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Abstract. We provide some additional completeness results for the
full Lambek calculus and syntactic concept lattices, where the under-
lying structure is extended to tuples of arbitrary finite and infinite size.
Whereas this answers an open question for finite tuples, infinite tuples
have not been considered yet. Nonetheless, they have a number of inter-
esting properties which we establish in this paper, such as a particular
class of languages which results in a finite lattice.

1 Introduction

Syntactic concept lattices arise from the distributional structure of languages.
Their main advantage is that they can be constructed on distributional relations
which are weaker than strict equivalence. [3] has shown how these lattices can be
enriched with a monoid structure to form residuated lattices. [19] has shown that
the resulting class of syntactic concept lattices for arbitrary languages forms a
complete class of models for the logics FL⊥, i.e. the full Lambek calculus, and
its reducts FL, L1, for which it is a conservative extension.

In this paper, we will consider syntactic concept lattices over extended
monoids: these will no longer consist of (sets of) strings, but rather of (sets
of) tuples of strings, first of arbitrary finite, then of infinite size. The monoid
operation has to be modified accordingly, of course. We show that the complete-
ness results can be extended to this case for FL⊥ and its reducts; our proof will
be constructed on top of the completeness results in [19] by means of isomorphic
embeddings.

Finite tuples have been considered in formal language theory in a huge num-
ber of different contexts; the most relevant for us are [5,15]. The use of infinite
tuples has not been considered yet (to our knowledge). We show that it comes
with some interesting gain in expressive power, while still being well-behaved;
we also establish the largest class of language which results in a finite lattice
over infinite tuples.

2 Residuated Syntactic Concept Lattices and Extensions

2.1 Equivalences on Strings and Tuples

Syntactic concept lattices originally arose in the structuralist approach to syntax,
back when syntacticians tried to capture syntactic structures purely in terms of
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distributions of strings1 (see, e.g. [10]). An obvious way to do so is by partition-
ing strings/substrings into equivalence classes: we say that two strings w, v are
equivalent in a language L ⊆ Σ∗, in symbols

(1) w ∼1
L v, iff for all x, y ∈ Σ∗, xwy ∈ L ⇔ xvy ∈ L.

This can be extended to tuples of strings of arbitrary size:

(2) (w1, v1) ∼2
L (w2, v2), iff for all x, y, z ∈ Σ∗, xw1yv1z ∈ L ⇔ xw2yv2z, etc.

The problem with equivalence classes is that they are too restrictive for many
purposes: assume we want to induce our grammar on the basis of a given dataset;
then it is quite improbable that we get the equivalence classes we would usually
desire. And even if we have an unlimited supply of examples, it seems unrealistic
to describe our grammar on the basis of equivalence classes only: there might
be constructions, collocations, idioms which ruin equivalences which we would
intuitively consider to be adequate. Another drawback of equivalence classes is
that for context-free languages, there is no general way to relate them to the
non-terminals of some grammar generating the language, whereas for syntactic
concepts, there are some interesting connections (see [6]).

Syntactic concepts provide a somewhat less rigid notion of equivalence, which
can be conceived of as equivalence restricted to a given set of contexts. This at
least partly overcomes the difficulties we have mentioned here.

2.2 Syntactic Concepts and Polar Maps

For a general introduction to lattices, see [7]; for background on residuated lat-
tices, see [9]. Syntactic concept lattices form a particular case of what is well-
known as formal concept lattice (or formal concept analysis) in computer sci-
ence. In linguistics, they have been introduced in [18]. They were brought back
to attention and enriched with residuation in [3,4], as they turn out to be useful
representations for language learning.

Given a language L ⊆ Σ∗, n ∈ N, we define two maps: a map � : ℘((Σ∗)n) →
℘((Σ∗)n+1), and � : ℘((Σ∗)n+1) → ℘((Σ∗)n), which are defined as follows:

(3) M� := {(x1, ..., xn+1) : ∀(w1, ..., wn) ∈ M,x1w1...wnxn+1 ∈ L};

and dually

(4) C� := {(w1, ..., wn) : ∀(x1, ..., xn+1) ∈ C, x1w1...wnxn+1 ∈ L}.

That is, a set of tuples of strings is mapped to the set of tuples of contexts in
which all of its elements can occur. The dual function maps a set of contexts to
the set of strings, which can occur in all of them. Usually, the case where n = 1
has been in the focus, as in [3,19]. The more general cases have been considered

1 Or words, respectively, depending on whether we think of our language as a set of
words or a set of strings of words; we will choose the former option.
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in one form or other by [5,15]). Obviously, � and � are only defined with respect
to a given language L and a given tuple size, otherwise they are meaningless.
As long as it is clear of which language (if any particular language) and tuple
size (if any particular) we are speaking, we will omit however any reference to
it, to keep notation perspicuous. For a set of contexts C, C� can be thought of
as an equivalence class with respect to the contexts in C; but there might be
elements in C� which can occur in a context (v, w) /∈ C (and conversely). There
is one more extension we will consider which is not entirely trivial, namely the
one from tuples of arbitrary size to tuples of infinite size.

(5) for M ⊆ (Σ∗)ω, M� := {(x1, x2, ...) : ∀(w1, w2, ...) ∈ M,x1w1x2w2... ∈ L}.

One might consider this meaningless, as L consists of finite words, M of infinite
tuples. But this is unjustified: it only entails that for any infinite tuple w ∈ M or
w ∈ M�, in order to be “meaningful”, all but finitely many components must be
ε. So for each “meaningful” (w1, w2, ...), there is a k ∈ N such that for all j ≥ k,
wj = ε. We gladly accept this restriction and remain with tuples where almost
all components are empty. This is still a proper generalization of any tuple size
n, because there is no finite upper bound for non-empty components in sets of
tuples.

We define · on (finite or infinite) tuples by componentwise concatenation, that
is, (w1, w2, ...) · (v1, v2, ...) = (w1v1, w2v2, ...). This choice is not unquestionable:
some authors seem to prefer concatenation of the type ⊕, where (w, v)⊕(x, y) =
(wx, yv). In the context of multiple context-free grammars this is referred to
as well-nestedness and has attracted great interest (see e.g. [12]). The problem
with this type of concatenation is that it is not easily extended beyond tuples
of size two. What is interesting in this context is that we can use the ω-tuples
to simulate ⊕-style concatenation with ·-style concatenation. To briefly sketch
what this means, we define the forgetful map fo by fo(w1, w2, ...) = w1w2...,
for arbitrary finite/infinite tuple size. We can now for all sequences of tuples
(x1, y1), ..., (xi, yi) devise ω-tuples w1, ..., wi such that for all 1 ≤ j, j′ ≤ i, we
have

fo((xj , yj) ⊕ ... ⊕ (xj′ , yj′)) = fo(wj · ... · wj′)

This is not generally possible with any finite tuple size, and this is what makes
infinite tuples interesting for us. Note that we can now also simplify things for
ω-tuples, as we have v ∈ {w}� iff fo(v · w) ∈ L.

Regardless of the underlying objects, the two compositions of the maps, ��
and ��, are closure operators, that is:

1. M ⊆ M��,
2. M�� = M����,
3. M ⊆ N ⇒ M�� ⊆ N��,

for M,N ⊆ Σ∗. The same holds for contexts and ��. A set M is closed, if
M�� = M etc. The closure operator �� gives rise to a lattice 〈Bn

L,≤〉, where the
elements of Bn

L are the sets M ⊆ (Σ∗)n such that M = M��, and ≤ is interpreted
as ⊆. The same can be done with the set of closed contexts. Given these two
lattices, � and � establish a Galois connection between the two:
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1. M ≤ N ⇔ M� ≥ N�, and
2. C ≤ D ⇔ C� ≥ D�.

A syntactic concept A is usually defined to be an ordered pair, consisting of
a closed set of strings, and a closed set of contexts, so it has the form 〈S,C〉,
such that S� = C and C� = S. For our purposes, we only need to consider the
left component, so we suppress the contexts and only consider the stringsets of
the form M��. For all operations we define below, it can be easily seen that
the resulting structures are isomorphic. So when we refer to a concept, we only
mean a [−]�� closed set of strings, the concept in the classical sense being easily
reconstructible.

Definition 1. The set of concepts of a language L forms a lattice denoted by
SCLn(L) := 〈Bn

L,∧,∨,�,⊥〉, where � = (Σ∗)n, ⊥= ∅��, and for M,N ∈ Bn
L,

M ∧ N = M ∩ N , M ∨ N = (M ∪ N)��.

It is easy to see that this defines an order in the usual fashion which coincides
with ⊆ on closed sets of strings. It is easy to verify that this forms a complete
lattice, as infinite joins are defined by (closure of) infinite unions, infinite meets
by infinite intersections. Note also that for any set of (tuples of) strings S and
contexts C, S� = S��� and C� = C���. SCLω(L) denotes the according structure
with infinite tuple size. To see that things are properly different in the infinite
case, we present the following result:

Lemma 2. 1. For any n ∈ N, SCLn(L) is finite iff L ∈ Reg.
2. There are L ∈ Reg such that SCLω(L) is infinite.

Let [Σ]∗∼1
L

denote the set of ∼1
L-congruence classes over Σ∗.

Proof. 1. SCL1(L) is finite iff [Σ]∗∼1
L

is finite iff L is regular (both are well-
known). Moreover, |[Σ∗]∼n+1

L
| ≤ |[Σ∗]∼n

L
| · |[Σ∗]∼1

L
|, as ∼1

L-equivalent strings are
equivalent in all contexts. From this the claim easily follows.

2. Take the language L = a∗b∗, and all tuples of the form (a,

n times
︷ ︸︸ ︷

ε, ..., ε, a, ε, ε, ...)
for n ∈ N. For every m,m′ ∈ N, m < m′, we take the tuple

(
m+1 times
︷ ︸︸ ︷

a, ..., a ,

m+3 times
︷ ︸︸ ︷

b, ..., b , ε, ε, ...); it is easy to see that fo((
m+1 times
︷ ︸︸ ︷

a, ..., a ,

m+3 times
︷ ︸︸ ︷

b, ..., b , ε, ε, ...) ·

(a,

m times
︷ ︸︸ ︷

ε, ..., ε , a, ε, ε, ...)) ∈ L, whereas if we substitute m with m′, the result is
not in L.

Consequently, there are infinitely concepts, namely for each n ∈ N at least one

which contains (a,

n times
︷ ︸︸ ︷

ε, ..., ε , a, ε, ε, ...) but no (a,

n′ times
︷ ︸︸ ︷

ε, ..., ε , a, ε, ε, ...) for n′ > n. �
This raises the question: what is the class C of languages such that L ∈ C

if and only if SCLω(L) is finite? We will give a concise characterization of this
class later on.
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2.3 Monoid Structure and Residuation

As we have seen, the set of concepts of a language forms a lattice. In addition, we
can also give it the structure of a monoid: for concepts M,N , we define M ◦N :=
(M ·N)��, where M ·N = {w ·v : w ∈ M,v ∈ N}. We often write MN for M ·N .
‘◦’ is associative on concepts: For M,N,O ∈ BL

n , M ◦(N ◦O) = (M ◦N)◦O. This
follows from the fact that [−]�� is a nucleus, that is, it is a closure operator and
in addition it satisfies S��T �� ⊆ (ST )��, and the associativity of ·-concatenation
(no matter on which tuple size).

Furthermore, it is easy to see that the neutral element of ‘◦’ is {ε}��.
The monoid operation respects the partial order of the lattice, that is, for
X,Y,Z,W ∈ BL

n , if X ≤ Y , then W ◦ X ◦ Z ≤ W ◦ Y ◦ Z. A stronger property
is the following: ◦ distributes over infinite joins, that is, we have

∨

Z∈Z
X ◦ Z ◦ Y = X ◦

∨

Z ◦ Y

≤ follows algebraically (◦ respects the order), and ≥ follows from the fact that
[−]�� is a nucleus.

We enrich this with residuals, using the following definition:

Definition 3. Let X,Y be concepts. We define the right residual X/Y :=
∨{Z :

Z ◦ Y ≤ X}, the left residual Y \X :=
∨{Z : Y ◦ Z ≤ X}.

Note that this is an entirely abstract definition which does not make reference
to any underlying structure. That it works is ensured by the following lemma.

Lemma 4. Let L be a complete lattice with a monoid operation distributing
over infinite joins. Then for X,Y,Z ∈ L, residuals defined as above, we have
Y ≤ X\Z iff X ◦ Y ≤ Z iff X ≤ Z/Y .

Proof. We only prove the first bi-implication.
If : assume X ◦Y ≤ Z. Then Y ∈ {W : X ◦W ≤ Z}; so Y ≤ ∨{W : X ◦W ≤

Z} = X\Z.
Only if : we have X ◦X\Z = X ◦∨{W : X ◦W ≤ Z} =

∨{X ◦W : X ◦W ≤
Z} ≤ Z; as Y ≤ X\Z, we have X ◦ Y ≤ X ◦ X\Z ≤ Z. �

So every complete lattice with a monoid operation based on a nucleus can
be extended to a residuated lattice.

Definition 5. The syntactic concept lattice of a language L is defined as
SCLn(L) := 〈Bn

L,∧,∨,�,⊥, 1, ◦, /, \〉, where Bn
L,∧,∨,�,⊥ are defined as in

Definition 1, 1 = {ε}��, and ◦, /, \ are as defined above.

Note that we somewhat overloaded the notation of SCLn(L); in the sequel
we will however thereby always refer to Definition 5. Moreover, we will denote by
SCL the class of all lattices of the form SCL1(L) for some language L, without
any further requirement regarding L; same for SCLn for n ∈ N ∪ {ω}.
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3 Lambek Calculus and Extensions

3.1 The Logics L, L1, FL and FL⊥

The Lambek calculus L was introduced in [13]. L1 is a proper extension of L,
and FL,FL⊥ are each conservative extensions of L1 and the preceding one. Let
Pr be a set, the set of primitive types, and C be a set of constructors, which
is, depending on the logics we use, CL := {/, \, •}, or CFL := {/, \, •,∨,∧}. By
TpC(Pr) we denote the set of types over Pr, which is defined as the smallest set,
such that Pr ⊆ TpC(Pr), and if α, β ∈ TpC(Pr), 
 ∈ C, then α 
 β ∈ TpC(Pr).

If there is no danger of confusion regarding the primitive types and construc-
tors, we also simply write Tp for TpC(Pr). We now present the inference rules
corresponding to these constructors. We call an inference of the form Γ � α a
sequent, for Γ ∈ Tp∗, α ∈ Tp, where by Tp∗ we denote the set of all (possi-
bly empty) sequences over Tp, which are concatenated by ‘,’ (keep in mind the
difference between sequents, which have the form Γ � α, and sequences like Γ ,
which are in Tp∗).

With few exceptions, rules of inference in our logics are not given in the form
of sequents Γ � α, but rather as rules to derive new sequents from given ones.
In general, uppercase Greek letters range as variables over sequences of types.
In the inference rules for L, premises of ‘�’ (that is, left hand sides of sequents)
must be non-empty; in L1 they can be empty as well; everything else is equal. In
FL and FL⊥ we also allow for empty sequents. Lowercase Greek letters range
over single types. Below, we present the standard rules of the Lambek calculus
L/L1.

(ax) α � α (cut)
Δ,β,Θ � α Γ � β

Δ, Γ,Θ � α

(I − /)
Γ, α � β

Γ � β/α (I − \)
α, Γ � β

Γ � α\β

(/ − I)
Δ,β,Θ � γ Γ � α

Δ, β/α, Γ,Θ � γ (\ − I)
Δ,β,Θ � γ Γ � α

Δ,Γ, α\β,Θ � γ

(• − I)
Δ,α, β, Γ � γ

Δ,α • β, Γ � γ (I − •)
Δ � α Γ � β

Δ, Γ � α • β

These are the standard rules of L/L1 (roughly as in [13]). We have rules to
introduce either slash and ‘•’ both on the right hand side of � and on the left
hand side of �. We will now add two additional connectives, which are well-
known from structural logics, namely ∨ and ∧. These are not present in L/L1,
have however been considered as extensions as early as in [14], and have been
subsequently studied by [11].

(∧ − I 1)
Γ, α,Δ � γ

Γ, α ∧ β,Δ � γ (∧ − I 2)
Γ, β,Δ � γ

Γ, α ∧ β,Δ � γ
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(I − ∧)
Γ � α Γ � β

Γ � α ∧ β

(∨ − I)
Γ, α,Δ � γ Γ, β,Δ � γ

Γ, α ∨ β,Δ � γ

(I − ∨ 1)
Γ � α

Γ � α ∨ β (I − ∨ 2)
Γ � β

Γ � α ∨ β

(1 − I)
Γ,Δ � α

Γ, 1,Δ � α (I − 1) � 1

This gives us the logic FL. Note that this slightly deviates from standard
terminology, because usually, FL has an additional constant 0 (not to be con-
fused with ⊥!). In our formulation, 0 and 1 coincide. In order to have logical
counterparts for the bounded lattice elements � and ⊥, we introduce two logical
constants, which are denoted by the same symbol.2

(⊥ −I) Γ,⊥ Δ � α (I − �) Γ � �

This gives us the calculus FL⊥. From a logical point of view, all these exten-
sions of L are quite well-behaved: they are conservative, and also allow us to
preserve the important result of [13], namely admissibility of the cut-rule.

We say that a sequent Γ � α is derivable in a calculus, if it can be derived
by the axiom and the rules of inference; we then write �L Γ � α, �L1 Γ � α,
�FL Γ � α etc., depending on which calculus we use.

3.2 Interpretations of L1, FL and FL⊥

The standard model for L1 is the class of residuated monoids. These are struc-
tures (M, ·, 1, \, /,≤), where (M, ·, 1) is a monoid, (M,≤) is a partial order, and
·, /, \ satisfy the law of residuation: for m,n, o ∈ M ,

(6) m ≤ o/n ⇔ m · n ≤ o ⇔ n ≤ m\o.

Note that this implies that · respects the order ≤. The standard model for FL
is the class of residuated lattices, and for FL⊥, the class of bounded residu-
ated lattices. A residuated lattice is an algebraic structure 〈M, ·,∨,∧, \, /, 1〉,
where in addition to the previous requirements, (M,∨,∧) is a lattice; the lat-
tice order ≤ need not be stated, as it can be induced by ∨ or ∧: for a, b ∈ M ,

2 Whereas L and L1 are equally powerful in the sense of languages which are recog-
nizable, [11] shows that FL is considerably more powerful than L: whereas L only
recognizes context-free languages by the classical result of [17], FL can recognize any
finite intersection of context-free languages. We only briefly mention this, because
we have no space to make precise what it means for a calculus to recognize a class
of languages.
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a ≤ b is a shorthand for a ∨ b = b. A bounded residuated lattice is a structure
〈M, ·,∨,∧, \, /, 1,�,⊥〉, where 〈M, ·,∨,∧, \, /, 1〉 is a residuated lattice, � is the
maximal element of the lattice order ≤ and ⊥ is its minimal element.

For a general introduction see [9]. We will give definitions only once for each
operator; we can do so because each definition for a given connector is valid for
all classes in which it is present.

We call the class of residuated monoids RM , the class of residuated lattices
RL; the class of bounded residuated lattices RL⊥. We now give a semantics for
the calculi above. We start with an interpretation σ : Pr → M which interprets
elements in Pr in elements of the lattice, and extend σ to σ by defining it induc-
tively over our type constructors, which is for now the set C := {/, \, •,∨,∧}.
For α, β ∈ TpC(Pr),

1. σ(α) = σ(α) ∈ M , if α ∈ Pr
2. σ(�) = �
2’ σ(�) is an arbitrary m ∈ M such for all α ∈ TpC(Pr), σ(α) ≤ m.
3. σ(⊥) =⊥
4. σ(1) = 1
5. σ(α • β) := σ(α) · σ(β)
6. σ(α/β) := σ(α)/σ(β)
7. σ(α\β) := σ(α)\σ(β)
8. σ(α ∨ β) := σ(α) ∨ σ(β)
9. σ(α ∧ β) := σ(α) ∧ σ(β)

Note that the constructors on the left-hand side and on the right-hand side
of the definition look identical (with the exception of • and ·), but they are not:
on the left-hand side, they are type constructors, on the right hand side, they
are operators of a residuated lattice. The same holds for the constants �,⊥, 1.
Note that there are two alternative interpretations for �: one which interprets
it as the upper bound for the lattice, which is the standard interpretation, and
one which just interprets it as an arbitrary element. The latter will be called the
non-standard interpretation and play some role in the sequel. Non-standard
interpretations form a generalization of standard interpretations, and as we will
see below, this is a proper generalization. From this it trivially follows that every
completeness result which holds for standard interpretations also holds for non-
standard interpretations, but we have to show that soundness is preserved. This
however is also straightforward, as there is only one rule involving � and it can
be easily seen to be sound under non-standard interpretations.

This is how we interpret the types of our logic. What we want to interpret
next is the sequents of the form Γ � α. We say that a sequent R = γ1, ..., γi � α
is true in a model M under assignment σ, in symbols: (M, σ) |= γ1, ..., γi � α, if
and only if σ(γ1 • ... • γi) ≤ σ(α) holds in M. That is, we interpret the ‘,’, which
denotes concatenation in sequents, as · in the model, and � as ≤. In the sequel,
for Γ a sequence of types, we will often write σ(Γ ) as an abbreviation, where we
leave the former translation implicit. For the case of theorems, that is, derivable
sequents with no antecedent, we have the following convention: (M, σ) |= � α,
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iff 1 ≤ σ(α) in M, where 1 is the unit element of M (note that this case does
not arise in L).

More generally, for a given class of (bounded) residuated lattices (monoids,
semigroups) C, we say that a sequent is valid in C, in symbols, C |= γ1, ..., γi � α,
if for all M ∈ C and all interpretations σ, (M, σ) |= γ1, ...γi � α (here we have
to distinguish between standard and non-standard interpretations).

4 Completeness: Previous Results

There are a number of completeness results for the logics we have considered
here. We will consider the most general ones, which will be important in the
sequel.

Theorem 6. For the class RM of residuated monoids, the class RL of residu-
ated lattices, the class RL⊥ of bounded residuated lattices,

1. RM |= Γ � α if and only if �L1 Γ � α,
2. RL |= Γ � α if and only if �FL Γ � α,
3. RL⊥ |= Γ � α if and only if �FL⊥ Γ � α.

For reference on Theorem 6, see [1,2,9]. The proofs for the above complete-
ness theorems usually proceed via the Lindenbaum-Tarski construction: we inter-
pret primitive types as atomic terms modulo mutual derivability, and define
σ(α) ≤ σ(β) iff α � β. Then we can perform an induction over constructors
to get the same for arbitrary formulas/terms. So there are quite simple com-
pleteness proofs for the general case. These completeness results can actually be
strengthened to the finite model property. A logic, equipped with a class of mod-
els and interpretations, is said to have finite model property if it is complete in
the finite; that is, Theorem 6 remains valid if we restrict ourself to finite models.
These results are highly non-trivial; for example, classical first-order logic fails
to have finite model property.

Theorem 7. 1. L1 has finite model property;
2. FL has finite model property;
3. FL⊥ has finite model property.

For the first claim, consider [8]; the second and third has been established
by [16]. We want to establish soundness and completeness of the calculi with
respect to the class of syntactic concept lattices and their reducts. The latter
results are crucial to show that completeness holds if we restrict ourselves to
languages over finite alphabets.

Soundness of interpretations into SCL follows from soundness direction of
Theorem 6, because SCL is just a particular class of bounded residuated lattices.
As L,L1,FL are fragments of FL⊥, we get the same result for L,L1 and FL,
considering the terms which contain only the operators which have a counterpart
in the logic.

Let SCLL1 be the class of SCL reducts with {◦, /, \}, which specify a unit,
and SCLFL be the class of SCL reducts with operators {◦, /, \,∨,∧}, that is,
without the constants � and ⊥.
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Theorem 8 (Completeness).

1. If SCLL1 |= Γ � α, then �L1 Γ � α;
2. if SCLFL |= Γ � α, then �FL Γ � α;
3. if SCL |= Γ � α, then �FL⊥ Γ � α;

The completeness proofs can be found in [19]. The proof shows that for any
(bounded) residuated lattice (reduct) S, there is a language L(S) such that S
can be isomorphically embedded in SCL(L(S)). This embedding thus preserves
validity in both directions, and thus completeness follows. The language L(S) is
constructed with the elements of S as underlying alphabet. By the finite model
property, we can conclude that the result remains valid if we restrict ourselves
to languages over finite alphabets: if S is finite, L(S) is a language over a finite
alphabet (though still infinite!). So Theorem8 also holds for languages over finite
alphabets only.

5 SCLn – Completeness via Embeddings

We now extend Theorem 8 to the structures SCLn : n ∈ N ∪ {ω} (henceforth:
Nω). Again, we proceed by showing that there is an isomorphic embedding from
SCL(L) → SCLn(L). To increase readability and avoid misunderstandings,
in the following we let �, �, ◦ denote operations in SCL, �,�,� denote the
corresponding operations in SCLn. This convention however only concerns this
section! We will exemplify the embedding for SCL2, but it is easy to see that
this can be extended to any n ∈ N.

Assume M ∈ SCL(L). We take a map α : ℘(Σ∗) → ℘(Σ∗ × Σ∗), which is
defined as a lifting of α′ : w �→ (w, ε) to sets composed with closure, so we define
α(M) = (α′[M ])��. The following are more or less immediate:

1. α(M) ∈ SCL2(L);
2. if w ∈ M , then (w, ε) ∈ α(M);
3. α′[M ] 
 α′[N ] = α′[M 
 N ], for 
 ∈ {·,∪,∩}.

The third point ensures that α′ is a homomorphism for sets and classical set-
theoretic operations of languages. Moreover, it is easy to see that α′ is a bijection.
So α′ is an isomorphic embedding from (℘(Σ∗), ·,∪,∩) to (℘(Σ∗ × Σ∗), ·,∪,∩)
Note that all these points remain valid if we suitably extend α′ to α′

n, with

α′
n(w) = (w,

n times
︷ ︸︸ ︷

ε, ..., ε ), with αn defined accordingly.
This is quite obvious. It becomes much less obvious, if we switch our attention

to α, that is, add the closure operation. The reason is as follows: α(M) might
contain elements of the form (w, v) with v �= ε; and thus α(M) · α(N) might
contain terms of the form (w1, w2) · (v1, v2) = (w1v1, w2v2). This is obviously
problematic, as in α(M) · α(N) substrings occur in an order which differs from
the one in fo(α(M))fo(α(N)). We show that the map αn is nonetheless an isomor-
phic embedding SCL(L) → SCLn(L). This requires some work, and we prove
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the claim step by step via the following lemmas (again, we exemplify this for
n = 2, but results can be easily extended to the general case). We first make the
following observation:

Lemma 9. α′[M ]� = {(x, y, z) : (x, yz) ∈ M�};
Both inclusions are obvious. This means that α(M) is the set of all (a, b)

such that if xMyz ⊆ L, then xaybz ∈ L. This allows to show the following:

Lemma 10. For M = M��, (w, ε) ∈ α(M) if and only if w ∈ M .

Proof. If -direction is immediate. Only if : If (w, ε) ∈ α(M), then whenever
(x, y, z) ∈ α(M)�, we have xwyz ∈ L. Now, M� is exactly the set of all (x, yz)
such that (x, y, z) ∈ α(M)�. Thus we have w ∈ M�� = M . �

Put Ma := {wav : wv ∈ M}.

Lemma 11. α(M) � α(N) ⊆ α(M ◦ N).

Proof. Case 1 : Assume (w, v) ∈ α(M) ·α(N). Then (w, v) = (a1b1, a2b2), where
(a1, a2) ∈ α(M), (b1, b2) = α(N). So for (a1, a2) it follows: if xMyz ⊆ L, then
xa1ya2z ∈ L; the same holds for (b1, b2) ∈ α(N). So we have the following:

1. if wMv ⊆ L wa1v
a2 ⊆ L, and

2. if wNv ⊆ L, then wb1v
b2 ⊆ L.

Case 1a: Assume there are x, y such that xMNy ⊆ L. Then it follows (by
2) that for every z1, z2 with z1z2 = y, xMb1z1b2z2 ⊆ L, and consequently (by
1) that xa1b1z1a2b2z2 ∈ L, and so we have (a1b1, a2b2) ∈ (α′[M ◦ N ])�� =
α(M ◦ N).

Case 1b: There are no x, y, z such that xMNyz ⊆ L. Then we have M ◦N =
�, and MN� = ∅. By Lemma 9, it follows that α′[MN ]� = ∅, and therefore,
α′[MN ]�� = α(M ◦ N) = �.

Case 2 : (w, v) /∈ α(M) · α(N). In this case, for all (x, y, z) such that for
all (a, b) ∈ α(M) · α(N), xaybz ∈ L, we have xwyvz ∈ L. So it follows that if
(x, y, z) ∈ α′[M ◦N ]�, then xwyvz ∈ L; thus (w, v) ∈ α′[M ◦N ]�� = α(M ◦N).
�

This is the first of a number of lemmas which establish the main theorem of
this section. The second one establishes the inverse inclusion:

Lemma 12. α(M ◦ N) ⊆ α(M) � α(N).

Proof. Assume (w, v) ∈ α(M ◦ N).
Case 1 : (w, v) ∈ α′[M ◦ N ]. Then v = ε, and w ∈ M ◦ N . For all w ∈ MN ,

(w, ε) ∈ α(M)·α(N). Furthermore, if w ∈ MN��, then (w, ε) ∈ (α(M)·α(N))��

by as simple argument using Lemma 9. Consequently, (w, v) = (w, ε) ∈ α(M) �
α(N).

Case 2 : Assume (w, v) /∈ α′[M ◦ N ]. Consequently, it holds that if (x, y, z) ∈
α′[M ◦ N ]�, then xwyvz ∈ L. As α′[M ◦ N ] ⊆ α(M) � α(N) (by case 1), we
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have α′[M ◦N ]� ⊇ (α(M)�α(N))�, and so if (x, y, z) ∈ (α(M)�α(N))�, then
xwyvz ∈ L, and (w, v) ∈ (α(M) � α(N))�� = α(M) � α(N). �

So α is a homomorphism of ◦ (more generally, every αn is a ◦-
homomorphism). To show that it preserves meets and joins does not require
a lot of work. In order to save one step, we directly prove the claim for infinite
meets.

Lemma 13.
∧

i∈I α(Mi) = α(
∧

i∈I Mi).

This proof is rather straightforward, as ∧ equals ∩ in our case, a fact we will
make use of.
Proof. ⊆ Assume (w, v) ∈ α(Mi) for all i ∈ I. This means for all i ∈ I,
if x(Mi)yz ⊆ L , then xwyvz ∈ L. We have (x, yz) ∈ (

∧

i∈I Mi)� iff and
only if (x, y, z) ∈ α′[

∧

i∈I Mi]� (Lemma 9). So if (x, y, z) ∈ α′[
∧

i∈I Mi]�, then
x(

⋂

i∈I Mi)yz ⊆ L, and so xwyvz ∈ L, and so (w, v) ∈ α′[
∧

i∈I Mi]�� =
α(

∧

i∈I Mi).
⊇ Assume (w, v) ∈ α(

∧

i∈I Mi). Because α(X) = α′[X]��, α′ being a point-
wise map on sets and [−]�� being a closure operator, from

∧

i∈I Mi ⊆ Mj : j ∈ I
it follows that α(

∧

i∈I Mi) ⊆ α(Mj); and so α(
∧

i∈I Mi) ⊆ ⋂

i∈I α(Mi) =
∧

i∈I α(Mi). �
Now we can use the fact that in a complete lattice, we can use meets to define

joins (and vice versa). This allows us to derive the following:

Lemma 14. α(M) ∨ α(N) = α(M ∨ N).

Proof. We use the facts that 1. both SCL(L), SCL2(L) are complete, and 2. α
preserves infinite meets. For these reasons, the following equality holds:

α(M) ∨ α(N) =
∧{α(X) : X ≥ M,N} = α(

∧{X : X ≥ M,N}).

Moreover, we can easily extend this to the infinite case:
∨

i∈I α(Mi) =
∧{α(X) : X ≥ Mi : i ∈ I} = α(

∧{X : X ≥ Mi : i ∈ I}) =
α(

∨

i∈I Mi).

�
Again, this can be easily extended to any αn, n ∈ Nω.

Needless to say, every map αn : SCL(L) → SCLn(L) is an injection. To
see this, just assume we have M,N ∈ SCL(L); and assume without loss of
generality that (w, v) ∈ M�, (w, v) /∈ N�. Then we have (w, ε, v) ∈ α′[M ]�,
but (w, ε, v) /∈ α′[N ]�, so α(M) = α′[M ]�� �= α′[N ]�� = α(N). This together
with the with fact that we preserve joins and meets makes the following rather
obvious:

Lemma 15. X ◦ N ≤ M iff α(X) � α(N) ≤ α(M).

Proof. If : For contraposition, assume X ◦ N �≤ M . Then there is w ∈ X ◦ N ,
w /∈ M . Consequently, there is (w, ε) ∈ α(X) � α(N), but w /∈ α(M) (by
Lemma 10).

Only if : Assume X ◦ N ≤ M . Then obviously α(X ◦ N) = α(X) � α(N) ≤
α(M), as α preserves ⊆. �
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Lemma 16. α(M)/α(N) = α(M/N)

Proof.We have M/N =
∨{X : X◦N ≤ M}; moreover α(

∨{X : X◦N ≤ M}) =
∨{α(X) : X ◦ N ≤ M}. Since X ◦ N ≤ M iff α(X) � α(N) ≤ α(M), we have
∨{α(X) : X ◦ N ≤ M} =

∨{α(X) : α(X) � α(N) ≤ α(M)} = α(M)/α(N). �
Again, this proof works perfectly fine for any αn. To not get confused with

⊥,� in SCL, SCL2, we denote the latter elements with ⊥2,�2 etc.

Lemma 17. α(⊥) =⊥2, but there are languages L such that α(�) �= �2.

Proof. 1. ⊥ We have defined ⊥= ∅��. Assume ⊥= ∅; in this case, the result is
obvious. Assume there is w ∈⊥. Then for every (x, y) ∈ Σ∗ × Σ∗, xwy ∈ L. Con-
sequently, for all (x, y, z) ∈ (Σ∗)3, xwyz ∈ L. So α′[⊥]� = ∅�, and α(⊥) =⊥2.

2. Take the language L = a(a+b)∗a. Then (a, a) ∈ ((a+b)∗)�, where (a+b)∗ =
�. Consequently, (a, a, ε) ∈ α′[�]�. As abab /∈ L, we have (b, b) /∈ α′[�]�� =
α(�), hence α(�) �= �2 = Σ∗ × Σ∗. �

Again, this is easily extended to arbitrary n ∈ Nω. So we have a seri-
ous problem, because our embedding does not preserve �. We can dodge this
however by considering non-standard interpretations (see Sect. 3.2 and proof of
Theorem 19 below).

So this proves the first main theorem:

Theorem 18. For every n ∈ Nω, there is an isomorphic embedding αn :
SCL(L) → SCLn(L), such that αn(⊥) =⊥, and which in addition preserves
infinite meets and joins.

From Theorem 18 it is rather easy to extend the completeness result to SCLn:

Theorem 19. For arbitrary n ∈ Nω, �FL⊥ Γ � α iff SCLn |= Γ � α.

Proof. Soundness is clear and follows from more general results. Regarding
completeness: Assume we have ��FL⊥ Γ � γ. Then there is an L, σ : Pr →
SCL(L) such that σ(Γ ) �⊆ σ(γ). It follows that αn(σ(Γ ) �⊆ αn(σ(γ)), and so
SCLn(L), αn ◦ σ �|= Γ � γ, which proves the claim.

But keep in mind that αn ◦ σ is a non-standard interpretation, as αn ◦ σ(�)
need not be � in the lattice! �

The results obviously also hold for the logics FL, L1 and the corresponding
syntactic concept lattice reducts (for these, the notions of standard and non-
standard interpretation coincide). Note also that this shows that the notion of
a non-standard interpretation properly generalizes standard interpretations.

6 A Characterization for Finite SCLω-Structures

Obviously, if L /∈ Reg, then SCLω(L) is infinite; but the converse is wrong
(see Lemma 2). A permutation π is a map on words which preserves all cardinal-
ities of all letters in this word. For any language L, define Π(L) = {w : π(v) = w
for some permutation π and some v ∈ L}. Let PermReg be the class of lan-
guages, which is defined as follows:



On Some Extensions of Syntactic Concept Lattices 177

Definition 20. L ∈ PermReg, iff 1. L ∈ Reg, and 2. Π(L) = L.

This concerns, for example, languages like {w : |w|a is even for a ∈ Σ}. We
will show that SCLω(L) is finite iff L ∈ PermReg. For the if -direction, we first
show the following lemma, which at the same time gives some understanding of
the combinatorics of permutations:

Lemma 21. Assume L �= Π(L), so there is a permutation π, w ∈ L, such that
π(w) /∈ L. Then there are w, v ∈ (Σ∗)ω such that fo(v ·w) = w, fo(w)fo(v) = π(w).

Note firstly that assumptions assure that w �= π(w). From this follows that
fo(w) �= ε �= fo(v), as this would entail w = π(w).
Proof. We choose some arbitrary w, π such that w ∈ L, π(w) /∈ L (which exist
by assumption). We let ai denote the ith letter of π(w). We construct w in the
following fashion:

Step 1. Take a1, the first letter of π(w), and put w = (a1, ε, ε, ...). Of course,
there is v ∈ (Σ∗)ω such that fo(v · (a1, ε, ...)) = w, because a1 occurs in some
place in w. Now there are two possible cases:

Case 1 : fo(w)fo(v) /∈ L; then we change the “target permutation” π from the
lemma to ξ, where ξ(w) = fo(w)fo(v) (this is clearly a permutation). Then we
are done, as ξ, w satisfy the claim!

Case 2 : fo(w)fo(v) ∈ L. In this case, we discard w, π and consider w1, π1

instead, where w1 = fo(w)fo(v) ∈ L, and π1 is defined by π1(w1) = π(w) (this
works because w,w1 are permutations of each other). Then continue with step 2.

Step 2. Having chosen ai before, we now take ai+1 (as πi(wi) = π(w), it does
not matter which of the two we consider). Put w = (a1...ai, ai+1, ε, ...); there is
obviously a v such that fo((a1...ai, ai+1, ε, ...) ·v) = wi, because wi is constructed
as a1...aiv, and v necessarily contains the letter ai+1. Now we can go back to
the case distinction and repeat the procedure.

In the end, there are two possibilities: as w is a finite word, either at some
point we hit case 1, and the claim follows. Assume we do not hit case 1. Then
at some point we have i = |w| = |π(w)|, so we construct w|w| as a1...a|w|. Then
by definition and assumption, we have a1...a|w| = π(w) /∈ L. But we also have,
as we do not hit case 1 by assumption, a1...a|w| = fo(w)fo(v) = w|w| ∈ L –
contradiction. �

As we can see, we can even make sure that w has the form (w, a, ε, ε, ...), and
v = (v1, v2, v3, ε, ε, ...).

Lemma 22. L ∈ PermReg if and only if SCLω(L) is finite.

Proof. Only if : There are only finitely many non-equivalent concepts of the form
(w, ε, ε, ...). Moreover, by permutation closure, we know that if fo(w) = fo(v),
then {w}� = {v}� and the claim follows easily.

If : For this we need the previous lemma. We prove the contraposition, so
assume L /∈ PermReg. Then either L /∈ Reg, and the claim follows easily.
Or Π(L) �= L. In this case, we have w, π such that w ∈ L, π(w) /∈ L, and
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there are w, v ∈ (Σ∗)ω such that fo(v · w) = w, fo(w)fo(v) = π(w). Moreover,
w = (w, a, ε, ε, ...), and v = (v1, v2, v3, ε, ε, ...).

Now for every n ∈ N, we simply take a tuple (
2n times
︷ ︸︸ ︷

ε, ..., ε, w, ε, ε, ...). It is clear
that for every n, we get non-equivalent tuples: We have

(#) fo((ε1, ..., ε2n, v1, v2, v3, ε, ε, ...) · (ε1, ..., ε2(n−1), w, a, ε, ε, ...)) = π(w) /∈ L,

whereas

fo((ε1, ..., ε2n, v1, v2, v3, ε, ε, ...) · (ε1, ..., ε2n, w, a, ε, ε, ...)) = w ∈ L.

Moreover, (#) holds if in the term 2n is replaced by any number m ≥ 2n. Put
wm = (ε1, ..., ε2m, w, a, ε, ε, ...). So for any wm, wn, if m �= n, then {wm}� �=
{wn}�, and as these sets are closed and there are infinitely many of them,
SCLω(L) is infinite. �

7 Conclusion

We have shown completeness results for extensions of syntactic concepts to finite
and infinite tuples; moreover, we have given a precise characterization of the class
of languages which result in finite lattices in all cases. Interpreting substructural
logics in sets of tuples rather than sets of strings is interesting for a number of
reasons: from the perspective of categorial grammar and/or Lambek calculus as
language-recognizing devices, the interpretation in tuples allows us to recognize
languages which are not context-free (by letting grammars recognize tuples mod-
ulo fo). This relates more “classical” categorial approaches to new approaches
such as the displacement calculus D, which also recognizes languages which are
not context-free. In this context, infinite tuples are particularly interesting, as
they allow to simulate both the “wrapping”-style extended concatenation in
D and the “crossing”-style extended concatenation we have looked at in this
paper. The usage of formal concept analysis is particularly interesting in con-
nection with learning theory; so the results here might also be of some interest
for learning beyond context-free languages.
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