
Distributional Learning
and Context/Substructure Enumerability

in Nonlinear Tree Grammars

Makoto Kanazawa1(B) and Ryo Yoshinaka2,3P

1 Principles of Informatics Research Division, National Institute of Informatics
and SOKENDAI, Tokyo, Japan

kanazawa@nii.ac.jp
2 Graduate School of Informatics, Kyoto University, Kyoto, Japan

3 Graduate School of Information Sciences, Tohoku University, Sendai, Japan

Abstract. We study tree-generating almost linear second-order ACGs
that admit bounded nonlinearity either on the context side or on the
substructure side, and give distributional learning algorithms for them.

1 Introduction

Originally developed for efficient learning of context-free languages [3,13], the
method of distributional learning under the paradigm of identification in the
limit from positive data and membership queries has been successfully applied to
a number of more complex grammatical formalisms that derive objects (strings,
trees, λ-terms, etc.) through local sets of derivation trees [9,12,14]. In these
formalisms, a subtree s of a complete derivation tree t = c[s] contributes a
certain “substructure” S = φ(s) which is contained in the whole derived object
T = φ(t), and the remaining part c[] of the derivation tree contributes a function
C = φ(c[]) that maps S to T = C(S). We can think of C as a “context” that
surrounds S in T . Fixing a class G of grammars fixes the set S of possible
substructures and the set C of possible contexts that may be contributed by
parts of possible derivation trees. Each language L generated by a grammar in
G acts as an arbiter that decides which context C ∈ C should “accept” which
substructure S ∈ S (i.e., whether C(S) ∈ L).

Distributional learning algorithms come in two broad varieties. In the primal
approach, the learner first extracts all substructures and all contexts that are
contained in the input data, which is a finite set of elements of the target language
L∗. The learner then collects all subsets of the extracted substructures whose
cardinality does not exceed a certain fixed bound m. These subsets are used as
nonterminal symbols of the hypothesized grammar. Out of all possible grammar
rules that can be written using these nonterminals, the learner lists those that
use operations that may be involved in the generation of the objects in the
input data. In the final step of the algorithm, the learner tries to validate each
of these rules with the membership oracle, which answers a query “C(S) ∈ L∗?”
in constant time. If a rule has a set S of substructures on the left-hand side and
c© Springer-Verlag Berlin Heidelberg 2016
A. Foret et al. (Eds.): FG 2015/2016, LNCS 9804, pp. 94–111, 2016.
DOI: 10.1007/978-3-662-53042-9 6

Distributional Learning and Context/Substructure Enumerability 95

sets S1, . . . ,Sr on the right-hand side, and the grammatical operation associated
with the rule is f , then the learner determines whether the following implication
holds for all contexts C extracted from the input data:

C(S) ∈ L∗ for all S ∈ S implies
C(f(S1, . . . , Sn)) ∈ L∗ for all S1 ∈ S1, . . . , Sn ∈ Sn. (1)

The grammar conjectured by the learner includes only those rules that pass this
test.

The idea of the rule validation is the following: It is dictated that the elements
of the nonterminal S together characterize the set of all substructures that can
be derived from S by the hypothesized grammar in the sense that every context
C ∈ C that accepts all elements of S must accept all substructures derived from
S. Thus, only those rules that are consistent with this requirement are allowed
in the hypothesized grammar. A remarkable property of the algorithm is that it
successfully learns the language of every grammar in the given class G that has
the m-finite kernel property in the sense that each nonterminal is characterized
by a set of substructures of cardinality up to m.

In the dual approach to distributional learning, the role of contexts and sub-
structures is switched. The learner uses as nonterminals subsets of the contexts
extracted from the input data with cardinality ≤ m, and uses the extracted
substructures to validate candidate rules. The algorithm learns those languages
that have a grammar with the m-finite context property in the sense that each
nonterminal is characterized by a set of contexts of cardinality ≤ m.

Whether each of these algorithms runs in polynomial time in the size of the
input data D depends on several factors that are all determined by the grammar
class G. The foremost among them is the enumeration of the two sets

S|D = {S ∈ S | C(S) ∈ D for some C ∈ C },

C|D = {C ∈ C | C(S) ∈ D for some S ∈ S }.

There are two possible difficulties in enumerating each of these sets in polynomial
time. First, the sheer number of elements of the set may be super-polynomial,
in which case explicit enumeration of the set is not possible in polynomial time.
Second, recognizing which substructure/context belongs to the set may be com-
putationally costly. The second problem, even when it arises, can often be dealt
with by replacing the set in question by a more easily recognizable superset
without disrupting the working of the algorithm. The first problem is the more
pressing one.

With all linear grammar formalisms to which distributional learning has
been applied, neither of these two difficulties arise. When these formalisms are
extended to allow nonlinearity in grammatical operations, however, the problem
of super-polynomial cardinality hits hard. Thus, with parallel multiple context-
free grammars, the nonlinear extension of multiple context-free grammars (suc-
cessfully dealt with in [12]), the set C becomes a much larger set, even though S

stays exactly the same. As a result, the cardinality of C|D is no longer bounded
by a polynomial. The situation with IO context-free grammars, the nonlinear

96 M. Kanazawa and R. Yoshinaka

extension of the simple context-free tree grammars (treated in [9]), is even worse.
Both of the sets S|D and C|D become super-polynomial in cardinality.

When only one of the two sets S|D and C|D is of super-polynomial cardinality,
as is the case with PMCFGs, however, there is a way out of this plight [4]. The
solution is to restrict the offending set by a certain property, parametrized by
a natural number, so that its cardinality will be polynomial. The parametrized
restriction leads to an increasing chain of subsets inside S or C. In the case of
PMCFGs, we get C1 ⊂ C2 ⊂ C3 ⊂ · · · ⊂ C =

⋃
k Ck, where Ck is the set of

all possible contexts that satisfy the property with respect to the parameter k.
The actual property used by [4] was a measure of nonlinearity of the context
(“k-copying”), but this specific choice is not crucial for the correct working of
the algorithm, as long as Ck|D can be enumerated in polynomial time. The
learning algorithm now has two parameters, m and k: the former is a bound on
the cardinality of sets of contexts the learner uses as nonterminals as before, and
the latter is a restriction on the kind of context allowed in these sets. The class
of languages successfully learned by the algorithm includes the languages of all
grammars in the target class that have the (k,m)-finite context-property in the
sense that each nonterminal is characterized by a subset of Ck of cardinality ≤ m.

This algorithm does not learn the class of all grammars with the m-finite con-
text property, but a proper subset of it. Nevertheless, the parametrized restric-
tion has a certain sense of naturalness, and the resulting learnable class properly
extends the corresponding linear class, so the weaker result is interesting in its
own right.

In this paper, we explore the connection between distributional learning
and context/substructure enumerability in the general setting of almost linear
second-order abstract categorial grammars generating trees [5–7] (“almost lin-
ear ACGs” for short). This class of grammars properly extends IO context-free
tree grammars and is equivalent in tree generating power to tree-valued attribute
grammars [1]. In fact, the expressive power of typed lambda calculus makes it
possible to faithfully encode most known tree grammars within almost linear
ACGs.

Like IO context-free tree grammars and unlike PMCFGs, almost linear ACGs
in general do not allow polynomial-time enumerability either on the context side
or on the substructure side. Only very special grammars do, and an interesting
subclass of them consists of those grammars that allow only a bounded degree
of nonlinearity in the contexts (or in the substructures). It is easily decidable
whether a given ACG satisfies each of these properties. We show that both of
the resulting classes of grammars indeed allow a kind of efficient distributional
learning similar to that for PMCFGs.

2 Typed Lambda Terms and Almost Linear ACGs

2.1 Types and Typed Lambda Terms

We assume familiarity with the notion of a simply typed λ-term (à la Church)
over a higher-order signature Σ = (AΣ , CΣ , τΣ), where AΣ is the set of atomic

Distributional Learning and Context/Substructure Enumerability 97

types, CΣ is the set of constants, and τΣ is a function from CΣ to types over AΣ .
We use standard abbreviations: α1→· · ·→αn→p means α1→(· · ·→(αn→p) . . .),
and λxα1

1 . . . xαn
n .MN1 . . . Nm is short for λxα1

1λxαn
n .((. . . (MN1) . . .)Nm).

The arity of α = α1 → · · · → αn → p with p ∈ AΣ is arity(α) = n. We write
βn → p for the type β → · · · → β → p of arity n.

We take for granted such notions as β- and η-reduction, β-normal form,
and linear λ-terms. We write �β and �η for the relations of β- and η-reduction
between λ-terms. Every typed λ-term has a β-normal form, unique up to renam-
ing of bound variables, which we write as |M |β .

The set LNFα
X(Σ) of λ-terms of type α in η-long β-normal form (with free

variables from X) is defined inductively as follows:

– If xα1→···→αn→p ∈ X, M1 ∈ LNFα1
X (Σ), . . . , Mn ∈ LNFαn

X (Σ), and p ∈ AΣ ,
then xα1→···→αn→pM1 . . . Mn ∈ LNFp

X(Σ).
– If c ∈ CΣ , τΣ(c) = α1→· · ·→αn→p, p ∈ AΣ , and M1 ∈ LNFα1

X (Σ), . . . , Mn ∈
LNFαn

X (Σ), then cM1 . . . Mn ∈ LNFp
X(Σ).

– If M ∈ LNFβ
X∪{xα}(Σ), then λxα.M ∈ LNFα→β

X (Σ).

We often suppress the superscript and/or subscript in LNFα
X(Σ). Note that

LNFα
∅

(Σ) denotes the set of closed λ-terms of type α in η-long β-normal form.
We note that if M ∈ LNFα→β(Σ) and N ∈ LNFα(Σ), then |MN |β ∈ LNFα(Σ).

Henceforth, we often suppress the type superscript on variables. This is just
for brevity; each variable in a typed λ-term comes with a fixed type.

We use strings over {0, 1} to refer to positions inside a λ-term or a type. We
write ε for the empty string, and write u ≤ v to mean u is a prefix of v. When
u = u′0i, we refer to u′ as u0−i.

The shape of a type α, written [α], is defined by

[p] = {ε} if p is atomic, [α → β] = {ε} ∪ { 1u | u ∈ [α] } ∪ { 0u | u ∈ [β] }.

The elements of [α] are the positions of α. A position u is positive if its parity
(i.e., the number of 1s in u modulo 2) is 0, and negative if its parity is 1. We write
[α]+ and [α]− for the set of positive and negative positions of α, respectively.
A position u of α is a subpremise if u = u′1 for some u′. Such an occurrence is
a positive (resp. negative) subpremise if it is positive (resp. negative). We write
[α]+sp (resp. [α]−sp) for the set of positive (resp. negative) subpremises of [α].

If u ∈ [α], the subtype of α occurring at u, written α/u, is defined by

α/ε = α, (α → β)/0u = β/u, (α → β)/1u = α/u.

If α/u = β, we say that β occurs at position u in α.
Given a λ-term M , the shape of M , written [M], is defined by

[M] = {ε} if M is a variable or a constant,
[MN] = {ε} ∪ { 0u | u ∈ [M] } ∪ { 1u | u ∈ [N] },

[λx.M] = {ε} ∪ { 0u | u ∈ [M] }.

98 M. Kanazawa and R. Yoshinaka

The elements of [M] are the positions of M .
If u ∈ [M], the subterm of M occurring at u, written M/u, is defined by

M/ε = M, (MN)/0u = M/u, (MN)/1u = N/u, (λx.M)/0u = M/u.

When N = M/u, we sometimes call u an occurrence of N (in M).
When v ∈ [M] but v0 �∈ [M], M/v is a variable or a constant. For each

u ∈ [M], we refer to the unique occurrence of a variable or constant in [M]
of the form u0k as the head of u (in M); we also call the variable or constant
occurring at the head of u the head of M/u.

A position v ∈ [M] binds a position u ∈ [M] if M/u is a variable x and v is
the longest prefix of u such that M/v is a λ-abstract of the form λx.N . When v
binds u in M , we write v = bM (u). When every occurrence in M of a λ-abstract
is the binder of some position, M is called a λI-term.

Let M ∈ LNFα
∅

(Σ). Note that an occurrence v ∈ [M] of a variable or a
constant of type β with arity(β) = n is always accompanied by n arguments, so
that v0−i is defined for all i ≤ n. The set of replaceable occurrences [2] of bound
variables in M and the negative subpremise nspM (u) of α associated with such
an occurrence u, are defined as follows:1

(i) If bM (u) = 0j−1 for some j ≥ 1 (i.e., bM (u) is the jth of the leading λs of
M), then u is replaceable and nspM (u) = 0j−11.

(ii) If bM (u) = v0−i10j−1 for some replaceable v and i, j ≥ 1 (i.e., bM (u) is the
jth of the leading λs of the ith argument of v), then u is replaceable and
nspM (u) = nspM (v)0i−110j−11.

It is easy to see that the following conditions always hold:

– If u is a replaceable occurrence of a bound variable xβ , then β = α/nspM (u).
– If M is a λI-term (in addition to belonging to LNFα

∅
(Σ)), then for every

v ∈ [α]−sp, there exists a u ∈ [M] such that nspM (u) = v.

Example 1. Let

M = λyo
1y

o→(o→(o→o)→o)→o
2 .y2(fy1a)(λyo

3y
o→o
4 .f(y4(fy3y1))(y4(fy3y1))).

Then M ∈ LNFα
∅

(Δ), where Δ contains constants f, a of type o → o → o and o,
respectively, and

α =
1
o → (o → (

01011
o → (o → o︸ ︷︷ ︸

010101

) → o

︸ ︷︷ ︸
0101

) → o

︸ ︷︷ ︸
01

) → o.

1 A definition equivalent to nspM (u) for untyped λ-terms is in [2] (access path).
The correspondence between these paths and negative subpremises for typed linear
λ-terms is in [10].

Distributional Learning and Context/Substructure Enumerability 99

– The bound variable yo
1 occurs in M at three positions, 000101, 001000111,

00100111, whose binder is ε. These positions are associated with the negative
subpremise 1 in α.

– The bound variable y
o→(o→(o→o)→o)→o
2 occurs in M at one position, 0000,

whose binder is 0. This position is associated with the subpremise 01 in α.
– The bound variable yo

3 occurs in M at two positions, 0010001101 and
001001101, whose binder is 001. These positions are associated with the neg-
ative subpremise 0101.

– The bound variable yo→o
4 occurs in M at two positions, 00100010 and 0010010,

whose binder is 0010. These positions are associated with the negative sub-
premise 010101.

2.2 Almost Linear Lambda Terms over a Tree Signature

Now we are going to assume that Δ is a tree signature; i.e., every constant of
Δ is of type or → o for some r ≥ 0, where o is the only atomic type of Δ. For a
closed M ∈ LNFα

∅
(Δ), every occurrence of a bound variable in M is replaceable.

A tree is an element of LNFo
∅

(Δ). A closed λ-term M ∈ LNFor→o
∅

(Δ) is
called a tree context. We say that a tree context M = λx1 . . . xr.N matches a
tree T if there are trees T1, . . . , Tr such that (λx1 . . . xr.N)T1 . . . Tr �β T . We
say that M is contained in T if it matches a subtree of T .

The notion of an almost linear λ-term was introduced by Kanazawa [5,7].
Briefly, a closed typed λ-term is almost linear if every occurrence of a λ-abstract
λxα.N in it binds a unique occurrence of xα, unless α is atomic, in which case
it may bind more than one occurrence of xα. Almost linear λ-terms share many
of the properties of linear λ-terms; see [5–8] for details.

Almost linear λ-terms are typically not β-normal. For instance,
λyo→o.(λxo.fxx)(yc), where f and c are constants of type o → o → o and o,
respectively, is almost linear, but its β-normal form, λyo→o.f(yc)(yc), is not. In
this paper, we choose to deal with the η-long β-normal forms of almost linear
λ-terms directly, rather than through their almost linear β-expanded forms.

We write ALα(Δ) for the set of closed λ-terms in LNFα
∅

(Δ) that β-expand
to an almost linear λ-term. (The superscript is often omitted.) The following
lemma, which we do not prove here, may be taken as the definition of ALα(Δ)
(see [7,8] for relevant properties of almost linear λ-terms):

Lemma 1. Let M be a closed λI-term in LNFα
∅

(Δ). Then M ∈ ALα(Δ) if and
only if the following conditions hold for all bound variable occurrences u, v ∈ [M]
such that nspM (u) = nspM (v), where n = arity(α/nspM (u)):

(i) {w | u0−nw ∈ [M] } = {w | v0−nw ∈ [M] }.
(ii) If M/u0−nw is a constant, then M/u0−nw = M/v0−nw.
(iii) If M/u0−nw is a variable, then M/v0−nw is also a variable and

nspM (u0−nw) = nspM (v0−nw).

We call M ∈ ALα(Δ) a canonical writing if for all bound variable occurrences
u, v of M , nspM (u) = nspM (v) implies M/u = M/v and vice versa. For example,

100 M. Kanazawa and R. Yoshinaka

λy
(o→o)→o
1 y

(o→o)→o
2 .f(y1(λzo

1 .z1))(y1(λzo
1 .z1))(y2(λzo

2 .z2)) is a canonical writing,
whereas neither λy

(o→o)→o
1 y

(o→o)→o
2 .f(y1(λzo

1 .z1))(y1(λzo
2 .z2))(y2(λzo

3 .z3)) nor
λy

(o→o)→o
1 y

(o→o)→o
2 .f(y1(λzo

1 .z1))(y1(λzo
1 .z1))(y2(λzo

1 .z1)) is.

Lemma 2. For every M ∈ ALα(Δ), there exists a canonical writing M ′ ∈
ALα(Δ) such that M ′ ≡α M .

A pure λ-term is a λ-term that contains no constant. We write ALα for the
subset of ALα(Δ) consisting of pure λ-terms. An important property of ALα(Δ)
that we heavily rely on in what follows is that every M ∈ ALα(Δ) can be
expressed in a unique way as an application M◦M•

1 . . . M•
l of a pure λ-term M◦

to a list of tree contexts M•
1 , . . . ,M•

l . We call the former the container of M and
the latter its stored tree contexts. These λ-terms satisfy the following conditions:

1. l ≤ |[α]+sp| + 1,
2. M•

i ∈ ALori→o(Δ) for some ri ≤ |[α]−sp| for each i = 1, . . . , l,
3. M◦ ∈ AL(or1→o)→···→(orl→o)→α,
4. M◦M•

1 . . . M•
l �β M .

The formal definition of this separation of M ∈ ALα(Δ) into its container and
stored tree contexts is rather complex, but the intuitive idea is quite simple. The
stored tree contexts of M are the maximal tree contexts that can be discerned
in the input λ-term.
Example 2. Consider the λ-term M of type α = o→(o→(o→(o→o)→o)→o)→o
in Example 1. This λ-term belongs to ALα(Δ). Its container and stored tree
contexts are:

M◦ = λzo→o
1 zo→o

2 zo→o→o
3 yo

1y
o→(o→(o→o)→o)→o
2 .y2(z1y1)(λyo

3yo→o
4 .z2(y4(z3y3y1)),

M•
1 = λx1.fx1a, M•

2 = λx1.fx1x1, M•
3 = λx1x2.fx1x2.

Here is the formal definition. Let M ∈ ALα(Δ). We assume that M is canon-
ical. Then |[α]−sp| is exactly the number of distinct bound variables in M . Let
s1, . . . , sk list the elements of [α]−sp in lexicographic order. Let y1, . . . , yk be the
corresponding list of bound variables in M , and let ni = arity(α/si) for each
i = 1, . . . , k. Note that

k∑

i=1

ni ≤ |[α]+sp|.

The canonicity of M implies that every occurrence of yi in M is accompanied by
the exact same list of arguments Ni,1, . . . , Ni,ni

. The type of Ni,j is α/si0j−11.
Let x1, . . . , xk be fresh variables of type o. For each subterm N of M of type

o, define N� by

(cT1 . . . Tn)� = cT�
1 . . . T�

n , (yiNi,1 . . . Ni,ni
)� = xi.

Let M ′ be the maximal subterm of M of atomic type; in other words, M ′

is the result of stripping M of its leading λs. Likewise, let N ′
i,j be the maximal

subterm of Ni,j of atomic type. Let (M1, . . . ,Ml) be the sublist of

(M ′, N ′
1,1, . . . , N

′
1,n1

, . . . , N ′
k,1, . . . , N

′
k,nk

)

Distributional Learning and Context/Substructure Enumerability 101

consisting of the λ-terms whose head is a constant. (This list will contain dupli-
cates if there exist i1, j1, i2, j2 such that (i1, j1) �= (i2, j2), N ′

i1,j1
= N ′

i2,j2
, and

the head of this λ-term is a constant.) For each i = 1, . . . , l, let xmi,1 , . . . , xmi,ri

list the variables in M�
i , in the order of their first appearances in M�

i . Define

M•
i = λxmi,1 . . . xmi,ri

.M�
i ,

−→
M• = (M•

1 , . . . ,M•
l).

These are the stored tree contexts of M .
In order to define the container M◦, we first define N� by induction for each

subterm N of M that is either (i) some Mi, (ii) a λ-term of atomic type whose
head is a variable, or (iii) a λ-abstract. Let z1, . . . , zl be fresh variables of type
or1 → o, . . . , orl → o, respectively2.

M�
i = zi(ymi,1Nmi,1,1 . . . Nmi,1,nmi,1

)� . . . (ymi,ri
Nmi,ri

,1 . . . Nmi,ri
,nmi,ri

)�,

(yiNi,1 . . . Ni,ni
)� = yiN

�
i,1 . . . N�

i,ni
,

(λyi.N)� = λyi.N
�.

Finally, define
M◦ = λz1 . . . zl.M

�.

Lemma 3. M◦,
−→
M• satisfy the required conditions.

Lemma 4. Let N ∈ ALα1→···→αn→β(Δ),Mi ∈ ALαi(Δ) (i = 1, . . . , n), and
P = |NM1 . . . Mn|β ∈ ALβ(Δ). Suppose

−→
M•

i = ((Mi)
•
1, . . . , (Mi)

•
li
), (Mi)

•
j ∈ ALori,j →o(Δ),

−→
P • = (P •

1 , . . . , P •
m).

For i = 1, . . . , n and j = 1, . . . , li, let ci,j be a fresh constant of type ori,j → o.
Let Δ′ be the tree signature that extends Δ with the ci,j, and let

Q = |N((M1)
◦
c1,1 . . . c1,l1) . . . ((Mn)◦

cn,1 . . . cn,ln)|β .

We can compute the container and stored tree contexts of Q ∈ ALβ(Δ′) with
respect to Δ′. Then we have

P ◦ = Q◦, P •
i = |(Q•

i)[ci,j := (Mi)
•
j]|β ,

where [ci,j := (Mi)
•
j] denotes the substitution of (Mi)

•
j for each ci,j.

Definition 1. Let M ∈ ALα(Δ).

(i) The unlimited profile of M is prof∞(M) = (M◦, w1, . . . , wl), where l is the
length of

−→
M• = (M•

1 , . . . ,M•
l) and for each i, wi is the ri-tuple of positive

integers whose jth component is the number of occurrences of the jth bound
variable in M•

i .

2 When Mi = Mj for some distinct i, j, the definition of M�
i in fact depends on the

subscript i.

102 M. Kanazawa and R. Yoshinaka

(ii) For k ≥ 1, the k-threshold profile of M , written profk(M), is just like its
unlimited profile except that any number greater than k is replaced by ∞.

The type of the (unlimited or k-threshold) profile of M is α.

Example 3. The unlimited profile of the λ-term M from Example 1 is prof(M) =
(M◦, (1), (2), (1, 1)). Its 1-threshold profile is prof1(M) = (M◦, (1), (∞), (1, 1)),
and its k-threshold profile for k ≥ 2 is the same as its unlimited profile.

Lemma 5. For each k ≥ 1 and type α, there are only finitely many k-threshold
profiles of type α.

We say that a k-threshold profile (M◦, w1, . . . , wl) is k-bounded if wi ∈
{1, . . . , k}ri for i = 1, . . . , l. A λ-term M ∈ AL(Δ) that has a k-bounded profile
is called k-bounded. We write ALα

k (Δ) for the set of all k-bounded λ-terms in
ALα(Δ).

Note that M ∈ AL(Δ) is linear if and only if it is 1-bounded and has a linear
container.

Lemma 6. Let N ∈ ALα1→···→αn→β(Δ), and Mi,M
′
i ∈ ALαi(Δ) for each i =

1, . . . , n. Suppose that for each i = 1, . . . , n, profk(Mi) = profk(M ′
i). Then

profk(|NM1 . . . Mn|β) = profk(|NM ′
1 . . .M ′

n|β).

The above lemma justifies the notation Nπ1 . . . πn for profk(|NM1 . . . Mn|β)
with profk(Mi) = πi, when k is understood from context. When N =
λx1 . . . xn.Q, we may also write Q[x1 := π1, . . . , xn := πn] for Nπ1 . . . πn. In
this way, we can freely write profiles in expressions that look like λ-terms, like
λx.π1(Mxπ2).

Lemma 7. Given a λ-term N ∈ ALα1→···→αn→β(Δ) and k-threshold profiles
π1, . . . , πn of type α1, . . . , αn, respectively, the k-threshold profile Nπ1 . . . πn can
be computed in polynomial time.

In what follows, we often speak of “profiles” to mean k-threshold profiles,
letting the context determine the value of k.

2.3 Almost Linear Second-Order ACGs on Trees

A (tree-generating) almost linear second-order ACG G = (Σ,Δ,H,I) consists
of a second-order signature Σ (abstract vocabulary), a tree signature Δ (object
vocabulary), a set I ⊆ AΣ of distinguished types, and a higher-order homomor-
phism H that maps each atomic type p ∈ AΣ to a type H(p) over AΔ and each
constant c ∈ CΣ to its object realization H(c) ∈ ALH(τΔ(c))(Δ). It is required
that the image of I under H is {o}. That Σ is second-order means that for
every c ∈ CΣ , its type τΣ(c) is of the form p1 → · · · → pn → q; thus, any λ-term
in LNFp

∅
(Σ) for p ∈ AΣ has the form of a tree. A closed abstract term P ∈

LNFα
∅

(Σ) is homomorphically mapped by H to its object realization |H(P)|β ∈
ALH(α)(Δ). For p ∈ AΣ , we write S(G , p) for { |H(P)|β | P ∈ LNFp

∅
(Σ) } and

Distributional Learning and Context/Substructure Enumerability 103

C(G , p) for { |H(Q)|β | Q is a closed linear λ-term in LNFp→s
∅

(Σ) for some s ∈
I }. The elements of these sets are substructures and contexts of G , respectively.
The tree language generated by G is O(G) =

⋃
s∈I S(G , s).

An abstract constant c ∈ CΣ together with its type τ(c) and its object
realization H(c) corresponds to a rule in more traditional grammar formalisms.
An abstract atomic type p ∈ AΣ corresponds to a nonterminal. We say that G
is rule-k-bounded if H(c) is k-bounded for every abstract constant c ∈ CΣ .

Definition 2. Let G = (Σ,Δ,H,I) be a tree-generating almost linear second-
order ACG.

(i) We say that G is substructure-k-bounded if S(G , p) ⊆ ALH(p)
k (Δ) for all

atomic types p ∈ AΣ .
(ii) We say that G is context-k-bounded if C(G , p) ⊆ ALH(p)→o

k (Δ) for all atomic
types p ∈ AΣ .

The set of possible k-threshold profiles of elements of S(G , p) or C(G , p) can
easily be computed thanks to Lemmas 5 and 6, so substructure-k-boundedness
and context-k-boundedness are both decidable properties of almost linear
second-order ACGs. Conversely, one can design a substructure-k-bounded almost
linear ACG by first assigning to each p ∈ AΣ a possible profile set Πp consisting
of profiles of type H(p); then, as the realization H(c) of a constant c of type
p1 → · · · → pn → q, we admit only λ-terms in ALH(p1→···→pn→q)

k (Δ) that satisfy

H(c)Πp1 . . . Πpn
⊆ Πq, (2)

where MΠ1 . . . Πn = {Mπ1 . . . πn | πi ∈ Πi (i = 1, . . . , n) }. To construct a
context-k-bounded almost linear ACG, we need to assign a possible context
profile set Ξp in addition to Πp to each p ∈ AΣ . The realization H(c) must
satisfy

λx.Ξq(H(c)Πp1 . . . Πpi−1xΠpi+1 . . . Πpn
) ⊆ Ξpi

(3)

for all i = 1, . . . , n, in addition to (2). Note that (2) and (3) are “local” properties
of rules of ACGs. Instead of Definition 2, one may take this local constraint as
a definition of substrucure/context-k-bounded almost linear ACGs.

Example 4. Let G = (Σ,Δ,H,I), where AΣ = {p1, p2, s}, CΣ = {a, b, c1, c2, d1,
d2}, τΣ(a) = p1 → s, τΣ(b) = p2 → p1, τΣ(ci) = pi → pi, τΣ(di) = pi, AΔ = {o},
CΔ = {e, f}, τΔ(f) = o → o → o, τΔ(e) = o, I = {s}, H(pi) = (o → o) → o → o,
H(s) = o and

H(a) = λx(o→o)→o→o.x(λzo.z)e,

H(b) = λx(o→o)→o→oyo→ozo.x(λwo.y(fww))z,

H(ci) = λx(o→o)→o→oyo→ozo.x(λwo.yw)(fzz),
H(di) = λyo→ozo.y(fzz) .

104 M. Kanazawa and R. Yoshinaka

This grammar is rule-2-bounded and generates the set of perfect binary
trees of height ≥ 1. We have, for example, H(b(c2d2)) ∈ S(G , p1) and
H(λxp2 .a(c1(b(c2x)))) ∈ C(G , p2), and

|H(b(c2d2))|β = λyo→ozo.y(f(f(fzz)(fzz))(f(fzz)(fzz))),

|H(λxp2 .a(c1(b(c2x))))|β = λx(o→o)→o→o.x(λz.fzz)(f(fee)(fee)).

One can see

prof∞(S(G , p1)) = prof∞(S(G , p2)) = { (λz1
o→oyo→owo.y(z1w), (2n)) | n ≥ 1 } ,

and

prof∞(C(G , p1)) = {(λz1
ox(o→o)→o→o.x(λwo.w)z1, ())} ,

prof∞(C(G , p2)) = {(λz1
ox(o→o)→o→o.x(λwo.w)z1, ()),

(λz1
o→oz2

ox(o→o)→o→o.x(λwo.z1w)z2, (2), ())} .

The grammar is context-2-bounded, but not substructure-k-bounded for any k. If
a new constant a′ of type p1→s with H(a′) = λx(o→o)→o→o.x(λzo.fzz)e is added
to G , the grammar is not context-2-bounded any more, since |H(λxp2 .a′(bx))|β =
λx(o→o)→o→o.x(λzo.f(fzz)(fzz))e ∈ C(G , p2).

3 Extraction of Tree Contexts from Trees

We say that M ∈ ALα(Δ) is contained in a tree T if there is an N ∈ ALα→o(Δ)
such that NM �β T . The problem of extracting λ-terms in ALα(Δ) contained
in a given tree reduces to the problem of extracting tree contexts from trees.

Explicitly enumerating all tree contexts of type or → o is clearly intractable.
A perfect binary tree with n leaves (labeled by the same constant) contains more
than 2n tree contexts of type o → o.

It is easy to explicitly enumerate all tree contexts of type or → o that are
k-copying in the sense that each bound variable occurs at most k times. (Just
pick at most rk + 1 nodes to determine such a tree context.) Hence it is easy to
explicitly enumerate all M ∈ ALα

k (Δ) whose stored tree contexts (which are all
k-copying) are contained in a given tree. (Recall that there is a fixed finite set of
candidate containers for each α.) Not all these λ-terms are themselves contained
in T , but it is harmless and simpler to list them all than to enumerate exactly
those λ-terms M ∈ ALα

k (Δ) for which there is an N ∈ ALα→o(Δ) (which may
not be k-bounded) such that MN �β T .

We consider distributional learners for tree-generating almost linear second-
order ACGs who are capable of extracting k-copying tree contexts from trees.
Such a learner conjectures rule-k-bounded almost linear ACGs, and use only
k-bounded substructures and k-bounded contexts in order to form hypotheses.

Distributional Learning and Context/Substructure Enumerability 105

4 Distributional Learning of One-Side k-bounded ACGs

We present two distributional learning algorithms, a primal one for the context-
k-bounded almost linear ACGs, and a dual one for the substructure-k-bounded
almost linear ACGs.

In distributional learning, we often have to fix certain parameters that restrict
the class G of grammars available to the learner as possible hypotheses, in order
to make the universal membership problem solvable in polynomial time. This
is necessary since the learner needs to check whether the previous conjecture
generates all the positive examples received so far, including the current one.
In the case of almost linear ACGs, the parameters are the maximal arity n
of the type of abstract constants and the finite set Ω of the possible object
images of abstract atomic types. When these parameters are fixed, the universal
membership problem “T ∈ O(G)?” is in P [7].

In addition to these two parameters, we also fix a positive integer k so that
any hypothesized grammar is rule-k-bounded, for the reason explained in the
previous section. The hypothesis space for our learners is thus determined by
three parameters, Ω,n, k. We write G(Ω,n, k) for the class of grammars deter-
mined by these parameters.

In what follows, we often use sets of profiles or λ-terms inside expressions
that look like λ-terms, as we did in (2) and (3) in Sect. 2.3.

4.1 Learning Context-k-bounded ACGs with the Finite Kernel
Property

For T ⊆ LNFo
∅

(Δ) and R ⊆ ALα(Δ), we define the k-bounded context set of R
with respect to T by

Conk(T|R) = {Q ∈ ALα→o
k (Δ) | |QR|β ∈ T for all R ∈ R } .

Definition 3. A context-k-bounded ACG G = (Σ,Δ,H,I) is said to have the
profile-insensitive (k,m)-finite kernel property if for every abstract atomic type
p ∈ AΣ , there is a nonempty set Sp ⊆ S(G , p) ∩ ALH(p)

k (Δ) such that |Sp| ≤ m
and

Conk(O(G)|Sp) = Conk(O(G)|S(G , p)).

This may be thought of as a primal analogue of the notion of (k,m)-FCP in
[4] for the present case. It turns out, however, designing a distributional learn-
ing algorithm targeting grammars satisfying this definition is neither elegant
nor quite as straightforward as existing distributional algorithms. One reason is
that simply validating hypothesized rules against k-bounded contexts (see (1) in
Sect. 1) does not produce a context-k-bounded grammar. Recall that to construct
a context-k-bounded grammar, we must fix an assignment of an admissible sub-
structure profile set Πp and an admissible context profile set Ξp to each atomic
type p which restricts the object realizations of abstract constants of each type.

106 M. Kanazawa and R. Yoshinaka

We let our learning algorithm use such an assignment together with finite sets of
k-bounded substructures in constructing grammar rules, and make the valida-
tion of rules sensitive to the context profile set assigned to the “left-hand side”
nonterminal. This naturally leads to the following definition:

Definition 4. A context-k-bounded ACG G = (Σ,Δ,H,I) is said to have
the profile-sensitive (k,m)-finite kernel property ((k,m)-FKPprof) if for every
abstract atomic type p ∈ AΣ , there is a nonempty set Sp ⊆ S(G , p)∩ALH(p)

k (Δ)
such that |Sp| ≤ m and

Conk(O(G)|Sp) ∩ prof−1
k (Ξ) = Conk(O(G)|S(G , p)) ∩ prof−1

k (Ξ) , (4)

where Ξ = profk(C(G , p)). Such a set Sp is called a characterizing substructure
set of p.

Clearly, if a context-k-bounded grammar satisfies Definition 3, then it satis-
fies the (k,m)-FKPprof , so the class of grammars with (k,m)-FKPprof is broader
than the class given by Definition 3. The notion of (k,m)-FKPprof is also
monotone in k in the sense that (4) implies

Conk+1(O(G)|Sp) ∩ prof−1
k+1(Ξ

′) = Conk+1(O(G)|S(G , p)) ∩ prof−1
k+1(Ξ

′) ,

where Ξ ′ = profk+1(C(G , p)) = profk(C(G , p)), as long as G is context-k-
bounded. This means that as we increase the parameter k, the class of grammars
satisfying (k,m)-FKPprof monotonically increases. This is another advantage of
Definition 4 over Definition 3.

The polynomial enumerability of the k-bounded λ-terms makes an efficient
primal distributional learner possible for the class of context-k-bounded gram-
mars in G(Ω,n, k) with the (k,m)-FKPprof .

Algorithm. Hereafter we fix a learning target T∗ ⊆ LNFo
∅

(Δ) which is gen-
erated by G∗ = (Σ,Δ,H,I) ∈ G(Ω,n, k) with the (k,m)-FKPprof . We write
S[Ξ] = Conk(T∗|S) ∩ prof−1

k (Ξ) for a k-bounded profile set Ξ.
For a tree T ∈ LNFo

∅
(Δ), let Extα

k (T) = {M ∈ ALα
k (Δ) | −→

M• are contained
in T }. Define

SubΩ
k (D) =

⋃
{Extα

k (T) | T ∈ D, α ∈ Ω },

GlueΩ,n
k (D) =

⋃
{Extα1→···→αj→α0

k (T) | T ∈ D, αi ∈ Ω for i = 1, . . . , j

and j ≤ n },

ConΩ
k (D) =

⋃
{Extα→o

k (T) | T ∈ D, α ∈ Ω }.

It is easy to see that H(c) ∈ GlueΩ,n
k (T∗) for all c ∈ CΣ .

Our learner (Algorithm 1) constructs a context-k-bounded ACG Ĝ =
G(K,B,F) = (Γ,Δ,J ,J) from three sets K ⊆ SubΩ

k (D), B ⊆ GlueΩ,n
k (D)

and F ⊆ ConΩ
k (D), where D is a finite set of positive examples given to the

Distributional Learning and Context/Substructure Enumerability 107

Algorithm 1. Learning ACGs in G(Ω,n, k) with the (k,m)-FKPprof .
Data: A positive presentation T1, T2, . . . of T∗; membership oracle on T∗;
Result: A sequence of ACGs G1,G2, . . . ;
let D := K := B := F := ∅; Ĝ := G(K,B,F);
for i = 1, 2, . . . do

let D := D ∪ {Ti}; F := ConΩ
k (D);

if D � O(Ĝ) then

let B := GlueΩ,n
k (D);

let K := SubΩ
k (D);

end if
output Ĝ = G(K,B,F) as Gi;

end for

learner. As with previous primal learning algorithms, whenever we get a positive
example that is not generated by our current conjecture, we expand K and B,
while in order to suppress incorrect rules, we keep expanding F.

Each abstract atomic type of our grammar is a triple of a subset of K, a
k-threshold profile set, and a k-bounded profile set:

AΓ = { [[S, Π, Ξ]] | S ⊆ K ∩ prof−1
k (Π) with 1 ≤ |S| ≤ m, where for some α ∈ Ω,

Π is a set of k-threshold profiles of type α and

Ξ is a set of k-bounded profiles of type α → o } .

We have |AΓ | ≤ 22�|K|m, where � is the total number of profiles of relevant
types, which is a constant.

The set of distinguished types is defined as

J = { [[S, {(λzo.z)}, {(λyo.y)}]] ∈ AΓ | S ⊆ T∗ } ,

which is determined by membership queries. Define J ([[S,Π,Ξ]]) to be the type
of the profiles in Π.

We have an abstract constant d ∈ CΓ such that

τΓ (d) = [[S1,Π1, Ξ1]] → · · · → [[Sj ,Πj , Ξj]] → [[S0,Π0, Ξ0]] with j ≤ n ,

J (d) = R ∈ B ,

if

– RΠ1 . . . Πj ⊆ Π0,
– λx.Ξ0(RΠ1 . . . Πi−1xΠi+1 . . . Πj) ⊆ Ξi for i = 1, . . . , j,
– |Q(RS1 . . . Sj)|β ∈ T∗ for all Q ∈ S[Ξ0]

0 ∩ F and Si ∈ Si for i = 1, . . . , j.

The last condition is checked with the aid of the membership oracle.

Lemma 8. We have profk(N) ∈ Π for all N ∈ S(G , [[S,Π,Ξ]]), and
profk(M) ∈ Ξ for all M ∈ C(G , [[S,Π,Ξ]]). The grammar G(K,B,F) is context-
k-bounded.

108 M. Kanazawa and R. Yoshinaka

Lemma 9.
If K ⊆ K′, then O(G(K,B,F)) ⊆ O(G(K′,B,F)).
If B ⊆ B′, then O(G(K,B,F)) ⊆ O(G(K,B′,F)).
If F ⊆ F′, then O(G(K,B,F)) ⊇ O(G(K,B,F′)).

Lemma 10. Let Sp be a characterizing set of each atomic type p ∈ AΣ of the
target grammar G∗. Then Sp ⊆ SubΩ

k (T∗). Moreover, if Sp ⊆ K for all p ∈ AΣ

and H(c) ∈ B for all c ∈ CΣ, then T∗ ⊆ O(G(K,B,F)) for any F.

We say that an abstract constant d of type [[S1,Π1, Ξ1]] → · · · →
[[Sj ,Πj , Ξj]] → [[S0,Π0, Ξ0]] is invalid if |Q(J (c)S1 . . . Sj)|β /∈ T∗ for some
Q ∈ S[Ξ0]

0 and Si ∈ Si.

Lemma 11. For every K and B, there is a finite set F ⊆ ConΩ
k (T∗) of cardi-

nality |B||AΓ |n+1 such that G(K,B,F) has no invalid constant.

Lemma 12. If G(K,B,F) has no invalid constant, then O(G(K,B,F)) ⊆ T∗.

Theorem 1. Algorithm 1 successfully learns all grammars in G(Ω,n, k) with
the (k,m)-FKPprof .

We remark on the efficiency of our algorithm. It is easy to see that the
description sizes of K and B are polynomially bounded by that of D, and so
is that of Γ . We need at most a polynomial number of membership queries to
construct a grammar. Thus Algorithm 1 updates its conjecture in polynomial
time in ‖D‖. Moreover, we do not need too much data. To make K and B satisfy
the condition of Lemma 10, m|AΣ |+|CΣ | examples are enough. To remove invalid
constants, polynomially many contexts are enough by Lemma 11.

4.2 Learning Substructure-k-bounded ACGs with the Finite
Context Property

For sets T ⊆ LNFo
∅

(Δ) and Q ⊆ ALα→o
k (Δ), we define the k-bounded substruc-

ture set of Q with respect to T by

Subk(T|Q) = {R ∈ ALα
k (Δ) | |QR|β ∈ T for all Q ∈ Q } .

Again, we target grammars that satisfy a property sensitive to profile sets
assigned to nonterminals:

Definition 5. A substructure-k-bounded ACG G = (Σ,Δ,H,I) is said to
have the profile-sensitive (k,m)-finite context property ((k,m)-FCPprof) if for
every abstract atomic type p ∈ AΣ , there is a nonempty set Qp ⊆ C(G , p) ∩
ALH(p)→o

k (Δ) of k-bounded λ-terms such that |Qp| ≤ m and

Subk(O(G)|Qp) ∩ prof−1
k (Π) = S(G , p) ,

where Π = prof(S(G , p)). We call Qp a characterizing context set of p.

Distributional Learning and Context/Substructure Enumerability 109

Algorithm. Our dual learner turns out to be considerably simpler than its
primal cousin. While the primal learner uses two profile sets, the dual learner
assigns just a single profile to each nonterminal. This corresponds to the fact that
the context-profiles play no role in constructing a structure-k-bounded grammar
and that the (k,m)-FCPprof is preserved under the normalization which converts
a grammar into an equivalent one G ′ where profk(S(G ′, p)) is a singleton for
all abstract atomic types p of G ′, where it is not necessarily the case for the
(k,m)-FKPprof .

Hereafter we fix a learning target T∗ ⊆ LNFo
∅

(Δ) which is generated by
G∗ = (Σ,Δ,H,I) ∈ G(Ω,n, k) with the (k,m)-FCPprof . We write Q[π] =
Subk(T∗|Q) ∩ prof−1

k (π) for a k-bounded profile π.
Our learner (Algorithm 2) constructs a context-k-bounded ACG Ĝ =

G(F,B,K) = (Γ,Δ,J ,J) from three sets F ⊆ ConΩ
k (D), B ⊆ GlueΩ,n

k (D),
and K ⊆ SubΩ

k (D), where D is a finite set of positive examples.

Algorithm 2. Learning ACGs in G(Ω,n, k) with (k,m)-FCPprof

Data: A positive presentation T1, T2, . . . of T∗; membership oracle on T∗;
Result: A sequence of acgs G1,G2, . . . ;
let D := F := B := K := ∅; Ĝ := G(F,B,K);
for i = 1, 2, . . . do

let D := D ∪ {Ti}; K := SubΩ
k (D);

if D � O(Ĝ) then

let B := GlueΩ,n
k (D);

let F := ConΩ
k (D);

end if
output Ĝ = G(F,B,K) as Gi;

end for

Each abstract atomic type of our grammar is a pair of a finite subset of
F ∩ ALα

k (Δ) of cardinality at most m and a profile π whose type is α:

AΓ = { [[Q, π]] | π is a k-bounded profile of type α ∈ Ω,

Q ⊆ F ∩ ALα→o
k (Δ) and 1 ≤ |Q| ≤ m } .

We have |AΓ | ≤ |F|m� for � the number of possible profiles. We have only one
distinguished type:

J = { [[{λy.y}, (λzo.z)]] } .

We define J ([[Q, π]]) to be the type of π.
We have an abstract constant c ∈ CΓ such that

τΓ (c) = [[Q1, π1]] → · · · → [[Qj , πj]] → [[Q0, π0]] with j ≤ n , J (c) = P ∈ B ,

if

– π0 = Pπ1 . . . πj ,

110 M. Kanazawa and R. Yoshinaka

– |Q(PS1 . . . Sj)|β ∈ T∗ for all Q ∈ Q0 and Si ∈ Q[πi]
i ∩ K.

The second clause is checked with the aid of the membership oracle. By the con-
struction, prof(|J (M)|β) ∈ π for every M ∈ LNF[[Q,π]]

∅
(Γ). Thus the grammar

Ĝ is substructure-k-bounded.

Lemma 13.
If F ⊆ F′, then O(G(F,B,K)) ⊆ O(G(F′,B,K)).
If B ⊆ B′, then O(G(F,B,K)) ⊆ O(G(F,B′,K)).
If K ⊆ K′, then O(G(F,B,K)) ⊇ O(G(F,B,K′)).

Lemma 14. Let Qp be a characterizing set of each atomic type p ∈ AΣ of the
target grammar G∗. Then Qp ⊆ ConΩ

k (T∗). Moreover, if Qp ⊆ F for all p ∈ AΣ

and H(c) ∈ B for all c ∈ CΣ, then T∗ ⊆ O(G(F,B,K)) for any K.

We say that an abstract constant c of type [[Q1, π1]] → · · · → [[Qj , πj]] →
[[Q0, π0]] is invalid if |Q(J (c)S1 . . . Sj)|β /∈ T∗ for some Si ∈ Q[πi]

i and Q ∈ Q0.

Lemma 15. For every F and B, there is a finite set K ⊆ SubΩ
k (T∗) of cardi-

nality n|B||AΓ |n+1 such that G(F,B,K) has no invalid constant.

Lemma 16. If G(F,B,K) has no invalid constant, then O(G(F,B,K)) ⊆ T∗.

Theorem 2. Algorithm 2 successfully learns all grammars in G(Ω,n, k) with
the (k,m)-FCPprof .

A remark similar to the one on the efficiency of Algorithm 1 applies to Algo-
rithm 2.

Acknowledgement. This work was supported in part by MEXT/JSPS Kakenhi
(24106010, 26330013) and NII joint research project “Algorithmic Learning of Nonlin-
ear Formalisms Based on Distributional Learning”.

References

1. Bloem, R., Engelfriet, J.: A comparison of tree transductions defined by monadic
second order logic and by attribute grammars. J. Comput. Syst. Sci. 61, 1–50
(2000)

2. Böhm, C., Coppo, M., Dezani-Ciancaglini, M.: Termination tests inside λ-calculus.
In: Salomaa, A., Steinby, M. (eds.) Automata, Languages and Programming.
LNCS, vol. 52, pp. 95–110. Springer, Heidelberg (1977)

3. Clark, A.: Learning context free grammars with the syntactic concept lattice. In:
Sempere and Garćıa [11], pp. 38–51

4. Clark, A., Yoshinaka, R.: Distributional learning of parallel multiple context-free
grammars. Mach. Learn. 96(1–2), 5–31 (2014). doi:10.1007/s10994-013-5403-2

5. Kanazawa, M.: Parsing and generation as datalog queries. In: Proceedings of the
45th Annual Meeting of the Association for Computational Linguistics, Prague,
Czech Republic, pp. 176–183 (2007)

http://dx.doi.org/10.1007/s10994-013-5403-2

Distributional Learning and Context/Substructure Enumerability 111

6. Kanazawa, M.: A lambda calculus characterization of MSO definable tree trans-
ductions (abstract). Bull. Symbolic Logic 15(2), 250–251 (2009)

7. Kanazawa, M.: Parsing and generation as datalog query evaluation. IfColog J.
Logics Their Appl. (to appear). http://research.nii.ac.jp/∼kanazawa/publications/
pagadqe.pdf

8. Kanazawa, M.: Almost affine lambda terms. In: Indrzejczak, A., Kaczmarek, J.,
Zawidzki, M. (eds.) Trends in Logic XIII, pp. 131–148. �Lódź University Press, �Lódź
(2014)

9. Kasprzik, A., Yoshinaka, R.: Distributional learning of simple context-free tree
grammars. In: Kivinen, J., Szepesvári, C., Ukkonen, E., Zeugmann, T. (eds.) ALT
2011. LNCS, vol. 6925, pp. 398–412. Springer, Heidelberg (2011)

10. Salvati, S.: Encoding second order string ACG with deterministic tree walking
transducers. In: Wintner, S. (ed.) Proceedings of FG 2006: The 11th conference
on Formal Grammar. FG Online Proceedings, pp. 143–156. CSLI Publications,
Stanford (2007)

11. Sempere, J.M., Garćıa, P. (eds.): Grammatical Inference: Theoretical Results and
Applications. Proceedings of 10th International Colloquium, ICGI 2010, Valencia,
Spain, 13–16 September 2010. LNCS. Springer, Heidelberg (2010)

12. Yoshinaka, R.: Polynomial-time identification of multiple context-free languages
from positive data and membership queries. In: Sempere, J.M., Garćıa, P. (eds.)
ICGI 2010. LNCS, vol. 6339, pp. 230–244. Springer, Heidelberg (2010)

13. Yoshinaka, R.: Towards dual approaches for learning context-free grammars based
on syntactic concept lattices. In: Mauri, G., Leporati, A. (eds.) DLT 2011. LNCS,
vol. 6795, pp. 429–440. Springer, Heidelberg (2011)

14. Yoshinaka, R., Kanazawa, M.: Distributional learning of abstract categorial gram-
mars. In: Pogodalla, S., Prost, J.-P. (eds.) Logical Aspects of Computational Lin-
guistics. LNCS, vol. 6736, pp. 251–266. Springer, Heidelberg (2011)

http://research.nii.ac.jp/~kanazawa/publications/pagadqe.pdf
http://research.nii.ac.jp/~kanazawa/publications/pagadqe.pdf

	Distributional Learning and Context/Substructure Enumerability in Nonlinear Tree Grammars
	1 Introduction
	2 Typed Lambda Terms and Almost Linear ACGs
	2.1 Types and Typed Lambda Terms
	2.2 Almost Linear Lambda Terms over a Tree Signature
	2.3 Almost Linear Second-Order ACGs on Trees

	3 Extraction of Tree Contexts from Trees
	4 Distributional Learning of One-Side k-bounded ACGs
	4.1 Learning Context-k-bounded ACGs with the Finite Kernel Property
	4.2 Learning Substructure-k-bounded ACGs with the Finite Context Property

	References

