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Abstract. We contribute to the study of square-free words. The classi-
cal notion of a square-free word has a natural generalization to partial
words, studied in several papers since 2008. We prove that the maximal
density of wildcards in the ternary infinite square-free partial word is
surprisingly big: 3/16. In addition, we introduce a related characteristic
of infinite square-free words, called flexibility, and find its values for some
interesting words and classes of words.
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1 Introduction

Partial words are a natural generalization of “ordinary” words. A partial word
is a word with some positions undefined; more formally, a partial word over an
alphabet Σ is a word over the alphabet Σ ∪ {�}, where the wildcard symbol �
has a special meaning. Namely, when two words are being compared, a wildcard
matches any symbol. Thus, the partial word a�bc matches �c�c. In the study of
partial words, the matching relation replaces equality in such notions as periods,
powers, etc. The main feature of the matching relation is its nontransitivity.
This makes many problems on partial words hard. For example, the pattern
matching problem, studied for partial words since 1974 [7], is at least as hard as
the boolean multiplication [10].

Combinatorics of partial words is much younger than their algorithmics; it
began with the paper by Berstel and Boasson [2] and subsequent works [4,15].
These and other early papers focused on periodicity properties. The study of
avoidability began with the paper [9], which focused mostly on cube-free partial
words. A suitable definition of a square-free partial word was proposed in [8]
and independently in [5]; in both these papers the existence of infinite ternary
square-free partial words with infinite number of wildcards was proved. In fact,
it was demonstrated that wildcards in such a word can have nonzero density: the
construction from [8] gives a word with the density 1/39. Thus, a natural question
arises: what is the maximum possible density of wildcards in an infinite ternary
square-free partial word? A related question about the minimum k such that
any factor of length k of some infinite ternary square-free partial word contains
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a wildcard was answered in [3]; the answer is k = 7. Moreover, a thorough
analysis of the word from [3] shows that the density of wildcards in it is 7/39.

We study the density of wildcards in a more general context. Every square-
free partial word can be obtained by taking a square-free word and replacing
some of its letters with wildcards. Thus, for infinite square-free words we have
a natural characteristic which we call flexibility : the maximum density of the
set of positions, in which letters can be simultaneously replaced by wildcards
preserving square-freeness (we refer to such sets as wildcard sets). Our main
result is the exact value of the maximal flexibility of infinite ternary square-free
words: 3/16. First, we prove that not only density, but even the upper density
of a wildcard set for an infinite ternary square-free word cannot exceed 3/16.
Second, we construct a square-free word G (which probably never appeared in the
study of square-free words before) with flexibility 3/16. Moreover, the wildcard
set for G is periodic with period 16. Additional results include the flexibility of
the Arshon word (1/9) and the Dejean word (2/19), and also a series of “rigid”
square-free words, which have no room for wildcards at all. Our technique is
based on the encoding of ternary square-free words by the walks in the weighted
K33 graph. This encoding was proposed by the second author [14] and proved
useful in solving different problems on ternary square-free words [11–13].

The further text consists of preliminary Sect. 2, technical Sect. 3, and proofs
of the main results in Sect. 4.

2 Preliminaries

Definitions and Notation. We study words over the ternary alphabet Σ =
{a, b, c}; by default, the letters x, y, z denote variable symbols from Σ. Finite
(infinite) words over Σ are treated as functions w : {1, . . . , n} → Σ (resp.,
w : N → Σ); the numbers from the domain of such a function are positions
(in w). In this setting partial words are partial functions; the wildcard symbol �
is used to fill undefined positions.

Standard notions of factor, prefix, and suffix are used for both words and
partial words. We write λ for the empty word, |w| for the length of w, w[i]
for the ith letter of w and w[i..j] for the factor of w occupying the positions
i, i+1, . . . , j. A factor v = w[i..j] is referred to as the occurrence of v in w at
the ith position. Two partial words u and v match if |u| = |v| and for each
i = 1, . . . , |u| either u[i] = v[i] or at least one of u[i], v[i] is a wildcard.

A finite word w has period p < |w| if w[1..|w|−p] = w[p+1..w]. The exponent
exp(w) of w is the ratio between its length and its minimal period. The local
exponent lexp(w) of a finite or infinite word w is the supremum of the exponents
of the finite factors of w. The extension of a factor v = w[i..j] is the factor
u = w[i′..j′] such that i′ ≤ i, j′ ≥ j, u has period |v| but the factors w[i′..j′+1],
w[i′−1..j′] has not.

A square is a nonempty word of the form uu. A word is square-free if it
has no squares as factors. The set of ternary square-free words (both finite and
infinite) is denoted by SF. A partial square is a word of the form uu′ such that
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u matches u′. A (partial or not) square is called p-square if |u| = p. Partial
1-squares of the form �x or x� occur in every partial word u such that |u| > 1
and u contains a wildcard, so we regard them as trivial. A partial word contain-
ing no 1-squares and no partial p-squares for any p > 1, is called square-free.
Ternary square-free infinite partial words exist [5,8]; we write PSF for the partial
counterpart of SF.

Words of the form uv and vu are conjugates; conjugacy is an equivalence rela-
tion. Linking up the ends of a finite word, we obtain a circular word. A circular
word represents a conjugacy class in an obvious way. The factors of a circular
word are just words, so one can speak about square-free circular words.

Let P ⊂ N and dn = |P ∩ {1, . . . , n}|/n. Then the density of P is the limit
d = limn→∞ dn if it exists; otherwise, we speak about upper and lower density,
meaning lim sup dn and lim inf dn, respectively.

Basic Properties. The following basic property of partial words is important.

Lemma 1. If partial words u and v match and u′ is obtained from u by replacing
a letter with a wildcard, then u′ and v match.

Lemma 2. Let a partial word u be square-free and u[i] = �. The partial word u′

obtained from u by replacing u[i] with a letter distinct from the adjacent letters
is square-free.

Proof. Assume that u′ contains a square. It is not a 1-square by construction
and it contains u′[i]. Then u must contain a square at the same position by
Lemma 1. This contradicts the square-freeness of u. 	

Proposition 3. Every finite or infinite square-free partial word matches some
square-free word. In the case of ternary alphabet, such a matching word is unique
up to the first and the last letter.

Proof. The existence of a matching square-free word follows by repeated applica-
tion of Lemma 2. Further, a square-free partial word has no factors of the form
x�x, because such a factor forms a 2-square with any subsequent/preceding
symbol. Thus, the letters adjacent to a wildcard are distinct. If the alphabet is
ternary, there is only one possibility to replace this wildcard. 	


Due to Proposition 3, any element of PSF can be seen as a word from SF in
which the letters in some positions are replaced by wildcards. Let u ∈ SF, P ⊂ N.
We denote by uP the partial word obtained by replacing the letters in u at the
positions from P by wildcards. We call P a wildcard set for u if uP ∈ PSF. The
maximum density of a wildcard set for u is a natural combinatorial characteristic
of u; we call it flexibility1. The original question about the density of wildcards
can be reformulated as
1 As mentioned above, some sets do not have density; to avoid additional notions
we postulate that upper (lower) bounds on flexibility should work for upper (resp.,
lower) densities of the corresponding wildcard sets.
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– What is the maximum flexibility of an infinite ternary square-free word?

We give an upper bound in Sect. 4.1 and a matching lower bound in Sect. 4.2.
Another natural question is about words of zero flexibility. We say that an infinite
word u ∈ SF is rigid (resp., almost rigid) if it has no nonempty wildcard sets
(resp., only finite wildcard sets). In Sect. 3.1, we characterize a class of almost
rigid words and find a series of rigid words in it.

Codewalks. The representation of ternary square-free words described in this
subsection was proposed in [14]. These words contain three-letter factors of the
form xyx, called jumps (of one letter over another). Jumps occur quite often:
if u[i..i+2] is a jump in u ∈ SF, then the next jump in u occurs at one of
the positions i+2, i+3, i+4. (A jump at position i+1 produces a 2-square at
position i, while no jump up to position i+5 leads to a 3-square at position i+1.)
Moreover, a jump in a word can be uniquely reconstructed from the previous (or
the next) jump and the distance between them. Indeed, let u[i..i+2] = xyx. If
the next jump is in the position i+2 (resp., i+3, i+4), then u[i..i+4] = xyxzx
(resp., u[i..i+5] = xyxzyz, u[i..i+6] = xyxzyxy). Thus,

(�) a word u ∈ SF can be uniquely reconstructed from the following information:
the leftmost jump, its position, the sequence of distances between successive
jumps, the number of positions after the last jump (for finite words).

The property (�) allows one to encode square-free words by walks in the
weighted K33 graph shown in Fig. 1. A word u ∈ SF is encoded by the
walk visiting the vertices in the order in which jumps occur when read-
ing u left to right. If the leftmost jump occurs in u at position i > 1,
then we add the edge of length i−1 to the beginning of the walk; note
that in this case the walk begins with an edge, not a vertex. A symmetric

aba bcb cac

bab cbc aca

3

2

1
1 3 2

2

1

3

Fig. 1. The graph of jumps in ternary
square-free words. Vertices are jumps; two
jumps that can follow each other in a
square-free word are connected by an edge
of length i, where i is the number of
positions between the starting positions of
these jumps. Due to symmetry, the graph
is undirected.

procedure applies to the end of u if
u is finite. By (�), we can omit the
vertices (except for the first one), keep-
ing just the lengths of edges and mark-
ing the “hanging” edges in the begin-
ning and/or the end. Due to symme-
try, we can omit even the first vertex,
retaining all information about u up to
renaming the letters. For example, u =
abcbabcacbacabc has the jumps (left to
right) bcb, bab, cac, aca and is encoded,
according to Fig. 1, by 11232.

Such a code is called codewalk
and denoted by cwk(u). The code-
walk 11232 is decoded by any word
xyzyxyzxzyxzxyz, where {x, y, z} =
{a, b, c}. Note that the choice of decoding does not affect the properties concern-
ing periods and squares. A codewalk is closed if it marks a closed walk without
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hanging edges in K3,3; e.g., 121212 is closed and 1212 is not. For a codewalk w
without hanging edges, its literal length �(w) is the distance between the posi-
tions of the last and the first jumps in the decoded word; it can be computed by
adding |w| to the sum of digits of w. Note that if a codewalk wv = cwk(u) has
period |w| and w is closed, then u has period �(w).

Clearly, not all walks in the weighted K33 graph encode square-free words.

Remark 4. The codewalk 11 is decoded by a word of the form xyxzxyx, which
is square-free but cannot be extended to a square-free word by any letter. This
property is shared by the codewalk 333 and, moreover, by any codewalk of the
form v3v, where v3 is closed. The codewalks of the form vxv, where x ∈ {1, 2}
and vx is closed, encode words containing squares. The codewalks 223 and 322
decode to square-free words that cannot be extended by any letter to the left
(resp., to the right).

A sufficient condition for square-freeness was proved in [14].

Lemma 5. A codewalk having (a) no factors 11, 222, 223, 322, 333, and (b) no
factors of the form vxyv, where x, y are symbols and the codewalk vxy is closed,
encodes a square-free word.

3 White and Black Positions

Assume that u ∈ SF is fixed. We say that a position i is white if it belongs
to some wildcard set for u and black otherwise. Usually, the set of all white
positions is not a wildcard set for u, because some white positions “interact” in
the sense that a wildcard set can contain some of them but not all of them; the
simplest interactions are considered in Lemma 10 below.

We start the study of white and black positions with the following criterion.

Proposition 6. Given a fixed u ∈ SF, a position i is black if for some factor
vxv of u, where v �= λ and x ∈ Σ, i is either the position of x, or the position
preceding the left v, or the position following the right v. Otherwise, i is white.

Proof. The set of wildcard sets for u is closed downwards by Lemma 1. Then a
position i is white if and only if {i} is a wildcard set for u. Placing a wildcard
in a position described in the conditions of the proposition gives us a (|v|+1)-
square, so all such positions are black. Conversely, let some position i be black
and x = u[i]. Since {i} is not a wildcard set, u has a factor of the form vxwvyw,
turning into a square when x is replaced by a wildcard. If either v or w is empty,
the position of x satisfies the conditions of the proposition. Otherwise, note that
x �= y and w[1] = v[|v|] = z, where z �= x, z �= y since u is square-free. Hence
u[i−1..i+1] = zxz, and the position of x satisfies the conditions again. 	

Example 7. The word u = abcbabcacb has two white positions: 2 and 9. All other
positions are black by Proposition 6; e.g., the factor u[2..4] = bcb makes black
the positions 1, 3, and 5, while 4 and 8 are black due to u[1..7] = abc b abc. If we
consider u′ = u[2..10] instead of u, the position of the second b (now position 3)
will be white. More generally,
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(∗) in some words with the prefix xyxzx the position 3 is white.

The distribution of white positions in infinite square-free words (and in their
finite factors) is densely related to jumps.

Proposition 8. Let u ∈ SF be an infinite word.
(1) Every white position in u is either the first or the last position of a jump.
(2) Modulo the single exclusion (∗), every jump in u contains at most one white
position, and every white position belongs to exactly one jump.

Proof. The middle position of a jump and a position adjacent to a jump are
black by Proposition 6. Since two consecutive jumps are separated by at most
one position, statement 1 is proved.

Consider two consecutive jumps in u. Depending on the length of the edge
between them, they form a factor v1 = xyxzx, v2 = xyxzyz, or v3 = xyxzyxy
(see Fig. 1). The position of the middle x in v1 is black if v1 is not a prefix of
u (cf. Example 7); if v1 is a prefix, then we have the exclusion (∗). Applying
Proposition 6 to v2 and v3 we see that all positions except for 1, 6 in v2 and for
3, 5 in v3 are black. Statement 2 now follows. 	


So, the further study of the distribution of the white positions in a word
should clarify which jumps contain white positions and which do not. From the
proof of Proposition 8 we have the following basic picture (see Fig. 2). We call
the positions of question marks potentially white.

? ? ? ? ? ?

Fig. 2. Black and potentially white positions in the pairs of consecutive jumps. The
jumps in the left (resp., middle, right) picture are connected in the K33 graph by the
edge of length 1 (resp., 2, 3).

Our main interest is in the asymptotic distribution of white positions in
infinite words. So we pay little attention to special cases concerning prefixes of
these words (like (∗) and “almost squares” described in Remark 4). We call a
factor of a codewalk regular if it is not its prefix. The following three lemmas
form the basis for the proof of our main results.

Lemma 9. A jump in u ∈ SF contains no white position if it is located in the
place indicated by a dot in any of the following regular factors of cwk(u):

1.2, 2.1, 2.2, 3.3, 13., .31, .1221., .2332., (1)

.1212.321, 123.2121., .13132312., .21323131., 323.1321., .1231.323 (2)
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Proof. For the first four factors in (1), it is enough to look at Fig. 2. In the jump
that follows 1 in the codewalk, the last position is potentially white; but if the
next edge has length 2, this position is black. The same argument works for
21, 22 and 33.

For the remaining factors we use Proposition 6. Decoding each of these factors
(together with its unique extension if necessary), we get a factor of u of the form
vxv; for convenience, the v’s are overlined:

113 → zxyxzxyzzzxz 12123212 → xxxyxzxyzyxyzxzzzyxzxyzyxyzx
311 → xyxxxzyxyzyx 21232121 → xzyxyzyxzxyzzzxzyxyzyxzxyxxx
1221 → xxxyxzxyzyxzxyxxx 13132312 → xxxyxzxyzxzyzxyzyxzxyzxzyzxyxxx
2332 → xxxyxzyzxyzyxzyzxyxxx 21323131 → xxxyxzyzxzyxzxyzyxzyzxzyxzxyxxx

13231321 → xzyzxyzyxzxyzzzxzyzxyzyxzxyxxx
12313231 → xxxyxzxyzyxzyzxzzzyxzxyzyxzyzx

In the jumps indicated by dots, the potentially white positions are those with
boldface letters (see Fig. 2); all these positions are black by Proposition 6. 	

Lemma 10. For every u ∈ SF and every i > 1, a wildcard set for u cannot
contain simultaneously i and i+5, or i and i+6.

Proof. Assume that both positions i and i+5 are white (otherwise, there is
nothing to prove). Examining the location of white positions in jumps (Fig. 2),
we see the only possibility: these positions are located in consecutive jumps
connected by an edge of length 2 (the middle picture). This 2 in the codewalk
gives a factor of the form zxyxzyzx (note that i > 1, so the initial z exists).
Placing wildcards in both white positions, we get a partial 4-square z�yx zy�x.

A slightly longer analysis shows that the white positions i and i+6 are always
in the jumps connected by the codewalk 33: they cannot be connected by 11 by
Remark 4 and by 13 or 31 by Lemma 9. The codewalk 33 gives us a factor of
the form xyxzyxyzxyx. If we place wildcards in both white positions, we get a
partial word starting with a partial 5-square xy�zy xyz�y. 	

Lemma 11. Let P be a wildcard set for an infinite word u ∈ SF, j, j+k ∈ P
and j+1, . . . , j+k−1 /∈ P . Then (1) k /∈ {1, 3, 5, 6, 8}, (2) if k = 2 (resp.,
k = 4; k = 7) then j, j+k are located in jumps connected by 3 (resp., by 1; by
one of the paths 12, 21, 23, or 32) in cwk(u).

Proof. The statement readily follows from Proposition 8 and Fig. 2 for k =
1, 2, 3, 4 and from Lemma 10 for k = 5, 6. Further, it is easy to check that the
distance between potentially white positions in jumps connected by a codewalk
of length 3 is at least 9. Thus, for k = 7, 8 the jumps containing j and j+k are
connected by a two-edge codewalk. This codewalk is not 11 by Remark 4, not 13
or 31 by Lemma 9, and not 33 by Lemma10. If it equals 12, 21, 23, or 32, we have
k = 7. If it equals 22, we have k = 8. But 22 is followed by 1 in cwk(u), which
means that the position j+k is black by Lemma 9, contradicting the condition
j+k ∈ P . Hence, k �= 8. The lemma is proved. 	
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3.1 Rigid Words

Lemma 9 implies the following result about almost rigid words.

Proposition 12. Let u ∈ SF be an infinite word. If cwk(u) contains finitely
many 3’s, then u is almost rigid.

It is not a priori clear whether a word required in Proposition 12 (or, equiv-
alently, an infinite word u ∈ SF such that cwk(u) contains no 3’s) exists. For-
tunately, this is the case. Consider the alphabet {1, 2} and take the Fibonacci
word F which is the fixed point of the morphism φ:

φ(2) = 21, φ(1) = 2; F = 2122121221221 · · ·
The 1-2-bonacci word is the ternary word F12 = ab · · · such that cwk(F12) = F.
As was proved in [13], lexp(F12) = 11/6. This means the existence of an infinite
set of rigid square-free words, as the next proposition shows.

Proposition 13. Any suffix u of the 1-2-bonacci word such that cwk(u) =
11221 · · · is a rigid square-free word.

Proof. By Proposition 8(2), every jump in u has at most one white position:
since u = xyz · · · , we avoid the case (∗). By Lemma 9, all positions in the jumps
are black. The first position of u precedes a jump, so it is also black. 	


4 Proofs of Main Results

4.1 Upper Bound on Flexibility

Theorem 14. The flexibility of any infinite word w ∈ SF is at most 3/16.

Proof. Let P be any infinite wildcard set for w. We aim at building a factor-
ization w = u0u1 · · · un · · · such that the lengths of all factors ui are bounded
and ui contains pi ≤ 3|ui|

16 positions from P for any i > 0. The existence of such
a factorization implies the upper bound 3/16 on the upper density of P , thus
proving the theorem.

We factorize w greedily from left to right, checking that each factor ui, i > 0,
satisfies the conditions |ui| ≤ 22, pi ≤ 3|ui|

16 , and begins with a position from
P whenever pi > 0. To define the position of u1, consider the third from the
left jump in w. By Proposition 8, it contains at most one position from P . If
it contains a position from P , u1 begins at this position; otherwise, it begins
at any position of this jump. Now assume that all factors up to ui−1 are built
and ui begins at the jth position of w. We should define k = |ui|. Let l <
l′ < l′′ < l′′′ be the first four positions from P on the right of j. If j /∈ P ,
then put k = min{22, l−j}. If j ∈ P , the choice of k depends on the distances
between j, l, l′, l′′, l′′′ and is described in Table 1. In all possible cases ui satisfies
the prescribed conditions; the desired factorization is thus constructed. 	
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Table 1. Choosing the length of ui in the proof of Theorem14. The possible distances
between consecutive positions from P as well as the corresponding fragments of cwk(w)
are taken from Lemma 11. For impossible sets of distances, the contradictions are given.

l − j l′ − l l′′ − l′ l′′′ − l′′ Fragment of cwk(w) k pi
3k
16

≥ 7 any any any irrelevant min{22, l−j} 1 ≥ 21
16

4 ≥ 7 any any irrelevant min{22, l′−j} 2 ≥ 33
16

4 4 any any
j
|1

l
|1

l′
| w /∈ SF by Remark 4

4 2 any any
j
|1

l
|3

l′
| l′ /∈ P by Lemma9

2 ≥ 9 any any irrelevant min{22, l′−j} 2 ≥ 33
16

2 7 ≥ 7 any irrelevant min{22, l′′−j} 3 ≥ 3

2 7 4 ≥ 9 irrelevant 22 4 66
16

2 7 4 7
j
|3

l
|R

l′
|1
l′′
|Q

l′′′
| R ∈ {12, 32}: l′ /∈ P by Lemma9

Q ∈ {21, 23}: l′′ /∈ P by Lemma9

R = 21 or Q = 12: w /∈ SF by Remark 4

R = 23, Q = 32: l′ /∈ P by Lemma9(2)

2 7 4 4
j
|3

l
|R

l′
|1
l′′
|1
l′′′
| w /∈ SF by Remark 4

2 7 4 2
j
|3

l
|R

l′
|1
l′′
|3
l′′′
| l′′′ /∈ P by Lemma9

2 7 2 any
j
|3

l
|R

l′
| 3

l′′
| j [resp. l; l′; l′′] /∈ P by Lemma9

for R = 12 [resp. 32; 23; 21]

2 4 any any
j
|3

l
|1

l′
| j /∈ P by Lemma9

2 2 any any
j
|3

l
|3

l′
| l /∈ P by Lemma9

4.2 Word of Maximal Flexibility

Return to the 1-2-bonacci word from Sect. 3.1 and consider the codewalk H =
η(F12), where the morphism η : Σ∗ → {1, 2, 3}∗ is defined by

η(a) = 1232 132323
η(b) = 1232 13232 132323
η(c) = 1232 132323 12323

Theorem 15. The word G = ab · · · with the codewalk H is square-free and has
flexibility 3/16.

Proof. To prove square-freeness of G, it suffices to show that H satisfies the
conditions of Lemma5. The condition (a) is obviously satisfied; let us check (b).
Note that any conjugate of a closed codewalk is closed; hence if g is a codewalk
with period p and some factor of g of length p is a closed codewalk, then all
such factors are closed. According to the condition (b), our aim is to prove that
for any closed codewalk h its extension in H, denoted below by g, has length
< 2|h| − 2. Since K3,3 is bipartite, closed codewalks have even lengths.
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It is easy to check (b) for closed walks of length 4 (1232 and 1323) and 6 (no
such codewalks in H). So let |h| ≥ 8. Assume to the contrary that |g| ≥ 2|h| − 2.
Then g has a factor of length |h| beginning with 1. So we assume w.l.o.g. that h
begins with 1. We call the codewalks 1232, 12323, 13232, 132323 miniblocks; they
constitute the blocks η(a), η(b), η(c). Let h = u1 · · · unun+1, where u1, . . . , un

are miniblocks, while un+1 is a prefix of a miniblock but not a miniblock itself.
Then h is followed in H by a symbol distinct from 1 = h[1]. Hence g ends at
the same position in H as h. On the other hand, g extends h to the left by less
than |un+1| < 6 symbols. Since |h| ≥ 8, this contradicts our assumption on |g|.
Therefore, h is a product of miniblocks.

To know which codewalks are closed, we partition them into six types: λ,
1, 2, 3, 12, and 13. A codewalk u has type t = type(u) if the paths in K3,3 with a
common starting point and labels u and t, respectively, have a common endpoint.
In particular, the codewalks of type λ, and only they, are closed. The concatena-
tion of codewalks has the same type as the concatenation of their types, and the
latter can be easily computed by Fig. 1. For miniblocks, one has type(1232) = λ,
type(12323) = 3, type(13232) = 2, type(132323) = 12.

A direct check of types of concatenations of miniblocks shows that h, which
is closed, is long enough; in particular, h contains at least two occurrences of the
miniblock 1232, each followed by 1 (not by 3). Then some factor of g of length |h|
starts with the leftmost factor 12321 in g (otherwise g would be too short); we
assume w.l.o.g. that h begins with this leftmost 12321. Then h = η(w)u, where
w �= λ and u is a proper prefix of a block, but not a block. If u is nonempty,
h is not followed by 12321 in H, so g extends h to the right by at most four
symbols. At the same time, g extends h to the left by less than |u| symbols. This
contradicts our assumption on |g|. Therefore, h = η(w) is a product of blocks.
Note that type(η(a)) = 12, type(η(b)) = 3, type(η(c)) = 2. Since h is closed,
|w| ≥ 3; e.g., type(η(abc)) = λ. Let w = x1 · · · xn.

By the choice of h and square-freeness of F12, the extension of w in F12 equals
x1 · · · xnx1 · · · xn−i for some i ≥ 1. Hence this extension occurs in F12 inside the
factor ŵ = x̄x1 · · · xnx1 · · · xn−ix̂, where x̄ �= x1, xn; x̂ �= xn−i, xn−i+1. Then
|g| = 2|h| − |η(xn−i+1 · · · xn)| + M + N , where M is the length of the common
suffix of η(x̄) and η(xn), while N is the length of the common prefix of η(x̂ · · · )
and η(xn−i+1 · · · ). One has M = 9 for the pair (a, b) and M = 4 otherwise;
N = 14 for the pair (a, c) and N = 9 otherwise. If i > 2, then clearly |g| < 2|h|−2;
hence i ≤ 2.

Case i = 1. Since lexp(F12) = 11/6, we have |w| ≤ 6. Note that F12 has
no factors of the form xyzxy, because F contains no 3’s (this is why we have
chosen F12 as the argument of η); hence |w| ≥ 4. It is easy to check that the only
candidates to w have the form xyzy or xyzyxz, but then η(w) is not closed for
any values of x, y, and z.

Case i = 2. We have M = 9, N = 14, |η(xn−1xn)| = 25, and, respectively,
|g| = 2|h| − 2. Then x̄ ∈ {a, b}, x̂ ∈ {a, c}, a ∈ {xn−1, xn}. By square-freeness of
F12 we get

ŵ = b c u bca c u b a or ŵ = a c u bab c u b c ,
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where w is underlined, u ∈ Σ∗. We have exp(ŵ) ≤ 11/6 and then |w| ≤ 12. It
appears that the only possibility for u, giving a square-free word ŵ such that
cwk(ŵ) contains no 3’s, is u = ba (resp., u = ca) for the left (resp., right) case.
But then η(w) is not closed. This finishes the proof of condition (b); so G is
square-free by Lemma 5.

To find the flexibility of G, we need a technical lemma.

Lemma 16. All factors of G of the forms vxv and vxyv have periods ≤ 10.

Proof. Consider a factor w = vuv of G with the minimal period p = |vu| ≥ 11 and
minimal possible |u|. Then w is the extension of vu. Aiming at a contradiction,
assume that |u| ≤ 2. Consider the codewalk w′ starting at the leftmost jump
and ending at the rightmost jump in w. Since v is long enough to contain at
least two jumps, the walk between the leftmost and the rightmost jump in v
repeats twice, so w′ = v′u′v′, where v′u′ is closed and �(v′u′) = p. Now compute
|w|. By the definition of extension, the left and right v in w are preceded (and
also followed) in G by different letters. Hence the first (resp., last) jump in w is
preceded (resp., followed) by at most two letters. The length of the last jump is
3, and the remaining part of w has length �(v′u′v′). Thus, |w| ≤ 2p − �(u′) + 7.
Since w′ is a factor of H, we know that |u′| ≥ 3 by condition (b). Then �(u′) ≥ 9,
where the equality takes place for u′ = 123, 132, 213, 231, 312, 321. If �(u′) ≥ 10,
we obtain |w| ≤ 2p− 3 and |u| ≥ 3, contradicting our assumption. Let �(u′) = 9.
Then v′[|v′|] ∈ {2, 3}. Since H has no factors 22 and 33, either u[1] or the symbol
following w′ in H is 1. Hence the last jump in w is followed by just one letter,
not two; we again have |w| ≤ 2p − 3, contradicting the assumption |u| ≤ 2. 	


By Lemma 16 and Proposition 6, the potentially white positions in all jumps
in G, except for those described in Lemma 9(1), are white. The set P of all white
positions in G is periodic with period 16 and has density 3/16. Indeed, white
positions in the jumps connected by 3 (resp., 12, 23, 21, 32) in the codewalk, are
at distance 2 (resp., 7) by Lemma 11:

G = 12|3|21|32|3|23|12|3|21|32|3|21|32|3|23|12|3|21|32|3|23|12|3|23| · · ·

It remains to prove that P is a wildcard set. Assume to the contrary that the
partial word GP contains a partial square vv′, m = |v|. A direct check shows
that m > 10. We transform vv′, whenever possible, replacing back wildcards
with the letters from the same positions of G. The replacement rules are as
follows. Consider all pairs (v[i], v′[i]). If one symbol is x and the other is a
wildcard obtained from x, replace the wildcard; if both are wildcards obtained
from the same x, replace both; if both are wildcards obtained from different
letters, replace one of them. Let uu′ be the resulting partial square. At least one of
the words u[2..m−1], u′[2..m−1] contains a wildcard; otherwise G has the factor
u[2..m−1]u[m]u′[1]u[2..m−1] with period m, contradicting Lemma 16. W.l.o.g.,
u[i] is a wildcard obtained from a letter z and 1 < i < m. Then u′[i] = y �= z.
One of the letters u[i−1], u[i+1] is y; the corresponding letter of u′ cannot be
y, hence it is a wildcard. Thus, the wildcard u[i] matches a letter adjacent to
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another wildcard. This condition is quite restrictive. A case analysis shows that
only short factors of GP match under this condition, and the square uu′ cannot
exist. This finishes the proof of square-freeness of GP and thus of the theorem.

Some details of the case analysis follow. Up to symmetry, there are two
possible fragments of G that can contain the position of u[i] (this position is
indicated by a wildcard replacing z):

2|32: x y x z y � x yyy z y x z x 21|3: z xxx y x z y z x � y x z x
yyy z xxx y x z z y x z y z x y xxx

zzz y x z z x y zzz x z
y x z xxx y zzz x z y x zzz y xxx

x z y x yyy z xxx y x z z yyy x y
z y x zzz y z zzz x y

zzz x yyy y z yyy x zzz

Below each line, the maximal factors of G that match the top word are given;
here all boldface symbols occupy white positions and can be replaced by wild-
cards. These factors are computed to satisfy both Fig. 2 and the structure of
the codewalk H. For example, the factor w = yxzxxxyzzzxzyx in the left column
contains two white positions at distance 2, so the corresponding jumps are sur-
rounded by 2’s in H: 2|3|2. Then w is preceded by z and followed by y, the letters
mismatching their counterparts in the top word. 	


4.3 Morphic and Substitutional Flexible Words

The flexibility of well-known square-free words is of certain interest. The proofs
of the next results are similar to Theorem 15 and omitted due to space con-
straints. The result of Theorem 17 is the best we have for purely morphic words.

Theorem 17. The Dejean word [6] has flexibility 2/19.

Theorem 18. The Arshon word [1] has flexibility 1/9.

5 Conclusion and Open Problems

The problem of finding the maximum density of wildcards in a ternary infinite
square-free partial word can be conveniently reformulated in terms of placing
wildcards at some positions in square-free words. We developed a technique to
find the appropriate sets of positions (wildcard sets) and define flexibility of a
square-free word as the maximum density of its wildcard set. We proved that
the maximum flexibility of a ternary square-free word is 3/16. Besides that, we
proved the existence of rigid words, having no positions for wildcards at all. Two
open problems can direct further development of this topic:

1. What is the maximum flexibility of a morphic/purely morphic ternary square-
free word?

2. What is the minimum local exponent of a rigid word?
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