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Abstract. Two words u and v are said to be k-abelian equivalent if, for
each word z of length at most k, the number of occurrences of = as a
factor of w is the same as for v. We study some combinatorial properties of
k-abelian equivalence classes. Our starting point is a characterization of
k-abelian equivalence by rewriting, so-called k-switching. We show that
the set of lexicographically least representatives of equivalence classes is
a regular language. From this we infer that the sequence of the numbers
of equivalence classes is N-rational. We also show that the set of words
defining k-abelian singleton classes is regular.
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1 Introduction

k-abelian equivalence has attracted quite a lot of interest recently, see, e.g.,
[1,2,8,10,12,15]. It is an equivalence relation extending abelian equivalence and
allowing an infinitary approximation of the equality of words defined as follows:
for an integer k, two words u and v are k-abelian equivalent, denoted by u ~y v,
if, for each word w of length at most k, w occurs in v and v equally often.
k-abelian equivalence, originally introduced in [7], has been studied, e.g., in
the following directions: avoiding k-abelian powers [6,15], estimating the number
of k-abelian equivalence classes, that is, k-abelian complexity [11], analyzing
the growth and the fluctuation of the k-abelian complexity of infinite words
[1], analyzing k-abelian palindromicity [8], and studying k-abelian singletons [9].
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We continue the approach of analyzing the structure of k-abelian equivalence
classes. We also study some numerical properties of the equivalence classes.

Our starting point is a k-switching lemma, proved in [9], which allows a char-
acterization of k-abelian equivalence in terms of rewriting. This is quite different
from the other existing characterizations, so it is no surprise that it opens new
perspectives of k-abelian equivalence. This is what we intend to explore here.

A fundamental observation from the characterization of k-abelian equiva-
lence using k-switching is that certain languages related to k-abelian equivalence
classes are regular (or rational). More precisely, the union of all singleton classes
forms a regular language, for any parameter k, and any size m of the alpha-
bet. Similarly, the set of lexicographically least (or greatest) representatives of
k-abelian equivalence classes forms a regular language. Summing up all mini-
mal elements of a fixed length we obtain the number of equivalence classes of
words of this length. As a consequence, we conclude that the complexity func-
tion of k-abelian equivalence, that is, the function computing the number of the
equivalence classes of all lengths, is a rational function.

Everything above is algorithmic. So, given the parameter k£ and the size m
of the alphabet, we can algorithmically compute a rational generating function
giving the numbers of all equivalence classes of words of length n. However, the
automata involved are — due to the non-determinism and the complementation
— so huge that in practice this can be done only for very small values of the
parameters. We illustrate these in a few examples.

Inspired by the connection to automata theory, we study k-switching in con-
nection with regular languages. We show that regular languages are closed under
the k-switching operation. On the other hand, we show that regular languages
are not closed under the transitive closure of this operation. Using the former
result, we conclude that the union of k-abelian equivalence classes of size two
is regular. On the other hand, it remains open whether this extends, instead of
classes of size two, to larger classes. Another open problem is to determine the
asymptotic behavior of the complexity function of equivalence classes.

2 Preliminaries and Notation

We recall some notation and basic terminology from the literature of combina-
torics on words. We refer the reader to [13] for more on the subject.

The set of finite words over an alphabet X is denoted by X* and the set of
non-empty words is denoted by X*. The empty word is denoted by . A set
L C ¥* is called a language. We let |w| denote the length of a word w € X*. By
convention, we set |¢| = 0. The language of words of length n over the alphabet
X/ is denoted by X™.

For a word w = ajas---a, € X* and indices 1 < i < j < n, we let w[i, j]
denote the factor a; - - - a;. For i > j we set w[i, j| = €. Similarly, for ¢ < j we let
wli, j) denote the factor a; ---aj_1, and we set w[i,j) = ¢ when 7 > j. We say
that a word & € X* has position ¢ in w if the word w[i,|w|] has = as a prefix.
For u € Xt we let |w|, denote the number of occurrences of u as a factor of w.
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Two words u,v € X* are k-abelian equivalent, denoted by u ~y, v, if |ul, =
|v]; for all x € YT with |z| < k. The relation ~y is clearly an equivalence
relation; we let [u]; denote the k-abelian equivalence class defined by u. A word
u is called a k-abelian singleton if |[u]x] = 1.

In [9], k-abelian equivalence is characterized in terms of rewriting, namely by
k-switching. For this we define the following. Let £ > 1 and let u € X*. Suppose
that there exist x,y € ¥, not necessarily distinct, and indices i, j,! and m,
with ¢ < j <1 < m, such that = has positions ¢ and ! in u and y has positions j
and m in u. In other words, we have

u = u[l,z’) : u[%]) : u[j7l) : u[l7m) : u[m7 |u|],

where both i, |u|] and u[l, |u|] begin with  and both u[j, |u|] and u[m, |u|] begin
with y. Furthermore, uli, j), u[l, m) # € but we allow [ = j, in which case y = x
and u[j,l) = e. We define a k-switching on w, denoted by Sy x(4,7,1,m), as

A k-switching operation is illustrated in Fig. 1.

N

Fig. 1. Tllustration of a k-switching. Here v = Sk (4, 7,1,m); the white rectangles
symbolize x and the black rectangles symbolize y.

Ezxample 1. Let u = aabababaaabab and k = 4. Let then x = aba, y = bab, 1 = 2,
j=3,1l=4 and m = 11. We then have
u=a-a-b-ababaaa - bab
Su.a(i,j,l,m) = a-ababaaa - b - a - bab.
Note here that the occurrences of = are overlapping. With ¢ =2, j =1 =4, and
m = 10 we obtain the same word as above:
u = a - ab - ababaa - abab

Su,a(i,j,7,m) = a- ababaa - ab - abab.
In this example we have j = [, whence © = y = aba and ul[j,l) = ¢.

Let us define a relation Ry, of X* by uRyv if and only if v is obtained from u by
a k-switching. Now Ry is clearly symmetric, so that the reflexive and transitive
closure R} of Ry is an equivalence relation on X*. In [9], k-abelian equivalence
is characterized using R;:
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Lemma 2. For u,v € X*, we have u ~j v if and only if uR;v.

We need a few basic properties of regular (or rational) languages, such
as equivalent definitions of regular languages with various models of finite
automata, e.g., nondeterministic finite automata which can read the empty word
(e-NFA), and some basic closure properties of regular languages. We refer to [3]
for this knowledge. In addition to classical language theoretical properties, we
use the theory of languages with multiplicities. This counts how many times a
word occurs in a language. This leads to the theory of N-rational sets. Using the
terminology of [16], a multiset over X* is called N-rational if it is obtained from
finite multisets by applying finitely many times the rational operations product,
unton, and taking quasi-inverses, i.e., iteration restricted to e-free languages.
Further, a unary N-rational subset is referred to as an N-rational sequence. We
refer to [16] for more on this topic. The basic result we need is (see [16]):

Proposition 3. Let A be a nondeterministic finite automaton over the alphabet
Y. The function f4 : X* — N defined as

fa(w) = # of accepting paths of w in A
is N-rational. In particular, the function 4 : N — N,
La(n) = # of accepting paths of length n in A (2)

is an N-rational sequence. Consequently, the generating function for {4 s a
rational function.

3 Properties of k-Switchings

Our starting point for the study of structural properties of k-abelian equivalence
classes is the characterization of k-abelian equivalence in terms of k-switchings.
We proceed to describe a k-switching operation on languages. We show that this
operation preserves regularity. That is, given a regular language L, the language
obtained by this operation is also regular. This result will be used later on.

We now describe k-switchings on languages. For a language L C X*, we
define the k-switching of L, denoted by Ry (L), as the language

Ry (L) = {w € X* | wRyv for some v € L}.

Similarly, we define R} (L) = U,y RE (L) = Uper[w]-

Note that, from a regular language L, it is straightforward to identify all
words that admit a k-switching (i.e., the words on the top row of Fig.1). It is
not at all clear that, by performing all possible k-switchings on all words of L
(i.e., taking the union of all words on the bottom row of Fig.1), the obtained
language is also regular. We give a direct automata theoretic construction to
show this.

Theorem 4. Let L be a reqular language. Then Ry(L) is also regular.
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Proof. For a language L and fixed words z,y € X*~1, consider the language

R, (L) ={w e X" | w =Sk 4(i,4,1,m) for some i < j <l <m,u €L,
with wl[i,i +k—1) =u[l,l+ k—1) =z and
ulj,j+k—1)=umm+k—1) =y}

We will construct, for a regular language L recognized by a deterministic finite
automaton A = (Q, X, §, pinit, F'), an e-NFA A which recognizes R, 4(L). The
claim then follows for Ry (L), as Rx(L) = U, ,esr-1 Ray(L) is a finite union of
regular languages.

In essence, A is a cartesian product of form A=A x A, x Ay x Az x Ay. The
first component automaton A; consists of 5|Q|* copies of A, some of which are
connected by e-transitions. The second and fourth components are copies of an
automaton A, recognizing the language zX* and the third and fifth components
are copies of an automaton A, recognizing the language yX*. The components
2,3,4, and 5 are initiated according to the computations performed in A;. We
shall now make this construction more formal.

We first construct A; = (Q1, X, §1, Pinis, F1) as follows. For each state p € Q,
we have p(&:(P1.p2),(ps:p4)) € Q, forall ¢ =1,...,5and p, € Q, 7 =1,...,4. We
also add the initial state pinis, from which we have e-transitions to all the states of
form pi(ii’t(pl’pz)’(ps’p‘*)), p1, P2, P3, P4 € Q. Thus the computation of A; begins with
an e-transition. We then add the following e-transitions for all p1, p2, p3,p4 € Q:

(1,(p1,p2),(p3,pa)) _& (2,(p1.p2),(P3,p4)) (2,(p1,p2),(p3,pa)) € (3,(p1,p2),(P3,p1))
P1 V2]

— p2 ) — p4 )
3,(p1,p2),(P3, 4,(p1,p2),(ps3, 4,(p1,p2),(ps3, 5,(p1,p2),(P3,
p; (p1,p2),(P3,pa)) _€ pg (p1,p2),(p3 ;04))7 pz(l (p1,p2),(P3;pa)) _€ p:(3 (p1,p2),(p3 104)).

Otherwise the computation of A; respects the original automaton, that is,

61 (p(Prp2)s(p3:pa)) ) — ((6(P1ip2),(P3;pa))

if and only if there is a transition d(p,a) = ¢ in A. Finally, F; consists of all
states of form f(®(P1:p2).(p3,p4)) where f € F and py,pa,p3, ps € Q.

We remark the following about A;. Firstly, once the first e-transition is
taken, the states p1,po,p3, and ps are fixed for the remainder of the compu-
tation. Secondly, the states p,., r = 1,...,4, determine between which states an
e-transition can be performed. Furthermore, the parameter ¢ counts the number
of e-transitions performed. The parameters ¢, p1,p2,ps, and py together deter-
mine at which time and between which states an e-transition can be performed.

We now describe the behavior of the rest of the component automata of A.
For s € {2,...,5}, the sth component automaton of A is initiated during the
sth e-transition performed in A; (the first e-transition being the first compu-
tation step of A;). We also require from A that, after the second and fourth
e-transition performed in 4;, at least one letter is read before performing the
next e-transition. This is not required after the third e-transition. Note that
these requirements can be encoded, e.g., into the parameter ¢ of the states in
A;. Finally, A accepts if and only if all its components are in accepting states.
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We first show that R, ,(L) C L(A). In order to see this, let & € L and let v =
Skwul(i,7,1,m) € Ry y(L). Let g, t = 1,...,|u|, denote the state (pinit, u[1,1))
(note that some of the states ¢; can be the same). We then find an accepting
computation of A; for v as follows. We first take the e-transition from pin;, to the
state p{L{79)(%5:9m)) After this, the computation is as in Fig. 2 by following the
dashed lines. The computation of A on u follows the continuous lines. Note that
the other components of A also end up in accepting states, since by the definition
of the k-switching Sy ., (4, j,1,m), x and y have positions in v corresponding to

the initiations of the copies of the automata A, and A,. Thus R, ,(L) C L(A).

Fig. 2. The computation of automaton A on an accepted word u (in continuous lines)
and a computation of A; on Sk . (4, j,1,m) (in dotted lines). We have abbreviated the

states qﬁc’@””ql)’(qj’qm)) by ¢*° (for c € {1,...,5}, r € {init, 4, §,1,m}).

We now show the converse. For this, let v € L(A) and consider an accept-
ing path of A on v. By construction, the automaton A; starts with an
e-transition to a state pi(ii’t(pl’m)’(m’p“)). After this, the computation contains
four more e-transitions, suppose they occur just before reading the ith, jth, Ith
and mth letter, with ¢ < j < I < m, respectively. (Here we use the require-
ment for not allowing an e-transition immediately after the second and fourth
e-transitions.) Furthermore, by the acceptance of the other component automata
of ft, x has positions ¢ and [, and y has positions j and m in v. We claim that
u = Sko(4,4,l,m) € L. It then follows, by the symmetry of the k-switching
relation, that v € Ry ,(L). Indeed, turning back to the computation of A; on v,
we obtain the following paths in A:

1. a path from pinit to py labeled by v[1, 1),
2. a path from ps to p3 labeled by vli, j),
3. a path from py to p2 labeled by v[j,1)

)
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4. a path from p; to py labeled by v[l,m), and

5. a path from ps to an accepting state of A labeled by v[m, |v]].

Thus u = v[1, i)v[l,m)v[], )v[i, j)v[m,|v]] € L, as was claimed. O
Remark 5. This result may also be proved using MSO logic for words, as sug-

gested by one of the anonymous referees.

The following example shows that the family of regular languages is not
closed under the language operation Rj.

Ezample 6. Fix k > 1 and let L = (ab®)*. It is straightforward to verify by, e.g.,
comparing the number of occurrences of factors of length k, that

R;(L) = {ab“abT2 ceab™ |n>1,r >k — 1,27@ = nk} .

=1

Let now h be a morphism defined by h(a) = ab*~! and h(b) = b. It is again
straightforward to show that h=*(R; (L)) = {w € a{a,b}* | |w|s = |w|p}, which

*

is clearly not regular. It follows that R} (L) is not regular.

4 On the Number of k-Abelian Equivalence Classes

In this section we focus on the number Py ., (n) of k-abelian equivalence classes
of words of length n over X, |X| = m, where k and an m are fixed. We first
recall a result from [11]:

Theorem 7. We have, for k and m fized, Pk pm(n) = @(nmkfl(m_l)), where the
constants in © depend on k and m.
We are also interested in the number Sy, ,,, (n) of k-abelian singletons of length
n over X, | X| = m, where k and an m are fixed. We recall a result proved in [9].
Theorem 8. For k and m fived, we have Sg . (n) = O(nNmE=D=1) “where the
constants in O depend on k and m. Here Ny, (1) = 1 >d) o(d)ymt4 is the number
of conjugacy classes (or necklaces) of words in X', where || = m.
The main result of this section is the following:
Theorem 9. The sequences Py m(n) and Sk m(n) are N-rational.
In order to prove this, we define the following languages. Here < denotes a
lexicographic ordering of X*.
Lyin = {w € X* | w < u for all w ~y, u},
Liyax ={w e X" | w > u for all w ~ u}, and
Lsing = {’LU € xr | |[w]k| = 1}
In other words, L,y (resp., Lmax) is the language of lexicographically minimal
(resp., maximal) representatives of k-abelian equivalence classes, while Lgjn, is

the language of k-abelian singletons. We also recall a technical lemma from [9],
a refinement of Lemma 2.
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Lemma 10. Let u ~p v with u # v. Let p be the longest common prefix of u
and v. Then there exists z € X* such that zRiu and the longest common prefiz
of z and v has length at least |p| + 1.

Lemma 11. The languages Lmin, Lmax, and Lging are reqular languages.

Proof. Let u be the minimal element in [u]g. If there exists a k-switching on
u which yields a new element, it has to be lexicographically greater than u. In
particular, u does not contain factors from the language

((xbX* N X*y) X" N X*x)aX* N Xy,

where z,y € X¥71, a,b € ¥, a < b. On the other hand, by the above lemma,
any word u avoiding such factors is lexicographically least in [u]i. We thus have

Lomn=[) 2 (@I NIy nIa)al Ny T,  (3)

z,yexkt
a,beX, a<b

where, for a regular expression R, R denotes the complement language X*\R.
Similarly, for Lyax, by reversing a < b to a > b in (3), we obtain the claim.
Finally, Lging = Lmin N Lmax S0 that Lgng is regular. Another, perhaps more

informative, way to see this is as follows: for k-abelian singletons, we are avoid-

ing all possible k-switchings that give a different word. By requiring a # b, as

opposed to a < b, in (3), we obtain the expression for Lging. a

Proof (of Theorem 9). Consider first the language Ly;, and a DFA A recognizing
it. We transform the automaton to a unary NFA A’ by identifying all input
letters. Since A is deterministic, the transformation is faithful, that is, for each
word w accepted by A, there exists a unique corresponding accepting path in
A’, and vice versa. By the construction of A’, £4/(n) = Pim(n) for all n € N,
from which the claim follows for Py .. The case for Sy, is similar. O

Remark 12. Let A be the adjacency matrix of the unary automaton A’ described
above. It is known that, for all large enough n,

o)=Y pama @)

AEEig(A)

where the summation is taken over all distinct eigenvalues of A, and p, is a
complex polynomial of degree at most puy — 1. Here py is the multiplicity of A
as a root of the minimal polynomial of A (see for instance [3,17]).

4.1 Complexities for Small Values of kK and m

We now give some examples illustrating the results obtained above for small
values of £ and m. We also compute closed formulas for Py, ,,, and Sk, for some
small values of k and m.
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Ezample 13. In Fig. 3, we have two minimal DFAs, one recognizing the mini-
mal representatives of 2-abelian equivalence classes and the other recognizing
2-abelian singletons over X' = {a,b}. The sink states are not included in the
figures. We also note that all other states are accepting, since the languages are
defined by avoiding certain patterns.

Fig. 3. DFAs recognizing the minimal representatives of 2-abelian equivalence classes
(left) and 2-abelian singletons (right) over the alphabet {a,b}.

Using the idea of the proof of Theorem9, we first construct deterministic
automata for Ly and Lgng for small £ and m. We then use the automata to
compute the function ¢ as in Remark 12. We state these conclusions without
proofs:

Proposition 14.
Foralln > 1, Pyo(n) = n?—n+2,

1.4 3 2 2 1
for alln =2, Pys(n) = 5n* — &n®+ 8n® — Bn — L(-1)"
e 271 e 27
2 —= = 2 = = i
+ ﬁe 3 (e 3 )n —|— f@ 3 (6 3 )n + 7231067’ and
_ 1.6 7 .5, 67,4 19 3 , 1457 2
foralln >4, P3a(n) = geon + 557" + 3577 — 537" + 450 1

1569 3 n 741 | 27 n
— (o + s ()" + 555 + 556 (1™
Proposition 15.
For alln >4, Sy2(n) =2n+4,

for allm > 6, Sy3(n) = 3n* +27n — 63, and

1 9 2mi 2mi
foralln >9, Sz2(n) = §n2 + 16n + §(6 34 (em 3 ) — 535 _ §(—1)".



86 J. Cassaigne et al.

The formulae for Py 2 and Sz 2 have previously been proved, using different
methods, in [5,9], respectively. We note that Eero Harmaala (private commu-
nication) has previously computed the values for Py 3 and P32 (n = 2,...,18
and n = 4,...,21, respectively). We also note that computing the first few val-
ues of Sz 3(n) and S32(n) is an easy task. The On-Line Encyclopedia of Integer
Sequences (http://oeis.org, accessed June 10, 2016) does not contain any of the
above sequences.

The methods used here are far from being practical for computing closed
formulae for larger values of k and m, as is illustrated by the following example.

Example 16. For the binary alphabet, the number of states in the minimal DFA
recognizing Ly, for k = 2,3,4 is 10,49, and 936, respectively. This makes com-
puting a closed formula for Py o already a computationally challenging problem.

Remark 17. The exponential blow-up of the computation time is due to com-
plementation and non-determinism of the automata obtained from the regular
expressions (3). Also, by Theorem 7, the automaton obtained from (3) has to
grow necessarily exponentially with respect to k& when the alphabet is fixed;
some of the polynomials py in (4) have degree m*=1(m — 1).

For the case of k-abelian singletons, Theorem 8 does not give a large blow-
up immediately, though in [9] it is conjectured that Sy, (n) = O(nNmE=1=1),
which would also yield a large blow-up in the number of states.

5 Towards a Structure of Fixed Sized Equivalence Classes

The regularity of the languages Ly,in and Lging raises questions for the structure
of larger equivalence classes. We are thus interested in the k-abelian equivalence
classes of fixed cardinality. We employ the result of Theorem 4 to obtain a first
step in this direction.

Proposition 18. Thelanguage Ly = {w € X* | |[w]k| = 2} is a regular language.
Proof. Consider the regular language L = X*\(Lpin U Liax): we have
L ={we X" ||[w]k|] > 3 and w is not minimal or maximal},

since all classes containing at most two elements are removed. By Lemma 2,
Ry (Ri(L)) U Ri(L) U L then gives exactly the language

L'={we X" [ |[wll = 3},

and by Lemma?2, L’ is regular. Finally, the complement of L' is the language
{we Z* | |[w]k| < 2}. We thus have that Ly = L'\ Lging is a regular language.O

Larger classes were not considered here, but we have no reason to suspect that
the corresponding languages would not be regular. In fact, we suspect that modi-
fications of Theorem 4 could yield methods, similar to the ones used in the above,
to obtain some structure of larger classes.
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6 Open Problems and Future Research

The topic of this paper opens up new aspects of k-abelian equivalence, and
presents a series of questions. Though explicit formulas for the functions Py,
and Sj,, were obtained, it remains to compute the corresponding generating
functions (which, by our results, are rational functions).

To conclude, we suggest the following open problems.

— What are the generating functions for Py ,, and Sg 7

— When is Py m(n) ~ Cn™ ' (m=1) for some constant C? This is the case for
small values of k and m.

— Is the language of words w having |[w]i| = [, where [ is a fixed constant, a
regular language? For [ = 2, this is settled in the positive by Proposition 18.

Acknowledgments. The automata used to calculate the functions in Proposi-
tions 14 and 15 were constructed using the java package dk.brics.automaton [14]. The
automata in Fig.3 were created using the software Graphviz [4]. We would like to
thank the anonymous referees for valuable comments which helped to improve the
presentation.
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