell
does show timing variations that depend on low address bits [20], it may be
vulnerable to similar attacks. Furthermore, this solution does not apply to the
Sandy Bridge processors currently in the market.

Disabling Hyperthreading. The simplest countermeasure at the system level
is to disable hyperthreading. Disabling hyperthreading, or only allowing hyper-
threading between processes within the same protection domain, prevents any
concurrent access to the cache banks and eliminates any conflicts. Unlike attacks
on persistent state, which may be applicable when a core is time-shared, the tran-
sient state that CacheBleed exploits is not preserved during a context switch.
Hence the core can be time-shared between non-trusting processes. The lim-
ited security of hyperthreading has already been identified [5]. We recommend
that hyperthreading be disabled even on processors that are not vulnerable to
CacheBleed for security-critical scenarios where untrusted users share processors.

Constant-Time Implementations. At the software level, the best counter-
measure is to use a constant-time implementation, i.e. one that does not have
secret-dependent branches or memory accesses. A common technique for imple-
menting constant-time table lookup is to use a combination of arithmetic and
bitwise operations to generate a mask that depends on the secret value. The
whole table is then accessed and the mask is used to select the required table
entry. Mozilla’s fix for CacheBleed uses this approach.

364 Y. Yarom et al.

Modifying Memory Accesses. Rather than using to a constant-time imple-
mentation, OpenSSL mitigates CacheBleed through a combination of two
changes. The first change is to use 128-bit memory accesses, effectively halv-
ing the number of bins used. The second change is to modify the memory access
pattern during the gathering process so that the software accesses a different
offset in each of the four cache lines.

Combining the four different offsets with the 128-bit accesses means that
when gathering a multiplier fragment, OpenSSL accesses all 16 of the cache
banks. The order of accessing the cache banks depends on the value of the
multiplier, so the design leaks secret key information to adversaries that can
recover the order of the accesses. We note, however, that our attack does not
have the resolution required to determine the order of successive memory accesses
and that we are not currently aware of any technique for exploiting this leak.

Furthermore, using 128-bit memory accesses means that the potential leak-
age created by the order of accessing the cache banks is only two bits for each
multiplier, or 40 % of the bits of the exponents for the 5-bit windows used by
OpenSSL for both 2048 and 4096-bit exponents. Our key recovery technique will
produce exponentially many solutions in this case: heuristically, we expect it to
branch to produce two solutions for each multiplier. In this case, the attacker
could use the branch-and-prune method to produce exponentially many candi-
dates up to half the length of each Chinese remainder theorem exponent dp or
dq, and then use the method of Blömer and May [9] to recover the remaining half
in polynomial time. Thus even if an adversary is able to exploit the leak, full key
recovery may only be feasible for very small keys without further algorithmic
improvements.

While we are not aware of a practical exploit of the leak in the OpenSSL
code, we believe that leaving a known timing channel is an undue risk. We
have conveyed information about the leak and our concerns to the OpenSSL
development team.

7 Conclusions

In this work, we presented CacheBleed, the first timing attack to recover low
address bits from secret-dependent memory accesses. We demonstrate that the
attack is effective against state-of-the-art cryptographic software, widely thought
to be immune to timing attacks.

The timing variations that underlie this attack and the risk associated with
them have been known for over a decade. Osvik et al. [40] warn that “Cache bank
collisions (e.g., in Athlon 64 processors) likewise cause timing to be affected by
low address bits.” Bernstein [7] mentions that “ For example, the Pentium 1 has
similar cache-bank conflicts.” A specific warning about the cache-bank conflicts
and the scatter-gather technique appears in Footnote 38 of Tromer et al. [45].

Our research illustrates the risk to users when cryptographic software devel-
opers dismiss a widely hypothesized potential attack merely because no proof-of-
concept has yet been demonstrated. This is the prevailing approach for security

CacheBleed: A Timing Attack on OpenSSL Constant Time RSA 365

vulnerabilities, but we believe that for cryptographic vulnerabilities, this app-
roach is risky, and developers should be proactive in closing potential vulnerabil-
ities even in the absence of a fully practical attack. To that end we observe that
OpenSSL’s decision to use an ad-hoc mitigation techniques, instead of deploying
a constant-time implementation, continues to follow such a risky approach.

Acknowledgements. We would like to thank Daniel J. Bernstein for suggesting the
name CacheBleed and for helpful comments.

NICTA is funded by the Australian Government through the Department of Com-
munications and the Australian Research Council through the ICT Centre of Excellence
Program. This material is based upon work supported by the U.S. National Science
Foundation under Grants No. CNS-1408734, CNS-1505799, and CNS-1513671, a gift
from Cisco, the Blavatnik Interdisciplinary Cyber Research Center, the Check Point
Institute for Information Security, a Google Faculty Research Award, the Israeli Cen-
ters of Research Excellence I-CORE program (center 4/11), the Leona M. & Harry B.
Helmsley Charitable Trust, and by NATO’s Public Diplomacy Division in the Frame-
work of “Science for Peace”.

References

1. Acıiçmez, O.: Yet another microarchitectural attack: exploiting I-cache. In: CSAW,
Fairfax, VA, US (2007)

2. Acıiçmez, O., Gueron, S., Seifert, J.-P.: New branch prediction vulnerabilities in
openSSL and necessary software countermeasures. In: Galbraith, S.D. (ed.) Cryp-
tography and Coding 2007. LNCS, vol. 4887, pp. 185–203. Springer, Heidelberg
(2007)

3. Acıiçmez, O., Koç, Ç.K., Seifert, J.-P.: Predicting secret keys via branch predic-
tion. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 225–242. Springer,
Heidelberg (2006)

4. Acıiçmez, O., Brumley, B.B., Grabher, P.: New results on instruction cache attacks.
In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 110–124.
Springer, Heidelberg (2010)

5. Acıiçmez, O., Seifert, J.-P.: Cheap hardware parallelism implies cheap security. In:
4th International Workshop on Fault Diagnosis and Tolerance in Cryptography,
Vienna, AT, pp. 80–91 (2007)

6. Alpert, D.B., Choudhury, M.R., Mills, J.D.: Interleaved cache for multiple accesses
per clock cycle in a microprocessor. US Patent 5559986, September 1996

7. Bernstein, D.J.: Cache-timing attacks on AES (2005). Preprint http://cr.yp.to/
papers.html#cachetiming

8. Bernstein, D.J., Schwabe, P.: A word of warning. In: CHES 2013 Rump Session,
August 2013

9. Blömer, J., May, A.: New partial key exposure attacks on RSA. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 27–43. Springer, Heidelberg (2003)

10. BoringSSL. https://boringssl.googlesource.com/boringssl/
11. Bos, J.N.E., Coster, M.J.: Addition chain heuristics. In: Brassard, G. (ed.)

CRYPTO 1989. LNCS, vol. 435, pp. 400–407. Springer, Heidelberg (1990)
12. Brickell, E.: Technologies to improve platform security. In: CHES 2011 Invited Talk,

September 2011. http://www.iacr.org/workshops/ches/ches2011/presentations/
Invited%201/CHES2011 Invited 1.pdf

http://cr.yp.to/papers.html#cachetiming
http://cr.yp.to/papers.html#cachetiming
https://boringssl.googlesource.com/boringssl/
http://www.iacr.org/workshops/ches/ches2011/presentations/Invited%201/CHES2011_Invited_1.pdf
http://www.iacr.org/workshops/ches/ches2011/presentations/Invited%201/CHES2011_Invited_1.pdf

366 Y. Yarom et al.

13. Brickell, E.: The impact of cryptography on platform security. In: CT-
RSA 2012 Invited Talk, February 2012. http://www.rsaconference.com/writable/
presentations/file upload/cryp-106.pdf

14. Brickell, E., Graunke, G., Seifert, J.-P.: Mitigating cache/timing based side-
channels in AES and RSA software implementations. In: RSA Conference 2006
Session DEV-203, February 2006

15. Brumley, B.B., Hakala, R.M.: Cache-timing template attacks. In: Matsui, M. (ed.)
ASIACRYPT 2009. LNCS, vol. 5912, pp. 667–684. Springer, Heidelberg (2009)

16. Brumley, B.B., Tuveri, N.: Remote timing attacks are still practical. In: Atluri, V.,
Diaz, C. (eds.) ESORICS 2011. LNCS, vol. 6879, pp. 355–371. Springer, Heidelberg
(2011)

17. Brumley, D., Boneh, D.: Remote timing attacks are practical. In: 12th USENIX
Security, Washington, DC, US, pp. 1–14 (2003)

18. Fog, A.: How to optimize for the Pentium processor, August 1996. https://
notendur.hi.is/hh/kennsla/sti/h96/pentopt.txt

19. Fog, A.: How to optimize for the Pentium family of microprocessors, April 2004.
https://cr.yp.to/2005-590/fog.pdf

20. Fog, A.: The microarchitecture of Intel, AMD and VIA CPUs: an optimization
guide for assembly programmers and compiler makers, January 2016. http://www.
agner.org/optimize/microarchitecture.pdf

21. Garner, H.L.: The residue number system. IRE Trans. Electron. Comput. EC–
8(2), 140–147 (1959)

22. Genkin, D., Shamir, A., Tromer, E.: RSA key extraction via low-bandwidth
acoustic cryptanalysis. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I.
LNCS, vol. 8616, pp. 444–461. Springer, Heidelberg (2014)

23. Gopal, V., Guilford, J., Ozturk, E., Feghali, W., Wolrich, G., Dixon, M.: Fast and
constant-time implementation of modular exponentiation. In: Embedded Systems
and Communications Security, Niagara Falls, NY, US (2009)

24. Gueron, S.: Efficient software implementations of modular exponentiation. J.
Crypt. Eng. 2(1), 31–43 (2012)

25. Heninger, N., Shacham, H.: Reconstructing RSA private keys from random key
bits. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 1–17. Springer,
Heidelberg (2009)

26. Wei-Ming, H.: Reducing timing channels with fuzzy time. In: 1991 Computer Soci-
ety Symposium on Research Security and Privacy, Oakland, CA, US, pp. 8–20
(1991)

27. İnci, M.S., Gülmezoğlu, B., Irazoqui, G., Eisenbarth, T., Sunar, B.: Seriously, get
off my cloud! Cross-VM RSA key recovery in a public cloud. IACR Cryptology
ePrint Archive, Report 2015/898, September 2015

28. Intel 64 & IA-32 AORM: Intel 64 and IA-32 Architectures Optimization Reference
Manual. Intel Corporation, April 2012

29. Irazoqui, G., Eisenbarth, T., Sunar, B.: S$A: a shared cache attack that works
across cores and defies VM sandboxing - and its application to AES. In: S&P, San
Jose, CA, US (2015)

30. Irazoqui, G., Eisenbarth, T., Sunar, B.: Systematic reverse engineering of cache
slice selection in Intel processors. IACR Cryptology ePrint Archive, Report
2015/690, July 2015

31. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

32. Kocher, P., Jaffe, J., Jun, B., Rohatgi, P.: Introduction to differential power analy-
sis. J. Cryptogr. Eng. 1, 5–27 (2011)

http://www.rsaconference.com/writable/presentations/file_upload/cryp-106.pdf
http://www.rsaconference.com/writable/presentations/file_upload/cryp-106.pdf
https://notendur.hi.is/hh/kennsla/sti/h96/pentopt.txt
https://notendur.hi.is/hh/kennsla/sti/h96/pentopt.txt
https://cr.yp.to/2005-590/fog.pdf
http://www.agner.org/optimize/microarchitecture.pdf
http://www.agner.org/optimize/microarchitecture.pdf

CacheBleed: A Timing Attack on OpenSSL Constant Time RSA 367

33. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

34. Lampson, B.W.: A note on the confinement problem. Commun. ACM 16, 613–615
(1973)

35. LibreSSL Project. https://www.libressl.org
36. Liu, F., Yarom, Y., Ge, Q., Heiser, G., Lee, R.B.: Last-level cache side-channel

attacks are practical. In: S&P, San Jose, CA, US, pp. 605–622, May 2015
37. Maurice, C., Le Scouarnec, N., Neumann, C., Heen, O., Francillon, A.: Reverse

engineering intel last-level cache complex addressing using performance counters.
In: Bos, H., et al. (eds.) RAID 2015. LNCS, vol. 9404, pp. 48–65. Springer, Hei-
delberg (2015). doi:10.1007/978-3-319-26362-5 3

38. Mozilla: Network security services. https://developer.mozilla.org/en-US/docs/
Mozilla/Projects/NSS

39. OpenSSL Project. https://openssl.org
40. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: the case

of AES. In: 2006 CT-RSA (2006)
41. Percival, C.: Cache missing for fun and profit. In: BSDCan 2005, Ottawa, CA

(2005)
42. Pessl, P., Gruss, D., Maurice, C., Schwarz, M., Mangard, S.: Reverse engineering

Intel DRAM addressing and exploitation (2015). arXiv Preprint arXiv:1511.08756
43. Quisquater, J.-J., Samyde, D.: Electromagnetic analysis (EMA): measures and

counter-measures for smart cards. In: E-Smart 2001, Cannes, FR, pp. 200–210,
September 2001

44. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. CACM 21, 120–126 (1978)

45. Tromer, E., Osvik, D.A., Shamir, A.: Efficient cache attacks on AES, and counter-
measures. J. Cryptol. 23(1), 37–71 (2010)

46. van de Pol, J., Smart, N.P., Yarom, Y.: Just a little bit more. In: Nyberg, K. (ed.)
CT-RSA 2015. LNCS, vol. 9048, pp. 3–21. Springer, Heidelberg (2015)

47. Wang, Y., Suh, G.E.: Efficient timing channel protection for on-chip networks. In:
6th NoCS, Lyngby, Denmark, pp. 142–151 (2012)

48. Zhenyu, W., Zhang, X., Wang, H.: Whispers in the hyper-space: high-speed covert
channel attacks in the cloud. In: 21st USENIX Security, Bellevue, WA, US (2012)

49. Yarom, Y., Falkner, K.: Flush+Reload: a high resolution, low noise, L3 cache side-
channel attack. In: 23rd USENIX Security, San Diego, CA, US, pp. 719–732 (2014)

50. Yarom, Y., Ge, Q., Liu, F., Lee, R.B., Heiser, G.: Mapping the Intel last-level
cache, September 2015. http://eprint.iacr.org/

51. Zhang, Y., Juels, A., Reiter, M.K., Ristenpart, T.: Cross-VM side channels and
their use to extract private keys. In: 19th CCS, Raleigh, NC, US, pp. 305–316,
October 2012

https://www.libressl.org
http://dx.doi.org/10.1007/978-3-319-26362-5_3
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS
https://openssl.org
http://arxiv.org/abs/1511.08756
http://eprint.iacr.org/

Cache Attacks Enable Bulk Key Recovery
on the Cloud

Mehmet Sinan İnci(B), Berk Gulmezoglu, Gorka Irazoqui, Thomas Eisenbarth,
and Berk Sunar

Worcester Polytechnic Institute, Worcester, MA, USA
{msinci,bgulmezoglu,girazoki,teisenbarth,sunar}@wpi.edu

Abstract. Cloud services keep gaining popularity despite the security
concerns. While non-sensitive data is easily trusted to cloud, security
critical data and applications are not. The main concern with the cloud
is the shared resources like the CPU, memory and even the network
adapter that provide subtle side-channels to malicious parties. We argue
that these side-channels indeed leak fine grained, sensitive information
and enable key recovery attacks on the cloud. Even further, as a quick
scan in one of the Amazon EC2 regions shows, high percentage – 55 % –
of users run outdated, leakage prone libraries leaving them vulnerable to
mass surveillance.

The most commonly exploited leakage in the shared resource systems
stem from the cache and the memory. High resolution and the stability
of these channels allow the attacker to extract fine grained information.
In this work, we employ the Prime and Probe attack to retrieve an RSA
secret key from a co-located instance. To speed up the attack, we reverse
engineer the cache slice selection algorithm for the Intel Xeon E5-2670
v2 that is used in our cloud instances. Finally we employ noise reduction
to deduce the RSA private key from the monitored traces. By processing
the noisy data we obtain the complete 2048-bit RSA key used during the
decryption.

Keywords: Amazon EC2 · Co-location detection · RSA key recovery ·
Virtualization · Prime and Probe attack

1 Motivation

Cloud computing services are more popular than ever with their ease of access,
low cost and real-time scalability. With increasing adoption of cloud, concerns
over cloud specific attacks have been rising and so has the number of research
studies exploring potential security risks in the cloud domain. A main enabler
for cloud security is the seminal work of Ristenpart et al. [40]. The work demon-
strated the possibility of co-location as well as the security risks that come
with it. The co-location is the result of resource sharing between tenant Virtual
Machines (VMs). Under certain conditions, the same mechanism can also be

c© International Association for Cryptologic Research 2016
B. Gierlichs and A.Y. Poschmann (Eds.): CHES 2016, LNCS 9813, pp. 368–388, 2016.
DOI: 10.1007/978-3-662-53140-2 18

Cache Attacks Enable Bulk Key Recovery on the Cloud 369

exploited to extract sensitive information from a co-located victim VM, result-
ing in security and privacy breaches. Methods to extract information from VMs
have been intensely studied in the last few years however remain infeasible within
public cloud environments, e.g. [29,37,41,48]. The potential impact of attacks on
crypto processes can be even more severe, since cryptography is at the core of any
security solution. Consequently, extracting cryptographic keys across VM bound-
aries has also received considerable attention lately. Initial studies explored the
Prime and Probe technique on L1 cache [19,49]. Though requiring the attacker
and the victim to run on the same physical CPU core simultaneously, the small
number of cache sets and the simple addressing scheme made the L1 cache a
popular target. Follow up works have step by step removed restrictions and
increased the viability of the attacks. The shared Last Level Cache (LLC) now
enables true cross-core attacks [8,30,45] where the attacker and the victim share
the CPU, but not necessarily the CPU core. Most recent LLC Prime and Probe
attacks no longer rely on de-duplication [14,26] or core sharing, making them
more widely applicable.

With the increasing sophistication of attacks, participants of the cloud indus-
try ranging from Cloud Service Providers (CSPs), to hypervisor vendors, up all
the way to providers of crypto libraries have fixed many of the newly exploitable
security holes through patches [1,3,4]—many in response to published attacks.
However, many of the outdated cryptographic libraries are still in use, opening
the door for exploits. A scan over the entire range of IPs in the South America
East region yields that 55 % of TLS hosts installed on Amazon EC2 servers have
not been updated since 2015 and are vulnerable to an array of more recently
discovered attacks. Consequently, a potential attacker such as a nation state,
hacker group or a government organization can exploit these vulnerabilities for
bulk recovery of private keys. Besides the usual standard attacks that target
individuals, this enables mass surveillance on a population thereby stripping the
network from any level of privacy. Note that the attack is enabled by our trust in
the cloud. The cloud infrastructure already stores the bulk of our sensitive data.
Specifically, when an attacker instantiates multiple instances in a targeted avail-
ability zone of a cloud, she co-locates with many vulnerable servers. In particular,
an attacker trying to recover RSA keys can monitor the LLC in each of these
instances until the pattern expected by the exploited hardware level leakage is
observed. Then the attacker can easily scan the cloud network to build a public
key database and deduce who the recovered private key belongs to. In a similar
approach, Heninger et al. [21] scan the network for public keys with shared or
similar RSA modulus factors due to poor randomization. Similarly Bernstein
et al. [10] compiled a public key database and scanned for shared factors in RSA
modulus commonly caused by broken random number generators.

In this work, we explore the viability of full RSA key recovery in the Ama-
zon EC2 cloud. More precisely, we utilize the LLC as a covert channel both to
co-locate and perform a cross-core side-channel attack against a recent crypto-
graphic implementation. Our results demonstrate that even with complex and
resilient infrastructures, and with properly configured random number genera-
tors, cache attacks are a big threat in commercial clouds.

370 M.S. İnci et al.

Our Contribution

This work presents a full key recovery attack on a modern implementation of
RSA in a commercial cloud and explores all steps necessary to successfully
recover both the key and the identity of the victim. This attack can be applied
under two different scenarios:

1. Targeted Co-location: In this scenario, we launch instances until we co-
locate with the victim as described in [24,42]. Upon co-location the secret is
recovered by a cache enabled cross-VM attack.

2. Bulk Key Recovery: We randomly create instances and using cross-VM
cache attacks recover imperfect private keys. These keys are subsequently
checked and against public keys in public key database. The second step
allows us to eliminate noise in the private keys and determine the identity of
the owner of the recovered key.

Unlike in earlier bulk key recovery attacks [10,21] we do not rely on faulty
random number generators but instead exploit hardware level leakages.

Our specific technical contributions are as follows:

– We first demonstrate that the LLC contention based co-location detection
tools are plausible in public clouds

– Second, we reverse-engineer the undocumented non-linear slice selection algo-
rithm implemented in Intel Xeon E5-2670 v2 [2] used by our Amazon EC2
instances, and utilize it to automate and accelerate the attack

– Third, we describe how to apply the Prime and Probe attack to the LLC and
obtain RSA leakage information from co-located VMs

– Last, we present a detailed analysis of the necessary post-processing steps
to cope with the noise observed in a real public cloud setup, along with a
detailed analysis on the CPU time (at most 30 core-hours) to recover both the
noise-free key and the owner’s identity (IP).

2 Related Work

This work combines techniques needed for co-location in a public cloud with
state-of-the art techniques in cache based cross-VM side channel attacks.
Co-location Detection: In 2009 Ristenpart et al. [40] demonstrated that a
potential attacker has the ability to co-locate and detect co-location in public
IaaS clouds. In 2011, Zhang et al. [47] demonstrated that a tenant can detect
co-location in the same core by monitoring the L2 cache. Shortly after, Bates
et al. [7] implemented a co-location test based on network traffic analysis. In
2015, Zhang et al. [48] demonstrated that de-duplication enables co-location
detection from co-located VMs in PaaS clouds. In follow-up to Ristenpart et
al.’s work [40], Zhang et al. [44] and Varadarajan et al. [42] explored co-location
detection in commercial public cloud in 2015. Both studies use the memory bus

Cache Attacks Enable Bulk Key Recovery on the Cloud 371

contention channel explored by Wu et al. in 2012 [43] to detect co-location.
Finally in 2016, İnci et al. [24] explored co-location detection on Amazon EC2,
Microsoft Azure and Google Compute Engine using three detection methods
namely memory bus locking, LLC covert channel and LLC software profiling.
Recovering Cache Slice Selection Methods: A basic technique based on
hamming distances for recovering and exploiting linear cache slice selection was
introduced in [23]. Irazoqui et al. [27] and Maurice et al. [36] used a more sys-
tematic approach to recover linear slice selection algorithms in a range of proces-
sors, the latter pointing out the coincidence of the functions across processors.
Recently, Yarom et al. [46] recovered a 6 core slice selection algorithm with a
similar technique as the one presented in this work.
Side-Channel Attacks: RSA have been widely studied and explored with
regards to diverse covert channels such as time [12,33], power [32], EM emana-
tions [15,16], and even acoustic channels [17]. Micro-architectural side-channel
attacks also succeeded on recovering secret keys used in symmetric cryptog-
raphy. After the first theoretical [22,39] and practical [9,38] attacks utilizing
micro-architectural covert channels, Aciicmez et al. [5,6] demonstrated the pos-
sibility of recovering RSA secret keys using the instruction cache and the branch
prediction unit as covert channels. Later, Zhang et al. [49] recovered El-Gamal
secret keys across co-located VMs exploiting leakage in the upper level caches.

While all the previously mentioned side-channel attacks used a private core
resource (i.e., attacker needs to be running in the same CPU core as the victim),
in 2014 Yarom et al. [45] proved to be able to recover RSA secret keys across co-
located VMs by using the Flush and Reload attack in the presence of memory
de-duplication. Recently Liu et al. [14] implemented an attack against El-Gamal
using the Prime and Probe attack in the LLC, whereas Bhattacharya et al. [11]
utilized the branch prediction performance counters to recover RSA keys.

In addition to the attacks on public key cryptography schemes cache attacks
also have been applied to AES [26,30], ECDSA [8], TLS messages [31], the
number of items in a shopping cart [48] or even the key strokes typed in a
keyboard [18]. Even further, they recently have been applied to PaaS clouds [48],
across processors [28] and in smartphones [35].

3 Prime and Probe in the LLC

In computer systems, the physical memory is protected and not visible to the
user, who only sees the virtual addresses that the data resides at. Therefore a
memory address translation stage is required to map virtual addresses to physi-
cal. However, there are some bits of the virtual address that remain untranslated,
i.e., the least significant plow bits with 2plow size memory pages. These are called
the page offset, while the remaining part of the address is called the page frame
number and their combination make the physical address. The location of a
memory block in the cache is determined by its physical address. Usually the
physical address is divided in three different sections to access n-way caches: the
byte field, the set field and the tag field. The length of the byte and set fields are

372 M.S. İnci et al.

determined by the cache line size and the number of sets in the cache, respec-
tively. The more sets a cache has, more bits are needed from the page frame
number to select the set that a memory block occupies in the cache.

The Prime and Probe attack has been widely studied in upper level
caches [5,49], but was first introduced for the LLC in [14,26] with the use of
hugepages. Unlike regular memory pages that reveal only 12 bits of the phys-
ical address, hugepages reveal 21 bits, allowing the LLC monitoring. Also, pro-
filing the LLC in contrast to the L1 or L2 cache has various advantages. Firstly,
unlike the upper level caches, the LLC is shared across cores, providing a cross-
core covert channel. Moreover, the time distinguishability of accesses in upper
level caches is much lower than those between the LLC and memory. On the
other hand, due to the size of LLCs, we cannot simultaneously profile the whole
cache, but rather a small portion of it at a time. In addition to that, modern
processors divide their LLC into slices with a non-public hash algorithm, mak-
ing it difficult to predict where the data will be located. Taking all these into
account, the Prime and Probe attack is divided in two main stages:
Prime Stage: The attacker fills a portion of the LLC with his own data and
waits for a period of time for the victim to access the cache.
Probe Stage: The attacker probes (reloads) the primed data. If the victim
accessed the monitored set of the cache, one (or more) of the attacker’s lines will
not reside in the cache anymore, and will have to be retrieved from the memory.

As stated before, profiling a portion of the cache becomes more difficult when
the LLC is divided into slices. However, as observed by [14] we can create an
eviction set without knowing the algorithm implemented. This involves a step
prior to the attack where the attacker finds the memory blocks colliding in a
specific set/slice. This can be done by creating a large pool of memory blocks,
and access them until we observe that one of them is fetched from the memory.
The procedure will be further explained in Sect. 4. A group of memory blocks
that fill one set/slice in the LLC will form an eviction set for that set/slice.

4 Co-locating on Amazon EC2

In order to perform our experiments across co-located VMs we first need to
make sure that they are running in the same server. We present the LLC as
an exploitable covert channel with the purpose of detecting co-location between
two instances. For the experiments, we launched 4 accounts (named A, B, C and
D) on the South American Amazon EC2 region and launched 20 m3.medium
instances in each of these accounts, 80 instances in total.

On these instances, we performed our LLC co-location detection test and
obtained co-located instance pairs. In total, out of 80 instances launched from
different accounts, we were able to obtain 7 co-located pairs and one triplet.
Account A had 5 co-located instances out of 20 while B and C had 4 and 7
respectively. As for the account D, we had no co-location with instances from
other accounts. Overall, assuming that the account A is the target, next 60
instances launched in accounts B, C, D have 8.3 % probability of co-location

Cache Attacks Enable Bulk Key Recovery on the Cloud 373

with the target. Note that all co-locations were between machines from different
accounts. The experiments did not aim at obtaining co-location with a single
instance, for which the probability of obtaining co-location would be lower.

4.1 The LLC Co-location Method

The LLC is shared across all cores of most modern Intel CPUs, including the
Intel Xeon E5-2670 v2 used (among others) in Amazon EC2. Accesses to LLC
are thus transparent to all VMs co-located on the same machine, making it the
perfect domain for covert communication and co-location detection.

Our LLC test is designed to detect cache lines that are needed to fill a
specific set in the cache. In order to control the location that our data will
occupy in the cache, the test allocates and works with hugepages.1 In normal
operation with moderate noise, the number of lines to fill one set is equal to
LLC associativity, which is 20 in Intel Xeon E5-2670 v2 used in our Amazon
EC2 instances. However, with more than one user trying to fill the same set at
the same time, one will observe that fewer than 20 lines are needed to fill one
set. By running this test concurrently on a co-located VM pair, both controlled
by the same user, it is possible to verify co-location with high certainty. The test
performs the following steps:

– Prime one memory block b0 in a set in the LLC
– Access additional memory blocks b1, b2, . . . , bn that occupy the same set, but

can reside in a different slice.
– Reload the memory block b0 to check whether it has been evicted from the

LLC. A high reload time indicates that the memory block b0 resides in the
RAM. Therefore we know that the required m memory blocks that fill a slice
are part of the accessed additional memory blocks b1, b2, . . . , bn.

– Subtract one of the accessed additional memory blocks bi and repeat the above
protocol. If b0 is still loaded from the memory, bi does not reside in the same
slice. If b0 is now located in the cache, it can be concluded that bi resides in
the same cache slice as b0 and therefore fill the set.

– Count the number of memory blocks needed to fill a set/slice pair. If the
number is significantly different than the associativity, it can be concluded
that we have cache contention across co-located VMs.

The LLC is not the only method that we have tried in order to verify co-
location (see extended version of this paper for more information [25]). However,
the experiments show that the LLC test is the only decisive and reliable test that
can detect whether two of our instances are running in the same CPU in Amazon
EC2. We performed the LLC test in two steps as follows:

1 The co-location test has to be implemented carefully, since the heavy usage of
hugepages may yield into performance degradation. In fact, while trying to achieve
a quadruple co-location Amazon EC2 stopped our VMs due to performance issues.
For a more detailed explanation, see [25].

374 M.S. İnci et al.

1. Single Instance Elimination: The first step of the LLC test is the elimina-
tion of single instances i.e. the ones that are not co-located with any other in
the instance pool. To do so, we schedule the LLC test to run at all instances at
the same time. Instances not detecting co-location is retired. For the remain-
ing ones, the pairs need to be further processed as explained in the next step.
Note that without this preliminary step, one would have to perform n(n−1)/2
pair detection tests to find co-located pairs, i.e. 3160 tests for 80 instances.
This step yielded 22 co-located instances out of 80.

2. Pair Detection: Next we identify pairs for the possibly co-located instances.
The test is performed as a binary search tree where each instance is tested
against all the others for co-location.

4.2 Challenges and Tricks of Co-location Detection

During our experiments on Amazon EC2, we have observed various problems
and interesting events related to the underlying hardware and software. Here we
discuss what to expect when experimenting on Amazon EC2.
Instance Clock Decay: In our experiments using Amazon EC2, we have
noticed that instance clocks degrade slowly over time. More interestingly, after
detecting co-location using the LLC test, we discovered that co-located instances
have the same clock degradation with 50 ns resolution. We believe that this infor-
mation can be used for co-location detection.
Hardware Complexity: Modern Amazon EC2 instances have much more
advanced and complex hardware components like 10 core, 20 thread CPUs and
SSDs. Thus, our cache profiling techniques have to be adapted to handle servers
with multiple slices that feature non-linear slice selection algorithms.
Co-located VM Noise: Compute cloud services including Amazon EC2 main-
tain a variety of services and servers. Most user-based services, however, quiet
down when users quiet down, i.e. after midnight. Especially between 2 a.m. and
4 a.m. Internet traffic as well as computer usage is significantly lower than the
rest of the day. We confirmed this assumption by measuring LLC noise in our
instances and collected data from 6 instances over the course of 4 week days.
Results are shown in Fig. 1. LLC noise and thus server load are at its peak
around 8 p.m. and lowest at 4 a.m. We also measured the noise observed in the
first 200 sets of the LLC for one day in Fig. 2. The y-axis shows the probabil-
ity of observing a cache access by a co-located user other than victim during a
Prime and Probe interval of the spy process (i.e. the attacker cannot detect the
cache access of the victim process). The measurements were taken every 15 min.
A constant noise floor at approx. 4.5 % is present in all sets. Sets 0 and 3 feature
the highest noise, but high noise (11 %)is observed at the starting points of other
pages as well. In fact, certain set numbers (0, 3, 26, 39, 58) mod 64 seem to be
predictably more noisy and not well suited for the attack.
Dual Socket Machines: We did not find evidence of dual socket machines
among the medium instances that we used in both co-location and attack steps.
Indeed once co-located, our LLC co-location test always succeeded over time,

Cache Attacks Enable Bulk Key Recovery on the Cloud 375

Hour of Day (Local Time)
01:00 03:00 05:00 07:00 09:00 11:00 13:00 15:00 17:00 19:00 21:00 23:00

LL
C

 N
oi

se

Friday
Monday
Tuesday
Average

Fig. 1. LLC noise over time of day, by day (dotted lines) and on average (bold line).

Set Number
0 32 64 96 128 160 192

N
oi

se
 (%

)

0

5

10

15

20

25

Fig. 2. Average noise for the first 200 sets in a day. Red lines are the starting points
of pages. Sets 0 and 3 feature the highest amount of noise, with a repeating pattern
every 64 sets (which is the width of a page in the LLC). (Color figure online)

even after a year. If the instances were to reside in dual socket machines and
the VM processes moved between CPUs, the co-location test would have failed.
However, even in that case, repeated experiments would still reveal co-location
just by repeating the test after a time period enough to allow a socket migration.

5 Obtaining the Non-linear Slice Selection Algorithm

The LLC attack that will later be performed is based on the ability of generating
colliding memory blocks, i.e., blocks that collide for a specific set and slice. In
modern processors, each set in the LLC is divided into slices (usually one slice
per core) to respond to multiple requests at a time. The usage of a sliced LLC
as a covert channel becomes simpler when we deal with a power of two number
of slices. In these cases, due to the linearity, the set bits does not affect the slice
bits in the eviction set created for one of the slices. Thus, we could create an
eviction set for a specific set-slice pair composed by b1, b2, ..bn memory blocks
choosing a random set s. If we later want to target a different set, we could still
use b1, b2, ...bn by changing only the set bits and they will fill the same slice.

376 M.S. İnci et al.

This fact was used in [14,26] to perform LLC side channel attacks. This pecu-
liarity is not observed in non-linear slices, i.e., the same b1, b2, .., bn will only
slice-collide for a small number of sets. The slice colliding blocks can either be
empirically observed for each set, or guessed if the non-linear slice selection algo-
rithm is known. Our particular EC2 instance type utilizes a Intel Xeon E5-2670
v2, which features a 25 MB LLC distributed over 10 LLC slices (i.e., non power
of two). We decide to reverse-engineer the non-linear slice selection algorithm to
speed up our eviction set creation algorithm. Note that the approach that we
follow can be utilized to reverse engineer any non-linear slice selection algorithm.

We describe the slice selection algorithm as

H(p) = h3(p)‖h2(p)‖h1(p)‖h0(p) (1)

where each H(p) is a concatenation of 4 different functions corresponding to
the 4 necessary bits to represent 10 slices. Note that H(p) will output results
from 0000 to 1001 if we label the slices from 0–9. Thus, a non-linear function is
needed that excludes outputs 10–15. Further note that p is the physical address
and will be represented as a bit string: p = p0p1 . . . p35. In order to recover the
non-linear hash function implemented by the Intel Xeon E5-2670 v2, we use
a fully controlled machine featuring the same Intel Xeon E5-2670 v2 found in
Amazon’s EC2 servers. We first generate ten equation systems (one per slice)
based on slice colliding addresses by applying the same methodology explained
to achieve co-location and generating up to 100,000 additional memory blocks.

Up to this point, one can solve the non-linear function after a re-linearization
step given sufficiently many equations. Since we are not be able to recover enough
addresses (due to RAM limitations) we take a different approach. Figure 3 shows
the distribution of the 100,000 addresses over the 10 slices. Note that 8 slices are
mapped to by 81.25% of the addresses, while 2 slices get only about 18.75%,
i.e., a 3/16 proportion. We will refer to these two slices as the non-linear slices.

We proceed to first solve the first 8 slices and the last 2 slices separately
using linear functions. For each we try to find solutions to the equation systems

Pi · Ĥi = 0̂, (2)

Pi · Ĥi = 1̂ . (3)

Here Pi is the equation system obtained by arranging the slice colliding addresses
into a matrix form, Ĥi is the matrix containing the slice selection functions and
0̂ and 1̂ are the all zero and all one solutions, respectively. This outputs two sets
of linear solutions both for the first 8 linear slices and the last 2 slices.

Given that we can model the slice selection functions separately using linear
functions, and given that the distribution is non-uniform, we model the hash
function is implemented in two levels. In the first level a non-linear function
chooses between either of the 3 linear functions describing the 8 linear slices or
the linear functions describing the 2 non-linear slices. Therefore, we speculate
that the 4 bits selecting the slice looks like:

H(p) =

{
h0(p) = h0(p) h1(p) = ¬(nl(p)) · h′

1(p)
h2(p) = ¬(nl(p)) · h′

2(p) h3(p) = nl(p)

Cache Attacks Enable Bulk Key Recovery on the Cloud 377

Slice number
0 1 2 3 4 5 6 7 8 9

N
um

be
r

of
 a

dd
re

ss
es

8000

9000

10000

11000

Fig. 3. Number of addresses that each slice takes out of 100,000. The non-linear slices
take less addresses than the linear ones.

Table 1. Results for the hash selection algorithm implemented by the Intel Xeon
E5-2670 v2

f Hash function H(p) = h0(p)‖¬(nl(p)) · h′
1(p)‖¬(nl(p)) · h′

2(p)‖nl(p)

h0 p18 ⊕ p19 ⊕ p20 ⊕ p22 ⊕ p24 ⊕ p25 ⊕ p30 ⊕ p32 ⊕ p33 ⊕ p34

h′
1 p18 ⊕ p21 ⊕ p22 ⊕ p23 ⊕ p24 ⊕ p26 ⊕ p30 ⊕ p31 ⊕ p32

h′
2 p19 ⊕ p22 ⊕ p23 ⊕ p26 ⊕ p28 ⊕ p30

nl v0 · v1 · ¬(v2 · v3)

v0 p9 ⊕ p14 ⊕ p15 ⊕ p19 ⊕ p21 ⊕ p24 ⊕ p25 ⊕ p26 ⊕ p27 ⊕ p29 ⊕ p32 ⊕ p34

v1 p7 ⊕ p12 ⊕ p13 ⊕ p17 ⊕ p19 ⊕ p22 ⊕ p23 ⊕ p24 ⊕ p25 ⊕ p27 ⊕ p31 ⊕ p32 ⊕ p33

v2 p9 ⊕ p11 ⊕ p14 ⊕ p15 ⊕ p16 ⊕ p17 ⊕ p19 ⊕ p23 ⊕ p24 ⊕ p25 ⊕ p28 ⊕ p31 ⊕ p33 ⊕ p34

v3 p7 ⊕ p10 ⊕ p12 ⊕ p13 ⊕ p15 ⊕ p16 ⊕ p17 ⊕ p19 ⊕ p20 ⊕ p23 ⊕ p24 ⊕ p26 ⊕ p28 ⊕ p30

⊕p31 ⊕ p32 ⊕ p33 ⊕ p34

where h0,h1 and h2 are the hash functions selecting bits 0,1 and 2 respectively,
h3 is the function selecting the 3rd bit and nl is a nonlinear function of an
unknown degree. We recall that the proportion of the occurrence of the last two
slices is 3/16. To obtain this proportion we need a degree 4 nonlinear function
where two inputs are negated, i.e.:

nl = v0 · v1 · ¬(v2 · v3) (4)

where nl is 0 for the 8 linear slices and 1 for the 2 non-linear slices. Observe that
nl will be 1 with probability 3/16 while it will be zero with probability 13/16,
matching the distributions seen in our experiments. Consequently, to find v0
and v1 we only have to solve Eq. (3) for slices 8 and 9 together to obtain a 1
output. To find v2 and v3, we first separate those addresses where v0 and v1
output 1 for the linear slices 0 − 7. For those cases, we solve Eq. (3) for slices
0−7. The result is summarized in Table 1. We show both the non-linear function
vectors v0, v1, v2, v3 and the linear functions h0, h1, h2. These results describe the
behavior of the slice selection algorithm implemented in the Intel Xeon E5-2670
v2. With this result, we can now easily predict the slice selection on the target
processor in the EC2 cloud.

378 M.S. İnci et al.

6 Cross-VM RSA Key Recovery

To prove the viability of the Prime and Probe attack in Amazon EC2 across co-
located VMs, we present an expanded version of the attack implemented in [14]
by showing its application to RSA. It is important to remark that the attack is
not processor specific, and can be implemented in any processor with inclusive
last level caches. In order to perform the attack:

– We make use of the fact that the offset of the address of each table position
entry does not change when a new decryption process is executed. Therefore,
we only need to monitor a subsection of all possible sets, yielding a lower
number of traces.

– Instead of the monitoring both the multiplication and the table entry set (as
in [14] for El-Gamal), we only monitor a table entry set in one slice. This
avoids the step where the attacker has to locate the multiplication set and
avoids an additional source of noise.

The attack targets a sliding window implementation of RSA-2048 where each
position of the pre-computed table will be recovered. We will use Libgcrypt
1.6.2 as our target library, which not only uses a sliding window implementation
but also uses CRT and message blinding techniques [34]. The message blinding
process is performed as a side channel countermeasure for chosen-ciphertext
attacks, in response to studies such as [16,17].

We use the Prime and Probe side channel technique to recover the positions
of the table T that holds the values c3, c5, c7, . . . , c2

W −1 where W is the window
size. For CRT-RSA with 2048 bit keys, W = 5 for both exponentiations dp, dq.
Observe that, if all the positions are recovered correctly, reconstructing the key
is a straightforward step.

Recall that we do not control the victim’s user address space. This means that
we do not know the location of each of the table entries, which indeed changes
from execution to execution. Therefore we will monitor a set hoping that it will
be accessed by the algorithm. However, our analysis shows a special behavior:
each time a new decryption process is started, even if the location changes, the
offset field does not change from decryption to decryption. Thus, we can directly
relate a monitored set with a specific entry in the multiplication table.

The knowledge of the processor in which the attack is going to be carried out
gives an estimation of the probability that the set/slice we monitor collides with
the set/slice the victim is using. For each table entry, we fix a specific set/slice
where not much noise is observed. In the Intel Xeon E5-2670 v2 processors,
the LLC is divided in 2048 sets and 10 slices. Therefore, knowing the lowest 12
bits of the table locations, we will need to monitor one set/slice that solves s
mod 64 = o, where s is the set number and o is the offset for a table location. This
increases the probability of probing the correct set from 1/(2048 · 10) = 1/20480
to 1/((2048 · 10)/64) = 1/320, reducing the number of traces to recover the key
by a factor of 64. Thus our spy process will monitor accesses to one of the 320
set/slices related to a table entry, hoping that the RSA encryption accesses it

Cache Attacks Enable Bulk Key Recovery on the Cloud 379

when we run repeated decryptions. Thanks to the knowledge of the non linear
slice selection algorithm, we can easily change our monitored set/slice if we see a
high amount of noise in one particular set/slice. Since we also have to monitor a
different set per table entry, it also helps us to change our eviction set accordingly.
The threshold is different for each of the sets, since the time to access different
slices usually varies. Thus, the threshold for each of the sets has to be calculated
before the monitoring phase. In order to improve the applicability of the attack
the LLC can be monitored to detect whether there are RSA decryptions or not
in the co-located VMs as proposed in [24]. After it is proven that there are RSA
decryptions the attack can be performed.

In order to obtain high quality timing leakage, we synchronize the spy process
and the RSA decryption by initiating a communication between the victim and
attacker, e.g. by sending a TLS request. Note that we are looking for a particular
pattern observed for the RSA table entry multiplications, and therefore processes
scheduled before the RSA decryption will not be counted as valid traces. In
short, the attacker will communicate with the victim before the decryption.
After this initial communication, the victim will start the decryption while the
attacker starts monitoring the cache usage. In this way, we monitor 4,000 RSA
decryptions with the same key and same ciphertext for each of the 16 different
sets related to the 16 table entries.

We investigate a hypothetical case where a system with dual CPU sockets
is used. In such a system, depending on the hypervisor CPU management, two
scenarios can play out; processes moving between sockets and processes assigned
to specific CPUs. In the former scenario, we can observe the necessary number
of decryption samples simply by waiting over a longer period of time. In this
scenario, the attacker would collect traces and only use the information obtained
during the times the attacker and the victim share sockets and discard the rest
as missed traces. In the latter scenario, once the attacker achieves co-location,
as we have in Amazon EC2, the attacker will always run on the same CPU as
the target hence the attack will succeed in a shorter span of time.

7 Leakage Analysis Method

Once the online phase of the attack has been performed, we proceed to analyze
the leakage observed. There are three main steps to process the obtained data.
The first step is to identify the traces that contain information about the key.
Then we need to synchronize and correct the misalignment observed in the cho-
sen traces. The last step is to eliminate the noise and combine different graphs
to recover the usage of the multiplication entries. Among the 4,000 observations
for each monitored set, only a small portion contains information about the mul-
tiplication operations with the corresponding table entry. These are recognized
because their exponentiation trace pattern differs from that of unrelated sets. In
order to identify where each exponentiation occurs, we inspected 100 traces and
created the timeline shown in Fig. 4(b). It can be observed that the first expo-
nentiation starts after 37 % of the overall decryption time. Note that among

380 M.S. İnci et al.

timeslot
0 2000 4000 6000 8000 10000

R
el

oa
d

tim
e

0

50

100

150

200

250

timeslot
0 2000 4000 6000 8000 10000

R
el

oa
d

tim
e

0

50

100

150

200

250
Second Secret
Exponent (dq)

Decryption
Start

First Secret
Exponent (dp)

Fig. 4. Different sets of data where we find (a) trace that does not contain information
(b) trace that contains information about the key

timeslot
0 500 1000 1500 2000 2500 3000

0

2

4

6

8

10

12

timeslot
0 500 1000 1500 2000 2500 3000

0

2

4

6

8

10

12

Fig. 5. 10 traces from the same set where (a) they are divided into blocks for a cor-
relation alignment process (b) they have been aligned and the peaks can be extracted

all the traces recovered, only those that have more than 20 and less than 100
peaks are considered. The remaining ones are discarded as noise. Figure 4 shows
measurements where no correct pattern was detected (Fig. 4(a)), and where a
correct pattern was measured (Fig. 4(b)).

In general, after the elimination step, there are 8−12 correct traces left per
set. We observe that data obtained from each of these sets corresponds to 2
consecutive table positions. This is a direct result of CPU cache prefetching.
When a cache line that holds a table position is loaded into the cache, the
neighboring table position is also loaded due to cache locality principle.

For each graph to be processed, we first need to align the creation of the
look-up table with the traces. Identifying the table creation step is trivial since
each table position is used twice, taking two or more time slots. Figure 5(a)
shows the table access position indexes aligned with the table creation. In the
figure, the top graph shows the true table accesses while the rest of the graphs
show the measured data. It can be observed that the measured traces suffer from
misalignment due to noise from various sources e.g. RSA or co-located neighbors.

To fix the misalignment, we take most common peaks as reference and apply
a correlation step. To increase the efficiency, the graphs are divided into blocks
and processed separately as seen in Fig. 5(a). At the same time, Gaussian filter-
ing is applied to peaks. In our filter, the variance of the distribution is 1 and the

Cache Attacks Enable Bulk Key Recovery on the Cloud 381

timeslot
0 500 1000 1500 2000 2500 3000

M
ag

ni
tu

de

0

5

10

Fig. 6. Eliminating false detections using a threshold (red dashed line) on the combined
detection graph. (Color figure online)

Normalized timeslot
0 200 400 600 800 1000 1200

R
ea

l
 D

at
a

0

1

2

Fig. 7. Comparison of the final obtained peaks with the correct peaks with adjusted
timeslot resolution

mean is aligned to the peak position. Then for each block, the cross-correlation is
calculated with respect to the most common hit graph i.e. the intersection set of
all graphs. After that, all graphs are shifted to the position where they have the
highest correlation and aligned with each other. After the cross-correlation cal-
culation and the alignment, the common patterns are observable as in Fig. 5(b).
Observe that the alignment step successfully aligns measured graphs with the
true access graph at the top, leaving only the combining and the noise removal
steps. We combine the graphs by simple averaging and obtain a single combined
graph.

In order to get rid of the noise in the combined graph, we applied a threshold
filter as can be seen in Fig. 6. We used 35 % of the maximum peak value observed
in graphs as the threshold value. Note that a simple threshold was sufficient to
remove noise terms since they are not common between graphs.

Now we convert scaled time slots of the filtered graph to real time slot indexes.
We do so by dividing them with the spy process resolution ratio, obtaining the
Fig. 7. In the figure, the top and the bottom graphs represent the true access
indexes and the measured graph, respectively. Also, note that even if additional
noise peaks are observed in the obtained graph, it is very unlikely that two
graphs monitoring consecutive table positions have noise peaks at the same
time slot. Therefore, we can filter out the noise stemming from the prefetching
by combining two graphs that belong to consecutive table positions. Thus, the
resulting indexes are the corresponding timing slots for look-up table positions.

The very last step of the leakage analysis is finding the intersections of two
graphs that monitor consecutive sets. By doing so, we obtain accesses to a single

382 M.S. İnci et al.

normalized timeslot
0 100 200 300 400 500 600 700 800 900 1000

0

1

2

3

4 set 1 set 2 intersection true table position

Fig. 8. Combination of two sets

Table 2. Successfully recovered peaks on average in an exponentiation

Average number of traces/set 4000

Average number of correct graphs/set 10

Wrong detected peaks 7.19 %

Missdetected peaks 0.65 %

Correctly detected peaks 92.15 %

table position as seen in Fig. 8 with high accuracy. At the same time, we have
total of three positions in two graphs. Therefore, we also get the positions of
the neighbors. A summary of the result of the leakage analysis is presented in
Table 2. We observe that more than 92 % of the recovered peaks are in the correct
position. However, note that by combining two different sets, the wrong peaks
will disappear with high probability, since the chance of having wrong peaks in
the same time slot in two different sets is very low.

8 Recovering RSA Keys with Noise

We divide the section in two different scenarios, i.e., the scenario where the
identity and public key of the target is known (targeted co-location) and the
scenario where we have no information about the public key (bulk key recovery).

8.1 Targeted Co-location: The Public Key Is Known

In this case we assume that the attacker implemented a targeted co-location
against a known server, and that she has enough information about the public
key parameters of the target. The leakage analysis described in the previous
section recovers information on the CRT version of the secret exponent d, namely
dp = d mod (p−1) and dq = d mod (q−1). A noise-free version of either one can
be used to trivially recover the factorization of N = pq, since gcd(m−medp , N) =
p for virtually any m [13].

Cache Attacks Enable Bulk Key Recovery on the Cloud 383

In cases where the noise on dp and dq is too high for a direct recovery with
the above-mentioned method, their relation to the known public key can be
exploited if the used public exponent e is small [20].

Almost all RSA implementations currently use e = 216 + 1 due to the heavy
performance boost over a random and full size e. For CRT exponents it holds
that edp = 1 mod (p − 1) and hence edp = kp(p − 1) + 1 for some 1 ≤ kp < e
and similarly for dq, yielding kpp = edp + kp − 1 and kqp = edq + kq − 1.

Algorithm 1. Windowed RSA Key Recovery with Noise
for kp from 1 to e − 1 do

Compute kq = (1 − kp)(kpN − kp + 1)−1 (mod e)
while i < |wp| do

Process windows wp[i], wp[i + 1]
Introduce shifts; vary ip[i]] up maxzeros

for each dp variation do
Compute X =

∑i+1
j=0 wp[j]2ip[j]

Identify wq that overlap with wp[i], wp[i + 1]
Compute Y =

∑i+1
j=0 wq[j]2iq[j]

if δ(X, Y, t)=0 then
Update wp, ip, wq, iq
Create thread for i + 1

end if
if if no check succeeded then

too many failures: abandon thread.
if maxzeros achieved then

i = i − 1
end if
Update ip, wq, iq
Create thread for i

end if
end for

end while
end for

Multiplying both equations gives us a key equation which we will exploit in
two ways

kpkqN = (edp + kp − 1)(edq + kq − 1). (5)

If we consider Eq. (5) modulo e, the unknowns dp and dq disappear and we
obtain kpkqN = (kp − 1)(kq − 1) (mod e). Therefore given kp we can recover
kq and vice versa by solving this linear equation. Since 1 ≤ kp < e represents
an exhaustible small space we can simply try all values for kp and compute
corresponding kq as shown above.

Next, assume we are given the first t bits of dp and dq, e.g. a = dp mod 2t

and b = dq mod 2t. For each kp we check whether δ(a, b, t) = 0 where

δ(a, b, t) = kpkqN − (ea + kp − 1)(eb + kq − 1) (mod 2t)

384 M.S. İnci et al.

This means we have a simple technique to check the correctness of the least-
significant t bits of dp, dq for a choice of kp. We can

– Check parts of dp and dq by verifying if the test δ(dp(t), dq(t), t) = 0 holds
for t ∈ [1, �log(p)�].

– Fix alignment and minor errors by shifting and varying dp(t) and dq(t),
and then sieving working cases by checking if δ(dp(t), dq(t), t) = 0,

– Recover parts of dq given dp (and vice versa) by solving the error equation
δ(dp(t), dq(t), t) = 0 in case the data is missing or too noisy to correct.

Note that the algorithm may need to try all 216 values of kp in a loop.
Further, in the last case where we recover a missing data part using the checking
equation we need to speculatively continue the iteration for a few more steps.
If we observe too many mistakes we may early terminate the execution thread
without reaching the end of dp and dq.

To see how this approach can be adapted into our setting, we need to con-
sider the error distribution observed in dp and dq as recovered by cache timing.
Furthermore, since the sliding window algorithm was used in the RSA expo-
nentiation operation, we are dealing with variable size (1–5 bit) windows with
contents wp, wq, and window positions ip, iq for dp and dq, respectively.

The windows are separated by 0 strings. We observed:

– The window wp contents for dp had no errors and were in the correct order.
There were slight misalignments in the window positions ip with extra or
missing zeros in between.

– In contrast, dq had not only alignment problems but also few windows with
incorrect content, extra windows, and missing windows (overwritten by zeros).
The missing windows were detectable since we do not expect unusually long
zero strings in a random dq.

– Since the iterations proceed from the most significant windows to the least we
observed more errors towards the least significant words, especially in dq.

Algorithm 1 shows how one can progressively error correct dp and dq by
processing groups of consecutive � windows of dp. The algorithm creates new
execution threads when an assumption is made, and kills a thread after assump-
tions when too many checks fail to produce any matching on different windows.
However, then the kill threshold has to be increased and the depth of the com-
putation threads and more importantly the number of variations that need to
be tested increases significantly. In this case, the algorithm finds the correct pri-
vate key in the order of microseconds for a noise-free dp and needs 4 s for our
recovered dp.

8.2 Bulk Key Recovery: The Public Key Is Unknown

In this scenario, the attacker spins multiple instances and monitors the LLC,
looking in all of them for RSA leakages. If viable leakages are observed, the

Cache Attacks Enable Bulk Key Recovery on the Cloud 385

attacker might not know the corresponding public key. However, she can build
up a database of public keys by mapping the entire IP range of the targeted
Amazon EC2 region and retrieve all the public keys of hosts that have the TLS
port open. The attacker then runs the above described algorithm for each of
the recovered private keys and the entire public key database. Having the list
of ’neighboring’ IPs with an open TLS port also allows the attacker to initiate
TLS handshakes to make the servers use their private keys with high frequency.

In the South America Amazon EC2 region, we have found 36000+ IP
addresses with the TLS port open (shown in more detail in [25]) using nmap.
With a public key database of that size, our algorithm takes between less than
a second (for noise-free dps) and 30 CPU hours (noisy dps) to check each private
key with the public key database. This approach recovers the public/private key
pair, and consequently, the identity of the key owner.

9 Countermeasures

Libgcrypt 1.6.3 Update: Libgcrypt recently patched this vulnerability by
making the sliding window multiplication table accesses indistinguishable from
each other. Thus, an update to the latest version of the library avoids the leakage
exploited in this work albeit only for ciphers using sliding window exponentia-
tion.
Single-Tenant Instances: Although more expensive, in most cloud services,
users have the option of having the whole physical machine to themselves, pre-
venting co-location with potentially malicious users.
Live Migration: In a highly noisy environment like the commercial cloud, an
attacker would need many traces to conduct a side-channel attack. In the live
migration scenario, the attacker would have to perform the attack in the time
period when the attacker and the victim share the physical machine.

10 Conclusion

In conclusion, we show that even with advanced isolation techniques, resource
sharing still poses security risk to public cloud customers that do not follow the
best security practices. The cross-VM leakage is present in public clouds and can
be a practical attack vector for data theft. Therefore, users have a responsibility
to use latest improved software for their critical cryptographic operations. Even
further, we believe that smarter cache management policies are needed both at
the hardware and software levels to prevent side-channel leakages.

Acknowledgments. This work is supported by the National Science Foundation,
under grants CNS-1318919 and CNS-1314770.

386 M.S. İnci et al.

References

1. Fix Flush and Reload in RSA. https://lists.gnupg.org/pipermail/gnupg-announce/
2013q3/000329.html

2. Intel Xeon 2670–v2. http://ark.intel.com/es/products/75275/
Intel-Xeon-Processor-E5-2670-v2-25M-Cache-2 50-GHz

3. OpenSSL fix flush and reload ECDSA nonces. https://git.openssl.org/gitweb/?
p=openssl.git;a=commitdiff;h=2198be3483259de374f91e57d247d0fc667aef29

4. Transparent Page Sharing: Additional management capabilities and new default
settings. http://blogs.vmware.com/security/vmware-security-response-center/
page/2

5. Acıiçmez, O.: Yet another microarchitectural attack: exploiting I-cache. In: Pro-
ceedings of the 2007 ACM Workshop on Computer Security Architecture

6. Acıiçmez, O., Koç, Ç.K., Seifert, J.-P.: Predicting secret keys via branch predic-
tion. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 225–242. Springer,
Heidelberg (2006)

7. Bates, A., Mood, B., Pletcher, J., Pruse, H., Valafar, M., Butler, K.: Detecting
co-residency with active traffic analysis techniques. In: Proceedings of the 2012
ACM Workshop on Cloud Computing Security Workshop

8. Benger, N., van de Pol, J., Smart, N.P., Yarom, Y.: “Ooh Aah.. Just a Little Bit”
: a small amount of side channel can go a long way. In: Batina, L., Robshaw, M.
(eds.) CHES 2014. LNCS, vol. 8731, pp. 75–92. Springer, Heidelberg (2014)

9. Bernstein, D.J.: Cache-timing attacks on AES (2004). http://cr.yp.to/papers.
html#cachetiming

10. Bernstein, D.J., Chang, Y.-A., Cheng, C.-M., Chou, L.-P., Heninger, N., Lange,
T., van Someren, N.: Factoring RSA keys from certified smart cards: coppersmith
in the wild. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol.
8270, pp. 341–360. Springer, Heidelberg (2013)

11. Bhattacharya, S., Mukhopadhyay, D.: Who watches the watchmen?: utilizing per-
formance monitors for compromising keys of RSA on Intel platforms. In: Güneysu,
T., Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 248–266. Springer,
Heidelberg (2015)

12. Brumley, D., Boneh, D.: Remote timing attacks are practical. In: Proceedings of
the 12th USENIX Security Symposium, pp. 1–14 (2003)

13. Campagna, M.J., Sethi, A.: Key recovery method for CRT implementation of RSA.
Cryptology ePrint Archive, Report 2004/147. http://eprint.iacr.org/

14. Liu, F., Yarom, Y., Ge, Q., Heiser, G., Lee, R.B.: Last level cache side channel
attacks are practical, September 2015

15. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: concrete results.
In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp.
251–261. Springer, Heidelberg (2001)

16. Genkin, D., Pachmanov, L., Pipman, I., Tromer, E.: Stealing keys from PCs using
a radio: cheap electromagnetic attacks on windowed exponentiation. In: Güneysu,
T., Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 207–228. Springer,
Heidelberg (2015)

17. Genkin, D., Shamir, A., Tromer, E.: RSA key extraction via low-bandwidth
acoustic cryptanalysis. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I.
LNCS, vol. 8616, pp. 444–461. Springer, Heidelberg (2014)

18. Gruss, D., Spreitzer, R., Mangard, S.: Cache.: template attacks: automating attacks
on inclusive last-level caches. In: 24th USENIX Security Symposium, pp. 897–912.
USENIX Association (2015)

https://lists.gnupg.org/pipermail/gnupg-announce/2013q3/000329.html
https://lists.gnupg.org/pipermail/gnupg-announce/2013q3/000329.html
http://ark.intel.com/es/products/75275/Intel-Xeon-Processor-E5-2670-v2-25M-Cache-2_50-GHz
http://ark.intel.com/es/products/75275/Intel-Xeon-Processor-E5-2670-v2-25M-Cache-2_50-GHz
https://git.openssl.org/gitweb/?p=openssl.git;a=commitdiff;h=2198be3483259de374f91e57d247d0fc667aef29
https://git.openssl.org/gitweb/?p=openssl.git;a=commitdiff;h=2198be3483259de374f91e57d247d0fc667aef29
http://blogs.vmware.com/security/vmware-security-response-center/page/2
http://blogs.vmware.com/security/vmware-security-response-center/page/2
http://cr.yp.to/papers.html#cachetiming
http://cr.yp.to/papers.html#cachetiming
http://eprint.iacr.org/

Cache Attacks Enable Bulk Key Recovery on the Cloud 387

19. Gullasch, D., Bangerter, E., Krenn, S.: Cache games - bringing access-based cache
attacks on AES to practice. In: SP 2011, pp. 490–505

20. Hamburg, M.: Bit level error correction algorithm for RSA keys. Personal Com-
munication. Cryptography Research Inc. (2013)

21. Heninger, N., Durumeric, Z., Wustrow, E., Halderman, J.A.: Mining your Ps and
Qs: detection of widespread weak keys in network devices. In: Presented as Part
of the 21st USENIX Security Symposium (USENIX Security 2012), Bellevue, WA.
USENIX, pp. 205–220 (2012)

22. Hu, W.-M.: Lattice scheduling and covert channels. In: Proceedings of the 1992
IEEE Symposium on Security and Privacy

23. Hund, R., Willems, C.,Holz, T.: Practical timing side channel attacks against ker-
nel space ASLR. In: Proceedings of the 2013 IEEE Symposium on Security and
Privacy, pp. 191–205

24. İncİ, M.S., Gülmezoglu, B., Eisenbarth, T., Sunar, B.: Co-location detection on
the cloud. In: COSADE (2016)

25. İncİ, M.S., Gülmezoglu, B., Irazoqui, G., Eisenbarth, T., Sunar, B.: Cache attacks
enable bulk key recovery on the cloud (extended version) (2016). http://v.wpi.
edu/wp-content/uploads/Papers/Publications/bulk extended.pdf

26. Irazoqui, G., Eisenbarth, T., Sunar, B.: S$A: a shared cache attack that works
across cores and defies VM sandboxing and its application to AES. In: 36th IEEE
Symposium on Security and Privacy, S&P (2015)

27. Irazoqui, G., Eisenbarth, T., Sunar, B.: Systematic reverse engineering of cache
slice selection in Intel processors. In: Euromicro DSD (2015)

28. Irazoqui, G., Eisenbarth, T., Sunar, B.: Cross processor cache attacks. In: Proceed-
ings of the 11th ACM Symposium on Information, Computer and Communications
Security, ASIA CCS 2016. ACM (2016)

29. Irazoqui, G., İncİ, M.S., Eisenbarth, T., Sunar, B.: Know thy neighbor: crypto
library detection in cloud. Proc. Priv. Enhancing Technol. 1(1), 25–40 (2015)

30. Irazoqui, G., İncİ, M.S., Eisenbarth, T., Sunar, B.: Wait a minute! a fast, cross-VM
attack on AES. In: RAID, pp. 299–319 (2014)

31. Irazoqui, G., İncİ, M.S., Eisenbarth, T., Sunar, B.: Lucky 13 strikes back. In:
Proceedings of the 10th ACM Symposium on Information, Computer and Com-
munications Security, ASIA CCS 2015, pp. 85–96 (2015)

32. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

33. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

34. Libgcrypt: The Libgcrypt reference manual. http://www.gnupg.org/
documentation/manuals/gcrypt/

35. Lipp, M., Gruss, D., Spreitzer, R., Mangard, S. ARMageddon : last-level cache
attacks on mobile devices. CoRR abs/1511.04897 (2015)

36. Maurice, C., Scouarnec, N.L., Neumann, C., Heen, O., Francillon, A.: Reverse
engineering intel last-level cache complex addressing using performance counters.
In: RAID 2015 (2015)

37. Oren, Y., Kemerlis, V.P., Sethumadhavan, S., Keromytis, A.D.: The spy in the
sandbox : practical cache attacks in javascript and their implications. In: Proceed-
ings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security, New York, NY, USA, CCS 2015, pp. 1406–1418. ACM (2015)

http://v.wpi.edu/wp-content/uploads/Papers/Publications/bulk_extended.pdf
http://v.wpi.edu/wp-content/uploads/Papers/Publications/bulk_extended.pdf
http://www.gnupg.org/documentation/manuals/gcrypt/
http://www.gnupg.org/documentation/manuals/gcrypt/

388 M.S. İnci et al.

38. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks countermeasures.: the case of
AES. In: Proceedings of the 2006 The Cryptographers’ Track at the RSA Confer-
ence on Topics in Cryptology, CT-RSA 2006

39. Page, D.: Theoretical use of cache memory as a cryptanalytic side-channel (2002)
40. Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey you, get off of my cloud:

exploring information leakage in third-party compute clouds. In: Proceedings of
the 16th ACM Conference on Computer and Communications Security, CCS 2009,
pp. 199–212

41. Suzaki, K., Iijima, K., Toshiki, Y., Artho, C.: Implementation of a memory disclo-
sure attack on memory deduplication of virtual machines. IEICE Trans. Fundam.
Electron., Commun. Comput. Sci. 96, 215–224 (2013)

42. Varadarajan, V., Zhang, Y., Ristenpart, T., Swift, M.: A placement vulnerabil-
ity study in multi-tenant public clouds. In: 24th USENIX Security Symposium
(USENIX Security 2015), Washington, D.C., August 2015, pp. 913–928. USENIX
Association

43. Wu, Z., Xu, Z., Wang, H.: Whispers in the hyper-space: high-speed covert channel
attacks in the cloud. In: USENIX Security Symposium, pp. 159–173 (2012)

44. Xu, Z., Wang, H., Wu, Z.: A measurement study on co-residence threat inside the
cloud. In: 24th USENIX Security Symposium (USENIX Security 2015), Washing-
ton, D.C., August 2015, pp. 929–944. USENIX Association

45. Yarom, Y., Falkner, K.: FLUSH+RELOAD: a high resolution, low noise, L3 cache
side-channel attack. In: 23rd USENIX Security Symposium (USENIX Security
2014), pp. 719–732

46. Yarom, Y., Ge, Q., Liu, F., Lee, R.B., Heiser, G.: Mapping the Intel last-level
cache. Cryptology ePrint Archive, Report 2015/905 (2015). http://eprint.iacr.org/

47. Zhang, Y., Juels, A., Oprea, A., Reiter, M.K.: HomeAlone : co-residency detection
in the cloud via side-channel analysis. In: Proceedings of the 2011 IEEE Symposium
on Security and Privacy

48. Zhang, Y., Juels, A., Reiter, M. K., Ristenpart, T.: Cross-tenant side-channel
attacks in paas clouds. In: Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security

49. Zhang, Y., Juels, A., Reiter, M.K., Ristenpart, T.: Cross-VM side channels and
their use to extract private keys. In: Proceedings of the 2012 ACM Conference on
Computer and Communications Security

http://eprint.iacr.org/

Physical Unclonable Functions

Strong Machine Learning Attack Against PUFs
with No Mathematical Model

Fatemeh Ganji(B), Shahin Tajik, Fabian Fäßler, and Jean-Pierre Seifert

Security in Telecommunications, Technische Universität Berlin and Telekom
Innovation Laboratories, Berlin, Germany

{fganji,stajik,jpseifert}@sec.t-labs.tu-berlin.de,
fabian.faessler@campus.tu-berlin.de

Abstract. Although numerous attacks revealed the vulnerability of dif-
ferent PUF families to non-invasive Machine Learning (ML) attacks, the
question is still open whether all PUFs might be learnable. Until now,
virtually all ML attacks rely on the assumption that a mathematical
model of the PUF functionality is known a priori. However, this is not
always the case, and attention should be paid to this important aspect
of ML attacks. This paper aims to address this issue by providing a
provable framework for ML attacks against a PUF family, whose under-
lying mathematical model is unknown. We prove that this PUF family is
inherently vulnerable to our novel PAC (Probably Approximately Cor-
rect) learning framework. We apply our ML algorithm on the Bistable
Ring PUF (BR-PUF) family, which is one of the most interesting and
prime examples of a PUF with an unknown mathematical model. We
practically evaluate our ML algorithm through extensive experiments on
BR-PUFs implemented on Field-Programmable Gate Arrays (FPGA).
In line with our theoretical findings, our experimental results strongly
confirm the effectiveness and applicability of our attack. This is also
interesting since our complex proof heavily relies on the spectral proper-
ties of Boolean functions, which are known to hold only asymptotically.
Along with this proof, we further provide the theorem that all PUFs
must have some challenge bit positions, which have larger influences on
the responses than other challenge bits.

Keywords: Machine learning · PAC learning · Boosting technique ·
Fourier analysis · Physically Unclonable Functions (PUFs)

1 Introduction

Nowadays, it is broadly accepted that Integrated Circuits (ICs) are subject to
overbuilding and piracy due to the adaption of authentication methods relying on
insecure key storage techniques [24]. To overcome the problem of secure key stor-
age, Physically Unclonable Functions (PUFs) have been introduced as promising
solutions [15,30]. For PUFs, the manufacturing process variations lead eventually
to instance-specific, and inherent physical properties that can generate virtually
c© International Association for Cryptologic Research 2016
B. Gierlichs and A.Y. Poschmann (Eds.): CHES 2016, LNCS 9813, pp. 391–411, 2016.
DOI: 10.1007/978-3-662-53140-2 19

392 F. Ganji et al.

unique responses, when the instance is given some challenges. Therefore, PUFs can
be utilized as either device fingerprints for secure authentication or as a source of
entropy in secure key generation scenarios. In this case, there is no need for per-
manent key storage, since the desired key is generated instantly upon powering
up the device. Regarding the instance-specific, and inherent physical properties
of the PUFs, they are assumed to be unclonable and unpredictable, and therefore
trustworthy and robust against attacks [26]. However, after more than a decade of
the invention of PUFs, the design of a really unclonable physical function is still
a challenging task. Most of the security schemes relying on the notion of PUFs
are designed based on a “design-break-patch” rule, instead of a thorough crypto-
graphic approach.

Along with the construction of a wide variety of PUFs, several different types
of attacks, ranging from non-invasive to semi-invasive attacks [18,19,33,39],
have been launched on these primitives. Machine learning (ML) attacks are
one of the most common types of non-invasive attacks against PUFs, whose
popularity stems from their characteristics, namely being cost-effective and non-
destructive. Moreover, these attacks require the adversary to solely observe the
input-output (i.e., so called challenge-response) behavior of the targeted PUF.
In this attack scenario, a relatively small subset of challenges along with their
respective responses is collected by the adversary, attempting to come up with
a model describing the challenge-response behavior of the PUF. In addition to
heuristic learning techniques, e.g., what has been proposed in [33,34], the authors
of [12–14] have proposed the probably approximately correct (PAC) learning
framework to ensure the delivery of a model for prespecified levels of accuracy
and confidence. One of the key results reported in [12–14] is that knowing about
the mathematical model of the PUF functionality enables the adversary to estab-
lish a proper hypothesis representation (i.e., mathematical model of the PUF),
and then try to PAC learn this representation. This gives rise to the question
of whether a PUF can be PAC learned without prior knowledge of a precise
mathematical model of the PUF.

Bistable Ring PUFs (BR-PUF) [7] and Twisted Bistable Ring PUFs (TBR-
PUF) [37] are examples of PUFs, whose functionality cannot be easily translated
to a precise mathematical model. In an attempt, the authors of [37,41] suggested
simplified mathematical models for BR-PUFs and TBR-PUFs. However, their
models do not precisely reflect the physical behavior of these architectures.

In this paper, we present a sound mathematical machine learning framework,
which enables us to PAC learn the BR-PUF family (i.e., including BR- and
TBR-PUFs) without knowing their precise mathematical model. Particularly,
our framework contributes to the following novel aspects related to the security
assessment of PUFs in general:

Exploring the inherent mathematical properties of PUFs. One of the
most natural and commonly accepted mathematical representation of a PUF is
a Boolean function. This representation enables us to investigate properties of
PUFs, which are observed in practice, although they have not been precisely
and mathematically described. One of these properties exhaustively studied in

Strong Machine Learning Attack Against PUFs 393

our paper is related to the “silent” assumption that each and every bit of a
challenge has equal influence on the respective response of a PUF. We prove that
this assumption is invalid for all PUFs. While this phenomenon has been already
occasionally observed in practice and is most often attributed to implementation
imperfections, we will give a rigorous mathematical proof on the existence of
influential bit positions, which holds for every PUF.

Strong ML attacks against PUFs without available mathematical
model. We prove that even in a worst case scenario, where the internal function-
ality of the BR-PUF family cannot be mathematically modeled, the challenge-
response behavior of these PUFs can be PAC learned for given levels of accuracy
and confidence.

Evaluation of the applicability of our framework in practice. In order
to evaluate the effectiveness of our theoretical framework, we conduct extensive
experiments on BR-PUFs and TBR-PUFs, implemented on a commonly used
Field Programmable Gate Array (FPGA).

2 Notation and Preliminaries

This section serves as brief introduction into the required background knowledge
and known results to understand the approaches taken in this paper. For some
more complex topics we will occasionally refer the reader to important references.

2.1 PUFs

Note that elaborate and formal definitions as well as formalizations of PUFs
are beyond the scope of this paper, and for more details on them we refer the
reader to [3,4]. In general, PUFs are physical input to output mappings, which
map given challenges to responses. Intrinsic properties of the physical primitive
embodying the PUF determine the characteristics of this mapping. Two main
classes of PUFs, namely strong PUFs and weak PUFs have been discussed in the
literature [16]. In this paper we consider the strong PUFs, briefly called PUFs.
Here we focus only on two characteristics of PUFs, namely unclonablity and
unpredictability (i.e., so called unforgeability). Let a PUF be described by the
mapping fPUF : C → Y, where fPUF(c) = y. In this paper, we assume that the
issue with noisy responses (i.e., the output is not stable for a given input) must
have been resolved by the PUF manufacturer. For an ideal PUF, unclonablity
means that for a given PUF fPUF it is virtually impossible to create another
physical mapping gPUF �= fPUF, whose challenge-response behavior is similar to
fPUF [3].

Moreover, an ideal PUF is unpredictable. This property of PUFs is closely
related to the notion of learnability. More precisely, given a single PUF fPUF and
a set of challenge response pairs (CRPs) U = {(c, y) | y = fPUF(c) and c ∈ C}, it
is (almost) impossible to predict y′ = fPUF(c′), where c′ is a random challenge
so that (c′, ·) /∈ U . In this paper we stick to this (simple, but) classical definition
of unpredictability of a PUF, and refer the reader to [3,4] for more refined
definitions.

394 F. Ganji et al.

2.2 Boolean Functions as representations of PUFs

Defining PUFs as mappings (see Sect. 2.1), the most natural mathematical model
for them are Boolean functions over the finite field F2. Let Vn = {c1, c2, . . . , cn}
denote the set of Boolean attributes or variables, where each attribute can be
true or false , commonly denoted by “1” and “0”, respectively. In addition,
Cn = {0, 1}n contains all binary strings with n bits. We associate each Boolean
attribute ci with two literals, i.e., ci, and ci (complement of ci). An assignment
is a mapping from Vn to {0, 1}, i.e., the mapping from each Boolean attribute to
either “0” or “1”. In other words, an assignment is an n-bits string, where the
ith bit of this string indicates the value of ci (i.e., “0” or “1”).

An assignment is mapped by a Boolean formula into the set {0, 1}. Thus,
each Boolean attribute can also be thought of as a formula, i.e., ci and ci are
two possible formulas. If by evaluating a Boolean formula under an assignment
we obtain “1”, it is called a positive example of the “concept represented by
the formula” or otherwise a negative example. Each Boolean formula defines
a respective Boolean function f : Cn → {0, 1}. The conjunction of Boolean
attributes (i.e., a Boolean formula) is called a term, and it can be true or false
(“1” or “0”) depending on the value of its Boolean attributes. Similarly, a clause
that is the disjunction of Boolean attributes can be defined. The number of
literals forming a term or a clause is called its size. The size 0 is associated with
only the term true, and the clause false.

In the related literature several representations of Boolean functions have
been introduced, e.g., juntas, Monomials (Mn), Decision Trees (DTs), and Deci-
sion Lists (DLs), cf. [29,31].

A Boolean function depending on solely an unknown set of k variables is
called a k-junta. A monomial Mn,k defined over Vn is the conjunction of at most
k clauses each having only one literal. A DT is a binary tree, whose internal
nodes are labeled with a Boolean variable, and each leaf with either “1” or “0”.
A DT can be built from a Boolean function in this way: for each assignment a
unique path form the root to a leaf should be defined. At each internal node,
e.g., at the ith level of the tree, depending on the value of the ith literal, the
labeled edge is chosen. The leaf is labeled with the value of the function, given
the respective assignment as the input. The depth of a DT is the maximum
length of the paths from the root to the leafs. The set of Boolean functions
represented by decision trees of depth at most k is denoted by k-DT. A DL is
a list L that contains r pairs (f1, v1), . . . , (fr, vr), where the Boolean formula fi

is a term and vi ∈ {0, 1} with 1 ≤ i ≤ r − 1. For i = r, the formula fr is the
constant function vr = 1. A Boolean function can be transformed into a decision
list, where for a string c ∈ Cn we have L(c) = vj , where j is the smallest index
in L so that fj(c) = 1. k-DL denotes the set of all DLs, where each fi is a term
of maximum size k.

Linearity of Boolean Functions. Here, our focus is onBoolean linearity, which
must not be confused with the linearity over other domains different from F2.

Strong Machine Learning Attack Against PUFs 395

A linear Boolean function f : {0, 1}n → {0, 1} features the following equiva-
lent properties, cf. [29]:

– ∀c, c′ ∈ {0, 1}n : f(c + c′) = f(c) + f(c′)
– ∃a ∈ {0, 1}n : f(c) = a · c.

Equivalently, we can define a linear Boolean function f as follows. There is some
set S ⊆ {1, . . . , n} such that f(c) = f(c1, c2, . . . , cn) =

∑
i∈S ci.

Boolean linearity or linearity over F2 is closely related to the notion of cor-
relation immunity. A Boolean function f is called k-correlation immune, if
for any assignment c chosen randomly from {0, 1}n it holds that f(c) is inde-
pendent of any k-tuple (ci1 , ci1 , . . . , cik), where 1 ≤ i1 < i2 < · · · < ik ≤ n. Now
let deg(f) denote the degree of the F2-polynomial representation of the Boolean
function f . It is straightforward to show that such representation exists. Siegen-
thaler proved the following theorem, which states how correlation immunity can
be related to the degree of f .

Theorem 1. (Siegenthaler Theorem [29,38]) Let f : {0, 1}n → {0, 1} be a
Boolean function, which is k-correlation immune, then deg(f) ≤ n − k.

Average Sensitivity of Boolean Functions. The Fourier expansion of
Boolean functions serves as an excellent tool for analyzing them, cf. [29]. In order
to define the Fourier expansion of a Boolean function f : Fn

2 → F2 we should
first define an encoding scheme as follows. χ(0F2) := +1, and χ(1F2) := −1. Now
the Fourier expansion of a Boolean function can be written as

f(c) =
∑

S⊆[n]

f̂(S)χS(c),

where [n] := {1, . . . , n}, χS(c) :=
∏

i∈S ci, and f̂(S) := Ec∈U [f(c)χS(c)]. Here,
Ec∈U [·] denotes the expectation over uniformly chosen random examples. The
influence of variable i on f : Fn

2 → F2 is defined as

Infi(f) := Prc∈U [f(c) �= f(c⊕i)],

where c⊕i is obtained by flipping the i-th bit of c. Note that Infi(f) =
∑

S�i(f̂(S))2, cf. [29]. Next we define the average sensitivity of a Boolean
function f as

I(f) :=
n∑

i=1

Infi(f).

2.3 Our Learning Model

The Probably Approximately Correct (PAC) model provides a firm basis for
analyzing the efficiency and effectiveness of machine learning algorithms. We
briefly introduce the model and refer the reader to [23] for more details. In the

396 F. Ganji et al.

PAC model the learner, i.e., the learning algorithm, is given a set of examples to
generate with high probability an approximately correct hypothesis. This can be
formally defined as follows. Let F = ∪n≥1Fn denote a target concept class that
is a collection of Boolean functions defined over the instance space Cn = {0, 1}n.
Moreover, according to an arbitrary probability distribution D on the instance
space Cn each example is drawn. Assume that hypothesis h ∈ Fn is a Boolean
function over Cn, it is called an ε-approximator for f ∈ Fn, if

Pr
c∈DCn

[f(c) = h(c)] ≥ 1 − ε.

Let the mapping size : {0, 1}n → N associate a natural number size(f) with
a target concept f ∈ F that is a measure of complexity of f under a target
representation, e.g., k-DT. The learner is a polynomial-time algorithm denoted
by A, which is given labeled examples (c, f(c)), where c ∈ Cn and f ∈ Fn. The
examples are drawn independently according to distribution D. Now we can
define strong and weak PAC learning algorithms.

Definition 1. An algorithm A is called a strong PAC learning algorithm for the
target concept class F , if for any n ≥ 1, any distribution D, any 0 < ε, δ < 1,
and any f ∈ Fn the follwing holds. When A is given a polynomial number of
labeled examples, it runs in time polynomial in n, 1/ε, size(f), 1/δ, and returns
an ε-approximator for f under D, with probability at least 1 − δ.

The weak learning framework was developed to answer the question whether
a PAC learning algorithm with constant but insufficiently low levels of ε and δ
can be useful at all. This notion is defined as follows.

Definition 2. For some constant δ > 0 let algorithm A return with probability
at least 1 − δ an (1/2 − γ)-approximator for f , where γ > 0. A is called a weak
PAC learning algorithm, if γ = Ω(1/p(n, size(f)) for some polynomial p(·).

The equivalence of weak PAC learning and strong PAC learning has been
proved by Freund and Schapire in the early nineties in their seminal papers [9,35].
For that purpose boosting algorithms have been introduced.

Definition 3. An algorithm B is called a boosting algorithm if the following
holds. Given any f ∈ Fn, any distribution D, 0 < ε, δ < 1, 0 < γ ≤ 1/2, a poly-
nomial number of labeled examples, and a weak learning algorithm WL returning
an (1/2 − γ)-approximator for f , then B runs in time, which is polynomial in
n, size(f), 1/γ, 1/ε, 1/δ and generates with probability at least 1 − δ an ε-
approximator for f under D.

The construction of virtually all existing boosting algorithms is based pri-
marily on the fact that if WL is given examples drawn from any distribution D′,
WL returns a (1/2−γ)-approximator for f under D′. At a high-level, the skeleton
of all such boosting algorithms is shown in Algorithm1.

Strong Machine Learning Attack Against PUFs 397

Algorithm 1. Canonical Booster
Require: Weak PAC learner WL, 0 < ε, δ < 1, 0 < γ ≤ 1/2, polynomial number of

examples, i that is the number of iterations
Ensure: Hypothesis h that is an ε-approximator for f

1: D0 = D, use WL to generate an approximator h0 for f under D0

2: k = 1
3: while k ≤ i − 1 do
4: Build a distribution Dk consisting of examples, where the previous approximators

h0, · · · , hk−1 can predict the value of f poorly
5: use WL to generate an approximator hk for f under Dk

6: k = k + 1
7: od
8: Combine the hypotheses h0, · · · , hi−1 to obtain h, where each hi is an (1/2 − γ)-

approximator for f under Di, and finally h is an ε-approximator for f under
D

9: return h

2.4 Non-linearity of PUFs Over F2 and the Existence of Influential
Bits

Section 2.2 introduced the notion of Boolean linearity. Focusing on this notion
and taking into account the definition of PUFs mentioned in Sect. 2.1, now we
prove the following theorem that is our first important result. For all PUFs, when
represented as a Boolean function, it holds that their degree as F2-polynomial
is strictly greater than one. This will then lead us to the following dramatic
consequence. There exists no PUF, in which all of its challenge bits have an
equal influence.

Theorem 2. For every PUF fPUF : {0, 1}n → {0, 1}, we have deg(fPUF) ≥ 2.
Consequently, for every PUF it holds that not all bit positions within respective
challenges are equally influential in generating the corresponding response.

Proof: Towards contradiction assume that fPUF is Boolean linear over F2 and
unpredictable. From the unpredictability of fPUF it follows that the adversary
has access to a set of CRPs U = {(c, y) | y = fPUF(c) and c ∈ C}, which
are chosen uniformly at random, however, the adversary has only a negligible
probability of success to predict a new random challenge (c′, ·) /∈ U (as he can-
not apply fPUF to this unseen challenge). Note that the size of U is actually
polynomial in n. Now, by the definition of linearity over F2, cf. Sect. 2.2, we
deduce that the only linear functions over F2 are the Parity functions, see also
[29,38]. However, there are well-known algorithms to PAC learn Parity functions
in general [8,20]. Thus, now we simply feed the right number of samples from
our CRP set U into such a PAC learner. For the right parameter setting, the
respective PAC algorithm delivers then with high probability an ε-approximator
h for our PUF fPUF such that Pr[f(c′) = h(c′)] ≥ 1 − ε. This means that with
high probability, the response to every randomly chosen challenge can be cal-
culated in polynomial time. This is of course a contradiction to the definition

398 F. Ganji et al.

of fPUF, being a PUF. Hence, fPUF cannot be linear over F2. In other words,
for every PUF fPUF we have deg(fPUF) ≥ 2. Moreover, in conjunction with the
above mentioned Siegenthaler Theorem, we deduce that every PUF is at most
an n − 2-correlation immune function, which indeed means that not all of its
challenge bits have an equal influence on the respective PUF response. �

Theorem 2 states that every PUF has some challenge bits, which have some
larger influence on the responses than other challenge bits. We call these bits
“loosely” as influential bits1.

3 PUF Architectures

In this section, we explain the architectures of two intrinsic silicon PUFs, namely
the BR- and TBR-PUFs, whose internal mathematical models are more compli-
cated than other intrinsic PUF constructions. In an attempt, we apply simple
models to describe the functionality of these PUFs. However, we believe that
these models cannot completely reflect the real characteristics of the BR-PUF
family, and their concrete, yet unknown model should be much more complex.

3.1 Memory-Based PUFs

BR-PUFs can be thought of as a combination of memory-based and delay-based
PUFs. Memory-based PUFs exploit the settling state of digital memory circuits,
e.g., SRAM cells [16,21] consisting of two inverters in a loop (see Fig. 1a) and two
transistors for read and write operation. Due to manufacturing process variations
the inverters have different electrical gains, when the cell is in the metastable
condition. In the metastable condition the voltage of one of the inverters is equal
to Vm, where Vm is an invalid logic level. Moreover, the invertes have different
propagation delays due to the differences in their output resistance and load
capacitance. One can model the SRAM cell architecture as a linear amplifier
with gain G, when Vinitial is close to the metastable voltage Vm [40], see Fig. 1b.
In order to predict the metastable behavior, we have [40]

Vinitial(0) = Vm + V (0),

Vinitial

(a)

R

C

GV(t)

(b)

Fig. 1. (a) The logical circuit of an SRAM cell. (b) The small signal model of bistable
element in metastability

1 Note that the existence of such influential bits has been also noticed by several other
experimental research papers. However, none of them has been able to correctly and
precisely pinpoint the mathematical origin of this phenomenon.

Strong Machine Learning Attack Against PUFs 399

where V (0) is a small signal offset from the metastable point. To derive V (t) we
can write the equation of the circuit as follows.

G · V (t) − V (t)
R

= C · dV (t)
dt

.

By solving this equation, we obtain V (t) = V (0) · et/τs , where τs = RC/G −
1, c.f. [40]. The time required to reach a stable condition increases as Vinitial

approaches the metastable point and V (0) approaches 0. On the other hand, it
can approach infinity, if V (0) = 0, however, in practice this is not the case due
to the presence of noise. Nevertheless, there is no upper bound on the settling
time of the SRAM cell to one of the stable states. Therefore, the settling state of
the SRAM cells cannot be predicted after power-on. One can thus use the logical
addresses of SRAM cells as different challenges and the state of the SRAM cells
after power-on as PUF responses.

3.2 Bistable Ring PUF

SRAM PUFs are believed to be secure against modeling attacks. This can be
explained by the fact that knowing the state of one SRAMPUFafter power-on does
not help the attacker to predict the response of other SRAM cells. However, in con-
trast to delay-based PUFs, e.g., arbiter PUFs [25], the challenge space of an SRAM
PUF is not exponential. Therefore, if an adversary gets access to the initial values
stored in the SRAM cells, the challenge-response behavior of the SRAM PUF can
be emulated. In order to combine the advantages offered by delay-based PUFs and
memory-based PUFs, namely, exponential challenge space and the unpredictabil-
ity, a new architecture called BR-PUF was introduced by [7]. A BR-PUF consists
of n stages (n is an even number), where each stage consists of two NOR gates, one
demultiplexer and one multiplexer, see Fig. 2. Based on the value of the ith bit of a

c[1] c[2] c[i] c[i+1]

rreset

c[i+2]c[i+3]c[n-1]c[n]

Fig. 2. The schematic of a BR-PUF with n stages. The response of the PUF can be
read between two arbitrary stages. For a given challenge, the reset signal can be set
low to activate the PUF. After a transient period, the BR-PUF might be settled to an
allowed logical state.

400 F. Ganji et al.

challenge applied to the ith stage, one of the NOR gates is selected. Setting the reset
signal to low, the signal propagates in the ring, which behaves like an SRAM cell
with a larger number inverters. The response of the PUF is a binary value, which
can be read from a predefined location on the ring between two stages, see Fig. 2.

The final state of the inverter ring is a function of the gains and the propa-
gation delays of the gates. According to the model of the SRAM circuit in the
metastable state provided in Sect. 3.1, one might be able to extend the electrical
model and analyze the behavior of the inverter ring. Applying a challenge, the
ring may settle at a stable state after a oscillation time period. However, for
a specific set of challenges the ring might stay in the metastable state for an
infinite time, and the oscillation can be observed in the output of the PUF.

The analytical models of the metastable circuits introduced in Sect. 3.1 are
valid for an ASIC implementation and respective simulations. Although few
simulation results of BR-PUF are available in the literature, to the best of our
knowledge there are no results for a BR-PUF implemented on an ASIC, and
experimental results have been limited to FPGA implementations. In this case,
the BR-PUF model can be further simplified by considering the internal archi-
tecture of the FPGAs. The NOR gates of the BR-PUF are realized by dedicated
Lookup Tables (LUTs) inside an FPGA. The output of the LUTs are read from
one of the memory cells of the LUT, which have always stable conditions. Hence,
it can be assumed that there is almost no difference in the gains of different LUTs.
As a result, the random behavior of the BR-PUF could be defined by the delay
differences between the LUTs.

3.3 Twisted Bistable Ring PUF

Although the mathematical model of the functionality of a BR-PUF is unknown,
it has been observed that this construction is vulnerable to bias and simple linear
approximations [37]. Hence, the TBR-PUF, as an enhancement to BR-PUFs, has
been introduced [37]. Similar to BR-PUFs, a TBR-PUF consists of n stages (n
is an even number), where each stage consists of two NOR gates. In contrast to
BR-PUF, where for a given challenge only one of the NOR gates in each stage
is selected, all 2n gates are selected in a TBR-PUF. This can be achieved by
placing two multiplexers before and two multiplexers after each stage and having
feedback lines between different stages, see Fig. 3. As all NOR gates are always
in the circuit, the challenge specific bias can be reduced.

4 PAC Learning of PUFs Without Prior Knowledge
of Their Mathematical Model

When discussing the PAC learnability of PUFs as a target concept, two scenarios
should be distinguished. First, the precise mathematical model of the PUF func-
tionality is known, and hence, a hypothesis representation is known to learn the
PUF. This scenario has been considered in several studies, e.g., [12–14], where
different hypothesis representations have been presented for each individual PUF

Strong Machine Learning Attack Against PUFs 401

c[1] c[2] c[n-1] c[n]

r

reset

Fig. 3. The schematic of a TBR-PUF with n stages. The response of the PUF is read
after the last stage. For a given challenge, the reset signal can be set low to activate
the PUF. After a transient period, the BR-PUF might be settled to an allowed logical
state.

family. Second, due to the lack of a precise mathematical model of the respective
PUF functionality, to learn the PUF a more sophisticated approach is required.
Therefore, the following question arises: is it possible to PAC learn a PUF fam-
ily, even if we have no mathematical model of the physical functionality of the
respective PUF family? We answer this question at least for the BR-PUF family.
Our roadmap for answering this question, more specifically, the steps taken to
prove the PAC learnability of BR-PUF family in the second scenario, is illus-
trated in Fig. 4. While theoretical insights into the notions related to the first
two blocks have been presented in Sect. 2.4, which are valid for all PUF families,
Sect. 4.1 provides more specific results for the BR-PUF family (i.e., According to
these new insights, in Sect. 4.2 we eventually prove that BR-PUF family (which
lack a precise mathematical model) can nevertheless be PAC learned (see last
two blocks in Fig. 4).

Fig. 4. Our roadmap for proving the PAC learnability of BR-PUF family, whose math-
ematical model is unknown

4.1 A Constant Upper Bound on the Number of Influential Bits

First, we reflect the fact that our Theorem 2 is in line with the empirical
results obtained by applying heuristic approaches, which are reported in [37,42].
Although here we compare their results for BR- and TBR-PUFs with our results,
our proof of having influential bits in PUF families in general, speaks for itself,
and is one of the novel aspects of this paper.

In an attempt to assess the security of BR-PUFs, Yamamoto et al. have
implemented BR-PUFs on several FPGAs to analyze the influence of challenge

402 F. Ganji et al.

bits on the respective responses [42]. They have explicitly underlined the exis-
tence of influential bits, and found so called prediction rules. Table 1 summarizes
their results, where for each type of the rules (monomials of different sizes) we
report only the one with the highest estimated response prediction probability.
In addition to providing evidence for the existence of influential bits, the size of
the respective monomials is of particular importance for us. As shown in Table 1,
their size is surprisingly small, i.e., only five.

Table 1. Statistical analysis of the 2048 CRPs, given to a 64-bit BR-PUF [42]. The
first column shows the rule found in the samples, whereas the second column indicates
the estimated probability of predicting the response.

Rule Est. Pr.

(c1 = 0) → y = 1 0.684

(c9 = 0) ∧ (c6 = 1) → y = 1 0.762

(c25 = 0) ∧ (c18 = 1) ∧ (c1 = 0) → y = 1 0.852

(c27 = 0) ∧ (c25 = 0) ∧ (c18 = 1) ∧ (c6 = 1) → y = 1 0.932

(c53 = 0) ∧ (c51 = 0) ∧ (c45 = 0) ∧ (c18 = 1) ∧ (c7 = 0) → y = 1 1

Similarly, the authors of [37] translate the influence of the challenge bits to
the weights needed in artificial neural networks that represent the challenge-
response behavior of BR-PUFs and the TBR-PUFs. They observed that there
is a pattern in these weights, which models the influence of the challenge bits. It
clearly reflects the fact that there are influential bits determining the response of
the respective PUF to a given challenge. From the results presented in [37], we
conclude that there is at least one influential bit, however, the precise number
of influential bits has not been further investigated by the authors.

Inspired by the above results from [37,42], we conduct further experiments.
We collect 30000 CRPs from BR-PUFs and TBR-PUFs implemented on Altera
Cyclone IV FPGAs. In all of our PUF instances at least one influential bit is
found, and the maximum number of influential bits (corresponding to the size of
the monomials) is just a constant value in all cases. For the sake of readability,
we present here only the results obtained for one arbitrary PUF instance.

Our results shown in Table 2 are not only aligned with the results reported
in [37,42], but also reflect our previous theoretical findings. We could conclude
this section as follows. There is at least one influential bit determining the
response of a BR-PUF (respectively, TBR-PUF) to a given challenge. However,
for the purpose of our framework their existence is not enough, and we need an
upper bound on the number of influential bits.

Looking more carefully into the three different datasets, namely our own and
the data reported in [37,42], we observe that the total number of influential
bits is always only a very small value. Motivated by this commonly observed
phenomenon, we compute for our PUFs (implemented on FPGAs) the average

Strong Machine Learning Attack Against PUFs 403

Table 2. Our statistical analysis of the 30000 CRPs, given to a 64-bit BR-PUF. The
first column shows the rule found in the sample, whereas the second column indicates
the estimated probability of predicting the response.

Rule Est. Pr.

(c61 = 1) → y = 1 0.71

(c11 = 1) → y = 1 0.72

(c29 = 1) → y = 1 0.725

(c39 = 1) → y = 1 0.736

(c23 = 1) → y = 1 0.74

(c46 = 1) → y = 1 0.745

(c50 = 1) → y = 1 0.75

(c61 = 1) ∧ (c23 = 1) → y = 1 0.82

(c61 = 1) ∧ (c11 = 0) → y = 1 0.80

(c23 = 1) ∧ (c46 = 1) → y = 1 0.86

(c39 = 1) ∧ (c50 = 1) → y = 1 0.85

(c61 = 1) ∧ (c11 = 1) ∧ (c29 = 1) → y = 1 0.88

(c50 = 1) ∧ (c23 = 1) ∧ (c46 = 1) → y = 1 0.93

(c50 = 1) ∧ (c23 = 1) ∧ (c46 = 1) ∧ (c39 = 0) → y = 1 0.97

(c50 = 1) ∧ (c23 = 1) ∧ (c11 = 0) ∧ (c39 = 0) ∧ (c29 = 1) → y = 1 0.98

(c50 = 1) ∧ (c23 = 1) ∧ (c46 = 1) ∧ (c39 = 0) ∧ (c29 = 1) → y = 1 0.99

(c50 = 1) ∧ (c23 = 1) ∧ (c46 = 1) ∧ (c39 = 0) ∧ (c29 = 1) ∧ (c11 = 0) → y = 1 0.994

(c50 = 1) ∧ (c23 = 1) ∧ (c46 = 1) ∧ (c39 = 0) ∧ (c29 = 1) ∧ (c61 = 0) → y = 1 0.995

(c50 = 1) ∧ (c23 = 1) ∧ (c46 = 1) ∧ (c39 = 0) ∧ (c29 = 1) ∧ (c61 = 1) ∧ (c11 = 0) → y = 1 1

sensitivity of their respective Boolean functions2. Averaging over many instances
of our BR-PUFs, we obtain the results shown in Table 3 (TBR-PUFs scored
similarly). This striking result3 lead us to the following plausible heuristic.

“Constant Average Sensitivity of BR-PUF family”: for all practical val-
ues of n it holds that the average sensitivity of a Boolean function associated
with a physical n-bit PUF from the BR-PUF family is only a constant value.

2 As explained in Sect. 2.2, for a Boolean function f , the influence of a variable and the
total average sensitivity can be calculated by employing Fourier analysis. However,
in practice this analysis is computationally expensive. Instead, it suffices to simply
approximate the respective average sensitivity. This idea has been extensively stud-
ied in the learning theory-related and property testing-related literature (see [22], for
a survey). Here we describe how the average sensitivity of a Boolean function, repre-
senting a PUF, can be approximated. We follow the simple and effective algorithm
as explained in [32]. The central idea behind their algorithm is to collect enough
random pairs of labeled examples from the Boolean function, which have the follow-
ing property: (c, f(c)) and (c⊕i, f(c⊕i)), i.e., the inputs differ on a single Boolean
variable.

3 Note that it is a known result and being folklore, cf. [29], that randomly chosen n-bit
Boolean functions have an expected average sensitivity of exactly n/2.

404 F. Ganji et al.

Table 3. The average sensitivity of n-bit BR-PUFs.

n The average sensitivity

4 1.25

8 1.86

16 2.64

32 3.6

64 5.17

Finally, some relation between the average sensitivity and the strict avalanche
criterion (SAC) can be recognized, although we believe that the average sensi-
tivity is a more direct metric to evaluate the security of PUFs under ML attacks.

4.2 Weak Learning and Boosting of BR-PUFs

The key idea behind our learning framework is the provable existence of influ-
ential bits for any PUF and the constant average sensitivity of BR-PUFs in our
scenario. These facts are taken into account to prove the existence of weak learn-
ers for the BR-PUF family. We start with the following theorem (Theorem3)
proved by Friedgut [11].

Theorem 3. Every Boolean function f : {0, 1}n → {0, 1} with I(f) = k can
be ε-approximated by another Boolean function h depending on only a constant
number of Boolean variables K, where K = exp

(
(2+

√
2ε log2(4k/ε)/k)k

ε

)
, and

ε > 0 is an arbitrary constant.

We explain now how Theorem 3 in conjunction with the results presented in
Sect. 4.1 help us to prove the existence of a weak learner (Definition 2) for the
BR-PUF family.

Theorem 4. Every PUF from the BR-PUF family is weakly learnable.

Proof: For an arbitrary PUF from the BR-PUF family, consider its associated
but unknown Boolean function that is denoted by fPUF (i.e., our target concept).
Our weak learning framework has two main steps. In the first step, we identify
a (weak) approximator for fPUF, and in the second step this approximator is
PAC learned (in a strong sense). Still, we can guarantee only that the total
error of the learner does not exceed 1/2 − γ, where γ > 0, as we start with
a weak approximator of fPUF. The first step relies on the fact that Theorem 2
ensures the existence of influential bits for fPUF, while we can also upper bound
I(fPUF) by some small constant value k due to the Constant Average Sensitivity
heuristic. According to the Theorem 3 there is a Boolean function h that is an
ε-approximator of fPUF, which depends only on a constant number of Boolean
variables K since k and ε are constant values, independent of n. However, note
that h depends on an unknown set of K variables. Thus, our Boolean function

Strong Machine Learning Attack Against PUFs 405

h is a so called K-junta function, cf. [29]. More importantly, for constant K it
is known that the K-junta function can be PAC learned by a trivial algorithm
within O

(
nK

)
steps, cf. [2,5,6]. This PAC algorithm is indeed our algorithm

WL that weakly learns fPUF. Carefully choosing the parameters related to our
approximators as well as the PAC learning algorithm, we ensure that WL returns
a 1/2 − γ-approximator for fPUF and some γ > 0. �

Applying now the canonical booster introduced in Sect. 2.3 to our WL proposed
in the proof of Theorem 4 and according to Definition 3, our weak learning algo-
rithm can be transformed into an efficient and strong PAC learning algorithm.

Corollary 1. BR-PUFs are strong PAC learnable, regardless of any mathemat-
ical model representing their challenge-response behavior.

5 Results

5.1 PUF Implementation

We implement BR and TBR-PUFs with 64 stages on an Altera Cyclone IV
FPGA, manufactured on a 60nm technology [1]. It turns out that most PUF
implementations are highly biased towards one of the responses. Therefore, we
apply different manual routing and placement configurations to identify PUFs
with a minimum bias in their responses. However, it is known that by reducing
the bias in PUF responses, the number of noisy responses increases [27].

Finding and resolving the noisy responses are two of the main challenges
in the CRP measurement process. In almost all PUF constructions it can be
predicted, at which point in time a generated response is valid and can be
measured. For instance, for an arbiter PUF one can estimate the maximum
propagation delay (evaluation period) between the enable point and the arbiter.
After this time period the response is in a valid logical level (either “0” or
“1”) and does not change, and afterwards by doing majority voting on the
responses generated for a given challenge the stable CRPs can be collected.
However, in the case of BR-PUF family, for a given challenge the settling time
of the response to a valid logical level is not known a priori, see Fig. 5. Fur-
thermore, it is not known whether the response to a given challenge would

(a) (b) (c)

Fig. 5. The settling time of the BR-PUF response: (a) the PUF response after a tran-
sient time reaches a stable logical state “1”. (b) after a transient time the PUF response
is “0”. (c) the PUF response does not settle and oscillates for an undefined time period.

406 F. Ganji et al.

not be unstable after observing the stable response during some time period
(see Sect. 3.1). Therefore, the majority voting technique cannot be employed for
BR-PUFs and TBR-PUFs. To deal with this problem, for a given challenge we
read the response of the PUF at different points in time, where at each point
in time 11 measurements are conducted additionally. We consider a response
being stable, if it is the same at all these different measurement time points.
Otherwise, the response is considered being unstable, and the respective CRP is
excluded from our dataset.

In order to observe the impact of the existing influential bits on our PUF
responses, first we apply a large set of challenges chosen uniformly at ran-
dom, and then measure their respective responses. Afterwards, for both possible
responses of the PUF (i.e., “0” and “1”) we count the number of challenge bits,
which are set to either “0” or “1”, see Fig. 6. It can be seen that some challenge
bits are more influential towards a certain response. These results are the basis
for our statistical analysis presented in Sect. 4.1. We also repeat this experiment
in the scenario, where the response of the PUF is unstable — in this case we
observe almost no influential challenge bits. The most important conclusion that
we can draw from these experiments is that a PUF with stable responses has
at least one influential bit, which can already predict with low probability the
response of the PUF to a respective challenge.

(a) (b)

Fig. 6. The impact of the influential bits on the responses of the PUF: (a) the response
of the PUF is “0”. (b) unstable responses. Here the y-axis shows the percentage of the
challenges, whose bits are set to either “0” or “1”, whereas the x-axis shows the bit
position.

5.2 ML Results

To evaluate the effectiveness of our learning framework, we conduct experiments
on CRPs collected from our PUF, whose implementation is described in Sect. 5.1.
As discussed and proved in Sect. 4, having influential bits enables us to define a
prediction rule, where this rule can serve as a hypothesis representation, which
fulfills the requirements of a weak learner. The algorithm WL proposed in the
proof of the Theorem 4 relies on the PAC learnability of K-juntas, where K is a

Strong Machine Learning Attack Against PUFs 407

small constant. However, it is known that every efficient algorithm for learning
K-DTs (i.e., the number of leaves is 2K) is an efficient algorithm for learning K-
juntas, see, e.g., [28]. Furthermore, it is known that DLs generalize K-DTs [31].
Moreover, a monomial Mn,K is a very simple type of a K-junta, where only
the conjunction of the relevant variables is taken into account. Therefore, for
our experiments we decide to let our weak learning algorithms deliver DLs,
Monomials, and DTs.

To learn the challenge-response behavior of BR- and TBR-PUFs using these
representations, we use the open source machine learning software Weka [17]. One
may argue that more advanced tools might be available, but here we only aim to
demonstrate that publicly accessible, and off-the-shelf software can be used to
launch our proposed attacks. All experiments are conducted on a MacBook Pro
with 2.6 GHz Intel Core i5 processor and 10GB of RAM. To boost the prediction
accuracy of the model established by our weak learners, we apply the Adaptive
Boosting (AdaBoost) algorithm [10]; nevertheless, any other boosting framework
can be employed as well. For Adaboost, it is known that the error of the final
model delivered by the boosted algorithm after T iteration is theoretically upper
bounded by

∏T
t=1

√
1 − 4γ2, c.f. [36]. To provide a better understanding of the

relation between K, the number of iterations, and the theoretical bound on the
error of the final model, a corresponding graph4 is shown in Fig. 7.

Fig. 7. The relation between the theoretical upper bound on the error of the final
model returned by Adaboost, the number of iterations, and K. The graph is plotted
for k = 2, ε′ = 0.01, and n = 64. Here, ε′ = 0.01 denotes the error of the K-junta
learner.

Our experiments in Weka consist of a training phase and a testing phase. In
the training phase a model is established from the training data based on the
chosen representation. Afterwards, the established model is evaluated on the test
set, which contains an unseen subset of CRPs. The size of the training sets in our
4 Note that at first glance the graph may seem odd as after a few iterations the error

is close to 1, although we start from a weak learner, whose error rate is strictly
below 0.5. As explained in [36, pp. 57–60], and shown in their Fig. 3.1, this is due
to Adaboosts’s theoretical worst-case analysis, which is only asymptotically (in T)
meaningful.

408 F. Ganji et al.

Table 4. Experimental results for learning 64-bit BR-PUF and TBR-PUF, when m =
100. The accuracy (1 − ε) is reported for three weak learners. The first row shows the
accuracy of the weak learner, whereas the other rows show the accuracy of the boosted
learner.

boosting iterations BR-PUF TBR-PUF

Mn DT DL Mn DT DL

0 (no boosting) 54.48 % 66.79 % 67.24 % 65.18 % 72.29 % 74.84 %

10 67.12 % 74.25 % 76.99 % 76.96 % 79.22 % 81.36 %

20 77.53 % 80.53 % 80.89 % 82.05 % 85.73 % 86.71 %

30 81.32 % 83.13 % 83.14 % 84.93 % 88.34 % 89.4 %

40 82.65 % 83.91 % 84.6 % 88.11 % 89.67 % 90.22 %

50 82.65 % 85.62 % 85.5 % 90.05 % 89.69 % 91.58 %

Table 5. Experimental results for m = 1000 (the same setting as for the Table 4).

boosting iterations BR-PUF TBR-PUF

Mn DT DL Mn DT DL

0 (no boosting) 63.73 % 75.69 % 84.59 % 64.9 % 75.6 % 84.34 %

10 81.09 % 85.49 % 94.2 % 79.9 % 87.12 % 95.05 %

20 89.12 % 91.08 % 96.64 % 88.28 % 91.57 % 97.89 %

30 93.24 % 93.24 % 97.50 % 93.15 % 93.9 % 98.75 %

40 95.69 % 94.28 % 97.99 % 96.73 % 95.05 % 99.13 %

50 96.80 % 95.04 % 98.32 % 98.4 % 95.96 % 99.37 %

experiments are 100 and 1000, whereas the test set contains 30000 CRPs. Our
experiments demonstrate that the weak learning of our test set always results
in the delivery of a model with more than 50% accuracy as shown in the first
rows of Tables 4 and 5.

By boosting the respective models with AdaBoost, the accuracy is dramat-
ically increased, see Tables 4 and 5. It can be observed that after 50 iterations
of Adaboost applied to the weak model generated from 100 CRPs, the predic-
tion accuracy of the boosted model is increased to more than 80% for all three
representations. By increasing the number of samples to 1000 CRPs, the predic-
tion accuracy is further increased up to 98.32% for learning the BR-PUFs, and
99.37% for learning the TBR-PUFs under DL representations. It is interesting
to observe that the simplest representation class, i.e., Monomials clearly present
the greatest advantage given by the boosting technique. As explained in [36] this
is due to avoiding any overfitting tendency.

6 Conclusion

As a central result, which speaks for itself, we have proved that in general the
responses of all PUF families are not equally determined by each and every bit

Strong Machine Learning Attack Against PUFs 409

of their respective challenges. Moreover, the present paper has further addressed
the issue of strong PAC learning of the challenge-response behavior of PUFs,
whose functionality lacks a precise mathematical model. We have demonstrated
that representing BR- and TBR-PUFs by Boolean functions, we are able to
precisely describe the characteristics of these PUFs as observed in practice. This
fact results in developing a new and generic machine learning framework that
strongly PAC learns the challenge-response behavior of the BR-PUF family.
The effectiveness and applicability of our framework have also been evaluated by
conducting extensive experiments on BR-PUFs and TBR-PUFs implemented on
FPGAs, similar to experimental platforms used in the most relevant literature.

Last but not least, although our strong PAC learning framework has its own
novelty value, we feel that our Theorem3 and the precise mathematical descrip-
tion of the characteristics of BR-PUFs and TBR-PUFs are the most important
aspects of our paper. We strongly believe that this description can help to fill
the gap between the mathematical design of cryptographic primitives and the
design of PUFs in real world. As an evidence thereof, we feel that the Siegen-
thaler Theorem and the Fourier analysis that are well-known and widely used
in modern cryptography may provide special insights into the physical design of
secure PUFs in the future.

Acknowledgements. We would like to thank Prof. Dr. Frederik Armknecht for the
fruitful discussion as well as pointing out the Siegenthaler’s paper. Furthermore, the
authors greatly appreciate the support that they received from Helmholtz Research
School on Security Technologies.

References

1. Altera: Cyclone IV Device Handbook. Altera Corporation, San Jose (2014)
2. Angluin, D.: Queries and concept learning. Mach. Learn. 2(4), 319–342 (1988)
3. Armknecht, F., Maes, R., Sadeghi, A., Standaert, O.X., Wachsmann, C.: A formal-

ization of the security features of physical functions. In: 2011 IEEE Symposium
on Security and Privacy (SP), pp. 397–412 (2011)

4. Armknecht, F., Moriyama, D., Sadeghi, A.R., Yung, M.: Towards a unified secu-
rity model for physically unclonable functions. In: Sako, K. (ed.) CT-RSA 2016.
LNCS, vol. 9610, pp. 271–287. Springer, Heidelberg (2016)

5. Arvind, V., Köbler, J., Lindner, W.: Parameterized learnability of k -juntas and
related problems. In: Hutter, M., Servedio, R.A., Takimoto, E. (eds.) ALT 2007.
LNCS (LNAI), vol. 4754, pp. 120–134. Springer, Heidelberg (2007)

6. Blum, A.L., Langley, P.: Selection of relevant features and examples in machine
learning. Artif. Intell. 97(1), 245–271 (1997)

7. Chen, Q., Csaba, G., Lugli, P., Schlichtmann, U., Rührmair, U.: The bistable ring
PUF: a new architecture for strong physical unclonable functions. In: 2011 IEEE
International Symposium on Hardware-Oriented Security and Trust (HOST), pp.
134–141. IEEE (2011)

8. Fischer, P., Simon, H.U.: On learning ring-sum-expansions. SIAM J. Comput.
21(1), 181–192 (1992)

410 F. Ganji et al.

9. Freund, Y.: Boosting a weak learning algorithm by majority. Inf. Comput. 121(2),
256–285 (1995)

10. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning
and an application to boosting. J. Comp. Syst. Sci. 55(1), 119–139 (1997)

11. Friedgut, E.: Boolean functions with low average sensitivity depend on few coor-
dinates. Combinatorica 18(1), 27–35 (1998)

12. Ganji, F., Tajik, S., Seifert, J.P.: Let me prove it to you: RO PUFs are provably
learnable. In: The 18th Annual International Conference on Information Security
and Cryptology (2015)

13. Ganji, F., Tajik, S., Seifert, J.-P.: Why attackers win: on the learnability of XOR
arbiter PUFs. In: Conti, M., Schunter, M., Askoxylakis, I. (eds.) TRUST 2015.
LNCS, vol. 9229, pp. 22–39. Springer, Heidelberg (2015)

14. Ganji, F., Tajik, S., Seifert, J.P.: PAC learning of arbiter PUFs. J. Cryptographic
Eng. Spec. Sect. Proofs 2014, 1–10 (2016)

15. Gassend, B., Clarke, D., Van Dijk, M., Devadas, S.: Silicon physical random func-
tions. In: Proceedings of the 9th ACM Conference on Computer and Communi-
cations Security, pp. 148–160 (2002)

16. Guajardo, J., Kumar, S.S., Schrijen, G.-J., Tuyls, P.: FPGA intrinsic PUFs and
their use for IP protection. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007.
LNCS, vol. 4727, pp. 63–80. Springer, Heidelberg (2007)

17. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.:
The WEKA data mining software: an update. ACM SIGKDD Explor. Newslett.
11(1), 10–18 (2009)

18. Helfmeier, C., Boit, C., Nedospasov, D., Seifert, J.P.: Cloning physically unclon-
able functions. In: 2013 IEEE International Symposium on Hardware-Oriented
Security and Trust (HOST), pp. 1–6 (2013)

19. Helfmeier, C., Nedospasov, D., Tarnovsky, C., Krissler, J.S., Boit, C., Seifert,
J.P.: Breaking and entering through the silicon. In: Proceedings of the 2013 ACM
SIGSAC Conference on Computer and Communications Security, pp. 733–744.
ACM (2013)

20. Helmbold, D., Sloan, R., Warmuth, M.K.: Learning integer lattices. SIAM J.
Comput. 21(2), 240–266 (1992)

21. Holcomb, D.E., Burleson, W.P., Fu, K.: Initial SRAM state as a fingerprint and
source of true random numbers for RFID tags. In: Proceedings of the Conference
on RFID Security, vol. 7 (2007)

22. Kalai, G., Safra, S.: Threshold phenomena and influence: perspectives from math-
ematics, computer science, and economics. In: Computational Complexity and
Statistical Physics, Santa Fe Institute Studies on the Sciences of Complexity, pp.
25–60 (2006)

23. Kearns, M.J., Vazirani, U.V.: An Introduction to Computational Learning The-
ory. MIT Press, Cambridge (1994)

24. Koushanfar, F.: Hardware metering: a survey. In: Tehranipoor, M., Wang, C.
(eds.) Introduction to Hardware Security and Trust, pp. 103–122. Springer, New
York (2012)

25. Lee, J.W., Lim, D., Gassend, B., Suh, G.E., Van Dijk, M., Devadas, S.: A tech-
nique to build a secret key in integrated circuits for identification and authenti-
cation applications. In: 2004 Symposium on VLSI Circuits. Digest of Technical
Papers, pp. 176–179 (2004)

26. Maes, R.: Physically Unclonable Functions: Constructions, Properties and Appli-
cations. Springer, Heidelberg (2013)

Strong Machine Learning Attack Against PUFs 411

27. Maes, R., van der Leest, V., van der Sluis, E., Willems, F.: Secure key generation
from biased PUFs. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS,
vol. 9293, pp. 517–534. Springer, Heidelberg (2015)

28. Mossel, E., O’Donnell, R., Servedio, R.A.: Learning functions of k relevant vari-
ables. J. Comp. Syst. Sci. 69(3), 421–434 (2004)

29. O’Donnell, R.: Analysis of Boolean Functions. Cambridge University Press, Cam-
bridge (2014)

30. Pappu, R., Recht, B., Taylor, J., Gershenfeld, N.: Physical one-way functions.
Science 297(5589), 2026–2030 (2002)

31. Rivest, R.L.: Learning decision lists. Mach. Learn. 2(3), 229–246 (1987)
32. Ron, D., Rubinfeld, R., Safra, M., Samorodnitsky, A., Weinstein, O.: Approxi-

mating the influence of monotone boolean functions in O(
√

n) query complexity.
ACM Trans. Comput. Theory (TOCT) 4(4), 11 (2012)

33. Rührmair, U., Sehnke, F., Sölter, J., Dror, G., Devadas, S., Schmidhuber, J.:
Modeling attacks on physical unclonable functions. In: Proceedings of the 17th
ACM Conference on Computer and Communications Security, pp. 237–249 (2010)

34. Saha, I., Jeldi, R.R., Chakraborty, R.S.: Model building attacks on physically
unclonable functions using genetic programming. In: 2013 IEEE International
Symposium on Hardware-Oriented Security and Trust (HOST), pp. 41–44. IEEE
(2013)

35. Schapire, R.E.: The strength of weak learnability. Mach. Learn. 5(2), 197–227
(1990)

36. Schapire, R.E., Freund, Y.: Boosting: Foundations and Algorithms. MIT Press,
Cambridge (2012)

37. Schuster, D., Hesselbarth, R.: Evaluation of bistable ring PUFs using single layer
neural networks. In: Holz, T., Ioannidis, S. (eds.) Trust 2014. LNCS, vol. 8564,
pp. 101–109. Springer, Heidelberg (2014)

38. Siegenthaler, T.: Correlation-immunity of nonlinear combining functions for cryp-
tographic applications (Corresp.). IEEE Trans. Inf. Theory 30(5), 776–780 (1984)

39. Tajik, S., Dietz, E., Frohmann, S., Seifert, J.-P., Nedospasov, D., Helfmeier, C.,
Boit, C., Dittrich, H.: Physical characterization of arbiter PUFs. In: Batina,
L., Robshaw, M. (eds.) CHES 2014. LNCS, vol. 8731, pp. 493–509. Springer,
Heidelberg (2014)

40. Weste, N.H.E., Harris, D.: CMOS VLSI Design: A Circuits and Systems Perspec-
tive, 4th edn. Addison Wesley, Boston (2010)

41. Xu, X., Rührmair, U., Holcomb, D.E., Burleson, W.P.: Security evaluation and
enhancement of bistable ring PUFs. In: Mangard, S., Schaumont, P. (eds.) Radio
Frequency Identification. LNCS, vol. 9440, pp. 3–16. Springer, Heidelberg (2015)

42. Yamamoto, D., Takenaka, M., Sakiyama, K., Torii, N.: Security evaluation of
Bistable Ring PUFs on FPGAs using differential and linear analysis. In: 2014
Federated Conference on Computer Science and Information Systems (FedCSIS),
pp. 911–918 (2014)

Efficient Fuzzy Extraction of PUF-Induced
Secrets: Theory and Applications

Jeroen Delvaux1,2(B), Dawu Gu2, Ingrid Verbauwhede1, Matthias Hiller3,
and Meng-Day (Mandel) Yu1,4,5

1 KU Leuven, ESAT/COSIC and iMinds, Kasteelpark Arenberg 10,
B-3001 Leuven, Belgium

{jeroen.delvaux,ingrid.verbauwhede}@esat.kuleuven.be
2 Shanghai Jiao Tong University, CSE/LoCCS, 800 Dongchuan Road,

Shanghai 200240, China
dwgu@sjtu.edu.cn

3 Chair of Security in Information Technology, Technical University of Munich,
Munich, Germany

matthias.hiller@tum.de
4 Verayo Inc., San Jose, USA

myu@verayo.com
5 CSAIL, MIT, Cambridge, USA

Abstract. The device-unique response of a physically unclonable func-
tion (PUF) can serve as the root of trust in an embedded cryptographic
system. Fuzzy extractors transform this noisy non-uniformly distributed
secret into a stable high-entropy key. The overall efficiency thereof, typ-
ically depending on error-correction with a binary [n, k, d] block code,
is determined by the universal and well-known (n − k) bound on the
min-entropy loss. We derive new considerably tighter bounds for PUF-
induced distributions that suffer from, e.g., bias or spatial correlations.
The bounds are easy-to-evaluate and apply to large non-trivial codes,
e.g., BCH, Hamming and Reed-Muller codes. Apart from an inherent
reduction in implementation footprint, the newly developed theory also
facilitates the analysis of state-of-the-art error-correction methods for
PUFs. As such, we debunk the reusability claim of the reverse fuzzy
extractor. Moreover, we provide proper quantitative motivation for debi-
asing schemes, as this was missing in the original proposals.

Keywords: Fuzzy extractor · Secure sketch · Min-entropy · Physically
unclonable function · Coding theory

1 Introduction

Cryptography relies on reproducible uniformly distributed secret keys. Obtain-
ing affordable physically secure key-storage in embedded non-volatile memory is
hard though. Harvesting entropy from physically unclonable functions (PUFs)
comprehends an alternative that lowers the vulnerability during the power-off
c© International Association for Cryptologic Research 2016
B. Gierlichs and A.Y. Poschmann (Eds.): CHES 2016, LNCS 9813, pp. 412–431, 2016.
DOI: 10.1007/978-3-662-53140-2 20

Efficient Fuzzy Extraction of PUF-Induced Secrets: Theory and Applications 413

state. Unfortunately, PUF responses are corrupted by noise and non-uniformities
are bound to occur. A fuzzy extractor [11] provides an information-theoretically
secure mechanism to convert PUF responses into high-quality keys. The essen-
tial building block for handling noisiness is the secure sketch, providing error-
correction with most frequently a binary [n, k, d] block code. Associated public
helper data reveals information about the PUF response though; the system
provider should hence quantify how much min-entropy remains. So far, the con-
servative (n − k) upper bound on the min-entropy loss has been applied. Unfor-
tunately, the residual min-entropy is underestimated, implying that more PUF
response bits than necessary have to be used. Expensive die area is hence blocked
by PUF circuits that are not strictly required to obtain the desired security level,
i.e., symmetric key length.

1.1 Contribution

The novelty of our work is twofold:

– First, we derive new bounds on the secure sketch min-entropy loss for PUF-
induced distributions with practical relevance. Our bounds are considerably
tighter than the well-known (n−k) formula, hereby improving the implemen-
tation efficiency of PUF-based key generators. The discrepancy is showcased
for two predominant PUF imperfections, i.e., biased and spatially correlated
response bits. It is important to note that a variety of commonly used codes
is covered, e.g., BCH and Reed-Muller codes, regardless of their algebraic
complexity. Furthermore, a large variety of distributions could be supported.
Therefore, our scope reaches considerably further than related work in [8,22],
focussing on simple repetition codes and biased distributions only. As in the
latter works, our bounds are easy-to-evaluate and able to support large codes.

– Second, the newly developed theory is applied to state-of-the-art error-
correction methods for PUFs. As such, we reveal a fundamental flaw in the
reverse fuzzy extractor, proposed by Van Herrewege et al. [28] at Financial
Crypto 2012. The latter lightweight primitive is gaining momentum and has
also been adopted in the CHES 2015 protocol of Aysu et al. [1]. We debunk
the main security claim that repeated helper data exposure does not result
in additional min-entropy loss. Furthermore, we contribute to the motiva-
tion of debiasing schemes such as the index-based syndrome (IBS) proposal
of Yu et al. [30], and the CHES 2015 proposal of Maes et al. [22]. The latter
proposals assume that a stand-alone sketch cannot handle biased distribu-
tions. We eliminate the need for an educated guess that originates from the
extrapolation of repetition code insights and/or the application of the overly
conservative (n − k) bound.

1.2 Organization

The remainder of this manuscript is organized as follows. Section 2 introduces
notation and preliminaries. Section 3 derives new tight bounds on the secure

414 J. Delvaux et al.

sketch min-entropy loss. Section 4 elaborates applications of the newly developed
theory. Section 5 concludes the work.

2 Preliminaries

2.1 Notation

Binary vectors are denoted with a bold lowercase character, e.g., x. All vec-
tors are row vectors. All-zeros and all-ones vectors are denoted with 0 and
1 respectively. Binary matrices are denoted with a bold uppercase character,
e.g., H. A random variable and its corresponding set of outcomes are denoted
with an uppercase italic and calligraphic character respectively, e.g., X and X .
Variable assignment is denoted with an arrow, e.g., x ← X. Custom-defined
procedure names are printed in a sans-serif font, e.g., Hamming weight HW(x)
and Hamming distance HD(x, x̃). The probability of an event A is denoted as
P(A). The expected value of a function g(X) of random variable X is denoted as
Ex←X [g(X)]. The probability density function and cumulative distribution func-
tion of a standard normal distribution N(0, 1) are denoted as fnorm(·) and Fnorm(·)
respectively. For a binomial distribution with n trials and success probability p,
we use fbino(·;n, p) and Fbino(·;n, p) respectively.

2.2 Min-Entropy Definitions

The min-entropy of a random variable X is as defined in (1). Consider now a
pair of possibly correlated random variables: X and P . The conditional min-
entropy [11] of X given P is as defined in (2). Terms with P(P = p) = 0 are
evaluated as 0. Both definitions quantify the probability that an attacker guesses
x ← X first time right, on a logarithmic scale. We emphasize that min-entropy is
a more conservative notion than Shannon entropy and therefore often preferred
within cryptology.

H∞(X) = − log2
(
max
x∈X

P(X = x)
)
. (1)

H̃∞(X|P) = − log2
(
Ep←P

[
max
x∈X

P((X = x)|(P = p))
])

. (2)

2.3 Physically Unclonable Functions

A prominent category of PUFs, suitable for key generation in particular, con-
sists of an array of identically designed cells. Each cell produces a single bit, or
occasionally a few bits. This includes memory-based designs, such as the SRAM
PUF [16], as well as the coating PUF [25] and a subset of the large number of
ring oscillator-based designs, e.g., [29]. The most prominent entropy-degrading
effects for such PUFs are bias and spatial correlations. Bias comprehends an
imbalance between the number of zeros and ones. Spatial correlations implicate
that neighboring cells might influence each other.

Efficient Fuzzy Extraction of PUF-Induced Secrets: Theory and Applications 415

We describe a parameterized probability distribution for the error rate of
individual PUF response bits x̃(i), with i ∈ [1, n]. Experimental validation on
various PUF circuits, e.g., in [10,20], labelled the model as accurate. Two hidden
random variables are incorporated: the normalized manufacturing variability
Vi ∼ N(0, 1), drawn only once for each response bit, and additive noise Nij ∼
N(0, σN), drawn for each evaluation j of a given response bit. A response bit x̃(i)
evaluates to 1 if (vi+nij) > t and 0 otherwise, with threshold t a fixed parameter.
Bias corresponds to a nonzero t. Spatial correlations can be incorporated via a
multivariate normal distribution

(
V1 . . . Vn

)
∼ N(0,Σ), with Σ the symmetric

n × n covariance matrix.
For ease of analysis, we consider the response bits x(i) obtained by threshold-

ing vi > t as a reference. In practice, these nominal values can be approximated
via a majority vote among noisy replicas x̃(i), possibly accelerated via circuit
techniques [4,30]. Bias parameter b, defined as the probability P(x(i) = 1),
then equals Fnorm(−t). Zero bias corresponds to b = 0.5. The error rate pE of a
response bit x̃(i) with respect to its reference, i.e., the probability P(x(i) �= x̃(i)),
then equals Fnorm(−|vi − t|/σN).

2.4 Secure Sketch and Fuzzy Extractor Definitions

Secure sketches operate on a metric space X with distance function dist. For
PUFs, we can restrict our attention to binary vectors x ∈ {0, 1}1×n and the
Hamming distance HD therebetween. An attacker knows the probability distri-
bution of x ← X. Consider a noisy version x̃ of sample x. A secure sketch [11]
is a pair of efficient and possibly randomized procedures: the sketching pro-
cedure p ← SSGen(x), with helper data p ∈ P, and the recovery procedure
x̂ ← SSRep(x̃,p). There are two defining properties:

– Correctness. If HD(x, x̃) ≤ t, correctness of reconstruction is guaranteed, i.e.,
x̂ = x. If HD(x, x̃) > t, there is no guarantee whatsoever.

– Security. Given a certain lower bound hin on the ingoing min-entropy, i.e.,
H∞(X) ≥ hin, a corresponding lower bound hout on the residual min-entropy,
i.e., H̃∞(X|P) ≥ hout, can be imposed. Often, but not necessarily, this condi-
tion can be satisfied regardless of hin. Or stated otherwise, there is a certain
upper bound on the min-entropy loss ΔH∞ = H∞(X) − H̃∞(X|P).

A slightly modified notion brings us to the fuzzy extractor [11]. Output k ∈ K
is then required to be nearly-uniform, given observation p ← P , and is there-
fore suitable as a secret key. There is a proven standard method to craft a fuzzy
extractor from a secure sketch. In particular, a randomness extractor could derive
a key from the secure sketch output, i.e., k ← Ext(x). Universal hash func-
tions [7] are good randomness extractors, according to the (generalized) leftover
hash lemma [2,13]. Unfortunately, their min-entropy loss is quite substantial. In
practice, key generators therefore often rely on a cryptographic hash function
that is assumed to behave as a random oracle. The latter idealized heuristic
results in zero min-entropy loss.

416 J. Delvaux et al.

2.5 Coding Theory

A binary code C is a bijection from a message space M to a codeword space
W ⊆ {0, 1}1×n. The minimum distance d is the minimum number of bits in
which any two distinct codewords differ. A procedure w ← Encode(m) maps a
message m ∈ M to a codeword w ∈ W. A procedure ŵ ← Correct(w̃) corrects
up to t = 	d−1

2
 errors for any noise-corrupted codeword w̃ = w ⊕ e, with
HW(e) ≤ t. Equation (3) expresses the Hamming bound [18]. The equality holds
for perfect codes only, implicating that any vector in {0, 1}1×n is within distance
t of a codeword. All other codes are subject to the inequality.

t∑

i=0

(
n

i

)

|M| ≤ 2n. (3)

A binary [n, k, d] block code C restricts the message length k = log2(|M|) to
an integer. For a linear block code, any linear combination of codewords is again
a codeword. A k × n generator matrix G, having full rank, can then implement
the encoding procedure, i.e., w = m · G. For any translation τ ∈ {0, 1}1×n and
linear code C, the set {τ ⊕ w : w ∈ W} is referred to as a coset. Two cosets are
either disjoint or coincide. Therefore, the vector space {0, 1}1×n is fully covered
by 2n−k cosets, referred to as the standard array. The minimum weight vector ε
in a coset is called the coset leader. In case of conflict, i.e., a common minimum
HW(ε) > t, an arbitrary leader can be selected. The minimum distance d of a
linear code equals the minimum Hamming weight of its nonzero codewords. A
linear code C is cyclic if every circular shift of a codeword is again a codeword
belonging to C.

2.6 The Code-Offset Secure Sketch

Several secure sketch constructions rely on a binary code C. For ease of under-
standing, we focus on the code-offset method of Dodis et al. [11] exclusively.
Nevertheless, equivalencies in the extended version of this manuscript (Cryptol-
ogy ePrint Archive, Report 2015/854) prove that all results apply to six other
constructions equally well. The code C that instantiates the code-offset method
in Fig. 1 is not necessarily linear. Even more, it is not required be a block code
either. Linear codes (BCH, Hamming, repetition, etc.) remain the most fre-
quently used though due to their efficient decoding algorithms [18]. Correctness
of reconstruction is guaranteed if HD(x, x̃) ≤ t, with t the error-correcting capa-
bility of the code.

Min-entropy loss can be understood as a one-time pad imperfection. Sketch
input x is masked with a random codeword w, i.e., an inherent entropy defi-
ciency: H∞(W) = log2(|M|) < n. For linear codes in particular, we highlight
a convenient interpretation using cosets. Helper data p then reveals in which
coset reference x resides. It can be seen easily that p is equal to a random
vector in the same coset as x. The residual min-entropy in (2) hence reduces
to (4) for linear codes, with ε a coset leader. We emphasize that the min-entropy

Efficient Fuzzy Extraction of PUF-Induced Secrets: Theory and Applications 417

p ← SSGen(x) x̂ ← SSRep(x̃, p)

Random w ∈ C
p ← x ⊕ w

w̃ ← x̃ ⊕ p = w ⊕ e

x̂ ← p ⊕ Correct(w̃)

Fig. 1. The code-offset secure sketch, having an n-bit reference input x.

loss ΔH∞ does not depend on the decoding method, simply because the helper
data is not affected. For [n, k, d] block codes in particular, the well-known upper
bound ΔH∞ ≤ (n − k) holds, as proven in [11]. More generally, this extends to
ΔH∞ ≤ n − log2(|M|).

H̃∞(X|P) = − log2
(
Eε←E

[
max
w∈W

P((X = ε ⊕ w)|(E = ε))
])

. (4)

3 Tight Bounds on the Min-Entropy Loss

Currently, secure sketch implementations rely on the (n−k) upper bound on the
min-entropy loss, e.g., [23]. Unfortunately, this leads to an overly conservative
design when instantiating security parameters accordingly. We develop a graphi-
cal framework that produces tight bounds on H̃∞(X|P) for typical PUF-induced
distributions. The critical first-order effects of bias and spatial correlations are
captured. Both lower and upper bounds are supported. The lower bounds are of
primary interest for a conservative system provider, entertaining the worst-case
scenario. We considerably improve upon the (n − k) bound, i.e., the leftmost
inequality in (5). We also improve upon the rather trivial upper bounds [11]
that comprehend the rightmost inequality in (5).

max(H∞(X) − (n − log2(|M|)), 0)
︸ ︷︷ ︸

worst-case

≤ H̃∞(X|P) ≤ min(log2(|M|), H∞(X))
︸ ︷︷ ︸

best-case

.

(5)
Our lower and upper bounds combined define a relatively narrow interval in

which the exact value of H̃∞(X|P) is enclosed. We considerably extend related
work in [8,22] as follows. First, we cover a variety of codes, regardless of their
algebraic complexity. Prior work focussed on repetition codes only. Although
frequently used as the inner code of a concatenated code [5], full-fledged key
generators [23] typically rely on non-trivial codes, e.g., BCH codes [18]. Second,
our techniques may be applied to a variety of distributions, while prior work
covered biased distributions only. Our bounds remain easy-to-evaluate and are
able to handle large codes. Although derived for the code-offset sketch of Dodis
et al. [11] in particular, the extended version of this manuscript establishes the
equivalence with six other constructions.

418 J. Delvaux et al.

3.1 Distributions

Our work is generic in the sense that a large variety of distributions X could
be covered. We only require that X = {0, 1}1×n can be partitioned in a limited
number of subsets ϕj , with j ∈ [1, J], so that all elements of ϕj have the same
probability of occurrence qj . Formally, P(X = x) = qj if and only if x ∈ ϕj .
These probabilities are strictly monotonically decreasing, i.e., q1 > q2 > . . . > qJ .
Occasionally, qJ = 0. The ingoing min-entropy is easily computed as H∞(X) =
− log2(q1).

We determine bounds on H̃∞(X|P). The runtime of the corresponding algo-
rithms is roughly proportional to J . The crucial observation is that even a very
small J might suffice to capture realistic PUF models. Below, we describe a para-
meterized distribution X for both biased and spatially correlated PUFs. Both
distributions are to be considered as proof-of-concept models, used in showcasing
the feasibility of a new research direction. In case a given PUF is not approx-
imated accurately enough, one can opt for an alternative and possibly more
complicated second-order distribution. As long as J is limited, bounds can be
evaluated in milliseconds-minutes on a standard desktop computer.

– Biased distribution. We assume response bits to be independent and identically
distributed (i.i.d.) so that P(X(i) = 1) = b, with i ∈ [1, n] and a real-valued
b ∈ [0, 1]. For b = 1

2 , this corresponds to a uniform distribution. The latter bias
model comprehends a very popular abstraction in PUF literature. The min-
entropy loss of various other helper data methods has been analyzed as such,
e.g., soft-decision decoding [8,21] as well as IBS [15,30] and von Neumann [22,
27] debiasing. Therefore, our results enable adequate comparison with related
methods, all using a common baseline distribution.

– Correlated distribution. We assume response bits to be distributed so that
P(X(i) = X(i + 1)) = c, with i ∈ [1, n − 1] and a real-valued c ∈ [0, 1].
This extends to (6) for larger neighborhoods. There is no bias, i.e., P(X(i) =
1) = 1

2 . For c = 1
2 , the latter model corresponds to a uniform distribution.

Although spatial correlations are frequently encountered in experimental work,
e.g., byte-level dependencies for the SRAM PUFs in [1,14], these are often
neglected in information theoretic work due to their complexity. We hope
that our results may help turn the tide on this.

P(X(i) = X(j)) =
�|i−j|/2�∑

u=0

fbino(2u; |i − j|, 1 − c), with i, j ∈ [1, n]. (6)

Figure 2 specifies the subsets ϕj for both distributions. For the biased dis-
tribution, we partition according to HW(x). This corresponds to a binomial
distribution with j −1 successes for n Bernoulli trials, each having success prob-
ability b� = min(b, 1 − b). For the correlated distribution, we partition accord-
ing to HD(x(1 : n − 1),x(2 : n)), i.e., the number of transitions in x. Inputs
in subset ϕj exhibit j − 1 transitions and obey either one out of two forms,
i.e., x = (0‖1‖0‖ . . .) and x = (1‖0‖1‖ . . .). A related observation is that if

Efficient Fuzzy Extraction of PUF-Induced Secrets: Theory and Applications 419

x ∈ ϕj , then so is its ones’ complement, i.e., x ∈ ϕj . This explains the fac-
tors 2 and 1

2 everywhere. Set size |ϕj | is further determined with stars and bars
combinatorics [12]. In particular, we separate n indistinguishable stars into j
distinguishable bins by adding j − 1 out of n − 1 bars.

j

1

2

. . .

j

. . .

n

n + 1

|ϕj |
1

n

. . .

n
j−1

)
. . .

n

1

qj

(1 − b�)
n

b�(1 − b�)
n−1

. . .

(b�)
j−1(1 − b�)

n−j+1

. . .

(b�)
n−1(1 − b�)

(b�)
n

j

1

2

. . .

j

. . .

n − 1

n

|ϕj |
2

2(n − 1)

. . .

2 n−1
j−1

)
. . .

2(n − 1)

2

qj

1
2
(1 − c�)

n−1

1
2
c�(1 − c�)

n−2

. . .

1
2
(c�)

j−1(1 − c�)
n−j

. . .

1
2
(c�)

n−2(1 − c�)
1
2
(c�)

n−1

Fig. 2. Subsets ϕj for a biased and correlated distribution X, left and right respectively.
We define b� = min(b, 1 − b) and c� = min(c, 1 − c).

We treat the degenerate case b = c = 1
2 , i.e., a uniform distribution, sepa-

rately. There is only one set then. Formally, J = 1, |ϕ1| = 2n and q1 = 1/2n. As
proven by Reyzin [24], the min-entropy loss of a secure sketch is maximal for a
uniformly distributed input, making this a case of special interest.

3.2 Generic Bounds

Equation (7) holds for the code-offset construction of Dodis et al. [11], given
that a codeword is selected fully at random during enrollment.

P((P = p)|(X = x)) =

{
1/|M|, if ∃w : p = x ⊕ w

0, otherwise.
(7)

Equation (8) applies Bayes’ rule to the definition of conditional min-entropy
in (2) and fills in (7). The 0 case is resolved by switching variables for the max
operator. A direct exhaustive evaluation of the resulting formula requires up to
2n|M| operations.

H̃∞(X|P) = − log2

(
∑

p∈P
�����
P(P = p) max

x∈X
P(X = x)P((P = p)|(X = x))

�����
P(P = p)

)

= − log2

(
1

|M|
∑

p∈P
max
w∈W

P(X = p ⊕ w)
)

.

(8)

For linear codes, the workload can be reduced substantially. With a similar
derivation as before, we rewrite (4) as shown in (9). Up to 2n operations suffice.

420 J. Delvaux et al.

Nevertheless, direct evaluation is only feasible for small codes. We emphasize
that our bounds are able to handle large codes, as is typically the case for a
practical key generator.

H̃∞(X|P) = − log2
(∑

ε∈E
max
w∈W

P(X = ε ⊕ w)
)
. (9)

Equation (8) iterates over all p’s and selects each time the most likely x that
is within range, via the addition of a codeword w ∈ W. We now reverse the
roles, as shown in Fig. 3. We iterate over all x’s, from most likely to least likely,
i.e., from ϕ1 to ϕJ . Within a certain ϕj , the order of the x’s may be chosen
arbitrarily. Subsequently, we assign p’s to each x, as represented by the black
squares, until the set P of size 2n is depleted. For each assigned p, we assume
that the corresponding x is the most likely vector, according to (8). Let sp

j denote
the number of black squares assigned to set ϕj . The residual min-entropy is then
easily computed as in (10).

H̃∞(X|P) = − log2

(
1

|M|

J∑

j=1

sp
j qj

)

. (10)

Both linear and non-linear codes are supported by former graphical repre-
sentation. Nevertheless, we elaborate linear codes as a special case due to their
practical relevance. Figure 4 swaps the order of iteration in (9). Only one row
suffices, i.e., each column of helper data vectors p in Fig. 3 is condensed to a sin-
gle square. Black and white squares are now assigned to cosets, as represented
by their coset leaders ε. Let sε

j denote the number of black squares assigned
to set ϕj . The residual min-entropy is then easily computed as in (11), hereby
dropping denominator |M| compared to (10), given that sp

j = 2k · sε
j .

H̃∞(X|P) = − log2

(J∑

j=1

sε
jqj

)

. (11)

In the worst-case scenario, the most likely x’s all map to unique p’s, without
overlap, resulting in a lower bound on H̃∞(X|P). For a linear code, this would
be the case if the first 2n−k x’s all belong to different cosets. In the best-case
scenario, our sequence of x’s exhibits maximum overlap in terms of p, resulting
in an upper bound on H̃∞(X|P). For a linear code, this would be the case if
the first 2k x’s all map to the same coset, and this repeated for all 2n−k cosets.
Algorithms 1 and 2 comprehend a literal transcript of Fig. 3 and compute the
lower bound and upper bound respectively. Auxiliary variables sp and sx accu-
mulate black and gray squares respectively. To maintain generality, we abstain
from special case algorithms for linear codes, although it would result in a few
simplifications.

Efficient Fuzzy Extraction of PUF-Induced Secrets: Theory and Applications 421

|ϕ1| |ϕj−1| |ϕj | |ϕj+1| |ϕJ |

x

⊕w

p

|M|
mod(2n, |M|)

�2n/|M|�(a)

p

|M|
mod(2n, |M|)

|M| |M| mod(2n, |M|)(b)

Fig. 3. Reversal of the roles in (8). (a) A lower bound on H̃∞(X|P). (b) An upper

bound on H̃∞(X|P). Black squares represent terms that contribute to H̃∞(X|P), one
for each p ∈ P. White squares represent non-contributing terms, overruled by the max
operator. In general, there are few black squares but many white squares, 2n versus
(|M| − 1)2n to be precise. For block codes, i.e., |M| = 2k, the last column of black
squares is completely filled.

|ϕ1| |ϕj−1| |ϕj | |ϕj+1| |ϕJ |

x

⊕w

ε

2n−k(a)

ε

2k 2k 2k(b)

Fig. 4. Reversal of the roles in (9), as applied to linear codes. (a) A lower bound

on H̃∞(X|P). (b) An upper bound on H̃∞(X|P). Black squares represent terms that

contribute to H̃∞(X|P), one for each ε ∈ E . White squares represent non-contributing
terms, overruled by the max operator.

422 J. Delvaux et al.

Algorithm 1. BoundWorstCase

Input: List 〈|ϕj |, qj〉
Output: Lower bound on

H̃∞(X|P)
j, q, sp ← 0
while sp < 2n do

j ← j + 1
sp

j ← min(|ϕj ||M|, 2n − sp)
sp ← sp + sp

j

q ← q + sp
j · qj

H̃∞(X|P) ← − log2(q/|M|)

Algorithm 2. BoundBestCase
Input: List 〈|ϕj |, qj〉
Output: Upper bound on

H̃∞(X|P)
j, q, sp, sx ← 0
while sp < 2n do

j ← j + 1
sx ← sx + |ϕj |
sp

j ← �(sx − sp)/|M|�|M|
sp

j ← min(max(sp
j , 0), 2n−sp)

sp ← sp + sp
j

q ← q + sp
j · qj

H̃∞(X|P) ← − log2(q/|M|)

Algorithms 1 and 2 may now be applied to a variety of distributions. For a
uniform distribution, the lower and upper bound both evaluate to H̃∞(X|P) =
log2(|M|), regardless of other code specifics. Or simply k, for block codes in
particular. The min-entropy loss is hence exactly (n−k), given that H∞(X) = n.
Reyzin’s proof [24] therefore implicates that the general-purpose (n − k) bound
cannot be tightened any further. Although results are fairly presentable already
for the biased and correlated distributions, we further tighten these bounds first.

3.3 Tighter Bounds

Tighter bounds can be obtained by leveraging code properties more effectively.
Algorithms 3 and 4 generalize Algorithms 1 and 2 respectively. In the former
case, an additional input imposes an upper bound on the accumulated number
of black squares, i.e., ∀j, (sp

1 + sp
2 + . . .+ sp

j) ≤ (up
1 +up

2 + . . .+up
j). In the latter

case, an additional input imposes a lower bound on the accumulated number of
black squares, i.e., ∀j, (sp

1 + sp
2 + . . . + sp

j) ≥ (lp1 + lp2 + . . . + lpj). We now provide
several examples.

Worst-Case Bounds. We further tighten the lower bound on H̃∞(X|P) for the
correlated distribution. The improvement applies to linear codes that have the
all-ones vector 1 of length n as a codeword. This includes Reed-Muller codes of
any order [18]. This also includes many BCH, Hamming and repetition codes, on
the condition that these are cyclic and having d odd, as easily proven hereafter.
Consider an arbitrary codeword with Hamming weight d. XORing all 2n circular
shifts of this codeword results in the all-ones codeword, which ends the proof. As
mentioned before, each set ϕj of the correlated distribution can be partitioned in
pairs {x,x}, with x the ones’ complement of x. Paired inputs belong to the same
coset, i.e., maximum overlap in terms of helper data p. Therefore, we impose

Efficient Fuzzy Extraction of PUF-Induced Secrets: Theory and Applications 423

the cumulative upper bound in (12).

up
j = |M| |ϕj |

2
= 2k−1|ϕj |. (12)

Algorithm 3. BoundWorstCase2

Input: List 〈|ϕj |, qj , u
p
j 〉

Output: Lower bound on
H̃∞(X|P)

j, q, sp, up ← 0
while sp < 2n do

j ← j + 1
up ← up + up

j

sp
j ← min(|ϕj ||M|, up − sp)

sp
j ← min(sp

j , 2n − sp)
sp ← sp + sp

j

q ← q + sp
j · qj

H̃∞(X|P) ← − log2(q/|M|)

Algorithm 4. BoundBestCase2
Input: List 〈|ϕj |, qj , l

p
j 〉

Output: Upper bound on
H̃∞(X|P)

j, q, sp, sx, lp ← 0
while sp

1:j < 2n do
j ← j + 1
sx ← sx + |ϕj |
lp ← lp + lpj
sp

j ← �(sx − sp)/|M|�|M|
sp

j ← max(sp
j , lp − sp, 0)

sp
j ← min(sp

j , 2n − sp)
sp ← sp + sp

j

q ← q + sp
j · qj

H̃∞(X|P) ← − log2(q/|M|)

For instance, consider linear/cyclic [n, k = 1, d = n] repetition codes, i.e.,
having generator matrix G = 1, with n odd. Algorithms BoundWorstCase2 and
BoundBestCase then converge to the exact result H̃∞(X|P) = 1, not depend-
ing on parameter c. This is the best-case scenario, given the universal bound
H̃∞(X|P) ≤ k. Figure 5 illustrates the former with squares for n = 5. The result
also holds if the repetition code is neither linear/cyclic nor odd. As long as
w1 ⊕ w2 = 1, the elements of each ϕj can be paired into cosets. Although the
term coset is usually preserved for linear codes, translations of a non-linear repe-
tition code are either disjunct or coincide and still partition the space {0, 1}1×n.
As a side note, the result offers another [8] refutation of the repetition code pitfall
of Koeberl et al. [17], a work that overlooks that (n−k) is an upper bound only.

2 8 12 8 2

x

⊕w

p

Fig. 5. The exact residual min-entropy H̃∞(X|P) for the correlated distribution and
an [n = 5, k = 1, d = 5] repetition code.

424 J. Delvaux et al.

Best-Case Bounds. We improve the upper bound on H̃∞(X|P) for both the
biased and correlated distribution. In particular, we take minimum distance d
into account. The main insight is that two slightly differing inputs xu �= xv do
not overlap in terms of helper data p. More precisely, if HD(xu,xv) ∈ [1, d − 1],
then {xu ⊕ w | w ∈ W} ∩ {xv ⊕ w | w ∈ W} = ∅. For the biased distribution,
the following holds: HD(xu,xv) ∈ [1, d − 1] if xu �= xv and xu,xv ∈ (ϕ1 ∪ ϕ2 ∪
. . . ∪ ϕt+1). Or stated otherwise, the elements of the first t + 1 sets all result
in unique p’s. Therefore, we can impose the constraint given in (13). Figure 6
depicts the squares.

lpj =

{
|ϕj ||M|, if j ∈ [1, t + 1]
0, otherwise

. (13)

|ϕt+1| |ϕt+2| |ϕJ |

x

⊕w

p

|M|
mod(2n, |M|)

t∑
i=0

n
i

) t∑
i=0

n
i

)
(|M| − 1)

|M| mod(2n, |M|)

Fig. 6. A tightened upper bound on H̃∞(X|P) for the biased distribution, hereby
making use of (13).

There is an interesting observation for perfect codes in particular. As clear
from the Hamming bound in (3), all unique p’s are covered by the first t + 1
sets exclusively. BoundWorstCase and BoundBestCase2 hence produce the same
output, implying that the residual min-entropy is evaluated exactly, as further
simplified in (14). Delvaux et al. [8] derived the same formula for [n, k = 1, d = n]
repetition codes with n odd. The scope of their result is hence extended from
perfect repetition codes to perfect codes in general. As a side note, the formula
was originally adopted to debunk the aforementioned repetition code pitfall [17].
Maes et al. [22] later presented a similar contribution at CHES 2015, differing
in its use of Shannon entropy rather than min-entropy.

H̃∞(X|P) = − log2

(t+1∑

j=1

|ϕj | · qj

)

= − log2(Fbino(t;n,min(b, 1 − b))). (14)

Efficient Fuzzy Extraction of PUF-Induced Secrets: Theory and Applications 425

Also for the correlated distribution, distance d might be incorporated to
tighten the upper bound on H̃∞(X|P). First of all, we assign |M| unique p’s
to one out of two elements in ϕ1. For ease of understanding, assume x = 0,
comprehending the first case in (15). For each set ϕj , with j ∈ [2, n], we then
count the number of inputs x ∈ ϕj such that h = HW(x) ≤ t. The latter
constraint guarantees all assigned p’s to be unique. We distinguish between two
forms, x = (0‖1‖0‖ . . .) and x = (1‖0‖1‖ . . .), resulting in two main terms. For
each form, we apply stars and bars combinatorics twice. In particular, we assign h
indistinguishable stars, i.e., ones, to distinguishable bins and independently also
for n − h zeros. Note that lpj = 0 for j > 2t + 1. To ensure formula correctness,
one may verify numerically that lp1 + lp2 + . . . + lp2t+1 equals the left hand side of
the Hamming bound in (3).

lpj =

⎧
⎪⎪⎨

⎪⎪⎩

|M|, if j = 1

|M|
(∑t

h=�j/2�
(

h−1
�j/2�−1

)(
n−h−1
�j/2	−1

)

+
∑t

h=�j/2	
(

h−1
�j/2	−1

)(
n−h−1
�j/2�−1

))
, otherwise.

(15)

3.4 Numerical Results

Figure 7 presents numerical results for various BCH codes. We focus on small
codes, as these allow for an exact exhaustive evaluation of the residual min-
entropy using (8) and/or (9). As such, the tightness of various bounds can be
assessed adequately. Figure 7(d) nevertheless demonstrates that our algorithms
support large codes equally well, in compliance with a practical key generator.
Note that only half of the bias interval b ∈ [0, 1] is depicted. The reason is that
all curves mirror around the vertical axis of symmetry b = 1

2 . The same holds
for the correlated distribution with parameter c.

Especially the lower bounds perform well, which benefits a conservative sys-
tem provider. The best lower bounds in Fig. 7(a), (b) and (c) visually coin-
cide with the exact result. The gap with the (n − k) bound is the most com-
pelling around b, c ≈ 0.7, where the corresponding curves hit the horizontal axis
H̃∞(X|P) = 0. Also our upper bounds are considerably tighter than their more
general alternatives in (5). Nevertheless, the latter bounds remain open for fur-
ther improvement, with the exception of Fig. 7(b). An [n = 7, k = 4, d = 3] code
is perfect and lower and upper bounds then converge to the exact result for a
biased distribution.

4 Applications

The newly developed theory of Sect. 3 facilitates the design and analysis of error-
correction methods for PUFs, as exemplified in twofold manner. First, we point
out a fundamental security flaw in the reverse fuzzy extractor [28]. Second, we
provide a motivational framework for debiasing schemes [15,22,26,27,30].

426 J. Delvaux et al.

0.5 0.75 1
0

7

15

(I)

(II) (III)

(IV)

(VI)

b

H̃∞

(a) Bias; [n = 15, k = 7, d = 5].

0.5 0.75 1
0

4

7

(I)

(II)
(III)

(IV)

(VI)

b

H̃∞

(b) Bias; [n = 7, k = 4, d = 3].

0.5 0.75 1
0

7

15

(I)

(II)
(III)

(IV)

(VI)

(V)

c

H̃∞

(c) Correlation; [n = 15, k = 7, d = 5].

0.5 0.75 1
0

64

127

(I)

(II) (III)

(IV)

(VI)

b

H̃∞

(d) Bias; [n = 127, k = 64, d = 21].

Fig. 7. The secure sketch min-entropy loss for various BCH codes. Dots correspond
to an exact exhaustive evaluation of (8)/(9). The legend of the curves is as fol-
lows. (I) The ingoing min-entropy H∞(X) = − log2(q1). (II) The lower bound

H̃∞(X|P) = max(H∞(X) − (n − k), 0). (III) The lower bound on H̃∞(X|P) according

to BoundWorstCase. (IV) The upper bound on H̃∞(X|P) according to BoundBestCase.

(V) The lower bound on H̃∞(X|P) according to BoundWorstCase2. (VI) The upper

bound on H̃∞(X|P) according to BoundBestCase2.

Efficient Fuzzy Extraction of PUF-Induced Secrets: Theory and Applications 427

4.1 A Fundamental Security Flaw in Reverse Fuzzy Extractors

The reverse fuzzy extractor, as proposed by Van Herrewege et al. [28] at Financial
Crypto 2012, improves the lightweight perspectives of PUF-based authentication
protocols. The construction was therefore also adopted in the CHES 2015 proto-
col of Aysu et al. [1]. Instead of a single helper data exposure only, p ← SSGen(x̃)
is regenerated and transferred with each protocol run by a resource-constrained
PUF-enabled device. A receiving resource-rich server, storing reference response
x, can hence reconstruct x̃ ← SSRec(x,p) and establish a shared secret as such.
The footprint of the device is reduced due to the absence of the heavyweight
SSRec procedure.

We debunk the main security claim that repeated helper data exposure
does not result in additional min-entropy loss. The revealed flaw is attributed
to the misuse of a reusability proof of Boyen [6]. For the code-offset sketch
with linear codes, the exposure of p1 ← SSGen(x) and p2 ← SSGen(x ⊕ e),
with perturbation e known and fully determined by the attacker, is provably
equivalent. The latter helper data reveals that x belongs to an identical coset
{p1 ⊕ w : w ∈ W} = {p2 ⊕ e ⊕ w : w ∈ W}. However, perturbation e is deter-
mined by PUF noisiness rather than by the attacker and its release hence reveals
new information. Given a sequence of protocol runs, the attacker can approxi-
mate all individual bit error rates pE as well as the coset to which reference x
belongs.

Figure 8 quantifies the residual min-entropy of X with the exclusion and
inclusion of revealed bit error rates pE respectively. In the latter case, we
rely on a Monte Carlo evaluation of (16), as enabled by choosing a small
[n = 15, k = 7, d = 5] BCH code, given that an analytical approach is not
so very straightforward. Exposure of pE boils down to knowledge of threshold
discrepancy |v(i)−t|. For the biased distribution, the situation is identical to the
flaw in the soft-decision decoding scheme of Maes et al. [21]. As pointed out by
Delvaux of al. [8], there is a bit-specific bias bi = P(r(i) = 1) = fnorm(t + |v(i) −
t|)/(fnorm(t+|v(i)−t|)+fnorm(t−|v(i)−t|)). For each x in the coset corresponding
to p, we then compute P(X = x) =

∏n
i=1(x(i)bi + (1 − x(i))(1 − bi)). Similarly,

for the spatially correlated distribution, we compute P(X = x) = fnorm(v,0,Σ),
with covariance matrix Σ exclusively depending on correlation parameter c, as
detailed in the extended version of this manuscript.

H̃∞(X|P) = − log2
(
Ev←V max

w∈W
P(V = t + (1 − 2w)|v − t| | |v − t|

)
. (16)

The revealed flaw differs from existing attacks by Delvaux et al. [9] and
Becker [3] that apply to the original protocol [28] exclusively. The latter attacks
comprehend the modeling of the highly correlated arbiter PUF via repeated
helper data exposure; a preemptive fix can be found in the PhD thesis of
Maes [19]. The newly revealed flaw is more fundamentally linked to the reverse
fuzzy extractor primitive and applies to all existing protocols so far [1,19,28].
Observe in Fig. 8 that the overly conservative (n−k) bound would compensate for

428 J. Delvaux et al.

0.5 0.75 1
0

7

b

H̃∞

(a) Bias; [n = 15, k = 7, d = 5].

0.5 0.75 1
1

7

c

H̃∞

(a) Correlation; [n = 15, k = 7, d = 5].

Fig. 8. The residual min-entropy H̃∞(X|P) for a BCH code. The solid lines that
exclude revealed bit error rates are computed with BoundWorstCase2; Fig. 7 confirms
the visual overlap with the exact result. Dots that include revealed bit error rates
correspond to Monte Carlo evaluations of size 106.

the additional unanticipated min-entropy loss. However, this somewhat defeats
the purpose in light of the original lightweight intentions, and this observation
might not necessarily hold for every possible distribution. Further theoretical
work may determine to which extent and at which cost reverse fuzzy extrac-
tors can be repaired. A potential fix already exists for biased distributions, as
illustrated later-on.

4.2 Motivation for Debiasing Schemes

Debiasing schemes transform a biased PUF-induced distribution into a uniform
distribution. A considerable fraction of the response bits is discarded in order to
restore the balance between 0 and 1. Indices of retained bits are stored as helper
data. A subsequent secure sketch, known to have an exact min-entropy loss of
(n−k) bits for uniform inputs, still corrects the errors. A first debiasing proposal
is the index-based syndrome (IBS) scheme of Yu et al. [30], further generalized
by Hiller et al. [15]. Second, several variations of the von Neumann debiasing
algorithm can be applied. This was first proposed by van der Leest et al. [26],
and later also by Van Herrewege in his PhD thesis [27]. Most recently, Maes
et al. [22] presented an optimization of the von Neumann algorithm that applies
to repetition codes in particular.

Prior debiasing proposals conjectured that a stand-alone sketch cannot han-
dle biased distributions well. This conclusion originates from the extrapolation
of repetition code insights and/or application of the (n − k) bound. The pre-
cise entropy loss behavior for larger codes, e.g., a BCH [n = 127, k = 64, d = 21]
code as in Fig. 7, was an educated guess so far. Our newly derived bounds clearly
resolve this motivational uncertainty, in addition to making stand-alone sketches
more competitive. For low-bias situations, the (n−k) bound already resulted in a
competitive sketch [22]; the new bounds can only improve hereupon. We empha-
size that modern high-quality PUFs tend to have a low bias. Notable cases of a
high bias can typically be attributed to an avoidable asymmetry in the circuit.

Efficient Fuzzy Extraction of PUF-Induced Secrets: Theory and Applications 429

Nevertheless, for high-bias situations, the new bounds clearly indicate the need
of debiasing schemes. The benefit is amplified by choosing a sketch with a k-bit
output, several of which are listed in the extended version of this manuscript.
The uniform output is then directly usable as a key, hereby eliminating the Hash
function and its additional min-entropy loss in case the leftover hash lemma is
applied.

Finally, we highlight that one of the von Neumann debiasing schemes in [22]
was claimed to be reusable. This claim holds, despite overlooking the misuse of
Boyen’s proof and stating that a stand-alone sketch is reusable. A side effect of
retaining pairs of alternating bits only, i.e., 01 and 10, is that the imbalance in
error rates between 0 and 1 cannot be observed in the helper data. The scheme
is considerably less efficient than other von Neumann variants though, showing
that reusability comes at a price.

5 Conclusion

Secure sketches are the main workhorse of modern PUF-based key generators.
The min-entropy loss of most sketches is upper-bounded by (n − k) bits and
designers typically instantiate system parameters accordingly. However, the lat-
ter bound tends to be overly pessimistic, resulting in an unfortunate imple-
mentation overhead. We showcased the proportions for a prominent category of
PUFs, with bias and spatial correlations acting as the main non-uniformities.
New considerably tighter bounds were derived, valid for a variety of popular
but algebraically complex codes. These bounds are unified in the sense of being
applicable to seven secure sketch constructions. Deriving tighter alternatives for
the (n − k) bound counts as unexplored territory and we established the first
significant stepping stone. New techniques may have to be developed in order to
tackle more advanced second-order distributions. Elaborating a wider range of
applications would be another area of progress. We hope to have showcased the
potential by debunking the main security claim of the reverse fuzzy extractor
and by providing proper quantitative motivation for debiasing schemes.

Acknowledgment. The authors greatly appreciate the support received. The Euro-
pean Union’s Horizon 2020 research and innovation programme under grant num-
ber 644052 (HECTOR). The Research Council of KU Leuven, GOA TENSE
(GOA/11/007), the Flemish Government through FWO G.0550.12N and the Hercules
Foundation AKUL/11/19. The national major development program for fundamental
research of China (973 Plan) under grant number 2013CB338004. Jeroen Delvaux is
funded by IWT-Flanders grant number SBO 121552. Matthias Hiller is funded by the
German Federal Ministry of Education and Research (BMBF) in the project SIBASE
through grant number 01IS13020A.

430 J. Delvaux et al.

References

1. Aysu, A., Gulcan, E., Moriyama, D., Schaumont, P., Yung, M.: End-to-end design
of a PUF-based privacy preserving authentication protocol. In: Güneysu, T., Hand-
schuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 556–576. Springer, Heidelberg
(2015)

2. Barak, B., Dodis, Y., Krawczyk, H., Pereira, O., Pietrzak, K., Standaert, F.-X., Yu,
Y.: Leftover hash lemma, revisited. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 1–20. Springer, Heidelberg (2011)

3. Becker, G.T.: On the pitfalls of using arbiter-PUFs as building blocks. IEEE Trans.
CAD Integr. Circuits Syst. 34(8), 1295–1307 (2015)

4. Bhargava, M., Mai, K.: An efficient reliable PUF-based cryptographic key gen-
erator in 65nm CMOS. In: Design, Automation & Test in Europe Conference &
Exhibition, DATE 2014, Dresden, Germany, 24–28 March 2014, pp. 1–6 (2014)

5. Bösch, C., Guajardo, J., Sadeghi, A.-R., Shokrollahi, J., Tuyls, P.: Efficient helper
data key extractor on FPGAs. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008.
LNCS, vol. 5154, pp. 181–197. Springer, Heidelberg (2008)

6. Boyen, X.: Reusable cryptographic fuzzy extractors. In: Proceedings of the 11th
ACM Conference on Computer and Communications Security, CCS 2004, Wash-
ington, DC, USA, 25–29 October 2004, pp. 82–91 (2004)

7. Carter, L., Wegman, M.N.: Universal classes of hash functions. J. Comput. Syst.
Sci. 18(2), 143–154 (1979)

8. Delvaux, J., Gu, D., Schellekens, D., Verbauwhede, I.: Helper data algorithms for
PUF-based key generation: overview and analysis. IEEE Trans. CAD Integr. Circ.
Syst. 34(6), 889–902 (2015). http://dx.doi.org/10.1109/TCAD.2014.2370531

9. Delvaux, J., Peeters, R., Gu, D., Verbauwhede, I.: A survey on lightweight entity
authentication with strong PUFs. ACM Comput. Surv. 48(2), 26 (2015)

10. Delvaux, J., Verbauwhede, I.: Fault injection modeling attacks on 65nm arbiter
and RO sum PUFs via environmental changes. IEEE Trans. Circuits Syst. 61–
I(6), 1701–1713 (2014)

11. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate
strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139
(2008)

12. Feller, W.: An Introduction to Probability Theory and Its Applications, vol. 1, 3rd
edn. Wiley, New York (1968)

13. H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

14. Van Herrewege, A., van der Leest, V., Schaller, A., Katzenbeisser, S., Verbauwhede,
I.: Secure PRNG seeding on commercial off-the-shelf microcontrollers. In: TrustE
2013, Proceedings of the 2013 ACM Workshop on Trustworthy Embedded Devices,
pp. 55–64 (2013)

15. Hiller, M., Merli, D., Stumpf, F., Sigl, G.: Complementary IBS: application specific
error correction for PUFs. In: 2012 IEEE International Symposium on Hardware-
Oriented Security and Trust, HOST 2012, 3–4 June 2012, pp. 1–6 (2012)

16. Holcomb, D.E., Burleson, W.P., Fu, K.: Power-up SRAM state as an identifying
fingerprint and source of true random numbers. IEEE Trans. Comput. 58(9), 1198–
1210 (2009)

17. Koeberl, P., Li, J., Rajan, A., Wu, W.: Entropy loss in PUF-based key generation
schemes: the repetition code pitfall. In: 2014 IEEE International Symposium on
Hardware-Oriented Security and Trust, HOST 2014, Arlington, VA, USA, 6–7 May
2014, pp. 44–49 (2014)

http://dx.doi.org/10.1109/TCAD.2014.2370531

Efficient Fuzzy Extraction of PUF-Induced Secrets: Theory and Applications 431

18. MacWiliams, F.J., Sloane, N.J.A.: The Theory of Error Correcting Codes. North-
Holland Mathematical Library (Book 16). North Holland Publishing Co., New
York (1977)

19. Maes, R.: Physically unclonable functions: constructions, properties and applica-
tions. Ph.D. thesis, KU Leuven (2012). Ingrid Verbauwhede (promotor)

20. Maes, R.: An accurate probabilistic reliability model for silicon PUFs. In: Bertoni,
G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp. 73–89. Springer, Heidel-
berg (2013)

21. Maes, R., Tuyls, P., Verbauwhede, I.: A soft decision helper data algorithm for
SRAM PUFs. In: ISIT 2009, IEEE International Symposium on Information The-
ory, pp. 2101–2105 (2009)

22. Maes, R., van der Leest, V., van der Sluis, E., Willems, F.: Secure key generation
from biased PUFs: extended version. J. Cryptogr. Eng. 6(2), 121–137 (2016)

23. Maes, R., Van Herrewege, A., Verbauwhede, I.: PUFKY: a fully functional PUF-
based cryptographic key generator. In: Prouff, E., Schaumont, P. (eds.) CHES
2012. LNCS, vol. 7428, pp. 302–319. Springer, Heidelberg (2012)

24. Reyzin, L.: Entropy loss is maximal for uniform inputs. Technical report BUCS-
TR-2007-011, Department of Computer Science, Boston University, September
2007

25. Tuyls, P., Schrijen, G.-J., Škorić, B., van Geloven, J., Verhaegh, N., Wolters, R.:
Read-proof hardware from protective coatings. In: Goubin, L., Matsui, M. (eds.)
CHES 2006. LNCS, vol. 4249, pp. 369–383. Springer, Heidelberg (2006)

26. van der Leest, V., Schrijen, G.-J., Handschuh, H., Tuyls, P.: Hardware intrinsic
security from D flip-flops. In: Proceedings of the Fifth ACM Workshop on Scalable
Trusted Computing, STC 2010, pp. 53–62 (2010)

27. Van Herrewege, A.: Lightweight PUF-based key and random number generation.
Ph.D. thesis, KU Leuven, 2015. Ingrid Verbauwhede (promotor)

28. Van Herrewege, A., Katzenbeisser, S., Maes, R., Peeters, R., Sadeghi, A.-R.,
Verbauwhede, I., Wachsmann, C.: Reverse fuzzy extractors: enabling lightweight
mutual authentication for PUF-enabled RFIDs. In: Keromytis, A.D. (ed.) FC 2012.
LNCS, vol. 7397, pp. 374–389. Springer, Heidelberg (2012)

29. Yu, H., Leong, P.H.W., Hinkelmann, H., Möller, L., Glesner, M., Zipf, P.: Towards
a unique FPGA-based identification circuit using process variations. In: FPL 2009,
International Conference on Field Programmable Logic and Applications, pp. 397–
402 (2009)

30. Yu, M., Devadas, S.: Secure and robust error correction for physical unclonable
functions. IEEE Des. Test Comput. 27(1), 48–65 (2010)

Run-Time Accessible DRAM PUFs
in Commodity Devices

Wenjie Xiong1(B), André Schaller2, Nikolaos A. Anagnostopoulos2,
Muhammad Umair Saleem2, Sebastian Gabmeyer2,

Stefan Katzenbeisser2, and Jakub Szefer1

1 Yale University, New Haven, CT, USA
{wenjie.xiong,jakub.szefer}@yale.edu

2 Technische Universität Darmstadt and CASED, Darmstadt, Germany
{schaller,anagnostopoulos,gabmeyer,

katzenbeisser}@seceng.informatik.tu-darmstadt.de,
muhammadumair.saleem@stud.tu-darmstadt.de

Abstract. A Physically Unclonable Function (PUF) is a unique and
stable physical characteristic of a piece of hardware, which emerges due
to variations in the fabrication processes. Prior works have demonstrated
that PUFs are a promising cryptographic primitive to enable secure key
storage, hardware-based device authentication and identification. So far,
most PUF constructions require addition of new hardware or FPGA
implementations for their operation. Recently, intrinsic PUFs, which can
be found in commodity devices, have been investigated. Unfortunately,
most of them suffer from the drawback that they can only be accessed
at boot time. This paper is the first to enable the run-time access of
decay-based intrinsic DRAM PUFs in commercial off-the-shelf systems,
which requires no additional hardware or FPGAs. A key advantage of
our PUF construction is that it can be queried during run-time of a
Linux system. Furthermore, by exploiting different decay times of indi-
vidual DRAM cells, the challenge-response space is increased. Finally,
we introduce lightweight protocols for device authentication and secure
channel establishment, that leverage the DRAM PUFs at run-time.

1 Introduction

Continued miniaturization and cost reduction of processors and System-on-Chip
designs have enabled the creation of almost ubiquitous smart devices, from smart
thermostats and refrigerators, to smartphones and embedded car entertainment
systems. While there are numerous advantages to the proliferation of such smart
devices, they create new security vulnerabilities [1,6,8,12]. One major concern is
that they often lack the implementation of sufficient security mechanisms [34,46].
Critical challenges in securing these devices are to provide robust device authen-
tication and identification mechanisms, and means to store long-term crypto-
graphic keys in a secure manner that minimizes the chances of their illegitimate
extraction or access.

c© International Association for Cryptologic Research 2016
B. Gierlichs and A.Y. Poschmann (Eds.): CHES 2016, LNCS 9813, pp. 432–453, 2016.
DOI: 10.1007/978-3-662-53140-2 21

Run-Time Accessible DRAM PUFs in Commodity Devices 433

A classic approach to device identification is to embed cryptographic keys
in each device by burning them in at manufacturing time. However, this solu-
tion comes with potential pitfalls, such as increased production complexity as
well as rather limited protection against key extraction attempts [2]. In order to
address these issues, researchers have proposed Physically Unclonable Functions
(PUFs). PUFs leverage the unique behavior of a device due to manufacturing
variations as a hardware-based fingerprint. A PUF instance is extremely difficult
to replicate, even by the manufacturer. Hence, PUFs have been proposed as cryp-
tographic building blocks in security primitives and protocols for: authentication
and identification [18,40,43], hardware-software binding [9,10,19,31,33], remote
attestation [20,37], and secret key storage [44,45]. So far, most types of PUFs in
digital electronic systems (such as arbiter PUFs [7,40]) require addition of dedi-
cated circuits to the device and thus increase manufacturing costs and hardware
complexity. Consequently, there is great interest in so-called intrinsic PUFs [9],
which are PUFs that are already inherent to a device.

Intrinsic PUFs are considered an attractive low-cost security anchor, as they
provide PUF instances within standard hardware that can be found in commer-
cial off-the-shelf devices [26,42], without requiring any hardware modifications.
The most prominent example of an intrinsic PUF is a PUF based on Static
Random-Access Memory (SRAM) [19,25,31,35,38], which draws its characteris-
tics from the startup values of bi-stable SRAM memory cells. SRAM PUFs are
known to have good PUF characteristics [14]. However, PUF measurements must
be extracted during a very early boot stage (before the SRAM is used). Con-
sequently, the derived key can only be used at this time, or must be saved
to a different memory region, which may cause security problems. Recently,
a new error-based SRAM PUF, which can be accessed at run-time, was pro-
posed [3]. However, to query the PUF, the supply voltage needs to be lowered
to induce errors in SRAM cells, requiring special hardware in the processor.

Most recently, PUF-like behavior has been found in Dynamic Random-Access
Memory (DRAM) [28]. One approach to extract unique DRAM behavior induced
by manufacturing variations relies on startup tendencies of DRAM cells [41].
Another approach to extract DRAM PUFs is to leverage the unique decay char-
acteristics of DRAM cells. In [16], authors exploit the fact that charges of indi-
vidual DRAM cells, if not refreshed, decay over time in a unique manner. PUF
responses1 can be generated by initializing the DRAM cells with a specific value,
disabling DRAM refresh cycles and letting the cells decay for a defined decay
time. As a result of this decay, a DRAM chip exhibits unique bit flips at unique
locations, which in their entirety can be used as a PUF response by reading the
DRAM content after the decay time elapsed. However, current state of the art
requires custom hardware or FPGA-based platforms [16,41], in order to modify
the DRAM refresh mechanism such that DRAM PUF extraction is possible.

This paper is the first to extract DRAM PUFs from commercial systems,
requiring no special hardware modifications or FPGA setup, and to provide a

1 In the rest of the paper we will use the terms PUF response and PUF measurement
interchangeably.

434 W. Xiong et al.

practical solution to query DRAM PUFs during run-time on a Linux system.
Our decay-based DRAM PUF allows for repeated access, which overcomes the
limitation of previous intrinsic memory-based PUFs that were available at device
startup only. Moreover, the capacity of DRAM is magnitudes larger than SRAM,
allowing to draw many more bits in order to derive larger cryptographic key
material, or to segment DRAM into several logical PUFs. Furthermore, DRAM
is an excellent candidate for an intrinsic PUF as DRAM is an integral part of
today’s commodity platforms and can be found in many “smart” devices, such
as smartphones or smart thermostats. Recent use of embedded DRAM [4,29] in
low-cost microprocessors will further increase the availability of DRAM as part
of mobile and embedded computing platforms.

1.1 Related Work on DRAM PUFs

The earliest approach to exploit manufacturing variations of DRAM cells for
identification and random number generation was reported in [28,29], in which
an embedded DRAM chip was designed to generate fingerprints to mitigate
hardware counterfeiting. In subsequent work [16,22,27], the decay of external
DDR3 modules was evaluated through memory controllers in FPGAs and was
used for identification and key storage. Other work has focused on the design
of a circuit exploiting the variation in write reliability of DRAM cells [11], and
presented an authentication scheme based on signatures generated using such
variations. Unlike our work, all previous research required dedicated circuits to
be designed or FPGAs to be used. To the best of our knowledge, this is the
first work to present an approach to enable the usage of intrinsic DRAM PUF
instances on commodity devices at run-time. Further, we provide a system-level
solution for querying the DRAM PUF while a Linux OS is running on same
hardware and is actively using DRAM chip wherein the PUF is located.

1.2 Contributions

– We extract decay-based DRAM PUF instances from unmodified commod-
ity devices, including the PandaBoard and the Intel Galileo platforms. Two
approaches are presented: (i) accessing the PUF at device startup using a cus-
tomized firmware, and (ii) querying the PUF with a kernel module, while the
Linux OS is running on the same hardware and is actively using the DRAM
chip wherein the PUF is located.

– Through extensive experiments, we show that DRAM PUFs exhibit robust-
ness, reliability, and in particular allow usage of the decay time as part of the
PUF challenge.

– We introduce new metrics for evaluating DRAM PUFs, based on the Jaccard
index, and show they are significantly better suited for the decay-based DRAM
PUF evaluation over the classic Hamming-distance based metrics.

– Finally, we exploit time-dependent decay characteristics of DRAM cells in
the design of PUF-enhanced protocols. In particular, we show protocols for
device identification and authentication that draw their security from the
time-dependent decay of DRAM cells.

Run-Time Accessible DRAM PUFs in Commodity Devices 435

1.3 Paper Organization

The remainder of the paper is organized as follows. Section 2 presents back-
ground on DRAM and introduces our DRAM PUFs. Section 3 describes our
experimental setup and the implementation of software needed to realize the
DRAM PUFs. Section 4 contains our evaluation of DRAM PUFs characteristics.
Section 5 describes lightweight protocols for device authentication and secure
channel establishment. Section 6 presents open research issues. Section 7 con-
cludes the paper.

2 Extracting DRAM PUFs from Commodity Devices

In a DRAM cell, a single data bit is stored in a capacitor and can be accessed
through a transistor, as shown in Fig. 1. DRAM cells are grouped in arrays,
where each row of the array is connected to a horizontal word-line. Cells in
the same column are connected to a bit-line. All bit-lines are coupled to sense-
amplifiers that amplify small voltages on bit-lines to levels such that they can
be interpreted as logical zeros or ones. In order to access a row, all the bit-lines
will be precharged to half the supply voltage VDD/2; subsequently the word-line
is enabled, connecting every capacitor in that row with its bit-line. The sense
amplifier will then drive the bit-line to VDD or 0 V, depending on the charge on
the capacitor. The amplifiers are usually shared by two bit-lines [15], of which
only one can be accessed at the same time. This structure makes the two bit-lines
complementary, which results in two kinds of cells: true cells and anti-cells. True
cells store the value 1 as VDD and 0 as 0 V in the capacitor, whilst anti-cells
store the value 0 as VDD and 1 as 0 V.

Fig. 1. A single DRAM cell consists of a
capacitor and a transistor, connected to
a word-line (WL) and a bit-line (BL or
BL*); arrows indicate leakage paths for
dissipation of charges that lead to PUF
behavior.

Fig. 2. Five steps required for run-
time access of a DRAM PUF. Only
during steps (b)–(d) the memory asso-
ciated with the PUF is not usable for
other processes.

436 W. Xiong et al.

DRAM cells require periodic refresh of the stored charges, as otherwise the
capacitors lose its charge over time, which is referred to as DRAM cell decay or
leakage. The hardware memory controller takes care of periodic refresh, whose
interval is defined by the vendor and is usually 32 ms or 64 ms. Without this
periodic refresh, some of the cells will slowly decay to 0, while others decay to 1,
depending on whether they are a true cell or an anti-cell. Because of the man-
ufacturing variations among DRAM cells, some cells decay faster than others,
which can be exploited as a PUF.

2.1 Decay-Based PUFs in DRAM

The process of exploiting the unique decay behavior of DRAM cells to extract a
PUF measurement is summarized in Fig. 2. The starting point (a) comprises the
DRAM module being configured for ordinary use, where the memory controller
periodically refreshes all of the cells’ content. In a first step (b), the memory
region defined by starting address (addr) and size (size) is reserved, e.g., using
memory ballooning introduced in Sect. 2.2. Furthermore, the refresh for the PUF
region is disabled and the initialization value (initval) is written to the region.
Next, (c) for a given decay time (t), the memory region containing the PUF is
not accessed to let the cells decay. (d) After the decay time has expired, the
memory content is read in order to extract the PUF measurement. At the end,
(e) the normal operating condition of the memory is restored and the memory
region is made available to the operating system (OS) again.

We introduce here the concept of logical DRAM PUFs, which are memory
regions within a DRAM module that are used for obtaining the PUF measure-
ments. For a particular DRAM, each logical PUF is determined by: (i) addr,
the starting address of the logical PUF, and (ii) size, its size. A typical DRAM
memory can be divided into thousands or more logical PUFs.

To get a challenge/response, two additional parameters are needed. First, an
initial value (initval), which is written into the cells in the DRAM region before
any decay. Second, the desired decay time (t) that will cause enough charge
to have leaked in some cells such that their stored logical bits will flip. As the
decay time and the positions of the flipped bits are unique for individual DRAM
regions, the “pattern” of flipped bits for a given decay time t can serve as the
PUF response.

In order to derive a cryptographic key from the PUF response using a mini-
mum number of DRAM cells, the entropy within a logical DRAM PUF response
needs to be maximized. The value stored in a DRAM cell before it decays,
initval, plays an important role, as some DRAM cells decay to 0 and some to
1. Thus, for example, if a cell decays to 0, but its initial value is set to 0, the
decay effect cannot be observed. If the physical layout of the DRAM module
is known (i.e., the distribution of the true cells and anti-cells, and hence the
individual decay directions), it is possible to construct an initialization pattern
that maximizes the number of observable bit flips in the PUF response. How-
ever, the physical layout is rarely known. Furthermore, the optimal initialization
value would need to be part of the challenge, or have to be stored on the device.

Run-Time Accessible DRAM PUFs in Commodity Devices 437

In our evaluation, we use a fixed initialization value initval = 0 to all cells. The
entropy of our measurements thus can be further improved.

Overall, the challenge of a DRAM PUF can be defined as a tuple (id, t),
where id denotes the logical PUF instance (addr and size) and t denotes the
decay time after which the memory content is read. We will not specify the
initval as we assume it is fixed.

Although SRAM and DRAM PUFs are both considered weak PUFs [30], the
DRAM PUF presented in this paper offers multiple challenges due to the ability
to vary decay times t. Given two PUF measurements mx and mx+1, taken at
corresponding decay times tx and tx+1 (tx+1 ≥ tx), both mx+1 and mx can serve
as PUF responses. With increasing decay times t, the number of DRAM cells
flipping is monotonically increasing. Thus, mx+1 consists of a number of newly
flipped bits as well as the majority2 of bits that already flipped in mx. In general,
if tx ≤ tx+1 and addrx = addrx+1, sizex = sizex+1, we observe mx ⊆ mx+1,
up to noise. However, note that it is not possible to measure responses for several
decay times t0, t1, ..., tn at once. In particular, reading the PUF response at one
decay time will cause the memory to be refreshed (the cells are re-charged as
the data is read from DRAM cells into row buffers). Querying a PUF response
with different decay time thus requires one to restart the experiment.

2.2 Run-Time DRAM PUF Access

Deactivating DRAM refresh for PUF access during device operation is a non-
trivial task: when DRAM refresh cycles are disabled, critical data (such as data
belonging to the OS or user-space programs) will start to decay and the system
will crash. In our experiments, the Intel Galileo board with Yocto Linux crashes
about a minute after DRAM refresh is disabled. Therefore, we present a cus-
tomized solution which allows us to refresh critical code, but leaves PUF areas
untouched. This solution is based on two techniques dubbed selective DRAM
refresh and memory ballooning. The former allows for selectively refreshing the
memory regions occupied by the OS and other critical applications so that they
run normally and do not crash. Memory ballooning, on the other hand, safely
reserves the memory region that corresponds to a logical PUF without corrupt-
ing critical data and also protects the memory region from OS and user-space
programs accesses, to let the cells decay during PUF measurement.

Selective DRAM Refresh. On some devices, such as the PandaBoard, DRAM
consists of several physical modules or logical segments, where the refresh of
each module/segment can be controlled individually. In this case, the PUF can be
allocated in a different memory segment from the OS and user-space programs.
When querying the PUF, only the refresh of the segment holding the PUF is
deactivated, while the other segments remain functional.

2 Due to noise, the set of flipping cells for a fixed time tx will not be completely stable.
Nevertheless, our experiments in Sect. 4 show very low amounts of noise.

438 W. Xiong et al.

On other devices, e.g., the Intel Galileo, the refresh rate can only be con-
trolled at the granularity of the entire DRAM3. Refresh at segment granularity
is not possible. However, memory rows can be refreshed implicitly once they
are accessed due to a read or a write operation. When a word line is selected
because of a memory access, the sense amplifier drives the bit-lines to either
the full supply voltage VDD or back down to 0 V, depending on the value that
was in the cell. In this way, the capacitor charge is restored to the value it had
before the charges leaked. Using the above principle, even if refresh of the whole
memory is disabled, selective memory rows can be refreshed by issuing a read
to a word within each of the selected memory rows. This functionality can be
implemented in a kernel module by reading a word within each memory row to
be refreshed (Sect. 3).

Ballooning System Memory. To query a chosen logical PUF, the DRAM por-
tion given by addr and size is overwritten by the respective initialization value
(initval) and refresh is deactivated. To prohibit applications from accessing the
PUF and thus implicitly refreshing them, we use memory ballooning concepts
developed for virtual machines [47]. Memory ballooning is a mechanism for
reserving a portion of the memory so as to prevent the memory region from
being used by the kernel or any application. This approach allows to specify
the physical address (addr) and size (size) of the memory region that will be
reserved, i.e., the PUF. Once PUF memory is “ballooned”, DRAM refresh can
be disabled and selective refresh enabled for the non-PUF memory region. After
PUF access is finished, the balloon can be deflated and the memory restored to
normal use.

2.3 Security Assumptions

DRAM PUFs differ from classic memory-based PUFs, as they can be evaluated
during run-time. An attacker, who wants to evaluate the PUF has less capa-
bilities in doing so due to the fact that disabling and enabling DRAM refresh
includes writing to hardware registers, a task which can only be performed by
the kernel. An attacker thus requires root privileges. Furthermore, accessing the
memory dedicated to the PUF is restricted to the kernel as well. Thus, a crucial
security assumption is that firmware and operating system are trusted and an
attacker never gains root privileges.

An attacker may try to change the ambient temperature in order to influence
the bit flip characteristics, but a legitimate user can compensate the temperature
effect by adjusting the decay time (as discussed in Sect. 4). The attacker could
also try to adapt the “rowhammering” approach presented in [17], i.e., induc-
ing random bit flips into DRAM cells by repeatedly accessing adjacent rows.

3 Although the test boards do have multiple DRAM modules, DRAM refresh cannot
be disabled individually. In particular, on the Galileo board, one DRAM chip is used
to store the most significant 8 bits of every 16 bits, while the other chip is used to
store the least significant 8 bits of every 16 bits. Disabling refresh on a single chip
is not possible, as half of each memory word would be lost.

Run-Time Accessible DRAM PUFs in Commodity Devices 439

However, he or she would not succeed, as DRAM PUFs allocate a continuous
chunk of memory. Rowhammering would only apply at the borders of the PUF
area. Using voltage variations in order to manipulate PUF behavior, as done
in [11,28], is out of scope of this paper, as we are focussing on intrinsic PUFs on
commodity hardware where such voltage control is not possible.

3 Implementation and Performance

We implemented and tested our DRAM PUF construction on two popular plat-
forms, the PandaBoard ES Revision B3 and the Intel Galileo Gen 2. The Panda-
Board houses a TI OMAP 4460 System-on-Chip (SoC) module that implements
1 GB of DDR2 memory from ELPIDA in a Package-on-Package (PoP) configu-
ration, which operates at 1.2 V. The Intel Galileo has an Intel Quark SoC X1000
SoC with two 128 MB DDR3 from Micron, operating at 1.5 V. The two phys-
ical DRAM modules are accessed in parallel and located on the same PCB as
the processor.

We implemented two different approaches to query the PUF. The first app-
roach uses a modified firmware in order to obtain PUF measurements during
the boot phase. Second, we implemented a kernel module-based solution that
enables PUF queries during run-time of a Linux operating system. The firmware
solution is easy to implement and was used to take most of the measurements
from the Intel Galileo. The kernel module-based solution was used for obtain-
ing measurements on the PandaBoard platform and for gathering temperature
stability measurements on the Galileo. The kernel module thus also serves as
a general proof-of-concept of the run-time accessibility of the proposed DRAM
PUF. We present implementation details of both approaches in the following.

3.1 Firmware-Based PUF Access

The firmware is the first code to be executed upon device start. During the
DRAM initialization phase, the firmware itself does not require the use of
DRAM. This makes it ideal for gathering PUF measurements.

In the case of the Galileo platform, we modified the Quark EDKII firmware.
PUF measurement code was inserted just before DRAM refresh is enabled in
order to access the PUF, comprising the following steps: writing the initial value
(initval) to the specific logical PUF (as defined by addr and size), waiting for
the decay time t to elapse, and then reading back the PUF response via the
console. After the PUF response is retrieved, normal firmware execution and
eventual boot of the OS can resume. The firmware patch consists of about 60
lines of C code. Most of the code implements initializing the PUF parameters
and accessing the PUF memory region. The PUF response is read and printed
to the console for later analysis.

On the PandaBoard, the implementation is similar: DRAM is initialized with
initval, the auto-refresh of the memory controller is disabled, and after decay
time t, the memory content is sent over UART to a workstation. Our firmware
patch for the PandaBoard consists of about 50 lines of C code.

440 W. Xiong et al.

3.2 Linux Kernel Module-Based PUF Access

In order to be able to access the DRAM PUF during run-time, we implemented
a kernel module for each platform, which can be inserted at run-time. The kernel
module is designed to work in three phases: (1) Upon loading, the kernel module
overwrites the cells in the desired logical PUF region by the initval. (2) The
kernel module then modifies the memory controller via writes to configuration
registers to disable DRAM refresh, while memory holding the OS and application
is selectively refreshed. (3) After the decay time of t seconds elapsed, memory
refresh is enabled again and the PUF response is read out.

On the PandaBoard, DRAM can be accessed using two individual external
memory interfaces (EMIF), with each EMIF covering 512 MB. Thus, memory
interfaced by the first EMIF can be used by the kernel and user space appli-
cations, while memory covered by the second EMIF can be used exclusively as
DRAM PUF. In case of the PandaBoard, in order to implement this config-
uration, the interleaving mechanism that alternately maps subsequent logical
addresses to physical addresses from both modules must first be disabled within
the bootloader. Next, measurements can be obtained by turning off the refresh
rate of the module that implements the logical PUFs and reading the memory
contents after the decay time t, while the kernel and user space applications are
residing functional on the other DRAM module. The kernel module takes about
100 lines of C code in total.

On the Intel Galileo, the refresh of the whole DRAM has to be disabled
as it is not possible to control refresh at granularity smaller than a DRAM
module. Consequently, the kernel module must selectively refresh memory used
by the kernel and applications. The kernel module schedules selective refresh
tasks4 every Nms, where N is the desired refresh rate. For selective refresh, the
module loops over all memory addresses that need to be refreshed, issuing a read
to a memory word in every DRAM row. The kernel module takes about 300 lines
of C code in total.

During a PUF query, the OS and other applications can operate normally,
but some CPU resources must be spent on selective memory refresh. If the size
of the memory region is too large, the CPU core will spend the majority of its
time refreshing the defined memory area, leaving little resources to user space
applications. Furthermore, if the time required to refresh the whole memory
region is much longer then the required refresh period, critical portions of code
and data may have decayed before they can be accessed by the kernel module.

Table 1 shows the time required to perform selective refresh of memory
regions of various sizes, ranging from 32 MB up to 128 MB. We see that selective
refresh takes between 7.6 ms and 21.2 ms for a single run. The last two columns
in Table 1 show the CPU time spent on selective refresh, assuming 64 ms and
200 ms refresh rates. For an active memory size of 128 MB, the system will spend
33 % of CPU time on selective refresh, when a target refresh period of 64 ms is

4 A key feature of Linux, the so-called workqueues, allowing tasks to be scheduled at
specific time intervals, is used for this purpose.

Run-Time Accessible DRAM PUFs in Commodity Devices 441

Table 1. Time needed to perform memory reads (i.e. the selective refresh) to refresh
varying sizes of memory regions on the Intel Galileo board with DDR3 memory.

Memory size Selective refresh %CPU time %CPU time
time (64ms refresh period) (200 ms refresh period)

32 MB 7.6 ms 12% 4 %

64 MB 12.1 ms 19% 6 %

128 MB 21.2 ms 33% 10 %

selected. However, at room temperature, the 64 ms refresh period, picked by
most vendors, is very conservative, and our experiments suggest that even with
a refresh rate of 200 ms our setup is stable. Previous work on DRAM reten-
tion time support our results [21]. Thus, depending on the operating conditions
and required stability guarantees, the selective refresh period can be increased,
allowing larger DRAM to be refreshed, or leaving more CPU resources for com-
putation. In our setup, we were able to reduce the memory footprint of Yocto
Linux, commonly used on Intel Quark devices, down to 32 MB without any spe-
cial modifications.5 At 32 MB, only 7.6 ms are needed for selective refresh at
64 ms, making more than 87 % CPU time available for other applications. These
numbers demonstrate that selective refresh is viable for realistic code sizes.

4 Evaluation of DRAM PUF Characteristics

We measured the PUF instances on the Intel Galileo and PandaBoard, as
described in Sect. 3. We performed measurements using four different Panda-
Boards and five Intel Galileo devices. Furthermore, given the large amount of
memory present, we measured two 32 KB logical PUFs on each device, resulting
in eight different logical PUFs for the PandaBoard as well as ten logical PUFs for
the Intel Galileo. Each logical PUF was measured at five different decay times t,
with 50 measurements each. Based on these measurements we evaluated robust-
ness, uniqueness, and randomness, as well as time and temperature dependency,
and stability of the DRAM PUFs.

The characteristics of the DRAM PUFs are different compared to the SRAM
PUFs. Rather than being considered as an array of bits, a DRAM PUF response
mainly comprises the positions of flipped bits in a memory region. Thus, classic
metrics that are used to evaluate memory-based PUFs, which are usually based
on fractional Hamming distances, do not properly reflect the properties of the
DRAM PUFs. This effect is particularly noticeable when evaluating the unique-
ness of PUF instances. In case of the SRAM PUF, uniqueness is expressed due
to differences in the startup values of all SRAM cells amongst different devices.

5 One required change is disabling or limiting the journaling service. Other options
available are to reduce the size of the journal so it does not take much memory, or
using persistent storage for the journal.

442 W. Xiong et al.

Table 2. Metrics of logical PUF instances measured at different decay times.

Decay Device Min. Max. Fractional Avg. Max. Min.
time family Jintra Jinter entropy decay fractional fractional

Ht/N rate intra-HD inter-HD

120 s PandaBoard 0.4634 0.0102 0.0271 0.0041 0.0045 0.0038

IntelGalileo 0.7712 0.0038 0.0062 0.0009 0.0003 0.0012

180 s PandaBoard 0.4382 0.0168 0.0754 0.0102 0.0083 0.0139

IntelGalileo 0.8361 0.0044 0.0169 0.0024 0.0005 0.0032

240 s PandaBoard 0.4087 0.0258 0.0893 0.0159 0.0101 0.0244

IntelGalileo 0.6261 0.0049 0.0250 0.0041 0.0020 0.0057

300 s PandaBoard 0.4222 0.0405 0.1478 0.0202 0.0123 0.0238

IntelGalileo 0.7944 0.0055 0.0353 0.0061 0.0013 0.0080

360 s PandaBoard 0.3484 0.0342 0.1440 0.0234 0.0206 0.0279

IntelGalileo 0.8276 0.0072 0.0541 0.0093 0.0022 0.0124

Consequently, uniqueness is measured using the fractional Hamming distance
between startup values taken from different PUF instances (inter-Hamming Dis-
tance, inter-HD). However, in case of the DRAM PUF it is rather the location,
i.e., the indices, of the cells that flip, which is the root cause for the uniqueness.
If one would apply the fractional inter-Hamming Distance, the whole 32 KB
measurement would be considered, including those cells that did not flip within
the observed time period, resulting in a very low value, which does not capture
uniqueness to the full extent.

Thus, we propose new metrics to evaluate robustness and uniqueness of the
DRAM PUF that are based on the Jaccard index [13]. The Jaccard index is
a well known metric to quantify the similarity of two sets of different size: the
index results in a value of zero if both sets share no common elements and a
value of one if both sets are identical. A summary of our results is shown in
Table 2. Only for comparison to the case of SRAM PUFs we also give numbers
for the classic fractional Hamming-distance based metrics.

Uniqueness. In order to evaluate the uniqueness of the PUF, we consider the
set of indices of DRAM cells that flipped due to decay among different PUFs.
In particular, based on two measurements m1,m2 that were obtained from two
different logical PUFs for the same decay time t, we construct two corresponding
sets v1 and v2 that store the indices of the flipped cells. Uniqueness is measured
by the Jaccard index Jinter(v1, v2):

Jinter(v1, v2) =
|v1 ∩ v2|
|v1 ∪ v2|

. (1)

For an ideal PUF, the value of Jinter(v1, v2) should be close to zero, indicating
that two logical PUFs rarely share flipped bits. Indeed, as Table 2 shows, our
DRAM PUFs depict an almost perfect behavior with the Intel Galileo having a

Run-Time Accessible DRAM PUFs in Commodity Devices 443

Jaccard index between pairs of measurements
0 0.2 0.4 0.6 0.8 1

P
ro
ba

bi
lit
y

0

0.05

0.1

0.15

Jinter
Jintra

Jaccard index between pairs of measurements
0 0.2 0.4 0.6 0.8 1

P
ro
ba

bi
lit
y

0

0.05

0.1

0.15

0.2

0.25

Jinter
Jintra

Fig. 3. Distribution of Jintra and Jinter values for (left) the PandaBoard and (right)
the Intel Galileo.

maximum of Jinter = 0.0072 at t = 360 s. The PandaBoard shows larger values
with a maximum value of 0.0405 at t = 300 s which, however, is still close to the
optimal value of zero.

Robustness. In order to quantify the inherent noise in the PUF measurements
and consequently PUF robustness, we computed the Jaccard index Jintra(v1, v2)
between two sets containing the indices of flipped bits in two measurements of
the same logical PUF at identical decay times. An ideal PUF should show values
close to one, indicating that responses are stable.

Figure 3 displays the distributions of Jintra(v1, v2) and Jinter(v1, v2) of all
measurements, corresponding to identical decay times, for both device types.
A clear divide between the two distributions indicates that individual devices
can be distinguished perfectly, while the PUF response is stable over subsequent
measurements.

Again, for comparison, we also provide data on the fractional intra-Hamming
Distance (intra-HD) in Table 2, i.e., the Hamming distance between subsequent
measurements. In comparison to SRAM PUFs, the Hamming distance values
are much smaller due to the lower number of bit flips within the DRAM PUF.
Nevertheless, except for one case, also the minimum inter-HD is multiply larger
than the maximum intra-HD, indicating close to perfect separability.

Entropy. In order to generate cryptographic keys from the PUF response, PUF
measurements must exhibit sufficient entropy. We estimate the Shannon entropy
of DRAM PUF responses as follows. We again consider the set v of indices
of DRAM cells that flipped after time t. Denote with k the cardinality of v
and with N the total number of DRAM cells. Assuming that the flipped bits
are distributed uniformly, as confirmed by our experiments, the probability of
observing one set v is: P (v) = 1/

(
N
k

)
. The Shannon entropy of the DRAM PUF

for a given decay time can thus be calculated using

Ht = log2

(
N

k

)

. (2)

444 W. Xiong et al.

Note, that simply observing the number of bits decaying after time t has
elapsed, is not sufficient for determining k, as the bit decay will be due to two
effects: (i) short-term noise that must be corrected and (ii) stable long-term decay
characteristics. In order to approximate k, indicating the stable PUF character-
istics, multiple measurements for a single PUF can be averaged in order to elim-
inate the noise component. Table 2 lists the fractional entropy Ht/N computed
this way. We observe that the entropy is significantly bigger on the PandaBoard,
indicating more bit flips than on the Intel Galileo. This is most likely due to the
different technologies used to implement DRAM cells.

It is noteworthy to compare the entropy that can be extracted from different
PUF implementations. While SRAM PUFs usually show min-entropy values of
around 0.7–0.9 bits per cell, the entropy of the proposed DRAM PUF is one order
of magnitude smaller. This can be explained as follows: whilst within SRAM the
majority of cells have a unique startup pattern, in case of DRAM only some
cells will flip during the observed decay time. However, this lower entropy can
be easily compensated by the magnitudes higher (usually a thousand times)
amount of DRAM cells available.

Decay Dependency on Time and Temperature. Figure 4 shows the decay rate as a
function of decay time for both the PandaBoard and Intel Galileo. All measure-
ments were taken at ambient room temperature with DRAM chips operating at
around 40 ◦C. Every data point shows the average of all logical PUFs. We see
that the decay rate significantly increases with time on the Galileo. The Panda-
Board shows an s-like decay that has a steep beginning and saturates towards
t = 360 s.

This plot allows us to estimate the number of time-dependent challenges
that a logical PUF can provide. In order to allow for unique identification at
any given decay time, the set of decay times t1, t2, ..., tn must be chosen such
that the corresponding measurements show a minimum number of new bits
flips, referred to as εbits, which is greater than the inherent noise. Given εbits,
the set of viable decay times (and thus the challenges of a logical PUF) can be

Decay time (sec)
120 180 240 300 360

D
ec
ay

ra
te

0

0.005

0.01

0.015

0.02

0.025

Decay time (sec)
120 180 240 300 360

D
ec
ay

ra
te

0

0.002

0.004

0.006

0.008

0.01

0.012

Fig. 4. Time-dependency of decay rate for DRAM modules on the (left) PandaBoard
and the (right) Intel Galileo at room temperature.

Run-Time Accessible DRAM PUFs in Commodity Devices 445

Temperature (∝C)
40 60 80

D
ec

ay
ra

te

0

0.05

0.1

0.15

0.2

t1 = 120s
t2 = 180s
t3 = 240s
t4 = 300s
t5 = 360s

Temperature (∝C)
40 60 80

D
e c

a y
ra

te

0

0.05

0.1

0.15

0.2

0.25

0.3

t1 = 120s
t2 = 180s
t3 = 240s
t4 = 300s
t5 = 360s

Fig. 5. Relation between the temperature and the decay rate measured on (left) the
PandaBoard and (right) the Intel Galileo.

chosen accordingly. We used the maximum noise level previously observed for
each respective decay time t in order to get a conservative approximation of the
maximum number of challenges per logical PUF. We experimentally determined
the maximum number of decay times to be n = 7 for the Intel Galileo and n = 2
for the PandaBoard. The number assumes a maximum decay time tn ≤ 360 s
and possible challenges are indicated by vertical red lines in Fig. 4. The smaller
number for the PandaBoard is mainly due to higher noise. In particular, we
observe that for the PandaBoard the Jintra values can be comparably low, i.e.
Jintra = 0.3484 at t = 360 s. However, given Jinter is a magnitude different from
Jintra, unique identification ability is preserved.

A second factor influencing the decay rate of DRAM cells is temperature. In
Fig. 5 we show the dependency between temperature and decay rate for DRAM
modules on the Intel Galileo and the PandaBoard. In order to control the tem-
perature, we used a metal ceramic heater to heat the surface of DRAM modules
to the desired temperature and took the measurements.

Although temperature affects the decay rate significantly, it does not change
the decay characteristics much; instead, it affects decay time: We observed that
by using a carefully chosen smaller decay time t′T ′ < t at a larger temperature
T ′ > T , the same PUF response can be obtained as with decay time t at tem-
perature T . In our experiments, we derive the following dependency for the Intel
Galileo boards:

t′T ′ = t ∗ e−0.0662∗(T ′−T). (3)

Hence, if the PUF is evaluated at a different temperature than during enroll-
ment, this can be compensated through adapting the decay time according
to Eq. (3). In order to support this statement, we calculated the noise Jintra

between an enrollment measurement at room temperature (40 ◦C) and a mea-
surement taken at a different temperature by adjusting decay time. For this
purpose, we created reference measurements at room temperature with decay
times tx = {120 s, 180 s, 240 s, 300 s, 360 s}. In a next step, we used equiva-
lent decay times t′T ′ that correspond to temperatures T ′ = {40 ◦C, 50 ◦C, 60 ◦C}

446 W. Xiong et al.
J
in
tr
a

0

0.2

0.4

0.6

0.8

1

t1 t 2 t 3 t 4 t 5 t 1 t 2 t 3 t 4 t 5 t 1 t 2 t 3 t 4 t 5
40∝C 50∝C 60∝C

Fig. 6. Jintra values (i.e., similarity) of
enrollment measurements taken at room
temperature and measurements at higher
temperatures T ′ = {40 ◦C, 50 ◦C, 60 ◦C},
with adjusted decay times t′.

Jaccard index between pairs of measurements
0.75 0.8 0.85 0.9 0.95

P
ro

ba
bi

lit
y

0

0.02

0.04

0.06

0.08

0.1

0.12

Fig. 7. Distribution of Jintra of enroll-
ment, reconstruction measurements
pairs taken from the same logical PUF
instances on Intel Galileo over four
months.

and measured the PUF accordingly. As shown in Fig. 6, for all measurements,
Jintra lies within the usual noise level. Thus, differences in temperature can be
accommodated by adjusting decay time accordingly.

Stability over Time. During extended lifetime of devices, DRAM aging effects
will begin to take place. Existing work on SRAM PUFs has explored aging
effects [23,25,32,38]. We are aware of limited work on aging-related effects in
DRAM cells with regard to security [36]. Figure 7 shows the histogram of Jintra

values for measurements of an Intel Galileo, taken 4 months apart. Three logic
PUFs were measured, and results are combined. Note that the measurements also
include the noise introduced by temperature changes in our lab. Jintra values
were computed of measurement pairs that comprise an enrollment and a recon-
struction measurement each. The values are similar to the Jintra results shown
in Table 2, suggesting sufficient stability of DRAM PUFs over a long-term usage
time period.

5 Lightweight Protocols for Device Authentication
and Secure Channel Establishment

In the this section we propose two novel PUF-based protocols that draw their
security from the time-dependent decay characteristics of a DRAM PUF instance
when queried at different decay times. Both protocols involve two parties, a client
C and server S. Whilst the first protocol authenticates C towards an honest S,
the second protocol establishes a secure channel between C and S. The protocols
leverage PUF instances extracted from DRAM modules and thus require C to
own a device D that implements a DRAM PUF during the course of the protocol.
For the sake of clarity, we will refer to the PUF instance on the client’s device
as C itself. Further, we omit the full specification parameters of the logical PUF
instance to be queried. Instead of stating all parameters (addr, size) in every
protocol, we refer to one logical PUF instance as id.

Run-Time Accessible DRAM PUFs in Commodity Devices 447

Adversary and Threat Model. Our adversary model for the protocols considers a
passive attacker, who is able to observe the network traffic between client and
server and who can capture transmitted messages, in particular previous PUF
measurements that were sent by the client. Furthermore, we consider the Fuzzy
Extractor construction, in particular the ECC parameters as well as the Helper
Data, to be public and thus known by the attacker.

Enrollment. An enrollment phase precedes both protocols, which is assumed to
be conducted at a trusted party SYS, such as a manufacturer or a system integra-
tor. For each logical PUF instance, during the enrollment phase, SYS queries the
PUF n times in order to get a set of measurements M = {mid,0,mid,1, ...,mid,n}
at a defined set of decay times T = {t0, t1, ..., tn}, i.e., mid,x = PUF (id, tx).
Decay times t0, t1, ..., tn are carefully chosen such that t0 < t1 < ... < tn and
for every tuple of subsequent decay times the number of newly introduced bit
flips in PUF measurements is always greater than a security parameter εbits. The
parameter εbits can be changed to adjust security and usability of the protocol
(see the end of this section).

To generate keys for the secure channel establishment protocol, SYS chooses
a set K = {kid,0, kid,1, ..., kid,n} containing uniformly distributed keys and uses
a Fuzzy Extractor to create a set of Helper Data W = {wid,0, wid,1, ..., wid,n},
such that (kid,x, wid,x) = GEN(mid,x), where GEN(·) denotes the generation
function of the Fuzzy Extractor. While the current Fuzzy Extractor construc-
tions [5,24] might leak entropy from the helper data in case of biased PUF, we
assume there is a construction tailored for DRAM PUFs. Eventually, T , M W
and K will be given to S, whilst the device will be handed to C in a secure
manner.

Device Authentication. In order to authenticate the client C towards an honest
server S, the server chooses the smallest decay time tx not previously used for
logical PUF id in a run of the authentication protocol. Next, S transmits id and
tx to C, who uses it as input to his or her PUF to retrieve a measurement m′

id,x,
which is sent back to S. S checks if m′

id,x is close enough to a stored measurement
mid,x. This is done by checking whether the Jaccard index of m′

id,x and mid,x is
larger than a given threshold εauth, defined based on the noise of measurement
mx. This authentication protocol is depicted on the left side of Fig. 8. Note that
for subsequent authentication trials, decay times are monotonically increasing.

The authentication is designed to be lightweight for the client in terms of
computational overhead and memory footprint. It does not require C to store
any long-term Helper Data or perform expensive decoding that is usually part
of the key reconstruction process performed by classical Fuzzy Extractors. This
is especially useful in the context of highly resource-constrained low-cost devices
that have to be authenticated towards a server repeatedly.

Secure Channel Establishment. Using similar ideas, a secure channel can be
established between C and S, see Fig. 8 (right side). Again, S sends the smallest,
not previously used decay time tx for logical PUF id, this time along with the
corresponding Helper Data wid,x. The client evaluates his PUF instance id using

448 W. Xiong et al.

Fig. 8. Sequence diagram of (left) the device authentication protocol and (right) the
secure channel establishment protocol.

tx in order to retrieve m′
id,x, which is used in combination with wid,x to recon-

struct k′
id,x = REC(m′

id,x, wid,x). If the measurement m′
x was obtained using

the correct logical PUF, the resulting key k′
id,x will be identical to the key kid,x

stored at the server in K. Thus, both parties C and S will share the same key.
In contrast to the authentication protocol depicted above, secure channel estab-
lishment is less lightweight, as it requires the evaluation of the Fuzzy Extractor
on the client.

On the Choice of Security Parameters. Following our threat model, the attacker
can obtain all previously used PUF measurements mx by eavesdropping the
authentication protocol, the security of the protocol is inherently based on the
number of newly flipped bits εbits that emerge between measurements for sub-
sequent decay times tx, tx+1. The value of εbits, and correspondingly the decay
times, must be chosen in a way that a new PUF measurement has enough new
entropy, even if the attacker knows the previous measurements.

In order to forge authentication or to derive the session key, the attacker
has to guess the PUF measurement corresponding to the next unused decay
time. In order to do so, the best strategy, without the knowledge of the physical
PUF characteristics, is to randomly guess where the bit flips in the subsequent
measurement will occur, knowing the previous measurement mx. Suppose that
the attacker guesses M new bit flips. Then, he can use these M flips together
with the bit flips in the old response mx as his guess of the new PUF measure-
ment mx+1. In the next paragraphs we estimate the probability of success for
such a strategy. This allows us to fix the security parameter εbits, such that the
probability of a successful guess is small.

We estimate the success probability as follows. The space of potential new
bit flips is of size N , which is the number of bits that did not flip in mx. Out
of the remaining N bits, the attacker can guess M bits and combine them with
mx in order to generate m′

x+1. Note that the attacker does not need to guess
the exact pattern mx+1. Instead, the attacker will be successful, if the guessed
measurement m′

x+1 is a noisy version of the true measurement, i.e., m′
x+1 lies

within the error-correction bounds of the Fuzzy Extractor.

Run-Time Accessible DRAM PUFs in Commodity Devices 449

The probability that an attacker guesses M random bits and l of them hap-

pen to be real new bit flips of the subsequent measurement is (εbits
l)(N−εbits

M−l)
(N

M) .

Note that in this case, the Jaccard index of the attacker’s guess and the true
measurement is J(m′

x+1,mx+1) = l+|mx|
εbits+M−l+|mx| , where |mx| is the number of

bit flips in the previous measurement mx. Assuming the authentication and key
generation is successful if J(m′

x+1,mx+1) > Δ, the attacker will only be suc-
cessful if l is greater than (εbits+M)∗Δ

1+Δ − |mx|∗(1−Δ)
1+Δ . Thus, the probability for an

attacker to make a successful guess is:

PM =
εbits∑

l=� (εbits+M)∗Δ

1+Δ − |mx|∗(1−Δ)
1+Δ �

(
εbits

l

)(
N−εbits

M−l

)

(
N
M

) . (4)

The attacker can chose any M , which will maximize the success probability PM .
If N is large and M is between Mmin = εbits ∗ Δ − (1 − Δ)|mx| and Mmax =
εbits+(1−Δ)∗|mx|

Δ , PM is monotonically decreasing with M .6 Hence, the attacker
can choose M = Mmin to maximize the success probability.

In order to provide 128-bit security, P = maxM{PM} must be smaller
than 2−128. Given Formula 4 and PUF characteristics, one can fix N and Δ,
then derive εbits for different |mx|, and subsequently estimate the feasible decay
time. For the Intel Galileo, as a conservative estimation, the space of potential
new bit flips is of size N = 30KB (assuming that out of a 32 KB logical PUF,
less than 2 KB are flipping in mx), and the threshold is Δ = 0.6. To set |m0|,
a point where the decay is larger than the noise should be found. To be conser-
vative, minimum max intra-HD is used as a reference for |m0|.7 Hence, we set
|m0| = 80, and then we can get εbits1 = 73, and |m1| = |m0|+ εbits2 = 153. Then
with |m1|, we can get εbits2 = 122 and thus |m2| = 275, etc. Consequently, in
the Galileo, a 32 KB logical PUF can provide 7 challenges, each with the decay
time shorter than 360 s.

6 Open Research Topics

This novel work on run-time accessible DRAM PUFs still leaves a number of open
research issues and questions that need to be addressed. This creates opportuni-
ties for the community to refine and further improve the concept of DRAM PUFs.

Temperature dependency of the DRAM cell decay allows physical attackers
to control the decay rate by adjusting the ambient temperature. For example,
heating a DRAM chip may “speed up” the decay rate, shortening the time
needed for an attacker to observe certain bits flip. Further investigation on the
temperature dependence is needed and counter-measures need to be developed
to thwart such attacks.

6 PM > 0 when M is between εbits ∗ Δ − (1 − Δ)|mx| and εbits+(1−Δ)∗|mx|
Δ

.
7 If the PUF characteristic is better understood for t < 120 s, a smaller |m0| may be

chosen.

450 W. Xiong et al.

Voltage dependency of the DRAM cell decay was not considered in this paper,
as commodity devices usually give no control over DRAM voltages. However,
voltage dependency could be another viable characteristic used for the run-time
accessible DRAM PUFs, if future commodity devices provide interfaces that
allow for fine-grained control of DRAM voltages.

Readout time of the DRAM PUFs is in the order of minutes. This can be
seen as a disadvantage, although in many cases it can be compensated by the
advantage of being able to access the DRAM PUFs at run-time. Use cases that
allow for such relatively long readout times need to be better understood. At
the same time, improving the readout time is critical in order to broaden the
applicability of DRAM PUFs.

Security assumptions, e.g., the trusted firmware and the operating system,
may be considered as too strong. While these are also required for the other
PUFs in commodity devices, one may look for solutions requiring a smaller
trusted computing base.

Fuzzy Extractor constructions are needed that are either specifically tailored
towards heavily biased PUF responses, found in decay-based DRAM PUFs, or
that use the introduced Jaccard distances. Classic Fuzzy Extractors are based on
Hamming distance-related metrics and are not secure for heavily biased PUFs.
Thus, new constructions for biased PUFs, such as [24,39], should be developed.

7 Conclusion

In this work we presented intrinsic PUFs that can be extracted from Dynamic
Random-Access Memory (DRAM) in commodity devices. An evaluation of the
DRAM PUFs found on unmodified, commodity devices, in particular the Panda-
Board and Intel Gallileo, showed their robustness, uniqueness, randomness, as
well as stability over period of at least few months. Moreover, in contrast to
existing DRAM and SRAM PUFs, we demonstrate a system model that is able
to query the PUF instance directly during run-time using a Linux kernel module,
based on the ideas of selective DRAM refresh and memory ballooning. We further
presented protocols for device authentication and identification that draw their
security from time-dependent decay characteristics of our DRAM PUF. Our
intrinsic DRAM PUFs overcome two limitations of the popular intrinsic SRAM
PUFs: they have the ability to be accessed at run-time, and have an expanded
challenge-response space due to use of decay time t as part of the challenge.
Consequently, our work presents a new alternative for device authentication by
leveraging DRAM in commodity devices.

Acknowledgements. This work has been co-funded by the DFG as part of project P3
within the CRC 1119 CROSSING. This work was also partly funded by CASED. The
authors would like to thank Kevin Ryan and Ethan Weinberger for their help with
building the heater setup used in the experiments, and Intel for donating the Intel
Galileo boards used in this work. The authors would also like to thank anonymous
CHES reviewers, and especially our shepherd, Roel Maes, for numerous suggestions
and guidance in making the final version of this paper.

Run-Time Accessible DRAM PUFs in Commodity Devices 451

References

1. Hacking DefCon 23’s IoT Village Samsung fridge. https://www.pentestpartners.
com/blog/hacking-defcon-23s-iot-village-samsung-fridge/. Accessed Feb 2016

2. Armknecht, F., Maes, R., Sadeghi, A.R., Sunar, B., Tuyls, P.: Memory leakage-
resilient encryption based on physically unclonable functions. In: Sadeghi, A.-R.,
Naccache, D. (eds.) Towards Hardware-Intrinsic Security, pp. 135–164. Springer,
Heidelberg (2010)

3. Bacha, A., Teodorescu, R.: Authenticache: harnessing cache ECC for system
authentication. In: Proceedings of International Symposium on Microarchitecture,
pp. 128–140. ACM (2015)

4. Batra, P., Skordas, S., LaTulipe, D., Winstel, K., Kothandaraman, C., Himmel, B.,
Maier, G., He, B., Gamage, D.W., Golz, J., et al.: Three-dimensional wafer stacking
using Cu TSV integrated with 45 nm high performance SOI-CMOS embedded
DRAM technology. J. Low Power Electron. Appl. 4, 77–89 (2014)

5. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate strong keys
from biometrics and other noisy data. In: Cachin, C., Camenisch, J.L. (eds.)
EUROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004)

6. Foster, I., Prudhomme, A., Koscher, K., Savage, S.: Fast and vulnerable: a story
of telematic failures. In: USENIX Workshop on Offensive Technologies (2015)

7. Gassend, B., Clarke, D., Van Dijk, M., Devadas, S.: Delay-based circuit authen-
tication and applications. In: Proceedings of the ACM Symposium on Applied
Computing, pp. 294–301. ACM (2003)

8. Greenberg, A.: Hackers remotely kill a jeep on the highway–with me in it. Wired
(2015). https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/.
Accessed 08 July 16

9. Guajardo, J., Kumar, S.S., Schrijen, G.-J., Tuyls, P.: FPGA intrinsic PUFs and
their use for IP protection. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007.
LNCS, vol. 4727, pp. 63–80. Springer, Heidelberg (2007)

10. Guajardo, J., Kumar, S.S., Schrijen, G.J., Tuyls, P.: Brand and IP protection with
physical unclonable functions. In: IEEE International Symposium on Circuits and
Systems, pp. 3186–3189 (2008)

11. Hashemian, M.S., Singh, B., Wolff, F., Weyer, D., Clay, S., Papachristou, C.:
A robust authentication methodology using physically unclonable functions in
DRAM arrays. In: Proceedings of the Design, Automation and Test in Europe
Conference, pp. 647–652 (2015)

12. Hernandez, G., Arias, O., Buentello, D., Jin, Y.: Smart nest thermostat: a smart
spy in your home. Black Hat USA (2014)

13. Jaccard, P.: Etude comparative de la distribution orale dans une portion des Alpes
et du Jura. Impr. Corbaz (1901)

14. Katzenbeisser, S., Kocabaş, Ü., Rožić, V., Sadeghi, A.-R., Verbauwhede, I., Wachs-
mann, C.: PUFs: myth, fact or busted? A security evaluation of physically unclon-
able functions (PUFs) cast in silicon. In: Prouff, E., Schaumont, P. (eds.) CHES
2012. LNCS, vol. 7428, pp. 283–301. Springer, Heidelberg (2012)

15. Keeth, B.: DRAM Circuit Design: Fundamental and High-Speed Topics. Wiley,
Hoboken (2008)

16. Keller, C., Gurkaynak, F., Kaeslin, H., Felber, N.: Dynamic memory-based physi-
cally unclonable function for the generation of unique identifiers and true random
numbers. In: IEEE International Symposium on Circuits and Systems, pp. 2740–
2743. IEEE (2014)

https://www.pentestpartners.com/blog/hacking-defcon-23s-iot-village-samsung-fridge/
https://www.pentestpartners.com/blog/hacking-defcon-23s-iot-village-samsung-fridge/
https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/

452 W. Xiong et al.

17. Kim, Y., Daly, R., Kim, J., Fallin, C., Lee, J.H., Lee, D., Wilkerson, C., Lai, K.,
Mutlu, O.: Flipping bits in memory without accessing them: an experimental study
of DRAM disturbance errors. In: ACM SIGARCH Computer Architecture News,
pp. 361–372 (2014)

18. Kocabaş, Ü., Peter, A., Katzenbeisser, S., Sadeghi, A.-R.: Converse PUF-based
authentication. In: Camp, L.J., Volkamer, M., Reiter, M., Zhang, X., Katzen-
beisser, S., Weippl, E. (eds.) Trust 2012. LNCS, vol. 7344, pp. 142–158. Springer,
Heidelberg (2012)

19. Kohnhäuser, F., Schaller, A., Katzenbeisser, S.: PUF-based software protection
for low-end embedded devices. In: Conti, M., Schunter, M., Askoxylakis, I. (eds.)
TRUST 2015. LNCS, vol. 9229, pp. 3–21. Springer, Heidelberg (2015)

20. Kong, J., Koushanfar, F., Pendyala, P.K., Sadeghi, A.R., Wachsmann, C.:
PUFatt: embedded platform attestation based on novel processor-based PUFs.
In: ACM/EDAC/IEEE Design Automation Conference, pp. 1–6 (2014)

21. Liu, J., Jaiyen, B., Kim, Y., Wilkerson, C., Mutlu, O.: An experimental study
of data retention behavior in modern DRAM devices: implications for retention
time profiling mechanisms. In: ACM SIGARCH Computer Architecture News, pp.
60–71 (2013)

22. Liu, W., Zhang, Z., Li, M., Liu, Z.: A trustworthy key generation prototype based
on DDR3 PUF for wireless sensor networks. Sensors 14, 11542–11556 (2014)

23. Maes, R., van der Leest, V.: Countering the effects of silicon aging on SRAM PUFs.
In: IEEE International Symposium on Hardware-Oriented Security and Trust, pp.
148–153 (2014)

24. Maes, R., van der Leest, V., van der Sluis, E., Willems, F.: Secure key generation
from biased PUFs. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS, vol.
9293, pp. 517–534. Springer, Heidelberg (2015)

25. Maes, R., Rožić, V., Verbauwhede, I., Koeberl, P., Van der Sluis, E., Van der Leest,
V.: Experimental evaluation of physically unclonable functions in 65 nm CMOS.
In: Proceedings of the ESSCIRC, pp. 486–489 (2012)

26. Phone as a Token - turn your phone into an authentication token. https://www.
intrinsic-id.com/technology/phone-as-a-token/. Accessed Feb 2016

27. Rahmati, A., Hicks, M., Holcomb, D.E., Fu, K.: Probable cause: the deanonymizing
effects of approximate DRAM. In: Proceedings of the International Symposium on
Computer Architecture, pp. 604–615 (2015)

28. Rosenblatt, S., Chellappa, S., Cestero, A., Robson, N., Kirihata, T., Iyer, S.S.:
A self-authenticating chip architecture using an intrinsic fingerprint of embedded
DRAM. IEEE J. Solid-State Circuits 48, 2934–2943 (2013)

29. Rosenblatt, S., Fainstein, D., Cestero, A., Safran, J., Robson, N., Kirihata, T.,
Iyer, S.S.: Field tolerant dynamic intrinsic chip ID using 32 nm high-K/metal gate
SOI embedded DRAM. IEEE J. Solid-State Circuits 48, 940–947 (2013)

30. Rührmair, U., Sölter, J., Sehnke, F.: On the foundations of physical unclonable
functions. IACR Cryptology ePrint Archive 2009, p. 277 (2009)

31. Schaller, A., Arul, T., van der Leest, V., Katzenbeisser, S.: Lightweight anti-
counterfeiting solution for low-end commodity hardware using inherent PUFs. In:
Holz, T., Ioannidis, S. (eds.) Trust 2014. LNCS, vol. 8564, pp. 83–100. Springer,
Heidelberg (2014)

32. Schaller, A., Škorić, B., Katzenbeisser, S.: On the systematic drift of physically
unclonable functions due to aging. In: Proceedings of the International Workshop
on Trustworthy Embedded Devices, pp. 15–20. ACM (2015)

https://www.intrinsic-id.com/technology/phone-as-a-token/
https://www.intrinsic-id.com/technology/phone-as-a-token/

Run-Time Accessible DRAM PUFs in Commodity Devices 453

33. Scheel, R.A., Tyagi, A.: Characterizing composite user-device touchscreen physical
unclonable functions (pufs) for mobile device authentication. In: Proceedings of the
International Workshop on Trustworthy Embedded Devices, pp. 3–13. ACM (2015)

34. Schneier, B.: The internet of things is wildly insecure—and
often unpatchable. Wired (2014). http://www.wired.com/2014/01/
theres-no-good-way-to-patch-the-internet-of-things-and-thats-a-huge-problem/.
Accessed 08 July 2016

35. Schrijen, G.J., van der Leest, V.: Comparative analysis of SRAM memories used
as PUF primitives. In: Proceedings of the Conference on Design, Automation and
Test in Europe, pp. 1319–1324. EDA Consortium (2012)

36. Schroeder, B., Pinheiro, E., Weber, W.D.: DRAM errors in the wild: a large-scale
field study. In: ACM SIGMETRICS Performance Evaluation Review, pp. 193–204
(2009)

37. Schulz, S., Sadeghi, A.R., Wachsmann, C.: Short paper: lightweight remote attesta-
tion using physical functions. In: Proceedings of the ACM Conference on Wireless
Network Security, pp. 109–114 (2011)

38. Selimis, G., Konijnenburg, M., Ashouei, M., Huisken, J., De Groot, H., Van der
Leest, V., Schrijen, G.J., Van Hulst, M., Tuyls, P.: Evaluation of 90 nm 6T-SRAM
as Physical Unclonable Function for secure key generation in wireless sensor nodes.
In: IEEE International Symposium on Circuits and Systems, pp. 567–570 (2011)

39. Skoric, B.: A trivial debiasing scheme for helper data systems. Cryptology ePrint
Archive, Report 2016/241 (2016)

40. Suh, G.E., Devadas, S.: Physical unclonable functions for device authentication
and secret key generation. In: Proceedings of the Design Automation Conference,
pp. 9–14 (2007)

41. Tehranipoor, F., Karimina, N., Xiao, K., Chandy, J.: DRAM based intrinsic phys-
ical unclonable functions for system level security. In: Proceedings of the Great
Lakes Symposium on VLSI, pp. 15–20 (2015)

42. Intrinsic-ID to Showcase TrustedSensor IoT Security Solution at InvenSense Devel-
opers Conference. https://www.intrinsic-id.com/intrinsic-id-to-showcase-trusted
sensor-iot-security-solution-at-invensense-developers-conference/. Accessed Feb
2016

43. Tuyls, P., Batina, L.: RFID-tags for anti-counterfeiting. In: Pointcheval, D. (ed.)
CT-RSA 2006. LNCS, vol. 3860, pp. 115–131. Springer, Heidelberg (2006)

44. Tuyls, P., Schrijen, G.J., Willems, F., Ignatenko, T., Skoric, B.: Secure key storage
with PUFs. In: Tuyls, P., Skoric, B., Kevenaar, T. (eds.) Security with Noisy Data-
On Private Biometrics, Secure Key Storage and Anti-Counterfeiting, pp. 269–292.
Springer, London (2007)

45. Tuyls, P., Škorić, B.: Secret key generation from classical physics: physical unclone-
able functions. In: Mukherjee, S., Aarts, R.M., Roovers, R., Widdershoven, F.,
Ouwerkerk, M. (eds.) AmIware Hardware Technology Drivers of Ambient Intelli-
gence, pp. 421–447. Springer, Netherlands (2006)

46. Viega, J., Thompson, H.: The state of embedded-device security (spoiler alert: it’s
bad). IEEE Secur. Priv. 10, 68–70 (2012)

47. Waldspurger, C.A.: Memory resource management in VMware ESX server. In:
ACM SIGOPS Operating Systems Review, pp. 181–194 (2002)

http://www.wired.com/2014/01/theres-no-good-way-to-patch-the-internet-of-things-and-thats-a-huge-problem/
http://www.wired.com/2014/01/theres-no-good-way-to-patch-the-internet-of-things-and-thats-a-huge-problem/
https://www.intrinsic-id.com/intrinsic-id-to-showcase-trustedsensor-iot-security-solution-at-invensense-developers-conference/
https://www.intrinsic-id.com/intrinsic-id-to-showcase-trustedsensor-iot-security-solution-at-invensense-developers-conference/

Side Channel Countermeasures II

On the Multiplicative Complexity of Boolean
Functions and Bitsliced Higher-Order Masking

Dahmun Goudarzi1,2(B) and Matthieu Rivain1

1 CryptoExperts, Paris, France
{dahmun.goudarzi,matthieu.rivain}@cryptoexperts.com

2 ENS, CNRS, INRIA and PSL Research University, Paris, France

Abstract. Higher-order masking is a widely used countermeasure to
make software implementations of blockciphers achieve high security lev-
els against side-channel attacks. Unfortunately, it often comes with a
strong impact in terms of performances which may be prohibitive in some
contexts. This situation has motivated the research for efficient schemes
that apply higher-order masking with minimal performance overheads.
The most widely used approach is based on a polynomial representation
of the cipher s-box(es) allowing the application of standard higher-order
masking building blocks such as the ISW scheme (Ishai-Sahai-Wagner,
Crypto 2003). Recently, an alternative approach has been considered
which is based on a bitslicing of the s-boxes. This approach has been
shown to enjoy important efficiency benefits, but it has only been applied
to specific blockciphers such as AES, PRESENT, or custom designs. In
this paper, we present a generic method to find a Boolean representation
of an s-box with efficient bitsliced higher-order masking. Specifically, we
propose a method to construct a circuit with low multiplicative com-
plexity. Compared to previous work on this subject, our method can
be applied to any s-box of common size and not necessarily to small
s-boxes. We use it to derive higher-order masked s-box implementations
that achieve important performance gain compared to optimized state-
of-the-art implementations.

1 Introduction

One of the most widely used strategy to protect software implementations of block-
ciphers against side-channel attacks consists in applying secret sharing at the
implementation level. This strategy also known as (higher-order)masking notably
achieves provable security in the probing security model [ISW03] and in the noisy
leakage model [PR13,DDF14]. While designing a higher-order masking scheme for
a given blockcipher, the main issue is the secure and efficient computation of the
s-box. Most of the proposed solutions (see for instance [RP10,CRV14,CPRR15])
arebasedonapolynomial representationof the s-boxover thefinite fieldF2n (where
n is the input bit-length), for which the field multiplications are secured using the
ISW scheme due to Ishai et al. [ISW03].

An alternative approach has recently been put forward which consists in apply-
ing higher-order masking at the Boolean level by bitslicing the s-boxes within a
c© International Association for Cryptologic Research 2016
B. Gierlichs and A.Y. Poschmann (Eds.): CHES 2016, LNCS 9813, pp. 457–478, 2016.
DOI: 10.1007/978-3-662-53140-2 22

458 D. Goudarzi and M. Rivain

cipher round [GLSV15,GR16]. In the bitsliced higher-order masking paradigm,
the ISW scheme is applied to secure bitwise AND instructions which are signifi-
cantly more efficient than their field-multiplication counterparts involved in poly-
nomial schemes. Moreover, such a strategy allows to compute all the s-boxes within
a cipher round at the same time, which results in important efficiency gains. To the
best of our knowledge, bitsliced higher-order masking has only been applied to spe-
cific blockciphers up to now. In [GLSV15], Grosso et al. introduce new blockciphers
with LS-designs tailored to efficient masked computation in bitslice. The approach
has also been used by Goudarzi and Rivain in [GR16] to get fast implementations
of two prominent blockciphers, namely AES and PRESENT, masked at an order
up to 10.However, no genericmethod to apply this approach to any blockcipher has
been proposed so far. In contrast several generic methods have been published for
the polynomial setting [CGP+12,CRV14,CPRR15]. Therefore, and given the effi-
ciency benefits of bitsliced higher-order masking approach, defining such a generic
method is an appealing open issue.

Finding a Boolean representation of an s-box that yields an efficient compu-
tation in the bitsliced masking world merely consists in finding a circuit with
low multiplicative complexity. The multiplicative complexity of Boolean functions
has been studied in a few previous papers [MS92,BPP00,TP14]. In particular,
optimal circuits have been obtained for some small (3-bit/4-bit/5-bit) s-boxes
using SAT solvers [CMH13,Sto16]. However no general (heuristic) method has
been proposed up to now to get an efficient decomposition for any s-box, and in
particular for n-bit s-boxes with n ≥ 6.

In this paper, we introduce a new heuristic method to decompose an s-box
into a circuit with low multiplicative complexity. Our proposed method follows
the same approach as the CRV and algebraic decomposition methods used to get
efficient representations in the polynomial setting [CRV14,CPRR15]. We also
introduce the notion of parallel multiplicative complexity to capture the fact that
several AND gates might be bundled in a single instruction, enabling further gain
in the bitslice setting [GR16]. Eventually, we describe ARM implementations of
bitsliced higher-order-masked s-box layers using our decomposition method and
we compare them to optimized versions of the CRV and algebraic decomposition
methods. Our results show a clear superiority of the bitslice approach when the
masking order exceeds a certain threshold.

The paper is organized as follows. Section 2 gives some preliminaries about
Boolean functions and higher-order masking. We then introduce the notion of
(parallel) multiplicative complexity and discuss previous results as well as our
contribution in Sect. 3. Section 4 presents our heuristic method in a general set-
ting as well as some s-box-specific improvements. Finally, Sect. 5 describes our
implementations and the obtained performances.

2 Preliminaries

2.1 Boolean Functions

Let F2 denote the field with 2 elements and let n be a positive integer. A Boolean
function f with n variables is a function from F

n
2 to F2. The set of such functions

On the Multiplicative Complexity 459

is denoted Fn in this paper. Any Boolean function f ∈ Fn can be seen as a
multivariate polynomial over F2[x1, x2, . . . , xn]/(x2

1 − x1, x
2
2 − x2, . . . , x

2
n − xn):

f(x) =
∑

u∈{0,1}n

au xu, (1)

where x = (x1, x2, . . . , xn), xu = xu1
1 · xu2

2 · . . . · xun
n , and au ∈ F2 for every

u ∈ {0, 1}n. The above representation is called theAlgebraic Normal Form (ANF).
For any family f1, f2 . . . , fm ∈ Fn, the set 〈f1, f2 . . . , fm〉 =

{∑m
i=0aifi | ai ∈

F2

}
is called the span of the fi’s (or the space spanned by the fi’s), which

is a F2-vector space. Let Mn denote the set of monomial functions that is
Mn =

{
x �→ xu | u ∈ {0, 1}n

}
. Then, the set of Boolean functions with n

variables can be defined as the span of monomial functions, that is Fn = 〈Mn〉.
Let n and m be two positive integers, and let S be a function mapping

F
n
2 to F

m
2 . Such a function can be seen as a vector of Boolean functions, i.e.

S(x) = (f1(x), f2(x) . . . , fm(x)) and is hence called a vectorial (Boolean) func-
tion also known as an (n × m) s-box in cryptography. The Boolean functions
f1, f2, . . . , fm ∈ Fn are then called the coordinate functions of S.

2.2 Higher-Order Masking

Higher-order masking consists in sharing each internal variable x of a crypto-
graphic computation into d random variables x1, x2, . . . , xd, called the shares
and satisfying x1 + x2 + · · · + xd = x, for some group operation +, such that
any set of d − 1 shares is randomly distributed and independent of x. In this
paper, the considered masking operation will be the bitwise addition. It has been
formally demonstrated that in the noisy leakage model, where the attacker gets
noisy information on each share, the complexity of recovering information on x
grows exponentially with the number of shares [CJRR99,PR13]. This number d,
called the masking order, is hence a sound security parameter for the resistance
of a masked implementation.

The main issue while protecting a blockcipher implementation with mask-
ing is the secure computation of the nonlinear layer applying the s-boxes to
the cipher state. The prevailing approach consists in working on the polyno-
mial representation of the s-box over the field F2n , which is secured using the
ISW scheme [ISW03] for the field multiplications [RP10,CGP+12]. The most
efficient polynomial evaluation method in this paradigm is due to Coron et
al. [CRV14]. The polynomial representation can also be decomposed in func-
tions of lower algebraic degree as recently proposed by Carlet et al. in [CPRR15].
In the quadratic case, these functions can then be efficiently secured using the
CPRR scheme [CPRR14].

2.3 Bitsliced Higher-Order Masking

A variant of polynomial methods is to apply masking at the Boolean level using
bitslicing (see for instance [DPV01,GLSV15,BGRV15]). In [GR16], the authors

460 D. Goudarzi and M. Rivain

apply this approach to get highly efficient implementations of AES and PRESENT
with masking order up to 10. In their implementations, bitslice is applied at the
s-box level. Specifically, based on a Boolean circuit for an s-box S, one can per-
form � parallel evaluations of S in software by replacing each gate of the circuit
with the corresponding bitwise instruction, where � is the bit-size of the underly-
ing CPU architecture. It results that the only nonlinear operations in the parallel
s-box processing are bitwise AND instructions between �-bit registers which can
be efficiently secured using the ISW scheme. Such an approach achieves important
speedup compared to polynomial methods since (i) ISW-based ANDs are substan-
tially faster than ISW-based field multiplications in practice, (ii) all the s-boxes
within a cipher round are computed in parallel. The authors of [GR16] propose
an additional optimization. In their context, the target architecture (ARM) is of
size � = 32 bits, whereas the number of s-boxes per round is 16 (yielding 16-bit
bitslice registers). Therefore, they suggest to group the ANDs by pair in order to
perform a single ISW-based 32-bit AND where the standard method would have
performed two ISW-based 16-bit AND. This roughly decreases the complexity by
a factor up to two.1

3 Multiplicative Complexity of Boolean Functions

Weshall callBoolean circuit anycomputationgraphcomposedofF2-multiplication
nodes (AND gates), F2-addition nodes (XOR gates), and switching nodes (NOT
gates). Informally speaking, the multiplicative complexity of a Boolean function is
the minimum number of F2-multiplication gates required by a Boolean circuit to
compute it. This notion can be formalized as follows:

Definition 1. The multiplicative complexity C(f1, f2, . . . , fm) of a family of
Boolean functions f1, f2, . . . , fm ∈ Fn, is the minimal integer t for which there
exist Boolean functions gi, hi ∈ Fn for i ∈ [[1, t]] such that:

{
g1, h1 ∈ 〈1, x1, x2, . . . , xn〉
∀i ∈ [[2, t]] : gi, hi ∈ 〈1, x1, x2, . . . , xn, g1 · h1, . . . , gi−1 · hi−1〉

(2)

and
f1, f2, . . . , fm ∈ 〈1, x1, x2, . . . , xn, g1 · h1, . . . , gt · ht〉. (3)

It is easy to see that any set of Boolean functions {f1, f2, . . . , fm} ⊆ Fn has
multiplicative complexity satisfying

C(f1, f2, . . . , fm) ≤ C(Mn) = 2n − (n + 1). (4)

Moreover, a counting argument shows that there exists f ∈ Fn such that

C(f) > 2
n
2 − n. (5)

1 Packing the operands and depacking the result implies a linear overhead in the number
of shares, whereas the number of quadratic operations (the ISW-ANDs) are divided
by a factor up to 2.

On the Multiplicative Complexity 461

In [BPP00], Boyar et al. provide a constructive upper bound for any Boolean
function:

Theorem 1 ([BPP00]). For every f ∈ Fn, we have

C(f) ≤
{

2
n
2 +1 − n

2 − 2 if n is even,

3 · 2
n−1
2 − n−1

2 − 2 otherwise.
(6)

The particular case of Boolean functions with 4 and 5 variables has been
investigated by Turan and Peralta in [TP14]. They give a complete characteri-
zation of affine-equivalence classes of these functions and they show that every
f ∈ F4 has C(f) ≤ 3 and every f ∈ F5 has C(f) ≤ 4.

Other works have focused on the multiplicative complexity of particular kinds
of Boolean functions. In [MS92], Mirwald and Schnorr deeply investigate the case
of functions with quadratic ANF. In particular they show that such functions
have multiplicative complexity at most �n

2 �. Boyar et al. give further upper
bounds for symmetric Boolean functions in [BPP00].

3.1 Multiplicative Complexity of S-Boxes

The multiplicative complexity of an s-box S : x �→ (f1(x), f2(x) . . . , fm(x)) is
naturally defined as the multiplicative complexity of the family of its coordinate
functions. We shall also call multiplicative complexity of a given circuit the actual
number of multiplication gates involved in the circuit, so that the multiplicative
complexity of a circuit gives an upper bound of the multiplicative complexity of
the underlying s-box.

The best known circuit for the AES s-box in terms of multiplicative com-
plexity is due to Boyar et al. [BMP13]. This circuit achieves a multiplicative
complexity of 32 which was obtained by applying logic minimization techniques
to the compact representation of the AES s-box due to Canright [Can05] (and
saving 2 multiplications compared to the original circuit).

In [CMH13], Courtois et al. use SAT-solving to find the multiplicative com-
plexity of small s-boxes. Their approach consists in writing the Boolean system
obtained for a given s-box and a given (target) multiplicative complexity t as a
SAT-CNF problem, where the unknowns of the system are the coefficients of the
gi and hi in Definition 1. For each value of t, the solver either returns a solution
or a proof that no solution exists, so that the multiplicative complexity is the
first value of t for which a solution is returned. They apply this approach to find
Boolean circuits with the smallest multiplicative complexity for a random 3 × 3
s-box (meant to be used in CTC2 [Cou07]), the 4 × 4 s-box of PRESENT, and
for several sets of 4×4 s-boxes proposed for GOST [PLW10]. These results have
recently been extended by Stoffelen who applied the Courtois et al. approach to
find optimal circuits for various 4 × 4 and 5 × 5 s-boxes [Sto16].

The main limitation of the SAT-solving approach is that it is only applica-
ble to small s-boxes due to the combinatorial explosion of the underlying SAT
problem, and getting the decomposition of an s-box of size e.g. n = 8 seems

462 D. Goudarzi and M. Rivain

out of reach. Moreover, the method is not generic in the sense that the obtained
decomposition stands for a single s-box and does not provide an upper bound
for the multiplicative complexity of s-boxes of a given size.

3.2 Our Results

We give new constructive upper bounds for the multiplicative complexity of
s-boxes. As a first result, we extend Theorem 1 to s-boxes (see proof in the full
version):

Theorem 2. For every S ∈ Fm
n , we have:

C(S) ≤ min
k∈[[1,n]]

(m2k + 2n−k + k) − (m + n + 1). (7)

When m = n, the min is achieved by k =
⌊n−log2 n

2

⌉
for most n ∈ N, which gives

C(S) ≤ Bn with

Bn ≈
√

n 2
n
2 +1 −

(3n + log2 n

2
+ 1

)
. (8)

We further introduce in this paper a heuristic decomposition method achiev-
ing lower multiplicative complexity. Our general result is summarized in the
following Theorem:

Theorem 3. For every S ∈ Fm
n , we have C(S) ≤ Cn,m with

Cn,m ≈
√

m 2
n
2 +1 − m − n − 1. (9)

And in particular

Cn,n =

⎧
⎨

⎩

17 for n = 5
31 for n = 6
50 for n = 7

and Cn,n =

⎧
⎨

⎩

77 for n = 8
122 for n = 9
190 for n = 10

(10)

In the above theorem, Cn,m denote the multiplicative complexity of the
generic method presented in Sect. 4. We also propose non-generic improvements
of this method that might give different results depending on the s-box. Table 1
summarizes the multiplicative complexities obtained by the two above theorems
and the non-generic improved method for n×n s-boxes with n ∈ [[4, 10]]. For the
latter, the figures represent what we hope to achieve for a random s-box (that
we were able to achieve for some tested s-boxes).

Table 1. Multiplicative complexities of n × n s-boxes.

n 4 5 6 7 8 9 10

Theorem 2 8 16 29 47 87 120 190

Our generic method (Cn,n) 8 17 31 50 77 122 190

Our improved method (C∗
n,n) 7 13 23 38 61 96 145

On the Multiplicative Complexity 463

3.3 Parallel Multiplicative Complexity

We introduce hereafter the notion of parallel multiplicative complexity for
Boolean functions and s-boxes. We consider circuits with multiplication gates
that can process up to k multiplications in parallel. The k-parallel multiplica-
tive complexity of an s-box is the least number of k-parallel multiplication gates
required by a circuit to compute it. We formalize this notion hereafter:

Definition 2. The k-parallel multiplicative complexity C(k)(f1, f2, . . . , fm) of
a family of Boolean functions f1, f2, . . . , fm ∈ Fn, is the minimal integer t for
which there exist Boolean functions gi, hi ∈ Fn for i ∈ [[1, tk]] such that:

⎧
⎨

⎩

g1, h1, g2, h2, . . . , gk, hk ∈ 〈1, x1, x2, . . . , xn〉 ,
∀i ∈ [[1, t − 1]] : gik+1, hik+1, . . . , g(i+1)k, h(i+1)k

∈ 〈1, x1, x2, . . . , xn, g1 · h1, . . . , gik · hik〉
(11)

and
f1, f2, . . . , fm ∈ 〈1, x1, x2, . . . , xn, g1 · h1, . . . , gtk · htk〉. (12)

The main motivation for introducing this notion comes from the following
scenario. Assume we want to perform m s-box computations in bitslice on an �-bit
architecture, where � > m. Then we have to pick a circuit computing the s-box
and translate it in software by replacing Boolean gates with corresponding bit-
wise instructions. Since each bitsliced register contains m bits (m versions of the
same input or intermediate bit), one can perform up to k = ��/m� multiplication
gates with a single �-bit AND instruction (modulo some packing of the operands
and unpacking of the results). If the used circuit has a k-parallel multiplicative
complexity of t, then the resulting bitsliced implementation involve t bitwise
AND instructions. This number of AND instructions is the main efficiency crite-
rion when such an implementation is protected with higher-order masking which
makes the k-parallel multiplicative complexity an important parameter for an
s-box in this context.

The authors of [GR16] show that the AES circuit of Boyar et al. can be fully
parallelized at degree 2, i.e. its 2-parallel multiplicative complexity is 16. In the
full version of this paper, we further show that a sorted version of this circuit
can achieve k-parallel multiplicative complexity of 9, 7 and 6 for k = 4, k = 8,
and k = 16 respectively.

The decomposition method introduced in this paper has the advantage of
being highly parallelizable. Table 2 summarizes the obtained k-parallel multi-
plicative complexity C

(k)
n,n for n × n s-boxes for k ∈ {2, 4}. Note that we always

have C
(k)
n,n ∈ {�Cn,n

k �, �Cn,n

k � + 1} which is almost optimal.

4 A Heuristic Decomposition for S-Boxes

In this section, we introduce a heuristic decomposition method for s-boxes that
aim to minimize the number of F2 multiplications. The proposed method follows
the same approach than the CRV decomposition over F2n [x]. We first describe
the proposed heuristic for a single Boolean function before addressing the case
of s-boxes.

464 D. Goudarzi and M. Rivain

Table 2. Parallel multiplicative complexities of our method for n × n s-boxes.

n 4 5 6 7 8 9 10

Cn,n 8 17 31 50 77 122 190

C
(2)
n,n 4 9 16 25 39 62 95

C
(4)
n,n 2 5 9 13 20 31 48

4.1 Decomposition of a Single Boolean Function

Let f be a Boolean function. The proposed decomposition simply consists in
writing f as:

f(x) =
t−1∑

i=0

gi(x) · hi(x) + ht(x) (13)

where gi, hi ∈ 〈B〉, for some basis of functions B = {φj}|B|
j=1. Assume that all

the φj(x), φj ∈ B, can be computed with r multiplications. Then the total
multiplicative complexity of the above decomposition is of r+ t. We now explain
how to find such a decomposition by solving a linear system.

Solving a Linear System. As in the CRV method, we first sample t random
functions gi from 〈B〉. This is simply done by picking t · |B| random bits ai,j

and setting gi =
∑

φj∈B ai,jφj . Then we search for a family of t + 1 Boolean
functions {hi}i satisfying (13). This is done by solving the following system of
linear equations over F2:

A · c = b (14)

where b = (f(e1), f(e2), . . . , f(en))T with {ei} = F
n
2 and where A is a matrix

defined as the concatenation of t + 1 submatrices:

A = (A0|A1| · · · | At) (15)

with

Ai =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

φ1(e1) · gi(e1) φ2(e1) · gi(e1) ... φ|B|(e1) · gi(e1)
φ1(e2) · gi(e2) φ2(e2) · gi(e2) ... φ|B|(e2) · gi(e2)

...
...

. . .
...

φ1(e2n) · gi(e2n) φ2(e2n) · gi(e2n) ... φ|B|(e2n) · gi(e2n)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(16)

On the Multiplicative Complexity 465

for 0 ≤ i ≤ t − 1, and

At =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

φ1(e1) φ2(e1) ... φ|B|(e1)
φ1(e2) φ2(e2) ... φ|B|(e2)

...
...

. . .
...

φ1(e2n) φ2(e2n) ... φ|B|(e2n)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(17)

It can be checked that the vector c, solution of the system, gives the coeffi-
cients of the hi’s over the basis B. A necessary condition for this system to have
a solution whatever the target vector b (i.e. whatever the Boolean function f) is
to get a matrix A of full rank. In particular, the following inequality must hold:

(t + 1)|B| ≥ 2n. (18)

Another necessary condition to get a full-rank matrix is that the squared
basis B × B = {φi · φk | φi, φk ∈ B} spans the entire space Fn. A classic basis
of the vector space is the set of monomials Mn. Therefore, we suggest to take a
basis B such that Mn ⊆ B × B. Let

B0 = {x �→ xu, u ∈ U}
with U =

{
(u1, . . . , u�, 0, . . . , 0)

}
∪

{
(0, . . . , 0, u�+1, . . . , un)

}
(19)

where � = �n
2 � and where ui ∈ {0, 1} for every i ∈ [[1, n]]. Then, we clearly

have B0 × B0 = Mn. We hence suggest taking B ⊇ B0, with B possibly larger
than B0 since restraining ourselves to B = B0 could be non-optimal in terms
of multiplications for the underlying decomposition method. Indeed, (18) shows
that the more elements in the basis, the smaller t, i.e. the less multiplications
gi · hi. We might therefore derive a bigger basis by iterating B ← B ∪ {φj · φk},
where φj and φk are randomly sampled from B until reaching a basis B with the
desired cardinality.

We then have r = |B| − n − 1, where we recall that r denotes the number of
multiplications to derive B, and since x �→ 1, x �→ x1, . . . , x �→ xn ∈ B requires
no multiplications. By construction, we have |B| ≥ |B0| = 2� +2n−� −1, implying
r ≥ 2� + 2n−� − (n + 2). Let Cn = r + t denote the number of multiplications
achieved by our decomposition method. Then, by injecting Cn in (18) we get:

(Cn − r + 1)(n + 1 + r) ≥ 2n , (20)

that is:
Cn ≥ r +

2n

n + 1 + r
− 1. (21)

It can be checked that the value of r minimizing the above bound is 2
n
2 −(n−1).

However, r must satisfy r ≥ 2� + 2n−� − (n + 2) where � = �n
2 �, which is always

466 D. Goudarzi and M. Rivain

greater than 2
n
2 − (n − 1) for n ≥ 2. That is why we shall define the optimal

value of the parameter r (for the single-Boolean-function case) as:

ropt = 2� + 2n−� − (n + 2) =
{

2
n
2 +1 − (n + 2) if n even,

3 · 2
n−1
2 − (n + 2) if n odd,

(22)

which amounts to taking B = B0. The corresponding optimal value for t is then
defined as:

topt =
⌈ 2n

ropt + n + 1

⌉
− 1 (23)

which gives topt ≈ 2
n
2 −1 for n even, and topt ≈ 1

3 2
n+1
2 for n odd.

Table 3. Optimal and achievable parameters for a single Boolean function.

n 4 5 6 7 8 9 10

Optimal parameters

(r, t) (2,2) (5,2) (8,4) (15,5) (22,8) (37,10) (52,16)

|B| 7 11 15 23 31 47 63

Cn 4 7 12 20 30 46 68

Achievable parameters

(r, t) (2,3) (5,3) (9,5) (16,6) (25,9) (41,11) (59,17)

|B| 7 11 16 24 34 51 70

Cn 5 8 14 22 34 52 78

In Table 3, we give the optimal values for (r, t) as well as the corresponding
size of the basis B and multiplication complexity Cn for n ∈ [[4, 10]]. We also give
the parameter values that we could actually achieve in practice to get a full-
rank system. We observe a small gap between the optimal and the achievable
parameters, which results from the heuristic nature of the method (since we
cannot prove that the constructed matrix A is full-rank).

4.2 S-Box Decomposition

Let S : x �→ (f1(x), f2(x), . . . , fm(x)) be an s-box. We can apply the above heuris-
tic to each of the m coordinate functions fi to get a decomposition as follows:

fi(x) =
t−1∑

j=0

gj(x) · hi,j(x) + hi,t(x), (24)

for 1 ≤ i ≤ m. Here the gj ’s are randomly sampled from 〈B〉 until obtaining a
full-rank system, which is then used to decompose every coordinate function fi.
The total number of multiplications is Cn,m = r + m · t. Then, (18) gives:

Cn,m ≥ r + m
(2n

n + 1 + r
− 1

)
. (25)

On the Multiplicative Complexity 467

It can be checked that the value of r minimizing the above bound is
√

m2n−n−1.
We hence define

ropt =
⌊√

m2n
⌉

− n − 1, (26)

which minimizes (25) for every n ∈ [[2, 10]] and every m ∈ [[1, n]]. Moreover, this
value satisfies the constraint (18) i.e. ropt ≥ 2� +2n−� − (n+2) for every m ≥ 4,
and in practice we shall only consider s-boxes with m ≥ 4. The corresponding
optimal value topt is then defined w.r.t. ropt as in (23), which satisfies

topt =
⌈ 2

n
2

√
m

⌉
− 1 (27)

for every n ∈ [[2, 10]] and every m ∈ [[1, n]]. We hence get

Cn,m ≥ ropt + m · topt ≈
√

m 2
n
2 +1 − (n + m + 1). (28)

In Table 4, we give the optimal values for the parameters (r, t) as well as the
corresponding size of the basis B and multiplication complexity Cn,n for n×n s-
boxes with n ∈ [[4, 10]]. We also give the parameter values that we could actually
achieve in practice to get a full-rank system.

Table 4. Optimal and achievable parameters for an n × n s-box.

n 4 5 6 7 8 9 10

Optimal parameters

(r, t) (3,1) (7,2) (13,3) (22,4) (36,5) (58,7) (90,10)

|B| 8 13 20 30 45 68 101

Cn,n 7 17 31 50 76 121 190

Achievable parameters

(r, t) (4,1) (7,2) (13,3) (22,4) (37,5) (59,7) (90,10)

|B| 9 13 20 30 46 69 101

Cn,n 8 17 31 50 77 122 190

In comparison to the single-Boolean-function case, the optimal size of the
basis B for the s-box decomposition is significantly bigger. This comes from the
fact that a bigger basis implies a lower t for each of the m coordinate functions
(i.e. decrementing t implies decreasing Cn,m by m). We also observe a very close
gap (sometimes null) between the optimal and the achievable parameters. This
tightness, compared to the single-Boolean-function case, is most likely due to
the fact that we use a bigger basis.

4.3 Improvements

We present hereafter some improvements of the above method which can be
applied to get a decomposition with better multiplicative complexity for a given

468 D. Goudarzi and M. Rivain

s-box. In comparison to the above results, the obtained system and the associated
multiplicative complexity depend on the target s-box and are not applicable to all
s-boxes.

BasisUpdate.Our first improvement of the above method is based on a dynamic
update of the basis, each time a coordinate function fi(x) is computed.2 Indeed,
the term gj(x) · hi,j(x) involved in the computation of fi(x) can be reused in the
computation of the following fi+1(x), . . . , fn(x). In our decomposition process,
this means that the gj · hi,j functions can be added to the basis for the decompo-
sition of the next coordinate functions fi+1, . . . , fn. Basically, we start with some
basis B1 ⊇ B0, where B0 is the minimal basis as defined in (19). Then, for every
i ≥ 1, we look for a decomposition

fi(x) =
ti−1∑

j=0

gi,j(x) · hi,j(x) + hi,ti(x), (29)

where ti ∈ N and gi,j , hi,j ∈ 〈Bi〉. Once such a decomposition has been found,
we carry on with the new basis Bi+1 defined as:

Bi+1 = Bi ∪ {gi,j · hi,j}ti−1
j=0 . (30)

Compared to the former approach, we use different functions gi,j and we get
a different matrix A for every coordinate function fi. On the other hand, for
each decomposition, the basis grows and hence the number ti of multiplicative
terms in the decomposition of fi might decrease. In this context, we obtain a
new condition for every i that is:

ti ≥ 2n

|Bi|
− 1. (31)

The lower bound on ti hence decreases as Bi grows. The total multiplicative
complexity of the method is then of:

C∗
n,m = r +

m∑

i=1

ti, (32)

where r = |B1| − (n + 1) is the number of multiplications required to derive the
initial basis B1. From the above inequality, we can define the optimal sequence
of ti and si = |Bi| as:

t1 = ψn(s1) and

{
si+1 = si + ti

ti+1 = ψn(si+1)
for every i > 1 (33)

where ψn : x �→
⌈
2n

x

⌉
− 1. The sequence (si, ti) is fully determined by the cardi-

nality of the original basis s1 = |B1|, and we have:
{

si = (ψn + Id)(i−1)(s1)
ti = ψn ◦ (ψn + Id)(i−1)(s1)

(34)

2 A similar idea is used in [BMP13] to construct an efficient circuit for the inversion in
F16.

On the Multiplicative Complexity 469

for every i ≥ 1, where Id denote the identity function. The obtained optimal
complexity is then:

C∗
n,m = s1 − (n + 1) +

m∑

i=1

ψn ◦ (ψn + Id)(i−1)(s1)

= (ψn + Id)(m)(s1) − (n + 1) .

By definition of ψn, the obtained functions (ψn + Id)(i) are sums of continued
fractions with ceiling, for which we do not have an analytic expression.

Table 5. Optimal parameters with basis-update improvement.

n |B1| r t1, t2, . . . , tn C∗
n,n

4 7 2 2,1,1,1 7

5 11 5 2,2,2,1,1 13

12 6 2,2,1,1,1 13

6 15 8 4,3,2,2,2,2 23

16 9 3,3,2,2,2,2 23

7 23 15 5,4,3,3,3,3,2 38

8 31 22 8,6,5,5,4,4,4,3 61

32 23 7,6,5,5,4,4,4,3 61

33 24 7,6,5,5,4,4,3,3 61

34 25 7,6,5,4,4,4,3,3 61

9 47 37 10,8,7,7,6,6,5,5,5 96

48 38 10,8,7,7,6,5,5,5,5 96

49 39 10,8,7,6,6,5,5,5,5 96

10 63 52 16,12,11,10,9,8,7,7,7,6 145

64 53 15,12,11,10,9,8,7,7,7,6 145

65 54 15,12,11,9,9,8,7,7,7,6 145

In Table 5, we give the optimal parameters s1 = |B1| and corresponding
r = s1−(n+1), t1, t2, . . . , tn, and C∗

n,n for n×n s-boxes with n ∈ [[4, 10]]. When
the optimal multiplicative complexity is obtained for several values of s1, we give
all the obtained set of parameters. We observe that the optimal multiplicative
complexity is always achieved by starting with the minimal basis i.e. by taking
B1 = B0. It can also be obtained by taking s1 up to |B0| + 3 depending on the
values of n.

The achievable counterpart of Table 5 only exists with respect to a given
s-box since the functions gi,j · hi,j added to the basis at each step depend on
the actual s-box. But while focusing on a given s-box, we can still improve the
method as we show hereafter.

470 D. Goudarzi and M. Rivain

Rank Drop. Our second improvement is based on the observation that even
if the matrix A is not full-rank, the obtained system can still have a solution
for some given s-box. Specifically, if A is of rank 2n − δ then we should get a
solution for one s-box out of 2δ in average. Hence, instead of having ti satisfying
the condition (ti + 1)|B| ≥ 2n, we allow a rank drop in the system of equa-
tions, by taking ti ≥ 2n−δ

|Bi| − 1 for some integer δ for which solving 2δ systems
is affordable. We hence hope to get smaller values of ti by trying 2δ systems.
Note that heuristically, we can only hope to achieve the above bound if δ is
(a few times) lower than the maximal rank 2n (e.g. δ ≤ 2n

4). We can then define
the (theoretical) optimal sequence (si, ti) and the corresponding multiplicative
complexity C∗

n,m from s1 = |B1| as in (33) and (35) by replacing the function ψn

for ψn,δ : x �→ � 2n−δ
x �−1. As an illustration, Table 6 provides the obtained para-

meters for a δ up to 32. We see that the rank-drop improvement (theoretically)
saves a few multiplications.

Table 6. Optimal parameters with basis-update and rank-drop improvements.

n δ |B1| r t1, t2, . . . , tn C∗
n,n

4 4 7 2 1,1,1,1 6

5 8 11 5 2,1,1,1,1 11

8 12 6 1,1,1,1,1 11

6 16 15 8 3,2,2,2,1,1 19

16 16 9 2,2,2,2,1,1 19

7 32 23 15 4,3,3,2,2,2,2 33

32 24 16 3,3,3,2,2,2,2 33

8 32 31 22 7,5,5,4,4,3,3,3 56

32 32 23 6,5,5,4,4,3,3,3 56

9 32 47 37 10,8,7,6,6,5,5,5,4 93

32 48 38 9,8,7,6,6,5,5,5,4 93

10 32 63 52 15,12,11,9,9,8,7,7,7,6 143

32 64 53 15,12,10,9,9,8,7,7,7,6 143

32 65 54 15,12,10,9,8,8,7,7,7,6 143

32 66 55 15,12,10,9,8,8,7,7,6,6 143

32 67 56 14,12,10,9,8,8,7,7,6,6 143

In practice, we observe that the condition (ti + 1)|Bi| ≥ 2n − δ is not always
sufficient to get a matrix A of rank 2n−δ. We shall then start with ti = ψn,d(|Bi|)
and try to solve α · 2δ systems, for some constant α. In case of failure, we
increment ti and start again until a solvable system is found. The overall process
is summarized in Algorithm 1.

The execution time of Algorithm 1 is dominated by the calls to a linear-
solving procedure (Step 6). The number of trials is in o(nα 2δ), where the

On the Multiplicative Complexity 471

Algorithm 1. Improved method with exhaustive search
Input: An s-box S ≡ (f1, f2, . . . , fm), parameters s1 = |B1|, α, and δ
Output: A basis B1 and the functions {hi,j}i,j and {gi,j}i,j

1. i = 1; t1 = ψn,δ(s1)
2. do α · 2δ times:
3. if i = 1 then randomly generate B1 ⊇ B0 with |B1| = s1
4. randomly sample ti functions gi,j ∈ 〈Bi〉
5. compute the corresponding matrix A
6. if A · c = bfi has a solution then
7. store the corresponding functions {hi,j}j and {gi,j}j

8. if i = n then return B1, {hi,j}i,j , {gi,j}i,j

9. Bi+1 = Bi ∪ {hi,j · gi,j}j ; ti+1 = ψn,δ(|Bi+1|); i++
10. goto Step 2
11. endif
12. enddo
13. ti++; goto Step 2

constant in the o(·) is the average incrementation of ti (i.e. the average number
of times Step 13 is executed per i). In our experiments, we observed that the
optimal value of t1 = ψn,δ(s1) is rarely enough to get a solvable system for f1.
This is because we start with the minimal basis as in the single-Boolean-function
case. We hence have a few incrementations for i = 1. On the other hand, the
next optimal ti’s are often enough or incremented a single time.

We used Algorithm 1 to get the decomposition of various n × n s-boxes for
n ∈ [[4, 8]], namely the eight 4 × 4 s-boxes of Serpent [ABK98], the s-boxes S5

(5 × 5) and S6 (6 × 6) of SC2000 [SYY+02], the 8 × 8 s-boxes S0 and S1 of
CLEFIA [SSA+07], and the 8× 8 s-box of Khazad [BR00]. The obtained results
are summarized in Table 7. Note that we chose these s-boxes to serve as examples
for our decomposition method. Some of them may have a mathematical structure
allowing more efficient decomposition (e.g. the CLEFIA S0 s-box is based on
the inversion over F256 and can therefore be computed with a 32-multiplication
circuit as the AES).

We observe that Algorithm 1 achieves improved parameters compared to the
optimal ones with basis update and without the rank-drop improvement (see
Table 5) for n ∈ {4, 5, 6}. For n = 8, we only get parameters close to the optimal
ones for the basis update (C∗

n,n = 62 instead of 61). This can be explained by
the fact that when n increases the value of δ becomes small compared to 2n and
the impact of exhaustive search is lowered. Thus Algorithm 1 can close the gap
and (almost) achieve optimal parameters even in presence of a minimal starting
basis, however it does not go beyond.

4.4 Parallelization

The proposed decomposition method is highly parallelizable. In practice, most
SPN blockciphers have a nonlinear layer applying 16 or 32 s-boxes and most
processors are based on a 32-bit or a 64-bit architecture. Therefore we shall

472 D. Goudarzi and M. Rivain

Table 7. Achieved parameters for several s-boxes.

|B1| r t1, t2, . . . , tn C∗
n,n

n = 4

Serpent S1–S5 7 2 1, 1, 1, 1 6

Serpent S6, S7 7 2 1, 2, 1, 1 7

n = 5

SC2000 S5 11 5 2, 1, 1, 1, 1 11

12 6 1, 1, 1, 1, 1 11

n = 6

SC2000 S6 15 8 4, 2, 2, 2, 2, 1 21

16 9 3, 2, 2, 2, 2, 1 21

n = 8

Khazad & CLEFIA (S0, S1) 31 22 11, 6, 5, 4, 4, 4, 3, 3 62

33 24 9, 6, 5, 4, 4, 4, 3, 3 62

32 23 10, 6, 5, 4, 4, 4, 3, 3 62

focus our study on the k-parallel multiplicative complexity of our method for
k ∈ {2, 4}.

General Method. In the general method (without improvement) described
in Sect. 4.2, the multiplications between the gj ’s and the hi,j ’s can clearly
be processed in parallel. Specifically, they can be done with exactly �m·t

k � k-
multiplications. The multiplications involved in the minimal basis B0 = {x �→
xu, u ∈ U} can also be fully parallelized at degree k = 2 and k = 4 for every
n ≥ 4. In other words, the k-multiplicative complexity for deriving B0 equals
� r0

k � for k ∈ {2, 4} where r0 = C(B0) = |B0| − (n + 1) (see Sect. 4.1). One
just has to compute xu by increasing order of the Hamming weight of u ∈ U
(where U is the set defined in (19)), then taking the lexicographical order inside a
Hamming weight class. As an illustration, the 4-parallel evaluation of B0 is given
for n ∈ {4, 6, 8} in Table 8.

Once all the elements of B0 have been computed, and before getting to the mul-
tiplicative terms gj · hi,j , we have to update it to a basis B ⊇ B0 with target car-
dinality (see Table 4). This is done by feeding the basis with |B| − |B0| products of
random linear combinations of the current basis. In order to parallelize this step,
these new products are generated 4-by-4 from previous elements of the basis. We
could validate that, by following such an approach, we still obtain full-rank sys-
tems with the achievable parameters given in Table 8. This means that for every
n ∈ [[4, 10]], the k-multiplicative complexity of the general method is � r

k � + �m·t
k �.

The obtained results (achievable parameters) are summarized in Table 9.

Improved Method. The parallelization of the improved method is slightly
more tricky since all the multiplicative terms gi,j · hi,j cannot be computed in
parallel. Indeed, the resulting products are fed to the basis so that they are

On the Multiplicative Complexity 473

Table 8. Parallel evaluation of B0 for n ∈ {4, 6, 8}.

n = 4 n = 6

x1x2 ← x2 · x1 x1x2 ← x2 · x1 x4x6 ← x6 · x4

x3x4 ← x4 · x3 x1x3 ← x3 · x1 x5x6 ← x6 · x5

x2x3 ← x3 · x2 x1x2x3 ← x3 · x1x2

x4x5 ← x5 · x4 x4x5x6 ← x6 · x4x5

n = 8

x1x2 ← x2 · x1 x2x4 ← x4 · x2 x5x8 ← x8 · x5

x1x3 ← x3 · x1 x3x4 ← x4 · x3 x6x7 ← x7 · x6

x1x4 ← x4 · x1 x5x6 ← x6 · x5 x6x8 ← x8 · x6

x2x3 ← x3 · x2 x5x7 ← x7 · x5 x7x8 ← x8 · x7

x1x2x3 ← x3 · x1x2 x5x6x7 ← x7 · x5x6 x1x2x3x4 ← x4 · x1x2x2

x1x2x4 ← x4 · x1x2 x5x6x8 ← x8 · x5x6 x5x6x7x8 ← x8 · x5x6x7

x1x3x4 ← x4 · x1x3 x5x7x8 ← x8 · x5x7

x2x3x4 ← x4 · x2x3 x6x7x8 ← x8 · x6x7

Table 9. Parallel multiplicative complexity of our general method an n × n s-box.

n 4 5 6 7 8 9 10

(r, t) (4,1) (7,2) (13,3) (22,4) (37,5) (59,7) (90,10)

|B| 9 13 20 30 46 69 101

Cn,n 8 17 31 50 77 122 190

C
(2)
n,n 4 9 16 25 39 62 95

C
(4)
n,n 2 5 9 13 20 31 48

potentially involved in the linear combinations producing the next functions
gi+1,j , hi+1,j , . . . , gm,j , hm,j . In order to fully parallelize our improved method
we customize Algorithm 1 as follows. We keep a counter q of the number of
products added to the basis. Each time a new fi+1 is to be decomposed, if the
current counter q is not a multiple of k, then the first q0 products gi+1,j · hi+1,j

will be bundled with the last q1 products gi,j · hi,j in the parallel version of our
improved decomposition, where

{
q0 = (k − q) mod k
q1 = q mod k

(35)

We must then ensure that the functions {gi+1,j , hi+1,j}q0−1
j=0 are independent

of the few last products {gi,j · hi,j}ti−1
j=ti−q1

. This can be done at no cost for
the gi+1,j ’s which can be generated without the last q1 products, and this add a
constraint on the linear system for the first q0 searched hi+1,j functions. However,
we observed in our experiments that for small values of k such as k ∈ {2, 4},
this constraint has a negligible impact on Algorithm 1. We could actually obtain

474 D. Goudarzi and M. Rivain

the exact same parameters than in Table 7 for all the tested s-boxes (Serpent,
SC2000, CLEFIA, and Khazad) for a parallelization degree of k = 2, except for
the s-box S3 of Serpent that requires 1 more multiplication.

5 Implementations

This section describes our implementations of a bitsliced s-box layer protected
with higher-order masking based on our decomposition method. Our implemen-
tations evaluate 16 n × n s-boxes in parallel where n ∈ {4, 8}, and they are
developed in generic 32-bit ARM assembly. They take n input sharings [x 1],
[x 2], . . . , [xn] defined as

[x i] = (x i,1,x i,2, . . . ,x i,d) such that
d∑

j=1

x i,j = x i (36)

where x i is a 16-bit register containing the i-th bit of the 16 s-box inputs. Our
implementations then output n sharings [y0], [y1], . . . , [yn] corresponding to the
bitsliced output bits of the s-box. Since we are on a 32-bit architecture with 16-
bit bitsliced registers, we use a degree-2 parallelization for the multiplications.
Namely, the 16-bit ANDs are packed by pairs and replaced by 32-bit ANDs
which are applied on shares using the ISW scheme as explained in [GR16].

The computation is then done in three stages. First, we need to construct
the shares of the elements of the minimal basis B0, specifically [xu] for every
u ∈ U , where xu denote the bitsliced register for the bit xu, and where U is
the set defined in (19). This first stage requires r0/2 32-bit ISW-ANDs, where
r0 = 2 for n = 4 and r0 = 22 for n = 8 (see Table 8).

Once the first stage is completed, all the remaining multiplications are done
between linear combinations of the elements of the basis. Let us denote by [t i] the
sharings corresponding to the elements of the basis which are stored in memory.
After the first stage we have {[t i]} = {[xu] | u ∈ U}. Each new t i is defined as

(∑

j<i

ai,jtj

)
�

(∑

i<j

bi,jtj

)
(37)

where � denote the bitwise multiplication, and where {ai,j}j and {bi,j}j are the
binary coefficients obtained from the s-box decomposition (namely the coeffi-
cients of the functions gi,j and hi,j in the span of the basis). The second stage
hence consists in a loop on the remaining multiplications that

1. computes the linear-combination sharings [r i] =
∑

j<i ai,j [tj] and [si] =∑
j<i bi,j [tj]

2. refreshes the sharing [r i]
3. computes the sharing [t i] such that t i = r i � si

where the last step is performed for two successive values of i at the same time
by a call to a 32-bit ISW-AND. The sums in Step 1 are performed on each share

On the Multiplicative Complexity 475

independently. The necessity of the refreshing procedure in Step 2 is explained
in [GR16] since an ISW multiplication of two linear combinations of the same
sharings can introduce a security flaw (see for instance [CPRR14]). As in [GR16],
this refreshing is implemented from an ISW multiplication with (1, 0, 0, . . . , 0).

Once all the basis sharings [t i] have been computed, the third stage simply
consists in deriving each output sharing [y i] as a linear combination of the [t i],
which is refreshed before being returned.

We compare our results with the optimized implementations from [GR16]
of the CRV method [CRV14] and the algebraic decomposition (AD)
method [CPRR15]. These implementations compute four s-boxes in parallel for
n = 8 and eight s-boxes in parallel for n = 4 on a 32-bit ARM architecture.
Table 10 summarizes the obtained performances in clock cycles with respect to
the masking order d. It is worth noticing that packing and unpacking the bitslice
registers for the parallelization of the ISW-ANDs implies a linear overhead in
d. For d ∈ [[2, 20]], this overhead is between 4% and 6% of the overall s-box
computations for n = 8, and between 7% and 11% for n = 4 (and this ratio is
asymptotically negligible). For d = 2, the overhead slightly exceeds the gain, but
for every d ≥ 3, parallelizing the ISW-ANDs always results in an overall gain of
performances.

Table 10. Performances in clock cycles.

CRV [GR16] AD [GR16] Our implementations

4 × 4� s-boxes 4 × 4� s-boxes 16� s-boxes

n = 8 2576 d2 + 5476 d + 2528 2376 d2 + 3380 d + 5780 656 d2 + 19786 d + 5764

2 × 8� s-boxes 2 × 8� s-boxes 16� s-boxes

n = 4 337 d2 + 563 d + 434 564 d2 + 270 d + 660 59 d2 + 1068 d + 994

We observe that our implementations are asymptotically faster than the opti-
mized implementations of CRV and AD methods (3.6 times faster for n = 8 and
5.7 times faster for n = 4). However, we also see that the linear coefficient is
significantly greater for our implementations, which comes from the computa-
tion of the linear combinations in input of the ISW-ANDs (i.e. the sharings
[r i] and [si]). As an illustration, Figs. 1 and 2 plots the obtained timings with
respect to d. We see that for n = 4, our implementation is always faster than
the optimized AD and CRV. On the other hand, for n = 8, our implementation
is slightly slower for d ≤ 8. We stress that our implementations could probably
be improved by optimizing the computation of the linear combinations.

The RAM consumption and code size of our implementations are given in
Table 11 and compared to those of the CRV and AD implementations from
[GR16]. We believe these memory requirements to be affordable for not-too-
constrained embedded devices. In terms of code size, our implementations are
always the best. This is especially significant for n = 8 where CRV and AD needs

476 D. Goudarzi and M. Rivain

5 10 15 20

0.2

0.4

0.6

0.8

1

·106

d

cl
o
ck

cy
cl

es

Our implementation

CRV (4 × 4)

AD (4 × 4)

4

Fig. 1. Timings for n = 8.

5 10 15 20

0.5

1

1.5

2

·105

d

cl
o
ck

cy
cl

es

Our implementation

CRV (2 × 8)

AD (2 × 8)

8

Fig. 2. Timings for n = 4.

Table 11. Code sizes and RAM consumptions.

CRV [GR16] AD [GR16] Our implementations

n = 8 4 × 4� s-boxes 4 × 4� s-boxes 16� s-boxes

Code size 27.5 KB 11.2 KB 4.6 KB

RAM 80d bytes 188d bytes 644d bytes

n = 4 2 × 8� s-boxes 2 × 8� s-boxes 16� s-boxes

Code size 3.2 KB 2.6 KB 2.2 KB

RAM 24d bytes 64d bytes 132d bytes

a high amount of storage for the lookup tables of the linearized polynomials
(see [GR16]). On the other hand, we observe a big gap between our implemen-
tations and those from [GR16] regarding the RAM consumption. Our method
is indeed more consuming in RAM because of all the [t i] sharings that must be
stored while such a large basis is not required for the CRV and AD methods,
and because of some optimizations in the computation of the linear combinations
(see the full version).

References

[ABK98] Anderson, R., Biham, E., Knudsen, L.: Serpent: a proposal for the
advanced encryption standard. NIST AES Propos. (1998)

[BGRV15] Balasch, J., Gierlichs, B., Reparaz, O., Verbauwhede, I.: DPA, bitslicing
and masking at 1 GHz. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015.
LNCS, vol. 9293, pp. 599–619. Springer, Heidelberg (2015)

[BMP13] Boyar, J., Matthews, P., Peralta, R.: Logic minimization techniques with
applications to cryptology. J. Cryptol. 26(2), 280–312 (2013)

[BPP00] Boyar, J., Peralta, R., Pochuev, D.: On the multiplicative complexity of
Boolean functions over the basis (∧, ⊕,1). Theor. Comput. Sci. 235(1),
43–57 (2000)

On the Multiplicative Complexity 477

[BR00] Barreto, P., Rijmen, V.: The Khazad legacy-level block cipher. In: First
Open NESSIE Workshop (2000)

[Can05] Canright, D.: A very compact S-box for AES. In: Rao, J.R., Sunar, B.
(eds.) CHES 2005. LNCS, vol. 3659, pp. 441–455. Springer, Heidelberg
(2005)

[CGP+12] Carlet, C., Goubin, L., Prouff, E., Quisquater, M., Rivain, M.: Higher-
order masking schemes for S-boxes. In: Canteaut, A. (ed.) FSE 2012.
LNCS, vol. 7549, pp. 366–384. Springer, Heidelberg (2012)

[CJRR99] Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches
to counteract power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999.
LNCS, vol. 1666, pp. 398–412. Springer, Heidelberg (1999)

[CMH13] Courtois, N., Mourouzis, T., Hulme, D.: Exact logic minimization and
multiplicative complexity of concrete algebraic and cryptographic circuits.
Adv. Intell. Syst. 6(3–4), 43–57 (2013)

[Cou07] Courtois, N.T.: CTC2 and fast algebraic attacks on block ciphers revisited.
Cryptology ePrint Archive, Report 2007/152 (2007). http://eprint.iacr.
org/2007/152

[CPRR14] Coron, J.-S., Prouff, E., Rivain, M., Roche, T.: Higher-order side channel
security and mask refreshing. In: Moriai, S. (ed.) FSE 2013. LNCS, vol.
8424, pp. 410–424. Springer, Heidelberg (2014)

[CPRR15] Carlet, C., Prouff, E., Rivain, M., Roche, T.: Algebraic decomposition for
probing security. In: Gennaro, R., Robshaw, M.J.B. (eds.) CRYPTO 2015.
LNCS, vol. 9215, pp. 742–763. Springer, Heidelberg (2015)

[CRV14] Coron, J.-S., Roy, A., Vivek, S.: Fast evaluation of polynomials over
binary finite fields and application to side-channel countermeasures. In:
Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS, vol. 8731, pp. 170–
187. Springer, Heidelberg (2014)

[DDF14] Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: from prob-
ing attacks to noisy leakage. In: Nguyen, P.Q., Oswald, E. (eds.) EURO-
CRYPT 2014. LNCS, vol. 8441, pp. 423–440. Springer, Heidelberg (2014)

[DPV01] Daemen, J., Peeters, M., Van Assche, G.: Bitslice ciphers and power analy-
sis attacks. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 134–149.
Springer, Heidelberg (2001)

[GLSV15] Grosso, V., Leurent, G., Standaert, F.-X., Varıcı, K.: LS-designs: bitslice
encryption for efficient masked software implementations. In: Cid, C.,
Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp. 18–37. Springer,
Heidelberg (2015)

[GR16] Goudarzi, D., Rivain, M.: How fast can higher-order masking be in soft-
ware? Cryptology ePrint Archive (2016). http://eprint.iacr.org/

[ISW03] Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware
against probing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol.
2729, pp. 463–481. Springer, Heidelberg (2003)

[MS92] Mirwald, R., Schnorr, C.P.: The multiplicative complexity of quadratic
Boolean forms. Theor. Comput. Sci. 102(2), 307–328 (1992)

[PLW10] Poschmann, A., Ling, S., Wang, H.: 256 bit standardized crypto for 650
GE – GOST revisited. In: Mangard, S., Standaert, F.-X. (eds.) CHES
2010. LNCS, vol. 6225, pp. 219–233. Springer, Heidelberg (2010)

[PR13] Prouff, E., Rivain, M.: Masking against side-channel attacks: a formal
security proof. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 142–159. Springer, Heidelberg (2013)

http://eprint.iacr.org/2007/152
http://eprint.iacr.org/2007/152
http://eprint.iacr.org/

478 D. Goudarzi and M. Rivain

[RP10] Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In:
Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp.
413–427. Springer, Heidelberg (2010)

[SSA+07] Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-
bit blockcipher CLEFIA (extended abstract). In: Biryukov, A. (ed.) FSE
2007. LNCS, vol. 4593, pp. 181–195. Springer, Heidelberg (2007)

[Sto16] Stoffelen, K.: Optimizing S-box implementations for several criteria using
sat solvers. In: Fast Software Encryption (2016)

[SYY+02] Shimoyama, T., Yanami, H., Yokoyama, K., Takenaka, M., Itoh, K.,
Yajima, J., Torii, N., Tanaka, H.: The block cipher SC2000. In: Matsui,
M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 312–327. Springer, Heidelberg
(2002)

[TP14] Turan Sönmez, M., Peralta, R.: The multiplicative complexity of Boolean
functions on four and five variables. In: Eisenbarth, T., Öztürk, E. (eds.)
LightSec 2014. LNCS, vol. 8898, pp. 21–33. Springer, Heidelberg (2015)

Reducing the Number of Non-linear
Multiplications in Masking Schemes

Jürgen Pulkus1(B) and Srinivas Vivek2(B)

1 Giesecke and Devrient, Munich, Germany
Juergen.Pulkus@gi-de.com

2 University of Bristol, Bristol, UK
sv.venkatesh@bristol.ac.uk

Abstract. In recent years, methods to securely mask S-boxes against
side-channel attacks by representing them as polynomials over finite
binary fields have become quite efficient. A good cost model for this
is to count how many non-linear multiplications are needed. In this
work we improve on the current state-of-the-art generic method pub-
lished by Coron–Roy–Vivek at CHES 2014 by working over slightly larger
fields than strictly needed. This leads us, for example, to evaluate DES
S-boxes with only 3 non-linear multiplications and, as a result, obtain
25 % improvement in the running time for secure software implementa-
tions of DES when using three or more shares.

On the theoretical side, we prove a logarithmic upper bound on
the number of non-linear multiplications required to evaluate any d-bit
S-box, when ignoring the cost of working in unreasonably large fields.
This upper bound is lower than the previous lower bounds proved under
the assumption of working over the field F2d , and we show this bound to
be sharp. We also achieve a way to evaluate the AES S-box using only 3
non-linear multiplications over F216 .

Keywords: Side-channel countermeasure · Masking · Probing security ·
Block cipher · Software implementation · Polynomial evaluation

1 Introduction

Side-channel attacks are a realistic and serious threat for cryptographic imple-
mentations [Koc96,KJJ99]. These attacks have the potential to leak one or more
sensitive intermediate variables that would otherwise be unavailable in a black-
box execution of a cryptographic primitive. Block ciphers are typical targets of
such attacks. Secret sharing, a.k.a. masking, is a popular technique to protect
block cipher implementations against leakage of one or more sensitive intermedi-
ate variables. Depending on how a sensitive variable is split into shares, processed
and then re-combined, and the formal leakage model used for security analysis,
there are several generic higher-order masking schemes that can secure block
cipher computations, with the secrets shared into as many shares as we desire
[ISW03,GM11,PR11,CGP+12,BFGV12,Cor14,BFG15]. Indeed, these schemes
can be used to secure any circuit.
c© International Association for Cryptologic Research 2016
B. Gierlichs and A.Y. Poschmann (Eds.): CHES 2016, LNCS 9813, pp. 479–497, 2016.
DOI: 10.1007/978-3-662-53140-2 23

480 J. Pulkus and S. Vivek

The most popular among existing generic masking schemes for block cipher
implementations are those where the secrets are additively shared. This is
in part due to the effectiveness, efficiency and simplicity of additive masking
[CJRR99,ISW03,PR13,DDF14,DFS15,BFG15]. Over binary fields this type of
masking has also been called as Boolean masking. In fact, the very first generic
higher-order masking scheme, due to Ishai, Sahai and Wagner [ISW03] (hence-
forth referred to as the ISW method), is based on additive masking. Their method
can be used to secure arbitrary Boolean circuits in the so-called probing model,
where an adversary can choose to leak, say, t intermediate variables and the
scheme is secure so long as the number of shares s ≥ 2t + 1. Though work-
ing with Boolean circuits is probably well-suited to hardware implementations,
representing a computation as a Boolean circuit will lead to huge overheads in
software implementations. Nonetheless, this method and the probing security
framework introduced in their work formed the basis for most of the later mask-
ing schemes. Rivain and Prouff [RP10] adapted the ISW method to secure AES
by representing its S-box as an arithmetic circuit over F28 .

CGPQR Method. Carlet et al. [CGP+12] adapted the ISW method to secure
software implementations of arbitrary block ciphers over binary finite fields F2n

(hereafter referred to as the CGPQR method). For an additive masking scheme
processing F2-linear or affine functions in the presence of shares is straightfor-
ward. Hence the main challenge is to securely process non-linear functions. Since
in a block cipher the only non-linear operations are the S-box table lookups, the
technique used in the CGPQR method to securely mask such table lookups is
to first represent a d-to-r-bit S-box function (d ≥ r) as a univariate polynomial
over a binary finite field F2d . Then this polynomial is evaluated in the presence
of shares using the following operations: addition (of two polynomials over F2d),
scalar multiplication (i.e., multiplication of a polynomial by a constant from
F2d), squaring (of a polynomial over F2d), and multiplications of two distinct
polynomials (a.k.a. non-linear multiplications). While additions, scalar multipli-
cations and squarings are F2-linear operations, the non-linear multiplications, as
the name suggests, are not F2-linear. To process a non-linear multiplication in
the CGPQR method, an adaptation of the technique used in the ISW method to
mask (non-linear) AND gates is utilised. The overhead caused by the CGPQR
method (relative to unshared evaluation), in terms of both the time and the ran-
domness required, to securely mask a non-linear multiplication is O(s2), where
s is the number of input shares. For a linear or affine function the overhead is
only O(s).

Relation to Polynomial Evaluation. One of the relatively well-understood
approaches to analysing and improving the efficiency of the CGPQR method is
to investigate the problem of evaluating polynomials over binary finite fields. The
goal is to minimise the number of non-linear multiplications needed to evaluate a
polynomial over F2d , while ignoring the cost of additions, scalar multiplications
and squarings. As the works of Carlet et al. [CGP+12], Roy and Vivek [RV13],
and Coron, Roy and Vivek [CRV14,CRV15] demonstrate, this cost model of
minimising the non-linear multiplications while evaluating an S-box polynomial

Reducing the Number of Non-linear Multiplications in Masking Schemes 481

has turned out to be a reasonably effective way to model the overall cost of
processing a block cipher in software implementations, as long as one makes
sure that the use of linear operations is not made “unreasonably” large.

In [CGP+12], two methods to evaluate arbitrary polynomials over F2d are
presented that are tailored to the non-linear cost model: the cyclotomic-class
method (having complexity Ω(2d/d)) and the parity-split method (having proven
complexity O(2d/2). These two methods were applied to various S-box polyno-
mials to understand their complexity in terms of non-linear multiplications. In
[RV13], improved evaluation techniques for various specific S-box polynomials
were presented. In particular, it was shown that the 6-to-4-bit DES S-boxes
can be evaluated with 7 non-linear multiplications, while 8-bit (i.e., 8-to-8-bit)
CAMELLIA and CLEFIA S-boxes can be evaluated with 15 or 16 non-linear
multiplications. The work of [RV13] also initiated a formal analysis of this cost
model and established lower bounds on the necessary number of non-linear mul-
tiplications required to evaluate any polynomial over F2d . In particular, they
showed that, under certain representation over F26 , the DES S-box polynomials
need at least 3 non-linear multiplications to evaluate them, while the PRESENT
S-box polynomial over F24 needs at least 2 non-linear multiplications.

CRV Method. In [CRV14,CRV15], Coron et al. proposed an improved method
(henceforth referred to as the CRV method) to evaluate arbitrary polynomials
over F2d . Their method has a heuristic worst-case complexity of O(2d/2/

√
d)

non-linear multiplications. They also show that the complexity of O(2d/2/
√

d) is
optimal for any method to evaluate arbitrary polynomials over F2d . Currently,
w.r.t. the non-linear multiplications cost model, the CRV method is the most
efficient way to implement the CGPQR countermeasure.

In the CRV method, a d-to-r-bit S-box S is represented by a polynomial
P (X) ∈ F2d [X] that is actually computed in the process. The d-bit and the r-bit
strings are identified with the elements of F2d . The polynomial P (X) satisfies
the property that its evaluation on the elements of F2d produces output elements
of F2d that agree in the lower-order r-bits with the corresponding S-box outputs.
Briefly the CRV method for a generic d-to-r-bit S-box is as follows:

Step 1: Pre-compute a collection of monomials L in F2d [X] (a) that is closed
w.r.t. squaring (because squarings are free) (b) has the property that L · L gen-
erates all the monomials Xi (i = 0, 1, . . . , 2d − 1).

Step 2: Consider the following relation over F2d [X]:

P (X) =
t−1∑

i=1

pi(X) · qi(X) + pt(X) mod X2d

+ X (1)

for some chosen parameter t, where the polynomials pi(X) and qi(X) have mono-
mials only from the set L, and the polynomials qi(X) are randomly chosen but
the values of P (X) and the coefficients of pi(X) are unknown. Next they write
down a set of r · 2d linear equations over F2 (in the unknown bits), correspond-
ing to each S-box output bit, by evaluating the above relation at the elements

482 J. Pulkus and S. Vivek

Table 1. Comparison of the worst-case complexity of generic methods for various
d-to-r-bit S-boxes.

(d, r) (4, 4) (5, 5) (6, 4) (6, 6) (7, 7) (8, 8)

Cyclotomic class method [CGP+12] 3 5 11 11 17 33

Parity-split method [CGP+12] 4 6 10 10 14 22

CRV method [CRV15] 2 4 4 5 7 10

Our method (over F28) 2 3 3 4 6 10

Our method (over F216) 2 3 3 3 4 6

of F2d . Finally, the unknown bits are obtained by solving the resulting linear
system over F2 whose matrix has dimension r · 2d × d · t · |L|, which is approxi-
mately r · 2d × r · 2d. The total number of non-linear multiplications required is
about t − 1 + |L|/d.

It is shown in [CRV15] that any 4-bit S-box can be evaluated with 2 non-
linear multiplications in the worst case (which is optimal), any 6-bit S-box with
at most 5, any 6-to-4-bit S-box (in particular, DES S-boxes) with at most 4,
any 8-bit S-box with at most 10 non-linear multiplications (cf. Table 1). As, in
a block cipher, the time required for S-box table lookups grows quadratically
with the number of shares, seemingly marginal reductions in the count of non-
linear multiplications per S-box evaluation indeed lead to significant gains in the
overall execution time, as demonstrated in [Cor14,CRV15].

One obvious approach to improve the CRV method is to simultaneously solve
for the unknown coefficients of both the set of polynomials pi(X) and qi(X)
(including P (X)) in Step 2 of the CRV method described above, instead of
linearising (1) by choosing random polynomials qi(X). This results in r · 2d

multivariate homogeneous quadratic equations over F2 in approximately d · 2d

variables. To our knowledge, determining the roots of such a system of equations
seems infeasible with current techniques even for small values of d = 6 or d = 8.
Hence it is of interest to find alternative ways to reduce the parameters of the
CRV method (particularly, the parameters t and L) that affect the total number
of non-linear multiplications for the S-box polynomials. This is one of the main
themes of this paper.

1.1 Our Contribution

We give an improved generic method to reduce the number of non-linear mul-
tiplications required to evaluate various S-box polynomials. Our method may
be viewed as an extension of the CRV method (cf. page 3). While in the CRV
method and other previous works the inputs/outputs of a d-to-r-bit S-box are
naturally identified with the elements of F2d , we instead encode them in fields
F2n , where n ≥ d. Our heuristic analysis seems to suggest that the complexity
of the CRV method improves by a factor of two in the limiting case, though
both the methods have the same heuristic asymptotic (worst-case) complexity
of O(2d/2/

√
d) non-linear multiplications.

Reducing the Number of Non-linear Multiplications in Masking Schemes 483

From a technical point of view, apart from the problem of encoding mentioned
above, the main and the only other difference between our method and the CRV
method is in the selection of the following two parameters: L (the pre-computed
monomial list) and t (the number of summands in the decomposition in (1)).
Once these parameters are carefully determined, then the remaining steps to
obtain a decomposition of the form (1) by setting up a linear system of equations
is exactly the same. Since in the matrix step of the CRV method (cf. page 3)
we heuristically need n · t · |L| ≈ r · 2d, it is evident that we could end up
with smaller values of t, and hence a reduction in the total number of non-
linear multiplications required. Some technical hurdles arise due to the fact that
we would not gain anything if we insist, as in the CRV method, that the pre-
computed set of monomials L must span all monomials in F2n [X]. Our generic
method and its analysis is presented in Sect. 2.

Our method leads to improvements for most of the S-boxes found in practice.
Table 1 lists the (worst-case) cost of processing arbitrary d-to-r-bit S-boxes using
our method over F28 and F216 , and compares these with those of the previous
methods. In particular, any 6-to-4 bit S-box, including all the DES S-boxes, now
need at most 3 non-linear multiplications to evaluate them instead of the previous
best of 4 non-linear multiplications required by the CRV method that works over
F26 in this case (cf. Table 2). We discuss how to select suitable parameters for
various S-box dimensions in Sect. 2.2.

Table 2. Expected and observed (worst-case) complexity Md,r,n of evaluating d-to-r-
bit S-boxes over F2n (cf. (11)).

d 4 5 6 7 8

r 4 5 4 6 7 8

n 4 8 16 5 8 16 4 8 16 6 8 16 7 8 16 8 16

Estimated Md,r,n 3 0 0 4 2 0 4 2 1 5 3 1 7 6 3 10 5

Observed Md,r,n 2 2 2 4 3 3 4 3 3 5 4 3 7 6 4 10 6

We have made a proof-of-concept implementation in software of our improved
method for DES. As Table 5 suggests, the CGPQR method combined with our
technique outperforms the CGPQR+CRV method by around 25 % in the overall
processing time of the block cipher when there are 3 shares, and even better
when there are greater numbers of shares. Our implementation also needs less
(RAM) memory and fewer calls to a Pseudo Random Generator (PRG) (that
outputs bytes) than the CRV method. We believe that since it is convenient
to manipulate bytes in a software implementation, working over F28 instead
of F26 or F27 should not cause any noticeable overhead. This reasoning is also
confirmed by our above implementation, the details of which are presented in
Sect. 2.3. Our improvements obtained by working over F216 could possibly be
interesting for microprocessors such as ARM with Neon core [Lim13] that has

484 J. Pulkus and S. Vivek

a SIMD instruction to perform several parallel multiplications of two degree-
7 polynomials over F2 represented as bytes. This instruction can be used to
perform parallel multiplications in F216 with considerably less overhead than on
a sequential processor thanks to Barrett reduction [Bar86,WVGX15]. But the
downside is that the number of calls to a PRG is still double compared to the
case of F28 . Besides, note that such processors can also be targets of side-channel
attacks [GMPT15].

Finally, in Sect. 3, we analyse the advantage and the limitations of using larger
fields F2n (n ≥ d) to encode the input/output bit-strings of d-to-r-bit S-boxes
as arbitrary subspaces in F2n . Note that since additive masking is F2-linear, the
set of encodings must be an (F2-linear) subspace of F2n (when viewed as an
F2-vector space). We prove a logarithmic upper bound of �log2 d�, which is also
optimal, on the complexity of evaluating d-to-r-bit S-boxes, when working over
some huge field extension of F2d . We stress that this result does not contradict the
exponential lower bound results of [CRV15] as they hold over the (smaller field)
F2d . Using the techniques introduced to obtain the above results, we achieve a
way to evaluate the AES S-box using only 3 non-linear multiplications over F216 ,
instead of 4 non-linear multiplications over F28 . We then generalise the lower
bound results of [CRV15] to determine a lower bound on the exact complexity
of generic d-to-r-bit S-boxes when working over any specified field F2n (n ≥ d).

1.2 Related Works

Another generic masking scheme based on the additive masking is by Coron
[Cor14]. This countermeasure is a generalisation of the table-recomputation tech-
nique [CJRR99,SP06] to the higher-order setting. As shown in [CRV15], the
CGPQR method combined with the CRV method outperforms this countermea-
sure, both asymptotically and in practice, w.r.t. time and memory complexity,
and also the randomness required.

As far as the CGPQR method is concerned, there are other interesting
approaches to improving its efficiency than by minimising the number of non-
linear multiplications. One such way was introduced by Coron et al. [CPRR13]
and further considered by Grosso et al. [GPS14]. This approach is based on the
observation that certain types of non-linear multiplications are more than effi-
cient than the rest. Hence the efficiency can be gained by trading the costlier non-
linear multiplications for more efficient ones. Recently, Carlet et al. [CPRR15]
introduced techniques based on the algebraic decomposition of a non-linear func-
tion as a sequence of low algebraic-degree functions. The CGPQR method com-
bined with their technique outperforms the CGPQR+CRV method in many
realistic scenarios.

It must be stressed that the above approaches to making the CGPQR method
more efficient are not mutually exclusive of one another but, indeed, complemen-
tary. In fact, the improvements w.r.t. the non-linear multiplications cost model
have motivated the approaches of [GPS14,CPRR15]. Finally, we would like to
note that the relative simplicity of the non-linear multiplications cost model
has made it amenable to a rigorous analysis, in particular, the lower bound

Reducing the Number of Non-linear Multiplications in Masking Schemes 485

results in [RV13,CRV15], while relatively little is known about the other cost
models. Also, this cost model and its variant where the circuit depth w.r.t. non-
linear multiplications also matters have found applications in fully homomorphic
encryption and multi-party computation settings [GHS12a,GHS12b,ARS+15].
We do not consider such applications in this work, and hence, prefer to work in
the non-linear multiplications cost model.

2 Improved Generic Method for S-Boxes

Consider a d-to-r-bit S-box, where d ≥ r. We identify the d-bit and the r-bit
strings with the elements of F2n (r, d ≤ n) in the “usual” way. That is, let
F2n = F2[Y]/(g(Y)·F2[Y]), where g(Y) ∈ F2[Y] is an irreducible polynomial over
F2 with deg(g) = n that is used to represent F2n . A d-bit string is encoded as
follows

Ed,n : {0, 1}d → F2n ,

〈bd−1, bd−2, . . . , b0〉 �→
d−1∑

i=0

bi Y i.

An element of F2n is decoded to a d-bit string by dropping its corresponding
higher-degree coefficients

Dn,d : F2n → {0, 1}d,

n−1∑

i=0

bi Y i �→ 〈bd−1, bd−2, . . . , b0〉 .

The functions Er,n : {0, 1}r → F2n and Dn,r : F2n → {0, 1}r are similarly defined,
as are En,n : {0, 1}n → F2n and Dn,n : F2n → {0, 1}n.

Remark 1. The composition map Dd,d ◦ Ed,n : F2d → F2n is a group homo-
morphism w.r.t. addition. But, in general, this map is not homomorphic w.r.t.
multiplication.

We say that a polynomial P (X) ∈ F2n [X] evaluates a d-to-r bit S-box S if
the trailing r bits of its evaluation on the encodings of every d-bit string matches
with the output of S. Formally,

S(i) = Dn,r (P (Ed,n(i))) , ∀i ∈ {0, 1}d. (2)

Our goal is to find a polynomial representation for a given S-box whose evaluation
requires as small a number of non-linear multiplications as possible.

Let Cn
α denote the cyclotomic class of α w.r.t n (n ≥ 1, 0 ≤ α < 2n)

[CGP+12,RV13], that is, Cn
0 = {0}, Cn

2n−1 = {2n − 1} and

Cn
α :=

{
α · 2i (mod 2n − 1) : i = 0, 1, . . . , n − 1

}
for 0 < α < 2n − 1.

For any subset Λ ⊆ {0, 1, . . . , 2n − 1}, let XΛ denote the set XΛ :=
{
Xi : i ∈ Λ

}

⊆ F2n [X]. Define XΛ · XΛ :=
{
Xi · Xj : i, j ∈ Λ

}
. Finally, P(XΛ) ⊆ F2n [X]

denotes the set of all polynomials (of degree at most 2n − 1) that have their
monomials only from XΛ.

486 J. Pulkus and S. Vivek

2.1 Our Method

Our method is a variant of the CRV method [CRV15]. The main difference is
that we allow n ≥ d, which requires a change in the way the pre-computed list
of monomials is chosen. Our method is summarised in Algorithm 1.

Step 1. Choose a collection T ′ of � cyclotomic classes w.r.t. d:

T ′ =
{
Cd

α1=0, C
d
α2=1, C

d
α3

, . . . , Cd
α�

}
. (3)

Let
L′ = ∪

Cd
αi

∈T ′
Cd

αi
. (4)

Now “lift” the above collection of cyclotomic classes w.r.t. d to a collection w.r.t. n.
That is, for every Cd

αi
, we choose Cn

αi
for some representative αi ∈ Cd

αi
. Define

T =
{
Cn

α1=0, C
n
α2=1, C

n
α3

, . . . , Cn
α�

}
. (5)

Let
L = ∪

Cn
αi

∈T
Cn

αi
. (6)

Note that we will be using only the collection T and the set L in the decompo-
sition step of our method (cf. (8)).
Heuristic 1. We assume that it is possible to choose a T as specified above (for
any � “sufficiently smaller” than 2d) in such a way that:

1. each cyclotomic class (except Cn
0) in T has (maximal) length n,

2. XL can be computed using only � − 2 non-linear multiplications,
3. X{0,1,2,...,X2d−1} ⊆ XL′ · XL′ ⊆ F2d [X]. We refer to this property by saying

that XL′
spans the set {1,X,X2, . . . , X2d−1} in F2d [X].

The first two heuristics above are also used in the CRV method. The differ-
ence is in the third heuristic (Heuristic 1.3). Note that the condition is only on
the set L′, not L. Note that in the CRV method it is required that XL spans
{1,X,X2, . . . , X2n−1} in F2n [X] (in their case n = d). But as we prescribe only
the values on F2d , not on all of F2n we do not need such a strong condition.
Indeed if we use this (stronger) condition from the CRV method, then we can-
not expect any improvement over the CRV method (it will actually be worse
since we are working in a bigger field).

Remark 2. In general, XL does not span {1,X,X2, . . . , X2n−1} nor {1,X,

X2, . . . , X2d−1} in F2n [X].

So we will make another assumption that turns out to be true experimentally
for instances of practical relevance.

Heuristic 2. Corresponding to any d-to-r-bit S-box S, there exists a polynomial
in P(XL · XL) ⊆ F2n [X] that evaluates S.

The CRV method does not need to make the above assumption as the con-
dition is implied by Heuristic 1.3 when n = d.

Reducing the Number of Non-linear Multiplications in Masking Schemes 487

Remark 3. As noted in [RV13, Proof of Theorem 1], if d|n, then the cyclotomic
classes Cn

u “lie above” Cd
z for every u ∈ Cd

z . That is,
(
δ mod 2d − 1

)
∈ Cd

z for
every δ ∈ Cn

v and every v ∈ Cd
z .

Note that
|L| = 1 + n · (� − 1) . (7)

We would like to choose as small a value for � as possible but still satisfying
Heuristic 1.3 (as we shall soon see, that � must satisfy another (relatively milder)
condition in Heuristic 4). We use the following heuristic from the CRV method
for choosing a value of �.

Heuristic 3. There exists a collection of cyclotomic classes T ′ (w.r.t. d) satisfying

Heuristic 1.3 such that � ≈
√

2d

d .

Step 2. Then, as in the CRV method [CRV15, Sect. 4.3], we choose t−1 random

polynomials qi(X) $← P(XL) ⊆ F2n [X], for some parameter t to be determined
later, that have their monomials only from XL. Then we try to find t polynomials
pi(X) ∈ P(XL) such that

P (X) =
t−1∑

i=1

pi(X) · qi(X) + pt(X) mod X2n

+ X (8)

evaluates S.
Note that Heuristic 3 guarantees that the decomposition of (8) exists for

every d-to-r-bit S-box S for some t ≤ |L| · (|L|− 1). But we need to find as small
a value of t as possible for a chosen L.

The unknown coefficients of the polynomials pi(X) are obtained by evalu-
ating P (X) at Ed,n(j) ∀j ∈ {0, 1}d and then writing the resulting set of linear
equations over F2 instead of F2n . That is, we obtain a system of linear equations
over F2 with each equation corresponding to an output bit of S(j). Note that
the unknowns in these equations correspond to the (unknown) n “bits” of the
unknown coefficients (from F2n) of pi(X). Denote the resulting system of linear
equations as

A · c = b, (9)

where the matrix A over F2 will have r · 2d rows and t · |L| · n columns, the F2-
vector c corresponds to the unknown bits of the (to-be-determined) coefficients
of pi(X), and the F2-vector b corresponds to the bits of the outputs of the S-box
S. We can solve the above linear equation for any b if A has rank r · 2d. We
make the following assumption, similar to the CRV method, that says that if
the number of columns exceed the number of rows, then the matrix A has full
rank r · 2d.

Heuristic 4. The condition t · |L| · n ≥ r · 2d suffices for A to have (full) rank
r · 2d.

Once the solution vector c is computed, then the unknown coefficients (from
F2n) of the polynomials pi(X), and hence the polynomial P (X), are readily
obtained. This completes the description of our method.

488 J. Pulkus and S. Vivek

Remark 4. If the matrix A has full rank (r · 2d) for a randomly chosen set of
polynomials qi(X) ∈ P(XL), then this same set of polynomials will yield the
decomposition of (8) for any d-to-r-bit S-box.

Algorithm 1. Our method to evaluate generic S-boxes
Input: A d-to-r-bit S-box table S.

Output: Polynomials pi(X), qi(X) ∈ F2n [X] such that P (X) =
t−1∑

i=1

pi(X) · qi(X) +

pt(X) satisfies (2).
1: Choose a collection T of � cyclotomic classes w.r.t. some n ≥ d that satisfies

Heuristics 1 and 3.
2: Compute XL, where L ← ∪

C∈T
C.

3: Choose t such that t · |L| · n ≥ r · 2d.

4: For 1 ≤ i ≤ t, choose qi(X)
$← P
(
XL
)
.

5: Set up a linear system of equations over F2, A · c = b, to solve for the F2-vector c
that corresponds to the unknown coefficients of the polynomials pi(X) (cf. (9)).

6: Construct the polynomials pi(X) from the solution vector c.

Complexity Analysis. The number of non-linear multiplications required to
pre-compute the set XL is � − 2, and the number required in (8) is t − 1. Hence
in total the number of non-linear multiplications required is

Md,r,n = � − 2 + t − 1 = � + t − 3. (10)

From Heuristic 4, we get the condition

t ≥ r · 2d

|L| · n.

By substituting from (10) and (7) in the above inequality, we get

Md,r,n ≥ � − 3 +
r · 2d

(1 + n · (� − 1)) · n
.

Since, from Heuristic 3, we can set � ≈
√

2d

d , we obtain from the above inequality

Md,r,n ≈
√

2d

d
− 3 +

r · 2d

n ·
(

1 + n ·
(√

2d

d − 1
)) (11)

Note that if d = r = n, then we recover an estimate close to that found in
[CRV15, Sect. 2.2]. If n � 4

√
2d · d · r2, then

Md,r,∞ ≈
√

2d

d
.

Reducing the Number of Non-linear Multiplications in Masking Schemes 489

Hence in the limiting case the complexity of our method is half that of the CRV
method.

Numerical Experiments. In Table 2, we compare the estimate of (11) (on
rounding up to the successive integer) with the observed complexity for various
cases of practical interest. It turns out that the observed values are close to the
estimated values.

Remark 5. Experiments tend to indicate that the value of t cannot be made arbi-
trarily small with increasing values of n. The resulting ranks of the matrices seem
to saturate after a certain value of n. This, of course, has to do with the structure
of the pre-computed set XL. But the dependency is currently unclear, and hence
we are unable to give a lower bound on the value of t, unlike the case of �.

Linear Operations. An upper bound on the number of additions (over F2n)
required by our method to evaluate the polynomial P (X) in (8) is (2t − 1) ·
(|L| − 1) + (t − 1) since each of the polynomials pi(X) and qi(X) have at most
|L| non-zero coefficients. Since, from Heuristic 4, we have t · |L| ≈ r·2d

n , an upper
bound on the number of additions is about r·2d+1

n . Note that working in bigger
fields can lead to smaller numbers of additions, though each such field addition
operation now takes a greater number of bit operations.

The number of scalar multiplications (over F2n) that is required is at most
(2t−1) ·(|L|) ≈ r·2d+1

n , while the number of squarings (over F2n) that is required

is n · (� − 1) ≈ n ·
√

2d

d .

2.2 Concrete Parameters for Various S-Boxes

Table 3 suggests how to choose the parameters t and L in Algorithm 1 for various
d-to-r-bit S-box dimensions depending on the choice of n. If these parameters
of Algorithm 1 are chosen as indicated, then the number of non-linear multipli-
cations required to evaluate any S-box of given dimension is upper bounded as
specified by Table 2. For the special case of d = r = n the parameters are as
suggested in [CRV15, Appendix B] except for the case d = r = n = 8.

As Remark 4 suggests, once a chosen set of random polynomials qi(X) in
Algorithm 1 yields the decomposition of (8) for a given d-to-r-bit S-box, then
the same set of qi(X) will yield a decomposition for any other S-box of the
same dimension. In practice, we have observed that a randomly chosen set of
polynomials qi(X) almost always yield the decomposition of (8).

2.3 Software Implementation of DES

We have performed a software implementation of the CGPQR method [CGP+12]
combined with our technique for the DES block cipher [oST93] that needs only
3 non-linear multiplications over F28 . Note that DES uses eight 6-to-4-bit S-
boxes. We used the C implementation of the CGPQR method combined with

490 J. Pulkus and S. Vivek

Table 3. Choosing parameters l, t and L for evaluating d-to-r-bit S-boxes over F2n ,
where L is always the union of the first l elements of {Cn

0 , Cn
1 , Cn

3 , Cn
7 , Cn

29, C
n
87}

d 4 5 6 7 8

r 4 5 4 6 7 8

n 4 8 5 8 4 8 6 8 16 7 8 16 8 16

l 3 3 4 4 4 4 4 4 4 5 5 5 6 6

t 2 2 3 2 3 2 4 3 2 5 4 2 7 3

|L| 9 17 16 25 19 25 19 25 49 29 33 65 41 81

the improvements of [RV13,CRV15] that is publicly available from [Cor13]. For
a fair comparison, we have compared our improvement only with the CGPQR
method combined with the improvements of [RV13] (that needs 7 non-linear
multiplications) and the CRV method (that needs 4 non-linear multiplications)
[CRV15], both of which are analysed in the non-linear multiplication cost model.
The results are presented in Table 5.

We decomposed the DES S-boxes as

PDES(X) = p1(X) · q1(X) + p2(X),

where p1, q1, p2 ∈ P(XL) ⊆ F28 [X], L = C8
0 ∪C8

1 ∪C8
3 ∪C8

7 , and the coefficients of
q1 are randomly chosen from F28 (cf. Table 3 and Algorithm 1). Table 4 describes
a polynomial q1 that will yield the above decomposition for each of the 8 S-boxes
of DES.

Table 4. A polynomial q1 that could be used in common for all the DES S-boxes. The
irreducible polynomial used to represent F28 is a8 + a4 + a3 + a + 1.

(a2)·x224+(a7+a6+a5+a4+a2+1)·x193+(a7+a4+a+1)·x192+(a7+
a5+a3+a2+a+1) ·x131+(a6+a3+1) ·x129+(a7+a5+a) ·x128+(a6+
a5+a4+a)·x112+(a7+a5+a4+a2+a)·x96+(a7+a5+a4+a3+a2+1)·
x64+(a5+a4) ·x56+(a7+a6+a3+a2+a) ·x48+(a6+a3+a2+a) ·x32+
(a6+a3+1)·x28+(a5+a)·x24+(a7+a5+a4+a3+a+1)·x16+(a7+a6+
a5+a4+a+1) ·x14+(a5+a4+a3) ·x12+(a7+a4+a+1) ·x8+(a3+1) ·
x7+(a7+a4+a+1) ·x6+(a6+a4+a3) ·x4+(a6+a5+a4+a3+a2+a+
1) ·x3+(a7+a3+a) ·x2+(a6+a4+a3+a2+a) ·x+(a7+a3+a2+a+1)

The experiments were performed on a DELL LATITUDE E55450 laptop
(with CORE i3 processor and 64-bit architecture) running CentOS 7 in a vir-
tual machine with 4 GB allotted memory. For efficiency, we have tabulated the
computation of all the linear polynomials that appear in the evaluation of DES
S-boxes (cf. [CRV15, Remark 3]). Note that these polynomials need to be stored
only in the ROM. In Table 5, the parameter t′ refers to the order of security in

Reducing the Number of Non-linear Multiplications in Masking Schemes 491

Table 5. Comparison of secure masked implementations of DES.

Method t′ n′ Rand ×103 RAM Mem (bytes) Time (ms) PF

Unprotected 0.005 1

CGPQR+RV 1 3 2752 72 0.290 58

CGPQR+CRV 1 3 1600 40 0.093 18

CGPQR+this work 1 3 1216 34 0.068 13

CGPQR+RV 2 5 9152 118 0.538 107

CGPQR+CRV 2 5 5312 64 0.175 35

CGPQR+this work 2 5 4032 54 0.133 26

CGPQR+RV 3 7 19200 164 0.824 164

CGPQR+CRV 3 7 11136 88 0.293 58

CGPQR+this work 3 7 8448 74 0.214 42

CGPQR+RV 4 9 32896 210 1.188 237

CGPQR+CRV 4 9 19072 112 0.455 91

CGPQR+this work 4 9 14464 94 0.323 64

the full security model of [ISW03], and n′ = 2t′ +1 is the number of shares. The
RAM memory usage (in bytes) that is reported is only for the S-box computa-
tions and the total CPU time for a DES encryption is measured in milliseconds.
The penalty factor (PF) is the ratio of the total execution time for a given method
to that of an unprotected implementation. The total number of calls made to
the PRG that outputs random bytes is 1000 times the reported quantity.

3 The Power of Using Bigger Fields and Its Limitations

In this section we ignore the higher cost of field operations when using a bigger
field, so that we can gain some understanding of what can and what cannot be
achieved by working with bigger fields.

As in our general cost model linear maps are for free, the domain F
d
2 of our d-

to-r-bit S-box table can be chosen to be any fixed d-dimensional subspace of the
field F2n seen as a vector space over F2. When passing from using the field F2n

for the non-linear multiplications to some extension field F2n′ containing F2n ,
one can therefore assume that the table is defined on a subspace F

d
2 of F2n , and

use the same sequence of non-linear multiplications as for F2n , but now viewed
as products of polynomials over F2n′ instead. So switching to an extension field
never increases the number of non-linear multiplications.

Any two finite fields F2n and F2d of characteristic 2 are contained in some
bigger field with F2lcm(n,d) being the minimal one. Hence we can assume in this
section that d divides n and that the table is defined on the subfield F2d of F2n .

Since, for a polynomial f(X) =
∑

0≤i≤deg f fiX
i ∈ F2n [X], we are only

interested in the values on a subspace F
d
2 ≤ F2n , we can reduce it modulo

492 J. Pulkus and S. Vivek

p(X) :=
∏

z∈F
d
2
(X−z) without changing these. So we can work with polynomials

of degree < 2d instead of 2n as is the case when the table is defined on all of
F2n . However, in general, the polynomial p does not have a nice structure. But
if Fd

2 = F2d is the unique subfield of order 2d of F2n , then p(X) = X2d

+ X and
the equation x2d

= x for all elements x ∈ F2d(≤ F2n) implies

f(x) =
∑

0≤i≤deg f

fix
i = f0 +

∑

0<j<2d

⎛

⎝
∑

i=j mod 2d−1

fi

⎞

⎠ xj .

Working over a bigger field than in the original CRV method has two benefits.
The cyclotomic classes over F2n have sizes up to n, and hence more elements
than the possible d over F

d
2, so that one gathers more degrees of freedom per

non-linear multiplication in Step 1.1 Additionally some extra power is given by
being able to choose the coefficients of the polynomials in Step 2 from a bigger
field:

Lemma 1. Given 2k polynomials fi, gi ∈ F2n [X] (0 ≤ i < k) there exists an
extension field F2n′ of F2n and elements ai, bi ∈ F2n′ such that for every i the
function x �→ fi(x) · gi(x) defined on F2n is an F2-linear image of the single
non-linear product h := (

∑
i ai · fi(X)) · (

∑
i bi · gi(X)) ∈ F2n′ [X], i.e. there are

F2-linear functions λi : F2n′ → F2n with λi ◦ h(x) = fi(x) · gi(x) for all x ∈ F2n .
In particular, any finite number of independent non-linear multiplications

over any finite field can be replaced by a single non-linear multiplication over a
bigger field when restricting the maps to the smaller field.

Proof. Take a prime q > k2 not dividing n, and set n′ = q · n. For any ele-
ment z ∈ F2n′ \F2n the set {1, z, z2, . . . , zk2−1} is linearly independent over F2n

(otherwise it would span a proper intermediate field between F2n and F2n′ , but
this extension has prime degree). Hence there exist F2n -linear and therefore F2-
linear maps λi : F2n′ → F2n with λi(

∑
0≤j<k2 cjz

j) = ci+ki when all cj ∈ F2n .
For ai := zi and bi := zki we get

⎛

⎝
∑

0≤i<k

ai · fi(X)

⎞

⎠ ·

⎛

⎝
∑

0≤j<k

bj · gj(X)

⎞

⎠ =
∑

0≤i,j<k

zi+kj(fi(X) · gj(X)).

Since, for x ∈ F2n , we have also fi(x)gj(x) ∈ F2n , the claim is proved.

Remark 6. The technique in the proof of Lemma 1 can be used to evaluate the
non-linear part of the S-box of AES given by the monomial X254 (over F28)
with 3 non-linear multiplications over F216 . The first non-linear multiplication is
spent to get X3, the second to multiply X2 + z · X3 by (X3)4, where z is any
element of F216 \ F28 . From the result X14 + z · X15, one can F2-linearly extract
the functions x �→ x14 and x �→ x15 defined over the subfield F28 , which enables
one to finally obtain X254 = X14 · (X15)16.
1 Lemma 2 generalizes this statement about monomials to polynomials.

Reducing the Number of Non-linear Multiplications in Masking Schemes 493

Corollary 1. With l non-linear multiplications, all monomial functions x �→ xk

defined on F2d with Hamming weight k ≤ 2l can be obtained in parallel. In
particular, for some huge extension field F2n of F2d all functions F2d → F2n ,
including d-to-r-bit S-boxes, require just �log2 d� non-linear multiplications.

The bound given in Corollary 1 is sharp: as the linear functions have algebraic
degree2 1 and the algebraic degree of a product is at most the sum of the algebraic
degrees of its factors, the function f : F2d → F2n given by monomial X2d−1 that
maps 0 to 0 and the rest of F2d to 1 has algebraic degree d.

For judging the usefulness of the result of a specific non-linear multiplication
we have (denoting the space of functions from Z to Y as Y Z for sets Y and Z):3

Lemma 2. For f : Z → F2n the set F := {g ◦ f | g : F2n → F2n is F2-linear}
is an F2n-subspace of FZ

2n whose dimension over F2n equals the dimension over
F2 of the F2-subspace of F2n generated by the image of f .

Proof. F is the image of the F2n–linear map ϕ : g �→ g◦f from the set EndF2(F2n)
of F2-linear maps F2n → F2n to the set FZ

2n of functions Z → F2n . EndF2(F2n) =
F

∗
2n ⊗F2F2n has dimension n over F2n (with ∗ denoting the dual F2-vector space).

The kernel of ϕ is the F2n -subspace of F2-linear maps whose restriction to the
image of f in F2n is 0. This is the tensor product with F2n (over F2) of the
annihilator (≤ F

∗
2n) of the image {f(x) | x ∈ Z} of f in F2n , proving the claim.

Example 1. For monomials Xα the dimension of the set F from Lemma 2 is the
cardinality of the cyclotomic class containing α. For example, in the field F64

the cyclotomic classes of 9 = 10012 and 21 = 101012 have order 3 resp. 2, so the
dimension of the corresponding F over F64 is 3 resp. 2. On the other hand, the
images under f(x) = x9 resp. g(x) = x21 of the multiplicative group F

×
64

∼= Z63

have order 7 resp. 3, and are therefore the multiplicative groups of the subfields
F8 resp. F4. Their dimensions over F2 are 3 resp. 2 as claimed by the lemma.

A criterion for having enough degrees of freedom in Step 2 is given by:

Lemma 3. Let F be F2n-subspace of F2n [X]/(X2n

+ X) that is closed under
taking squares. Then the F2n-subspace 〈F · F 〉F2n generated by the products of
pairs of elements of F contains F , is also closed under taking squares and has
dimension at most dim F +

(
dimF

2

)
.

Proof. As squaring is a field automorphism, only the statement about the dimen-
sions needs to be proved. But this follows from the commutativity of multipli-
cation as for any base (fi) of F the set (fi · fj)i≤j generates 〈F · F 〉F2n .

The remainder of this section is devoted to proving a lower worst-case bound
for the number of non-linear multiplications over F2n needed for functions from
F

d
2 to F

r
2 with d, r ≤ n but not necessarily d|n. The proof is an adaption of

[CRV14, Proposition 3] to our situation with minor improvements.
2 For a polynomial f =

∑
l fl · Xl this is max {Hamming weight(l) | fl �= 0}.

3 Corresponding to choosing L in Algorithm 1 as the union of cyclotomic classes that
have as many elements as possible to get as many degrees of freedom as possible for
the linear equation system being constructed.

494 J. Pulkus and S. Vivek

Proposition 1. For d, r ≤ n and fixed subspaces F
d
2,F

r
2 ≤ F2n there is a func-

tion f : Fd
2 → F

r
2 that cannot be represented by any polynomial in F2n [X] that

requires less than
√

r(2d−1−d)+(d+ r−n
2)2−(d+ r−n

2)

n non-linear multiplications for
evaluation.

In case of n = r = d this term simplifies to
√

2n−1
n − 1.

Proof. Without loss of generality, we may look only at functions that map 0 to
0: the only monomial not fixing zero is 1, and on F2n \ {0} the monomial X2n−1

is constant 1. This allows us to work with linear functions where the authors
of [CRV14] used affine functions instead. Starting with z0 = id |

F
d
2

one can get
all F2-linear functions F

d
2 → F2n without using any non-linear multiplication.

Having obtained z0, . . . , zj using exactly j non-linear multiplications, one can
choose F2-linear maps λ0,j , λ

′
0,j : Fd

2 → F2n and λ1,j , λ
′
1,j , . . . , λj,j , λ

′
j,j : F2n →

F2n to get

zj+1 =

(
j∑

i=0

λi,j ◦ zi

)

·
(

j∑

i=0

λ′
i,j ◦ zi

)

.

(Adding a constant to either factor changes zj+1 by a summand that can be
represented already by the zi with i ≤ j). With the help of z0, . . . , zk we then
can evaluate

f =
∑

0≤i≤k

λi ◦ zi

for F2-linear maps λ0 : Fd
2 → F

r
2 and λ1, . . . , λk : F2n → F

r
2 without further non-

linear multiplication. Conversely, any f : Fd
2 → F

r
2 fixing 0 that can be evaluated

using at most k non-linear multiplications is of this form.
In total we have to choose 2k F2-linear maps from F

d
2 to F2n , 2

∑k−1
i=0 i =

k(k − 1) from F2n to F2n , one from F
d
2 to F

r
2 and k from F2n to F

r
2 giving us

((2n)d)2k · ((2n)n)k(k−1) · (2r)d · ((2r)n)k = 22ndk+n2k(k−1)+rd+rnk choices. As
there are (2r)2

d−1 = 2r(2d−1) functions from F
d
2 to F

r
2 mapping 0 to 0, to get

enough functions we need

2ndk + n2k(k − 1) + rd + rnk ≥ r(2d − 1).

This is via (nk)2 + (2d + r − n)nk ≥ r(2d − 1) − rd and (nk + (d + r−n
2))2 =

(nk)2 + (2d + r − n)nk + (d + r−n
2)2 ≥ r(2d − 1 − d) + (d + r−n

2)2 equivalent to

k ≥

√

r(2d − 1 − d) + (d + r−n
2)2 − (d + r−n

2)

n
.

Remark 7. As the images of the zjs in the proof of Proposition 1 can span
at most a (2d − 1)-dimensional F2-subspace of F2n , Lemma 2 shows that for
n ≥ 2d − 1 the λi,j , λ′

i,j and λi with i > 0 have to be defined only on these
(2d − 1)-dimensional subspaces reducing the degrees of freedom for obtaining
the next zj resp. f . With n′ := max{n, 2d − 1} the number of choices reduces
to 22ndk+nn′k(k−1)+rd+rn′k, but as one gets better lower bounds by using the
algebraic degree, we do not expand upon this.

Reducing the Number of Non-linear Multiplications in Masking Schemes 495

Acknowledgements. We would like to thank Jean-Sébastien Coron and Johann
Großschädl for pointing out possible applications of our improvements to ARM Neon
processors and also for pointing out [GMPT15]. Thanks to Jake Longo Galea for clarify-
ing the work of [GMPT15]. We are also thankful to Carolyn Whitnall, Srinivas Karthik
and the anonymous reviewers of CHES 2016 for many helpful comments.

Srinivas Vivek’s work has been supported in part by the European Union’s H2020
programme under grant agreement number ICT-644209.

References

[ARS+15] Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.:
Ciphers for MPC and FHE. In: Oswald, E., Fischlin, M. (eds.) EURO-
CRYPT 2015. LNCS, vol. 9056, pp. 430–454. Springer, Heidelberg (2015)

[Bar86] Barrett, P.: Implementing the Rivest Shamir and Adleman public key
encryption algorithm on a standard digital signal processor. In: Odlyzko,
A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 311–323. Springer,
Heidelberg (1987)

[BFG15] Balasch, J., Faust, S., Gierlichs, B.: Inner product masking revisited. In:
Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp.
486–510. Springer, Heidelberg (2015)

[BFGV12] Balasch, J., Faust, S., Gierlichs, B., Verbauwhede, I.: Theory and prac-
tice of a leakage resilient masking scheme. In: Wang, X., Sako, K. (eds.)
ASIACRYPT 2012. LNCS, vol. 7658, pp. 758–775. Springer, Heidelberg
(2012)

[CGP+12] Carlet, C., Goubin, L., Prouff, E., Quisquater, M., Rivain, M.: Higher-order
masking schemes for S-boxes. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol.
7549, pp. 366–384. Springer, Heidelberg (2012)

[CJRR99] Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches
to counteract power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999.
LNCS, vol. 1666, pp. 398–412. Springer, Heidelberg (1999)

[Cor13] Jean-Sébastien Coron (2013). https://github.com/coron/htable/
[Cor14] Coron, J.-S.: Higher order masking of look-up tables. In: Nguyen, P.Q.,

Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 441–458.
Springer, Heidelberg (2014)

[CPRR13] Coron, J.-S., Prouff, E., Rivain, M., Roche, T.: Higher-order side channel
security and mask refreshing. In: Moriai, S. (ed.) FSE 2013. LNCS, vol.
8424, pp. 410–424. Springer, Heidelberg (2014)

[CPRR15] Carlet, C., Prouff, E., Rivain, M., Roche, T.: Algebraic decomposition for
probing security. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015.
LNCS, vol. 9215, pp. 742–763. Springer, Heidelberg (2015)

[CRV14] Coron, J.-S., Roy, A., Vivek, S.: Fast evaluation of polynomials over binary
finite fields and application to side-channel countermeasures. In: Batina, L.,
Robshaw, M. (eds.) CHES 2014. LNCS, vol. 8731, pp. 170–187. Springer,
Heidelberg (2014)

[CRV15] Coron, J.-S., Roy, A., Vivek, S.: Fast evaluation of polynomials over binary
finite fields and application to side-channel countermeasures. J. Crypto-
graphic Eng. 5(2), 73–83 (2015)

[DDF14] Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: from probing
attacks to noisy leakage. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT
2014. LNCS, vol. 8441, pp. 423–440. Springer, Heidelberg (2014)

https://github.com/coron/htable/

496 J. Pulkus and S. Vivek

[DFS15] Dziembowski, S., Faust, S., Skorski, M.: Noisy leakage revisited. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 159–188.
Springer, Heidelberg (2015)

[GHS12a] Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES
circuit. IACR Cryptology ePrint Archive 2012:99 (2012)

[GHS12b] Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES
circuit. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol.
7417, pp. 850–867. Springer, Heidelberg (2012)

[GM11] Goubin, L., Martinelli, A.: Protecting AES with Shamir’s secret sharing
scheme. In: Takagi, T., Preneel, B. (eds.) CHES 2011. LNCS, vol. 6917,
pp. 79–94. Springer, Heidelberg (2011)

[GMPT15] Longo, J., De Mulder, E., Page, D., Tunstall, M.: SoC it to EM: electromag-
netic side-channel attacks on a complex system-on-chip. In: Güneysu, T.,
Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 620–640. Springer,
Heidelberg (2015)

[GPS14] Grosso, V., Prouff, E., Standaert, F.-X.: Efficient masked S-boxes process-
ing – a step forward –. In: Pointcheval, D., Vergnaud, D. (eds.)
AFRICACRYPT. LNCS, vol. 8469, pp. 251–266. Springer, Heidelberg
(2014)

[ISW03] Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against
probing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp.
463–481. Springer, Heidelberg (2003)

[KJJ99] Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M.
(ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg
(1999)

[Koc96] Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA,
DSS, and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol.
1109, pp. 104–113. Springer, Heidelberg (1996)

[Lim13] ARM Limited. NEON Programmer’s Guide (2013)
[NO14] Nguyen, P.Q., Oswald, E.: EUROCRYPT 2014. LNCS, vol. 8441. Springer,

Heidelberg (2014)
[OF15] Oswald, E., Fischlin, M.: EUROCRYPT 2015. LNCS, vol. 9056. Springer,

Heidelberg (2015)
[oST93] National Institute of Standards and Technology. FIPS 46-3: Data Encryp-

tionStandard, March 1993. http://csrc.nist.gov
[PR11] Prouff, E., Roche, T.: Higher-order glitches free implementation of the AES

using secure multi-party computation protocols. In: Preneel, B., Takagi, T.
(eds.) CHES 2011. LNCS, vol. 6917, pp. 63–78. Springer, Heidelberg (2011)

[PR13] Prouff, E., Rivain, M.: Masking against side-channel attacks: a formal secu-
rity proof. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 142–159. Springer, Heidelberg (2013)

[PT11] Preneel, B., Takagi, T.: CHES 2011. LNCS, vol. 6917. Springer, Heidelberg
(2011)

[RP10] Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In:
Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp.
413–427. Springer, Heidelberg (2010)

[RV13] Roy, A., Vivek, S.: Analysis and improvement of the generic higher-order
masking scheme of FSE 2012. In: Bertoni, G., Coron, J.-S. (eds.) CHES
2013. LNCS, vol. 8086, pp. 417–434. Springer, Heidelberg (2013)

http://csrc.nist.gov

Reducing the Number of Non-linear Multiplications in Masking Schemes 497

[SP06] Schramm, K., Paar, C.: Higher order masking of the AES. In: Pointcheval,
D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 208–225. Springer, Heidelberg
(2006)

[Wie99] Wiener, M.J.: CRYPTO 1999. LNCS, vol. 1666. Springer, Heidelberg
(1999)

[WVGX15] Wang, J., Vadnala, P.K., Großschädl, J., Xu, Q.: Higher-order masking
in practice: a vector implementation of masked AES for ARM NEON. In:
Nyberg, K. (ed.) CT-RSA 2015. LNCS, vol. 9048, pp. 181–198. Springer,
Heidelberg (2015)

Faster Evaluation of SBoxes via Common Shares

Jean-Sébastien Coron1(B), Aurélien Greuet2, Emmanuel Prouff3,
and Rina Zeitoun2

1 University of Luxembourg, Luxembourg City, Luxembourg
jean-sebastien.coron@uni.lu

2 Oberthur Technologies, Colombes, France
{a.greuet,r.zeitoun}@oberthur.com

3 Sorbonne Universités, UPMC Univ Paris 06, CNRS, INRIA,
Laboratoire d’Informatique de Paris 6 (LIP6), Équipe PolSys, 4 place Jussieu,

75252 Paris Cedex 05, France

Abstract. We describe a new technique for improving the efficiency
of the masking countermeasure against side-channel attacks. Our tech-
nique is based on using common shares between secret variables, in order
to reduce the number of finite field multiplications. Our algorithms are
proven secure in the ISW probing model with n � t + 1 shares against t
probes. For AES, we get an equivalent of 2.8 non-linear multiplications
for every SBox evaluation, instead of 4 in the Rivain-Prouff counter-
measure. We obtain similar improvements for other block-ciphers. Our
technique is easy to implement and performs relatively well in practice,
with roughly a 20 % speed-up compared to existing algorithms.

1 Introduction

Side-Channel Attacks. Side-channel analysis is a class of cryptanalytic
attacks that exploit the physical environment of a cryptosystem to recover some
leakage about its secrets. It is often more efficient than a cryptanalysis mounted
in the so-called black-box model where no leakage occurs. In particular, continu-
ous side-channel attacks in which the adversary gets information at each invo-
cation of the cryptosystem are especially threatening. Common attacks as those
exploiting the running-time, the power consumption or the electromagnetic radi-
ations of a cryptographic computation fall into this class. Many implementations
of block ciphers have been practically broken by continuous side-channel analy-
sis and securing them has been a longstanding issue for the embedded systems
industry.

The Masking Countermeasure. A sound approach to counteract side-
channel attacks is to use secret sharing [Bla79,Sha79], often called masking in the
context of side-channel attacks. This approach consists in splitting each sensitive

E. Prouff—Part of this work has been done at Safran Identity and Security, and
while the author was at ANSSI, France.

c© International Association for Cryptologic Research 2016
B. Gierlichs and A.Y. Poschmann (Eds.): CHES 2016, LNCS 9813, pp. 498–514, 2016.
DOI: 10.1007/978-3-662-53140-2 24

Faster Evaluation of SBoxes via Common Shares 499

variable x of the implementation into n shares such that x = x1⊕· · ·⊕xn, where
n is called the sharing order, such that x can be recovered from these shares but
no information can be recovered from fewer than n shares. It has been shown that
the complexity of mounting a successful side-channel attack against a masked
implementation increases exponentially with the order [CJRR99,PR13,DDF14].
Starting from this observation, the design of efficient secure schemes for different
ciphers has become a foreground issue. When specified at order n, such a scheme
aims at specifying how to update the sharing of the internal state throughout the
processing while ensuring that (1) the final sharing corresponds to the expected
ciphertext, and (2) the n-th order security property is satisfied.

The ISW Probing Model. Ishai, Sahai and Wagner [ISW03] initiated the
theoretical study of securing circuits against an adversary who can probe a
fraction of its wires. They showed how to transform any circuit of size |C| into a
circuit of size O(|C| · t2) secure against any adversary who can probe at most t
wires. The ISW constructions consists in secret-sharing every variable x into x =
x1 ⊕x2 ⊕· · ·⊕xn where x2, . . . , xn are uniformly and independently distributed
bits, with n � 2t + 1 to get security against t probes. Processing a XOR gate
is straightforward as the shares can be xored separately. The processing of an
AND gate z = xy is based on writing:

z = xy =
(

n⊕
i=1

xi

)

·
(

n⊕
i=1

yi

)

= ⊕
1�i,j�n

xiyj (1)

where the cross-products xiyj are first computed and then randomly recombined
to get an n-sharing of the output z. This construction, called ISW gadget in the
rest of this paper, enables, in its general form, to securely evaluate a multiplica-
tion at the cost of n2 multiplications, 2n(n−1) additions and n(n−1)/2 random
values. Its complexity is therefore O(n2), which implies that the new circuit with
security against t probes has O(|C| · t2) gates.

A proof of security in the ISW framework is usually simulation based: one
must show that any set of t probes can be perfectly simulated without the knowl-
edge of the original variables of the circuit. In [ISW03] and subsequent work this
is done by progressively generating a subset I of input shares such that the
knowledge of those input shares is sufficient to simulate all the t probes. For
example, in the above AND gate, if the adversary would probe xi ·yj , one would
put both indices i and j in I, so that the simulator would get the input shares
xi and yj , and therefore could simulate the product xi · yj . More generally in
the ISW construction every probe adds at most two indices in I, which implies
|I| � 2t. Therefore if the number of shares n is such that n � 2t + 1, then
|I| < n, which implies that only a proper subset of the input shares is required
for the simulation; those input shares can in turn be generated as independently
uniformly distributed bits. Therefore, the knowledge of the original circuit vari-
ables is not required to generate a perfect simulation of the t probes, hence these
probes do not bring any additional information to the attacker (since he could
perform that simulation by himself).

500 J.-S. Coron et al.

Existing Work. In the last decade, several masking countermeasures have been
proposed for block-ciphers together with security proofs in the ISW probing
model, based on the original notion of private circuits introduced in [ISW03].
Except [Cor14] which extends the original idea of [KJJ99] to any order, the other
proposals are based on the ISW gadget recalled above. The core idea of the latter
works is to split the processing into a short sequence of field multiplications and
F2-linear operations, and then to secure these operations independently, while
ensuring that the local security proofs can be combined to prove the security
of the entire processing. When parametrized at order n, as recalled above the
complexity of the ISW gadget for the field multiplication is O(n2), but only
O(n) for F2-linear operations.1 Therefore, an interesting problem is to minimize
the number of field multiplications required to evaluate an SBox.

In the Rivain-Prouff countermeasure [RP10], the authors showed how to
adapt the ISW circuit construction to a software implementation of AES, by
working in F28 instead of F2. Namely as illustrated in Fig. 1, the non-linear part
S(x) = x254 of the AES SBox can be evaluated with only 4 non-linear multipli-
cations over F28 , and a few linear squarings. Each of those 4 multiplications can
in turn be evaluated with the previous ISW gadget based on Eq. (1), by working
over F28 instead of F2.

x x3 x12

x2 x15 x240 x252 x254

x15 x240 x254

x x3 x12

x2 x14

Fig. 1. (a) Sequential computation of x254 as used in [RP10,BBD+15a]. (b) Alternative
computation of x254; the multiplications x14 = x12 · x2 and x15 = x12 · x3 can be
computed in parallel [GHS12].

The Rivain-Prouff countermeasure was later extended by Carlet et al. to
any look-up table [CGP+12]. Namely any given k-bit SBox can be represented
by a polynomial

∑2k−1
i=0 ai x

i over F2k using Lagrange’s interpolation theorem.
Therefore one can mask any SBox by securely evaluating this polynomial using
1 A function f is F2-linear if it satisfies f(x ⊕ y) = f(x) ⊕ f(y) for any pair (x, y)

of elements in its domain. This property must not be confused with F2m -linearity
of a function, where m divides n and is larger than 1, which is defined such that
f(ax⊕ by) = af(x)⊕ bf(y), for every a, b ∈ F2m . An F2m -linear function is F2-linear
but the converse is false in general.

Faster Evaluation of SBoxes via Common Shares 501

n-shared multiplications as in the Rivain-Prouff countermeasure. To improve effi-
ciency, one must look for operations sequences (e.g. SBox representations) that
minimize the number of field multiplications which are not F2-linear2 (this kind
of multiplication shall be called non-linear in this paper). This problematic has
been tackled out in [CGP+12,RV13] and [CRV14] and led to significantly reduce
the number of multiplications needed to evaluate any function defined over F2k

for k � 10 (e.g. the AES SBox can be evaluated with only 4 multiplications, and
only 4 multiplications are needed for the DES SBoxes).

Recently, a sequence of works continued to improve the original work [ISW03]
and led, in particular, to exhibit a new scheme enabling to securely evaluate any
function of algebraic degree 2 at the cost of a single multiplication (with the
ISW gadget). The application of this work to the AES SBox led the authors
of [GPS14] to describe a scheme which can be secure at any order n and is a
valuable alternative to the scheme proposed in [RP10]. In parallel, some schemes
[BGN+14,NRS11,PR11] have been proposed which remain secure in the prob-
ing model even in presence of so-called glitches [MS06] and the recent work
[RBN+15] has investigated relations between these schemes and the ISW con-
struction.

Refined Security Model: t-SNI Security. Since in this paper we are inter-
ested in efficiency improvements, we would like to use the optimal n = t + 1
number of shares instead of n = 2t + 1 as in the original ISW countermeasure.
For n � 2t+1 shares the security proof for the single ISW multiplication gadget
easily extends to the full circuit [ISW03]; however for n � t + 1 shares only
one must be extra careful. For example, for the Rivain-Prouff countermeasure,
it was originally claimed in [RP10] that only n � t + 1 shares were required,
but an attack of order �(n − 1)/2� + 1 was later described in [CPRR13]; the
security proof in [RP10] with n � t + 1 shares actually applies only when the
ISW multiplication is used in isolation, but not for the full block-cipher.

To prove security with n � t+1 shares only for the full block-cipher, a refined
security model against probing attacks was recently introduced in [BBD+15a],
called t-SNI security. As shown in [BBD+15a], this stronger definition of t-SNI
security enables to prove that a gadget can be used in a full construction with
n � t + 1 shares, instead of n � 2t + 1 for the weaker definition of t-NI security
(corresponding to the original ISW security proof). The authors show that the
ISW multiplication gadget does satisfy this stronger t-SNI security definition.
They also show that with some additional mask refreshing, the Rivain-Prouff
countermeasure for the full AES can be made secure with n � t + 1 shares.
Due to its power and simplicity, the t-SNI notion appears to be the “right”
security definition against probing attacks. Therefore, in this paper, we always
prove the security of our algorithms under this stronger t-SNI notion, so that our
algorithms can be used within a larger construction (typically a full block-cipher)
with n � t + 1 shares only.
2 A multiplication over a field of characteristic 2 is F2-linear if it corresponds to a

Frobenius automorphism, i.e. to a series of squarings.

502 J.-S. Coron et al.

Our Contribution. Our goal in this paper is to further improve the efficiency
of the masking countermeasure. As recalled above, until now the strategy fol-
lowed by the community has been to reduce the number of calls to the ISW
multiplication gadget. In this paper, we follow a complementary approach con-
sisting in reducing the complexity of the ISW multiplication gadget itself. Our
core idea is to use common shares between the inputs of multiple ISW multi-
plication gadgets, up to the first n/2 shares; in that case, a given processing
performed in the first ISW gadget can be re-used in subsequent gadgets.

Consider for example the alternative evaluation circuit for x254 in AES used
in [GHS12], as illustrated in Fig. 1. It still has 4 non-linear multiplications as in
the original circuit [RP10], but now the two multiplications x14 ← x12 · x2 and
x15 ← x12 · x3 can be evaluated in parallel, moreover with a common operand
x12. Let denote by d ← c · a and e ← c · b those two multiplications with
common operand c. In the ISW multiplication gadget, one must compute all
cross-products ci · aj and ci · bj for all 1 � i, j � n. Now if we can ensure that
half of the shares of a and b are the same, that is aj = bj for all 1 � j � n/2, then
the products ci ·aj and ci · bj for 1 � j � n/2 are the same and can be computed
only once; see Fig. 2 for an illustration. This implies that when processing the
second multiplication gadget for e ← c · b, we only have to compute n2/2 finite
field multiplications instead of n2. For two multiplications as above, this saves
the equivalent of 0.5 multiplication.

c

a

d ← c · a

c

b

e ← c · b

Fig. 2. When half of the shares in a and b are the same, the multiplications correspond-
ing to the left-hand blocks are the same. This saves the equivalent of 0.5 multiplications
out of 2.

To ensure that the two inputs have half of their shares in common, we intro-
duce a new gadget called CommonShares with complexity O(n), taking as input
two independent n-sharings of data and outputting two new n-sharings, but
with their first n/2 shares in common. Obviously this must be achieved without
degrading the security level; we show that this is indeed the case by proving the
security of the full SBox evaluation in the previous t-SNI model, with n � t + 1
shares. Note that we cannot have more than n/2 shares in common between two
variables a and b, since otherwise there would be a straightforward attack with
fewer than n probes: namely if ai = bi for all 1 � i � k, then we can probe the
2(n−k) remaining shares ai and bi for k+1 � i � n; if k > n/2 this gives strictly

Faster Evaluation of SBoxes via Common Shares 503

less than n shares, whose xor gives the secret variable a ⊕ b. Hence having half
of the shares in common is optimal.

More generally, the 16 SBoxes of AES can be processed in parallel, and
therefore each of the 4 non-linear multiplications in x254 can be processed in
parallel. As opposed to the previous case those multiplications do not share any
operand, but we show that by using a generalization of the CommonShares algo-
rithm between m operands instead of 2, for every multiplication in the original
circuit one can still save the equivalent of roughly 1/4 multiplication. This also
applies to other block-ciphers as well, since in most block-ciphers the SBoxes are
applied in parallel. One can therefore apply the technique from [CRV14] based on
fast polynomial evaluation, and using our CommonShares algorithm between the
inputs of the evaluated polynomials, we again save roughly 1/4 of the number of
finite field multiplications. Our results for various block-ciphers are summarized
in Table 1, in which we give the equivalent number of non-linear multiplications
for a single SBox evaluation, for various block-ciphers; we refer to Sect. 5 for a
detailed description. Finally, we show in the full version of this paper [CGPZ16]
how to apply our common shares technique to the Threshold Implementations
(TI) approach for securing implementation against side channel attacks, even in
the presence of glitches.

Table 1. Equivalent number of non-linear multiplications for a single SBox evaluation,
for various block-ciphers.

Methods SBox

AES DES PRESENT SERPENT CAMELLIA CLEFIA

Parity-Split [CGP+12] 4 10 3 3 22 22

Roy-Vivek [RV13] 4 7 3 3 15 15,16

[CRV14] 4 4 2 2 10 10

Our Method 2.8 3.1 1.5 1.5 7.8 7.8

Practical Implementation. A practical implementation of our common shares
technique is described in Sect. 7, for the n-shared evaluation of x254 in AES,
on ATmega1284P (8-bit AVR microcontroller) and ARM Cortex M0 (32-bit
CPU). We obtain that our technique is relatively practical: for a large number of
shares, we get roughly a 20 % speed improvement compared to the Rivain-Prouff
countermeasure (but only roughly 5 % compared to the quadratic evaluation
technique in [GPS14]).

2 Security Definitions

Given a variable x ∈ F2k and an integer n, we say that the vector (x1, . . . , xn) ∈
(F2k)n is an n-sharing of x if x =

⊕n
i=1 xi. We recall the security definitions

504 J.-S. Coron et al.

from [BBD+15a], which we make slightly more explicit. For simplicity we only
provide the definitions for a simple gadget taking as input a single variable x
(given by n shares xi) and outputting a single variable y (given by n shares yi).
We provide the generalization to multiple inputs and outputs the full version of
this paper [CGPZ16]. Given a vector (xi)1�i�n, we denote by x|I := (xi)i∈I the
sub-vector of shares xi with i ∈ I.

Definition 1 (t-NI Security). Let G be a gadget taking as input (xi)1�i�n

and outputting (yi)1�i�n. The gadget G is said t-NI secure if for any set of t1
intermediate variables and any subset O of output indices, there exists a subset
I of input indices with |I| � t1 + |O|, such that the t1 intermediate variables and
the output variables y|O can be perfectly simulated from x|I .

Definition 2 (t-SNI Security). Let G be a gadget taking as input (xi)1�i�n

and outputting (yi)1�i�n. The gadget G is said t-SNI secure if for any set of t1
intermediate variables and any subset O of output indices such that t1 + |O| � t,
there exists a subset I of input indices with |I| � t1, such that the t1 intermediate
variables and the output variables y|O can be perfectly simulated from x|I .

The t-NI security notion corresponds to the original security definition in the
ISW probing model; it allows to prove the security of a full construction with
n � 2t + 1 shares. The stronger t-SNI notion allows to prove the security of a
full construction with n � t+1 shares only [BBD+15a]. The difference is that in
the stronger t-SNI notion, the size of the input shares subset I can only depend
on the number of internal probes t1, and must be independent of the number of
output variables |O| that must be simulated (as long as the condition t1+|O| � t
is satisfied). Intuitively, this provides an “isolation” between the output shares
and the input shares of a given gadget, and for composed constructions this
enables to easily prove that a full construction is t-SNI secure, based on the
t-SNI security of its components.

3 The Rivain-Prouff Countermeasure

In this section we recall the Rivain-Prouff countermeasure [RP10] for securing
AES against high-order attacks. It can be seen as an extension to F2k of the
original ISW countermeasure [ISW03] described in F2. The Rivain-Prouff coun-
termeasure is proved t-SNI secure in [BBD+15a]; therefore it can be used to
protect a full block-cipher against t probes with n � t + 1 shares, instead of
n � 2t + 1 shares in the original ISW probing model.

3.1 The Rivain-Prouff Multiplication

The Rivain-Prouff countermeasure is based on the SecMult operation below,
which is similar to the ISW multiplication gadget but over F2k instead of F2.
The SecMult algorithm enables to securely compute a product c = a · b over F2k ,

Faster Evaluation of SBoxes via Common Shares 505

Algorithm 1. SecMult

Require: shares ai satisfying
⊕n

i=1 ai = a, shares bi satisfying
⊕n

i=1 bi = b
Ensure: shares ci satisfying

⊕n
i=1 ci = a · b

1: for i = 1 to n do
2: ci ← ai · bi
3: end for
4: for i = 1 to n do
5: for j = i + 1 to n do
6: r ← F2k � referred by ri,j
7: ci ← ci ⊕ r � referred by ci,j
8: r ← (ai · bj ⊕ r) ⊕ aj · bi � referred by rj,i
9: cj ← cj ⊕ r � referred by cj,i

10: end for
11: end for
12: return (c1, . . . , cn)

from an n-sharing of a and b, and outputs an n-sharing of c. Here we use the
linear memory version from [Cor14], using similar notations as in [BBD+15a].

It is shown in [BBD+15a] that the SecMult algorithm is t-SNI secure with n �
t+1 shares. For completeness we provide a proof of Lemma 1 in the full version of
this paper [CGPZ16]; our proof is essentially the same as in [BBD+15a]. In the
full version of this paper [CGPZ16], we also provide a slightly different, more
modular proof in which we separate the computation of the matrix elements
vij = ai · bj from the derivation of the output shares ci.

Lemma 1 (t-SNI of SecMult). Let (ai)1�i�n and (bi)1�i�n be the input shares
of the SecMult operation, and let (ci)1�i<n be the output shares. For any set of
t1 intermediate variables and any subset |O| � t2 of output shares such that
t1 + t2 < n, there exist two subsets I and J of indices with |I| � t1 and |J | � t1,
such that those t1 intermediate variables as well as the output shares c|O can be
perfectly simulated from a|I and b|J .

3.2 Mask Refreshings

To obtain security against t probes with n � t+1 shares instead of n � 2t+1, the
previous SecMult algorithm is usually not sufficient; one must also use a mask
refreshing algorithm. The following RefreshMask operation is used in [BBD+15a]
to get the t-SNI security of a full construction.

The following lemma is proven in [BBD+15a], showing the t-SNI security
of RefreshMask. In the full version of this paper [CGPZ16] we also provide a
modular proof, using the same approach as in Lemma 1; namely the above
RefreshMask algorithm can be viewed as a SecMult with multiplication by 1,
with shares (1, 0, . . . , 0); therefore the same proof technique applies.

Lemma 2 (t-SNI of RefreshMask). Let (ai)1�i�n be the input shares of the
RefreshMask operation, and let (ci)1�i�n be the output shares. For any set of

506 J.-S. Coron et al.

Algorithm 2. RefreshMask
Input: a1, . . . , an

Output: c1, . . . , cn such that
⊕n

i=1 ci =
⊕n

i=1 ai

1: For i = 1 to n do ci ← ai

2: for i = 1 to n do
3: for j = i + 1 to n do
4: r ← {0, 1}k

5: ci ← ci ⊕ r
6: cj ← cj ⊕ r
7: end for
8: end for
9: return c1, . . . , cn

t1 intermediate variables and any subset |O| � t2 of output shares such that
t1 + t2 < n, there exists a subset I of indices with |I| � t1, such that the t1
intermediate variables as well as the output shares c|O can be perfectly simulated
from a|I .

3.3 Application to the Computation of x254 in F28

To compute y = x254 over F28 with 4 multiplications, the following sequence of
operation is used in [RP10], including two RefreshMask operations.

Algorithm 3. SecExp254
Input: shares x1, . . . , xn satisfying x =

⊕n
i=1 xi

Output: shares y1, . . . , yn such that
⊕n

i=1 yi = x254

1: For i = 1 to n do zi ← x2
i �

⊕
i zi = x2

2: (zi)1�i�n ← RefreshMask((zi)1�i�n)
3: (yi)1�i�n ← SecMult((zi)1�i�n, (xi)1�i�n) �

⊕
i yi = x3

4: For i = 1 to n do wi ← y4
i �

⊕
i wi = x12

5: (wi)1�i�n ← RefreshMask((wi)1�i�n)
6: (yi)1�i�n ← SecMult((yi)1�i�n, (wi)1�i�n) �

⊕
i yi = x15

7: For i = 1 to n do yi ← y16
i �

⊕
i yi = x240

8: (yi)1�i�n ← SecMult((yi)1�i�n, (wi)1�i�n) �
⊕

i yi = x252

9: (yi)1�i�n ← SecMult((yi)1�i�n, (zi)1�i�n) �
⊕

i yi = x254

10: return y1, . . . , yn

Using the two previous lemmas, one can prove the t-SNI security of Sec-
Exp254; we refer to [BBD+15a] for the proof.

Lemma 3 (t-SNI of x254). Let (xi)1�i�n be the input shares of ExpSec254,
and let (yi)1�i�n be the output shares. For any set of t1 intermediate variables
and any subset |O| � t2 of output shares such that t1 + t2 < n, there exists a
subset I of indices with |I| � t1, such that those t1 intermediate variables as well
as the output shares y|O can be perfectly simulated from x|I .

Faster Evaluation of SBoxes via Common Shares 507

As explained in [BBD+15a], since the SecExp254 operation has the t-SNI
property, it can be used to secure a full AES against t probes with n � t + 1
shares.

4 Secure Computation of 2 Parallel Multiplications
with Common Operand, and Application to AES

In this section we show a first efficiency improvement of the Rivain-Prouff coun-
termeasure for AES recalled in the previous section. Namely, we show that when
two finite-field multiplications d ← c · a and e ← c · b have the same operand c,
we can save n2/2 field multiplications in SecMult by making sure that the inputs
a and b have half of their shares in common; we then show how to apply this
technique to the evaluation of the AES SBox, by using an alternative evaluation
circuit for x254.

Arithmetic Circuit with Depth 3 for x254. The original arithmetic circuit
for computing y = x254 over F28 from [RP10] and recalled in Sect. 3.3 has 4
multiplicative levels, with a total of 4 non-linear multiplications. Below we use
an alternative circuit with only 3 multiplicative levels, still with 4 multiplications,
as described in [GHS12]; see Fig. 1 for an illustration.

• Level 1: compute x3 = x · x2 (1 mult) and then x12 = (x3)4.
• Level 2: compute x14 = x12 · x2 (1 mult) and x15 = x12 · x3 (1 mult), and

then x240 = (x15)16.
• Level 3: compute x254 = x240 · x14 (1 mult).

Multiplications with Common Shares. In the arithmetic circuit above, the
multiplications x14 ← x12 · x2 and x15 ← x12 · x3 can be computed in parallel;
moreover they have one operand x12 in common. More generally, assume that
we must compute two multiplications with a common operand c:

d ← c · a

e ← c · b

The SecMult algorithm will compute the cross-products ci · aj and ci · bj for all
1 � i, j � n. Now assume that half of the shares of a and b are the same, that is
aj = bj for all 1 � j � n/2. In that case the products ci ·aj for 1 � j � n/2 have
to be computed only once, and therefore when processing e ← c · b, we only have
to compute n2/2 multiplications instead of n2; see Fig. 2 for an illustration. For
an arithmetic circuit with 4 multiplications as above, this saves the equivalent
of 0.5 multiplication.

4.1 The CommonShares Algorithm

The CommonShares algorithm below ensures that the output shares a′
i and b′

i

corresponding to a and b are the same on the first half, that is a′
i = b′

i for all
1 � i � n/2. In the rest of the paper, for simplicity we assume that n is even.

508 J.-S. Coron et al.

Algorithm 4. CommonShares

Require: shares ai satisfying
⊕n

i=1 ai = a, shares bi satisfying
⊕n

i=1 bi = b
Ensure: shares a′

i and b′
i satisfying

⊕n
i=1 a′

i = a and
⊕n

i=1 b′
i = b, with a′

i = b′
i for all

1 � i � n/2
1: for i = 1 to n/2 do
2: ri ←$

F2k

3: a′
i ← ri, a′

n/2+i ← (an/2+i ⊕ ri) ⊕ ai � a′
i ⊕ a′

n/2+i = ai ⊕ an/2+i

4: b′
i ← ri, b′

n/2+i ← (bn/2+i ⊕ ri) ⊕ bi � b′
i ⊕ b′

n/2+i = bi ⊕ bn/2+i

5: end for
6: return (a′

i)1�i�n and (b′
i)1�i�n

It is easy to see that we still get as output an n-sharing of the same variables
a and b, since for each 1 � i � n/2 we have a′

i ⊕ a′
n/2+i = ai ⊕ an/2+i, and

similarly for b. As explained previously, we cannot have more than n/2 shares
in common between a and b, since otherwise there would be a straightforward
attack with fewer than n probes: namely if ai = bi for all 1 � i � k, then we can
probe the 2(n − k) remaining shares ai and bi for k + 1 � i � n; if k > n/2 this
gives strictly less than n shares, whose xor gives the secret variable a ⊕ b. Hence
having half of the shares in common is optimal.

The following Lemma shows the security of the CommonShares algorithm; as
will be shown later, for this algorithm we only need the weaker t-NI security
property (instead of t-SNI).

Lemma 4 (t-NI of CommonShares). Let (ai)1�i�n and (bi)1�i�n be the input
shares of the algorithm CommonShares, and let (a′

i)1�i�n and (b′
i)1�i�n be the

output shares. For any set of t1 intermediate variables and any subsets of indices
I, J ⊂ [1, n], there exists a subset S ⊂ [1, n] with |S | � |I| + |J | + t1, such
that those t1 variables as well as the output shares a′

|I and b′
|J can be perfectly

simulated from a|S and b|S .

Proof. The proof intuition is as follows. If for a given i with 1 � i � n/2 the
adversary requests only one of the variables ri, an/2+i ⊕ri, bn/2+i ⊕ri, a′

n/2+i or
b′
n/2+i, then such variable can be perfectly simulated without knowing any of the

input shares ai, bi, an/2+i and bn/2+i, thanks to the mask ri. On the other hand,
if two such variables (or more) are requested, then we can provide a perfect
simulation from the 4 previous input shares, whose knowledge is obtained by
adding the two indices i and n/2 + i in S . Therefore we never add more than
one index in S per probe (or per output index in I or J), which implies that
the size of the subset S of input shares is upper-bounded by |I| + |J | + t1, as
required.3

3 Note that the proof would not work without the masks ri; namely with ri = 0 we
would need to know both ai and an/2+i to simulate a′

n/2+i; hence with t probes we
would need at least n � 2t + 1 shares, which would make CommonShares useless.

Faster Evaluation of SBoxes via Common Shares 509

More precisely, we describe hereafter the construction of the set S ⊂ [1, n]
of input shares, initially empty. For every probed input variable ai and bi (for
any i), we add i to S . For all 1 � i � n/2, we let ti be the number of probed
variables among an/2+i ⊕ ri and bn/2+i ⊕ ri. We let:

λi := ti + |{i, n/2 + i} ∩ I| + |{i, n/2 + i} ∩ J |,

We then add {i, n/2 + i} to S if λi � 2. This terminates the construction of S .
By construction of S , we must have |S | � |I| + |J | + t as required.

We now show that the output shares a′
|I and b′

|J and the t1 intermediate
variables of Algorithm CommonShares can be perfectly simulated from a|S and
b|S . This is clear for the probed input variables ai and bi. For all 1 � i � n/2,
we distinguish two cases. If λi � 2, then {i, n/2+ i} ∈ S , so we can let ri ← F2k

as in the real algorithm and simulate all output and intermediate variables from
the knowledge of ai, an/2+i, bi and bn/2+i. If λi = 1, then if ti = 0, then only
a single output variable among a′

i, b′
i, a′

n/2+i and b′
n/2+i must be simulated.

Since each of those variables is masked by ri, we can simulate this single output
variable by generating a random value in F2k . Similarly, if ti = 1, then only one
of the two intermediate variables among an/2+i ⊕ ri and bn/2+i ⊕ ri is probed
(while no output variable must be simulated), and therefore we can also simulate
such variable by generating a random value in F2k . This terminates the proof of
Lemma 4. 	

4.2 The CommonMult Algorithm

To perform the two multiplications with the same operand d ← c ·a and e ← c ·b,
instead of doing two independent SecMult, we define the following CommonMult
algorithm below.

Algorithm 5. CommonMult
Input: shares satisfying c =

⊕n
i=1 ci, a =

⊕n
i=1 ai and b =

⊕n
i=1 bi.

Output: di such that
⊕n

i=1 di = c · a, and ei such that
⊕n

i=1 ei = c · b
1: (a′

i)1�i�n, (b′
i)1�i�n ← CommonShares((ai)1�i�n, (bi)1�i�n)

2: (di)1�i�n ← SecMult((ci)1�i�n, (a′
i)1�i�n)

3: (ei)1�i�n ← SecMult((ci)1�i�n, (b′
i)1�i�n)

4: return (di)1�i�n and (ei)1�i�n.

The algorithm first calls the previous CommonShares subroutine, to ensure
that half of the shares of a and b are the same. It then applies the previous
SecMult algorithm twice to securely compute the two multiplications. Then the
multiplications ci · aj for 1 � j � n/2 performed in the first SecMult can be re-
used in the second SecMult, so this saves n2/2 multiplications. More precisely,
for the SecMult computation performed at Line 3, we don’t have to compute
again the products ci · b′

j for 1 � j � n/2, since those products have already
been computed at Line 2 with ci · a′

j , since a′
j = b′

j for all 1 � j � n/2. However

510 J.-S. Coron et al.

reusing at Line 3 the products already computed at Line 2 requires to store
O(n2) values. In the full version of this paper [CGPZ16] we describe a different
version of the CommonMult algorithm above, where the matrix elements ci · aj

are computed on the fly and then used in both SecMult, with memory complexity
O(n) instead of O(n2).

The following Lemma shows that the CommonMult algorithm is t-SNI secure
in the ISW model, with n � t+1 shares. We provide the proof in the full version
of this paper [CGPZ16].

Lemma 5 (t-SNI of CommonMult). Let (ai)1�i�n, (bi)1�i�n and (ci)1�i�n be
the input shares of the CommonMult operation, and let (di)1�i�n and (ei)1�i�n

be the output shares. For any set of t1 intermediate variables and any subsets
|O1| � t2 and |O2| � t2 of output shares such that t1 + t2 < n, there exist
two subsets I and J of indices such that |I| � t1 and |J | � t1, and those t1
intermediate variables as well as the output shares d|O1

and e|O2
can be perfectly

simulated from a|J , b|J and c|I .

4.3 Application to AES SBoxes

We are now ready to describe the full computation of y = x254 based on the
CommonShares algorithm; the algorithm SecExp254’ is described below; it is a
variant of Algorithm 3.

Algorithm 6. SecExp254’
Input: shares x1, . . . , xn satisfying x =

⊕n
i=1 xi

Output: shares y1, . . . , yn such that
⊕n

i=1 yi = x254

1: For i = 1 to n do zi ← x2
i �

⊕
i zi = x2

2: (xi)1�i�n ← RefreshMask((xi)1�i�n)
3: (yi)1�i�n ← SecMult((zi)1�i�n, (xi)1�i�n) �

⊕
i yi = x3

4: For i = 1 to n do wi ← y4
i �

⊕
i wi = x12

5: (wi)1�i�n ← RefreshMask((wi)1�i�n)
6: (zi)1�i�n, (yi)1�i�n ← CommonMult((wi)1�i�n, (zi)1�i�n, (yi)1�i�n) �⊕

i zi = x14,
⊕

i yi = x15

7: For i = 1 to n do yi ← y16
i �

⊕
i yi = x240

8: (yi)1�i�n ← SecMult((yi)1�i�n, (zi)1�i�n) �
⊕

i yi = x254

9: return y1, . . . , yn

The following Lemma proves the t-SNI security of our new algorithm; there-
fore our new algorithm achieves exactly the same security level as Algorithm 3.
That is, it can be used in the computation of a full block-cipher, with n � t + 1
shares against t probes. We provide the proof in the full version of this paper
[CGPZ16].

Lemma 6 (t-SNI of x254). Let (xi)1�i�n be the input shares of the x254 oper-
ation, and let (yi)1�i�n be the output shares. For any set of t1 intermediate

Faster Evaluation of SBoxes via Common Shares 511

variables and any subset |O| � t2 of output shares such that t1 + t2 < n, there
exists a subset I of indices with |I| � t1, such that those t1 intermediate variables
as well as the output shares y|O can be perfectly simulated from x|I .

Finally, we summarize in Table 2 the complexities of the above algorithms.
Table 2 shows that our new algorithm for x254 saves n2/2 multiplications, with
the same security level as in the original algorithm.

Table 2. Complexity of CommonMult and SecExp254’; for simplicity we omit the O(n)
terms.

add # mult # rand

SecMult (Algorithm 1) 2n2 n2 n2/2

RefreshMask (Algorithm 2) n2 - n2/2

SecMult× 2 4n2 2n2 n2

CommonMult (Algorithm 5) 4n2 3n2/2 n2

SecExp254 (Algorithm 3) 10n2 4n2 3n2

SecExp254’ (Algorithm 6) 10n2 7n2/2 3n2

5 Parallel Multiplications with Common Shares

In the previous section, we have shown that by using a different arithmetic circuit
for x254, two multiplications in F28 could be processed in parallel, moreover with
a common operand, and then by using half common shares we could save the
equivalent of 1/2 multiplication out of 4 in the evaluation of an AES SBox.

In the full version of this paper [CGPZ16], we consider the case of parallel
multiplications that do not necessarily share an operand. Previously we have
focused on a single evaluation of an AES SBox, but in AES the 16 SBoxes can
actually be processed in parallel, and therefore each of the 4 multiplications in
x254 can be processed in parallel. As opposed to the previous case those multi-
plications do not share any operand, but we show that by using a generalization
of the CommonShares algorithm between m operands instead of 2, for every
multiplication one can still save the equivalent of roughly 1/4 multiplication.

6 Parallel Computation of Quadratic Functions

In [CPRR15], the authors propose a generalization of an idea originally published
in [CPRR13] to securely process any function h of algebraic degree4 2, with

4 The algebraic degree of a function h is the integer value maxai �=0(HW(i)) where
the ai’s are the coefficients of the polynomial representation of h and where HW(i)
denotes the Hamming weight of i.

512 J.-S. Coron et al.

application to the secure evaluation of SBoxes. The algorithm is based on the
following equation:

h

(
n∑

i=1

xi

)

=
∑

1�i<j�n

(
h(xi + xj + sij) + h(xi + sij) + h(xj + sij) + h(sij)

)

+
n∑

i=1

h(xi) + ((n + 1) mod 2) · h(0) (2)

which holds for any sij ∈ F2k . From the above equation, any function h of
algebraic degree 2 can be securely processed with n-th order security.

In the full version of this paper [CGPZ16], we recall the algorithm from
[CPRR15] for the secure evaluation of the quadratic function h(x), and its appli-
cation to AES. We then show how to use our common shares technique for we
provide for m parallel evaluations of h(x).

7 Implementation

We have done a practical implementation of our algorithms for the AES SBox.
More precisely we have implemented the n-shared evaluation of x254 in four
different ways:

• RP10: using the Rivain-Prouff algorithm, as described in Algorithm 3;
• CM: using our common shares technique, as described in Algorithm 6;
• GPS14: using quadratic functions, as described in the full version of this paper

[CGPZ16];
• GPS14CS: using quadratic functions and common shares, as explained in the

full version of this paper [CGPZ16];

Table 3. Performances comparison of the RP10, CM, GPS14 and GPS14CS algo-
rithms, on the ATmega and ARM platforms.

8 shares 16 shares
RP10 CM GPS14 GPS14CS RP10 CM GPS14 GPS14CS

ATmega 20360 18244 11076 12447 70966 57644 39554 40086
ARM 20333 18156 13796 13156 77264 65556 54133 50560

32 shares Ratio for 8,16 and 32 shares
RP10 CM GPS14 GPS14CS CM/RP10 GPS14CS/GPS14

ATmega 268.103 209.103 152.103 147.103 0.9, 0.81, 0.78 1.1, 1, 0.97
ARM 303.103 251.103 215.103 200.103 0.89, 0.85, 0.83 0.95, 0.93, 0.93

For portability, the code is written in C, except the field multiplication in F28

which is written in assembly for ATmega1284P (8-bit AVR microcontroller) and

Faster Evaluation of SBoxes via Common Shares 513

for ARM Cortex M0 (32-bit CPU). Performance is evaluated using simulators
(AVR Studio for ATmega, Keil uVision for ARM). We assume that the random
generation of one byte takes 1 cycle. This assumption is reasonable: there are at
least several dozens of cycles between two 1-byte random number requests; on
chips embedding hardware RNG, this is often enough to get a random value by
a single memory access, without waiting. We give the average number of cycles
to compute one AES SBox among 16 SBoxes in Table 3.

Those implementation results show that our common shares technique is
relatively practical: for a large number of shares, we get roughly a 20 % speed
improvement compared to the Rivain-Prouff countermeasure (but only roughly
5 % compared to the quadratic evaluation technique in [GPS14]).

Acknowledgments. We wish to thank Sonia Beläıd who applied the EasyCrypt ver-
ification tool [BBD+15b] on our AES SBox algorithm with common shares, at order
n = 6.

References

[BBD+15a] Barthe, G., Beläıd, S., Dupressoir, F., Fouque, P.-A., Grégoire, B.: Com-
positional verification of higher-order masking: application to a verifying
masking compiler. Cryptology ePrint Archive, Report 2015/506 (2015).
http://eprint.iacr.org/

[BBD+15b] Barthe, G., Beläıd, S., Dupressoir, F., Fouque, P.-A., Grégoire, B., Strub,
P.-Y.: Verified proofs of higher-order masking. In: Oswald, E., Fischlin,
M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 457–485. Springer,
Heidelberg (2015)

[BGN+14] Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: Higher-order
threshold implementations. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT
2014, Part II. LNCS, vol. 8874, pp. 326–343. Springer, Heidelberg (2014)

[Bla79] Blakely, G.R.: Safeguarding cryptographic keys. In: National Computer
Conference, vol. 48, pp. 313–317. AFIPS Press, New York (1979)

[CGP+12] Carlet, C., Goubin, L., Prouff, E., Quisquater, M., Rivain, M.: Higher-
order masking schemes for S-Boxes. In: Canteaut, A. (ed.) FSE 2012.
LNCS, vol. 7549, pp. 366–384. Springer, Heidelberg (2012)

[CGPZ16] Coron, J.-S., Greuet, A., Prouff, E., Zeitoun, R.: Faster evaluation of
Sboxes via common shares. Cryptology ePrint Archive, Report 2016/572
(2016). http://eprint.iacr.org/. Full version of this paper

[CJRR99] Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches
to counteract power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999.
LNCS, vol. 1666, pp. 398–412. Springer, Heidelberg (1999)

[Cor14] Coron, J.-S.: Higher order masking of look-up tables. In: Nguyen, P.Q.,
Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 441–458.
Springer, Heidelberg (2014)

[CPRR13] Coron, J.-S., Prouff, E., Rivain, M., Roche, T.: Higher-order side channel
security and mask refreshing. In: Moriai, S. (ed.) FSE 2013. LNCS, vol.
8424, pp. 410–424. Springer, Heidelberg (2014)

http://eprint.iacr.org/
http://eprint.iacr.org/

514 J.-S. Coron et al.

[CPRR15] Carlet, C., Prouff, E., Rivain, M., Roche, T.: Algebraic decomposition for
probing security. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015,
Part I. LNCS, vol. 9215, pp. 742–763. Springer, Heidelberg (2015)

[CRV14] Coron, J.-S., Roy, A., Vivek, S.: Fast evaluation of polynomials over
binary finite fields and application to side-channel countermeasures. In:
Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS, vol. 8731, pp. 170–187.
Springer, Heidelberg (2014)

[DDF14] Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: from prob-
ing attacks to noisy leakage. In: Nguyen, P.Q., Oswald, E. (eds.) EURO-
CRYPT 2014. LNCS, vol. 8441, pp. 423–440. Springer, Heidelberg (2014)

[GHS12] Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES
circuit. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 850–867. Springer, Heidelberg (2012)

[GPS14] Grosso, V., Prouff, E., Standaert, F.-X.: Efficient masked S-Boxes
processing – a step forward –. In: Pointcheval, D., Vergnaud, D. (eds.)
AFRICACRYPT. LNCS, vol. 8469, pp. 251–266. Springer, Heidelberg
(2014)

[ISW03] Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware
against probing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol.
2729, pp. 463–481. Springer, Heidelberg (2003)

[KJJ99] Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M.
(ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg
(1999)

[MS06] Mangard, S., Schramm, K.: Pinpointing the side-channel leakage of
masked AES hardware implementations. In: Goubin, L., Matsui, M. (eds.)
CHES 2006. LNCS, vol. 4249, pp. 76–90. Springer, Heidelberg (2006)

[NRS11] Nikova, S., Rijmen, V., Schläffer, M.: Secure hardware implementation
of nonlinear functions in the presence of glitches. J. Cryptology 24(2),
292–321 (2011)

[PR11] Prouff, E., Roche, T.: Higher-order glitches free implementation of the
AES using secure multi-party computation protocols. In: Preneel, B.,
Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 63–78. Springer, Hei-
delberg (2011)

[PR13] Prouff, E., Rivain, M.: Masking against side-channel attacks: a formal
security proof. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT
2013. LNCS, vol. 7881, pp. 142–159. Springer, Heidelberg (2013)

[RBN+15] Reparaz, O., Bilgin, B., Nikova, S., Gierlichs, B., Verbauwhede, I.: Consol-
idating masking schemes. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO
2015, Part I. LNCS, vol. 9215, pp. 764–783. Springer, Heidelberg (2015)

[RP10] Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In:
Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp.
413–427. Springer, Heidelberg (2010)

[RV13] Roy, A., Vivek, S.: Analysis and improvement of the generic higher-order
masking scheme of FSE 2012. In: Bertoni, G., Coron, J.-S. (eds.) CHES
2013. LNCS, vol. 8086, pp. 417–434. Springer, Heidelberg (2013)

[Sha79] Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

Hardware Implementations

FourQ on FPGA: New Hardware Speed Records
for Elliptic Curve Cryptography over Large

Prime Characteristic Fields

Kimmo Järvinen1, Andrea Miele2, Reza Azarderakhsh3, and Patrick Longa4(B)

1 Department of Computer Science, Aalto University, Espoo, Finland
kimmo.jarvinen@aalto.fi

2 Intel Corporation, Santa Clara, USA
andrea.miele@intel.com

3 Department of Computer Engineering,
Rochester Institute of Technology, Rochester, USA

rxaeec@rit.edu
4 Microsoft Research, Redmond, USA

plonga@microsoft.com

Abstract. We present fast and compact implementations of FourQ
(ASIACRYPT 2015) on field-programmable gate arrays (FPGAs), and
demonstrate, for the first time, the high efficiency of this new ellip-
tic curve on reconfigurable hardware. By adapting FourQ’s algorithms
to hardware, we design FPGA-tailored architectures that are sig-
nificantly faster than any other ECC alternative over large prime
characteristic fields. For example, we show that our single-core and
multi-core implementations can compute at a rate of 6389 and 64730
scalar multiplications per second, respectively, on a Xilinx Zynq-7020
FPGA, which represent factor-2.5 and 2 speedups in comparison with
the corresponding variants of the fastest Curve25519 implementation on
the same device. These results show the potential of deploying FourQ on
hardware for high-performance and embedded security applications. All
the presented implementations exhibit regular, constant-time execution,
protecting against timing and simple side-channel attacks.

Keywords: Elliptic curves · FourQ · FPGA · Efficient hardware imple-
mentation · Constant-time · Simple side-channel attacks

1 Introduction

With the growing deployment of elliptic curve cryptography (ECC) [15,24] in
place of traditional cryptosystems such as RSA, compact, high-performance
ECC-based implementations have become crucial for embedded systems and
hardware applications. In this setting, field-programmable gate arrays (FPGAs)

A. Miele—This work was performed while the second author was a post-doctoral
researcher at EPFL, Lausanne, Switzerland.

c© International Association for Cryptologic Research 2016
B. Gierlichs and A.Y. Poschmann (Eds.): CHES 2016, LNCS 9813, pp. 517–537, 2016.
DOI: 10.1007/978-3-662-53140-2 25

518 K. Järvinen et al.

offer an attractive option in comparison to classical application-specific inte-
grated circuits (ASICs), thanks to their great flexibility and faster prototyp-
ing at reduced development costs. Examples of efficient ECC implementations
on FPGAs are Güneysu and Paar’s implementations of the standardized NIST
curves over prime fields [11] and Sasdrich and Güneysu’s implementations of
Curve25519 [28,29]. There is also a plethora of FPGA implementations based
on binary curves, which are particularly attractive for hardware platforms (see,
e.g., [1,2,13,14,18,26,31]). Prime fields are by far the preferred option in software
implementations mainly because efficient integer arithmetic is readily supported
by instruction sets of processors. Therefore, efficient hardware implementations
of ECC over large prime characteristic fields are needed to provide compatibility
with software. In this work, we focus on elliptic curves defined over large prime
characteristic fields.

At ASIACRYPT 2015, Costello and Longa [6] proposed a new elliptic curve
called FourQ, which provides approximately 128 bits of security and supports
highly-efficient scalar multiplications by uniquely combining a four-dimensional
decomposition [8] with the fastest twisted Edwards explicit formulas [12] and the
efficient Mersenne prime p = 2127 − 1. In particular, by performing experiments
on a large variety of software platforms, they showed that, when computing a
standard variable-base scalar multiplication, FourQ is more than 5 times faster
than the standardized NIST P-256 curve and between 2 and 3 times faster than
the popular Curve25519 [5].

In this work, we propose an efficient architecture for computing scalar multi-
plications using FourQ on FPGAs. Our architecture, which leverages the power
of the embedded multipliers found in modern FPGA’s DSP blocks (similarly to
many prior works [11,19–23,27–29]), supports all the necessary operations to
perform FourQ’s 4-way multi-scalar multiplication, including point validation,
scalar decomposition and recoding, cofactor clearing (if required by a given pro-
tocol) and the final point conversion to affine coordinates. Based on this architec-
ture, we designed two high-speed variants: a single-core architecture intended for
constrained, low latency applications, and a multi-core architecture intended for
high-throughput applications. Moreover, we also explore the possibility of avoid-
ing the use of FourQ’s endormorphisms and present an implementation variant
based on the Montgomery ladder [25], which might be suitable for constrained
environments. All the proposed architectures exhibit a fully regular, constant-
time execution, which provides protection against timing and simple side-channel
attacks (SSCA) [16,17]. To our knowledge, these are the first implementations
of FourQ on an FPGA in the open literature.

When compared to the most efficient FPGA implementations in the litera-
ture, our implementations show a significant increase in performance. For exam-
ple, in comparison to the state-of-the-art FPGA implementation of Curve25519
by Sasdrich and Güneysu [28,29], our single-core architecture is approximately
2.5 times faster in terms of computing time (157 μs versus 397 μs), and our
multi-core architecture is capable of computing (at full capacity) 2 times as
many scalar multiplications per second as their multi-core variant (64730 scalar

FourQ on FPGA: New Hardware Speed Records 519

multiplications per second versus 32304 scalar multiplications per second). Even
when comparing the case without endormorphisms, our FourQ-based FPGA
implementation is faster: the laddered variant is about 1.3 times faster than
Curve25519 in terms of computing time. All these results were obtained on the
same Xilinx Zynq-7020 FPGA model used by [29].

The paper is organized as follows. In Sect. 2, the relevant mathematical back-
ground and general architectural details of the proposed design are provided. In
Sect. 3, the field arithmetic unit (called “the core”) is presented. In Sect. 4, we
describe the scalar unit consisting of the decomposition and recoding units. In
Sect. 5, three architecture variants are detailed: single-core, multi-core and the
Montgomery ladder implementation. We present the performance analysis and
carry out a detailed comparison with relevant work in Sect. 6. Finally, we con-
clude the paper and give directions for future work in Sect. 7.

2 Preliminaries: FourQ

FourQ is a high-performance elliptic curve recently proposed by Costello and
Longa [6]. Given the quadratic extension field Fp2 = Fp(i) with p = 2127 −1 and
i2 = −1, FourQ is defined as the complete twisted Edwards [4] curve given by

E/Fp2 : − x2 + y2 = 1 + dx2y2, (1)

where d := 125317048443780598345676279555970305165·i+4205857648805777768770.
The set of Fp2 -rational points lying on Eq. (1), which includes the neutral

point OE = (0, 1), forms an additive abelian group. The cardinality of this group
is given by #E(Fp2) = 392 · ξ, where ξ is a 246-bit prime, and thus, the group
E(Fp2)[ξ] can be used in cryptographic systems.

The fastest set of explicit formulas for the addition law on E are due to Hisil
et al. [12] using the so-called extended twisted Edwards coordinates : any tuple
(X : Y : Z : T) with Z �= 0 and T = XY/Z represents a projective point
corresponding to an affine point (x, y) = (X/Z, Y/Z). Since d is non-square over
Fp2 , this set of formulas is also complete on E , i.e., they work without exceptions
for any point in E(Fp2).

Since FourQ is a degree-2 Q-curve with complex multiplication [10,30], it
comes equipped with two efficiently computable endomorphisms, namely, ψ and
φ. In [6], it is shown that these two endomorphisms enable a four-dimensional
decomposition m �→ (a1, a2, a3, a4) ∈ Z

4 for any integer m ∈ [0, 2256 − 1] such
that 0 ≤ ai < 264 for i = 1, 2, 3, 4 (which is optimal in the context of multi-
scalar multiplication) and such that a1 is odd (which facilitates efficient, side-
channel protected scalar multiplications); see [6, Proposition 5] for details about
FourQ’s decomposition procedure. This in turn induces a four-dimensional scalar
multiplication with the form

[m]P = [a1]P + [a2]φ(P) + [a3]ψ(P) + [a4]φ(ψ(P)),

for any point P ∈ E(Fp2)[ξ].

520 K. Järvinen et al.

2.1 Scalar Multiplication Execution

Assume that the decomposition procedure in [6, Proposition 5] is applied to
a given input scalar m. To execute the 4-way multi-scalar multiplication with
protection against timing and SSCA attacks, one can follow [6] and use the
method proposed by Faz et al. [7]: the multi-scalars ai are recoded to a rep-
resentation bi =

∑64
i=0 bi[j] · 2j with bi[j] ∈ {−1, 0, 1} for i = 1, 2, 3, 4, such

that b1[j] ∈ {−1, 1} and b1[64] = 1, and such that the recoded digits for
a2, a3 and a4 are “sign-aligned” with the corresponding digit from a1, i.e.,
bi[j] ∈ {0, b1[j]} for i = 2, 3, 4. It follows that this recoding produces exactly
65 “signed digit-columns”, where a signed digit-column is defined as the value
dj = b1[j]+b2[j] ·2+b3[j] ·22 +b4[j] ·23 for j = 0, ..., 64. If one then precomputes
the eight points T [u] = P + u0φ(P) + u1ψ(P) + u2φ(ψ(P)) for 0 ≤ u < 8, where
u = (u2, u1, u0)2, scalar multiplication—scanning the digit-columns from left
to right—consists of an initial point loading and a single loop of 64 iterations,
where each iteration computes one doubling and one addition with the point
from T [] corresponding to the current digit-column. Given that digit-columns
are signed, one needs to negate the precomputed point before addition in the
case of a negative digit-column.

Next, we recap details about the coordinate system strategy used in [6].
Costello and Longa [6] utilize four different point representations for (X : Y : Z :
T): R1 : (X,Y,Z, Ta, Tb), such that T = Ta·Tb, R2 : (X+Y, Y −X, 2Z, 2dT), R3 :
(X+Y, Y −X,Z, T) and R4 : (X,Y,Z). In the main loop of scalar multiplication,
point doublings are computed as R1 ← R4 and point additions as R1 ← R1 ×
R2, where precomputed points are stored using R2. Note that converting point
addition results from R1 to R4 (as required by inputs to point doublings) is for
free: one simply ignores coordinates Ta, Tb.

2.2 High-Level Design of the Proposed Architecture

Our core design follows the same methodology described above and computes
FourQ’s scalar multiplication as in [6, Algorithm 2]. However, there is a slight
variation: since the negative of a precomputed point (X + Y, Y − X, 2Z, 2dT) is
given by (Y − X,X + Y, 2Z,−2dT), we precompute the values −2dT and store
each precomputed point using the tuple (X + Y, Y − X, 2Z, 2dT,−2dT). This
representation is referred to as R5. During scalar multiplication, we simply read
coordinates in the right order and assemble either (X + Y, Y − X, 2Z, 2dT) (for
positive digit-columns) or (Y −X,X+Y, 2Z,−2dT) (for negative digit-columns).
This approach completely eliminates the need for point negations during scalar
multiplication at the cost of storing only 8 extra elements in Fp2 . The slightly
modified scalar multiplication algorithm is presented in Algorithm 1.

In Algorithm 2, we detail the conversion of the multi-scalars to digit-columns
di. During a scalar multiplication, the 3-least significant bits of these digits
(values “vi”) are used to select one out of eight points from the precomputed
table. The top bit (values “si”) is then used to select between the coordinate

FourQ on FPGA: New Hardware Speed Records 521

Algorithm 1. FourQ’s scalar multiplication on E(Fp2)[ξ] (adapted from [6]).
Input: Point P ∈ E(Fp2)[ξ] and integer scalar m ∈ [0, 2256).
Output: [m]P .

Compute endomorphisms:
1: Compute φ(P), ψ(P) and ψ(φ(P)).
Precompute lookup table:
2: Compute T [u] = P + [u0]φ(P) + [u1]ψ(P) + [u2]ψ(φ(P)) for u = (u2, u1, u0)2 in

0 ≤ u ≤ 7. Write T [u] in coordinates (X + Y, Y − X, 2Z, 2dT, −2dT).
Scalar decomposition and recoding:
3: Decompose m into the multi-scalar (a1, a2, a3, a4) as in [6, Proposition 5].
4: Recode (a1, a2, a3, a4) into (d64, . . . , d0) = (s64v64, . . . , s0v0) using Algorithm 2.
Write mi = 1 if si = 1 and mi = −1 if si = 0 for i = 0, . . . , 63.
Main loop:
5: Q = T [v64]
6: for i = 63 to 0 do
7: Q = [2]Q
8: Q = Q + mi · T [vi]
9: return Q

value 2dT (if the bit is 1) and −2dT (if the bit is 0), as described above for a
point using representation R5.

The structure of Algorithm 1 leads to a natural division of operations in
our ECC processor. The processor consists of two main building blocks: (a) a
scalar unit and (b) a field arithmetic unit. The former carries out the scalar
decomposition and recoding (steps 3 and 4 in Algorithm 1), and the latter—
referred simply as “the core”—is responsible for computing the endomorphisms,
precomputation, and the main loop through a fixed series of operations over Fp2 .
We describe these units in detail in Sects. 3 and 4.

3 Field Arithmetic Unit

The field arithmetic unit (“the core”) performs operations in Fp2 . The archi-
tecture of the core is depicted in Fig. 1. It consists of datapath (see Sect. 3.1),
control logic (see Sect. 3.2), and memory. The memory is a 256 × 127-bit simple
dual-port RAM that is implemented using BlockRAM (36 Kb) resources from
the FPGA device. We chose to have a 127-bit wide memory in order to min-
imize the overhead during memory reading and writing. This requires the use
of 4 BlockRAMs which provide storage space for up to 128 Fp2 elements. As a
result, storing the negative coordinate values −2dT of the precomputed points
as described in Sect. 2.2 comes essentially for free.

3.1 Datapath

The datapath computes operations in Fp and it thus operates on 127-bit operands.
The datapath supports basic operations that allow the implementation of field

522 K. Järvinen et al.

Algorithm 2. FourQ’s multi-scalar recoding (adapted from [6]).
Input: Four positive integers ai = (0, ai[63], . . . , ai[0])2 ∈ {0, 1}65 less than 264 for

1 ≤ i ≤ 4 and with a1 odd.
Output: (d64, . . . , d0) with 0 ≤ di < 16.
1: s64 = 1
2: for j = 0 to 63 do
3: vj = 0
4: sj = a1[j + 1]
5: for i = 2 to 4 do
6: vj = vj + (ai[0] � (i − 2))
7: c = (a1[j + 1] | ai[0]) ∧ a1[j + 1]
8: ai = (ai � 1) + c
9: v64 = a2 + 2a3 + 4a4

10: return (d64, . . . , d0) = (s64v64, . . . , s0v0).

Datapath

Dual-port

RAM

127

18

16

127 127

127

46 46

Control

2 61

sesnopser od id

Interface logic

commands,

2

Fig. 1. Architectural diagram of the core.

multiplication, addition and subtraction. A field multiplication is performed (a)
by computing a 127 × 127-bit integer multiplication, (b) by adding the lower
and higher halves of the multiplication result to perform the first part of the
reduction modulo p = 2127 − 1 and (c) by finalizing the reduction by adding
the carry from the first addition. Addition and subtraction in Fp are com-
puted (a) by adding/subtracting the operands and (b) by adding/subtracting the
carry/borrow-bit in order to perform the modular reduction. The operations in
Fp2 are implemented as a series of operations in Fp managed by the control logic;
see Sect. 3.2. The datapath consists of two separate paths: (a) multiplier path and
(b) adder/subtractor path. The datapath is shown in Fig. 2.

FourQ on FPGA: New Hardware Speed Records 523

multiplier
64 × 64-bit

(pipelined)

127

127

63

64

63

64

64

64

128

128

129

127

127

127

127

1

1

c0

c

127

127 127

127b
a

r

+

+/−

0

Fig. 2. The datapath for operations in Fp.

The multiplier path is built around a pipelined 64 × 64-bit multiplier that is
implemented using 16 hardwired multipliers (DSP blocks). The integer multipli-
cations a×b are computed via the schoolbook algorithm. It requires four 64×64-
bit partial multiplications ai × bj with i, j ∈ {0, 1} such that a = a1264 + a0

and b = b1264 + b0. The partial multiplications are computed directly with
the pipelined multiplier by selecting the operands from the input registers with
two multiplexers. Results of the partial multiplications are accumulated into
the upper half of a 256-bit register by using a 128-bit adder in the order
(i, j) = (0, 0), (0, 1), (1, 0), (1, 1). The register is shifted down by 64 bits after
(0, 0) and (1, 0). The pipelined multiplier has seven pipeline stages (designed
such that it matches the 128-bit adder’s critical path delay).

The adder/subtractor path computes additions and subtractions as well as modu-
lar reductions over the integer multiplication results. It is built around a 127-bit
adder/subtractor and multiplexers for selecting the inputs, i.e., operands and
carry/borrow-bit. The value stored in the output register is the only output of
the entire datapath.

The adder/subtractor path can be used for other operations while the mul-
tiplier path is performing a multiplication whenever reduction and read/write
patterns of the multiplication permits it. This was achieved by including a sep-
arate set of input registers into the adder/subtractor path. In addition, the
adder/subtractor path also allows accumulating the resulting value in its out-
put register. All this allows computing most additions and subtractions required
during scalar multiplication essentially for free.

524 K. Järvinen et al.

3.2 Control Logic

The control logic controls the datapath and memory and, as consequence, imple-
ments all the hierarchical levels required by scalar multiplications on FourQ. The
control logic consists of a program ROM that includes instructions for the data-
path and memory addresses, a small finite state machine (FSM) that controls the
read addresses of the program ROM, and a recoder for recoding the instructions
in the program ROM to control signals for the datapath and memory.

Field operations. consist of multiple instructions that are issued by the control
logic, as discussed in Sect. 3.1. Because of the pipelined multiplier, multiplica-
tions in Fp take several clock cycles (20 clock cycles including memory reads and
writes). Fortunately, pipelining allows computing independent multiplications
simultaneously and thus enables efficient operations over Fp2 .

Let a = (a0, a1), b = (b0, b1) ∈ Fp2 . Then, results (c0, c1) of operations in Fp2

are given by

a + b = (a0 + b0, a1 + b1)
a − b = (a0 − b0, a1 − b1)
a × b = (a0 · b0 − a1 · b1, (a0 + a1) · (b0 + b1) − a0 · b0 − a1 · b1)

a2 = ((a0 + a1) · (a0 − a1), 2a0 · a1)

a−1 = (a0 · (a2
0 + a2

1)
−1,−a1 · (a2

0 + a2
1)

−1)

where operations on the right are in Fp. Operations in Fp2 are directly computed
using the equations above: multiplication requires three field multiplications,
two field additions and three field subtractions, whereas squaring requires only
two field multiplications, two field additions and one field subtraction. Field
inversions are computed via Fermat’s Little Theorem (a−1 = ap−2 = a2127−3)
using 138 multiplications in Fp.

An example of how the control logic implements c = a × b with a = (a0, a1)
and b = (b0, b1) ∈ Fp2 using the datapath is shown in Fig. 3. The multiplication
begins by computing t1 = a0 ·b0 in Fp followed by t2 = a1 ·b1. The additions t3 =
a0+a1 and t4 = b0+b1 are interleaved with these multiplications. As soon as they
are ready and the multiplier path becomes idle, the last multiplication t3 ← t3 ·t4
is computed. The multiplication a × b ends with three successive subtractions
c0 = t1 − t2 and c1 = t3 − t1 − t2. The operation sequence was designed to allow
the interleaving of successive multiplications over Fp2 . A preceding multiplication
f = d × e and subsequent multiplications g × h and i × j are depicted in gray
color in Fig. 3. A multiplication finishes in 45 clock cycles but allows the next
multiplication to start after only 21 clock cycles. For every other multiplication
one must use t5 in place of t3 in order to avoid writing to t3 before it is read.
This operation sequence also allows interleaving further additions/subtractions
in Fp with the interleaved multiplications. E.g., if we read operands from the
memory in line 14, then we can compute an addition followed by a reduction
in lines 16 and 17 and write the result back in line 18. There is also a variant

FourQ on FPGA: New Hardware Speed Records 525

Memory Multiplier Add/sub
RA RB W Regs. m.in m.1 m.2· · ·m.5 m.6 m.7 Acc. Regs. Res.

1 a0 b0 t15 · t04 · · · d1
1 · e11 +

2 t15, t
1
4 · · · d1

1 · e11 sft.
3 a0, b0 t15 · t14 · · · t05 · t04 +
4 a0 a1 a0

0, b
0
0 · · · t05 · t04 clr. R-1(d1 · e1)

5 b0 b1 a0
0 · b00 · · · t05 · t14 + R-2(d1 · e1)

6 t2 a0
0, b

1
0 · · · t15 · t04 t05 · t14 sft. a0, a1

7 a1
0, b

0
0 a0

0 · b10 · · · t15 · t04 + b0, b1 a0 + a1

8 a1 b1 a1
0 · b00 · · · t15 · t14 + R(a0 + a1)

9 t3 a1
0, b

1
0 · · · t15 · t14 sft. b0 + b1

10 t1 t2 a1, b1 a1
0 · b10 · · · a0

0 · b00 + R(b0 + b1)
11 t4 a0

1, b
0
1 · · · a0

0 · b00 clr. R-1(t5 · t4)
12 a0

1 · b01 · · · a0
0 · b10 + t1, t2 R-2(t5 · t4)

13 t5 a0
1, b

1
1 · · · a1

0 · b00 a0
0 · b10 sft.

14 a1
1, b

0
1 a0

1 · b11 · · · a1
0 · b00 + t1 − t2

15 t3 t4 a1
1 · b01 · · · a1

0 · b10 + R(t1 − t2)
16 f0 a1

1, b
1
1 · · · a1

0 · b10 sft.
17 t5 t1 t3, t4 a1

1 · b11 · · · a0
1 · b01 +

18 t03, t
0
4 · · · a0

1 · b01 clr. R-1(a0 · b0)
19 t2 t03 · t04 · · · a0

1 · b11 + t5, t1 R-2(a0 · b0)
20 t1 t03, t

1
4 · · · a1

1 · b01 a0
1 · b11 sft. t5 − t1

21 t13, t
0
4 t03 · t14 · · · a1

1 · b01 + t2 R(t5 − t1)
22 g0 h0 t13 · t04 · · · a1

1 · b11 + R − t2
23 t13, t

1
4 · · · a1

1 · b11 sft. R(R − t2)
24 f1 g0, h0 t13 · t14 · · · t03 · t04 +
25 g0 g1 g0

0 , h
0
0 · · · t03 · t04 clr. R-1(a1 · b1)

26 h0 h1 g0
0 · h0

0 · · · t03 · t14 + R-2(a1 · b1)
27 t2 g0

0 , h
1
0 · · · t13 · t04 t03 · t14 sft. g0, g1

28 g1
0 , h

0
0 g0

0 · h1
0 · · · t13 · t04 + h0, h1 g0 + g1

29 g1 h1 g1
0 · h0

0 · · · t13 · t14 + R(g0 + g1)
30 t5 g1

0 , h
1
0 · · · t13 · t14 sft. h0 + h1

31 t1 t2 g1, h1 g1
0 · h1

0 · · · g0
0 · h0

0 + R(h0 + h1)
32 t4 g0

1 , h
0
1 · · · g0

0 · h0
0 clr. R-1(t3 · t4)

33 g0
1 · h0

1 · · · g0
0 · h1

0 + t1, t2 R-2(t3 · t4)
34 t3 g0

1 , h
1
1 · · · g1

0 · h0
0 g0

0 · h1
0 sft.

35 g1
1 , h

0
1 g0

1 · h1
1 · · · g1

0 · h0
0 + t1 − t2

36 t5 t4 g1
1 · h0

1 · · · g1
0 · h1

0 + R(t1 − t2)
37 c0 g1

1 , h
1
1 · · · g1

0 · h1
0 sft.

38 t3 t1 t5, t4 g1
1 · h1

1 · · · g0
1 · h0

1 +
39 t05, t

0
4 · · · g0

1 · h0
1 clr. R-1(g0 · h0)

40 t2 t05 · t04 · · · g0
1 · h1

1 + t3, t1 R-2(g0 · h0)
41 t1 t05, t

1
4 · · · g1

1 · h0
1 g0

1 · h1
1 sft. t3 − t1

42 t15, t
0
4 t05 · t14 · · · g1

1 · h0
1 + t2 R(t3 − t1)

43 i0 j0 t15 · t04 · · · g1
1 · h1

1 + r − t2
44 t15, t

1
4 · · · g1

1 · h1
1 sft. R(r − t2)

45 c1 i0, j0 t15 · t14 · · · t05 · t04 +

Fig. 3. Use of the datapath for (successive) multiplications in Fp2 .

of the multiplication sequence which completes the multiplication after 38 clock
cycles by computing the final subtractions faster, but it does not allow efficient
interleaving.

Latencies and throughputs of field operations are collected in Table 1.

The program ROM. includes hand-optimized routines (fixed sequences of
instructions) for all the operations required for computing scalar multiplica-
tions on FourQ. The program ROM consists of 8015 lines of instructions (13-bit

526 K. Järvinen et al.

Table 1. Latencies and throughputs of operations in Fp and Fp2 .

Operation Latency Throughput

Addition/subtraction in Fp 6 1/2

Multiplication/squaring in Fp 20 1/7

Inversion in Fp
a 2760 —

Addition/subtraction in Fp2 8 1/4

Multiplication in Fp2 (max. throughput) 45 1/21

Multiplication in Fp2 (min. latency) 38 1/31

Squaring in Fp2 28 1/16

Inversion in Fp2 2817 —
a 126 squarings and 12 multiplications in Fp.

addresses). Each line is 25 bits wide: 3 bits for the multiplier path, 5 bits for the
adder/subtractor path, one bit for write enable and two 8-bit memory addresses
for the RAM. Execution of each instruction line takes one clock cycle. We tested
implementing the program ROM both using distributed memory and BlockRAM
blocks. The latter resulted in slightly better timing results arguably because of an
easier place-and-route process. Accordingly, we chose to implement the program
ROM using 6 BlockRAM blocks.

There are in total seven separate routines in the program ROM. Given a base-
point P = (x, y) and following Algorithm 1, initialization (lines 1–14) assigns
X ← x, Y ← y, Z ← 1, Ta ← x and Tb ← y (i.e., it maps the affine point P to
representation R1; see Sect. 2.1). Precomputation (lines 15–4199) produces the
table T containing 8 points using the endormorphisms and point additions. Pre-
computed points are stored using representation R5. Initialization of the main
loop (lines 4200–4214) initializes the point accumulator by loading a point from
the table T using the first digit of the recoded multi-scalar and by mapping it to
representation R4. In the main loop (lines 4215–4568), point doublings Q ← [2]Q
and additions Q ← Q + T [di] are computed using the representations R1 ← R4

and R1 ← R1 × R2, respectively. As explained in Sect. 2.1, converting precom-
puted points from representation R5 to R2 is simply done by reading values
from memory in the right order. The main loop consists of 64 iterations and
significant effort was devoted to optimizing its latency. Affine conversion (lines
4569–7437) maps the resulting point in representation R1 to affine coordinates
by computing x = X/Z and y = Y/Z. The bulk of this computation consists
of an inversion in Fp. Point validation (lines 7438–7561) checks if the basepoint
P = (x, y) is in E(Fp2), i.e., it verifies that −x2 + y2 − 1 − dx2y2 = 0. Cofactor
clearing (lines 7562–8014) kills the cofactor by computing 392P . This is done
with an R2 ← R1 map (lines 7562–7643) followed by eight point doublings (lines
7644–7799) and two point additions (lines 7800–8014).

The control FSM. sets the address for the program ROM depending on the
phase of the scalar multiplication. The FSM includes a counter and hardcoded

FourQ on FPGA: New Hardware Speed Records 527

Algorithm 3. Truncated multiplication algorithm.
Input: integers X = X10, X9, . . . , X0 in radix 224, Y = Y11, X10, . . . , Y0 in radix 217.
Output: ZH = �X · Y/2256� mod 264 or ZL = X · Y mod 264.
1: ZH ← 0, ZL ← 0
2: for i = 0 to 11 (or 3) do
3: T ← 0
4: for j = 0 to 10 (or 2) do
5: T ← T + ((Yi · Xj) � 24j)
6: ZH ← (ZH � 17) + T
7: if i < 4 then
8: ZL ← (ZL � 17) + ((ZH mod 216) � 51)
9: ZH ← (ZH � 68) mod 264

10: ZL ← ZL mod 264

11: return ZH , ZL

pointers to the routines in the program ROM. The value of the counter is used
as the address to the program ROM. Depending on the operation, the FSM sets
the counter to the address of the first line of the appropriate routine and, then,
lets the counter count up by one every clock cycle until it reaches the end pointer
of that routine. After that, the FSM jumps to the next routine or to the wait
state (line 0 is no-operation).

The instruction recoder. recodes instructions from the program ROM to control
signals for the datapath. The memory addresses from the program ROM are fed
into an address recoding circuit, which recodes the address if it is needed to access
a precomputed point (otherwise, it passes the address unchanged). The address
from the program ROM simply specifies the coordinate of the precomputed point
and the recoding unit replaces this placeholder address with a real RAM memory
address by recoding it using the value and sign of the current digit-column di of
the scalar.

4 Scalar Unit

This unit is in charge of decomposing the input scalar m into four 64-bit multi-
scalars a1, a2, a3, a4, which are then recoded to a sequence of digit-columns
(d64, . . . , d0) with 0 ≤ di < 16. These digits are used during scalar multiplica-
tion to extract the precomputed points that are to be added. In our design, this
unit is naturally split into the decompose and recode units, which are described
below.

4.1 Decompose Unit

The decompose unit computes the multi-scalar values a1, a2, a3 and a4 as per [6,
Proposition 5]. The inputs to the decompose unit are the four curve constants
�1, �2, �3 and �4 and the four basis values b1, b2, b3 and b4, which are stored in a

528 K. Järvinen et al.

FSM

14 4242

71 42

24

1724

7171

17

17

17 41

commands responses Yi X0

X1

X10

10: 17 × 24 + 17 DSP

1: 17 × 24 + 17 DSP

0: 17 × 24 + 17 DSP

281

T

0

Fig. 4. Architecture of the 17 × 264-bit row multiplier using DSPs.

ROM, and the 256-bit input scalar m, which is stored in a register. The core of
the decompose unit is a truncated multiplier : on input integers 0 ≤ X < 2256 and
0 ≤ Y < 2195, it calculates the integer ZH = �X · Y/(2256)	 mod 264. This oper-
ation is needed to compute each of the four values α̃1, α̃2, α̃3 and α̃4 from
[6, Proposition 5] modulo 264. The truncated multiplier computes ZH as
described in Algorithm 3. In addition, this multiplier can be adapted to compu-
tations with the form ZL = XY mod 264 by simply reducing the two for-loop
counters in Algorithm 3 from 11 to 3 and from 10 to 2, respectively. Thus, we
reuse the truncated multiplier for the 14 multiplications modulo 264 that are
needed to produce the final values a1, a2, a3 and a4 as per [6, Proposition 5].

The main building block of the truncated multiplier is a 17× 264-bit row
multiplier that is used to compute the product of Yj · X for some j ∈ [0, 11]
(lines 4–5 of Algorithm 3). The row multiplier is implemented using a chain of
11 DSPs as shown in Fig. 4. Note that the DSP blocks available on the Xilinx
Zynq FPGA family allow 17× 24 unsigned integer multiplication plus addition
of the result with an additional 47-bit unsigned integer. In order to comply with
the operand size imposed by the DSP blocks, we split the input integer X into
24-bit words and the input Y into into 17-bit words (the most significant words
are zero-padded). Both X and Y are then represented as X10,X9, . . . , X0 in
radix 224 and Y11,X10, . . . , Y0 in radix 217, respectively.

The row multiplier computes the full 17× 264-bit product after 11 clock
cycles. Its 281-bit result is then added to the 281-bit partial result right-shifted
by 17 bits (line 6 of Algorithm 3). This operation is performed by an adder-
shifter component. In our current design, the addition has been split into 3
steps to reduce the critical path. Finally, a shift register outputs the result (line
9 of Algorithm 3).

FourQ on FPGA: New Hardware Speed Records 529

71 MSF× 264-bit multiplier

Y X

ZH ZL

46 46

264

17

281

17

591 462

264

281

+

Fig. 5. Architecture of the truncated multiplier.

The high level architecture of the truncated multiplier unit is depicted in
Fig. 5. An FSM drives the various components to execute the control statements
of Algorithm 3.

The remaining part of the decompose unit is an FSM that first drives the
truncated multiplier to compute the four values α̃1, α̃2, α̃3 and α̃4 in four sep-
arate runnings, using as inputs the constants stored in ROM and the scalar m.
For these computations, the multiplier produces outputs ZH running for the
maximum number of loop iterations according to Algorithm 3. Subsequently,
the FSM drives the truncated multiplier to compute products modulo 264 (by
running it for a reduced number of loop iterations, as explained above) and to
accumulate the results ZL to produce the output values a1, a2, a3 and a4 in 24
steps.

4.2 Recode Unit

The recode unit is very simple, as the operations it performs are just bit manip-
ulations and 64-bit additions. The unit is designed as an FSM performing 64
iterations according to Algorithm 2, where each iteration is split into 6 steps
(corresponding to 6 states of the FSM). The first 4 states implement lines 3 to
8 of Algorithm 2, whereas the last 2 states implement line 9.

5 Architectures

We designed three variants of our architecture in order to provide a full picture
of its capabilities compared to other designs presented in the literature.

530 K. Järvinen et al.

5.1 Single-Core Architecture

Our single-core architecture is the simplest possible architecture for Algorithm 1.
It combines one instance of the scalar unit with one instance of the core. Most
ECC hardware architectures in the literature are single-core architectures.

The interface of the single-core architecture is such that the host connects
to the architecture through a 64-bit interface (this can be easily modified) by
writing and reading values to and from the RAM. The host can issue three
instructions: point validation, cofactor clearing, and scalar multiplication. Point
validation computes the field operations required for computing −x2 + y2 − 1 −
dx2y2 and the host reads the result and checks if it is zero. The need for cofactor
clearing depends on the protocol and, hence, it is not included in the main scalar
multiplication instruction. The scalar multiplication instruction initiates (a) the
scalar unit to decompose and recode the scalar and (b) the core to begin the
precomputation and all the other subsequent routines. The scalar unit computes
its operations at the same time that the core computes the precomputation.
Hence, scalar decomposition and recoding do not incur in any latency overhead.
Once an instruction is issued, the architecture raises a busy signal which remains
high as long as the operation is in process.

5.2 Multi-core Architecture

Our multi-core architecture aims at improving throughput (operations per sec-
ond). It includes one scalar unit and N instances of the core. The multi-core
architecture is shown in Fig. 6. It is conceptually similar to the multi-core archi-
tecture presented by Sasdrich and Güneysu for Curve25519 in [29]. In their case,
multiple cores share a common inverter unit (inversions modulo 2255 − 19 are
more expensive than inversions in Fp2), which is used after scalar multiplication.
In our case the common resource is the scalar unit, which is used at the beginning
of scalar multiplication and is computed simultaneously with it.

The multi-core architecture is designed so that it acts as a FIFO (first-in-
first-out), which is straightforward to implement because all the operations have
constant latencies. The architecture has a busy signal which is high when the
scalar unit is computing or when all the cores are busy (or have results that
have not been read by the host). The host can issue new instructions only when
the busy signal is low. The cores are used cyclically so that whenever a scalar
multiplication instruction is issued, the turn is given to the next core. There is
also a done signal which is high when there are results which have not been read
by the host. Reading is also performed cyclically so that the turn is handed to
the next core only when the host acknowledges that it has read the previous
results. This cyclic writing and reading operate independently of each other,
and the interface allows reading and writing different cores. Thanks to the cyclic
utilization of the cores, the interface is transparent to the host who does not
need to take care of which core is actually performing the computations; in fact,
that is not even visible to the host.

FourQ on FPGA: New Hardware Speed Records 531

Read/write control Scalar unit

LIFO 1

Core 1

LIFO 2 LIFO 3 LIFO 4 LIFO N

Core 2 Core 3 Core 4 Core N

di, do commands responses

Fig. 6. The multi-core architecture with one scalar unit and N cores.

The scalar unit writes digits to a LIFO (last-in-first-out) buffer1 attached to
each core. This way a core can proceed with a scalar multiplication indepen-
dently of the scalar unit as soon as the scalar unit has finished decomposing and
recoding a scalar. The scalar unit can then process other scalars while the pre-
vious cores are computing scalar multiplications. In this paper, we only consider
situations in which a single scalar unit serves N cores. If N > 14, then the scalar
unit becomes the bottleneck for throughput and, therefore, multiple scalar units
could be required.

5.3 Architecture Using the Montgomery Ladder

The architectures above can be easily modified to compute scalar multiplications
on FourQ without utilizing the endomorphisms. This option might be beneficial
in some resource-constrained applications. To demonstrate this, we designed
a modification of the single-core architecture. The main difference is that the
scalar unit is no longer needed, which results in a significant reduction in the
size of the architecture. Changes in the core are small and are strictly limited to
the control logic. In particular, the program ROM reduces in size because of a
shorter program and smaller address space (fewer temporary variables in use).
The architecture accepts both 256-bit and 246-bit (reduced modulo ξ) scalars,
and also supports cofactor clearing.

The size of the memory remains the same even though the memory require-
ments of the Montgomery ladder are relatively smaller than the single-core archi-
tecture using endormorphisms (which requires a precomputed point table). The
reason for this is that the number of BlockRAMs is dictated by the width (in
our case, 127 bits). Using smaller width would lead to a decrease in BlockRAM

1 The scalar unit outputs digits in the order d0, d1, . . . , d64 and the core uses them in
a reversed order (see Algorithm 1).

532 K. Järvinen et al.

Table 2. Summary of resource requirements in Xilinx Zynq-7020 XC7Z020CLG484-3.

Component LUTs Regs. Slices BRAMs DSPs

Single-core design

Core 869 (1.6 %) 1637 (1.5 %) 490 (3.7 %) 10 (7.1 %) 16 (7.3 %)

Scalar unit 3348 (6.3 %) 2771 (2.6 %) 1226 (9.2 %) 0 (0.0 %) 11 (5.0 %)

Total 4217 (7.9 %) 4413 (4.1 %) 1691 (12.7 %) 10 (7.1 %) 27 (12.3 %)

Multi-core design (N = 11)

Core (min.) 902 (1.7 %) 1616 (1.5 %) 417 (3.1 %) 10 (7.1 %) 16 (7.3 %)

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

Core (max.) 1001 (1.9 %) 1630 (1.5 %) 511 (3.8 %) 10 (7.1 %) 16 (7.3 %)

Scalar unit 3422 (6.4 %) 3029 (2.8 %) 1201 (9.0 %) 0 (0.0 %) 11 (5.0 %)

Total 13595 (25.6 %) 20924 (19.7 %) 5697 (42.8 %) 110 (78.6 %) 187 (85.0 %)

Single-core design, Montgomery ladder

Core 1068 (2.0 %) 1638 (1.5 %) 522 (3.9 %) 7 (5.0 %) 16 (7.3 %)

Total 1069 (2.0 %) 1894 (1.8 %) 565 (4.2 %) 7 (5.0 %) 16 (7.3 %)

requirements but also to a lower performance. Because BlockRAMs are not the
critical resource, we opted for keeping the current memory structure.

We derived hand-optimized routines for the scalar multiplication initializa-
tion and the double-and-add step using the formulas from [25]. The accumulator
is initialized with Q = (X : Z) = (1 : 0). One double-and-add step of the
Montgomery ladder takes 228 clock cycles. Because we have an either 256-bit or
246-bit scalar, a scalar multiplication involves 256 or 246 double-and-add steps,
which take exactly 58368 or 56088 clock cycles, respectively. A final conversion to
extract x from (X : Z) takes 2855 clock cycles. The total cost of scalar multiplica-
tion (without cofactor clearing) is 61235 or 58967 cycles for 256-bit and 246-bit
scalars, respectively. Cofactor clearing is computed with nine double-and-add
steps followed by an extraction of x from (X : Z) and takes 4932 cycles.

6 Results and Analysis

The three architectures from Sect. 5 were compiled with Xilinx Vivado 2015.4
to a Xilinx Zynq-7020 XC7Z020CLG484-3 FPGA, which is an all programmable
system-on-chip for embedded systems. All the given results were obtained after
place-and-route. Table 2 presents the area requirements of the designs. Table 3
collects latencies, timings and throughputs of the different operations supported
by the designs.

The single-core design requires less than 13 % of all the resources available
in the targeted Zynq-7020 FPGA. Timing closure was successful with a clock
constraint of 190 MHz (clock period of 5.25 ns). Hence, one scalar multiplication
(without cofactor clearing) takes 156.52 μs, which means 6389 operations per

FourQ on FPGA: New Hardware Speed Records 533

Table 3. Performance characteristics of the designs in a Xilinx Zynq-7020
XC7Z020CLG484-3 FPGA, excluding interfacing with the host.

Operation Latency Time (µs) Throughput (ops)

(clocks) @190 MHz @175 MHz 1×190 MHz 11×175 MHz

Initialization 14 0.07 0.08 — —

Point validation 124 0.65 0.71 — —

Cofactor clearing 1760 9.26 10.06 — —

Precomputation 4185 22.03 23.91 — —

Scalar multiplication, init 15 0.08 0.09 — —

Double-and-add 354 1.86 2.02 — —

Affine conversion 2869 15.10 16.39 — —

Mont. ladder, init. (256-bit) 12 0.06 — — —

Mont. ladder, init. (246-bit) 24 0.13 — — —

Mont. ladder, cofact. clr 4932 25.96 — — —

Mont. ladder, double-and-add 228 1.20 — — —

Mont. ladder, x-coord 2855 15.03 — — —

Scalar decomp. and recoding 1984 10.44 11.33 95766 88206

Scalar mult. (w/o cofact. clr.)a 29739 156.52 169.94 6389 64730

Scalar mult. (w/ cofact. clr.)b 31499 165.78 179.99 6032 61113

Scalar mult. (Mont. ladder)c 58967 310.35 — 3222 —
a Init.+Prec.+Scalar mult. init.+ 64 × double-and-add + affine conv.
b Init.+Cofactor clr.+Prec.+Scalar mult. init.+ 64 × double-and-add + affine conv.
c Mont. ladder, init. (246-bit) + 246 × Mont. ladder, double-and-add + Mont. ladder,
x-coord.

second. Using Vivado tools, we analyzed the power consumption of the single-
core with signal activity from post-synthesis functional simulations of ten scalar
multiplications. The power estimate was 0.359 W (with high confidence level),
and the energy required by one scalar multiplication was about 56.2μJ.

The multi-core design was implemented by selecting the largest N that fitted
in the Zynq-7020 FPGA. Since the DSP blocks are the critical resource and
there are 220 of them in the targeted FPGA, one can estimate room for up to 13
cores. However, Vivado was unable to place-and-route a multi-core design with
N = 13. In practice, the largest number of admissible cores was N = 11 (85 %
DSP utilization). Even in that case timing closure was successful only with a
clock constraint of 175 MHz (clock period of 5.714 ns). This results in a small
increase in the computing time for one scalar multiplication, which then takes
169.94 μs (without cofactor clearing). Throughput of the multi-core design is
64730 operations per second, which is more than ten times larger than the single-
core’s throughput. Hence, the multi-core design offers a significant improvement
for high-demand applications in which throughput is critical.

The single-core design based on the Montgomery ladder is significantly
smaller than the basic single-core design mainly because there is no scalar unit.
The area requirements reduce to only 7.3 % of resources (DSP blocks) at the

534 K. Järvinen et al.

Table 4. Comparison of FPGA-based designs of about 256-bit prime field ECC.

Ref. Device Curve N Resources Time T-put

(µs) (ops)

[9] Stratix-2 any 256-bit 1 9177 ALM, 96 DSP 680 1471

[11] Virtex-4 NIST P-256 1 1715 LS, 32 DSP, 11 BRAM 495 2020

[11] Virtex-4 NIST P-256 16 24574 LS, 512 DSP, 176 BRAM n/a 24700

[19] Virtex-5 NIST P-256 1 1980 LS, 7 DSP, 2 BRAM 3951 253

[20] Virtex-5 any 256-bit 1 1725 LS, 37 DSP, 10 BRAM 376 2662

[22] Virtex-2 any 256-bit 1 15755 LS, 256 MUL 3836 261

[23] Virtex-2 any 256-bit 1 3529 LS, 36 MUL 2270 441

[27] Virtex-5 NIST P-256 1 4505 LS, 16 DSP 570 1754

[29] Zynq-7020 Curve25519 1 1029 LS, 20 DSP, 2 BRAM 397 2519

[29] Zynq-7020 Curve25519 11 11277 LS, 220 DSP, 22 BRAM 397 32304

This work Zynq-7020 FourQ, Mont 1 565 LS, 16 DSP, 7 BRAM 310 3222

This work Zynq-7020 FourQ, End 1 1691 LS, 27 DSP, 10 BRAM 157 6389

This work Zynq-7020 FourQ, End 11 5697 LS, 187 DSP, 110 BRAM 170 64730

expense of an increase in the computing time of scalar multiplication, which
in this case takes 310.35 μs (with a 246-bit scalar). Throughput becomes 3222
operations per second, which is about half of the single-core design with fast
endomorphisms.

Table 4 compares our implementations with different FPGA-based designs
for prime field ECC with approximately 128 bits of security. The large variety
of implementation platforms (also from different vendors), elliptic curves and
design features (e.g., inclusion of side-channel countermeasures or support for
multiple primes) make a fair comparison extremely difficult. Nevertheless, the
table reveals that all of our designs compute scalar multiplications faster (in
terms of computation time) than any other published FPGA-based designs.

The most straightforward comparison can be done against Sasdrich and
Güneysu’s implementations using Curve25519 [29] (cases without DPA counter-
measures) because the designs use the same FPGA and share several similarities
in terms of optimization goals and approach. Our single-core architecture is 2.67
times faster in latency and 2.54 times faster in computation time and through-
put. In terms of DSP blocks (the critical resource), our architecture requires 27
and [29] requires 20. Therefore, our implementation has about 1.88 times better
speed-area ratio than [29]. In the case of the multi-core architecture, we obtain a
throughput that is 2 times larger than that from [29]. This speedup is achieved
despite the fact that the maximum clock frequency dropped to 175 MHz in our
case and we were unable to utilize all of the DSP blocks because the place-and-
route failed; Sasdrich and Güneysu [29] reported results with 100 % utilization
with no reduction in clock frequency, without providing a technical justification.

Even the variant without endomorphisms is faster than the design from [29].
In this case, the speedup comes from the use of a different architecture and a

FourQ on FPGA: New Hardware Speed Records 535

simpler arithmetic in Fp2 over a Mersenne prime; the simpler inversion alone
saves more than 10000 clock cycles. Our architecture computes scalar multipli-
cations on FourQ with 1.35 times faster latency compared to [29], but because
of the lower clock frequency, throughput and computation time are only 1.28
times faster. These results showcase FourQ’s great performance even when endo-
morphisms are not used (e.g., in some applications with very strict memory
constraints).

7 Conclusions

We presented three FPGA designs for the recently proposed elliptic curve FourQ.
These architectures are able to compute one scalar multiplication in only 157μs
or, alternatively, with a maximum throughput of up to 64730 operations per sec-
ond by applying parallel processing in a single Zynq-7020 FPGA. The designs
are the fastest FPGA implementations of elliptic curve cryptography over large
prime characteristic fields at the 128-bit security level. This extends the soft-
ware results from [6] by showing that FourQ also offers significant speedups in
hardware when compared to other elliptic curves with similar strength such as
Curve25519 or NIST P-256.

Our designs are inherently protected against SSCA and timing attacks.
Recent horizontal attacks (such as horizontal collision correlations [3]) can break
SSCA-protected implementations by exploiting leakage from partial multiplica-
tions. Our designs compute these operations with a large 64-bit word size in
a highly pipelined and parallel fashion. Nevertheless, resistance against these
attacks, and other attacks that apply to scenarios in which an attacker can
exploit traces from multiple scalar multiplications (e.g., differential power analy-
sis), require further analysis. Future work involves the inclusion of strong coun-
termeasures against such attacks.

Acknowledgments. Kimmo Järvinen’s work was supported in part by the Intel
Institute for Collaborative Research in Secure Computing.

Reza Azarderakhsh’s work was supported by the National Science Foundation
under award No. CNS-1464118 and and by the US Army Research Laboratory under
award No. W911NF-16-1-0204-(68023-CS). The views and conclusions contained in this
document are those of the authors and should not be interpreted as representing the
official policies, either expressed or implied, of the U.S. Army Research Laboratory, or
the U.S. Government. The U.S. Government is authorized to reproduce and distribute
reprints for Government purposes notwithstanding any copyright notation hereon.

536 K. Järvinen et al.

References

1. Azarderakhsh, R., Reyhani-Masoleh, A.: Efficient FPGA implementations of point
multiplication on binary Edwards and generalized Hessian curves using Gaussian
normal basis. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 20(8), 1453–1466
(2012)

2. Azarderakhsh, R., Reyhani-Masoleh, A.: Parallel and high-speed computations of
elliptic curve cryptography using hybrid-double multipliers. IEEE Trans. Parallel
Distrib. Syst. 26(6), 1668–1677 (2015)

3. Bauer, A., Jaulmes, E., Prouff, E., Reinhard, J.R., Wild, J.: Horizontal collision
correlation attack on elliptic curves. Crypt. Commun. 7(1), 91–119 (2015)

4. Bernstein, D.J., Birkner, P., Joye, M., Lange, T., Peters, C.: Twisted Edwards
curves. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 389–
405. Springer, Heidelberg (2008)

5. Bernstein, D.J.: Curve25519: new Diffie-Hellman speed records. In: Yung, M.,
Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 207–
228. Springer, Heidelberg (2006)

6. Costello, C., Longa, P.: FourQ: four-dimensional decompositions on a Q-curve over
the Mersenne prime. In: Iwata, T., et al. (eds.) ASIACRYPT 2015. LNCS, vol.
9452, pp. 214–235. Springer, Heidelberg (2015). https://eprint.iacr.org/2015/565

7. Faz-Hernández, A., Longa, P., Sánchez, A.H.: Efficient and secure algorithms for
GLV-based scalar multiplication and their implementation on GLV-GLS curves
(extended version). J. Cryptographic Eng. 5(1), 31–52 (2015)

8. Gallant, R.P., Lambert, R.J., Vanstone, S.A.: Faster point multiplication on elliptic
curves with efficient endomorphisms. In: Kilian, J. (ed.) CRYPTO 2001. LNCS,
vol. 2139, pp. 190–200. Springer, Heidelberg (2001)

9. Guillermin, N.: A high speed coprocessor for elliptic curve scalar multiplications
over Fp. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp.
48–64. Springer, Heidelberg (2010)

10. Guillevic, A., Ionica, S.: Four-dimensional GLV via the Weil restriction. In: Sako,
K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 79–96.
Springer, Heidelberg (2013)

11. Güneysu, T., Paar, C.: Ultra high performance ECC over NIST primes on com-
mercial FPGAs. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154,
pp. 62–78. Springer, Heidelberg (2008)

12. Hisil, H., Wong, K.K.-H., Carter, G., Dawson, E.: Twisted Edwards curves revis-
ited. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 326–343.
Springer, Heidelberg (2008)

13. Järvinen, K., Skyttä, J.: On parallelization of high-speed processors for elliptic
curve cryptography. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 16(9),
1162–1175 (2008)

14. Järvinen, K., Skyttä, J.: Optimized FPGA-based elliptic curve cryptography
processor for high-speed applications. Integr. VLSI J. 44(4), 270–279 (2011)

15. Koblitz, N.: Elliptic curve cryptosystems. Math. Comput. 48, 203–209 (1987)
16. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,

and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

17. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

https://eprint.iacr.org/2015/565

FourQ on FPGA: New Hardware Speed Records 537

18. Loi, K.C.C., Ko, S.B.: High performance scalable elliptic curve cryptosystem
processor for Koblitz curves. Microprocess. Microsyst. 37(4–5), 394–406 (2013)

19. Loi, K.C.C., Ko, S.B.: Scalable elliptic curve cryptosystem FPGA processor for
NIST prime curves. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 23(11),
2753–2756 (2015)

20. Ma, Y., Liu, Z., Pan, W., Jing, J.: A high-speed elliptic curve cryptographic proces-
sor for generic curves over GF(p). In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC
2013. LNCS, vol. 8282, pp. 421–437. Springer, Heidelberg (2014)

21. McIvor, C.J., McLoone, M., McCanny, J.V.: An FPGA elliptic curve cryptographic
accelerator over GF (p). Proc. Irish Signals Syst. Conf. 2004, 589–594 (2004)

22. McIvor, C.J., McLoone, M., McCanny, J.V.: Hardware elliptic curve cryptographic
processor over GF (p). IEEE Trans. Circuits Syst. I Regul. Pap. 55(9), 1946–1957
(2006)

23. Mentens, N.: Secure and efficient coprocessor design for cryptographic applications
on FPGAs. Ph.D. thesis, Katholieke Universiteit Leuven, July 2007

24. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)

25. Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization.
Math. Comput. 48(177), 243–264 (1987)

26. Rebeiro, C., Roy, S.S., Mukhopadhyay, D.: Pushing the limits of high-speed
GF (2m) elliptic curve scalar multiplication on FPGAs. In: Prouff, E., Schaumont,
P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 494–511. Springer, Heidelberg (2012)

27. Roy, D.B., Mukhopadhyay, D., Izumi, M., Takahashi, J.: Tile before multiplication:
an efficient strategy to optimize DSP multiplier for accelerating prime field ECC for
NIST curves. In: Proceedings of the 51st Annual Design Automation Conference–
DAC 2014, pp. 177: 1–177: 6. ACM (2014)

28. Sasdrich, P., Güneysu, T.: Efficient elliptic-curve cryptography using Curve25519
on reconfigurable devices. In: Goehringer, D., Santambrogio, M.D., Cardoso,
J.M.P., Bertels, K. (eds.) ARC 2014. LNCS, vol. 8405, pp. 25–36. Springer, Hei-
delberg (2014)

29. Sasdrich, P., Güneysu, T.: Implementing Curve25519 for side-channel-protected
elliptic curve cryptography. ACM Trans. Reconfigurable Technol. Syst. 9(1),
(2015). Article 3

30. Smith, B.: Families of fast elliptic curves from Q-curves. In: Sako, K., Sarkar, P.
(eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 61–78. Springer, Heidelberg
(2013)

31. Sutter, G.D., Deschamps, J.P., Imaña, J.L.: Efficient elliptic curve point multi-
plication using digit-serial binary field operations. IEEE Trans. Industr. Electron.
60(1), 217–225 (2013)

A High Throughput/Gate AES Hardware
Architecture by Compressing Encryption

and Decryption Datapaths

— Toward Efficient CBC-Mode Implementation

Rei Ueno1(B), Sumio Morioka2, Naofumi Homma1, and Takafumi Aoki1

1 Tohoku University, Aramaki Aza Aoba 6–6–05, Aoba-ku,
Sendai-shi 980-8579, Japan

ueno@aoki.ecei.tohoku.ac.jp
2 Central Research Laboratories, NEC Corporation, Athene, Odyssey Business Park,

West End Road, South Ruislip, Middlesex HA4 6QE, UK

Abstract. This paper proposes a highly efficient AES hardware archi-
tecture that supports both encryption and decryption for the CBC mode.
Some conventional AES architectures employ pipelining techniques to
enhance the throughput and efficiency. However, such pipelined architec-
tures are frequently unfit because many practical cryptographic applica-
tions work in the CBC mode, where block-wise parallelism is not avail-
able for encryption. In this paper, we present an efficient AES encryp-
tion/decryption hardware design suitable for such block-chaining modes.
In particular, new operation-reordering and register-retiming techniques
allow us to unify the inversion circuits for encryption and decryption
(i.e., SubBytes and InvSubBytes) without any delay overhead. A new
unification technique for linear mappings further reduces both the area
and critical delay in total. Our design employs a common loop architec-
ture and can therefore efficiently perform even in the CBC mode. We
also present a shared key scheduling datapath that can work on-the-fly
in the proposed architecture. To the best of our knowledge, the proposed
architecture has the shortest critical path delay and is the most effi-
cient in terms of throughput per area among conventional AES encryp-
tion/decryption architectures with tower-field S-boxes. We evaluate the
performance of the proposed and some conventional datapaths by logic
synthesis results with the TSMC 65-nm standard-cell library and Nan-
Gate 45- and 15-nm open-cell libraries. As a result, we confirm that our
proposed architecture achieves approximately 53–72 % higher efficiency
(i.e., a higher bps/GE) than any other conventional counterpart.

Keywords: AES · Hardware architectures · Unified encryption/
decryption architecture · CBC mode

c© International Association for Cryptologic Research 2016
B. Gierlichs and A.Y. Poschmann (Eds.): CHES 2016, LNCS 9813, pp. 538–558, 2016.
DOI: 10.1007/978-3-662-53140-2 26

A High Throughput/Gate AES Hardware Architecture 539

1 Introduction

Cryptographic applications have been essential for many systems with secure
communications, authentication, and digital signatures. In accordance with the
rapid increase in Internet of Things (IoT) applications, many cryptographic
algorithms are required to be implemented in resource-constrained devices and
embedded systems with a high throughput and efficiency. Since 2001, many hard-
ware implementations for AES have been proposed and evaluated for CMOS logic
technologies. Studies of AES design are important from both practical and aca-
demic perspectives since AES employs an SPN structure and the major compo-
nents (i.e., an 8-bit S-box and permutation used in ShiftRows and MixColumns)
followed by many other security primitives.

AES encryption and decryption are commonly used in block-chaining modes
such as CBC, CMAC, and CCM (e.g., for SSL/TLS, IEEE802.11 wireless
LAN, and IEEE802.15.4 wireless sensor networks). Therefore, AES architectures
that efficiently perform both encryption and decryption in the above block-
chaining modes are highly demanded. However, many conventional architec-
tures employ pipelining techniques to enhance the throughput and efficiency
[13,15,17], although such block-wise parallelism is not available in the above
block-chaining modes. For example, the highest throughput of 53 Gbps was
achieved in the previous best encryption/decryption architecture [17], but it
only worked in the ECB mode. In addition, these previous studies assumed
offline key scheduling owing to the difficulty of on-the-fly scheduling. On-the-
fly key scheduling should be implemented in most resource-constrained devices
because an offline key scheduling implementation requires additional memory to
store expanded round keys. Thus, it is valuable to investigate an efficient AES
architecture with on-the-fly key scheduling without any pipelining technique.

In this paper, we present a new round-based AES architecture for both
encryption and decryption with on-the-fly key scheduling, which achieves the
lowest critical path delay (the least number of serially connected gates in the
critical path) with less area overhead compared to conventional architectures
with tower-field S-boxes. Our architecture employs new operation-reordering
and register-retiming techniques to unify the inversion circuits for encryption
and decryption without any selectors. In addition, these techniques make it pos-
sible to unify the affine transformation and linear mappings (i.e., the isomor-
phism and constant multiplications) to reduce the total number of logic gates.
The proposed and conventional AES encryption/decryption datapaths are syn-
thesized and evaluated with the TSMC standard-cell and NanGate open-cell
libraries. The evaluation results show that our architecture can perform both
(CBC-) encryption and decryption more efficiently. For example, the through-
put per gate of the proposed architecture in the NanGate 15-nm process is 72 %
larger than that of the best conventional architecture.

The rest of this paper is organized as follows: Sect. 2 introduces related works
on AES hardware architectures, especially those with round-based encryption
and decryption. Section 3 presents a new AES hardware architecture based on
our operation-reordering, register-retiming, and affine-transformation unification

540 R. Ueno et al.

techniques. Section 4 evaluates the proposed datapath by the logic synthesis com-
pared with conventional round-based datapaths. Section 5 discusses variations of
the proposed architecture. Finally, Sect. 6 contains our conclusion.

2 Related Works

2.1 Unified AES Datapath for Encryption and Decryption

Architectures that perform one round of encryption or decryption per clock cycle
without pipelining are the most typical for AES design and are called round-
based architectures in this paper. Round-based architectures can be implemented
more efficiently in terms of throughput per area than other architectures by
utilizing the inherent parallelism of symmetric key ciphers. For example, the
byte-serial architecture [16,18] is intended for the most compact and low-power
implementations such as in RFID but is not intended for the high throughput
and efficiency. In contrast, round-based architectures are suitable for a high
throughput per gate, which leads to a low-energy implementation [29].

To design such round-based encryption/decryption architectures in an effi-
cient manner, we consider how to unify the resource-consuming components such
as the inversion circuits in SubBytes/InvSubBytes for the encryption and decryp-
tion datapaths. There are two conventional approaches for designing such unified
datapaths. The first approach is to place two distinct datapaths for encryption
and decryption and select one of the datapaths with multiplexers as in [15].
Figure 1 shows an overview of the datapath flow in [15], where the inversion
circuit is shared by both paths, and additional multiplexers are used at the
input and output of the encryption and decryption paths. In [15], a reordered
decryption operation was introduced as shown in Fig. 2. The intermediate value
is stored in a register after InvMixColumns instead of AddRoundKey. Such reg-
ister retiming was suitable for pipelined architectures. The main drawbacks of
such approaches are the false critical path delay and the required area and delay
overheads caused by three multiplexers. The critical path of the datapath in
Fig. 1 is denoted in bold, which would never be active because it passes from
the decryption path to the encryption path. This false critical path reduces the
maximum operation frequency owing to logic synthesis due to the false longest
logic chain. The overhead caused by the multiplexers is also nonnegligible for
common standard-cell-based designs.

The second approach is to unify the circuits of the functions SubBytes,
ShiftRows, and MixColumns with their inverse functions, respectively. Figure 3
shows the datapath in [29] where encryption and decryption paths are com-
bined using the second approach, where the reordering technique is given in
Fig. 4. The order of the decryption operations is changed to be the same as
that of the encryption operations. Note that the order of (Inv)SubBytes and
(Inv)ShiftRows can be changed without any overhead, and the datapath in [29]
changes the order of SubBytes and ShiftRows in the encryption. The reordering
of AddRoundKey and InvMixColumns utilizes the linearity of InvMixColumns
as follows: MC−1(Mr + Kr) = MC−1(Mr) + MC−1(Kr), where MC−1 is

A High Throughput/Gate AES Hardware Architecture 541

Fig. 1. Conventional parallel datapath
in [15].

K9

Kr

K10

Kr

K0

K10

(a) (b)

Fig. 2. Register-retiming techniques in
[15]: (a) original and (b) resulting decryp-
tion flows.

the function InvMixColumns, and Mr and Kr are the intermediate value after
InvShiftRows and the round key at the r-th round, respectively. Here, InvMix-
Columns requires the round keys, whereas MixColumns and InvMixColumns
can be unified to reduce the area. Therefore, this type of architecture requires
an additional InvMixColumns to compute MC−1(Kr) for decryption. In addi-
tion, the false path and multiplexer overhead exist because each function and
its inverse function are implemented in a partially serial manner with multiplex-
ers like SubBytes and InvSubBytes in Fig. 1, where the critical path consists of
Affine, Inversion, InvAffine, and an additional multiplexer.

The architecture in [17] employs a reordering technique similar to [29]. The
major difference is the intermediate value stored in the register. The architecture
in [14] also employs the same approach that combines the encryption and decryp-
tion datapaths, but does not change the order of AddRoundKey and InvMix-
Columns to remove InvMixColumns to compute MC−1(Kr). As a result, an
additional selector is required to unify MixColumns and InvMixColumns.

542 R. Ueno et al.

Kr

MC-1(Kr)

Fig. 3. Conventional datapath in [29],
where encryption and decryption paths
are combined.

Kr

K

K10

MC-1(Kr)

K

K10

(a) (b)

Fig. 4. Reordering technique in [29]:
decryption flows (a) before and (b) after
reordering.

As described above, sharing inversion circuits is essential for designing effi-
cient AES hardware. Although a hardware T-box architecture such as that in
[20] is also useful for a high-throughput implementation, it is not applicable to
the above shared datapath owing to the lack of sharable components between
the encryption and decryption paths.

2.2 Inversion Circuit Design and Tower-Field Arithmetic

The design of the inversion circuit used in (Inv)SubBytes has a significant impact
on the performance of AES implementations. Many inversion circuit designs have
been proposed. There are two major approaches using direct mapping and tower-
field arithmetic. Inversion circuits based on direct mapping such as table-lookup,
Binary Decision Diagram (BDD), and Positive-Polarity Reed-Muller (PPRM)
[15,19,20] are faster but larger than those based on a tower field. On the other
hand, tower-field arithmetic enable us to design more compact and more area-
time efficient inversion circuits in comparison with direct mapping. Therefore,
we focus on inversion circuits based on tower-field arithmetic in this paper.

The performance of tower-field-based inversion circuits varies with the field
towering and Galois field (GF) representation. After the introduction of tower-
field inversion over GF (((22)2)2) based on a polynomial basis (PB) by Satoh
et al. [29], Canright reduced the gate count using a normal basis-(NB-)based
GF (((22)2)2), which has been known as the smallest for a long time [7], Nogami
et al. showed that a mixture of a PB and an NB was useful for a more efficient
design [23]. On the other hand, Rudra et al., Joen et al., and Mathew et al.

A High Throughput/Gate AES Hardware Architecture 543

designed inversion circuits using PB-based GF ((24)2), which have a smaller criti-
cal path delay than those based on GF (((22)2)2) [12,17,27]. Nekado et al. showed
that a redundantly represented basis (RRB) was useful for an efficient design
[21]. Recently, Ueno et al. designed an inversion circuit based on the combination
of an NB, an RRB, and a polynomial ring representation (PRR), which is known
as the most area-time efficient inversion [31]. In addition, a logic minimization
technique was applied to Canright’s S-box, which resulted in a more compact
S-box [6].

To embed such a tower-field-based inversion circuit in AES hardware, an iso-
morphic mapping between the AES field and the tower field is required because
the inversion and MixColumns are performed over the AES field (i.e., PB-based
GF (28) with an irreducible polynomial x8+x4+x3+x+1). Typically, the input
into the inversion circuit (in the AES field) is initially mapped to the tower field
by the isomorphic mapping. After the inversion operation over the tower field, an
inverse isomorphic mapping (and affine transformation) are applied [29]. On the
other hand, some architectures perform all of the AES subfunctions (i.e., Sub-
Bytes as well as ShiftRows, MixColumns, and AddRoundKey) over the tower
field, where isomorphic mapping and its inverse mappings are performed at the
timings of the data (i.e., plaintext and ciphertext) input and output, respectively
[10,16–18,27]. In other words, the cost of field conversion is suppressed when the
conversion is performed only once during encryption or decryption. However, the
cost of constant multiplications in MixColumns over a tower field is worse than
that over the AES field while inversion is efficiently performed over the tower
field. More precisely, in tower-field architectures, such linear mappings including
constant multiplications usually require 3TXOR delay, where TXOR indicates the
delay of an XOR gate [21]. The XOR gate count used in (Inv)MixColumns over
a tower field is also worse than that over AES field.

3 Proposed Architecture

This section presents a new round-based AES architecture that unifies the
encryption and decryption paths in an efficient manner. The key ideas for reduc-
ing the critical path delay are summarized as follows: (1) to merge linear map-
pings such as MixColumns and isomorphic mappings as much as possible by
reordering subfunctions, (2) to minimize the number of selectors to unify the
encryption and decryption paths by the above merging and a register retiming,
and (3) to perform isomorphic mapping and its inverse mappings only once in
the pre- and post-round datapaths. We can reduce the number of linear map-
pings to at most one for each round operation as the effect of (1). Moreover,
we can reduce the number of selectors to only one (4-to-1 multiplexer) in the
unified datapath as the effect of (2) while the inversion circuit is shared by the
encryption and decryption paths. From the idea of (3), we can remove the iso-
morphic mapping and its inverse mappings from the critical path. Figure 5 shows
the overall architecture that consists of the round function and key scheduling
parts. Our architecture performs all of the subfunctions over a tower field for

544 R. Ueno et al.

GF(28) GF((24)2)

Fig. 5. Overall architecture of proposed AES hardware.

both the round function and key scheduling parts and therefore applies iso-
morphic mappings between the AES and tower fields in the datapaths of the
pre- and post-round operations, which are represented as the blocks “Pre-round
datapath” and “Post-round datapath” in Fig. 5. “Round datapath” performs
one round operation for either encryption or decryption.

3.1 Round Function Part

The proposed architecture employs a unified datapath for encryption and decryp-
tion as in [15] and applies new operation-reordering and register-retiming tech-
niques to address the conventional issues of a false critical path and additional
multiplexers. Using our operation-reordering technique and then merging linear
mappings, we can reduce the number of linear mappings on the critical path
of the round datapath to at most one. Our reordering technique also allows to
unify the linear mappings and affine transformation in a round. The unifica-
tion of these mappings can drastically reduce the critical path delay and the
XOR-gate count of linear mappings, even in a tower-field architecture.

The new operation reordering is derived as follows. First, the original round
operation of AES encryption is represented by the following equation:

m
(r+1)
i,j = u−iS(m

(r)
0,i+j) + u1−iS(m

(r)
1,i+j) + u2−iS(m

(r)
2,i+j) + u3−iS(m

(r)
3,i+j) + k

(r)
i,j

=
3∑

e=0

(ue−iS(m
(r)
e,i+j)) + k

(r)
i,j , (1)

where m
(r)
i,j and k

(r)
i,j are the i-th row and j-th column intermediate value and

round key at the r-th round, except for the final round. Note that the sub-
scripts of each variable are a member of Z/4Z. The function S indicates the 8-bit
S-box, and u0, u1, u2, and u3 are the coefficients of the matrix of MixColumns

A High Throughput/Gate AES Hardware Architecture 545

and respectively given by β, β + 1, 1, and 1, where β is the indeterminate of
GF (28) satisfying β8 + β4 + β3 + β + 1 = 0. We can rewrite Eq. (1) by decom-
posing S into inversion and affine transformation as follows:

m
(r+1)
i,j =

3∑

e=0

(ue−i(A(
(
m

(r)
e,i+j

)−1

) + c)) + k
(r)
i,j , (2)

where A is the linear mapping of the affine transformation, and c (= β6+β5+β+
1) is a constant. In the case of tower-field architectures, Eq. (2) is represented by

m
(r+1)
i,j =

3∑

e=0

(ue−i(A(Δ′(
(
Δ(m(r)

e,i+j)
)−1

)) + c)) + k
(r)
i,j , (3)

where Δ is the isomorphic mapping from the AES field to a tower field, and Δ′

is the inverse isomorphic mapping.
The linear mappings, which include an isomorphism and constant multipli-

cations over the GF, are performed by the constant multiplication of the corre-
sponding matrix over GF (2). Therefore, we can merge such mappings to reduce
the critical path delay and the number of XOR gates. In addition, we consider
the variable d

(r)
i,j of the tower field derived from m

(r)
i,j . Substituting m

(r)
i,j with

Δ′(d(r)i,j) (= m
(r)
i,j), we can merge the linear mappings as follows:

d
(r+1)
i,j =

3∑

e=0

(Ue−i(
(
d
(r)
e,i+j

)−1

)) + Δ(c) + Δ(k(r)
i,j), (4)

where Ue(x) = Δ(ue(A(Δ′(x)))). Note that an arbitrary linear mapping L satis-
fies L(a + b) = L(a) + L(b). Thus, the linear mappings of a round in Eq. (4) can
be merged into at most one, even with a tower-field S-box, whereas the linear
mappings in Eq. (3) cannot be.

On the other hand, the corresponding equation for AES decryption with
tower-field arithmetic is given by

d
(r−1)
i,j =

3∑

e=0

(Δ(ve−i(Δ′(
(
Δ(A′(Δ′(d(r)e,j−i))) + Δ(c′)

)−1

+ Δ(k(r)
e,j−i))))), (5)

where A′ indicates the linear mapping of the inverse affine transformation. The
coefficients v0, v1, v2, and v3 are respectively given by β3+β2+β, β3+β+1, β3+
β2+1, and β3+1, and c′ (= β2+1) is a constant. Here, the linear mappings cannot
be merged into one because they are performed both before and after the inver-
sion operation. In addition, if we construct an encryption/decryption datapath
based on Eqs. (4) and (5), the inversion circuit cannot be shared by encryption
and decryption without a selector because the timings of the inversion operations
are different from each other. Therefore, we consider a register retiming to store
the intermediate value s

(r)
i,j given after the inverse affine transformation over the

546 R. Ueno et al.

Kr

Kr

K0

K10

K0

K10

(a) (b)

(i)

Kr

K

K10

Kr

K

K10

(a) (b)

(ii)

Fig. 6. Proposed (i) encryption and (ii) decryption flows (a) before and (b) after
reordering and register-retiming.

tower-field. Here, s
(r)
i,j is given by s

(r)
i,j = Δ(A′(Δ′(d(r)i,j))) + Δ(c′). In the decryp-

tion, we store s
(r)
i,j in the data register instead of d

(r)
i,j . Using s

(r)
i,j and s

(r−1)
i,j , we

rewrite Eq. (5) as follows:

s
(r−1)
i,j =

3∑

e=0

(Ve−i(
(
s
(r)
e,j−i

)−1

+ Δ(k(r)
e,j−i))) + Δ(c′), (6)

where Ve(x) = Δ(A′(ve(Δ′(x)))).
Our round datapath is constructed with a minimal critical path delay accord-

ing to Eqs. (4) and (6). Here, we further reorder the sequence of operations
(i.e., subfunctions) to share inversion circuits without additional selectors and
to unify the linear mappings. Figure 6 shows the proposed reordering technique.
We first decompose SubBytes into the inversion and (Inv)Affine. In the encryp-
tion, Affine, MixColumns, and AddRoundKey can be merged by exchanging
Affine and ShiftRows. In the decryption, the inversion circuit is located at the
beginning of the round by exchanging the inversion and InvShiftRows. Thus,
additional selectors for sharing the inversion circuit are not required thanks to
the operation-reordering and register-retiming techniques. This is because both
inversion operations are performed at the beginning of the round, which means
that the data register output can be directly connected to the inversion circuit.

Figure 7 illustrates the proposed round function datapath with the unification
of linear mappings. Our architecture employs only one 128-bit 4-in-1 multiplexer,
whereas conventional ones employ several 128-bit multiplexers. For example, the

A High Throughput/Gate AES Hardware Architecture 547

-1

GF(28) GF((24)2)

GF((24)2) GF((28)

Fig. 7. Proposed round function part.

datapath in [14] employs seven 128-bit multiplexers1. Fewer selectors can reduce
the critical path delay and circuit area and solve the false critical path problem.
Unified affine and Unified affine−1 in Fig. 7 perform the unified linear mappings
(i.e., U0, . . . , U3 and V0, . . . , V3) and constant addition. The number of linear
mappings on the critical path is at most one in our architecture, whereas that
of the conventional architectures is not. We can also suppress the overhead of
constant multiplication over the tower field by the unification. Adder arrays in
Fig. 7 consist of four 4-input 8-bit adders in MixColumns or InvMixColumns.
In the encryption, the factoring technique for MixColumns and AddRoundKey
[21] is available for Unified affine, which makes the circuit area smaller without
a delay overhead. As a result, the data width between Unified affine and Adder
array in Encryption path is reduced from 512 to 256 bits because the calculations
of U1 and U3 are not performed in Encryption path. In addition, Adder array
and AddRoundKey are unified in Encryption path because both of them are
composed of 8-bit adders2. On the other hand, since there is no factoring tech-
nique for InvMixColumns without delay overheads, the data width from Unified
affine−1 to Adder array in Decryption path is 512 bits. Finally, an inactive path
can be disabled using a demultiplexer since our datapath is fully parallel after
the inversion circuit. Thanks to the disabling, a multiplexer and AddRoundKey

1 The selectors in SubBytes/InvSubBytes are included in the seven multiplexers.
2 Some architectures such as [14,29] unify AddInitialKey and AddRoundKeys. We

did not unify them to avoid increasing the number of selectors.

548 R. Ueno et al.

are unified as Bit-parallel XOR. (The addition of Δ(c) in Unified affine should
be active only when encryption.) In addition, the demultiplexer would suppress
power consumption due to a dynamic hazard. Although tower-field inversion cir-
cuits are known to be power-consuming owing to dynamic hazards [19], these
hazards can be terminated at the input of the inactive path.

Our datapath employs the inversion circuit presented in [31] because it has
the highest area-time efficiency among inversion circuits including one using a
logic minimization technique [6]. We can merge the isomorphic mappings in
order to reduce the linear function on the round datapath to only one, even if
the inversion circuit has different GF representations at the input and output.
Since the output is given by an RRB, the data width from Inversion to Uni-
fied affine (or Unified affine−1) is given by 160 bits. However, AddRoundKey
in the decryption path and Bit-parallel XOR in the post-round datapath are
implemented respectively by only 128 XOR gates because the NB used as the
input is equal to the reduced version of the RRB. In addition, a 1:2 DeMUX is
implemented with NOR gates thanks to the redundancy, whereas nonredundant
representations require AND gates.

3.2 Key Scheduling Part

The on-the-fly key scheduling part is shared by the encryption and decryption
processes. For the encryption, the key scheduling part first stores the initial key
in the initial key register (in Fig. 5) and then generates the round keys during
the following clock cycles. For the decryption, the final round key should be
calculated from the initial key and stored in the initial key register in advance.
The key scheduling part then generates the round keys in the reverse order
by the round key generator (in Fig. 5). However, conventional key scheduling
datapaths such those as in [14,29] are not applicable to our round datapath
because they have a loop with a false path and/or a longer true critical path
than our datapath.

To address the above issue, we introduce a new architecture for the key
scheduling datapath. For on-the-fly implementation, the subkeys are calculated
for each of the four subkeys (i.e., 128 bits) in a clock cycle. Therefore, the on-
the-fly key scheduling for the encryption is expressed as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

k
(r+1)
0 = k

(r)
0 + KeyEx(k(r)

3)
k
(r+1)
1 = k

(r)
0 + k

(r)
1 + KeyEx(k(r)

3)
k
(r+1)
2 = k

(r)
0 + k

(r)
1 + k

(r)
2 + KeyEx(k(r)

3)
k
(r+1)
3 = k

(r)
0 + k

(r)
1 + k

(r)
2 + k

(r)
3 + KeyEx(k(r)

3)

, (7)

where k
(r)
0 , k

(r)
1 , k

(r)
2 , and k

(r)
3 are a 32-bit subkey at the r-th round and KeyEx is

the key expansion function that consists of a round constant addition, RotWord,
and SubWord. The inverse key scheduling for the decryption is represented by

A High Throughput/Gate AES Hardware Architecture 549

GF(28) GF((24)2)

GF(28) GF((24)2)
k0(r) k1(r) k2(r) k3(r)

k0(r-1)/k0(r+1)

k1(r-1)

k1(r+1)

k2(r-1)

k2(r+1)

k3(r-1)

k3(r+1)

Fig. 8. Proposed key scheduling part.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

k
(r−1)
0 = k

(r)
0 + KeyEx(k(r)

2 + k
(r)
3)

k
(r−1)
1 = k

(r)
0 + k

(r)
1

k
(r−1)
2 = k

(r)
1 + k

(r)
2

k
(r−1)
3 = k

(r)
2 + k

(r)
3

. (8)

Figure 8 shows the proposed key scheduling datapath architecture, where the
KeyEx components are unified for encryption anddecryption.Note here thatmost
of adders (i.e., XOR gates) for computing k

(r+1)
1 , k

(r+1)
2 , and k

(r+1)
3 should be non-

integrated to make the critical path shorter than that of the round function part.
The input key is initially mapped to the tower field, and all of the computations
(including AddRoundKey) are performed over the tower field. The ENC/DEC sig-
nal controls the input to RotWord and SubWord using a 32-bit AND gate. The
upper 2-in-1 multiplexer selects an initial key or a final round key as the input to

550 R. Ueno et al.

Initial key register, the middle 2-in-1 multiplexer selects a key stored in Initial key
register or a round key as the input to Round key generator, and the lower 2-in-1
multiplexers select encryption or decryption path. The round constant addition
is performed separately from RotWord and SubWord to reduce the critical path
delay. As a result, the critical path delay of the key scheduling part becomes shorter
than that of the round function part.

4 Performance Evaluation

Tables 1 and 2 summarize the synthesis results of the proposed AES encryp-
tion/decryption architecture by Synopsys Design Compiler (Version D2010-3)
with the TSMC 65-nm and NanGate 45- and 15-nm standard-cell libraries [2,3]
under the worst-case conditions, where Area indicates the circuit area estimated
on the basis of a two-way NAND equivalent gate size (i.e., gate equivalents
(GEs)); Latency indicates the latency for encryption, which is estimated by the
circuit path delay of the datapath under the worst low condition; Max. freq. indi-
cates the maximum operation frequency obtained from the critical path delay;
Throughput indicates the throughput at the maximum operation frequency; and
Efficiency indicates the throughput per area, which corresponds to the product
of the area and latency in this nonpipelined design3. To perform a practical
performance comparison, an area optimization (which maximizes the effort of
minimizing the number of gates without flattening the description) was applied
in Table 1, and an area-speed optimization (where an asymptotical search with a
set of timing constraints was performed after the area optimization) was applied
in Table 2.

In these tables, the conventional representative datapaths [14,15,17,29] were
also synthesized using the same optimization conditions. The source codes for
these syntheses were described by the authors referring to [14,15,17,29], except
for the source codes of Satoh’s and Canright’s S-boxes in [7,29] that can be
obtained from their websites [1,8]. For a fair comparison, the datapaths of [15,17]
were adjusted to the round-based nonpipelined architecture corresponding to
the proposed datapath. Note that only the inversion circuit over a PB-based
GF ((24)2) in [17] was not described faithfully according to the paper4. Latency
and Throughput were calculated assuming that the datapath of [15] requires 10
clock cycles to perform each encryption or decryption and the others require 11

3 Design Compiler generated a static power consumption report for each architecture.
However, the report dose not consider the effect of glitches while tower-field inversion
circuits are known to include non-trivial glitches [19]. Therefore, we did not mention
the power consumption report to avoid misleading.

4 According to [17], the GF (24) inversion in the circuit can be implemented with a
TXOR + 3TNAND delay, where TXOR and TNAND are the delays of the XOR and
NAND gates, respectively. However, there is no detailed description to realize such
a circuit. Therefore, using the best of our knowledge, we described the circuit by a
direct mapping based on the PPRM expansion, which is an algebraic normal form
frequently used for designing GF arithmetic circuits [19,28].

A High Throughput/Gate AES Hardware Architecture 551

Table 1. Synthesis results for proposed and conventional AES hardware architectures
with area optimization

Area (GE) Latency (ns) Max. freq. (MHz) Throughput (Gbps) Efficiency

(Kbps/GE)

TSMC 65-nm

Satoh et al. [29] 13, 671.75 78.10 140.85 1.64 119.88

Lutz et al. [15] 20, 380.50 68.50 145.99 1.87 91.69

Liu et al. [14] 12, 538.75 85.25 129.03 1.50 119.75

Mathew et al. [17] 20, 639.50 97.68 112.61 1.31 63.49

This work 15, 242.75 46.97 234.19 2.73 178.78

NanGate 45-nm

Satoh et al. [29] 12, 560.99 31.57 348.43 4.05 322.78

Lutz et al. [15] 20, 000.66 20.30 492.61 6.31 315.26

Liu et al. [14] 11, 829.34 34.43 319.49 3.72 314.28

Mathew et al. [17] 17, 573.33 41.80 263.16 3.06 174.25

This work 13, 814.69 16.94 649.35 7.56 546.96

NanGate 15-nm

Satoh et al. [29] 14, 526.01 4.36 2, 524.17 29.37 2, 022.04

Lutz et al. [15] 23, 391.49 4.57 2, 185.84 25.44 1, 087.37

Liu et al. [14] 13, 847.25 4.74 2, 321.05 27.01 1, 950.46

Mathew et al. [17] 21, 361.00 5.32 2, 066.93 24.05 1, 125.95

This work 15, 468.97 2.65 4, 144.22 48.22 3, 117.44

clock cycles. This is because the initial key addition and first-round computation
are performed with one clock cycle for [15]. Area was calculated without the
initial key, round key, and data registers to compare the datapaths more clearly.
Note also that the key scheduling parts of [15,17] were implemented with the
one presented in this paper because there is no description for the key scheduling
parts. (For [15], the isomorphic mapping from GF (28) to GF ((24)2) was removed
for applying to the round function part.)

The results in Table 1 show that our datapath achieves the lowest latency
(i.e., highest throughput) compared with the conventional ones with tower-field
inversion circuits owing to the lower critical path delay. Moreover, the circuit
area is not the largest owing to fewer selectors. Note that the latency is con-
sistent with the throughput because these circuits are not pipelined. Although
all operations are translated to the tower field in our architecture, the area and
delay overheads of MixColumns and InvMixColumns are suppressed by the uni-
fication technique. In addition, even with a tower-field S-box, our architecture
has an advantage with regard to the latency over Lutz’s one with table-lookup-
based inversion, as indicated in Table 2. As a result, our architecture is more
efficient in terms of the throughput per area than any conventional architecture.
More precisely, the proposed datapath is approximately 53–72 % more efficient
than any conventional architecture under the conditions of the three CMOS
processes. The results also suggest that the proposed architecture would per-
form an AES encryption or decryption with the smallest energy. Moreover, the
cutoff of an inactive path by a demultiplexer would further reduce the power

552 R. Ueno et al.

Table 2. Synthesis results for proposed and conventional AES hardware architectures
with area-speed optimization

Area (GE) Latency (ns) Max. freq. (MHz) Throughput (Gbps) Efficiency

(Kbps/GE)

TSMC 65-nm

Satoh et al. [29] 14, 516.50 56.87 193.42 2.25 155.05

Lutz et al. [15] 22, 883.25 33.90 294.99 3.78 165.00

Liu et al. [14] 13, 970.50 60.17 182.82 2.13 152.27

Mathew et al. [17] 23, 298.49 65.45 168.07 1.96 83.94

This work 15, 807.00 34.10 322.58 3.75 237.47

NanGate 45-nm

Satoh et al. [29] 13, 386.67 24.42 450.45 5.24 391.55

Lutz et al. [15] 22, 417.01 14.40 694.44 8.89 396.52

Liu et al. [14] 12, 443.66 28.27 389.11 4.53 363.86

Mathew et al. [17] 19, 243.67 31.90 344.83 4.01 208.51

This work 14, 582.99 13.53 813.01 9.46 648.73

NanGate 15-nm

Satoh et al. [29] 16, 924.74 3.31 3, 322.26 38.66 2, 284.17

Lutz et al. [15] 25, 692.49 2.08 4, 799.85 61.44 2, 391.28

Liu et al. [14] 15, 768.43 3.65 3, 014.14 35.07 2, 224.29

Mathew et al. [17] 23, 789.48 4.03 2, 729.18 31.76 1, 334.95

This work 17, 232.00 1.80 6, 117.70 71.19 4, 131.14

consumption caused by a dynamic hazard, but this could not be evaluated by
the logic synthesis and still remains for the future study.

The performance of the architecture in [17] was relatively lower for our exper-
imental conditions because its critical path includes InvMixColumns to compute
MC−1(Kr) and therefore becomes longer than those of other designs. In addi-
tion, InvMixColumns over a tower-field is more area-consuming than that over
an AES field. This suggests that the architecture in [17] is not suitable for an on-
the-fly key scheduling implementation. The architectures in [14,29] have smaller
areas than the proposed architecture; however, our architecture has a higher
throughput. The increasing ratio of the throughput is larger than that of the
circuit area because the architectures in [14,29] use InvMixColumns to compute
MC−1(Kr) and require several additional selectors, respectively.

The above comparative evaluation was done with the proposed and some
conventional but representative datapaths. There are other previous works focus-
ing on efficiency (i.e., throughput per gate) by round-based architectures. How-
ever, such previous works do not provide a concrete implementation and/or
exhibit better performance than the abovementioned conventional datapaths.
For example, a hardware AES implementation with a short critical path was
presented in [21], which employed an RRB to reduce the critical path delay of
SubBytes/InvSubBytes and MixColumns/InvMixColumns. However, we could
not evaluate the efficiency by ourselves because of the lack of a detailed descrip-
tion. Another AES encryption/decryption architecture with a high throughput
was presented in [14]. However, the architecture had a lower throughput/area

A High Throughput/Gate AES Hardware Architecture 553

efficiency compared to the architecture in [29] according to that paper. More-
over, AES architectures that support either encryption or decryption such as in
[20,32] are not evaluated in this paper.

5 Discussion

The proposed design employs a round-based architecture without block-wise
parallelism such as pipelining. The modes of operations with block-wise paral-
lelism (e.g., the ECB and CTR modes) are also available owing to the trade-off
between the area and the throughput by pipelining [11]. A simple way to obtain
a pipelined version of the proposed architecture is to unroll the rounds and
insert pipeline registers between them. The datapath can be further pipelined
by inserting registers into the round datapath. The proposed datapath can be
efficiently pipelined by placing the pipeline register at the output of the inversion
with a good delay balance between the inversion and the following circuit. For
example, the synthesis results for the proposed datapath using the area-speed
optimization with the NanGate 45-nm standard-cell library indicated that the
inversion circuit had a delay of 0.63 ns, and the remainder had a delay of 0.67 ns.
As a result, pipelining would achieve a throughput of 17.37 Gbps, which is nearly
twice that without pipelining. Thus, the proposed datapath is also suitable for
such a pipelined implementation.

Another discussion point is how the proposed architecture can be resistant
to side-channel attacks. A masking countermeasure would be based on a masked
tower-field inversion circuit [9,25] such as that in [24]. The major features of
the countermeasure are to replace the inversion with a masked inversion and
to duplicate other linear operations. Such a countermeasure can also be applied
to the proposed datapath. In addition, hiding countermeasures, such as WDDL
[30], which replaces the logic gates with a complementary logic style, would also
be applicable, and the hardware efficiency would be proportionally lower with
respect to the results in Tables 1 and 2.

More sophisticated countermeasures such as threshold implementation (TI)
and generalized masking schemes (GMSs) [4,5,18,22,26] would also be applicable
to the proposed datapath in principle in the same manner as other conventional
ones. On the other hand, such countermeasures, especially against higher-order
DPAs, require a considerable area overhead and more random bits compared with
the aforementioned countermeasures. When applying such countermeasures, the
area overhead would be critical for some applications. In addition, TI- and GMS-
based inversion circuits should be pipelined to reduce the resulting circuit area
(i.e., the number of shares). To divide the circuit delay equally, it would be better
to insert pipeline register at the middle of Encryption and Decryption path in
Fig. 7.

554 R. Ueno et al.

6 Conclusion

This paper presented a new efficient round-based AES architecture that supports
both encryption and decryption. An efficient AES datapath with a lower latency
(or higher throughput per gate) is suitable for some practical modes of opera-
tion, such as CBC and CCM, because pipelined parallelism cannot be applied
to such modes. The proposed datapath utilizes new operation-reordering and
register-retiming techniques to unify critical components (i.e., inversion and lin-
ear matrix operations) with fewer additional selectors. As a result, our datapath
has the lowest critical path delay compared to conventional ones with tower-
field S-boxes. The proposed and conventional AES hardware were designed on
the basis of compatible round-based architectures and evaluated using logic syn-
thesis with TSMC 65-nm and NanGate 45- and 15-nm CMOS standard-cell
libraries under the worst-case conditions. The synthesis results suggested that
the proposed architecture was approximately 53–72 % more efficient than the
best conventional architecture in terms of the throughput per area, which would
also indicate that the proposed architecture can perform encryption/decryption
with the lowest energy.

The performance evaluation was performed at the design stage of the logic
synthesis; therefore, the power consumption and latency considering place and
route were not evaluated. A detailed evaluation after the place and route is
planned as future work. However, the post-synthesis results would be propor-
tional to the presented synthesis results because the proposed and conventional
architectures employ the same or similar hardware algorithms (e.g., tower-field
inversion) and do not have any extra global wires that have an impact on the
critical path. The design of efficient and side-channel-resistant AES hardware
based on the proposed datapath is also planned for future work.

Acknowledgment. This work has been supported by JSPS KAKENHI Grant No.
25240006.

Appendix: An Example Set of Linear Mappings
and a Unified Affine

This appendix provides an example set of matrices for linear operations, i.e.,
an isomorphic mapping, an inverse isomorphic mapping, an affine transforma-
tion over the tower field, inverse affine transformation over the tower field,
U0, U1, U2, U3, V0, V1, V2, and V3. In this study, we employ the tower-field inver-
sion circuit in [31]. In the following formulae, the least-significant bits are in the
upper-left corner.

A High Throughput/Gate AES Hardware Architecture 555

The conversion matrices of the isomorphic mapping and its inverse mapping
(denoted by δ and δ′, respectively) are given by

δ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 1 1 1 0 0
1 0 1 0 0 0 1 1
1 0 0 1 0 0 0 1
0 0 0 0 0 1 0 0
0 1 1 0 1 1 0 0
1 0 1 0 1 0 0 0
1 1 1 0 0 0 0 1
0 0 1 1 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, δ′ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 0 1 1 0 0 1 1 0
0 1 0 1 0 0 1 0 1 0
0 1 0 0 1 1 0 1 1 1
1 0 0 0 1 0 1 1 1 1
1 0 0 1 0 0 0 1 0 1
1 0 0 0 1 0 0 0 0 0
1 1 1 1 0 1 1 0 0 0
1 1 0 0 0 0 1 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (9)

The isomorphic mapping using δ performs conversion from the AES field to the
tower field used in [31] (i.e., an NB-based GF ((24)2)). The inverse isomorphic
mapping using δ′ performs conversion from the RRB-based GF ((24)2) to the
AES field. The affine and inverse affine matrices over the tower field (denoted
by φ and φ′, respectively) are given by

φ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 0 1 0 0 1 1 0
1 0 0 0 1 0 0 1 1 0
1 1 0 1 1 1 0 1 0 0
1 0 0 0 1 1 0 1 1 1
1 0 0 1 0 1 0 0 0 1
1 1 0 1 1 0 1 0 0 1
1 0 0 1 0 1 1 1 1 0
1 1 0 1 1 0 1 1 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, φ′ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 1 0 1 1 0
1 1 0 1 0 1 1 0
0 1 0 1 1 0 0 0
0 0 1 1 1 0 1 1
0 0 1 0 0 0 0 1
0 1 0 1 0 1 0 1
0 0 1 0 1 1 1 0
0 1 0 1 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (10)

The input and output of the linear mapping represented by φ are given by the
RRB- and NB-based GF ((24)2), respectively. The input and output of the linear
mapping represented by φ′ are given by the NB-based GF ((24)2). The constants
Δ(c) and Δ(c′) are given by β5 + β3 + β2 and β7 + β4 + β2, respectively. Let ψe

and ψ′
e be the matrices representing Ue and Ve, respectively (0 ≤ e ≤ 3). The

matrices ψ0, ψ1, ψ2, and ψ3 are given by

ψ0 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 1 0 0 1 1 1 1
0 0 1 1 0 1 0 1 0 0
1 1 0 1 1 0 1 1 1 1
1 1 0 1 1 1 0 0 0 1
1 0 0 1 0 0 0 0 1 1
1 0 1 1 1 0 0 0 0 0
1 1 1 0 1 0 1 0 1 0
0 1 0 0 1 0 1 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, ψ1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 1 1 0 1 0 0 1
1 0 1 1 1 1 0 0 1 0
0 0 0 0 0 1 1 0 1 1
0 1 0 1 0 0 0 1 1 0
0 0 0 0 0 1 0 0 1 0
0 1 1 0 0 0 1 0 0 1
0 1 1 1 1 1 0 1 0 0
1 0 0 1 0 0 0 1 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (11)

ψ2 = ψ3 = φ. (12)

556 R. Ueno et al.

respectively. The matrices ψ′
0, ψ

′
1, ψ

′
2, and ψ′

3 are given by

ψ′
0 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0 1 1 0 0
0 0 1 0 1 0 0 1 0 1
0 1 0 0 1 1 1 0 1 1
1 0 0 0 1 1 1 0 1 1
1 1 0 0 0 0 0 1 0 1
0 0 1 0 1 0 0 0 1 1
1 1 0 1 1 0 0 0 1 1
1 1 0 1 1 1 1 1 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, ψ′
1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 1 1 0 1 1
0 0 0 1 1 0 0 0 1 1
1 1 0 0 0 0 1 0 0 1
0 1 1 1 1 0 1 0 0 1
1 0 1 1 1 0 0 0 1 1
0 0 0 1 1 1 1 1 1 0
0 1 0 0 1 1 1 1 1 0
0 1 0 0 1 0 1 0 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (13)

ψ′
2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 1 1 1 1 1 1 1 0
0 1 0 1 0 1 1 1 1 0
1 0 0 0 1 1 1 0 1 1
0 1 1 1 1 1 0 1 0 0
1 1 0 0 0 1 0 1 1 1
1 0 0 0 1 1 0 0 0 1
1 1 0 0 0 0 0 1 0 1
1 0 0 0 1 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, ψ′
3 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 1 1 0 0 1 1 1 1
1 0 0 0 1 1 1 1 1 0
0 0 1 0 1 1 0 0 0 1
1 0 0 1 0 1 1 1 0 1
0 0 1 0 1 0 0 0 0 0
1 0 0 1 0 0 1 0 0 1
1 1 0 0 0 0 0 1 1 0
0 0 1 1 0 1 0 1 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (14)

References

1. Cryptographic hardware project. http://www.aoki.ecei.tohoku.ac.jp/crypto/
2. NanGate FreePDK15 open cell library, January 2016. http://www.nangate.com/?

page id=2328
3. NanGate FreePDK45 open cell library, January 2016. http://www.nangate.com/?

page id=2325
4. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: Higher-order threshold

implementations. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part II. LNCS,
vol. 8874, pp. 326–343. Springer, Heidelberg (2014)

5. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: Trade-offs for threshold
implementations illustrated on AES. IEEE Trans. Comput. Aided Des. Integr.
Syst. 34(7), 1188–1200 (2015)

6. Boyer, J., Matthews, P., Peralta, P.: Logic minimization techniques with applica-
tions to cryptology. J. Cryptology 47, 280–312 (2013)

7. Canright, D.: A very compact S-box for AES. In: Rao, J.R., Sunar, B. (eds.) CHES
2005. LNCS, vol. 3659, pp. 441–455. Springer, Heidelberg (2005)

8. Canright, D.: http://faculty.nps.edu/drcanrig/
9. Canright, D., Batina, L.: A very compact “Perfectly Masked” S-Box for AES. In:

Bellovin, S.M., Gennaro, R., Keromytis, A.D., Yung, M. (eds.) ACNS 2008. LNCS,
vol. 5037, pp. 446–459. Springer, Heidelberg (2008)

10. Hammad, I., El-Sankary, K., El-Masry, E.: High-speed AES encryptor with efficient
merging techniques. IEEE Embed. Syst. Lett. 2, 67–71 (2010)

11. Hodjat, A., Verbauwhede, I.: Area-throughput trade-offs for fully pipelined 30 to
70 Gbits/s AES processors. IEEE Trans. Comput. 50(4), 366–372 (2006)

12. Jeon, Y., Kim, Y., Lee, D.: A compact memory-free architecture for the AES
algorithm using resource sharing methods. J. Circ. Syst. Comput. 19(5), 1109–
1130 (2010)

http://www.aoki.ecei.tohoku.ac.jp/crypto/
http://www.nangate.com/?page_id=2328
http://www.nangate.com/?page_id=2328
http://www.nangate.com/?page_id=2325
http://www.nangate.com/?page_id=2325
http://faculty.nps.edu/drcanrig/

A High Throughput/Gate AES Hardware Architecture 557

13. Lin, S.Y., Huang, C.T.: A high-throughput low-power AES cipher for network
applications. In: The 12th Asia and South Pacific Design Automation Conference
(ASP-DAC 2007), pp. 595–600. IEEE (2007)

14. Liu, P.C., Chang, H.C., Lee, C.Y.: A 1.69 Gb/s area-efficient AES crypto core
with compact on-the-fly key expansion unit. In: 41st European Solid-State Circuits
Conference (ESSCIRC 2009), pp. 404–407. IEEE (2009)

15. Lutz, A., Treichler, J., Gürkaynak, F., Kaeslin, H., Basler, G., Erni, A., Reichmuth,
S., Rommens, P., Oetiker, P., Fichtner, W.: 2Gbit/s hardware realizations of RIJN-
DAEL and SERPENT: a comparative analysis. In: Kaliski, B.S., Koç, Ç.K., Paar,
C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 144–158. Springer, Heidelberg (2002)

16. Mathew, S., Satpathy, S., Suresh, V., Anders, M., Himanshu, K., Amit, A., Hsu, S.,
Chen, G., Krishnamurthy, R.K.: 340 mV-1.1V, 289 Gbps/W, 2090-gate nanoAES
hardware accelerator with area-optimized encrypt/decrypt GF (24)2 polynomials
in 22 nm tri-gate CMOS. IEEE J. Solid-State Circ. 50, 1048–1058 (2015)

17. Mathew, S.K., Sheikh, F., Kounavis, M.E., Gueron, S., Agarwal, A., Hsu, S.K.,
Himanshu, K., Anders, M.A., Krishnamurthy, R.K.: 53 Gbps native GF (24)2

composite-field AES-encrypt/decrypt accelerator for content-protection in 45 nm
high-performance microprocessors. IEEE J. Solid-State Circ. 46, 767–776 (2011)

18. Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the limits: a
very compact and a threshold implementation of AES. In: Paterson, K.G. (ed.)
EUROCRYPT 2011. LNCS, vol. 6632, pp. 69–88. Springer, Heidelberg (2011)

19. Morioka, S., Satoh, A.: An optimized S-Box circuit architecture for low power AES
design. In: Kaliski, B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523,
pp. 172–186. Springer, Heidelberg (2002)

20. Morioka, S., Satoh, A.: A 10 Gbps full-AES crypto design with a twisted-BDD S-
box architecture. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 12, 686–691
(2004)

21. Nekado, K., Nogami, Y., Iokibe, K.: Very short critical path implementation of
AES with direct logic gates. In: Hanaoka, G., Yamauchi, T. (eds.) IWSEC 2012.
LNCS, vol. 7631, pp. 51–68. Springer, Heidelberg (2012)

22. Nikova, S., Rijmen, V., Schläffer, M.: Secure hardware implementation of nonlinear
functions in the presence of glithces. J. Cryptology 24, 292–321 (2011)

23. Nogami, Y., Nekado, K., Toyota, T., Hongo, N., Morikawa, Y.: Mixed bases for
efficient inversion in F((22)2)2 and conversion matrices of SubBytes of AES. In:
Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 234–247.
Springer, Heidelberg (2010)

24. Okamoto, K., Homma, N., Aoki, T., Morioka, S.: A hierarchical formal approach
to verifying side-channel resistant cryptographic processors. In: Hardware-Oriented
Security and Trust (HOST), pp. 76–79. IEEE (2014)

25. Oswald, E., Mangard, S., Pramstaller, N., Rijmen, V.: A side-channel analysis
resistant description of the AES S-Box. In: Gilbert, H., Handschuh, H. (eds.) FSE
2005. LNCS, vol. 3557, pp. 413–423. Springer, Heidelberg (2005)

26. Reparaz, O., Bilgin, B., Nikova, S., Gierlichs, B., Verbauwhede, I.: Consolidating
masking schemes. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol.
9215, pp. 764–783. Springer, Heidelberg (2015)

27. Rudra, A., Dubey, P.K., Jutla, C.S., Kumar, V., Rao, J.R., Rohatgi, P.: Efficient
Rijndael encryption implementation with composite field arithmetic. In: Koç, Ç.K.,
Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 171–184. Springer,
Heidelberg (2001)

558 R. Ueno et al.

28. Sasao, T.: AND-EXOR expressions and their optimization. In: Sasao, T. (ed.) Logic
Synthesis and Optimization. The Kluwer International Series in Engineering and
Computer Science, vol. 212, pp. 287–312. Kluwer Academic Publishers (1993)

29. Satoh, A., Morioka, S., Takano, K., Munetoh, S.: A compact Rijndael hardware
architecture with S-Box optimization. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS,
vol. 2248, pp. 239–254. Springer, Heidelberg (2001)

30. Tiri, K., Verbauwhede, I.: A logic level design methodology for a secure DPA
resistant ASIC or FPGA implementation. In: Design, Automation and Test in
Europe Conference and Exhibition (DATE), vol. 1, pp. 246–251 (2004)

31. Ueno, R., Homma, N., Sugawara, Y., Nogami, Y., Aoki, T.: Highly efficient GF (28)
inversion circuit based on redundant GF arithmetic and its application to AES
design. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp.
63–80. Springer, Heidelberg (2015)

32. Verbauwhede, I., Schaumont, P., Kuo, H.: Design and performance testing of a
2.29-GB/s Rijndael processor. IEEE J. Solid-State Circ. 38, 569–572 (2003)

Efficient High-Speed WPA2 Brute Force Attacks
Using Scalable Low-Cost FPGA Clustering

Markus Kammerstetter1(B), Markus Muellner1, Daniel Burian1,
Christian Kudera1, and Wolfgang Kastner2

1 Secure Systems Lab Vienna, Automation Systems Group, Institute of Computer
Aided Automation, Vienna University of Technology, Vienna, Austria

{mk,mmuellner,dburian,ckudera}@seclab.tuwien.ac.at
2 Automation Systems Group, Institute of Computer Aided Automation,

Vienna University of Technology, Vienna, Austria
k@auto.tuwien.ac.at

Abstract. WPA2-Personal is widely used to protect Wi-Fi networks
against illicit access. While attackers typically use GPUs to speed up the
discovery of weak network passwords, attacking random passwords is
considered to quickly become infeasible with increasing password length.
Professional attackers may thus turn to commercial high-end FPGA-
based cluster solutions to significantly increase the speed of those attacks.
Well known manufacturers such as Elcomsoft have succeeded in creating
world’s fastest commercial FPGA-based WPA2 password recovery sys-
tem, but since they rely on high-performance FPGAs the costs of these
systems are well beyond the reach of amateurs. In this paper, we present
a highly optimized low-cost FPGA cluster-based WPA-2 Personal pass-
word recovery system that can not only achieve similar performance at
a cost affordable by amateurs, but in comparison our implementation
would also be more than 5 times as fast on the original hardware. Since
the currently fastest system is not only significantly slower but propri-
etary as well, we believe that we are the first to present the internals of
a highly optimized and fully pipelined FPGA WPA2 password recovery
system. In addition, we evaluated our approach with respect to perfor-
mance and power usage and compare it to GPU-based systems.

Keywords: FPGA · WPA2 · Security · Brute force · Attacks

1 Introduction

Today’s Wi-Fi networks are commonly protected with the well known WPA2
protocol defined in the IEEE 802.11 standard documents [6]. The WPA2-
Personal variant is designed for smaller networks and uses a pre-shared key
(i.e., a Wi-Fi password) to derive the necessary key material for authentication,
encryption and integrity protection. The Wi-Fi password needs to be at least 8
characters long and the key material is mainly derived through the salted key

c© International Association for Cryptologic Research 2016
B. Gierlichs and A.Y. Poschmann (Eds.): CHES 2016, LNCS 9813, pp. 559–577, 2016.
DOI: 10.1007/978-3-662-53140-2 27

560 M. Kammerstetter et al.

derivation function PBKDF2 [8] in combination with the SHA1 hashing algo-
rithm [1] in HMAC configuration [2]. Due to the computational complexity of the
key derivation function and the use of the Wi-Fi’s SSID as cryptographic salt,
brute force attacks are very hard to conduct in the presence of random passwords
with increasing length. Incurring significant costs well outside of what amateurs
can afford, professional attackers can turn to commercial high-end FPGA-based
cluster solutions achieving WPA-2 password guessing speeds of 1 million guesses
per second and more [10]. In this paper, we focus on the WPA2-Personal key
derivation function and low-cost FPGA cluster based attacks affordable by ama-
teurs. Especially considering second-hand FPGA boards that have been used for
cryptocurrency mining, those boards are now available at low cost and can be
repurposed to mount attacks on cryptographic systems. In the first part, we use
a top-down approach to present WPA2-Personal security at a high level and we
subsequently break it down to low-level SHA1 computations. In the second part,
we use a bottom-up approach to show how these computations can be addressed
in hardware with FPGAs and we present how our solution can be integrated
into a scalable low-cost system to conduct WPA-2 Personal brute force attacks.
We evaluate our system with respect to performance and power usage and we
compare it to results we obtained from GPUs. The extended version of our
paper [9] also includes a real-world case study highlighting the practical impact.
Specifically, the contributions presented in this paper are as follows:

– We present a highly optimized design of a scalable and fully pipelined FPGA
implementation for efficient WPA2 brute force attacks that brings the perfor-
mance of today’s highly expensive professional systems to the low-cost FPGA
boards affordable by amateurs.

– Our implementation on Kintex-7 devices indicates that on the same hardware,
our implementation is more than 5 times as fast in comparison to what is cur-
rently marketed to be world’s fastest FPGA-based WPA2 password recovery
system [4,10].

– We implemented and evaluated our approach on three different low-cost FPGA
architectures including an actual FPGA cluster with 36 Spartan 6 LX150T
devices located on repurposed cryptocurrency mining boards.

– We evaluate our system with respect to the power consumption and per-
formance in comparison to GPU clusters, showing that FPGAs can achieve
comparable or higher performance with considerably less power and space
requirements.

2 Related Work

Since WPA2 is commonly used, there are several publications and projects deal-
ing with WPA2 security and brute force attacks in particular. For instance
in [11], Visan covers typical CPU and GPU accelerated password recovery
approaches with state-of-the-art tools like aircrack-ng1 or Pyrit2. He considers a
1 http://www.aircrack-ng.org.
2 https://code.google.com/p/pyrit.

http://www.aircrack-ng.org
https://code.google.com/p/pyrit

Efficient High-Speed WPA2 Brute Force Attacks 561

time-memory tradeoff usable for frequent Wi-Fi SSIDs and provides a perfor-
mance overview of common GPUs and GPU cluster configurations. In that
respect, oclHashcat3 and the commercial Wireless Security Auditor software4

need to be mentioned which are both password recovery frameworks with GPU
acceleration and WPA2 support. Unlike these GPU-based approaches, our sys-
tem comprises of a highly optimized and scalable FPGA implementation allow-
ing higher performance at lower costs and power consumption in comparison.
In [7], Johnson et al. present an FPGA architecture for the recovery of WPA and
WPA2 keys. Although WPA support is mentioned, their implementation seems
to support WPA2 only which is comparable to our system. However, while our
implementation features multiple fully pipelined and heavily optimized cores
for maximum performance, Johnson et al. present a straight-forward and mostly
sequential design leading to a significantly less performance in comparison. In [5],
Güneysu et al. present the RIVYERA and COPACOBANA high-performance
FPGA cluster systems for cryptanalysis. They provide details on exhaustive key
search attacks for cryptographic algorithms such as DES, Hitag2 or Keeloq and
have a larger cluster configuration than we had available for our tests. Yet, in
contrast to our work, they do not cover WPA2 or exhaustive key search attacks
on WPA2 in their work. As a result, it would be highly interesting to evaluate
our FPGA implementation on their machines. Finally, Elcomsoft’s commercial
Distributed Password Recovery5 software needs to be mentioned due to its sup-
port for WPA2 key recovery attacks on FPGA clusters [4,10] and its claim to
be world’s fastest FPGA-based password cracking solution [3]. Although there
is practically no publicly available information on the internals of their WPA2
implementation, in [10] performance data are provided. In contrast to their work,
we do not only disclose our design, architecture and optimizations of our FPGA
implementation, but we also claim that on the same professional FPGA hard-
ware our implementation would be more than 5 times as fast. In comparison to
the professional system, our system can achieve similar speeds on the low-cost
repurposed cryptocurrently mining hardware available to amateurs.

3 WPA2-Personal Handshake and Key Derivation

In WPA2-Personal, Station and Access Point (AP) mutually authenticate
against each other with the 4-way handshake depicted in Fig. 1a. To start the
mutual authentication process, the AP generates a 32 byte random ANonce and
sends it to the Station. Similarly, the Station generates a 32 byte random SNonce
and uses both nonces as well as the password to derive the PMK (Pairwise Mas-
ter Key) and the Pairwise Transient Key (PTK) with the help of the WPA2-
Personal key derivation (Fig. 1b). The nonces ensure that the handshake cannot
by replayed by an attacker at a later time. Afterwards, the Station sends the
SNonce back to the AP and utilizes the PTK truncated to the first 128 bits (Key
3 http://hashcat.net/oclhashcat.
4 https://www.elcomsoft.com/ewsa.html.
5 https://www.elcomsoft.com/edpr.html.

http://hashcat.net/oclhashcat
https://www.elcomsoft.com/ewsa.html
https://www.elcomsoft.com/edpr.html

562 M. Kammerstetter et al.

Confirmation Key - KCK) to compute a Message Integrity Code (MIC) over the
packet data. At this point, the AP can compare the received MIC with the com-
puted one to validate that the Station is authentic and has knowledge of the
password. To prove to the Station that the AP knows the password, the Station
sends a message including ANonce and the corresponding MIC code. Since the
Station can only compute the correct MIC code if it knows the PTK, the AP
can use this information for authentication. On success, the Station completes
the handshake by sending a usually empty, but signed (MIC) message back to
the AP.

Fig. 1. WPA2-personal handshake and key derivation

During key derivation (Fig. 1b), PMK is computed from the password and
the SSID as cryptographic salt through the PBKDF2 [8] key derivation function
with HMAC-SHA1 at its core. The PTK and its truncated variant denoted KCK are
computed through the HMAC-SHA1 based pseudo random function PRF-128.
Likewise, also the computation of the MIC integrity code relies on HMAC-SHA1.

3.1 Breaking it Down to SHA1 Computations

Internally, the PBKDF2 key derivation function employed in WPA2-Personal
utilizes 4,096 HMAC-SHA1 iterations to obtain 160 bit hash outputs (Fig. 2).
Since the WPA2 Pairwise Master Key PMK needs to be 256 bits long, two
PBKDF2 rounds are necessary. Their output is concatenated, but from the sec-
ond iteration the output is truncated to 96 bits to achieve a 256 bit result. In
both PBKDF2 iterations the password is used as key while the SSID of the Wi-
Fi network concatenated with a 32 bit counter value serves as input. In the first
iteration, the counter value is one while in the second iteration it is two. Conse-
quently within both PBKDF2 iterations, there are 8,192 HMAC-SHA1 iterations

Efficient High-Speed WPA2 Brute Force Attacks 563

required to compute the PMK. In the first PBKDF2 round the xor-transformation
is applied on the password and the inner pad ipad. The result is a 512 bit block
serving as input to the SHA1 hash function in initial state. The output is the
HMAC inner state. Since the SSID may be no longer than 32 bytes, the hashing
of the SSID and the PBKDF2 round counter can be done together with the
SHA1 finalization so that only one SHA1 iteration is necessary.

Fig. 2. PBKDF2 core with SHA1 rounds in HMAC construction

In the next step, the outer HMAC state is computed by hashing the xor
of the password and the outer pad opad. Afterwards, the previously finalized
160 bit digest is hashed and finalized with the outer state. At this point the
MAC is ready. The second PBKDF2 iteration is computed in the same way with
the difference that the round counter value is set to two instead of one. Since
the password does not change during PBKDF2 iterations, the inner and outer
HMAC states stay the same allowing us to use cached states instead of having
to compute the states again. With that optimization in mind, it is required
to compute at least 2 + 4,096 * 2 SHA1 iterations for the first PBKDF2 round
and 4,096 * 2 SHA1 iterations for the second round (i.e., 16,386 SHA1 iterations
in total) to obtain the PMK. This computational effort, the use of the SSID as salt
for key derivation and the security of the innermost SHA1 cryptographic hash
function are the main reasons why WPA2-Personal key derivation is very strong
against typical exhaustive key search attacks. Once the PMK is available, the KCK is
derived by applying a 128 bit Pseudo Random Function (PRF). Internally, it just
uses HMAC-SHA1 again with the PMK as key. The hashed message is made up of
the string “Pairwise key expansion”, a terminating zero byte, an arithmetically
sorted tuple of the AP and Station addresses as well as another sorted tuple of
their nonces (i.e., ANonce and SNonce) including a finalizing zero byte. The PTK
is the resulting MAC and it is truncated to the first 128 bits to obtain the KCK.
If the PMK is available, the computation of the KCK takes 5 SHA1 iterations as
due to the length of the PMK the finalization of the inner HMAC state can not
be combined with the hashing of the PMK. Whenever AP or Station would like to
compute a MIC, they can do so by utilizing HMAC-SHA1 on the message with
KCK as key. The result of the computation truncated to the first 128 bits is the
MIC. The computational effort depends on the length of the message. However,

564 M. Kammerstetter et al.

considering the messages from the 4-way WPA2-Personal handshake, a total
of 5 SHA1 iterations is required to compute the MIC since, similar to the KCK
computation, the finalization of the inner HMAC state requires one additional
iteration. A more detailed description of the key derivation is available in the
extended version of our paper [9].

3.2 Attacking the 4-Way Handshake

If an attacker wants to determine the WPA2-Personal password, a 4-way WPA2-
Personal handshake between a Station and AP needs to be obtained first. This
can either be done passively or with the help of an active de-authentication
attack where the attacker spoofs the source address of the AP and sends de-
authentication frames to the Station. Since those frames are not authenticated,
the Station will falsely believe that the de-authentication request came from
the genuine AP and will follow the request. However at a later time, it will re-
authentication and thus give the attacker the opportunity to intercept the hand-
shake. As soon as the attacker has the handshake, passwords can be guessed
offline by deriving the key material for the PMK and the KCK and computing the
MIC for one of the observed packets in the handshake. If the observed MIC is the
same as the computed MIC for a password candidate, the attacker has found the
correct password for the network. However, since a WPA2-Personal password
needs to have a minimum length of 8 characters and for each password candi-
date a total of at least 16,386 + 5 + 5 = 16,396 SHA1 iterations are necessary to
compute the corresponding MIC over a handshake packet, exhaustive password
guessing attacks are considered to be increasingly infeasible with higher pass-
word complexity and length. In the subsequent chapters, we show that the high
computational effort can be addressed with special purpose FPGA hardware
so that a high number of real-world WPA2-Personal protected networks with
random passwords can be broken within days.

4 FPGA Implementation

Assuming familiarity with FPGA design in general, SHA1 [12] is especially well
suited for FPGA implementation due to the following reasons:

1. The algorithm has practically no memory requirements.
2. The rotate and shift operations utilized in SHA1 can be realized through

FPGA interconnects with minimal time delay.
3. Algebraic logic functions (xor, and, or, not, etc.) require minimal effort and

can efficiently utilize the FPGAs LUTs.

The most expensive operation are SHA1’s additions due to the long carry chain
between the adders. To implement the algorithm, a surrounding state machine
is required to control which inputs should be supplied to the logic in different
rounds. Considering that SHA1 has 80 rounds and we would like to achieve

Efficient High-Speed WPA2 Brute Force Attacks 565

maximum performance, there are two design options: Either the SHA1 algorithm
is implemented sequentially or in a fully pipelined way. The advantage of a
sequential implementation is that the FPGA can be completely filled up with
relatively small SHA1 cores. However, the disadvantage is that each of those
cores would require its own state machine which takes up a significant amount
of space. In comparison, a fully pipelined implementation does not require an
internal state machine as each of the SHA1 rounds is implemented in its own
logic block. While this is a significant advantage enabling parallel processing,
the drawback is that a fully pipelined implementation has much higher space
and routing requirements. When using multiple cores (each containing a full
pipeline), only an integer number of cores can be placed so that a significant
amount of unused space might be left on the FPGA. In our implementation, we
also experimented with filling up this space with sequential cores but refrained
from it due to the negative effect on the overall design complexity and the
lower achievable clock speeds. Due to the typically higher performance that can
be achieved through pipelining and the property that we get one full SHA1
computation output per clock cycle per core, we targeted a heavily optimized
and fully-pipelined approach. However, while pipelining alone has a considerable
performance impact in comparison to a sequential approach, the key of obtaining
maximum design performance are the optimizations. Our overall FPGA design
is illustrated in Fig. 3 and has the following components: A global brute force
search state machine, a shared password generator and an FPGA device specific
number of brute force cores, each comprising a WPA2-Personal state machine
with password verifier and a SHA1 pipeline.

Global Brute Force State Machine. The task of the global brute force
state machine is to constantly supply all brute force cores with new password
candidates and check whether one of them found the correct password. Due to
the insignificant speed impact and the advantage of lower design complexity we
chose an iterative approach. Since our SHA1 pipeline comprises of 83 stages,
we can concurrently test 83 passwords per brute force core. With our iterative
approach, we enable the password generator and consecutively fill all brute force
cores with passwords. Once all cores have been filled, the password generator
is paused and we iteratively wait until all cores have completed. At that point,
the password filling process is restarted. If a core finds the correct password
or the password generator has reached the last password, the state machine
jumps into the idle state and can accept the next working block. The penalty
for this iterative approach is 83 clock cycles per core since once a brute force
core has finished, we could immediately fill it with a new password. However, in
comparison to the long run time of each core the impact is insignificant.

Password Generator. The password generator (Fig. 3b) is realized as a fast
counter. Whenever the FPGA is idle, it can accept a new working block compris-
ing of all necessary data including the actual start password (start password)
and how many passwords (n) should be tested. Initially starting at the start

566 M. Kammerstetter et al.

password, whenever the password generator is enabled (enable) it will output a
new password (current password) and the current password number (count)
in each clock cycle. In case no more passwords can be fed into the brute force
cores, the generator can be paused at any time by disabling the enable input.
Ultimately, it will output new passwords until n passwords have been reached
and assert the done signal to indicate that all passwords within the current
working block have been generated.

In
iti

at
e

S
ta

ge

S
ta

ge

B
uf

fe
r

A
dd

80 Rounds

FIFO

SHA-1 Pipeline

WPA2 Password Verifier

State Machine

P
as

sw
or

d
G

en
er

at
or

(a) FPGA Global State Machine (b) Password Generator

Fig. 3. FPGA global state machine and password generator block

During the optimizations of our cryptographic cores in the design, at some
point the long carry chain in the password counter became the clock speed
limiting critical path. We were able to address the issue by parallelizing the
counter and implementing the password carry with static multiplexers outside
the sequential logic block. The sequential logic block can be seen as typical
register transfer logic (RTL). With the clock signal, the old counter value is
fetched from the source register, increased and finally output to the destination
register. The path in between accounts for the delay. Since we need to have a
carry overflow at the last valid password character (e.g., ‘Z’) we need a set of
multiplexers that eventually reset the characters at each position of the password
string. However, if this multiplexer based reset logic is within the sequential
path it will also increase the time delay. By statically implementing the reset
logic outside this sequential path we were able to balance the overall worst-
case delays and achieved a password counter implementation that no longer
accounted for the critical path in our overall design. Another password generator
optimization approach we considered is utilizing multiple clock domains. The
general idea is that the overall design naturally spends most of its time computing
SHA1 iterations. At that time the password generator is disabled. We could
thus use a less critical slower clock to generate the passwords and output them
to clock synchronizing FIFO buffers directly placed next to the input of the
SHA1 pipelines. As soon as a SHA1 pipeline requires a new password input, it

Efficient High-Speed WPA2 Brute Force Attacks 567

can utilize its fast clock to drain the FIFO buffer which would in turn enable
the password generator to refill the corresponding buffer at its slower clock.
The advantages of this approach would be the following: First, the complexity
of the password generator design can be further increased without negatively
impacting the critical path. Second, the big advantage is the routing of the
bus signals from the password generator to all the cores. Considering that the
password generator is located at the center of the design and the passwords
need to be distributed across the entire FPGA to all brute force cores, there is
a significant impact on the time-driven routing complexity and the interconnect
delays that negatively impact the maximum clock speed of the overall design. By
leveraging a slower clock, the passwords would be already located in the FIFO
buffers next to the SHA1 pipelines of each core but they could still be read
with the fast clock the SHA1 pipelines are operating on. However, since with
our previously mentioned password generator optimization the critical path was
no longer within the password generator domain, we did not implemented the
approach. It will be covered in future work.

WPA2-Personal State Machine with Password Verifier. Each brute force
core has a WPA-2 Personal state machine with a password verifier. It is the most
complex state machine in the overall design. Its task is to compute the MIC code
for each password candidate with the help of the SHA1 pipeline in its center.
Each computed MIC is compared with the MIC from the WPA2-Personal 4-way
handshake to determine whether the password candidate was correct or not.
Figure 4 shows all necessary states and state transitions.

Fig. 4. WPA2-personal FPGA states

The state machine is divided into three WPA2-Personal key derivation
phases: PMK computation (1), PTK computation (2), and MIC computation
(3). The computation of the PMK has the highest computation effort due to
the 2 PBKDF2 rounds with 4,096 iterations requiring 16,386 SHA1 iterations
in total. Initially, 83 password candidates and the network’s SSID are fed into
the SHA1 pipeline to compute the corresponding HMAC outer and inner states
(OState and IState). Since these states do not change over the PBKDF2 iter-
ations, the HMAC state computation needs to be done only once. In the first

568 M. Kammerstetter et al.

PBKDF2 round, the SSID and the PBKDF2 round counter with value 1 are used
as salt. After that, there are 4,095 more iterations in which the digest output is
used as input. At that point, the second PBKDF2 round is computed by first
computing the salt with an increased round counter value (2) and subsequently
performing 4,095 iterations to obtain the PMK.

SHA1 Pipeline. In each brute force core, the SHA1 pipeline occupies a large
amount of space due to the high number of pipeline stages. While SHA1 has 80
rounds and a fully pipelined implementation would thus have an equal number
of pipeline stages, we heavily optimized our pipeline to allow higher clock fre-
quencies and consequently achieve more performance. The SHA1 pipeline is the
key limiting factor of how fast our password guessing attacks can be conducted.
Within the brute force cores, each of our SHA1 pipelines has 83 stages due to
the optimizations we performed. Each core can thus compute 83 password can-
didates in parallel. The optimization approaches we applied are described in the
following.

The first stage of the SHA1 pipeline is a buffer stage so that the delays of the
different input logic blocks within the WPA-2 Personal state machine are not
added to the pipeline’s input logic and thereby do not increase the overall time
delay of the critical path. The second stage denoted ‘Initiate’ is an optimization
of the 4 required (expensive) additions in each SHA1 round. Instead of having
all 4 additions in one stage, the structure of the SHA1 algorithm allows us to
split up the required 4 sequential additions into two rounds with 2 additions
each, thereby significantly improving the maximum clock speed. Since the SHA1
expansion steps require only a small amount of logic, another optimization is to
do multiple message expansion steps in a single pipeline stage so that it is not
needed in the following few stages. As a result, the source data is not accessed in
each stage and shift register inference is boosted causing lower flip-flop fan-out
as well as less power usage and lower area requirements. Another approach we
took is the pipeline stage denoted ‘Add’ after the SHA1 rounds. After the last
SHA1 round, the resulting digest is added either to the constant initialization
vector (first iteration) or to the previous digest for subsequent iterations. Due to
these expensive additions, the design performance can be improved if they are
carried out in a separate pipeline stage. Instead of forwarding the initial digest
through all stages to the final addition stage, we leverage a FIFO-based delay line
utilizing the FPGAs Block-RAM resources. This avoids excessive interconnect
routing through all stages and thus makes the design smaller, reduces the number
of critical paths and allows us to achieve higher clock frequencies more easily.

Additional FPGA Design Optimizations. In the WPA2-Personal state
machine, we directly use the output from the password generator and com-
pute the HMAC OState state first. At the same time, we store the password
candidates in a Block-RAM buffer for later IState computation. After that,
we no longer work with the passwords but use password offsets instead. The
result is a lower design density as no more additional interconnects are required

Efficient High-Speed WPA2 Brute Force Attacks 569

for the password in later stages. A similar approach is used to avoid excessive
interconnects and design density. Instead of having large buses, we either use
Block-RAMs directly or form RAM-based delay lines to keep the IState and
OState states as well as the computed PMKs and PTKs in memory. Instead of one
large WPA2-Personal state multiplexer directly controlling all SHA1 pipeline
inputs and outputs, we make use of several smaller and less complex multiplex-
ers. Once again, this reduces overall design complexity and allows us to achieve
higher clock speeds more easily. The top-level design needs to communicate with
the outside world. Each time a new working block is added, all necessary Wi-Fi
and WPA2-Personal data needs to be transferred and subsequently forwarded
to all brute force cores. The result is a very broad bus spreading all over the
FPGA design and causing severe design congestion. Since in our design only the
password candidates and the SSID are required early within the WPA2-Personal
state machine, we transfer the rest of the data over a small 16 bit bus lever-
aging inferred shift registers. This significantly reduces the complexity of the
interconnects between the shared global state machine and the brute force cores
across the FPGA. To lower the amount of input and output data exchanged with
the outside world, we use a minimized Wi-Fi and WPA2-Personal data set that
only includes the variable data fields from the captured handshake. All other
data is not only fixed within the FPGA, but also kept locally in the cores. In
addition, the FPGA does not output the correct password, but a numeric offset
from the start password instead. To avoid design congestion and to push the
design to the highest clock speed possible, we make use of custom parameters
within the Xilinx design tools for synthesis, mapping and routing such as the
minimum inferred shift register size, register balancing or the number of cost
tables. In addition, we use floor planning to support the mapper, placer and
router in achieving higher clock rates. Floor planning is important to place crit-
ical components requiring a fast interconnect in between next to each other. In
general, we were able to obtain the highest speed improvements by utilizing a
star like topography: The password generator is distributed over the very center
of the FPGA and the brute force cores are surrounding it. In addition we also
used floor planning to avoid the placement of time critical components in FPGA
areas that are hard to reach through interconnects. Consequently, we carefully
placed critical components like the SHA1 pipelines in a way that those regions
do not negatively impact the routing delay. In our FPGA implementations, we
use a slow clock for communication with the outside world and a fast clock for
computation at the same time. In our Spartan-6 implementation, the speed of
the fast clock can be adjusted dynamically during runtime by programming the
clock multiplier. In contrast, our Artix-7 implementation includes an automatic
clock scaling mechanism to adjust the fast clock frequency with the device core
temperature. Both approaches allow the FPGA design to run at high speeds
without the danger of overheating.

570 M. Kammerstetter et al.

4.1 Overall System Design

Targeting FPGAs well in the range of amateurs, we implemented and practi-
cally evaluated our system on Xilinx Spartan-6 and Xilinx Artix-7 FPGAs. The
Spartan-6 FPGAs are located on low-cost repurposed cryptocurrency mining
boards. For comparison purposes, we created a full implementation for the more
expensive Xilinx Kintex-7 XC7K410T FPGAs utilized in Elcomsoft’s system as
well, but could not practically test it since we did not have one of these FPGAs
at hand. The overall system design for the Spartan-6 FPGAs is visible in Fig. 5
and based on ZTEX FPGA boards6. The Artix-7 design is similar but has only
one XC7A200T FPGA on the board.

Fig. 5. System overview (Spartan 6 System)

The system comprises of a PC with a host software and several FPGA boards
connected via the USB 2.0 high-speed interface. Each FPGA board has a fast EZ-
USB FX2 micro-controller with custom firmware to interface with the FPGAs.
Our custom host software utilizes the ZTEX SDK to allow easy communication
with the micro-controller and the FPGAs. The host software accepts a config-
uration file that includes all necessary Wi-Fi and WPA-2 Personal handshake
data. At startup, it enumerates all connected FPGA boards, uploads the micro-
controller firmware if necessary and configures the FPGAs with our bit stream.
The software makes use of several threads. Apart from the main program, there
is a thread to generate password working blocks for the FPGAs and additional
threads for each FPGA board. The password working blocks are kept in a pool
with constant size. The device threads can supply working blocks to FPGAs and
mark them as being processed. If an FPGA has finished a block, it is removed
from the pool and the generator automatically creates a new working block.
If for some reason an FPGA fails, the block sent to the FPGA is still in the
pool and just needs to be unmarked so that the next free FPGA can process
it instead. The micro-controller firmware is responsible for USB communication
with the host and communication with the FPGAs.

6 http://www.ztex.de.

http://www.ztex.de

Efficient High-Speed WPA2 Brute Force Attacks 571

5 Evaluation

We performed multiple evaluations with regard to our design performance, the
power usage and performance in comparison to GPUs. We evaluated the perfor-
mance and the power usage of our design on multiple FPGAs and FPGA boards.
The first FPGA we targeted was a Spartan-6 XC6SLX150T-3 device. Four of
these FPGAs can be found on the Ztex 1.15y board visible on the left of Fig. 6.
The second FPGA we used for our evaluation was an Artix-7 XC7A200T-2 device
on the Ztex 2.16 board visible on the right of the picture. For both FPGAs, we
created an optimized implementation and a configuration bit stream that can
be uploaded to the device. The main difference between the bit streams is the
FPGA type, the maximum clock frequency and most importantly the number
of brute force cores we were able to fit onto the device.

Fig. 6. Ztex 1.15y board (left), Ztex 2.16 board (right)

To evaluate the performance and the power requirements, we used the
obtained timing and power reports by utilizing the Xilinx timing and power
analysis tools. In addition to these results, we conducted practical measurements
on the FPGA boards. At first, we measured the idle wattage of each unconfigured
board at the power supply to determine the idle power usage. In the next step,
we used a generated WPA2-Personal handshake with our software to mount a
brute force attack on each of our FPGA boards. We used large password working
packages resulting in a 30 s runtime per FPGA to avoid I/O bottlenecks. By mea-
suring the wattage again during operation, we were able to determine the overall
power consumption. To reduce the influence of the power consumption caused by
losses in the power supplies or components other than the FPGA, we obtained
the power consumption of our FPGA implementation through the difference
between the overall idle consumption and the consumption during operation. In
Sect. 5.1, we use the same method to determine the power consumption of GPUs
to get results that can be compared to the FPGA power consumption. To obtain
brute force performance measurements as well, we let each system run for at least
1 hour and computed the performance by measuring the number of password
guesses during that time. The result is the average number of password guesses
per second. In addition to these evaluations, we executed the implementation on

572 M. Kammerstetter et al.

our FPGA cluster with 36 Spartan-6 XC6SLX150T FPGAs located on 9 Ztex
1.15y FPGA boards. The cluster setup allowed us to perform measurements on
a larger setup and to determine how well our design scales with an increasing
number of FPGAs. Using the power and performance measuring methodology
from above, we obtained measurement results for the cluster as well. To allow
comparison with the commercial Elcomsoft password recovery system [4,10], we
created an implementation and a configuration bitstream for the more expensive
Kintex-7 XC7K410T-3 devices as well. However, since we did not have a board
with this type of Kintex-7 FPGA, we can provide the Xilinx development tool’s
timing and power analysis results only.

5.1 GPU Comparison

To measure performance and power requirements of GPUs, we utilized cud-
aHashcat7 v1.36 to mount brute force attacks on the same WPA2-Personal
handshake we used previously to test our FPGA implementations. We exe-
cuted the tool on machines with different Nvidia GPUs (GeForce GTX 750
Ti, GeForce GTX770 Windforce OC, GRID K520) and measured the perfor-
mance in passwords per second as well as the power consumption. We applied
the same power measurement methodology as during our FPGA evaluation. For
the Amazon EC2 GPU cloud machines with GRID K520 GPUs, we were unable
to obtain power measurements. The specific machine configurations and results
are described in detail in Sect. 6.

6 Results and Discussion

The results for our FPGA performance and power evaluation are visible in
Table 1. In the System and FPGA column the table shows on which systems
we conducted our tests and how many FPGAs there are on the corresponding
board and/or in the overall system. The FPGA device types are visible in the
Type column whereat the name before the hyphen is the Xilinx device name
and the number after the hyphen indicates the device speed grade (the higher
the better). The Cost column provides an approximate cost estimate per FPGA
in US$ we obtained by looking up the devices at common Xilinx distributors

Table 1. Performance and power results of our implementations for different FPGA
devices and systems/boards

System FPGAs Type Cost Cores Tool W Tool MHz Meas. W Act. MHz calc pwd/s pwd/s pwd/s W

Ztex 1.15y 1 XC6SLX150T-3 175 2 4.281 187 6.99* 180 21,956 21,871 3,128*
Ztex 1.15y 4 XC6SLX150T-3 700 8 17.124 187 27.96 180 87,826 87,461 3,128
9x Ztex 1.15y 36 XC6SLX150T-3 2,400 72 154.116 187 254 180 790,436 741,200 2,918
Ztex 2.16 1 XC7A200T-2 213 8 10.458 180 11.04 180 87,826 87,737 7,947
N/A 1 XC7K410T-3 2,248 16 25.634 216 N/A N/A 210,783 N/A N/A
N/A 48 XC7K410T-3 107,904 768 1,230.432 216 N/A N/A 10,117,584 N/A N/A

7 http://hashcat.net/oclhashcat.

http://hashcat.net/oclhashcat

Efficient High-Speed WPA2 Brute Force Attacks 573

such as Digi-key8. However while the cost for 9 new Ztex 1.15y would be appoxi-
mately 6,300 US$, we considered our 9 second-hand Ztex 1.15y boards previously
used for cryptocurrency mining instead. We were able to obtain these boards for
2,400 US$ which we believe is what amateurs could do as well, depending on
how much boards they would like to acquire and how much they are willing to
spend. The Cores column shows how many cores we were able to fit onto the
device to achieve maximum performance. While more cores per device gener-
ally increase the performance, it can also cause the maximum clocking speed
to drop significantly due to mapping, placement and routing issues. The table
presents the implementations allowing us to achieve the maximum performance
per device. The Tool W and Tool MHz columns present the design tool’s power
and timing analysis results. For the Spartan-6 FPGAs, we used the Xilinx ISE
Suite 14.7 whereas for the newer 7-series devices Artix-7 and Kintex-7, we used
Vivado Design Suite 2015.1. In general, it appeared that the newer Vivado tools
produced better results, but since it doesn’t support older model 6-series devices,
we were unable to use it for our Spartan-6 implementations. The Meas. W and
Act. MHz columns present the results for the power measurements we conducted
on the FPGA boards/systems and the actual clock speed we used to run the
devices. The calc pwd/s and pwd/s columns provide the WPA2-Personal per-
formance in passwords per second whereas the first one indicates the calculated
and theoretic maximum performance of our implementation whereas the latter
one shows the actual measured average performance per board and/or system.
In the last column pwd/s W, we use our actual power and performance measure-
ments to determine how much brute force speed can be achieved per Watt which
is especially important when scaling up our implementation to larger FPGA clus-
ter systems. In the following, we discuss the results of our implementations on
a per-device basis.

Spartan-6 Results. We used the Xilinx Spartan-6 XC6SLX150T-3 FPGA
as the target for our first implementation due to the availability of a high-
performance FPGA cluster with 36 of these devices at our lab. The implemen-
tation on the Spartan-6 turned out to be especially challenging for multiple
reasons. We had to deal with long design tool runs (3 h of more) each time we
made modifications to the design. Since the effects of many of our optimiza-
tions could not be tested through simulations alone, the duration of the design
tool runs significantly slowed down the development. In addition, the internal
switch boxes and types of slices in the Spartan-6 architecture are not well suited
for more complex and larger implementations in comparison to newer 7-series
devices. An important factor to achieve routable designs was our use of FPGA
floor planning. Our optimized 2 core implementation visible in Fig. 7a is able to
run at up to 187 MHz leading to the highest performance we were able to achieve
on this device. The picture shows the ready-to-upload placed and routed design.
On the left and right the 2 brute force cores are clearly visible. In between the
password generator and the global state machine are located. Although the dark
8 http://www.digikey.com.

http://www.digikey.com

574 M. Kammerstetter et al.

areas indicate that there would be sufficient space for an additional core, our
experiments showed that this would lead to lower performance due design con-
gestion. The first 3 rows in Table 1 present the results we obtained through this
implementation. Due to cooling requirements, we ran the design with a reduced
clock speed of 180 MHz. Our measurements indicate that in this configuration,
our implementation requires a total of 27.96 W for all 4 FPGAs on the Ztex
1.15y board. The power measurements per Spartan-6 FPGA are marked with
an asterisk to indicate that we were unable to measure them directly, but rather
derived the measurement results from our power measurements for the entire
Ztex 1.15y board with its 4 FPGAs. Our results show that our approach scales
well and can be easily run in a cluster configuration producing a performance
of 790,436 password guesses per second on our cluster. The difference between
the calculated maximum performance and the measured performance is mainly
due to the I/O times between the PC, the microcontroller and the FPGAs. In
addition, our Spartan-6 implementation includes a dynamic frequency scaling
mechanism slowing down the FPGAs in case of device temperatures getting too
high. With better cooling inside the cluster, we believe that the gap between the
theoretic performance and the measured performance could be made smaller.

(a) XC6SLX150T (b) XC7A200T (c) XC7K410T

Fig. 7. Placed and routed FPGA designs

Artix-7 Results. Starting from our already highly optimized Spartan-6 design
we ported our implementation to the newer 7-series Artix-7 XC7A200T-2 FPGA.
Since device internals such as the clocks or PLLs are different from the Spartan-
6 architecture, we had to adapt our implementation accordingly. The ability to
read the device’s core temperature from within the FPGA implementation was
especially interesting. It allowed us to implement frequency scaling mechanisms
directly on the FPGA not only preventing possible damage due to overheating,
but also ensuring that each device always runs at the maximum performance
possible. Our ready-to-upload placed and routed design is visible in Fig. 7b.
Through floorplaning all of the cores have a small path to the center where
the small block with the global state machine and the password generator are
located. The implementation can be run at up to 180 MHz to achieve a theoretic
maximum of 87,826 password guesses per second. With a measured performance

Efficient High-Speed WPA2 Brute Force Attacks 575

of 87,737 password guesses per second, our results show that a single XC7A200T-
2 device achieves not only more performance than 4 of the older model Spartan-6
XC6SLX150T-3 FPGAs altogether, but it also requires just 11.04 Watt during
operation.

Kintex-7 Results. In contrast to the low-cost Artix-7 FPGAs, Kintex-7
FPGAs are larger and allow higher performance but are also significantly more
expensive. Although we didn’t have any of those FPGAs at hand, we created
an implementation for the Kintex-7 XC7K410T FPGA for two reasons. First,
Elcomsoft’s marketed to be world’s fastest FPGA-based WPA2 password recov-
ery system relies on these FPGAs just the same and even provides performance
figures for it [10]. Our targeting of the same FPGAs thus allows direct per-
formance comparison between their implementation and ours. Their document
indicates that on the PicoComputing SC5/M505-48 cluster with 48 XC7K410T
FPGAs their implementation is able to produce 1,988,360 passwords guesses
per second [10]. Assuming that their implementation targets WPA2 employing
SHA1 instead of WPA1 employing the much less complex MD5 algorithm, our
implementation could achieve up to 10,117,584 passwords per second on the
same hardware and would thus be more than 5 times as fast. Second, we wanted
to obtain performance data for larger FPGAs as well. Although expensive, we
believe that Kintex-7 FPGAs are well in the price range for professional attack-
ers allowing them to achieve significantly more brute force attack performance
per FPGA in comparison to low-cost FPGAs such as the Artix-7. Our ready-
to-upload placed and routed design is visible in Fig. 7c. It comprises 16 cores
running at up to 216 MHz. Similar to our Artix-7 implementation, the password
generator and the global state machine are located in the center. At the same
time, the image suggests that with an increasing number of cores, the centralized
state machine and password generator becomes a bottleneck due to the long bus
interconnects reaching to the outside cores. We believe that this problem could
be easily addressed by including FIFOs for the password candidates in each of
the brute force cores.

6.1 GPU Results and Comparison

The results of our GPU evaluation (Sect. 5.1) are visible in Table 2. We performed
the performance measurements by running cudaHashcat v1.36 on different sys-
tems and measuring the power consumption as the difference between idle and
busy WPA2 computations to get results independent from other components in
the system. The table shows the different GPU configurations (System) we used
for our tests. The pwd/s column shows the performance in passwords per second
and the W column indicates the power consumed by the GPU during runtime in
Watt. The performance per Watt is visible in the pwd/s W column. In addition
to running GPU measurements on our own machines, we also conducted mea-
surements on dedicated Amazon Elastic Cloud (EC2) GPU machines as well.
While we could measure the performance on the machines just the same, we

576 M. Kammerstetter et al.

were unable to obtain power measurements. Although using a high number of
GPU cloud machines appears promising to achieve high brute force attack per-
formance, the limiting factor is the cost. Although our combined experiments
on the dedicated Amazon EC2 machines took no longer than an hour, the costs
we accumulated for our tests were already US$ 14.92. Since realistic brute force
attacks might take considerably longer, the costs for an attacker would be far
lower for acquiring a powerful GPU system instead of using the Amazon EC2
GPU nodes. In comparison to the results we obtained from our FPGA implemen-
tation, it is visible that GPUs can achieve the performance of a state-of-the-art
low-cost FPGA (i.e., Artix-7), but their power consumption and performance
per Watt is more than 10 times as high. At the same time, the performance
achievable with a single larger FPGA such as the Kintex-7 XC7K410T is no
longer in the range of GPUs. Considering high-speed attacks with clusters, we
believe that the scalability for FPGA-based attacks is better due to the small
size of FPGAs, their lower power consumption and the high performance they
can produce.

Table 2. Performance and power results on GPUs

System pwd/s W pwd/s W

GeForce GTX750 Ti 52,446 106 495

GeForce GTX770 OC 62,420 184 339

Amazon EC2 - GRID K520 30,370 N/A N/A

Amazon EC2 - GRID K520 x4 109,073 N/A N/A

7 Conclusion and Future Work

In this paper, we demonstrated that WPA2 passwords can be attacked at high
speed rates not only by expensive professional FPGA cluster solutions but simi-
lar speeds can be achieved by amateurs on a low budget as well, especially when
considering second hand FPGA boards previously used for cryptocurrently min-
ing. We specifically targeted low-cost FPGA devices, conducted implementations
on 3 different FPGA architectures and evaluated our results with regard to per-
formance and power. Our GPU evaluation suggests that FPGAs can not only
achieve higher speeds at significantly less power, but they can also be used to
easily create small and afforable FPGA clusters in the reach of amateurs. A case
study highlighting the practical impact of our attacks as well as a more detailed
description of our approach is available in the extended version of our paper [9].
However, we believe that besides the speedup we achieved it is more important
to consider that the WPA2-Personal brute force performance achievable on pro-
fessional systems is now becoming feasible on the low-cost systems amateurs can
afford as well. As counter measure, users need to increase the length of their
passwords, the password should be random and it should utilize a large char-
acter set to increase password entropy. In future work, we are looking forward

Efficient High-Speed WPA2 Brute Force Attacks 577

to evaluate the security of other cryptographic systems as well. In that regard,
we plan to design and implement a powerful low-cost FPGA cluster similar to
COPACOBANA [5] but with low-cost 7-series devices instead.

Acknowledgments. The research was funded by the Austrian Research Funding
Agency’s (FFG) KIRAS security research program through the (SG)2 project under
national FFG grant number 836276, the AnyPLACE project under EU H2020 grant
number 646580, and the IT security consulting company Trustworks KG who also
provided the FPGA boards and the cluster.

References

1. Eastlake 3rd, D., Jones, P.: US Secure Hash Algorithm 1 (SHA1). RFC 3174 (Infor-
mational), September 2001. Updated by RFCs 4634, 6234

2. Eastlake 3rd, D., Hansen, T.: US Secure Hash Algorithms (SHA and SHA-based
HMAC and HKDF). RFC 6234 (Informational), May 2011

3. Elcomsoft: ElcomSoft and Pico Computing Demonstrate World’s Fastest Password
Cracking Solution. https://www.elcomsoft.com/PR/Pico 120717 en.pdf. Accessed
13 Nov 2015

4. Elcomsoft Blog: Accelerating Password Recovery: The Addi-
tion of FPGA (2012). http://blog.elcomsoft.com/2012/07/
accelerating-password-recovery-the-addition-of-fpga. Accessed 13 Nov 2015

5. Güneysu, T., Kasper, T., Novotný, M., Paar, C., Wienbrandt, L., Zim-
mermann, R.: High-performance cryptanalysis on RIVYERA and COPA-
COBANA computing systems. In: Vanderbauwhede, W., Benkrid, K. (eds.) High-
Performance Computing Using FPGAs, pp. 335–366. Springer, New York (2013).
http://dx.doi.org/10.1007/978-1-4614-1791-0 11

6. IEEE-Inst.: 802.11-2012 - IEEE Standard for Information technology-
Telecommunications and information exchange between systems Local and
metropolitan area networks-Specific requirements Part 11: wireless LAN Medium
Access Control (MAC) and Physical Layer (PHY) Specifications. Technical report,
IEEE Std 802.11TM-2012, IEEE-Inst (2012). http://ieeexplore.ieee.org/servlet/
opac?punumber=6178209

7. Johnson, T., Roggow, D., Jones, P.H., Zambreno, J.: An FPGA architecture for
the recovery of WPA/WPA2 keys. J. Circ. Syst. Comput. 24(7) (2015). http://dx.
doi.org/10.1142/S0218126615501054

8. Kaliski, B.: PKCS #5: Password-Based Cryptography Specification Version 2.0.
RFC 2898 (Informational), September 2000. http://www.ietf.org/rfc/rfc2898.txt

9. Kammerstetter, M., Muellner, M., Burian, D., Kudera, C., Kastner, W.: Efficient
high-speed WPA2 brute force attacks using scalable low-cost FPGA clustering
(extended version). http://arxiv.org/pdf/1605.07819v1.pdf. Accessed 25 May 2016

10. PicoComputing Inc.: SC5-4U Overview. http://picocomputing.com/brochures/
SC5-4U.pdf. Accessed 13 Nov 2015

11. Visan, S.: WPA/WPA2 password security testing using graphics processing units.
J. Mob. Embed. Distrib. Syst. 5(4), 167–174 (2013)

12. U.S. Department of Commerce National Institute of Standards, Technology: FIPS
PUB 180–2, Secure Hash Standard (SHS), U.S. Department of Commerce/National
Institute of Standards and Technology (2002)

https://www.elcomsoft.com/PR/Pico_120717_en.pdf
http://blog.elcomsoft.com/2012/07/accelerating-password-recovery-the-addition-of-fpga
http://blog.elcomsoft.com/2012/07/accelerating-password-recovery-the-addition-of-fpga
http://dx.doi.org/10.1007/978-1-4614-1791-0_11
http://ieeexplore.ieee.org/servlet/opac?punumber=6178209
http://ieeexplore.ieee.org/servlet/opac?punumber=6178209
http://dx.doi.org/10.1142/S0218126615501054
http://dx.doi.org/10.1142/S0218126615501054
http://www.ietf.org/rfc/rfc2898.txt
http://arxiv.org/pdf/1605.07819v1.pdf
http://picocomputing.com/brochures/SC5-4U.pdf
http://picocomputing.com/brochures/SC5-4U.pdf

Fault Attacks

ENCOUNTER: On Breaking the Nonce Barrier
in Differential Fault Analysis with a

Case-Study on PAEQ

Dhiman Saha(B) and Dipanwita Roy Chowdhury

Crypto Research Lab, Department of Computer Science and Engineering,
IIT Kharagpur, Kharagpur, India

{dhimans,drc}@cse.iitkgp.ernet.in

Abstract. This work exploits internal differentials within a cipher in the
context of Differential Fault Analysis (DFA). This in turn overcomes the
nonce barrier which acts as a natural counter-measure against DFA. We
introduce the concept of internal differential fault analysis which requires
only one faulty ciphertext. In particular, the analysis is applicable to
parallelizable ciphers that use the counter-mode. As a proof of concept
we develop an internal differential fault attack called EnCounter on
PAEQ which is an AES based parallelizable authenticated cipher presently
in the second round of on-going CAESAR competition. The attack is
able to uniquely retrieve the key of three versions of full-round PAEQ

of key-sizes 64, 80 and 128 bits with complexities of about 216, 216 and
250 respectively. Finally, this work addresses in detail the instance of
fault analysis with varying amounts of partial state information and also
presents the first analysis of PAEQ.

Keywords: Fault analysis · Authenticated encryption · PAEQ · Internal
differential · AESQ · Nonce · AES

1 Introduction

The popularity of cryptanalyzing a cipher by observing its behavior under the
influence of faults is mainly attributed to the ease of such fault induction and
overhead in incorporating a counter-measure. Among different types of fault
based cryptanalysis, Differential Fault Analysis (DFA) [1–7] has garnered par-
ticular attention of the side-channel research community since it has been one
of the most effective side-channel attacks on symmetric-key constructions. DFA
puts in the hand of an attacker an interesting ability: The possibility of per-
forming a differential analysis starting from an intermediate state of the cipher.
This ability could be fatal in case of iterated symmetric-key designs since it is
equivalent to cryptanalyzing a round-reduced version of the cipher. However,
classical DFA has a specific requirement known as the replaying criterion which
states that the attacker must be able to induce faults while replaying a previ-
ous fault-free run of the algorithm. In this scenario, the introduction of a nonce
constraint comes in as a direct contradiction to the ability to replay.
c© International Association for Cryptologic Research 2016
B. Gierlichs and A.Y. Poschmann (Eds.): CHES 2016, LNCS 9813, pp. 581–601, 2016.
DOI: 10.1007/978-3-662-53140-2 28

582 D. Saha and D.R. Chowdhury

The notion of nonce-based encryption was formalized by Rogaway in [8] where
the security proofs relied on the pre-condition of the uniqueness of the nonce in
every instantiation of the cipher. Thus, it can be easily inferred why nonces pro-
vide an in-built protection against DFA. Usage of nonces to counter fault attacks
are already available in Public-Key literature. The famous Bellcore attack [9,10]
on RSA-CRT signatures can be prevented if the message is padded with a ran-
dom nonce which is recoverable only when verifying a correct signature. It was
shown by Coron et al. [11] that in some limited setting these nonces can be
tackled. However, the techniques used rely on theoretical constructs which may
not be applicable to their private-key counterparts. Though there have also been
attempts to mount DFA attacks on symmetric-key designs in the presence of a
nonce, the solutions are very specific to the underlying cipher. Such an instance
can be found in [12], where the authors studied the impact of the nonce con-
straint on the fault-attack vulnerability of authenticated cipher APE [13] and
demonstrated the idea of faulty collisions to overcome it.

This work tries to address the nonce barrier in a more general setting by
totally bypassing the replaying criterion which amplifies the scope of the ideas
presented here. This is made possible by a DFA strategy that no longer requires
a fault-free run of the cipher. Instead the strategy needs only one multi-block
plaintext and faulty ciphertext pair to mount an attack. The nonce constraint is
no longer a threat to DFA if the analysis relies on a single faulty ciphertext. The
idea of using single faulty ciphertext stems from the prospect of using internal
differentials within the cipher. This type of analysis is well-studied and has been
successfully used in cryptanalysis of symmetric-key designs [14,15]. We explore
the possibility of deploying this in the context of DFA. In particular, we look at
parallelizable authenticated encryption (AE) schemes that use the counter mode
of operation to separate the branches. The parallel branches of these schemes
provide a good platform for injecting faults and studying the fault propagation
in the internal difference of the branches. The main idea is to nullify very low
hamming distance between the inputs of the parallel branches using a primary
fault and subsequently employ internal differential fault analysis using a sec-
ondary fault. To undertake a case-study we select PAEQ which is among the 30
Round-2 candidates in the on-going CAESAR [16] competition on authenticated
ciphers. PAEQ meets the basic criteria for analysis since it is parallelizable and
uses the counter mode. Moreover, the underlying permutation follows AES [17]
very closely which provides an edge in terms of fault analysis. In this work, we
present the first analysis of PAEQ in form of an internal difference based fault
attack called EnCounter on full-round paeq-64, paeq-80 and paeq-128 using
a 4-round distinguishing property. Two byte faults are required to be injected in
one of the parallel branches during the encryption phase of PAEQ. EnCounter
uses only one 255-block known plaintext and corresponding faulty ciphertext to
significantly reduce the average key-search space of the three versions of PAEQ.
Finally, one might be tempted to believe that classical differential fault analysis
results on AES would suffice to analyze an AE scheme like PAEQ which is inher-
ently AES based. However, there is a fundamental difference given the fact that

EnCounter: On Breaking the Nonce Barrier 583

the output here is truncated giving an attacker access to only partial information
of the state. Thus the current work provides an instance of a fault based analysis
of partially specified states.

Our Results

– Introduce the concept of internal differential fault analysis (IDFA) in the con-
text of parallelizable ciphers in the counter mode

– Showcase that IDFA requires only one run of the algorithm thereby overcoming
the nonce barrier of DFA.

– Present a 4-round internal differential distinguisher for PAEQ.
– Use the distinguisher to develop the EnCounter attack on full-round PAEQ

using only two faults in the same instance of PAEQ
– Reduces average key-space of primary PAEQ variants to practical limits viz.,

paeq-64: 264 to 216, paeq-80: 280 to 216, paeq-128: 2128 to 250.
– Present instances of fault analysis of an AES based design with various types

of partially specified internal states.

The rest of the paper is organized as follows. Section 2 provides a brief descrip-
tion of PAEQ. The notations used is the work are given in Sect. 3. The concept
of internal differential fault analysis is introduced in Sect. 4. A 4-round distin-
guisher of PAEQ is showcased in Sect. 5. Section 6 introduces the notion of fault
quartets. The EnCounter attack on PAEQ is devised in Sect. 7 and its complexity
analysis is furnished in Subsect. 7.5. The experimental results are presented in
Sect. 8 while the concluding remarks are given in Sect. 9.

2 The Design of PAEQ

PAEQ which stands for Parallelizable Authenticated Encryption based on Quadru-
pled AES was introduced by Biryukov and Khovratovich in ISC 2014 [18] along
with a new generic mode of operation PPAE (Parallelizable Permutation-based
Authenticated Encryption). It was also submitted to the on-going CAESAR
competition for authenticated cipher and is presently one of the 30 round 2
candidates. The design of PAEQ was mainly driven by simplicity and to achieve
a security level equal to the key-length. Hence the authors argued in favor of
a permutation based design. It is fully parallelizable and on-line and offers a
security level up to 128 bits and higher (up to w/3, w ← width of internal per-
mutation) and equal to the key length. An interesting aspect of the PPAE mode
of operation (denoted PPAEf) is that the inputs to the internal permutation f are
only linked by counters. This property makes PAEQ a prime candidate to apply
the concept of fault based internal differentials proposed in this work. Next we
touch upon PPAEf and the internal permutation of PAEQ called AESQ.

584 D. Saha and D.R. Chowdhury

2.1 PPAE Mode of Operation

PPAEf (illustrated in Algorithm1) can be instantiated with an n-bit permutation
f . The inputs to the permutation are formatted as (Di||counter||N ||K) for each
plaintext block and (Di||counter||AD-block||K) for processing associated data
(AD) where Di ← domain separator, N ← nonce and K ← key. The plaintext
and AD are divided into blocks of size n − k − 16 and n − 2k − 16, respectively,
where k is the key-size. Incomplete last blocks are padded using the byte-length
of the block and domain separators are changed accordingly. Plaintext processing
and authentication calls f twice while AD data is authenticated using a single
call. Partial authentication data from all branches are passed to a final call to f ,
the output of which is optionally truncated to get the tag. The entire operation
is depicted in Fig. 1. An interested reader can refer to [18,19] for details.

Fig. 1. Encryption and authentication with PAEQ

2.2 The Internal Permutation: AESQ

AESQ operates on a 512-bit internal state which can be subdivided into 128-bit
substates. Before going into details we introduce some definitions.

Definition 1 (Word). Let T = F[x]/(x8 +x4 +x3 +x+1) be the field F28 used
in the AES MixColumns operation. Then a word is defined as an element of T.

A word is just a byte redefined to account for the field arithmetic. In this work,
we will come across partially specified states/substates where certain words might
have unknown values. To capture this scenario, we use the symbol ‘X’ to represent
unknown words. Thus, to be precise a word is an element of T ∪ {‘X’}.

Definition 2 (Substate, State). The internal state of the AESQ permutation
is defined as a 4-tuple of substates where each substate is a (4 × 4)-word matrix.

EnCounter: On Breaking the Nonce Barrier 585

Algorithm 1. PPAEf (P,N,K,A, n)

Input:

{
P ← Plaintext, N ← Nonce, |N | = r, K ← Key, |K| = k

A ← Associated Data, f ← Internal permutation, n ← Internal state size

Output: C, T → Ciphertext and Tag

1: Di = (k, (r + i) mod 256), i = 1, 2, · · · , 6 � Generating 2-byte domain separators
2: {P1, P2, · · · , Pt} ← P |Pi| = (n − k − 16) bits
3: {A1, A2, · · · , Ap} ← A |Ai| = (n − 2k − 16) bits
4: if (|Pt| < n − k − 16) then Pt ← Pt||a||a · · · ||a � a = |Pt|/8 and |a| = 1 byte

5: if (|Ap| < n − 2k − 16) then Ap ← Ap||b||b · · · ||b � b = |Ap|/8 and |b| = 1 byte

6: Y = 0 � |Y | = n − k − 16
7: for i = 1 to t do

8: Vi ← D0||Ri||N ||K �

{
Ri ← Branch Index, Ri = i, |Ri| = n − k − r − 16

D0 ← D1 for incomplete last block

9: Wi ← f (Vi); Ci ← Wi[17 · · · (n − k)] ⊕ Pi

10: Xi ← D2||Ci||Wi[(n − k + 1) · · · n] � D2 ← D3 for incomplete last block
11: Yi ← (f (Xi))[17 · · · (n − k)]; Y ← Y

⊕
Yi

12: for i = 1 to p do � Binding Associated Data

13: X ′
i ← D4||Ri||Ai||K �

{
Ri = i, |Ri| = k

D4 ← D5 for incomplete last block

14: Y ′
i ← (f (X ′

i))[17 · · · (n − k)]
15: Y ← Y

⊕
Y ′
i

16: T ← f (D6||Y ||K) ⊕ (0n−k||K)
17: C = {C1, C2, · · · , Ct} � Truncate Ct for incomplete last plaintext block

A state is denoted by s, while each substate is represented by sm = [sm
i,j] where

sm
i,j are the elements of sm and m denotes the substate index. We denote a

column of [sm
i,j] as sm

∗,j while a row is referred to as sm
i,∗.

sm = [sm
i,j], where

{
si,j ∈ T ∪ {‘X’}
0 ≤ i, j < 4; m ∈ {1, 2, 3, 4}

s = (s1, s2, s3, s4)

AESQ is a composition of 20 round functions with a Shuffle operation
(denoted by S , Refer Table 1) after every 2 rounds. Each round-function is
denoted by Rr where the index r denotes the rth round of AESQ. Every round
applies on the internal state a composition of four bijective functions which are
basically the standard AES round operations SubBytes, ShiftRows, MixColumns,
AddRoundConstants applied individually on each substate. In the context, of a
state we denote these functions as βr, ρr, μr and αr respectively. The reference to
a substate is addressed by including the substate index in notation. For example,
to refer to the MixColumns on the second substate in R17 we use μ2

17. Similarly,
when considering a substate in Rr we refer to the round function applied indi-
vidually to the substate as Rm

r by including the substate index in the notation.
This implies that for an internal state s the output of the rth round of AESQ is
Rr(s) = R1

r(s
1)||R2

r(s
2)||R3

r(s
3)||R4

r(s
4).

586 D. Saha and D.R. Chowdhury

Table 1. Column mapping under Shuffle (S)

s1 s2 s3 s4

From s1
∗,0 s1

∗,1 s1
∗,2 s1

∗,3 s2
∗,0 s2

∗,1 s2
∗,2 s2

∗,3 s3
∗,0 s3

∗,1 s3
∗,2 s3

∗,3 s4
∗,0 s4

∗,1 s4
∗,2 s4

∗,3

To s1
∗,3 s4

∗,3 s3
∗,2 s2

∗,2 s1
∗,1 s4

∗,1 s3
∗,0 s2

∗,0 s1
∗,2 s4

∗,2 s3
∗,3 s2

∗,3 s1
∗,0 s4

∗,0 s3
∗,1 s2

∗,1

AESQ = S ◦ R20 ◦ R19 ◦ · · · ◦ S ◦ R2 ◦ R1

Rr = αr ◦ μr ◦ ρr ◦ βr; Rm
r = αm

r ◦ μm
r ◦ ρm

r ◦ βm
r

Round-reduced AESQ permutation is denoted by AESQn where n = 2k, 1 ≤
k ≤ 9. Thus AESQn = S ◦Rn ◦Rn−1 ◦· · ·◦S ◦R2 ◦R1. Since n is even, it implies
that we consider reductions in steps of two-rounds and AESQn always ends in the
S operation. Finally, the round constant for substate m in round r of AESQ is
given by: rcm

r = ((r − 1) ∗ 4 + m). In αm
r , rcm

r is added to all words of row sm
1,∗.

2.3 Handling Partially Specified States/Substates

As mentioned earlier in this work we have to handle states or substates that may
have multiple unknown values. We now define how the operations βm

r , ρm
r , μm

r

and αm
r behave in case of a partially specified substate sm = [sm

i,j]. Here SBOX
denotes the AES Substitution box and Mμ denotes the MixColumns matrix. ρm

r

does not rely on values of sm and just shifts the positions of unknown values.

sm
i,j

βm
r−−→

{
X if sm

i,j = X

SBOX(sm
i,j) Otherwise

∣
∣
∣
∣
∣

sm
∗,j

μm
r−−→

{
Mμ × sm

∗,j if ∀i, sm
i,j
= X

{X, X, X, X}T Otherwise

∣
∣
∣
∣
∣

sm
i,j

αm
r−−→

⎧
⎪⎨

⎪⎩

sm
i,j if i
= 1

sm
i,j ⊕ rcm

r if sm
i,j
= X

X Otherwise

3 Notations

Definition 3 (Diagonal). A diagonal of a substate (sm = [sm
i,j]) is the set of

words which map to the same column under the Shift-Row operation.

dm
k = {sm

i,j : ρm(sm
i,j) ∈ sm

∗,k}, where k = (j − σ(i)) mod 4;σ = {0, 1, 2, 3} (1)

Definition 4 (Differential State). A differential state is defined as the
element-wise XOR between an internal state s = (s1, s2, s3, s4) and the corre-
sponding state s′ = (s′1, s′2, s′3, s′4) belonging to a different branch of PAEQ.

δ = (δ1, δ2, δ3, δ4) = ((s1 ⊕ s′1), (s2 ⊕ s′2), (s3 ⊕ s′3), (s4 ⊕ s′4))

Definition 5 (Column Vector). A Column Vector, is a set of columns where
each element is a candidate for one particular column of a substate.

Definition 6 (State/Substate Vector). A Substate Vector, identified by
[sm]v, is a set of substates where each element is a prospective candidate for
substate sm. A State Vector of state s is the cross-product of its substate vectors.

EnCounter: On Breaking the Nonce Barrier 587

4 Internal Differential Fault Analysis

In this work, for the first time, we explore the idea of using internal differentials
to mount fault based attacks. Though the concept of internal differentials is well-
known in cryptanalysis [14,15], the idea has never been applied in fault based
Side Channel Analysis. Our research reveals that the best crypto-primitives to
mount such a type of attack are the ones that employ a parallel mode of opera-
tion. In principle, internal differentials exploit self-symmetric structures present
within a construction. In the parallel mode of operation all parallel branches
are structurally similar exhibiting nice instances of such self-symmetry. We look
at inputs of such branches. Parallelizable ciphers using the counter mode are
generally characterized by the common property that the inputs to the parallel
branches only differ in the counter value. Thus, the hamming distance of the
inputs are quite low. More interestingly, we can find branches in which the bit
positions where the inputs differ are very localized.1 This localization can be
fatal from the perspective of fault analysis since a fault injection in the counter
could possibly lead to a collision in the counter values. So the faulty counter
could become equal to a fault-free counter and since the inputs differ only in the
counter value this would give us two branches with the same input. This forms
a pre-condition for deploying internal differentials analysis since under this sce-
nario, we could inject a second fault in the internal state of any of these two
identical branches and study how the fault diffuses in internal difference of the
corresponding states. The problem now reduces to classical DFA and hence we
may apply standard techniques pertaining to differential fault analysis. Figure 2
depicts the concept visually in a very generic sense.

Fig. 2. Generic model for using internal differentials in fault analysis of parallelizable
ciphers in the counter mode.

An interesting aspect of this strategy is that it requires only one multi-block
ciphertext with a single faulty block thereby making the analysis independent of
the effect of a nonce which prohibits usage of standard DFA. One could argue
regarding the viability of the first fault in terms of achieving the counter collision.
1 For instance, the differing bits could be localized within a byte.

588 D. Saha and D.R. Chowdhury

However, in this work we introduce the concept of Fault Quartets (Refer Sect. 6)
which can use a round-reduced distinguisher of the underlying cipher to locate
the fault-free branch corresponding to a faulty branch due to the first fault under
reasonable assumptions. Building upon these ideas a practical IDFA attack is
mounted on PAEQ. Though the specifics rely on the underlying construction, the
overall notion of IDFA can be adapted to other ciphers which meet the properties
discussed earlier. In the next section we develop a four-round distinguisher of
PAEQ based on internal differentials arising from counter values.

5 An Internal Differential Distinguisher for 4-Round PAEQ

In this section we showcase a 4-round internal differential distinguisher which
surfaces due to low Hamming-distance between inputs to various parallel
branches of the first call to the AESQ permutation during the encryption phase.
Here we deal with AESQ reduced to 4-rounds. We start devising the distin-
guisher by making the following observation which is due to the PPAE mode of
operation.

Observation 1. Two parallel branches of PAEQ with the same domain separator
differ only in the counter value.

Based on Observation 1, we first choose any branch of PAEQ in the encryp-
tion phase with counter value i. We next find a branch with counter value j such
that their corresponding c-bit2 binary representations differ in exactly one3 byte.
The main idea is to restrict the internal-difference to a byte and later study its
diffusion from R1 to R4. The differential propagation in an AES round is quite
well-known. However, the presence of quadruple AES instantiations in AESQ and
the inclusion of S operation that mixes the substates make the analysis inter-
esting. Here, we are particularly interested in studying how the bytes belonging
to the same column become interrelated as the difference diffuses.

Four Round Differential Propagation in AESQ:

– R1: Difference spreads to entire column, and the bytes are related by factors
governed by the MixColumns matrix.

– R2: Entire substate affected; columns of the substate are related by factors.
– S : One column of each substate affected; factor relations unaffected.
– R3: All substates affected. All columns exhibit byte inter-relations due μ3.
– R4: All substates still affected with all relations destroyed due to β4

– S : Columns permute.

This process is illustrated in Fig. 3a. After every round the corresponding byte
inter-relations are given. Recall that here we are dealing with a differential state
(Definition 4). Here, the numbers in a particular column indicate the factor by

2 Recall, the counter is of size c = n − k − 16 bits.
3 For instance, i = 5 and j = 8 differ only in the least significant byte.

EnCounter: On Breaking the Nonce Barrier 589

(a) Diffusion of a internal-difference in
the first substate in 4 rounds of AESQ.
SB ↔ βm

r , SR ↔ ρm
r , MC ↔ μm

r

(b) Distinguisher exploiting the byte
inter-relations after R3.

Fig. 3. A demonstration of the 4-round distinguishing strategy using paeq-128. A �
denotes a known value while a X denotes an unknown value.

which the byte-wise differences in that column are related. In the first substate
{2, 1, 1, 3} imply that differences are of the form {2 × f, 1 × f, 1 × f, 3 × f}
where f ∈ T\{0}. The byte inter-relations after R3 translates into the following
observation:

Observation 2. The byte inter-relations after Rr due to a difference in Rr−2

input is invariant based on which substate the initial difference was located.4

The implication of Observation 2 is that there is a bijective relation between
byte inter-relations after R3 and substate where we had the initial internal dif-
ference in R1 input. As there are four substates so we have four unique byte
inter-relations (Fig. 6) after R3. We can now present the proposed distinguisher
in Algorithm 2 which passes with probability 1 for PAEQ if n = 4.

Remark 1. Distinguisher(P,C, i, j, n) will fail for any n > 4 because Obser-
vation 2 only holds for three rounds while the last round is handled by inversion
to get a meet-in-the-middle scenario to verify the byte inter-relations (Fig. 3).
Moreover, it might also fail if i and j differ in more than one byte since in that
4 It is understood that r > 2 and 2|(r − 1).

590 D. Saha and D.R. Chowdhury

Algorithm 2. Distinguisher (P,C, i, j, n)

Input:

⎧
⎪⎨

⎪⎩

P, C → 1 known plaintext-ciphertext (P = P1|| · · · ||Pt, C = C1|| · · · ||Ct)

(i �= j) < t → Branch indexes which differ in one bytea

n → Total number of AESQ rounds considered

Output: 0/1

1: s ← S −1(Pi ⊕ Ci) s′ ← S −1(Pj ⊕ Cj)
2: s ← R−1

n (s) s′ ← R−1
n (s′)

3: δ = s ⊕ s′ � The internal difference

4: Result
Verify Byte Inter-relations (Fig. 6)←−−−−−−−−−−−−−−−−−−−−−− δ

5: if Result == TRUE then return 1
6: else return 0

a
i, j �= t since the last block might have a different domain separator in which case Observation 1 will not hold.

case the internal difference in R1 input might span multiple substates. Finally,
Distinguisher constitutes a general 3-round differential characteristic which
will hold for any 3 consecutive rounds of AESQ as long as the starting states
have an internal difference of one byte. This is what is exploited to develop an
internal differential fault attack on PAEQ.

From the above remark we get the impression that if somehow we could get
a one-byte internal difference in R17 then the 4-round distinguishing property
could be verified from R20 i.e. the full AESQ permutation. In order to achieve
this scenario we introduce the concept of Fault Quartets in the next section.

6 The Fault Quartet

Definition 7. A fault quartet (Qi,j) is a configuration of four internal states of
the AESQ belonging to two different branches i and j of an instance of PAEQ in
the encryption phase. It is uniquely identified by the ordered pair of the branch
indexes (i,j). Qi,j is of the following form and has the following constraints:

Qi,j = {s, s#, t, t#} (2)

where

⎧
⎪⎨

⎪⎩

s, t → branch input states, s# = AESQ16(s), t# = AESQ16(t)
Constraint 1 : s ⊕ t = 0
Constraint 2 : s# and t# have an internal difference of one byte.

To generate a fault quartet, we take a plaintext of 255 blocks5 and induce
two random byte faults during the encryption phase of PAEQ. The first fault,
called the equalizer is injected in the last byte of the counter of any branch i.
The second fault called the differentiator is injected anywhere in the input
of R17 of AESQ in the same branch. The equalizer achieves the first constraint
5 Last block is a complete block (i.e., block-size = n − k − 16) due to Observation 1.

EnCounter: On Breaking the Nonce Barrier 591

Fig. 4. Fault injection in PAEQ

of Qi,j which states that the input states must have no internal difference while
the differentiator induces a one-byte internal difference between the outputs
of R16 which constitutes the second constraint. Figure 4 demonstrates the fault
injection. The following observation accounts for the choice of a 255-block mes-
sage above.

Observation 3. The number of the plaintext blocks required to guarantee6 the
existence of a fault quartet with the equalizer fault injected in the last byte of
the counter of any branch is 255 with a complete last block.

The complete block at the end ensures that all inputs to AESQ have the same
domain separator. The choice of 255 implies that all of these differ only in the
last byte of the counter. Due to equalizer fault the counter value of branch
i changes to j which is equal to the counter value of any7 one of the remaining
254 fault-free branches. Thus, this outlines the condition to guarantee that a
fault quartet is generated. But how would one find such a quartet since neither
the input states nor the output of of AESQ16 is visible to an adversary. This is
addressed next where we give an algorithm to find such a quartet.

Finding Qi,j : Finding a fault-quartet translates into finding the branch-index
ordered pair (i, j) where i corresponds to the branch of PAEQ where the faults
have been introduced and the j corresponds to the fault-free branch. This is
done by Algorithm 3 using the distinguisher developed earlier as a sub-routine.
One can recall that due to the differentiator there will be a one-byte inter-
nal difference between branch i and j in the input of R17. Thus distinguishing
property can be verified from R20 i.e., the full AESQ permutation.

Qi,j gives us the opportunity to exploit the distinguishing property of PAEQ
in the last four rounds of AESQ. With these concepts we are in a position to
finally introduce the EnCounter attack which exploits the property further to
recover the entire internal state of AESQ thereby revealing the key.

6 With a probability of 255
256

.
7 Except for the case when j = 0 when it matches none of the remaining branches.

592 D. Saha and D.R. Chowdhury

Algorithm 3. FindQ (P,C, i)
Input: P, C → One 255-block plaintext-ciphertext; i → Index of faulty-branch
Output: (i, j) → Branch-index ordered pair identifying the fault quartet Qi,j

1: for all j ∈ {1, 2, · · · , 255} \ {i} do
2: if (Distinguisher(P, C, i, j, 20) == 1) then
3: return (i, j) � This line is reached exactly once

7 ENCOUNTER: Fault Analysis of PAEQ using Internal
Differentials

The EnCounter attack proceeds in two phases: InBound and OutBound. The
InBound phase is common to all PAEQ variants while the OutBound phase varies.
In this work we focus on paeq-64, paeq-80 and paeq-128 which constitute the
primary set of PAEQ family as specified by the designers. We first provide a
high-level description of the attack and then delve into the details.

High-level Description of EnCounter

→ Fault-Injection: Run PAEQ on a plaintext with 255 complete blocks. Inject
the equalizer and differentiator faults in any branch i.

→ Find Fault-Quartet: Use FindQ to get index of the fault-free branch.
→ InBound Phase: Invert states from output of AESQ for both branches

and reconstruct internal differential state after R19. Guess diagonal of
differentiator fault to get a set of four column vectors for the state after
β19.

→ OutBound Phase: Recovers candidates for all substates at the end of R20 for
the fault-free branch using the column vectors from InBound phase. Return
them is the form of substate vectors.

→ Complete Attack: Repeat InBound phase for every guess of the diagonal
and consequently OutBound too. Accumulate substate vectors from every
guess. Their cross-product gives the reduced state-space for the state after
R20. Inverting every candidate state and verifying the known part of the
input reveals the correct key.

7.1 The Fault Model

Firstly, as EnCounter is an IDFA attack it needs only a single run of PAEQ. Sec-
ondly, it is based on a random byte fault model requiring 2 faults: equalizer
and differentiator, induced in any branch of AESQ while encrypting the plain-
text. equalizer targets the last byte of the counter while differentiator tar-
gets any byte at the input of R17 (Fig. 4). While classical DFA generally deals
with single block messages, IDFA uses a single multi-block message as it targets
parallelizable ciphers. In the context of EnCounter the plaintext itself is a 255-
block message. After fault injection the attacker uses faulty and fault-free blocks

EnCounter: On Breaking the Nonce Barrier 593

of the same ciphertext and corresponding plaintext blocks to mount the attack.
Assuming the faulty branch to be i, faulty ciphertext block C�

i is identified below.

EnCounter Input

{
P = P1||P2|| · · · ||Pi|| · · · ||Pj || · · · ||P255
C = C1||C2|| · · · ||C�

i || · · · ||Cj || · · · ||C255||Tag�

7.2 The INBOUND Phase

As the name suggests the InBound phase tries to invert the the faulty and fault-
free branches using the observable part of the output. A pictorial abstraction of
the process is provided in Fig. 5 for early reference. After identifying the fault-free
branch using FindQ, the attacker separately inverts the partially known output8

of AESQ for both branches up to the input of R20. He then computes the internal
difference of the states which gives him a partially specified differential state.
This state, by virtue of fault diffusion, has a special property that the differences
in individual columns are related. These relations are given in Fig. 6 and help
to recover the complete differential state. Further, by Obervation 2 the verified
byte inter-relations will also reveal the substate where the differentiator fault
got injected.

Fig. 5. The InBound phase. Returns candidates for columns after β19.

The attacker inverts the reconstructed state up to input of ρ19. Again, due
to fault diffusion every substate of this state has exactly one column with non-
zero related differences (Refer Fig. 3a). However, the relations differ based on the
location of differentiator fault. By virtue of the Diagonal Principle9 [7] which
8 Computed using the XOR of plaintext and ciphertext blocks.
9 Faults injected in the same diagonal of an AES state in round r input lead to the

same byte interrelations at the end of round (r + 1).

594 D. Saha and D.R. Chowdhury

Fig. 6. Byte inter-relations after R19 ↔ Location of differentiator fault.

is a well-known result of DFA on AES, we know that for a particular substate there
can be four kinds of relations based on the diagonal where the differentiator
was injected. Figure 7 shows all these possible byte inter-relations based on the
source of the byte-fault at the input of R17.

The attacker already knows which quadrant to look at in Fig. 7 since he
knows the substate location of differentiator. However, he has no idea about
the source diagonal and has to resort to guessing. So like classical DFA using
the input and output difference of β19, the attacker solves differential equations
to generate candidates for the four columns which are stored in column vectors.
At the end of InBound phase the attacker has a set of four column vectors for
the particular guess of the fault diagonal.

Fig. 7. Byte inter-relations at R19 input vs location of differentiator fault. Each
quadrant corresponds to a source substate. For each substate, the relations correspond
to a source diagonal.

7.3 The OUTBOUND Phase

Unlike the InBound phase, the OutBound phase works only on the fault-free
branch of AESQ specifically on the partial state at the end of R20. Additionally,
the column vectors generated above are also used. Let us look at the nature of

EnCounter: On Breaking the Nonce Barrier 595

Fig. 8. The classification of substates observed in the internal state after S −1(Pj ⊕Cj)
based on number of unknown bytes.

the substate in the state determined by S −1(Pj ⊕Cj). This is captured by Fig. 8
for PAEQ variants analyzed in this work.

There are four types of substates with varying number of unknown bytes.
The primary aim of this phase is to reduce the search space for these sub-
states. A Type-1 substate is left unaltered since it has no unknown byte. Type-2
and Type-3 are equivalent in the sense that both have three completely known
columns while Type-4 can be converted to the same form by guessing 2 bytes of
the first column. Thus for the rest of the analysis we assume that we are deal-
ing with a substate with only one unknown column. We now describe how the
attacker produces candidates for such a substate. Again Fig. 9 visually illustrates
this process for easy reference. Let us consider the mth substate.

Fig. 9. The OutBound phase. Returns candidates for substates after R20.

1. The substate is inverted up to output of μm
19. At this point the substate bears

a property that every column has exactly one unknown byte.
2. Any column from the corresponding column vector10 is used to form a partial

substate which is propagated forward up to the input of μm
19. At this point

the substate has exactly one known byte in every column.
3. The attacker exploits linear relations between the partial input and partial

output of μm
19 to uniquely retrieve the substate. The recovered substate is

propagated forward up to the end of R20.
10 Recall that the column vector corresponds to the state after β19.

596 D. Saha and D.R. Chowdhury

4. The process repeated for all columns in the column vector and all computed
substates are stored in the corresponding substate vectors.

At the end of the OutBound phase we have a set of substate vectors for all
substates of the state after R20.

Remark 2. Unlike a Type-3 substate, a Type-2 substate has two extra known
bytes in the fourth column which can be exploited. Thus, substate vector is
reduced by comparing candidates with respect to these two bytes and eliminated
if unmatched. This should lead to large scale reduction of candidates. As regards
a Type-4 substate 2 bytes need to be guessed to make it like a Type-3. Thus we
have to repeat the process of candidate generation 216 times.

7.4 The Complete Attack

At the outset EnCounter repeats the InBound phase four times for different
diagonals positions of differentiator. Every iteration returns four column
vectors one for each substate of the state after β19. The OutBound phase then
follows, iterating over different types of substates ∈ S −1(Pj ⊕Cj) from the fault-
free branch j returning corresponding substate candidates in substate vectors.
The cross-product of the substate vectors forms the state vector which consti-
tutes the reduced state-space for S −1(Pj ⊕ Cj). The last step is to invert every
candidate state to get the input of branch j. Here, we can exploit the knowledge
of the domain separator D0, the counter value j and the nonce N . This helps to
eliminate all wrong candidates and reveals the master key K. It must be noted
that for a particular diagonal guess in InBound phase if the size of any substate
vector returned by OutBound is empty, all substate vectors generated for that
guess are discarded. Algorithm 4 presents EnCounter at an abstract level. In
the next subsection, we perform a complexity analysis.

Remark 3. Retrieving diagonal for paeq-64: In case of paeq-64 since second
substate after R20 (Refer Fig. 8) is completely known (Type-1), it can be inverted
two rounds to reach input of R2

19 for both branches i, j. The byte inter-relations
in the internal-difference of these inputs is verified against the ones given in
Fig. 7. This reveals the fault diagonal of differentiator. Thus as a special
case, for paeq-64 the diagonal guess can be avoided.

7.5 Complexity Analysis

Here we are mainly interested in getting the size of set S since from Algorithm 4
it is evident that AESQ−1 constitutes the most expensive operation of EnCounter
and the number of calls is bounded by |S|. Equation 3 gives the upper bound on
the size of S assuming that s ← S −1(Pj ⊕ Cj).

|S| ≤
∑

d

|([s]v)d| =
∑

d

(
4∏

x=1

∣
∣ [sx]v

∣
∣

)

d

(3)

EnCounter: On Breaking the Nonce Barrier 597

Algorithm 4. EnCounter(P,C, i)

Input:

{
P, C ← One known plaintext-ciphertext with 255 complete blocks

i ← Index of faulty-branch

Output: K ← The Master Key

1: (i, j) ← FindQ (P, C, i) � Locate Fault-quartet Qi,j

2: S ← ∅

3: for d
Guess←−−− Fault diagonal do � Location of differentiator

4: Four Column Vectors
InBound←−−−−−−−−

(
Pi ⊕ Ci, Pj ⊕ Cj , d

)

5: Four Substate Vectors
OutBound←−−−−−−−−−

(
Pj ⊕ Cj , Column Vectors

)

6: if
(
Any Substate Vector = ∅

)
then Go to 3

7: State Vector
Cross-Product←−−−−−−−− Four Substate Vectors

8: S ←
(
S
⋃

State Vector
)

� Reduced state-space

9: for all e ∈ S do (Dx||jx||Nx||K) ← AESQ−1(S (e))
10: if (Dx||jx||Nx) == (D0||j||N) then return K

Table 2. Substate vector sizes in terms of Type-3 substate vector size

GetType(sx) Type-1 Type-2 Type-3 Type-4

|[sx]v| (Refer Remark 2) 1 p � q q r ≤ 216 × q

It implies that it suffices to study the sizes of substate vectors. It was seen
in OutBound phase that Type-2 and Type-4 substates are related to Type-3.
Accordingly, the sizes of the corresponding substate vectors can be expressed in
terms of a Type-3 substate vector. This is furnished in Table 2 where q denotes
the size of a Type-3 substate vector while p and r denote sizes of Type-2 and
Type-4 substate vectors respectively. Table 3 enumerates the theoretical upper
bounds of the complexities individually identifying sizes of the substate vectors.

8 Experimental Results

Computer simulations of EnCounter were performed over 1000 randomly chosen
nonces, keys. The results for paeq-64/80 are shown in the form of bar diagrams
in Figs. 10 and 11 respectively. The bars segregate the substate vectors in terms
of their sizes (the value at the base) with the frequency of occurrence given at the
top. The figures mainly show that in the average case q is concentrated around
28. It was mentioned in Remark 2 that in the presence of additional information
p could be further reduced such that p � q. This is confirmed by the results
which show that p = 1 with a few exceptions when p = 2. Table 3 summaries
the results while the details are given below:

– paeq-64: By Remark 3 we know that the diagonal for differentiator can
be recovered thereby avoiding the guessing step in Algorithm4 and reducing
the complexity by a factor of four. So the final experimentally verified size of
S for paeq-64 stands at 72292 ≈ 216.14.

598 D. Saha and D.R. Chowdhury

– paeq-80: During simulation it was found that for Type-2 substates OutBound
phase returned empty substate vectors for a wrong guess of faulty diagonal.
This made Step 6 of Algorithm 4 to be TRUE reducing |S| by four times. So
the final verified size 72578 ≈ 216.14 is very close to paeq-64.

– paeq-128: It has three Type-3 substates contributing around 224 while a
Type-4 substate is supposed to contribute over 216 ×28. Finally, the complex-
ity is increased four times due to diagonal guess. Thus the estimated value of
|S| is around 250.

Table 3. EnCounter Complexities

PAEQ Substate vector size s = S −1(Pj ⊕ Cj) Theoretical
complexity(|S|)

Experimental
result(≈ |S|)

|[s1]v| |[s2]v| |[s3]v| |[s4]v|
paeq-64 q 1 q p q2p(� q3) 216.14

(Type-3) (Type-1) (Type-3) (Type-2)

paeq-80 q p q p 4p2q2(� 4q4) 216.14

(Type-3) (Type-2) (Type-3) (Type-2)

paeq-128 q q q r 4q3r(≤ 218q4) 250(estd.)

(Type-3) (Type-3) (Type-3) (Type-4)

240 256 272 288 496 512 528 544 560 576 1024
0

100

200

300

400

500

600

700

560

292

 52
 12 26 34 8 6 2 6 2

|[s1]v| μ = 271.17 σ = 82.10

1
0

200

400

600

800

1000

1200

1000

|[s2]v| μ = 1.00 σ = 0.00

240 256 272 288 304 496 512 528 544 560
0

100

200

300

400

500

600

700

514

352

 56
 6 2 22 22 14 8 4

|[s3]v| μ = 267.20 σ = 69.38

1 2
0

200

400

600

800

1000 996

 4

|[s4]v| μ = 1.00 σ = 0.06

0

100

200

300

400

57
60

0

61
44

0

65
28

0

65
53

6

69
12

0

69
63

2

72
96

0

73
72

8

73
98

4

11
52

00

11
90

40

12
28

80

12
67

20

12
69

76

13
05

60

13
10

72

13
44

00

13
51

68

13
82

40

13
92

64

14
33

60

14
74

56

24
57

60

25
39

52

Reduced State−space Size μ = 72292.35 σ = 26409.61

294
322

 48

108

 8
 48

 2 10 4 2
 32 38

 18 14 8 14 2 4 2 10 4 4 2 2

Fig. 10. Bar diagram for sizes of substate vectors and reduced state-space for 1000
experiments on paeq-64 with mean (μ) and standard-deviation (σ) indicated.

EnCounter: On Breaking the Nonce Barrier 599

240 256 272 288 496 512 528 544 560 576
0

100

200

300

400

500

600

700

559

299

 58
 10 30 25 7 6 5 1

|[s1]v| μ = 267.38 σ = 70.64

1 2
0

200

400

600

800

1000 998

 2

|[s2]v| μ = 1.00 σ = 0.04

240 256 272 288 496 512 528 544 560 1008 1024 1072
0

100

200

300

400

500

600

700

544

305

 69
 5 24 24 13 8 5 1 1 1

|[s3]v| μ = 270.16 σ = 82.66

1 2
0

200

400

600

800

1000 993

 7

|[s4]v| μ = 1.01 σ = 0.08

0

100

200

300

400

57
60

0
61

44
0

65
28

0
65

53
6

69
12

0
69

63
2

73
72

8
78

33
6

11
52

00
11

90
40

12
28

80
12

67
20

12
69

76
13

05
60

13
10

72
13

44
00

13
49

12
13

51
68

13
82

40
13

92
64

14
33

60
14

36
16

14
79

68
15

23
20

24
57

60
25

39
52

25
72

80
26

21
44

27
03

36
27

41
76

Reduced State−space Size μ = 72578.30 σ = 28201.68

301
327

 74 88

 7
 38

 6 2 3
 33 31

 8 16 7 15 5 4 10 1 11 4 1 1 1 1 1 1 1 1 1

Fig. 11. Bar diagram for sizes of substate vectors and reduced state-space for 1000
experiments on paeq-80 with mean (μ) and standard-deviation (σ) indicated.

9 Conclusion

This work introduces the notion of fault analysis using internal differentials.
Parallelizable ciphers using the counter mode are found to be good targets for
such kind of analysis though the real attack relies on the underlying construc-
tion. A 4-round distinguisher for authenticated cipher PAEQ is demonstrated.
Using this the idea of fault quartets is proposed which can locate the fault-free
branch corresponding to a faulty branch. Finally, an internal differential fault
attack EnCounter is devised against PAEQ using just two random byte faults
with only a single faulty ciphertext and the corresponding plaintext. The attack
reduces the key-space of paeq-64, paeq-80 and paeq-128 to around 216, 216

and 250 respectively. The ability to mount an attack using a single faulty run of
the cipher makes IDFA independent of the effect of nonce thereby breaking the
nonce barrier of DFA. Moreover, the fault analysis presented here is of particu-
lar interest since it deals with internal states that are partially specified which
deviates it from classical DFA. Finally, this work constitutes the first analysis of
CAESAR candidate PAEQ.

600 D. Saha and D.R. Chowdhury

Acknowledgement. We would like to thank the anonymous reviewers for their invalu-
able comments and Orr Dunkelman for helping us in preparing the final version of the
paper.

References

1. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In:
Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer,
Heidelberg (1997)

2. Giraud, C.: DFA on AES. In: Dobbertin, H., Rijmen, V., Sowa, A. (eds.) AES
2005. LNCS, vol. 3373, pp. 27–41. Springer, Heidelberg (2005)

3. Dusart, P., Letourneux, G., Vivolo, O.: Differential fault analysis on A.E.S. IACR
Cryptology ePrint Archive, 2003:10 (2003). http://eprint.iacr.org/2003/010

4. Piret, G., Quisquater, J.-J.: A differential fault attack technique against SPN struc-
tures, with application to the AES and KHAZAD. In: Walter, C.D., Koç, Ç.K.,
Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 77–88. Springer, Heidelberg
(2003)

5. Moradi, A., Shalmani, M.T.M., Salmasizadeh, M.: A generalized method of differ-
ential fault attack against AES cryptosystem. In: Goubin, L., Matsui, M. (eds.)
CHES 2006. LNCS, vol. 4249, pp. 91–100. Springer, Heidelberg (2006)

6. Mukhopadhyay, D.: An improved fault based attack of the advanced encryption stan-
dard. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 421–434.
Springer, Heidelberg (2009)

7. Saha, D., Mukhopadhyay, D., Chowdhury, D.R.: A diagonal fault attack on the
advanced encryption standard. IACR Cryptology ePrint Archive, 2009:581 (2009).
http://eprint.iacr.org/2009/581

8. Rogaway, P.: Nonce-based symmetric encryption. In: Roy, B., Meier, W. (eds.) FSE
2004. LNCS, vol. 3017, pp. 348–359. Springer, Heidelberg (2004)

9. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of eliminating errors
in cryptographic computations. J. Cryptol. 14(2), 101–119 (2001)

10. Joye, M., Lenstra, A.K., Quisquater, J.-J.: Chinese remaindering based cryptosys-
tems in the presence of faults. J. Cryptol. 12(4), 241–245 (1999)

11. Coron, J.-S., Joux, A., Kizhvatov, I., Naccache, D., Paillier, P.: Fault attacks on
RSA signatures with partially unknown messages. In: Clavier, C., Gaj, K. (eds.)
CHES 2009. LNCS, vol. 5747, pp. 444–456. Springer, Heidelberg (2009)

12. Saha, D., Kuila, S., Chowdhury, D.R.: EscApe: diagonal fault analysis of APE. In:
Progress in Cryptology - INDOCRYPT 2014 - 15th International Conference on
Cryptology in India, New Delhi, India, December 14–17, 2014, pp. 197–216 (2014)

13. Andreeva, E., Bilgin, B., Bogdanov, A., Luykx, A., Mennink, B., Mouha, N.,
Wang, Q., Yasuda, K.: PRIMATEs v1.02. Submission to the CAESAR Compe-
tition (2014). http://competitions.cr.yp.to/round2/primatesv102.pdf

14. Peyrin, T.: Improved differential attacks for ECHO and Grøstl. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 370–392. Springer, Heidelberg (2010)

15. Dinur, I., Dunkelman, O., Shamir, A.: Collision attacks on up to 5 rounds of SHA-3
using generalized internal differentials. In: Moriai, S. (ed.) FSE 2013. LNCS, vol.
8424, pp. 219–240. Springer, Heidelberg (2014)

16. CAESAR: Competition for Authenticated Encryption: Security, Applicability, and
Robustness. http://competitions.cr.yp.to/caesar.html

http://eprint.iacr.org/2003/010
http://eprint.iacr.org/2009/581
http://competitions.cr.yp.to/round2/primatesv102.pdf
http://competitions.cr.yp.to/caesar.html

EnCounter: On Breaking the Nonce Barrier 601

17. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Information Security and Cryptography. Springer, Heidelberg (2002)

18. Biryukov, A., Khovratovich, D.: PAEQ: parallelizable permutation-based authen-
ticated encryption. In: Chow, S.S.M., Camenisch, J., Hui, L.C.K., Yiu, S.M. (eds.)
ISC 2014. LNCS, vol. 8783, pp. 72–89. Springer, Heidelberg (2014)

19. Khovratovich, D., Biryukov, A.: PAEQ v1. Submission to the CAESAR Competi-
tion (2014). http://competitions.cr.yp.to/round1/paeqv1.pdf

http://competitions.cr.yp.to/round1/paeqv1.pdf

Curious Case of Rowhammer:
Flipping Secret Exponent Bits Using Timing

Analysis

Sarani Bhattacharya(B) and Debdeep Mukhopadhyay

Department of Computer Science and Engineering, Indian Institute of Technology,
Kharagpur, Kharagpur 721302, India

{sarani.bhattacharya,debdeep}@cse.iitkgp.ernet.in

Abstract. Rowhammer attacks have exposed a serious vulnerability in
modern DRAM chips to induce bit flips in data which is stored in mem-
ory. In this paper, we develop a methodology to combine timing analysis
to perform the hammering in a controlled manner to create bit flips
in cryptographic keys which are stored in memory. The attack would
require only user level privilege for Linux kernel versions before 4.0 and
is unaware of the memory location of the key. An intelligent combina-
tion of timing Prime + Probe attack and row-buffer collision is shown to
induce bit flip faults in a 1024 bit RSA key on modern processors using
realistic number of hammering attempts. This demonstrates the feasibil-
ity of fault analysis of ciphers using purely software means on commer-
cial x86 architectures, which to the best of our knowledge has not been
reported earlier. The attack is also relevant for the newest Linux kernel
in a Cross-VM environment where the VMs having root privilege are not
denied to access the pagemap.

Keywords: Rowhammer · Fault attack · Prime + Probe · Bit flip

1 Introduction

Rowhammer is a term coined for disturbances observed in recent DRAM devices
in which repeated row activation causes the DRAM cells to electrically interact
among themselves [1–4]. This results in bit flips [2] in DRAM due to discharging
of the cells in the adjacent rows. DRAM cells are composed of an access transistor
and a capacitor which stores charge to represent a bit. Since capacitors loose their
charge with time, DRAM cells require to be refreshed within a fixed interval of
time referred to as the refresh interval. DRAM comprises of two dimensional
array of cells, where each row of cells have its own wordline and for accessing
each row, its respective wordline needs to be activated. Whenever some data
is requested, the cells in the corresponding row are copied to a direct-mapped
cache termed Row-buffer. If same row is accessed again, then the contents of
row-buffer is read without row activation. However, repeatedly activating a row
causes cells in adjacent rows to discharge themselves and results in bit flip.
c© International Association for Cryptologic Research 2016
B. Gierlichs and A.Y. Poschmann (Eds.): CHES 2016, LNCS 9813, pp. 602–624, 2016.
DOI: 10.1007/978-3-662-53140-2 29

Curious Case of Rowhammer: Flipping Secret Exponent Bits 603

The authors in [2] show that rowhammer vulnerability exists in majority of
the recent commodity DRAM chips and is most prevalent for sub 40 nm mem-
ory technology. DRAM process technology over the years have seen continuous
reduction in the size of each cell and cell density has also increased to a great
extent reducing the cost per bit of memory. Smaller cells hold less charge and
this makes them even more vulnerable. Moreover, the increased cell density has
a negative impact on DRAM reliability [2] as it introduces electromagnetic cou-
pling effects and leads to such disturbance errors.

In [5], it was first demonstrated that rowhammer not only has issues regard-
ing memory reliability but also are capable of causing serious security breaches.
DRAM vulnerability causing bit flips in Native Client (NaCl) program was
shown to gain privilege escalation, such that the program control escapes x86
NACL sandbox and acquires the ability to trigger OS syscall. The blog also
discusses about how rowhammer can be exploited by user-level programs to
gain kernel privileges. In [5], the bit flips are targeted at a page table entry
which after flip points to a physical page of the malicious process, thus pro-
viding read-write access to cause a kernel privilege escalation. A new approach
for triggering rowhammer with x86 non-temporal store instruction is proposed
in [6]. The paper discusses an interesting approach by using libc’s memset and
memcpy functions and the threats involved in using non-temporal store instruc-
tions for triggering rowhammer. A vivid description of the possible attack sce-
narios exploiting bit flips from rowhammer are also presented in the paper.

A javascript based implementation of the rowhammer attack, Rowham-
mer.js [7] is implemented using an optimal eviction strategy and claims to exploit
rowhammer bug with high accuracy without using clflush instruction. Being
implemented in javascript, it can induce hardware faults remotely. But, in order
to mount a successful fault attack on a system the adversary should have the
handle to induce fault in locations such that the effect of that fault is useful in
making the attack successful. Another variant of rowhammer exists, termed as
double-sided-rowhammer [8]. This variant chooses three adjacent rows at a time,
targeting bit blips at the middle row by continuously accessing the outer rows for
hammering. The existing implementation [8] is claimed to work in systems hav-
ing a specific DRAM organization. In all of the existing works, precisely inducing
bit flip in the data used by a co-residing process has not been attempted. None
of the previous works attempted to demonstrate a practical fault analysis attack
using rowhammer. The address mappings to various components of the LLC
and DRAM being functions of physical address bits, inducing bit flip in a data
residing in an unknown location of DRAM seems to be a challenging task.

In this paper, we illustrate a software driven fault attack on public key expo-
nentiation by inducing a bit flip in the secret exponent. It is well known from [9],
theoretically if any fault is induced while public key exponentiation is taking
place, then a single faulty signature is enough to leak the secret exponent in an
unprotected implementation. However, to inflict the fault using rowhammer on
the secret exponent to lead to a usable faulty signature requires further investi-
gation. While [5] was able to successfully induce rowhammer flips in the DRAM
to cause a fault in a page table entry, the challenge to induce faults to perform

604 S. Bhattacharya and D. Mukhopadhyay

a fault attack on a cipher, requires a better understanding of the location of the
secret key in the corresponding row of a bank of the DRAM. More recent devel-
opments of rowhammering, like double-sided-rowhammer [8], while increasing
the probability of a bit flip, cannot be directly applied to the current scenario,
as the row where the secret resides can be in any arbitrary location in the target
bank. The chance of the memory location for the secret key lying between the
rows of the allocated memory for rowhammer is low. In this scenario a double-
sided-rowhammer will reduce the probability of a successful exploitable fault.
Hence, it is imperative to ascertain the location of the secret exponent before
launching the rowhammer. Our novelty is to combine Prime + Probe attack
and row-buffer collision, detected again through timing channel, to identify the
target bank where the secret resides.

We combine knowledge of reverse engineering of LLC slice and DRAM
addressing with timing side-channel to determine the bank in which secret
resides. We precisely trigger rowhammer to address in the same bank as the
secret. This increases probability of bit flip in the secret exponent and the nov-
elty of our work is that we provide series of steps to improve the controllability
of fault induction. The overall idea of the attack involves three major steps. The
attacker successfully identifies an eviction set which is a set of data elements
which maps to the same cache set and slice as that of the secret exponent by
timing analysis using Prime + Probe methodology. This set essentially behaves
as an alternative to clflush statement of x86 instruction set. The attacker now
observes timing measurements to DRAM access to determine the DRAM bank
in which the secret resides in. The variation in timing is observed due to the
row-buffer conflict forced by the adversary, inducing bit flips by repeated row
activation in the particular bank where the secret is residing. Elements which
map to same bank but separate rows are accessed continuously to observe a
successful bit flip.

The organization of the paper is as follows:- The following Sect. 2 provides a
brief idea on Cache and DRAM architecture and also the rowhammer bug. In
Sect. 3, we provide the algorithm using timing observations to determine the LLC
set, slice and also the DRAM banks in which the secret maps to. Section 4 pro-
vides the experimental validation for a successful bit flip in the secret exponent
in various steps. Section 5 discusses the existing hardware and software driven
countermeasures to the rowhammer problem. Section 6 provides a detailed dis-
cussion on the assumptions and limitations of our attack model on bigger range
of systems.The final section concludes the work we present here.

2 Preliminaries

In this section, we provide a background on some key-concepts, which include
some DRAM details, the rowhammer bug and details of cache architecture which
have been subjected to attack.

Curious Case of Rowhammer: Flipping Secret Exponent Bits 605

2.1 Dynamic Random Access Memory

Dynamic Random-Access Memory (DRAM) is a Random-Access Memory in
which each unit of charge is stored in a capacitor and is associated with an
access transistor, together they constitute a cell of DRAM. The DRAM cells
are organized in rows and columns. The access transistor is connected to the
wordline of a row, which when enabled, connects the capacitor to the bitline of
the column and allows reading or writing data to the connected row. The reading
or writing to cells in a row is done through row-buffer which can hold charges
for a single row at a time. There are three steps that are performed, when data
is requested to be read from a particular row:

Opening Row - The wordline connected to the row is enabled, which allows
the capacitors in the entire row to get connected to the bitlines. This results in
the charge of each cell to discharge through the bitlines to the row-buffer.
Reading or Writing to cells - The row-buffer data is read or written by the
memory controller by accessing respective columns.
Closing Row - The wordline of the respective row is disabled, before some
other row is enabled.

Processor

yr
o

me
M

rell
ort

n
o

C Bank Bank

Rank0

Rank1

Channel

Fig. 1. DRAM architecture [2]

DRAM Architecture. DRAM is hierarchically composed of Channels, Rank
and Banks. The physical link between the memory controller and the DRAM
module is termed as channel. Inside the channel, the physical memory mod-
ules connected to the motherboard are named as Dual Inline Memory Module
(DIMM) which typically comprises of one or two ranks as in Fig. 1. Each rank
is further comprised of multiple banks, as for example, 8 banks exist in a DDR3
rank. Each bank is a two-dimensional collection of cells having typically 214

to 217 rows and a row-buffer. Any row in a particular bank can only be read
and written by involving the row-buffer. The latency in DRAM access when two
access request concurrently map to same channel, rank, bank but different row is
termed as row-buffer conflict. The channel, rank, bank and the row index where
a data element is going to reside, is decided as functions of physical address of
the concerned data element.

The capacitors in each cell of DRAM discharges with time. The capacitor can
hold charge upto a specific interval of time before it completely looses its charge.
This interval is termed as retention time, which is guaranteed to be 64 ms in
DDR3 DRAM specifications [10]. But it is shown, that repeated row activation
over a period of time leads to faster discharge of cells in the adjacent rows [2].

606 S. Bhattacharya and D. Mukhopadhyay

2.2 The Rowhammer Bug

Persistent and continuous accesses to DRAM cells, lead the neighboring cells
of the accessed cell to electrically interact with each other. The phenomenon of
flipping bits in DRAM cells is termed as the rowhammer bug [1,2]. As described
in Sect. 2.1, accessing a byte in memory involves transferring data from the
row into the bank’s row-buffer which also involves discharging the row’s cells.
Repeated discharging and recharging of the cells of a row can result in leakage
of charge in the adjacent rows. If this can be repeated enough times, before
automatic refreshes of the adjacent rows (which usually occur every 64 ms), this
disturbance error in DRAM chip can cause bit flips.

Code-hammer
{

mov (X), %eax // read from address X
mov (Y), %ebx // read from address Y
clflush (X) // flush cache for address X
clflush (Y) // flush cache for address Y
jmp Code-hammer

}

In [2], a code snippet is provided in which the program generates a read
to DRAM on every data access. The mov instructions generate access request
to DRAM at X and Y locations. The following clflush instructions evict the
data elements from all levels of cache. However, if X and Y point to different
rows in the same bank, code-hammer will cause X and Y’s rows to be repeatedly
activated. This may lead to disturbance error in the adjacent cells of the accessed
rows, resulting in flipping bits in the adjacent row cells.

Core 0

L1 Inst

32 KB

L1 Data

32 KB

L2 256 KB

Core 1

L1 Inst

32 KB

L1 Data

32 KB

L2 256 KB

Core 2

L1 Inst

32 KB

L1 Data

32 KB

L2 256 KB

Core 3

L1 Inst

32 KB

L1 Data

32 KB

L2 256 KB

L3 Unified - 6 MB

Fig. 2. Cache architecture in Intel Ivy Bridge [11]

In the next subsection, we summarize some key concepts of cache architecture
in modern processors.

2.3 Cache Memory Architecture

In recent processors, there exists a hierarchy of cache memories where the size of
each cache level increases as we move to its higher level, but their access times

Curious Case of Rowhammer: Flipping Secret Exponent Bits 607

32 20 16 11 5 0

Frame number Page offset

hash

Line offset

Set index

Physical

Page number Page offset

MMU

....

Slice 0 Slice 1 Slice 2 Slice 3

Tag
Address

Virtual
Address

30

2

11

Fig. 3. Cache memory indexing [12]

increases. L3 or Last Level Cache (LLC) is shared across processor cores, takes
larger time and is further divided into slices such that it can be accessed by
multiple cores concurrently. Figure 2 illustrates the architectural specification
for a typical Intel Ivy-Bridge architecture [11]. In Intel architecture, the data
residing in any of the lower levels of cache are included in the higher levels as
well. Thus are inclusive in nature. On a LLC cache miss, the requested element
is brought in the cache from the main memory, and the cache miss penalty is
much higher compared to the lower level cache hits.

Requested data are brought from the main memory in the cache in chunks of
cache lines. This is typically of 64 Bytes in recent processors. The data requested
by the processor is associated with a virtual address from the virtual address
space allocated to the running process by the Operating System. The virtual
address can be partitioned into two parts: the lower bits in Fig. 3 is the offset
within the page typically represented by log2(page size) bits, while the remain-
ing upper bits forms the page number. The page number forms an index to page
table and translates to physical frame number. The frame number together with
the offset bits constitute the physical address of the element. The translation of
virtual to physical addresses are performed at run time, thus physical addresses
of each elements are most likely to change from one execution to another.

The physical address bits decide the cache sets and slices in which a data is
going to reside. If the cache line size is of b bytes, then least significant log2(b)
bits of the physical addresses are used as index within the cache line. If the
target system is having k processor cores, the LLC is partitioned into k slices
each of the slice have c cache sets where each set is m way associative.

The log2(k) bits following log2(b) bits for cache line determines the cache
set in which the element is going to reside. Because of associativity, m such
cache lines having the identical log2(k) bits reside in the same set. The slice
addressing in modern processors is implemented computing a complex Hash
function. Recently, there has been works which reverse engineered [12,13] the
LLC slice addressing function. Reverse engineering on Intel architectures has
been attempted in [13] using timing analysis. The functions differ across different
architectures and each of these functions are documented via successful reverse
engineering in [12,13].

608 S. Bhattacharya and D. Mukhopadhyay

In the following sections, we use this knowledge of underlying architecture to
build an attack model which can cause successful flips in a secret value.

3 Combining Timing Analysis and Rowhammer

In this section we discuss the development of an algorithm to induce bit flip in
the secret exponent by combining timing analysis and DRAM vulnerability.

3.1 Attack Model

In this paper, we aim to induce bit fault in the secret exponent of the public
key exponentiation algorithm using rowhammer vulnerability of DRAM with
increased controllability. The secret resides in some location in the cache memory
and also in some unknown location in the main memory. The attacker having
user-level privileges in the system, does not have the knowledge of these locations
in LLC and DRAM since these location are decided by mapping of physical
address bits. The threat model assumed throughout the paper allows adversary
to send known ciphertext to the algorithm and observe its decrypted output.

Let us assume that the adversary sends input plaintext to the encryption
process and observes the output of the encryption. Thus the adversary gets hold
of a valid plaintext-ciphertext pair, which will be used while checking for the
bit flips. The adversary has the handle to send ciphertext to the decryption
oracle, which decrypts the input and sends back the plaintext. The decryption
process constantly polls for its input ciphertexts and sends the plaintext to the
requesting process. The adversary aims to reproduce bit flip in the exponent
and thus first needs to identify the corresponding bank in DRAM in which
the secret exponent resides. Let us assume, that the secret exponent resides in
some bank say, bank A. Though the decryption process constantly performs
exponentiation with accesses to the secret exponent, but such access requests
are usually addressed from the cache memory itself since they result in a cache
hit. In this scenario it is difficult for the adversary to determine the bank in
which the secret resides because the access request from the decryption process
hardly results in main memory access.

According to the DRAM architecture, the channel, rank, bank and row
addressing of the data elements depend on the physical address of the data
elements. In order to perform rowhammering on the secret exponent, precise
knowledge of these parameters need to be acquired, which is impossible for an
adversary since the adversary does not have the privilege to obtain the cor-
responding physical addresses to the secret. This motivates the adversary to
incorporate a spy process which probes on the execution of the decryption algo-
rithm and uses timing analysis to successfully identify the channel, rank and
even the bank where the secret gets mapped to.

The adversary introduces a spy process which runs everytime, before each
decryption is requested. The spy process issues accesses to data elements of
the eviction set, which eventually flushes the existing cache lines with its own

Curious Case of Rowhammer: Flipping Secret Exponent Bits 609

data requests and fills the cache. Thus during the next request to the decryp-
tion process, the access to the secret exponent results in a cache miss and the
corresponding access request is addressed from the bank A of main memory.
Effectively, a spy process running alternate to the decryption process, makes
arbitrary data accesses to ensure that every access request from the decryption
process is addressed from the corresponding bank of the main memory.

3.2 Determining the Eviction Set

As mentioned before, the attack model is assumed to be such that the adversary
has access to a system where the decryption is running. The decryption algorithm
performs exponentiation involving the secret exponent and initially the adversary
aims to determine the cache sets in which the secret exponent bits maps to.
The adversary is oblivious of the virtual address space used by the decryption
engine and thus involves a spy process which uses Prime + Probe [11,14,15]
cache access methodology to identify the target sets. The execution scenario
of the decryption and the adversarial processes running concurrently on the
same system are depicted in Fig. 4. In this context, the spy process targets the
Last Level cache (LLC) since it is shared within all cores of the system. The
adversary sends input to the decryption engine which performs decryption on
request, otherwise remains idle. Figure 4 illustrates the following steps.

1. Step 1: The adversary starts the spy process, which initially allocates a set
of data elements and consults its own pagemap to obtain the corresponding
physical addresses for each element. The kernel allows userspace programs
to access their own pagemap (/proc/self/pagemap)1 to examine the page
tables and related information by reading files in /proc. The virtual pages are

3. Computes the set,slice addressing
from its physical addresses.

5. Sends a selected input to
the Decryption Engine

6. Decryption runs with input
from the requesting process

7. Receives decrypted message
from Decryption Engine

8. Spy accesses the seleced elements again
and measures their access times.

Decryption Engine Adversary Spy

1. Initiates the spy process.

2. Generates a memory map.

b. Primes LLC, by accessing selected elements.

Time

4. For the target set t,
a. Select m elements in distinct cachelines
which maps to set t for k slices.

Fig. 4. Steps to determine cache sets shared by secret exponent

1 For all Linux kernels before version 4.0, the versions released from early 2015 requires
administrator privilege to consult pagemap, refer to Sect. 6.2.

610 S. Bhattacharya and D. Mukhopadhyay

mapped to physical frames and this mapping information is utilized by the
spy process in the following steps.

2. Step 2: Once the physical addresses are obtained, the Last level cache set
number and their corresponding LLC slice mappings are precomputed by
the spy with the address mapping functions as explained in Sect. 2.3. Let us
suppose, that the target system is having k processor cores, thus the LLC is
partitioned into k slices, each of the slice have c cache sets where each set is
m way associative. All elements belonging to the same cache line are fetched
at a time.

– If the cache line size is of b bytes, then least significant log2(b) bits of the
physical addresses are used as index within the cache line.

– As described in Sect. 2.3, the log2(k) bits following these log2(b) bits deter-
mine the cache set in which the element is going to reside.

– Because of associativity, m such cache lines having identical log2(k) bits
reside in the same set.

– In modern processors, there exists one more parameter that determines
which slice the element belongs to. Computing the Hash function reverse
engineered in [12,13], we can also compute the slice in which a cache set
gets mapped. The functions are elaborated in the experimental Sect. 4.1.

Thus, at the end of this step, the spy simulates the set number and slice
number of each element in its virtual address space.
Repeat the following steps for all of the c sets in the LLC.

3. Priming Target set t: The spy primes the target Set t and becomes idle.
This is the most crucial step for the entire procedure since the success of
correctly determining the cache sets used by spy process entirely depends on
how precisely the existing cache lines have been evicted from the cache by the
spy in the Prime phase. In order to precisely control the eviction of existing
cache lines from set t, a selection algorithm is run by the spy which selects an
eviction set of m∗k elements each belonging to set t from its defined memory
map.

– Thus the selection algorithm selects elements belonging to distinct cache
lines for each of the k cache slices where their respective physical addresses
maps to the same set t. These selected data elements constitutes the
eviction set for the set t.

– In addition to this, since each set of a slice is m way associative, the
selection algorithm selects m such elements corresponding to each k cache
slice belonging to set t.

– The spy process accesses each of these m ∗ k selected memory elements
repeatedly in order to ensure that the cache replacement policy has
evicted all the previously existing cache lines.

This essentially ensures that the target set t of all slices is only occupied with
elements accessed by the spy.

4. Decryption Runs: The adversary sends the chosen ciphertext for decryption
and waits till the decryption engine sends back the message. In this decryption
process, some of the cache lines in a particular set where the secret maps, gets
evicted to accommodate the cache line of the secret exponent.

Curious Case of Rowhammer: Flipping Secret Exponent Bits 611

5. Probing LLC: On getting the decrypted output the adversary signals the
spy to start probing and timing measurements are noted. In this probing step,
the spy process accesses each of the selected m elements (in Prime phase) of
eviction set t for all slices and time to access each of these elements are
observed.
The timing measurements will show a variation when the decryption algo-
rithm shares same cache set as the target set t. This is because, after the
priming step the adversary allows the decryption process to run. If the cache
sets used by the decryption is same as that of the spy, then some of the cache
lines previously primed by the spy process gets evicted during the decryption.
Thus, when the spy is again allowed to access the same elements, if it takes
longer time to access then it is concluded that the cache set has been accessed
by the decryption as well. On the other hand, if the cache set has not been
used by the decryption, then the time observed during probe phase is less
since no elements primed by spy have been evicted in the decryption phase.

Determining the LLC Slice Where the Secret Maps. The Prime + Probe
timing analysis elaborated in the previous discussion successfully identifies the
LLC set in which the cache line containing the secret exponent resides. Thus
at the end of the previous step we obtain an eviction set of m ∗ k elements
which map to the same set as the secret in all of the k slices. Now, this time
the adversary can easily identify the desired LLC slice by iteratively running the
same Prime + Probe protocol separately for each of the k slices with the selected
m elements for that particular slice. The timing observations while probing will
show significant variation for a set of m elements which corresponds to the same
slice where the secret maps. Thus we further refine the size of eviction set from
m ∗ k to m elements.

3.3 Determining the DRAM Bank that the Secret Maps

In this section, we describe a timing side channel analysis performed by the
adversary to successfully determine the bank of the DRAM in which the secret
exponent maps to. In the previous section, a timing analysis is elaborated which
finally returns an eviction set of m elements which maps to the same set as
well as the same slice as the secret exponent. Thus, if the adversary allows the
spy and the decryption engine to run in strict alternation, then the decryption
engine will always encounter a cache miss for the secret exponent, and the access
request shall always result in a main memory access. As described in Sect. 2.1,
DRAMs are primarily partitioned into channel, ranks and banks where each bank
access is serviced through a buffer termed as row-buffer. Concurrent accesses to
different rows in the same DRAM bank results in row-buffer conflict and auto-
matically leads to higher access time. The functions which decide the channel,
rank and bank mapping from the physical addresses are not disclosed by the
architecture manufacturers. In some recent works, reverse engineering of these
unknown mappings have been targeted. A successful deployment of a high speed
covert channel has also been reported [16].

612 S. Bhattacharya and D. Mukhopadhyay

In this paper, we illustrate a timing analysis of accessing separate DRAM
banks using this knowledge of reverse engineering and the following steps high-
light how this is achieved. In order to exploit timing variation occurring due to
the row-buffer collision, accesses requested from the decryption process as well
as the adversarial spy process must result in main memory accesses. Intuitively,
DRAM access time will increase only if addresses map to the same bank but to
a different row. Thus to observe row-buffer conflict between the decryption and
adversarial spy the major challenges are:

– To ensure that every access to secret exponent by the decryption process
results in LLC cache miss and thus automatically result in main memory
access. This is elaborated in the previous subsection, as to how the spy deter-
mines the eviction set and selectively accesses those elements to evict existing
cache lines from the set. Let the spy generates an eviction set C with data
elements in distinct cache lines mapping to the same set and slice as the
secret.

– This suggests that before each decryption run, the spy has to fill the particular
cache set by accessing elements in eviction set C.

– In addition to this, row-buffer conflict and access time delay can only be
observed if two independent processes concurrently request data residing in
the same bank but in different rows. In order to produce a row-buffer conflict
with the secret exponent requested by the spy, the adversary has to produce
concurrent access requests to the same bank.

The adversary allows the spy process to mmap a chunk of memory and the
spy refers to its own pagemap to generate the physical addresses corresponding
to each memory element. Following the functions reverse engineered in [16,17]
the spy pre-computes the channel, rank and bank addressing for the correspond-
ing physical addresses. As illustrated in Fig. 5, the timing analysis has to be

3. Computes the set,slice addressing
from its physical addresses.

Decryption Engine Adversary Spy

1. Initiates the spy process.

2. Generates a memory map.

Time

4. Computes the Channel, Rank, Bank
indices from physical addresses

8. Sends a selected input to
the Decryption Engine

7. Primes LLC, by accessing elements in C.

from Decryption Engine
10. Receives decrypted message

9. Decryption runs with input
from the requesting process

10. Flush the accessed element from cache

9. Access randomly selected data which maps to

5. Fill Set C with elements mapping to
same LLC set and slice as the secret
6. For each bank b in DRAM,

target bank b and time the access.

using clflush.

Fig. 5. Steps to determine the DRAM bank in which secret maps

Curious Case of Rowhammer: Flipping Secret Exponent Bits 613

performed by accessing elements from each bank. After each access request by
the spy, the elements are flushed deliberately from the cache using clflush.

The adversary sends an input to the decryption engine and waits for the
output to be received. While it waits for the output, the spy process targets one
particular bank, selects a data element which maps to the bank and accesses the
data element. This triggers concurrent accesses from the spy and the decryption
to the DRAM banks. Repeated timing measurements are observed for each of
the DRAM bank accesses by the spy, and this process is iterated for elements
from each DRAM bank respectively.

3.4 Performing Rowhammer in a Controlled Bank

In the previous subsections, we have discussed how the adversary performs tim-
ing analysis to determine cache set collision and subsequently use it to determine
DRAM bank collisions to identify where the secret data resides. In this section,
we aim to induce fault in the secret by repeatedly toggling DRAM rows belonging
to the same DRAM bank as the secret.

Inside the DRAM bank, the cells are two-dimensionally aligned in rows and
columns. The row index in which any physical address maps is determined by
the most significant bits of the physical address. Thus it is absolutely impossi-
ble for an adversary to determine the row index of the secret exponent. Thus
rowhammer to the secret exponent has to be performed with elements which
map to the same DRAM bank as the secret, but on different row indices until
and unless the secret exponent is induced with a bit flip.

The original algorithm for rowhammer in [2], can be modified intelligently to
achieve this precise bit flip. The algorithm works in following steps:

– A set of addresses are chosen which map to different row but the same bank
of DRAM.

– The row indices being a function of the physical address bits are simulated
while execution. Elements of random row indices are selected and accessed
repeatedly by the adversary to induce bit flips in adjacent rows.

– The detection of bit flip in secret can be done easily, if and only if the output
of decryption differs.

The rowhammering attempts required to produce a suitable bit flip on the
secret depends on the total number of rows in a bank, since the adversary has no
handle to know in which row in the bank the secret exponent is residing. Neither
it has handle to place its own mmap-ed data deliberately adjacent to the secret,
such that it can easily exploit the rowhammer bug. Thus the adversary can only
select those elements which belong to the same bank as secret and access them
repeatedly to induce bit flips in the secret. To increase the probability of bit flip
in the secret exponent, the adversary needs to mmap multiple times to generate
data which belong to different rows.

614 S. Bhattacharya and D. Mukhopadhyay

4 Experimental Validation for Inducing Bit
Flips on Secret

In this section we present the validation of our previous discussion through
experiments. Our experiments are framed with the following assumptions:

– We target an 1024 bit RSA implementation using square and multiply as
the underlying exponentiation algorithm. We have used the standard GNU-MP
big integer library (version number 2:5.0.2+dfsg-2) for our implementation.
The adversary sends a chosen ciphertext for decryption which involves an
exponentiation using the secret exponent.

– The experimentations are performed considering the address bit mappings of
Intel Ivy Bridge micro-architecture. These are the line of processors based
on the 22 nm manufacturing process. The experiments are performed on Intel
Core i5-3470 processor running Ubuntu 12.04 LTS with the kernel version of
3.2.0-79-generic.

– The adversary is assumed to have user-level privileges to the system where
decryption process runs. It uses mmap to allocate a large chunk of data and
accesses its own pagemap (/proc/self/pagemap) to get the virtual to physical
address mappings. The Linux kernel version for our experimental setup being
older than version 4.0, we did not require administrator privileges to perform
the entire attack.

4.1 Identifying the Cache Set

The experiments being performed on RSA, the 1024 bit exponent resides in con-
secutive 1024 bit locations in memory. Considering the cache line size as 64 bytes,
1024 bits of secret maps to 2 cache lines. As described in Sect. 2.3, 11 bits of
physical address from b6, b7, · · · b16 refer to the Last Level cache set. Moreover,
the papers [12,13] both talk about reverse engineering of the cache slice selec-
tion functions. The authors in paper [13], used Prime + Probe methodology to
learn the cache slice function, while the authors in [12] monitored events from
the performance counters to build the cache slice functions. Though it has been
observed that the LLC slice functions reported in these two papers are not same.

In our paper, we devised a Prime + Probe based timing observation setup
and wished to identify the target cache set and slice which collides with the
secret. Thus we were in the lines of [13] and used the function from [13] in our
experiments for Prime + Probe based timing observations. As illustrated in the
following section, the timing observations using functions from [13] can correctly
identify the target cache slice where the secret maps to. Reverse engineering of
Last Level Cache (LLC) slice for Intel Ivy Bridge Micro-architecture in [13] uses
the following function:

b17 ⊕ b18 ⊕ b20 ⊕ b22 ⊕ b24 ⊕ b25 ⊕ b26 ⊕ b27 ⊕ b28 ⊕ b30 ⊕ b32.

Curious Case of Rowhammer: Flipping Secret Exponent Bits 615

 550

 600

 650

 700

 750

 800

 850

 900

 950

 1000

 0 10 20 30 40 50 60

Ca
ch

e a
cce

ss
tim

e

Iterations

No collision
Collision

Fig. 6. Timing observations for cache set collision

But the architectural specification described in [13], documented that their
selected system for Ivy Bridge architecture has LLC size of 3MB. In our experi-
mental setup, instead of 3MB we had 6MB LLC with is divided among 4 cores.
Thus we adopted the functions documented for Haswell, and the function worked
successfully. The functions used for slice selection are:

h0 = b17 ⊕ b18 ⊕ b20 ⊕ b22 ⊕ b24 ⊕ b25 ⊕ b26 ⊕ b27 ⊕ b28 ⊕ b30 ⊕ b32
h1 = b18 ⊕ b19 ⊕ b21 ⊕ b23 ⊕ b25 ⊕ b27 ⊕ b29 ⊕ b30 ⊕ b31 ⊕ b32

Our host machine has LLC with 12 way associativity and having 4 cache slices
each consisting of 2048 sets. The adversary mmaps a large chunk of memory,
and consults its own pagemap to obtain the physical addresses corresponding
to each element in the memory map. Using the equations mentioned above, the
adversarial process simulates the cache set and slice in which their respective
physical address points to. The experimental setup being 12-way associative,
the selection algorithm for each set and slice selects the eviction set with 12
elements belonging to distinct cache lines and mapping to the same set for a
particular slice. The host machine having 4 LLC slice for 4 cores selects the
eviction set having altogether 12 ∗ 4 = 48 data elements in distinct cache lines
mapped to same set and all 4 slices.

In our experimental setup, the adversary runs the Prime + Probe cache
access methodology over each of the 2048 sets in each of the LLC slices. Each of
the 2048 sets are targeted one after another. The cycle starts with priming a set
with elements from eviction set and then allowing the decryption to happen and
again observing the timings required for accessing selected elements from the set.
The timing observations from the probe phase on 2 such LLC sets are illustrated
in Fig. 6. The sets are chosen such that one of them is having a collision with
the secret exponent and the other set does not have any collision. The variation
of timing in these two sets is apparent in Fig. 6, where the set which observes a
collision observes higher access time to the other set. The average access time
of the these two sets during the probe phase differs by approximately 80 clock
cycles. This implies that the LLC cache set having collision with the secret
exponent cache line can be identified from the other sets which does not have
collision with the decryption algorithm.

616 S. Bhattacharya and D. Mukhopadhyay

 700

 750

 800

 850

 900

 950

 1000

 1050

 1100

 1150

 0 10 20 30 40 50 60 70 80 90 100

C
ac

he
 a

cc
es

s
tim

e

Iterations

Slice 0
Slice 2

(a) Timing Observations during

Probe phase when secret maps to

slice 0

 850

 900

 950

 1000

 1050

 1100

 1150

 1200

 1250

 0 10 20 30 40 50 60 70 80

C
ac

he
 a

cc
es

s
tim

e

Iterations

Slice 0
Slice 2

(b) Timing Observations during

Probe phase when secret maps to

slice 2

Fig. 7. Timing observations for LLC slice collision

4.2 Alternative Strategy to Determine the Target Cache Set

In the previous subsection, we observed that timing observations obtained by
repeating the m ∗ k accesses to the individual set on all k slices is sufficient
for identification of the target cache set. Though in [7], it has been stated that
only m ∗ k accesses may not be sufficient to guarantee the existing cache lines
to be evicted from the cache. In this context, we argue that the cache eviction
sets are identified in [7] so that accessing the elements of this set in a prede-
termined order results in an equivalent effect of clflush to induce rowhammer
flips. Since to exhibit successful bit flips, hammering of rows needs to satisfy
various preconditions, it was crucial for authors in [7] to generate an optimal
eviction set.

In our paper the conditions are little less stringent, since we are using clflush
to induce bit flips. In addition to this, we constrain the hammering to the target
bank. The identification of this bank has a series of experiments to be performed.
In this scenario, we claimed that accessing the near-optimal eviction set of m∗k
accesses for each cache set for all k slices repeatedly will result in eviction of
secret from the respective cache set and result in DRAM accesses of the secret
key. In addition, we have again performed our experiments by implementing the
optimal eviction set as described in [7]. The results we obtain in Fig. 8a can be
compared with Fig. 6. The separation of timing and identification of collision
set from the non-collision set definitely improves upon accessing the eviction set
with parameters defined in [7].

4.3 Identifying the LLC Slice

Once the cache set is identified, the variation from timing observations for dif-
ferent LLC slices leak the information of which LLC slice the secret maps to.
In the same experimental setup as in the previous section, we identify the slice
in which the actual secret resides, using timing analysis with the slice selection
function. Since we have already identified the LLC cache set with which the

Curious Case of Rowhammer: Flipping Secret Exponent Bits 617

 1100

 1200

 1300

 1400

 1500

 1600

 1700

 1800

 1900

 2000

 0 20 40 60 80 100

ca
ch

e
ac

ce
ss

 ti
m

e
in

 c
lo

ck
 c

yc
le

s

Iterations

Collision
No Collision

(a) Timing Observation of Cache set

Collision from optimal eviction set

 1150

 1200

 1250

 1300

 1350

 1400

 0 20 40 60 80 100

ca
ch

e
ac

ce
ss

 ti
m

e
in

 c
lo

ck
 c

yc
le

s

Iterations

No Collision
Collision

(b) Timing Observation of Cache

slice Collision using equations in [12]

Fig. 8. Timing observations for LLC set and slice collision

secret collides, 12 data elements belonging to each slice of the particular set are
selected. Prime + Probe timing observations are noted for the set of 12 elements
for each slice. The slice observing collision with the secret exponent will suffer
from cache misses in the probe phase and thus have higher access time to other
slices.

We illustrate the timing observations for two scenarios in Fig. 7a and b. In
Fig. 7a, the secret is mapped to LLC slice 0, while in Fig. 7b, the secret gets
mapped to LLC slice 2. In both of the figures, access time for probing elements
for the cache slice for which the secret access collides is observed to be higher
than the other cache slice which belongs to the same set but do not observe cache
collision. Thus because of collision of accesses of both the processes to the same
slice, the spy observed higher probe time for slice 0, than slice 2 in Fig. 7a. On
the contrary, in a different run, the secret exponent got mapped to LLC slice 2,
which in Fig. 7b shows higher probe time than slice 0. Thus we can easily figure
out the cache slice for the particular set for which both the decryption and the
spy process accesses actually collides.

We also extended our experiment with the reverse engineered cache slice
functions from [12]. Figure 8b shows the timing observations when we use the
slice selection functions for a 4-core processor. The functions [12] are:

o0 = b6⊕b10⊕b12⊕b14⊕b16⊕b17⊕b18⊕b20⊕b22⊕b24⊕b25⊕b26⊕b27⊕b28⊕b30⊕b32⊕b33

o1 = b07⊕b11⊕b13⊕b15⊕b17⊕b19⊕b20⊕b21⊕b22⊕b23⊕b24⊕b26⊕b28⊕b29⊕b31⊕b33⊕b34

Similar to our previous observations, Fig. 8b shows that we were able to
identify the target cache slice from the timing observations using cache slice
reverse engineering functions from [12].

Determining the LLC set and slice in which secret maps, actually gives the
control to the adversary to flush the existing cache lines in these locations, and
thus everytime the decryption process have to access the main memory. In simple
words, accesses made by the adversary to this particular LLC set and slice acts
as an alternative to clflush instruction being added to the decryption process.

618 S. Bhattacharya and D. Mukhopadhyay

4.4 Identifying the DRAM Bank

From the previous subsections, we identified particularly the LLC set and the
slice mappings for the decryption process. Thus if the adversary selects data
elements which belong to same set as well slice as to the secret exponent, and
alternatively primes the LLC before running each decryption, each time the
decryption process will encounter a cache miss and which will eventually get
accessed from the main memory. This aids the adversary to identify the respec-
tive bank of DRAM, where the secret exponent is mapped. For the 1024-bit RSA
exponentiation secret key, the channel, rank and bank mappings of DRAM will
be decided by the equations reverse engineered in [16,17]. In our experimental
setup, there exists 2 channel, 1 DIMM per channel, 2 ranks per DIMM, 8 banks
per rank and 214 rows per bank.

– The DRAM bank equations for Ivy Bridge [16] is decided by the physical
address bits: ba0 = b14 ⊕ b18, ba1 = b15 ⊕ b19, ba2 = b17 ⊕ b21,

– Rank is decided by r = b16 ⊕ b20 and the
– Channel is decided by, C = b7 ⊕ b8 ⊕ b9 ⊕ b12 ⊕ b13 ⊕ b18 ⊕ b19.
– The DRAM row index is decided by physical address bits b18, · · · , b31.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 350 400 450 500 550 600 650 700 750

fr
eq

ue
nc

ie
s

time

(a) Timing Observations in clock cy-

cles for DRAM bank collision

 0

 10

 20

 30

 40

 50

 60

 70

 300 350 400 450 500 550

fr
eq

ue
nc

ie
s

time

(b) Timing Observations in clock cy-

cles of separate DRAM bank access

Fig. 9. Timing observations for Row-buffer collision during DRAM bank accesses

In the same experimental setup as previous, the adversary targets each bank
at a time and selects elements from the memory map for which the physical
addresses map to that particular bank. The following process is repeated to
obtain significant timing observations:

1. The spy primes the LLC and requests decryption by sending ciphertext.
2. While the spy wait for the decrypted message, it selects an element for the

target bank from the memory map, clflush’es it from cache, and accesses
the element. The clflush instruction removes the element from all levels of
cache, and the following access to the element is addressed from the respective
bank of the DRAM.

3. The time to DRAM bank access is also noted.

Curious Case of Rowhammer: Flipping Secret Exponent Bits 619

It is important to note that, there is no explicit synchronization imposed
upon the the two concurrent processes in their software implementation. The
decryption and the spy both requests a DRAM bank access. If the target bank
matches with the bank in which the secret is mapped, then we expect to have
higher access time. Figure 9a and b are the timing observations noted by the spy
process while it accesses elements selected from the target bank. Figure 9a refers
to the the case where the higher access times are observed due to the row-buffer
collision as the bank accessed by the spy is same as the secret mapped bank.
While Fig. 9b refers to the situation where the elements accessed by the spy are
from an arbitrary different bank than the bank where secret maps. In both of the
figures, the significant high peak has been observed in timing range of 350 – 400
clock cycles. While in Fig. 9a, the row-buffer collision is apparent because there
are significant number of observations which have timings greater than the region
where the peak is observed. Had there been an absolute synchronization of two
processes accessing the same DRAM bank, each access to DRAM bank, by either
of the two process would have suffered from row-buffer collision. Thus in our
scenario, we claim that in majority of cases, though the accesses are addressed
from the same bank they seldom result in row-buffer collision, which justifies
the peak around 350–400 clock cycles. From this we conclude that detection
of row-buffer collision can only be identified over a significant number of timing
observations. The DRAM bank which shows such higher access times is identified
to be the bank where secret data resides.

4.5 Inducing Bit Flip Using Rowhammer

In the previous section, we have illustrated that how the adversary is able to
distinguish the bank in which the secret exponent resides. The software imple-
mentation of the induction of bit flip is performed by repeated access to the
elements of the same bank. The following pseudo-code is used to hammer rows
in specific banks After each access to the element it is deliberately flushed from
the cache using the clflush instruction by the adversary.

Code-hammer-specific-bank
{

Select set of 10 data elements mapping to specific bank
Repeat
{

Access all elements of the set
Clflush each element of the set

}
jmp Code-hammer-specific-bank

}

A statistic over observations of bit flips in respective banks is reported in
Fig. 10. The bar graph shows the number of bit flip instances we were able to

620 S. Bhattacharya and D. Mukhopadhyay

observe for respective banks of a single Dual In-line Memory Module (DIMM).
The bit faults that we have observed in our experiments are bit-reset faults.

Fig. 10. Number of bit flips observed in all banks of a single DIMM

The row index of the location of the secret in the DRAM bank is determined
by the physical address bits of the secret. Thus this implies that the secret expo-
nent can sit in any of the rows in the target bank. Accordingly, we restricted our
hammering attempts in the target bank and we selected random accesses to the
target bank which eventually resulted in bit flips. Thus we slightly modified our
setup such that the code iteratively runs until and unless the decryption output
changes, which signifies that secret exponent bits have been successfully flipped.
The fault attack in [9] requires a single faulty signature to retrieve the secret.
Thus, bit flip introduced in the secret exponent by the rowhammer in a spe-
cific bank can successfully reveal the secret by applying fault analysis techniques
in [9]. The probability of bit flip is 1/214, since there are 214 rows in a particular
bank. Interestingly, the size of the secret key has an effect on the probability of
bit flip in the secret exponent. In other words, we can say that the probability of
bit flip in the secret exponent will be more if the secret exponent size is larger.

5 Possible Countermeasures

There has been various countermeasures of rowhammer attacks proposed in lit-
erature. In [2], seven potential system level mitigation techniques were proposed
which range from designing secure DRAM chips, enforcing ECC protection on
them, increasing the refresh rate, identification of victim cells and retiring them
and refreshing vulnerable rows (for which the adjacent rows are getting accessed
frequently). As mentioned in [2], each of these solutions suffers from the trade-off
between feasibility, cost, performance, power and reliability. In particular, the
solution named as Probabilistic Adjacent Row Activation (PARA) has the least
overhead among the solutions proposed in [2]. The memory controller in PARA
is modeled such that every time a row closes, the controller decides to refresh
its adjacent rows with probability p (typically 1/2). Because of its probabilistic
nature, the approach is low overhead as it does not require any complex data
structure for counting the number of row activations.

Another hardware level mitigation is reported in [5], where it is mentioned
that the LPDDR4 standard for the DRAM incorporated two features for the

Curious Case of Rowhammer: Flipping Secret Exponent Bits 621

hardware level mitigation such as Targeted Row Refresh (TRR) and Maximum
Activate Count (MAC). Among which, it is reported that TRR technique is get-
ting deployed in the next generation DDR4 memory units [18,19]. TRR incor-
porates a special module which can track the frequently made row-activations
and can selectively refresh the rows adjacent to these aggressor rows. All of the
above discussed protections have to be incorporated in hardware, but this does
not eliminate the threat from rowhammer attacks since many of the manufac-
turers refer to these as optional modules.

There are few attempts which provide software level protection from rowham-
mer attacks. The clflush instruction was responsible for removing the target
element from the cache and that resulted in DRAM accesses. In order to stop
the security breaches from NaCl sandbox escape and privilege escalation [5],
Google NaCl sandbox was recently patched to disallow applications from using
the clflush instruction. The other software level mitigation is to double the
refresh rate from 64 ms to 32 ms by changing the BIOS settings, or alterna-
tively upgrading own BIOS with a patched one. It has been reported in [20],
that system manufacturers such as HP, Lenovo and Apple have already con-
sidered updating the refresh rate. But both of the techniques such as doubling
refresh rate and removing access to clflush instruction as a prevention tech-
nique has been proved to be ineffective in [20]. The paper illustrates a case study
of introducing bit flips inspite of having refresh interval as low as 16 ms and the
method does not use the clflush instruction. The paper also propose an effec-
tive, low cost software based protection mechanism named ANVIL. Instead [20]
propose a two-step approach which observe the LLC cache miss statistics from
the performance counters for a time interval, and examines if the number of
cache misses crosses the predetermined threshold. If there are significantly high
number of cache misses, then the second phase of evaluation starts, which sam-
ples the DRAM accesses of the suspected process and identifies if rows in a
particular DRAM bank is getting accessed. If repeated row activation in same
bank is detected, then ANVIL performs a selective refresh on the rows which
are vulnerable.

6 Further Discussion

The present paper’s main focus is to show that targeted faults can be inflicted
by rowhammer. As a consequence, we have cited the example of a fault analysis
on RSA, which is not protected by countermeasures. One of the objectives of
this paper, is to show that fault attacks are serious threats even when triggered
using software means. This makes the threat more probable as opposed to a fault
injection by hardware means: like voltage fluctuations etc. Thus, this emphasizes
more the need for countermeasures, at the software level.

Having said that, even standard libraries like OpenSSL use fault counter-
measures, but they are not fully protected against these class of attacks. For
example, in Black Hat 2012 [21], a hardware based fault injection was shown
to be of threat to OpenSSL based RSA signature schemes. It was reported that

622 S. Bhattacharya and D. Mukhopadhyay

the initial signature is verified by the public key exponent, however in case of a
fault, another signature is generated and this time it is not verified [21]. The final
signature is not verified because it is widely assumed that creating a controlled
fault on a PC is impractical. More so, the faults are believed to be acciden-
tal computational errors, rather than malicious faults. Hence, the probability of
inflicting two successive faults is rather low in normal computations! However,
in case of rowhammer, as the fault is created in the key, repeating the process
would again result in a wrong signature and thus get released.

Hence, the objective of the current paper is to highlight that inflicting con-
trolled faults are more probable through software techniques than popularly
believed, and hence ensuring that verification should be a compulsory step before
releasing signatures.

6.1 Assumptions of the Proposed Attack

In our proposed attack, we assumed that the secret decryption exponent resides
in a particular location of the DRAM and the decryption oracle continuously
polls for input ciphertexts. In addition we also assume that the secret resides in
the same location in the DRAM through out the duration of the attack and is
not page-swapped by other running processes.

6.2 Limitations and Practicality of Our Attack

In this paper, the access to pagemap is assumed to be available at user privilege
level since our setup has 3.2.0-79-generic version of Linux kernel. But from early
2015, for versions of kernel 4.0 onwards, the access to this pagemap has been
restricted to processes with root privileges. However, the attack would still be
relevant in a cross-VM environment as in [22], where the users of the co-located
VMs actually have the administrator privilege and can consult the pagemap
for the required virtual to physical address translation. In such a scenario, the
attacker is assumed to be mounted on a VM which is co-resident to the VM
which hosts the decryption oracle. Timing information obtained from Prime +
Probe methodology in this experimental setup along with the reverse engineering
knowledge can be used to precisely induce fault in the secret of the co-resident
VM. Our paper primarily focuses on the vulnerability analysis of rowhammer in
context to Linux kernels, but the vulnerability may be equally or more relevant
in context to other operating systems where the access to a data structure such
as pagemap (in context to Linux kernels) is not restricted only to administrator
privileges. Moreover, the attack in its original form might be relevant in cus-
tomized embedded system applications, thus it would be an interesting exercise
to ascertain the security impact of rowhammer in such applications.

7 Conclusion

In this paper, we claim to illustrate in steps a combination of timing and fault
analysis attack exploiting vulnerability of recent DRAM’s disturbance error to

Curious Case of Rowhammer: Flipping Secret Exponent Bits 623

induce a bit flip targeting the memory bank shared by the secret. This is a
practical fault model and uses Prime + Probe cache access attack methodology
to narrow down the search space where the adversary is supposed to induce flip.
The experimental results illustrate that the timing analysis shows significant
variation and leads to the identification of LLC set and slices. In addition row-
buffer collision has been exploited to identify the DRAM bank which holds the
secret. The worst case complexity of inducing fault by repeated hammering of
rows in the specific memory bank typically is same as the number of rows in
bank. The proposed attack finds most relevance in cross-VM setup, where the
co-located VMs share the same underlying hardware and thus root privileges are
usually granted to the attack instance.

Acknowledgements. We would like to thank the anonymous reviewers for their valu-
able comments and suggestions. We would also like to thank Prof. Berk Sunar for his
insightful feedback and immense support. This research was supported in part by the
TCS Research Scholarship Program in collaboration with IIT Kharagpur. This work
was also supported in part by the Challenge Grant from IIT Kharagpur, India and
Information Security Education Awareness (ISEA), Deity, India.

References

1. Wikipedia: Rowhammer wikipedia page (2016). https://en.wikipedia.org/wiki/
Row-hammer

2. Kim, Y., Daly, R., Kim, J., Fallin, C., Lee, J.-H., Lee, D., Wilkerson, C., Lai,
K., Mutlu, O.: Flipping bits in memory without accessing them: an experimental
study of DRAM disturbance errors. In: ACM/IEEE 41st International Symposium
on Computer Architecture, ISCA 2014, Minneapolis, MN, USA, June 14–18, 2014,
pp. 361–372. IEEE Computer Society (2014)

3. Huang, R.-F., Yang, H.-Y., Chao, M.C.-T., Lin, S.-C.: Alternate hammering test
for application-specific drams and an industrial case study. In: Groeneveld, P.,
Sciuto, D., Hassoun, S. (eds.) The 49th Annual Design Automation Conference
2012, DAC 2012, San Francisco, CA, USA, June 3–7, 2012, pp. 1012–1017. ACM
(2012)

4. Kim, D.-H., Nair, P.J., Qureshi, M.K.: Architectural support for mitigating row
hammering in DRAM memories. Comput. Archit. Lett. 14(1), 9–12 (2015)

5. Seaborn, M., Dullien, T.: Exploiting the DRAM rowhammer bug to
gain kernel privileges (2015). http://googleprojectzero.blogspot.in/2015/03/
exploiting-dram-rowhammer-bug-to-gain.html

6. Qiao, R., Seaborn, M.: A new approach for rowhammer attacks. In: HOST 2016
(2016)

7. Gruss, D., Maurice, C., Mangard, S.: Rowhammer.js a remote software-induced
fault attack in javascript. CoRR, abs/1507.06955 (2015)

8. Seaborn, M., Dullien, T.: Test DRAM for bit flips caused by the rowhammer
problem (2015). https://github.com/google/rowhammer-test,2015

9. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking crypto-
graphic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol.
1233, pp. 37–51. Springer, Heidelberg (1997)

10. JEDEC. Standard No. 79-3F. DDR3 SDRAM Specification (2012)

https://en.wikipedia.org/wiki/Row-hammer
https://en.wikipedia.org/wiki/Row-hammer
http://googleprojectzero.blogspot.in/2015/03/exploiting-dram-rowh ammer-bug-to-gain.html
http://googleprojectzero.blogspot.in/2015/03/exploiting-dram-rowh ammer-bug-to-gain.html
https://github.com/google/rowhammer-test,2015

624 S. Bhattacharya and D. Mukhopadhyay

11. Yarom, Y., Falkner, K.: FLUSH+RELOAD: A high resolution, low noise, L3 cache
side-channel attack. In: Fu K., Jung, J. (eds.) Proceedings of the 23rd USENIX
Security Symposium, San Diego, CA, USA, August 20–22, 2014, pp. 719–732.
USENIX Association (2014)

12. Maurice, C., Le Scouarnec, N., Neumann, C., Heen, O., Francillon, A.: Reverse
engineering intel last-level cache complex addressing using performance coun-
ters. In: Bos, H., et al. (eds.) RAID 2015. LNCS, vol. 9404, pp. 48–65. Springer,
Heidelberg (2015). doi:10.1007/978-3-319-26362-5 3

13. Irazoqui, G., Eisenbarth, T., Sunar, B.: Systematic reverse engineering of cache
slice selection in intel processors. In: 2015 Euromicro Conference on Digital System
Design, DSD 2015, Madeira, Portugal, 26–28 August 2015, pp. 629–636. IEEE
Computer Society (2015)

14. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: the
case of AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1–20.
Springer, Heidelberg (2006)

15. Liu, F., Yarom, Y., Ge, Q., Heiser, G., Lee, R.B.: Last-level cache side-channel
attacks are practical. In: 2015 IEEE Symposium on Security and Privacy, SP 2015,
San Jose, CA, USA, 17–21 May 2015, pp. 605–622. IEEE Computer Society (2015)

16. Pessl, P., Gruss, D., Maurice, C., Mangard, S.: Reverse engineering intel DRAM
addressing and exploitation. CoRR, abs/1511.08756 (2015)

17. Hund, R., Willems, C., Holz, T.: Practical timing side channel attacks against
kernel space ASLR. In: 2013 IEEE Symposium on Security and Privacy, SP 2013,
Berkeley, CA, USA, 19–22 May 2013, pp. 191–205. IEEE Computer Society (2013)

18. JEDEC Solid State Technology Association: Low Power Double Data Rate 4
(LPDDR4) (2015)

19. Micron Inc. DDR4 SDRAM MT40A2G4, MT40A1G8, MT40A512M16 Data sheet,
2015 (2015)

20. Aweke, Z.B., Yitbarek, S.F., Qiao, R., Das, R., Hicks, M., Oren, Y., Austin, T.M.:
ANVIL: software-based protection against next-generation rowhammer attacks.
In: Conte, T., Zhou, Y. (eds.) Proceedings of the Twenty-First International Con-
ference on Architectural Support for Programming Languages and Operating Sys-
tems, ASPLOS 2016, Atlanta, GA, USA, 2–6 April 2016, pp. 743–755. ACM (2016)

21. Bertacco, V., Alaghi, A., Arthur, W., Tandon, P.: Torturing openSSL
22. Inci, M.S., Gülmezoglu, B., Irazoqui, G., Eisenbarth, T., Sunar, B.: Cache attacks

enable bulk key recovery on the cloud. IACR Cryptology ePrint Archive: 2016/596

http://dx.doi.org/10.1007/978-3-319-26362-5_3

A Design Methodology for Stealthy Parametric
Trojans and Its Application to Bug Attacks

Samaneh Ghandali1(B), Georg T. Becker2, Daniel Holcomb1,
and Christof Paar1,2

1 University of Massachusetts Amherst, Amherst, USA
{samaneh,dholcomb}@umass.edu, Christof.Paar@rub.de

2 Horst Görtz Institut for IT-Security, Ruhr-Universität Bochum, Bochum, Germany
Georg.Becker@ruhr-uni-bochum.de

Abstract. Over the last decade, hardware Trojans have gained increas-
ing attention in academia, industry and by government agencies. In order
to design reliable countermeasures, it is crucial to understand how hard-
ware Trojans can be built in practice. This is an area that has received
relatively scant treatment in the literature. In this contribution, we exam-
ine how particularly stealthy Trojans can be introduced to a given target
circuit. The Trojans are triggered by violating the delays of very rare
combinational logic paths. These are parametric Trojans, i.e., they do
not require any additional logic and are purely based on subtle manipu-
lations on the sub-transistor level to modify the parameters of the tran-
sistors. The Trojan insertion is based on a two-phase approach. In the
first phase, a SAT-based algorithm identifies rarely sensitized paths in a
combinational circuit. In the second phase, a genetic algorithm smartly
distributes delays for each gate to minimize the number of faults caused
by random vectors.

As a case study, we apply our method to a 32-bit multiplier cir-
cuit resulting in a stealthy Trojan multiplier. This Trojan multiplier
only computes faulty outputs if specific combinations of input pairs are
applied to the circuit. The multiplier can be used to realize bug attacks,
introduced by Biham et al. In addition to the bug attacks proposed pre-
viously, we extend this concept for the specific fault model of the path
delay Trojan multiplier and show how it can be used to attack ECDH
key agreement protocols.

Our method is a general approach to path delay faults. It is a ver-
satile tool for designing stealthy Trojans for a given circuit and is not
restricted to multipliers and the bug attack.

1 Introduction

Hardware Trojans have gained increasing attention in academia, industry and
government agencies over the last ten years or so. There is a large body of
research concerned with various methods for detecting Trojans, cf., e.g., [14].

The research was partially supported by NSF Grant CNS-1421352

c© International Association for Cryptologic Research 2016
B. Gierlichs and A.Y. Poschmann (Eds.): CHES 2016, LNCS 9813, pp. 625–647, 2016.
DOI: 10.1007/978-3-662-53140-2 30

626 S. Ghandali et al.

On the other hand, there is scant treatment in literature about how to design
Trojans. Nevertheless, Trojan detection and design are closely related: in order to
design effective detection mechanisms and countermeasures, we need an under-
standing of how Hardware Trojans can be built. This holds in particular with
respect to Trojans that are specifically designed to avoid detection. The situation
is akin to the interplay of cryptography and cryptanalysis.

There are several different ways that hardware Trojans can be inserted into
an IC [14]. The insertion scenarios that have drawn the most attention in the
past are hardware Trojans introduced during manufacturing by an untrusted
semiconductor foundry. One of the main motivations behind this is the fact that
the vast majority of ICs world wide are fabricated abroad, and a foundry can
possibly be pressured by a government agency to maliciously manipulate the
design. However, we note that a similar situation can exist in which the original
IC designer is pressured by her own government to manipulate all or some of
the ICs, e.g., those that are used in overseas products. Similarly, 3rd party IP
cores are another possible insertion point.

The primary setting we consider is modification during manufacturing, but
the method also carries over to the other scenarios mentioned above. The Trojan
will be inserted by modifying a few gates at the sub-transistor level during
manufacturing, so that their delay values increase. The goal is to select and
chose the delays such that only for extremely rare input combinations these
delays add up to a path delay fault. There are many possible ways to increase
the delays in practice in stealthy ways. Since not a single transistor is removed
or added to the design and the changes to the individual gates are minor, the
Trojan is very difficult to detect post-manufacturing using reverse-engineering,
visual inspection, side-channel profiling or most other known detection methods.
Due to the extremely rare trigger conditions, it is also highly unlikely that the
Trojan will be detected during functional testing. Even full reverse-engineering
of the IC will not reveal the presence of the backdoor. Similarly, since the actual
Trojan will be inserted in the last step of the design flow, the Trojan will not
be present at higher abstraction levels such as the netlist. Accordingly, this
type of Trojan is also very interesting for the scenario of stealthy, government-
mandated backdoors. The number of engineers that are aware of the Trojan
would be reduced to a minimum since even the designers of the Trojan-infested
IP core would not be aware that such a backdoor has been inserted into the
product. This can be crucial to eliminate the risk of whistle blowers revealing
the backdoor. In summary, our method overcomes two major problems a Trojan
designer faces, namely making the Trojan detection resistant and to provide a
very rare trigger condition.

1.1 Related Work

The power of hardware Trojans was first demonstrated by King et al. in 2008
by showing how a Hardware Trojan inserted into a CPU can enable virtually
unlimited access to the CPU by an external attacker [15]. The Trojan presented
by King et al. was a Trojan inserted into the HDL code of the design. Similarly,

A Design Methodology for Stealthy Parametric Trojans 627

Lin et al. presented a Hardware Trojan that stealthily leaks out the crypto-
graphic key using a power side-channel [18]. This Hardware Trojan was also
inserted at the netlist or HDL level, similarly to the Hardware Trojans that
were designed as part of a student Hardware Trojan challenge at ICCD 2011 [19].
How to build stealthy Trojans at the layout-level was demonstrated in 2013 by
Becker et al. which showed how a Hardware Trojan can be inserted into a crypto-
graphically secure PRNG or a side-channel resistant SBox only by manipulating
the dopant polarity of a few registers [4]. Another idea proposed in the litera-
ture is the idea of building Hardware Trojans that are triggered by aging [23].
Such Trojans are inactive after manufacturing and only become active after the
IC has been in operation for a long time. Kumar et al. proposed a parametric
Trojan [17] that triggers probabilistically with a probability that increases under
reduced supply voltage.

Compared to research concerned with the design of Hardware Trojans, con-
siderably more results exist related to different Hardware Trojan detection mech-
anisms and countermeasures. Most research focuses on detecting Hardware Tro-
jans inserted during manufacturing. In many cases, a golden model is used that
is supposed to be Trojan free to serve as a reference. One important question is
how to get to a Trojan-free golden model. One approach proposed is to use visual
reverse-engineering of a few chips to ensure that these chips were not manipu-
lated. For this the layout is compared to SEM images of the chip. In [3] methods
of how to automatically do this are discussed. Please note that not all Hardware
Trojans are directly visibly in black-and-white SEM images. For example, to
detect the dopant-level Hardware Trojans additional steps are needed, e.g., the
method presented by Sugawara et al. [24]. One motivation of our work is that we
might achieve an even higher degree of stealthiness by only slowing down transis-
tors as opposed to completely changing transistors as has been done in [4]. Such
parametric changes can be done cleverly to make visual reverse-engineering very
difficult as discussed in Sect. 3. Another approach to Trojan detection uses power
profiles that are used to compare the chip-under-test with previously recorded
side-channel measurement of the golden chip. The most popular approach uses
power side channels, first proposed by Agrawal et al. [2]. The idea to build
specific Trojan detection circuitry has also been proposed, e.g., in [20]. How-
ever, these approaches usually suffer from the problem that a Trojan can also be
inserted into such detection circuitry. Preventing Hardware Trojans inserted at
the HDL level by third party IP cores has been discussed, e.g., in [13] and [26].
Efficient generation of test patterns for Hardware Trojans triggered by a rare
input signals is the focus of work by Chakraborty et al. in [8] and Saha et al.
in [21].

1.2 Our Contribution

The main contributions of this paper can be summarized as follows:

– We introduce a new class of parametric hardware Trojans, the Path Delay
Trojans. They posses the two desirable features that they are (i) very stealthy

628 S. Ghandali et al.

and thus difficult to detect with most standard methods and (ii) have very
rare trigger conditions.

– We present an automation flow for inserting the proposed style of Trojan.
We propose an efficient, SAT solver-based path selection algorithm, which
identifies suitably rare paths within a given target circuit. We also propose a
second algorithm, based on genetic algorithms, for distributing the necessary
delay along the rare path. The key requirement is to minimize the effect of
the added delay on the remaining circuit.

– As a case study for the effectiveness of the proposed method, a Trojan mul-
tiplier is designed. We were able to identify a rare path and perform specific
delay modification in a 32-bit multiplier circuit model in such a way that the
faulty behavior only occurs for very few combinations of two consecutive input
values. We note that the input space of the multiplier is (232)2 = 264 so that
most random input values occur very rarely during regular operation.

– We show how the Trojan multiplier can used for realizing the bug attack by
Biham et al. [5,6] and propose a related attack on the ECDH key agreement
protocol. We provide probabilities for this new bug attack variant. A precom-
putation phase reduces the attack complexity and makes the attacks practical
for real-world scenarios. We show that the attacker can engineer the failure
probability to the desired level by increasing the introduced propagation delay
of the Trojan.

2 Overview of the Proposed Method

This work implements Trojan functionality in a given target circuit by using path
delay faults (PDF), without modification to logic circuit, to induce inaccurate
results for extremely rare inputs. Before describing the details of our method,
we first define the notion of a viable delay-based Trojan in the unmodified HDL
of the circuit as follows. A viable delay-based trojan must posses the following
two properties.

Triggerability. For secret inputs, which are known to the attacker, cause an
error with certainty or relatively high probability.

Stealthiness. For randomly chosen inputs, cause an error with extremely low
probability.

As shown in Fig. 1, our method of creating triggerable and stealthy delay-based
Trojans consists of two phases: path selection and delay distribution. We give an
overview of each phase here, and give detailed descriptions in Sect. 4.

Path Selection: The path selection phase finds a rarely sensitized path from the
primary inputs of a combinational circuit to the primary outputs. The algo-
rithm chooses the path incrementally by adding gates to extend a subpath back-
ward toward inputs and forward toward outputs. The selection of which gates
to include is guided by controllability and observability metrics so that the path
will be rarely sensitized. To ensure that the selected path can be triggered,

A Design Methodology for Stealthy Parametric Trojans 629

Fig. 1. Flowchart of the proposed method for creating a stealthy PDF (path delay
faults).

a SAT-based check is performed to ensure that the path remains sensitizable
each time a gate is added. In addition to ensuring that the path is sensitizable,
the SAT-based check also provides the Trojan designer with a specific input
combination that will sensitize the path. This input combination will later serve
as the trigger for the Trojan. Details of the path selection are given in Sect. 4.1.

Delay Distribution: After a rarely sensitized path is selected, the overall delay
of the path must be increased so that a delay fault will occur when the path is
sensitized; this is required for the Trojan to be triggerable. However, any delay
added to gates on the selected path may also cause delay faults on intersecting
paths, which would cause more frequent errors and compromise stealthiness. Our
delay distribution heuristic addresses this problem by smartly choosing delays
for each gate to minimize the number of faults caused by random vectors. At the
same time, the approach ensures that the overall path delay is sufficient for the
fault to occur when the trigger vectors are applied. Details of delay distribution
are given in Sect. 4.2.

3 Delay Insertion

Delay faults occur when the total propagation delay along a sensitized circuit
path exceeds the clock period. Our algorithm causes delay faults by increasing
the delay of gates on a chosen path. While the approach is compatible with any
mechanism for controlling gate delays, in this section we provide background on
practical methods that a Trojan designer might use to implement slow gates. In
static CMOS logic, a path delay fault is not triggered by a single input vector,
but instead is triggered by a sequence of two input vectors applied on consecutive
cycles. The physical reason for delay being caused by a pair of inputs is that delay
depends on the charging or discharging of capacitances, and the initial states of
these capacitances in the second vector are determined as final states from the
first vector. Assuming the capacitances need to be charged or discharged along
a path, as is the case in delay faults, the delay of each gate depends on how

630 S. Ghandali et al.

quickly it can charge or discharge some amount of capacitance on its output
node, and diminishing the ability of a gate to do so will slow it down. There are
several stealthy ways of changing a circuit to make gates slower. As an example,
we list three methods below. We note that circuit designers typically face the
opposite and considerably more difficult task, namely making gates fast. The
ever-shrinking feature size of modern ICs is amenable to our goal of slowing
gates down through minuscule alterations (Fig. 2).

Decrease Width. A gate library typically includes several drive strengths for
each gate type, corresponding to different transistor widths. A narrow transis-
tor is slower to charge a load capacitance because transistor current is linear
in channel width. A straightforward way to increase delay is to replace a gate
with a weaker variant of the same gate, or to create a custom cell variant
with an extremely narrow channel. A limitation to using a downsized gate is
that an attacker who delayers the chip could potentially observe the sizing
optically, depending on how much the geometry has been altered.

Raise Threshold. A second way of increasing gate delay is to increase thresh-
old voltages of selected transistors through doping or body biasing. Dual-Vt
design is common in ICs and allows transistors to be designated as high or
low threshold devices; low threshold devices are fast and used where delay
is critical, and high threshold devices are slow and used elsewhere to reduce
static power. Typically no more than two threshold levels are used on a sin-
gle chip because creating multiple thresholds through doping requires addi-
tional process steps, but in principle an arbitrary number of thresholds can
be created. Body biasing, changing the body-source voltage of MOSFETs, is
another way to change threshold and delay [16]; specifically, a reverse body
bias (i.e., body terminal at lower voltage than source) raises threshold volt-
age and slows down a device. Regardless whether the mechanism is doping or
body biasing, a raised threshold voltage will cause transistors to turn on later
when an input switches, and to conduct less current when turned on, so the
output capacitance connected to the transistor will be charged or discharged

WL

n+ n+
p IN

VIN

VOUT

(a) Annotated NMOS transistor

 0

 1

0ps 50ps 100ps

V
ol

ta
ge

C
ur

re
nt

Time

Vin
Vout

iN

(b) Switching Event

Fig. 2. Propagating an input transition to an output transition requires current to
charge or discharge a capacitor. Decreasing width or increasing length of MOSFETs
are two ways of reducing switching current and increasing propagation delay.

A Design Methodology for Stealthy Parametric Trojans 631

more slowly. Both, changing to dopant concentrations and body biasing, are
difficult to detect, even with invasive methods.

Increase Gate Length. Delay of chosen gates can be increased by gate length
biasing. Lengthening the gate of transistor causes a reduction in current, and
therefore increases delay [11]. Again, the likelihood of detection depends on
the degree of the alteration.

We note that the methods sketched above (and other slow-down alterations)
can be combined such that each manipulation is relatively minor and, thus, more
difficult to detect.

4 Finding a Trojan Path

Fundamentally, the challenge in designing and validating triggerable and stealthy
delay-based Trojans is that timing and logical sensitization cannot be decou-
pled. Regardless of the type of path sensitization considered, the probability of
causing an error is not a well-defined concept until after delays are assigned.
Therefore, when designing a candidate Trojan, path selection and delay assign-
ment must both be considered. We will use a heuristic for this which combines
logical path selection and delay distribution along a chosen path.

4.1 Phase I: Rare Path Selection

In this phase we try to select a path among huge number of paths existing in the
netlist of a multiplier circuit, in such a way that random inputs will very rarely
sensitize the path. The rareness is a first step towards ensuring stealthiness of
the Trojan.

Controllability and Observability: Before giving our algorithm, we intro-
duce several preliminaries. First, we note that every node in the circuit has a
controllability metric and an observability metric associated with the 0 value
and the 1 value. Controllability and observability are common metrics used in
testing. Controllability of a 0 or 1 value on a circuit node is an estimate of the
probability that a random input vector would induce that value on that node.
Observability of a 0 or 1 value on a node is an estimate of the probability with
which that value would propagate to some output signal when a random vector
is applied. For rareness, we seek a path that includes low controllability nodes
and low observability nodes, as this would indicate that the values on the path
rarely occur randomly, and when they do occur they are usually masked from
reaching the outputs. We estimate controllability using random simulation, and
observability using random fault injection [12].

632 S. Ghandali et al.

Fig. 3. Circuit and corresponding timing graph.

Timing Graph: The propagation delays of logic paths in combinational VLSI
circuits are typically represented using weighted DAGs called timing graphs.
Each node in a circuit will have two nodes in the timing graph, representing
rising and falling transitions on the node; we use the terms transition and node
interchangeably when discussing timing graphs. A directed edge between two
nodes exists if the transition at the tail of the edge can logically propagate to
the one at the head. The edges that exist in the timing graph therefore depend
on the logic function of each gate in the circuit (see Fig. 3).

For example, an AND gate with inputs A and B, and output X, will have
an edge from A ↑ to X ↑, from A ↓ to X ↓, from B ↑ to X ↑, and from B ↓ to
X ↓, but will not have an edge from A ↑ to X ↓ because a rising transition on an
AND gate input cannot induce a falling output. In timing analysis, e.g. STA, the
edge weights of a timing graph represent propagation delay, but for our purpose
of path selection, the delays are ignored and we utilize only the connectivity of
the timing graph.

Selecting a Path Through Timing Graph: Our path selection technique
seeks to find a path π through the timing graph of the circuit that is rarely
sensitized. Note that the delays are not considered in this phase of the work.
Path π is initialized to contain a single hard to sensitize transition somewhere in
the middle of the circuit. More formally, the starting point for the path search is
a rising or falling transition on a single node such that the product of its 0 and
1 controllability values is the lowest among all nodes in the circuit. This initial
single-node path π is then extended incrementally backward until reaching the
primary inputs (PIs), and extended incrementally forward until reaching the
primary outputs (POs). The backward propagation is given in Algorithm 1, and
the forward propagation is given in Algorithm 2.

First we explain the backward propagation heuristic in Algorithm 1. Starting
from the first transition (i.e. the tail) on the current path π, we repeatedly try
to extend the path back toward the PIs by prepending one new transition to
the path. To select such a transition, the algorithm creates a list of candidate
transitions that can be be prepended to the path. In the timing graph, these can-
didates are predecessor nodes to the current tail of π. The list of candidate nodes
is then sorted according to diffj, the difficulty of creating the necessary condi-

A Design Methodology for Stealthy Parametric Trojans 633

tions to justify the transition. See Table 3 in the appendix for the formula used
to compute diffj for each transition on each gate type. Note that our difficulty
metric is weighted to always prefer robust sensitization first, and only resort to
non-robust sensitization when there are no robustly sensitizable nodes in the list
of candidates. Whenever a node is prepended to π to create a candidate path π′

(line 5) the sensitizability of π′ is checked by calling check-sensitizability func-
tion. In this function SAT-based techniques [9] are used to check sensitizability
of a path and to find a vector pair that justifies and propagates a transition
along the path (line 6). If the SAT solver returns SAT, then path π′ is known
to be a subpath of a sensitizable path from PIs to POs. Because the candidates
are visited in order of preference, there is no need to check other candidates
after finding a first candidate that produces a sensitizable path. At this point,
the algorithm updates π to be π′ and the algorithm exits the for loop having
extended the path by one node. If this newly added tail node is not a PI, then
the algorithm will again try to extend it backwards.

Algorithm 1. Extend path backward to PIs while trying to maximize
difficulty of justification while ensuring that path will remain sensitizable.
Require: A sensitizable subpath π in timing graph of circuit.
Ensure: A longer sensitizable subpath π in timing graph that starts at a PI
1: while tail(π) /∈ PIs do
2: candidates ← (∀n|n ∈ pred(tail(π))) {transitions that can be prepended to π}
3: candidates.order(diffj) {Order candidates by difficulty of justification}
4: for n′ ∈ candidates do
5: π′ ← (n′, π) {Create a candidate path by prepending current path}
6: if check-sensitizability(π′) = SAT then
7: π ← π′ {candidate accepted, update path π with new tail}
8: Exit for loop
9: end if

10: end for
11: end while

The forward propagation algorithm (Algorithm 2) is similar to the aforemen-
tioned backward propagation algorithm, except that it adds nodes to the head of
the path until reaching POs. At each step of the algorithm, a list of candidates
is again formed. In this case, the candidates are successors of the head of the
path (line 2) instead of predecessors of the tail, and they are ordered accord-
ing to difficulty of propagation (line 3) instead of difficulty of justification (see
Table 4 in Appendix A). Each time a new candidate path is created by adding
a candidate node to the existing path, a sat check is again performed to ensure
that the nodes are only added to π if it remains sensitizable (line 6).

634 S. Ghandali et al.

Algorithm 2. Extend path forward to POs while trying to maximize dif-
ficulty of propagation while ensuring that path will remain sensitizable.
Require: A sensitizable subpath π in timing graph of circuit.

Ensure: A longer sensitizable subpath π in timing graph that ends at a PO

1: while head(π) /∈ POs do

2: candidates ← (∀n|n ∈ succ(head(π))) {transitions that can be appended to π}
3: candidates.order(diffp) {Order candidates by difficulty of propagation}
4: for n′ ∈ candidates do

5: π′ ← (π, n′) {Create a candidate path by appending to current path}
6: if check-sensitizability(π′) = SAT then

7: π ← π′ {candidate accepted, update path π with new head}
8: Exit for loop

9: end if

10: end for

11: end while

4.2 Phase II: Delay Distribution

Once a path is selected, we must increase the delay of the path so that the total
path delay will exceed the clock period and an error will occur when the path is
sensitized. Yet, we must be careful in choosing where to add delay on the path,
because the gates along the chosen path are also part of many other intersecting
or overlapping paths. Any delay added to the chosen path therefore may cause
errors even when the chosen path is not sensitized. To ensure stealthiness, we
must minimize the probability of this by smartly deciding where to add delays
along the path.

We use a genetic algorithm to decide the delay of each gate that will cause
the Trojan to be stealthy. Genetic algorithm is an optimization technique that
tries to minimize a cost function by creating a population of random solutions,
and repeatedly selecting the best solutions in the population and combining and
mutating them to create new solutions; the quality of each solution is evaluated
according to a fitness function. We use the genetic algorithm function ga in
Matlab [1], and do not utilize any special modifications to the genetic algorithm
implementation. Our interaction with the ga function is limited to providing
constraints that restrict the allowed solution space, and a fitness function for
evaluating solutions. We describe these constraints and fitness function here.

Constraint on Total Path Delay. Given a chosen path π comprising gates
(p0, p1, . . . , pn) and assuming a target path delay of D, the genetic algorithm
decides the delay of each gate on the path. Our first constraint therefore specifies
that the sum of assigned delays along the path is equal to the target path delay D.
To cause an error, D must exceed the clock period, and we later show advantages
of using different values of D.

D =
n∑

i=0

di (1)

A Design Methodology for Stealthy Parametric Trojans 635

Constraint on Delay of Each Gate. Next we provide the genetic algorithm
with a hint that helps it to discover reasonable delays for each gate. In this
step, we use d′

i to represent the nominal delay of the ith gate on chosen path
π, and si to represent the a slack metric associated with the same gate. Each
slack parameter si describes how much delay can be added to the corresponding
gate without causing the path to exceed the clock period. Because the targeted
path delay D does exceed the clock period, gate delays are allowed to exceed
their computed slack. The slack for each gate is computed as a function of the
nominal delay of the gate, data dependency, and the clock period [10,25]. The
following equation shows the constraint on delay of gate i, where c is a constant.

d′
i + si − c ≤ di ≤ d′

i + si + c (2)

Fitness Function. Simply stated, the cost function that we want to minimize
is the probability of causing an error when random input vectors are applied
to the circuit. Because there is no simple closed-form expression for this, we
use random simulation to evaluate the cost of any delay assignment. When the
genetic algorithm in Matlab needs to evaluate the cost of a particular delay
assignment, it does so by executing a timing simulator. The timing simulator, in
our case ModelSim, applies random vectors to the circuit-under-evaluation and
a golden copy of the circuit and compares the respective outputs to count the
number of errors that occur. These errors are caused by the delay assignments
in the circuit-under-evaluation. The cost that is returned from the simulator
is the percentage of inputs that caused an error for this delay assignment. As
the genetic algorithm proceeds through more and more generations of solutions,
the quality of the solutions improve. Matlab’s genetic algorithm implementation
comes with a stopping criterion, so we simply allow the algorithm to run until
completion.

5 Experimental Results

We now evaluate the effectiveness of our method of designing Trojans, using a
32 × 32 Wallace tree multiplier as a test case. The circuit has a nominal critical
path of length 128, and the delay of this path is 2520 ps.

5.1 Evaluation of Phase I (Path Selection)

To evaluate the ability of our path selection algorithm (Sect. 4.1) to find a rare
path, we compare the stealthiness of the path selected by the algorithm against
the stealthiness of 750 randomly chosen paths. For each of these paths, we seek
to find how often an error would occur under random inputs if the path delay is
increased. We measure this by uniformly increasing the delay of each gate on the
path such that the total delay of the path is 5040 ps, which is twice the delay of
the nominal critical path. After the delay modification, 10,000 random vectors
are applied and the number of error-causing vectors is counted. The histogram

636 S. Ghandali et al.

of Fig. 4 shows the result; the x-axis represents error rates, and the y-axis shows
how many of the paths have each error rate. The result shows that a majority
of paths would cause frequent errors if their delay is increased, and these paths
are thus unsuitable for stealthy Trojans. The rare path (RP) selected by our
algorithm caused an error for only 4 of 10,000 vectors. By comparison, the best
of the random paths caused an error in 174 of 10,000 vectors. In this experiment,
the path chosen by the path selection algorithm is 43x less likely to cause an error
than the best of 750 random paths. Note that this experiment is conservative
in that the amount of additional delay added is very large, and the delay is not
smartly distributed along the path to minimize detection.

5.2 Evaluation of Phase II (Delay Distribution)

To evaluate the effectiveness of our delay distribution method, we apply the
proposed method (Sect. 4.2) on 10 paths from the multiplier. These 10 paths
are the rare path chosen by the path selection algorithm, and 9 paths randomly
selected from the set of all paths that caused less than 10 % error rates in Fig. 4.
For each of these paths, we use the genetic algorithm to optimally allocate a
total delay of 3276 ps (i.e. 1.3 times of the delay of the nominal critical path)
over the path, and then evaluate the error probability using random simulation
with 5,000,000 vectors. Figure 5 shows the error probability of each path before
and after applying our proposed delay distribution method. In each case, the
optimization step reduces the probability of causing an error by at least 3.5x.
For the rare path (RP), just one error in 5,000,000 vectors is caused after delay

Fig. 4. Fault simulation of rare path and 750 random paths of 32 × 32 Wallace tree
multiplier.

A Design Methodology for Stealthy Parametric Trojans 637

Fig. 5. Error probability of circuit before and after optimizing delay assignment of rare
path and 9 other paths in a 32 × 32 Wallace tree multiplier.

distribution. This result shows that, for a given total path delay, optimizing the
delay assignment along the path can reduce the probability of having an error
when random vectors are applied. It is important to note that this improvement
in stealthiness comes from minimizing the side effects of the added delay, and
does not impact triggerability when vectors are applied that actually sensitize
the entire chosen path.

5.3 Overall Evaluation

We evaluate our overall methodology comprising path selection and delay dis-
tribution on the 32 × 32 Wallace Tree multiplier circuit. Instead of assuming a
particular clock frequency, here we examine whether it is possible to add delay to
the chosen rare path such that the circuit will (1) exceed the nominal critical path
delay of 2520 ps when the applied input sensitizes the rare path, and (2) always
have delay of less than 2520 ps otherwise. We first distribute delay uniformly
over the path, and then apply the same total delay to the path but distribute it
using the genetic algorithm (Sect. 4.2). The results are shown in Table 1. Despite
simulating 260 million random vectors, we are unable to randomly discover any
vectors in which the circuit delay exceeds 2520 ps. Yet, when applying a vector
pair produced by our SAT-based sensitization check, we observe that the chosen
path delay does exceed 2520 ps. As simulating 260 million vectors on a cir-
cuit this size already used more than 240 h of computation on an AMD Opteron
(TM) Processor running at 2.3 GHz with 8 cores and 64 GB RAM, it will become
quite expensive to check increasing numbers of vectors beyond 260 million. This
highlights a significant challenge: given a space of 2128 possible vector pairs that
might cause an error, it is very hard to estimate the probability of an error that
is sufficiently rare. If the probability of error is around or above roughly 2−26,
then random simulation will suffice to find a few errors and estimate the error
probability. If the probability of error is below roughly 2−98 it would be possible
to use SAT to exhaustively enumerate all 230 vectors that would cause an error.
Unfortunately, for very interesting region of error probabilities between 2−26 and
2−98 there is no clear solution for estimating the error probabilities.

638 S. Ghandali et al.

Table 1. Probability of exceeding the nominal critical path delay in a 32 × 32 Wallace
Tree Multiplier after adding delay to the rare path. When uniformly distributing the
delay over the path, the longest delay exceeds 2520 ps for 57 of 200,000 random applied
vectors. After using genetic algorithm (Sect. 4.2) to distribute the delay, the circuit
delay never exceeds 2520 ps in 260 million random vectors.

Delay distribution

Uniform GA

Num. of times exceeding 2520 ps 57 0

Num. of random vectors applied 200,000 260M

Prob. of exceeding 2520 ps 0.0003 < 2−26

Fig. 6. Increasing the rare path delay increases the probability of causing an error
when random vectors are applied. This delay is allocated to gates according to the
delay distribution algorithm. The results are shown for different clock periods.

When the amount of delay added to the rare path is increased, and the prob-
ability of error grows above 2−26, the error probability can feasibly be estimated
with random simulation. In this regime, we can evaluate the tradeoff of delay and
trigger probability. For example, when the chosen path is given a total delay of
3150 ps allocated using genetic algorithm for delay distribution, and the circuit
is operated at a clock period of 2800 ps (as might be reasonable for a nominal
critical path of 2520 ps) an erroneous output occurs with probability of roughly
2−24 (once every 16 million multiplications) when random inputs are applied.
The overall tradeoff is shown in Fig. 6 for different clock periods. One can exploit
this tradeoff to create a desired error probability by increasing or decreasing the
total amount of delay added to the chosen path.

6 Bug Attack on ECDH with a Trojan Multiplier

The main motivation of choosing a multiplier as our case study is the bug attack
paper by Biham et al. [5,6]. They showed how several public key implemen-
tations can be attacked if the used multiplier computes a faulty response for
some rare inputs. The real-world implications of bug attacks were first demon-
strated by Brumley et al. in 2012 when they showed how a software bug in

A Design Methodology for Stealthy Parametric Trojans 639

an implementation of the reduction step of an elliptic curve group operation in
OpenSSL could be exploited to recover private ECDH-TLS server keys [7]. Note
that while they exploited a software bug as opposed to a hardware bug and a
modular reduction as opposed to a multiplication, the attack idea itself is the
same as in the original bug attack paper [5].

6.1 Fault Model of the Trojan Multiplier

The Trojan Multiplier introduced in the precious Section has a different fault
model than the one assumed in [5]. In particular, the output of the Trojan
Multiplier does not only depend on the current input but also on the previous
inputs, i.e., it has a state. We define the multiplication of two 32-bit numbers
a1, b1 with our Trojan Multiplier as ỹ = MULa0,b0(a1, b1) where a0, b0 is the
previous input pair to the multiplier. The list F of quadruples (a0, b0, a1, b1) are
all input sequences for which the Trojan Multiplier computes a faulty response:

For all (a0, b0, a1, b1) ∈ F : ỹ = MULa0,b0(a1, b1) �= y = a1 · b1

For all (a0, b0, a1, b1) /∈ F : ỹ = MULa0,b0(a1, b1) = y = a1 · b1
(3)

Outputs computed with the Trojan Multiplier are always represented with a
tilde. An ECC scalar multiplication of point Q ∈ E with an integer k is denoted
as R = k · Q. An elliptic curve scalar multiplication using the Trojan Multiplier
is denoted with an �, i.e., R̃ = k � Q. In the following we assume that an
attacker has knowledge of the Trojan Multiplier or access to a chip with the
Trojan Multiplier such that the attacker knows for which inputs R̃ �= R.

The attack complexity strongly depends on the probability that a multiplica-
tion results in a faulty response. In order to be able to compute this probability
we make following definitions:

1. PM(a1,b1): Probability that for two random 32-bit integers a1, b1 there exits
at least one pair of 32-bit integers a0, b0 such that ỹ = MULa0,b0(a1, b1)
computes a faulty response

2. PM(a1): Probability that for a random 32-bit integers a1 there exits at least
one triplet of 32-bit integers a0, b0, b1 such that ỹ = MULa0,b0(a1, b1) com-
putes a faulty response. Probability PM(b1) is defined in the same fashion.

3. PM(a0,b0|a1,b1): Probability that for two random 32-bit integers a0, b0 and
two given integers a1, b1 the multiplication ỹ = MULa0,b0(a1, b1) computes
a faulty response if there exists at least one other input pair a′

0, b
′
0 for which

ỹ = MULa′
0,b

′
0
(a1, b1) computes a faulty response

4. PM(a0|a1,b1=b0): Probability that for a random 32-bit integers a0, and two
given integers a1, b1 the multiplication ỹ = MULa0,b0(a1, b1) with b0 = b1
computes a faulty response if there exists at least one other input pair a′

0, b
′
0

for which ỹ = MULa′
0,b

′
0
(a1, b1) computes a faulty response

Furthermore, we make following assumptions regarding these probabilities for
the Trojan Multiplier :

640 S. Ghandali et al.

1. PM(a1) ≈ PM(b1) and PM(a1,b1) = PM(a1) · PM(b1)

2. PM(a0,b0|a1,b1) ≈ 0.09
3. PM(a0|a1,b1=b0) ≈ 0.18

Assumption (1) follows from the fact that both inputs have the same impact on
the propagation path of the signal. Hence it is reasonable that both values are
equally important to determine if a multiplication fails. Assumption (2) is based
on experimental results in which 892 out of 10,000 multiplication failed when a0

and b0 are changed randomly while keeping a1, b1 constant. Assumption (3) is
based on a similar experiment in which 1813 out of 10,000 multiplication failed
when a0 was changed randomly and b0 was fixed to b0 = b1 and a1 was kept
constant as well.

6.2 Case Study: An ECDH Implementation with Montgomery
Ladder

For our case study we assume a 255-bit ECDH key agreement with a static
public key. Furthermore, we assume the implementation uses the Montgomery
Ladder scalar multiplication. The ECDH key agreement works as follows: Given
are a standardized public curve E (e.g. Curve25519) and the point G ∈ E. The
private key of the server is a 255 bit integer ks and the corresponding public key
is Qs = ks · G. The key agreement is started by the client by choosing a random
255-bit integer kc and computing Qc = kc · G. The client sends Qc to the server
and computes the shared key R = ks ·Qs. The server computes the shared secret
key R using Qc and his secret key ks by computing R = kS · Qc. Usually, the
key agreement is followed by a handshake to ensure that both the client and the
server are now in possession of the same shared session key R.

The general idea of the bug attack is that the attacker makes a key guess
of the first l bits of the secret key Ks. Then the attacker searches for a point
Q = m · G such that the scalar multiplication R̃ = ks � Q results in a failure
if, and only if, the most significant bits of ks are indeed the l bits the attacker
guessed. The attacker then sends Q to the server and completes the ECDH key
exchange protocol by making a handshake with the shared key R = m·Qs. If this
handshake fails, the expected multiplication error in the Trojan Multiplier has
occurred and hence, the attacker knows that his key guess is correct. This way
more and more bits of the key are recovered consecutively. In the Montgomery
Ladder scalar multiplication only one bit of the key is processed in each ladder
step and the attack works as follows:

1. Input: Elliptic curve E with point G ∈ E and public server key Qs ∈ E
2. Initialization: Set k = 1(2)
3. Repeat for key bit 2 to 255:

(a) Define k0 = k||0(2) [Append a zero to the key k]
(b) Define k1 = k||1(2) [Append a one to the key k]
(c) Repeatedly choose a value m and compute Q = m · G until:

(P̃i = ki � Q) �= (Pi = ki · Q) for i ∈ {0, 1}
(P̃j = kj � Q) = (Pj = kj · Q) for j �= i, j ∈ {0, 1}

A Design Methodology for Stealthy Parametric Trojans 641

(d) Send Q to the server and complete handshake with R = m · Qs

(e) If handshake failed, set k = ki, else set k = kj

The attack described above is a straight forward adaption of the bug attack
from [7]. However, in the Trojan multiplier scenario the attack can be improved
significantly by adding a precomputation step. The main idea is to not use
randomly generated points Q in step 3.c) but to use points Q in which
the x-coordinate Qx contains a b1 for which the Trojan Multiplier ỹ =
MULa0,b0(a1, b1) has a high chance to return a faulty response. That is, b1
is one of the inputs for which the Trojan Multiplier fails. In each step of the
Montgomery Ladder algorithm the projective coordinate Z2 is computed with
Z2 ← Z2 · Qx

1 Hence, Qx, and therefore also b1, is used in every ladder step.
Furthermore, the value Z2 is different depending on the currently processed key
bit. Our improved attack targets this 255-bit integer multiplication Z2 · Qx to
find a Q such that (P̃i �= Pi) while (P̃j �= Pj) as needed in step 3.c) of the attack
algorithm.

Unfortunately, the attacker cannot freely choose Q since the attacker needs
to know m such that Q = m · G to finish the handshake. Instead of computing
suitable points for each attack, we propose to search for t suitable points Q
during a precomputation step as described below:

1. Input: Elliptic curve E with point G ∈ E
2. Initialization: m = 1, Q = G
3. Repeat t times:

(a) m = m + 1, Q = Q + G
(b) If Qx contains b1, store m and Q in list L

To compute the probability that the 255-bit integer multiplication Z2 · Qx

fails the used multiplication algorithm is important. We assume that the school-
book multiplication is used. One 255-bit schoolbook multiplication consists of
64 multiplications of which 8 have b1 as an operand. Since one of these multi-
plication is a 31-bit multiplication and we assume that only 32-bit multiplica-
tions can trigger the Trojan, 7 32-bit multiplications with b1 that can trigger
the Trojan are performed in each ladder step. Furthermore, due to the FOR
loops in the schoolbook multiplication, in 6 of these 7 multiplications b0 = b1,
i.e., the second operand in the multiplication remains unchanged. Note that
PM(a0|a1,b1=b0) ≈ 0.18 and hence this is actually not a problem but rather help-
ful. The average number AQ of points Q that need to be tested until a failure
occurs for key bit 1 or 0 is therefore:

AQ =
1
2

· 1
PM(a1) · PM(a0|a1,b1=b0) · 6 + PM(a1) · PM(a0,b0|a1,b1) · 1

Let us assume that the attacker tries to find a point Q for key bit i. Since the
attacker searches for a fault in the last Montgomery Ladder step, for every point
Q the attacker needs to compute i − 2 Montgomery Ladder steps (for the first
1 See Appendix B of the IACR ePrint version for the Montgomery Ladder algorithm.

642 S. Ghandali et al.

Table 2. Attack complexity of the proposed improved bug attack using the Trojan
multiplier assuming a 256 bit curve.

PM(a1,b1) 2−64 2−48 2−32

Precomputation complexity (point additions) 266.8 250.8 234.8

Storage requirement 14 PB 55 TB 215 GB

Attack complexity (scalar multiplications) 230.8 222.8 214.8

Attack complexity (montgomery ladder steps) 246.8 238.8 230.8

key bit no step is needed) and then two Montgomery Ladder steps for key bit 1
and 0 respectively to check if the multiplication fails. Hence, in total the attacker
needs an average of AM Montgomery Ladder steps to recover a 255 bit key:

AM =
255∑

i=2

(i · AQ) =
2552 + 255

2
· AQ ≈ 216 · AQ

To compute t points Q during the precomputation such that b1 is in Qx the
attacker needs in average

AP = t · 1
PM(b1)

point additions. We chose t = 16 ·AQ which results in a failure probability of ca.
3.3·10−8 which should be small enough for all reasonable attack scenarios. Table 2
summarizes the attack complexity for our improved bug attack with precompu-
tation for different parameters for the Trojan Multiplier. To put these numbers
into perspective, the hardware implementation of curve25519 presented in [22]
can compute roughly 239.3 Montgomery Ladder steps per second on a Xilinx
Zynq 7020 FPGA. Hence, especially for a failure probability of PM(a1,b1) = 2−48

the attack complexity of 239 Montgomery ladder steps (and 250 point additions
that only need to be done once) is quite practical in a real-world scenario. On the
other hand, the probability that the Trojan is triggered unintentionally during
normal operation is about 2−37 which is low enough to not cause problems (see
AppendixB for details).

7 Conclusion

This paper introduced a new type of parametric hardware Trojans based on
rarely-sensitized path delay faults. While hardware Trojans using parametric
changes (i.e. that only modify the performance/parameters of gates) have been
proposed before, the previously proposed parametric hardware Trojans cannot
be triggered deterministically. They are instead either triggered after time by
aging [23], triggered randomly under reduced voltage [17] or are always on and
can leak keys using a power side-channel [4]. In contrast, the proposed paramet-
ric hardware Trojan in this paper can be triggered by applying specific input

A Design Methodology for Stealthy Parametric Trojans 643

sequences to the circuit. Hence, this paper introduces the first trigger-based
hardware Trojan that is realized solely by small and stealthy parametric changes.
To achieve this, a SAT-based algorithm is presented which efficiently searches a
combinational circuit for paths that are extremely rarely sensitized. A genetic
algorithm is then used to distribute delays over all the gates on the path so that
a path delay fault occurs when trigger inputs are applied, while for other inputs
the timing criteria are met. In this way, a faulty response is computed only for
a very small subset of input combinations.

To demonstrate the usefulness of the proposed technique, a 32-bit multiplier
is modified so that, for some multiplications, faulty responses are computed.
These faults can be so rare that they do not interfere with normal operations
but can still be used by the Trojan designer for a bug attack against public
key algorithms. As a motivating example, we showed how this can be achieved
for ECDH implementations. Please note that while we used a multiplier as our
case study, the general idea of path delay Trojans and the tool-flow and algo-
rithms presented in this paper are not restricted to multipliers. Hence, this work
shows that by only making extremely stealthy parametric changes to a design,
a malicious factory could insert backdoors to leak out secret keys.

A Difficulty of Justification and Propagation Tables

Table 3. Computation of diffj for different gate types. In the case of 2-input gates,
we assume without loss of generality that input A is the on-path input and B is the off-
path input. The first two columns show the output transition, and the input transition
that we are trying to justify for this output transition. Columns 3–6 show the values
that the on-path input (A) and off-path input (B) must take in the first and second
cycles to justify the desired transition. The final column shows the formula to compute
diffj in terms of the controllability of the inputs.

Output trans Input trans A B Diffj

v(1) v(2) v(1) v(2)

X = AND(A,B) X ↓ A ↓ 1 0 1 1 C1(A) ∗ C0(A) ∗ C2
1 (B)

X ↑ A ↑ 0 1 - 1 C0(A) ∗ C1(A) ∗ C1(B)

X = OR(A,B) X ↓ A ↓ 1 0 - 0 C1(A) ∗ C0(A) ∗ C0(B)

X ↑ A ↑ 0 1 0 0 C0(A) ∗ C1(A) ∗ C2
0 (B)

X = XOR(A,B) X ↓ A ↓ 1 0 0 0 C1(A) ∗ C0(A) ∗ C2
0 (B)

X ↓ A ↑ 0 1 1 1 C0(A) ∗ C1(A) ∗ C2
1 (B)

X ↑ A ↑ 0 1 0 0 C0(A) ∗ C1(A) ∗ C2
0 (B)

X ↑ A ↓ 1 0 1 1 C1(A) ∗ C0(A) ∗ C2
1 (B)

X = BUFF(A) X ↓ A ↓ 1 0 - - 1

X ↑ A ↑ 0 1 - - 1

X = INV(A) X ↓ A ↑ 0 1 - - 1

X ↑ A ↓ 1 0 - - 1

644 S. Ghandali et al.

Table 4. Computation of diffp for different gate types. In the case of 2-input gates,
we assume without loss of generality that input A is the on-path input and B is the off-
path input. The first two columns show the output transition, and the input transition
that we are trying to propagate for this on-path input transition. Columns 3–6 show
the values that the output (X) and off-path input (B) must take in the first and second
cycles to propagate the desired transition. The final column shows the formula to
compute diffp in terms of the controllability of the off-path input and observability
of output.

Output trans Input trans X B Diffp

v(1) v(2) v(1) v(2)

X = AND(A,B) X ↓ A ↓ 1 0 1 1 OB1(X) ∗ OB0(X) ∗ C2
1 (B)

X ↑ A ↑ 0 1 - 1 OB0(X) ∗ OB1(X) ∗ C1(B)

X = OR(A,B) X ↓ A ↓ 1 0 - 0 OB1(X) ∗ OB0(X) ∗ C0(B)

X ↑ A ↑ 0 1 0 0 OB0(X) ∗ OB1(X) ∗ C2
0 (B)

X = XOR(A,B) X ↓ A ↓ 1 0 0 0 OB1(X) ∗ OB0(X) ∗ C2
0 (B)

X ↓ A ↑ 1 0 1 1 OB1(X) ∗ OB0(X) ∗ C2
1 (B)

X ↑ A ↑ 0 1 0 0 OB0(X) ∗ OB1(X) ∗ C2
0 (B)

X ↑ A ↓ 0 1 1 1 OB0(X) ∗ OB1(X) ∗ C2
1 (B)

X = BUFF(A) X ↓ A ↓ 1 0 - - OB1(X) ∗ OB0(X)

X ↑ A ↑ 0 1 - - OB0(X) ∗ OB1(X)

X = INV(A) X ↓ A ↑ 1 0 - - OB1(X) ∗ OB0(X)

X ↑ A ↓ 0 1 - - OB0(X) ∗ OB1(X)

B Montgomery Ladder

To be able to compute the exact attack complexity the details of the Montgomery
Ladder are important to determine how many manipulations are performed in
each step. Algorithms 3 and 4 describe the details of the assumed Montgomery
Ladder implementation.

Computing the Failure Probability of a Scalar Multiplication. In this
subsection we describe how the failure probability of a Montgomery Ladder

Algorithm 3. Montgomery Ladder

Input: A 255-bit scalar s and the x-coordinate Qx of Q ∈ E
Output: c-coordinate Px of point P ∈ E with P = s · Q

1 X1 ← 1; Z1 ← 0; X3 ← Qx ; Z2 ← 1
2 for i ← 254 downto 0 do
3 b ← bit i of s
4 c ← bit i − 1 of s for i < 254 else c ← 0
5 if b ⊕ c = 1 then
6 Swap(X1, X2)
7 Swap(Z1, Z2)

8 (X1, Z1, X2, Z2) ← LADDERSTEP (Qx, X1, Z1, X2, Z2)

9 Px ← X1/Z1

10 return Px

A Design Methodology for Stealthy Parametric Trojans 645

Algorithm 4. LADDERSTEP of the Montgomery Ladder (for
curve 25519)

Input: Qx, X1, Z1, X2, Z2

Output: X1, Z1, X2, Z2

1 T1 ← X2 + Z2

2 X1 ← X2 − Z2

3 Z2 ← X1 + Z1

4 X1 ← X1 − Z1

5 T1 ← T1 · Z2

6 X2 ← X2 · Z2

7 Z2 ← Z2 · Z2

8 X1 ← X1 · X1

9 T2 ← Z2 − X1

10 Z1 ← T2 · a24

11 Z1 ← Z1 + X1

12 Z1 ← T2 · Z1

13 X1 ← Z2 · X1

14 Z2 ← T1 − X2

15 Z2 ← Z2 · Z2

16 Z2 ← Z2 · Qx

17 X2 ← T1 + X2

18 X2 ← X2 · X2

19 return X1, Z1, X2, Z2

scalar multiplication with schoolbook multiplication on the Trojan Multiplier
can be compute. To compute the probability that the computation fails we fist
compute the probability that a computation does not fail. As noted previously,
in a 255-bit schoolbook integer multiplications with 32-bit word size, 64 mul-
tiplications are performed. From this 64 multiplications, 49 multiplications are
the multiplications of two 32-bit numbers, while 6 are 32-bit times 31-bit mul-
tiplications and one 31-bit times 31-bit multiplications. We again assume that
only 32-bit multiplications can result in a faulty response. In 42 multiplications
the second operand is the same as in the previous multiplications and hence the
probability that such a multiplication fails is:

PM(a1,ab) · PM(a0|a1,b1=b0)

For 7 multiplications the failure probability is:

PM(a1,ab) · PM(a0,b1|a1,b1)

The probability that no failure occurs during one Montgomery Ladder step is
therefore:

(1 − PM(a1,ab))
42 · (1 − PM(a0,b1|a1,b1))

7

A 255-bit scalar multiplication requires 254 Montgomery Ladder steps. Hence
the probability that a failure occurs is given by:

1 − ((1 − PM(a1,ab))
42 · (1 − PM(a0,b1|a1,b1))

7)254

646 S. Ghandali et al.

References

1. Genetic Algorithm. http://www.mathworks.com/discovery/genetic-algorithm.
html. Accessed 01 Feb 2016

2. Agrawal, D., Baktir, S., Karakoyunlu, D., Rohatgi, P., Sunar, B.: Trojan detection
using IC fingerprinting. In: IEEE Symposium on Security and Privacy (SP 2007),
pp. 296–310 (2007)

3. Bao, C., Forte, D., Srivastava, A.: On reverse engineering-based hardware Trojan
detection. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst. 35(1), 49–57 (2016)

4. Becker, G.T., Regazzoni, F., Paar, C., Burleson, W.P.: Stealthy dopant-level hard-
ware Trojans. In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086,
pp. 197–214. Springer, Heidelberg (2013)

5. Biham, E., Carmeli, Y., Shamir, A.: Bug attacks. In: Wagner, D. (ed.) CRYPTO
2008. LNCS, vol. 5157, pp. 221–240. Springer, Heidelberg (2008)

6. Biham, E., Carmeli, Y., Shamir, A.: Bug attacks. J. Cryptology 1–31 (2015).
http://dx.doi.org/10.1007/s00145-015-9209-1

7. Brumley, B.B., Barbosa, M., Page, D., Vercauteren, F.: Practical realisation and
elimination of an ECC-related software bug attack. In: Dunkelman, O. (ed.) CT-
RSA 2012. LNCS, vol. 7178, pp. 171–186. Springer, Heidelberg (2012)

8. Chakraborty, R.S., Wolff, F., Paul, S., Papachristou, C., Bhunia, S.: MERO : a
statistical approach for hardware Trojan detection. In: Clavier, C., Gaj, K. (eds.)
CHES 2009. LNCS, vol. 5747, pp. 396–410. Springer, Heidelberg (2009)

9. Eggersgl, S., Wille, R., Drechsler, R.: Improved SAT-based ATPG: more
constraints, better compaction. In: IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), pp. 85–90 (2013)

10. Ghandali, S., Alizadeh, B., Navabi, Z.: Low power scheduling in high-level synthesis
using dual-Vth library. In: 16th International Symposium on Quality Electronic
Design (ISQED), pp. 507–511 (2015)

11. Gupta, P., Kahng, A.B., Sharma, P., Sylvester, D.: Gate-length biasing for runtime-
leakagecontrol. IEEETrans.Comput.-AidedDes. Integr.Circ.Syst.25(8),1475–1485
(2006)

12. Heragu, K., Agrawal, V., Bushnell, M.: FACTS: fault coverage estimation by test
vector sampling. In: Proceedings of IEEE VLSI Test Symposium, pp. 266–271
(1994)

13. Hicks, M., Finnicum, M., King, S.T., Martin, M.M., Smith, J.M.: Overcoming an
untrusted computing base: detecting and removing malicious hardware automati-
cally. In: IEEE Symposium on Security and Privacy (SP 2010), pp. 159–172 (2010)

14. Karri, R., Rajendran, J., Rosenfeld, K., Tehranipoor, M.: Trustworthy hardware:
identifying and classifying hardware Trojans. Computer 10, 39–46 (2010)

15. King, S.T., Tucek, J., Cozzie, A., Grier, C., Jiang, W., Zhou, Y.: Designing and
implementing malicious hardware. In: Proceedings of the 1st USENIX Workshop
on Large-scale Exploits and Emergent Threats (LEET 08), pp. 1–8 (2008)

16. Kulkarni, S.H., Sylvester, D.M., Blaauw, D.T.: Design-time optimization of post-
silicon tuned circuits using adaptive body bias. IEEE Trans. Comput. Aided Des.
Integr. Circ. Syst. 27(3), 481–494 (2008)

17. Kumar, R., Jovanovic, P., Burleson, W., Polian, I.: Parametric Trojans for fault-
injection attacks on cryptographic hardware. In: 2014 Workshop on Fault Diagnosis
and Tolerance in Cryptography (FDTC), pp. 18–28. IEEE (2014)

http://www.mathworks.com/discovery/genetic-algorithm.html
http://www.mathworks.com/discovery/genetic-algorithm.html
http://dx.doi.org/10.1007/s00145-015-9209-1

A Design Methodology for Stealthy Parametric Trojans 647

18. Lin, L., Kasper, M., Güneysu, T., Paar, C., Burleson, W.: Trojan side-channels:
lightweight hardware Trojans through side-channel engineering. In: Clavier, C.,
Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 382–395. Springer, Heidelberg
(2009)

19. Rajendran, J., Jyothi, V., Karri, R.: Blue team red team approach to hardware
trust assessment. In: IEEE 29th International Conference on Computer Design
(ICCD 2011), pp. 285–288, October 2011

20. Rajendran, J., Jyothi, V., Sinanoglu, O., Karri, R.: Design and analysis of ring
oscillator based design-for-trust technique. In: 29th IEEE VLSI Test Symposium
(VTS 2011), pp. 105–110 (2011)

21. Saha, S., Chakraborty, R.S., Nuthakki, S.S., Mukhopadhyay, D.: Improved test pat-
tern generation for hardware Trojan detection using genetic algorithm and Boolean
satisfiability. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293,
pp. 577–596. Springer, Heidelberg (2015)

22. Sasdrich, P., Güneysu, T.: Implementing Curve25519 for side-channel-protected
elliptic curve cryptography. ACM Trans. Reconfigurable Technol. Syst. (TRETS)
9(1), 3 (2015)

23. Shiyanovskii, Y., Wolff, F., Rajendran, A., Papachristou, C., Weyer, D., Clay, W.:
Process reliability based Trojans through NBTI and HCI effects. In: NASA/ESA
Conference on Adaptive Hardware and Systems (AHS 2010), pp. 215–222 (2010)

24. Sugawara, T., Suzuki, D., Fujii, R., Tawa, S., Hori, R., Shiozaki, M., Fujino, T.:
Reversing stealthy dopant-level circuits. In: Batina, L., Robshaw, M. (eds.) CHES
2014. LNCS, vol. 8731, pp. 112–126. Springer, Heidelberg (2014)

25. Tang, X., Zhou, H., Banerjee, P.: Leakage power optimization with dual-Vth library
in high-level synthesis. In: 42nd Annual Design Automation Conference (DAC
2005), pp. 202–207 (2005)

26. Waksman, A., Sethumadhavan, S.: Silencing hardware backdoors. In: IEEE Sym-
posium on Security and Privacy (SP 2011), pp. 49–63 (2011)

Author Index

Anagnostopoulos, Nikolaos A. 432
Aoki, Takafumi 538
Azarderakhsh, Reza 517

Batina, Lejla 301
Battistello, Alberto 23
Becker, Georg T. 625
Bhattacharya, Sarani 602
Bilgin, Begül 194
Boit, Christian 147
Bos, Joppe W. 215
Boss, Erik 171
Bruinderink, Leon Groot 323
Burian, Daniel 559

Chou, Tung 280
Chowdhury, Dipanwita Roy 581
Coron, Jean-Sébastien 23, 498

Danger, Jean-Luc 3
De Cnudde, Thomas 194
Del Pozo, Santos Merino 40
Delvaux, Jeroen 412
Dugardin, Margaux 3
Durvaux, François 40

Eisenbarth, Thomas 368

Fäßler, Fabian 391

Gabmeyer, Sebastian 432
Ganji, Fatemeh 391
Genkin, Daniel 346
Ghandali, Samaneh 625
Goudarzi, Dahmun 457
Greuet, Aurélien 498
Grosso, Vincent 61, 171
Gu, Dawu 412
Guajardo, Jorge 85
Guilley, Sylvain 3
Gulmezoglu, Berk 368
Güneysu, Tim 171

Heninger, Nadia 346
Hiller, Matthias 412
Holcomb, Daniel 625
Homma, Naofumi 538
Hubain, Charles 215
Hülsing, Andreas 323

İnci, Mehmet Sinan 368
Irazoqui, Gorka 368

Jain, Shalabh 85
Järvinen, Kimmo 517

Kammerstetter, Markus 559
Kastner, Wolfgang 559
Katzenbeisser, Stefan 432
Kudera, Christian 559

Lange, Tanja 323
Leander, Gregor 171
Lohrke, Heiko 147
Longa, Patrick 517
López, Julio 259

Michiels, Wil 215
Miele, Andrea 517
Moradi, Amir 171
Morioka, Sumio 538
Muellner, Markus 559
Mukhopadhyay, Debdeep 602

Najm, Zakaria 3
Nikov, Ventzislav 194
Nikova, Svetla 194
Nürnberger, Stefan 106

Oliveira, Thomaz 259

Paar, Christof 625
Poussier, Romain 61
Prouff, Emmanuel 23, 498
Pulkus, Jürgen 479

Renes, Joost 301
Reparaz, Oscar 194
Rijmen, Vincent 194
Rioul, Olivier 3
Rivain, Matthieu 457
Rodríguez-Henríquez, Francisco 259
Rossow, Christian 106

Saha, Dhiman 581
Saleem, Muhammad Umair 432
Schaller, André 432
Schneider, Tobias 171
Schwabe, Peter 301
Seifert, Jean-Pierre 147, 391
Smith, Benjamin 301
Srivastava, Ankur 127
Standaert, François-Xavier 40, 61
Sunar, Berk 368
Szefer, Jakub 432

Tajik, Shahin 147, 391
Teuwen, Philippe 215

Ueno, Rei 538

Verbauwhede, Ingrid 412
Vivek, Srinivas 479

Xie, Yang 127
Xiong, Wenjie 432

Yarom, Yuval 323, 346
Yener, Bülent 237
Yu, Meng-Day (Mandel) 412

Zeitoun, Rina 23, 498
Zonenberg, Andrew 237

650 Author Index

	Preface
	CHES 2016
	Contents
	Side Channel Analysis
	Correlated Extra-Reductions Defeat Blinded Regular Exponentiation
	1 Introduction
	2 State of the Art of Extra-Reductions Probabilities
	2.1 Montgomery Modular Multiplication: Definitions and Notations
	2.2 A Bias to Differentiate a Multiply from a Square

	3 A Bias to Test the Dependency of Operations
	3.1 Principle of Correlated Extra-Reductions
	3.2 Methodology to Analyze the Bias
	3.3 Mathematical Derivations

	4 Exploiting the Bias Using Our Attack
	5 Experimental Results
	5.1 Simulations
	5.2 Experimental Detection of Extra-Reductions
	5.3 Conclusions on Experiments

	6 Conclusion
	A Analysis of Extra-Reduction in OpenSSL and MbedTLS Source Codes
	References

	Horizontal Side-Channel Attacks and Countermeasures on the ISW Masking Scheme
	1 Introduction
	2 Preliminaries
	3 Secure Multiplication Schemes
	4 Horizontal DPA Attack
	4.1 Problem Description
	4.2 Complexity Lower Bound: Entropy Analysis of Noisy Hamming Weight Leakage
	4.3 Attack with Perfect Hamming Weight Observations
	4.4 Maximum Likelihood Attack: Theoretical Attack with the Full ISW State

	5 First Attack: Maximum Likelihood Attack on a Single Matrix Row
	5.1 Attack Description
	5.2 Complexity Analysis
	5.3 Numerical Experiments

	6 Second Attack: Iterative Attack
	6.1 Attack Description
	6.2 Numerical Experiments

	7 Practical Results
	8 A Countermeasure Against the Previous Attacks
	8.1 Description
	8.2 Security Analysis

	A Proof of Lemma 2
	References

	Towards Easy Leakage Certification
	1 Introduction
	2 Background
	2.1 Measurement Setup
	2.2 PDF Estimation Methods
	2.3 Evaluation Metrics
	2.4 Estimating a Metric with Cross-validation

	3 A Motivating Negative Result
	4 A New Method to Detect Assumption Errors
	4.1 Test Specification

	5 Simulated Experiments
	6 Software Experiments
	7 Quantifying the Information Loss
	8 Open Source Code
	9 Hardware Experiments
	10 Conclusion
	References

	Simple Key Enumeration (and Rank Estimation) Using Histograms: An Integrated Approach
	1 Introduction
	2 Background
	2.1 Algorithms Inputs
	2.2 Preprocessing
	2.3 Toolbox

	3 Enumeration Algorithm
	4 Open Source Code
	5 Performance Evaluations
	5.1 Enumeration Accuracy
	5.2 Factorization
	5.3 Time Complexity

	6 Application Scenarios
	7 Related Work
	8 Conclusion
	A Additional Time Complexites
	References

	Automotive Security
	Physical Layer Group Key Agreement for Automotive Controller Area Networks
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work
	1.3 Organization

	2 Preliminaries
	2.1 Notation
	2.2 System Model and Assumptions
	2.3 Adversarial Model
	2.4 Cryptographic Assumptions
	2.5 Security Definition

	3 Two Party Plug-and-Secure (PnS) Protocol
	4 Group Key Agreement Schemes
	4.1 Simple Group Protocol
	4.2 Tree Based Group Protocol

	5 Authenticated Group Key Agreement Schemes
	5.1 Authenticated Tree Based Protocol
	5.2 Authenticated Linear Group Protocol

	6 Discussion
	6.1 Security Properties
	6.2 Performance
	6.3 Conclusion

	References

	-- vatiCAN -- Vetted, Authenticated CAN Bus
	1 Introduction
	2 Background
	3 Design
	3.1 Problem Statement
	3.2 Threat Model
	3.3 High Level Concept
	3.4 Replay Attacks (C6)

	4 Implementation
	4.1 Hardware Platform
	4.2 Secure Message Selection
	4.3 Software Architecture

	5 Performance Evaluation
	5.1 Bus Congestion
	5.2 Memory Footprint

	6 Security Evaluation
	7 Related Work
	8 Limitations and Future Work
	9 Conclusion
	A Availability
	B VW Passat B6 CAN Messages
	References

	Invasive Attacks
	Mitigating SAT Attack on Logic Locking
	1 Introduction
	2 Background: SAT Attack
	2.1 Attack Model
	2.2 Attack Insight
	2.3 Attack Algorithm

	3 Efficiency Analysis of SAT Attack
	4 Anti-SAT Block Design
	4.1 Construction of Anti-SAT Block
	4.2 SAT Attack Complexity Analysis
	4.3 Anti-SAT Block Location
	4.4 Anti-SAT Block Obfuscation

	5 Experiments and Results
	5.1 Anti-SAT Block Design
	5.2 Anti-SAT Block Application
	5.3 Anti-SAT Obfuscation
	5.4 Performance Overhead of the Anti-SAT Block

	6 Conclusion
	References

	No Place to Hide: Contactless Probing of Secret Data on FPGAs
	1 Introduction
	2 Background
	2.1 FPGA Security During Configuration
	2.2 Current PUF Implementations
	2.3 Laser Voltage Probing and Laser Voltage Imaging

	3 Attack Scenario
	3.1 Key Extraction
	3.2 RO PUF Characterization

	4 Setup
	4.1 Device Under Test
	4.2 PoC FPGA Implementation
	4.3 Measurement Setup

	5 Results
	5.1 Key Extraction
	5.2 RO Characterization

	6 Discussion
	6.1 Locating the Registers and IP Cores on the Chip
	6.2 Feasibility and Scalability of the Attack
	6.3 Tamper Evidence
	6.4 Countermeasures

	7 Conclusion
	References

	Side Channel Countermeasures I
	Strong 8-bit Sboxes with Efficient Masking in Hardware
	1 Introduction
	2 Preliminaries
	2.1 Cryptanalytic Properties for Sboxes
	2.2 Construction of 8-Bit Sboxes.
	2.3 Threshold Implementations
	2.4 Design Architectures

	3 Threshold Implementation of Known 8-bit Sboxes
	4 Finding TI-Compliant 8-bit Sboxes
	4.1 Feistel-Construction
	4.2 SPN-Construction with Bit-Permutations as the Linear Layer
	4.3 SPN-Construction with F16-linear Layers only

	5 Results
	5.1 Selected Sboxes
	5.2 Comparison

	6 Conclusion and Future Work
	References

	Masking AES with d+1 Shares in Hardware
	1 Introduction
	1.1 Related Work
	1.2 Contribution

	2 Preliminaries
	2.1 Notation
	2.2 Consolidated Masking Scheme

	3 Masking AES with d+1 Shares
	3.1 Second-Order TI of the AES S-box with 3 Shares
	3.2 First-Order TI of the AES S-Box with 2 Shares

	4 Side-Channel Analysis Evaluation
	4.1 Experimental Setup
	4.2 Methodology
	4.3 First-Order TI of AES
	4.4 Second-Order TI of AES

	5 Implementation Cost
	6 Conclusion
	References

	New Directions
	Differential Computation Analysis: Hiding Your White-Box Designs is Not Enough
	1 Introduction
	2 Overview of White-Box Cryptography Techniques
	2.1 White-Box Results
	2.2 Prerequisites of Existing Attacks

	3 Differential Power Analysis
	4 Software Execution Traces
	5 Analyzing Publicly Available White-Box Implementations
	5.1 The Wyseur Challenge
	5.2 The Hack.lu 2009 Challenge
	5.3 The SSTIC 2012 Challenge
	5.4 A White-Box Implementation of the Karroumi Approach
	5.5 The NoSuchCon 2013 Challenge

	6 Countermeasures Against DCA
	7 Conclusions and Future Work
	References

	Antikernel: A Decentralized Secure Hardware-Software Operating System Architecture
	1 Introduction
	2 Related Work
	2.1 Security Agnostic Hardware Accelerations
	2.2 Security-Focused Designs

	3 Antikernel Network Architecture
	3.1 Remote Procedure Call (RPC)
	3.2 Direct Memory Access (DMA)

	4 Memory Management
	5 SARATOGA Processor and Threading
	5.1 Thread Scheduler
	5.2 Execution Units
	5.3 L1 Cache
	5.4 MMU
	5.5 RPC Network Interface
	5.6 ELF Loader with Code Signature Checking
	5.7 Remote Attestation

	6 Security Analysis
	6.1 Threat Model
	6.2 Methodology and Goals
	6.3 Assumptions
	6.4 Networks
	6.5 Name Server
	6.6 RAM Controller

	7 Conclusions and Future Work
	References

	Software Implementations
	Software Implementation of Koblitz Curves over Quadratic Fields
	1 Introduction
	2 Koblitz Curves over F4
	2.1 The -adic Representation
	2.2 The Width-w NAF Form
	2.3 Security of the Koblitz Curves Defined over F4

	3 Base Field Arithmetic
	3.1 Modular Reduction
	3.2 Redundant Trinomials

	4 Quadratic Field Arithmetic
	4.1 Register Allocation
	4.2 Multiplication
	4.3 Modular Reduction
	4.4 Squaring
	4.5 Inversion

	5 -and-add Scalar Multiplication
	5.1 Left-to-right -and-add
	5.2 Right-to-left -and-add
	5.3 Linear Pass

	6 Results and Discussion
	6.1 Parameters
	6.2 Field and Elliptic Curve Arithmetic Timings
	6.3 Scalar Multiplication Timings
	6.4 Comparisons

	7 Conclusion
	References

	QcBits: Constant-Time Small-Key Code-Based Cryptography
	1 Introduction
	2 Preliminaries
	2.1 QC-MDPC Codes
	2.2 Decoding (QC-)MDPC Codes
	2.3 The Hybrid Niederreiter Encryption System for QC-MDPC Codes

	3 Key-Pair Generation
	3.1 Private-Key Generation
	3.2 Polynomial View: Public-Key Generation
	3.3 Generic Multiplication in F2[x]/(xr-1)
	3.4 Generic Squaring in F2[x]/(xr-1)

	4 KEM Encryption
	4.1 Generating the Error Vector
	4.2 Polynomial View: Public-Syndrome Computation
	4.3 Sparse-Times-Dense Multiplications in F2[x]/(xr-1)

	5 KEM Decryption
	5.1 Polynomial View: Private-Syndrome Computation
	5.2 Polynomial View: Counting Unsatisfied Parity Checks
	5.3 Sparse-Times-Dense Multiplications in Z[x]/(xr-1)
	5.4 Flipping Bits

	6 Experimental Results for Decoding
	7 The Future of QC-MDPC-Based Cryptosystems
	References

	Kummer: Efficient Hyperelliptic Signatures and Key Exchange on Microcontrollers
	1 Introduction
	2 High-Level Overview
	2.1 Signatures
	2.2 Diffie-Hellman Key Exchange

	3 Building Blocks: Algorithms and Their Implementation
	3.1 The Field Fq
	3.2 The Curve C and Its Theta Constants
	3.3 Elements of C, compressed and decompressed
	3.4 The Kummer Surface C
	3.5 Pseudo-addition on C

	4 Scalar Multiplication
	4.1 Pseudomultiplication on C
	4.2 Point Recovery from C to C
	4.3 Full Scalar Multiplication on C

	5 Results and Comparison
	References

	Cache Attacks
	Flush, Gauss, and Reload -- A Cache Attack on the BLISS Lattice-Based Signature Scheme
	1 Introduction
	2 Preliminaries
	3 Attack 1: CDT Sampling
	4 Attack 2: Bernoulli Sampling
	5 Results with a Perfect Side-Channel
	6 Proof-of-Concept Implementation
	7 Discussion of Candidate Countermeasures
	References

	CacheBleed: A Timing Attack on OpenSSL Constant Time RSA
	1 Introduction
	1.1 Overview
	1.2 Our Contribution
	1.3 Targeted Software and Hardware

	2 Background
	2.1 OpenSSL's RSA Implementation
	2.2 The Intel Cache Hierarchy
	2.3 Microarchitectural Side-Channel Attacks
	2.4 Scatter-Gather Implementation
	2.5 Intel L1 Cache Banks

	3 The CacheBleed Attack
	4 Attacking the OpenSSL Modular Exponentiation Implementation
	5 Recovering the RSA Private Key
	6 Mitigation
	7 Conclusions
	References

	Cache Attacks Enable Bulk Key Recovery on the Cloud
	1 Motivation
	2 Related Work
	3 Prime and Probe in the LLC
	4 Co-locating on Amazon EC2
	4.1 The LLC Co-location Method
	4.2 Challenges and Tricks of Co-location Detection

	5 Obtaining the Non-linear Slice Selection Algorithm
	6 Cross-VM RSA Key Recovery
	7 Leakage Analysis Method
	8 Recovering RSA Keys with Noise
	8.1 Targeted Co-location: The Public Key Is Known
	8.2 Bulk Key Recovery: The Public Key Is Unknown

	9 Countermeasures
	10 Conclusion
	References

	Physical Unclonable Functions
	Strong Machine Learning Attack Against PUFs with No Mathematical Model
	1 Introduction
	2 Notation and Preliminaries
	2.1 PUFs
	2.2 Boolean Functions as representations of PUFs
	2.3 Our Learning Model
	2.4 Non-linearity of PUFs Over F2 and the Existence of Influential Bits

	3 PUF Architectures
	3.1 Memory-Based PUFs
	3.2 Bistable Ring PUF
	3.3 Twisted Bistable Ring PUF

	4 PAC Learning of PUFs Without Prior Knowledge of Their Mathematical Model
	4.1 A Constant Upper Bound on the Number of Influential Bits
	4.2 Weak Learning and Boosting of BR-PUFs

	5 Results
	5.1 PUF Implementation
	5.2 ML Results

	6 Conclusion
	References

	Efficient Fuzzy Extraction of PUF-Induced Secrets: Theory and Applications
	1 Introduction
	1.1 Contribution
	1.2 Organization

	2 Preliminaries
	2.1 Notation
	2.2 Min-Entropy Definitions
	2.3 Physically Unclonable Functions
	2.4 Secure Sketch and Fuzzy Extractor Definitions
	2.5 Coding Theory
	2.6 The Code-Offset Secure Sketch

	3 Tight Bounds on the Min-Entropy Loss
	3.1 Distributions
	3.2 Generic Bounds
	3.3 Tighter Bounds
	3.4 Numerical Results

	4 Applications
	4.1 A Fundamental Security Flaw in Reverse Fuzzy Extractors
	4.2 Motivation for Debiasing Schemes

	5 Conclusion
	References

	Run-Time Accessible DRAM PUFs in Commodity Devices
	1 Introduction
	1.1 Related Work on DRAM PUFs
	1.2 Contributions
	1.3 Paper Organization

	2 Extracting DRAM PUFs from Commodity Devices
	2.1 Decay-Based PUFs in DRAM
	2.2 Run-Time DRAM PUF Access
	2.3 Security Assumptions

	3 Implementation and Performance
	3.1 Firmware-Based PUF Access
	3.2 Linux Kernel Module-Based PUF Access

	4 Evaluation of DRAM PUF Characteristics
	5 Lightweight Protocols for Device Authentication and Secure Channel Establishment
	6 Open Research Topics
	7 Conclusion
	References

	Side Channel Countermeasures II
	On the Multiplicative Complexity of Boolean Functions and Bitsliced Higher-Order Masking
	1 Introduction
	2 Preliminaries
	2.1 Boolean Functions
	2.2 Higher-Order Masking
	2.3 Bitsliced Higher-Order Masking

	3 Multiplicative Complexity of Boolean Functions
	3.1 Multiplicative Complexity of S-Boxes
	3.2 Our Results
	3.3 Parallel Multiplicative Complexity

	4 A Heuristic Decomposition for S-Boxes
	4.1 Decomposition of a Single Boolean Function
	4.2 S-Box Decomposition
	4.3 Improvements
	4.4 Parallelization

	5 Implementations
	References

	Reducing the Number of Non-linear Multiplications in Masking Schemes
	1 Introduction
	1.1 Our Contribution
	1.2 Related Works

	2 Improved Generic Method for S-Boxes
	2.1 Our Method
	2.2 Concrete Parameters for Various S-Boxes
	2.3 Software Implementation of DES

	3 The Power of Using Bigger Fields and Its Limitations
	References

	Faster Evaluation of SBoxes via Common Shares
	1 Introduction
	2 Security Definitions
	3 The Rivain-Prouff Countermeasure
	3.1 The Rivain-Prouff Multiplication
	3.2 Mask Refreshings
	3.3 Application to the Computation of x254 in F28

	4 Secure Computation of 2 Parallel Multiplications with Common Operand, and Application to AES
	4.1 The CommonShares Algorithm
	4.2 The CommonMult Algorithm
	4.3 Application to AES SBoxes

	5 Parallel Multiplications with Common Shares
	6 Parallel Computation of Quadratic Functions
	7 Implementation
	References

	Hardware Implementations
	FourQ on FPGA: New Hardware Speed Records for Elliptic Curve Cryptography over Large Prime Characteristic Fields
	1 Introduction
	2 Preliminaries: FourQ
	2.1 Scalar Multiplication Execution
	2.2 High-Level Design of the Proposed Architecture

	3 Field Arithmetic Unit
	3.1 Datapath
	3.2 Control Logic

	4 Scalar Unit
	4.1 Decompose Unit
	4.2 Recode Unit

	5 Architectures
	5.1 Single-Core Architecture
	5.2 Multi-core Architecture
	5.3 Architecture Using the Montgomery Ladder

	6 Results and Analysis
	7 Conclusions
	References

	A High Throughput/Gate AES Hardware Architecture by Compressing Encryption and Decryption Datapaths
	1 Introduction
	2 Related Works
	2.1 Unified AES Datapath for Encryption and Decryption
	2.2 Inversion Circuit Design and Tower-Field Arithmetic

	3 Proposed Architecture
	3.1 Round Function Part
	3.2 Key Scheduling Part

	4 Performance Evaluation
	5 Discussion
	6 Conclusion
	References

	Efficient High-Speed WPA2 Brute Force Attacks Using Scalable Low-Cost FPGA Clustering
	1 Introduction
	2 Related Work
	3 WPA2-Personal Handshake and Key Derivation
	3.1 Breaking it Down to SHA1 Computations
	3.2 Attacking the 4-Way Handshake

	4 FPGA Implementation
	4.1 Overall System Design

	5 Evaluation
	5.1 GPU Comparison

	6 Results and Discussion
	6.1 GPU Results and Comparison

	7 Conclusion and Future Work
	References

	Fault Attacks
	ENCOUNTER: On Breaking the Nonce Barrier in Differential Fault Analysis with a Case-Study on PAEQ
	1 Introduction
	2 The Design of PAEQ
	2.1 PPAE Mode of Operation
	2.2 The Internal Permutation: AESQ
	2.3 Handling Partially Specified States/Substates

	3 Notations
	4 Internal Differential Fault Analysis
	5 An Internal Differential Distinguisher for 4-Round PAEQ
	6 The Fault Quartet
	7 ENCOUNTER: Fault Analysis of PAEQ using Internal Differentials
	7.1 The Fault Model
	7.2 The INBOUND Phase
	7.3 The OUTBOUND Phase
	7.4 The Complete Attack
	7.5 Complexity Analysis

	8 Experimental Results
	9 Conclusion
	References

	Curious Case of Rowhammer: Flipping Secret Exponent Bits Using Timing Analysis
	1 Introduction
	2 Preliminaries
	2.1 Dynamic Random Access Memory
	2.2 The Rowhammer Bug
	2.3 Cache Memory Architecture

	3 Combining Timing Analysis and Rowhammer
	3.1 Attack Model
	3.2 Determining the Eviction Set
	3.3 Determining the DRAM Bank that the Secret Maps
	3.4 Performing Rowhammer in a Controlled Bank

	4 Experimental Validation for Inducing Bit Flips on Secret
	4.1 Identifying the Cache Set
	4.2 Alternative Strategy to Determine the Target Cache Set
	4.3 Identifying the LLC Slice
	4.4 Identifying the DRAM Bank
	4.5 Inducing Bit Flip Using Rowhammer

	5 Possible Countermeasures
	6 Further Discussion
	6.1 Assumptions of the Proposed Attack
	6.2 Limitations and Practicality of Our Attack

	7 Conclusion
	References

	A Design Methodology for Stealthy Parametric Trojans and Its Application to Bug Attacks
	1 Introduction
	1.1 Related Work
	1.2 Our Contribution

	2 Overview of the Proposed Method
	3 Delay Insertion
	4 Finding a Trojan Path
	4.1 Phase I: Rare Path Selection
	4.2 Phase II: Delay Distribution

	5 Experimental Results
	5.1 Evaluation of Phase I (Path Selection)
	5.2 Evaluation of Phase II (Delay Distribution)
	5.3 Overall Evaluation

	6 Bug Attack on ECDH with a Trojan Multiplier
	6.1 Fault Model of the Trojan Multiplier
	6.2 Case Study: An ECDH Implementation with Montgomery Ladder

	7 Conclusion
	A Difficulty of Justification and Propagation Tables
	B Montgomery Ladder
	References

	Author Index

