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Abstract. A nondeterministic finite automaton is unambiguous if it has
at most one accepting computation on every input string. We investigate
the complexity of basic regular operations on languages represented by
unambiguous finite automata. We get tight upper bounds for intersection
(mn), left and right quotients (2n − 1), positive closure ( 3

4
· 2n − 1), star

( 3
4
· 2n), shuffle (2mn − 1), and concatenation ( 3

4
· 2m+n − 1). To prove

tightness, we use a binary alphabet for intersection and left and right quo-
tients, a ternary alphabet for star and positive closure, a five-letter alpha-
bet for shuffle, and a seven-letter alphabet for concatenation. We also get
some partial results for union and complementation.

1 Introduction

A nondeterministic machine is unambiguous if it has at most one accepting
computation on every input string. Ambiguity was studied intensively mainly
in connection with context-free languages and it is well known that the classes
of ambiguous, unambiguous, and deterministic context-free languages are all
different. Ambiguity in finite automata was first considered by Schmidt [21] in his
unpublished thesis, where he obtained a lower bound 2Ω(

√
n) on the conversion

of unambiguous finite automata into deterministic finite automata, as well as
for the conversion of nondeterministic finite automata into unambiguous finite
automata. He also developed an interesting lower bound method for the size of
unambiguous automata based on the rank of certain matrices.

Stearns and Hunt [23] provided polynomial-time algorithms for the equiva-
lence and containment problems for unambiguous finite automata (UFAs), and
they extended them to ambiguity bounded by a fixed integer k. Chan and Ibarra
[5] provided a polynomial space algorithm to decide, given a nondeterministic
finite automaton (NFA), whether it is finitely ambiguous. They also showed that
it is PSPACE-complete to decide, given an NFA M and an integer k, whether
M is k-ambiguous.
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Ibarra and Ravikumar [12] defined the ambiguity function aM (n) : N → N
of an NFA M such that aM (n) is the maximum number of distinct accepting
computations of M on any string of length n, and they proved that the exponen-
tial ambiguity problem is decidable for NFAs. Weber and Seidl [24] showed that
if an n-state NFA is finitely ambiguous, then it is at most 5n/2nn-ambiguous.
Allauzen et al. [1] considered ε-NFAs, and they showed that, given a trim ε-cycle-
free NFA A, it is decidable in time that is cubic in the number of transitions of
A, whether A is finitely, polynomially, or exponentially ambiguous.

Ravikumar and Ibarra [20] considered the relationship between different
types of ambiguity of NFAs to the succinctness of their representations, and
they provided a complete picture for unary and bounded languages. Exponen-
tially and polynomially ambiguous NFAs were separated by Leung [15] by pro-
viding, for every n, an exponentially ambiguous n-state NFA such that every
equivalent polynomially ambiguous NFA requires 2n − 1 states.

The UFA-to-DFA tradeoff was improved to the optimal bound 2n by
Leung [16]. He described, for every n, a binary n-state UFA with a unique initial
state whose equivalent DFA requires 2n states. A similar binary example with
multiple initial states was given by Leiss [14], and a ternary one was presented
already by Lupanov [17]; note that the reverse of Lupanov’s ternary witness for
NFA-to-DFA conversion is deterministic. Leung [16] elaborated Schmidt’s lower
bound method for the number of states in a UFA. He considered, for a lan-
guage L, a matrix whose rows are indexed by strings xi and columns by strings
yi, and the entry in row xi and column yj is 1 if xiyj ∈ L and it is 0 otherwise. He
showed that the rank of such a matrix provides a lower bound on the number of
states in any UFA for L. Using this method, he was able to describe for every n
an n-state finitely ambiguous NFA, whose equivalent UFA requires 2n −1 states.

A lower bound method was further elaborated by Hromkovič et al. [11]. They
used communication complexity to show that so-called exact cover of all 1’s with
monochromatic sub-matrices in a communication matrix of a language provides
a lower bound on the size of any UFA for the language. This allowed them to
simplify proofs presented in [21,23]. Using communication complexity methods,
Hromkovič and Schnitger [10] showed a separation of finitely and polynomially
ambiguous NFAs, and even proved a hierarchy for polynomial ambiguity.

A survey paper on unambiguity in automata theory was presented by Col-
combet [6], where he considered word automata, tropical automata, infinite tree
automata, and register automata. He showed that the notion of unambiguity
is not well understood so far, and that some challenging problems, including
complementation of UFAs, remain open.

Unary unambiguous automata were examined by Okhotin [19], who proved
that the tight upper bound for UFA-to-DFA conversion in the unary case is given
by a function in eΘ( 3

√
n(lnn)2), while the trade-off for NFA-to-UFA conversion is

e
√

n lnn(1+o(1)). He also considered the operations of star, concatenation, and
complementation on unary UFA languages, and obtained the tight upper bound
(n−1)2 +1 for star, an upper bound mn for concatenation which is tight if m,n
are relatively prime, and a lower bound n2−ε for complementation.
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In this paper, we continue this research and study the complexity of basic
regular operations on languages represented by unambiguous finite automata.
First, we restate the lower bound method from [16,21]. Using the notions of
reachable and so-called co-reachable states in an NFA N , we assign a matrix
MN to the NFA N in such a way that the rank of MN provides a lower bound
on the number of states in any UFA for the language L(N). We use this to
get all our lower bounds. To get upper bounds, we first construct an NFA for
the language resulting from an operation, and then we apply the (incomplete)
subset construction to this NFA to get an incomplete DFA, so also UFA, for the
resulting language.

2 Preliminaries

We assume that the reader is familiar with basic notions in formal languages
and automata theory. For details, the reader may refer to [22].

A nondeterministic finite automaton (NFA) is a 5-tuple N = (Q,Σ,Δ, I, F ),
where Q is a finite nonempty set of states, Σ is a finite nonempty input alphabet,
Δ ⊆ Q × Σ × Q is the transition relation, I ⊆ Q is the set of initial states,
and F ⊆ Q is the set of final states. Each element (p, a, q) of Δ is called a
transition of N . A computation of N on an input string a1 · · · an is a sequence
of transitions (q0, a1, q1)(q1, a2, q2) · · · (qn−1, an, qn) ∈ Δ∗. The computation is
accepting if q0 ∈ I and qn ∈ F ; in such a case we say that the string a1 · · · an

is accepted by N . The language accepted by the NFA N is the set of strings
L(N) = {w ∈ Σ∗ | w is accepted by N}.

An NFA N = (Q,Σ,Δ, I, F ) is unambiguous (UFA) if it has at most one
accepting computation on every input string, and it is deterministic (DFA) if
|I| = 1 and for each state p in Q and each symbol a in Σ, there is at most one
state q in Q such that (p, a, q) is a transition of N . Let us emphasize that we
allow NFAs to have multiple initial states, and DFAs to be incomplete.

The transition relation Δ may be viewed as a function from Q × Σ to 2Q,
which can be extended to the domain 2Q × Σ∗ in the natural way. We denote
this function by ·. Using this notation we get L(N) = {w ∈ Σ∗ | I · w ∩ F �= ∅}.

Every NFA N = (Q,Σ, ·, I, F ) can be converted to an equivalent incomplete
DFA N ′ = (2Q\{∅}, Σ, ·′, I, F ′), where F ′ = {R ∈ 2Q\{∅} | R ∩ F �= ∅}, and for
each R in 2Q\{∅} and each a in Σ, the partial transition function ·′ is defined
as follows: R ·′ a = R · a if R · a �= ∅ and R ·′ a is undefined otherwise. We call
the DFA N ′ the incomplete subset automaton of NFA N . Since every incomplete
DFA is a UFA, we get the following observation.

Proposition 1. If a language L is accepted by an n-state NFA, then L is
accepted by a UFA of at most 2n − 1 states. 	


The reverse wR of a string w is defined by εR = ε and (va)R = avR where
a ∈ Σ and v ∈ Σ∗. The reverse of a language L is the language LR defined by
LR = {wR | w ∈ L}. The reverse of an automaton N = (Q,Σ, ·, I, F ) is the
NFA NR obtained from N by swapping the role of initial and final states and
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by reversing all the transitions. Formally, we have NR = (Q,Σ, ·R, F, I), where
q ·R a = {p ∈ Q | q ∈ p · a} for each state q in Q and each symbol a in Σ. The
NFA NR accepts the reverse of the language L(N).

Let N = (Q,Σ, ·, I, F ) be an NFA. We say that a set S is reachable in N
if there is a string w in Σ∗ such that S = I · w. Next, we say that a set T is
co-reachable in N if T is reachable in NR. In what follows we are interested in
non-empty reachable and co-reachable sets, and we use the following notation:

R = {S ⊆ Q | S is reachable in N and S �= ∅}, (1)
C = {T ⊆ Q | S is co-reachable in N and T �= ∅}. (2)

The next observation uses the notions of reachable and co-reachable sets in
an NFA to get a characterization of unambiguous automata.

Proposition 2. Let R and C be the families of non-empty reachable and co-
reachable sets in an NFA N . Then N is unambiguous if and only if |S ∩ T | ≤ 1
for each S in R and each T in C. 	


If NR is deterministic, then each co-reachable set in N is of size one, and we
get the following result.

Corollary 3. Let N be an NFA. If NR is deterministic, then N is unambiguous.

Recall that the state complexity of a regular language L, sc(L), is the small-
est number of states in any complete DFA accepting the language L. The state
complexity of a regular operation is the maximal state complexity of languages
resulting from the operation, considered as the function of state complexities of
the arguments. The nondeterministic state complexity of languages and opera-
tions is defined analogously using NFA representation of languages. We define
the unambiguous state complexity of a regular language L, usc(L), as the smallest
number of states in any UFA for L.

To prove that a DFA is minimal, we only need to show that all its states are
reachable from the initial state, and that no two distinct states are equivalent. To
prove minimality of NFAs, a fooling set lower bound method may be used [2,8].
To prove a lower bound for the size of a UFA, a method based on ranks of certain
matrices was developed by Schmidt [21, Theorem 3.9], Leung [16, Theorem 2] and
Hromkovič et al. [11]. We use it in the following statement.

Proposition 4 ([11,16,21]). Let L be accepted by an NFA N . Let R and C
be the families of non-empty reachable and co-reachable sets in N , respectively.
Let MN be the matrix in which the rows are indexed by sets in R, the columns
are indexed by sets in C, and in the entry (S, T ), we have 0/1 if S and T are/are
not disjoint. Then usc(L) ≥ rank(MN ). 	

Proof. Let A be a minimal UFA accepting L. Consider a matrix M ′

A, in which
rows are indexed by the states of A and columns are indexed by strings generating
the co-reachable sets in C. The entry (q, w) is 1 if wR is accepted by A from q, and
it is 0 otherwise. Then every row of MN is a sum of the rows of M ′

A corresponding
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to the states in S: Notice that since A is a UFA, for every column there is at most
one such row that contains a 1. Thus every row of MN is a linear combination
of rows in M ′

A, and therefore rank(MN ) ≤ rank(M ′
A) ≤ usc(L). 	


Throughout our paper, we use the following observation from [15] and its
corollary stated in the proposition below.

Lemma 5 ([15, Lemma 3]). Let |Q| = n and Mn be a 2n − 1 × 2n − 1 matrix
over the field with characteristic 2 with rows and columns indexed by a non-
empty subsets of Q such that Mn(S, T ) = 1 if S ∩ T �= ∅ and Mn(S, T ) = 0
otherwise. Then the rank of Mn is 2n − 1. 	

Proposition 6. Let L be accepted by an NFA N . Let R be the family of all
non-empty reachable sets in N . If each non-empty set is co-reachable in NFA N ,
then usc(L) ≥ |R|. 	

Proof. Let N = (Q,Σ, ·, I, F ) be an NFA for L with |Q| = n. Consider the
matrix MN given by Proposition 4. Notice that MN contains |R| rows of the
matrix Mn given in Lemma 5. By Lemma 5, the rank of Mn is 2n −1, so the rows
of Mn are linearly independent. Therefore all the rows of MN must be linearly
independent, and we have rank(MN ) = |R|. Hence usc(L) ≥ rank(MN ) = |R|
by Proposition 4. 	


3 Operations on Unambiguous Finite Automata

We start with the reversal and intersection operations. Then we continue with
left and right quotients. Notice that if an NFA N is unambiguous then NR is
also unambiguous. Hence we get the following result.

Theorem 7 (Reversal). Let L be a regular language. Then usc(LR) = usc(L).

Theorem 8 (Intersection). Let K and L be languages over Σ with usc(K)=
m and usc(L) = n. Then usc(K ∩ L) ≤ mn, and the bound is tight if |Σ| ≥ 2.

The left quotient of a language L by a string w is w\L = {x | w x ∈ L},
and the left quotient of a language L by a language K is the language K\L =⋃

w∈K w\L. The state complexity of the left quotient operation is 2n − 1 [25],
and its nondeterministic state complexity is n+1 [13]. In both cases, the witness
languages are defined over a binary alphabet. Our next result shows that the
tight upper bound for UFAs is 2n−1. To prove tightness we use a binary alphabet.

The right quotient of a language L by a string w is L/w = {x | xw ∈ L},
and the right quotient of a language L by a language K is L/K =

⋃
w∈K L/w.

If a language L is accepted by an n-state DFA or NFA A, then the language
L/K is accepted by an automaton that is exactly the same as A, except for the
set of final states that consists of all states of A, from which some string in K is
accepted by A [25]. Thus sc(L/K) ≤ n and nsc(L/K) ≤ n. The tightness of the
first upper bound has been shown using binary languages in [25]. The second
upper bound is met by unary languages a≥m−1 and a≤n−1. Our next aim is to
show that the tight upper bound for unambiguous finite automata is 2n −1, with
witnesses defined over a binary alphabet.
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Theorem 9 (Left and Right Quotient). Let K,L ⊆ Σ∗, usc(K) = m, and
usc(L) = n. Then

(a) usc(K \L) ≤ 2n − 1, and the bound is tight if |Σ| ≥ 2;
(b) usc(L/K) ≤ 2n − 1, and the bound is tight if |Σ| ≥ 2.

Proof. (a) To get an upper bound, let A be an n-state UFA for L. Construct an n-
state NFA N for K \L from A by making initial all states of A that are reachable
from the initial set by some string in K. By Proposition 1, usc(K \L) ≤ 2n − 1.

0 1 . . . n−2 n−1
a

b

a

b

a a

b

a

Fig. 1. The UFA of a language L with usc(K \L) = 2n − 1, where K = a≥m−1.

For tightness, let K = {ak | k ≥ m − 1} and L be the language accepted
by the n-state DFA A = ({0, 1, . . . , n− 1}, {a, b}, {0}, {0, 1, . . . , n− 1}) shown in
Fig. 1. Notice that each state of A is reachable by some string in K. Construct
an n-state NFA N for K \L from A by making all the states initial. Hence the
initial set of N is {0, 1, . . . , n−1}. Next, we can shift every reachable subset right
by one (modulo n) by reading a, and we can remove the state n from any subset
containing state n by reading b. Therefore each non-empty set is reachable in N .

To construct NR, we only need to reverse the transitions on a in N . The initial
subset of NR is {0, 1, . . . , n − 1}, and we can again shift any subset and remove
one state as before. It follows that every non-empty set is reachable in NR, that
is, co-reachable in NFA N . By Proposition 6, we have usc(K \L) ≥ 2n − 1.

(b) To get an upper bound, let A be an n-state UFA for L. Construct an
n-state NFA for L/K as described above. By Proposition 1, usc(L/K) ≤ 2n−1.

0 1 . . . n−2 n−1
a

b

a

b

a a

b

a

Fig. 2. The UFA of a language L with usc(L/K) = 2n − 1, where K = a≥m−1.

To prove tightness, let K = {ak | k ≥ m−1} and L be the language accepted
by the n-state NFA A = ({0, 1, . . . , n−1}, {a, b}, {0, 1, . . . , n−1}, {n−1}) shown
in Fig. 2. Since the automaton AR is deterministic, the NFA A is unambiguous
by Corollary 3. Since a string in K is accepted by A from each state of A, we
construct an NFA N for L/K from A by making all the states of A final. Notice
that we obtain the same NFA as in the proof of the previous lemma, thus by the
same arguments usc(L/K) ≥ 2n − 1. 	
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Now let us continue with the shuffle and concatenation operations. The
shuffle of two strings u and v over an alphabet Σ is defined as the set of strings
u v = {u1v1 · · · ukvk | u = u1 · · · uk, v = v1 · · · vk, u1, . . . , uk, v1, . . . , vk ∈ Σ∗}.
The shuffle of languages K and L over Σ is defined by K L =

⋃
u∈K,v∈L u v.

The state complexity of the shuffle operation on languages represented by incom-
plete deterministic automata was studied by Câmpeanu et al. [3]. They proved
that 2mn − 1 is a tight upper bound for that case. Here we show that the same
upper bound is tight also for UFAs, and to prove tightness, we use almost the
same languages as in [3, Theorem 1]. To the best of our knowledge, the problem
is still open for complete deterministic automata.

Theorem 10 (Shuffle). Let K,L ⊆ Σ∗, usc(K) = m, and usc(L) = n. Then
usc(L K) ≤ 2mn − 1, and the bound is tight if |Σ| ≥ 5.

Proof. Let A = (QA, Σ, ·A, IA, FA) and B = (QB , Σ, ·B , IB , FB) be m- and
n-state UFAs for K and L respectively. Then K L is accepted by an mn-
state NFA N = (QA ×QB , Σ, ·, IA × IB, FA ×FB), where for each state (p, q) in
QA×QB and each symbol a in Σ, we have (p, q)·a = (p·Aa×{q})∪({p}×q ·B a).
Hence usc(K L) ≤ 2mn − 1 by Proposition 1.

To prove tightness, let Σ = {a, b, c, d, f}. Let K and L be the regular lan-
guages accepted by DFAs A = ({0, 1, . . . ,m − 1}, Σ, ·A, {0}, {m − 1}) and B =
({0, 1, . . . , n−1}, Σ, ·B , {0}, {n−1}) shown in Fig. 3(left); notice that these DFAs
are the same as in [3, Theorem 1] up to the position of final states. Construct
an NFA N for K L as described above. Figure 3(right) shows a sketch of the
resulting NFA. It is shown in [3] that each non-empty set is reachable in N : The
initial set {(0, 0)} goes to the full set {0, 1, . . . ,m−1}×{0, 1, . . . , n−1} by cmdn,
and for each subset S with (i, j) ∈ S, we have S · am−ibn−jfaibj = S\{(i, j)}.
Next, in NR we have {(m−1, n−1)}·Rcmdn = {0, 1, . . . ,m−1}×{0, 1, . . . , n− 1},
and S ·R aibjfam−ibn−j = S\{(i, j)} for each subset S with (i, j) ∈ S. It follows
that each non-empty set is co-reachable in N , so usc(L) ≥ 2mn − 1. 	


0 1 . . . m−1
a, c

d

a, c

d, f

a, c

a

d, f

0 1 . . . n−1
b, d

c

b, d

c, f

b, d

b

c, f

d d d

b b b

c

c

c

a

a

a b
a

df df df

cf

cf

cf

cd

. . .

...

. . .

Fig. 3. Witness UFAs for shuffle (left) and a sketch of the resulting NFA N .
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The concatenation of languages K and L is KL = {uv | u ∈ K and v ∈ L}.
The state complexity of concatenation is m2n − 2n−1, and its nondeterminis-
tic state complexity is m + n. In both cases, the witnesses are defined over a
binary alphabet [9,13,18,25]. In the next theorem we get a tight upper bound
for concatenation on UFAs. To prove tightness, we use a seven-letter alphabet.

Theorem 11 (Concatenation). Let K,L ⊆ Σ∗, usc(K) = m, and usc(L) =
n, where m,n ≥ 2. Then usc(KL) ≤ 3

4 · 2m+n − 1, and the bound is tight if
|Σ| ≥ 7.

Proof. Let A = (QA, Σ, ·A, IA, FA) and B = (QB , Σ, ·B , IB , FB) be UFAs for
languages K and L, respectively. Let |QA| = m, |FA| = k, |QB | = n, |IB | = �.
Construct an NFA N = (QA ∪ QB , Σ, ·, I, FB) for KL, where for each q in
QA ∪ QB and each a in Σ,

q · a =

⎧
⎪⎨

⎪⎩

q ·A a, if q ∈ QA and q ·A a ∩ FA = ∅;
q ·A a ∪ IB , if q ∈ QA and q ·A a ∩ FA �= ∅;
q ·B a, if q ∈ QB ,

and I = IA if IA ∩ FA = ∅ and I = IA ∪ IB otherwise. Notice that if a set S
is reachable in the NFA N and S ∩ FA �= ∅, then IB ⊆ S. It follows that the
number of reachable sets is 2m−k2n + (2m − 2m−k)2n−�, which is maximal if
� = 1. In such a case, this number equals (2m + 2m−k)2n−1, which is maximal if
k = 1. After excluding the empty set, we get the upper bound.

q0 q1 . . . qm−2 qm−1
a, b

α, β, γ, b, c, d

a, b, c

α, β, γ, d

a, b, c a, b, c

α, β, γ, d

a

α, β, γ

0 1 . . . n−2 n−1
α

a, b, c, d, β

α, β

a, b, c, d, γ

α, β α, β

a, b, c, d, γ

α, β

a, b, c, d, γ

Fig. 4. Witness UFAs for concatenation meeting the upper bound 3
4
· 2m+n − 1.

For tightness, we can use K and L over {a, b, c, d, α, β, γ} accepted by
automata A and B shown in Fig. 4, where QA = {q0, q1, . . . , qm−1} and QB =
{0, 1, . . . , n − 1}. Notice that AR and B are deterministic. 	


Now we consider the Kleene closure (star) and positive closure operations. For
a language L, the star of L is the language L∗ =

⋃
i≥0 Li, where L0 = {ε} and

Li+1 = Li L. The positive closure of L is L+ =
⋃

i≥1 Li. The state complexity of
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the star operation is 3
4 · 2n with binary witness languages [18,25]. In the unary

case, the tight upper bound is (n − 1)2 + 1 [4,25]. The nondeterministic state
complexity of star is n + 1, with witnesses defined over a unary alphabet [9].

Theorem 12 (Positive Closure and Star). Let L be a language over Σ with
usc(L)= n, where n ≥ 2. Then

(a) usc(L+) ≤ 3
4 · 2n − 1, and the bound is tight if |Σ| ≥ 3;

(b) usc(L∗) ≤ 3
4 · 2n, and the bound is tight if |Σ| ≥ 3.

Proof. (a) To get an upper bound, let A = (Q,Σ, ·, I, F ) be an n-state UFA
for L. Construct an NFA N = (Q,Σ, ·+, I, F ) for L+ where the transition func-
tion ·+ is defined as

q ·+ a =

{
q · a ∪ I, if q · a ∩ F �= ∅;
q · a, otherwise

for each state q in Q and each symbol a in Σ. Notice that if a set S is reachable
in N and S ∩ F �= ∅, then I ⊆ S. We can show that there are at most 3

4 · 2n − 1
reachable non-empty subsets in N . This proves the upper bound.

To prove tightness, let L be the language accepted by the ternary DFA A
shown in Fig. 5(top). Construct the NFA N for L+ as described above. Notice
that the DFA A restricted to the alphabet {a, b} is the same as the witness DFA
for the star operation from [25, Theorem 3.3, Fig. 4] In particular, this means
that N has 3

4 · 2n − 1 non-empty reachable subsets. We can show that each
non-empty set is co-reachable in N .

0 1 . . . n − 3 n − 2 n − 1
a a, b a, b a, b a, b

ab

bc c c c

0 1 . . . n − 3 n − 2 n − 1
a a a a a

c c c c

a
ac

Fig. 5. The witness UFA for positive closure meeting the upper bound 3
4
·2n−1 (top),

and the transitions on a, c in the NFA NR (bottom).

(b) The upper bound follows from the case (a) since if ε ∈ L, then L+ = L∗,
and otherwise we only need to add one more initial and final state to the UFA
for L+ to accept the empty string. The resulting automaton is unambiguous
since the new state accepts only the empty string which is not accepted by UFA
for L+. For tightness, consider the language L accepted by the UFA A shown
in Fig. 5(top). Construct an NFA N for L∗ from UFA A by adding a new initial
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and final state q0, and by adding the transitions on a, b from n − 2 to 0, and the
transition by c from n − 1 to 0. As shown in [25, Theorem 3.3] the NFA N has
3
4 · 2n reachable sets: the initial set {q0, 0}, all the subsets of {0, 1, . . . , n − 1}
containing state 0, and all the non-empty subsets of {1, 2, . . . , n − 2}. Consider
the NFA NR. The initial set of NR is {q0, n − 1}. Next, as we have shown that
each non-empty set is reachable in NR. Now consider the 3

4 ·2n ×2n matrix MN ,
and show that its rank is 3

4 · 2n × 2n. 	


4 Partial Results for Complementation and Union

In this section we present partial results for the complementation and union oper-
ations on UFA languages. The complement of a language L over Σ is the language
Lc = Σ∗\L. A language and its complement have the same state complexity since
to get a DFA for the complement of L, we only need to interchange the sets of final
and non-final states in a DFA for L. For NFAs, the tight upper bound for comple-
mentation is 2n with witnesses defined over a binary alphabet [9,13]. For unary
UFAs, the problem was studied by Okhotin, who provided a lower bound n2−o(1)

for complementation of unary UFAs [19, Theorem 6]. In the next theorem we deal
with an upper bound. Then we consider union.

Theorem 13 (Complementation: Upper Bound). Let L be a regular lan-
guage with usc(L) = n, where n ≥ 7. Then usc(Lc) ≤ 20.79n+log n.

Proof. Let A be an n-state UFA for L and R and C be the sets of non-empty
reachable and co-reachable sets of A. First, we show that usc(Lc)≤ min{|R|, |C|}.
We have usc(Lc) ≤ |R| since we can get a DFA for Lc by applying the subset
construction to A and by interchanging the sets of final and non-final states in the
resulting DFA that has |R| reachable states. Next, we have usc(Lc) ≤ |C| since
the NFA AR is unambiguous, so usc((LR)c) ≤ |C| which means that usc(Lc) ≤ |C|
since complement and reversal commutes and the reverse of a UFA is a UFA.

Next, let k = max{|X| | X ∈ R}, and pick a set S in R of size k. Then each
set in R has size at most k, and each set in C may have at most one element in
S by Proposition 2. Thus

|R| ≤
(

n

1

)

+
(

n

2

)

+ · · · +
(

n

k

)

and |C| ≤ (k + 1)2n−k.

If k ≥ n/2, then |C| ≤ (n/2 + 1) · 2n/2 ≤ 20.5n+log n, and the theorem follows.
Now assume that k < n/2. Then |R| ≤ k

(
n
k

) ≤ n( enk )k and |C| ≤ n2n−k. Let
r(k) = n( enk )k and c(k) = n2n−k. Then r(k) increases, while c(k) decreases with
k. It follows that if we pick a k0 such that k0 < n/2, then usc(Lc) ≤ r(k0)
if k ≤ k0, and usc(Lc) ≤ c(k0) otherwise. By setting k = nx and by solving
( en

nx )nx = 2n−nx, we get x0 = 0.2144, k0 = 0.2144n, r(k0) ≤ 20.7856n+log n, and
c(k0) ≤ 20.785629n+log n. This completes our proof. 	
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Proposition 14 (Union). Let K and L be languages over Σ with usc(K) = m
and usc(L) = n, where 1 ≤ m ≤ n. Then

(a) usc(K ∪ L) ≤ m + n · usc(Kc) ≤ m + n20.79n+log n;
(b) the bound mn + m + n is met if |Σ| ≥ 4.

Proof. (a) The claim follows from the equality K ∪ L = K∪̇(L ∩ Kc), where ∪̇
denotes a disjoint union, since we have usc(L ∩ Kc) ≤ n · usc(Lc) by Theorem 8,
and, moreover, the NFA for a disjoint union of UFAs is unambiguous. The second
inequality is given by Theorem13. We can prove the lower bound in (b) using a
four-letter alphabet. 	


5 Conclusions

We investigated the complexity of operations on unambiguous finite automata.
Since the reverse of an unambiguous automaton is unambiguous, a language
and its reversal have the same complexity for UFAs. Next, we got tight upper
bounds for intersection (mn), left and right quotients (2n − 1), positive closure
(34 · 2n − 1), star (34 · 2n), shuffle (2mn − 1), and concatenation (34 · 2m+n − 1).

To get upper bounds, we constructed an NFA for the language resulting
from an operation, and applied the (incomplete) subset construction to it. For
lower bounds, we defined witness languages in such a way that we were able to
assign a matrix to a resulting language. The rank of this matrix provided a lower
bound on the unambiguous state complexity of the resulting language. To prove
tightness, we used a binary alphabet for intersection and left and right quo-
tients, a ternary alphabet for star and positive closure, a five-letter alphabet for
shuffle, and a seven-letter alphabet for concatenation. For complementation and
union, we provided upper bounds 20.79n+log n and m+n20.79n+log n, respectively.
Finally, we got a lower bound mn + m + n for union.

In the case of complementation, we tried to use a fooling set lower bound
method, but we were able to describe a fooling set for the complement of an
n-state UFA language only of size n + log n. Moreover, it seems that every such
fooling set is of size which is quadratic in n [7]. Thus the fooling set technique
cannot be used to get a larger lower bound. Neither the method based on the
rank of matrices can be used here since the matrices of a language and its
complement have the same rank, up to one. Therefore to get a larger lower
bound for complementation, some other techniques should be developed.1
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