
Annie Foret · Glyn Morrill
Reinhard Muskens · Rainer Osswald
Sylvain Pogodalla (Eds.)

 123

LN
CS

 9
80

4

20th and 21st International Conferences
FG 2015, Barcelona, Spain, August 2015, Revised Selected Papers
FG 2016, Bozen, Italy, August 2016, Proceedings

Formal Grammar

Lecture Notes in Computer Science 9804

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK Takeo Kanade, USA
Josef Kittler, UK Jon M. Kleinberg, USA
Friedemann Mattern, Switzerland John C. Mitchell, USA
Moni Naor, Israel C. Pandu Rangan, India
Bernhard Steffen, Germany Demetri Terzopoulos, USA
Doug Tygar, USA Gerhard Weikum, Germany

FoLLI Publications on Logic, Language and Information
Subline of Lectures Notes in Computer Science

Subline Editors-in-Chief

Valentin Goranko, Technical University, Lynbgy, Denmark
Michael Moortgat, Utrecht University, The Netherlands

Subline Area Editors

Nick Bezhanishvili, Utrecht University, The Netherlands

Anuj Dawar, University of Cambridge, UK

Philippe de Groote, Inria-Lorraine, Nancy, France
Gerhard Jäger, University of Tübingen, Germany

Fenrong Liu, Tsinghua University, Beijing, China

Eric Pacuit, University of Maryland, USA

Ruy de Queiroz, Universidade Federal de Pernambuco, Brazil

Ram Ramanujam, Institute of Mathematical Sciences, Chennai, India

More information about this series at http://www.springer.com/series/7407

Annie Foret • Glyn Morrill
Reinhard Muskens • Rainer Osswald
Sylvain Pogodalla (Eds.)

Formal Grammar
20th and 21st International Conferences
FG 2015, Barcelona, Spain, August 2015, Revised Selected Papers
FG 2016, Bozen, Italy, August 2016, Proceedings

123

Editors
Annie Foret
IRISA
University of Rennes 1
Rennes
France

Glyn Morrill
Department of Computer Science
Universitat Politècnica de Catalunya
Barcelona
Spain

Reinhard Muskens
Tilburg University
Tilburg
The Netherlands

Rainer Osswald
Department of General Linguistics
Heinrich-Heine-University Düsseldorf
Düsseldorf
Germany

Sylvain Pogodalla
INRIA Nancy
Villers-lès-Nancy
France

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-662-53041-2 ISBN 978-3-662-53042-9 (eBook)
DOI 10.1007/978-3-662-53042-9

Library of Congress Control Number: 2016945939

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2016, corrected publication 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer-Verlag GmbH Berlin Heidelberg

Preface

The Formal Grammar conference series (FG) provides a forum for the presentation of
new and original research on formal grammar, mathematical linguistics, and the
application of formal and mathematical methods to the study of natural language.
Themes of interest include, but are not limited to:

– Formal and computational phonology, morphology, syntax, semantics, and
pragmatics

– Model-theoretic and proof-theoretic methods in linguistics
– Logical aspects of linguistic structure
– Constraint-based and resource-sensitive approaches to grammar
– Learnability of formal grammar
– Integration of stochastic and symbolic models of grammar
– Foundational, methodological, and architectural issues in grammar and linguistics
– Mathematical foundations of statistical approaches to linguistic analysis

Previous FG meetings were held in Barcelona (1995), Prague (1996), Aix-en-Provence
(1997), Saarbrücken (1998), Utrecht (1999), Helsinki (2001), Trento (2002), Vienna
(2003), Nancy (2004), Edinburgh (2005), Malaga (2006), Dublin (2007), Hamburg
(2008), Bordeaux (2009), Copenhagen (2010), Ljubljana (2011), Opole (2012),
Düsseldorf (2013), and Tübingen (2014).

FG 2015, the 20th Conference on Formal Grammar, was held in Barcelona during
August 8–9, 2015. The proceedings comprise two invited contributions, by Robin
Cooper and Tim Fernando, and nine contributed papers selected from 13 submissions.
The present volume includes the two invited papers and eight revised versions of the
contributed papers.

FG 2016, the 21st Conference on Formal Grammar, was held in Bolzano-Bozen
during August 20–21, 2016. The conference comprised two invited talks, by Frank
Drewes and Mehrnoosh Sadrzadeh, and eight contributed papers selected from 11
submissions. The present volume includes the contributed papers.

We would like to thank the people who made the 20th and 21th FG conferences
possible: the invited speakers, the members of the Program Committees, and the
organizers of ESSLLI 2015 and ESSLLI 2016, with which the conferences were
colocated.

June 2016 Annie Foret
Glyn Morrill

Reinhard Muskens
Rainer Osswald

Sylvain Pogodalla

FG 2015 Organization

Program Committee

Alexander Clark King’s College London, UK
Berthold Crysmann CNRS - LLF (UMR 7110), Paris-Diderot, France
Denys Duchier Université d’Orléans, France
Philippe de Groote Inria Nancy – Grand Est, France
Nissim Francez Technion - IIT, Israel
Laura Kallmeyer Heinrich-Heine-Universität Düsseldorf, Germany
Makoto Kanazawa National Institute of Informatics, Japan
Gregory Kobele University of Chicago, USA
Robert Levine Ohio State University, USA
Wolfgang Maier Heinrich-Heine-Universität Düsseldorf, Germany
Stefan Müller Freie Universität Berlin, Germany
Mark-Jan Nederhof University of St Andrews, UK
Gerald Penn University of Toronto, Canada
Christian Retoré Université de Montpellier and LIRMM-CNRS, France
Manfred Sailer Goethe University Frankfurt, Germany
Edward Stabler UCLA and Nuance Communications, USA
Jesse Tseng CNRS, France
Oriol Valentín Universitat Politècnica de Catalunya, Spain

Standing Committee

Annie Foret IRISA, University of Rennes 1, France
Glyn Morrill Universitat Politècnica de Catalunya, Spain
Reinhard Muskens Tilburg Center for Logic and Philosophy of Science,

The Netherlands
Rainer Osswald Heinrich-Heine-Universität Düsseldorf, Germany

FG 2016 Organization

Program Committee

Raffaella Bernardi Free University of Bozen-Bolzano, Italy
Alexander Clark King’s College London, UK
Berthold Crysmann CNRS - LLF (UMR 7110), Paris-Diderot, France
Philippe de Groote Inria Nancy – Grand Est, France
Nissim Francez Technion - IIT, Israel
Laura Kallmeyer Heinrich-Heine-Universität Düsseldorf, Germany
Makoto Kanazawa National Institute of Informatics, Japan
Gregory Kobele University of Chicago, USA
Robert Levine Ohio State University, USA
Wolfgang Maier Heinrich-Heine-Universität Düsseldorf, Germany
Stefan Müller Freie Universität Berlin, Germany
Mark-Jan Nederhof University of St Andrews, UK
Christian Retoré Université de Montpellier and LIRMM-CNRS, France
Mehrnoosh Sadrzadeh Queen Mary University of London, UK
Manfred Sailer Goethe University Frankfurt, Germany
Edward Stabler UCLA and Nuance Communications, USA
Jesse Tseng CNRS, France
Oriol Valentín Universitat Politècnica de Catalunya, Spain

Standing Committee

Annie Foret IRISA, University of Rennes 1, France
Reinhard Muskens Tilburg Center for Logic and Philosophy of Science,

The Netherlands
Rainer Osswald Heinrich-Heine-Universität Düsseldorf, Germany
Sylvain Pogodalla LORIA/Inria Nancy – Grand Est, France

Contents

Formal Grammar 2015: Invited Papers

Frames as Records . 3
Robin Cooper

Types from Frames as Finite Automata . 19
Tim Fernando

Formal Grammar 2015: Contributed Papers

Cyclic Multiplicative-Additive Proof Nets of Linear Logic
with an Application to Language Parsing . 43

Vito Michele Abrusci and Roberto Maieli

Algebraic Governance and Symmetry in Dependency Grammars. 60
Carles Cardó

On the Mild Context-Sensitivity of k-Tree Wrapping Grammar 77
Laura Kallmeyer

Distributional Learning and Context/Substructure Enumerability
in Nonlinear Tree Grammars . 94

Makoto Kanazawa and Ryo Yoshinaka

Between the Event Calculus and Finite State Temporality 112
Derek Kelleher, Tim Fernando, and Carl Vogel

A Modal Representation of Graded Medical Statements 130
Hans-Ulrich Krieger and Stefan Schulz

Models for the Displacement Calculus . 147
Oriol Valentín

On Some Extensions of Syntactic Concept Lattices: Completeness
and Finiteness Results . 164

Christian Wurm

Formal Grammar 2016: Contributed Papers

Overtly Anaphoric Control in Type Logical Grammar 183
María Inés Corbalán and Glyn Morrill

A Single Movement Normal Form for Minimalist Grammars 200
Thomas Graf, Alëna Aksënova, and Aniello De Santo

Word Ordering as a Graph Rewriting Process . 216
Sylvain Kahane and François Lareau

Undecidability of the Lambek Calculus with a Relevant Modality 240
Max Kanovich, Stepan Kuznetsov, and Andre Scedrov

Introducing a Calculus of Effects and Handlers for Natural
Language Semantics . 257

Jirka Maršík and Maxime Amblard

Proof Nets for the Displacement Calculus . 273
Richard Moot

Countability: Individuation and Context . 290
Peter R. Sutton and Hana Filip

The Proper Treatment of Linguistic Ambiguity in Ordinary Algebra 306
Christian Wurm and Timm Lichte

Erratum to: The Proper Treatment of Linguistic Ambiguity
in Ordinary Algebra . E1

Christian Wurm and Timm Lichte

Author Index . 323

X Contents

Formal Grammar 2015:
Invited Papers

Frames as Records

Robin Cooper(B)

Department of Philosophy, Linguistics and Theory of Science,
University of Gothenburg, Box 200, 405 30 Göteborg, Sweden

cooper@ling.gu.se

http://www.ling.gu.se/∼cooper

Abstract. We suggest a way of formalizing frames using records in type
theory. We propose an analysis of frames as records which model situa-
tions (including events) and we suggest that frame types (record types)
are important in both the analysis of the Partee puzzle concerning ris-
ing temperatures and prices and in the analysis of quantification which
involves counting events rather than individuals likes passengers or ships
passing through a lock.

Our original inspiration for frames comes from the work of [13,14]
and work on FrameNet (https://framenet.icsi.berkeley.edu). An impor-
tant aspect of our approach to frames, which differs from the Fillmorean
approach, is that we treat them as first class objects. That is, they can
be arguments to predicates and can be quantified over. The proposal
that we have made for solving the Partee puzzle is closely related to the
work of [22,23] whose inspiration is from the work of [1–3] rather than
Fillmore.

Keywords: Frames · Type theory · Record types · Events · Situations

1 Introduction

In this paper1 we will suggest a way of formalizing frames using records in
type theory and apply this to two phenomena: the “Partee puzzle” concerning
rising temperatures and prices for which Montague [24] used individual concepts
(functions from possible worlds and times to individuals) and the problem of
apparent quantification over events rather than individuals in sentences like (1)
discussed by Krifka [18] among others.

(1) Four thousand ships passed through the lock

Our leading idea is to model frames as records and the roles in frames
(or frame elements in the terminology of FrameNet) as fields in records.
1 An expanded version of this paper with a more detailed formal development is avail-

able as Chap. 5 of a book draft [7]. This book draft also gives a general introduction
to TTR (the type theory with records that we are using here). For a published
introduction see [6].

c© Springer-Verlag Berlin Heidelberg 2016
A. Foret et al. (Eds.): FG 2015/2016, LNCS 9804, pp. 3–18, 2016.
DOI: 10.1007/978-3-662-53042-9 1

https://framenet.icsi.berkeley.edu

4 R. Cooper

Records are in turn what we use to model situations so frames and situ-
ations in our view turn out to be the same. Given that we are working
in a type theory which makes a clear distinction between types and the
objects which belong to those types it is a little unclear whether what we
call frame should be a record or a record type. We need both and we will
talk of frames (records) and frame types (record types). For example, when we
look up the frame Ambient temperature (https://framenet2.icsi.berkeley.edu/
fnReports/data/frameIndex.xml?frame=Ambient temperature) in FrameNet we
will take that to be an informal description of a frame type which can be instan-
tiated by the kinds of situations which are described in the examples there. In
our terms we can characterize a type corresponding to a very stripped down
version of FrameNet’s Ambient temperature which is sufficient for us to make
the argument we wish to make. This is the type AmbTempFrame defined in (2).2

(2)

⎡
⎣

x : Real
loc : Loc
e : temp(loc, x)

⎤
⎦

A record, r, will be of this type just in case in contains three fields with the
labels ‘x’, ‘loc’ and ‘e’ and the objects in these fields are of the types Real, Loc
and temp(r.loc,r.x), that is, a type whose witness is a proof-object (a situation)
which shows that the real number in the ‘x’-field of r (r.x) is the temperature
at the location r.loc. r may contain more fields than those required by the type.
A record may not contain more than one field with a given label.

In order to characterize temperature changes we will introduce a notion of
scale relating to frames. A scale is a function which maps frames (situations) to
a real number. Thus a scale for ambient temperature will be of the type (3a)
and the obvious function to choose of that type is the function in (3b) which
maps any ambient temperature frame to the real number in its ‘x’-field.

(3) a. (AmbTempFrame → Real)
b. λr:AmbTempFrame . r.x

Let us call (3b) ζtemp. As a first approximation we can take an event of
a temperature rise to be a string3 of two temperature frames, r�

1 r2, where
ζtemp(r1) < ζtemp(r2). Using a notation where Tn is the type of strings of length
n each of whose members are of type T and where for a given string, s, s[0] is
the first member of s, s[1] the second and so on, a first approximation to the
type of temperature rises could be (4).

(4)
[

e : AmbTempFrame2

crise : ζtemp(e[0]) < ζtemp(e[1])

]

2 Our treatment of the Partee puzzle here represents an improvement over the proposal
presented in Cooper [6] in that it allows a more general treatment of the type of
rising events.

3 The idea of events as strings is taken from an important series of papers by Fernando,
[8–12] among others.

https://framenet2.icsi.berkeley.edu/fnReports/data/frameIndex.xml?frame=Ambient_temperature
https://framenet2.icsi.berkeley.edu/fnReports/data/frameIndex.xml?frame=Ambient_temperature

Frames as Records 5

In the crise-field of (4) we are using < as an infix notation for a predicate
‘less-than’ with arity 〈Real, Real〉 which obeys the constraint in (5).

(5) less-than(n, m) is non-empty (“true”) iff n < m

A more general type for temperature rises is given by (6) where we abstract
away from the particular temperature scale used by introducing a field for the
scale into the record type. This, for example, allows for an event to be a temper-
ature rise independent of whether it is measured on the Fahrenheit or Celsius
scales.

(6)

⎡
⎣

scale : (AmbTempFrame → Real)
e : AmbTempFrame2

crise : scale(e[0]) < scale(e[1])

⎤
⎦

This type, though, is now too general to count as the type of temperature
rising events. To be of this type, it is enough for there to be some scale on
which the rise condition holds and the scale is allowed to be any arbitrary func-
tion from temperature frames to real numbers. Of course, it is possible to find
some arbitrary function which will meet the rise condition even if the tempera-
ture is actually going down. For example, consider a function which returns the
number on the Celsius scale but with the sign (plus or minus) reversed mak-
ing temperatures above 0 to be below 0 and vice versa. There are two ways we
can approach this problem. One is to make the type in the scale-field a sub-
type of (AmbTempFrame → Real) which limits the scale to be one of a number
of standardly accepted scales. This may be an obvious solution in the case of
temperature where it is straightforward to identify the commonly used scales.
However, scales are much more generally used in linguistic meaning and people
create new scales depending on the situation at hand. This makes it difficult to
specify the nature of the relevant scales in advance and we therefore prefer our
second way of approaching this problem.

The second way is to parametrize the type of temperature rising events. By
this we mean using a dependent type which maps a record providing a scale to
a record type modelling the type of temperature rising events according to that
scale. The function in (7) is a dependent type which is related in an obvious way
to the record type in (6).

(7) λr:
[
scale:(AmbTempFrame → Real)

]
.[

e : AmbTempFrame2

crise : r.scale(e[0]) < r.scale(e[1])

]

According to (6) an event will be a temperature rise if there is some scale
according to which the appropriate relation holds between the temperatures of
the two stages of the event which we are comparing. According to (7) on the other
hand, there is no absolute type of a temperature rise. We can only say whether an
event is a temperature rise with respect to some scale or other. If we choose some

6 R. Cooper

non-standard scale like the one that reverses plus and minus temperatures as we
suggested above then what we normally call a fall in temperature will in fact be a
rise in temperature according to that scale. You are in principle allowed to choose
whatever scale you like, though if you are using the type in a communicative
situation you had better make clear to your interlocutor what scale you are using
and perhaps also why you are using this scale as opposed to one of the standardly
accepted ones. The dependent types introduce a presupposition-like component
to communicative situations. We are assuming the existence of some scale in the
context.

Why do we characterize the domain of the function in (7) in terms of records
containing a scale rather than just scales as in (8)?

(8) λσ:(AmbTempFrame → Real).[
e : AmbTempFrame2

crise : σ(e[0]) < σ(e[1])

]

The intuitive reason is that we want to think of the arguments to such func-
tions as being contexts, that is situations (frames) modelled as records. The
scale will normally be only one of many informational components which can
be provided by the context and the use of a record type allows for there to be
more components present. In practical terms of developing an analysis it is use-
ful to use a record type to characterize the domain even if we have only isolated
one parameter since if further analysis should show that additional parameters
are relevant this will mean that we can add fields to the domain type thereby
restricting the domain of the function rather than giving it a radically different
type.

And indeed in this case we will now show that there is at least one more
relevant parameter that needs to be taken account of before we have anything like
a reasonable account of the type of temperature rise events. In (2) we specified
that an ambient temperature frame relates a real number (“the temperature”)
to a spatial location. And now we are saying that a temperature rise is a string
of two such frames where the temperature is higher in the second frame. But
we have not said anything about how the locations in the two frames should be
related. For example, suppose I have a string of two temperature frames where
the location in the first is London and the location in the second is Marrakesh.
Does that constitute a rise in temperature (assuming that the temperature in the
second frame is higher than the one in the first)? Certainly not a temperature
rise in London, nor in Marrakesh. If you want to talk about a temperature
rise in a particular location then both frames have to have that location and
we need a way of expressing that restriction. Of course, you can talk about
temperature rises which take place as you move from one place to another and
which therefore seem to involve distinct locations. However, it seems that even
in these cases something has to be kept constant between the two frames. One
might analyse it in terms of a constant path to which both locations have to
belong or as a constant relative location such as the place where a particular
person (or car, or airplane) is. You cannot just pick two arbitrary temperature

Frames as Records 7

frames without holding something constant which ties them together. We will
deal here with the simple case where the location is kept constant.4 We will say
that the background information for judging an event as a temperature rise has
to include not only a scale but also a location which is held constant in the two
frames. This is expressed in (9).

(9) λr:
[
fix:

[
loc:Loc

]
scale:(AmbTempFrame → Real)

]
.

[
e : (AmbTempFrame∧.

[
loc=r.fix.loc:Loc

]
)2

crise : r.scale(e[0]) < r.scale(e[1])

]

Here we have introduced two new pieces of notation. The symbol ‘∧. ’ represents
that two record types are to be merged, an operation which corresponds to
unification of feature structures. Essentially, T1∧. T2 is a record type T3 such that
for any record r, r : T3 iff r : T1 and r : T2. We also introduce a manifest
field

[
loc=r.fix.loc:Loc

]
. A manifest field

[
�=a:T

]
is a convenient notation for[

�:Ta

]
where Ta is a singleton type such that b : Ta iff a : T and b = a. Thus

a manifest field in a type specifies what the value in the corresponding record
must be. Precise definitions of these concepts can be found in [6,7]. Here we
give an example of the merge of AmbTempFrame (spelled out in (10a)) and[
loc=r.fix.loc:Loc

]
which is identical to (10b).

(10)
a.

⎡
⎣

x : Real
loc : Loc
e : temp(loc, x)

⎤
⎦ ∧.

[
loc=r.fix.loc:Loc

]

b.

⎡
⎣

x : Real
loc=r.fix.loc : Loc
e : temp(loc, x)

⎤
⎦

The ‘fix’-field in the domain type of (9) is required to be a record which
provides a location. One reason for making the ‘fix’-field a record rather than
simply a location is that we will soon see an example where more than one
parameter needs to be fixed. It will also help us ultimately in characterizing a
general type for a rising event (not just a rise in temperature) if we can refer to
the type in the ‘fix’-field as Rec (“record”) rather than to list a disjunction of all
the various types of the parameters that can be held constant in different cases.

The temperature rise event itself is now required to be a string of two frames
which belong to a subtype of AmbTempFrame, namely where the ‘loc’-field has
been made manifest and is specified to have the value specified for ‘loc’ in the
‘fix’-field. Here we are using the record in the ‘fix’-field of the argument to the
function to partially specify the type AmbTempFrame by fixing values for some

4 Although in astronomical terms, of course, even a location like London is a relative
location, that is, where London is according to the rotation of the earth and its
orbit around the sun. Thus the simple cases are not really different from the cases
apparently involving paths.

8 R. Cooper

of its fields. One can think of the ‘fix’-record as playing the role of a partial
assignment of values to fields in the type. To emphasize this important role and
to facilitate making general statements without having to name the particular
fields involved, we shall introduce an operation which maps a record type, T ,
and a record, r to the result of specifying T with r, which we will notate as
T ‖ r. (11) provides an abstract example of how it works.

(11)

⎡
⎣

�1:T1

�2:T2

�3:T3

⎤
⎦‖

⎡
⎣

�2=a
�3=b
�4=c

⎤
⎦ =

⎡
⎣

�1:T1

�2=a:T2

�3=b:T3

⎤
⎦

provided that a : T2 and b : T3

In a case where for example a : T2 but not b : T3 we would have (12).

(12)

⎡
⎣

�1:T1

�2:T2

�3:T3

⎤
⎦‖

⎡
⎣

�2=a
�3=b
�4=c

⎤
⎦ =

⎡
⎣

�1:T1

�2=a:T2

�3:T3

⎤
⎦

Using this notation we can now rewrite (9) as (13).

(13) λr:
[
fix:

[
loc:Loc

]
scale:(AmbTempFrame → Real)

]
.

[
e : (AmbTempFrame‖r.fix)2

crise : r.scale(e[0]) < r.scale(e[1])

]

This is still a very simple theory of what a temperature rise event may be
but it will be sufficient for our current purposes. We move on now to price rise
events. We will take (14) to be the type of price frames, PriceFrame.

(14)

⎡
⎢⎢⎣

x : Real
loc : Loc
commodity : Ind
e : price(commodity, loc, x)

⎤
⎥⎥⎦

The fields represented here are based on a much stripped down version of the
FrameNet frame Commerce scenario where our ‘commdodity’-field corresponds
to the frame element called ‘goods’ and the ‘x’-field corresponds to the frame
element ‘money’. A price rise is a string of two price frames where the value in
the ‘x’-field is higher in the second. Here, as in the case of a temperature rise,
we need to keep the location constant. It does not make sense to say that a price
rise has taken place if we compare a price in Marrakesh with a price in London,
even though the price in London may be higher. In the case of price we also
need to keep the commodity constant, something that does not figure at all in
ambient temperature. We cannot say that a price rise has taken place if we have
the price of tomatoes in the first frame and the price of oranges in the second

Frames as Records 9

frame. Thus, following the model of (13), we can characterize the dependent type
of price rises as (15).

(15) λr:

⎡
⎣fix:

[
loc:Loc
commodity:Ind

]

scale:(PriceFrame → Real)

⎤
⎦ .

[
e : (PriceFrame‖r.fix)2

crise : r.scale(e[0]) < r.scale(e[1])

]

Finally we consider a third kind of rising event discussed in [6] based on the
example in (16).

(16) As they get to deck, they see the Inquisitor, calling out to a Titan
in the seas. The giant Titan rises through the waves, shrieking at
the Inquisitor.

http://en.wikipedia.org/wiki/Risen (video game)

accessed 4th February, 2010

Here what needs to be kept constant in the rising event is the Titan. What needs
to change between the two frames in the event is the height of the location of
the Titan. Thus in this example the location is not kept constant. In order to
analyze this we can use location frames of the type LocFrame as given in (17).

(17)

⎡
⎣

x : Ind
loc : Loc
e : at(x, loc)

⎤
⎦

The dependent type for a rise in location event is (18).

(18) λr:
[
fix:

[
x:Ind

]
scale:(LocFrame → Real)

]
.

[
e : (LocFrame‖r.fix)2

crise : r.scale(e[0]) < r.scale(e[1])

]

Here the obvious scale function does not simply return the value of a field in the
location frame. What is needed is a scale based on the height of the location.
One way to do this would be to characterize the type of locations, Loc, as the
type of points in three-dimensional Euclidean space. That is, we consider Loc to
be an abbreviation for (19).

(19)

⎡
⎣

x-coord : Real
y-coord : Real
z-coord : Real

⎤
⎦

Each of the fields in (19) corresponds to a coordinate in Euclidean space.
A more adequate treatment would be to consider locations as regions in Euclid-
ean space but we will not pursue that here. Treating Loc as (19) means that we

http://en.wikipedia.org/wiki/Risen_(video_game)

10 R. Cooper

can characterize the scale function as returning the height of the location in the
location frame, as in (20).

(20) λr:LocFrame . r.loc.z-coord

If we wish to restrict the dependent type of rising events to vertical rises we can
fix the x and y-coordinates of the location as in (21).

(21) λr:

⎡
⎢⎢⎣

fix:

⎡
⎣

x:Ind

loc:
[
x-coord:Real
y-coord:Real

]
⎤
⎦

scale:(LocFrame → Real)

⎤
⎥⎥⎦ .

[
e : (LocFrame‖r.fix)2

crise : r.scale(e[0]) < r.scale(e[1])

]

We have now characterized three kinds of rising events. In [5,6] we argued
that there is in principle no limit to the different kinds of rising events which can
be referred to in natural language and that new types are created on the fly as
the need arises. The formulation in those works did not allow us to express what
all these particular meanings have in common. We were only able to say that the
various meanings seem to have some kind of family resemblance. Now that we
have abstracted out scales and parameters to be fixed we have an opportunity
to formulate something more general. There are two things that vary across the
different dependent types that we have characterized for risings. One is the frame
type being considered and the other is the type of the record which contains the
parameters held constant in the rising event. If we abstract over both of these
we have a characterization of rising events in general. This is given in (22).

(22) λr:

⎡
⎢⎢⎣

frame type:RecType
fix type:RecType
fix:fix type
scale:(frame type → Real)

⎤
⎥⎥⎦ .

[
e : (r.frame type‖r.fix)2

crise : r.scale(e[0]) < r.scale(e[1])

]

(22) is so general (virtually everything of content has been parametrized) that
it may be hard to see it as being used in the characterization of the meaning
of rise. What seems important for characterizing the meanings of rise that a
speaker has acquired is precisely the collection of frame types, and associated
fix types and scales which an agent has developed through experience. (22)
seems to be relevant to a kind of meta-meaning which specifies what kind of
contents can be associated with the word rise. In this sense it seems related
to the notion of meaning potential, a term which has its origins in the work of
Halliday [16] where meanings are spoken of informally as being “created by the
social system” and characterized as “integrated systems of meaning potential”
(p. 199). The notion is much discussed in more recent literature, for example,

Frames as Records 11

Linell [19], where meaning potential is discussed in the following terms: “Lexical
meaning potentials are (partly) open meaning resources, where actual meanings
can only emerge in specific, situated interactions” (p. 330).

2 Individual vs. Frame Level Nouns

Perhaps the most recent discussion of the Partee puzzle is that of Löbner [23].
As we will see, his proposal is closely related to our own. The puzzle is one that
Barbara Partee raised while sitting in on an early presentation of the material
that led to [24]. In its simplest form it is that (23c) should follow from (23a, b)
given some otherwise apparently harmless assumptions.

(23) a. The temperature is rising
b. The temperature is ninety
c. Ninety is rising

Clearly, our intuitions are that (23c) does not follow from (23a, b).
A central aspect of our analysis of the Partee puzzle is that the contents of

common nouns are functions that take frames, that is records, as arguments.
We make a distinction between individual level predicates like ‘dog’ whose arity
is 〈Ind〉 and frame level predicates like ‘temperature’ whose arity is 〈Rec〉. The
content associated with an utterance event of type “dog” would be (24a). This
is contrasted with the content for an utterance of type “temperature” given in
(24b).

(24) a. λr:
[
x:Ind

]
.
[
e : dog(r.x)

]
b. λr:

[
x:Rec

]
.
[
e : temperature(r.x)

]

We make an exactly similar distinction between individual level and frame level
verb phrases. In (25) we present contents which can be associated with utterances
of type “run” and “rise” respectively.

(25) a. λr:
[
x:Ind

]
.
[
e : run(r.x)

]
b. λr:

[
x:Rec

]
.
[
e : rise(r.x)

]

When we predicate the content of rise, that is, (25b), of a temperature frame
that has no consequence that the real number in the ‘x’-field of the temperature
frame also rises.

We have made a distinction between individual level nouns like dog and
frame level nouns like temperature, differentiating their contents as in (24) and
motivating the distinction with the Partee puzzle. Now consider (26).

(26) a. The dog is nine
b. The dog is getting older/aging
c. Nine is getting older/aging

12 R. Cooper

We have the same intuitions about (26) as we do about the original tem-
perature puzzle. We cannot conclude (26c) from (26a, b). Does this mean that
dog is a frame level noun after all? Certainly, if we think of frames as being like
entries in relational databases it would be natural to think of age (or information
allowing us to compute age such as date of birth) as being a natural field in a
dog-frame.

Our strategy to deal with this will be to say that contents of individual level
nouns can be coerced to frame level contents, whereas the contents of frame level
nouns cannot be coerced “down” to individual level contents. Thus in addition
to (24a), repeated as (27a) we have (27b).

(27) a. λr:
[
x:Ind

]
.
[
e : dog(r.x)

]
b. λr:

[
x:Rec

]
.
[
e : dog frame(r.x)

]

The predicate ‘dog frame’ is related to the predicate ‘dog’ by the constraint in (28).

(28) dog frame(r) is non-empty implies r:
[
x:Ind
e:dog(x)

]

There are several different kinds of dog frames with additional information
about a dog which an agent may acquire or focus on. Here we will consider just
frames which contain a field labelled ‘age’ as specified in (29).

(29) If r:

⎡
⎢⎢⎣

x:Ind
e:dog(x)
age:Real
cage:age of(x,age)

⎤
⎥⎥⎦ then dog frame(r) is non-empty

An age scale, ζage, for individuals can then be defined as the function in (30).

(30) ζage = λr:

⎡
⎣

x:Ind
age:Real
cage:age of(x,age)

⎤
⎦ . r.age

We can think of the sentence the dog is nine as involving two coercions: one
coercing the content of dog to a frame level property and the other coercing the
content of be to a function which when applied to a number will return a frame
level property depending on an available scale. Such coercions do not appear to
be universally available in languages. For example, in German it is preferable to
say die Temperature ist 35 Grad “the temperature is 35 degrees” rather than
#die Temperatur ist 35 “the temperature is 35”. Similarly der Hund ist neun
Jahre alt “the dog is nine years old” is preferred over #der Hund ist neun “the
dog is nine”.

Frames as Records 13

3 Passengers and Ships

Gupta [15] points out examples such as (31).

(31) a. National Airlines served at least two million passengers in 1975
b. Every passenger is a person
c. National Airlines served at least two million persons in 1975

His claim is that we cannot conclude (31c) from (31a, b). There is a reading of (31a)
where what is being counted is not passengers as individual people but passenger
events, events of people taking flights, where possibly the same people are involved
in several flights. Gupta claims that it is the only reading that this sentence has.
While it is certainly the preferred reading for this sentence (say, in the context of
National Airlines’ annual report or advertizing campaign), I think the sentence
also has a reading where individuals are being counted. Consider (32).

(32) National Airlines served at least two million passengers in 1975.
Each one of them signed the petition.

While (32) could mean that a number of passengers signed the petition several
times our knowledge that people normally only sign a given petition once makes
a reading where there are two million distinct individuals involved more likely.
Similarly, while (31c) seems to prefer the individual reading where there are two
million distinct individuals it is not impossible to get an event reading here.
[18] makes a similar point. Gupta’s analysis of such examples involves individual
concepts and is therefore reminiscent of the functional concepts used by [20,21]
to analyze the Partee puzzle.

Carlson [4] makes a similar point about Gupta’s examples in that nouns
which appear to normally point to individual related readings can in the right
context get the event related readings. One of his examples is a traffic engineer’s
report as in (33).

(33) Of the 1,000 cars using Elm St. over the past 49 h, only 12 cars
made noise in excess of EPA recommended limits.

It is easy to interpret this in terms of 1,000 and 12 car events rather than
individual cars. Carlson’s suggestion is to use his notion of individual stage, what
he describes intuitively as “things-at-a-time”. Krifka [18] remarks that “Carlson’s
notion of a stage serves basically to reconstruct events”. While this is not literally
correct, the intuition is nevertheless right. Carlson was writing at a time when
times and time intervals were used to attempt to capture phenomena that in
more modern semantics would be analyzed in terms of events or situations.
Thus Carlson’s notion of stage is related to a frame-theoretic approach which
associates an individual with an event.

Consider the noun passenger. It would be natural to assume that passengers
are associated with journey events. FrameNet5 does not have an entry for passen-
ger. The closest relevant frame appears to be TRAVEL which has frame elements
5 As of 13th May 2015.

14 R. Cooper

for traveller, source, goal, path, direction, mode of transport, among others. The
FrameNet lexical entry for journey is associated with this frame. Let us take the
typeTravelFrame to be the stripped down version of the travel frame type in (34a).
Then we could take the type PassengerFrame to be (34b).

(34)
a.

⎡
⎣

traveller : Ind
source : Loc
goal : Loc

⎤
⎦

b.

⎡
⎢⎢⎣

x : Ind
e : passenger(x)
journey : TravelFrame
ctravel : take journey(x, journey)

⎤
⎥⎥⎦

A natural constraint to place on the predicate ‘take journey’ is that in (35).

(35) If a:Ind and e:TravelFrame, then the type take journey(a, e) is
non-empty just in case e.traveller = a.

Let us suppose that the basic lexical entry for passenger provides the content
(36).

(36) λr:
[
x:Ind

]
.
[
e:passenger(r.x)

]

We can coerce this lexical item to (37).

(37) λr:
[
x:Rec

]
.
[
e:passenger frame(r.x)

]

This means that the non-parametric content is a property of frames. An agent
who has the frame type PassengerFrame available as a resource can use it to
restrict the domain of the property. This produces (38).

(38) λr:
[
x:PassengerFrame

]
.
[
e:passenger frame(r.x)

]

This means that the non-parametric content will now be a property of passenger
frames of type PassengerFrame. This introduces not only a passenger but also
a journey, an event in which in which the passenger is the traveller.

It seems that we have now done something which Krifka [18] explicitly warned
us against. At the end of his discussion of Carlson’s analysis he comes to the
conclusion that it is wrong to look for an explanation of event-related readings
of these sentences in terms of a noun ambiguity. One of Krifka’s examples is (39)
(which gives the title to his paper).

(39) Four thousand ships passed through the lock

This can either mean that four thousand distinct ships passed through the lock or
that the there were four thousand ship-passing-through-the-lock events a number

Frames as Records 15

of which might have involved the same ships. The problem he sees is that if we
treat ship as being ambiguous between denoting individual ships or ship stages
in Carlson’s sense then there will be too many stages which pass through the
lock. For example, suppose that a particular ship passes through the lock twice.
This gives us two stages of the ship which pass through the lock. But then, Krifka
claims, there will be a third stage, the sum of the first two, which also passes
through the lock. It is not clear to me that this is an insuperable problem for
the stage analysis. We need to count stages that pass through the lock exactly
once. Let us see how the frame analysis fares.

We will start with a singular example in order to avoid the additional prob-
lems offered by the plural. Consider (40).

(40) Every passenger gets a hot meal

Suppose that an airline has this as part of its advertizing campaign. Smith,
a frequent traveller, takes a flight with the airline and as expected gets a hot
meal. A few weeks later she takes another flight with the same airline and does
not get a hot meal. She sues the airline for false advertizing. At the hearing, her
lawyer argues, citing Gupta [15], that the advertizing campaign claims that every
passenger gets a hot meal on every flight they take. The lawyer for the airline
company argues, citing Krifka [18], that the sentence in question is ambiguous
between an individual and an event reading, that the airline had intended the
individual reading and thus the requirements of the advertizing campaign had
been met by the meal that Smith was served on the first flight. Smith’s lawyer
then calls an expert witness, a linguist who quickly crowdsources a survey of
native speakers’ interpretations of the sentence in the context of the campaign
and discovers that there is an overwhelming preference for the meal-on-every-
flight reading. (The small percentage of respondents who preferred the individual
reading over the event reading gave their occupation as professional logician.)
Smith wins the case and receives an additional hot meal.

What is important for us at the moment is the fact that there is an event
reading of this sentence. We use the coerced content associated with passenger
in (38).

In order to simplify matters let us treat gets a hot meal as if it were an
intransitive verb corresponding to a single predicate ‘get a hot meal’. This is a
predicate whose arity is 〈Ind〉. It is individuals, not frames (situations), that get
hot meals. Thus the content of gets a hot meal will be (41).

(41) λr:
[
x:Ind

]
.
[
e:get a hot meal(r.x)

]

We need a coercion which will obtain a frame level intransitive verb to match
the frame level noun. The new content for get a hot meal will be (42).

(42) λr:
[
x:Rec

]
.
[
e:get a hot meal frame(r.x)

]

Recall that if p is a predicate of individuals then p frame is a predicate of frames
that contain an individual of which p holds. This means that an argument,

16 R. Cooper

r, to ‘get a hot meal frame’ which makes the type ‘get a hot meal frame(r)’
non-empty will be of type (43).

(43)
[

x : Ind
e : get a hot meal(x)

]

Thus intuitively the ‘every’ relation holding between the two frame-level coerced
individual properties corresponding to passenger and get a hot meal will mean
“every frame (situation) containing an individual in the ‘x’-field who is a pas-
senger taking a journey will be a frame where the individual in the ‘x’-field gets
a hot meal”. Or, more formally, (44).

(44) every r of type

⎡
⎢⎢⎣

x : Ind
e : passenger(x)
journey : TravelFrame
ctravel : take journey(x, journey)

⎤
⎥⎥⎦ is of type

[
x : Ind
e : get a hot meal(x)

]

This means that every frame of type PassengerFrame will be of type (45).

(45)

⎡
⎢⎢⎣

x : Ind
e : passenger(x)∧get a hot meal(x)
journey : TravelFrame
ctravel : take journey(x, journey)

⎤
⎥⎥⎦

Thus even though we have coerced to a frame-level reading it is still the pas-
sengers (i.e. individuals) in the frames who are getting the hot meal not the
situation which is the frame.

4 Conclusion

In this paper we have proposed an analysis of frames as records which model
situations (including events) and we have suggested that frame types (record
types) are important in both the analysis of the Partee puzzle concerning rising
temperatures and prices and in the analysis of quantification which involves
counting events rather than individuals likes passengers or ships passing through
a lock.

Our original inspiration for frames comes from the work of [13,14] and work
on FrameNet (https://framenet.icsi.berkeley.edu). An important aspect of our
approach to frames is that we treat them as first class objects. That is, they can
be arguments to predicates and can be quantified over. While this is important, it
is not surprising once we decide that frames are in fact situations (here modelled
by records) or situation types (here modelled by record types). The distinction
between frames and frame types is not made in the literature deriving from

https://framenet.icsi.berkeley.edu

Frames as Records 17

Fillmore’s work but it seems to be an important distinction to draw if we wish
to apply the notion of frame to the kind of examples we have discussed in this
chapter.

The proposal that we have made for solving the Partee puzzle is closely
related to the work of Löbner [22,23] whose inspiration is from the work of
Barsalou [1–3] rather than Fillmore. Barsalou’s approach embedded in a the-
ory of cognition based on perception and a conception of cognition as dynamic,
that is, a system in a constant state of flux [25], seems much in agreement with
what we are proposing. Barsalou’s [3] characterization of basic frame proper-
ties constituting a frame as: “(1) predicates, (2) attribute-value bindings, (3)
constraints, and (4) recursion” seem to have a strong family resemblance with
our record types. Our proposal for incorporating frames into natural language
semantics is, however, different from Löbner’s in that he sees the introduction
of a psychological approach based on frames as a reason to abandon a formal
semantic approach whereas we see type theory as a way of combining the insights
we have gained from model theoretic semantics with a psychologically oriented
approach.

Our approach to frames has much in common with that of Kallmeyer and
Osswald [17] who use feature structures to characterize their semantic domain.
We have purposely used record types in a way that makes them correspond
both to feature structures and discourse representation structures which allows
us to relate our approach to more traditional model theoretic semantics at the
same time as being able to merge record types corresponding to unification in
feature-based systems. However, our record types are included in a richer system
of types including function types facilitates a treatment of quantification and
binding which is not available in a system which treats feature structures as a
semantic domain.6

References

1. Barsalou, L.W.: Cognitive Psychology. An Overview for Cognitive Scientists.
Lawrence Erlbaum Associates, Hillsdale (1992)

2. Barsalou, L.W.: Frames, concepts, and conceptual fields. In: Lehrer, A., Kittay,
E.F. (eds.) Frames, Fields, and Contrasts: New Essays in Semanticand Lexical
Organization, pp. 21–74. Lawrence Erlbaum Associates, Hillsdale (1992)

3. Barsalou, L.W.: Perceptual symbol systems. Behav. Brain Sci. 22, 577–660 (1999)
4. Carlson, G.N.: Generic terms and generic sentences. J. Philos. Logic 11, 145–181

(1982)
5. Cooper, R.: Frames in formal semantics. In: Loftsson, H., Rögnvaldsson, E., Hel-

gadóttir, S. (eds.) IceTAL 2010. LNCS, vol. 6233, pp. 103–114. Springer, Heidelberg
(2010)

6. Cooper, R.: Type theory and semantics in flux. In: Kempson, R., Asher, N., Fer-
nando, T. (eds.) Philosophy of Linguistics. Handbook of the Philosophy of Science,
vol. 14, pp. 271–323. Elsevier, Amsterdam (2012). General editors: Gabbay, D.M.,
Thagard, P., Woods, J

6 It is possible to code up a notation for quantification in feature structures but that
is not the same as giving a semantics for it.

18 R. Cooper

7. Cooper, R.: Type theory and language: from perception to linguistic communica-
tion (in prep). https://sites.google.com/site/typetheorywithrecords/drafts

8. Fernando, T.: A finite-state approach to events in natural language semantics. J.
Logic Comput. 14(1), 79–92 (2004)

9. Fernando, T.: Situations as strings. Electron. Notes Theoret. Comput. Sci. 165,
23–36 (2006)

10. Fernando, T.: Finite-state descriptions for temporal semantics. In: Bunt, H.,
Muskens, R. (eds.) Comput. Meaning. Studies in Linguistics and Philosophy, vol.
83, pp. 347–368. Springer, Heidelberg (2008)

11. Fernando, T.: Situations in LTL as strings. Inf. Comput. 207(10), 980–999 (2009)
12. Fernando, T.: Constructing situations and time. J. Philos. Logic 40, 371–396 (2011)
13. Fillmore, C.J.: Frame semantics. Linguistics in the Morning Calm, pp. 111–137.

Hanshin Publishing Co., Seoul (1982)
14. Fillmore, C.J.: Frames and the semantics of understanding. Quaderni di Semantica

6(2), 222–254 (1985)
15. Gupta, A.: The Logic of Common Nouns: An Investigation in Quantified Model

Logic. Yale University Press, New Haven (1980)
16. Halliday, M.A.K.: Text as semantic choice in social contexts. In: van Dijk, T.,

Petöfi, J. (eds.) Grammars and Descriptions, pp. 176–225. Walter de Gruyter,
Berlin (1977)

17. Kallmeyer, L., Osswald, R.: Syntax-driven semantic frame composition in lexical-
ized tree adjoining grammars. J. Lang. Model. 1(2), 267–330 (2013)

18. Krifka, M.: Four thousand ships passed through the lock: object-induced measure
functions on events. Linguist. Philos. 13, 487–520 (1990)

19. Linell, P.: Rethinking Language, Mind, and World Dialogically: Interactional and
Contextual Theories of Human Sense-Making. Advances in Cultural Psychology:
Constructing Human Development. Information Age Publishing Inc., Charlotte
(2009)

20. Löbner, S.: Intensionale Verben und Funktionalbegriffe. Untersuchung zur Syntax
und Semantik von wechseln und den vergleichbaren Verben des Deutschen. Narr,
Tübingen (1979)

21. Löbner, S.: Intensional verbs and functional concepts: more on the “rising temper-
ature” problem. Linguist. Inq. 12(3), 471–477 (1981)

22. Löbner, S.: Evidence for frames from human language. In: Gamerschlag, T., Ger-
land, D., Petersen, W., Osswald, R. (eds.) Frames and Concept Types, Studies in
Linguistics and Philosophy, vol. 94, pp. 23–68. Springer, Heidelberg (2014)

23. Löbner, S.: Functional Concepts and Frames (in prep). http://semanticsarchive.
net/Archive/jI1NGEwO/Loebner Functional Concepts and Frames.pdf

24. Montague, R.: The proper treatment of quantification in ordinary English. In:
Hintikka, J., Moravcsik, J., Suppes, P. (eds.) Approaches to Natural Language:
Proceedings of the 1970 Stanford Workshop on Grammar and Semantics, pp. 247–
270. D. Reidel Publishing Company, Dordrecht (1973)

25. Prinz, J.J., Barsalou, L.W.: Steering a course for embodied representation. In:
Dietrich, E., Markman, A.B. (eds.) Cognitive Dynamics: Conceptual and Repre-
sentational Change in Humans and Machines, pp. 51–77. Psychology Press, Hove
(2014). Previously published in 2000 by Lawrence Erlbaum

https://sites.google.com/site/typetheorywithrecords/drafts
http://semanticsarchive.net/Archive/jI1NGEwO/Loebner_Functional_Concepts_and_Frames.pdf
http://semanticsarchive.net/Archive/jI1NGEwO/Loebner_Functional_Concepts_and_Frames.pdf

Types from Frames as Finite Automata

Tim Fernando(B)

Trinity College Dublin, Dublin, Ireland
tim.fernando@cs.tcd.ie

Abstract. An approach to frame semantics is built on a conception
of frames as finite automata, observed through the strings they accept.
An institution (in the sense of Goguen and Burstall) is formed where
these strings can be refined or coarsened to picture processes at various
bounded granularities, with transitions given by Brzozowski derivatives.

Keywords: Frame · Finite automaton · Trace · Derivative · Institution

1 Introduction

A proposal for frame semantics recently put forward in Muskens (2013) analyzes
a frame of the sort studied by Barsalou (1999); Löbner (2014), and Petersen and
Osswald (2014) (not to forget Fillmore 1982) as a fact in a data lattice 〈F, ◦, 0〉
with zero 0 ∈ F and meet ◦ : (F × F) → F (Veltman 1985). A frame such as

smashJohn window
agent

theme

is analyzed, relative to any three entities e, x and y, as the ◦-combination

smash e ◦ agent ex ◦ John x ◦ theme ey ◦ window y

of five facts, smash e, agent ex, John x, theme ey, and window y. In general,
any fact g ∈ F induces a function [g] from facts to one of three truth values, t, f
and n, such that for all f ∈ F − {0},

[g](f) =

⎧
⎨

⎩

t if f ◦ g = f (i.e., f incorporates g)
f if f ◦ g = 0 (i.e., f and g are incompatible)
n otherwise.

Functions such as [g] from F to {t, f ,n} are what Muskens calls propositions,
breaking from possible worlds semantics in replacing possible worlds with facts,
and adding a third truth value, n, for a gap between truth and falsity. Sentences
are interpreted as propositions, assembled compositionally from an interpreta-
tion of words as λ-abstracts of propositions, as in

smash = λyxλf∃e.[smash e ◦ agent ex ◦ theme ey]f. (1)

Muskens attaches significance to the separation of facts from propositions. Iden-
tifying frames with facts, he declares
c© Springer-Verlag Berlin Heidelberg 2016
A. Foret et al. (Eds.): FG 2015/2016, LNCS 9804, pp. 19–40, 2016.
DOI: 10.1007/978-3-662-53042-9 2

20 T. Fernando

I reject the idea (defended in Barsalou (1999), who explicitly discusses
frame representations of negation, disjunction, and universal quantifica-
tion) that all natural language meaning can profitably be represented with
the help of frames

(page 176).
One way to evaluate Muskens’ proposal is by comparing it with others. An

alternative to existentially quantifying the event e in (1) is λ-abstraction, as in
the analysis of sortal frames in Petersen and Osswald (2014), with

λe. smash ′(e) ∧ animate ′(agent′(e)) ∧ concrete ′(theme′(e)) (2)

for the typed feature structure (a), or, to bring the example closer to (1),

λe. smash ′(e) ∧ all ′(agent′(e)) ∧ all ′(theme′(e)) (3)

for the typed feature structure (b) over a vacuous all-encompassing type all .1

(a)

⎡

⎣
smash
agent animate
theme concrete

⎤

⎦ (b)

⎡

⎣
smash
agent all
theme all

⎤

⎦ (c)

⎡

⎣
smash
agent
theme

⎤

⎦

It is understood in both (2) and (3) that e is in the domain of the partial functions
agent′ and theme′, making the terms agent′(e) and theme′(e) well-defined.
We will simplify (b) shortly to (c), but before dropping all , let us use it to
illustrate how to express the definedness presuppositions in (2) and (3) under
the approach of Cooper (2012). To model a context, Cooper uses a record such
as (d), which is of type (e) assuming all encompasses all.

(d)
[
agent = x
theme = y

]

(e)
[
agent : all
theme : all

]

(f)

⎡

⎣
p1 : smash(r)
p2 : animate(r.agent)
p3 : concrete(r.theme)

⎤

⎦

Now, if bg is the record type (e), and ϕ is the type (f) dependent on a record r
of type bg, we can form the function

(λr : bg) ϕ (4)

mapping a record r of type bg to the record type ϕ. (4) serves as Cooper’s
meaning function with

– domain bg (for background) encoding the definedness presuppositions, and
– record type ϕ replacing what a Montagovian would have as a truth value.

Compared to the prefix λyx in Muskens’ (1), the prefix (λr : bg) in (4) provides
not just the parameters x and y but the information that they are the agent
and theme components of a record r, around which abstraction is centralized in
accordance with the methodological assumption
1 This introductory section presupposes some familiarity with the literature, but is

followed by sections that proceed in a more careful manner, without relying on a full
understanding of the Introduction.

Types from Frames as Finite Automata 21

(†) components are extracted from a single node associated with the frame.

The number of components may be open-ended, as argued famously for events
in Davidson (1967)

Jones did it slowly, deliberately, in the bathroom with a knife, at midnight

(page 81). Under pressure from multiple components, the assumption (†) is
relaxed for non-sortal frames in Löbner (2014) and Petersen and Osswald (2014),
with the latter resorting to ε-terms (page 249) and ι-terms (page 252). It is, how-
ever, possible to maintain (†) by adding attributes that extend the central node
to incorporate the required components (making ε- and ι-terms unnecessary).
At stake in upholding (†) is a record type approach, a finite-state fragment of
which is the subject of the present paper.

In Cooper (2012), record types are part of a rich system TTR of types with
function spaces going well beyond finite-state methods. Viewing frames as finite
automata — bottom-dwellers in the Chomsky hierarchy — certainly leads us
back to Muskens’ contention that frames cannot capture all natural language
meaning. But while any single finite automaton is bound to fall short, much
can be done with many automata. Or so the present paper argues. Very briefly,
the idea is to reduce the matrices (a)–(c) to the sets (a)′–(c)′ of strings over
the alphabet {smash,agent,theme, animate, concrete, all}, and to represent
the typing in (g) by the matrix (h) that is reduced to the language (h)′ over an
expansion of the alphabet with symbols ax and ay for x and y respectively.

(a)′ {smash, agent animate, theme concrete}
(b)′ {smash, agent all , theme all}
(c)′ {smash, agent, theme}

(g)

⎡

⎣
smash
agent = x
theme = y

⎤

⎦ :

⎡

⎣
smash
agent : animate
theme : concrete

⎤

⎦ (h)

⎡

⎢
⎢
⎢
⎢
⎣

smash

agent

[
animate
ax

]

theme

[
concrete
ay

]

⎤

⎥
⎥
⎥
⎥
⎦

(h)′ {smash, agent ax, theme ay} ∪ {agent animate, theme concrete}

To interpret the strings in the sets (a)′, (b)′, (c)′ and (h)′, we assume every
symbol a in the string alphabet Σ is interpreted as a (partial) function [[a]],
which we extend to strings s ∈ Σ∗, setting [[ε]] to the identity, and [[sa]] to the
sequential composition λx.[[a]]([[s]](x)). Then in place of the λ-expressions (1) to
(4), a language L is interpreted as the intersection

⋂

s∈L

domain([[s]]) (5)

of the domains of the interpretations of strings in L. It is customary to present
the interpretations [[a]] model-theoretically (as in the case of the interpretation
agent′ of agent in (2)), making the interpretations [[s]] and (5) model-theoretic.

22 T. Fernando

But as will become clear below, the functions [[α]] can also be construed as the
α-labeled transitions in a finite automaton. The ultimate objective of the present
work is to link frames to the finite-state perspective on events in Fernando (2015)
(the slogan behind the bias for finite-state methods being less is more), as well
as to more wide ranging themes of “semantics in flux” in Cooper (2012), and
“natural languages as collections of resources” in Cooper and Ranta (2008).

The intersection (5) approximates the image {r : bg | ϕ} of Cooper’s meaning
function (λr : bg)ϕ but falls short of maintaining the careful separation that
(λr : bg)ϕ makes between the presuppositions bg and the dependent record
type ϕ. That separation is recreated below within what is called an institution
in Goguen and Burstall (1992), with bg formulated as a signature and ϕ as
a sentence of that signature. Clarifying this formulation is largely what the
remainder of the present paper is about, which consists of three sections, plus a
conclusion. The point of departure of Sect. 2 is the determinism of a frame — the
property that for every state (or node) q and every label a on an arc (or edge),
there is at most one arc from q labeled a. Based on determinism and building on
Hennessy and Milner (1985), Sect. 2 reduces a state q to a set of strings of labels
(i.e., a language). This reduction is tested against states as types and states as
particulars in Sect. 3. To ensure the languages serving as states are accepted by
finite automata (i.e., regular languages), Sect. 4 works with various finite sets Σ
of labels. The sets Σ are paired with record types for signatures, around which
approximations are structured following Goguen and Burstall (1992).

One further word about the scope of the present work before proceeding.
Functions and λ’s are commonly taken for granted in a compositional syn-
tax/semantics interface, yet another significant proposal for which is detailed
in Kallmeyer and Osswald (2013) using Lexicalized Tree Adjoining Grammar
(distinct from frames with a first-order formulation in Sects. 3.3.3–3.3.4 there
compatible with (5) above2). The present paper steers clear of any choice of a
syntactic formalism, making no claim of completeness in focusing (modestly) on
types from frames as finite automata.

2 Deterministic Systems and Languages

Fix a (possibly infinite) set A of labels. An A-deterministic system is a partial
function δ : Q ×A ⇁ Q from pairs (q, a) ∈ Q ×A to elements of Q, called states
(of which there may or may not be infinitely many). Let ε be the null string
(of length 0) and for any state q ∈ Q, let δq : A∗ ⇁ Q be the partial Q-valued
function from strings over the alphabet A that repeatedly applies δ starting at
q; more precisely, δq is the ⊆-least set P of pairs such that

(i) (ε, q) ∈ P , and
(ii) (sa, δ(q′, a)) ∈ P whenever (s, q′) ∈ P and (q′, a) ∈ domain(δ).

2 The compatibility here becomes obvious if the moves described in footnote 5 of page
281 in Kallmeyer and Osswald (2013) are made, and a root added with attributes
to the multiple base nodes.

Types from Frames as Finite Automata 23

For example,

aa′ ∈ domain(δq) ⇐⇒ (q, a) ∈ domain(δ) and a′ ∈ domain(δδ(q,a)).

The partial functions δq determine

transitions q
s→ δq(s) whenever s ∈ domain(δq)

which we can also read as

s-components δq(s) of q, for all s ∈ domain(δq).

The labels in A may correspondingly be regarded as acts or as attributes. In
either case, there is, we will see, a useful sense in which the language domain(δq)
over A holds just about all the A-deterministic system δ has to say about q. An
element of domain(δq) is called a trace of q (from δ), and henceforth, we write
traceδ(q) interchangably with domain(δq).

2.1 Satisfaction and Traces

Given a set A of labels, the set ΦA of (A-modal) formulas ϕ is generated

ϕ :: = | ¬ϕ | ϕ ∧ ϕ′ | 〈a〉ϕ
from a tautology , negation ¬, conjunction ∧, and modal operators 〈a〉 with
labels a ∈ A (Hennessy and Milner 1985). We interpret a formula ϕ ∈ ΦA relative
to an A-deterministic system δ : Q × A ⇁ Q and state q ∈ Q via a satisfaction
relation |= in the usual way, with (keeping δ implicit in the background)

q |= ,

‘not’ ¬
q |= ¬ϕ ⇐⇒ not q |= ϕ,

‘and’ ∧
q |= ϕ ∧ ϕ′ ⇐⇒ q |= ϕ and q |= ϕ′

and the accessibility relation {(q, δq(a)) | q ∈ Q and a ∈ domain(δq)} for 〈a〉
q |= 〈a〉ϕ ⇐⇒ a ∈ domain(δq) and δq(a) |= ϕ

It is not difficult to see that the set

ΦA(q) := {ϕ ∈ ΦA | q |= ϕ}
of formulas |=-satisfied by q depends precisely on domain(δq). That is, recalling
that traceδ(q) is domain(δq), the following conditions, (a) and (b), are equivalent
for all states q, q′ ∈ Q.

24 T. Fernando

(a) traceδ(q) = traceδ(q′)
(b) ΦA(q) = ΦA(q′)

Let us write q ∼ q′ if (a), or equivalently (b), holds,3 and pronounce ∼ trace
equivalence.

2.2 Identity of Indiscernibles and states as Languages

Identity of indiscernibles (also known as Leibniz’s law, and mentioned in Osswald
1999, invoking Quine) can be understood against the set A of attributes as the
requirement on δ that distinct pairs q, q′ of states (in Q) not be trace equivalent

q �= q′ =⇒ q �∼ q′.

Basing discernibility on formulas ϕ ∈ ΦA, we say ϕ differentiates q from q′ if
q |= ϕ but not q′ |= ϕ. It follows that

ϕ differentiates q from q′ ⇐⇒ ¬ϕ differentiates q′ from q

and

q ∼ q′ ⇐⇒ no formula in ΦA differentiates q from q′.

We can replace formulas by attributes and make differentiation symmetric, by
agreeing that a label a differentiates q from q′ if (exactly) one of the following
holds

(i) a ∈ traceδ(q) − traceδ(q′)
(ii) a ∈ traceδ(q′) − traceδ(q)
(iii) a ∈ traceδ(q) ∩ traceδ(q′) and ΦA(δq(a)) �= ΦA(δq′(a))

In the case of (i) and (ii), we can see q �∼ q′ already at a, whereas (iii) digs
deeper. Two other equivalent ways to say a differentiates q from q′ are (a) and
(b) below.

(a) a is a prefix of a string in the symmetric difference of trace sets

(traceδ(q) ∪ traceδ(q′)) − (traceδ(q) ∩ traceδ(q′))

(b) there exists ϕ ∈ ΦA such that the formula 〈a〉ϕ differentiates either q from
q′ or q′ from q

The notion of an attribute a ∈ A differentiating q from q′ generalizes straight-
forwardly to a string a1 · · · an ∈ A+ differentiating q from q′.

In fact, if we reduce a state q to the language traceδ(q), the notions of differ-
entiation above link up smoothly with derivatives of languages (Brzozowski 1964;

3 Readers familiar with bisimulations will note that ∼ is the largest bisimulation
(determinism being an extreme form of image-finiteness; Hennessy and Milner 1985).

Types from Frames as Finite Automata 25

Conway 1971; Rutten 1998, among others). Given a language L and a string s,
the s-derivative of L is the set

Ls := {s′ | ss′ ∈ L}

obtained from strings in L that begin with s, by stripping s off. Observe that
for all q ∈ Q and s ∈ traceδ(q), if L = traceδ(q) then the s-derivative of L
corresponds to the s-component δq(s) of q

Ls = traceδ(δq(s))

and L decomposes into its components

L = ε +
∑

a∈A

aLa. (6)

The fact that ε belongs to traceδ(q) reflects prefix-closure. More precisely, a
language L is said to be prefix-closed if s ∈ L whenever sa ∈ L. That is, L is
prefix-closed iff prefix (L) ⊆ L, where the set prefix (L) of prefixes in L

prefix (L) := {s | Ls �= ∅}

consists of all strings that induce non-empty derivatives. For any non-empty
prefix-closed language L, we can form a deterministic system δ over the set

{Ls | s ∈ L}

of s-derivatives of L, for s ∈ L, including ε for Lε = L = traceδ(L), where
domain(δ) is defined to be {(Ls, a) | sa ∈ L} with

δ(Ls, a) := Lsa whenever sa ∈ L.

But what about languages that are not prefix-closed? Without the assump-
tion that L is prefix-closed, we must adjust Eq. (6) to

L = o(L) +
∑

a∈A

aLa

with ε replaced by ∅ in case ε �∈ L, using

o(L) :=
{

ε if ε ∈ L
∅ otherwise

(called the constant part or output of L in Conway 1971, page 41). Now, the
chain of equivalences

a1 · · · an ∈ L ⇐⇒ a2 · · · an ∈ La1 ⇐⇒ · · · ⇐⇒ ε ∈ La1···an

means that L is accepted by the automaton with

26 T. Fernando

(i) all s-derivatives of L as states (whether or not s ∈ prefix (L))

Q := {Ls | s ∈ A∗}
(ii) s-derivatives Ls for s ∈ L as final (accepting) states
(iii) transitions forming a total function Q × A → Q mapping (Ls, a) to Lsa

and initial state Lε = L (e.g., Rutten 1998).
An alternative approach out of prefix closure (from deterministic systems) is

to define for any label a ∈ A and language L ⊆ A∗, the a-coderivative of L to
be the set

aL := {s | sa ∈ L}
of strings that, with a attached at the end, belong to L. Observe that the a-
coderivative of a prefix-closed language is not necessarily prefix-closed (in con-
trast to s-derivatives). Furthermore,

Fact 1. Every language is the coderivative of a prefix-closed language.

Fact 1 is easy to establish: given a language L, attach a symbol a not occurring
in L to the end of L, and form prefix (La) before taking the a-coderivative

aprefix (La) = L.

An a-coderivative effectively builds in a notion of final state (lacking in a deter-
ministic system δ) around not o(L) but o(La), checking if ε is in La, rather than
L (i.e., a ∈ L, rather than ε ∈ L). The idea of capturing a type of state through
a label (such as a for a-coderivatives) is developed further next.

3 From Attribute Values to Types and Particulars

An A-deterministic system δ : Q × A ⇁ Q assigns each state q ∈ Q a set

δ̂(q) := {(a, δ(q, a)) | a ∈ A ∩ traceδ(q)}
of attribute value pairs (a, q′) with values q′ that can themselves be thought as
sets δ̂(q′) of attribute values pairs. Much the same points in Sect. 2 could be made
appealing to the modal logic(s) of attribute value structures (Blackburn 1993)
instead of Hennessy and Milner (1985). But is the reduction of q to its trace set,
traceδ(q), compatible with intuitions about attribute value structures? Let us
call a state q δ-null if δ̂(q) = ∅; i.e., traceδ(q) = {ε}. Reducing a δ-null state q to
traceδ(q) = {ε} lumps all δ-null states into one — which is problematic if distinct
atomic values are treated as δ-null (Blackburn 1993). But what if equality with
a fixed value were to count as a discerning attribute? Let us define a state q to
be δ-marked if there is a label aq ∈ A such that for all q′ ∈ Q,

aq ∈ traceδ(q′) ⇐⇒ q = q′.

Types from Frames as Finite Automata 27

Clearly, a δ-marked state q is trace equivalent only to itself. If a state q is not
δ-marked, we can introduce a fresh label aq (not in A) and form the (A∪ {aq})-
deterministic system

δ[q] := δ ∪ {(q, aq, q)}
with q δ[q]-marked. To avoid infinite trace sets traceδq ⊇ aq

∗ (from loops
(q, aq, q)), we can instead fix a δ-null (or fresh) state

√
and mark q in

δ[q,
√

] := δ ∪ {(q, aq,
√

)}.

Marking a state is an extreme way to impose Leibniz’s law. A more moderate
alternative described below introduces types over states, adding constraints to
pick out particulars.

3.1 Type-Attribute Specifications and Containment

To differentiate states in a set Q through subsets Qt ⊆ Q given by types t ∈ T
is to define a binary relation v ⊆ Q × T (known in Kripke semantics as a T-
valuation) such that for all q ∈ Q and t ∈ T

v(q, t) ⇐⇒ q ∈ Qt.

We can incorporate v into δ : Q×A ⇁ Q by adding a fresh attribute at, for each
t ∈ T , to A for the expanded attribute set

AT := A ∪ {at | t ∈ T}
and forming either the AT -deterministic system

δ[v] := δ ∪ {(q, at, q) | t ∈ T and v(q, t)}
or, given a δ-null state

√
outside

⋃
t∈T Qt, the AT -deterministic system

δ[v,
√

] := δ ∪ {(q, at,
√

) | t ∈ T and v(q, t)}.

In practice, a type t may be defined from other types, as in (a) below.

(a) t =

⎡

⎣
smash :
agent : animate
theme : concrete

⎤

⎦ (b) e =

⎡

⎣
smash = x
agent = y
theme = z

⎤

⎦

The record e given by (b) is an instance of t just in case x, y and z are instances
of the types , animate and concrete respectively

e : t ⇐⇒ x : and y : animate and z : concrete.

It is natural to analyze t in (a) as the modal formula ϕt with three conjuncts

ϕt = 〈smash〉 ∧ 〈agent〉〈animate〉 ∧ 〈theme〉〈concrete〉

28 T. Fernando

(implicitly analyzing , animate and concrete as , 〈animate〉 and 〈animate〉
respectively) and to associate e with the trace set

q(e) = ε + smash q(x) + agent q(y) + theme q(z)

(given trace sets q(x), q(y) and q(z) for x, y and z respectively) for the reduction

e : t ⇐⇒ q(e) |= ϕt

⇐⇒ animate ∈ q(y) and concrete ∈ q(z).

We can rewrite (a) as the A′-deterministic system

τ ′ := {(t, smash,), (t,agent, animate), (t,theme, concrete)}
over the attribute set

A′ := {smash,agent,theme}
and state set

T ′ := {t,, animate, concrete}
given by types. To apply τ ′ to a deterministic system δ with states given by
tokens of types, the following notion will prove useful. A (T,A,

√
)-specification

is an AT -deterministic system τ : T × AT ⇁ T where
√ ∈ T is τ -null and each

t ∈ T − {√} is τ -marked, with for all t′ ∈ T ,

(t′, at) ∈ domain(τ) ⇐⇒ t = t′

(the intuition being to express a type t as the modal formula 〈at〉). For τ ′ given
above, we can form the (T ′ ∪ {√},A′,

√
)-specification

τ ′ ∪ {(x, ax,
√

) | x ∈ T ′}.

Let us agree that a set Ψ of modal formulas is true in δ if every formula in Ψ is
satisfied, relative to δ, by every δ-state. The content of a (T,A,

√
)-specification

τ is given by the set

spec(τ) := {〈at〉 ⊃ 〈a〉 | (t, a,
√

) ∈ τ} ∪
{〈at〉 ⊃ 〈a〉〈at′〉 | (t, a, t′) ∈ τ and t′ �= √}

of formulas true in an AT -deterministic system δ precisely if for every (t, a, t′) ∈ τ
and q ∈ Qt,

a ∈ traceδ(q) and δ(q, a) ∈ Qt′

where for every t ∈ T − {√}, Qt is {q ∈ Q | at ∈ traceδ(q)} and Q√ = Q. We
can express membership in a trace set

s ∈ traceδ(q) ⇐⇒ q |=δ 〈s〉

Types from Frames as Finite Automata 29

through formulas 〈s〉ϕ defined by induction on s:

〈ε〉ϕ := ϕ and 〈as〉ϕ := 〈a〉〈s〉ϕ

so that for a1a2 · · · an ∈ An,

〈a1a2 · · · an〉ϕ = 〈a1〉〈a2〉 · · · 〈an〉ϕ.

Given a language L, let us say q δ-contains L if L ⊆ traceδ(q).

Fact 2. For any (T,A,
√

)-specification τ , spec(τ) is true in an AT -deterministic
system δ : Q×AT ⇁ Q iff for every t ∈ T −{√} and q ∈ Q, q δ-contains traceτ (t)
whenever q δ-contains {at}.

Under certain assumptions, traceτ (t) is finite. More specifically, let T0 = ∅
and for any integer n ≥ 0,

Tn+1 := {t ∈ T | τ ∩ ({t} × A × T) ⊆ T × A × Tn}

(making T1 = {√}). For each t ∈ Tn, traceτ (t) is finite provided

() for all t ∈ T , {a ∈ A | (t, a) ∈ domain(τ)} is finite.

Although () and T ⊆ ⋃
n Tn can be expected of record types in Cooper (2012),

notice that if (t, a, t) ∈ τ then t �∈ ⋃
n Tn and a∗ ⊆ traceτ (t).

3.2 Terminal Attributes, � and Subtypes

Fact 2 reduces a (T,A,
√

)-specification τ to its trace sets, traceτ (t) for t ∈
T − {√}, unwinding spec(τ) to

〈at〉 ⊃
∧

s∈traceτ (t)

〈s〉 (7)

for t ∈ T − {√} (where the conjunction might be infinite). The converse of (7)
follows from at ∈ traceτ (t). (7) has the form

ϕt ⊃ ϕt[τ]

with antecedent 〈at〉 construed as a formula ϕt representing t, and consequent∧
s∈traceτ (t)

〈s〉 as a formula ϕt[τ] representing τ ’s conception of t. The attribute
at often has the following property. Given an A-deterministic system δ, let us
say an attribute a ∈ A is δ-terminal if the set

TmlA(a) := {¬〈sab〉 | s ∈ A∗ and b ∈ A}

of formulas is true in δ — i.e., for every δ-state q, string s ∈ A∗ and attribute
b ∈ A, sab �∈ traceδ(q). It is natural to associate a frame such as

30 T. Fernando

smashJohn window
agent

theme

with an A-deterministic system δ in which labels on nodes (i.e., John, smash
and window) are δ-terminal, while labels on arcs (agent, theme) are not.

Next, we quantify away the strings s mentioned in TmlA(a) for a useful
modal operator �. Given an A-deterministic system δ : Q × A ⇁ Q, and states
q, q′ ∈ Q, we say q′ is a δ-component of q and write q �δ q′, if q′ is δq(s) for
some string s ∈ A∗. With the relation �δ, we extend satisfaction |= to formulas
�ϕ

q |= �ϕ ⇐⇒ (∃q′) q �δ q′ and q′ |= ϕ

making �ϕ essentially the infinitary disjunction
∨

s∈A∗〈s〉ϕ and its dual �ϕ :=
¬�¬ϕ the infinitary conjunction

∧
s∈A∗ [s]ϕ (where [s]ϕ := ¬〈s〉¬ϕ). The exten-

sion preserves invariance under trace equivalence ∼

whenever q ∼ q′ and q |= �ϕ, q′ |= �ϕ.

That is, for the purpose of |=, we can reduce a state q to its trace set traceδ(q).
Accordingly, we collect all non-empty prefix-closed subsets of A∗ in

Mod(A) := {prefix (L ∪ {ε}) | L ⊆ A∗}

(where “Mod” is for models) with the understanding that the transitions δ
between q, q′ ∈ Mod(A) are given by derivatives

δ(q, a) = q′ ⇐⇒ qa = q′.

Given a set Ψ of modal formulas over A, we form the subset of Mod(A) satisfying
every formula of Ψ

ModA(Ψ) := {q ∈ Mod(A) | (∀ϕ ∈ Ψ) q |= ϕ}

and say Ψ is A-equivalent to a set Ψ ′ of modal formulas over A if they have the
same models

Ψ ≡A Ψ ′ ⇐⇒ ModA(Ψ) = ModA(Ψ ′).

Ψ can be strengthened to

�A(Ψ) := {¬〈s〉¬ϕ | s ∈ A∗ and ϕ ∈ Ψ}
≡A {�ϕ | ϕ ∈ Ψ}

requiring that every formula in Ψ holds in all components. Clearly,

TmlA(a) ≡A �A({¬〈ab〉 | b ∈ A}).

Types from Frames as Finite Automata 31

Given representations ϕt and ϕu of types t and u, we can express the subtyping
t � u as the set

‘t � u’ := {¬〈s〉(ϕt ∧ ¬ϕu) | s ∈ A∗}

of modal formulas denying the existence of components of type t but not u. Then
‘t � u’ requires ϕt ⊃ ϕu of all components

‘t � u’ ≡A �(ϕt ⊃ ϕu)

bringing us back to the implication (7) above of the form ϕt ⊃ ϕτ [t]. Inasmuch
as an attribute a is represented by the formula 〈a〉, we can speak of a being
contained in an attribute b, a � b, when asserting

�(〈a〉 ⊃ 〈b〉).

3.3 Typings and Particulars

We can reduce a typing p : t to a subtyping through the equivalence

p : t ⇐⇒ {p} � t

assuming we can make sense of the singleton type {p}. Given an A-deterministic
system δ and a δ-state q, let us call a formula ϕ an (A, q)-nominal if q satisfies
the set

NomA(ϕ) := {¬(〈s′〉(ϕ ∧ 〈s〉) ∧ 〈s′′〉(ϕ ∧ ¬〈s〉)) | s, s′, s′′ ∈ A∗}
≡A {¬(�(ϕ ∧ 〈s〉) ∧ �(ϕ ∧ ¬〈s〉)) | s ∈ A∗}

of formulas that together say any two δ-components that δ-satisfy ϕ δ-contain
the same languages over A. We can rephrase NomA(ϕ) as implications

NomA(ϕ) ≡A {�(ϕ ∧ 〈s〉) ⊃ �(ϕ ⊃ 〈s〉) | s ∈ A∗}
≡A {�(ϕ ∧ ψ) ⊃ �(ϕ ⊃ ψ) | ψ ∈ ΦA}

making δ-components that δ-satisfy ϕ ΦA-indistinguishable.4

Fact 3. Let δ be an A-deterministic system, q be a δ-state and ϕ be an (A, q)-
nominal.

(i) For all δ-components q′ and q′′ of q,

q′ |= ϕ and q′′ |= ϕ implies q′ ∼ q′′.

4 NomA(ϕ) does the work of the scheme (NomN) for nominals given in Blackburn
(1993), just as TmlA(a) is analogous to the scheme (Term) there for instantiating
atomic information at terminal nodes.

32 T. Fernando

(ii) There is a δ-component of q that δ-satisfies ϕ and ψ

q |= �(ϕ ∧ ψ)

iff every δ-component of q satisfies ϕ ⊃ ψ and some δ-component of q δ-
satisfies ϕ

q |= �(ϕ ⊃ ψ) ∧ �ϕ.

Now, an (A, q)-particular is an (A, q)-nominal ϕ such that q has a δ-
component that δ-satisfies ϕ — i.e., in addition to all formulas in NomA(ϕ),
q satisfies �ϕ. We say (A, q) verifies p : t if

ϕ{p} is an (A, q)-particular and q |= �(ϕ{p} ⊃ ϕt).

Part (ii) of Fact 3 says this is equivalent to ϕ{p} being an (A, q)-nominal and
q having a δ-component that δ-satisfies ϕ{p} ∧ ϕt. Note that if q is δ-marked
by aq then 〈aq〉 is an (A, q′)-nominal for all δ-states q′. The weaker notion
of an (A, q)-nominal ϕ has the advantage over 〈aq〉 that the set NomA(ϕ) of
modal formulas allows the modal formulas satisfied by a state δ-satisfying ϕ{p}
to vary with δ.5 We can use the set NomA(ϕ) ∪ {�ϕ} to lift the notion of an
(A, q)-particular to that of a (A, Ψ)-particular , given a set Ψ of modal formulas,
requiring that NomA(ϕ) ∪ {�ϕ} follow from Ψ in that

ModA(Ψ) ⊆ ModA(NomA(ϕ) ∪ {�ϕ}).

Having described how a particular can be understood as a formula (or
attribute a via 〈a〉), it is perhaps worth emphasizing that we need not under-
stand particulars as formulas (or attributes). In the present context, particulars
are first and foremost δ-states in an A-deterministic system δ. For any δ-state q,
we can speak of types to which q belongs without introducing an attribute that
(relative to an extension of δ) represents q. What is important is that we build
into A all the structure in particulars we wish to analyze.

4 Finite Approximations and Signatures

Throughout this section, we shall work with a set A of labels that is large enough
so that we may assume trace equivalence ∼ is equality. Identity of indiscernibles
in an A-deterministic system δ reduces a state q to traceδ(q), allowing us to
identify a state with a prefix-closed, non-empty subset of A∗. As huge as A can
be, we can form the set Fin(A) of finite subsets of A and use the equality

A∗ =
⋃

Σ∈Fin(A)

Σ∗

5 By contrast, for a language q over A, all formulas in the set

{�(〈aq〉� ⊃ (〈s〉� ∧ ¬〈s′〉�)) | s ∈ q and s′ ∈ A∗ − q}
must be satisfied for aq to mark q.

Types from Frames as Finite Automata 33

to approach a language L ⊆ A∗ via its intersections L ∩ Σ∗ (for Σ ∈ Fin(A))

L =
⋃

Σ∈Fin(A)

(L ∩ Σ∗)

at the cost of bounding discernibility to Σ. For X ∈ Fin(A) ∪ {A}, we define an
X-state to be a non-empty, prefix-closed subset q of X∗ on which transitions are
given by derivatives

δ(q, a) = qa for a ∈ A ∩ q

making δq(s) = qs for s ∈ q. Henceforth, we put the notation δ aside, but track
the parameter X, which we set to a finite subset Σ of A to pick out what is of
particular interest.

Two subsections make up the present section. The first illustrates how the set
A of labels can explode; the second how, after this explosion, to keep a grip on
satisfaction |= of formulas. We associate the formulas with sets X ∈ Fin(A)∪{A},
defining sen(X) to be the set of formulas generated from a ∈ X and Y ⊆ X
according to

ϕ :: = | ¬ϕ | ϕ ∧ ϕ′ | 〈a〉ϕ | �Y ϕ.

We interpret these formulas over A-states q, treating , ¬ and ∧ as usual, and
setting

q |= 〈a〉ϕ ⇐⇒ a ∈ q and qa |= ϕ

which generalizes to strings s ∈ X∗

q |= 〈s〉ϕ ⇐⇒ s ∈ q and qs |= ϕ

(recalling that 〈a1〉 · · · 〈an〉ϕ is 〈a1〉 · · · 〈an〉ϕ). As for �Y , we put

q |= �Y ϕ ⇐⇒ (∀s ∈ q ∩ Y ∗) qs |= ϕ

relativizing � to Y for reasons that will become clear below. When � appears
with no subscript, it is understood to carry the subscript A; i.e., � is �A. Also,
for s ∈ A∗, we will often shorten the formula 〈s〉 to s, writing, for example, ¬a
for ¬〈a〉.

4.1 Labels Refining Partitions

For any Σ ∈ Fin(A) and Σ-state q, we can formulate the Myhill-Nerode equiv-
alence ≈q between strings s, s′ ∈ Σ∗ with the same extensions in q

s ≈q s′ ⇐⇒ (∀w ∈ Σ∗) (sw ∈ q ⇐⇒ s′w ∈ q)

(e.g., Hopcroft and Ullman 1979) in terms of derivatives

s ≈q s′ ⇐⇒ qs = qs′

34 T. Fernando

from which it follows that q is regular iff its set

{qs | s ∈ Σ∗}
of derivatives is finite. There are strict bounds on what we can discern with Σ
and Σ-states. For example, the regular language

q′ = father∗ + father∗man

over Σ′ = {father,man is a model of

man ∧ �(man ⊃ 〈father〉man)

(i.e., q′ is a token of the record type man given by eq(man)= {(father,man)}),
with derivatives

q′
s =

⎧
⎨

⎩

q′ if s ∈ father∗

{ε} if s ∈ father∗man
∅ otherwise

so that according to the definitions from the previous section (with δ given by
derivatives of q′), the Σ′-state {ε} is null, and the label man is terminal. The
Σ′-state q′ does not differentiate between distinct tokens of man, although it is
easy enough to introduce additional labels and formulas

� (man ⊃ (John ∨ Peter ∨ Otherman:John,Peter)) (8)

with
� (John ⊃ ¬〈father〉John)

unless say, John could apply to more than one particular, as suggested by

� (John ⊃ (John1 ∨ John2 ∨ OtherJohn:1,2)).

Generalizing line (8) above, we can refine a label a to a finite partition from a
set Σ ∈ Fin(A), asserting

Partitiona(Σ) := � (a ⊃ Uniq(Σ))

where Uniq(Σ) picks out exactly one label in Σ

Uniq(Σ) :=
∨

a∈Σ

(a ∧
∧

a′∈Σ−{a}
¬a ′)).

Co-occurrence restrictions on a set Σ of alternatives

Alt(Σ) := �
∧

a∈Σ

∧

a′∈Σ−{a}
¬(a ∧ a′)

(declaring any pair to be incompatible) is equivalent to the conjunction
∧

a∈Σ

Partitiona(Σ).

Types from Frames as Finite Automata 35

And if the labels in Σ are understood to specify components, we might say a
label marks a Σ-atom if it rules out a′-components for a′ ∈ Σ

AtomΣ (a) := �(a ⊃
∧

a′∈Σ

¬a′)

⇐⇒ Partitiona(Σ ∪ {a}).

That said, we arrived at Partitiona(Σ) from man above through the example
Σ = {John, Peter , Otherman:John,Peter} of labels that differentiate between
tokens of man rather than (as in the case of the record label father or agent
or theme) specifying components. We can extend the example

Partitionman({John, P eter,Otherman:John,Peter})

through a function f : T → Fin(A) from some finite set T of labels (representing
types) such that for a ∈ T , f(a) outlines a partition of a (just as {John, Peter ,
Otherman:John,Peter} does for man). An f-token is then an A-state q such that

q |=
∧

a∈T

Partitiona(f(a))

making (as it were) a choice from f(a), for each a ∈ T .

4.2 Reducts for Satisfaction

Given a string s ∈ A∗ and a set Σ ∈ Fin(A), the longest prefix of s that belongs
to Σ∗ is computed by the function πΣ : A∗ → Σ∗ defined by πΣ(ε) := ε and

πΣ(as) :=
{

a πΣ(s) if a ∈ Σ
ε otherwise.

The Σ-reduct of a language q ⊆ A∗ is the image of q under πΣ

q �Σ := {πΣ(s) | s ∈ q} .

If q is an A-state, then its Σ-reduct, q �Σ, is a Σ-state and is just the intersection
q ∩ Σ∗ with Σ∗. Σ-reducts are interesting because satisfaction |= of formulas in
sen(Σ) can be reduced to them.

Fact 4. For every Σ ∈ Fin(A), ϕ ∈ sen(Σ) and A-state q,

q |= ϕ ⇐⇒ q �Σ |= ϕ

and if, moreover, s ∈ q �Σ, then

q |= 〈s〉ϕ ⇐⇒ (q �Σ)s |= ϕ. (9)

36 T. Fernando

Fact 4 is proved by a routine induction on ϕ ∈ sen(Σ). Were sen(Σ) closed
under � = �A, Fact 4 would fail for infinite A; hence, the relativized operators
�Y for Y ⊆ Σ in sen(Σ).

There is structure lurking around Fact 4 that is most conveniently described
in category-theoretic terms. For Σ ∈ Fin(A), let Q(Σ) be the category with

– Σ-states q as objects.
– pairs (q, s) such that s ∈ q as morphisms from q to qs, composing by concate-

nating strings

(q, s) ; (qs, s
′) := (q, ss′)

with identities (q, ε).

To turn Q into a functor from Fin(A)op (with morphisms (Σ′, Σ) such that
Σ ⊆ Σ′ ∈ Fin(A)) to the category Cat of small categories, we map a Fin(A)op-
morphism (Σ′, Σ) to the functor Q(Σ′, Σ) : Q(Σ′) → Q(Σ) sending a Σ′-state
q′ to the Σ-state q′ �Σ, and the Q(Σ′)-morphism (q′, s′) to the Q(Σ)-morphism
(q′ �Σ, πΣ(s′)). The Grothendieck construction for Q is the category

∫
Q where

– objects are pairs (Σ, q) such that Σ ∈ Fin(A) and q is a Σ-state.
– morphisms from (Σ′, q′) to (Σ, q) are pairs ((Σ′, Σ), (q′′, s)) of Fin(A)op-

morphisms (Σ′, Σ) and Q(Σ)-morphisms (q′′, s) such that q′′ = q′ � Σ and
q = q′′

s .

(e.g., Tarlecki et al. 1991).
∫

Q integrates the different categories Q(Σ) (for
Σ ∈ Fin(A)), lifting a Q(Σ)-morphism (q, s) to a (

∫
Q)-morphism from (Σ′, q′)

to (Σ, qs) whenever Σ ⊆ Σ′ and q′ �Σ = q.
Given a small category C, let us write |C| for the set of objects of C. Thus,

for Σ ∈ Fin(A), |Q(Σ)| is the set

|Q(Σ)| = {q ⊆ Σ∗ | q �= ∅ and q is prefix−closed}
of Σ-states. Next, for (Σ, q) ∈ | ∫ Q|, let Mod(Σ, q) be the full subcategory of
Q(Σ) with objects required to have q as a subset

|Mod(Σ, q)| := {q′ ∈ |Q(Σ)| | q ⊆ q′}.

That is, |Mod(Σ, q)| is the set of Σ-states q′ such that for all s ∈ q, q′ |= 〈s〉.
The intuition is that q is a form of record typing over Σ that allows us to simplify
clauses such as

q′ |= 〈s〉ϕ ⇐⇒ s ∈ q′ and q′
s |= ϕ (10)

when s ∈ q ⊆ q′. The second conjunct in the righthand side of (10), q′
s |= ϕ,

presupposes the first conjunct, s ∈ q′. We can lift that presupposition out of (10)
by asserting that whenever s ∈ q and q ⊆ q′,

q′ |= 〈s〉ϕ ⇐⇒ q′
s |= ϕ.

Types from Frames as Finite Automata 37

This comes close to the equivalence (9) in Fact 4, except that Σ-reducts are
missing. These reducts appear once we vary Σ, and step from Q(Σ) to

∫
Q.

Taking this step, we turn the categories Mod(Σ, q) to a functor Mod from
∫

Q
to Cat, mapping a

∫
Q-morphism σ = ((Σ′, Σ), (q′ �Σ, s)) from (Σ′, q′) to (Σ, q)

to the functor

Mod(σ) : Mod(Σ′, q′) → Mod(Σ, q)

sending q′′ ∈ |Mod(Σ′, q′)| to the s-derivative of its Σ-reduct, (q′′ � Σ)s, and a
Mod(Σ′, q′)-morphism (q′′, s′) to the Mod(Σ, q)-morphism (q′′ �Σ, πΣ(s′)).

The syntactic counterpart of Q(Σ) is sen(Σ), which we turn into a functor
sen matching Mod . A basic insight from Goguen and Burstall (1992) informing
the present approach is the importance of a category Sign of signatures which
the functor sen maps to the category Set of sets (and functions) and which
Mod maps contravariantly to Cat. The definition of Mod above suggests that
Signop is

∫
Q.6 A

∫
Q-morphism from

∫
Q-objects (Σ′, q′) to (Σ, q) is deter-

mined uniquely by a string s ∈ q′ �Σ such that

q = (q′ �Σ)s and Σ ⊆ Σ′. (11)

Let (Σ, q) s→ (Σ′, q′) abbreviate the conjunction (11), which holds precisely if
((Σ′, Σ), (q′ �Σ, s)) is a

∫
Q-morphism from (Σ′, q′) to (Σ, q). Now for (Σ, q) ∈

| ∫ Q|, let

sen(Σ, q) = sen(Σ)

(ignoring q), and when (Σ, q) s→ (Σ′, q′), let

sen(σ) : sen(Σ) → sen(Σ′)

send ϕ ∈ sen(Σ) to 〈s〉ϕ ∈ sen(Σ′). To see that an institution arises from
restricting |= to |Mod(Σ, q)| × sen(Σ), for (Σ, q) ∈ | ∫ Q|, it remains to check
the satisfaction condition:

whenever (Σ, q) s→ (Σ′, q′) and q′′ ∈ |Mod(Σ′, q′)| and ϕ ∈ sen(Σ),

q′′ |= 〈s〉ϕ ⇐⇒ (q′′ �Σ)s |= ϕ.

This follows from Fact 4 above, as s must be in q′ �Σ and thus also in q′′ �Σ.

6 That said, we might refine Sign, requiring of a signature (Σ, q) that q be a regular
language. For this, it suffices to replace

∫
Q by

∫
R where R : Fin(A)op → Cat is

the subfunctor of Q such that R(Σ) is the full subcategory of Q(Σ) with objects
regular languages. We can make this refinement without requiring that Σ-states in
Mod(Σ, q) be regular, forming Mod(Σ, q) from Q (not R).

38 T. Fernando

5 Conclusion

A process perspective is presented in Sect. 2 that positions frames to the left
of a satisfaction predicate |= for Hennessy-Milner logic over a set A of labels
(or, from the perspective of Blackburn 1993, attributes). A is allowed to become
arbitrarily large so that under identity of indiscernibles relative to A, a frame
can be identified with a non-empty prefix-closed language over A. This identi-
fication is tried out in Sect. 3 on frames as types and particulars. A handle on
A is provided by its finite subsets Σ, which are paired with languages q ⊆ Σ∗

for signatures (Σ, q), along which to reduce satisfaction to Σ-reducts and/or s-
derivatives, for s ∈ q (Fact 4). This plays out themes (mentioned in the introduc-
tion) of “semantics in flux” and “natural languages as collections of resources”
(from Cooper and Ranta) in that, oversimplifying somewhat, s-derivatives spec-
ify transitions, while Σ-reducts pick out resources to use. The prominence of
transitions (labeled by A) here contrasts strikingly with a finite-state approach
to events (most recently described in Fernando 2015), where a single string (rep-
resenting a timeline) appears to the left of a satisfaction predicate.7 A Σ-state
q to the left of |= above offers a choice of strings, any number of which might be
combined with other strings from other Σ′-states over different alphabets Σ′. A
combination can be encoded as a string describing a timeline of resources used.
This type/token distinction between languages and strings to the left of satisfac-
tion has a twist; the languages are conceptually prior to the strings representing
timelines, as nonexistent computer programs cannot run. Indeed, a profusion of
alphabets Σ and Σ-states compete to make, in some form or other, a timeline
that has itself a bounded signature (of a different kind). The processes through
which a temporal realm is pieced together from bits of various frames call out
for investigation.

While much remains to be done, let us be clear about what is offered above.
A frame is structured according to strings of labels, allowing the set Σ of labels
to vary over finite sets. That variation is tracked by a signature (Σ, q) picking
out non-empty prefix-closed languages over Σ that contain the set q of strings
over Σ. For example, Cooper’s meaning function

(
λr :

[
agent : all
theme : all

]
)

⎡

⎣
p1 : smash(r)
p2 : animate(r.agent)
p3 : concrete(r.theme)

⎤

⎦

is approximated by the signature (Σ, q) as the language L, where

Σ = {agent, theme, smash, animate, concrete}
q = {agent, theme, ε}
L = q ∪ {smash, agent animate, theme concrete}.

Further constraints can be imposed through formulas built with Boolean con-
nectives and modal operators dependent on Σ — for instance, Nom(〈a〉). The
7 This is formulated as an institution in Fernando (2014).

Types from Frames as Finite Automata 39

possibility of expanding Σ to a larger set makes the notion of identity as Σ-
indiscernibility open-ended, and Σ a bounded but refinable level of granularity.
A measure of satisfaction is taken in a finite-state calculus with, as Conway
(1971) puts it, Taylor series

L = o(L) +
∑

a∈Σ

aLa

(from derivatives La), and a Grothendieck signature

Sign =
∫

Q.

Acknowledgements. My thanks to Robin Cooper for discussions, to Glyn Morrill
for help with presenting this paper at Formal Grammar 2015, and to two referees for
comments and questions.

References

Barsalou, L.: Perceptual symbol systems. Behav. Brain Sci. 22, 577–660 (1999)
Blackburn, P.: Modal logic and attribute value structures. In: de Rijke, M. (ed.) Dia-

monds and Defaults. Synthese Library, vol. 229, pp. 19–65. Springer, Netherlands
(1993)

Brzozowski, J.: Derivatives of regular expressions. J. ACM 11(4), 481–494 (1964)
Conway, J.H.: Regular Algebra and Finite Machines. Chapman and Hall, London

(1971)
Cooper, R.: Type theory and semantics in flux. In: Philosophy of Linguistics, pp. 271–

323. North-Holland (2012)
Cooper, R., Ranta, A.: Natural languages as collections of resources. In: Language

in Flux: Dialogue Coordination, Language Variation, Change and Evolution, pp.
109–120. College Publications, London (2008)

Davidson, D.: The logical form of action sentences. In: The Logic of Decision and
Action, pp. 81–95. University of Pittsburgh Press (1967)

Fernando, T.: Incremental semantic scales by strings. In: Proceedings of EACL 2014
Workshop on Type Theory and Natural Language Semantics, pp. 63–71. ACL (2014)

Fernando, T.: The semantics of tense and aspect: a finite-state perspective. In: Lappin,
S., Fox, C. (eds.) The Handbook of Contemporary Semantic Theory, 2nd edn. Wiley,
New York (2015)

Fillmore, C.: Frame semantics. In: Linguistics in the Morning Calm, pp. 111–137.
Hanshin Publishing Co., Seoul (1982)

Goguen, J., Burstall, R.: Institutions: abstract model theory for specification and pro-
gramming. J. ACM 39(1), 95–146 (1992)

Hennessy, M., Milner, R.: Algebraic laws for non-determinism and concurrency. J. ACM
32(1), 137–161 (1985)

Hopcroft, J., Ullman, J.: Introduction to Automata Theory, Languages and Computa-
tion. Addison-Wesley, Reading (1979)

Kallmeyer, L., Osswald, R.: Syntax-driven semantic frame composition in lexicalized
tree adjoining grammars. J. Lang. Model. 1(2), 267–330 (2013)

40 T. Fernando

Löbner, S.: Evidence for frames from human language. In: Gamerschlag, T., Gerland,
D., Osswald, R., Petersen, W. (eds.) Frames and Concept Types. Studies in Linguis-
tics and Philosophy, vol. 94, pp. 23–67. Springer, Switzerland (2014)

Muskens, R.: Data semantics and linguistic semantics. In: The Dynamic, Inquisitive,
and Visionary Life of φ, ?φ, and �φ: A Festschrift for Jeroen Groenendijk, Martin
Stokhof, and Frank Veltman, pp. 175–183. Amsterdam (2013)

Osswald, R.: Semantics for attribute-value theories. In: Proceedings of Twelfth Ams-
terdam Colloquium, pp. 199–204. Amsterdam (1999)

Petersen, W., Osswald, T.: Concept composition in frames: focusing on genitive con-
structions. In: Gamerschlag, T., Gerland, D., Osswald, R., Petersen, W. (eds.)
Frames and Concept Types. Studies in Linguistics and Philosophy, vol. 94, pp. 243–
266. Springer, Switzerland (2014)

Rutten, J.J.M.M.: Automata and coinduction (an exercise in coalgebra). In: Sangiorgi,
D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 194–218. Springer,
Heidelberg (1998)

Tarlecki, A., Burstall, R., Goguen, J.: Some fundamental algebraic tools for the seman-
tics of computation: Part 3. indexed categories. Theoret. Comput. Sci. 91(2), 239–
264 (1991)

Veltman, F.: Logics for conditionals. Ph.D. dissertation, University of Amsterdam
(1985)

Formal Grammar 2015:
Contributed Papers

Cyclic Multiplicative-Additive Proof Nets
of Linear Logic with an Application

to Language Parsing

Vito Michele Abrusci and Roberto Maieli(B)

Department of Mathematics and Physics, Roma Tre University,
Largo San Leonardo Murialdo, 1, 00146 Rome, Italy

{abrusci,maieli}@uniroma3.it

Abstract. This paper concerns a logical approach to natural language
parsing based on proof nets (PNs), i.e. de-sequentialized proofs, of linear
logic (LL). It first provides a syntax for proof structures (PSs) of the
cyclic multiplicative and additive fragment of linear logic (CyMALL).
A PS is an oriented graph, weighted by boolean monomial weights,
whose conclusions Γ are endowed with a cyclic order σ. Roughly, a PS π
with conclusions σ(Γ) is correct (so, it is a proof net), if any slice ϕ(π),
obtained by a boolean valuation ϕ of π, is a multiplicative (CyMLL) PN
with conclusions σ(Γr), where Γr is an additive resolution of Γ , i.e. a
choice of an additive subformula for each formula of Γ . The correctness
criterion for CyMLL PNs can be considered as the non-commutative
counterpart of the famous Danos-Regnier (DR) criterion for PNs of the
pure multiplicative fragment (MLL) of LL. The main intuition relies on
the fact that any DR-switching (i.e. any correction or test graph for a
given PN) can be naturally viewed as a seaweed, that is, a rootless planar
tree inducing a cyclic order on the conclusions of the given PN. Unlike
the most part of current syntaxes for non-commutative PNs, our syntax
allows a sequentialization for the full class of CyMALL PNs, without
requiring these latter to be cut-free.

One of the main contributions of this paper is to provide a charac-
terization of CyMALL PNs for the additive Lambek Calculus and thus
a geometrical (non inductive) way to parse sentences containing words
with syntactical ambiguity (i.e., with polymorphic type).

1 Introduction

Proof nets (PNs) are one of the most innovative inventions of linear logic
(LL, [7]): they are used to represent demonstrations in a geometric (i.e., non
inductive) way, abstracting away from the technical bureaucracy of sequential
proofs. Proof nets quotient classes of derivations that are equivalent up to some
irrelevant permutations of inference rules instances.

In this spirit, we present a syntax for PNs of the cyclic multiplicative and
additive fragment of linear logic (CyMALL, Sect. 1.1). This syntax, like the orig-
inal one of Girard [8], is based on weighted (by boolean monomials) proof struc-
tures with explicit binary contraction links (Sect. 2). The conclusions Γ (i.e.,
c© Springer-Verlag Berlin Heidelberg 2016
A. Foret et al. (Eds.): FG 2015/2016, LNCS 9804, pp. 43–59, 2016.
DOI: 10.1007/978-3-662-53042-9 3

44 V.M. Abrusci and R. Maieli

a sequence of formula occurrences) of any PS are endowed with a cyclic order
σ on Γ . Naively, a CyMALL PS π with conclusions σ(Γ) is correct if, for any
slice ϕ(π), obtained by a boolean valuation ϕ of π, there exists an additive
resolution (i.e., a multiplicative restriction of ϕ(π)) that is a CyMLL PN with
conclusion σ(Γr), where Γr is an additive resolution of Γ (i.e. a choice of an
additive sub-formula for each formula of Γ). In turn, the correctness criterion
for CyMLL PNs can be considered as the non-commutative counterpart of the
famous Danos-Regnier (DR) criterion for proof nets of linear logic (see [5,6]).
The main intuition relies on the fact that any DR-switching for a PS (i.e. any
correction or test graph, obtained by mutilating one premise of each disjunc-
tion �-link) can be naturally viewed as a rootless planar tree, called a seaweed,
inducing a cyclic ternary relation on the conclusions of the given proof structure.

Unlike some previous syntaxes for non-commutative logic, like e.g., [3,13],
this new syntax admits a sequentialization (i.e., a correspondence with sequential
proofs) for the full class of CyMLL PNs including those ones with cuts. Actually,
the presence of cut links is “rather tricky” in the non-commutative case, since cut
links are not equivalent, from a topological point of view, to tensor links (like in
the commutative MLL case): indeed, tensor links make new conclusions appear
that may disrupt the original (i.e., in presence of cut links) order of conclusions.

CyMALL PNs satisfy a simple (lazy) convergent cut-elimination procedure
(Sect. 2.2) in Laurent-Maieli’s style [12]: our strategy relies on the notion of
dependency graph of an eigen weight p (Definition 9), that is, the smallest &p-
box that must be duplicated in a commutative &p/C-cut reduction step [14].
Moreover, cut-reduction preserves PNs sequentialization (Sect. 2.3).

CyMALL can be considered as a conservative classical extension of
Lambek Calculus (LC, see [1,11,17]) one of the ancestors of LL. The LC rep-
resents the first attempt of the so called parsing as deduction, i.e., parsing of
natural language by means of a logical system. Following [4], in LC, parsing is
interpreted as type checking in the form of theorem proving of Gentzen sequents.
Types (i.e. propositional formulas) are associated to words in the lexicon; when
a string w1...wn is tested for grammaticality, the types t1, ..., tn associated with
the words are retrieved from the lexicon and then parsing reduces to proving
the derivability of a one-sided sequent of the form � t⊥n , ..., t⊥1 , s, where s is the
type associated with sentences. Moreover, forcing constraints on the Exchange
rule, by e.g. allowing only cyclic permutations over sequents of formulas, gives
the required computational control needed to view theorem proving as pars-
ing in Lambek Categorial Grammar style. Anyway, LC parsing presents some
syntactical ambiguity problems; actually, there may be:

1. (non canonical proofs) more than one cut-free proof for the same sequent;
2. (lexical polymorphism) more than one type associated with a single word.

Now, proof nets are commonly considered an elegant solution to the first problem
of representing canonical proofs; in this sense, in Sect. 3, we give an embedding
of extended MALL Lambek Calculus into Cyclic MALL PNs. Concerning the
second problem, in Sect. 4, we propose a parsing approach based on CyMALL
PNs that could be considered a step towards a proof-theoretical solution to

Cyclic MALL Proof Nets with an Application to Language Parsing 45

the problem of lexical polymorphism. Technically, CyMALL proof nets allow to
manage formulas superposition (types polymorphism) by means of the additive
&-links, or dually, ⊕-links. By means of Lambek CyMALL PNs, we propose the
parsing of some sentences, suggested by [18], which make use of polymorphic
words; naively, when a word has two possible formulas A and B assigned, then
we can combine (or super-pose) these into a single additive formula A&B.

1.1 The Cyclic MALL Fragment of Linear Logic

We briefly recall the necessary background of the Cyclic MALL fragment of
LL, denoted CyMALL, without units (see [1]). We arbitrarily assume literals
a, a⊥, b, b⊥, ... with a polarity: positive (+) for atoms, a, b, ... and negative (−)
for their duals a⊥, b⊥.... A formula is built from literals by means of the two
groups of connectives: negative, � (“par”) and & (“with”) and positive, � (“ten-
sor”) and ⊕ (“plus”). For these connectives we have the following De Mor-
gan laws: (A � B)⊥ = B⊥�A⊥, (A�B)⊥ = B⊥

� A⊥, (A&B)⊥ = B⊥ ⊕ A⊥,
(A ⊕ B)⊥ = B⊥&A⊥. A CyMALL (resp., CyMLL) proof is any derivation tree
built by the following (resp., by only identities and multiplicative) inference rules
where sequents Γ,Δ are sequences of formula occurrences endowed with a total
cyclic order (or cyclic permutation).

identities: axiom� A,A⊥ � Γ,A A⊥Δ
cut� Γ,Δ

multiplicatives:
� Γ,A � B,Δ

�� Γ,A � B,Δ

� Γ,A,B �� Γ,A�B

additives:
� Γ,A � Γ,B

�� Γ,A�B

� Γ,Ai ⊕i=1,2� Γ,A1 ⊕i A2

A total cyclic order can be thought as follows; consider a set of points of an
oriented circle; the orientation induces a total order on these points as follows: if
a, b and c are three distinct points, then b is either between a and c (a < b < c)
or between c and a (c < b < a). Moreover, a < b < c is equivalent to b < c < a
or c < a < b.

Definition 1 (total cyclic order). A total cyclic order is a pair (X,σ) where
X is a set and σ is a ternary relation over X satisfying the following properties:

1. ∀a, b, c ∈ X,σ(a, b, c) → σ(b, c, a) (cyclic),
2. ∀a, b ∈ X,¬σ(a, a, b) (anti-reflexive),
3. ∀a, b, c, d ∈ X,σ(a, b, c) ∧ σ(c, d, a) → σ(b, c, d) (transitive),
4. ∀a, b, c ∈ X,σ(a, b, c) ∨ σ(c, b, a) (total).

Negative (or asynchronous) connectives correspond to true determinism in the
way we apply bottom-up their corresponding inference rules. In particular,
observe that Γ must appear as the same context (with the same order) in both
premises of the &-rule. Positive (or synchronous) connectives correspond to true

46 V.M. Abrusci and R. Maieli

non-determinism in the way we apply, bottom-up, their corresponding rules;
there is no deterministic way to split, bottom up, the context (Γ,Δ) in the �-
rule; similarly, there not exist a deterministic way to select, bottom up, ⊕1 or
⊕2-rule.

2 Cyclic MALL Proof Structures

Definition 2 (CyMALL proof structure). A CyMALL proof structure (PS)
is an oriented graph π whose edges (resp., nodes) are labeled by formulas (resp.,
by connectives) of CyMALL and built by juxtaposing the following special graphs,
called links, in which incident (resp., emergent) edges are called premises (resp.,
conclusions):

& C

A&B A

A B A A BB A B A AA A⊥

cutax

A A⊥

� ⊕1 ⊕2

A ⊕ B A ⊕ BA�BA B

In a PS each premise (resp., conclusion) of a link must be conclusion (resp.,
premise) of exactly (resp., at most) one link. We call conclusion of a PS any
emergent edge that is not premises of any link. We call CyMLL proof structure,
any PS built by only means of axioms, cut and multiplicative links (�,�).

Definition 3 (Girard CyMALL proof structure). A Girard proof structure
(GPS) is a PS with weights associated as follows (a weights assignment):

1. first we associate a boolean variable, called eigen weight p, to each &-node
(eigen weights are supposed to be different);

2. then we associate a weight, a product of (negation of) boolean vari-
ables (p, p, q, q...) to each node, with the constraint that two nodes have
the same weight if they have a common edge, except when the edge
is the premise of a & or C-node; in these cases we do like below:

if p does not occur in w

w

w.pw.p

with w1.w2 = 0

w1 w2

w = w1 + w2C

v2 v1 v2v1

&p

3. a conclusion node has weight 1;
4. if w is the weight of a &-node, with eigen weight p, and w′ is a weight depend-

ing on p and appearing in the proof structure then w′ ≤ w.

A weight w depends on the eigen weight p if p or p̄ occurs in w. A node L with
weight w depends on the eigen weight p if w depends on p or L is a C-node and
one of the weights just above it depends on p.

Cyclic MALL Proof Nets with an Application to Language Parsing 47

Remark 1. Observe that:

1. since weights associated to a PS are products (monomials) of the Boolean
algebra generated by the eigen weights associated to a proof structure, then,
for each weight w associated to a binary contraction node, there exists a
unique eigen weight p that splits w into w1 = wp and w2 = wp. We sometimes
index a C-link with its toggling variable p, see the next left hand side picture;

2. the graph π1 (the next r.h.s. picture) is not a GPS since it violates condition
4 of Definition 3; indeed, if w = q is the weight of the &p-link and w′ = p
is a weight depending on p and appearing in the proof-structure then p
≤ q.

v1 v2

wp wp

Cp

w

w = wp + wp̄

C

C

ax

ax

ax

ax

ax

C

qp

q

qp

&p

&q C

p

w′ = p

w = q

cut

π1

2.1 Correctness

Definition 4 (slices, switchings, resolutions). Let π be a CyMALL GPS.

– A valuation ϕ of π is a function from the set of all weights of π into {0, 1}.
– Fixed a valuation ϕ for π, the slice ϕ(π) is the graph obtained from π by

keeping only those nodes with weight 1 together with their incident edges.
– Fixed a slice ϕ(π) a multiplicative switching S for π is the non-oriented graph

Sm
ϕ (π) built on the nodes and edges of ϕ(π) with the modification that for each

�-node we take only one premise (left/right switch).
– Fixed a slice ϕ(π) an additive switching, denoted Sa

ϕ(π) is a multiplicative
switching Sm

ϕ (π) for π, in which for each &p-node we erase the (unique)
premise in ϕ(π) and we add an oriented edge, called jump, from the &p-node
to an link L whose weight depends on the eigen weight p.

– An additive resolution ϕr(π) for a slice ϕ(π) is the graph obtained by replacing
in ϕ(π) each unary link L (a link that, possibly, after the valuation has a single
premise) by a single edge that is the (unique) premise of L. In particular, each
conclusion of ϕr(π) will be labeled by a multiplicative (CyMLL) formula.

We call additive resolution of a CyMALL sequent Γ what remains of Γ after
deleting one of the two sub-formulas in each additive (sub)formula of Γ .

In the following we characterize, by a correctness criterion, those CyMALL
GPSs corresponding to proofs. This correctness criterion (Definition 7) is defined
in terms of the correctness of CyMLL PSs (Definition 6). There exist several
syntaxes for CyMLL proof nets; here we adopt the syntax of [2] inspired to [13].

Definition 5 (seaweeds). Assume π is a CyMLL PS with conclusions Γ and
assume S(π) is an acyclic and connected multiplicative switching for π; S(π) is

48 V.M. Abrusci and R. Maieli

the rootless planar tree whose nodes are labeled by �-nodes, and whose leaves
X1, ...,Xn (with Γ ⊆ X1, ...,Xn) are the terminal (pending) edges of S(π); S(π)
is a ternary relation, called a seaweed, with support X1, ...,Xn; an ordered triple
(Xi,Xj ,Xk) belongs to the seaweed S(π) iff:

– the intersection of the three paths XiXj, XjXk and XkXi is the node �l;
– the three paths Xi�l,Xj�l and Xk�l are in this cyclic order while moving

anti-clockwise around the �l-node as below.

Xk

XjXi

l

If A is an edge of the seaweed S(π), then Si(π) ↓A is the restriction of the
seaweed S(π), that is, the sub-graph of S(π) obtained as follows:

1. disconnect the graph below (w.r.t. the orientation of π) the edge A.
2. delete the graph not containing A.

Fact 1 (seaweeds as cyclic orders). Any seaweed S(π) can be viewed as a
cyclic total order (Definition 1) on its support X1, ...,Xn; in other words, if a
triple (Xi,Xj ,Xk) ∈ S(π), then Xi < Xj < Xk are in cyclic order. Intuitively,
we may contract a seaweed (by associating the �-nodes) until it collapses into
single n-ary �-node with n pending edges (its support), like in the example below.

c

d
a

b

e →

c

d

a

b

e →

c

b

ea

d

Definition 6 (CyMLL proof net). A CyMLL PS π is correct, i.e. it is a
CyMLL proof net (PN), iff:

1. π is a standard MLL PN, that is, any switching S(π) is a connected and
acyclic graph (therefore, S(π) is a seaweed);

2. for any �-link A B
A�B the triple (A,B,C) must occur in this cyclic order in any

seaweed S(π) restricted to A,B, i.e., (A,B,C) ∈ S(π) ↓(A,B), for all pending
leaves C (if any) in the support of the restricted seaweed.

Example 1 (CyMLL PSs). We give below an instance of CyMLL PN π1 with its
two restricted seaweeds, S1(π1) ↓(B1,B⊥

2) and S2(π1) ↓(B1,B⊥
2), both satisfying

condition 2 of Definition 6.

Cyclic MALL Proof Nets with an Application to Language Parsing 49

B1

ax
ax

cut

ax

��
B⊥

2 B2

π1

B1�B⊥
2 B3�B⊥

3

B⊥
3B3B⊥

1

B2 B⊥
1

B1

ax
ax

cut

�
B2

ax

B⊥
3

B3�B⊥
3

B3B⊥
1B⊥

2

S1(π1) ↓(B1,B⊥
2)

B2 B⊥
1

B1

ax
ax

cut

�
B2

ax

B3B⊥
1B⊥

2 B⊥
3

S2(π1) ↓(B1,B⊥
2)

B2 B⊥
1 B3�B⊥

3

Mellies’s Counter-Example. Observe that, unlike what happens in the com-
mutative MLL case, the presence of cut links is “quite tricky” in the non-
commutative case, since cut links are not equivalent, from a topological
point of view, to tensor links: these latter make appear new conclusions that
may disrupt the original (i.e., in presence of cut links) order of conclusions.
In particular, the Mellies’s proof structure1 below (see page 224 of [17]) is
not correct according to our correctness criterion since there exists a A B

A�B

link and a switching S(π) s.t. ¬∀C, (A,B,C) ∈ S(π) ↓(A,B), contradicting
condition 2 of Definition 6: following the crossing dotted lines in the next
r.h.s. figure, you can easily verify ∃C pending s.t. (A,C,B) ∈ S(π) ↓(A,B).

cut

ax ax

�

ax

ax

ax
ax

��

C

A B
� �

cut

ax ax

�

ax

ax

ax
ax

�

�

�

C

B
�

A

¬∀C, (A, B, C) ∈ S(π) ↓A.B

∃C, (A, C, B,) ∈ S(π) ↓A.B

Definition 7 (CyMALL proof net). We call correct (or proof net, GPN)
any CyMALL GPS π s.t., its conclusions Γ are endowed with a cyclic order
σ(Γ) and for any valuation ϕ of π:

1. each additive switching Sϕ(π) is an acyclic and connected graph (ACC);
2. there exists an additive resolution ϕr(π) for ϕ(π) that is a CyMLL PN with

cyclic order conclusions σ(Γr), where Γr is an additive resolution of Γ .

Example 2 (CyMALL GPSs). Observe that the following proof structure π, on
the left hand side, is not correct: actually, fixed a valuation ϕ s.t. ϕ(p) = 1,
there exists an additive switching Sϕ(π) (with a jump) that is not ACC (see
the center side figure). Nevertheless, any slice ϕ(π) is ACC; for each slice ϕ(π)
there exists indeed an additive resolution ϕr(π) that is a CyMLL PN like that
one, on the rightmost hand side, with conclusions C � A,A⊥�C⊥. Observe,
Γr = (C � A,A⊥�C⊥) is an additive resolution of the conclusion of π, Γ =
(B&C) � A, (A⊥�C⊥) ⊕ (A⊥�B⊥).

1 This PS is considered as “a measure of the satisfiability degree” of correctness criteria
of non-commutative logic: any “good” criterion should recognize this PS as uncorrect.

50 V.M. Abrusci and R. Maieli

C

C

⊕ ⊕&p

ax

ax

ax

ax

p

p p

p

1 1

p

p

p

p

π

� �

(A⊥�C⊥) ⊕ (A⊥�B⊥)

11

(B&C) A

C

C

⊕&p

ax

ax

p

p

1 1

p

�
1

(B&C) A

p

Sϕ(π)

(A⊥�C⊥) ⊕ (A⊥�B⊥)

ax

ax

�

A⊥�C⊥

C A

ax

ax

ϕr(π)

Similarly, the proof structure below is not correct: you can easily get an
additive switching with a cycle like that one in (blue) dashed line.

C C&p &q

cut

a

ax

ax

ax

C C

ax

ax

p̄

pp

p̄ q̄

q

CC

ax

ax

q̄

q

Finally, the proof structure below is correct.

C

ax

ax

&p

cut

C

ax

ax

π &q

There currently exist other syntaxes for MALL PNs like the recent one by
Hughes–van Glabbeek [10]. Unlike the Girard’s one, this new syntax only works
with “uniform proof structures”, i.e., proof structures with only η-expanded
axioms and with contraction links only immediately below the axiom links.

2.2 Cut Reduction

Definition 8 (ready cut reduction). Let L be a cut link in a proof net π
whose premises A and A⊥ are conclusions of, resp., links L′ and L′′ with both of
these different from contraction C. Then we define the result π′ (called, reduc-
tum) of reducing a ready cut in π (called, redex), as follows:

Ax-cut: if L′ (resp., L′′) is an axiom link then π′ is obtained by
removing in π both formulas A,A⊥ (as well as L) and giving to L′′

(resp., to L′) the other conclusion of L′ (resp., L′′) as new conclusion:

cut

ax

A �wA L′
A

L′′L′′

Cyclic MALL Proof Nets with an Application to Language Parsing 51

(�/�)-cut: if L′ is a �-link with remises B and C and L′′ is a �-link
with premises C⊥ and B⊥, then π′ is obtained by removing in π both for-
mulas A and A⊥ as well as the cut link L together with L′ and L′′ and by
adding two new cut links with, resp., premises B, B⊥ and C,C⊥, as follows:

cut

B C

cut
w w

C⊥ B⊥

� cut
w

C⊥C

π � π′

B B⊥

(&/⊕)-cut: if L′ is a &p-link with premises B and C and L′′ is a ⊕2-
link (resp., a ⊕1-link) with premise B⊥ (resp., C⊥), then π′ is obtained in
three steps: first remove in π both formulas A, A⊥ as well as the cut link
L with L′ and L′′, then replace the eigen weight p by 1 (resp., p by 0) and
keep only those links (vertexes and edges) that still have non-zero weight;
finally we add a cut between B and B⊥ (resp., between C and C⊥) as below.

cut

&p cut

BBCB ⊥

w

wpwp w

π � π′[p/1]

B⊥

⊕2

Theorem 1 (stability of GPN under ready cut reduction). Assume π is
a GPN that reduces to π′ in one step of ready cut reduction, then π′ is a GPN.

Proof. Stability of condition 1 of Definition 6 and condition 1 of Definition 7,
under ready cut reduction, follows as a consequence of the next graph theoretical
property (see pages 250–251 of [9]):

Property 1 (Euler-Poicaré invariance). Given a graph G, then (�CC − �Cy) =
(�V − �E), where �CC, �Cy, �V and �E denotes the number of, respectively,
connected components, cycles, vertexes and edges of G.

Meanwhile, stability of condition 2 of Definition 6 (resp., condition 2 of
Definition 7) follows simply by calculation.

The confluence problem - Reducing a cut involving a contraction link as (at
least) one of its premises may lead to different reductum, depending on which
sub-graph of the redex we decide to duplicate. For instance, as illustrated below,
reducing the commutative cut of the last proof net of Example 2 leads either to
π1 or to π2 (in the next picture), depending on which additive box, &q or &p,
we decide to duplicate. There is no a-priori way to make π1 and π2 “equal”.
Girard, in [8], did not give a solution for this problem which has been later
provided by Laurent and Maieli in [12]. Here we present an original lazy com-
mutative cut reduction that simplifies the latter: technically, our reduction relies
on the notion of dependency graph (Definition 9), i.e. the smallest &-box needed

52 V.M. Abrusci and R. Maieli

for duplication (see [14]). This cut reduction procedure preserves the notion of
GPN (Theorems 1 and 2) and it is strong normalizing (Theorems 3 and 4).

ax

ax

C &′
q

C

ax

ax

&′′
q

Cp

cut

cut
&p

ax

ax

π1

C

ax

ax

ax

ax

C

Cq

&p′

&p′′

cut

cut
&q

ax

π2

ax

Definition 9 (empire and spreading). Assume a proof structure π, an eigen
weight p and a weight w, then:

– the dependency graph of p (w.r.t. π), denoted Ep, is the (possibly disconnected)
subgraph of π made by all links depending on p;

– the spreading of w over π, denoted by w.[π], is the product of w for π, i.e., π
where we replaced each weight v with the product of weights vw.

Definition 10 (commutative cut reduction). Let L be cut link in a proof
net π whose premises A and A⊥ are the respective conclusions of links L′ and
L′′ s. t. at least one of them is a contraction link C. Then we define the result
π′ (reductum) of reducing this commutative cut L in π (redex), as follows:

(C/�)-cut: if L′ is a C-link and L′′ is a �-link, then π reduces
in one (C/�) step to π′ (the (C/�) step is analogous) as follows:

cut

C

w

w wwpwp

π:

L

B⊥C⊥B�CB�C
C C

cut

cut

cut

cut

ax
ax

ax
ax

wp w

wp w

π′:

C⊥ B⊥B�C B�C

(C/C)-cut: if both L′ and L′′ are C-links, then there are two cases:
1. either the weight w of both L′ and L′′ splits on the same p

variable, then π reduces in one (Cp/Cp) step to π′ as follows

cut

cutπ � π′

cut

A A A⊥ A⊥ AA A⊥ A⊥

wp

w wp

wp
wp

wpwp

Cp Cp

2. or the weight w of L′ (resp., w of L′′) splits on p (resp.,
on q) then π reduces in one (Cp/Cq) step to π′ as follows

Cyclic MALL Proof Nets with an Application to Language Parsing 53

cut
w

wp wp wqwq

A A⊥ A⊥A

π:

Cp Cq

C C

cut

cut

cut

cut

ax
ax

ax
ax

C C

AA A⊥ A⊥

wpq

wpq

wpq

wpq

wp

wp

wq

wq

π′:

(C/⊕i)-cut: if L′ is a C-link and L′′ a ⊕i=1,2-link, then π reduces in one (C/⊕)
step to π′ as follows

cut

π � π′

w

wpwp

C

cut

ax

cut

⊕i

⊕i ⊕i

ax

C

cut
w

wp wp
B&C B&C

B&C B&C

B⊥

B⊥ B⊥

B B

B⊥

(C/&)-cut: if L′ is a C-link and L′′ a &p-link, then π reduces in one (C/&)
step to π′ as follows

cut

&p

B ⊕ C B ⊕ C

χ

wp wpwq

w

wq

A A⊥

Cq

π :

C⊥ B⊥ B ⊕ C

cut

B ⊕ C

&p′′ &p′
wq̄

C⊥ B⊥ C⊥ B⊥

cut

q̄.[E ′
p′] q.[E ′′

p′′]

CC

......

...

A1 An

χ′ wn

w1q̄ wnqwnq̄

w1

w1q

wq

with the assumptions that graphs q̄.[E ′
p′] and q.[E ′′

p′′] are obtained as follows:
1. we take two copies, E ′

p and E ′′
p , of the dependency graph Ep of p;

2. we replace in E ′
p (resp., in E ′′

p) p with a new variable p′ (resp., p′′);
3. we spread q̄ (resp., q) over E ′

p′ (resp., over E ′′
p′′).

Technical details of proofs of Theorems 2, 3 and 4 can be found in [14].

Theorem 2 (stability). If π is a GPN that reduces to π′ in one step of com-
mutative cut reduction then π′ is a GPN too.

Theorem 3 (termination). We can always reduces a proof net π into a proof
net π′ that is cut-free, by iterating the reduction steps of Definitions 8 and 10.

Theorem 4 (confluence). Assume π is a proof net s.t. it reduces in one step
α to π′ (π �α π′) and it reduces in an other step β to π′′ (π �β π′′); then,
there exists a proof net σ such that both π′ reduces, in a certain number of steps,
to σ (π′ �∗ σ) and π′′ reduces, in a certain number of steps, to σ (π′′ �∗ σ).

54 V.M. Abrusci and R. Maieli

2.3 Sequentialization

There exists a correspondence, called sequentialization (Theorem 5), between
PNs and sequential proofs.

Lemma 1 (splitting). Let π be a CyMLL PN with at least a �-link or cut-
link and with conclusions Γ not containing any terminal �-link (so, we say π
is in splitting condition); then, there must exist a �-link A B

A�B (resp., a cut-link
A A⊥

) that splits π in two CyMLL PNs, πA and πB (resp., πA and πA⊥).

Proof. Consequence of the Splitting Lemma for commutative MLL PNs [7].

Lemma 2 (PN cyclic order conclusions). Let π be a CyMLL PN with con-
clusions Γ , then all seaweeds Si(π) ↓Γ , restricted to Γ , induce the same cyclic
order σ on Γ , denoted σ(Γ) and called the (cyclic) order of the conclusions of π.

Proof. By induction on the size 〈�V, �E〉2 of π.

Corollary 1 (stability of PN order conclusions under cut reduction).
If π, with conclusions σ(Γ), reduces in one step of cut reduction to π′, then also
π′ has conclusions σ(Γ).

Theorem 5 (sequentialization of CyMLL PNs). Any CyMLL PN with
conclusions σ(Γ) can be sequentialized into a CyMLL sequent proof with the
same cyclic order conclusions σ(Γ).

Proof. By induction on the size of the given proof net π via Lemmas 1 and 2.

Theorem 6 (sequentialization of CyMALL PNs). A CyMALL GPN with
conclusions σ(Γ) can be sequentialized into a CyMALL sequent proof with the
same cyclic conclusions σ(Γ) and vice-versa (de-sequentialization).

Proof. There are two parts.
Sequentialization-part. Any CyMALL proof net π can be sequentialized into

a proof Π, by induction on the number of &-links. The base of induction cor-
responds to the sequentialization of the CyMLL proof nets (Theorem5). The
induction step follows by the sequentialization of standard MALL PNs (see [8])
where the only novelty is to show that: if a PN π contains a terminal &-link
L, then π can be toggled3 at L in two PNs preserving conditions 1 and 2 of
Definition 7.

De-sequentialization-part. Any CyMALL proof Π of σ(Γ) can be de-
sequentialized into a PN π of σ(Γ), by induction of the height of Π derivation.

2 Number of vertexes and number of edges.
3 We say that a terminal &p-link of a GPN π is toggling when the restriction of π w.r.t.

p and the restriction of π w.r.t. p̄ are both correct GPSs. We call the restriction
of π w.r.t. p (resp., w..r.t. p̄) what remains of π when we replace p with 1 (resp.,
p with 1) and keep only those vertexes and edges whose weights are still non-zero
(see [8]).

Cyclic MALL Proof Nets with an Application to Language Parsing 55

Unlike most part of correctness criteria for non-commutative proof nets,
like [3,13], our syntax enjoys a sequentialization for the full class of CyMLL
PNs (with possible cuts). Observe that, Mellies’s counter-example (Exam-
ple 1) represents a non-sequentializable proof structure that becomes correct
(therefore, sequentializable) after cut reduction.

3 Embedding Lambek Calculus into CyMALL PNs

Definition 11 (Lambek formulas and sequents of CyMALL). Assume A
and S are, respectively, a formula and a sequent of CyMALL.

1. A is a pure Lambek formula (pLF) if it is a CyMLL formula recursively built
according to this grammar: A := positive atoms | A � A | A⊥�A | A�A⊥.

2. A is an additive Lambek formula (aLF or simply LF) if it is a CyMALL
formula recursively built according this grammar: A := pLF | A&A | A ⊕ A.

3. S is a Lambek sequent of CyMALL iff S = (Γ⊥, A), where A is a non-void
LF and Γ⊥ is a possibly empty finite sequence of negations of LFs (i.e., Γ is
a possibly empty sequence of LFs and Γ⊥ is obtained by taking the negation
of each formula in Γ).

4. A Lambek proof is any derivation built by means of the CyMALL inference
rules whose premise(s) and conclusions are CyMALL Lambek sequents.

Definition 12 (Lambek proof net). We call Lambek CyMALL proof net
(resp., pure Lambek CyMLL proof net) any CyMALL PN (resp., CyMLL PN)
whose edges are labeled by LFs (resp. pLFs) or negation of LFs (resp., pLFs)
and whose conclusions form a Lambek sequent.

Corollary 2. Any Lambek CyMALL proof net π is stable under cut reduction,
i.e., if π reduces in one step to π′, then π′ is a Lambek CyMALL proof net too.

Proof. Consequence of Theorems 1 and 2. Trivially, each reduction step preserves
the property that each edge of the reductum is labeled by a Lambek formula or
the negation of a Lambek formula.

Theorem 7 (de-sequentialization of Lambek CyMALL proofs). Any
proof of a CyMALL Lambek sequent � σ(Γ⊥, A) can be de-sequentialized into
a Lambek CyMALL PN with conclusions σ(Γ⊥, A).

Proof. By induction on the height of the given sequent proof (similarly to the
de-sequentialization part of Theorem6).

Theorem 8 (sequentialization of Lambek CyMALL PNs). Any Lambek
CyMALL PN of σ(Γ⊥, A) can be sequentialized into a Lambek CyMALL proof
of the sequent � σ(Γ⊥, A).

Proof. Sequentialization follows by induction on the number &-links of the given
PN. The base of induction is given by next Theorem9. The induction step, simply
follows by Theorem 6.

56 V.M. Abrusci and R. Maieli

Theorem 9 (sequentialization of pure Lambek CyMLL PNs). Any Lam-
bek CyMLL PN of σ(Γ⊥, A) can be sequentialized into a Lambek CyMLL proof
of � σ(Γ⊥, A).

Proof. See details in [2].

4 Language Parsing with Lambek CyMALL PNs

In order to show how powerful PNs are, in this section we adapt to our syntax,
some linguistics (typing) examples suggested by Richard Moot in his PhD the-
sis [18]. We use s, np and n as the types expressing, respectively, a sentence, a
noun phrase and a common noun. According to the “parsing as deduction style”,
when a string w1...wn is tested for grammaticality, the types t1, ..., tn associated
with the words are retrieved from the lexicon and then parsing reduces to prov-
ing the derivability of a two-sided sequent of the form t1, ..., tn � s. Recall that
proving a two sided Lambek derivation t1, ..., tn � s is equivalent to prove the
one-sided sequent � t⊥n , ...t⊥1 , s where t⊥i is the dual (i.e., the linear negation) of
each type ti. Therefore, any phrase or sentence should be written like in a mirror
(observing the opposite natural direction).

Assume the following lexicon, where linear implication −◦ (resp., ◦−) is tra-
ditionally used for expressing types in two-sided sequent parsing style:

1. Vito = np;
2. Sollozzo = np;
3. him = (s◦−np)−◦s = (s�np⊥)⊥�s = (np � s⊥)�s;
4. trusts = (np−◦s)◦−np = (np⊥�s)�np⊥.

Cases of lexical ambiguity follow to words with several possible formulas A and
B assigned it. For example, a verb like “to believe” can express a relation between
two persons, np’s in our interpretation, or between a person and a statement,
interpreted as s, like in these examples:

(1) Sollozzo believes V ito; (2) Sollozzo believes V ito trusts him.

We can express this polymorphism by two lexical assignments as follows:

5. believes = (np−◦s)◦−np = (np⊥�s)�np⊥;
6. believes = (np−◦s)◦−s = (np⊥�s)�s⊥.

Typically, additives are used to capture cases of lexical ambiguity. When a word
has two possible formulas A and B assigned it, we can combine these into a single
additive formula A&B (resp., A⊕B). Thus, we can collapse assignments 5 and 6
into the following single additive assignment:

7. believes = ((np−◦s)◦−np)&((np−◦s)◦−s) = ((np⊥�s)�np⊥)&((np⊥�s)�
s⊥).

Cyclic MALL Proof Nets with an Application to Language Parsing 57

Equivalently, via distributivity of negative connectives, we could also move the
additive ”inside” and generate a more compact lexical entry, in which the two
assignments share their identical initial parts (see also [19] on type polymorphism):

8. believes = ((np−◦s)◦−(s ⊕ nps)) = ((np⊥�s)�(np⊥&s⊥)).

Using that, we can then move lexical ambiguity into proof nets. In the
following we give two equivalent Lambek PNs as parsing of the addi-
tive superposition of sentences (1) and (2); the first (resp., the sec-
ond) PN makes use of the lexical entry 7 (resp., the lexical entry 8).

�

np

trustshim Vito

s

s⊥

�

np

C

believes

s⊥ np

np

np⊥ np⊥

C

Sollozzo s

s s

C&p

np⊥

(Vito) & (him trusts Vito)

⊕2⊕1

(1, p)

(2, p)

(3, p)

np�

s

s⊥
np

(5, p̄)

(6, p̄)

(4, p̄)

(1, p̄)
(3, p̄)

np⊥

np⊥

(2, p̄) s⊥

�

np

np⊥

trustshim

�

np

np⊥ np⊥

C

Sollozzo s

s s

C

C

np

C

s⊥s⊥

&p

np⊥ nps

believes(Vito) & (him trusts Vito)

⊕1 C⊕2

(3, p)

Vito

(2, p)

�
np

s

s⊥

(2, p̄)
(3, p̄)

(4, p̄)
(5, p̄)

(6, p̄)

np⊥

(1, p̄)

(1, p)

s⊥

Observe that, for each slice of each proof net above, ϕp(π) and ϕp̄(π),
there exists an additive resolution that is a CyMLL PN with the same
sequentialization:

ϕp(π) ⇒ Π1 : axp
1

np⊥, np

axp
2

s⊥, s
axp

3
np, np⊥

�
s⊥

� np, np⊥, s
�

np⊥, np � (s⊥
� np), np⊥, s

58 V.M. Abrusci and R. Maieli

ϕp̄(π) ⇒ Π2 : axp̄
1s⊥, s

axp̄
2np⊥, np

axp̄
3s⊥, s

axp̄
4np, np⊥

�
s⊥

� np, np⊥, s
�

s, np⊥, np � (s⊥
� np), np⊥

�
s�np⊥, np � (s⊥

� np), np⊥
�

s⊥
� (s�np⊥), np � (s⊥

� np), np⊥, s

axp̄
5s⊥, s

axp̄
6np, np⊥

�
s⊥

� np, np⊥, s
�

s⊥
� (s�np⊥), np � (s⊥

� np), np⊥, s � (s⊥
� np), np⊥, s

�2

((s⊥
� (s�np⊥))�(np � (s⊥

� np)))�np⊥, s � (s⊥
� np), np⊥, s

5 Conclusions

As future work we aim at investigating the how topological correctness criteria
based on graph rewriting (or retraction) of MALL proof structures [6,15] may be
used for (linguistic) parsing. Naively, retraction criteria allow to switch from the
paradigm of “parsing as deduction” to the paradigm of “parsing as rewriting”
(see, e.g., [16]). Moreover, retraction could also be a useful computational tool
for studying the complexity class of the CyMALL correctness criterion.

Acknowledgements. We thank the anonymous reviewers, Michael Moortgat and
Richard Moot for their useful comments and suggestions. This work was partially
supported by the PRIN Project Logical Methods of Information Management.

References

1. Abrusci, V.M.: Classical conservative extensions of Lambek calculus. Stud. Logica.
71(3), 277–314 (2002)

2. Abrusci, V.M., Maieli, R.: Cyclic multiplicative proof nets of linear logic with
an application to language parsing. In: de Paiva, V., de Queiroz, R., Moss, L.S.,
Leivant, D., de Oliveira, A. (eds.) WoLLIC 2015. LNCS, vol. 9160, pp. 53–68.
Springer, Heidelberg (2015)

3. Abrusci, V.M., Ruet, P.: Non-commutative logic I: the multiplicative fragment.
Ann. Pure Appl. Logic 101(1), 29–64 (2000)

4. Andreoli, J.-M., Pareschi, R.: From Lambek calculus to word-based parsing. In:
Proceedings of Substructural Logic and Categorial Grammar Workshop, Munchen
(1991)

5. Danos, V., Regnier, L.: The structure of multiplicatives. Arch. Math. Logic 28,
181–203 (1989)

6. Danos, V.: La Logique Linéaire appliquée à l’étude de divers processus de normal-
isation (principalment du λ-calcul). Ph.D. thesis, Paris (1990)

7. Girard, J.-Y.: Linear logic. Theoret. Comput. Sci. 50, 1–102 (1987)
8. Girard, J.-Y.: Proof-nets: the parallel syntax for proof theory. In: Logic and Alge-

bra. Marcel Dekker (1996)
9. Girard, J.-Y.: Le point aveugle. Cours de Logique, vol. I, Vers la Perfection. Ed.

Hermann, Paris (2006)
10. Hughes, D., van Glabbeek, R.: Proof nets for unit-free multiplicative-additive linear

logic. In: Proceedings of IEEE LICS (2003)
11. Lambek, J.: The mathematics of sentence structure. Amer. Math. Monthly 65,

154–170 (1958)

Cyclic MALL Proof Nets with an Application to Language Parsing 59

12. Laurent, L., Maieli, R.: Cut elimination for monomial MALL proof nets. In: Pro-
ceedings of IEEE LICS, Pittsburgh, USA, pp 486–497 (2008)

13. Maieli, R.: A new correctness criterion for multiplicative non-commutative proof-
nets. Arch. Math. Logic 42, 205–220 (2003). Springer-Verlag

14. Maieli, R.: Cut elimination for monomial proof nets of the purely multiplicative
and additive fragment of linear logic. IAC-CNR Report, no. 140 (2/2008). HAL
Id: hal-01153910. https://hal.archives-ouvertes.fr/hal-01153910

15. Maieli, R.: Retractile proof nets of the purely multiplicative and additive fragment
of linear logic. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS (LNAI),
vol. 4790, pp. 363–377. Springer, Heidelberg (2007)

16. Maieli, R.: Construction of retractile proof structures. In: Dowek, G. (ed.) RTA-
TLCA 2014. LNCS, vol. 8560, pp. 319–333. Springer, Heidelberg (2014)

17. Moot, R., Retoré, C.: A logic for categorial grammars: Lambek’s syntactic calculus.
In: Moot, R., Retoré, C. (eds.) The Logic of Categorial Grammars. LNCS, vol. 6850,
pp. 23–63. Springer, Heidelberg (2012)

18. Moot, R.: Proof nets for linguistic analysis. Ph.D. thesis. Utrecht University (2002)
19. Morrill, G.: Additive operators for polymorphism. In: Categorial Grammar: Logical

Syntax, Semantics and Processing. Oxford University Press (2011)

https://hal.archives-ouvertes.fr/hal-01153910

Algebraic Governance and Symmetry
in Dependency Grammars

Carles Cardó(B)

Universitat Politècnica de Catalunya, Barcelona, Spain
cardocarles@gmail.com

Abstract. We propose a purely algebraic approach to governance struc-
ture in dependency grammars aiming to capture all linguistic depen-
dencies (such as morphological, lexico-semantic, etc.) in monoidal pat-
terns. This provides a clear perspective and allows us to define grammars
declaratively through classical projective structures. Using algebraic con-
cepts the model is going to suggest some symmetries among languages.

Keywords: Algebraic governance · Dependency grammars · Depen-
dency structure · Governance · Symmetry · Projective structure

1 Preliminaries: Dependency Structures

Our model is based on an algebraic characterization of dependency trees (Sect. 2)
and on an intuitive working hypothesis (Sect. 3). It consists in two objects: a
manifold and a linearization. For reasons of space we can only address in this
paper the construction of manifolds (Sect. 4). We show linearizations for specific
cases but we do not develop the general mechanism. Fortunately manifolds and
linearization are independent modules in our formalism. In Sect. 5 we implement
some classical formal languages which encode certain cross-serial phenomena. In
Sect. 6 we sketch how to build a manifold for a natural language. Using basic
algebraic concepts, the model is going to suggest some symmetries of languages
(Sect. 7) which will help us to understand our analysis. In the last section (Sect. 8)
we show another equivalent interpretation of the presented results.

To connect our approach with the literature we now define some basic con-
cepts in dependency grammars.

A dependency structure is a triplet (D,�,≤), where � and ≤ are partial
orders. The first relationship forms a tree (i.e. the Hasse diagram is a tree), the
second relation forms a chain (i.e. the relationship is a total order and its Hasse
diagram is a chain). The tree relation � is called governance; the total order
≤ is called precedence. To visualize a dependency structure we could draw both
Hasse diagrams over the same set D, but it is more convenient to picture the
Hasse diagram of the structures (D,�), (D,≤) separately and connect them with
dashed lines, as in Figs. 1(a) and (b). These lines are usually called projection
lines.

c© Springer-Verlag Berlin Heidelberg 2016
A. Foret et al. (Eds.): FG 2015/2016, LNCS 9804, pp. 60–76, 2016.
DOI: 10.1007/978-3-662-53042-9 4

Algebraic Governance and Symmetry in Dependency Grammars 61

The set D can be understood as a set of words, but since we frequently find
sentences with repeated words we remember that we are really dealing with word
tokens. A dependency structure with words is a structure (D,�,≤, f) such that
(D,�,≤) is a dependency structure and f is a mapping f : D −→ Σ, where Σ
is a finite vocabulary.1

A dependency grammar is a finite description of a set G of dependency
structures with words. The language of a dependency grammar is the same set
of dependency structures without the governance relation, i.e. only the chains.
If we want the language in Σ∗ we can define the set:

{f(x1) · · · f(xn) ∈ Σ∗ | {x1, . . . , xn} = D, x1 ≤ · · · ≤ xn and (D,�,≤, f) ∈ G}.

There are several frameworks providing such description, for example Lexical-
ized Grammars, Tree Adjoining Grammar, Regular Dependency Grammars or
eXtensible Dependency Grammar. See [3,4].

The literature on dependency grammars focuses on explaining the relation-
ship between governance and precedence. Since from the point of view of natural
languages there are a lot of inadequate dependency structures some constraints
must be imposed. The main one is called projectivity. A dependency structure
is called projective iff each subtree of the governance structure is an interval on
the precedence structure, as in Fig. 1(a) and (c). Graphically classical projec-
tive structures are planar graphs (trees of governance) that can be embedded in
the plane and be geometrically projected on a line (chain of precedence) with-
out crossing lines of projection, see Fig. 1(a). Figure 1(b) shows a non-projective
structure. This is a geometrical characterization of projectivity, although there
are others.

It is thought that projective structures cover over 75–80 % of sentences of
natural language [4]. To explain the rest there are two options. Either we must
assume a less intuitive analysis of the sentences, or we must loosen the sense of
projectivity. For this reason other projections have been proposed, such as weak
non-projective structures or well-nested structures [6].

2 Syntagmata and Manifolds

We make a few comments on notation. Given a finite set, A, we denote A∗ the
free monoid generated by A. The length of an x ∈ A∗ is denoted by |x|. We
are going to use free monoids ζ∗ and Σ∗. 1 is the identity of ζ∗ and 0, the
identity of Σ∗. We will use the product notation for both. Given two monoids
Γ, Γ ′, the Cartesian product Γ × Γ ′ is again a monoid, called the direct sum,
with its operation defined componentwise. We abbreviate N+ = N ∪ {0} and
Σ+ = Σ ∪{0}. We omit the brackets and write Σn

+ = (Σ+)n = Σ+ ×· · ·×Σ+ n
times. Equally ζ∗n = (ζ∗)n. Given a set A ⊆ ζ∗n, we denote by A∗ the minimal
submonoid in ζ∗n containing A. Thus the star operator is a generalization of

1 There are other definitions of dependency structures, such as those encoding struc-
ture as a graph or through Robinson’s axioms, [2], but the above is more concise.

62 C. Cardó

Fig. 1. (a) dependency structure. (b) non-projective dependency structure. (c) projec-
tive structure relating subtrees to intervals. (d) graphical representation of a syntagma.

the Kleene star for languages to monoids of several components. Algebraically
G∗ = 〈G〉 is the submonoid generated by G. We say that a submonoid G∗ is
finitely generated iff G is a finite set.

Definition 1. Let ζ be a finite set of syntactic functions, and Σ a finite set of
words. We call a syntagma a mapping S : ζ∗ −→ Σ+ such that

(i) S has finite order, i.e. |{x ∈ ζ∗ |S(x) 	= 0}| < ∞.
(ii) S is non-elliptic, i.e. S(x) = 0 =⇒ S(yx) = 0, ∀x, y ∈ ζ∗.2

We call the elements of ζ∗ loci. We call the support of S the non-null loci,
Spt(S) = {x ∈ ζ∗ |S(x) 	= 0}. We call the order the cardinality of the support,
|S| = |{x |S(x) 	= 0}|. A locus x is a leaf in S iff S(x) 	= 0, but S(yx) = 0 for
all y 	= 1, y ∈ ζ∗. We call the depth of S the number d(S) = max{|x| | x ∈ ζ∗,
such that x is a leaf in S}.

Some of the syntactic functions that we are going to use are: Sb, Subject;
Ob, Object; In, indirect object; At , Attribute (the argument of copulative verbs);
Aj , Adjunct to indicate mode, place or time; Dt , Determiner; Ad , Adjective; Nc,
Noun Complement (similar to Ad , but it introduces a new nominal syntagma
which is announced by a preposition); Ip, Introduction of a Preposition. Nev-
ertheless the names are not important: syntactic functions play roles only in
relation to each other.

2 An ellipsis occurs when a locus is null but there is underneath a non-null locus;
otherwise the locus is definitively null. A class of elliptic syntagmata is also useful,
but in order to simplify things we are not using them except in the last example.

Algebraic Governance and Symmetry in Dependency Grammars 63

The locus Dt · Sb, say, can be read as the determiner of the subject. The set
of loci ζ∗ can be interpreted as a set of addresses. Words can be repeated in a
sentence but not loci, so invoking a word can be made unequivocally through
the loci. The main benefit of syntagmata is in translating linguistic descriptions
into algebraic descriptions.

Example 1. Let the syntactic functions be ζ = {Sb,Ob,Dt ,Ad} and let the
vocabulary be Σ = {the, soldier, hands, clapped, dirty}. Let S be the mapping
S : ζ∗ −→ Σ+ given by: S(1) = clapped, S(Sb) = soldier, S(Ob) = hands,
S(Dt · Sb) = the, S(Ad · Sb) = young, S(Dt · Ob) = the, S(Ad · Ob) = dirty,
and S(x) = 0, otherwise. Then S is a syntagma with order |S| = 7 and depth
d(S) = 2. The leaves are the loci Dt · Sb, Ad · Sb, Dt · Ob and Ad · Ob.

The next proposition connects syntagmata with governance structures.

Proposition 1. Given a syntagma S we call algebraic governance the relation-
ship (Spt(S),�) such that x � y ⇐⇒ ∃ϕ ∈ ζ∗ such that x = ϕ · y. Algebraic
governance is a governance relationship. So (Spt(S),�, S) is governance with
words.

Proof. On the one hand we see that � is a partial order as follows. Reflexivity:
we have x � x,∀x ∈ Spt(S), because x = 1 · x. Antisymmetry: let x, y be in
Spt(S) such that x� y and y �x, iff x = x′ · y and y = y′ ·x for some x′, y′ ∈ ζ∗.
So x = x′ · (y′ · x) = (x′ · y′) · x. But free monoids enjoy the cancellation laws,
therefore 1 = x′ · y′, and then x′ = y′ = 1. So x = y. Transitivity: let x, y, z be
in Spt(S) such that x� y and y � z, iff x = x′ · y and y = y′ · z, then we compose
both: x = x′ · (y′ · z) ⇐⇒ x = (x′ · y′) · z ⇐⇒ x � z.

On the other hand we must prove that its Hasse diagram is a tree. This
can be done by induction on the depth of adding new leaves to the syntagma.
Finally we see that the mapping S : ζ∗ −→ Σ+ can be restricted to the mapping
S : Spt(S) −→ Σ, because the elements in Spt(S) cannot be null, so we have
the governance structure with words: (Spt(S),�, S). �

To represent a syntagma graphically we can use the Cayley digraph of a
binary operation to represent the support, and then substitute the nodes accord-
ing to the mapping S. The Cayley digraph of a free monoid ζ∗ is the directed
digraph (V,E) with vertexes V = Spt(S) and edges E = {(x, λx) |x ∈ ζ∗, λ ∈ ζ};
since the monoid is free the digraph is always tree-shaped. Then we label every
edge (x, λx) with the function λ. Finally we just have to label the vertexes
according the map S. See Fig. 1(d). Note that the Hasse diagram of the alge-
braic governance coincides with the Cayley digraph without labels of edges, so
a locus is the labeling of a path from root to node.

Some frameworks in dependency grammars require another kind of underlying
non-tree-shaped structure, such as directed acyclic graphs or trees with repeated
syntactic functions on a same level like XDG [3], or Topological Grammar, [5].

64 C. Cardó

To accommodate this there is a natural generalization of our syntagmata based
on automata.3

We notate Syntζ,Σ the set of all syntagmata with ζ and Σ fixed. A manifold
is a subset W ⊆ Syntζ,Σ . Although we do not go into details of linearization
here, if we have a manifold and a procedure to assign a chain to each syntagma,
the linearization, then we will have a set of dependency structures with words, i.e.
a grammar and consequently a language. Thus our grammars would consist of a
pair G = (W,Π), where W is a manifold and Π ⊆ W ×Σ∗ is a relationship which
relates syntagmata to strings. The language of the grammar will be L(G) =
Π(W) = {x ∈ Σ∗ | (S, x) ∈ Π,S ∈ W}. Now there are two crucial questions.
First, how can the manifolds be established? Second, how can Π be established?
This paper tries to answer the first question. Regarding the second question we
are going to define the chains through the figures; but this should not create
problems. In other words, we do not show a general mechanism to establish Π,
but we will do it for each specific case.

3 Grouping Agreement: Linguistic Basis

In order to understand the central proposal we are going to present some lin-
guistic cases and extract a heuristic conclusion.

3.1 Verb Inflection in English

We are interested in grouping the several agreement instances of the words
in a sentence. The most visible match is when two words are morphologically
matched. Some languages are more profuse in this respect, for example Romance
languages, however even English manifests some examples. In English when the
subject of a sentence is the third person singular and the main verb is present
tense and not modal, the verb goes with a -s at the end. For example:

(1) JohnSb often eats1 meat.

We have underlined the morphologically matched words and subscripted the
loci. The analysis is given in Fig. 2(a); the agreeing words are linked by a curve
dashed line in this and the following examples.4 Since the main verb is always
allocated the locus 1 and the subject is in Sb we can represent this match as an
ordered pair (1, Sb). At the moment we are interested in the loci involved, not
in the rule or condition. Now we can take the new sentence:

(2) Mary says JohnSb·Ob often eatsOb meat.

3 For the purposes of this article it may be assumed that there are no repeated syntactic
functions at the same level. In work in progress we relax this condition but there is
not space to present the details here, and they are not relevant to the contribution of
the present article.

4 Agreements (dashed lines) are not dependencies (arrows), but loci can be used to
describe them.

Algebraic Governance and Symmetry in Dependency Grammars 65

Fig. 2. (a) and (b) agreement of subject and verb in English. (c) and (d) agreement of
subject and attribute in Catalan. (e) agreement in pied-piping in Catalan.

There are two matched pairs: a new pair (1,Sb) and the old which is now in
a deeper position (Ob,Sb · Ob). The sentence has an analysis as in Fig. 2(b).
The agreement phenomenon iterates in deeper sentences: Paul says Mary says
John often eats meat, Peter says Paul says Mary says John often eats meat,
. . . . In general we can describe the set of the loci of all these agreements as:
Agr = {(Obn,Sb · Obn) |n ∈ N+}.

3.2 Match of Subject and Attribute

We can consider other languages and other types of matching. In some Romance
languages the number and gender of the attribute of the copula must be equal
to the subject.

(3) Mon
My

pareSb
father

està
is

cansatAt .
exhausted.

/
/

Les
the

meves
my

germanesSb
sisters

estan
are

cansadesAt .
exhausted.

‘My father is exhausted. / My sisters are exhausted.’

These examples are in Catalan, however the same occurs in Spanish, French
or Italian. The matched pair is (Sb,At). We also consider other examples in a
deeper position:

(4) a. El
The

Joan
John

diu
says

que
that

mon
my

pareSb·Ob

father
està
is

cansatAt·Ob .
exhausted.

‘John says my father is exhausted’.

66 C. Cardó

b. Que
that

mon
my

pareSb·Sb
father

estigui
is

cansatAt·Sb
exhausted

em
me

preocupa.
worries.

‘The fact of my father being exhausted is worrying’.

The analyses are given in Figs. 2(c) and (d). The first agreement is (Sb · Ob,At ·
Ob), but the second is (Sb ·Sb,At ·Ob). This can be interpreted as that the set of
agreements is Agr = {(Sb · x,At · x) |x ∈ ζ∗}, in other words, this match would
hold everywhere.

3.3 Pied-Piping in Some Romance Languages

We consider another phenomenon called pied-piping consisting in the embedding
of a filler such as a relative pronoun within accompanying material from the
extraction site. Recall that we are only interested in the morphological matches,
not in the semantical operation of the anaphora. In Catalan we must say:

(5) Aquesta
This

reinaSb ,
queen

el
the

pare
father

del
of-the

pare
father

. . .

. . .
del
of-the

pare
father

de
of

laDt·Nc·Ncn·Sb·Ad·Sb
the

qual
who

fou
was

destronat,
dethroned,

regnà
reigned

al
in

segle
century

XII.
XII

‘This queen the father of the father . . . of the father of whom was
dethroned reigned in XII century’.

The underlined words must agree in number and gender; see Fig. 2(e). In English
there is not any match and we cannot underline any word because the pronoun
is not preceded by any article. The proof of this agreement is that in Catalan we
cannot say: *Aquesta reina, el pare del pare . . . del pare de el qual fou destronat,
regnà al segle XII. Now the agreement set is Agr = {(Sb,Dt · Nc · Ncn · Sb · Ad ·
Sb) |n ∈ N+}. This is structurally a distinct type of construction because the
monoid is growing right in the middle of certain loci. But this phenomenon can
occur anywhere, for example in the object:

(6) El
The

poble
populace

no
not

acceptà
accepted

mai
never

aquesta
this

reinaOb

queen
el
the

pare
father

del
of-the

pare
father

. . .

. . .
del
of-the

pare
father

de
of

laDt·Nc·Ncn·Sb·Ad·Ob

the
qual
who

fou
was

destronat.
dethroned.

‘The populace never accepted this queen the father of the father . . . of
the father of whom was dethroned’.

So the agreements are more general:

Agr = {(x,Dt · Nc · Ncn · Sb · Ad · x) |n ∈ N+, x ∈ ζ∗}.

3.4 A Working Hypothesis

We can summarize all these agreements using subsets of the monoid ζ∗ × ζ∗.
In the first case we have: Agr = {(Obn,Sb · Obn) |n ∈ N+} = ϕ · Γ , where

Algebraic Governance and Symmetry in Dependency Grammars 67

ϕ = (1,Sb), Γ = (Ob,Ob)∗. In the second case we also have: Agr = {(Sb · x,At ·
x) |x ∈ ζ∗} = ϕ · Γ , where ϕ = (Sb,At), Γ = {(x, x) |x ∈ ζ∗}. Finally in the
third case: Agr = {(x,Dt · Nc · Ncn · Sb · Ad · x) |n ∈ N+, x ∈ ζ∗} = ϕ · Γ · ψ · Γ ′,
where ϕ = (1,Dt ·Nc), Γ = (1,Nc)∗, ψ = (1,Sb ·Ad) and Γ ′ = {(x, x) |x ∈ ζ∗}.
From the examples seen, and many others that could be given, we can extract
a hypothesis. Let ϕi be some elements in ζ∗ and let Γi be some submonoids of
the monoid ζ∗n:
monoidal hypothesis. For any natural language the set of the places where
agreements occur can be described as:

Agr =
k∏

i=1

ϕi · Γi ⊆ ζ∗n.

Note that some submonoids Γi and constants ϕi can be trivial, thus we have a
lot of patterns like: ϕΓ , Γϕ, ΓΓ ′ϕ, ϕΓψΓ ′,

Even though the agreements shown were binary the monoidal hypothesis
supports several arities, but the most common are 1, 2 and 3. For example: that
the subject Sb is always a noun is itself an agreement of arity 1 which must hold
generally in all loci of a syntagma, therefore the pattern must be Sb · ζ∗.

We have been talking about morphological agreement but there is no reason
not to talk about other kinds. When a verb like to drink selects a “drinkable”
object it is producing a semantic “agreement” (1,Ob), and so forth.

4 Rules, Patterns and Syntactic Manifolds

4.1 Valuations, Rules and Satisfiability

We are going to formalize the concept of pattern, which goes preceded by the
concept of rule. A rule is a linking condition while a pattern tells us where the
rule must be respected.

A valuation of arity n is a mapping B : Σn
+ −→ {0, 1}, where 0, 1 are the

truth values. Some valuations that we will frequently use are the following: the
characteristic function defined as (∈ σ) : Σn

+ −→ {0, 1}, (∈ σ)(x) = 1 ⇐⇒ x ∈
σ; the equality defined as (≈) : Σ2

+ −→ {0, 1}, (≈)(x, y) = 1 ⇐⇒ x = y; or its
curried restriction, (≈ a)(x) = (≈)(x, a). We will use also the notations: x ∈ σ,
x ≈ y and x ≈ a.

Definition 2. Given (ϕ1, . . . , ϕn) ∈ ζ∗n and given a valuation B of arity n, we
call the ordered pair (B, (ϕ1, . . . , ϕn)) a rule. Given a syntagma S : ζ∗ −→ Σ+,
and a rule, R = (B, (ϕ1, . . . , ϕn)), we say that S satisfies R, and we write,
S sat R iff

B(S(ϕ1), . . . , S(ϕn)) = 1.

Example 2. Let Det ⊂ Σ be the set of all determiners in English and let Dt ∈ ζ
be a syntactic function. We want Dt to always take an element from Det. The
rule (∈ Det, (Dt)), or informally Dt ∈ Det, says exactly that.

68 C. Cardó

Due to the boolean nature of valuations we can define new valuations from
others. Let a pair of valuations be B : Σn

+ −→ {0, 1}, B′ : Σm
+ −→ {0, 1}; then

we can define:
B ∧ B′ : Σn+m

+ −→ {0, 1}
(x1, . . . , xn, y1, . . . , ym) �−→ B(x1, . . . , xn) ∧ B′(y1, . . . , yn).

In the same way we can define: B∨B′, B → B′, ¬B, and so forth. If we have two
rules: R = (B, (ϕ1, . . . , ϕn)) and R′ = (B′, (ϕ′

1, . . . , ϕ
′
n)) we can define: R∧R′ =

(B ∧ B′, (ϕ1, . . . , ϕn, ϕ′
1, . . . , ϕ

′
n)), R ∨ R′ = (B ∨ B′, (ϕ1, . . . , ϕn, ϕ′

1, . . . , ϕ
′
n)),

R → R′ = (B → B′, (ϕ1, . . . , ϕn, ϕ′
1, . . . , ϕ

′
n)), ¬R = (¬B,ϕ1, . . . , ϕn). Com-

posing new valuations and rules does not increase our descriptive power but it
makes reading easier.

Example 3. A transitive verb is a verb which always takes an object (e.g. the
following sentence is ungrammatical: *John likes ∅). Let Trans ⊂ Σ be the set
of transitive verbs and let Ob be a syntactic function. Consider the valuation
B(x, y) =

(∈ Trans
)
(x) → (≈ 0

)
(y) =

(
x ∈ Trans → y 	≈ 0

)
. The following

rule asserts that the object cannot be null if a verb is transitive:
(
B, (1, Ob)

)
; or

by a mild abuse of notation: 1 ∈ Trans → Ob 	≈ 0.

4.2 Patterns and Manifolds

First of all we fix some easy set notation. As is usual in algebra, if x ∈ X and
Y, Y ′ ⊆ X, where X is a set with a binary operation · : X × X −→ X, then
x · Y = {x} · Y = {x · y | y ∈ Y } and Y · Y ′ = {y · y′ | y ∈ Y, y′ ∈ Y ′}.

Definition 3. We say Γ ⊆ ζ∗n is a (monoidal) pattern of arity n iff it can be
written as:

Γ =
k∏

i=1

ϕi · Γi,

where ϕi ∈ ζ∗n and each Γi is a finitely generated submonoid of ζ∗n.5 We call
the number k the length of the pattern.

From the definition we see that every submonoid of ζ∗n is itself a monoidal
pattern. Some simple examples are:

Example 4. The set {(1, 1, 1)} is a monoidal pattern of arity 3. We call such
a pattern trivial. The set {(ϕ1, ϕ2)} is a monoidal pattern with arity 2 and
of only one element. We call such patterns constants. The set {(αβiγαj , γ2αi)
| i, j ∈ N+} is a monoidal pattern of arity 2 because it can be written as (α, γ2) ·
(β, α)∗ ·(γ, 1)·(α, 1)∗. However the set {(αiβj , βjαi) | i, j ∈ N+} is not a monoidal
pattern because the set in itself is not a monoid nor a constant and it cannot be
decomposed into a succession of products of submonoids and constants. On the
other hand, the set {(αiβj , αiβj) | i, j ∈ N

+} can be written as: (α, α)∗ · (β, β)∗,
and this shows that it is a pattern.
5 Recall that some of the ϕi and Γi can be trivial.

Algebraic Governance and Symmetry in Dependency Grammars 69

We notate Hα1,...,αt
= {α1, . . . , αt}∗, where α1, . . . , αt ∈ ζ. We also define,

given a pattern Γ , the nth homogeneous power as the set Γn) = {(x, . . . , x)n |x ∈
Γ}, where the subscript means there are n copies of x in the vector. We call
monoids such as H

n)
α1,...,αt homogeneous submonoids. So the last pattern from

Example 4 can be written more comfortably as (α, α)∗ · (β, β)∗ = H
2)
α H

2)
β . We

say that a pattern is homogeneous iff all its submonoids are homogeneous.
Figure 3 depicts the Cayley graph of the free monoid ζ∗ = {α, β}∗. After

the constant patterns, the simplest patterns are those of the form ϕΓ , and
they can be understood as follows: we fix some loci defined by the compo-
nents of the constant ϕ, then we geometrically translate them around the syn-
tagma according to Γ as in Fig. 3(b) which is depicting a pattern of arity 3,
(1, α, β)H3)

β = (1, α, β)(β, β, β)∗. If Γ = ζ∗n) then for each subsyntagma under
ϕ we have a copy of ϕ. However when we multiply on the left side, Γϕ, the
constant is reproduced in parallel as in Fig. 3(a) which is depicting a pattern
of arity 2, H

2)
α (1, β) = (α, α)∗(1, β). More complex patterns composing these

actions can also be visualized.

Fig. 3. (a) the pattern (α, α)∗(1, β). (b) the pattern (1, α, β)(β, β, β)∗.

Definition 4. Let Γ be a monoidal pattern and B a valuation, both with the
same arity. We call the pair (B,Γ) a pattern rule which defines a set of rules
denoted by

(
B
Γ

)
= {(B,ϕ) |ϕ ∈ Γ}.

Definition 5. Given a pattern rule (B,Γ) we define the simple syntactic man-
ifold SyntΣ,ζ

(
B
Γ

)
= {S ∈ SyntΣ,ζ | S satR ∀R ∈ (

B
Γ

)}. Given a number of
pattern rules we define the syntactical manifold:

SyntΣ,ζ

(
B1 · · · Bn

Γ1 · · · Γn

)
= SyntΣ,ζ

(
B1

Γ1

)
∩ · · · ∩ SyntΣ,ζ

(
Bn

Γn

)
.

When the sets ζ, Σ are understood we just write: Synt. From the definitions
it immediately follows that if V,W are syntactic manifolds, then V ∩ W is a
syntactic manifold, so syntactic manifolds form a semilattice.

70 C. Cardó

5 Five Classical Examples

We show five classical formal language examples, presented in two groups. The
monoidal patterns will highlight a symmetry between these languages.

5.1 Squares Language vs. Copy Language and Mirror Language

We fix a vocabulary, for instance Σ∗ = {a, b, c}. Consider the languages Lsqua =
{x2

1 · · · x2
n |x1, . . . , xn ∈ Σ,n ∈ N+}, and Lcopy = {xx |x ∈ Σ∗}. The first is a

context free, indeed regular, language. It is a mathematical idealization of a
chain of subordinate clauses in many languages such as English. E.g.:

(7) . . . that Johna sawa Peterb helpb Maryc readc.

The second is not context free and it represents the typical chain of subordinate
clauses of Dutch:6

(8) . . . dat
. . . that

Jana

Jan
Pietb

Piet
Mariec

Marie
zaga

saw
helpenb

help
lezenc.
read.

‘. . . that J. saw P. help M. read’.

Consider the squares language Lsqua. We take the syntactic manifold with ζ =
{α, β} and Σ = {a, b, c} as follows. Let there be the valuation x ≈ 0 and x ≈ y
(we write simply ≈). Then we have the manifold:

Wsqua = Synt
(≈ 0 ≈ 0

α2Hβ βαHβ

)
∩ Synt

(≈
(1, α)H2)

β

)
.

We separate this manifold in two parts because the second is giving important
information about the syntagmata. The first part can be considered superfluous;
it is just saying that all loci not invoked by the second part will be null.

If we take the projective linearization Πsqua as in Fig. 4(a) for the manifold
Wsqua, we will obtain the language Πsqua(Wsqua) = Lsqua.

For the copy language we define the manifold:7

Wcopy = Synt
(≈ 0 ≈ 0

αHβα βHβα

)
∩ Synt

(≈
H

2)
β (1, α)

)
.

If we take the projective linearization Πcopy as in Fig. 4(b) for the manifold
Wcopy, we will obtain the language Πcopy(Wcopy) = Lcopy.

Note that both nonsuperfluous parts are very similar; the valuations are equal
and the only difference lies on the laterality of patterns: (1, α)H2)

β in the first

language and H
2)
β (1, α) in the second.

6 This also occurs in Swiss-German, [7].
7 Our analysis of Dutch dependencies uses a parallel arrangement of the functions β

which shares distant similarities with [1], but there the framework was constituency
grammars.

Algebraic Governance and Symmetry in Dependency Grammars 71

Fig. 4. (a) syntagmata for the squares language. (b) syntagmata for the copy language.
(c) syntagmata for the mirror language. (d) alternative syntagmata for the mirror
language.

Closely related to both the above languages we consider the mirror language
defined as Lmirr = {xxR |x ∈ Σ∗}, where xR is the reversed word. This language
captures the nested dependencies in German, with sentences like:

(9) . . . dass
. . . that

Jana

Jan
Pietb

Piet
Mariec

Marie
lesenc

read
helfenb

help
saha.
saw.

‘. . . that J. saw P. help M. read’.

Curiously these sentences can be projectively obtained from both manifolds
Wsqua and Wcopy as can be checked in Fig. 4(c) and (d): if we define Π1 as in
Fig. 4(c) and Π2 as in Fig. 4(d) we will have Π1(Wsqua) = Lmirror = Π2(Wcopy).

5.2 Language of Multiple abc vs. Respectively abc

Now we are going to consider the languages Lmult = {(abc)n |n ∈ N+} and
Lresp = {anbncn |n ∈ N+}. The first is a context free, indeed regular language,
but not the second. The first corresponds to simple coordination, (10a), while
the second is a mathematical idealization of the respectively construction (10b):

(10) a. Jeana seems Germanb but he is Frenchc, Pietroa seems Russianb but
he is Italianc and Petera seems Belgianb, but he is Englishc.

b. Jeana, Pietroa and Petera seem respectively Germanb, Russianb and
Belgianb, but they are Frenchc, Italianc and Englishc.

Let there be the sets ζ = {α, β, γ}, Σ = {a, b, c}, and let there be the valuations:

B(x, y, z) = (x ∈ {0, a}) ∧ (y ∈ {0, b}) ∧ (z ∈ {0, c}),

72 C. Cardó

B′(x, y, z) =
(
x ≈ 0 ∧ y ≈ 0 ∧ z ≈ 0

) ∨ (
x 	≈ 0 ∧ y 	≈ 0 ∧ z 	≈ 0

)
.

We take the manifold

Wmult = Synt
(≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0

ααHβ βαHβ γαHβ αγHβ βγHβ γγHβ

)

∩ Synt
(

B B′

(α, 1, γ)H3)
β (α, 1, γ)H3)

β

)
.

The projective linearization Πmult as in Fig. 5(a) for the manifold Wmult yields
the language Πmult(Wmult) = Lmult.

Finally we take the manifold with exactly the same valuations B,B′ but with
some specific changes in the patterns:

Wresp = Synt
(≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0

αHβα αHβγ αHβ γHβ αHβγ γHβγ

)

∩ Synt
(

B B′

H
3)
β (α, 1, γ) H

3)
β (α, 1, γ)

)
.

The projective linearization Πresp as in Fig. 5(b) for the manifold Wresp yields
the language Πresp(Wresp) = Lresp. Again note that both nonsuperfluous parts
are very similar; the valuations are equal and the only difference lies in the
laterality: (α, 1, γ)H3)

β and H
3)
β (α, 1, γ).

Fig. 5. (a) syntagmata for the language of multiple abc. (b) syntagmata for the respec-
tively abc language. (c) symmetry between the squares language and the copy language.
(d) symmetry between the multiple abc language and the respectively abc language.

Algebraic Governance and Symmetry in Dependency Grammars 73

6 How to Build Natural Languages

Due to the boolean nature of valuations we are able to implement a wide variety
of rules. If we want to explain a natural language we can build a number of man-
ifolds capturing different phenomena. We can begin with a manifold to describe
for each word what kind of words or categories it can govern. For example, a
noun can govern a determiner and an adjective, but not an adverb or verb. With
another manifold we can define for each function what functions can follow, such
as the rule for transitive verbs in Example 3.8 We can define still another mani-
fold to describe agreements. Then we have to think where these rules must hold,
i.e. we must think of the patterns. For all rules of this kind the pattern will have
the shape ϕΓ . In fact these kind of patterns seems to be related to context free
languages. Fortunately in order to add new phenomena, like pied-piping, cross-
serial dependencies or others, we can build other manifolds and intersect with
the existing ones. Possibly new phenomena demand new kinds of patterns. For
example we already saw that pied-piping in Catalan had a pattern like ϕΓϕ′Γ ′.

7 Symmetric Syntagmata, Manifolds and Languages

To analyze sentences with cross-serial dependencies from (8) and (10) we can use
the underlying logic of the simplified languages Lcopy and Lresp. See Figs. 6(b)
and (d). Nevertheless, this solution could be considered inadequate by the general
reader for at least two reasons. First, it assumes different languages to have the
same analysis (equal syntagmata up to words). Second, intuitively it is thought
that governance must be coherent with semantical roles. We have violated both
principles. On the one hand, we would have supposed different analyses for
English and Dutch, or for respectively constructions and ordinary coordination;
see again all the analyses in Fig. 6(a), (b), (c) and (d). On the other hand, in the
Dutch analysis the function Ob should follow a verb, not a noun. We need to
address these two points. Even though our analysis seems ex professo chosen to
be comfortably projective,9 there exists an easy and closer relationship between
both analysis: an algebraic permutation of syntactic functions. We now look at
this.

As is usual in algebra a morphism is a mapping preserving structures. In our
case a morphism between syntagmata S : ζ∗ −→ Σ+ and S : ζ ′∗ −→ Σ′

+ is a
pair of mappings f : ζ∗ −→ ζ ′∗, g : Σ −→ Σ′ (which may be partial) such that
g(0) = 0 and they make commutative the diagram, S′ ◦ f = g ◦ S:

8 Using the Tesnèrian denomination, this constitutes defining the valence of each word.
9 A similar strategy can be found in Topological Dependency Grammar, [5].

74 C. Cardó

Definition 6. Let ρ be a permutation of subscripts {1, . . . , m}, and consider a
disjoint decomposition ζ = ζ1∪· · ·∪ζm. We call a pair (f, g) a symmetry when f
is a permutation of submonoids, f : ζ∗

1 · · · ζ∗
m −→ ζ∗

ρ(1) · · · ζ∗
ρ(m), f(x1 · · · xm) =

xρ(1) · · · xρ(m). By a mild abuse of notation we simply write ρ = (f, g).

Proposition 2. Using the same notation, given two manifolds W and W ′ we
have that for each syntagma S ∈ W, Spt(S) ⊆ ζ∗

1 · · · ζ∗
m ⊆ ζ∗, there exists a

unique syntagma S′ ∈ W ′, Spt(S′) ⊆ ζ∗
ρ(1) · · · ζ∗

ρ(m) ⊆ ζ∗, such that the symmetry
becomes a morphism of syntagmata.

Proof. For (f, g) to be a morphism, we require that S′ ◦ f = g ◦ S. Note that f
is bijective and well defined since the decomposition of ζ∗ is disjoint, so given
S we put S′ = g ◦ S ◦ f−1, and in this way S′ is uniquely defined. Clearly if
Spt(S) ⊆ ζ∗

1 · · · ζ∗
m then Spt(S′) ⊆ ζ∗

ρ(1) · · · ζ∗
ρ(m). �

Automatically a symmetry induces a mapping of manifolds ρ̃ : W −→ W ′, S �→
S′. When this occurs we say that the languages L = Π(W) and L′ = Π ′(W ′)
are symmetric, and we write L⊥L′.

Example 5. We consider the symmetry, f : {α}∗{β}∗ −→ {β}∗{α}∗; see
Fig. 5(c). The pair ρ = (f, Id) defines a bijection between manifolds Wsqua −→
Wcopy. So we have two symmetric languages Lsqua⊥Lcopy. Similary if we con-
sider the symmetry, f ′ : {α, γ}∗{β}∗ −→ {β}∗{α, γ}∗, see Fig. 5(d), we will
have that Lmult⊥Lresp. Any language is symmetric with itself, because the pair
(Id , Id) is trivially a symmetry. However the mirror language enjoys nontrivial
selfsymmetry with the first pair (f, Id).

Symmetries seem to establish a close correspondence between context free lan-
guages and some non-context free languages. Regarding the question of the suit-
ability of analysis, the fact is that in our model we do not have equal syntagmata,
but isomorphic or symmetric syntagmata. Let us now see this effect in natural
languages:

Example 6. Following the Figs. 6(a) and (b), we consider the symmetry from
English to Dutch: f : {Sb}∗ · {Ob}∗ −→ {Ob}∗ · {Sb}∗. Let g be the vocabu-
lary mapping defined as: g : ΣEnglish −→ ΣDutch, g(says) = zegt, g(saw) =
zag, g(help) = helpen, This suggests that subordinated clauses in English
and Dutch are symmetric.

Example 7. Finally let us show a slightly more complex situation where we need
elliptic syntagmata. Consider the ordinary coordination and the respectively
construction:

(11) a. The young boy is English, the fat man German, and the blond woman
Dutch.

b. The young boy, the fat man and the blond woman are respectively
English, German and Dutch.

Algebraic Governance and Symmetry in Dependency Grammars 75

Fig. 6. (a) and (b) symmetry between subordinated clauses of English and Dutch.
(c) and (d) symmetry between the ordinary coordinated construction and the respec-
tively construction in English.

Fig. 7. Factorization of a non-projective linearization as a symmetry and a projective
linearization.

See the dashed lines linking Figs. 6(c) and (d). Now the symmetry follows
by commutation of the coordination function Co to the subject and object:
f : {Dt ,Ad}∗ · {Sb,Ob}∗ · {Co}∗ −→ {Dt ,Ad}∗ · {Co}∗ · {Sb,Ob}∗, while the
vocabulary does not change anything except g(is) = are.

8 Conclusions

Initially in Sect. 1 we commented that there are some situations that seem not to
accept projective structures. In such a circumstance we have two options: either
we change the governance structure or we loosen the sense of projectivity. It is
usually thought that changing the governance structure is more difficult than
trying other projections. However patterns and symmetries allow us to explore
the former solution.

Notwithstanding, there is another interpretation of the above results. If we
want to insist on the usual analyses of dependencies, then we will have to linearize

76 C. Cardó

non-projectively some trees, say ΠNo-Pr. However then the symmetries tell us
that the relationship ΠNo-Pr in some (!) cases can be factorized as ΠNo-Pr =
ΠPr ◦ ρ̃, where ΠPr is a projective linearization, as in Fig. 7. That is:

Non-projectivity = Symmetry + Projectivity.

Acknowledgements. Thanks to Formal Grammar reviewing for many suggestions
to improve this paper, and to Glyn Morill and Oriol Valent́ın for encouragement, advice
and support. All errors are my own.

References

1. Bresnan, J., Kaplan, R.M., Peters, S., Zaenen, A.: Cross-serial dependencies in
Dutch. In: Savitch, W.J., Bach, E., Marsh, W., Safran-Naveh, G. (eds.) The Formal
Complexity of Natural Language, pp. 286–319. Springer, Netherlands (1987)

2. Debusmann, R.: An introduction to dependency grammar. Hausarbeit fur das
Hauptseminar Dependenzgrammatik SoSe, pp. 1–16 (2000)

3. Debusmann, R., Duchier, D., Kruijff, G.J.M : Extensible dependency grammar:
a new methodology. In: Proceedings of the COLING 2004 Workshop on Recent
Advances in Dependency Grammar, pp. 70–76 (2004)

4. Debusmann, R., Kuhlmann, M.: Dependency grammar: classification and explo-
ration. In: Crocker, M.W., Siekmann, J. (eds.) Resource-Adaptive Cognitive
Processes, pp. 365–388. Springer, Heidelberg (2010)

5. Duchier, D., Debusmann, R.: Topological dependency trees: a constraint-based
account of linear precedence. In: Proceedings of the 39th Annual Meeting on Asso-
ciation for Computational Linguistics, Association for Computational Linguistics,
pp. 180–187 (2001)

6. Kuhlmann, M.: Mildly non-projective dependency grammar. Comput. Linguist.
39(2), 355–387 (2013)

7. Shieber, S.M.: Evidence against the context-freeness of natural language. In: Kulas,
J., Fetzer, J.H., Rankin, T.L. (eds.) Philosophy, Language, and Artificial Intelli-
gence. tudies in Cognitive Systems, vol. 2, pp. 79–89. Springer, Heidelberg (1987)

On the Mild Context-Sensitivity of k-Tree
Wrapping Grammar

Laura Kallmeyer(B)

Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
kallmeyer@phil.hhu.de

Abstract. Tree Wrapping Grammar (TWG) has been proposed in the
context of formalizing the syntactic inventory of Role and Reference
Grammar (RRG). It is close to Tree Adjoining Grammar (TAG) while
capturing predicate-argument dependencies in a more appropriate way
and being able to deal with discontinuous constituents in a more general
way. This paper is concerned with the formal properties of TWG. More
particularly, it considers k-TWG, a constrained form of TWG. We show
that for every k-TWG, a simple Context-Free Tree Grammar (CFTG) of
rank k can be constructed, which is in turn equivalent to a well-nested
Linear Context-Free Rewriting System (LCFRS) of fan-out k + 1. This
shows that, when formalizing a grammar theory such as RRG, which is
based on thorough and broad empirical research, we obtain a grammar
formalism that is mildly context-sensitive.

Keywords: Tree rewriting grammars · Role and Reference Grammar ·
Simple context-free tree grammar · Mild context-sensitivity

1 Introduction

Tree Wrapping Grammar (TWG) [6] has been introduced in the context of for-
malizing the syntactic inventory of Role and Reference Grammar (RRG) [14,15].
A TWG consists of elementary trees, very much in the spirit of Tree Adjoining
Grammar (TAG) [5], and from these elementary trees, larger trees are obtained
by the operations of (wrapping) substitution and sister adjunction. (Wrapping)
substitutions are supposed to add syntactic arguments while sister adjunction
is used to add modifiers and functional operators. A discontinuous argument
can be split via the wrapping substitution operation: the argument tree has a
specific split node v. When adding such an argument to a predicate tree, the
lower part (rooted in v) fills an argument slot via substitution while the upper
ends up above the root of the target predicate tree.

[6] adopts the rather flat syntactic structure from RRG with categories
CORE, CLAUSE and SENTENCE. A sample RRG-inspired TWG derivation
is shown in Fig. 1. This example involves substitutions of the arguments John
and Mary into the hates tree and of Bill into claims, sister adjunction of defi-
nitely into hates (sister adjunction simply adds a new daughter to a node where
c© Springer-Verlag Berlin Heidelberg 2016
A. Foret et al. (Eds.): FG 2015/2016, LNCS 9804, pp. 77–93, 2016.
DOI: 10.1007/978-3-662-53042-9 5

78 L. Kallmeyer

the root of the adjoining tree has to match the target node), and wrapping
substitution of the hates tree around the claims tree.

It was shown in [6] that, in contrast to TAG, the TWG operations enable us to
add even sentential arguments with long-distance extractions by a substitution
operation. In this, TWG is close to other formalisms in the context of TAG-
related grammar research that have been proposed in order to obtain derivation
structures that reflect dependencies in a more appropriate way than it is done
by TAG [1,10,11].

SENTENCE

CLAUSE

PrCS
CORE

CORE

NP NP NUC

CORE PRED

NP NP ADV V

John Mary definitely hates

CORE

NP NUC CORE

PRED

NP V

Bill claims

derived tree:
SENTENCE

CLAUSE

PrCS CORE

NP NP NUC CORE

John Bill PRED NP ADV NUC

V Mary definitely PRED

claims V

hates

Fig. 1. RRG-style TWG derivation for John Bill claims Mary definitely hates

The focus of this paper is on the formal properties of TWG. After an intro-
duction to TWG and in particular to k-TWG, a restricted form of TWG, we
show how to construct an equivalent simple context-free tree grammar (CFTG)
for a given k-TWG.

2 Tree Wrapping Grammar

The following introduction to TWG is largely taken from [6], except for the
declarative definition of the notion of k-TWG, based on properties of the deriva-
tion trees decorated with wrapping substitution markings.

On the Mild Context-Sensitivity of k-Tree Wrapping Grammar 79

Borrowing from the TAG terminology, trees that can be added by substi-
tution are called initial trees. In addition, we need adjunct trees for model-
ing modifiers and functional elements in RRG. These trees are added by sis-
ter adjunction. We distinguish left-adjoining, right-adjoining and unrestricted
adjunct trees, resp. called l-adjunct, r-adjunct and d-adjunct trees. (The latter
can add a daughter at any position.)

Definition 1 (Tree Wrapping Grammar). A Tree Wrapping Grammar
(TWG) is a tuple G = 〈N,T, I, AD, AL, AR, C〉 where

(a) N,T are disjoint alphabets of non-terminal and terminal symbols.
(b) I,AD, AL and AR are disjoint finite sets of ordered labeled trees such that

– each non-leaf in a tree is labeled by some element from N ∪ N2,
– there is at most one node with a label from N2,
– leaves have labels from N ∪ T , and
– the root of each tree in AD ∪ AL ∪ AR has exactly one daughter.

(c) C ⊆ N .

A non-terminal leaf is called a substitution node, and the labels from N2 are
called split categories.

Every tree in I is called an initial tree, every tree in AD ∪AL∪AR an adjunct
tree and every tree in I ∪ AD ∪ AL ∪ AR an elementary tree.

As we will see later, C is the set of non-terminals that can occur on a wrapping
spine (i.e., between root and substitution site of the target tree of a wrapping
substitution).

There are two TWG composition operations (see Fig. 2):

1. Standard/Wrapping substitution: a substitution node v in a tree γ gets
replaced with a subtree α′ of an initial tree α. If α′ �= α, then the root
node v′ of α′ must be labeled with a split category 〈X,Y 〉 such that the root
of γ is labeled X and v is labeled Y . α is then split at v′ and wraps around
γ, i.e., the upper part of α ends up above the root of γ while α′ fills the
substitution slot. In this case, we call the operation a wrapping substitution.
Otherwise (α = α′), we have a standard substitution and the root of α (i.e.,
v′) must have the same label as v.

2. Sister adjunction: an adjunct tree β with root category X is added to a node
v of γ with label X. The root rβ of β is identified with v and the (unique)
daughter of rβ is added as a new daughter to v. Furthermore, if β ∈ AL

(resp. β ∈ AR), then the new daughter must be a leftmost (resp. rightmost)
daughter.

A slightly different form of tree wrapping is proposed in [9] for RRG, leading
to a flatter structure. One can consider a split node as a very special dominance
edge (with specific constraints on how to fill it). In our definition, we would then
have for a split node with categories X,Y a dominance edge between a node
labeled X and a node labeled Y such that the X-node does not have any other

80 L. Kallmeyer

Wrapping
substitution:

γ X

Y

α

X

Y

X

Y

Sister
adjunction:

γ

X
β X

Y

X

Y

Fig. 2. Operations in TWG

daughters. In the flatter version of wrapping [9], the X-node can have other
daughters that end up being sisters of the target tree of the wrapping that fills
this dominance edge (see Fig. 3).

It is easy to see that this form of wrapping can be transformed into the one
used in this paper, simply by replacing the dominance edge with an immediate
dominance edge and splitting the lower node with top and bottom categories
X and Y respecitvely. As a result, we obtain trees that are slightly less flat
than the ones from [9] and that, if we keep track of which edges have been
added in this transformation, can be easily transformed back to the original
flatter form. Therefore, without losing anything concerning the desired linguistic
structures, for formal properties and parsing considerations we can work with
the tree wrapping definition presented here.

Every elementary tree in a TWG G is a derived tree wrt. G, and every
tree we can obtain with our composition operations from derived trees in G is
again a derived tree. Wrapping substitutions require that, in the target tree,
all categories on the path from the root to the substitution node (the wrapping
spine) are in C. A further constraint is that wrapping substitution can target
only initial trees, i.e., we cannot wrap a tree around an adjunct tree. Note that, in
contrast to [6], we do not impose a limit on the number of wrapping substitutions

γ X

Y

α

X

Y

X

Y

Fig. 3. Wrapping from [9]

On the Mild Context-Sensitivity of k-Tree Wrapping Grammar 81

Derivation of w = cbbc Derivation of w = bcbc

α X

X1 X2

β1
X

b
X

X1

b

β2
X

c
X

X2

c

α X

X1 X2

β2
X

c
X

X2

c

β1
X

b
X

X1

b

Fig. 4. Sample derivations: wrapping substitutions at sister nodes

γd X ← v1

c X ← v2

b X ← v3

X1 ← v4 X2 ← v5

b c

W (γd) =
v2, v5 , v3, v4

Fig. 5. Decorated derived tree arising from the first derivation in Fig. 4

stretching across a node in our definition of a TWG derived trees. This constraint
comes later with the definition of k-TWG.

So far, wrapping can occur several times at the same elementary tree. Or, to
put it differently, a node can be on several wrapping spines that are not nested.
See Fig. 4 for an example. In the two derivations, the root node of α is part of
the two wrapping spines. In other words, both wrappings stretch across the root
node of α. This has implications for the generative capacity and also for the
parsing complexity.

We now want to restrict the wrapping substitutions in a derivation concern-
ing the number of times a node can be part of a wrapping spine. To this end, we
first introduce some decoration for the derived trees in the TWG given a specific
derivation: Let γd be a tree derived in a TWG with a fixed derivation (there can
be several derivations per derived tree and, consequently, several decorations). We
define the wrapping decoration of γd as the following set of node pairs W (γd): In
every wrapping substitution step of the derivation in question with r and v being
the root node r and the substitution node v of the target of the wrapping substi-
tution, 〈r, v〉 ∈ W (γd). Nothing else is in W (γd). We call every v⊥ such that there
exists a v� with 〈v�, v⊥〉 ∈ W (γd) a ⊥ node in γd. We call a derived tree with such
a decoration a decorated derived tree. An example is given in Fig. 5.

Once we have that, we can identify for a node v in such a decorated derived
tree γ all wrapping substitution sites (⊥ nodes) where the wrapping substitution
stretches across v.

Definition 2 (Gap set, wrapping degree). Let γ = 〈V,E,≺, r, l〉 be a deco-
rated TWG derived tree with decoration W (γ), and let v ∈ V .

1. A set V⊥ ⊂ V of ⊥ nodes is a gap set with respect to v if

82 L. Kallmeyer

(a) for every pair 〈v�, v⊥〉 ∈ W (γ) with v⊥ ∈ V⊥, it holds that v� dominates
v and v strictly dominates v⊥, and

(b) for every pair 〈v�, v⊥〉 ∈ W (γ) with v⊥ ∈ V⊥, there is no pair 〈v′
�, v′

⊥〉 ∈
W (γ), 〈v′

�, v′
⊥〉 �= 〈v�, v⊥〉 with v� dominating v′

�, v′
� dominating v, v

strictly dominating v′
⊥, and v′

⊥ dominating v⊥.
2. We then define the wrapping degree of v as the cardinality of its gap set.
3. The wrapping degree of a decorated derived tree is the maximal wrapping

degree of its nodes, and the wrapping degree of a derived tree γd in the TWG
G is the minimal wrapping degree of any decorated derived tree with respect
to G that yields γd.

In the example in Fig. 5, we have for instance a gap set {v4, v5} for the node
v3. The wrapping degree of this derived tree is 2.

Now we can define the tree language for a TWG in general and in the case
where wrapping degrees are limited by a k ≥ 0:

Definition 3 (Language of a TWG). Let G be a TWG.

• A saturated derived tree is a derived tree without substitution nodes and with-
out split categories.

• The tree language of G is LT (G) = {γ | γ is a saturated derived initial tree in
G}.

• The string language of G is the set of yields of trees in LT (G).
• The k-tree language of G is Lk

T (G) = {γ | γ is a saturated derived initial tree
in G with a wrapping degree ≤ k}.

• The k-string language of G is the set of yields of trees in Lk
T (G).

Some TWGs are such that the maximal wrapping degree is limited, given the
form of the elementary trees. But this is not always the case. In the following,
we call a TWG a k-TWG if we impose k as a limit for the wrapping degree of
derived trees, i.e., for a k-TWG, we consider the k-tree language of the grammar
as its tree language.

As an example, Fig. 6 gives a TWG for the copy language. Here, all substi-
tution nodes must be filled by wrapping substitutions since there are no trees
with root label A, and the nodes with the split categories are always the middle
nodes. The grammar is such that only derived trees with a wrapping degree 1
are possible.

In order to facilitate the construction of an equivalent simple CFTG for a
given k-TWG, we show the following normal form lemma:

Lemma 1. For every k-TWG G = 〈N,T, I, AD, AL, AR, C〉, there is exists a
weakly equivalent k-TWG G′ = 〈N ′, T, I ′, ∅, ∅, ∅, C〉, i.e., a k-TWG without
adjunct trees.

The construction idea is again rather simple. For every daughter position, we
precompile the possibility to add something by sister adjunction in the following
way: We start with Itemp = I and I ′ = ∅ and we set Al = AL ∪ AD and
Ar = AR ∪ AD.

On the Mild Context-Sensitivity of k-Tree Wrapping Grammar 83

G = S, A}, {a, b}, I, ∅, ∅, {S, A with I =⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

S

a A

A a

S

b A

A b

S

a A

a

S

b A

b

S

a
S

A

A a

S

b
S

A

A b

S

a
S

A

a

S

b
S

A

b

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

Sample derivation of baabaa:

S

b
S

A

b

S

a
S

A

A a

S

a A

A a

Fig. 6. TWG for the copy language {ww |w ∈ {a, b}+}

1. For every adjunct tree β, we add a subscript l (r or d respectively) to the
root label of β if β is in Al (resp. in Ar or in AD). The resulting tree is added
to Itemp .

2. For every γ ∈ Itemp : For every node v in γ that is not the root of a former
adjunct tree: If v has i daughters, then we pick one combination i1, . . . , ik
(k ≥ 0) with 0 ≤ i1 < . . . < ik ≤ i of positions between daughters. We then
add new daughters to v at all these positions, labeled with the non-terminal
of v and a subscript l for position 0, r for position i and d otherwise. The
result is added to I ′. This is repeated until I ′ does not change any more, i.e.,
all possible combinations of daughter positions for the nodes in γ have been
taken into account.

3. For every γ ∈ I ′ that is a former adjunct tree: Add
• a tree γl to I ′ that consists of γ with an additional leftmost daughter of

the root having the same label as the root and a subscript l in case the
subscript of the root is l, d otherwise.

• a tree γr to I ′ that consists of γ with an additional rightmost daughter of
the root having the same label as the root and a subscript r in case the
subscript of the root is r, d otherwise.

• a tree γlr to I ′ that consists of γ with two additional daughters of the root,
one leftmost and one rightmost daughter such that these daughters have
the same label as the root and the following subscripts: the leftmost has a
subscript l in case the subscript of the root is l, d otherwise. The rightmost
has a subscript r in case the subscript of the root is r, d otherwise.

An example of this construction can be found in Fig. 7.
The equivalence of the original grammar and the constructed one is obvious.

The latter requires the same number of wrapping substitutions as the original
one and has the same string language for the same k. But it generates different
derived trees since in cases of multiple adjunctions between two nodes we obtain
a binary structure.

84 L. Kallmeyer

I:
S

d d
AL :

S

a
AD :

S

b
AR :

S

c

Equivalent TWG without adjunct trees:
S

d d

Sl

a

Sl/d/r

b

Sr

c

S

Sl d d

S

d Sd d

S

d d Sr

S

Sl d Sd d

S

Sl d d Sr

S

d Sd d Sr

S

Sl d Sd d Sr

Sl

Sl a

Sl

a Sd

Sl

Sl a Sd

Sl

Sl b

Sl

b Sd

Sl

Sl b Sd

Sd

Sd b

Sd

b Sd

Sd

Sd b Sd

Sr

Sd b

Sr

b Sr

Sr

Sd b Sr

Sr

Sd c

Sr

c Sr

Sr

Sd c Sr

Fig. 7. Sample elimination of adjunct trees

3 Relation to Context-Free Tree Gramamrs

We now show that for every k-TWG one can construct an equivalent simple
context-free tree grammar of rank k. This, in turn, is weakly equivalent to well-
nested (k + 1)-LCFRS (see [13,16] for the definition of LCFRS and [3,7] for
well-nested LCFRS).

Without loss of generality, we assume the k-TWG to be without adjunct
trees.

3.1 Context-Free Tree Grammars

The following introduction to context-free tree grammars is taken from [8].
A ranked alphabet is a union Δ =

⋃
r∈N

Δ(r) of disjoint sets of symbols. If
f ∈ Δ(r), r is the rank of f .

A tree over a ranked alphabet Δ is a labeled ordered tree where each node
with n daughters is labeled by some f ∈ Δ(n). We use the term representation
of trees. The set TΔ of trees over Δ is defined as follows: 1. If f ∈ Δ(0), then
f ∈ TΔ. 2. If f ∈ Δ(n) and t1, . . . , tn ∈ TΔ(n ≥ 1), then (ft1 . . . tn) ∈ TΔ.

If Σ is an (unranked) alphabet and Δ a ranked alphabet (Σ ∩ Δ = ∅), let
TΣ,Δ be the set of trees such that whenever a node is labeled by some f ∈ Δ,
then the number of its children is equal to the rank of f .

For a set X = {x1, . . . , xn} of variables, TΔ(X) denotes the set of trees
over Δ ∪ X where members of X all have rank 0. Such a tree t containing
the variables X is often written t[x1, . . . , xn]. If t[x1, . . . , xn] ∈ TΔ(X) and
t1, . . . , tn ∈ TΔ, then t[t1, . . . , tn] denotes the result of substituting t1, . . . , tn for

On the Mild Context-Sensitivity of k-Tree Wrapping Grammar 85

x1, . . . , xn, respectively, in t[x1, . . . , xn]. An element t[x1, . . . , xn] ∈ TΔ(X) is an
n-context over Δ if for each i = 1, . . . , n, xi occurs exactly once in t[x1, . . . , xn].

Definition 4 (Context-free tree grammar). A context-free tree grammar
(CFTG) [2,12] is a quadruple G = 〈N,Σ,P, S〉, where

1. N is a ranked alphabet of non-terminals,
2. Σ an unranked alphabet of terminals,
3. S ∈ N is of rank 0, and
4. P is a finite set of productions of the form

Ax1 . . . xn → t[x1, . . . , xn]

where A ∈ N (n) and t[x1, . . . , xn] ∈ TΣ,N ({x1, . . . , xn}).

The rank of G is max{r |N (r) �= ∅}.

For every s, s′ ∈ TΣ,N , s ⇒G s′ is defined to hold if and only if there is a
1-context c[x1] ∈ TΣ,N ({x1}), a production Bx1...xn → t[x1, ..., xn] in P , and
trees t1, ..., tn ∈ TΣ,N such that s = c[Bt1 . . . tn], s′ = c[t[t1, . . . , tn]].

The relation ⇒∗
G is defined as the reflexive transitive closure of⇒G. The tree

language L(G) generated by a CFTG G is defined as {t ∈ TΣ |S ⇒∗
G t}. The

string language is the set of yields of the trees in L(G).
A CFTG is said to be simple if all right-hand sides of productions in the

grammar are n-contexts, in other words, they contain exactly one occurrence of
each of their n variables.

3.2 k-TWG and Simple CFTG

In the following, we will show that for each k-TWG, an equivalent simple context-
free tree grammar of rank k can be constructed.

Let us explain the construction while going through the simple example in
Fig. 9. The CFTG non-terminals have the form [A,A1A2 . . . An] with n ≤ k,

CFTG for {w3 | w ∈ {a, b}+}:

N0 = {S}, N (3) = {X}, Σ = {a, b, A}, S the start symbol.
P contains the following productions:

S → Xaaa | Xbbb

Xx1x2x2 → X(Aax1)(Aa2)(Aax3) | X(Abx1)(Abx2)(Abx3) | Ax1x2x3

Sample derivation for the string abaabaaba:

S ⇒ Xaaa ⇒ X(Aba)(Aba)(Aba)

⇒ X(Aa(Aba))(Aa(Aba))(Aa(Aba))
⇒ A(Aa(Aba))(Aa(Aba))(Aa(Aba))

Fig. 8. Simple CFTG for the double copy language

86 L. Kallmeyer

TWG for {(bc)n | n ≥ 1} ∪ {c}:

γ1 AB

BB
ε

γ2
Aε

A

B
B
ε

bε Cε

γ2
AB

A

B
B
B

bε CB

γ3
CB

cε BB
ε

γ4
Cε

cε

Equivalent simple CFTG:
N (0) = {S, [A], [C]}, N (1) = {[A, B], [C, B]}, start symbol S, productions:

S → [A], S → [C]
γ1: [A, B]x1 → Ax1

γ2: [A] → A([A, B](Bb[C]))
γ2: [A, B]x1 → A([A, B](Bb([C, B]x1)))
γ3: [C, B]x1 → Ccx1

γ4: [C] → Cc

Fig. 9. Sample TWG and equivalent simple CFTG

A ∈ N and Ai ∈ N for 1 ≤ i ≤ n where the intuition is the A is the root category
of the tree this nonterminal expands to and A1A2 . . . An are the categories of
pending gaps from wrappings that stretch across this tree. In other words, in
the final decorated derived tree, they are the categories of the gap set nodes of
this root, in linear order. Note that, since we assume a k-TWG, there cannot be
more than k such categories. The gap trees that are to be inserted in the gap
nodes (which are substitution nodes) are the arguments of this non-terminal. In
other words, such a non-terminal tells us that we have to find an A-tree and
there are pending lower parts of split trees with categories A1, . . . , An, which
have to be inserted into that A-tree. For instance, the category [A,B] in our
example expands to A-trees that need a B-substitution node at some point
(maybe after some further substitution), in order to insert the B-gap tree to
which this category applies. The γ1-rule in the TWG for instance encodes that
one way to find such a tree is to create an A-node with a single daughter, where
this daughter is the pending B-tree.

The construction does not go directly from an elementary TWG tree to a
single production. Instead, it yields a single production for each possible deco-
ration of the TWG tree with category sequences corresponding to possible gap
set node labels in linear order that can arise within a derivation. An example
where we have more than one possibility for a single TWG tree is the tree γ2
in Fig. 9 where the γ2 and γ′

2 indicate the two cases. Accordingly, there are two
productions. One [A]-production where [A] is of rank 0. This is the case where
nothing else is wrapped around γ2 and, consequently, there is no pending gap
at its root node. The second production (the γ′

2 case) is the possibility to have
something wrapped around the γ2 tree. In this case, the gap category of the outer

On the Mild Context-Sensitivity of k-Tree Wrapping Grammar 87

tree is B, and this gap must be placed somewhere below the C node, hence the
non-terminal [C,B] with the pending gap as argument for this node.

In order to keep track of these sequences of gap labels, we first define possible
mappings f1, f2 for every elementary tree γ that assign to every node x in γ
either a single sequence f1(x) = f2(x) of non-terminals (= gap node labels) or,
if the node is a split node or a substitution node that is used for a wrapping
substitution, a pair of two possibly different such subsequences 〈f1(x), f2(x)〉.
Intuitively, a split node starts a new gap, which is then filled by the lower part
of the split node. Any gaps in the tree below the gap are accessible at the mother
node of the split node.

Figure 9 gives the assignments f1 and f2 for each node as a super- and a
subscript. In cases where f1 = f2, there is just one subscript, while for f1 �= f2
(split nodes and wrapping substitution nodes), we have both. For γ2, we have
two possible assignments. The mapping of γ1 tells us that this tree is used in a
wrapping configuration where a split tree with some lower category B is wrapped
around it. Furthermore, according to the B-node annotation, this leaf is filled
by the wrapping substitution (f2 = ε). The first assignment for γ2 tells us that
this tree is used without wrapping anything around it. At its split node, we
wrap it around something that has to contain a B-gap (f1 = B), which will be
filled by the lower part of the split tree, therefore at that point, no more gaps
are pending (f2 = ε). In contrast to this, the second γ2 is used in a wrapping
configuration where a split tree with some lower category B is wrapped around
it (f1 = f2 = B at the root). The B gap arising from the split node in the
middle is filled by the lower B node. However, the overall B gap is still pending,
therefore we have f2 = B at the split node. This pending gap is not inserted at
the substitution node (category C), instead, the information about the B-gap
is passed (f1 = f2 = B). It can be inserted in γ3. There the substitution node
has f1 = B (which means that we need a B-substitution node to be filled with
some pending B-tree) and f2 = ε (signifying that this is the substitution node
we were looking for, no more pending gaps below).

The definition of these assignments is such that we guess the pending gap cate-
gories for the leaves, we guesswhether a substitution node is used forwrapping, and
for split nodes, we guess the pending gap categories that arise out of the tree that
this node is wrapped around. The rest is calculated in a bottom-up way as follows:

– For a substitution node v with category A: either v is not used for a wrapping
substitution and we have f1(v) = f2(v) = A1 . . . Ai (0 ≤ i) or v is used for a
wrapping substitution and we have f1(v) = A and f2(v) = ε.

– f2(v0) = f1(v1) . . . f1(vj) for every node v0 with v1, . . . vj being all daughters
of v0 in linear precedence order such that none of the daughters is a split node.

– For every split node v0 with top label X and bottom label Y with v1, . . . vk

being all daughters of v0 in linear precedence order, n being the mother of v0
and vl

1, . . . , v
l
j and vr

j+1, . . . , v
r
n being the sisters of v0 to the left and right in

linear precedence order:

88 L. Kallmeyer

n

vl1 . . . vlj v0 vrj+1 . . . vrn

v1 . . . vk

f2(v0) = f1(v1) . . . f1(vk) and there are B1, . . . , Bj ∈ N such that
f1(v0) = B1 . . . BiY Bi+1 . . . Bj and
f2(n) = f1(vl

1) . . . f1(vl
j)B1 . . . Bif2(v0)Bi+1 . . . Bjf1(vr

j+1) . . . f1(vr
n).

We call the Y in this step the split category.
– For every node v that is neither a split node nor a non-terminal leaf, we have

f1(v) = f2(v).
– For every leaf v with a terminal label, we have f1(v) = f2(v) = ε.
– The length of the assigned sequences is limited to k.
– For every node v with a non-terminal label from N\C (C is the set of categories

allowed on wrapping spines), it holds that f1 = f2 = ε.

Instead of using the original TWG, we can also use the trees with annota-
tions f1, f2 in TWG derivations. For these derivations, let us make the following
assumptions: The conditions for wrapping are that the f1 value of the split node
must be the f1 value of the root of the target tree while the bottom category
of the split node must be the f1 of the target substitution node and the f2 of
this substitution node must be ε. The annotation of the root of the target tree
remains while the annotation of the substitution node is the f2 value of the
split node. Furthermore, annotations of substitution nodes that are not used for
wrapping have to be equal to the ones of the root of the tree that substitutes in.

An example of such a TWG derivation can be found in Fig. 10.
For these TWG derivations, the following lemma holds:

Lemma 2. With this annotated TWG we obtain exactly the set of derived trees
of the original TWG including for each node in a derived tree, obtained with a
specific derivation, a decoration with the labels of the nodes from its gap set in
linear precedence order.

This lemma holds since all possible combinations of pending gaps below sub-
stitution nodes and to the left and right of split nodes are considered in the
f1, f2 annotations. Furthermore, gaps are passed upwards. The only way to get
rid of a gap in the f1, f2 value of a root node is to wrap a tree filling this gap
around it.

Given the gap assignment definition, we can now specify the set of produc-
tions in our CFTG that we obtain for each elementary tree.

1. For every non-terminal category X in our TWG, we add a production

S → [X]

which is used for derived trees with root category X.

On the Mild Context-Sensitivity of k-Tree Wrapping Grammar 89

Sample derivations of w = bcbc:
TWG:

AB
B

BB
ε

AB
B

A

B
B
B

bε
ε CB

B

CB
B

cε
ε BB

ε

Aε
ε

A

B
B
ε

b Cε
ε

Cε
ε

cε
ε

Aε
ε

AB
B

AB
B

BB
B

bε
ε CB

B

cε
ε Bε

ε

bε
ε Cε

ε

cε
ε

Corresponding CFTG derivation:
S ⇒ [A] ⇒ A([A, B](Bb[C])) ⇒ A([A, B](Bb(Cc)))
⇒ A(A([A, B](Bb[C, B](Bb(Cc))))) ⇒ A(A(A(Bb[C, B](Bb(Cc)))))
⇒ A(A(A(Bb(Cc(Bb(Cc))))))

Fig. 10. Sample derivations in the grammars from Fig. 9

2. For every tree γ in the k-TWG with root r and root category A and for every
assignment f = 〈f1, f2〉 for γ as defined above, we have productions

[A, f1(r)]y1 . . . y|f1(r)| → τ(γ, f)

where τ(β, f) for any subtree β of a TWG tree with gap assignment f is
defined as follows:

– If β has only a single node v with non-terminal category B and f1(v) =
f2(v), then τ(β, f) = [B, f1(v)]x1 . . . x|f1(v)|.

1

– If β has only a single node v with non-terminal category B and f1(v) =
A ∈ N , f2 = ε, then τ(β, f) = x1.

– If the root v of β is not a split node, its root category is A, and if β1 . . . , βn

are the daughter trees of v, then
τ(β, f) = (Aτ(β1, f) . . . τ(βn, f)).

– If the root v of β is a split node with top category A and bottom category
B, and if β1 . . . , βn are the daughter trees of v, then
τ(β, f) = ([A, f1(v)]x1 . . . xi(Bτ(β1, f) . . . τ(βn, f))xi+1 . . . xj).
where f1(v) = A1 . . . AiBAi+1 . . . Aj and B is the split category from the
construction of f .

The variables y1, . . . , y|f1(r)| in the lefthand side of the production are exactly
the ones from the righthand side in linear precedence order.

3. These are all the productions in the CFTG.

1 We assume that fresh variables are used each time a new variable is needed.

90 L. Kallmeyer

An example of this construction can be found in Fig. 9, and a sample deriva-
tion in the TWG and the corresponding CFTG is given in Fig. 10. The TWG
derivation involves two wrappings of γ2 around γ1, the first (inner one) with
an additional substitution of γ3 into the C substitution node, the second, outer
one with a substitution of γ4 into this slot. The corresponding CFTG derivation
starts by expanding [A] to the tree corresponding to the outer wrapping of γ2,
with a non-terminal [C] for γ4. Inside the resulting tree, we have a non-terminal
[A,B] of rank 1 whose argument is the tree Bb(Cc)) which has to fill a B-gap.
This is then expanded to a γ2 tree that assumes that there is a B-gap below
its C-substitution node. This second use of γ2 creates again the request for an
A-tree with a B-gap (non-terminal [A,B]), which is now filled by γ1, and, below
its substitution node, it needs a C-tree with a B-substitution node (non-terminal
[C,B]) which can then be filled by the pending B-tree Bb(Cc)) from the outer
use of γ2. Such a tree is provided by γ3.

As a further example consider the TWG and corresponding CFTG in Fig. 11.

α X

X1 X2 X3

γa
1
A2

X

X1

a X1

γa
2
A3

A2

X2

a X2

γa
3
X

A3

X3

a X3

γa
4

A4

X

X1

a

γa
5

A5

A4

X2

a

γa
6

X

A5

X3

a
(same for b and B2, B3) (same for b and B4, B5)

Equivalent simple CFTG:
Start symbol S, productions:

S → [X]
γa
6 : [X] → X([A5, X3](X3a))

γa
5 : [A5, X3]x1 → A5([A4, X2X3](X2a)x1)

γa
4 : [A4, X2X3]x1x2 → A4([X, X1X2X3](X1a)x1x2)

γa
3 : [X, X1X2X3]x1x2x3 → X([A3, X1X2X3]x1x2(X3ax3))

γa
2 : [A3, X1X2X3]x1x2x3 → A3([A2, X1X2X3]x1(X2ax2)x3)

γa
1 : [A2, X1X2X3]x1x2x3 → A2([X, X1X2X3](X1ax1)x2x3)

(same with b and B2, B3, B4, B5)
α: [X, X1X2X3]x1x2x3 → Xx1x2x3

TWG for the double copy language {w3 | w ∈ {a, b}+}:

Fig. 11. Sample 3-TWG and equivalent simple CFTG

The crucial part of the construction is actually the definition of the f1, f2
gap category annotations. Once we have this, the following holds:

Lemma 3. There is a derived tree γ in the TWG with pending gap category
sequence annotations f = 〈f1, f2〉 (written 〈γ, f〉) as described above iff there is
a corresponding derivation in the CFTG.

On the Mild Context-Sensitivity of k-Tree Wrapping Grammar 91

Here, “corresponding derivation” means the following: if γ has gap sequence
annotations f1, f2 and a root node v with node label A, then the correponding
derivation is of the form [A, f1(v)]y1 . . . y|f1(v)| ⇒∗

G τ(γ, f) where τ(γ, f) is as
defined above in the construction for the case of elementary trees.

We can show this by an induction over the derivation structure, proving that

• The claim holds for elementary trees. This follows immediately from the con-
struction.

• We assume that the claim holds for 〈γ, f〉 and 〈α, fα〉 with corresponding
CFTG derivations [Aγ , gapsγ]xγ ⇒∗

G τ(γ, f) and [Aα, gapsα]xα ⇒∗
G τ(α, fα).

Then:
〈γ′, f ′〉 can be derived from 〈γ, f〉 in the TWG via substitution of 〈α, fα〉 into
one of the non-termial leaves
⇔ this non-terminal leaf in 〈γ′, f ′〉 has category Aα and gap sequence gapsα

⇔ there is a corresponding non-terminal [Aα, gapsα] in τ(γ, f) that can be
expanded using the derivation [Aα, gapsα]x ⇒∗

G τ(α, fα) (induction assump-
tion)
⇔ [Aγ , gapsγ]x ⇒∗

G τ(γ′, f ′) where, in this derivation, we have one part
[Aγ , gapsγ]xγ ⇒∗

G τ(γ, f) and a second part consisting of an application of
[Aα, gapsα]xα ⇒∗

G τ(α, fα).
• We assume that the claim holds for 〈γ, f〉 and 〈β, fβ〉 with corresponding

CFTG derivations [Aγ , gapsγ]xγ ⇒∗
G τ(γ, f) and [Aβ , gapsβ]xβ ⇒∗

G τ(β, fβ).
Then:
〈γ′, f ′〉 is derived from 〈γ, fγ〉 in the TWG by wrapping 〈β, fβ〉 around 〈γ, fγ〉
⇔ there is a split node in τ(β, fβ) with category 〈Aγ , Y 〉 and with an f1 value
gapsγ and there is a non-terminal leaf in 〈γ, fγ〉 with category Y and with
f1 = Y and f2 = ε
⇔ there is a non-terminal [Aγ , gapsγ] corresponding to the split node in
τ(β, fβ) that can be expanded by the derivation [Aγ , gapsγ]xγ ⇒∗

G τ(γ, f)
⇔ there is a derivation [Aβ , gapsβ]xβ ⇒∗

G τ(γ′, f ′) in the CFTG consisting
of [Aβ , gapsβ]xβ ⇒∗

G τ(β, fβ) and then an application of [Aγ , gapsγ]xγ ⇒∗
G

τ(γ, f).

With this lemma, we obtain the following theorem:

Theorem 1. For every k-TWG there is an equivalent simple CFTG of rank k.

As a consequence, we obtain that the languages of k-TWGs are in the class of
well-nested linear context-free rewriting languages2 and therefore mildly context-
sensitive [16]. This term, introduced by [4], characterizes formalisms beyond CFG
that can describe cross-serial dependencies, that are polynomially parsable and
that generate languages of constant growth. Joshi’s conjecture is that mildly
2 Note that the fact that we can construct an equivalent well-nested LCFRS for a
k-TWG does not mean that k-TWG (for some fixed k) cannot deal with ill-nested
dependencies. The structures described by the LCFRS do not correspond to the
dependency structures obtained from TWG derivations. The latter are determined
only by the fillings of substitution slots.

92 L. Kallmeyer

context-sensitive grammar formalisms describe the appropriate grammar class
for dealing with natural languages.

4 Conclusion

We have shown that k-TWG is a mildly context-sensitive grammar formalism,
more particular, it falls into the class of simple context-free tree languages of
rank k/well-nested (k+1)-LCFRS. This is an interesting result, considering that
TWG arose out of an attempt to formalize the syntactic inventory of RRG, a
grammar theory that emerged from broad empirical linguistic studies. Therefore
the formal results in this paper support in a convincing way Joshi’s conjecture
about the mild context-sensitivity of natural languages.

References

1. Chiang, D., Scheffler, T.: Flexible composition and delayed tree-locality. In:
TAG+9 Proceedings of the Ninth International Workshop on Tree-Adjoining
Grammar and Related Formalisms (TAG+9), Tübingen, pp. 17–24, June 2008

2. Engelfriet, J., Schmidt, E.M.: IO and OI. J. Comput. Syst. Sci. 15(3), 328–353
(1977)

3. Gómez-Rodŕıguez, C., Kuhlmann, M., Satta, G.: Efficient parsing of well-nested
linear context-free rewriting systems. In: Human Language Technologies: The 2010
Annual Conference of the North American Chapter of the Association for Com-
putational Linguistics, Los Angeles, California, June 2010, pp. 276–284. Associ-
ation for Computational Linguistics (2010). http://www.aclweb.org/anthology/
N10-1035

4. Joshi, A.K.: Tree adjoining grammars: how much context-sensitivity is required to
provide reasonable structural descriptions? In: Dowty, D., Karttunen, L., Zwicky,
A. (eds.) Natural Language Parsing, pp. 206–250. Cambridge University Press,
New York (1985)

5. Joshi, A.K., Schabes, Y.: Tree-adjoning grammars. In: Rozenberg, G., Salomaa, A.
(eds.) Handbook of Formal Languages, pp. 69–123. Springer, heidelberg (1997)

6. Kallmeyer, L., Osswald, R., Van Valin Jr., R.D.: Tree wrapping for Role and Ref-
erence Grammar. In: Morrill, G., Nederhof, M.-J. (eds.) Formal Grammar 2012
and 2013. LNCS, vol. 8036, pp. 175–190. Springer, Heidelberg (2013)

7. Kanazawa, M.: The pumping lemma for well-nested multiple context-free lan-
guages. In: Diekert, V., Nowotka, D. (eds.) DLT 2009. LNCS, vol. 5583, pp. 312–
325. Springer, Heidelberg (2009)

8. Kanazawa, M.: Multidimensional trees and a Chomsky-Schützenberger-Weir repre-
sentation theorem for simple context-free tree grammars. J. Logic Comput. (2014).
doi:10.1093/logcom/exu043

9. Osswald, R., Kallmeyer, L.: Towards a formalization of Role and Reference Gram-
mar. In: Proceedings of the 2013 Conference on Role and Reference Grammar (to
appear)

10. Rambow, O., Vijay-Shanker, K., Weir, D.: D-Tree grammars. In: Proceedings of
ACL (1995)

11. Rambow, O., Vijay-Shanker, K., Weir, D.: D-Tree substitution grammars. In: Com-
putational Linguistics (2001)

http://www.aclweb.org/anthology/N10-1035
http://www.aclweb.org/anthology/N10-1035
http://dx.doi.org/10.1093/logcom/exu043

On the Mild Context-Sensitivity of k-Tree Wrapping Grammar 93

12. Rounds, W.C.: Mappings and grammars on trees. Math. Syst. Theor. 4(3), 257–287
(1970)

13. Seki, H., Matsumura, T., Fujii, M., Kasami, T.: On multiple context-free grammars.
Theor. Comput. Sci. 88(2), 191–229 (1991)

14. Van Valin Jr., R.D.: Exploring the Syntax-Semantics Interface. Cambridge Uni-
versity Press, Cambridge (2005)

15. Van Valin Jr., R.D., Foley, W.A.: Role and reference grammar. In: Moravcsik, E.A.,
Wirth, J.R. (eds.) Current Approaches to Syntax, Syntax and Semantics, vol. 13,
pp. 329–352. Academic Press, New York (1980)

16. Vijay-Shanker, K., Weir, D.J., Joshi, A.K.: Characterizing structural descriptions
produced by various grammatical formalisms. In: Proceedings of ACL, Stanford
(1987)

Distributional Learning
and Context/Substructure Enumerability

in Nonlinear Tree Grammars

Makoto Kanazawa1(B) and Ryo Yoshinaka2,3P

1 Principles of Informatics Research Division, National Institute of Informatics
and SOKENDAI, Tokyo, Japan

kanazawa@nii.ac.jp
2 Graduate School of Informatics, Kyoto University, Kyoto, Japan

3 Graduate School of Information Sciences, Tohoku University, Sendai, Japan

Abstract. We study tree-generating almost linear second-order ACGs
that admit bounded nonlinearity either on the context side or on the
substructure side, and give distributional learning algorithms for them.

1 Introduction

Originally developed for efficient learning of context-free languages [3,13], the
method of distributional learning under the paradigm of identification in the
limit from positive data and membership queries has been successfully applied to
a number of more complex grammatical formalisms that derive objects (strings,
trees, λ-terms, etc.) through local sets of derivation trees [9,12,14]. In these
formalisms, a subtree s of a complete derivation tree t = c[s] contributes a
certain “substructure” S = φ(s) which is contained in the whole derived object
T = φ(t), and the remaining part c[] of the derivation tree contributes a function
C = φ(c[]) that maps S to T = C(S). We can think of C as a “context” that
surrounds S in T . Fixing a class G of grammars fixes the set S of possible
substructures and the set C of possible contexts that may be contributed by
parts of possible derivation trees. Each language L generated by a grammar in
G acts as an arbiter that decides which context C ∈ C should “accept” which
substructure S ∈ S (i.e., whether C(S) ∈ L).

Distributional learning algorithms come in two broad varieties. In the primal
approach, the learner first extracts all substructures and all contexts that are
contained in the input data, which is a finite set of elements of the target language
L∗. The learner then collects all subsets of the extracted substructures whose
cardinality does not exceed a certain fixed bound m. These subsets are used as
nonterminal symbols of the hypothesized grammar. Out of all possible grammar
rules that can be written using these nonterminals, the learner lists those that
use operations that may be involved in the generation of the objects in the
input data. In the final step of the algorithm, the learner tries to validate each
of these rules with the membership oracle, which answers a query “C(S) ∈ L∗?”
in constant time. If a rule has a set S of substructures on the left-hand side and
c© Springer-Verlag Berlin Heidelberg 2016
A. Foret et al. (Eds.): FG 2015/2016, LNCS 9804, pp. 94–111, 2016.
DOI: 10.1007/978-3-662-53042-9 6

Distributional Learning and Context/Substructure Enumerability 95

sets S1, . . . ,Sr on the right-hand side, and the grammatical operation associated
with the rule is f , then the learner determines whether the following implication
holds for all contexts C extracted from the input data:

C(S) ∈ L∗ for all S ∈ S implies
C(f(S1, . . . , Sn)) ∈ L∗ for all S1 ∈ S1, . . . , Sn ∈ Sn. (1)

The grammar conjectured by the learner includes only those rules that pass this
test.

The idea of the rule validation is the following: It is dictated that the elements
of the nonterminal S together characterize the set of all substructures that can
be derived from S by the hypothesized grammar in the sense that every context
C ∈ C that accepts all elements of S must accept all substructures derived from
S. Thus, only those rules that are consistent with this requirement are allowed
in the hypothesized grammar. A remarkable property of the algorithm is that it
successfully learns the language of every grammar in the given class G that has
the m-finite kernel property in the sense that each nonterminal is characterized
by a set of substructures of cardinality up to m.

In the dual approach to distributional learning, the role of contexts and sub-
structures is switched. The learner uses as nonterminals subsets of the contexts
extracted from the input data with cardinality ≤ m, and uses the extracted
substructures to validate candidate rules. The algorithm learns those languages
that have a grammar with the m-finite context property in the sense that each
nonterminal is characterized by a set of contexts of cardinality ≤ m.

Whether each of these algorithms runs in polynomial time in the size of the
input data D depends on several factors that are all determined by the grammar
class G. The foremost among them is the enumeration of the two sets

S|D = {S ∈ S | C(S) ∈ D for some C ∈ C },

C|D = {C ∈ C | C(S) ∈ D for some S ∈ S }.

There are two possible difficulties in enumerating each of these sets in polynomial
time. First, the sheer number of elements of the set may be super-polynomial,
in which case explicit enumeration of the set is not possible in polynomial time.
Second, recognizing which substructure/context belongs to the set may be com-
putationally costly. The second problem, even when it arises, can often be dealt
with by replacing the set in question by a more easily recognizable superset
without disrupting the working of the algorithm. The first problem is the more
pressing one.

With all linear grammar formalisms to which distributional learning has
been applied, neither of these two difficulties arise. When these formalisms are
extended to allow nonlinearity in grammatical operations, however, the problem
of super-polynomial cardinality hits hard. Thus, with parallel multiple context-
free grammars, the nonlinear extension of multiple context-free grammars (suc-
cessfully dealt with in [12]), the set C becomes a much larger set, even though S

stays exactly the same. As a result, the cardinality of C|D is no longer bounded
by a polynomial. The situation with IO context-free grammars, the nonlinear

96 M. Kanazawa and R. Yoshinaka

extension of the simple context-free tree grammars (treated in [9]), is even worse.
Both of the sets S|D and C|D become super-polynomial in cardinality.

When only one of the two sets S|D and C|D is of super-polynomial cardinality,
as is the case with PMCFGs, however, there is a way out of this plight [4]. The
solution is to restrict the offending set by a certain property, parametrized by
a natural number, so that its cardinality will be polynomial. The parametrized
restriction leads to an increasing chain of subsets inside S or C. In the case of
PMCFGs, we get C1 ⊂ C2 ⊂ C3 ⊂ · · · ⊂ C =

⋃
k Ck, where Ck is the set of

all possible contexts that satisfy the property with respect to the parameter k.
The actual property used by [4] was a measure of nonlinearity of the context
(“k-copying”), but this specific choice is not crucial for the correct working of
the algorithm, as long as Ck|D can be enumerated in polynomial time. The
learning algorithm now has two parameters, m and k: the former is a bound on
the cardinality of sets of contexts the learner uses as nonterminals as before, and
the latter is a restriction on the kind of context allowed in these sets. The class
of languages successfully learned by the algorithm includes the languages of all
grammars in the target class that have the (k,m)-finite context-property in the
sense that each nonterminal is characterized by a subset of Ck of cardinality ≤ m.

This algorithm does not learn the class of all grammars with the m-finite con-
text property, but a proper subset of it. Nevertheless, the parametrized restric-
tion has a certain sense of naturalness, and the resulting learnable class properly
extends the corresponding linear class, so the weaker result is interesting in its
own right.

In this paper, we explore the connection between distributional learning
and context/substructure enumerability in the general setting of almost linear
second-order abstract categorial grammars generating trees [5–7] (“almost lin-
ear ACGs” for short). This class of grammars properly extends IO context-free
tree grammars and is equivalent in tree generating power to tree-valued attribute
grammars [1]. In fact, the expressive power of typed lambda calculus makes it
possible to faithfully encode most known tree grammars within almost linear
ACGs.

Like IO context-free tree grammars and unlike PMCFGs, almost linear ACGs
in general do not allow polynomial-time enumerability either on the context side
or on the substructure side. Only very special grammars do, and an interesting
subclass of them consists of those grammars that allow only a bounded degree
of nonlinearity in the contexts (or in the substructures). It is easily decidable
whether a given ACG satisfies each of these properties. We show that both of
the resulting classes of grammars indeed allow a kind of efficient distributional
learning similar to that for PMCFGs.

2 Typed Lambda Terms and Almost Linear ACGs

2.1 Types and Typed Lambda Terms

We assume familiarity with the notion of a simply typed λ-term (à la Church)
over a higher-order signature Σ = (AΣ , CΣ , τΣ), where AΣ is the set of atomic

Distributional Learning and Context/Substructure Enumerability 97

types, CΣ is the set of constants, and τΣ is a function from CΣ to types over AΣ .
We use standard abbreviations: α1→· · ·→αn→p means α1→(· · ·→(αn→p) . . .),
and λxα1

1 . . . xαn
n .MN1 . . . Nm is short for λxα1

1λxαn
n .((. . . (MN1) . . .)Nm).

The arity of α = α1 → · · · → αn → p with p ∈ AΣ is arity(α) = n. We write
βn → p for the type β → · · · → β → p of arity n.

We take for granted such notions as β- and η-reduction, β-normal form,
and linear λ-terms. We write �β and �η for the relations of β- and η-reduction
between λ-terms. Every typed λ-term has a β-normal form, unique up to renam-
ing of bound variables, which we write as |M |β .

The set LNFα
X(Σ) of λ-terms of type α in η-long β-normal form (with free

variables from X) is defined inductively as follows:

– If xα1→···→αn→p ∈ X, M1 ∈ LNFα1
X (Σ), . . . , Mn ∈ LNFαn

X (Σ), and p ∈ AΣ ,
then xα1→···→αn→pM1 . . . Mn ∈ LNFp

X(Σ).
– If c ∈ CΣ , τΣ(c) = α1→· · ·→αn→p, p ∈ AΣ , and M1 ∈ LNFα1

X (Σ), . . . , Mn ∈
LNFαn

X (Σ), then cM1 . . . Mn ∈ LNFp
X(Σ).

– If M ∈ LNFβ
X∪{xα}(Σ), then λxα.M ∈ LNFα→β

X (Σ).

We often suppress the superscript and/or subscript in LNFα
X(Σ). Note that

LNFα
∅

(Σ) denotes the set of closed λ-terms of type α in η-long β-normal form.
We note that if M ∈ LNFα→β(Σ) and N ∈ LNFα(Σ), then |MN |β ∈ LNFα(Σ).

Henceforth, we often suppress the type superscript on variables. This is just
for brevity; each variable in a typed λ-term comes with a fixed type.

We use strings over {0, 1} to refer to positions inside a λ-term or a type. We
write ε for the empty string, and write u ≤ v to mean u is a prefix of v. When
u = u′0i, we refer to u′ as u0−i.

The shape of a type α, written [α], is defined by

[p] = {ε} if p is atomic, [α → β] = {ε} ∪ { 1u | u ∈ [α] } ∪ { 0u | u ∈ [β] }.

The elements of [α] are the positions of α. A position u is positive if its parity
(i.e., the number of 1s in u modulo 2) is 0, and negative if its parity is 1. We write
[α]+ and [α]− for the set of positive and negative positions of α, respectively.
A position u of α is a subpremise if u = u′1 for some u′. Such an occurrence is
a positive (resp. negative) subpremise if it is positive (resp. negative). We write
[α]+sp (resp. [α]−sp) for the set of positive (resp. negative) subpremises of [α].

If u ∈ [α], the subtype of α occurring at u, written α/u, is defined by

α/ε = α, (α → β)/0u = β/u, (α → β)/1u = α/u.

If α/u = β, we say that β occurs at position u in α.
Given a λ-term M , the shape of M , written [M], is defined by

[M] = {ε} if M is a variable or a constant,
[MN] = {ε} ∪ { 0u | u ∈ [M] } ∪ { 1u | u ∈ [N] },

[λx.M] = {ε} ∪ { 0u | u ∈ [M] }.

98 M. Kanazawa and R. Yoshinaka

The elements of [M] are the positions of M .
If u ∈ [M], the subterm of M occurring at u, written M/u, is defined by

M/ε = M, (MN)/0u = M/u, (MN)/1u = N/u, (λx.M)/0u = M/u.

When N = M/u, we sometimes call u an occurrence of N (in M).
When v ∈ [M] but v0 �∈ [M], M/v is a variable or a constant. For each

u ∈ [M], we refer to the unique occurrence of a variable or constant in [M]
of the form u0k as the head of u (in M); we also call the variable or constant
occurring at the head of u the head of M/u.

A position v ∈ [M] binds a position u ∈ [M] if M/u is a variable x and v is
the longest prefix of u such that M/v is a λ-abstract of the form λx.N . When v
binds u in M , we write v = bM (u). When every occurrence in M of a λ-abstract
is the binder of some position, M is called a λI-term.

Let M ∈ LNFα
∅

(Σ). Note that an occurrence v ∈ [M] of a variable or a
constant of type β with arity(β) = n is always accompanied by n arguments, so
that v0−i is defined for all i ≤ n. The set of replaceable occurrences [2] of bound
variables in M and the negative subpremise nspM (u) of α associated with such
an occurrence u, are defined as follows:1

(i) If bM (u) = 0j−1 for some j ≥ 1 (i.e., bM (u) is the jth of the leading λs of
M), then u is replaceable and nspM (u) = 0j−11.

(ii) If bM (u) = v0−i10j−1 for some replaceable v and i, j ≥ 1 (i.e., bM (u) is the
jth of the leading λs of the ith argument of v), then u is replaceable and
nspM (u) = nspM (v)0i−110j−11.

It is easy to see that the following conditions always hold:

– If u is a replaceable occurrence of a bound variable xβ , then β = α/nspM (u).
– If M is a λI-term (in addition to belonging to LNFα

∅
(Σ)), then for every

v ∈ [α]−sp, there exists a u ∈ [M] such that nspM (u) = v.

Example 1. Let

M = λyo
1y

o→(o→(o→o)→o)→o
2 .y2(fy1a)(λyo

3y
o→o
4 .f(y4(fy3y1))(y4(fy3y1))).

Then M ∈ LNFα
∅

(Δ), where Δ contains constants f, a of type o → o → o and o,
respectively, and

α =
1
o → (o → (

01011
o → (o → o︸ ︷︷ ︸

010101

) → o

︸ ︷︷ ︸
0101

) → o

︸ ︷︷ ︸
01

) → o.

1 A definition equivalent to nspM (u) for untyped λ-terms is in [2] (access path).
The correspondence between these paths and negative subpremises for typed linear
λ-terms is in [10].

Distributional Learning and Context/Substructure Enumerability 99

– The bound variable yo
1 occurs in M at three positions, 000101, 001000111,

00100111, whose binder is ε. These positions are associated with the negative
subpremise 1 in α.

– The bound variable y
o→(o→(o→o)→o)→o
2 occurs in M at one position, 0000,

whose binder is 0. This position is associated with the subpremise 01 in α.
– The bound variable yo

3 occurs in M at two positions, 0010001101 and
001001101, whose binder is 001. These positions are associated with the neg-
ative subpremise 0101.

– The bound variable yo→o
4 occurs in M at two positions, 00100010 and 0010010,

whose binder is 0010. These positions are associated with the negative sub-
premise 010101.

2.2 Almost Linear Lambda Terms over a Tree Signature

Now we are going to assume that Δ is a tree signature; i.e., every constant of
Δ is of type or → o for some r ≥ 0, where o is the only atomic type of Δ. For a
closed M ∈ LNFα

∅
(Δ), every occurrence of a bound variable in M is replaceable.

A tree is an element of LNFo
∅

(Δ). A closed λ-term M ∈ LNFor→o
∅

(Δ) is
called a tree context. We say that a tree context M = λx1 . . . xr.N matches a
tree T if there are trees T1, . . . , Tr such that (λx1 . . . xr.N)T1 . . . Tr �β T . We
say that M is contained in T if it matches a subtree of T .

The notion of an almost linear λ-term was introduced by Kanazawa [5,7].
Briefly, a closed typed λ-term is almost linear if every occurrence of a λ-abstract
λxα.N in it binds a unique occurrence of xα, unless α is atomic, in which case
it may bind more than one occurrence of xα. Almost linear λ-terms share many
of the properties of linear λ-terms; see [5–8] for details.

Almost linear λ-terms are typically not β-normal. For instance,
λyo→o.(λxo.fxx)(yc), where f and c are constants of type o → o → o and o,
respectively, is almost linear, but its β-normal form, λyo→o.f(yc)(yc), is not. In
this paper, we choose to deal with the η-long β-normal forms of almost linear
λ-terms directly, rather than through their almost linear β-expanded forms.

We write ALα(Δ) for the set of closed λ-terms in LNFα
∅

(Δ) that β-expand
to an almost linear λ-term. (The superscript is often omitted.) The following
lemma, which we do not prove here, may be taken as the definition of ALα(Δ)
(see [7,8] for relevant properties of almost linear λ-terms):

Lemma 1. Let M be a closed λI-term in LNFα
∅

(Δ). Then M ∈ ALα(Δ) if and
only if the following conditions hold for all bound variable occurrences u, v ∈ [M]
such that nspM (u) = nspM (v), where n = arity(α/nspM (u)):

(i) {w | u0−nw ∈ [M] } = {w | v0−nw ∈ [M] }.
(ii) If M/u0−nw is a constant, then M/u0−nw = M/v0−nw.
(iii) If M/u0−nw is a variable, then M/v0−nw is also a variable and

nspM (u0−nw) = nspM (v0−nw).

We call M ∈ ALα(Δ) a canonical writing if for all bound variable occurrences
u, v of M , nspM (u) = nspM (v) implies M/u = M/v and vice versa. For example,

100 M. Kanazawa and R. Yoshinaka

λy
(o→o)→o
1 y

(o→o)→o
2 .f(y1(λzo

1 .z1))(y1(λzo
1 .z1))(y2(λzo

2 .z2)) is a canonical writing,
whereas neither λy

(o→o)→o
1 y

(o→o)→o
2 .f(y1(λzo

1 .z1))(y1(λzo
2 .z2))(y2(λzo

3 .z3)) nor
λy

(o→o)→o
1 y

(o→o)→o
2 .f(y1(λzo

1 .z1))(y1(λzo
1 .z1))(y2(λzo

1 .z1)) is.

Lemma 2. For every M ∈ ALα(Δ), there exists a canonical writing M ′ ∈
ALα(Δ) such that M ′ ≡α M .

A pure λ-term is a λ-term that contains no constant. We write ALα for the
subset of ALα(Δ) consisting of pure λ-terms. An important property of ALα(Δ)
that we heavily rely on in what follows is that every M ∈ ALα(Δ) can be
expressed in a unique way as an application M◦M•

1 . . . M•
l of a pure λ-term M◦

to a list of tree contexts M•
1 , . . . ,M•

l . We call the former the container of M and
the latter its stored tree contexts. These λ-terms satisfy the following conditions:

1. l ≤ |[α]+sp| + 1,
2. M•

i ∈ ALori→o(Δ) for some ri ≤ |[α]−sp| for each i = 1, . . . , l,
3. M◦ ∈ AL(or1→o)→···→(orl→o)→α,
4. M◦M•

1 . . . M•
l �β M .

The formal definition of this separation of M ∈ ALα(Δ) into its container and
stored tree contexts is rather complex, but the intuitive idea is quite simple. The
stored tree contexts of M are the maximal tree contexts that can be discerned
in the input λ-term.
Example 2. Consider the λ-term M of type α = o→(o→(o→(o→o)→o)→o)→o
in Example 1. This λ-term belongs to ALα(Δ). Its container and stored tree
contexts are:

M◦ = λzo→o
1 zo→o

2 zo→o→o
3 yo

1y
o→(o→(o→o)→o)→o
2 .y2(z1y1)(λyo

3yo→o
4 .z2(y4(z3y3y1)),

M•
1 = λx1.fx1a, M•

2 = λx1.fx1x1, M•
3 = λx1x2.fx1x2.

Here is the formal definition. Let M ∈ ALα(Δ). We assume that M is canon-
ical. Then |[α]−sp| is exactly the number of distinct bound variables in M . Let
s1, . . . , sk list the elements of [α]−sp in lexicographic order. Let y1, . . . , yk be the
corresponding list of bound variables in M , and let ni = arity(α/si) for each
i = 1, . . . , k. Note that

k∑

i=1

ni ≤ |[α]+sp|.

The canonicity of M implies that every occurrence of yi in M is accompanied by
the exact same list of arguments Ni,1, . . . , Ni,ni

. The type of Ni,j is α/si0j−11.
Let x1, . . . , xk be fresh variables of type o. For each subterm N of M of type

o, define N� by

(cT1 . . . Tn)� = cT�
1 . . . T�

n , (yiNi,1 . . . Ni,ni
)� = xi.

Let M ′ be the maximal subterm of M of atomic type; in other words, M ′

is the result of stripping M of its leading λs. Likewise, let N ′
i,j be the maximal

subterm of Ni,j of atomic type. Let (M1, . . . ,Ml) be the sublist of

(M ′, N ′
1,1, . . . , N

′
1,n1

, . . . , N ′
k,1, . . . , N

′
k,nk

)

Distributional Learning and Context/Substructure Enumerability 101

consisting of the λ-terms whose head is a constant. (This list will contain dupli-
cates if there exist i1, j1, i2, j2 such that (i1, j1) �= (i2, j2), N ′

i1,j1
= N ′

i2,j2
, and

the head of this λ-term is a constant.) For each i = 1, . . . , l, let xmi,1 , . . . , xmi,ri

list the variables in M�
i , in the order of their first appearances in M�

i . Define

M•
i = λxmi,1 . . . xmi,ri

.M�
i ,

−→
M• = (M•

1 , . . . ,M•
l).

These are the stored tree contexts of M .
In order to define the container M◦, we first define N� by induction for each

subterm N of M that is either (i) some Mi, (ii) a λ-term of atomic type whose
head is a variable, or (iii) a λ-abstract. Let z1, . . . , zl be fresh variables of type
or1 → o, . . . , orl → o, respectively2.

M�
i = zi(ymi,1Nmi,1,1 . . . Nmi,1,nmi,1

)� . . . (ymi,ri
Nmi,ri

,1 . . . Nmi,ri
,nmi,ri

)�,

(yiNi,1 . . . Ni,ni
)� = yiN

�
i,1 . . . N�

i,ni
,

(λyi.N)� = λyi.N
�.

Finally, define
M◦ = λz1 . . . zl.M

�.

Lemma 3. M◦,
−→
M• satisfy the required conditions.

Lemma 4. Let N ∈ ALα1→···→αn→β(Δ),Mi ∈ ALαi(Δ) (i = 1, . . . , n), and
P = |NM1 . . . Mn|β ∈ ALβ(Δ). Suppose

−→
M•

i = ((Mi)
•
1, . . . , (Mi)

•
li
), (Mi)

•
j ∈ ALori,j →o(Δ),

−→
P • = (P •

1 , . . . , P •
m).

For i = 1, . . . , n and j = 1, . . . , li, let ci,j be a fresh constant of type ori,j → o.
Let Δ′ be the tree signature that extends Δ with the ci,j, and let

Q = |N((M1)
◦
c1,1 . . . c1,l1) . . . ((Mn)◦

cn,1 . . . cn,ln)|β .

We can compute the container and stored tree contexts of Q ∈ ALβ(Δ′) with
respect to Δ′. Then we have

P ◦ = Q◦, P •
i = |(Q•

i)[ci,j := (Mi)
•
j]|β ,

where [ci,j := (Mi)
•
j] denotes the substitution of (Mi)

•
j for each ci,j.

Definition 1. Let M ∈ ALα(Δ).

(i) The unlimited profile of M is prof∞(M) = (M◦, w1, . . . , wl), where l is the
length of

−→
M• = (M•

1 , . . . ,M•
l) and for each i, wi is the ri-tuple of positive

integers whose jth component is the number of occurrences of the jth bound
variable in M•

i .

2 When Mi = Mj for some distinct i, j, the definition of M�
i in fact depends on the

subscript i.

102 M. Kanazawa and R. Yoshinaka

(ii) For k ≥ 1, the k-threshold profile of M , written profk(M), is just like its
unlimited profile except that any number greater than k is replaced by ∞.

The type of the (unlimited or k-threshold) profile of M is α.

Example 3. The unlimited profile of the λ-term M from Example 1 is prof(M) =
(M◦, (1), (2), (1, 1)). Its 1-threshold profile is prof1(M) = (M◦, (1), (∞), (1, 1)),
and its k-threshold profile for k ≥ 2 is the same as its unlimited profile.

Lemma 5. For each k ≥ 1 and type α, there are only finitely many k-threshold
profiles of type α.

We say that a k-threshold profile (M◦, w1, . . . , wl) is k-bounded if wi ∈
{1, . . . , k}ri for i = 1, . . . , l. A λ-term M ∈ AL(Δ) that has a k-bounded profile
is called k-bounded. We write ALα

k (Δ) for the set of all k-bounded λ-terms in
ALα(Δ).

Note that M ∈ AL(Δ) is linear if and only if it is 1-bounded and has a linear
container.

Lemma 6. Let N ∈ ALα1→···→αn→β(Δ), and Mi,M
′
i ∈ ALαi(Δ) for each i =

1, . . . , n. Suppose that for each i = 1, . . . , n, profk(Mi) = profk(M ′
i). Then

profk(|NM1 . . . Mn|β) = profk(|NM ′
1 . . .M ′

n|β).

The above lemma justifies the notation Nπ1 . . . πn for profk(|NM1 . . . Mn|β)
with profk(Mi) = πi, when k is understood from context. When N =
λx1 . . . xn.Q, we may also write Q[x1 := π1, . . . , xn := πn] for Nπ1 . . . πn. In
this way, we can freely write profiles in expressions that look like λ-terms, like
λx.π1(Mxπ2).

Lemma 7. Given a λ-term N ∈ ALα1→···→αn→β(Δ) and k-threshold profiles
π1, . . . , πn of type α1, . . . , αn, respectively, the k-threshold profile Nπ1 . . . πn can
be computed in polynomial time.

In what follows, we often speak of “profiles” to mean k-threshold profiles,
letting the context determine the value of k.

2.3 Almost Linear Second-Order ACGs on Trees

A (tree-generating) almost linear second-order ACG G = (Σ,Δ,H,I) consists
of a second-order signature Σ (abstract vocabulary), a tree signature Δ (object
vocabulary), a set I ⊆ AΣ of distinguished types, and a higher-order homomor-
phism H that maps each atomic type p ∈ AΣ to a type H(p) over AΔ and each
constant c ∈ CΣ to its object realization H(c) ∈ ALH(τΔ(c))(Δ). It is required
that the image of I under H is {o}. That Σ is second-order means that for
every c ∈ CΣ , its type τΣ(c) is of the form p1 → · · · → pn → q; thus, any λ-term
in LNFp

∅
(Σ) for p ∈ AΣ has the form of a tree. A closed abstract term P ∈

LNFα
∅

(Σ) is homomorphically mapped by H to its object realization |H(P)|β ∈
ALH(α)(Δ). For p ∈ AΣ , we write S(G , p) for { |H(P)|β | P ∈ LNFp

∅
(Σ) } and

Distributional Learning and Context/Substructure Enumerability 103

C(G , p) for { |H(Q)|β | Q is a closed linear λ-term in LNFp→s
∅

(Σ) for some s ∈
I }. The elements of these sets are substructures and contexts of G , respectively.
The tree language generated by G is O(G) =

⋃
s∈I S(G , s).

An abstract constant c ∈ CΣ together with its type τ(c) and its object
realization H(c) corresponds to a rule in more traditional grammar formalisms.
An abstract atomic type p ∈ AΣ corresponds to a nonterminal. We say that G
is rule-k-bounded if H(c) is k-bounded for every abstract constant c ∈ CΣ .

Definition 2. Let G = (Σ,Δ,H,I) be a tree-generating almost linear second-
order ACG.

(i) We say that G is substructure-k-bounded if S(G , p) ⊆ ALH(p)
k (Δ) for all

atomic types p ∈ AΣ .
(ii) We say that G is context-k-bounded if C(G , p) ⊆ ALH(p)→o

k (Δ) for all atomic
types p ∈ AΣ .

The set of possible k-threshold profiles of elements of S(G , p) or C(G , p) can
easily be computed thanks to Lemmas 5 and 6, so substructure-k-boundedness
and context-k-boundedness are both decidable properties of almost linear
second-order ACGs. Conversely, one can design a substructure-k-bounded almost
linear ACG by first assigning to each p ∈ AΣ a possible profile set Πp consisting
of profiles of type H(p); then, as the realization H(c) of a constant c of type
p1 → · · · → pn → q, we admit only λ-terms in ALH(p1→···→pn→q)

k (Δ) that satisfy

H(c)Πp1 . . . Πpn
⊆ Πq, (2)

where MΠ1 . . . Πn = {Mπ1 . . . πn | πi ∈ Πi (i = 1, . . . , n) }. To construct a
context-k-bounded almost linear ACG, we need to assign a possible context
profile set Ξp in addition to Πp to each p ∈ AΣ . The realization H(c) must
satisfy

λx.Ξq(H(c)Πp1 . . . Πpi−1xΠpi+1 . . . Πpn
) ⊆ Ξpi

(3)

for all i = 1, . . . , n, in addition to (2). Note that (2) and (3) are “local” properties
of rules of ACGs. Instead of Definition 2, one may take this local constraint as
a definition of substrucure/context-k-bounded almost linear ACGs.

Example 4. Let G = (Σ,Δ,H,I), where AΣ = {p1, p2, s}, CΣ = {a, b, c1, c2, d1,
d2}, τΣ(a) = p1 → s, τΣ(b) = p2 → p1, τΣ(ci) = pi → pi, τΣ(di) = pi, AΔ = {o},
CΔ = {e, f}, τΔ(f) = o → o → o, τΔ(e) = o, I = {s}, H(pi) = (o → o) → o → o,
H(s) = o and

H(a) = λx(o→o)→o→o.x(λzo.z)e,

H(b) = λx(o→o)→o→oyo→ozo.x(λwo.y(fww))z,

H(ci) = λx(o→o)→o→oyo→ozo.x(λwo.yw)(fzz),
H(di) = λyo→ozo.y(fzz) .

104 M. Kanazawa and R. Yoshinaka

This grammar is rule-2-bounded and generates the set of perfect binary
trees of height ≥ 1. We have, for example, H(b(c2d2)) ∈ S(G , p1) and
H(λxp2 .a(c1(b(c2x)))) ∈ C(G , p2), and

|H(b(c2d2))|β = λyo→ozo.y(f(f(fzz)(fzz))(f(fzz)(fzz))),

|H(λxp2 .a(c1(b(c2x))))|β = λx(o→o)→o→o.x(λz.fzz)(f(fee)(fee)).

One can see

prof∞(S(G , p1)) = prof∞(S(G , p2)) = { (λz1
o→oyo→owo.y(z1w), (2n)) | n ≥ 1 } ,

and

prof∞(C(G , p1)) = {(λz1
ox(o→o)→o→o.x(λwo.w)z1, ())} ,

prof∞(C(G , p2)) = {(λz1
ox(o→o)→o→o.x(λwo.w)z1, ()),

(λz1
o→oz2

ox(o→o)→o→o.x(λwo.z1w)z2, (2), ())} .

The grammar is context-2-bounded, but not substructure-k-bounded for any k. If
a new constant a′ of type p1→s with H(a′) = λx(o→o)→o→o.x(λzo.fzz)e is added
to G , the grammar is not context-2-bounded any more, since |H(λxp2 .a′(bx))|β =
λx(o→o)→o→o.x(λzo.f(fzz)(fzz))e ∈ C(G , p2).

3 Extraction of Tree Contexts from Trees

We say that M ∈ ALα(Δ) is contained in a tree T if there is an N ∈ ALα→o(Δ)
such that NM �β T . The problem of extracting λ-terms in ALα(Δ) contained
in a given tree reduces to the problem of extracting tree contexts from trees.

Explicitly enumerating all tree contexts of type or → o is clearly intractable.
A perfect binary tree with n leaves (labeled by the same constant) contains more
than 2n tree contexts of type o → o.

It is easy to explicitly enumerate all tree contexts of type or → o that are
k-copying in the sense that each bound variable occurs at most k times. (Just
pick at most rk + 1 nodes to determine such a tree context.) Hence it is easy to
explicitly enumerate all M ∈ ALα

k (Δ) whose stored tree contexts (which are all
k-copying) are contained in a given tree. (Recall that there is a fixed finite set of
candidate containers for each α.) Not all these λ-terms are themselves contained
in T , but it is harmless and simpler to list them all than to enumerate exactly
those λ-terms M ∈ ALα

k (Δ) for which there is an N ∈ ALα→o(Δ) (which may
not be k-bounded) such that MN �β T .

We consider distributional learners for tree-generating almost linear second-
order ACGs who are capable of extracting k-copying tree contexts from trees.
Such a learner conjectures rule-k-bounded almost linear ACGs, and use only
k-bounded substructures and k-bounded contexts in order to form hypotheses.

Distributional Learning and Context/Substructure Enumerability 105

4 Distributional Learning of One-Side k-bounded ACGs

We present two distributional learning algorithms, a primal one for the context-
k-bounded almost linear ACGs, and a dual one for the substructure-k-bounded
almost linear ACGs.

In distributional learning, we often have to fix certain parameters that restrict
the class G of grammars available to the learner as possible hypotheses, in order
to make the universal membership problem solvable in polynomial time. This
is necessary since the learner needs to check whether the previous conjecture
generates all the positive examples received so far, including the current one.
In the case of almost linear ACGs, the parameters are the maximal arity n
of the type of abstract constants and the finite set Ω of the possible object
images of abstract atomic types. When these parameters are fixed, the universal
membership problem “T ∈ O(G)?” is in P [7].

In addition to these two parameters, we also fix a positive integer k so that
any hypothesized grammar is rule-k-bounded, for the reason explained in the
previous section. The hypothesis space for our learners is thus determined by
three parameters, Ω,n, k. We write G(Ω,n, k) for the class of grammars deter-
mined by these parameters.

In what follows, we often use sets of profiles or λ-terms inside expressions
that look like λ-terms, as we did in (2) and (3) in Sect. 2.3.

4.1 Learning Context-k-bounded ACGs with the Finite Kernel
Property

For T ⊆ LNFo
∅

(Δ) and R ⊆ ALα(Δ), we define the k-bounded context set of R
with respect to T by

Conk(T|R) = {Q ∈ ALα→o
k (Δ) | |QR|β ∈ T for all R ∈ R } .

Definition 3. A context-k-bounded ACG G = (Σ,Δ,H,I) is said to have the
profile-insensitive (k,m)-finite kernel property if for every abstract atomic type
p ∈ AΣ , there is a nonempty set Sp ⊆ S(G , p) ∩ ALH(p)

k (Δ) such that |Sp| ≤ m
and

Conk(O(G)|Sp) = Conk(O(G)|S(G , p)).

This may be thought of as a primal analogue of the notion of (k,m)-FCP in
[4] for the present case. It turns out, however, designing a distributional learn-
ing algorithm targeting grammars satisfying this definition is neither elegant
nor quite as straightforward as existing distributional algorithms. One reason is
that simply validating hypothesized rules against k-bounded contexts (see (1) in
Sect. 1) does not produce a context-k-bounded grammar. Recall that to construct
a context-k-bounded grammar, we must fix an assignment of an admissible sub-
structure profile set Πp and an admissible context profile set Ξp to each atomic
type p which restricts the object realizations of abstract constants of each type.

106 M. Kanazawa and R. Yoshinaka

We let our learning algorithm use such an assignment together with finite sets of
k-bounded substructures in constructing grammar rules, and make the valida-
tion of rules sensitive to the context profile set assigned to the “left-hand side”
nonterminal. This naturally leads to the following definition:

Definition 4. A context-k-bounded ACG G = (Σ,Δ,H,I) is said to have
the profile-sensitive (k,m)-finite kernel property ((k,m)-FKPprof) if for every
abstract atomic type p ∈ AΣ , there is a nonempty set Sp ⊆ S(G , p)∩ALH(p)

k (Δ)
such that |Sp| ≤ m and

Conk(O(G)|Sp) ∩ prof−1
k (Ξ) = Conk(O(G)|S(G , p)) ∩ prof−1

k (Ξ) , (4)

where Ξ = profk(C(G , p)). Such a set Sp is called a characterizing substructure
set of p.

Clearly, if a context-k-bounded grammar satisfies Definition 3, then it satis-
fies the (k,m)-FKPprof , so the class of grammars with (k,m)-FKPprof is broader
than the class given by Definition 3. The notion of (k,m)-FKPprof is also
monotone in k in the sense that (4) implies

Conk+1(O(G)|Sp) ∩ prof−1
k+1(Ξ

′) = Conk+1(O(G)|S(G , p)) ∩ prof−1
k+1(Ξ

′) ,

where Ξ ′ = profk+1(C(G , p)) = profk(C(G , p)), as long as G is context-k-
bounded. This means that as we increase the parameter k, the class of grammars
satisfying (k,m)-FKPprof monotonically increases. This is another advantage of
Definition 4 over Definition 3.

The polynomial enumerability of the k-bounded λ-terms makes an efficient
primal distributional learner possible for the class of context-k-bounded gram-
mars in G(Ω,n, k) with the (k,m)-FKPprof .

Algorithm. Hereafter we fix a learning target T∗ ⊆ LNFo
∅

(Δ) which is gen-
erated by G∗ = (Σ,Δ,H,I) ∈ G(Ω,n, k) with the (k,m)-FKPprof . We write
S[Ξ] = Conk(T∗|S) ∩ prof−1

k (Ξ) for a k-bounded profile set Ξ.
For a tree T ∈ LNFo

∅
(Δ), let Extα

k (T) = {M ∈ ALα
k (Δ) | −→

M• are contained
in T }. Define

SubΩ
k (D) =

⋃
{Extα

k (T) | T ∈ D, α ∈ Ω },

GlueΩ,n
k (D) =

⋃
{Extα1→···→αj→α0

k (T) | T ∈ D, αi ∈ Ω for i = 1, . . . , j

and j ≤ n },

ConΩ
k (D) =

⋃
{Extα→o

k (T) | T ∈ D, α ∈ Ω }.

It is easy to see that H(c) ∈ GlueΩ,n
k (T∗) for all c ∈ CΣ .

Our learner (Algorithm 1) constructs a context-k-bounded ACG Ĝ =
G(K,B,F) = (Γ,Δ,J ,J) from three sets K ⊆ SubΩ

k (D), B ⊆ GlueΩ,n
k (D)

and F ⊆ ConΩ
k (D), where D is a finite set of positive examples given to the

Distributional Learning and Context/Substructure Enumerability 107

Algorithm 1. Learning ACGs in G(Ω,n, k) with the (k,m)-FKPprof .
Data: A positive presentation T1, T2, . . . of T∗; membership oracle on T∗;
Result: A sequence of ACGs G1,G2, . . . ;
let D := K := B := F := ∅; Ĝ := G(K,B,F);
for i = 1, 2, . . . do

let D := D ∪ {Ti}; F := ConΩ
k (D);

if D � O(Ĝ) then

let B := GlueΩ,n
k (D);

let K := SubΩ
k (D);

end if
output Ĝ = G(K,B,F) as Gi;

end for

learner. As with previous primal learning algorithms, whenever we get a positive
example that is not generated by our current conjecture, we expand K and B,
while in order to suppress incorrect rules, we keep expanding F.

Each abstract atomic type of our grammar is a triple of a subset of K, a
k-threshold profile set, and a k-bounded profile set:

AΓ = { [[S, Π, Ξ]] | S ⊆ K ∩ prof−1
k (Π) with 1 ≤ |S| ≤ m, where for some α ∈ Ω,

Π is a set of k-threshold profiles of type α and

Ξ is a set of k-bounded profiles of type α → o } .

We have |AΓ | ≤ 22�|K|m, where � is the total number of profiles of relevant
types, which is a constant.

The set of distinguished types is defined as

J = { [[S, {(λzo.z)}, {(λyo.y)}]] ∈ AΓ | S ⊆ T∗ } ,

which is determined by membership queries. Define J ([[S,Π,Ξ]]) to be the type
of the profiles in Π.

We have an abstract constant d ∈ CΓ such that

τΓ (d) = [[S1,Π1, Ξ1]] → · · · → [[Sj ,Πj , Ξj]] → [[S0,Π0, Ξ0]] with j ≤ n ,

J (d) = R ∈ B ,

if

– RΠ1 . . . Πj ⊆ Π0,
– λx.Ξ0(RΠ1 . . . Πi−1xΠi+1 . . . Πj) ⊆ Ξi for i = 1, . . . , j,
– |Q(RS1 . . . Sj)|β ∈ T∗ for all Q ∈ S[Ξ0]

0 ∩ F and Si ∈ Si for i = 1, . . . , j.

The last condition is checked with the aid of the membership oracle.

Lemma 8. We have profk(N) ∈ Π for all N ∈ S(G , [[S,Π,Ξ]]), and
profk(M) ∈ Ξ for all M ∈ C(G , [[S,Π,Ξ]]). The grammar G(K,B,F) is context-
k-bounded.

108 M. Kanazawa and R. Yoshinaka

Lemma 9.
If K ⊆ K′, then O(G(K,B,F)) ⊆ O(G(K′,B,F)).
If B ⊆ B′, then O(G(K,B,F)) ⊆ O(G(K,B′,F)).
If F ⊆ F′, then O(G(K,B,F)) ⊇ O(G(K,B,F′)).

Lemma 10. Let Sp be a characterizing set of each atomic type p ∈ AΣ of the
target grammar G∗. Then Sp ⊆ SubΩ

k (T∗). Moreover, if Sp ⊆ K for all p ∈ AΣ

and H(c) ∈ B for all c ∈ CΣ, then T∗ ⊆ O(G(K,B,F)) for any F.

We say that an abstract constant d of type [[S1,Π1, Ξ1]] → · · · →
[[Sj ,Πj , Ξj]] → [[S0,Π0, Ξ0]] is invalid if |Q(J (c)S1 . . . Sj)|β /∈ T∗ for some
Q ∈ S[Ξ0]

0 and Si ∈ Si.

Lemma 11. For every K and B, there is a finite set F ⊆ ConΩ
k (T∗) of cardi-

nality |B||AΓ |n+1 such that G(K,B,F) has no invalid constant.

Lemma 12. If G(K,B,F) has no invalid constant, then O(G(K,B,F)) ⊆ T∗.

Theorem 1. Algorithm 1 successfully learns all grammars in G(Ω,n, k) with
the (k,m)-FKPprof .

We remark on the efficiency of our algorithm. It is easy to see that the
description sizes of K and B are polynomially bounded by that of D, and so
is that of Γ . We need at most a polynomial number of membership queries to
construct a grammar. Thus Algorithm 1 updates its conjecture in polynomial
time in ‖D‖. Moreover, we do not need too much data. To make K and B satisfy
the condition of Lemma 10, m|AΣ |+|CΣ | examples are enough. To remove invalid
constants, polynomially many contexts are enough by Lemma 11.

4.2 Learning Substructure-k-bounded ACGs with the Finite
Context Property

For sets T ⊆ LNFo
∅

(Δ) and Q ⊆ ALα→o
k (Δ), we define the k-bounded substruc-

ture set of Q with respect to T by

Subk(T|Q) = {R ∈ ALα
k (Δ) | |QR|β ∈ T for all Q ∈ Q } .

Again, we target grammars that satisfy a property sensitive to profile sets
assigned to nonterminals:

Definition 5. A substructure-k-bounded ACG G = (Σ,Δ,H,I) is said to
have the profile-sensitive (k,m)-finite context property ((k,m)-FCPprof) if for
every abstract atomic type p ∈ AΣ , there is a nonempty set Qp ⊆ C(G , p) ∩
ALH(p)→o

k (Δ) of k-bounded λ-terms such that |Qp| ≤ m and

Subk(O(G)|Qp) ∩ prof−1
k (Π) = S(G , p) ,

where Π = prof(S(G , p)). We call Qp a characterizing context set of p.

Distributional Learning and Context/Substructure Enumerability 109

Algorithm. Our dual learner turns out to be considerably simpler than its
primal cousin. While the primal learner uses two profile sets, the dual learner
assigns just a single profile to each nonterminal. This corresponds to the fact that
the context-profiles play no role in constructing a structure-k-bounded grammar
and that the (k,m)-FCPprof is preserved under the normalization which converts
a grammar into an equivalent one G ′ where profk(S(G ′, p)) is a singleton for
all abstract atomic types p of G ′, where it is not necessarily the case for the
(k,m)-FKPprof .

Hereafter we fix a learning target T∗ ⊆ LNFo
∅

(Δ) which is generated by
G∗ = (Σ,Δ,H,I) ∈ G(Ω,n, k) with the (k,m)-FCPprof . We write Q[π] =
Subk(T∗|Q) ∩ prof−1

k (π) for a k-bounded profile π.
Our learner (Algorithm 2) constructs a context-k-bounded ACG Ĝ =

G(F,B,K) = (Γ,Δ,J ,J) from three sets F ⊆ ConΩ
k (D), B ⊆ GlueΩ,n

k (D),
and K ⊆ SubΩ

k (D), where D is a finite set of positive examples.

Algorithm 2. Learning ACGs in G(Ω,n, k) with (k,m)-FCPprof

Data: A positive presentation T1, T2, . . . of T∗; membership oracle on T∗;
Result: A sequence of acgs G1,G2, . . . ;
let D := F := B := K := ∅; Ĝ := G(F,B,K);
for i = 1, 2, . . . do

let D := D ∪ {Ti}; K := SubΩ
k (D);

if D � O(Ĝ) then

let B := GlueΩ,n
k (D);

let F := ConΩ
k (D);

end if
output Ĝ = G(F,B,K) as Gi;

end for

Each abstract atomic type of our grammar is a pair of a finite subset of
F ∩ ALα

k (Δ) of cardinality at most m and a profile π whose type is α:

AΓ = { [[Q, π]] | π is a k-bounded profile of type α ∈ Ω,

Q ⊆ F ∩ ALα→o
k (Δ) and 1 ≤ |Q| ≤ m } .

We have |AΓ | ≤ |F|m� for � the number of possible profiles. We have only one
distinguished type:

J = { [[{λy.y}, (λzo.z)]] } .

We define J ([[Q, π]]) to be the type of π.
We have an abstract constant c ∈ CΓ such that

τΓ (c) = [[Q1, π1]] → · · · → [[Qj , πj]] → [[Q0, π0]] with j ≤ n , J (c) = P ∈ B ,

if

– π0 = Pπ1 . . . πj ,

110 M. Kanazawa and R. Yoshinaka

– |Q(PS1 . . . Sj)|β ∈ T∗ for all Q ∈ Q0 and Si ∈ Q[πi]
i ∩ K.

The second clause is checked with the aid of the membership oracle. By the con-
struction, prof(|J (M)|β) ∈ π for every M ∈ LNF[[Q,π]]

∅
(Γ). Thus the grammar

Ĝ is substructure-k-bounded.

Lemma 13.
If F ⊆ F′, then O(G(F,B,K)) ⊆ O(G(F′,B,K)).
If B ⊆ B′, then O(G(F,B,K)) ⊆ O(G(F,B′,K)).
If K ⊆ K′, then O(G(F,B,K)) ⊇ O(G(F,B,K′)).

Lemma 14. Let Qp be a characterizing set of each atomic type p ∈ AΣ of the
target grammar G∗. Then Qp ⊆ ConΩ

k (T∗). Moreover, if Qp ⊆ F for all p ∈ AΣ

and H(c) ∈ B for all c ∈ CΣ, then T∗ ⊆ O(G(F,B,K)) for any K.

We say that an abstract constant c of type [[Q1, π1]] → · · · → [[Qj , πj]] →
[[Q0, π0]] is invalid if |Q(J (c)S1 . . . Sj)|β /∈ T∗ for some Si ∈ Q[πi]

i and Q ∈ Q0.

Lemma 15. For every F and B, there is a finite set K ⊆ SubΩ
k (T∗) of cardi-

nality n|B||AΓ |n+1 such that G(F,B,K) has no invalid constant.

Lemma 16. If G(F,B,K) has no invalid constant, then O(G(F,B,K)) ⊆ T∗.

Theorem 2. Algorithm 2 successfully learns all grammars in G(Ω,n, k) with
the (k,m)-FCPprof .

A remark similar to the one on the efficiency of Algorithm 1 applies to Algo-
rithm 2.

Acknowledgement. This work was supported in part by MEXT/JSPS Kakenhi
(24106010, 26330013) and NII joint research project “Algorithmic Learning of Nonlin-
ear Formalisms Based on Distributional Learning”.

References

1. Bloem, R., Engelfriet, J.: A comparison of tree transductions defined by monadic
second order logic and by attribute grammars. J. Comput. Syst. Sci. 61, 1–50
(2000)

2. Böhm, C., Coppo, M., Dezani-Ciancaglini, M.: Termination tests inside λ-calculus.
In: Salomaa, A., Steinby, M. (eds.) Automata, Languages and Programming.
LNCS, vol. 52, pp. 95–110. Springer, Heidelberg (1977)

3. Clark, A.: Learning context free grammars with the syntactic concept lattice. In:
Sempere and Garćıa [11], pp. 38–51

4. Clark, A., Yoshinaka, R.: Distributional learning of parallel multiple context-free
grammars. Mach. Learn. 96(1–2), 5–31 (2014). doi:10.1007/s10994-013-5403-2

5. Kanazawa, M.: Parsing and generation as datalog queries. In: Proceedings of the
45th Annual Meeting of the Association for Computational Linguistics, Prague,
Czech Republic, pp. 176–183 (2007)

http://dx.doi.org/10.1007/s10994-013-5403-2

Distributional Learning and Context/Substructure Enumerability 111

6. Kanazawa, M.: A lambda calculus characterization of MSO definable tree trans-
ductions (abstract). Bull. Symbolic Logic 15(2), 250–251 (2009)

7. Kanazawa, M.: Parsing and generation as datalog query evaluation. IfColog J.
Logics Their Appl. (to appear). http://research.nii.ac.jp/∼kanazawa/publications/
pagadqe.pdf

8. Kanazawa, M.: Almost affine lambda terms. In: Indrzejczak, A., Kaczmarek, J.,
Zawidzki, M. (eds.) Trends in Logic XIII, pp. 131–148. �Lódź University Press, �Lódź
(2014)

9. Kasprzik, A., Yoshinaka, R.: Distributional learning of simple context-free tree
grammars. In: Kivinen, J., Szepesvári, C., Ukkonen, E., Zeugmann, T. (eds.) ALT
2011. LNCS, vol. 6925, pp. 398–412. Springer, Heidelberg (2011)

10. Salvati, S.: Encoding second order string ACG with deterministic tree walking
transducers. In: Wintner, S. (ed.) Proceedings of FG 2006: The 11th conference
on Formal Grammar. FG Online Proceedings, pp. 143–156. CSLI Publications,
Stanford (2007)

11. Sempere, J.M., Garćıa, P. (eds.): Grammatical Inference: Theoretical Results and
Applications. Proceedings of 10th International Colloquium, ICGI 2010, Valencia,
Spain, 13–16 September 2010. LNCS. Springer, Heidelberg (2010)

12. Yoshinaka, R.: Polynomial-time identification of multiple context-free languages
from positive data and membership queries. In: Sempere, J.M., Garćıa, P. (eds.)
ICGI 2010. LNCS, vol. 6339, pp. 230–244. Springer, Heidelberg (2010)

13. Yoshinaka, R.: Towards dual approaches for learning context-free grammars based
on syntactic concept lattices. In: Mauri, G., Leporati, A. (eds.) DLT 2011. LNCS,
vol. 6795, pp. 429–440. Springer, Heidelberg (2011)

14. Yoshinaka, R., Kanazawa, M.: Distributional learning of abstract categorial gram-
mars. In: Pogodalla, S., Prost, J.-P. (eds.) Logical Aspects of Computational Lin-
guistics. LNCS, vol. 6736, pp. 251–266. Springer, Heidelberg (2011)

http://research.nii.ac.jp/~kanazawa/publications/pagadqe.pdf
http://research.nii.ac.jp/~kanazawa/publications/pagadqe.pdf

Between the Event Calculus and Finite State
Temporality

Derek Kelleher, Tim Fernando(B), and Carl Vogel

Trinity College Dublin, Dublin 2, Ireland
kellehdt@tcd.ie, {Tim.Fernando,vogel}@cs.tcd.ie

Abstract. Event Calculus formulas dealing with instantaneous and con-
tinuous change are translated into regular languages interpreted relative
to finite models. It is shown that a model over the real line for a restricted
class of these Event Calculus formulas (relevant for natural language
semantics) can be transformed into a finite partition of the real line,
satisfying the regular languages. Van Lambalgen and Hamm’s treatment
of type coercion is reduced to changes in the alphabet from which the
strings are formed.

Keywords: Event Calculus · Finite State Temporality · Type coercion

1 Introduction

An important application of the Event Calculus (EC), originally developed by
Kowalski and Sergot [14], has been Lambalgen and Hamm’s treatment of Event
Semantics [15] (hereafter referred to as VLH). The EC concentrates on change
in time-dependent properties, known as fluents, formalizing both instantaneous
change (due to punctual events), and continuous change (under some force).
The underlying model is taken to be a continuum, the real line, with a pred-
icate (HoldsAt) interpreting fluents relative to points (real numbers). This is
in contrast to the common practice since Bennett and Partee [3] of evaluating
temporal propositions over intervals.

Another approach to event semantics, which uses finite-state methods, is
Finite State Temporality (FST). In recent years FST has been shown to be
applicable to a diverse range of linguistic phenomena, such as Dowty’s Aktion-
sart [9]. Strings are taken from an alphabet made up of subsets of a finite set of
fluents (Σ), shown visually as boxes containing the fluents. Intuitively, fluents
in the same box hold at the same time, and fluents in subsequent boxes hold of
subsequent times. For example, the event of John going from his home to the
library could be represented as the string:

at(john,home) at(john,library) (1)

the empty box above symbolising that there is an interval of time between John
being at home, and being at the library, with no commitment made to what
c© Springer-Verlag Berlin Heidelberg 2016
A. Foret et al. (Eds.): FG 2015/2016, LNCS 9804, pp. 112–129, 2016.
DOI: 10.1007/978-3-662-53042-9 7

Between the Event Calculus and Finite State Temporality 113

occurred during this interval. A fuller representation could add to that box
fluents representing John’s journey to the library, and split it into various boxes
representing various stages of this journey.

It should be noted that while both the EC and FST talk of “fluents”, there
are some crucial differences between the two formalisms in their interpretation
of this notion. In the EC, a fluent is a “time-dependent property” in that a fluent
holding of an instant indicates that property holds of that instant. For example,
if the fluent “building” holds of time t, then there is some building going on
at time t. Events have a different status, being the entities that initiate or ter-
minate the fluents (cause them to become true or false), and temporal instants
form another ontological category. In FST, “fluents” correspond to EC-fluents,
events, temporal instants, and complex entities built from these. These entities
are differentiated by their various properties. For example, FST-fluents corre-
sponding to events are not homogeneous, they hold only of particular intervals,
and not any subintervals of that interval, whereas FST-fluents corresponding to
EC-fluents are homogeneous.

Arising from the differences between these two formalisms is the question
of whether the whole continuum is needed, or whether some finite representa-
tion will suffice for natural language semantics. Specifically, is anything lost by
translating models for EC predicates that deal with instantaneous and continu-
ous change, with the real line as the domain, into models for FST representations
of these predicates, where the domain is a finite partition of the real line. The
FST representations of EC predicates will be languages whose various strings
represent different temporal granularities consistent with the EC predicates.
A major advantage of this approach is that entailment can be expressed in terms
of set-theoretic inclusions between languages [7], which is a decidable question for
regular languages. Restricting our representations to regular languages ensures
the computability of these entailments.

One application of the EC to event semantics is representing type coercion.
Since Vendler [19], it is common to assign verb phrases or eventualities to certain
categories such as “achievement” (punctual with consequent state), or “activity”
(protracted with no associated end point). Under certain circumstances, however,
eventualities typically associated with one category can behave as if in another
category. For example, “sneeze” is usually considered to be a “point” (punctual
with no consequent state). However, when it occurs with the progressive (“John
was sneezing”), it can no longer be viewed as a punctual occurrence and is
coerced into an activity (becoming a process of multiple sneezes by iteration).

Taking the concepts of instantaneous and continuous change from the EC, the
possibility of representing type coercion in FST will be explored. The main idea
is to associate coercion with a “change in perspective”, implemented through a
change in the alphabet from which strings are drawn.

Section 2 gives a brief introduction to Finite State Temporality. Section 3
will show how models for the EC-predicates can be translated into models
for the FST-languages, and vice-versa. It also will show that if an EC-model
satisfies an EC-predicate, the translated FST-model will satisfy the translated

114 D. Kelleher et al.

FST-language, and vice-versa. Section 4 will address type coercion, and will show
how this can be implemented in FST as changes in Σ.

2 Finite State Temporality

Fix a finite set Φ of fluents. The alphabet from which strings are drawn is made
up of subsets of Φ:

Σ = 2Φ (2)

For example, if Φ = {f, g}, then Σ = {{}, {f}, {g}, {f, g}}. To emphasise
that the elements of this alphabet are being used as symbols, and to improve
readability, the traditional curly brackets are replaced with boxes enclosing the
fluents, with the empty set becoming .

A typical string over this alphabet might be f, g f (instead of {f, g}{}{f}),

while a typical language might look something like f, g
∗
, consisting of the strings

ε, f, g , f, g f, g , f, g f, g f, g , etc.
Fernando [9] shows how a set of temporal points can be partitioned into a

finite set of intervals, with a satisfaction relation holding between intervals and
fluents. Since the EC takes the positive real line (R+) as its domain, for the
purposes of this paper it is natural to take this as the set of temporal points
to be partitioned. A model for FST consists of a segmentation of R+, and an
interpretation function, ��FST , mapping a fluent to the set of intervals which
satisfy it.

A segmentation is a sequence I = I1 . . . In of intervals such that:

Ii m Ii+1 for 1 ≤ i < n (3)

Here, “m” is the relation “meets”, defined by Allen [1] as: A meets B if and
only if A precedes B, there is no point between A and B, and A and B do not
overlap. I is a segmentation of I (in symbols: I ↗ I) if and only if I =

⋃n
i=1 Ii.

While there are various ways to partition the real line, one particular form
of segmentation is especially useful where the EC is concerned:

[0, b1](a2, b2] . . . (an−1, bn−1](an,∞), where ∀i ai+1 = bi (4)

So [0, b1] includes every point between 0 and b1, including both 0 and b1 (closed
at both ends), whereas (ai,bi] includes every point between ai and bi, including
bi, but not ai (open at the beginning, closed at the end).

The reason for choosing this form of segmentation (where I1 is closed at
both ends, but I2, . . ., In are open at the beginning and closed at the end)
is as follows: In FST, one use of fluents is to represent states (though they
can also represent events or “times”, see Sect. 2.1). The interpretation of these
stative fluents will be a set of intervals from the segmentation. Intuitively, if an
interval I is in the interpretation of a fluent f, then f holds across the interval I.

Between the Event Calculus and Finite State Temporality 115

Many temporal reasoning problems specify initial conditions: states or properties
which hold at the beginning of time (EC’s Initially predicate). These fluents hold
from time-point 0 onwards, which requires an interval which includes 0 in their
interpretation. This interval will have the form [0, s] for some s∈ R+.

Other states are “brought into being” by events. The assumption in EC (and
common in the literature [2,11]) is that these states hold after the event, not
during it. So, if an event happens at time point ai and brings a state f into being,
then an interval in the interpretation of f will not include ai, but will include the
points after it, giving an interval that is open at the beginning.

If an event at bi causes state f to cease holding, the effect will be seen after
bi, meaning that f still holds at bi but not at any point after. So bi will be
in an interval that is in the interpretation of f, and this interval will be closed
at the end. Any fluent caused to hold by an event, and subsequently caused to
stop holding by another event will therefore have an interval that is open at the
beginning and closed at the end in its interpretation (with inertia causing it to
hold at all points within the interval).

A satisfaction relation |=FST is defined between fluents and intervals:

I |=FST f ⇐⇒ I ∈ �f�FST (5)

This can be extended to a relation holding between segmentations and
strings:

I1 . . . In |=FST α1 . . . αn ⇐⇒ (∀f ∈ αi) Ii |=FST f, for 1 ≤ i ≤ n (6)

and further extended to a relation holding between segmentations and languages:

I1 . . . In |=FST L ⇐⇒ (∃s ∈ L) I1 . . . In |=FST s (7)

2.1 States, Events, and Times

As noted in the introduction, the EC formalises two notions of change, instanta-
neous change due to punctual events, and continuous change due to some force.
These distinctions may seem more at home in the field of physics than linguis-
tics but, as will be seen later, linguistic “eventualities” can be represented as
complex sequences of change, both instantaneous and continuous.

Before continuing, some comments must be made on differences between the
EC’s and FST’s ontologies, and how they are related. In the EC, a distinction
is drawn between “fluents”, which are time-dependent properties that “hold”
of time-points, and events, which are punctual entities that “happen” at time-
points, causing an instantaneous change by “initiating” (causing to hold), or
“terminating” (causing to cease to hold) fluents. Temporal points make up a
third category, represented by the positive real numbers (and 0).

In FST, the word “fluent” encompasses these three categories, though their
fluents have different properties. Stative fluents represent states/properties.
They are homogeneous. A fluent is homogeneous if for all intervals I and I′

such that I ∪ I′ is an interval:

116 D. Kelleher et al.

I |=FST f and I′ |=FST f ⇐⇒ I ∪ I′ |=FST f (8)

Essentially, if a stative fluent holds over an interval, and that interval is split into
two intervals, the fluent will hold over both intervals. If John slept from 2pm to
4pm, then John slept from 2pm to 3pm, and John slept from 3pm to 4pm (and
vice-versa).

Event fluents represent events. Depending on the event they may be homoge-
neous or “whole”. Fernando [9] defines a fluent as being whole if for all intervals
I and I′ such that I ∪ I′ is an interval:

I |=FST f and I′ |=FST f implies I = I′ (9)

The EC makes use of an explicit timeline, necessitating the use of “temporal
fluents” in FST to represent this timeline. For every possible interval (including
points), there is a “temporal fluent” which marks this interval, i.e. every interval
has a fluent whose interpretation is that interval. For simplicity of presentation,
we use the same symbol for the fluent as we use for the interval or the point that
it marks. It should be noted that the interval (a, b] is a complex symbol built
from brackets, a comma, and numbers/variables, while the fluent “(a, b]” is an
atomic symbol. This allows statements of the form {t} |= t to be used.

3 Translating Language and Models

VLH (p.41) sketch an “intuitively appealing class of models of EC” with domain
R+. The interpretation of fluents is given by the model, and is taken to be a set
of intervals of the form (a, b] (a, b∈ R+), or [0, a] (a∈ R+). The intervals are, in
a sense, “maximal”. They are the longest contiguous stretches for which f holds.
If an interval is in the interpretation of a fluent f, f will hold for time-point in
that interval, but the time-point itself will not be in the interpretation of f.

It cannot be assumed that all models of the EC give rise to finite segmenta-
tions of the real line. VLH give the example of an initiating event for a fluent f
happening a time t iff t∈ Q, with terminating events happening at a time t′ iff
t′ ∈ R − Q. This will lead to a fluent varying infinitely between holding and not
holding over any interval, a situation which rules out a finite segmentation.

One necessary condition for there to be a finite segmentation is that each
fluent is “alternation bounded” [8]. Intuitively this rules out the above case of a
fluent varying infinitely between holding and not holding over some interval. We
say a fluent is alternation bounded if the set of points or intervals in its extension
(U) is alternation bounded. To define when a set of points U taken from a linear
order (T,<) is alternation bounded, the following notions are useful.

Given a subset U of T , a segmentation of U is a sequence I = I1 · · · In of
intervals such that U =

⋃n
i=1 Ii and Ii < Ii+1 for 1 ≤ i < n.

A subset I of T is U -homogeneous if

(∃t ∈ I) t ∈ U ⇐⇒ (∀t ∈ I) t ∈ U

Between the Event Calculus and Finite State Temporality 117

— i.e.,

I ⊆ U or I ∩ U = ∅.

A U -segmentation is a segmentation I1 · · · In of T such that for all i between 1
and n, Ii is U -homogeneous and when i < n,

Ii ⊆ U ⇐⇒ Ii+1 ∩ U = ∅.

Given a subset U of T and a positive integer n > 0, an (n,U)-alternation is
a string t1t2 · · · tn ∈ T of length n such that for 1 ≤ i < n, ti < ti+1 and

ti ∈ U ⇐⇒ ti+1 �∈ U.

U is alternation bounded (a.b.) if for some positive integer n, there is no (n,U)-
alternation. It will also be useful to define the equivalence relation

t ∼U t′ ⇐⇒ there is an (n,U)-alternation with both t and t′ only if t = t′

⇐⇒ [t, t′] ∪ [t′, t] is U -homogeneous

Lemma For any subset U of T ,

there is a U -segmentation ⇐⇒ U is a.b.

For ⇒, a U -segmentation of length n implies there can be no (n + 1, U)-
alternation. Conversely, let n be the largest positive integer for which there is
an (n,U)-alternation. Let t1 · · · tn be an (n,U)-alternation, and define I1 · · · In

by

Ii := {t ∈ T | ti ∼U t}
Then I1 · · · In is a U -segmentation.

As well as the traditional axioms of the EC, VLH include formulas in the
EC, together known as a scenario, which further constrain the possible models.
A formula in the scenario with the following form:

S(t) =⇒ Happens(e, t) (10)

where S(t) is a first-order formula built from:

1. literals of the form (¬)HoldsAt(f, t)
2. equalities between fluent terms, and between event terms
3. formulas in the language of the structure (R, <; +,×, 0, 1)

can cause a fluent to vary infinitely, as can be seen in the below example:

HoldsAt(f, t) =⇒ Happens(e1, t + 1)
¬HoldsAt(f, t) =⇒ Happens(e2, t + 1)
Initiates(e2, f, t)
Terminates(e1, f, t)
HoldsAt(f, 0)

(11)

118 D. Kelleher et al.

Of course, in this particular example, the fluent can only vary infinitely over
an interval stretching to infinity, and while arguments can be made that this is
an unrealistic condition for natural language semantics, the formulation of the
EC does allow it.

Due to the inertial axioms, when a fluent is initiated, it holds until it is
terminated. An initiating event has no effect on a fluent that already holds, and
similarly, a terminating event has no effect on a fluent that does not hold. It
follows that an infinite variation of the holding of a fluent over an interval can
only arise if there is an infinite sequence of alternating initiating and terminating
events.

A further necessary condition for there to exist a finite segmentation of an
EC-model is that we are dealing with only a finite number of these alternation
bounded fluents. Each of these fluents defines a finite segmentation, and taking
a finite number of these fluents together and intersecting the intervals in their
segmentations gives a finite segmentation. It will be seen in Sect. 4 on type
coercion that eventualities are defined using a finite number of fluents, and type
coercion involves adding or removing a finite number of fluents, allowing us to
only deal with finite segmentations. Hereafter, when we refer to an “EC-model”
it is understood we are discussing models consistent with these conditions:

1. The inferences of interest involve only a finite number of fluents.
2. Each fluent is alternation bounded.

An FST-model can be formed from an EC-model as follows:

1. For each fluent f in EC, form �f�EC→FST : I ∈ �f�EC implies (∀I ′ ⊆ I)I ′ ∈
�f�EC→FST

2. Choose a segmentation I of R+

3. Form �f�FST by relativizing �f�EC→FST to I = I1 . . . In : Ii ∈ �f�FST iff
Ii ∈ �f�EC→FST . Only those intervals that are part of the segmentation, I,
can be in �f�FST .

An EC-model can be formed from an FST-model as follows:

1. Suppose I ↗ R+. Find a sequence Ii . . . Ij in I such that for all (i ≤ q ≤
j) Iq ∈ �f�FST , Ii−1 �∈ �f�FST and Ij+1 �∈ �f�FST . This sequence will be the
longest unbroken stretch for which f holds.

2. Put I =
⋃j

r=i Ir in �f�EC .

3.1 Initially

In the EC, Initially(f) signifies that the fluent f “was true at the beginning of
time” (VLH p.38). It can be translated as follows:

LInitially(f) = 〈�〉 f
∗

(12)

Every string in this language includes the fluent f in its first box/symbol.
Understanding the above equation requires two definitions:

Between the Event Calculus and Finite State Temporality 119

s ∈ 〈R〉L ⇐⇒ (∃s′ ∈ L) s R s′ (13)

where R is some relation between strings. Every string in 〈R〉L bears the relation
R to some string in L.

� is the relation “subsumes”. If s and s′ are strings, where s = α1 . . . αn and
s′ = β1 . . . βk then:

s � s′iff n = k, and for every i, αi ⊇ βi (14)

So every symbol of s contains all the fluents (information) of the correspond-
ing symbol of s′, and possibly more. Fernando [6] shows that this relation can
be computed using finite-state methods.

According to VLH (p.42), a model for Initially(f) will have, in its interpre-
tation of f, an interval that begins at 0:

Initially := {f |(∃s > 0)[0, s] ∈ �f�EC} (15)

In FST, a model for LInitially(f) is a segmentation of R+, where the first
interval is in the interpretation of f:

I1 . . . In ↗ R+ and I1 ∈ �f�FST (16)

EC →FST: If there is an EC-model for Initially(f) then, by (15), there is
some s ∈ R where [0, s]∈ �f�EC . By construction of an FST-model, [0, s] and
all its subintervals are in �f�EC→FST . Any segmentation where I1 = [0, r], with
r≤ s, will have I1 ∈ �f�FST , satisfying (16).

FST→ EC: For an FST-model of LInitially(f) where I1 . . . In ↗ R+ and I1 ∈
�f�FST there exists some j with 1<j≤n such that Ij �∈ �f�FST . By construction
of an EC-model, I =

⋃j−1
r=1 Ir ∈ �f�EC . Since I1 is included in I, I begins at 0

and therefore is of the form [0, s] (s∈ R), which fulfills condition (15).

3.2 Instantaneous Change: Happens and Initiates

When dealing with events and their effects on fluents, some new fluents will
prove helpful:

I |=FST)e ⇐⇒ (∀J such that I m J)I �|=FST f and J |=FST f (17)

(a, b] |=FST 〈end〉t ⇐⇒ {b} |=FST t (18)

(a, b] |=FST 〈start〉t ⇐⇒ {a} |=FST t (19)

The fluent)e is used to mark the end of events. In the EC, events are punctual:
they occur at points (interpreted as real numbers). In FST, events are allowed

120 D. Kelleher et al.

to occur over intervals. The reason for this will become clear when type coercion
is dealt with. If 〈end〉t holds of an interval, then that interval ends at the time
point t. If 〈start〉t holds of an interval, then that interval starts after the time
point t.

The EC treats change due to an event as instantaneous. A fluent initiated
by a punctual event holds AFTER, but not AT, the time at which the event
occurs. When moving from punctual events to events that happen over intervals,
a choice must be made as to when the change occurs. In keeping with the EC,
FST formalizes the change as happening after the event ends. Only initiating
events are dealt with below, the definitions for terminating events are broadly
similar. Note that the fluents f and) e are linked in that this particular event
initiates the fluent f, other events initiate other fluents.

Happens(e, t), which signifies that event e occurs at time t, can be translated
as follows:

LHappens(e,t) = 〈�〉 (e

∗ 〈end〉t,)e (20)

If s= α1 . . . αn, s � s′ iff there is some substring r of s,αi . . . αj , and r� s′. (e rep-
resents the start of the event. It cannot be translated from the EC as the EC treats
events as punctual. Its purpose in FST is to allow punctual events to be “stretched”
and given an internal structure. It causes no problem in translations as) e is the nec-
essary fluent to represent instantaneous change.

VLH (p.42) define the extension of Happens as follows:

Happens := {(e, t)|(∃f)(f, t) ∈ e} (21)

In an EC-model, the event e will either initiate or terminate some fluent f. If
it is an initiating event then there must be some s∈ R for which (t, s]∈ �f�EC .

In FST, a model for LHappens(e,t) will be a segmentation I1 . . . In ↗ R+ with
the following conditions:

(∃Ii, Ij)Ii < Ij and Ii |=FST (e and Ij |=FST)e and Ij |=FST 〈end〉t (22)

Note that < is the relation “precedes”. For intervals I and J, I precedes J if
its end point is before J’s start point.

Using the convention {t} |=FST t, and the definition of 〈end〉t, then Ij =
(aj ,t] for some aj ∈ R. From the definition of)e, (aj ,t]�|=FST f and (t, bj+1]|=FST

f for some bj+1 ∈ R.

EC → FST: From above (∃ s) (t, s] ∈ �f�EC . Because the intervals in the inter-
pretation of fluents are maximal, there must be an interval (at least a point)
that meets (t, s] which is not in the interpretation of f. Therefore, (r, t] �∈ �f�EC

for some r ∈ R. Constructing an FST-model from this, (t, s] and all its subin-
tervals are in �f�EC→FST , and there is some q ∈ R for which (q, t] and
all its subintervals are not in �f�EC→FST . An example segmentation would
be [0, b1]. . .(q, t](t, s]. . .(an,∞). �f�EC→FST relativized to this will have (q, t]

Between the Event Calculus and Finite State Temporality 121

�∈ �f�FST , (t, s] ∈ �f�FST satisfying the conditions above with aj = q, and
bj+1 = s. (Again there will be many segmentations of R+ that satisfy this
language).

FST→ EC: For an FST-model of LHappens(e,t) where I1 . . . In ↗ R+ and Ij �∈
�f�FST and Ij+1 ∈ �f�FST , there exists some r with j+1<r≤n such that Ir �∈
�f�FST . By construction of an EC-model I =

⋃r−1
d=j+1 Id ∈ �f�EC . Since Ij+1 is

the first interval in I, I is of the form (t, s], satisfying the condition above for an
EC-model.

Initiates(e, f, t) can be translated as follows:

LInitiates(e,f,t) = 〈end〉t,)e =⇒ f (23)

This is encoded as a constraint on strings. The constraint L =⇒ L′ is the
set of strings s, such that every stretch of s that subsumes L also subsumes L′.
The notion of “stretched” is formalized as follows: s′ is a factor of s if s = us′v
for some (possibly empty) strings u and v.

s ∈ L =⇒ L′ ⇐⇒ for every factor s′ of s, s′ � L implies s′ � L′ (24)

The constraint for LInitiates(e,f,t) says that every string in this language that
has a box containing 〈end〉t and)e, must contain f in the following box.

An EC-model for Initiates(e, f, t) must have the following condition: (∃s ∈
R)(t, s] ∈ �f�EC .

In FST, a model for LInitiates(e,f,t) will be a segmentation I1 . . . In ↗ R+ with
the following conditions:

(∀Ii, Ij)[Ii m Ij and Ii |=FST)e and Ii |=FST 〈end〉t] −→ Ij |=FST f (25)

EC → FST: From above (∃ s) (t, s]∈ �f�EC . For the same reason as above for the
Happens predicate, (t, s] and all its subintervals are in �f�EC→FST , and there is
some q ∈ R for which (q, t] and all its subintervals are not in �f�EC→FST . Tak-
ing as an example segmentation, [0, b1]. . .(q, t](t, s]. . .(an,∞), the interval (q, t]
meets (t, s], it satisfies 〈end〉t, it also satisfies)e (by definition of)e). There-
fore it meets the conditions of the antecedent of (25), and since it is given that
(t, s] ∈ �f�EC , and therefore in �f�FST , the consequent is also true, fulfilling the
conditions for an FST-model.

FST→ EC: Take an FST-model of LInitiates(e,f,t) where I1 . . . In ↗ R+ and (25)
holds. Given that there is only one interval Ii in this segmentation which satisfies
〈end〉t, and only one interval Ij that it meets, we can reduce (25) to:

(ai, t] |=FST)e −→ (t, bj] |=FST f (26)

By definition of)e, (ai,t]�|=FST f. (26) then becomes:

122 D. Kelleher et al.

(ai, t] �|=FST f −→ (t, bj] |=FST f (27)

there exists some r with j+1<r≤n such that Ir �∈ �f�FST . By construction of an
EC-model, I =

⋃r−1
d=j Id ∈ �f�EC . Since Ij+1 is the first interval in I, I is of the

form (t, s], satisfying the condition above for an EC-model.

3.3 Continuous Change: Trajectory

Trajectory(f1, t, f2, t + d) signifies that if fluent f1 holds between t and t + d,
then fluent f2 will hold at t +d. In VLH, f2 is generally a real-valued function
describing continuous change, so the Trajectory predicate describes continuous
change as long as fluent f1 holds. It can be translated as follows:

LTrajectory(f1,t,f2,t+d) = 〈start〉t, f1 f1
∗ 〈end〉t + d, f1 =⇒ ∗ 〈end〉f2 (28)

While VLH does not give a model for Trajectory, it is not hard to construct
an intuitive model consistent with the other predicates:

Trajectory := {(f1, t, f2, t + d)|(∃a, b ∈ R+) a ≤ t ≤ t + d ≤ b and
(a, b] ∈ �f1�EC −→ (∃I ∈ �f2�EC)t + d ∈ I} (29)

A FST-model for LTrajectory(f1,t,f2,t+d) will be a segmentation of R+ with the
following conditions:

(∃Ii = (t, bi], Ij = (aj , t+d])(∀i ≤ p ≤ j)Ip |=FST f1 −→ {t+d} |=FST f2 (30)

EC → FST: If the antecedent of (30) is true, then the sequence I1 . . . Ij is part
of an unbroken stretch over which f holds. Let the start and end points of this
stretch be a and b from (29). Therefore, (a,b] ∈ �f�EC , fulfilling the antecedent
of the conditional contained in (29). Now from the consequent of (29), there is an
interval I ∈ �f2�EC , so all its subintervals, notably {t + d}, are in �f2�EC→FST .
By definition of 〈end〉t + d, (aj , t + d] ∈ �〈end〉f2�EC→FST . Relativized to the
segmentation given, (aj , t + d] ∈ �〈end〉f2�FST . Therefore {t + d}|=FST f2.

FST→EC: For an FST-model of LTrajectory(f1,t,f2,t+d) where I1 . . . In ↗ R+

and, supposing the antecedent contained in (29) is true, (t, bi], (aj , t + d] and all
the intervals between them are in �f1�FST (by construction of an FST-model.
Therefore, the consequent of (30) is true, so {t + d}|= f2, so {t + d} ∈ �f2�FST .
{t + d} is either a maximal interval for which f2 holds or is a subinterval of that
maximal interval. Either way, there is some I ∈ �f2�EC with t+d ∈ I.

While VLH (p.45) require a real-valued function of time in place of f2, and
while this can be implemented in FST as long as only a finite number of values
from this function are used as fluents, it is not clear that natural language

Between the Event Calculus and Finite State Temporality 123

semantics needs the precision of this real-valued function to address continuous
change. As will be seen in the next section, when dealing with type coercions
that involve adding elements to an event structure, it is not always clear in
advance what form these elements will have. An alternative in FST to the above
representation of continuous change is as follows:

f1 =⇒ f2↑ (31)

The above essentially says that if f1 is in a box, then f2↑ is in the same box,
or as long as f1 holds, f2 is increasing, or moving along some trajectory. For
type coercion, it will be useful to have a fluent that holds when the end of the
trajectory is reached, f2,MAX .

These fluents can be interpreted model-theoretically, relative to an underly-
ing function, representing trajectory or path taken, in the model. This is in line
with the approach of Kennedy and Levin [13], who propose that the semantics
of degree achievements (such as “the soup cooled”) rely on a “difference func-
tion”, a function that measures the amount an object changes along a scalar
dimension as a result of participating in an event. Certain functions describing
change will have an end-point or maximum. This may be contextually given, as
Fernando [10] assumes, or may be a natural feature of the scale against which
change is measured. Closed scales (such as “smooth”) have a natural maximum,
complete smoothness in this case [18].

3.4 Scenarios

The EC relates instantaneous and continuous change to natural language seman-
tics through scenarios, which “state the specific causal relationships holding in
a given situation” (VLH, p.43). Only the elements of the a scenario dealing with
change will be dealt with here.

A scenario is a conjunct of statements of the form:

1. Initially(f)
2. S(t) → Initiates(e, f, t)
3. S(t) →Terminates(e, f, t)
4. S(t) →Happens(e, t)
5. S(f1, f2, t, d) → Trajectory(f1, t, f2,d)

where S(t) is a conjunction of statements of the form HoldsAt(f, t). Element
5 is referred to as the “dynamics”, relating fluent f1 (viewed as a force), to the
change in f2 (viewed as a changing, partial object).

As with EC-predicates, each element of an EC-scenario can be translated
into FST. If S(t) is not a part of an element (for instance if one element of
the scenario is Initiates(e, f, t), as opposed to S(t)→ Initiates(e, f, t)), then the
equivalent element of the FST-scenario is the language given above as equivalent.
If S(t) is part of an element then the equivalent will be a constraint relating
fluents holding at a certain time to the language given above as equivalent. For
example, HoldsAt(f, t)→Happens(e, t) can be translated as follows:

124 D. Kelleher et al.

∗ 〈end〉 t,〈end〉 f =⇒ ∗
(e

∗
)e (32)

For the temporal fluents occurring in a string to have the correct ordering, one
further set of constraints is needed. In an FST-model, every interval is ordered
relative to every other interval by the “precedes” relation (<). A scenario will
contain the set of constraints:

∀I, I ′ in an FST-model such that I < I ′ : I’
∗

I =⇒ ∅ (33)

The above constraint says that if, in an FST-model, an interval I precedes
an interval I′, then any string with the fluent I′ preceding I will not be in the
language.

4 Type Coercion

Having developed the tools necessary to represent instantaneous and continuous
change in FST, these are now applied to the natural language semantics problem
of type coercion.

4.1 Eventualities vs. Events

The EC treats “events” as punctual occurrences that cause an instantaneous
change (a fluent becomes initiated or terminated). However, most occurrences
described as events have a more complex structure. Moens and Steedman [16]
(hereafter referred to as M&S) have proposed a three-part event structure, called
a “nucleus”, which consists of a preparatory process, a culmination, and a conse-
quent state. They note that all of these elements can be compound. The culmi-
nation “reaching the top of Mt. Everest” may have a number of processes such
as climbing, eating lunch, etc. as part of its preparatory process, and there may
be many consequent states.

Due to this, it is important to note that the discussion of coercion must have
a quite general character. If adding a consequent state to an event structure, the
question arises: what or which consequent state? For this reason, non-specific
fluents such as f3, g1 etc. will often be used to describe “sailent’ states or activities
that have been added to an event structure.

The EC implements a similar event structure to that of M&S which they call
“eventualities”, having the following form: (f1, f2, e, f3) where f1 is an activity, f2
is a fluent representing a partial object which changes under the influence of the
activity, e is a culminating event, and f3 is a consequent state.

Different approaches have used different terminologies for what are, essen-
tially, the same categories. What Vendler [19] called activities, achievements, and
accomplishments, M&S call processes, culminations, and culminated processes
respectively.

Between the Event Calculus and Finite State Temporality 125

4.2 Activity � Accomplishments

VLH (p.171) discuss the case of “additive coercion”, where a scenario is elab-
orated or added to. Alternative views of this type of coercion are given by
Pulman [17] and M&S. Pulman sees this as supplementing a process with a
consequent state (Pulman does not include culminating events in his ontology).
The activity of “swimming” would have a salient consequent state added, per-
haps as general as “has swum”. M&S propose that the process is bundled into a
point, with a new preparatory process and consequent state added. They cite the
example “has John worked in the garden?” as only making sense if John work-
ing in the garden was part of some plan, with the preparatory process being
whatever preparation was involved to work in the garden, the culmination being
the working in the garden viewed as a point, and the consequent state perhaps
being “has worked in the garden”.

Both these views can be accounted for in FST. In the first, the activity f1 is
augmented with a fluent representing the change in the partial object (swimming
augmented with the trajectory of the swim), a culminating event (finishing the
swim), and a consequent state (has swum). In alphabet terms:

Σ � Σ′ = Σ ∪ {f2↑, f2,MAX , (e,)e, f3} (34)

The scenario will also have to be augmented with general constraints of the
form:

f1 =⇒ f2↑ (35)

f2,MAX =⇒)e (36)

)e =⇒ f3 (37)

For M&S’s coercion to be implemented, f1, the original activity and internal
structure of some event, is deleted, and fluents representing its start and end
points are added, turning it into a point with no internal structure. A new
preparatory process, g1 is added, and a new consequent state, g3. In alphabet
terms:

Σ � Σ′ = Σ ∪ {g1, g2↑, g2,MAX , (e,)e, g3} − {f1} (38)

The scenario will be elaborated as follows:

g1 =⇒ g2↑ (39)

g2,MAX =⇒)e (40)

)e =⇒ g3 (41)

126 D. Kelleher et al.

4.3 Achievements � Accomplishments

As pointed out in M&S, the progressive needs a process (activity), or culminated
process (accomplishment) as “input”, so what to make of the following:

John was reaching the top (42)

“Reach the top” is usually seen as a culmination (achievement), punctual
with an associated consequent state. The progressive coerces this culmination
into a culminated process by adding a preparatory process, and focussing on
this.

For VLH (p.172), the achievement (-, -, e1, f3), where e1 would be the culmi-
nation (reaching the top), and f3 would be the consequent state of this (perhaps
being at the top), would be coerced into an accomplishment (g1, g2, e2, g3), where
g1 and g2 are “unknown parameters”, depending on what preparatory process is
being associated with the culmination. Presumably the culminations and conse-
quent states of “reach the top” viewed as an achievement and as an accomplish-
ment are the same. The addition of the fluents representing the preparatory
process and changing partial object means a dynamics must be added to the
scenario to relate these fluents.

To account for the addition of a preparatory process, and changing object in
FST, the fluents marking the beginning and ending of events (e and)e are asso-
ciated with a fluent proge which signifies that the event in question is ongoing:

I |= proge ⇐⇒ I |= (e or I |=)e or [(∃Ii, Ij)Ii < I < Ij andIi |= (e and Ij |=)e]

This fluent corresponds to g1 from the EC. Its addition to the alphabet
of FST will lead to a finer-grained segmentation, effectively giving the event,
previously viewed as punctual, an internal structure. In alphabetic terms:

Σ � Σ′ = Σ ∪ {proge, g2↑, g2,MAX , (d,)d, g3} − {f3} (43)

4.4 Accomplishments � Activities

M&S discuss the case of a culminated process being coerced into a process in
the presence of the progressive:

Roger was running a mile (44)

For this to happen, the culmination and consequent state must be “stripped
off”, leaving the preparatory process.

In VLH (p.172), this process is described as subtractive coercion, essentially
removing the last two elements from the event-nucleus, and removing statements
relating to the culmination and consequent state from the scenario. The same
can be achieved in FST by removing those constraints from the scenario that
“cause” the culminating event to happen at the maximum point in the trajectory

Between the Event Calculus and Finite State Temporality 127

of the run, and relate the consequent state to the occurrence of the culminating
event. In alphabetic terms:

Σ � Σ′ = Σ − {(e,)e, f3} (45)

Another way for this coercion to occur is if the direct object is a mass noun.
This would lead to a lack of end point in the trajectory, perhaps even a lack of
trajectory at all.

4.5 Points � Activities

As noted in M&S, the progressive requires a process as “input”, yet interpreta-
tions can be given for:

Harry was sneezing (46)

M&S see this as being coerced by iteration, referring to a number of sneezes,
rather than one sneeze.

Both Comrie [4] and Pulman [17] provide another interpretation for this
coercion, where what was viewed as a point is stretched into a process, having
internal structure.

VLH (p.175) deal with the first type, viewing it as a change from (-, -, e, -) to
(f1, -, -, -) or (f1, f2, -, -). While the EC needs to coerce an event into an activity
fluent (a method for this is provided in [12]), FST does not face this ontological
problem.

Events in FST can be represented by a multitude of fluents, providing dif-
ferent “perspectives” on events. Up to now (e)e have been used to mark the
start and end points of events, where we were not concerned with their internal
or overall structure. Not representing the internal structure leads to the events
being viewed as points. A fluent representing internal structure can be intro-
duced, and as a fluent with a model-theoretic definition, there are no ontological
obstacles to doing this.

To represent apoint-like eventbeing “stretched’ thefluentproge, definedabove,
is added. This represents the event in progress as a homogeneous, stative fluent.

To represent iteration, a fluent itere is defined, which holds of any interval
if two or more events happen within that interval. It can be thought of as a
homogeneous process. While a particular subinterval may not contain a sneeze,
it is considered part of the process of iteratively sneezing.

I |=FST itere ⇐⇒ (∃Ii < Ij < Ik < Il) s.t.

⎧
⎪⎪⎨

⎪⎪⎩

Ii |=FST (e

and Ij |=FST)e

and Ik |=FST (e

and Il |=FST)e

(47)

This coercion can be achieved by adding either proge or itere to the alphabet:

Σ � Σ′ = Σ ∪ {proge} (48)

Σ � Σ′ = Σ ∪ {itere} (49)

128 D. Kelleher et al.

4.6 States � Activities

Croft [5] gives the following example of a state being coerced into a process:

She is resembling her mother more and more every day (50)

Though the acceptability of this type of coercion varies, VLH (p.173) give an
account where a fluent representing the state “resembles her mother” is coerced
into an activity fluent. They argue against coercing the state into the changing
partial object, as might be expected given that increasing resemblance over time
could be viewed as a trajectory.

Since a state is homogeneous, there are no problems treating it as an activity
in FST. Activities and states are both represented by homogeneous fluents.

The activity fluent, which previously represented a state, must be related to
a changing, partial object (represented by f2) by some constraint set, leading to
the crucial difference between “resembles” and “is resembling more and more”.

5 Conclusion

The Event Calculus differs from other temporal representations by directly for-
malizing change, both instantaneous change as a result of events, and continuous
change as a result of some constant force. Section 3 described how EC-predicates
can be implemented as regular languages in FST. Furthermore, it was shown how
a model, with a finite segmentation of the real number line as domain, for these
FST-languages, could be formed from a model (with certain conditions exclud-
ing those models for which no finite segmentation exists), with the real number
line as domain, for the equivalent EC-predicates. This shows that if a natural
language semantics problem can be described in terms of change (or at least the
kind of change that the EC formalizes), then the full real number line is not
needed to model this problem.

Section 4 discusses type coercion, which the EC has been applied to. It is
shown how various types of coercion, implemented in the EC as changes in
scenario, or transformations of type (from fluents to events), can be imple-
mented in FST. Type coercions in FST can be viewed as changes in “focus” or
“perspective”, formalized as changes in the alphabet from which strings are
drawn.

Acknowledgement. This research is enhanced by support from Science Foundation
Ireland through the CNGL Programme (Grant 12/CE/I2267) in the ADAPT Cen-
tre (www.adaptcentre.ie) at Trinity College Dublin. The ADAPT Centre for Digital
Content Technology is funded under the SFI Research Centres Programme (Grant
13/RC/2106) and is co-funded under the European Regional Development Fund.

http://adaptcentre.ie/

Between the Event Calculus and Finite State Temporality 129

References

1. Allen, J.F.: An interval-based representation of temporal knowledge. IJCAI 1, 221–
226 (1981)

2. Allen, J.F., Ferguson, G.: Actions and events in interval temporal logic. In: Stock,
O. (ed.) Spatial and Temporal Reasoning, pp. 205–245. Springer, Dordrecht (1997)

3. Bennett, M., Partee, B.H.: Toward the logic of tense and aspect in English. Wiley
Online Library (1978)

4. Comrie, B.: Aspect: An Introduction to the Study of Verbal Aspect and Related
Problems. Cambridge University Press, Cambridge (1976)

5. Croft, W.: The structure of events. In: Tomasello, M. (ed.) The New Psychology
of Language, Chap. 3. Lawrence Erlbaum Associates, Mahwah (1998)

6. Fernando, T.: Finite-state temporal projection. In: Ibarra, O.H., Yen, H.-C. (eds.)
CIAA 2006. LNCS, vol. 4094, pp. 230–241. Springer, Heidelberg (2006)

7. Fernando, T.: Temporal propositions as regular languages. In: 6th International
Workshop on Finite-State Methods and Natural Language Processing, pp. 132–48
(2008)

8. Fernando, T.: Partitions representing change homogeneously. In: Aloni, M., Franke,
M., Roelofsen, F. (eds.) A festschrift for Jeroen Groenendijk, Martin Stokhof, and
Frank Veltman, pp. 91–95. Onbekend (2013)

9. Fernando, T.: Segmenting temporal intervals for tense and aspect. In: The 13th
Meeting on the Mathematics of Language, p. 30 (2013)

10. Fernando, T.: Incremental semantic scales by strings. In: EACL 2014, p. 63 (2014)
11. Halpern, J.Y., Shoham, Y.: A propositional modal logic of time intervals. J. ACM

(JACM) 38(4), 935–962 (1991)
12. Hamm, F., van Lambalgen, M.: Nominalization, the progressive and event calculus.

Linguist. Philos. 26, 381–458 (2003)
13. Kennedy, C., Levin, B.: Measure of change: the adjectival core of degree achieve-

ments. In: McNally, L., Kennedy, C. (eds.) Adjectives and Adverbs: Syntax, Seman-
tics and Discourse, pp. 156–182. Oxford University Press, Oxford (2008)

14. Kowalski, R., Sergot, M.: A logic-based calculus of events. In: Schmidt, J.W.,
Thanos, C. (eds.) Foundations of Knowledge Base Management, pp. 23–55.
Springer, Heidelberg (1989)

15. van Lambalgen, M., Hamm, F.: The Proper Treatment of Events. Wiley, New York
(2005)

16. Moens, M., Steedman, M.: Temporal ontology and temporal reference. Comput.
Linguist. 14(2), 15–28 (1988)

17. Pulman, S.G.: Aspectual shift as type coercion. Trans. Philol. Soc. 95(2), 279–317
(1997)

18. Solt, S.: Measurement scales in natural language. Lang. Linguist. Compass 9(1),
14–32 (2015)

19. Vendler, Z.: Verbs and times. The Philos. Rev. 66, 143–160 (1957)

A Modal Representation of Graded
Medical Statements

Hans-Ulrich Krieger1(B) and Stefan Schulz2

1 German Research Center for Artificial Intelligence (DFKI),
Saarbrücken, Germany

krieger@dfki.de
2 Institute of Medical Informatics, Medical University of Graz, Graz, Austria

stefan.schulz@medunigraz.at

Abstract. Medical natural language statements uttered by physicians
are usually graded , i.e., are associated with a degree of uncertainty about
the validity of a medical assessment. This uncertainty is often expressed
through specific verbs, adverbs, or adjectives in natural language. In this
paper, we look into a representation of such graded statements by pre-
senting a simple non-normal modal logic which comes with a set of modal
operators, directly associated with the words indicating the uncertainty
and interpreted through confidence intervals in the model theory. We
complement the model theory by a set of RDFS-/OWL 2 RL-like entail-
ment (if-then) rules, acting on the syntactic representation of modalized
statements. Our interest in such a formalization is related to the use
of OWL as the de facto standard in (medical) ontologies today and its
weakness to represent and reason about assertional knowledge that is
uncertain or that changes over time. The approach is not restricted to
medical statements, but is applicable to other graded statements as well.

1 Introduction and Background

Medical natural language statements uttered by physicians or other health pro-
fessionals and found in medical examination letters are usually graded , i.e., are
associated with a degree of uncertainty about the validity of a medical assess-
ment. This uncertainty is often expressed through specific verbs, adverbs, or
adjectives in natural language (which we will call gradation words). E.g., Dr. X
suspects that Y suffers from Hepatitis or The patient probably has Hepatitis or
(The diagnosis of) Hepatitis is confirmed.

In this paper, we look into a representation of such graded statements by
presenting a simple non-standard modal logic which comes with a small set of
partially-ordered modal operators, directly associated with the words indicating
the uncertainty and interpreted through confidence intervals in the model the-
ory. The approach currently only addresses modalized propositional formulae in
negation normal form which can be seen as a canonical representation of natural
language sentences of the above form (a kind of a controlled natural language).

Our interest in such a formalization is related to the use of OWL in our
projects as the de facto standard for (medical) ontologies today and its weakness
c© Springer-Verlag Berlin Heidelberg 2016
A. Foret et al. (Eds.): FG 2015/2016, LNCS 9804, pp. 130–146, 2016.
DOI: 10.1007/978-3-662-53042-9 8

A Modal Representation of Graded Medical Statements 131

to represent and reason about assertional knowledge that is uncertain [15] or
that changes over time [12]. There are two principled ways to address such a
restriction: either by sticking with the existing formalism (viz., OWL) and trying
to find an encoding that still enables some useful forms of reasoning [15]; or by
deviating from a defined standard in order to arrive at an easier, intuitive, and
less error-prone representation [12].

Here, we follow the latter avenue, but employ and extend the standard entail-
ment rules from [6,18] for positive binary relation instances in RDFS and OWL
towards modalized n-ary relation instances, including negation. These entailment
rules talk about, e.g., subsumption, class membership, or transitivity, and have
been found useful in many applications. The proposed solution has been imple-
mented in HFC [13], a forward chaining engine that builds Herbrand models
which are compatible with the open-world view underlying OWL. The approach
presented in this paper is clearly not restricted to medical statements, but is
applicable to other graded statements as well (including trust), e.g., technical
diagnosis (The engine is probably overheated) or more general in everyday con-
versation (I’m pretty sure that X has signed a contract with Y) which can be
seen as the common case (contrary to true universal statements).

2 Graded Medical Statements: OWL vs. Modalized
Representation

We note here that our initial modal operators were inspired by the qualitative
information parts of diagnostic statements from [15] shown in Fig. 1, but we
might have chosen other operators, capturing the meaning of the gradation words
used in the examples at the beginning of Sect. 1 (e.g., probably).

Fig. 1. Vague schematic mappings of the qualitative information parts excluded (E),
unlikely (U), not excluded (N), likely (L), and confirmed (C) to confidence intervals,
as used in this paper. Figure taken from [15].

These qualitative parts were used in statements about, e.g., liver inflam-
mation with varying levels of detail. From this, we want to infer that, e.g., if
Hepatitis is confirmed then Hepatitis is likely but not Hepatitis is unlikely .
And if Viral Hepatitis B is confirmed , then both Viral Hepatitis is confirmed
and Hepatitis is confirmed (generalization). Things “turn around” when we look

132 H.-U. Krieger and S. Schulz

at the adjectival modifiers excluded and unlikely : if Hepatitis is excluded then
Hepatitis is unlikely , but not Hepatitis is not excluded . Furthermore, if Hepati-
tis is excluded , then both Viral Hepatitis is excluded and Viral Hepatitis B is
excluded (specialization). The set of plausible entailments for this kind of graded
reasoning is depicted in Fig. 2.

Fig. 2. Statements about liver inflammation with varying levels of detail: Viral Hepati-
tis B (vHB) implies Viral Hepatitis (vH) which implies Hepatitis (H). The matrix
depicts entailments considered plausible, based on the inferences that follow from Fig. 1.
Hepatitis and its subclasses can be easily replaced by other medical situations/diseases.
Figure taken from [15].

[15] consider five encodings (one outside the expressivity of OWL), from
which only two were able to fully reproduce the inferences from Fig. 2. Let us
quickly look on approach 1, called existential restriction, before we informally
present its modal counterpart (we will use abstract description logic syntax
here [2]):

HepatitisSituation ≡ ClinicalSituation � ∃hasCondition.Hepatitis

% Hepatitis subclass hierarchy

ViralHepatitisB � ViralHepatitis � Hepatitis

% vagueness via two subclass hierarchies

IsConfirmed � IsLikely � IsNotExcluded IsExcluded � IsUnlikely

% a diagnostic statement about Hepatitis

BeingSaidToHaveHepatitisIsConfirmed ≡ DiagnosticStatement�
∀hasCertainty.IsConfirmed � ∃isAboutSituation.HepatitisSituation

A Modal Representation of Graded Medical Statements 133

Standard OWL reasoning under this representation then ensures that, for
instance,

BeingSaidToHaveHepatitsIsConfirmed � BeingSaidToHaveHepatitisIsLikely

is the case, exactly one of the plausible inferences from Fig. 2.
The encodings in [15] were quite cumbersome as the primary interest was

to stay within the limits of the underlying calculus (OWL). Besides coming up
with complex encodings, only minor forms of reasoning were possible, viz., sub-
sumption reasoning. These disadvantages are a result of two conscious decisions:
OWL only provides unary and binary relations (concepts and roles) and comes
up with a (mostly) fixed set of entailment/tableaux rules.

In our approach, however, the qualitative information parts from Fig. 1 are
first class citizens of the object language (the modal operators) and diagnos-
tic statements from the Hepatitis use case are expressed through the binary
property suffersForm between p (patients, people) and d (diseases, diagnoses).
The plausible inferences are then simply a byproduct of the instantiation of the
entailment rule schemas (G) from Sect. 5.1, and (S1) and (S0) from Sect. 5.2 for
property suffersForm (the rule variables are universally quantified; � = universal
truth; C = confirmed ; L = likely), e.g.,

(S1)�ViralHepatitisB(d) ∧ ViralHepatitisB � ViralHepatitis → �ViralHepatitis(d)
(G)CsuffersFrom(p, d) → LsuffersFrom(p, d)

Two things are worth to be mentioned here. Firstly , not only OWL-like prop-
erties (binary relations) can be graded, such as CsuffersFrom(p, d) (= it is con-
firmed that p suffers from d), but also class membership (unary relations), e.g.,
CViralHepatitisB(d) (= it is confirmed that d is Viral Hepatitis B). However,
as the original OWL example above is unable to make use of any modals, we
employ a special modal � here:�ViralHepatitisB(d). Secondly , modal operators
are only applied to assertional knowledge, involving individuals (the ABox in
OWL)—neither axioms about classes (TBox) nor properties (RBox) are being
affected by modals, as they are supposed to express universal truth.

3 Confidence of Statements and Confidence Intervals

We address the confidence of an asserted medical statement [15] through graded
modalities applied to propositional formulae: E (excluded), U (unlikely), N (not
excluded), L (likely), and C (confirmed). For various (technical) reasons, we add
a wildcard modality? (unknown), a complementary failure modality! (error),
plus two further modalities to syntactically state definite truth and falsity: �
(true) and ⊥ (false). Let � now denotes the set of all modalities:

� = {?, !,�,⊥, E, U,N,L,C}
A measure function

μ : � �→ [0, 1] × [0, 1]

134 H.-U. Krieger and S. Schulz

is a mapping which returns the associated confidence interval [l, h] for a modality
from � (l ≤ h). We presuppose that1

• μ(?) = [0, 1] • μ(!) = ∅ • μ(�) = [1, 1] • μ(⊥) = [0, 0]

In addition, we define two disjoint subsets of �, called

• 1 = {�, C, L,N} • 0 = {⊥, E, U}
and again make a presupposition: the confidence intervals for modals from 1 end
in 1, whereas the confidence intervals for 0 modals always start with 0. It is
worth noting that we do not make use of μ in the syntax of the modal language
(for which we employ the modalities from �), but in the semantics when dealing
with the satisfaction relation of the model theory (see Sect. 4).

We have talked about confidence intervals now several times without saying
what we actually mean by this. Suppose that a physician says that it is confirmed
(= C) that patient p suffers from disease d, given a set of recognized symptoms
S = {s1, . . . , sk}: CsuffersFrom(p, d).

Assuming that a different patient p′ shows the same symptoms S (and only
S, and perhaps further symptoms which are, however, independent from S), we
would assume that the same doctor would diagnose CsuffersFrom(p′, d).

Even an other, but similar trained physician is supposed to grade the two
patients similarly . This similarity which originates from patients showing the
same symptoms and from physicians being taught at the same medical school is
addressed by confidence intervals and not through a single (posterior) probabil-
ity, as there are still variations in diagnostic capacity and daily mental state of
the physician. By using intervals (instead of single values), we can usually reach
a consensus among people upon the meaning of gradation words, even though
the low/high values of the confidence interval for, e.g., confirmed might depend
on the context.

Being a bit more theoretic, we define a confidence interval as follows. Assume
a Bernoulli experiment [11] that involves a large set of n patients P sharing
the same symptoms S. W.r.t. our example, we would like to know whether
suffersFrom(p, d) or ¬suffersFrom(p, d) is the case for every patient p ∈ P , shar-
ing S. Given a Bernoulli trials sequence X = 〈x1, . . . , xn〉 with indicator random
variables xi ∈ {0, 1} for a patient sequence 〈p1, . . . , pn〉, we can approximate the
expected value E for suffersFrom being true, given disease d and background
symptoms S by the arithmetic mean A:

E[X] ≈ A[X] =
∑n

i=1 xi

n

Due to the law of large numbers, we expect that if the number of elements in
a trials sequence goes to infinity, the arithmetic mean will coincide with the
expected value:

E[X] = lim
n→∞

∑n
i=1 xi

n
1 Recall that an interval is a set of real numbers, together with a total ordering relation

(e.g., ≤) over the elements, thus ∅ is a perfect, although degraded interval.

A Modal Representation of Graded Medical Statements 135

Clearly, the arithmetic mean for each new finite trials sequence is different, but
we can try to locate the expected value within an interval around the arithmetic
mean:

E[X] ∈ [A[X] − ε1,A[X] + ε2]

For the moment, we assume ε1 = ε2, so that A[X] is in the center of this interval
which we will call from now on confidence interval .

Coming back to our example and assuming μ(C) = [0.9, 1],
CsuffersFrom(p, d) can be read as being true in 95 % of all cases known to
the physician, involving patients p potentially having disease d and sharing the
same prior symptoms (evidence) s1, . . . , sk:

∑
p∈P Prob(suffersFrom(p, d)|s1, . . . , sk)

n
≈ 0.95

The variance of ±5% is related to varying diagnostic capabilities between (com-
parative) physicians, daily mental form, undiscovered important symptoms or
examinations which have not been carried out (e.g., lab values), or perhaps even
the physical stature of the patient which unconsciously affects the final diagno-
sis, etc., as elaborated above. Thus the individual modals from � express (via
μ) different forms of the physician’s confidence, depending on the set of already
acquired symptoms as (potential) explanations for a specific disease.

4 Model Theory and Negation Normal Form

Let C denote the set of constants that serve as the arguments of a relation
instance. In order to define basic n-ary propositional formulae (ground atoms,
propositional letters), let p(c) abbreviates p(c1, . . . , cn), for some c1, . . . , cn ∈ C,
given length(c) = n. In case the number of arguments do not matter, we some-
times simply write p, instead of, e.g., p(c, d) or p(c). As before, we assume
� = {?, !,�,⊥, E, U,N,L,C}. We inductively define the set of well-formed for-
mulae φ of our modal language as follows:

φ ::= p(c) | ¬φ | φ ∧ φ′ | φ ∨ φ′ | �φ

4.1 Simplification and Normal Form

We now syntactically simplify the set of well-formed formulae φ by restricting
the uses of negation and modalities to the level of propositional letters p and
call the resulting language Λ:

π ::= p(c) | ¬p(c)
φ ::= π | �π | φ ∧ φ′ | φ ∨ φ′ |

To do so, we need the notion of a complement modal δC for every δ ∈ �, where

μ(δC) := μ(δ)C = μ(?) \ μ(δ) = [0, 1] \ μ(δ)

136 H.-U. Krieger and S. Schulz

I.e., μ(δC) is defined as the complementary interval of μ(δ) (within the bounds
of [0, 1], of course). For example, E and N (excluded, not excluded) or ? and !
(unknown, error) are already existing complementary modals. We also require
mirror modals δM for every δ ∈ � whose confidence interval μ(δM) is derived
by “mirroring” μ(δ) to the opposite site of the confidence interval, either to the
left or to the right:

if μ(δ) = [l, h] then μ(δM) := [1 − h, 1 − l]

For example, E and C (excluded, confirmed) or � and ⊥ (top, bottom) are
mirror modals. In order to transform φ into its negation normal form, we need
to apply simplification rules a finite number of times (until rules are no longer
applicable). We depict those rules by using the � relation, read as formula �
simplified formula:

1. ?φ � ε % ?φ is not informative at all, but its existence should alarm us

2. ¬¬φ � φ
3. ¬(φ ∧ φ′) � ¬φ ∨ ¬φ′
4. ¬(φ ∨ φ′) � ¬φ ∧ ¬φ′
5. ¬�φ � �Cφ (example: ¬Eφ = Nφ)
6. �¬φ � �Mφ (example: E¬φ = Cφ)

Clearly, the mirror modals δM are not necessary as long as we explicitly allow
for negated statements, and thus case 6 can, in principle, be dropped.

What is the result of simplifying �(φ ∧ φ′) and �(φ ∨ φ′)? Let us start with
the former case and consider as an example the statement about an engine that
a mechanical failure m and an electrical failure e is confirmed: C(m ∧ e). It
seems plausible to simplify this expression to Cm ∧ Ce. Commonsense tells us
furthermore that neither Em nor Ee is compatible with this description.

Now consider the “opposite” statement E(m∧e) which must not be rewritten
to Em ∧ Ee, as either Cm or Ce is well compatible with E(m ∧ e). Instead, we
rewrite this kind of “negated” statement as Em ∨ Ee, and this works fine with
either Cm or Ce.

In order to address the other modal operators, we generalize these plausible
inferences by making a distinction between 0 and 1 modals (see Sect. 3):

7a. 0(φ ∧ φ′) � 0φ ∨ 0φ′

7b. 1(φ ∧ φ′) � 1φ ∧ 1φ′

Now let us consider disjunction inside the scope of a modal operator. As we do
allow for the full set of Boolean operators, we are allowed to deduce

8. �(φ ∨ φ′) � �(¬(¬(φ ∨ φ′))) � �(¬(¬φ ∧ ¬φ′)) � �M(¬φ ∧ ¬φ′)

This is, again, a conjunction, so we apply schemas 7a and 7b, giving us

8a. 0(φ∨φ′) � 0M(¬φ∧¬φ′) � 1(¬φ∧¬φ′) � 1¬φ∧1¬φ′ � 1Mφ∧1Mφ′ � 0φ∧0φ′

8b. 1(φ∨φ′) � 1M(¬φ∧¬φ′) � 0(¬φ∧¬φ′) � 0¬φ∨0¬φ′ � 0Mφ∨0Mφ′ � 1φ∨1φ′

Note how the modals from 0 in 7a and 8a act as a kind of negation to turn the
logical operators into their counterparts, similar to de Morgan’s law.

A Modal Representation of Graded Medical Statements 137

4.2 Model Theory

In the following, we extend the standard definition of modal (Kripke) frames and
models [3] for the graded modal operators from � by employing the measure
function μ and focussing on the minimal definition for φ in Λ. A frame F for
the probabilistic modal language Λ is a pair

F = 〈W,�〉
where W is a non-empty set of worlds (or situations, states, points, vertices) and
� a family of binary relations over W × W, called accessibility relations. Note
that we have overloaded � (and each δ ∈ �) in that it refers to the modals used
in the syntax of Λ, but also to depict the binary relations, connecting worlds.

A model M for the probabilistic modal language Λ is a triple

M = 〈F ,V, μ〉
such that F is a frame, V a valuation, assigning each proposition φ a subset
of W, viz., the set of worlds in which φ holds, and μ a mapping, returning the
confidence interval for a given modality from �. Note that we only require a
definition for μ in M (the model, but not in the frame), as F represent the
relational structure without interpreting the edge labeling (the modal names) of
the graph.

The satisfaction relation |=, given a model M and a specific world w is
inductively defined over the set of well-formed formulae of Λ in negation normal
form (remember π:: = p(c) | ¬p(c)):

1. M, w |= p(c) iff w ∈ V(p(c)) and w �∈ V(¬p(c))
2. M, w |= ¬p(c) iff w ∈ V(¬p(c)) and w �∈ V(p(c))
3. M, w |= φ ∧ φ′ iff M, w |= φ and M, w |= φ′

4. M, w |= φ ∨ φ′ iff M, w |= φ or M, w |= φ′

5. for all δ ∈ �: M, w |= δπ iff #{u|(w,u)∈δ and M,u|=π}
#{u|(w,u)∈δ′ and δ′∈�} ∈ μ(δ)

The last case of the satisfaction relation addresses the modals: for a world w,
we look for the successor states u that are directly reachable via δ and in which
π holds, and divide the number of such states by the number of all worlds that
are directly reachable from w. This number between 0 and 1 must lie in the
confidence interval μ(δ) of δ in order to satisfy δπ, given M, w.

It is worth noting that the satisfaction relation above differs in its handling
of M, w |= ¬p(c), as negation is not interpreted through the absence of p(c)
(M, w �|= p(c)), but through the existence of ¬p(c). This treatment addresses
the open-world nature in OWL and the evolvement of a (medical) domain over
time.

We also note that the definition of the satisfaction relation for modalities
(last clause) is related to the possibility operators Mk· (= ♦≥k·; k ∈ N) [4] and
counting modalities · ≥ n [1], used in modal logic characterizations of description
logics with cardinality restrictions.

138 H.-U. Krieger and S. Schulz

4.3 Well-Behaved Frames

As we will see later, it is handy to assume that the graded modals are arranged
in a kind of hierarchy—the more we move “upwards” in the hierarchy, the more
a statement in the scope of a modal becomes uncertain. In order to address this,
we slightly extend the notion of a frame by a third component � ⊆ � × �, a
partial order between modalities:

F = 〈W,�,�〉

Let us consider the following modal hierarchy that we build from the set � of
already introduced modals:

!

�

⊥

C

E

L

U

N

?

This graphical representation is just a compact way to specify a set of 33
binary relation instances over �, such as, e.g., � � �, � � N , C � N , ⊥ � ?,
or ! � ?. The above mentioned form of uncertainty is expressed by the measure
function μ in that the associated confidence intervals become larger:

if δ � δ′ then μ(δ) ⊆ μ(δ′)

In order to arrive at a proper and intuitive model-theoretic semantics which
mirrors intuitions such as if φ is confirmed (Cφ) then φ is likely (Lφ), we will
focus here on well-behaved frames F which enforce the existence of edges in W,
given � and δ, δ↑ ∈ �:

if (w, u) ∈ δ and δ � δ↑ then (w, u) ∈ δ↑

However, by imposing this constraint, we also need to adapt the last case of the
satisfiability relation:

5. for all δ ∈ �: M, w |= δπ iff #{u|(w,u)∈δ↑,δ
δ↑, and M,u|=π}
#{u|(w,u)∈δ′ and δ′∈�} ∈ μ(δ)

Not only are we scanning for edges (w, u) labeled with δ and for successor states u
of w in which π holds in the denominator (original definition), but also take into
account edges marked with more general modals δ↑, s.t. δ↑ � δ. This mechanism
implements a kind of built-in model completion that is not necessary in ordinary
modal logics as they deal with only a single relation (viz., unlabeled arcs) that
connects elements from W and the two modals ♦ and � are defined in the usual
dual way: �φ ≡ ¬♦¬φ.

A Modal Representation of Graded Medical Statements 139

5 Entailment Rules

This section addresses a restricted subset of entailment rules which will unveil
new (or implicit) knowledge from graded medical statements. Recall that these
kind of statements (in negation normal form) are a consequence of the application
of simplification rules as depicted in Sect. 4.1. Thus, we assume a pre-processing
step here that “massages” more complex statements that arise from a representa-
tion of graded (medical) statements in natural language. The entailments which
we will present in a moment can either be directly implemented in a tuple-based
reasoner, such as HFC, or in triple-based engines (e.g., Jena, OWLIM) which
need to reify the medical statements in order to be compliant with the RDF
triple model.

5.1 Modal Entailments

The entailments presented in this section deal with plausible inference centered
around modals δ, δ′ ∈ �, some of them partly addressed in [15] in a pure OWL
setting. We use the implication sign → to depict the entailment rules:

lhs → rhs

which act as completion (or materialization) rules the way as described in, e.g.,
[6,18], and used in today’s semantic repositories. We sometimes even use the bi-
conditional ↔ to address that the LHS and the RHS are semantically equivalent,
but will indicate the direction that should be used in a practical setting. As
before, we define π ::= p(c) | ¬p(c).

We furthermore assume that for every modal δ ∈ �, a complement modal
δC and a mirror modal δM exist (see Sect. 4.1).

Lift
(L) π ↔ �π

This rule interprets propositional statements as special modal formulae. It might
be dropped and can be seen as a pre-processing step. We have used it in the
Hepatitis example above. Usage: left-to-right direction.

Generalize
(G) δπ ∧ δ � δ′ → δ′π

This rule schema can be instantiated in various ways, using the modal hierarchy
from Sect. 4.3; e.g., �π → Cπ, Cπ → Lπ, or Eπ → Uπ. It has been used in the
Hepatitis example.

140 H.-U. Krieger and S. Schulz

Complement
(C) ¬δπ ↔ δCπ

In principle, (C) is not needed in case the statement is already in negation
normal form. This schema might be useful for natural language paraphrasing
(explanation). Given �, there are two possible instantiations, viz., Eπ ↔ ¬Nπ
and Nπ ↔ ¬Eπ (note: μ(E) ∪ μ(N) = [0, 1]).

Mirror
(M) δ¬π ↔ δMπ

Again, (M) is in principle not needed as long as the modal proposition is in
negation normal form, since we do allow for negated propositional statements
¬p(c). This schema might be useful for natural language paraphrasing (explana-
tion). For �, there are six possible instantiations, viz., Eπ ↔ C¬π, Cπ ↔ E¬π,
Lπ ↔ U¬π, Uπ ↔ L¬π, �π ↔ ⊥¬π, and ⊥π ↔ �¬π.

Uncertainty
(U) δπ ∧ ¬δπ ↔ δπ ∧ δCπ ↔?π

The co-occurrence of δπ and ¬δπ does not imply logical inconsistency (proposi-
tional case: π ∧ ¬π), but leads to complete uncertainty about the validity of π.
Remember that μ(?) = μ(δ) ∪ μ(δC) = [0, 1] (usage: left-to-right direction):

0 1

μ : |—δC—|——δ——|
π π

Negation

(N) δ(π ∧ ¬π) ↔ δπ ∧ δ¬π ↔ δπ ∧ δMπ ↔ δM¬π ∧ δMπ ↔ δM(π ∧ ¬π)

(N) shows that δ(π∧¬π) can be formulated equivalently using the mirror modal:

0 1

μ : |—δM—|——|— δ —|
π ∧ ¬π π ∧ ¬π

In general, (N) is not the modal counterpart of the law of non-contradiction,
as π ∧ ¬π is usually afflicted by vagueness, meaning that from δ(π ∧ ¬π), we
can not infer that π ∧¬π is the case for the concrete example in question (recall
the intention behind the confidence intervals; see Sect. 3). There is one notable
exception, involving the � and ⊥ modals. This is formulated by the next entail-
ment rule.

A Modal Representation of Graded Medical Statements 141

Error
(E) �(π ∧ ¬π) ↔ ⊥(π ∧ ¬π) → !(π ∧ ¬π)

(E) is the modal counterpart of the law of non-contradiction (recall: � = ⊥M

and ⊥ = �M). For this reason and by definition, the error (or failure) modal !
from Sect. 3 comes into play here. The modal ! can serve as a hint to either stop a
computation the first time it occurs or to continue reasoning, but to syntactically
memorize the ground atoms (viz., π and ¬π) which have led to an inconsistency.
Usage: left-to-right direction.

5.2 Subsumption Entailments

As before, we define two subsets of �, called 1 = {�, C, L,N} and 0 = {⊥, E, U},
thus 1 and 0 effectively become

1 = {�, C, L,N,UC} 0 = {⊥, U,E,CC, LC, NM}
due to the use of complement modals δC and mirror modals δM for every base
modal δ ∈ � and by assuming that E = NC, E = CM, U = LM, and ⊥ = �M,
together with the four “opposite” cases.

Now let � abbreviate relation subsumption as known from description log-
ics and realized in OWL through rdfs:subClassOf (class subsumption) and
rdfs:subPropertyOf (property subsumption). Given these remarks, we define
two further very practical and plausible modal entailments which can be seen as
the modal extension of the entailment rules (rdfs9) (for classes) and (rdfs7) (for
properties) in RDFS; see [6].

(S1) 1p(c) ∧ p � q → 1q(c) (S0) 0q(c) ∧ p � q → 0p(c)

Note how the use of p and q switches in the antecedent and the consequent, even
though p � q holds in both cases. Note further that propositional statements
π are restricted to the positive case p(c) and q(c), as their negation in the
antecedent will not lead to any valid entailments. Here are four instantiations of
(S0) and (S1) (remember, C ∈ 1 and E ∈ 0):

CViralHepatitisB(x) ∧ ViralHepatitisB � ViralHepatitis → CViralHepatitis(x)
EHepatitis(x) ∧ ViralHepatitis � Hepatitis → EViralHepatitis(x)
CdeeplyEnclosedIn(x, y) ∧ deeplyEnclosedIn � containedIn → CcontainedIn(x, y)
EcontainedIn(x, y) ∧ superficiallyLocatedIn � containedIn

→ EsuperficiallyLocatedIn(x, y)

5.3 Extended RDFS and OWL Entailments

In this section, we will consider some of the entailment rules for RDFS [6] and
a restricted subset of OWL [18]. Remember that modals only head literals π,
neither TBox nor RBox axioms. Concerning the original entailment rules, we will
distinguish four principal cases to which the extended rules belong (we will only
consider the unary and binary case here as used in description logics/OWL):

142 H.-U. Krieger and S. Schulz

1. TBox and RBox axiom schemas will not undergo a modal extension;
2. rules get extended in the antecedent;
3. rules take over the modal from the antecedent to the consequent;
4. rules aggregate several modals from the antecedent in the consequent.

We will illustrate the individual cases in the following subsections with exam-
ples by using a kind of description logic syntax. Clearly, the set of extended
entailments depicted here is not complete.

Case-1 Rules: No Modals. Entailment rule rdfs11 from [6] deals with class
subsumption: C � D ∧ D � E → C � E. As this is a terminological axiom schema,
the rule stays constant in the modal domain. Example:

ViralHepatitisB � ViralHepatitis ∧ ViralHepatitis � Hepatitis

→ ViralHepatitisB � Hepatitis

Case-2 Rules: Modals on LHS, No or � Modals on RHS. The following
original rule rdfs3 from [6] imposes a range restriction on objects of binary ABox
relation instances: ∀P.C ∧ P(x, y) → C(y).

The extended version (which we call Mrdfs3) needs to address the proposition
in the antecedent, but must not change the consequent (even though we always
use the � modality here for typing; see Sect. 2):

(Mrdfs3) ∀P.C ∧ δP(x, y) → �C(y)

Example: ∀suffersFrom.Disease ∧ LsuffersFrom(x, y) → �Disease(y)

Case-3 Rules: Keeping LHS Modals on RHS. Inverse properties switch
their arguments [18]: P ≡ Q− ∧ P(x, y) → Q(y, x).

The extended version of rdfp8 simply keeps the modal operator:

(Mrdfp8) P ≡ Q− ∧ δP(x, y) → δQ(y, x)

Example: containedIn ≡ contains− ∧ CcontainedIn(x, y) → Ccontains(y, x)

Case-4 Rules: Aggregating LHS Modals on RHS. Now comes the most
interesting case of modalized RDFS/OWL entailment rules that offers several
possibilities on a varying scale between skeptical and credulous entailments,
depending on the degree of uncertainty, as expressed by the measuring function
μ of the modal operator. Consider the original rule rdfp4 from [18] for transitive
properties P: P+ � P ∧ P(x, y) ∧ P(y, z) → P(x, z).

How does the modal on the RHS of the extended rule look like, depending
on the two LHS modals? There are several possibilities. By operating directly
on the modal hierarchy , we are allowed to talk about, e.g., the least upper bound
or the greatest lower bound of δ and δ′. When taking the associated confidence
intervals into account, we might even play with the low and high number of

A Modal Representation of Graded Medical Statements 143

the intervals, say, by applying the arithmetic mean or simply by multiplying the
corresponding numbers.

Let us first consider the general rule from which more specialized versions
can be derived, simply by instantiating the combination operator �:

(Mrdfp4) P+ � P ∧ δP(x, y) ∧ δ′P(y, z) → (δ � δ′)P(x, z)

Here is an instantiation of Mrdfp4 dealing with the transitive relation contains
from above: Ccontains(x, y) ∧ Lcontains(y, z) → (C � L)contains(x, z).

What is the result of C � L here? It depends. Probably both on the appli-
cation domain and the epistemic commitment one is willing to accept about the
“meaning” of gradation words/modal operators. To enforce that � is at least
both commutative and associative is probably a good idea, making the sequence
of modal clauses order-independent.

5.4 Custom Entailments

Custom entailments are inference rules that are not derived from universal non-
modalized RDFS and OWL entailment rules (Sect. 5.3), but have been formu-
lated to capture the domain knowledge of experts (e.g., physicians). Here is an
example. Consider that Hepatitis B is an infectious disease:

ViralHepatitisB � InfectiousDisease � Disease

and note that there exist vaccines against it. Assume that the liver l of patient p
quite hurts (modal C), but p has been definitely vaccinated (modal �) against
Hepatitis B before:

ChasPain(p, l) ∧ �vaccinatedAgainst(p,ViralHepatitisB)

Given that p received a vaccination, the following custom rule will not fire (x
and y below are now universally-quantified variables; z an existentially-quantified
RHS-only variable):

�Patient(x) ∧ �Liver(y) ∧ ChasPain(x, y) ∧ UvaccinatedAgainst(x, ViralHepatitisB)

→ NViralHepatitisB(z) ∧ NsuffersFrom(x, z)

Now assume another person p′ that is pretty sure (s)he was never vaccinated:

EvaccinatedAgainst(p′,ViralHepatitisB)

Given the above custom rule, we are allowed to infer that (h instantiation of z)

NViralHepatitisB(h) ∧ NsuffersFrom(p′, h)

The subclass axiom from above thus assigns

N InfectiousDisease(h)

so that we can query for patients for whom an infectious disease is not unlikely ,
in order to initiate appropriate methods (e.g., further medical investigations).

144 H.-U. Krieger and S. Schulz

6 Related Approaches and Remarks

It is worth noting to state that this paper is interested in the representation of
and reasoning with uncertain assertional knowledge, and neither in dealing with
vagueness found in natural language (very small), nor in handling defaults and
exceptions in terminological knowledge (penguins can’t fly).

To the best of our knowledge, the modal logic presented in this paper uses
for the first time modal operators for expressing the degree of (un)certainty of
propositions. These modal operators are interpreted in the model theory through
confidence intervals, by using a measure function μ. From a model point of view,
our modal operators are related to counting modalities ♦≥k [1,4]—however, we
do not require a fixed number k ∈ N of reachable successor states (absolute
frequency), but instead divide the number of worlds v reached through label
δ ∈ � by the number of all reachable worlds, given current state w, yielding
0 ≤ p ≤ 1. This fraction then is further constrained by requiring p ∈ μ(δ)
(relative frequency), as defined in case 5. of the satisfaction relation in Sects. 4.2
and 4.3.

As [20] precisely put it: “... what axioms and rules must be added to the
propositional calculus to create a usable system of modal logic is a matter of
philosophical opinion, often driven by the theorems one wishes to prove ...”.
Clearly, the logic Λ is no exception and its design is driven by commonsense
knowledge and plausible inferences, we try to capture.

Our modal logic can be regarded as an instance of the normal modal logic
K := (N) + (K) when identifying the basic modal operator � with the modal
� (and only with �) and by enforcing the well-behaved frame condition from
Sect. 4.3. Given � ≡ �, Λ then includes the necessitation rule (N) p → �p and
the distribution axiom (K) �(p → q) → (�p → �q) where p, q being special
theorems in Λ, viz., positive and negative propositional letters.

(N) can be seen as a special case of (L), the Lift modal entailment (left-to-
right direction) from Sect. 5.1. (K) can be proven in Λ by choosing � ∈ 1 in
simplification rule 8b (Sect. 4.1) and by instantiating (G), the Generalize modal
entailment (Sect. 5.1), together with the application of the tautology (p → q) ⇔
(¬p ∨ q):

�(p → q) → (�p → �q)
�(¬p ∨ q) → (¬�p ∨ �q)

(�¬p ∨ �q) → (¬�p ∨ �q)
�¬p → ¬�p
⊥p → �Cp

The final simplification at which we arrive is valid, since ⊥ � �C:

μ(⊥) = [0, 0] ⊆ [0, 1) = μ(�C)

Again, through (L) (right-to-left direction), Λ also incorporates the reflexivity
axiom (T) �p → p making Λ (at least) an instance of the system T. However,
this investigation is in a certain sense useless as it does not address the other

A Modal Representation of Graded Medical Statements 145

modals: almost always, neither (N), (K), nor (T) hold for modals from �. Thus,
we can not view Λ as an instance of a poly-modal logic.

Several approaches to representing and reasoning with uncertainty have
been investigated in Artificial Intelligence (see [5,14] for two comprehensive
overviews). Very less so has been researched in the Description Logic community,
and little or nothing of this research has find its way into implemented systems.
[7,8] consider uncertainty in ALC concept hierarchies, plus concept typing of
individuals (unary relations) in different ways (probability values vs. intervals;
conditional probabilities in TBox vs. ABox). They do not address uncertain
binary (or even n-ary) relations. [19] investigates vagueness in ALC concept
descriptions to address statements, such as the patient’s temperature is high,
but also for determining membership degree (38.5 ℃). This is achieved through
membership manipulators which are functions, returning a truth value between
0 and 1, thus deviating from a two-valued logic. [17] defines a fuzzy extension
of ALC, based on Zadeh’s fuzzy logic. As in [19], the truth value of an asser-
tion is replaced by a membership value from [0, 1]. ALC assertions α in [17] are
made fuzzy by writing, e.g., 〈α ≥ n〉, thus taking a single truth value from [0, 1].
An even more expressive description logic, Fuzzy OWL, based on OWL DL, is
investigated in [16].

Our work might be viewed as a modalized version of a restricted fragment of
Subjective Logic [9,10], a probabilistic logic that can be seen as an extension of
Dempster-Shafer belief theory. Subjective Logic addresses subjective believes by
requiring numerical values for believe b, disbelieve d, and uncertainty u, called
(subjective) opinions. For each proposition, it is required that b + d + u = 1.
The translation from modals δ to 〈b, d, u〉 is determined by the length of the
confidence interval μ(δ) = [l, h] and its starting/ending numbers, viz., u := h− l,
b := l, and d := 1 − h.

Acknowledgements. The research described in this paper has been co-funded by
the Horizon 2020 Framework Programme of the European Union within the project
PAL (Personal Assistant for healthy Lifestyle) under Grant agreement no. 643783. The
authors have profited from discussions with our colleagues Miroslav Jańıček and Bernd
Kiefer and would like to thank the three reviewers for their suggestions.

References

1. Areces, C., Hoffmann, G., Denis, A.: Modal logics with counting. In: Dawar, A., de
Queiroz, R. (eds.) WoLLIC 2010. LNCS, vol. 6188, pp. 98–109. Springer, Heidelberg
(2010)

2. Baader, F.: Description logic terminology. In: Baader, F., Calvanese, D.,
McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.) The Description Logic
Handbook, pp. 495–505. Cambridge University Press, Cambridge (2003)

3. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts in The-
oretical Computer Science. Cambridge University Press, Cambridge (2001)

4. Fine, K.: In so many possible worlds. Notre Dame J. Formal Logic 13(4), 516–520
(1972)

146 H.-U. Krieger and S. Schulz

5. Halpern, J.Y.: Reasoning About Uncertainty. MIT Press, Cambridge (2003)
6. Hayes, P.: RDF semantics. Technical report, W3C (2004)
7. Heinsohn, J.: ALCP - Ein hybrider Ansatz zur Modellierung von Unsicherheit in

terminologischen Logiken. Ph.D. thesis, Universität des Saarlandes, June 1993 (in
German)

8. Jaeger, M.: Probabilistic reasoning in terminological logics. In: Proceedings of the
4th International Conference on Principles of Knowledge Representation and Rea-
soning (KR), pp. 305–316 (1994)

9. Jøsang, A.: Artificial reasoning with subjective logic. In: Proceedings of the 2nd
Australian Workshop on Commonsense Reasoning (1997)

10. Jøsang, A.: A logic for uncertain probabilities. Int. J. Uncertainty, Fuzzyness
Knowl. Based Syst. 9(3), 279–311 (2001)

11. Krengel, U.: Einführung in die Wahrscheinlichkeitstheorie und Statistik, 7th edn.
Vieweg (2003) (in German)

12. Krieger, H.U.: A temporal extension of the Hayes/ter Horst entailment rules and an
alternative to W3C’s n-ary relations. In: Proceedings of the 7th International Con-
ference on Formal Ontology in Information Systems (FOIS), pp. 323–336 (2012)

13. Krieger, H.U.: An efficient implementation of equivalence relations in OWL via rule
and query rewriting. In: Proceedings of the 7th IEEE International Conference on
Semantic Computing (ICSC), pp. 260–263 (2013)

14. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, San Francisco (1988)

15. Schulz, S., Mart́ınez-Costa, C., Karlsson, D., Cornet, R., Brochhausen, M., Rector,
A.: An ontological analysis of reference in health record statements. In: Proceedings
of the 8th International Conference on Formal Ontology in Information Systems
(FOIS 2014) (2014)

16. Stoilos, G., Stamou, G.B., Tzouvaras, V., Pan, J.Z., Horrocks, I.: Fuzzy OWL:
uncertainty and the semantic web. In: Proceedings of the OWLED 2005 Workshop
on OWL: Experiences and Directions (2005)

17. Straccia, U.: Reasoning within fuzzy description logics. J. Artif. Intell. Res. 14,
147–176 (2001)

18. ter Horst, H.J.: Completeness, decidability and complexity of entailment for RDF
Schema and a semantic extension involving the OWL vocabulary. J. Web Seman.
3, 79–115 (2005)

19. Tresp, C.B., Molitor, R.: A description logic for vague knowledge. In: Proceedings
of the 13th European Conference on Artificial Intelligence (ECAI), pp. 361–365
(1998)

20. Wikipedia: Modal logic – Wikipedia, The Free Encyclopedia (2015). https://en.
wikipedia.org/wiki/Modal logic, Accessed on 19 June 2015

https://en.wikipedia.org/wiki/Modal_logic
https://en.wikipedia.org/wiki/Modal_logic

Models for the Displacement Calculus

Oriol Valent́ın(B)

Universitat Politècnica de Catalunya, Barcelona, Spain
ovalentin@cs.upc.edu

Abstract. The displacement calculus D is a conservative extension of
the Lambek calculus L1 (with empty antecedents allowed in sequents).
L1 can be said to be the logic of concatenation, while D can be said
to be the logic of concatenation and intercalation. In many senses, it
can be claimed that D mimics L1 in that the proof theory, generative
capacity and complexity of the former calculus are natural extensions of
the latter calculus. In this paper, we strengthen this claim. We present the
appropriate classes of models for D and prove some completeness results;
strikingly, we see that these results and proofs are natural extensions of
the corresponding ones for L1.

1 Introduction

The displacement calculus D is a quite well-studied extension of the Lambek
calculus L1 (with empty antecedents allowed in sequents). In many papers
(see [9,11,12]), D has proved to provide elegant accounts of a variety of lin-
guistic phenomena of English, and of Dutch, namely a processing interpretation
of the so-called Dutch cross-serial dependencies.

The hypersequent format hD1 of displacement calculus is a pure sequent cal-
culus free of structural rules which subsumes the sequent calculus for L1. The
Cut elimination algorithm for hD provided in [12] mimics the one of Lambek’s
[5] syntactic calculus (with some minor differences concerning the possibility of
empty antecedents). Like L1, D enjoys some nice properties such as the sub-
formula property, decidablity, the finite reading property and the focalisation
property [7].

Like L1, D is known to be NP-complete [6]. Concerning (weak) generative
capacity,D recognises the class of well-nested multiple context-free languages [13].
In this respect, the result on generative capacity generalises the result that states
that L1 recognises the class of context-free languages. One point of divergence in
terms of generative capacity is that D recognises the class of the permutation clo-
sures of context-free languages [10]. Finally, it is important to note that a Pentus-
like upper bound theorem for D is not known.

In this paper we present natural classes of models for D. Several strong
completeness results are proved, in particular strong completeness w.r.t. the class

Research partially supported by SGR2014-890 (MACDA) of the Generalitat de
Catalunya, and MINECO project APCOM (TIN2014-57226-P).

1 Not to be confused with the hypersequents of Avron [1].

c© Springer-Verlag Berlin Heidelberg 2016
A. Foret et al. (Eds.): FG 2015/2016, LNCS 9804, pp. 147–163, 2016.
DOI: 10.1007/978-3-662-53042-9 9

148 O. Valent́ın

of residuated displacement algebras (a natural extension of residuated monoids).
Powerset frames for L1 are of interest from the linguistic point of view because
of their relation to language models. Powerset residuated displacement algebras
over displacement algebras are given, which generalise the powerset residuated
monoids over monoids, as well as over free monoids. Strong completeness results
for the so-called implicative fragment of D, which is very relevant linguistically,
is proved in the spirit of Buszkowski [2], but the construction is more subtle.

The structure of the paper is as follows. In Sect. 2 we present the basic proof-
theoretic tools (useful for the construction of canonical models) which we shall
employ for the study of D from a semantic point of view. In Sect. 3 we provide the
proof of two strong completeness of what we call the implicative fragment w.r.t.
powerset DAs over standard DAs (with a countably infinite set of generators)
and L-models respectively.

2 The Categorical Calculus cD and the Hypersequent
Calculus hD

D is model-theoretically motivated, and the key to its conception is the use of
many-sorted universal algebra [3], namely ω-sorted universal algebra. Here, we
assume a version of many-sorted algebra such that the sort domains of an ω-
sorted algebra A are non-empty. With this condition we avoid some pathologies
which arise in a näıve version of many-sorted universal algebra (cf. [3,4]). Some
definitions are needed. Let M = (|M|,+, 0, 1) be a free monoid where 1 is a
distinguished element of the set of generators X of M. We call such an algebra
a separated monoid. Given an element a ∈ |M|, we can associate to it a number,
called its sort as follows:

(1) s(1) = 1
s(a) = 0 if a ∈ X and a �= 1
s(w1 + w2) = s(w1) + s(w2)

This induction is well-defined since M is free and 1 is a (distinguished)
generator; the sort function s(·) in a separated monoid simply counts the number
of separators an element contains.

Definition 1 (Sort Domains). Where M = (|M|,+, 0, 1) is a separated
monoid, the sort domains |M|i of sort i are defined as follows:

|M|i = {a ∈ |M| : s(a) = i}, i ≥ 0

It is readily seen that for every i, j ≥ 0, |M|i ∩ |M|j = ∅ iff i �= j.

Definition 2 (Standard Displacement Algebra). The standard displace-
ment algebra (or standard DA) defined by a separated monoid (|M|,+, 0, 1) is
the ω-sorted algebra with the ω-sorted signature ΣD = (+, {×i}i>0, 0, 1) with
sort functionality ((i, j → i + j)i,j≥0, (i, j → i + j − 1)i>0,j≥0, 0, 1):

({|M|i}i≥0,+, {×i}i>0, 0, 1)

Models for the Displacement Calculus 149

where:

operation which is
+ : |M|i × |M|j → |M|i+j as in the separated monoid

×k : |M|i × |M|j → |M|i+j−1
×k(s, t): the result of replacing the k-th
separator in s by t

The sorted types of D, which we will interpret residuating w.r.t. the sorted
operations in Definition 2, are defined by mutual recursion in Fig. 1. We let Tp =⋃

i≥0 Tpi. A subset B of |M| is called a same-sort subset iff there exists an i ∈ ω
such that for every a ∈ B, s(a) = i. D types are to be interpreted as same-sort
subsets of |M|. I.e. every inhabitant of �A� has the same sort. The intuitive
semantic interpretation of the connectives is shown in Fig. 2; this interpretation
is called the standard interpretation. Observe that for any type A ∈ Tp, the
interpretation of A, i.e. �A�, is contained in Ms(A), where the sort map s(·) for
the set Tp, is such that

(2) s(p) = i for p ∈ Pri
s(I) = 0
s(J) = 1
s(A•B) = s(A) + s(B)
s(A\B) = s(B) − s(A)
s(B/A) = s(B) − s(A)
s(A �k B) = s(A) + s(B) − 1
s(A↓kB) = s(B) − s(A) + 1
s(B↑kA) = s(B) − s(A) + 1

Tpi ::= Pri where Pri is the set of atomic types of sort i

Tp0 ::= I Continuous unit
Tp1 ::= J Discontinuous unit

Tpi+j ::= Tpi•Tpj continuous product
Tpj ::= Tpi\Tpi+j under
Tpi ::= Tpi+j/Tpj over

Tpi+j ::= Tpi+1�kTpj discontinuous product
Tpj ::= Tpi+1↓kTpi+j extract

Tpi+1 ::= Tpi+j↑kTpj infix

Fig. 1. The sorted types of D

150 O. Valent́ın

Fig. 2. Standard semantic interpretation of D types

2.1 D and its Categorical Presentation cD

In [14] D is presented as a categorical calculus:

(3) A → A Axiom
A•B → C iff A → C/B iff B → A\C Rescont

A �i B → C iff A → C↑iB iff B → A↓iC Resdisc

A • I ↔ A ↔ I • A A �i J ↔ A ↔ J �1 A
(A • B) • C ↔ A • (B • C) Continuous associativity
A �i (B �j C) ↔ (A �i B) �i+j−1 C Discontinuous associativity
(A �i B) �j C ↔ A �i (B �j−i+1 C), if i ≤ j ≤ 1 + s(B) − 1

(A �i B) �j C ↔ (A �j−s(B)+1 C) �i B, if j > i + s(B) − 1 Mixed permutation

(A �i C) �j B ↔ (A �j B) �i+s(B)−1 C, if j < i

(A • B) �i C ↔ (A �i C) • B, if 1 ≤ i ≤ S(A) Mixed associativity
(A • B) �i C ↔ A • (B �i−s(C) C), if s(A) + 1 ≤ i ≤ s(A) + s(B)

From A → B and B → C we have A → C Transitivity

In Fig. 3 we find the axiomatisation of the class of DAs DA. Just as in the case
of L1, the natural class of algebras is the class of residuated monoids RM, in
the case of D, the natural class of algebras is the class of residuated displacement
algebras (residuated DAs) RD.

One can restrict the definition of the sorted types. Let C be a subset of the
connectives considered in the definition of types in Fig. 1. We define Tp[C] as
the least set of sorted types generated by Pr and the set of connectives C. If
the context is clear, we will write Tp instead of Tp[C].

Let us define the formal definition of a model. A model M = (A, v) comprises
a (residuated) ΣD-algebra and a ω-sorted mapping v : Pr → Tp[C] called a
valuation. The mapping v̂ is the unique function which extends v and which
is such that v̂(A ∗ B) = v̂(A) ∗ v̂(B) (if * is a binary connective of C) and
v̂(∗A) = ∗v̂(A) (if * is a unary connective of C). Finally, a 0-ary connective is
mapped into the corresponding unit of |A|. Needless to say, the mappings v and
v̂ preserve the sorting regime.

Models for the Displacement Calculus 151

Continuous associativity
x + (y + z) ≈ (x + y) + z

Discontinuous associativity
x ×i (y ×j z) ≈ (x ×i y) ×i+j−1 z
(x ×i y) ×j z ≈ x ×i (y ×j−i+1 z) if i ≤ j ≤ 1 + s(y) − 1

Mixed permutation
(x ×i y) ×j z ≈ (x ×j− S(y) +1 z) ×i y if j > i + s(y) − 1
(x ×i z) ×j y ≈ (x ×j y) ×i+S(y)−1 z if j < i

Mixed associativity
(x + y) ×i z ≈ (x ×i z) + y if 1 ≤ i ≤ s(x)
(x + y) ×i z ≈ x + (y ×i−s(x) z) if x + 1 ≤ i ≤ s(x) + s(y)

Continuous unit and discontinuous unit
0 + x ≈ x ≈ x + 0 and 1 ×1 x ≈ x ≈ x ×i 1

Fig. 3. Axiomatisation of DA

Let us see that D (with all the connectives) is strongly complete w.r.t. RD.
Soundness is trivial because we are considering the categorical calculus cD. For
completeness, we can define the well-known Lindenbaum-Tarski construction to
see that cD is strongly complete w.r.t. RD. The canonical model is (L, v) where
L is (Tp/θ, ◦, (◦i)i>0, \\, //, (�i)i>0(�i)i>0, I, J;≤) where the interpretation of
the new symbols is as expected. Let θR be the equivalence relation on Tp defined
as follows: AθRB iff R �cD A → B and R �cD B → A, where R is a set of non-
logical axioms. Using the usual tonicity properties for the connectives of Tp, one
proves that θR is a congruence. Where A is a type, A is an element of Tp/θR,
i.e. Tp modulo θR. We define A ≤ B iff R �cD A → B. We define the valuation
v as v(p) = p (p is a primitive type). We have that for every type A, v̂(A) = A.
Finally, one has that (L, v) |= A → B iff R �cD A → B. From this, we infer the
following theorem:

Theorem 1. The calculus cD is strongly complete w.r.t. RD.

Since DA is a variety2 (see Fig. 3), it is closed by subalgebras, direct products
and homomorphic images, which give additional DAs.

We have other interesting examples of DAs, for instance the powerset DA
over A = (|A|,+, {×i}i>0, 0, 1), which we denote P(A). We have:

(4) P(A) = (|P(A)|, ·, {◦i}i>0, I, J)

2 The term equational class is sometimes used in the literature.

152 O. Valent́ın

The notation of the carrier set of P(A) presupposes that its members are
same-sort subsets; notice that ∅ vacuously satisfies the same-sort condition.
Where A, B and C denote same-sort subsets of |A|, the operations I, J, · and ◦i

are defined as follows:

(5) I = {0}
J = {1}
A · B = {a + b : a ∈ A and b ∈ B}
A ◦i B = {a ×i b : a ∈ A and b ∈ B}

It is readily seen that for every A,P(A) is in fact a DA. Notice that every sort
domain |P(A)|i is a collection of same-sort subsets, that the sort domains of P(A)
are non-empty, but no longer satisfy that |P(A)|i ∩ |P(A)|j = ∅ iff i �= j, since
the empty set ∅ ∈ |P(A)|i for every i ≥ 0. A residuated powerset displacement
algebra over a displacement algebra P(A) is the following:

(6) P(A) = (|P(A)|, ·, \\, //, {◦i}i>0, , {�i}i>0, {�i}i>0, I, J; ⊆)

where \\, //, �i and �i are defined as follows:

(7) A\\B = {d : for every a ∈ A, a + d ∈ B}
B//A = {d : for every a ∈ A, d + a ∈ B}
B �i A = {d : for every a ∈ A, d ×i a ∈ B}
A �i B = {d : for every a ∈ A, a ×i d ∈ B}

The class of powerset residuated DAs over a DA is denoted PRDD. The class
of powerset residuated DAs over a standard DA is denoted PRSD. Finally, the
subclass of PRSD which is formed by powerset residuated algebras over finitely-
generated standard DA are known simply as L-models.

Every standard DA A has two remarkable properties, namely the property
that sort domains |A|i (for i > 0) can be defined in terms of |A|0, and the
property that every element a of a sort domain |A|i is decomposed uniquely
around the separator 1:

(8) (S1) For i > 0, |A|i = |A|0 ◦ {1} · · · {1} ◦ |A|0
︸ ︷︷ ︸

(i − 1) 1′s
(S2) For i > 0, if a0 + 1 + · · · + 1 + ai = b0 + 1 + · · · + 1 + bi then
ak = bk for 0 ≤ k ≤ i

Standard DAs, as their name suggests, are particular cases of (general) DAs:

Lemma 1. The class of standard DAs is a subclass of the class of DAs.3

Proof. We define a useful notation which will help us to prove the lemma. Where
A = (|A|,+, (×i)i>0, 0, 1) is a standard DA, let a be an arbitrary element of sort
s(a). We associate to every a ∈ |A| a sequence of elements a0, · · · , as(A). We
have the following vectorial notation:

(9) −→a j
i =

{

ai, if i = j−→a j−1
i + 1 + aj , if j − i > 0

3 Later we see that the inclusion is proper.

Models for the Displacement Calculus 153

Since A is a standard DA, the ai associated to a given −→a are unique (by
freeness of the underlying monoid). We have that a = −→a s(A)

0 , and we write −→a
in place of −→a s(A)

0 . Consider arbitrary elements −→a ,
−→
b and −→c of |A|:

• Continuous associativity is obvious.

• Discontinuous associativity. Let i, j be such that i ≤ j ≤ i + s(−→a) − 1:

−→
b ×j

−→c =
−→
b i−1

0 +−→c +
−→
b

s(b)
i , therefore:

−→a ×i(
−→
b ×j

−→c) = −→a i−1
0 +

−→
b j−1

0 +−→c +
−→
b

s(b)
j +−→a s(a)

i

(∗)

On the other hand, we have that:

−→a ×i
−→
b = −→a i−1

0 +
−→
b +−→a s(−→a)

i = −→a i−1
0 +

−→
b j−1

0 + 1
︸︷︷︸

(i+j−1)-th separator

+
−→
b

s(
−→
b)

j +−→a s(−→a)
i

It follows that:

(−→a ×i
−→
b)×i+j−1

−→c = −→a i−1
0 +

−→
b j−1

0 +−→c +
−→
b

s(
−→
b)

j +−→a s(−→a)
i (∗∗)

By comparing the right hand side of (*) and (**), we have therefore:

−→a ×i(
−→
b ×j

−→c) = (−→a ×i
−→
b)×i+j−1

−→c

• Mixed Permutation. Consider (−→a×i
−→
b)×j

−→c and suppose that i+s(
−→
b)−1 < j:

−→a ×i
−→
b = −→a i−1

0 +
−→
b +−→a j−s(

−→
b)

i︸ ︷︷ ︸
j−s(

−→
b)+s(

−→
b)−1=j−1 separators

+1+−→a s(−→a)
j−s(

−→
b +1)

It follows that:

(−→a ×i
−→
b)×j

−→c = −→a i−1
0 +

−→
b +−→a j−s(

−→
b)

i +−→c +−→a s(−→a)

j−s(
−→
b)+1

(∗ ∗ ∗)

Since i + s(
−→
b) − 1 < j, then i < j − s(

−→
b) + 1. Then we have that:

−→a ×
j−s(

−→
b)+1

−→c = −→a i−1
0 +1+−→a j−s(

−→
b)

i +−→c +−→a s(−→a)

j−s(
−→
b)+1

It follows that:

(−→a ×
j−s(

−→
b)+1

−→c)×i
−→
b = −→a i−1

0 +
−→
b +−→a j−s(

−→
b)

i +−→c +−→a s(−→a)

j−s(
−→
b)+1

(∗ ∗ ∗∗)

By comparing the right hand side of (***) and (****), we have therefore:

(−→a ×i
−→
b)×j

−→c = (−→a ×
j−s(

−→
b)+1

−→c)×i
−→
b

154 O. Valent́ın

• Mixed associativity. There are two cases: i ≤ s(−→a) or i > s(−→a). Considering
the first one, this is true for:

(−→a+
−→
b)×−→c = (−→a i−1

0 +1+−→a s(−→a)
i)×i

−→c = −→a i−1
0 +−→c +−→a s(−→a)

i +
−→
b = (−→a×i

−→c)+
−→
b

The other case corresponding to i > s(−→a) is completely similar.
• The case corresponding to the units is completely trivial. �

2.2 The Hypersequent Calculus hD

We will now consider the string-based hypersequent syntax from [8]. The reason
for using the prefix hyper in the term sequent is that the data-structure used
in hypersequent antecedents is quite nonstandard. A fundamental tool to build
the data-structure of a sequent calculus for D is the notion of type-segment . For
any type of sort 0 seg(A) = {A}. If s(A) > 0 then seg(A) = { 0

√
A, · · · , s(A)

√
A}.

We call seg(A) the set of type-segments of A. If C is a set of connectives, we
can now define the set of type-segments corresponding to the set Tp[C] of types
generated by the connectives C as seg[C] =

⋃
A∈Tp[C]seg(A). Type segments

of sort 0 are types. But, type segments of sort greater than 0 are no longer
types. Strings of type segments can form meaningful logical material like the
set of configurations, which we now define. Where C is a set of connectives the
configurations O[C] are defined in BNF unambiguously by mutual recursion as
follows, where Λ is the empty string and 1 is the metalinguistic separator:

(10) O[C] ::= Λ
O[C] ::= 1, O[C]
O[C] ::= A, O[C] for s(A) = 0

O[C] ::= 0
√

A, O[C], 1
√

A, · · · , s(A)−1
√

A, O[C], s(A)
√

As(A), O[C] for s(A) > 0

The intuitive semantic interpretation of the last clause from (10) consists of
elements α0+β1+α1+· · ·+αn−1+βn+αn where α0+1+α1+· · ·+αn−1+1+αn ∈
�A� and β1, · · · , βn are the interpretations of the intercalated configurations.

If the context is clear we will write O for O[C], and likewise Tp, and seg.
The syntax in which O has been defined is called string-based hypersequent

syntax. An equivalent syntax for O is called tree-based hypersequent syntax, which
was defined in [9,12]. For proof-search and human readability, the tree-based
notation is more convenient than the string-based notation, but for semantic
purposes, the string-based notation turns out to be very useful since the canon-
ical model construction considered in Sect. 3 relies on the set of type-segments.

In string-based notation the figure
−→
A of a type A is defined as follows:

(11)
−→
A =

{

A if s(A) = 0
0
√

A, 1, 1
√

A, · · · , s(A)−1
√

A, 1, s(A)
√

A if s(A) > 0

The sort of a configuration is the number of metalinguistic separators it
contains. We have O =

⋃
i≥0 Oi, where Oi is the set of configurations of sort i.

We define a more general notion of configuration, namely preconfiguration. If V
denotes seg[C] ∪ {1}, a preconfiguration Δ is simply a word of V ∗. Obviously,

Models for the Displacement Calculus 155

we have that O � V ∗. A preconfiguration Δ is proper iff Δ �∈ O. As in the case
of configurations, preconfigurations have a sort.

Where Γ and Φ are configurations and the sort of Γ is at least 1,
Γ |kΦ (k > 0) signifies the configuration which is the result of replacing the
k-th separator in Γ by Φ. The notation Δ〈Γ 〉, which we call a configuration
with a distinguished configuration Γ abbreviates the following configuration:
Δ0, Γ0,Δ1, · · · ,Δs(Γ), Γs(Γ),Δs(Γ)+1, where Δi ∈ O but Δ0 and Δs(Γ)+1 are
possibly proper preconfigurations. When a type-occurrence A in a configuration
is written without vectorial notation, that means that the sort of A is 0. How-
ever, when one writes the metanotation for configurations Δ〈−→A 〉, this does not
mean that the sort of A is necessarily greater than 0.

−→
A ⇒ A if A is primitive

Δ〈Λ〉 ⇒ A
IL

Δ〈I〉 ⇒ A
IR

Λ ⇒ I

Δ〈1〉 ⇒ A
JL

Δ〈−→J 〉 ⇒ A
JR

1 ⇒ J

Γ ⇒ A Δ〈−→B 〉 ⇒ C
/L

Δ〈−−→
B/A, Γ 〉 ⇒ C

Δ,
−→
A ⇒ B

/R
Δ ⇒ B/A

Γ ⇒ A Δ〈−→B 〉 ⇒ C
\L

Δ〈Γ,
−−→
A\B〉 ⇒ C

−→
A, Δ ⇒ B

\R
Δ ⇒ A\B

Δ〈−→A,
−→
B 〉 ⇒ C

•L
Δ〈−−−→

A • B〉 ⇒ C

Δ ⇒ A Γ ⇒ B
•R

Δ, Γ ⇒ A • B

Γ ⇒ A Δ〈−→B 〉 ⇒ C
↑iL

Δ〈−−−→
B↑iA|iΓ 〉 ⇒ C

Δ|i−→A ⇒ B
↑iR

Δ ⇒ B↑iA

Γ ⇒ A Δ〈−→B 〉 ⇒ C
↓iL

Δ〈Γ |i−−−→
A↓iB〉 ⇒ C

−→
A |iΔ ⇒ B

↓iR
Δ ⇒ A↓iB

Δ〈−→A |i−→B 〉 ⇒ C
�iL

Δ〈−−−−→
A �i B〉 ⇒ C

Δ ⇒ A Γ ⇒ B
�iR

Δ|iΓ ⇒ A �i B

Fig. 4. Hypersequent calculus for D

A hypersequent Γ ⇒ A comprises an antecedent configuration in string-based
notation of sort i and a succedent type A of sort i. The hypersequent calculus for

156 O. Valent́ın

D is as shown in Fig. 4. The following lemma is useful for the strong completeness
results of Sect. 3:

Lemma 2. Recall that O is a subset of V ∗ = (seg[C] ∪ {1})∗. We have that:

(i) O is closed by concatenation and intercalation.
(ii) If Δ ∈ V ∗, Γ ∈ O, and Δ,Γ ∈ O, then Δ ∈ O. Similarly, if we have

Γ,Δ ∈ O instead of Δ,Γ ∈ O. Finally, If Δ ∈ V ∗, Γ ∈ O, and Δ|iΓ ∈ O,
then Δ ∈ O.

Proof. Propositions (i) and (ii) are both proved via the BNF derivations of (10).
The details of the proof are rather tedious but not difficult.

What is the connection between the calculi cD and hD? In [14] a (faithful)
embedding translation is proved. Let Δ denote a configuration. We define its
type-equivalent Δ•, which is a type which has the same algebraic meaning as Δ.
Via the BNF formulation of O[C] in (10) one defines recursively Δ• as follows:

Λ• = I
(1, Γ)• = J • Γ •

(A,Γ)• = A • Γ •, if s(A) = 0
(0
√

A,Δ1, · · · , s(A)−1
√

A,Δs(A),
s(A)

√
As(A),Δs(A+1))• =

((· · · (A �1 Δ•
1) · · ·) �1+s(Δ1)+···+s(Δs(A)

Δ•
s(A)) • Δ•

s(A)+1, if s(A) > 0

The semantic interpretation of a configuration Δ (for a given valuation v) is
v̂(Δ) = v̂(Δ•). The embedding translation is as follows. For any Δ ∈ O, cD �
Δ• → A iff hD � Δ ⇒ A.

2.3 Some Special DAs

The standard DA S, induced by the separated monoid with generator set V =
seg ∪ {1}, plays an important role. The interpretation of the signature ΣD in
|S| is:

(12) S = (V ∗, +, {|i}i>0, Λ, 1)

Here, + denotes concatenation, and {|i}i>0 i-th intercalation. We have seen
in Sect. 2 that O is closed by concatenation + and intercalation |i, i > 0, i.e.
C = (O,+, (|i)i>0, Λ, 1) is a ΣD-subalgebra of the standard DA S. Since DA
is a variety,4 C is a (general) DA, concretely a nonstandard DA. To see that C
cannot be standard we notice that the sort domains of C are not separated by
{1}. Recall that |C| =

⋃

i≥0

Oi (|C|i = Oi, for every i ≥ 0). We have that:

(13) For i > 0,|C|i �= O0 ◦ · · · ◦ O0
︸ ︷︷ ︸

i times

4 We recall that varieties are closed by subalgebras, homomorphic images, and direct
products.

Models for the Displacement Calculus 157

Because, for example, let us take
−−→
p↑1p = 0

√
p↑1p, 1, 1

√
p↑1p, where p ∈ Pr0.

The type p↑1p has sort 1, but clearly neither 0
√

p↑1p nor 1
√

p↑1p are members of
O0. In fact, we have the proper inclusion:

(14) For i > 0, O0 ◦ · · · ◦ O0
︸ ︷︷ ︸

i times

� |C|i

It follows that the class of standard DAs is a proper subclass of the class of
general DAs.

2.4 Synthetic Connectives and the Implicative Fragment

From a logical point of view, synthetic connectives abbreviate formulas in sequent
systems. They form new connectives with left and right sequent rules. Using a
linear logic slogan, synthetic connectives help to eliminate some bureaucracy in
Cut-free proofs and in the (syntactic) Cut-elimination algorithms (see [14]). We
consider here a set of synthetic connectives which are of linguistic interest:

– The binary non-deterministic implications ⇑, and ⇓.
– The unary connectives �−1, �−1 and (ˇk)k>0, which are called respectively left

projection, right projection, and split.

Together with the binary deterministic implications \, /, (↑i)i>0, (↓i)i>0, these
constitute what we call implicative connectives. These connectives are incorpo-
rated in the recursive definitions of Tp, seg, and O. We denote this implicative
fragment as D[→]. We write also Tp[→], seg[→], and O[→], although, as usual,
if the context is clear we will avoid writing [→]. The intuitive semantic inter-
pretation of the implicative connectives can be found in Fig. 5. Figures 6 and 7
correspond to their hypersequent rules.

Besides the usual continuous and discontinuous implications, the nondeter-
ministic discontinous implications are used to account for particle shift nondeter-
minism where the object can be intercalated between the verb and the particle,
or after the particle. For a particle verb like call+1+up we can give the lexical
assignment �−1(ˇ1(N\S)⇑N). Projections can be used to account for the cross-
serial dependencies of Dutch. The split connective can be used for parentheticals
like fortunately with the type assignment ˇ1S↓1S.

Fig. 5. Semantic interpretation in standard DAs for the set of synthetic connectives

158 O. Valent́ın

Γ 〈−→A 〉 ⇒ B
�−1L

Γ 〈−−−→
�−1A, 1〉 ⇒ B

Γ, 1 ⇒ A
�−1R

Γ ⇒ �−1A

Γ 〈−→A 〉 ⇒ B
�−1L

Γ 〈1,
−−−→
�−1A〉 ⇒ B

1, Γ ⇒ A
�−1R

Γ ⇒ �−1A

Δ〈−→B 〉 ⇒ C
ˇiL

Δ〈−−→ˇiB|iΛ〉 ⇒ C

Δ|iΛ ⇒ B
ˇR

Δ ⇒ ˇiB

Fig. 6. Hypersequent rules for synthetic unary implicative connectives

Δ ⇒ A Γ 〈−→B 〉 ⇒ C
⇑L

Γ 〈−−−→
B⇑A|iΓ 〉 ⇒ C

Δ|1−→A ⇒ B · · · Δ|d−→A ⇒ B
⇑R

Δ ⇒ B⇑A

Δ ⇒ A Γ 〈−→B 〉 ⇒ C
⇓L

Γ 〈Γ |i−−−→
A⇓B〉 ⇒ C

−→
A |1Δ ⇒ B · · · −→

A |aΔ ⇒ B
⇓R

Δ ⇒ A⇓B

Fig. 7. Hypersequent calculus rules for nondeterministic synthetic connectives

3 Strong Completeness of the Implicative Fragment
w.r.t. L-Models

In this section we prove two strong completeness theorems in relation to the
implicative fragment. In order to prove them, we demonstrate first strong com-
pleteness of hD[→] w.r.t. powerset residuated DAs over standard DAs with a
countable set of generators.

Let V = seg[→] ∪ {1}. Clearly, V is countably infinite since seg[→] is the
countable union

⋃

i

seg[→]i, where each seg[→]i is also countably infinite. Let

us consider the standard DA S (from (12)), induced by the (countably) infinite
set of generators V :

S = (V ∗,+, {|i}i>0, Λ, 1)

We define some notation:

Definition 3. For any type C ∈ Tp[→] and set R of non-logical axioms:

[C]R = {Δ : Δ ∈ O and R � Δ ⇒ C}
In practice, when the set of hypersequents R is clear from the context, we simply
write [C] instead of [C]R.

Models for the Displacement Calculus 159

Lemma 3 (Truth Lemma). Let P(S) be the powerset residuated DA over
the standard DA S from (12). Let vR be the following valuation on the powerset
P(S):

For every p ∈ Pr, vR(p) = [p]R

Let M = (P(S), vR) be called as usual the canonical model. The following
equality holds:

For every C ∈ Tp[→], v̂R(C) = [C]R

Proof. We proceed by induction on the structure of type C; we will write v̂
instead of v̂R, and [·] instead of [·]R; we will say that an element Δ ∈ v̂(A) is
correct5 iff Δ ∈ O[C].

• C is primitive. True by definition.

• C = B↑iA. Let us see:
[B↑iA] ⊆ v̂(B↑iA)

Let Δ be such that R � Δ ⇒ B↑iA. Let ΓA ∈ v̂(A). By induction hypothesis
(i.h.), v̂(A) = [A]. Hence, R � ΓA ⇒ A We have:

Δ ⇒ B↑iA
−−−→
B↑iA|iΓA ⇒ B

Cut
Δ|iΓA ⇒ B

By i.h., v̂(B) = [B]. It follows that Δ|iΓA ∈ v̂(B), hence Δ ∈ v̂(B↑iA).
Whence, [B↑iA] ⊆ v̂(B↑iA).
Conversely, let us see:

v̂(B↑iA) ⊆ [B↑iA]

Let Δ ∈ v̂(B↑iA). By i.h. v̂(A) = [A]. For any type A, we have eta-expansion,
i.e.

−→
A ⇒ A6. Hence,

−→
A ∈ v̂(A). We have that Δ|i−→A ∈ v̂(B). By i.h.,

Δ|i−→A ⇒ B. Since
−→
A is correct, and by i.h. Δ|i−→A is correct, by Lemma 2, Δ is

correct. By applying the ↑i right rule to the provable hypersequent Δ|i−→A ⇒ B
we get:

Δ ⇒ B↑iA

This ends the case of B↑iA.

• C = A↓iB. Completely similar to case B↑iA.

• C = B/A or A\B. Similar to the disconcontuous case.
• Nondeterministic connectives. Consider the case C = B⇑A.

[B⇑A] ⊆ v̂(B⇑A)

5 Recall that a priori Δ ∈ |S|, which is equal to (Seg[→] ∪ {1})∗.
6 By simple induction on the structure of types.

160 O. Valent́ın

Let ΓA ∈ v̂(A). By i.h., ΓA ⇒ A. Let Δ ⇒ B⇑A. By s(B) − s(A) + 1 appli-
cations of ⇑ left rule, we have

ΓA ⇒ A
−→
B ⇒ B, by eta-expansion ⇑L−−−→

B⇑A|iΓA ⇒ B, for i = 1, · · · , s(B) − s(A) + 1

By s(B) − s(A) + 1 Cut applications with Δ ⇒ B⇑A, we get:

Δ|iΓA ⇒ B

Hence, for i = 1, · · · s(B)−s(A)+1, by i.h. Δ|iΓA ∈ v̂(B). Hence, Δ ∈ v̂(B⇑A).
Conversely, let us see:

v̂(B⇑A) ⊆ [B⇑A]

By i.h., we see that
−→
A ∈ v̂(A). Let Δ ∈ v̂(B⇑A). This means that for every

i = 1, · · · , s(B) − s(A) + 1Δ|i−→A ∈ v̂(B). By i.h., Δ|i−→A ⇒ B. By a similar
reasoning to the deterministic case C = B↑iA, we see that Δ is correct. We
have that:

Δ|1−→A ⇒ B · · · Δ|s(B)−s(A)+1
−→
A ⇒ B ⇑R

Δ ⇒ B⇑A

• C = A⇓B is completely similar to the previous one.

• C = �−1A. Let us see:
[�−1A] ⊆ v̂(�−1A)

Let Δ ∈ [�−1A]. Hence, Δ ⇒ �−1A. We have that:

Δ ⇒ �−1A

−→
A ⇒ A

�−1L−−−→
�−1A, 1 ⇒ A

Cut
Δ, 1 ⇒ A

By i.h., Δ, 1 ∈ v̂(A). Hence, Δ ∈ v̂(�−1A).
Conversely, let us see:

v̂(�−1A) ⊆ [�−1A]

Let Δ ∈ v̂(�−1A). By definition, Δ, 1 ∈ v̂(A). By i.h., Δ, 1 ⇒ A, and by
Lemma 2, Δ is correct. By application of �−1 right rule, we get:

Δ ⇒ �−1A

This proves the converse.

• C = �−1A is completely similar to the previous one.

Models for the Displacement Calculus 161

• C = ˇkA. Let us see:
[ˇkA] ⊆ v̂(ˇkA)

Let Δ ⇒ ˇkA. We have that:

Δ ⇒ ˇiA

−→
A ⇒ A

ˇkL−−→
ˇiA|kΛ ⇒ A

Cut
Δ|kΛ ⇒ A

By i.h., Δ ∈ v̂(ˇkA).
Conversely, let us see that:

v̂(ˇkA) ⊆ [ˇkA]

Let Δ ∈ v̂(ˇkA). By definition, Δ|kΛ ∈ v̂(A). By i.h. and Lemma2, Δ is correct
and Δ|kΛ ⇒ A. By application of the ˇk right rule:

Δ ⇒ ˇkA

Hence, Δ ∈ [ˇkA]. �
By induction on the structure of O, see (10), one proves the following lemma:

Lemma 4 (Identity lemma). For any Δ ∈ O, Δ ∈ v̂(Δ).

Let (Ai)i=1,··· ,n be the sequence of type-occurrences in a configuration Δ.

Let Δ

(
Γ1 · · · Γn

A1 · · · An

)

be the result of replacing every type-occurrence Ai with Γi.

Recall that we have fixed a set of hypersequents R. We have the lemma:

Lemma 5. M = (P(S), v) |= R.

Proof. Let (Δ ⇒ A) ∈ R. For every type-occurrence Ai in Δ (we suppose that
the sequence of type occurrences in Δ is (Ai)i=1,··· ,n), we have by the Truth
Lemma that v̂(Ai) = [Ai]R. For any Γi ∈ v̂(Ai), we have by the Truth Lemma
that R � Γi ⇒ Ai. Since (Δ ⇒ A) ∈ R, we have then that R � Δ ⇒ A. By
n applications of the Cut rule with the premises Γi we get from R � Δ ⇒ A

that R � Δ

(
Γ1 · · · Γn

A1 · · · An

)

⇒ A. We have that v̂(Δ) = {Δ

(
Γ1 · · · Γn

A1 · · · An

)

: Γi ∈

v̂(Ai)}. Since, we have R � Δ

(
Γ1 · · · Γn

A1 · · · An

)

⇒ A, again by the Truth Lemma,

Δ

(
Γ1 · · · Γn

A1 · · · An

)

∈ v̂(A). We have then that v̂(Δ) ⊆ v̂(A). We are done. �

Theorem 2. D[→] is strongly complete w.r.t. the class PRSD.

Proof. Suppose PRSD(R) |= Δ ⇒ A. Hence, in particular this is true of the
canonical model M. Since Δ ∈ v̂(Δ), it follows that Δ ∈ v̂(A). By the Truth
Lemma, v̂(A) = [A]R. Hence, R � Δ ⇒ A. We are done. �

162 O. Valent́ın

We shall also prove strong completeness w.r.t. L-models over the set of con-
nectives Σ[→]−split, where split = {ˇk : k > 0}. Since the canonical model S is
countably infinite, |S| is in bijection with a set V1 = (ai)i>0 ∪{1} via a mapping
Φ. Let A be the standard DA associated to V1. Φ extends to an isomorphism of
standard DAs between S and A, and then induces an isomorphism Φ̄ of resid-
uated powerset DAs over standard DAs. Let B be a standard DA generated by
the finite set of generators V2 = {a, b, 1}. We have that |A| = V ∗

1 , and |B| = V ∗
2 .

Let ρ be the following injective mapping from V1 into V ∗
2 :

(15) ρ(1) = 1 ρ(ai) = a + bi + a

The mapping ρ extends recursively to the morphism of standard DAs. Clearly
ρ is injective by freeness7 of the underlying free monoids |A| and |B|. The map-
ping ρ is a monomorphism of DAs which induces a monomorphism ρ̄ of residuated
powerset DAs over DAs. Let A, B and C range over subsets of |A| such that they
are non-empty and different from {ε}. Since ρ is injective, so is ρ̄. The following
equalities hold:

(16) ρ̄(A · B) = ρ̄(A) · ρ̄(B) ρ̄(A ◦i B) = ρ̄(A) ◦i ρ̄(B) ρ̄(A//J) = ρ̄(A)//ρ̄(J)
ρ̄(A\\B) = ρ̄(A)\\ρ̄(B) ρ̄(B//A) = ρ̄(B)//ρ̄(A) ρ̄(J\\A) = J\\ρ̄(A)
ρ̄(A �i B) = ρ̄(A) �i ρ̄(B) ρ̄(B �i A) = ρ̄(B) �i ρ̄(A)

The equalities (16) are due to the fact that (1) ρ̄ is a monomorphism of DAs,
(2) we can apply cancellation, and (3) the subsets considered are non-empty and
different from {ε}. Since ρ̄ is injective, arbitrary families of (same-sort) subsets
satisfy ρ̄(

⋂
i∈I Xi) =

⋂
i∈I ρ̄(Xi). Moreover, using (16) one proves:

(17) ρ̄(

s(B)−s(A)+1
⋂

i=1

B �i A) =

s(B)−s(A)+1
⋂

i=1

ρ̄(B) �i ρ̄(A)

ρ̄(

s(B)−s(A)+1
⋂

i=1

A �i B) =

s(B)−s(A)+1
⋂

i=1

ρ̄(A) �i ρ̄(A)

Recall that v is the valuation of the canonical model P(S). Consider the

following composition of mappings: Pr v−→ P(S) Φ̄−→ P(A)
ρ̄−→ P(B). Put

w = ρ̄ ◦ Φ̄ ◦ v. We have that ŵ = ρ̄ ◦ Φ̄ ◦ v̂. In order to prove the last equality we
have to see that ρ̄ ◦ Φ̄ ◦ v̂ is a monorphism of DAs.8 For example, if A and B are
types, one has:

(ρ̄ ◦ Φ̄ ◦ v̂)(B↑kA) = ρ̄(Φ̄(v̂(B↑kA)) = ρ̄(Φ̄(v̂(B) �k v̂(A)) =
ρ̄(Φ̄(v̂(B)) �k v̂(A)), Φ̄ is an isomorphism of DAs =
ρ̄(Φ̄(v̂(B))) �k ρ̄(Φ̄(v̂(A))), ρ̄ satisfies (16)

Similar computations give the desired equalities for the remaining considered
implicative connectives.9 Given a set of non-logical axioms R, R �hD Δ ⇒ A iff
v̂(Δ) ⊆ v̂(A) (we write v̂ instead of v̂R) iff (Φ̄ ◦ v̂)(Δ) ⊆ (Φ̄ ◦ v̂)(A) iff (ρ̄ ◦ Φ̄ ◦
v̂)(Δ) ⊆ (ρ̄ ◦ Φ̄ ◦ v̂)(A). We have proved:
7 Since the underlying structures are free monoids we can apply left/right cancellation.
8 There is a unique morphism of DAs extending w.
9 Including also projection connectives.

Models for the Displacement Calculus 163

Theorem 3. D[Σ→−split] is strongly complete w.r.t. L-models.

Corollary 1. D[Σ→−split] is strongly complete w.r.t. powerset residuated DAs
overs standard DAs with 3 generators.

References

1. Avron, A.: Hypersequents, logical consequence and intermediate logic form con-
currency. Ann. Math. Stat. Artif. Intell. 4, 225–248 (1991)

2. Buszkowski, W.: Completeness results for Lambek syntactic calculus. Zeitschrift
für mathematische Logik und Grundlagen der Mathematik 32, 13–28 (1986)

3. Goguen, J.A., Meseguer, J.: Completeness of many-sorted equational logic.
Houston J. Math. 11(3), 307–334 (1985)

4. Lalement, R.: Logique, réduction, résolution. études et recherches en informatique.
Masson, Paris (1990)

5. Lambek, J.: The mathematics of sentence structure. Am. Math. Monthly 65, 154–
170 (1958). Reprinted in Buszkowski, W., Marciszewski, W., Benthem, J. (eds.)
Categorial Grammar, Linguistic & Literary. Studies in Eastern Europe, vol. 25.
John Benjamins, Amsterdam, pp. 153–172 (1988)

6. Moot, R.: Extended Lambek calculi and first-order linear logic. In: Casadio, C.,
Coecke, B., Moortgat, M., Scott, P. (eds.) Categories and Types in Logic, Lan-
guage, and Physics. LNCS, vol. 8222, pp. 297–330. Springer, Heidelberg (2014)

7. Morrill, G., Valent́ın, O.: Spurious ambiguity and focalisation. Manuscript submit-
ted

8. Morrill, G., Fadda, M., Valent́ın, O.: Nondeterministic discontinuous Lambek cal-
culus. In: Geertzen, J., Thijsse, E., Bunt, H., Schiffrin, A. (eds.) Proceedings of
the Seventh International Workshop on Computational Semantics, IWCS 2007, pp.
129–141. Tilburg University (2007)

9. Morrill, G., Valent́ın, O.: Displacement calculus. Linguist. Anal. 36(1–4), 167–192
(2010). Special issue Festschrift for Joachim Lambek. http://arxiv.org/abs/1004.
4181

10. Morrill, G., Valent́ın, O.: On calculus of displacement. In: Bangalore, S., Frank, R.,
Romero, M. (eds.) TAG+10: Proceedings of the 10th International Workshop on
Tree Adjoining Grammars and Related Formalisms, pp. 45–52. Linguistics Depart-
ment, Yale University, New Haven (2010)

11. Morrill, G., Valent́ın, O., Fadda, M.: Dutch grammar and processing: a case study
in TLG. In: Bosch, P., Gabelaia, D., Lang, J. (eds.) TbiLLC 2007. LNCS, vol.
5422, pp. 272–286. Springer, Heidelberg (2009)

12. Morrill, G., Valent́ın, O., Fadda, M.: The displacement calculus. J. Logic Lang.
Inform. 20(1), 1–48 (2011). doi:10.1007/s10849-010-9129-2

13. Sorokin, A.: Normal forms for multiple context-free languages and displacement
Lambek grammars. In: Artemov, S., Nerode, A. (eds.) LFCS 2013. LNCS, vol.
7734, pp. 319–334. Springer, Heidelberg (2013)

14. Valent́ın, O.: Theory of Discontinuous Lambek Calculus. Ph.D. thesis, Universitat
Autònoma de Barcelona, Barcelona (2012)

http://arxiv.org/abs/1004.4181
http://arxiv.org/abs/1004.4181
http://dx.doi.org/10.1007/s10849-010-9129-2

On Some Extensions of Syntactic Concept
Lattices: Completeness and Finiteness Results

Christian Wurm(B)

Universität Düsseldorf, Düsseldorf, Germany
cwurm@phil.hhu.de

Abstract. We provide some additional completeness results for the
full Lambek calculus and syntactic concept lattices, where the under-
lying structure is extended to tuples of arbitrary finite and infinite size.
Whereas this answers an open question for finite tuples, infinite tuples
have not been considered yet. Nonetheless, they have a number of inter-
esting properties which we establish in this paper, such as a particular
class of languages which results in a finite lattice.

1 Introduction

Syntactic concept lattices arise from the distributional structure of languages.
Their main advantage is that they can be constructed on distributional relations
which are weaker than strict equivalence. [3] has shown how these lattices can be
enriched with a monoid structure to form residuated lattices. [19] has shown that
the resulting class of syntactic concept lattices for arbitrary languages forms a
complete class of models for the logics FL⊥, i.e. the full Lambek calculus, and
its reducts FL, L1, for which it is a conservative extension.

In this paper, we will consider syntactic concept lattices over extended
monoids: these will no longer consist of (sets of) strings, but rather of (sets
of) tuples of strings, first of arbitrary finite, then of infinite size. The monoid
operation has to be modified accordingly, of course. We show that the complete-
ness results can be extended to this case for FL⊥ and its reducts; our proof will
be constructed on top of the completeness results in [19] by means of isomorphic
embeddings.

Finite tuples have been considered in formal language theory in a huge num-
ber of different contexts; the most relevant for us are [5,15]. The use of infinite
tuples has not been considered yet (to our knowledge). We show that it comes
with some interesting gain in expressive power, while still being well-behaved;
we also establish the largest class of language which results in a finite lattice
over infinite tuples.

2 Residuated Syntactic Concept Lattices and Extensions

2.1 Equivalences on Strings and Tuples

Syntactic concept lattices originally arose in the structuralist approach to syntax,
back when syntacticians tried to capture syntactic structures purely in terms of
c© Springer-Verlag Berlin Heidelberg 2016
A. Foret et al. (Eds.): FG 2015/2016, LNCS 9804, pp. 164–179, 2016.
DOI: 10.1007/978-3-662-53042-9 10

On Some Extensions of Syntactic Concept Lattices 165

distributions of strings1 (see, e.g. [10]). An obvious way to do so is by partition-
ing strings/substrings into equivalence classes: we say that two strings w, v are
equivalent in a language L ⊆ Σ∗, in symbols

(1) w ∼1
L v, iff for all x, y ∈ Σ∗, xwy ∈ L ⇔ xvy ∈ L.

This can be extended to tuples of strings of arbitrary size:

(2) (w1, v1) ∼2
L (w2, v2), iff for all x, y, z ∈ Σ∗, xw1yv1z ∈ L ⇔ xw2yv2z, etc.

The problem with equivalence classes is that they are too restrictive for many
purposes: assume we want to induce our grammar on the basis of a given dataset;
then it is quite improbable that we get the equivalence classes we would usually
desire. And even if we have an unlimited supply of examples, it seems unrealistic
to describe our grammar on the basis of equivalence classes only: there might
be constructions, collocations, idioms which ruin equivalences which we would
intuitively consider to be adequate. Another drawback of equivalence classes is
that for context-free languages, there is no general way to relate them to the
non-terminals of some grammar generating the language, whereas for syntactic
concepts, there are some interesting connections (see [6]).

Syntactic concepts provide a somewhat less rigid notion of equivalence, which
can be conceived of as equivalence restricted to a given set of contexts. This at
least partly overcomes the difficulties we have mentioned here.

2.2 Syntactic Concepts and Polar Maps

For a general introduction to lattices, see [7]; for background on residuated lat-
tices, see [9]. Syntactic concept lattices form a particular case of what is well-
known as formal concept lattice (or formal concept analysis) in computer sci-
ence. In linguistics, they have been introduced in [18]. They were brought back
to attention and enriched with residuation in [3,4], as they turn out to be useful
representations for language learning.

Given a language L ⊆ Σ∗, n ∈ N, we define two maps: a map � : ℘((Σ∗)n) →
℘((Σ∗)n+1), and � : ℘((Σ∗)n+1) → ℘((Σ∗)n), which are defined as follows:

(3) M� := {(x1, ..., xn+1) : ∀(w1, ..., wn) ∈ M,x1w1...wnxn+1 ∈ L};

and dually

(4) C� := {(w1, ..., wn) : ∀(x1, ..., xn+1) ∈ C, x1w1...wnxn+1 ∈ L}.

That is, a set of tuples of strings is mapped to the set of tuples of contexts in
which all of its elements can occur. The dual function maps a set of contexts to
the set of strings, which can occur in all of them. Usually, the case where n = 1
has been in the focus, as in [3,19]. The more general cases have been considered

1 Or words, respectively, depending on whether we think of our language as a set of
words or a set of strings of words; we will choose the former option.

166 C. Wurm

in one form or other by [5,15]). Obviously, � and � are only defined with respect
to a given language L and a given tuple size, otherwise they are meaningless.
As long as it is clear of which language (if any particular language) and tuple
size (if any particular) we are speaking, we will omit however any reference to
it, to keep notation perspicuous. For a set of contexts C, C� can be thought of
as an equivalence class with respect to the contexts in C; but there might be
elements in C� which can occur in a context (v, w) /∈ C (and conversely). There
is one more extension we will consider which is not entirely trivial, namely the
one from tuples of arbitrary size to tuples of infinite size.

(5) for M ⊆ (Σ∗)ω, M� := {(x1, x2, ...) : ∀(w1, w2, ...) ∈ M,x1w1x2w2... ∈ L}.

One might consider this meaningless, as L consists of finite words, M of infinite
tuples. But this is unjustified: it only entails that for any infinite tuple w ∈ M or
w ∈ M�, in order to be “meaningful”, all but finitely many components must be
ε. So for each “meaningful” (w1, w2, ...), there is a k ∈ N such that for all j ≥ k,
wj = ε. We gladly accept this restriction and remain with tuples where almost
all components are empty. This is still a proper generalization of any tuple size
n, because there is no finite upper bound for non-empty components in sets of
tuples.

We define · on (finite or infinite) tuples by componentwise concatenation, that
is, (w1, w2, ...) · (v1, v2, ...) = (w1v1, w2v2, ...). This choice is not unquestionable:
some authors seem to prefer concatenation of the type ⊕, where (w, v)⊕(x, y) =
(wx, yv). In the context of multiple context-free grammars this is referred to
as well-nestedness and has attracted great interest (see e.g. [12]). The problem
with this type of concatenation is that it is not easily extended beyond tuples
of size two. What is interesting in this context is that we can use the ω-tuples
to simulate ⊕-style concatenation with ·-style concatenation. To briefly sketch
what this means, we define the forgetful map fo by fo(w1, w2, ...) = w1w2...,
for arbitrary finite/infinite tuple size. We can now for all sequences of tuples
(x1, y1), ..., (xi, yi) devise ω-tuples w1, ..., wi such that for all 1 ≤ j, j′ ≤ i, we
have

fo((xj , yj) ⊕ ... ⊕ (xj′ , yj′)) = fo(wj · ... · wj′)

This is not generally possible with any finite tuple size, and this is what makes
infinite tuples interesting for us. Note that we can now also simplify things for
ω-tuples, as we have v ∈ {w}� iff fo(v · w) ∈ L.

Regardless of the underlying objects, the two compositions of the maps, ��
and ��, are closure operators, that is:

1. M ⊆ M��,
2. M�� = M����,
3. M ⊆ N ⇒ M�� ⊆ N��,

for M,N ⊆ Σ∗. The same holds for contexts and ��. A set M is closed, if
M�� = M etc. The closure operator �� gives rise to a lattice 〈Bn

L,≤〉, where the
elements of Bn

L are the sets M ⊆ (Σ∗)n such that M = M��, and ≤ is interpreted
as ⊆. The same can be done with the set of closed contexts. Given these two
lattices, � and � establish a Galois connection between the two:

On Some Extensions of Syntactic Concept Lattices 167

1. M ≤ N ⇔ M� ≥ N�, and
2. C ≤ D ⇔ C� ≥ D�.

A syntactic concept A is usually defined to be an ordered pair, consisting of
a closed set of strings, and a closed set of contexts, so it has the form 〈S,C〉,
such that S� = C and C� = S. For our purposes, we only need to consider the
left component, so we suppress the contexts and only consider the stringsets of
the form M��. For all operations we define below, it can be easily seen that
the resulting structures are isomorphic. So when we refer to a concept, we only
mean a [−]�� closed set of strings, the concept in the classical sense being easily
reconstructible.

Definition 1. The set of concepts of a language L forms a lattice denoted by
SCLn(L) := 〈Bn

L,∧,∨,�,⊥〉, where � = (Σ∗)n, ⊥= ∅��, and for M,N ∈ Bn
L,

M ∧ N = M ∩ N , M ∨ N = (M ∪ N)��.

It is easy to see that this defines an order in the usual fashion which coincides
with ⊆ on closed sets of strings. It is easy to verify that this forms a complete
lattice, as infinite joins are defined by (closure of) infinite unions, infinite meets
by infinite intersections. Note also that for any set of (tuples of) strings S and
contexts C, S� = S��� and C� = C���. SCLω(L) denotes the according structure
with infinite tuple size. To see that things are properly different in the infinite
case, we present the following result:

Lemma 2. 1. For any n ∈ N, SCLn(L) is finite iff L ∈ Reg.
2. There are L ∈ Reg such that SCLω(L) is infinite.

Let [Σ]∗∼1
L

denote the set of ∼1
L-congruence classes over Σ∗.

Proof. 1. SCL1(L) is finite iff [Σ]∗∼1
L

is finite iff L is regular (both are well-
known). Moreover, |[Σ∗]∼n+1

L
| ≤ |[Σ∗]∼n

L
| · |[Σ∗]∼1

L
|, as ∼1

L-equivalent strings are
equivalent in all contexts. From this the claim easily follows.

2. Take the language L = a∗b∗, and all tuples of the form (a,

n times
︷ ︸︸ ︷

ε, ..., ε, a, ε, ε, ...)
for n ∈ N. For every m,m′ ∈ N, m < m′, we take the tuple

(
m+1 times
︷ ︸︸ ︷

a, ..., a ,

m+3 times
︷ ︸︸ ︷

b, ..., b , ε, ε, ...); it is easy to see that fo((
m+1 times
︷ ︸︸ ︷

a, ..., a ,

m+3 times
︷ ︸︸ ︷

b, ..., b , ε, ε, ...) ·

(a,

m times
︷ ︸︸ ︷

ε, ..., ε , a, ε, ε, ...)) ∈ L, whereas if we substitute m with m′, the result is
not in L.

Consequently, there are infinitely concepts, namely for each n ∈ N at least one

which contains (a,

n times
︷ ︸︸ ︷

ε, ..., ε , a, ε, ε, ...) but no (a,

n′ times
︷ ︸︸ ︷

ε, ..., ε , a, ε, ε, ...) for n′ > n. �
This raises the question: what is the class C of languages such that L ∈ C

if and only if SCLω(L) is finite? We will give a concise characterization of this
class later on.

168 C. Wurm

2.3 Monoid Structure and Residuation

As we have seen, the set of concepts of a language forms a lattice. In addition, we
can also give it the structure of a monoid: for concepts M,N , we define M ◦N :=
(M ·N)��, where M ·N = {w ·v : w ∈ M,v ∈ N}. We often write MN for M ·N .
‘◦’ is associative on concepts: For M,N,O ∈ BL

n , M ◦(N ◦O) = (M ◦N)◦O. This
follows from the fact that [−]�� is a nucleus, that is, it is a closure operator and
in addition it satisfies S��T �� ⊆ (ST)��, and the associativity of ·-concatenation
(no matter on which tuple size).

Furthermore, it is easy to see that the neutral element of ‘◦’ is {ε}��.
The monoid operation respects the partial order of the lattice, that is, for
X,Y,Z,W ∈ BL

n , if X ≤ Y , then W ◦ X ◦ Z ≤ W ◦ Y ◦ Z. A stronger property
is the following: ◦ distributes over infinite joins, that is, we have

∨

Z∈Z
X ◦ Z ◦ Y = X ◦

∨

Z ◦ Y

≤ follows algebraically (◦ respects the order), and ≥ follows from the fact that
[−]�� is a nucleus.

We enrich this with residuals, using the following definition:

Definition 3. Let X,Y be concepts. We define the right residual X/Y :=
∨{Z :

Z ◦ Y ≤ X}, the left residual Y \X :=
∨{Z : Y ◦ Z ≤ X}.

Note that this is an entirely abstract definition which does not make reference
to any underlying structure. That it works is ensured by the following lemma.

Lemma 4. Let L be a complete lattice with a monoid operation distributing
over infinite joins. Then for X,Y,Z ∈ L, residuals defined as above, we have
Y ≤ X\Z iff X ◦ Y ≤ Z iff X ≤ Z/Y .

Proof. We only prove the first bi-implication.
If : assume X ◦Y ≤ Z. Then Y ∈ {W : X ◦W ≤ Z}; so Y ≤ ∨{W : X ◦W ≤

Z} = X\Z.
Only if : we have X ◦X\Z = X ◦∨{W : X ◦W ≤ Z} =

∨{X ◦W : X ◦W ≤
Z} ≤ Z; as Y ≤ X\Z, we have X ◦ Y ≤ X ◦ X\Z ≤ Z. �

So every complete lattice with a monoid operation based on a nucleus can
be extended to a residuated lattice.

Definition 5. The syntactic concept lattice of a language L is defined as
SCLn(L) := 〈Bn

L,∧,∨,�,⊥, 1, ◦, /, \〉, where Bn
L,∧,∨,�,⊥ are defined as in

Definition 1, 1 = {ε}��, and ◦, /, \ are as defined above.

Note that we somewhat overloaded the notation of SCLn(L); in the sequel
we will however thereby always refer to Definition 5. Moreover, we will denote by
SCL the class of all lattices of the form SCL1(L) for some language L, without
any further requirement regarding L; same for SCLn for n ∈ N ∪ {ω}.

On Some Extensions of Syntactic Concept Lattices 169

3 Lambek Calculus and Extensions

3.1 The Logics L, L1, FL and FL⊥

The Lambek calculus L was introduced in [13]. L1 is a proper extension of L,
and FL,FL⊥ are each conservative extensions of L1 and the preceding one. Let
Pr be a set, the set of primitive types, and C be a set of constructors, which
is, depending on the logics we use, CL := {/, \, •}, or CFL := {/, \, •,∨,∧}. By
TpC(Pr) we denote the set of types over Pr, which is defined as the smallest set,
such that Pr ⊆ TpC(Pr), and if α, β ∈ TpC(Pr),
 ∈ C, then α
 β ∈ TpC(Pr).

If there is no danger of confusion regarding the primitive types and construc-
tors, we also simply write Tp for TpC(Pr). We now present the inference rules
corresponding to these constructors. We call an inference of the form Γ � α a
sequent, for Γ ∈ Tp∗, α ∈ Tp, where by Tp∗ we denote the set of all (possi-
bly empty) sequences over Tp, which are concatenated by ‘,’ (keep in mind the
difference between sequents, which have the form Γ � α, and sequences like Γ ,
which are in Tp∗).

With few exceptions, rules of inference in our logics are not given in the form
of sequents Γ � α, but rather as rules to derive new sequents from given ones.
In general, uppercase Greek letters range as variables over sequences of types.
In the inference rules for L, premises of ‘�’ (that is, left hand sides of sequents)
must be non-empty; in L1 they can be empty as well; everything else is equal. In
FL and FL⊥ we also allow for empty sequents. Lowercase Greek letters range
over single types. Below, we present the standard rules of the Lambek calculus
L/L1.

(ax) α � α (cut)
Δ,β,Θ � α Γ � β

Δ, Γ,Θ � α

(I − /)
Γ, α � β

Γ � β/α (I − \)
α, Γ � β

Γ � α\β

(/ − I)
Δ,β,Θ � γ Γ � α

Δ, β/α, Γ,Θ � γ (\ − I)
Δ,β,Θ � γ Γ � α

Δ,Γ, α\β,Θ � γ

(• − I)
Δ,α, β, Γ � γ

Δ,α • β, Γ � γ (I − •)
Δ � α Γ � β

Δ, Γ � α • β

These are the standard rules of L/L1 (roughly as in [13]). We have rules to
introduce either slash and ‘•’ both on the right hand side of � and on the left
hand side of �. We will now add two additional connectives, which are well-
known from structural logics, namely ∨ and ∧. These are not present in L/L1,
have however been considered as extensions as early as in [14], and have been
subsequently studied by [11].

(∧ − I 1)
Γ, α,Δ � γ

Γ, α ∧ β,Δ � γ (∧ − I 2)
Γ, β,Δ � γ

Γ, α ∧ β,Δ � γ

170 C. Wurm

(I − ∧)
Γ � α Γ � β

Γ � α ∧ β

(∨ − I)
Γ, α,Δ � γ Γ, β,Δ � γ

Γ, α ∨ β,Δ � γ

(I − ∨ 1)
Γ � α

Γ � α ∨ β (I − ∨ 2)
Γ � β

Γ � α ∨ β

(1 − I)
Γ,Δ � α

Γ, 1,Δ � α (I − 1) � 1

This gives us the logic FL. Note that this slightly deviates from standard
terminology, because usually, FL has an additional constant 0 (not to be con-
fused with ⊥!). In our formulation, 0 and 1 coincide. In order to have logical
counterparts for the bounded lattice elements � and ⊥, we introduce two logical
constants, which are denoted by the same symbol.2

(⊥ −I) Γ,⊥ Δ � α (I − �) Γ � �

This gives us the calculus FL⊥. From a logical point of view, all these exten-
sions of L are quite well-behaved: they are conservative, and also allow us to
preserve the important result of [13], namely admissibility of the cut-rule.

We say that a sequent Γ � α is derivable in a calculus, if it can be derived
by the axiom and the rules of inference; we then write �L Γ � α, �L1 Γ � α,
�FL Γ � α etc., depending on which calculus we use.

3.2 Interpretations of L1, FL and FL⊥

The standard model for L1 is the class of residuated monoids. These are struc-
tures (M, ·, 1, \, /,≤), where (M, ·, 1) is a monoid, (M,≤) is a partial order, and
·, /, \ satisfy the law of residuation: for m,n, o ∈ M ,

(6) m ≤ o/n ⇔ m · n ≤ o ⇔ n ≤ m\o.

Note that this implies that · respects the order ≤. The standard model for FL
is the class of residuated lattices, and for FL⊥, the class of bounded residu-
ated lattices. A residuated lattice is an algebraic structure 〈M, ·,∨,∧, \, /, 1〉,
where in addition to the previous requirements, (M,∨,∧) is a lattice; the lat-
tice order ≤ need not be stated, as it can be induced by ∨ or ∧: for a, b ∈ M ,

2 Whereas L and L1 are equally powerful in the sense of languages which are recog-
nizable, [11] shows that FL is considerably more powerful than L: whereas L only
recognizes context-free languages by the classical result of [17], FL can recognize any
finite intersection of context-free languages. We only briefly mention this, because
we have no space to make precise what it means for a calculus to recognize a class
of languages.

On Some Extensions of Syntactic Concept Lattices 171

a ≤ b is a shorthand for a ∨ b = b. A bounded residuated lattice is a structure
〈M, ·,∨,∧, \, /, 1,�,⊥〉, where 〈M, ·,∨,∧, \, /, 1〉 is a residuated lattice, � is the
maximal element of the lattice order ≤ and ⊥ is its minimal element.

For a general introduction see [9]. We will give definitions only once for each
operator; we can do so because each definition for a given connector is valid for
all classes in which it is present.

We call the class of residuated monoids RM , the class of residuated lattices
RL; the class of bounded residuated lattices RL⊥. We now give a semantics for
the calculi above. We start with an interpretation σ : Pr → M which interprets
elements in Pr in elements of the lattice, and extend σ to σ by defining it induc-
tively over our type constructors, which is for now the set C := {/, \, •,∨,∧}.
For α, β ∈ TpC(Pr),

1. σ(α) = σ(α) ∈ M , if α ∈ Pr
2. σ(�) = �
2’ σ(�) is an arbitrary m ∈ M such for all α ∈ TpC(Pr), σ(α) ≤ m.
3. σ(⊥) =⊥
4. σ(1) = 1
5. σ(α • β) := σ(α) · σ(β)
6. σ(α/β) := σ(α)/σ(β)
7. σ(α\β) := σ(α)\σ(β)
8. σ(α ∨ β) := σ(α) ∨ σ(β)
9. σ(α ∧ β) := σ(α) ∧ σ(β)

Note that the constructors on the left-hand side and on the right-hand side
of the definition look identical (with the exception of • and ·), but they are not:
on the left-hand side, they are type constructors, on the right hand side, they
are operators of a residuated lattice. The same holds for the constants �,⊥, 1.
Note that there are two alternative interpretations for �: one which interprets
it as the upper bound for the lattice, which is the standard interpretation, and
one which just interprets it as an arbitrary element. The latter will be called the
non-standard interpretation and play some role in the sequel. Non-standard
interpretations form a generalization of standard interpretations, and as we will
see below, this is a proper generalization. From this it trivially follows that every
completeness result which holds for standard interpretations also holds for non-
standard interpretations, but we have to show that soundness is preserved. This
however is also straightforward, as there is only one rule involving � and it can
be easily seen to be sound under non-standard interpretations.

This is how we interpret the types of our logic. What we want to interpret
next is the sequents of the form Γ � α. We say that a sequent R = γ1, ..., γi � α
is true in a model M under assignment σ, in symbols: (M, σ) |= γ1, ..., γi � α, if
and only if σ(γ1 • ... • γi) ≤ σ(α) holds in M. That is, we interpret the ‘,’, which
denotes concatenation in sequents, as · in the model, and � as ≤. In the sequel,
for Γ a sequence of types, we will often write σ(Γ) as an abbreviation, where we
leave the former translation implicit. For the case of theorems, that is, derivable
sequents with no antecedent, we have the following convention: (M, σ) |= � α,

172 C. Wurm

iff 1 ≤ σ(α) in M, where 1 is the unit element of M (note that this case does
not arise in L).

More generally, for a given class of (bounded) residuated lattices (monoids,
semigroups) C, we say that a sequent is valid in C, in symbols, C |= γ1, ..., γi � α,
if for all M ∈ C and all interpretations σ, (M, σ) |= γ1, ...γi � α (here we have
to distinguish between standard and non-standard interpretations).

4 Completeness: Previous Results

There are a number of completeness results for the logics we have considered
here. We will consider the most general ones, which will be important in the
sequel.

Theorem 6. For the class RM of residuated monoids, the class RL of residu-
ated lattices, the class RL⊥ of bounded residuated lattices,

1. RM |= Γ � α if and only if �L1 Γ � α,
2. RL |= Γ � α if and only if �FL Γ � α,
3. RL⊥ |= Γ � α if and only if �FL⊥ Γ � α.

For reference on Theorem 6, see [1,2,9]. The proofs for the above complete-
ness theorems usually proceed via the Lindenbaum-Tarski construction: we inter-
pret primitive types as atomic terms modulo mutual derivability, and define
σ(α) ≤ σ(β) iff α � β. Then we can perform an induction over constructors
to get the same for arbitrary formulas/terms. So there are quite simple com-
pleteness proofs for the general case. These completeness results can actually be
strengthened to the finite model property. A logic, equipped with a class of mod-
els and interpretations, is said to have finite model property if it is complete in
the finite; that is, Theorem6 remains valid if we restrict ourself to finite models.
These results are highly non-trivial; for example, classical first-order logic fails
to have finite model property.

Theorem 7. 1. L1 has finite model property;
2. FL has finite model property;
3. FL⊥ has finite model property.

For the first claim, consider [8]; the second and third has been established
by [16]. We want to establish soundness and completeness of the calculi with
respect to the class of syntactic concept lattices and their reducts. The latter
results are crucial to show that completeness holds if we restrict ourselves to
languages over finite alphabets.

Soundness of interpretations into SCL follows from soundness direction of
Theorem 6, because SCL is just a particular class of bounded residuated lattices.
As L,L1,FL are fragments of FL⊥, we get the same result for L,L1 and FL,
considering the terms which contain only the operators which have a counterpart
in the logic.

Let SCLL1 be the class of SCL reducts with {◦, /, \}, which specify a unit,
and SCLFL be the class of SCL reducts with operators {◦, /, \,∨,∧}, that is,
without the constants � and ⊥.

On Some Extensions of Syntactic Concept Lattices 173

Theorem 8 (Completeness).

1. If SCLL1 |= Γ � α, then �L1 Γ � α;
2. if SCLFL |= Γ � α, then �FL Γ � α;
3. if SCL |= Γ � α, then �FL⊥ Γ � α;

The completeness proofs can be found in [19]. The proof shows that for any
(bounded) residuated lattice (reduct) S, there is a language L(S) such that S
can be isomorphically embedded in SCL(L(S)). This embedding thus preserves
validity in both directions, and thus completeness follows. The language L(S) is
constructed with the elements of S as underlying alphabet. By the finite model
property, we can conclude that the result remains valid if we restrict ourselves
to languages over finite alphabets: if S is finite, L(S) is a language over a finite
alphabet (though still infinite!). So Theorem8 also holds for languages over finite
alphabets only.

5 SCLn – Completeness via Embeddings

We now extend Theorem 8 to the structures SCLn : n ∈ N ∪ {ω} (henceforth:
Nω). Again, we proceed by showing that there is an isomorphic embedding from
SCL(L) → SCLn(L). To increase readability and avoid misunderstandings,
in the following we let �, �, ◦ denote operations in SCL, �,�,� denote the
corresponding operations in SCLn. This convention however only concerns this
section! We will exemplify the embedding for SCL2, but it is easy to see that
this can be extended to any n ∈ N.

Assume M ∈ SCL(L). We take a map α : ℘(Σ∗) → ℘(Σ∗ × Σ∗), which is
defined as a lifting of α′ : w �→ (w, ε) to sets composed with closure, so we define
α(M) = (α′[M])��. The following are more or less immediate:

1. α(M) ∈ SCL2(L);
2. if w ∈ M , then (w, ε) ∈ α(M);
3. α′[M]
 α′[N] = α′[M
 N], for
 ∈ {·,∪,∩}.

The third point ensures that α′ is a homomorphism for sets and classical set-
theoretic operations of languages. Moreover, it is easy to see that α′ is a bijection.
So α′ is an isomorphic embedding from (℘(Σ∗), ·,∪,∩) to (℘(Σ∗ × Σ∗), ·,∪,∩)
Note that all these points remain valid if we suitably extend α′ to α′

n, with

α′
n(w) = (w,

n times
︷ ︸︸ ︷

ε, ..., ε), with αn defined accordingly.
This is quite obvious. It becomes much less obvious, if we switch our attention

to α, that is, add the closure operation. The reason is as follows: α(M) might
contain elements of the form (w, v) with v �= ε; and thus α(M) · α(N) might
contain terms of the form (w1, w2) · (v1, v2) = (w1v1, w2v2). This is obviously
problematic, as in α(M) · α(N) substrings occur in an order which differs from
the one in fo(α(M))fo(α(N)). We show that the map αn is nonetheless an isomor-
phic embedding SCL(L) → SCLn(L). This requires some work, and we prove

174 C. Wurm

the claim step by step via the following lemmas (again, we exemplify this for
n = 2, but results can be easily extended to the general case). We first make the
following observation:

Lemma 9. α′[M]� = {(x, y, z) : (x, yz) ∈ M�};
Both inclusions are obvious. This means that α(M) is the set of all (a, b)

such that if xMyz ⊆ L, then xaybz ∈ L. This allows to show the following:

Lemma 10. For M = M��, (w, ε) ∈ α(M) if and only if w ∈ M .

Proof. If -direction is immediate. Only if : If (w, ε) ∈ α(M), then whenever
(x, y, z) ∈ α(M)�, we have xwyz ∈ L. Now, M� is exactly the set of all (x, yz)
such that (x, y, z) ∈ α(M)�. Thus we have w ∈ M�� = M . �

Put Ma := {wav : wv ∈ M}.

Lemma 11. α(M) � α(N) ⊆ α(M ◦ N).

Proof. Case 1 : Assume (w, v) ∈ α(M) ·α(N). Then (w, v) = (a1b1, a2b2), where
(a1, a2) ∈ α(M), (b1, b2) = α(N). So for (a1, a2) it follows: if xMyz ⊆ L, then
xa1ya2z ∈ L; the same holds for (b1, b2) ∈ α(N). So we have the following:

1. if wMv ⊆ L wa1v
a2 ⊆ L, and

2. if wNv ⊆ L, then wb1v
b2 ⊆ L.

Case 1a: Assume there are x, y such that xMNy ⊆ L. Then it follows (by
2) that for every z1, z2 with z1z2 = y, xMb1z1b2z2 ⊆ L, and consequently (by
1) that xa1b1z1a2b2z2 ∈ L, and so we have (a1b1, a2b2) ∈ (α′[M ◦ N])�� =
α(M ◦ N).

Case 1b: There are no x, y, z such that xMNyz ⊆ L. Then we have M ◦N =
�, and MN� = ∅. By Lemma 9, it follows that α′[MN]� = ∅, and therefore,
α′[MN]�� = α(M ◦ N) = �.

Case 2 : (w, v) /∈ α(M) · α(N). In this case, for all (x, y, z) such that for
all (a, b) ∈ α(M) · α(N), xaybz ∈ L, we have xwyvz ∈ L. So it follows that if
(x, y, z) ∈ α′[M ◦N]�, then xwyvz ∈ L; thus (w, v) ∈ α′[M ◦N]�� = α(M ◦N).
�

This is the first of a number of lemmas which establish the main theorem of
this section. The second one establishes the inverse inclusion:

Lemma 12. α(M ◦ N) ⊆ α(M) � α(N).

Proof. Assume (w, v) ∈ α(M ◦ N).
Case 1 : (w, v) ∈ α′[M ◦ N]. Then v = ε, and w ∈ M ◦ N . For all w ∈ MN ,

(w, ε) ∈ α(M)·α(N). Furthermore, if w ∈ MN��, then (w, ε) ∈ (α(M)·α(N))��

by as simple argument using Lemma 9. Consequently, (w, v) = (w, ε) ∈ α(M) �
α(N).

Case 2 : Assume (w, v) /∈ α′[M ◦ N]. Consequently, it holds that if (x, y, z) ∈
α′[M ◦ N]�, then xwyvz ∈ L. As α′[M ◦ N] ⊆ α(M) � α(N) (by case 1), we

On Some Extensions of Syntactic Concept Lattices 175

have α′[M ◦N]� ⊇ (α(M)�α(N))�, and so if (x, y, z) ∈ (α(M)�α(N))�, then
xwyvz ∈ L, and (w, v) ∈ (α(M) � α(N))�� = α(M) � α(N). �

So α is a homomorphism of ◦ (more generally, every αn is a ◦-
homomorphism). To show that it preserves meets and joins does not require
a lot of work. In order to save one step, we directly prove the claim for infinite
meets.

Lemma 13.
∧

i∈I α(Mi) = α(
∧

i∈I Mi).

This proof is rather straightforward, as ∧ equals ∩ in our case, a fact we will
make use of.
Proof. ⊆ Assume (w, v) ∈ α(Mi) for all i ∈ I. This means for all i ∈ I,
if x(Mi)yz ⊆ L , then xwyvz ∈ L. We have (x, yz) ∈ (

∧

i∈I Mi)� iff and
only if (x, y, z) ∈ α′[

∧

i∈I Mi]� (Lemma 9). So if (x, y, z) ∈ α′[
∧

i∈I Mi]�, then
x(

⋂

i∈I Mi)yz ⊆ L, and so xwyvz ∈ L, and so (w, v) ∈ α′[
∧

i∈I Mi]�� =
α(

∧

i∈I Mi).
⊇ Assume (w, v) ∈ α(

∧

i∈I Mi). Because α(X) = α′[X]��, α′ being a point-
wise map on sets and [−]�� being a closure operator, from

∧

i∈I Mi ⊆ Mj : j ∈ I
it follows that α(

∧

i∈I Mi) ⊆ α(Mj); and so α(
∧

i∈I Mi) ⊆ ⋂

i∈I α(Mi) =
∧

i∈I α(Mi). �
Now we can use the fact that in a complete lattice, we can use meets to define

joins (and vice versa). This allows us to derive the following:

Lemma 14. α(M) ∨ α(N) = α(M ∨ N).

Proof. We use the facts that 1. both SCL(L), SCL2(L) are complete, and 2. α
preserves infinite meets. For these reasons, the following equality holds:

α(M) ∨ α(N) =
∧{α(X) : X ≥ M,N} = α(

∧{X : X ≥ M,N}).

Moreover, we can easily extend this to the infinite case:
∨

i∈I α(Mi) =
∧{α(X) : X ≥ Mi : i ∈ I} = α(

∧{X : X ≥ Mi : i ∈ I}) =
α(

∨

i∈I Mi).

�
Again, this can be easily extended to any αn, n ∈ Nω.

Needless to say, every map αn : SCL(L) → SCLn(L) is an injection. To
see this, just assume we have M,N ∈ SCL(L); and assume without loss of
generality that (w, v) ∈ M�, (w, v) /∈ N�. Then we have (w, ε, v) ∈ α′[M]�,
but (w, ε, v) /∈ α′[N]�, so α(M) = α′[M]�� �= α′[N]�� = α(N). This together
with the with fact that we preserve joins and meets makes the following rather
obvious:

Lemma 15. X ◦ N ≤ M iff α(X) � α(N) ≤ α(M).

Proof. If : For contraposition, assume X ◦ N �≤ M . Then there is w ∈ X ◦ N ,
w /∈ M . Consequently, there is (w, ε) ∈ α(X) � α(N), but w /∈ α(M) (by
Lemma 10).

Only if : Assume X ◦ N ≤ M . Then obviously α(X ◦ N) = α(X) � α(N) ≤
α(M), as α preserves ⊆. �

176 C. Wurm

Lemma 16. α(M)/α(N) = α(M/N)

Proof.We have M/N =
∨{X : X◦N ≤ M}; moreover α(

∨{X : X◦N ≤ M}) =
∨{α(X) : X ◦ N ≤ M}. Since X ◦ N ≤ M iff α(X) � α(N) ≤ α(M), we have
∨{α(X) : X ◦ N ≤ M} =

∨{α(X) : α(X) � α(N) ≤ α(M)} = α(M)/α(N). �
Again, this proof works perfectly fine for any αn. To not get confused with

⊥,� in SCL, SCL2, we denote the latter elements with ⊥2,�2 etc.

Lemma 17. α(⊥) =⊥2, but there are languages L such that α(�) �= �2.

Proof. 1. ⊥ We have defined ⊥= ∅��. Assume ⊥= ∅; in this case, the result is
obvious. Assume there is w ∈⊥. Then for every (x, y) ∈ Σ∗ × Σ∗, xwy ∈ L. Con-
sequently, for all (x, y, z) ∈ (Σ∗)3, xwyz ∈ L. So α′[⊥]� = ∅�, and α(⊥) =⊥2.

2. Take the language L = a(a+b)∗a. Then (a, a) ∈ ((a+b)∗)�, where (a+b)∗ =
�. Consequently, (a, a, ε) ∈ α′[�]�. As abab /∈ L, we have (b, b) /∈ α′[�]�� =
α(�), hence α(�) �= �2 = Σ∗ × Σ∗. �

Again, this is easily extended to arbitrary n ∈ Nω. So we have a seri-
ous problem, because our embedding does not preserve �. We can dodge this
however by considering non-standard interpretations (see Sect. 3.2 and proof of
Theorem 19 below).

So this proves the first main theorem:

Theorem 18. For every n ∈ Nω, there is an isomorphic embedding αn :
SCL(L) → SCLn(L), such that αn(⊥) =⊥, and which in addition preserves
infinite meets and joins.

From Theorem 18 it is rather easy to extend the completeness result to SCLn:

Theorem 19. For arbitrary n ∈ Nω, �FL⊥ Γ � α iff SCLn |= Γ � α.

Proof. Soundness is clear and follows from more general results. Regarding
completeness: Assume we have ��FL⊥ Γ � γ. Then there is an L, σ : Pr →
SCL(L) such that σ(Γ) �⊆ σ(γ). It follows that αn(σ(Γ) �⊆ αn(σ(γ)), and so
SCLn(L), αn ◦ σ �|= Γ � γ, which proves the claim.

But keep in mind that αn ◦ σ is a non-standard interpretation, as αn ◦ σ(�)
need not be � in the lattice! �

The results obviously also hold for the logics FL, L1 and the corresponding
syntactic concept lattice reducts (for these, the notions of standard and non-
standard interpretation coincide). Note also that this shows that the notion of
a non-standard interpretation properly generalizes standard interpretations.

6 A Characterization for Finite SCLω-Structures

Obviously, if L /∈ Reg, then SCLω(L) is infinite; but the converse is wrong
(see Lemma 2). A permutation π is a map on words which preserves all cardinal-
ities of all letters in this word. For any language L, define Π(L) = {w : π(v) = w
for some permutation π and some v ∈ L}. Let PermReg be the class of lan-
guages, which is defined as follows:

On Some Extensions of Syntactic Concept Lattices 177

Definition 20. L ∈ PermReg, iff 1. L ∈ Reg, and 2. Π(L) = L.

This concerns, for example, languages like {w : |w|a is even for a ∈ Σ}. We
will show that SCLω(L) is finite iff L ∈ PermReg. For the if -direction, we first
show the following lemma, which at the same time gives some understanding of
the combinatorics of permutations:

Lemma 21. Assume L �= Π(L), so there is a permutation π, w ∈ L, such that
π(w) /∈ L. Then there are w, v ∈ (Σ∗)ω such that fo(v ·w) = w, fo(w)fo(v) = π(w).

Note firstly that assumptions assure that w �= π(w). From this follows that
fo(w) �= ε �= fo(v), as this would entail w = π(w).
Proof. We choose some arbitrary w, π such that w ∈ L, π(w) /∈ L (which exist
by assumption). We let ai denote the ith letter of π(w). We construct w in the
following fashion:

Step 1. Take a1, the first letter of π(w), and put w = (a1, ε, ε, ...). Of course,
there is v ∈ (Σ∗)ω such that fo(v · (a1, ε, ...)) = w, because a1 occurs in some
place in w. Now there are two possible cases:

Case 1 : fo(w)fo(v) /∈ L; then we change the “target permutation” π from the
lemma to ξ, where ξ(w) = fo(w)fo(v) (this is clearly a permutation). Then we
are done, as ξ, w satisfy the claim!

Case 2 : fo(w)fo(v) ∈ L. In this case, we discard w, π and consider w1, π1

instead, where w1 = fo(w)fo(v) ∈ L, and π1 is defined by π1(w1) = π(w) (this
works because w,w1 are permutations of each other). Then continue with step 2.

Step 2. Having chosen ai before, we now take ai+1 (as πi(wi) = π(w), it does
not matter which of the two we consider). Put w = (a1...ai, ai+1, ε, ...); there is
obviously a v such that fo((a1...ai, ai+1, ε, ...) ·v) = wi, because wi is constructed
as a1...aiv, and v necessarily contains the letter ai+1. Now we can go back to
the case distinction and repeat the procedure.

In the end, there are two possibilities: as w is a finite word, either at some
point we hit case 1, and the claim follows. Assume we do not hit case 1. Then
at some point we have i = |w| = |π(w)|, so we construct w|w| as a1...a|w|. Then
by definition and assumption, we have a1...a|w| = π(w) /∈ L. But we also have,
as we do not hit case 1 by assumption, a1...a|w| = fo(w)fo(v) = w|w| ∈ L –
contradiction. �

As we can see, we can even make sure that w has the form (w, a, ε, ε, ...), and
v = (v1, v2, v3, ε, ε, ...).

Lemma 22. L ∈ PermReg if and only if SCLω(L) is finite.

Proof. Only if : There are only finitely many non-equivalent concepts of the form
(w, ε, ε, ...). Moreover, by permutation closure, we know that if fo(w) = fo(v),
then {w}� = {v}� and the claim follows easily.

If : For this we need the previous lemma. We prove the contraposition, so
assume L /∈ PermReg. Then either L /∈ Reg, and the claim follows easily.
Or Π(L) �= L. In this case, we have w, π such that w ∈ L, π(w) /∈ L, and

178 C. Wurm

there are w, v ∈ (Σ∗)ω such that fo(v · w) = w, fo(w)fo(v) = π(w). Moreover,
w = (w, a, ε, ε, ...), and v = (v1, v2, v3, ε, ε, ...).

Now for every n ∈ N, we simply take a tuple (
2n times
︷ ︸︸ ︷

ε, ..., ε, w, ε, ε, ...). It is clear
that for every n, we get non-equivalent tuples: We have

(#) fo((ε1, ..., ε2n, v1, v2, v3, ε, ε, ...) · (ε1, ..., ε2(n−1), w, a, ε, ε, ...)) = π(w) /∈ L,

whereas

fo((ε1, ..., ε2n, v1, v2, v3, ε, ε, ...) · (ε1, ..., ε2n, w, a, ε, ε, ...)) = w ∈ L.

Moreover, (#) holds if in the term 2n is replaced by any number m ≥ 2n. Put
wm = (ε1, ..., ε2m, w, a, ε, ε, ...). So for any wm, wn, if m �= n, then {wm}� �=
{wn}�, and as these sets are closed and there are infinitely many of them,
SCLω(L) is infinite. �

7 Conclusion

We have shown completeness results for extensions of syntactic concepts to finite
and infinite tuples; moreover, we have given a precise characterization of the class
of languages which result in finite lattices in all cases. Interpreting substructural
logics in sets of tuples rather than sets of strings is interesting for a number of
reasons: from the perspective of categorial grammar and/or Lambek calculus as
language-recognizing devices, the interpretation in tuples allows us to recognize
languages which are not context-free (by letting grammars recognize tuples mod-
ulo fo). This relates more “classical” categorial approaches to new approaches
such as the displacement calculus D, which also recognizes languages which are
not context-free. In this context, infinite tuples are particularly interesting, as
they allow to simulate both the “wrapping”-style extended concatenation in
D and the “crossing”-style extended concatenation we have looked at in this
paper. The usage of formal concept analysis is particularly interesting in con-
nection with learning theory; so the results here might also be of some interest
for learning beyond context-free languages.

References

1. Buszkowski, W.: Completeness results for Lambek syntactic calculus. Math. Logic
Q. 32(1–5), 13–28 (1986)

2. Buszkowski, W.: Algebraic structures in categorial grammar. Theor. Comput. Sci.
1998(1–2), 5–24 (1998)

3. Clark, A.: A learnable representation for syntax using residuated lattices. In: de
Groote, P., Egg, M., Kallmeyer, L. (eds.) Formal Grammar. LNCS, vol. 5591, pp.
183–198. Springer, Heidelberg (2011)

4. Clark, A.: Learning context free grammars with the syntactic concept lattice. In:
Sempere, J.M., Garćıa, P. (eds.) ICGI 2010. LNCS, vol. 6339, pp. 38–51. Springer,
Heidelberg (2010)

On Some Extensions of Syntactic Concept Lattices 179

5. Clark, A.: Logical grammars, logical theories. In: Béchet, D., Dikovsky, A. (eds.)
Logical Aspects of Computational Linguistics. LNCS, vol. 7351, pp. 1–20. Springer,
Heidelberg (2012)

6. Clark, A.: The syntactic concept lattice: another algebraic theory of the context-
free languages? J. Logic Comput. 25(5), 1203–1229 (2013)

7. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order, 2nd edn.
Cambridge University Press, Cambridge (1991)

8. Farulewski, M.: On finite models of the Lambek calculus. Studia Logica 80(1),
63–74 (2005)

9. Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated Lattices: An Algebraic
Glimpse at Substructural Logics. Elsevier, Amsterdam (2007)

10. Harris, Z.S.: Structural Linguistics. The University of Chicago Press, Chicago
(1963)

11. Kanazawa, M.: The Lambek calculus enriched with additional connectives. J. Logic
Lang. Inf. 1, 141–171 (1992)

12. Kanazawa, M., Michaelis, J., Salvati, S., Yoshinaka, R.: Well-nestedness properly
subsumes strict derivational minimalism. In: Pogodalla, S., Prost, J.-P. (eds.) Logi-
cal Aspects of Computational Linguistics. LNCS, vol. 6736, pp. 112–128. Springer,
Heidelberg (2011)

13. Lambek, J.: The mathematics of sentence structure. Am. Math. Monthly 65, 154–
169 (1958)

14. Lambek, J.: On the calculus of syntactic types. In: Jakobson, R. (ed.) Structure of
Language and its Mathematica Vl Aspects, pp. 166–178. American Mathematical
Society, Providence (1961)

15. Morrill, G., Valent́ın, O., Fadda, M.: The displacement calculus. J. Logic Lang.
Inf. 20(1), 1–48 (2011)

16. Okada, M., Terui, K.: The finite model property for various fragments of intuition-
istic linear logic. J. Symb. Log. 64(2), 790–802 (1999)

17. Pentus, M.: Lambek grammars are context free. In: Proceedings of the 8th Annual
IEEE Symposium on Logic in Computer Science, Los Alamitos, California, pp.
429–433. IEEE Computer Society Press (1993)

18. Sestier, A.: Contributions à une théorie ensembliste des classifications linguistiques.
In: Actes du Ier Congrès de l’AFCAL, Grenoble, pp. 293–305 (1960) (Contributions
to a set-theoretical theory of classifications)

19. Wurm, C.: Completeness of full Lambek calculus for syntactic concept lattices. In:
Morrill, G., Nederhof, M.-J. (eds.) Formal Grammar 2012 and 2013. LNCS, vol.
8036, pp. 126–141. Springer, Heidelberg (2013)

Formal Grammar 2016:
Contributed Papers

Overtly Anaphoric Control in Type
Logical Grammar

Maŕıa Inés Corbalán1(B) and Glyn Morrill2

1 Universidade Estadual de Campinas, Campinas, Brazil
inescorbalan@yahoo.com.ar

2 Universitat Politècnica de Catalunya, Barcelona, Spain
morrill@cs.upc.edu

Abstract. In this paper we analyse anaphoric pronouns in control sen-
tences and we investigate the implications of these kinds of sentences
in relation to the Propositional Theory versus Property Theory ques-
tion. For these purposes, we invoke the categorial calculus with limited
contraction, a conservative extension of Lambek calculus that builds con-
traction into the logical rules for a customized slash type-constructor.

Keywords: Jaeger’s calculus LLC · Obligatory control · Portuguese ·
Pronominal types · Pronouns · Type Logical Grammar

1 Introduction

In Type Logical Grammar (TLG) the analysis of an expression is a resource-
conscious proof. Anaphora represents a particular challenge to this approach
in that the antecedent resource is multiplied in the semantics. This duplication,
which corresponds logically to the structural rule of Contraction, may be treated
lexically or syntactically.

Prototypical cases of control, as exemplified in (1) and (2) below, involve a
single overt nominal in the subject or object position of the main clause that
appears to carry a subject semantic role in the embedded clause (cf. [9]).1

(1) The doctor condescended to examine John.
1 This paper will deal only with what is called obligatory control (or exhaustive

control in the nomenclature of [14]), cases where the controller must be, for each
verb, a NP in a particular syntactic position in the sentence, not with types
of arbitrary control (cf. [10,24,25]). An anonymous reviewer observes that our
approach seems to provide resources to treat also cases of split control, where
both the subject and the object matrix clause can jointly form the controlled
embedded subject, as in the following Portuguese examples, where the inflection on
the infinitive form (INFL) marks the plural predication:
i. Eu convenci a Maria a/de viajarmos.

‘I convince Mary to travel.INFL.’
ii. João prometeu ao seu filho iremao cinema (juntos).

‘John promised his son to go.INFL to the cinema (together).’

c© Springer-Verlag Berlin Heidelberg 2016
A. Foret et al. (Eds.): FG 2015/2016, LNCS 9804, pp. 183–199, 2016.
DOI: 10.1007/978-3-662-53042-9 11

184 M.I. Corbalán and G. Morrill

(2) Barnett persuaded the doctor to examine Tilman.

Therefore, in the prototypical cases it seems that there is a mismatch between
the syntactic and the semantic levels of representation: there is no overt nominal
in the surface subject position of the embedded clause that carries the corre-
sponding semantic role.

In most generative theories it is assumed that a deleted copy of the overt nom-
inal or PRO occupies the embedded subject position in some non-phonological
level of syntactic representation (cf. [7,8,11,15,23]). Assuming this, most gen-
erative theories contend that the embedded clause in control structures denotes
a proposition (but see [15,25]). Hence, from these perspectives, the syntactic-
semantic mismatch is resolved.

Since categorial grammar is a monostratal framework, the resort to a non-
surface level of syntactic representation to avoid the mismatch is not available.
Notwithstanding, prototypical obligatory control structures do not present a
resource problem in a monostratal grammar such as TLG when there is no
syntactic embedded subject controlled by a matrix constituent. From the Type
Logical point of view, embedded subjectless clauses in control structures denote
a property, not a proposition (cf. [6,10]), and the lexical semantics of a con-
trol verb is multiple-bind. Hence, from a categorial perspective, the syntactic-
semantic mismatch is resolved in this way. Treating the control complement as
a property accounts for the sloppy reading in inferences from ellipsis of VP and
quantification (cf. [6]), while treating it as a proposition does not.

Neverthelesss, if we assume the Property Theory the mismatch seems to
reappear in a special kind of control structure in some pro-drop languages. The
occurrence of overt, semantically controlled, pronouns in some pro-drop lan-
guages, as exemplified in (3)–(8) below, raises the question of reusing semantic
resources in the context of control structures and raises the issue of the denota-
tion of the controlled complement clause (cf. [4,16], among others):2

(3) Pedro quer ele chegar (cedo). (BP)
‘Peter wants to arrive (early).’

There is not complete agreement in the literature as to whether split control is a
type of obligatory control. In footnote 17 we will show how can we deal with split
antecedents. As this reviewer notes such cases of control were discussed in the LFG
Glue framework. Indeed, [2], following [5], observes that anaphoric control, but not
functional control, allows split controlled antecedents. In future research we hope to
compare our proposal for control with the one made in the related resource-sensitive
formalism of LFG [2,3], which we unfortunately do not have space to discuss here.

2 BP stands for Brazilian Portuguese, EP for European Portuguese, SPA for Spanish
and IT for Italian. The infinitival subjects are highlighted. As is well known, Por-
tuguese has an inflected form of infinitive (INFL), that is, an infinitive form that
carries ending marks of agreement with their subject in both person and number. It
is generally assumed that inflection is obligatory if there is an overt subject within
the infinitive clause. And it is also generally assumed that the inflection must be
deleted in cases where the reference of the (null) subject coincides with the reference
of a matrix constituent. Thus, both rules confront each other in cases of control
sentences with overt subjects.

Overtly Anaphoric Control in TLG 185

(4) O João decidiu resolver ele o problema. (EP)
‘John decided to solve the problem by himself.’

(5) A poĺıcia forçou os manifestantes a eles sáır(em). (BP)
‘The police forced the protesters to leave.’

(6) Maŕıa queŕıa telefonear ella. (SPA)
‘Mary wanted to phone.’

(7) Juan prometió a su profesor hacer él los deberes. (SPA)
‘John promised his teacher to do the homework (personally).’

(8) Gianni me ha promesso di farlo lui. (IT)
‘John promised me to do it (personally).’

Indeed, since there is an overt pronoun in the (pre- or post-verbal) subject posi-
tion of the embedded clause, but the embedded clause denotes a property, we
seem to have to assume that the denotation of the overt pronoun does not sat-
urate the embedded predicate.

In this paper we analyse anaphoric pronouns in control sentences.3 For these
purposes, we invoke a categorial calculus with limited contraction, a conservative
extension of Lambek calculus, that builds contraction into the logical rules for
a customized slash type-constructor [13].

The structure of the paper is as follows. Section 2 presents Jaeger’s sys-
tem (in a Gentzen sequent format).4 Section 3 considers an analysis following
Jaeger’s approach to pronouns and discusses some difficulties of it for the case
of overt controlled pronouns. Section 4 presents an extension of Jaeger’s system
3 An anonymous reviewer indicates that the so-called Richard constructions, as exem-

plified below, have a number of suggestive parallel features with the variety of control
which we deal with. Despite some similarities, it is important to note that Richard
constructions are cases of copy raising; raising verbs, unlike control verbs, do not
select for a thematic subject in the predicative complement, and copy raising verbs,
unlike our control examples, require a pronominal bound copy in their complement
clause:

i. Richard seems like he is ill.
ii. Richard seems like he is in trouble.

The phenomenon of copy raising is also attested in Portuguese. But two differences
between typical Richard constructions and cases of copy raising in Portuguese must
be pointed out: Firstly, the lexical copy is not obligatory in the Portuguese construc-
tions; and secondly, the embedded copy in Portuguese can be not only a pronoun
but also a lexical DP (cf. [4]):

i. Acabou por ir ele/o João ao mercado.
‘It ended up being the case that he/John went to the market.’

For a treatment of copy raising in a resource-conscious framework or in a generative
grammar we refer the interested reader to [1,21], respectively.

4 A anonymous reviewer objects to the use of Gentzen format as “about as unfriendly
as possible”. Gentzen calculus, labelled and unlabelled natural deductions, proof
nets, categorical calculus, etc. are all of repute, all have their respective advantages
and disadvantages, and are all notations for the same theory. We think that it is
better to try to understand each notation than to censure one. The Gentzen format
is really not so hard to read.

186 M.I. Corbalán and G. Morrill

and develops our proposal. Section 5 concludes the paper. The Appendix con-
tains a sample of the output generated by a version of the parser/theorem-prover
CatLog2 (www.cs.upc.edu/∼droman/index.php) for our final proposal.

2 LLC Calculus

The Lambek calculus (L) with Limited Contraction (LLC) proposed by Jaeger
[13] is a conservative extension of the Lambek-style core of TLG. In a nutshell,
LLC extends L with a third kind of implication type-constructor, which compiles
a limited version of the structural rule of Contraction into its left and right logical
rules. Jaeger’s calculus treats resource multiplication syntactically. Like Lambek
calculus, Jaeger’s calculus LLC is free of structural rules.5

Definition 1 (syntactic types of LLC). Where P is a set of basic types, the
set F of types of LLC is defined as follows:

F ::= P | F\F | F/F | F • F | F|F

Definition 2 (semantic types). The set T of semantic types is defined on the
basis of a set δ of primitive semantic types by:

T ::= δ | T & T | T → T

As in L, the product type-constructor is semantically interpreted as Cartesian
product and the implications, as function space formation. So, the category-to-
type correspondence for LLC is given as follows:

Definition 3 (semantic type map for LLC). The semantic type map for
LLC is a mapping τ from syntactic types F to semantic types T such that:

τ (A • B) = τ (A) & τ (B)
τ (A\B) = τ (B/A) = τ (B|A) = τ (A) → τ (B)

The sequent rules for the product and the slash connectives are as in Lambek
calculus. The left and right rules for Jaeger’s type slash | are as follows (Fig. 1):

Γ ⇒ M : A Δ (x : A; y : B) ⇒ N : C
Δ (Γ ; z : B|A) ⇒ N [M/x] [(z M)/y)] : C |L

Γ (x1 : C1; . . . ;xn : Cn) ⇒ M : B
Γ (y1 : C1|A; . . . ; yn : Cn|A) ⇒ λz.M [(y1 z)/x1] . . . [(yn z)/xn] : B|A |R

Fig. 1. Left and Right rules for |
5 Both systems also admit the Cut rule, i.e. adding the Cut rule does not give rise to

any new theorems.

www.cs.upc.edu/~droman/index.php

Overtly Anaphoric Control in TLG 187

The LLC calculus is designed to treat different linguistic phenomena related
to anaphora and thus to semantic resource multiplication. Jaeger uses his calcu-
lus to treat cases of personal pronouns bound by wh-operators and quantifiers,
and reflexives and pronouns in ellipsis of VP, among other linguistic phenomena.
In LLC anaphoric expressions are assigned a type B|A and, in particular, (per-
sonal, possesive, reflexive) pronouns are assigned the syntactic category n|n. In
semantic terms, a pronoun denotes the identity function λx.x over individuals;
the reference of a pronoun is identical to the reference of its antecedent.6

As a basic example of application of LLC, consider the free and bound
reading of the personal pronoun in the sentence in (9):

(9) John said he walks.

In one reading, the pronoun he is co-referential with the subject John; in the
other, the pronoun remains free. In the first case, the category of the clause is
s with the semantics ((say′ (walk′ j′)) j′); in the other case, the category is
s|n and the corresponding semantics is the function λx.((say′ (walk′ x)) j′).
Figure 2 outlines these two derivations.

...
n ⇒ n n, (n\s) /s, n, n\s ⇒ s

n, (n\s) /s, n|n, n\s ⇒ s |L

...
n, (n\s) /s, n, n\s ⇒ s

n, (n\s) /s, n|n, n\s ⇒ s|n |R

Fig. 2. Derivations for John said he walks

The free and the bound readings for the pronoun can also be obtained when the
matrix subject is a quantifier like everyone.7

Since we defend the Property Theory as the correct semantic analysis for
the infinitive clause selected by a control verb, the syntactic category of this
clause cannot be the simple type s despite the overt occurrence of a pronoun.
Maintaining the Property Theory and the correct sloppy reading in ellipsis of
VP, we test LLC in relation to anaphoric pronouns in control sentences.

3 Control Structures and Property Theory

3.1 Applying LLC to Portuguese

Besides assuming Jaeger’s proposal for pronouns, we use his slash to categorize
the matrix control verb. The Spanish control sentence in (6) with a (post-verbal)
overt pronoun can be derived assuming the following lexical assignments:
6 In this respect, Jaeger adopts Jacobson’s proposal [12].
7 Jaeger’s proposal in itself does not capture either Binding Principle A (locality of

anaphors) or Principle B (antilocality of personal pronouns). A categorial approach
to locality of anaphors is given by modalities in [17] and a ‘negation as failure’
categorial approach including antilocality of personal pronouns is given in [20].

188 M.I. Corbalán and G. Morrill

maŕıa : n : m′
queŕıa : (n\s) / (s|n) : λx.λy. ((wanted′ (x y)) y)
telefonear : s/n : λx. (phone′ x)
ella : n|n : λx.x

In words, the control verb queŕıa ‘wanted’ is assigned a functional type that
takes an unsaturated sentence with a pronominal gap as its complement. The
lambda operator that binds two occurrences of the same variable guarantees the
control relation between the matrix subject and the embedded pronoun.8

Figure 3 shows the derivation of the Spanish sentence in (6) and Fig. 4 below
shows the derivation of the control sentence in (3) containing a pre-verbal overt
pronoun. Observe the nominal argument position in the type assigned to the
infinitive embedded verb chegar ‘to arrive’. Lexical assignments for the nominal,
the pronoun and the matrix finite verb are as before.

n ⇒ n s ⇒ s
s/n, n ⇒ s /L n ⇒ n s ⇒ s

s/n, n|n ⇒ s|n |R n, n\s ⇒ s \L

n, (n\s) / (s|n) , s/n, n|n ⇒ s /L

Fig. 3. Derivation of Maŕıa queŕıa telefonear ella

n ⇒ n s ⇒ s
n, n\s ⇒ s \L n ⇒ n s ⇒ s

n|n, n\s ⇒ s|n |R n, n\s ⇒ s \L

n, (n\s) / (s|n) , n|n, n\s ⇒ s /L

Fig. 4. Derivation of Pedro quer ele chegar

As we can see from Fig. 5 below, the sequent n, (n\s)/(s|n), n|n, n\s ⇒ s|n is
not derivable. In words, in embedded sentences selected by control verbs the
8 In SPA and IT subjects of (adverbial or subject) infinitive constructions necessarily

occupy the post-verbal position. By contrast, in BP such subjects normally occupy
the pre-verbal position. In EP subjects within infinitive clauses normally occur in the
post-verbal position, but the pre-verbal position can also be admitted. Hence, the
nominal argument position in the embedded verb in control structures is justified:

i. Al sentir él los primeros śıntomas de la gripe, Carlos se vacunó. (SPA)
‘When he feel.INF the flu symptoms, Carlos gets the vaccine.’

ii. Os meninos sairem á noite preocupa suas mães. (BP/EP)
‘The boys go out.INFL at night worries his mothers.’

iii. Prima di morire papá, mama era felice. (IT)
‘Before die.INF dad, mom was happy.’

.

Overtly Anaphoric Control in TLG 189

...
n, n\s ⇒ s|n ∗ n, n\s ⇒ s \L

n, (n\s) / (s|n) , n, n\s ⇒ s /L

n, (n\s) / (s|n) , n|n, n\s ⇒ s|n |R

Fig. 5. Illicit derivation for the type s|n

pronominal gap cannot be free and it has to be syntactically bound by a matrix
nominal (if there is one).9

To sum up, it seems that applying Jaeger’s proposal for pronouns is theo-
retically and empirically adequate for the analysis of overt pronouns occurring
within control sentences in some pro-drop languages: we have used it to derive
control sentences with overt pronominal subject warranting the control relation
and also the Property Theory.

Notwithstanding, the previous proposal faces two adverse problems: over-
generation and undergeneration. On the one hand, we cannot prove prototypical
cases of control, as in (10), that do not contain an overt embedded subject
(Fig. 6).

(10) Maŕıa queŕıa telefonear.
‘Mary wanted to make a phone call.’

n ⇒ n s ⇒ s
n\s ⇒ s|n ∗ n, n\s ⇒ s \L

n, (n\s) / (s|n) , n\s ⇒ s /L

Fig. 6. Illicit derivation for Maŕıa queŕıa telefonear

On the other, we can derive several ungrammatical sentences, as exemplified in
(11–13) below, containing a non-controlled subject expression within the com-
plement clause selected by the subject control verb quer ‘wants’ (Fig. 7).10

9 If the controller were a pronoun, as in the example below, then the complex category
s|n can be derived, but this is in virtue of the matrix subject pronoun.

i. Roberto, eu tentei eu enviar meu convite a você.
‘Robert, I tried to send my invitation to you.’

.

10 As in other Romance languages, object pronouns in Portuguese take the clitic form:
(l)o/(l)a. In Brazilian spoken language the third person (non-reflexive) clitics are
not commonly used; instead, the (nominative) form ele(s)/a(s) is usually used for
accusative object:

i. Visitei-o ontem. (EP)
ii. Visitei ele ontem. (BP)

‘[I] visited him yesterday.’

190 M.I. Corbalán and G. Morrill

(11) *Pedro1 quer ele2 ajudá-lo1/ele1.
‘Peter wants for him to help him.’

(12) *Pedro1 quer Maria ajudá-lo1/ele1.
‘Peter wants Mary to date him.’

(13) *João1 disse que Pedro2 quer ele1 ajudá-lo2/ele2.
‘John said that Peter wants for him to help him.’

n ⇒ n s ⇒ s
n ⇒ n n, n\s ⇒ s \L

n, (n\s) /n, n ⇒ s /L n ⇒ n s ⇒ s
n, (n\s) /n, n|n ⇒ s|n |R n, n\s ⇒ s \L

n, (n\s) / (s|n) , n, (n\s) /n, n|n ⇒ s

Fig. 7. Derivation of *Pedro quer Maria ajudá-lo/ele

In order to deal with these difficulties, we propose to extend LLC.

4 Proposal: Extending LLC

4.1 Semantically Inactive Disjunction Type

The first problem—undergeneration—can be easily tackled by adding the seman-
tically inactive disjunction � to LLC (cf. [18]) (Fig. 8).

Γ (x : A) ⇒ M(x) : C Γ (y : B) ⇒ M(y) : C
Γ (z : A � B) ⇒ M(z) : C �L

Γ ⇒ M : A
Γ ⇒ M : A � B �R1

Γ ⇒ N : B
Γ ⇒ N : A � B �R2

Fig. 8. Rules for semantically inactive disjunction type-constructor �

The optionality of the overt controlled pronoun can now be captured using
such a disjunction type-constructor. We can deal with prototypical control sen-
tences simply assigning a semantically inactive disjunction type to the comple-
ment argument of the control (transitive) verb (Fig. 9):

queŕıa : (n\s) / ((s|n) � (n\s))

Overtly Anaphoric Control in TLG 191

...
n\s ⇒ n\s \R n ⇒ n s ⇒ s

n\s ⇒ (s|n) � (n\s) �R n, n\s ⇒ s \L

n, (n\s) / ((s|n) � (n\s)) , n\s ⇒ s /L

Fig. 9. Derivation for Maŕıa queŕıa telefonear

4.2 Preliminary Proposal: Unlifted Pronominal Types

In order to deal with the second problem—overgeneration of pronoun distribu-
tion in control structures—it is important to note, in the first place, that even
though the infinitive clauses contain a bound pronoun in (11–13) above, it does
not appear as the subject, but the object of the infinitive verb ajudar ‘to help’.
The pronominal type proposed by Jaeger does not distinguish between subject
and object pronouns, and so, there is no way to fix the Case of a pronoun.11

Thus, in LLC subject and object (and also reflexive) pronouns are all of type
n|n; therefore, the following clauses are both of type s|n as they contain a free
pronoun in some position.

(14) John saw him.
(15) He saw John.

In the second place, observe that in the three problematic examples, the embed-
ded subject is not controlled by a matrix nominal: in (11) the subject is a free
pronoun; in (12) a referential expression occupies the subject position; and in
(13) the subject pronoun is bound by a higher nominal. Thus, despite the fact
that the control clause contains a bound pronoun, a grammatical control rela-
tion is not exercised. While the argument type (s|n) � (n\s) of the control verb
expresses that if there is a pronoun within the complement, it has to be bound,
the type s|n is not sufficient to adequately express the control conditions: (i) the
infinitive subject has to be a pronoun, and (ii) it has to be bound (by a spe-
cific matrix nominal phrase). In other words, in control sentences it is necessary
to ensure, first, that the embedded subject is a pronoun, and second, that the
antecedent of the verbal argument type s|n and that of this pronoun are the
same. If the pronoun is the subject of an intransitive verb phrase, as in example
(3) above, both conditions are correctly satisfied, but not when the complement
contains the pronoun in the object position of a transitive complement.
11 Jaeger’s pronominal type does not distinguish between pre- and post-verbal posi-

tion, this last difference being incorporated in the infinitive verb type in our previous
proposal. As we have said before, Jaeger’s proposal does not capture Principles A
(locality) and B (antilocality) of the Binding Theory: that reflexive pronouns must be
bound in their own clause and that accusative pronouns cannot take a c-commanding
antecedent in their own clause. In order to take account of the pronominal posi-
tion, we shall use lifted pronominal types, for example, (s|n) / (n\s) for pre-verbal
subjects.

192 M.I. Corbalán and G. Morrill

In order to address both of these control conditions, we propose to extend
LLC by adding a new type-constructor || for proforms. The right and left rules
for this new connective are to be the same as those of |. With this new syntactic
type B||A at hand, we can differentiate, in particular, between an expression
containing an object pronoun B|n and an expression containing a subject pro-
noun B||n.12 Consequently, despite the fact that the sentences in (14) and (15)
both contain a free pronoun, they will have different types: s|n and s||n, respec-
tively. In words, s|n is the type for a sentence that contains a pronominal free
object, and type s||n corresponds to sentences with a subject free pronoun.13

...
n, n\s ⇒ s \L

n||n, n\s ⇒ s||n ||R ...
n||n, n\s ⇒ (s||n) � (n\s) �R n, n\s ⇒ s
n, (n\s) / ((s||n) � (n\s)) , n||n, n\s ⇒ s /L

Fig. 10. Derivation for Pedro quer ele chegar

Thus the preliminary proposal, with the following lexical entries, derives
control sentences without and with an overt controlled pronoun ((16) and (17–
18), respectively).14 And the derivation for a control sentence with an embedded
referential subject and a bound object pronoun (as in (19)) is blocked (Figs. 10
and 11):15

ajudar : (n\s) /n : λx.λy. ((help′ y) x)
chegar : n\s : λx. (arrive′ x)

12 An anonymous reviewer observes that this difference could be made by using features
instead of introducing a new connective. Although we could have chosen that option,
we have preferred to extend Jaeger’s proposal because using both proforms we can
obtain the corresponding lifted types, and so, we can also distinguish between a pre-
and a post-verbal pronoun.

13 Observe that the double free pronoun reading λx.λy.((saw′ y) x) for He saw him,
which in Jaeger’s system gets the category (s|n) |n, corresponds on our proposal to
the type (s||n) |n or (s|n)||n.

14 Note that the bound reading for the object n|n is obtained by using, not |R, but |L.
15 There are two readings for Pedro quer ele ajudar ele: a reflexive bound read-

ing ((wanted′ ((help′ p) p)) p) and a free reading λx. ((wanted′ ((help′ x) p)) p).
In the first case, the clause corresponds to the type s and in the second, to the
type s|n. There is no derivation for the type s||n with the subject free read-
ing λx. ((wanted′ ((help′ p) x)) p). Considering that in BP the object pronoun
can take the nominative form, it seems we have to take the sequence of types
n, (n\s) / ((s||n) � (n\s)) , n, (n\s) /n, n||n into account for the sentence in (12). But,
it must to be remembered that infinitive subjects are usually preverbal in BP.

Overtly Anaphoric Control in TLG 193

ele (he) : n||n : λx.x
joão : n : j′

lo/ele (him) : n|n : λx.x
pedro : n : p′

quer : (n\s) / ((s||n) � (n\s)) : λx.λy. ((want′ (x y)) y)

(16) Pedro quer chegar.
(17) Pedro quer ele chegar.
(18) Pedro quer ele ajudá-lo/ele.
(19) *Pedro quer João ajudá-lo/ele.

n ⇒ n n, (n\s) /n, n ⇒ s||n ∗

n, (n\s) /n, n|n ⇒ s||n |L ...
n, (n\s) /n, n|n ⇒ (s||n) � (n\s) �R n, n\s ⇒ s \L

n, (n\s) / ((s||n) � (n\s)) , n, (n\s) /n, n|n ⇒ s /L

Fig. 11. Illicit derivation for Pedro quer João ajudá-lo/ele

Observe that in embedded sentences selected by propositional verbs both
the free and the bound reading for a pronominal subject are possible, as in
Jaeger’s system. Thus, an embedded pronoun can be bound by a higher quantifier
or another nominal expression when it occurs within complement clauses of
propositional verbs:16

(20) João disse que ele caminha.
‘John said he walks.’

16 In EP, BP, SPA and IT such a free reading for a pronoun (and even a referential
expression) is also allowed even if the embedded verb has (inflected or uninflected)
infinitive form, when the complement clause is selected by a propositional verb (cf.
[16,22], among others):
i. Eu penso/afirmo terem os deputados trabalhado pouco. (EP)

‘I think/affirm the congressmen have.INFL worked poorly.’
ii. As italianas sabem serem elas encantadoras. (BP)

‘Italian girls know they are.INFL charming.’
iii. Este documento prueba haber tú nacido en 1938. (SPA)

‘This document proves have.INF you was born in 1938.’
iv. Credevo avere egli vinto. (IT)

‘[I] believed [that] he has.INF won.’

194 M.I. Corbalán and G. Morrill

These two readings result from the following derivations (Fig. 12):

...
n, (n\s) /s, n, n\s ⇒ s /L

n, (n\s) /s, n||n, n\s ⇒ s||n ||R

...
n ⇒ n n, (n\s) /s, n, n\s ⇒ s /L

n, (n\s) /s, n||n, n\s ⇒ s ||L

Fig. 12. Derivations for João disse que ele caminha

A control sentence with a prepositional control verb can also be derived assuming
the anaphoric type s||n as an argument of the selected preposition:17

(21) A poĺıcia forçou os manifestantes a eles sáır(em). (BP)
‘The police forced the protesters to leave.’

(22) Acusa os colegas de eles ser(em) corruptos. (BP)
‘[S/He] accuses the partners of being rascals.’

forçou : (n\s) / (n • (n\s)) : λx.λy. (((force (π2x π1x)) π1x) y)
a : (n\s) / ((s||n) � (n\s)) : λx.x
acusa : (n\s) / (n • (n\s)) : λx.λy. (((charge (π2x π1x)) π1x) y)
de : (n\s) / ((s||n) � (n\s)) : λx.x (Fig. 13)

...

n||n, n\s ⇒ s||n ||R ...

n||n, n\s ⇒ (s||n) � (n\s) �R n\s ⇒ n\s
...

(n\s) / ((s||n) � (n\s)) , n||n, n\s ⇒ n\s /L n/cn, cn ⇒ n /L
...

n/cn, cn, (n\s) / ((s||n) � (n\s)) , n||n, n\s ⇒ n • (n\s) •R n/cn, cn, n\s ⇒ s /L

n/cn, cn, (n\s) / (n • (n\s)) , n/cn, cn, (n\s) / ((s||n) � (n\s)) , n||n, n\s ⇒ s /L

Fig. 13. Derivation for A poĺıcia forçou os manifestantes a eles sair

17 To analyse split control as exemplified by the Portuguese sentence below, we suggest
the following lexical entry for the prepositional control verb convencer a/de ‘con-
vince’, where g groups individuals:

i. Eu convenci a Maria a/de viajarmos.
‘I convince Mary to travel.INFL.’

convenci : (n\s) / (n • (n\s)) : λx.λy. (((convinced (π2x π1x)) g(y, π1x)) y)
a/de : (n\s) / ((s||n) � (n\s)) : λx.x

Overtly Anaphoric Control in TLG 195

Although the previous proposal ensures that the subject embedded pronoun
is controlled, the type n||n does not block the derivation of ungrammatical sen-
tences which contain a subject pronoun within a nominal phrase in the embed-
ded subject position,18 as exemplified below, neither captures the antilocality
principle for the object type n|n:19

(23) *Pedro quer o fato de que ele chegou ser comemorado.
‘Peter wants the fact that he arrive be.INF celebrated.’

4.3 Final Proposal: Lifted Pronominal Types

Like a type n, a pronominal type n|n (and n||n) can also be lifted in LLC. In
other terms, in addition to (24) and (25), the sequents (26) and (27) can also be
derived in Jaeger’s system:20

(24) n ⇒ (s/n) \s
(25) n ⇒ s/ (n\s)
(26) n|n ⇒ (s/n) \ (s|n)
(27) n|n ⇒ (s|n) / (n\s)

Observe, in the first place, that lifted types are differentiated not only with
respect to the position—left or right—of the argument, but also with respect
to the type of the argument—s/n or n\s. It seems clear that the lifted type
(s|n) / (n\s) (or (s||n) / (n\s)) in our proposal) could be used to categorize a
pre-verbal subject pronoun, as it selects a verb phrase to the right.

For accusative pronouns we follow a strategy of lifting (‘case as lifting’) as
well as has been done for nominative pronouns. There are two facts in partic-
ular which we capture. First, that accusative pronouns appear in non-subject
positions,21 and second, that they cannot take a subject antecedent in their own
18 Since the pronoun ele is assigned the type n||n and the nominal phrase os amigos

d’ele contains this pronoun it seems that we have to admit that the pronominal type
n||n is also assigned to it, and consequently, the sentence in (ii) could be derived:

ii. João quer os amigos d’ele chegar(em).
‘John wants his friends to arrive(.INFL)’

Nevertheless, in this case ele is the complement of the preposition, and it is used
as the third person possessive pronoun in order to avoid the ambiguity between the
second and the third reading for the possessive seu(s) (‘your’/‘his’/‘her’). Observe
that the preposition de ‘of’ cannot take a first pronoun as its complement: *os amigos
de mim/eu/nós.

19 Although for reasons of space we do not do so here, we believe our eventual, lifted pro-
noun type, proposal can prohibit this non-locality when it is semantically modalised;
cf. the way non-locality for reflexives is blocked in [17].

20 Note that the sequents are not derivable in the reverse direction. Hence, assigning
lifted types preserves some but not all of the distribution of unlifted types.

21 In the previous proposal for control sentences this fact is captured by assigning differ-
ent pronominal types for the control argument—s||n—and the object pronoun—n|n.
Notwistanding, as in Jaeger’s proposal, there is no way to block the occurrence of
an object pronoun in a subject position.

196 M.I. Corbalán and G. Morrill

clause (antilocality). Following [20] we assign accusative pronouns types of the
form ((s ↑ n) − (J • (n\s))) ↓ (s|n) where ↑ and ↓ and J are the extract and
infix and discontinuous unit of the displacement calculus [19], and − is differ-
ence [20]. The type says that the pronoun occupies a nominal position within
a sentence where the position is not subject position (−(J • (n\s))), and then
seeks a nominal antecedent outside of the resulting sentence (and hence not the
subject of the same sentence: antilocality).

Hence we arrive at an analysis illustrated by the mini-lexicon:
a : Nt(s(f))/CNs(f) : ι

a : (∃aNa\Saa)/∃a((Si||Na)�(Na\Si)) : λAA

acusa : (∃gNt(s(g))\Sf)/∃a(Na•(Na\Sde)) : λAλB(((charge (π2A π1A)) π1A) B)

ajudar : (∃aNa\Si)/∃aNa : help

chegar : ∃aNa\Si : arrive

colegas : ∀gCNp(g) : partners

corruptos : CNp(m)/CNp(m) : corrupt

de : (∃aNa\Sde)/∃a((Si||Na)�(Na\Si)) : λAA

decidiu : ∀a((Na\Sf)/((Si||Na)�(Na\Si))) : λAλB((decided (A B)) B)

disse : (∃gNt(s(g))\Sf)/CPque : say

ela : ∀v(((Sv↑Nt(s(f)))−(J•(Nt(s(f))\Sv)))↓(Sv|Nt(s(f)))) : λAA

ela : ∀v((Sv||Nt(s(f)))/(Nt(s(f))\Sv)) : λAA

ele : ∀v(((Sv↑Nt(s(m)))−(J•(Nt(s(m))\Sv)))↓(Sv|Nt(s(m)))) : λAA

ele : ∀v((Sv||Nt(s(m)))/(Nt(s(m))\Sv)) : λAA

eles : ∀v((Sv||Nt(p(m)))/(Nt(p(m))\Sv)) : λAA

forçou : (∃gNt(s(g))\Sf)/∃a(Na•(Na\Saa)) : λAλB(((force (π2A π1A)) π1A) B)

joão : Nt(s(m)) : j

manifestantes : CNp(m) : protesters

maria : Nt(s(f)) : m

namora : (∃aNa\Sf)/∃aNa : love

namorar : (∃aNa\Si)/∃aNa : love

o : Nt(s(m))/CNs(m) : ι

os : Nt(p(m))/CNp(m) : ι

pedro : Nt(s(m)) : p

policia : CNs(f) : police

problema : CNs(m) : problem

que : CPque/Sf : λAA

quer : ∀a((Na\Sf)/((Si||Na)�(Na\Si))) : λAλB((want (A B)) B)

resolver : (∃aNa\Si)/∃aNa : solve

sair : ∃aNa\Si : go

ser : (∃aNa\Si)/∃a(CNa/CNa) : be

In the Appendix we give some illustrative derivations from this lexicon generated
by the parser/theorem prover CatLog2.22

5 Conclusions

In this paper we have analyzed overt pronouns in control sentences in Portuguese.
Firstly, we have followed Jaeger’s proposal for pronouns and we have exposed
22 www.cs.upc.edu/∼droman/index.php.

www.cs.upc.edu/~droman/index.php

Overtly Anaphoric Control in TLG 197

some problems resulting from adopting the same syntactic type for both subject
and object pronouns: n|n. We have shown how can we extend Jaeger’s system in
order to guarantee the control relation with the subject embedded pronoun by
distinguishing between subject n||n and object n|n pronominal types. But this
strategy was still shown to be limited as we can derive some odd ungrammatical
sentences. Finally, we have suggested adoption of lifted pronominal types to
avoid these cases.

The analysis can be implemented in the parser/theorem prover CatLog2. In
the Appendix we show analyses with lifted types.

Acknowledgements. The first author was supported by a Doctorate scholarship
(BEPE) granted by FAPESP (Fundação de Amparo à Pesquisa do Estado de São
Paulo, process number 2015/09699-2). The second author was supported by an
ICREA Académia 2012, SGR2014-890 (MACDA) of the Generalitat de Catalunya and
MINECO project APCOM (TIN2014-57226-P). We thank Formal Grammar reviewers
for comments and suggestions. All errors are our own.

Appendix

(A) pedro+quer+ele+chegar : Sf
Nt(s(m)) : p,∀a((Na\Sf)/((Si||Na)�(Na\Si))) : λAλB((want (A B)) B),
∀v((Sv||Nt(s(m)))/(Nt(s(m))\Sv)) : λCC ,∃aNa\Si : arrive ⇒ Sf
(See Fig. 14)

Nt(s(m)) ⇒ Nt(s(m))
∃R

Nt(s(m)) ⇒ ∃aNa Si ⇒ Si
\L

Nt(s(m)), ∃aNa\Si ⇒ Si
\R

∃aNa\Si ⇒ Nt(s(m))\Si
Si ⇒ Si

||R
Si||Nt(s(m)) ⇒ Si||Nt(s(m))

/L
(Si||Nt(s(m)))/(Nt(s(m))\Si) , ∃aNa\Si ⇒ Si||Nt(s(m))

∀L
∀v((Sv||Nt(s(m)))/(Nt(s(m))\Sv)) , ∃aNa\Si ⇒ Si||Nt(s(m))

�R
∀v((Sv||Nt(s(m)))/(Nt(s(m))\Sv)), ∃aNa\Si ⇒ (Si||Nt(s(m)))�(Nt(s(m))\Si)

Nt(s(m)) ⇒ Nt(s(m)) Sf ⇒ Sf
\L

Nt(s(m)), Nt(s(m))\Sf ⇒ Sf
/L

Nt(s(m)), (Nt(s(m))\Sf)/((Si||Nt(s(m)))�(Nt(s(m))\Si)) , ∀v((Sv||Nt(s(m)))/(Nt(s(m))\Sv)), ∃aNa\Si ⇒ Sf
∀L

Nt(s(m)), ∀a((Na\Sf)/((Si||Na)�(Na\Si))) , ∀v((Sv||Nt(s(m)))/(Nt(s(m))\Sv)), ∃aNa\Si ⇒ Sf

Fig. 14. Derivation of (A)

((want (arrive p)) p)

(B) a+policia+forçou+os+manifestantes+a+eles+ajudar+ele : Sf |Nt(s(m))

Nt(s(f))/CNs(f) : ι,CNs(f) : police, (∃gNt(s(g))\Sf)/∃a(Na•(Na\Saa)) :
λAλB(((force (π2A π1A)) π1A) B), Nt(p(m))/CNp(m) : ι,CNp(m) : protesters,
(∃aNa\Saa)/∃a((Si||Na)�(Na\Si)) : λCC , ∀v((Sv||Nt(p(m)))/(Nt(p(m))\Sv)) :
λDD , (∃aNa\Si)/∃aNa :
help, ∀v(((Sv↑Nt(s(m)))−(J•(Nt(s(m))\Sv)))↓(Sv|Nt(s(m)))) : λEE ⇒ Sf |Nt(s(m))
(See Fig. 15)
λA(((force ((help A) (ι protesters))) (ι protesters)) (ι police))

198 M.I. Corbalán and G. Morrill

C
N
p
(m

)
⇒

C
N
p
(m

)
N
t(
p
(m

))
⇒

N
t(
p
(m

))
/
L

N
t(
p
(m

))
/
C
N
p
(m

)
,C

N
p
(m

)
⇒

N
t(
p
(m

))

N
t(
s(
m

))
⇒

N
t(
s(
m

))
∃R

N
t(
s(
m

))
⇒

∃a
N
a

N
t(
p
(m

))
⇒

N
t(
p
(m

))
∃R

N
t(
p
(m

))
⇒

∃a
N
a

S
i

⇒
S
i
\L

N
t(
p
(m

))
,

∃a
N
a
\S

i
⇒

S
i
/
L

N
t(
p
(m

))
,

(∃
a
N
a
\S

i)
/
∃a

N
a
,N

t(
s(
m

))
⇒

S
i
\R

(∃
a
N
a
\S

i)
/
∃a

N
a
,N

t(
s(
m

))
⇒

N
t(
p
(m

))
\S

i

S
i

⇒
S
i

||R
S
i||
N
t(
p
(m

))
⇒

S
i||
N
t(
p
(m

))
/
L

(S
i||
N
t(
p
(m

))
)/

(N
t(
p
(m

))
\S

i)
,(

∃a
N
a
\S

i)
/
∃a

N
a
,N

t(
s(
m

))
⇒

S
i||
N
t(
p
(m

))
∀L

∀v
((
S
v
||N

t(
p
(m

))
)/

(N
t(
p
(m

))
\S

v
))

,(
∃a

N
a
\S

i)
/
∃a

N
a
,N

t(
s(
m

))
⇒

S
i||
N
t(
p
(m

))
�R

∀v
((
S
v
||N

t(
p
(m

))
)/

(N
t(
p
(m

))
\S

v
))
,(

∃a
N
a
\S

i)
/
∃a

N
a
,N

t(
s(
m

))
⇒

(S
i||
N
t(
p
(m

))
)�

(N
t(
p
(m

))
\S

i)
∃R

∀v
((
S
v
||N

t(
p
(m

))
)/

(N
t(
p
(m

))
\S

v
))
,(

∃a
N
a
\S

i)
/
∃a

N
a
,N

t(
s(
m

))
⇒

∃a
((
S
i||
N
a
)�

(N
a
\S

i)
)

N
t(
p
(m

))
⇒

N
t(
p
(m

))
∃R

N
t(
p
(m

))
⇒

∃a
N
a

S
a
a

⇒
S
a
a

\L
N
t(
p
(m

))
,

∃a
N
a
\S

a
a

⇒
S
a
a
/
L

N
t(
p
(m

))
,

(∃
a
N
a
\S

a
a
)/

∃a
((
S
i||
N
a
)�

(N
a
\S

i)
)
,∀

v
((
S
v
||N

t(
p
(m

))
)/

(N
t(
p
(m

))
\S

v
))
,(

∃a
N
a
\S

i)
/
∃a

N
a
,N

t(
s(
m

))
⇒

S
a
a

\R
(∃
a
N
a
\S

a
a
)/

∃a
((
S
i||
N
a
)�

(N
a
\S

i)
),

∀v
((
S
v
||N

t(
p
(m

))
)/

(N
t(
p
(m

))
\S

v
))
,(

∃a
N
a
\S

i)
/
∃a

N
a
,N

t(
s(
m

))
⇒

N
t(
p
(m

))
\S

a
a

•R
N
t(
p
(m

))
/
C
N
p
(m

),
C
N
p
(m

),
(∃
a
N
a
\S

a
a
)/

∃a
((
S
i||
N
a
)�

(N
a
\S

i)
),

∀v
((
S
v
||N

t(
p
(m

))
)/

(N
t(
p
(m

))
\S

v
))
,(

∃a
N
a
\S

i)
/
∃a

N
a
,N

t(
s(
m

))
⇒

N
t(
p
(m

))
•(
N
t(
p
(m

))
\S

a
a
)

∃R
N
t(
p
(m

))
/
C
N
p
(m

),
C
N
p
(m

),
(∃
a
N
a
\S

a
a
)/

∃a
((
S
i||
N
a
)�

(N
a
\S

i)
),

∀v
((
S
v
||N

t(
p
(m

))
)/

(N
t(
p
(m

))
\S

v
))
,(

∃a
N
a
\S

i)
/
∃a

N
a
,N

t(
s(
m

))
⇒

∃a
(N

a
•(
N
a
\S

a
a
))

C
N
s(
f
)

⇒
C
N
s(
f
)

N
t(
s(
f
))

⇒
N
t(
s(
f
))

/
L

N
t(
s(
f
))
/
C
N
s(
f
)
,C

N
s(
f
)

⇒
N
t(
s(
f
))

∃R
N
t(
s(
f
))
/
C
N
s(
f
),
C
N
s(
f
)

⇒
∃g

N
t(
s(
g
))

S
f

⇒
S
f

\L
N
t(
s(
f
))
/
C
N
s(
f
),
C
N
s(
f
),

∃g
N
t(
s(
g
))

\S
f

⇒
S
f
/
L

N
t(
s(
f
))
/
C
N
s(
f
),
C
N
s(
f
),

(∃
g
N
t(
s(
g
))

\S
f
)/

∃a
(N

a
•(
N
a
\S

a
a
))

,N
t(
p
(m

))
/
C
N
p
(m

),
C
N
p
(m

),
(∃
a
N
a
\S

a
a
)/

∃a
((
S
i||
N
a
)�

(N
a
\S

i)
),

∀v
((
S
v
||N

t(
p
(m

))
)/

(N
t(
p
(m

))
\S

v
))
,(

∃a
N
a
\S

i)
/
∃a

N
a
,N

t(
s(
m

))
⇒

S
f

↑R
N
t(
s(
f
))
/
C
N
s(
f
),
C
N
s(
f
),

(∃
g
N
t(
s(
g
))

\S
f
)/

∃a
(N

a
•(
N
a
\S

a
a
))
,N

t(
p
(m

))
/
C
N
p
(m

),
C
N
p
(m

),
(∃
a
N
a
\S

a
a
)/

∃a
((
S
i||
N
a
)�

(N
a
\S

i)
),

∀v
((
S
v
||N

t(
p
(m

))
)/

(N
t(
p
(m

))
\S

v
))
,(

∃a
N
a
\S

i)
/
∃a

N
a
,1

⇒
S
f

↑ N
t(
s(
m

))
−R

N
t(
s(
f
))
/
C
N
s(
f
),
C
N
s(
f
),

(∃
g
N
t(
s(
g
))

\S
f
)/

∃a
(N

a
•(
N
a
\S

a
a
))
,N

t(
p
(m

))
/
C
N
p
(m

),
C
N
p
(m

),
(∃
a
N
a
\S

a
a
)/

∃a
((
S
i||
N
a
)�

(N
a
\S

i)
),

∀v
((
S
v
||N

t(
p
(m

))
)/

(N
t(
p
(m

))
\S

v
))
,(

∃a
N
a
\S

i)
/
∃a

N
a
,1

⇒
(S

f
↑ N

t(
s(
m

))
)−

(J
•(
N
t(
s(
m

))
\S

f
))

S
f

⇒
S
f

|R
S
f
|N

t(
s(
m

))
⇒

S
f
|N

t(
s(
m

))
↓L

N
t(
s(
f
))
/
C
N
s(
f
),
C
N
s(
f
),

(∃
g
N
t(
s(
g
))

\S
f
)/

∃a
(N

a
•(
N
a
\S

a
a
))
,N

t(
p
(m

))
/
C
N
p
(m

),
C
N
p
(m

),
(∃
a
N
a
\S

a
a
)/

∃a
((
S
i||
N
a
)�

(N
a
\S

i)
),

∀v
((
S
v
||N

t(
p
(m

))
)/

(N
t(
p
(m

))
\S

v
))
,(

∃a
N
a
\S

i)
/
∃a

N
a
,

((
S
f

↑ N
t(
s(
m

))
)−

(J
•(
N
t(
s(
m

))
\S

f
))

)↓
(S

f
|N

t(
s(
m

))
)

⇒
S
f
|N

t(
s(
m

))
∀L

N
t(
s(
f
))
/
C
N
s(
f
),
C
N
s(
f
),

(∃
g
N
t(
s(
g
))

\S
f
)/

∃a
(N

a
•(
N
a
\S

a
a
))
,N

t(
p
(m

))
/
C
N
p
(m

),
C
N
p
(m

),
(∃
a
N
a
\S

a
a
)/

∃a
((
S
i||
N
a
)�

(N
a
\S

i)
),

∀v
((
S
v
||N

t(
p
(m

))
)/

(N
t(
p
(m

))
\S

v
))
,(

∃a
N
a
\S

i)
/
∃a

N
a
,

∀v
((

(S
v

↑ N
t(
s(
m

))
)−

(J
•(
N
t(
s(
m

))
\S

v
))

)↓
(S

v
|N

t(
s(
m

))
))

⇒
S
f
|N

t(
s(
m

))

Fig. 15. Derivation of (B)

Overtly Anaphoric Control in TLG 199

References

1. Asudeh, A.: Richard III. In: Andronis, M., Debenport, E., Pycha, A., Yoshimura,
K. (eds.) CLS 38: The Main Session, vol. 1, pp. 31–46. Chicago Linguistic Society,
Chicago (2002)

2. Asudeh, A.: Control and Semantic Resource Sensitivity. J. Linguist. 41(3), 465–511
(2005)

3. Asudeh, A., Mortazavinia, M.: Obligatory control in Persian: implications for the
syntax-semantics interface. In: Handout from ICIL 4, Uppsala University (2011)

4. Barbosa, P.: Overt subjects in raising and control complements and the null subject
parameter. In: LSA Annual Meeting Extended Abstracts (2010)

5. Bresnan, J.: Control and complementation. Linguist. Inquiry 13, 343–434 (1982)
6. Chierchia, G.: Anaphoric properties of infinitives and gerunds. In: Cobler, M.,

MacKaye, S., Wescoat, M. (eds.) Proceedings of the Third West Coast Conference
on Formal Linguistics, pp. 28–39. Stanford Linguistics Association, Stanford (1984)

7. Chomsky, N.: Lectures on Government and Binding. Kluwer, Dordrecht (1981)
8. Chomsky, N.: The Minimalist Program. MIT Press, Cambridge (1995)
9. Davies, W.D., Dubinsky, S.: The Grammar of Raising and Control. Blackwell Pub-

lishing, Oxford (2004)
10. Dowty, D.R.: On recent analyses of the semantics of control. Linguist. Philos. 8(3),

291–331 (1985)
11. Hornstein, N.: Movement and control. Linguist. Inquiry 30(1), 69–96 (1999)
12. Jacobson, P.: Towards a variable-free semantics. Linguist. Philos. 22(2), 117–184

(1999)
13. Jaeger, G.: Anaphora and Type Logical Grammar. Springer, Dordrecht (2005)
14. Landau, I.: Elements of Control: Structure and Meaning in Infinitival Construc-

tions. Kluwer Academic Publishers, Dordrecht (2000)
15. Landau, I.: A Two-Tiered Theory of Control. MIT Press, Cambridge (2015)
16. Mensching, G.: Infinitive Constructions with Specified Subjects. Oxford University

Press, Oxford (2000)
17. Morrill, G.: Intensionality and boundedness. Linguist. Philos. 13(6), 699–726

(1990)
18. Morrill, G.V.: Type Logical Grammar: Categorial Logic of Signs. Kluwer Academic

Publishers, Dordrecht (1994)
19. Morrill, G., Valent́ın, O., Fadda, M.: The displacement calculus. J. Logic Lang.

Inform. 20(1), 1–48 (2011)
20. Morrill, G., Valent́ın, O.: Displacement logic for anaphora. J. Comput. Syst. Sci.

80(2), 390–409 (2014)
21. Polinsky, M., Potsdam, E.: Expanding the scope of control and raising. Syntax

9(2), 171–192 (2006)
22. Raposo, E.: Case theory and Infl-to-Comp: the inflected infinitive in European

Portuguese. Linguist. Inq. 18, 85–109 (1987)
23. Rosenbaum, P.: The Grammar of English Predicate Complement Constructions.

MIT Press, Cambridge (1967)
24. Stiebels, B.: Towards a typology of complement control. In: ZAS Papers in Lin-

guistics, vol. 47, pp. 1–80 (2007)
25. Wurmbrand, S.: Syntactic vs. semantical control. In: Zwar, C.J., Abraham, W.

(eds.) Proceedings from the 15th Workshop on Comparative Germanic Syntax
(2002)

A Single Movement Normal Form
for Minimalist Grammars

Thomas Graf(B), Alëna Aksënova, and Aniello De Santo

Department of Linguistics, Stony Brook University, Stony Brook, USA
mail@thomasgraf.net

Abstract. Movement is the locus of power in Minimalist grammars
(MGs) but also their primary source of complexity. In order to sim-
plify future analysis of the formalism, we prove that every MG can be
converted into a strongly equivalent MG where every phrase moves at
most once. The translation procedure is implemented via a deterministic
linear tree transduction on the derivation tree language and induces at
most a linear blow-up in the size of the lexicon.

Keywords: Minimalist grammars · Linear tree transductions · Deriva-
tion trees · Lexical blow-up · Successive cyclic movement

Introduction

Minimalist grammars (MGs; [17,18]) can be viewed as an extension of context-
free grammars where the left-to-right order of leaves in the derivation tree does
not necessarily correspond to their linear order in the string yield. These differ-
ences in the string yield are a side-effect of the operation Move, which removes a
subtree from the derivation tree and reinserts it in a different position. Standard
MGs are defined in such a way that one and the same subtree may be moved
several times. In this case, the subtree is inserted only in the position determined
by the final movement step, all previous steps have no tangible effect. This intu-
itive sketch suggests that these non-final—also called intermediate—movement
steps can be omitted without altering the generated tree and string languages,
a fact we prove in this paper.

The vacuity of intermediate movement is already implicit in the MCFG-
equivalence proofs of [9,15]. We improve on this with a fully explicit translation
in terms of a deterministic linear tree transduction over Minimalist derivation
trees that yields MGs in single movement normal form (SMNF), i.e. MGs where
every lexical item moves at most once (Sect. 2 and Appendix A). By skipping
MCFGs as an intermediate step, the translation should prove easier to generalize
to non-standard MGs for which no MCFG translation has been worked out in the
literature. We also study the effects of SMNF on grammar size and demonstrate
that the induced blow-up is highly dependent on movement configurations, but
at most linear (Sect. 3.1). We furthermore discuss possible applications of SMNF
(Sect. 3.2)—including certain parallels between syntax and phonology—and we
c© Springer-Verlag Berlin Heidelberg 2016
A. Foret et al. (Eds.): FG 2015/2016, LNCS 9804, pp. 200–215, 2016.
DOI: 10.1007/978-3-662-53042-9 12

A Single Movement Normal Form for Minimalist Grammars 201

explore the ramifications of our result for the Chomskyan tradition of Minimalist
syntax, which MGs are modeled after (Sect. 3.3).

1 Defining Minimalist Grammars

Due to space constraints we presume that the reader is already familiar with
MGs in general [17,18], and their constraint-based definition in particular [5,7].
Following [14], we decompose MGs into a regular Minimalist derivation tree
language (MDTL) and a mapping from derivation trees to phrase structure trees.

Definition 1. Let Base be a non-empty, finite set of feature names. Fur-
thermore, Op := {merge,move} and Polarity := {+,−} are the sets of
operations and polarities, respectively. A feature system is a non-empty set
Feat ⊆ Base × Op × Polarity.

Negative Merge features are called category features, positive Merge feature selec-
tor features, negative Move features licensee features, and positive Move features
licensor features. A (Σ,Feat)-lexicon Lex is a finite subset of Σ × Feat∗. Each
member of Lex is a lexical item (LI) of the form γcδ, where γ is a string of licen-
sor and selector features, c is a category feature, and δ is a string of 0 or more
licensee features. A Minimalist grammar (MG) is (Σ,Feat)-lexicon coupled with
a set F ⊆ Base of final categories.

A ranked alphabet Σ is a finite union of finite sets Σ(0), . . . , Σ(n) such that
σ ∈ Σ(i) has arity i—we also write σ(i). For every such Σ, TΣ is the language
of finite Σ-trees recursively defined by (i) σ(0) ∈ TΣ , and (ii) σ(t1, . . . , tn) ∈ TΣ

iff σ ∈ Σ(n) and ti ∈ TΣ , 1 ≤ i ≤ n. A free derivation tree over Lex is a tree
over alphabet

{
l(0) | l ∈ Lex

} ∪ {◦(1), •(2)}. An interior node m is associated to
the i-th positive polarity feature of LI l iff it is the i-th mother of l (the i-th
mother of l is the mother of its (i − 1)-th mother, and l is its own 0-th mother).
Such an m is the slice root of l iff the mother of m is not associated to l. A free
derivation tree is correctly projected iff (i) every interior node is associated to
the feature of exactly one LI, and (ii) for every LI l with γ := f1 . . . fn the i-th
mother of l exists and is labeled ◦ if fi is a Move feature, and • otherwise.

A Minimalist derivation tree t is a correctly projected tree of some Lex that
obeys four ancillary conditions. We first list the two constraints regulating Merge:

Merge. For every node m of t associated to selector feature f+ of LI l, one of
its daughters is the slice root of an LI l′ with category feature f−.

Final. If the root of t is the slice root of LI l, then the category feature of l is a
final category.

Move is also subject to two constraints, which require ancillary terminology. Two
features f and g match iff they differ only in their polarity. An interior node m
matches a feature g iff the feature m is associated to matches g. For every free
derivation tree t and LI l of t with string f−

1 · · · f−
n of licensee features, n ≥ 0,

the occurrences of l in t are defined as follows:

202 T. Graf et al.

– occ0(l) is the mother of the slice root of l in t (if it exists).
– occi(l) is the unique node m of t labeled ◦ such that m matches −fi, properly

dominates occi−1, and there is no node n in t that matches −fi, properly
dominates occi−1, and is properly dominated by m.

The occurrence of l with the largest index is its final occurrence. For t and l as
before, and every node m of t:

Move. There exist distinct nodes m1, . . . , mn such that mi (and no other node
of t) is the ith occurrence of l, 1 ≤ i ≤ n.

SMC. If m is labeled ◦, there is exactly one LI for which m is an occurrence.

Given an MG G with lexicon Lex , the MDTL of G is the largest set of correctly
projected derivation trees over Lex such that every tree in L satisfies the four
constraints above. Note that each constraint defines a regular tree language,
wherefore all MDTLs are regular [5,14,15].

MDTLs are easily mapped to phrase structure trees (see [7,14]). First we
relinearize all siblings m and n such that m precedes n iff m is an LI with a
selector feature or otherwise m is the slice root of some LI. Then we project
phrases such that a given node is relabeled <only if its label is • and it is the
mother of an LI with at least one selector feature. All other interior nodes are
labeled>. The purpose of < and > is to indicate which branch (left or right,
respectively) contains the head of the phrase. The result is a phrase structure
tree where the first argument of a head is always linearized to its right, whereas
all other arguments are linearized to the left.

For movement, assume l is an LI with at least one licensee feature and slice
root r in the derivation tree. Add a branch from r to the final occurrence of l,
and replace the subtree rooted by r with a trace. Every unary branching interior
node furthermore receives a trace as a left daughter. At the very end, every LI
σ :: f1f2 · · · fn is replaced by σ to ensure that no features are present in the
phrase structure trees. The combination of these steps can be carried out by a
tree-to-tree transduction φ that is definable in monadic second-order logic. The
tree language generated by MG G is the image of its MDTL under φ.

2 Single Movement Normal Form

This section establishes the core result of our paper: every MG G can be con-
verted into a strongly equivalent MG that is in SMNF. Section 2.1 defines a linear
tree transduction to rewrite MG derivation trees such that no LI moves more
than once (a corresponding transducer is defined in the appendix). Section 2.2
then shows that these derivations still generate the same derived trees, which in
combination with some auxiliary lemmata establishes the strong equivalence of
standard MGs and MGs in SMNF.

A Single Movement Normal Form for Minimalist Grammars 203

2.1 A Linear Tree Transduction for Single Movement

In principle, single movement could mean that at most one movement step takes
place in the whole derivation. But MGs satisfying such a strong constraint only
generate context-free languages [cf. 12] and thus aren’t even weakly equivalent
to standard MGs. Instead, SMNF enforces the weaker condition that each LI
undergoes at most one movement step. In other words, there is no intermediate
movement; if an LI moves at all, it moves directly to its final landing site.

Definition 2 (SMNF). An MG G with lexicon Lex is in single movement
normal form iff every l ∈ Lex has at most one licensee feature.

The general idea for bringing an MG G into SMNF is very simple. Starting out
with G’s MDTL, one deletes from each derivation tree all those Move nodes that
aren’t a final occurrence for some LI. The removal of movement steps must be
matched by (i) the removal of all non-final licensee features on the moving LIs
and, (ii) the removal of the licensor feature that each intermediate Move node
was associated to.

It is this feature modification step that takes some finesse. Without further
precautions, the resulting derivation may violate SMC, as is shown in Fig. 1
(here and in all following examples, Merge features are written in upper case
and Move features in lower case). In the original derivation, LI b is the first to
move, which is followed by two movement steps of LI a. Note that both undergo
movement triggered by a licensee feature f−. But the feature g− triggering inter-
mediate movement of a prevents f− from becoming active on a until b has checked
its feature f−. Deleting g− does away with this safeguard—both instances of f−

are active at the same time and receive the same occurrence, which is prohibited
by SMC. The solution is to carefully rename features to avoid such conflicts
while keeping the number of features finite.

All three steps—intermediate Move node deletion, intermediate feature dele-
tion, and final feature renaming—can be carried out by a non-deterministic,
linear bottom-up tree transducer τ , wherefore the regularity of the MDTL is
preserved [3]. The definition of this transducer is rather unwieldy, so we opt for
a high-level exposition at this point and relegate the detailed treatment to the
appendix. Let l be an LI such that its final occurrence o is associated to feature

◦
◦
◦
•

c :: D+f+g+f+C− •
b :: B−f− •

d :: A+B+D− a :: A−g−f−

◦
◦
•

c :: D+f+f+C− •
b :: B−f− •
d :: A+B+D− a :: A−f−

Fig. 1. Removal of intermediate movement steps may result in SMC violations

204 T. Graf et al.

f and the path from o to l contains Move nodes m1, . . . , mn (0 ≤ n). Then the
following steps are carried out in a bottom-up fashion:

– Deletion
• remove all intermediate occurrences of l, and
• for every removed intermediate occurrence, delete the licensor feature on

the LI that said occurrence was associated to, and
– Renaming

• replace l’s string of licensee features by f−
j , and

• replace the feature on LI l′ that o is associated to by f+j , where
• j ∈ N is the smallest natural number distinct from every k ∈ N such that

some mi is associated to f+k , 1 ≤ i ≤ n.

An instance of the mapping computed by τ is given in Fig. 2.
Subscripting is essential for the success of the translation. Intuitively, it may

seem more pleasing to contract strings of licensee features into a single licensee
feature, as suggested by one reviewer. So the LI σ :: γcf−

1 · · · f−
n would become

σ :: γc[f1 · · · fn]−. But this does not avoid all SMC violations. Well-formed MG
derivations can contain configurations where two LIs l and l′ have the same
string δ of licensee features, the final occurrence o of l dominates l′, and the
final occurrence of l′ dominates o. In this case, atomizing δ into a single licensee
feature δ− would incorrectly make o a final occurrence of l′, too.

It is also worth mentioning that even though the transducer τ as defined in
the appendix is non-deterministic, the transduction itself is deterministic.

Lemma 1. The transduction computed by τ is a function.

Proof. Let t be some arbitrary Minimalist derivation tree and suppose that t
has two distinct images t1 and t2 under τ . Inspection of τ reveals that t1 and t2
must be isomorphic and thus can only differ in the choice of indices for licensor
and licensee features. We show by induction that these indices are always the
same. Consider some arbitrary move node m of t1 and t2 that is associated to f+i
and f+j in these derivations, respectively. If m does not properly dominate any
other move nodes associated to some f+k , then i = j = 0. Otherwise, m properly
dominates a sequence of move nodes m0, . . . , mn with each one associated to
some subscripted version of f+. By our induction hypothesis, each move node
is associated to the same licensor feature f+k in t1 and t2. But then there is a
unique choice for the smallest natural number distinct from each one of these k,
wherefore m is associated to the same licensor feature in t1 and t2. Consequently,
t1 = t2 after all. �	
The lemma shows that the non-determinism of τ is merely due to the restricted
locality domain of linear transducers, which forces τ to make educated guesses
about the shape of the derivation tree. A transducer with more elaborate lookup
mechanism can compute the same transduction in a deterministic fashion. In
particular, τ computes a deterministic, regularity preserving, first-order definable
tree-to-tree transduction. In the remainder of this paper we take τ to directly
refer to the transduction rather than any specific implementation thereof. We
also write τ(t) for the image of t under τ .

A Single Movement Normal Form for Minimalist Grammars 205

◦
◦
◦
•

◦
•

◦
◦
•

•
◦
•

d :: D−h−f− •
a :: A−f− w :: A+D+f+W−

•
◦
•

d :: D−g−h−f− •
a :: A−f− w :: A+D+f+W−

x :: W+W+X−

y :: X+h+f+Y−

z :: Y+g+Z−f−

c :: Z+f+h+f+C−

◦
◦
•

•
◦
•

•
◦
•

d :: D−f−1 •
a :: A−f−0 w :: A+D+f+0 W−

•
◦
•

d :: D−f−2 •
a :: A−f−0 w :: A+D+f+0 W−

x :: W+W+X−

y :: X+f+1 Y−

z :: Y+Z−f−0

c :: Z+f+0 f+2 C−

Fig. 2. Derivation tree (top) and its image under τ (bottom)

2.2 Proof of Strong Equivalence

We now show that the conversion carried out by τ does indeed result in
an MG that generates the same set of phrase structure trees. To this end,
we first establish an important restriction on movement. For every MG G,
μ := |{f | 〈f,move〉 × Polarity ∈ Feat}|. That is to say, μ indicates the num-
ber of distinct movement features. Given a derivation tree t of G and node n in
t, the traffic of n, traf(n), is a measure of the number of LIs l in t that cross
n during the derivation. More precisely, traf(n) denotes the number of LIs that
are properly dominated by n in t and that have at least one occurrence that
reflexively dominates n.

Lemma 2. For every MG G, derivation tree t of G, and node n in t, 0 ≤
traf(n) ≤ μ.

206 T. Graf et al.

Proof. The lower bound is trivial, while the upper bound follows from SMC
and the definition of occurrence: there can be no two distinct LIs l and l′ that
are properly dominated by n and whose respective lowest occurrences reflexively
dominating n are also associated to instances of the same licensor feature. Since
there are only μ distinct licensor features, traf(n) cannot exceed μ. �	
Lemma 3. It always holds for τ as defined above that 0 ≤ j < μ.

Proof. Consider an arbitrary Move node m. Since traf(m) ≤ μ, there cannot be
more than μ LIs that are properly dominated by m and whose final (and only)
occurrence reflexively dominates m. In order to distinguish the final occurrences
of these LIs, then, one needs at most μ distinct indices. �	

Lemma 3 guarantees both that τ is indeed a linear tree transduction and
that the set of LIs occurring in the image of an MDTL under τ is still finite. As
each one of these LIs has a well-formed feature string of the form γcδ, the set
of LIs in the derivations produced by τ is an MG. It still remains to be shown,
though, that the actual derivation trees produced by τ are well-formed.

Lemma 4. It holds for every MDTL L and derivation tree t ∈ L that τ(t) is a
well-formed derivation tree.

Proof. We have to show that τ(t) is correctly projected and satisfies Merge,
Final, Move and SMC. The former holds because Move nodes are deleted iff
their licensor features are removed. Furthermore, τ does not remove any Merge
nodes or change any category or selector features, so Merge and Final hold
because the domain of τ is an MDTL. Hence we only have to worry about
Move and SMC.
Move. Move node m is an occurrence of some LI l in τ(t) (and thus its final
occurrence) iff m is the lowest node in τ(t) that properly dominates l and is
associated to a licensor feature matching l’s single licensee feature. It is easy to
see that τ furnishes at least one such m for every LI with a licensee feature.
SMC. We give an indirect proof that every Move node m is an occurrence for
at most one LI in derivation tree t. This implies that m is an occurrence for
exactly one LI thanks to Move and the fact that the images under τ contain as
many Move nodes as LIs with licensee features.

Suppose that m in τ(t) is an occurrence for two distinct LIs l and l′. Then
both l and l′ have the same licensee feature f−

i , for some arbitrary choice of f
and i. Hence it must hold in t that

1. τ−1(m) properly dominates τ−1(l) and τ−1(l′), and
2. τ−1(m) is a final occurrence o for either τ−1(l) or τ−1(l′), and
3. τ−1(m) is properly dominated by the final occurrence o′ of the other.

Here τ−1(n) denotes the node in t that corresponds to n. Now assume w.l.o.g.
that o and o′ are the final occurrences of τ−1(l) and τ−1(l′), respectively. Then
the path from τ−1(l′) to o′ includes o, whence τ(o) and τ(o′) must be associated
to licensor features with distinct indices given the definition of τ . But then l and
l′ do not have the same licensee feature, either. Contradiction. �	

A Single Movement Normal Form for Minimalist Grammars 207

We now know that τ produces a non-empty set of well-formed Minimalist
derivation trees. This still does not imply, however, that the image of an MDTL
under τ is itself an MDTL. The complicating factor is that MDTLs must be
maximal sets of well-formed derivation trees—the LIs created by τ may allow
for completely new derivations that are not part of the set produced by τ .

As a concrete example, consider the MG with the following lexicon:

u :: B+C− v :: A−f−g− w :: B+g+B− x :: B+f+B− y :: A+B−

This grammar allows for only one derivation, depicted in Fig. 3 (left), which
yields the string uvwxy . The image of this derivation tree under τ (see Fig. 3
right) contains almost exactly the same LIs. The only difference is the absence
of f+ on x and f− on v.

u :: B+C− v :: A−g− w :: B+g+B− x :: B+B− y :: A+B−

Minor as this change may be, it has a major effect in that the MDTL is no
longer singleton but actually infinite. Without the regulating effect of the licensee
features of v, the LI x can be merged an arbitrary number of times. As a result,
the generated string language is now uvwx∗y instead of uvwxy .

Fortunately this issue is easy to avoid. It is always the case that the range R of
τ is a subset of the unique MDTL over the set of LIs that occur in the derivation
trees of R. Furthermore, R is guaranteed to be regular because MDTLs are
regular and τ preserves regularity. Finally, the intersection of an MDTL and a
regular tree language is the MDTL of some MG, modulo relabeling of selector
and category features [4,7,13]. So to ensure that τ yields an MDTL, we only
have to intersect its range with the MDTL over the set of all LIs that occur in
at least one derivation tree produced by τ . A full algorithm for the intersection
step is given in Sect. 3.2.3 of [7]. The algorithm operates directly on the MG
lexicon, which allows it to be efficiently combined with the transducer in the
appendix. The result is an MG Gsmnf in SMNF.

It only remains for us to prove that Gsmnf generates exactly the same derived
trees as the original MG G, ignoring intermediate landing sites. To this end we
first establish the weaker result that τ preserves the derived trees (again ignoring
intermediate landing sites). Let φ be the standard mapping from derivation trees

•
u :: B+C− ◦

•
w :: B+g+B− ◦

•
x :: B+f+B− •

y :: A+B− v :: A−f−g−

•
u :: B+C− ◦

•
w :: B+g+0 B

− •
x :: B+B− •
y :: A+B− v :: A−g−0

Fig. 3. Only possible derivation of example MG (left) and its image under τ (right)

208 T. Graf et al.

to phrase structure trees and h a function that removes all intermediate landing
sites from the phrase structure trees of an MG.

Theorem 1. For every MG G with MDTL L, h(φ(L)) = φ(τ(L)).

Proof. Pick some arbitrary t ∈ L. Suppose h(φ(t)) �= φ(τ(t)). There must be
some LI l with final occurrence o in t such that τ(o) is not the final occurrence
of τ(l). But then either τ(l) has no final occurrence, the same final occurrence
as some other LI, or the final occurrences of some LIs, including τ(l), have
been switched. The former two are impossible as τ only generates well-formed
derivation trees (Lemma 4). The latter is precluded by τ ’s choice of unique
indices. Hence h(φ(t)) = φ(τ(t)) after all and we have h(φ(L)) ⊆ φ(τ(L)). The
same arguments can be used in the other direction to show that for every t ∈ τ(L)
and t′ ∈ τ−1(t) we have h(φ(t′)) = φ(t). This establishes h(φ(L)) ⊇ φ(τ(L)),
concluding the proof. �	
Corollary 1. For every MG G there is a strongly equivalent MG Gsmnf in
SMNF.

Proof. The only addition to the previous proof is that Gsmnf is obtained from
the image of G’s MDTL via the category refinement algorithm of [7]. Therefore G
and G′ may use different category and selector features. But since these features
are all removed by φ, they are immaterial for the generated set of phrase structure
trees. �	

3 Evaluation

We now know that every MG has a strongly equivalent counterpart in SMNF.
The relevance of such a normal form theorem, however, depends on the properties
of the normal form and its overall usefulness. SMNF simplifies movement in MGs
while preserving strong generative capacity, but does so at the expense of a larger
number of movement features. As we discuss next in Sect. 3.1, the actual blow-
up in the size of the lexicon is hard to predict because it depends on how strictly
movers are tied to specific positions. The blow-up is still guaranteed to be at
most linear, though. Sections 3.2 and 3.3 subsequently discuss applications and
linguistic implications of SMNF.

3.1 Effects on Succinctness and Grammar Size

The conversion to SMNF has two sources of lexical blow-up. The first one is τ ,
which may replace a single LI of the form a :: · · · h+ · · · A−g− · · · f− by multiple
variants a :: · · · h+

i · · · A−f−
j that only differ in the value of i and j (0 ≤ i, j < μ)

and which licensor features have been removed. Given an MG G, the lexicon size
of its SMNF counterpart is thus linearly bounded by

∑
l∈Lex μγ(l)+δ(l), where γ(l)

is the number of licensor features of l, and δ(l) is 1 if l contains a licensee feature
and 0 otherwise. The second blow-up is due to the regular intersection step that

A Single Movement Normal Form for Minimalist Grammars 209

turns the range of τ into an MDTL. This step is known to be linear in the size of
the original lexicon and polynomial in the size of the smallest (non-deterministic)
automaton that recognizes the regular tree language [7]. Crucially, though, the
size increase induced by τ depends greatly on the shape of the grammar.

In the optimal case, τ does not cause any lexical blow-up and thus defines a
bijection between lexical items.1 Intuitively, this is the case whenever the position
of an f -mover is fixed with respect to other f -movers, such as in the MG for
anbndn below that uses massive remnant movement:

ε :: A−a−f− a :: D+a+f+A−a−f− ε :: D+a+f+A′−

ε :: B−b−f− b :: A+b+f+B−b−f− ε :: A′+b+f+B′−

ε :: D−d−f− d :: B+d+f+D−d−f− ε :: B′+d+f+C−

After applying τ , this yields a notational variant of the standard MG for this
language. Crucially, both grammars have exactly the same number of LIs.

ε :: A−f−
0 a :: D+f+0 A−f−

0 ε :: D+f+0 A′−

ε :: B−f−
1 b :: A+f+1 B−f−

1 ε :: A′+f+1 B′−

ε :: D−f−
2 d :: B+f+2 D−f−

2 ε :: B′+f+2 C−

Without this restriction to fixed relative positions, blow-up can occur even if
the grammar does not allow for remnant movement and only generates a finite
language. In the following grammar, the three lexical items a, b, and d can be
selected by a in arbitrary order, and their target sites are similarly free in their
relative ordering.

ε :: T+C− a :: M−a−f− ε :: C+a+f+C−

ε :: M+M+M+T− b :: M−b−f− ε :: C+b+f+C−

d :: M−d−f− ε :: C+d+f+C−

Conversion into SMNF increases the size from 8 to 20 since each instance of f−

and f+ must be replaced by f−
i and f+i , 0 ≤ i ≤ 2. The size increase of SMNF thus

correlates with the number of combinatorial options furnished by the interaction
of Merge and Move. Future work will hopefully be able to characterize this
correlation in greater detail.

1 Strictly speaking the optimal case is for τ to reduce the size of the lexicon. But as
far as we can tell this only happens with needlessly redundant MGs such as the one
below, where the SMNF lexicon contains only 5 instead of 7 entries.

c :: M+C− m :: M−g−f− b :: C+g+B−

c :: B+f+M+C− m :: M−h−f− b :: C+h+B−

c :: B+f+C−

A minor change to the grammar immediately undoes the size benefits of SMNF. All
it takes is to replace c :: B+f+M+C− by c :: B+M+f+C−. The SMNF lexicon then
has 8 entries instead of 7 (1 for b, 2 for m and 5 for c).

210 T. Graf et al.

3.2 Usefulness and Applications

A normal form can serve a multitude of purposes. Our main motivation for
SMNF is to simplify proofs and rigorous analysis. The availability of interme-
diate movement in MGs creates special cases that are hardly ever insightful.
For example, the top-down parser in [19] includes two movement rules, one for
final and one for intermediate movement, yet the latter does nothing of interest
except eliminate a pair of licensor and licensee features. Similarly, the proof in
[12] that MGs cannot generate mildly context-sensitive string languages with-
out remnant movement has to cover intermediate movement as a special case
that does not add anything of value. Quite generally, intermediate movement is
hardly ever relevant but frequently introduces complications that distract from
the core ideas of proofs and theorems.

In fact, SMNF has already proven indispensable in ongoing projects. In the
wake of our theorem, Graf and Heinz [8] show that SMNF reduces the complexity
of MDTLs and renders them very similar to dependencies found in phonology. It
has been known for quite a while that MDTLs are subregular [5], and it has been
conjectured that segmental phonology is tier-based strictly local [10]. These two
insights are combined by [8]: an MDTL is a tier-based strictly local tree language
iff its grammar is in SMNF. This suggests that syntax and phonology are very
much alike at a sufficient level of formal abstraction.

With other formalisms, normal forms have also been useful for parsing and
the construction of automata. Chomsky Normal Form, for instance, is indis-
pensable to guarantee cubic time complexity for CKY parsing of context-free
grammars. Greibach Normal Form, on the other hand, simplifies the construc-
tion of equivalent, real-time pushdown automata for these grammars. At this
point it remains an open question whether SMNF offers comparable advantages
in these areas. On the one hand SMNF simplifies movement dependencies, on
the other hand any tangible parsing benefits may be so minor that they are
vastly outweighed by the lexical blow-up of the SMNF conversion. One conceiv-
able scenario is that SMNF offers a parsing advantage only for those grammars
where lexical blow-up is minimal due to movement being more restricted. It
would be interesting to see whether this subclass is sufficiently powerful from
a linguistic perspective. If so, it might indicate that natural languages restrict
how movement dependencies interact in order to aid parsing.

3.3 Linguistic Implications

The unexpected parallels between phonology and MGs in SMNF, as well as our
speculations above regarding parsing optimization, show that the existence of
SMNF is not of purely technical interest but also raises deep linguistic questions.
Yet there are certain linguistic concerns one might raise regarding SMNF.

In the syntactic literature, direct movement to the final landing site without
intermediate movement steps is called one fell swoop movement. This kind of
movement has been argued against on conceptual and empirical grounds (cf.
Chap. 1 of [1]). However, the arguments against one fell swoop movement do

A Single Movement Normal Form for Minimalist Grammars 211

not carry over to SMNF. The reason for this is that the linguistic arguments
are about derived trees, whereas SMNF is a property of derivation trees. In
principle, nothing prevents us from modifying the mapping from derivation trees
to derived trees so that landing sites are inserted where syntacticians want them
to occur, e.g. at phase edges. Something along these lines was already proposed
in [11, Sect. 2.1.1] for successive cyclic wh-movement. The strategy can easily
be extended to other intermediate movement steps because most of them are
readily predictable from the rest of the structure.

To take but one example, consider the movement steps of a subject wh-phrase
as in Who does John think kissed Mary?, to which Minimalists would ascribe
the structure [CP who C does John think [CP t C [TP t T t kissed Mary]]]. The
subject starts out in Spec,VP of the embedded clause, moves to the embedded
subject position in Spec,TP, then to the embedded Spec,CP, and from there
finally to matrix Spec,CP. But all these intermediate movement steps are readily
predictable from the fact that who moves to matrix Spec,CP. A phrase that starts
out in Spec,VP and moves to a position above Spec,TP must land there by virtue
of being a subject. A phrase that moves to some higher Spec,CP must land in
every CP-specifier that occurs between the two. There is no requirement for
intermediate movement steps to be linked to feature checking in the derivation
because they can be inferred indirectly.

Cases where this indirect inference of intermediate movement steps is impos-
sible are hard to come by. They mostly involve configurations where movement
serves the sole purpose of modifying word order, such as scrambling or lin-
earization of siblings to account for the head-initial/head-final contrast between
languages. But it is far from evident that intermediate movement matters for
scrambling, and the headedness parameter can be captured more directly by
encoding the linearization of arguments in the selector features of MGs [cf. 6,18].
Given our current linguistic understanding, then, there is no sound argument or
conclusive evidence against SMNF, a point that was already made over 25 years
ago in [16, Sect. 3.4.1] (we are indebted to an anonymous reviewer for bringing
this to our attention). The only major issue is the lexical blow-up, but this is as
much a detriment as an opportunity: a hierarchy that ranks movement depen-
dencies with respect to the SMNF blow-up they induce might furnish novel
generalizations with rich typological implications.

Conclusion

Every MG can be efficiently transformed into a strongly equivalent MG in SMNF
such that every LI moves at most once. The translation procedure in this paper is
specified as a linear transduction over MDTLs, but is easily extended to a map-
ping between Minimalist lexicons: given an MG lexicon, one can immediately
construct a deterministic bottom-up tree automaton that recognizes its MDTL
[14], from which one obtains an automaton for the corresponding SMNF tree lan-
guage via the usual transducer composition algorithm [2]. The nullary symbols
of the automaton constitute the new lexicon. A Python implementation of this
extended translation is hosted at https://github.com/CompLab-StonyBrook.

https://github.com/CompLab-StonyBrook

212 T. Graf et al.

In future work, we hope to generalize SMNF from standard MGs to movement-
generalized MGs [6]. We also intend to further explore how movement can be
restricted to avoid lexical blow-up and whether these restrictions are linguisti-
cally feasible. It will also be interesting to see if some of these findings are applica-
ble in the reverse direction to obtain algorithms that minimize (movement-
generalized) MGs by adding intermediate movement steps.

A Specification of SMNF Transducer

A bottom-up tree transducer is a 5-tuple τ := 〈Σ,Ω,Q, F,Δ〉, where Σ and Ω
are ranked alphabets, Q is a finite set of states, F ⊆ Q is the set of final states,
and Δ is a finite set of transduction rules. Each transduction rule is of the form
f(q1(x1), . . . , qn(xn)) → q(t) such that f is an n-ary symbol in Σ (n ≥ 0),
q, q1, . . . , qn ∈ Q, and t is a tree with node labels drawn from Ω and the nullary
symbols x1, . . . , xn. The transducer is linear iff each xi may occur at most once
in t. It is non-deleting iff each xi occurs at least once in t. It is non-deterministic
iff at least two transduction rules have the same left-hand side.

A (Σ1, . . . , Σn)-tree is a tree whose nodes are labeled with symbols from⋃
1≤i≤n Σi. Given (Σ,Q)-tree u and (Ω,Q)-tree v, τ immediately derives v

from u (u ⇒τ v) iff there is a transduction rule such that u has the shape
f(q1(u1), . . . , qn(un))—where each ui is the subtree of u immediately domi-
nated by qi—and v is the result of substituting ui for xi in t. We use ⇒+

τ

to denote the transitive closure of ⇒τ . The transduction computed by τ is the
set τ := {〈u, v〉 | u ⇒+

τ qf (v), u a Σ-tree, and qf ∈ F}. We furthermore let
τ(s) := {〈s, t〉 ∈ τ}, and τ(L) :=

⋃
s∈L τ(s) for L a tree language.

We now define a non-deterministic linear bottom-up tree transducer that
brings Minimalist derivation trees into SMNF. The transducer is almost non-
deleting as it only deletes intermediate Move nodes. Consequently, it can be
regarded as the composition of a non-deterministic relabeling and a deterministic
transducer that deletes Move nodes marked for removal. Before moving on, we
introduce an additional piece of MG notation. In a standard MG, every useful
LI must be of the form γcδ, where γ is a string of licensor and selector feature,
c is a category feature, and δ is a string of 0 or more licensee features. Given a
feature component s, m(s) is obtained from s by removing all Merge features.
We overload m such that for every LI l := σ :: s, m(l) := m(s).

The SMNF transducer has to handle three tasks in parallel: (i) detect and
delete intermediate Move nodes, (ii) modify the feature components of LIs, and
(iii) ensure that each licensee feature is subscripted with the smallest possible
natural number. Consequently, each state has a tripartite structure

〈
u1, . . . , un

m1, . . . , mn

I1, . . . , In

〉

such that n ≤ μ (the upper bound on the grammar’s traffic), ui keeps track of the
unchecked Move features of some LI l, mi records how m(l) was modified, and
Ii stores which required indices have not been encountered yet. More precisely:

A Single Movement Normal Form for Minimalist Grammars 213

for each ui there is some LI l with ui a suffix of m(l); mi is a string of indexed
Move features and the distinguished symbol � such that removal of indices and
� yields a subsequence of m(l) including the final licensee feature; and Ii is some
subset of the closed interval [0, μ−1] of natural numbers. Among all these states,
the only final state is the empty state 〈〉.

While the transducer has a large number of rules, they can easily be com-
pressed into a few templates using algebraic operations. First, we define a non-
deterministic relabeling � operating on MG feature strings that preserves all
Merge features and either deletes Move features or relabels them:

�(f1 · · · fn) :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

f1�(f2 · · · fn) if f1 is a Merge feature
f1,i�(f2 · · · fn) or if f1 is a licensor feature, 0 ≤ i < μ

��(f2 · · · fn)
f1,i�(f2 · · · fn) if f1 is a licensee feature, 0 ≤ i < μ

ε if f1 · · · fn = ε

We extend � to LIs: if l := σ :: γcf1 · · · fn, then �(l) is σ :: �(γc) if n = 0
and σ :: �(γcfn) otherwise. In addition, h is a homomorphism that replaces the
distinguished symbol � by ε in every string. The transduction rules for leaf nodes
now follow a simple template:

LIs. l :: s →

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈 m(l)
m(l′)

ε

〉

(h(l′)) for l′ = �(l) if l′ does not end in
a licensee feature

〈 m(l)
m(l′)

[0, k − 1]

〉

(h(l′)) for l′ = �(l) if the licensee fea-
ture of l′ is subscripted with k

For Merge we use a binary operator ⊗ that combines all the components of
the states.

〈
u1, . . . , uj

m1, . . . , mj

I1, . . . , Ij

〉

⊗
〈

uj+1, . . . , uk

mj+1, . . . , mk

Ij+1, . . . , Ik

〉

:=

〈
u1, . . . , uj , uj+1, . . . , uk

m1, . . . , mj ,mj+1, . . . , mk

I1, . . . , Ij , Ij+1, . . . , Ik

〉

Merge. • (q(x), q′(y)) ⇒ q ⊗ q′(•(x, y))

The Move rules have to handle most of the work in the transducer. First, they
have to delete movement features in the top component and use this information
to decide whether the Move node is final or intermediate. Licensor features in the
second component must also be removed, and the same goes for licensee features
if the Move node is final. In the latter case, the index of the checked licensee
feature is removed from all other index sets. Checking of a licensee feature, in
turn, is only possible if its index set is empty.

214 T. Graf et al.

As before, we simplify our presentation by using an algebraic operator �,
which takes care of updating index sets. Given a state q with index set Ij at
position j, Ij �f k = Ij − {k} if mj ends in some subscripted version of f−.
In all other cases, Ij �f k = Ij . The transition rules for intermediate and final
movement are now captured by four distinct cases. We only give two here, the
other two are their mirror image with the order of f+δj and f−δk switched.

Move. ◦
⎛

⎝

〈
u1, . . . , f+δj , . . . , f−δk, . . . , un

m1, . . . , mj , . . . , mk, . . . , mn

I1, . . . , Ij , . . . , Ik, . . . , In

〉

(x)

⎞

⎠

:=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈 u1, . . . , δj , . . . , δk, . . . , un

m1, . . . , m
′
j , . . . , mk, . . . , mn

I1, . . . , Ij , . . . , Ik, . . . , In

〉

(x) if δk �= ε and mj = �m′
j

〈 u1, . . . , δj , . . . , . . . , un

m1, . . . , m
′
j , . . . , . . . , mn

I1 �f i, . . . , Ij , . . . , . . . , In �f i

〉

(◦(x)) if δk = ε, mj = f+i m′
j ,

mk = f−
i , Ik = ∅, and

only mk starts with f−
i

Note that since the transducer is restricted to well-formed derivation trees, at
most one component of a state can contain licensor features. Similarly, the SMC
prevents any two ui from starting with the same licensee feature, so the indices
j and k in the template are always uniquely identified.

A few clarifying remarks may be in order. First, note that the transducer
always halts if it finds a case of intermediate movement but did not delete the
corresponding licensor feature earlier on. This is enforced by mj starting with
�. Second, the index set Ij is not updated for final movement. That is because
the corresponding LI has not started to move yet, so its index set is not active
yet. If Ij were updated, then an LI that licenses f2 movement would be allowed
to undergo f3 movement even if f2 movement is possible, too.

To sum up, given an MG with lexicon Lex , the SMNF transducer τ has input
alphabet Σ := Lex (0) ∪{◦(1), •(2)} and output alphabet Ω :=

⋃
l∈Lex h(�(l))(0) ∪{◦(1), •(2)}. Its state set Q consists of all possible tripartite tuples as defined at

the beginning of this section. While this set is large, it is guaranteed to be finite.
The empty state 〈〉 is the only final state, and the set Δ of transduction rules
contains all possible instantiations of the templates above given Q.

References

1. Abels, K.: Successive cyclicity, anti-locality, and adposition stranding. Ph.D. thesis,
University of Conneticut (2003)

2. Baker, B.S.: Composition of top-down and bottom-up tree transductions. Inf. Con-
trol 41, 186–213 (1979)

3. Engelfriet, J.: Bottom-up and top-down tree transformations – a comparison.
Math. Syst. Theor. 9, 198–231 (1975)

A Single Movement Normal Form for Minimalist Grammars 215

4. Graf, T.: Closure properties of minimalist derivation tree languages. In: Pogodalla,
S., Prost, J.-P. (eds.) Logical Aspects of Computational Linguistics. LNCS, vol.
6736, pp. 96–111. Springer, Heidelberg (2011)

5. Graf, T.: Locality and the complexity of minimalist derivation tree languages. In:
Groote, P., Nederhof, M.-J. (eds.) Formal Grammar 2010/2011. LNCS, vol. 7395,
pp. 208–227. Springer, Heidelberg (2012)

6. Graf, T.: Movement-generalized minimalist grammars. In: Béchet, D., Dikovsky, A.
(eds.) Logical Aspects of Computational Linguistics. LNCS, vol. 7351, pp. 58–73.
Springer, Heidelberg (2012)

7. Graf, T.: Local and transderivational constraints in syntax and semantics. Ph.D.
thesis, UCLA (2013)

8. Graf, T., Heinz, J.: Commonality in disparity: the computational view of syntax
and phonology. In: Slides of a talk given at GLOW 2015, 18 April, Paris, France
(2015)

9. Harkema, H.: A characterization of minimalist languages. In: de Groote, P., Morrill,
G., Retoré, C. (eds.) LACL 2001. LNCS (LNAI), vol. 2099, pp. 193–211. Springer,
Heidelberg (2001)

10. Heinz, J., Rawal, C., Tanner, H.G.: Tier-based strictly local constraints in phonol-
ogy. In: Proceedings of the 49th Annual Meeting of the Association for Computa-
tional Linguistics, pp. 58–64 (2011)

11. Kobele, G.M.: Generating copies: an investigation into structural identity in lan-
guage and grammar. Ph.D. thesis, UCLA (2006)

12. Kobele, G.M.: Without remnant movement, MGs are context-free. In: Ebert, C.,
Jäger, G., Michaelis, J. (eds.) MOL 10/11. LNCS, vol. 6149, pp. 160–173. Springer,
Heidelberg (2010)

13. Kobele, G.M.: Minimalist tree languages are closed under intersection with recog-
nizable tree languages. In: Pogodalla, S., Prost, J.-P. (eds.) Logical Aspects of
Computational Linguistics. LNCS, vol. 6736, pp. 129–144. Springer, Heidelberg
(2011)

14. Kobele, G.M., Retoré, C., Salvati, S.: An automata-theoretic approach to mini-
malism. In: Rogers, J., Kepser, S. (eds.) Model Theoretic Syntax at 10, pp. 71–80
(2007)

15. Michaelis, J.: Transforming linear context-free rewriting systems into minimalist
grammars. In: de Groote, P., Morrill, G., Retoré, C. (eds.) LACL 2001. LNCS
(LNAI), vol. 2099, pp. 228–244. Springer, Heidelberg (2001)

16. Ristad, E.S.: Computational structure of human languages. Ph.D. thesis, MIT
(1990)

17. Stabler, E.P.: Derivational minimalism. In: Retoré, C. (ed.) LACL 1996. LNCS
(LNAI), vol. 1328, pp. 68–95. Springer, Heidelberg (1997)

18. Stabler, E.P.: Computational perspectives on minimalism. In: Boeckx, C. (ed.)
Oxford Handbook of Linguistic Minimalism, pp. 617–643. Oxford University Press,
Oxford (2011)

19. Stabler, E.P.: Bayesian, minimalist, incremental syntactic analysis. Top. Cogn. Sci.
5, 611–633 (2013)

Word Ordering as a Graph Rewriting Process

Sylvain Kahane1(✉) and François Lareau2

1 Modyco, Université Paris Ouest Nanterre, Nanterre, France
sylvain@kahane.fr

2 OLST, Université de Montréal, Montreal, Canada
francois.lareau@umontreal.ca

Abstract. This paper shows how the correspondence between a unordered
dependency tree and a sentence that expresses it can be achieved by transforming
the tree into a string where each linear precedence link corresponds to one specific
syntactic relation. We propose a formal grammar with a distributed architecture
that can be used for both synthesis and analysis. We argue for the introduction of
a topological tree as an intermediate step between dependency syntax and word
order.

Keywords: Dependency grammar · Linearization · Syntax · Polarized unification
grammar

1 Introduction

Word ordering has been addressed in many formal frameworks, from Categorial
Grammar (CG) and Context Free Grammar (CFG), to Tree-Adjoining Grammar (TAG),
Lexical Functional Grammar (LFG), Head-driven Phrase Structure Grammar (HPSG),
Minimalist Program (MP), etc. The early formalisms did not separate linearization from
sub-categorization. The first formalism to clearly separate them was Generalized Phrase
Structure Grammar (GPSG) [1, 2]. In grammars that separate linearization rules from
the others, the former are generally expressed in a different formalism than the latter,
and the two kinds cannot combine freely with one another. Linearization rules must be
precompiled with sub-categorization rules, as in metagrammars for TAG [3], or they
form a separate module that is applied as a whole before or after other modules. In LFG,
the linearization rules are CFG rules endowed with functional features describing the
correspondence between c- and f-structures [4], which cannot be used in other modules
of the model [5]. In a constraint-based formalism like HPSG, linear order is constrained
by features, but its computation is left aside. It is a list of linear precedence statements
from which linear order must be deduced by external mechanisms [6–8]. More generally,
in phrase structure grammar, word order is expressed on constituents but not words:
only sister constituents are ordered, and order between words must be deduced by extra
devices.

Our first aim in this paper is to propose a general formalism that allows to write both
linearization and sub-categorization rules and to combine them in whatever order, with
no implicit procedure. This will allow us to use the rules for analysis as well as synthesis,

© Springer-Verlag Berlin Heidelberg 2016
A. Foret et al. (Eds.): FG 2015/2016, LNCS 9804, pp. 216–239, 2016.
DOI: 10.1007/978-3-662-53042-9_13

to pre-compile sets of rules from different levels if needed, and to use incremental strat‐
egies for parsing or generation. It is important to underline that our approach is mathe‐
matical and not computational: our aim is to propose a rule-based formalism to write
modular, declarative grammars, but we are not directly interested in procedural strat‐
egies.

Our second aim is to propose a formalism for dependency grammar (henceforth DG).
In formal DG, the focus has been on valency, sub-categorization, dependency tree
generation, and the semantics-syntax interface. One of the well-known advantages of
DG is that it separates linear order from syntactic structure proper [9] (Chap. 6) and it
elegantly captures non-projective syntactic constructions (equivalent to trees with
discontinuous constituents in phrase-based formalisms). Nevertheless, few efforts have
been made on the formalization of word ordering and non-projectivity in DG. Formal
DGs handling non-projective ordering have been proposed [10–13], but they do not fit
our first aim, which is to use the same formalism for linearization and sub-categorization
rules. Non-projective dependency parsers have been proposed [14], but the grammar
cannot be clearly separated from the parsing procedure. Meaning-Text Theory (MTT)
[15] is a model we want to follow because it is very modular and all rules are expressed
in similar terms, that is, in terms of correspondence between two levels of representation.
But although linearization rules have been proposed within MTT [16, 17], a complete
formalization has never been achieved, especially the treatment of non-projective
ordering, which remains particularly informal. This paper can be viewed as an attempt
to give a clean formalization of MTT’s linearization rules.

Our third aim is to show that language modelling, and in particular word ordering,
can be viewed as a graph rewriting process. We consider that modelling a natural
language consists in associating every uttered string of words to its meaning(s), or,
conversely, to associate every linguistic meaning to the string(s) of words that express
it. Our approach to language modelling is strongly influenced by MTT, which posits
that the core meaning of a sentence can be encoded by a graph representing the predicate-
argument relations that exist between the meaning of the words (or morphemes)
composing it [18]. In other words, language modelling mainly consists in transforming
a semantic graph into a linear graph representing the chain of words (and vice versa).
Moreover, except where there is no one-to-one correspondence between minimal
semantic units and minimal expressive units, most linear precedence links between two
consecutive words in the spoken chain are the image of particular predicate-argument
relations. Hence, the correspondence between a semantic graph and a string of words
mainly consists in moving the edges of the graph until they form a chain.

2 Natural Language Modelling and Graph Rewriting

Let us consider the following sentence:

(1) Men from Swaziland often work in mines.

The text of (1) is a string of words, which can be represented by a linear graph as in
Fig. 1. This graph will be called linear order in this paper (following [9]). It is similar

Word Ordering as a Graph Rewriting Process 217

to the morphological structure of MTT, an intermediate level of representation between
the surface syntactic structure and the phonological representation. Edges of the linear
order are called linear precedence links (LPLs) and are labelled with the symbol “<”.

Men from Swaziland often work minesin

< < < < < <

Fig. 1. Linear order of (1)

The core meaning of (1) can be represented as a semantic graph as in Fig. 2 [15,
18]. In a semantic graph, edges are called semantic dependencies and represent pred‐
icate-argument relations. The source of a semantic dependency is a predicate, and its
target is an argument of that predicate. Edges are labelled with a number indicating
the rank of the argument (1st argument, 2nd argument, etc.), in decreasing order of
salience [19]. The semantic graph of (1) below expresses the fact that the signified
of work is a unary predicate taking the signified of men as its first (and unique)
argument. The signified of often is also a unary predicate: it takes the signified of
work as its argument. The signifieds of both locative prepositions from and in are
binary predicates taking the located entity or event as their first argument and the
locus as their second argument. It is also possible to encode this graph with an
equivalent logical formula, as below [20, 21].

Fig. 2. Semantic representation of (1)

Figure 3 shows the correspondence between the LPLs and the semantic dependencies
of (1). The correspondence is generally realized in two main stages: (1) a semantics-syntax
interface ensuring the lexicalization and the hierarchization of the semantic graph, giving a
syntactic dependency tree and (2) the linearization and the morphologization of the depend‐
ency tree, giving a string of words. This paper focuses on linearization. The semantics-
syntax interface has been described in several papers [15, 22–26, 43] and will be sketched
in Sect. 3.4. The dependency tree of (1) is presented in Fig. 4.

218 S. Kahane and F. Lareau

men

from

Swaziland

often

work

mines

in
mod

comp

mod

mod

comp

subj

Fig. 4. Syntactic tree of (1)

A syntactic dependency tree for an n word sentence has exactly n − 1 edges, as does
its linear order. We will show that the edges are in a one-to-one correspondence and that
this correspondence can be described by a graph rewriting system that moves the edges
of the dependency tree to transform it into a string. The rules will be written in a
formalism called Polarized Unification Grammar (PUG), which was introduced by [27,
28] based on previous work by [29–32]. It has been used for the semantics-syntax inter‐
face since [23] but has never been really used for word ordering before.1 There are great
advantages to using the same formalism for different modules of the grammar. A
common formalism allows us to use the same grammar both for synthesis (producing a
string of words from a semantic representation) and analysis (extracting the meaning of
a sentence). Many strategies are conceivable, including the possibility to pre-compile
some groups of rules, the result of such pre-compilation being expressed in the common
formalism.

3 Governor-Dependent Linearization Rules

3.1 Sketch of Governor-Dependent Linearization Rules

We will introduce our approach with a minimalistic example:

(2) Mary loves Peter.

1 [27, 28] showed how to simulate in PUG LFG’s phi-projection, which ensures the linearization
process. The resulting grammar has not been studied in itself, although a similar grammar was
presented in [23].

Men from Swaziland often work minesin

< < < < < <

1 2

1

1 1 2

Fig. 3. Correspondence between linear precedence links and semantic dependencies

Word Ordering as a Graph Rewriting Process 219

Figure 5 shows the dependency tree for this sentence, where Mary is the subject of the
verb and Peter its object, and the corresponding linear order.

Mary

loves

Peter

objsubj

Mary loves Peter<<

Fig. 5. Syntactic tree and linear order of (2)

To linearize the dependency tree of (2), we only need to know that in English the
subject goes before the verb and the object can goes after.2 This can be formalized by
saying that a subject dependency corresponds to an LPL in the opposite direction, while
the object dependency corresponds to an LPL in the same direction.3 Figure 6 gives a
first sketch of these rules, before introducing our formal framework.

subj

<

obj

<

Fig. 6. Sketch of subj and obj governor-dependent linearization rules

Such linearization rules can be used in synthesis (syntactic dependencies become
LPLs) as well as in analysis (LPLs become syntactic dependencies). For instance, the
rules of Fig. 6 say that a LPL between two words can correspond to an object dependency
in the same direction or a subject dependency in the opposite direction.4

Linearization rules, which realize the correspondence between syntactic dependen‐
cies and linear order, constitute the linearization module. The direction in which the

2 Other rules can apply to an object dependency under particular conditions: for instance a wh-
word in the object position can be placed before the verb, but even for a wh-word it is possible
to place it after the verb (cf. so called in situ wh-question: Mary loves who?).

3 Every rule must be read with an epistemic modality: things can happen as per the rule. It comes
from the fact that alternative rules can a priori apply and things can happen differently.

4 The fact that the subject relation has a finite verb as governor could be indicated in this rule,
but this constraint is already verified by the semantics-syntax interface (see Sect. 3.4) and can
also be verified by the syntactic well-formedness grammar (see [23]).

220 S. Kahane and F. Lareau

linearization rules are used depends on the input structure given to this module.5 The
dependency tree is at the articulation point between the linearization module and the
semantics-syntax interface, while the linear order is at the articulation point between the
linearization module and the phonological module. In other words, the linearization
module will be called by one of these two other modules: the semantics-syntax interface
in synthesis, which gives it a dependency structure as input, or the phonological module
in analysis, which gives it a linear order as input.

To ensure that a module has processed the whole input structure, and for modules
to call one another, we use a unique device: the polarization of objects, which we will
now present.

3.2 Polarized Unification Grammar

Polarized Unification Grammar (henceforth, PUG) is a formalism inspired by TAG,
where rules are modelled by elementary structures that combine to produce the final
structure of an utterance. Unlike TAG though, PUG handles any kind of graph, and not
only trees. PUG considers four kinds of entities: objects, functions, atomic values, and
polarities. The objects handled by the linearization module are nodes representing
words, and edges representing syntactic dependencies or LPLs.6 Syntactic dependencies
and LPLs are binary edges, which require two nodes as their source and target. Edges
are bound to their source and target nodes through structural functions, which take as
their argument an object and return as their value another object. Two other kinds of
functions are considered in PUG, besides structural functions: labelling functions, that
associate an object with an atomic value, and polarizing functions, that link an object to
a polarity. Figure 7 shows a fragment of the dependency tree of (2) and its formalization
when the structural and labelling functions are made explicit. Note that the visual repre‐
sentation of edges as arrows is merely a convenient way to indicate that this object has
a source and a target. Despite this visual metaphor, edges really are objects just like
nodes, as Fig. 7 makes explicit.

5 We are presenting our grammar in a transductive perspective, where an input structure is given
to the grammar and the corresponding structure is produced. As we will see in Sect. 3.6, there
are two other ways of considering a correspondence grammar: the equative mode, where two
structures are given to the grammar and the grammar verifies whether they correspond to each
other; and the generative mode, where no structure is given to the grammar, which produces
couples of structures corresponding to each other.

6 Previous presentations of PUG distinguished the nodes at different levels of representation. It
would be possible here too and even necessary if we wanted to take into account that in some
cases, such as amalgams (ain’t = am + not), some nodes of a given level can be merged at
another level. Here, we consider that the nodes are the same at the different levels of repre‐
sentation and we focus on reordering the graph into a string.

Word Ordering as a Graph Rewriting Process 221

Fig. 7. Making objects and functions explicit

Polarities indicate whether an object must be consumed by a given module. We
consider a lot of polarizing functions for our different modules, but we can work with
only the same two values for any polarizing function: black and white. A black object,
i.e., an object with a black polarity for a given function, represents a resource, while a
white object represents a requirement. An object can receive several polarities through
as many polarizing functions, generally associated with different modules of the model.
When an object has been handled by a given module, it is generally black for the polar‐
izing function pertaining to this module, but it will be white for the polarizing function
pertaining to the next module we want to trigger. In other words, the black polarity is
saturated, which means that a black object does no longer need to be handled, while the
white polarity is non saturated, requiring to be saturated by a black polarity. A structure
is said to be saturated for a given polarizing function if the value of this function is
saturated for every object of the structure. At the end of the process, the derived structure
must be saturated for every polarizing function considered.

An instance of PUG is a finite set of elementary structures, with a subset of initial
structures. An elementary structure comprises a finite number of objects linked by
structural functions (which define the structure proper) and associated to a finite number
of labels and polarities (by labelling and polarizing functions). Structures combine by
the unification of at least one object. When two objects are unified, the value of every
function applying to both objects must be unified too. If the values of a function are
atomic values, they must be identical, otherwise unification fails. If they are polarities,
they combine by a special operation called the product on polarities. The white polarity
is the identity for the product (white · white = white, white · black = black), while the
product of two black polarities fails (black · black = ⊥), which means that two black
objects cannot be unified. A derivation consists in saturating the derived structure. The
process starts with any elementary structure, and at each step a new elementary structure
is combined with the structure resulting from the previous step. This process can only
stop when all the objects are black. Special structures, marked as initial structures must
be used exactly once.7

We will introduce several grammars in the paper. Each grammar has its own polar‐
izing function but it will also be articulated with the other grammars using white polar‐
ities pertaining to these grammars. In order to distinguish the main polarizing function

7 Such a structure can be compared to the initial non-terminal symbol of a CFG. But contrarily
to a CFG, we do not impose the derivation process to start with an initial structure. Moreover,
we accept to have several initial structures, which do not increase the generative capacity of
the formalism but allows us to write more elegant grammars.

222 S. Kahane and F. Lareau

of each grammar, we will use different symbols (Fig. 8). For instance, an upward triangle
 is used for syntax and the syntactic grammar is called G , a pentagon is used for the

semantics-syntax interface, which is called G , and so on. The topology and the syntax-
topology interface will only be introduced in Sect. 5 and in previous sections the linea‐
rization grammar G◇ will make a direct interface between syntax and linear order.

Semantics Syntax Topology Linear order

not discussed

Fig. 8. The modules and their polarities

3.3 Trees and Strings in PUG

It is very easy to write a grammar that builds only trees in PUG, i.e., to force the derived
graphs to be trees. Such a grammar, that we will call G , has only two rules: an initial
rule introducing a black node, and another rule introducing a black dependency and a
black node as its target.8 This PUG is represented in Fig. 9. The polarity of objects is
represented by a triangle next to it, white or black according to its value. Rules are placed
in square boxes, with initial rules in double boxes.

Fig. 9. G (first version: the tree grammar)

The initial rule, which must be used exactly once by definition, introduces the only
node that will not be governed, i.e., the root of the tree. The connectedness of the struc‐
ture is ensured by the process itself, which requires that each time a rule is used, at least
one object is unified with the structure obtained at the previous step. The second rule
ensures that each node except the root has exactly one governor.

G can be used as a generative grammar, generating all possible trees. But in our
case, G will be used as a well-formedness grammar, verifying that a given structure is

8 As our objects are not typed, this grammar does not prevent an edge from becoming the vertex
of another edge (see [42] for such structures, called polygraphs). This is avoided here by label‐
ling functions on objects.

Word Ordering as a Graph Rewriting Process 223

a tree. It can be applied for instance on the syntactic structure of (2) (Fig. 5) to verify
that it is a tree. To do so, the whole structure will be polarized in white with the polarizing
function of the grammar we want to call (cf. the input structure of Fig. 10, which results
from the semantic-syntax interface, see Sect. 3.4). After the application of G , we obtain
a structure entirely black (output structure of Fig. 10), which means that the structure
has been validated as a well-formed tree.

Mary

loves

Peter

objsubj

Mary

loves

Peter

objsubj
⇒

Fig. 10. Input and output structures for G

Applying G to our input structure does not only allow us to verify that it is a
dependency tree, but also enables us to read the whole input structure and to call other
grammars that will apply to it. In our case, we want to articulate G with several gram‐
mars, in particular the semantics-syntax interface G , the linearization grammar G◇ and
the linear order well-formedness grammar G . For this, we enrich G to introduce white
polarities from these grammars. The enriched version of G forces G◇ to apply on every
syntactic dependency and G to apply on every nodes.9 Figure 11a shows G and
Fig. 11b shows the output structure when G is applied to the syntactic structure of (2).
Grammars normally only saturate their own polarity; the extra white polarities pertain
to other grammars, and are used to articulate them.

a. b. Mary

loves

Peter

objsubj

Fig. 11. a. G (second version, with articulation polarities) b. The output for the syntactic
structure of (2)

It is a little more difficult to write a grammar that builds only strings. The simplest
way is to use two tree grammars, such as the one in Fig. 9, and to verify that the structure
is a tree if we read it in both directions. To couple two grammars and force them to apply
on the same structure, we just need to add, on each object of each elementary structures
of each grammar, a white polarity of the other grammar. These white polarities call the

9 We could have introduced less (or more) white polarities. Adding diamond polarities on edges
to call G◇ is sufficient. Adding white square polarities on nodes allows us to relax the
constraints on possible procedures to trigger our different grammars. With its white square
polarities on nodes, G calls G , which allows us to trigger G before G◇.

224 S. Kahane and F. Lareau

other grammar and ensure that every object has been handled by both grammars.
Figure 12 shows two tree grammars coupled together. In order to distinguish the polarity
pertaining to each grammar, we use an upward triangle for the polarity pertaining to the
first tree grammar and a downward triangle for the polarity pertaining to the second
grammar.

Fig. 12. G (first version: two tree grammars coupled together)

After being coupled, the two tree grammars of Fig. 12 form a single grammar. The
rules of the coupled grammar can be used in whatever order, despite the fact that they
originally come from two different grammars. This property illustrates one of the major
advantages of polarities, which allows to couple different modules in a same model
without introducing procedural constraints on the order in which the different modules
must be triggered.

It is possible to simplify the previous coupled grammar, because both rules involving
an edge must apply on each edge and can be pre-combined. The resulting grammar is
given in Fig. 13.

Fig. 13. G (second version: pre-combined edge rules)

It is also possible to merge the two polarizing functions. The resulting polarizing
function has four possible values: (black, black), (black, white), (white, black), and
(white, white). The polarities (black, white) and (white, black) are two opposite polar‐
ities, which, combined together, give (black, black), indicating that an object is saturated.
In previous publications, these polarities have been called positive and negative [27, 28,
31]. Figure 14 shows G after merging the polarizing function. Positive and negative
polarities are represented by + and – signs in squares, and (black, black) is represented
by a black square.

Fig. 14. G (third version: polarizing functions merged)

Word Ordering as a Graph Rewriting Process 225

Finally, G will be articulated with G◇ and G to be applied to the output of these
grammars, so that it triggers them and it is triggered by them, so that the output of one
module becomes the input of another. Figure 15 presents the resulting grammar, where
triangle and diamond polarities pertaining to, respectively, G◇ and G have been added.

Fig. 15. G (fourth version: articulated with G◇ and G)

Note that as soon as the polarities have been added, it is no longer necessary to add
the label “<” to distinguish LPLs from syntactic dependencies. The polarities suffice:
an edge with a triangle polarity is an edge that must be handled by G , that is, a syntactic
dependency, while an edge with a square polarity is an edge that must be handled by G

, that is, an LPL.10

3.4 Sub-categorization Rules and Semantics-Syntax Interface

PUG was initially introduced for writing DGs producing unordered dependency trees
[26, 29, 32]. Figure 16 shows the semantics-syntax interface G , that is, a grammar that
generates the dependency tree of (1), on semantic grounds. The grammar here is simpli‐
fied to show only syntactic edges, and morphosyntax (i.e., inflection) is not considered.
See [23] or [26] for a more detailed grammar.

(N)

work(V)

subj

men(N)

mines(N)

Swaziland(N) (N)

in(P)
comp

(V)
mod

(N)

from(P)
comp

(N)
mod

often(Adv)

(V)

mod

Fig. 16. G , a dependency grammar for (1)

The rule introducing work specifies that it is an intransitive verb with only one
semantic argument, its subject. The main polarities for G are represented by pentagons.

10 To some extent, it is not even necessary to separate syntactic edges and LPLs. A same edge
can be both and bear simultaneously a triangle and a square polarity, exactly as a node can be
both a syntactic node and a node of the linear order. It is viewed as a syntactic object when the
triangle polarity is handled and as a morphological object when the square polarity is handled.
In some sense, every edge we consider has two faces: a semantic one (represented here by the
syntactic dependency) and a morphological one (represented by an LPL). They describe
constructions, that is, linguistic signs with a signified (the semantic face) and a signifier (the
morphological face).

226 S. Kahane and F. Lareau

White syntactic polarities are added to black pentagons in order to call G . Two labelling
functions for nodes are considered: one has a word as value, the other its category, written
between parentheses here. The rule for work introduces three objects. It says that work
is of category V and has a subject dependent. The node work and the subj dependency
are resources produced by the rule (they have black pentagons), while the dependent
node of category N is a requirement. This need will be filled by the unification with the
elementary structure for men, which is a black node of category N. The rule for the
preposition in says that in is a preposition that needs a V as governor and an N as
dependent. In other words, the elementary structure for in will adjoin on works. Prepo‐
sitions in and from are binary predicates. The adverb often is a unary predicate modifying
its only argument. Nouns in this sentence have no arguments.

It is important to note that G does not force the derived structure to be a tree. This
condition is often verified by a hidden procedural device (as in [29] or [32]). In PUG,
this is made explicit by forcing the tree grammar G to apply on the syntactic part of the
structure.

3.5 Governor-Dependent Linearization Rules

Sketches of the two rules needed to linearize sentence (2) were introduced in Fig. 6. To
include these rules in PUG we must decide which objects in these rules are resources and
which are requirements. Let us call G◇ the linearization grammar that includes these rules.
It is a correspondence grammar, like G (Sect. 3.4), as it puts in correspondence two struc‐
tures, the syntactic tree and the linear order. Hence, we propose that G◇ produces both
structures. Moreover, it calls G to verify that the syntactic part of the structure is a tree, as
well as G to verify that the corresponding order is a string. We obtain the rules in Fig. 17,
where the values of the polarizing function pertaining to G◇ are represented by diamonds.
Syntactic dependencies receive a black diamond and a white triangle, to trigger G , while
LPLs receive a black diamond and a white square, to trigger G . We consider that nodes are
not handled by G◇ and are just not polarized.11

subj obj

(Adv)

mod comp

(P)

mod

Fig. 17. Governor-dependent linearization rules of G◇

11 In [28], such objects received a neutral grey polarity that was the identity for the product on polar‐
ities, which is equivalent to having no polarity.

Word Ordering as a Graph Rewriting Process 227

3.6 Architecture of the Model and Procedure

The three grammars we have introduced, G , G and G◇, call one another. This illus‐
trates the fact that PUG can formalize complex architectures and is not restricted to
pipeline architectures where modules form a chain. PUG has the advantage of enabling
various procedures.12

In fact, our three grammars are now gathered in only one grammar, which we call
G × G◇ × G . The three grammars are still visible as three modules of our combined
grammar, but we do not need to separate them. Elementary trees of the three grammars
can be triggered in whatever order we want. In particular, the combined grammar is
reversible and can be used for both synthesis and analysis. In synthesis, G is triggered
first to verify that the input structure is a dependency tree, then G◇ associates a linear
order to it, and finally G verifies that the output is a string. In analysis, the reverse
occurs: G is triggered first, calling G◇ for the correspondence, and G verifies the well-
formedness of the output. It is also possible to trigger G and G first, and only then
verify that the generated tree and string are compatible via G◇. It is as well possible to
mix the grammars and to alternate rules of the different modules. For instance, we can
use the grammar for incremental parsing by building the syntactic tree edge by edge as
we are consuming the string. Whatever order we choose, the polarization ensures that,
if we obtain a saturated structure at the end, we will have a tree and a string corresponding
to each other by our linearization rules and that the three modules of the grammar have
been applied.

To sum up, there are three main ways to use a correspondence grammar such as G◇

or G × G◇ × G [33]. First, the grammar can be used as a purely generative process,
building couples of trees and strings corresponding to one another, from scratch. In our
case, the grammar will be used in a transductive way, transforming a tree into a string,
or a string into a tree. In these cases, the process starts with one of the two structures.
To trigger the grammar, this input structure is polarized in white: with the white polarity
of G if we suppose that it is a string, and with the white polarity of G if we suppose
that it is a dependency tree. The “transduction” of the input structure into another one
will be automatically achieved by the need to saturate it. There is a third way to use the
grammar: the equative way. In this case, a couple of structures is considered and the
grammar will verify that they are a tree and a string and that they correspond to each
other by trying to saturate both of them. [15] said that a Meaning-Text model “is by no
means a generative or, for that matter, transformational system: it is a purely EQUA‐
TIVE (or translative) device” (p. 45). But in fact, correspondence grammars, like
modules of MTT, can be used in all three modes—equative, transductive, and generative.

12 It must nevertheless be noted that the space of possible procedures is controlled by the artic‐
ulation polarities we add in the rules of each grammars. In this presentation we chose to leave
open a maximum number of possibilities: each time an object in a rule can be handled by
another grammar, we add an articulation polarity to call this grammar. But it is possible to
restrict the use of articulation polarities in order to have a pipeline architecture.

228 S. Kahane and F. Lareau

In particular, our correspondence grammars are reversible and can be used for synthesis
as well as analysis.

4 Linearization Module

The linearization grammar presented so far is not sufficient to order all dependency trees.
Our first linearization module (Sect. 3.5) contained only governor-dependent lineariza‐
tion rules, i.e., rules specifying the position of a node in relation to its governor. A second
set of rules is needed to position co-dependents in relation to each other (Sect. 4.1). A
third set of rules propagates LPLs to nodes that are not in a so close relation in the
dependency tree (Sect. 4.2). Non-projective orders will be studied in Sect. 5.

4.1 Co-dependent Linearization Rules

Let us take an example:

(3) Mary often works.

Figure 18 shows the dependency tree and linear order of (3). The subject (Mary) and
the modifier (often) are both on the left of their governor (works), but the subject must
be before the modifier. The subject dependency between Mary and works now corre‐
sponds to an LPL between Mary and often. This means that we need a linearization rule
involving these three nodes—Mary, works, and often—and both syntactic dependencies
—subj and mod. This is the first rule in Fig. 19. It associates the subj dependency with
an LPL between two co-dependents. Both edges are consumed by this rule, and thus
have a black diamond polarity, while the mod dependency has a white diamond polarity
because it will be consumed by another rule. This latter rule is the second in Fig. 19. It
has category constraints and only applies to an adverb (Adv) modifying a verb (V).

a. b.Mary

works

often

modsubj
Mary often works

< <

Fig. 18. a. Dependency tree b. linear order of (3)

(V)

(Adv)

modsubj

(Adv) (V)

mod

Fig. 19. The subj-mod co-dependent and the mod governor-dependent linearization rules of G◇

Word Ordering as a Graph Rewriting Process 229

Figure 20 shows the application of these two rules for (3). The resulting structure
contains a dependency tree and a linear order. We only kept the articulation polarities:
dependencies have a white triangle polarity calling G and LPLs have a white square
polarity calling G . The structure is presented twice: once with a dependency tree-based
layout (Fig. 20a), the other with a linear order-based layout (Fig. 20b). Let us emphasize
that the two schemata are just different views of the exact same graph.

a. b.

Mary

works

often

modsubj

Mary oftenworks

modsubj

Fig. 20. Syntactic dependencies and LPLs of (3) after application of G◇

The subj governor-dependent linearization rule of Fig. 17, placing the subject before
the verb, is still needed in G because the adverb can be absent. If this rule is applied to
the syntactic tree of (3) instead of the subj-mod co-dependent linearization rule, we will
obtain a structure that is not a string and will be rejected by G .

The grammar presented here only handles the linearization of what we will call direct
projections. The direct projection of a node x in a dependency tree is the node itself and
its direct dependents. For instance, the direct projection of works in (1) is men often work
in. We will see in Sect. 4 how to propagate the LPLs between the words of the direct
projections to the whole set of nodes. Before that, we will see how to homogenize the
rules used to order direct projections.

4.2 Propagation and Projectivity

After applying governor-dependent and co-dependent linearization rules on the depend‐
ency tree of (1), we obtain the structure in Fig. 21. As before, we kept the articulation
polarities and the structure is presented twice, in a dependency tree-based layout
(Fig. 21a) and in a linear order-based layout (Fig. 21b).

a. b.

men

work

in

modsubj

minesfrom

Swaziland

mod

comp

comp

mod

often

men work in

mod

subj

minesfrom Swaziland

mod
comp compmod

often

Fig. 21. Syntactic dependencies and LPLs of (1) after application of G◇

230 S. Kahane and F. Lareau

As we can see, we cannot obtain a string with the application of only governor-
dependent and co-dependent linearization rules. We know that men is before its
dependent from and its co-dependent often, but we do not know the relative order of
from and often, and this order cannot be computed by our current G◇, because from and
often are in an “aunt-niece” relation in the dependency tree, and G◇ covers only
governor-dependent (i.e., mother-daughter) and co-dependent (i.e., sister) relations.

To obtain the complete linearization of the dependency tree, we must use a property
of the correspondence between a dependency tree and a linear order: projectivity. There
are several equivalent definitions of projectivity. The definition we use, stated by [34],
who coined the term projectivity, is based on the notion of projection. The maximal
projection of a node is the set formed by the node itself and all the nodes it dominates
(directly or indirectly) in the dependency tree. A linearly ordered tree is projective if
and only if the maximal projection of every node of the dependency tree is continuous
in the linear order.

A consequence of projectivity is that, if a node x is before a node y that is not in the
projection of x, then the whole projection of x is before y and, in particular, every
dependent z of x is before y. This property (and the symmetric property where x is after
y) can be translated into a rule. This rule (on the right side of Fig. 22) says that any LPL
from a node x to a node y can be replaced by an LPL from z to y. The LPL between x
and y receives a black square polarity, which means that it can no longer be covered by
G , while the new LPL that replaces it receives a white square polarity and is active for
G . In analysis, the rule is read in the reverse order: any LPL from a node z to a node y
can be replaced by an LPL from the governor of z to y. The former LPL receives a black
diamond polarity and is no longer active for G◇, while the new LPL that replaces it
receives a white diamond polarity and is active for G◇. The white triangle polarity
between the sources of the two LPLs of rules of Fig. 22 forces these two nodes to be
linked by a syntactic dependency (which G will saturate).

Fig. 22. Propagation rules of G◇

Propagation rules propagate LPLs downwards in synthesis and upwards in analysis.
Figure 23 shows their application in synthesis for a fragment of the structure in Fig. 21.
The first rule of Fig. 22 is applied twice to propagate the LPL between men and often to
from and then to Swaziland. The result is a string and will be saturated (i.e., accepted)
by G .

Word Ordering as a Graph Rewriting Process 231

men

from

Swaziland

mod

comp

often men

from

Swaziland

mod

comp

often

⇒

Fig. 23. Application of propagation rules on the structure of (1)

Let us make a remark about the set of LPLs built by our grammar. Order is a transitive
relation. From a computational point of view (and certainly also from a cognitive point
of view), it is not necessary to grasp all the LPLs that a linear order implies. As we see
here, we need mainly to consider immediate LPLs, i.e., LPLs between two successive
words, and some other LPLs that result from the propagation of immediate LPLs. Thus,
propagation is a kind of transitive closure of linear order, but highly constrained by
syntactic structure.

The previous remark is illustrated by Fig. 24, which shows the application of the
linearization module for the analysis of (1). The input structure is the string of words,
which contains only immediate LPLs (cf. Figure 1). The application of G introduces
white diamond polarities on immediate LPLs, which call G◇ (Fig. 24a). After applying
all the rules of G◇ that can saturate a white diamond polarity now, we obtain the structure
in Fig. 24b. Only one LPL has not been saturated, the LPL from Swaziland to often.
Neither governor-dependent nor co-dependent linearization rules can be triggered on
this LPL. But this LPL can be propagated, producing the configuration in Fig. 24c, on
which the subj-mod co-dependent linearization rule can now apply, producing the output
structure in Fig. 24d. This structure contains the whole dependency tree.

Propagation rules can only produce a projective structure and they suffice to linearize
any output of governor-dependent and co-dependent rules. They would apply to co-
dependents if we did not take necessary precautions. In fact, any co-dependent lineari‐
zation rule is the combination of a governor-dependent linearization rule and a propa‐
gation rule, as shown in Fig. 25. When the relative order of two co-dependents is free,
it can be realized by propagation rules, but when it is not free, then propagation rules
must be blocked. This could be done by adding a special feature to the LPL introduced
by a governor-dependent rule, as well as the LPL consumed by a propagation rule. In
other words, the two LPLs that unify in Fig. 25 would need to have a different value for
this special feature (not represented here) if we wanted to block this unification.

232 S. Kahane and F. Lareau

subj
subj

=

Fig. 25. Co-dependent linearization rules as combinations of governor-dependent linearization
and propagation rules

5 Emancipation

Non-projective correspondence between a dependency tree and linear order is common
in natural language. In English, it is illustrated by so-called extraction phenomena, like
the anteposition of a complement governed by a subordinate verb outside the subordinate
clause (cf. sentence (4) and its linearized dependency tree in Fig. 26).

(4) To Mary Peter thinks we should not speak again.

a.

b.

c.

d.

men work in minesfrom Swaziland often

men work in minesfrom Swaziland often

mod comp compmodmod

men work in minesfrom Swaziland often

mod comp compmodmod

men work in minesfrom Swaziland often

mod comp compmodmod
subj

Fig. 24. Application of G◇ for the analysis of (1)

Word Ordering as a Graph Rewriting Process 233

To Mary Peter thinks we notshould speak again

Fig. 26. Non-projective linearized dependency tree of (4)

Such sentences are quite frequent in German, because the first element of a sentence can
easily be the dependent of a subordinate verb, as illustrated in (5) (see Fig. 27a, b).

(5) Das Buch hat diesem Mann niemand zu lesen versprochen theACC book has thisDAT
man nobodyNOM to read promised ‘Nobody promised this man to read the book’.

b.

c.

niemandhat versprochen

aux

subj

zu lesendiesem Mann

iobj

dobj
dobj

das Buch

niemandhat versprochen

rb
mf

zu lesendiesem Mann

mf of
vf

das Buch

niemand ‘nobody’

hat ‘has’

versprochen ‘promised’

auxsubj

zu lesen ‘to read’ diesem Mann ‘thisDAT man’

iobjdobj

dobj

das Buch ‘theACC book’

a.

Fig. 27. a. The dependency tree of (5) b. Its non-projective linearization c. The corresponding
projective topological tree

In almost any formalism, non-projective structures are solved by the raising of prob‐
lematic elements in the syntactic structure. This is achieved by similar devices in all
theories: movements in Generative Grammar (Move α [35]), non-local features in HPSG
(the slash feature [36]), functional uncertainty in LFG [37], etc. In DG, the problem can
be solved by raising problematic elements in the syntactic dependency tree [10, 38, 39].
The idea underlying raising in all of these frameworks is that non-projectivity occurs
when an element is not positioned in relation with its direct governor, but one of its
indirect governors. For instance, in (4), to Mary is not positioned in relation to its
governor speak, but to thinks, the main verb. In (5), das Buch ‘the book’ is not positioned
in relation to its governor zu lesen ‘to read’, but to hat ‘has’, the main verb (Fig. 27).

There are different ways to control raising. In Generative Grammar, the movement
is constrained by syntactic categories: some syntactic constituents are “islands” and it
is not possible to cross their boundaries (see [40] for a first description of island
constraints and [41] for a recent formalization). In LFG or traditional DG, the constraints
are expressed in terms of syntactic functions: the chain of syntactic dependencies
between the raised element and the ancestor that “hosts” it in the linear order is
constrained by the nature of their syntactic functions [15, 16].

In this paper we adopt a third solution: the topological model. This model has been
developed from the 19th century for the description of word order in German and has
been formalized in HPSG [6] and DG [11, 12]. It elegantly models the fact that German

234 S. Kahane and F. Lareau

is a V2 language (the main verb of a declarative sentence always occupies the second
position), with a verb cluster at the end of the sentence, possibly followed by some
extraposed heavy constituents. This is modeled by decomposing the main domain of a
German sentence into five fields (Vorfeld, left bracket, Mittelfeld, right bracket, and
Nachfeld = vf, lb, mf, rb, and nf), with the following conditions: the main verb goes in
the left bracket, the other verbs in the right bracket, where they form a verb cluster, one
constituent goes in the Vorfeld, the others in the Mittelfeld, and some heavy constituents
in the Nachfeld. In the verb cluster [vc], each verb is placed to the left of its governor,
in a field called the Oberfeld (of). Noun phrases cannot be placed in the verb cluster and
if they depend on a verb in the verb cluster, they must emancipate and go in one of the
major fields (Vorfeld, Mittelfeld, or Nachfeld).

In (5), the main verb is the finite auxiliary hat ‘has’, which must be in second position,
in the left bracket. Its verbal dependent, the participle versprochen ‘promised’, is placed
in the right bracket, where it forms a verb cluster accommodating its verbal dependent
zu lesen ‘to read’. The noun phrases of these two verbs cannot be placed in the verb
cluster and will be emancipated to be placed in fields of the main domain: das Buch ‘the
book’ goes in the Vorfeld, while diesem Mann ‘to this man’ is placed in the Mittelfeld,
where it joins the subject niemand ‘nobody’ and can be ordered freely in relation to it.

The topological structure can be represented by a constituent structure as in [12] or
by a dependency tree as in [11]. This second representation is adopted here (Fig. 27c).
The topological tree is added as an intermediate structure between the syntactic tree and
linear order. This new structure receives its own polarity, represented by a downward
triangle (), to be contrasted with the upward triangle () of syntactic trees. The diamond
() is still used for the linearization module, which now ensures the correspondence
between the topological tree and linear order, but uses the same rules as the ones
described in previous sections, because the topological tree corresponds to the linear
order projectively. A new polarity, represented by a circle (), is introduced for the
syntax-topology interface, which ensures the correspondence between the syntactic tree
and the topological tree.

The rules of the syntax-topology interface are very similar to the rules of the linea‐
rization module: the majority are correspondence rules associating a syntactic edge to
a topological edge. The other rules resolve mismatches between the two structures. For
the linearization module, they are propagation rules. For the syntax-topology interface,
they are emancipation rules, which are very similar to propagation rules.13 Figure 28
shows examples of different rules used in the syntax-linear order correspondence: the
first two transform a syntactic aux edge into a topological rb edge (allowing the
dependent of the auxiliary to go in the right bracket where it heads a verb cluster [vc])
and a syntactic obj into a topological vf (allowing a direct object to go in the Vorfeld);
the next rule is an emancipation rule lifting a vf and allowing a node placed in the Vorfeld
to emancipate from the right bracket (note that the lower vf is only visible for the syntax-
topology interface, while the upper vf is only visible for the topological well-formedness

13 The semantics-syntax interface also contains mismatch rules for phenomena such as raising
(Peter seems to sleep), auxiliaries (I will read), tough-movement (a paper hard to read), or
extraction (a paper I would like to read). See [25, 26, 32].

Word Ordering as a Graph Rewriting Process 235

module, as shown by their polarities); the following rules are topological well-formed‐
ness rules verifying that the topological structure is a tree and the Vorfeld is in the main
domain [md]; the last rules are linearization rules placing the Vorfeld to the left and the
right bracket after the Mittelfeld, as well as a propagation rule.

aux rb

obj vf

rb

vf

vf

[md]

vf

[vc]

rb

vf

rbmf

G G G

Fig. 28. Some rules of syntax-topology-linear order correspondence

The application of syntax-topology correspondence rules produces a copy of the
syntactic tree where the node and edge labels have changed. The application of the
emancipation rules lifts some edges (Fig. 29). The emancipation could have been done
directly in the syntactic tree, but the advantage of relabelling the tree in the syntax-
topology is to have two different grammars for the well-formedness of the syntactic tree
and the topological tree.

N1

V1

V2

auxsubj

V3
N3

iobjdobj

dobj

N2

N1

V1

V2

rbmf

V3
N3

mfof

vf

N2

⇒

correspondence

N1

V1

V2

rbmf

V3

N3

mf

of

vf

N2

em
ancipation

⇒

Fig. 29. The syntax-topology interface applied on the trees of (5)

A more complete formal topological model for German can be found in [12].

236 S. Kahane and F. Lareau

6 Conclusion

This paper pursued several goals: showing that linearization can be seen as a graph
rewriting process, showing that each LPL corresponds to a syntactic dependency and
that the path between the two can be traced, and formalizing the linearization module
in a modular, declarative formalism, allowing to combine it with other modules of a
linguistic model.

The paper gives a large overview of Polarized Unification Grammar. The formalism
is well adapted to writing grammars that generate various structures, such as strings,
trees, and graphs, and correspondence grammars between such structures. Polarization
allows us to split the model into small modules articulated with one another, and to
maintain a distributed architecture where every module calls the other modules to handle
the same structures. PUG also allows us to deal with node expansions, which has not
been developed here.

From a theoretical point of view, this paper proposes a linguistic model with several
levels of representation, including a syntactic level where the structure is an unordered
dependency tree. The choice of dependency trees for the representation of syntax is
supported by two arguments. First, it elegantly interfaces with both semantics and linear
order, including non-projective orders. Second, there is a one-to-one correspondence
between the syntactic dependencies and the linear precedence links between couples of
successive words, and this correspondence can be exploited in various ways, in particular
to predict prosodic breaks.

From a formal point of view, we have a quite complex architecture, but the articu‐
lation between the different modules is ensured by a single mechanism (polarization),
which allows us to control rule combination. This is done without imposing any order
on the combination of rules, thus preserving a distributed architecture. The typology of
the rules we introduce is also quite simple. We have well-formedness rules verifying
that the structure is well-formed (for instance that it is a tree or a string), correspondence
rules transforming a structure in another one, and propagation/emancipation rules in
case of mismatches.

We did not address the implementation of PUG. In fact, we tried to underspecify
procedure as much as possible. Our grammar allows various processing chains, and it
was not our purpose to decide which procedure is better for synthesis or parsing. On the
order hand, our grammar is very precise on which word order specification must be
computed to linearize a dependency tree. We showed that we only need to consider LPLs
between successive words, between nodes linked by a syntactic dependency, and
between all couples of words that propagation rules may go through. Although no
procedure is given, the set of objects that any procedure would have to handle and the
set of elementary operations that must be triggered is clearly delimited. Moreover, the
word order we produce is explicit (it is a linear graph on words).

References

1. Gazdar, G.: Unbounded dependencies and coordinate structure. Linguist. Inquiry 12(1), 155–
184 (1981)

Word Ordering as a Graph Rewriting Process 237

2. Gazdar, G., Klein, E., Pullum, G., Sag, I.: Generalized Phrase Structure Grammar. Harvard
University Press, Cambridge (1985)

3. Candito, M.-H.: A principle-based hierarchical representation of LTAG. In: Proceedings of
COLING, Copenhagen (1996)

4. Kaplan, R., Bresnan, J.: Lexical-functional grammar: a formal system for grammatical
representation. In: Bresnan, J. (ed.) The Mental Representation of Grammatical Relations,
pp. 173–281. The MIT Press, Cambridge (1982)

5. Bresnan, J.: Lexical-Functional Syntax. Blackwell, Malden (2001)
6. Kathol, A.: Linerarization-based German syntax. Ph.D. thesis, Ohio State University (1995)
7. Richter, F., Sailer, M.: Remarks on linearization. reflections on the treatment of LP-rules in

HPSG in a typed feature logic. Master’s dissertation, Eberhard-Karls-Universität, Tübingen
(1995)

8. Müller, S., Kasper, W.: HPSG analysis of German. In: Wahlster, W. (ed.) Verbmobil:
Foundations of Speech-to-Speech Translation, pp. 238–253. Springer, Heidelberg (2000)

9. Tesnière, L.: Éléments de syntaxe structurale. Klincksieck, Paris (1959). English translation:
Elements of structural syntax. John Benjamins (2015)

10. Kahane, S., Nasr, A., Rambow, O.: Pseudo-projectivity: a polynomially parsable non-
projective dependency grammar. In: Proceedings of COLING-ACL, Montreal, pp. 646–652
(1998)

11. Duchier, D., Debusmann, R.: Topological dependency trees: a constraint-based account of
linear precedence. In: Proceedings of the 39th Annual Meeting on Association for
Computational Linguistics, Toulouse, pp. 180–187 (2001)

12. Gerdes, K., Kahane, S.: Word order in German: a formal dependency grammar using a
topological hierarchy. In: Proceedings of the 39th Annual Meeting of the Association for
Computational Linguistics (ACL 2001), Toulouse, pp. 220–227 (2001)

13. Kuhlman, M.: Mildly non-projective dependency grammar. Comput. Linguist. 30(2), 355–
387 (2013)

14. Kuhlmann, M., Nivre, J.: Transition-based techniques for non-projective dependency parsing.
Northern Eur. J. Lang. Technol. 2(1), 1–19 (2010)

15. Mel’čuk, I.: Dependency Syntax: Theory and Practice. State University of New York Press,
Albany (1988)

16. Mel’čuk, I., Pertsov, N.: Surface Syntax of English: A Formal Model Within the Meaning-
Text Framework. John Benjamins, Amsterdam (1987)

17. Iordanskaja, L., Mel’čuk, I.: Ordering of Simple Clauses in an English Complex Sentence.
Rhema 4, 17–59 (2015)

18. Mel’čuk, I.: Semantics: From Meaning to Text, vol. 1. John Benjamins, Amsterdam (2012)
19. Mel’čuk, I.: Actants in semantics and syntax I: actants in semantics. Linguistics 42(1), 1–66

(2004)
20. Kahane, S.: Dependency and Valency: An International Handbook of Contemporary

Research. Walter de Gruyter, Berlin (2003)
21. Copestake, A.: Slacker semantics: why superficiality, dependency and avoidance of

commitment can be the right way to go. In: Proceedings of the 12th Conference of the
European Chapter of the Association for Computational Linguistics, Athens, pp. 1–9 (2009)

22. Kahane, S., Mel’čuk, I.: Synthèse des phrases à extraction en français contemporain (du
réseau sémantique à l’arbre syntaxique). Traitement Automatique des Langues 40(2), 25–85
(1999)

23. Kahane, S., Lareau, F.: Meaning-Text Unification Grammar: modularity and polarization. In:
Proceedings of the Second International Conference on Meaning-Text Theory, Moscow, pp.
163–173 (2005)

238 S. Kahane and F. Lareau

24. Lareau, F.: Vers une grammaire d’unification Sens-Texte du français: le temps verbal dans
l’interface sémantique-syntaxe. Ph.D. thesis, Université de Montréal/Université Paris 7
(2008)

25. Lareau, F.: Le temps verbal dans l’interface sémantique-syntaxe du français. In: Proceedings
of the Fourth International Conference on Meaning-Text Theory, Barcelona (2009)

26. Kahane, S.: Predicative Adjunction in a Modular Dependency Grammar. In: Proceedings of
the 2nd International Conference on Dependency Linguistics (DepLing), Prague, pp. 137–
146 (2013)

27. Kahane, S.: Grammaires d’Unification Polarisées. In: Actes de la 11ème conférence sur le
Traitement Automatique des Langues Naturelles, Fès, pp. 233–242 (2004)

28. Kahane, S.: Polarized unification grammars. In: Proceedings of the 21st International
Conference on Computational Linguistics and 44th Annual Meeting of the Association for
Computational Linguistics, Sydney, pp. 137–144 (2006)

29. Nasr, A.: A formalism and a parser for lexicalized dependency grammars. In: 4th International
Workshop on Parsing Technologies, Prague, pp. 186–195 (1995)

30. Perrier, G.: Interaction grammars. In: Proceedings of the 18th International Conference on
Computational Linguistics, Saarbrücken, pp. 600–606 (2000)

31. Duchier, D., Thater, S.: Parsing with tree descriptions: a constraint-based approach. In:
Proceedings of the Sixth International Workshop on Natural Language Understanding and
Logic Programming (NLULP), Las Cruces, NM, pp. 17–32 (1999)

32. Kahane, S.: A fully lexicalized grammar for french based on meaning-text theory. In:
Gelbukh, A. (ed.) CICLing 2001. LNCS, vol. 2004, pp. 18–31. Springer, Heidelberg (2001)

33. Kahane, S.: Des grammaires formelles pour définir une correspondance. In: Actes de la 7e
conférence annuelle sur le Traitement Automatique des Langues Naturelles (TALN),
Lausanne (2000)

34. Lecerf, Y.: Une représentation algébrique de la structure des phrases dans diverses langues
natuelles. Comptes Rendus de l’Académie des Sciences de Paris 252, 232–234 (1961)

35. Chomsky, N.: The Minimalist Program. The MIT Press, Cambridge (1995)
36. Pollard, C., Sag, I.: Head-Driven Phrase Structure Grammar. CSLI, Stanford (1994)
37. Kaplan, R., Zaenen, A.: Long-distance dependencies, constituent structure, and functional

uncertainty. In: Baltin, M., Kroch, A. (eds.) Alternative Conceptions of Phrase Structure, pp.
17–42. Chicago University Press, Chicago (1989)

38. Bröker, N.: Unordered and non-projective dependency grammars. Traitement Automatique
des Langues 41(1), 245–272 (2000)

39. Hudson, R.: Discontinuity. Traitement Automatique des Langues 41(1), 15–56 (2000)
40. Ross, J.: Constraints on variables in syntax. Ph.D. thesis, MIT, Cambridge, MA (1967)
41. Graf, T.: Movement-generalized minimalist grammars. In: Béchet, D., Dikovsky, A. (eds.)

Logical Aspects of Computational Linguistics. LNCS, vol. 7351, pp. 58–73. Springer,
Heidelberg (2012)

42. Kahane, S., Mazziotta, N.: Syntactic polygraphs: a formalism extending both constituency
and dependency. In: Proceedings of the 14th Meeting on the Mathematics of Language,
Chicago, pp. 152–164 (2015)

43. Lareau, F.: Vers une formalisation des décompositions sémantiques dans la Grammaire
d’Unification Sens-Texte. In: Actes de la 14ème conférence sur le Traitement Automatique
des Langues Naturelles, Toulouse, pp. 163–172 (2007)

Word Ordering as a Graph Rewriting Process 239

Undecidability of the Lambek Calculus
with a Relevant Modality

Max Kanovich1,4, Stepan Kuznetsov2(B), and Andre Scedrov3,4

1 University College London, London, UK
m.kanovich@ucl.ac.uk

2 Steklov Mathematical Institute, Moscow, Russian Federation
sk@mi.ras.ru

3 University of Pennsylvania, Philadelphia, USA
scedrov@math.upenn.edu

4 National Research University Higher School of Economics,

Moscow, Russian Federation

Abstract. Morrill and Valent́ın in the paper “Computational coverage
of TLG: Nonlinearity” considered an extension of the Lambek calculus
enriched by a so-called “exponential” modality. This modality behaves in
the “relevant” style, that is, it allows contraction and permutation, but
not weakening. Morrill and Valent́ın stated an open problem whether this
system is decidable. Here we show its undecidability. Our result remains
valid if we consider the fragment where all division operations have one
direction. We also show that the derivability problem in a restricted case,
where the modality can be applied only to variables (primitive types), is
decidable and belongs to the NP class.

1 The Lambek Calculus Extended by a Relevant
Modality

We start with the version of the Lambek calculus, L∗, that allows empty left-
hand sides of sequents (introduced in [10]). We will introduce !L∗—an extension
of L∗ with one modality, denoted by !.

Formulae of !L∗ are built from a set of variables (Var = {p, q, r, . . .}) using
two binary connectives, / (right division) and \ (left division), and additionally
one unary connective, !. Capital Latin letters denote formulae; capital Greek
letters denote finite (possibly empty) linearly ordered sequences of formulae.

Following the linguistic tradition, formulae of the Lambek calculus (and its
extensions) are also called types. In this terminology, variables are called primi-
tive types.

We present !L∗ in the form of sequent calculus. Sequents of !L∗ are of the form
Π → A, where A is a formula and Π is a finite (possibly empty) linearly ordered
sequence of formulae. Π and A are called the antecedent and the succedent
respectively.

c© Springer-Verlag Berlin Heidelberg 2016
A. Foret et al. (Eds.): FG 2015/2016, LNCS 9804, pp. 240–256, 2016.
DOI: 10.1007/978-3-662-53042-9 14

Undecidability of the Lambek Calculus with a Relevant Modality 241

The axioms and rules of !L∗ are as follows:

A → A

Γ → A Δ1, B,Δ2 → C

Δ1, B /A, Γ,Δ2 → C
(/ →)

Γ,A → B

Γ → B / A
(→ /)

Γ → A Δ1, B,Δ2 → C

Δ1, Γ,A \ B,Δ2 → C
(\ →)

A,Γ → B

Γ → A \ B
(→ \)

Γ1, A, Γ2 → C

Γ1, !A,Γ2 → C
(! →)

!A1, . . . , !An → B

!A1, . . . , !An → !B
(→ !)

Δ1, !A,Γ,Δ2 → C

Δ1, Γ, !A,Δ2 → C
(perm1)

Δ1, Γ, !A,Δ2 → C

Δ1, !A,Γ,Δ2 → C
(perm2)

Δ1, !A, !A,Δ2 → C

Δ1, !A,Δ2 → C
(contr)

We call ! the relevant modality, since it behaves in a relevant logic style, allow-
ing contraction and permutation, but not weakening. Recall that in the original
Lambek calculus there is neither contraction, nor permutation, nor weakening.
The modality is introduced to restore contraction and permutation in a con-
trolled way.

The cut rule is not officially included in !L∗. Morrill and Valent́ın [12] claim
that it is admissible and that this fact can be proved using the standard proce-
dure (cf. [11]). In this paper we consider the system without cut and don’t need
its admissibility.

We also consider fragments of !L∗. Since there is no cut rule in this system, it
enjoys the subformula property, and therefore if we restrict the set of connectives,
we obtain conservative fragments of !L∗: !L∗

/ (where we have only / and !), L∗

(this is the “pure” Lambek calculus without !), L∗
/.

As we discuss in more detail in [7], L∗ can be considered [1,18] as a fragment
of non-commutative variant of Girard’s linear logic [5]. Our modality, !, follows
the spirit of the exponential connective in linear logic, allowing contraction and
permutation. However, in contrast with the linear logic case, we don’t allow
weakening. On the other hand, as we discuss in Sect. 2, our ! is motivated from
the linguistical point of view.

Theorem 1. The derivability problem for !L∗ is undecidable. Moreover, the
derivability problem is undecidable even for !L∗

/.

Remark 1. !L∗ has been constructed as a conservative fragment of a larger sys-
tem Db!?, introduced in [12]. Thus Theorem 1 provides undecidability of Db!?
(solving an open question raised in [12]).

2 Linguistic Examples and Motivations

In this section we start from the standard examples of Lambek-style syntactic
analysis [4,9] and then follow [12].

242 M. Kanovich et al.

In syntactic formalisms based on the Lambek calculus and its variants,
Lambek types (formulae) denote syntactic categories. We use the following stan-
dard primitive types: n stands for common noun (like “book” or “person”); np
stands for noun phrase (like “John” or “the book”); s stands for the whole sen-
tence. Actually, n and np represent not only isolated nouns and noun phrases,
but also syntactic groups with similar properties: e.g., “the red book” or “the
person whom John met yesterday,” from the lingustic point of view, should be
treated as a noun phrase (np) as well. The latter cannot be proved to be of type
np by means of L∗, but !L∗ can handle this.

For simplicity, in our examples we don’t distinguish singular and plural forms.
Other parts of speech receive compound types: np \ s stands for intransitive

verb (like “runs” or “sleeps”); (np \ s) / np stands for transitive verb (“likes,”
“reads,” “met,” “admire”); (np \ s) \(np \ s) is the type for adverbs like “yester-
day” (it takes an intransitive verb group from the left-hand side and yields a
compound intransitive verb group); np / n is the type for “the,” etc.

If the sequent A1, . . . , An → B is derivable in the Lambek calculus or its
extension, syntactic objects of type A1, . . . , An, taken together in the specified
linear order, are considered to form an object of type B. For example, since
(np \ s) / np, np / n, n → np \ s is derivable, “reads the book” is an expression of
type np \ s, or, in other words, acts as an intransitive verb.

Example 1.

“John met Pete.” “John met Pete yesterday.”

These two sentences receive type s, since the sequents np, (np \ s) / np, np → s
and np, (np \ s) / np, np, (np \ s) \(np \ s) → s are both derivable in L∗.

Example 2.

“the person whom John met”

As mentioned above, we want this phrase to receive type np. This is obtained by
assigning type (n \ n) /(s / np) to “whom.” “John met” has type s / np, which
means “a sentence that lacks a noun phrase on the right-hand side.” In other
terms, we have a gap after “met.” In Example 1 this gap is filled by “Pete,” and
here it is intentionally left blank.

Example 3.

“the person whom John met yesterday”

Here the gap appears in the middle of the clause (between “met” and “yester-
day”), therefore “John met yesterday” is neither of type s / np, nor of type np \ s.
This situation is called medial extraction and is not handled by L∗.

Undecidability of the Lambek Calculus with a Relevant Modality 243

To put np into the gap, we use ! and the (perm1) rule:

np /n, n, n \ n → np

np, (np \ s) / np, np, (np \ s) /(np \ s) → s

np, (np \ s) / np, !np, (np \ s) /(np \ s) → s
(! →)

np, (np \ s) / np, (np \ s) /(np \ s), !np → s
(perm1)

np, (np \ s) / np, (np \ s) /(np \ s) → s / !np

np / n, n, (n \ n) /(s / !np), np, (np \ s) / np, (np \ s) /(np \ s) → np
the person whom John met yesterday

The sequent on top is the same schema as for “John met Pete yesterday”
(see Example 1).

Note that s / !np and !np \ s are equivalent (due to the permutation rules).

Example 4.

“the paper that John signed without reading”

Finally, this is the case called parasitic extraction, with two np gaps (after
“signed” and after “reading”). If the that-clause were an independent sentence,
the gaps would have been filled like this: “John signed the paper without reading
the paper.” To fill both gaps with the same np, we use the (contr) rule:

np / n, n, n \ n → np

np, (np \ s) / np, np, ((np \ s) /(np \ s)) / np, np / np, np → s

np, (np \ s) / np, !np, ((np \ s) /(np \ s)) / np, np / np, !np → s

np, (np \ s) / np, ((np \ s) /(np \ s)) / np, np / np, !np, !np → s

np, (np \ s) / np, ((np \ s) /(np \ s)) / np, np / np, !np → s

np, (np \ s) / np, ((np \ s) /(np \ s)) / np, np / np → s / !np

np / n, n, (n \ n) /(s / !np), np, (np \ s) / np, ((np \ s) /(np \ s)) / np, np / np → np
the paper that John signed without reading

Here “that” acts exactly as “whom,” and “without” modifies the verb group
like “yesterday” does, but also requires a noun phrase “reading the paper” on
the right side. The sequents on the top are easily derivable in L∗.

Remark 2. Our calculus !L∗, as well as Db!?, works well for pure complex sen-
tences and pure compound sentences. However, we meet with difficulties in the
mixed case, caused by sophisticated nature of “and” and the like. For example,
the fact that “John met Pete yesterday and Mary met Ann today” has type s,
leads to and unwanted classification of *“the person whom John met yesterday
and Mary met Ann today” as a noun phrase (type np), cf. Example 3. In order
to address this issue, Morrill and Valent́ın [12] suggest another variant of the
system, denoted by Db!?b. This variant includes brackets that disallow gapping
in certain situations. Morrill and Valent́ın pose the decidability question both
for Db!? and Db!?b. In this paper we solve the first question.

Remark 3. The whole system !L∗ turns out to be undecidable (Theorem1). On
the other hand, notice that in these examples and the like can be treated using

244 M. Kanovich et al.

types of a very restricted form. Namely, ! is applied only to a primitive type
(for instance, !np). In Sect. 5 we show that this restricted fragment of !L∗ is
decidable. Moreover, it belongs to NP, i.e., can be resolved by a nondeterministic
polynomial algorithm.

3 L∗ with Buszkowski’s Rules

In this section we build an undecidable extension of L∗ with a finite set of rules,
generally following the construction by W. Buszkowski from [2]. Buszkowski,
however, considers another version of the Lambek calculus, L, introduced in [9].
The difference between L and L∗ is the so-called Lambek’s restriction: in L, the
antecedents of all sequents are forced to be non-empty. In this paper, following
Morrill and Valent́ın [12], we allow empty antecedents, and Lambek’s restriction
is not valid in L∗ (e.g., → p / p is derivable in L∗). The relationship between L
and L∗ is very subtle. For instance, the sequent q /(p / p) → q is derivable in L∗,
but becomes underivable when Lambek’s restiction is imposed (despite the fact
that this sequent itself has a non-empty antecedent). Therefore one has to be
very cautious with this issue, and for this reason here we provide a modification
of Buszkowski’s construction for L∗ rather than directly use results from [2].

Let L∗ + R be L∗ extended with a finite set R of rules of two special forms:

Π1 → p Π2 → q

Π1,Π2 → r
(B1) or

Π, q → p

Π → r
(B2),

where p, q, r are fixed primitive types. We call these rules Buszkowski’s rules.

Theorem 2. The cut rule

Π → A Δ1, A,Δ2 → C

Δ1,Π,Δ2 → C
(cut)

is admissible in L∗ + R for an arbitrary set R of Buszkowski’s rules.

Proof. We proceed by double induction. We consider a number of cases, and
in each of them the cut either disappears, or is replaced by cuts with simpler
cut formulae (A), or is replaced by a cut for which the depth of at least one
derivation tree of a premise (Π → A or Δ1, B,Δ2 → C) is less than for the
original cut, and the cut formula remains the same. Thus by double induction
(on the outer level—on the complexity of A, on the inner level—on the sum of
premise derivation tree depths) we get rid of the cut.

Case 1: A is not the type that is introduced by the lowermost rule in the
derivation of Δ1, A,Δ2 → C. In this case (cut) can be interchanged with that
lowermost rule. Consider the situation when it was (B1) (other cases are similar):

Π → A

Δ′
1, A, Δ′′

1 → p Δ2 → q

Δ′
1, A, Δ′′

1 , Δ2 → r
(B1)

Δ′
1, Π, Δ′′

1 , Δ2 → r
(cut)

Undecidability of the Lambek Calculus with a Relevant Modality 245

�

Π → A Δ′
1, A, Δ′′

1 → p

Δ′
1, Π, Δ′′

1 → p
(cut)

Δ2 → q

Δ′
1, Π, Δ′′

1 , Δ2 → r
(B1)

Case 2: A = E / F , and it is introduced by the lowermost rules both into
Π → A and into Δ1, A,Δ2 → C.

Γ, F → E

Γ → E / F
(→ /)

Π → F Δ1, E, Δ2 → C

Δ1, E / F, Π, Δ2 → C
(/ →)

Δ1, Γ, Π, Δ2 → C
(cut)

�

Π → F Γ, F → E

Γ, Π → E
(cut)

Δ1, E, Δ2 → C

Δ1, Γ, Π, Δ2 → C
(cut)

Case 2 for \ is handled symmetrically.
Case 3: one of the premises of (cut) is the axiom (A → A). Then the goal

coincides with the other premise.
Note that since (B1) and (B2) introduce new primitive types only into the

succedent, the “bad” case, where both premises of the cut rule are derived using
Buszkowski’s rules and the cut formula is the formula introduced by both of
them, does not occur. This is the key trick that allows to formulate the extended
calculus in a cut-free way. ��

In the presence of (cut) Buszkowski’s rules (B1) and (B2) are equivalent to
axioms p, q → r and p / q → r respectively, as shown by the following derivations:

Π1 → p

Π2 → q p, q → r

p,Π2 → r
(cut)

Π1,Π2 → r
(cut)

Π, q → p

Π → p / q
(→ /)

p / q → r

Π → r
(cut)

and in the opposite direction:

p → p q → q

p, q → r
(B1)

q → q p → p

p / q, q → p
(/ →)

p / q → r
(B2)

From this perspective, L∗ + R can be viewed as a finite axiomatic extension
of L∗ (with non-logical axioms of a special kind). However, for our purposes it is
more convenient to consider rules instead of axioms.

246 M. Kanovich et al.

Theorem 3. Let M be a recursively enumerable set of words over an alphabet
Σ without the empty word. If Σ ⊂ Var, and Var also contains an infinite number
of variables not belonging to Σ, then there exists a finite set RM of Buszkowski’s
rules and s ∈ Var such that for any word a1 . . . an over Σ

a1 . . . an ∈ M iff a1, . . . , an → s is derivable in L∗ + RM .

We shall use the fact that any recursively enumerable language without the
empty word can be generated by a binary grammar [3]. A binary grammar is
a quadruple G = 〈N,Σ,P, s〉, where N and Σ are disjoint alphabets (Σ is the
original alphabet of the language), s ∈ N , and P is a finite set of productions of
the form1

w ⇒ v1v2 or v1v2 ⇒ w,

where v1, v2, w ∈ N ∪ Σ. If (α ⇒ β) ∈ P and η and θ are arbitrary (possibly
empty) words over N ∪ Σ, then ηαθ ⇒G ηβθ. The relation ⇒∗

G is the reflexive-
transitive closure of ⇒G. Finally, the language generated by G is the set of all
words a1 . . . an over Σ such that s ⇒∗

G a1 . . . an.

Proof. Let M be an arbitrary recursively enumerable language without the
empty word and let G be a binary grammar that generates M . We construct the
corresponding extension of L∗. Let N ∪ Σ ⊂ Var, and let Var contain an infi-
nite number of extra fresh variables that we’ll need later. For every production
(w ⇒ v1v2) ∈ P we add one rule

Δ1 → v1 Δ2 → v2
Δ1,Δ2 → w

(E)

For productions of the form v1v2 ⇒ w the construction is more complex.
First for every pair p = 〈(v1v2 ⇒ w), x〉, where (v1v2 ⇒ w) ∈ P and x ∈ N ∪ Σ,
we introduce new variables ỹp for every y ∈ N ∪Σ and five extra variables ap, bp,
cp, ep, fp. Then for every p we add the following rules. Some of these rules are
not in Buszkowski’s form. We’ll transform them into the correct format below.

Δ1 → ep Δ2 → x

Δ1,Δ2 → ap
(1p)

Δ1 → ỹp Δ2, y → ap

Δ1,Δ2 → ap
(2p)

Δ1 → w̃p Δ2, v1, v2 → ap

Δ1,Δ2 → bp (3p)
Δ1 → ỹp Δ2, y → bp

Δ1,Δ2 → bp (4p)

Δ1 → fp Δ2, ep → bp

Δ1,Δ2 → cp
(5p)

Δ1 → y Δ2, ỹ
p → cp

Δ1,Δ2 → cp
(6p)

Δ, fp → cp

Δ → x
(7p)

1 In the definition from [3], P could also include productions of the form u ⇒ v for
u, v ∈ N ∪Σ. Such a rule can be equivalently replaced by two productions u ⇒ w1w2,
w1w2 ⇒ v, where w1 and w2 are new elements added to N (different for different
rules). We encode these simple productions using more complex ones in order to
reduce the number of cases to be considered in the proofs.

Undecidability of the Lambek Calculus with a Relevant Modality 247

As already said, some of these rules are not actually Buszkowski’s rules.
However, any rule of the form

Δ1 → p Δ2, q → r

Δ1,Δ2 → t

(these are rules (2p), (4p), (5p), and (6p)) can be equivalently replaced by two
rules

Δ, q → r

Δ → u
(B2) and

Δ1 → p Δ2 → u

Δ1,Δ2 → t
(B1)

where u is a fresh variable.
Similarly, (3p) is a shortcut for three rules:

Δ, v2 → ap

Δ → u1
(B2)

Δ, v1 → u1

Δ → u2
(B2)

Δ1 → w̃p Δ2 → u2

Δ1,Δ2 → bp (B1)

Rules (1p), (7p), and (E) are already in the correct format. Thus we’ve actu-
ally constructed a calculus of the form L∗ + R. Denote it by L∗ + RM .

Now to achieve our goal it is sufficient to prove that for any x, z1, . . . , zm ∈
N ∪ Σ

x ⇒∗
G z1 . . . zm iff z1, . . . , zm → x is derivable inL∗ + RM .

The proof consists of two directions.
⇐ All types in the sequent z1, . . . , zm → x are primitive, therefore its

derivation includes only axioms and Buszkowski’s rules, but not original rules of
L∗ ((→ /), (→ \), (/ →), (\ →)).

Since ep, fp, and ỹp (for all y ∈ N ∪ Σ, including w) do not appear in the
succedents of goal sequents in Buszkowski’s rules from RM , the only possible
situation when ep, fp, or ỹp actually appears in the succedent is the axiom.
Hence rules (1p)–(5p) can be rewritten in a simpler way (rules (6p) and (7p) are
not affected by this simplification):

Φ → x
ep, Φ → ap

(1′
p)

Φ, y → ap

ỹp, Φ → ap
(2′

p)
Φ, v1, v2 → ap

w̃p, Φ → bp
(3′

p)

Φ, y → bp

ỹp, Φ → bp
(4′

p)
Φ, ep → bp

fp, Φ → cp
(5′

p)
Δ1 → y Δ2, ỹ

p → cp

Δ1,Δ2 → cp
(6p)

Φ, fp → cp

Φ → x
(7p)

Proceed by induction on the cut-free derivation. The sequent z1, . . . , zm → x
could either be an axiom (and then n = 1, z1 = x, and trivially x ⇒∗

G x) or be
derived by one of the Buszkowski’s rules. Since x ∈ N ∪ Σ, the only possible
rules are (E) and (7p).

If z1, . . . , zm → x is derived using (E):

z1, . . . , zk → v1 zk+1, . . . , zm → v2

z1, . . . , zk, zk+1, . . . zm → x
(E),

248 M. Kanovich et al.

then we have z1, . . . , zk → v1, zk+1, . . . , zm → v2, and (x ⇒ v1v2) ∈ P . By
induction hypothesis, v1 ⇒∗

G z1 . . . zk and v2 ⇒∗
G zk . . . zn, therefore we get

x ⇒G v1v2 ⇒∗
G z1 . . . zkzk+1 . . . zm.

If the last rule in the derivation is (7p), then we get z1, . . . , zm, fp → cp.
Trace the type in the succedent. Since the antecedent doesn’t contain cp, bp, or
ap, sequents with these types in the succedent could not appear as axioms, and
the only ways to derive such sequents are represented by the following schema
(the arrows go from goal to premises):

�� cp

(6p)

��

(5′
p)

�� bp

(4′
p)

��

(3′
p)

�� ap

(2′
p)

��

(1′
p)

�� x

Therefore, the sequent z1, . . . , zm, fp → cp is derived in the following way:
several (possibly zero) applications of (6p), then (5′

p), then several (4′
p), then

several (2′
p), then (1′

p). Finally, on top of this last (1′
p) rule we again get a

sequent with x in the succedent. The whole derivation has the following form.
Here ∗ means several consecutive applications of the same rule, and Δ1, . . . ,Δn =
z1, . . . , zm.

Δ1 → y1 . . . Δk → w . . . Δn → yn

y1, . . . , yk−1, v1, v2, yk+1, . . . , yn → x

ep, y1, . . . , yk−1, v1, v2, yk+1, . . . , yn → ap
(1′

p)

ỹp
k+1, . . . , ỹp

n, ep, y1, . . . , yk−1, v1, v2 → ap
(2′

p)
∗

w̃p, ỹp
k+1, . . . , ỹp

n, ep, y1, . . . , yk−1 → bp
(3′

p)

ỹp
1 , . . . , ỹp

k−1, w̃p, ỹp
k+1, . . . , ỹp

n, ep → bp
(4′

p)
∗

fp, ỹp
1 , . . . , ỹp

k−1, w̃p, ỹp
k+1, . . . , ỹp

n → cp
(5′

p)

Δ1, . . . , Δn, fp → cp
(6p)

∗

Δ1, . . . , Δn → x
(7p)

Here rule (1′
p) introduces ep, (2′

p) moves ep to the left and marks yi as ỹp
i ,

(3′
p) actually applies the production (v1v2 ⇒ w), which is possible, since v1, v2

is now on the edge of the antecedent, (4′
p) continues the movement, and finally

(5′
p), (6p), and (7p) move the letters backwards, unmark them and return the

antecedent to x.
By induction hypothesis, y1 ⇒∗

G Δ1, . . . , yk−1 ⇒∗
G Δk−1, w ⇒∗

G Δk,
yk+1 ⇒∗

G Δk+1, . . . , yn ⇒∗
G Δn, and x ⇒∗

G y1 . . . yk−1v1v2yk+1 . . . yn. By appli-
cation of v1v2 ⇒ w we get x ⇒∗

G Δ1 . . . Δn.
We notice that the first type of productions of the binary grammar is han-

dled much easier than the second one. This is due to the fact that in the first
case we simulate standard context-free derivation, while in the second case the
production is not context-free and even not context-sensitive.

⇒ Proceed by induction on ⇒∗
G. For the base case (x ⇒∗

G x) the corre-
sponding sequent (x → x) is an axiom.

If the last production is w ⇒ v1v2:

x ⇒∗
G z1 . . . zk−1wzk+1 . . . zm ⇒G z1 . . . zk−1v1v2zk+1 . . . zm,

Undecidability of the Lambek Calculus with a Relevant Modality 249

then by induction hypothesis z1, . . . , zk−1, w, zk+1, . . . , zm → x is derivable
in L∗ + RM . Also v1, v2 → w is derivable by (B1), and by (cut) we obtain
z1, . . . , zk−1, v1, v2, zk+1, . . . , zm → x. The cut rule is admissible in L∗ + R by
Theorem 2.

For the v1v2 ⇒ w case, i.e., the last production is applied like this:

x ⇒∗
G z1 . . . zk−1v1v2zk+1 . . . zm ⇒G z1 . . . zk−1wzk+1 . . . zm,

the derivation is as follows (here p = 〈(v1v2 ⇒ w), x〉):

z1 → z1 . . . w → w . . . zm → zm

z1, . . . , zk−1, v1, v2, zk+1, . . . , zm → x

ep, z1, . . . , zk−1, v1, v2, zk+1, . . . , zm → ap
(1′

p)

z̃p
k+1, . . . , z̃p

m, ep, z1, . . . , zk−1, v1, v2 → ap
(2′

p)
∗

w̃p, z̃p
k+1, . . . , z̃p

m, ep, z1, . . . , zk−1 → bp
(3′

p)

z̃p
1 , . . . , z̃p

k−1, w̃p, z̃p
k+1, . . . , z̃p

m, ep → bp
(4′

p)
∗

fp, z̃p
1 , . . . , z̃p

k−1, w̃p, z̃p
k+1, . . . , z̃p

m → cp
(5′

p)

z1, . . . , zk−1, w, zk+1, . . . , zm, fp → cp
(6p)

∗

z1, . . . , zk−1, w, zk+1, . . . , zm → x
(7p)

The sequent on the top is derivable by inductive hypothesis. ��
Since there exist undecidable recursively enumerable languages, Theorem3

now yields the following result:

Theorem 4. There exists a finite set of Buszkowski’s rules R0 such that the
derivability problem for L∗ + R0 is undecidable.

Note that the \ connective is not used in the construction, so we’ve actually
obtained undecidability for L∗

/ + R0.

4 Undecidability of !L*

We prove undecidability of !L∗ by encoding L∗ + R derivations in this calculus.
In order to do that, we first prove a technical proposition.

If R is a set of Buszkowski’s rules, let

GR =
{

(r / q) / p | Π1→p Π2→q
Π1,Π2→r ∈ R

}

∪
{

r /(p / q) | Π,q→p
Π→r ∈ R

}

.

If B = {B1, . . . , Bn} is a finite set of formulae, let !ΓB = !B1, . . . , !Bn. (The
order of the elements in B doesn’t matter, since !ΓB will appear in left-hand sides
of !L∗ sequents, and in !L∗ we have the (perm1,2) rules.)

Theorem 5. L∗ + R � Π → A if and only if there exists B ⊆ GR such that
!L∗ � !ΓB,Π → A.

250 M. Kanovich et al.

In this theorem a finite theory (R) that extends the basic calculus (L∗) gets
embedded into the formula (more precisely, the sequent Π → A) being derived.
In linear logic this is possible with the help of the exponential modality (!).
However, our version of ! doesn’t enjoy the weakening rule, therefore we cannot
always take B = GR, as one usually could expect. Generally, with B = GR the
“only if” statement is false. For example, !(r /(p / q)), s → s is not derivable in
!L∗, but s → s is indeed derivable in L∗ + R for any R. This happens because
this particular Buszkowski’s rule, encoded by r /(p / q), is not relevant to s → s.

Proof. ⇒ Proceed by induction.
If Π → A is an axiom (A → A), just take B = ∅.
If A = B / C, and Π → A is obtained using the (→ /) rule from Π,C → B,

then take the same B and apply the same rule:
!ΓB,Π,C → B

!ΓB,Π → B / C

If Π = Φ1, B /C, Ψ, Φ2, and Π → A is obtained by (/ →) from Ψ → C
and Φ1, B, Φ2 → A, then by induction hypothesis !L∗ � !ΓB1 , Ψ → C and !L∗ �
!ΓB2 , Φ1, B, Φ2 → A for some B1,B2 ⊆ GA. Let B = B1∪B2. Then for !ΓB,Π → A
we have the following derivation in !L∗, where ∗ means several applications of
the rules in any order.

!ΓB1 , Ψ → C !ΓB2 , Φ1, B, Φ2 → A

!ΓB2 , Φ1, B /C, !ΓB1 , Ψ, Φ2 → A
(/ →)

!ΓB1∪B2 , Φ1, B /C, Ψ, Φ2 → A
(contr,perm)∗

Finally, Π → A can be obtained by application of Buszkowski’s rules (B1)
or (B2). In the first case, A = r, Π = Π1,Π2, and both Π1 → p and Π2 → q are
derivable in L∗ +R. Thus by induction hypothesis we get !L∗ � !ΓB1 ,Π1 → p and
!L∗ � !ΓB2 ,Π2 → q for some B1,B2 ⊆ GR. Moreover, (r / q) / p ∈ GR. Now take
B = B1 ∪B2 ∪{(r / q) / p} and enjoy the following derivation for !ΓB,Π1,Π2 → r
in !L∗:

!ΓB1 ,Π1 → p

!ΓB2 ,Π2 → q r → r

r / q, !ΓB2 ,Π2 → r
(/ →)

(r / q) / p, !ΓB1 ,Π1, !ΓB2 ,Π2 → r
(/ →)

!((r / q) / p), !ΓB1 ,Π1, !ΓB2 ,Π2 → r
(! →)

!ΓB,Π1,Π2 → r
(contr,perm)∗

In the (B2) case, A = r, and we have !ΓB′ ,Π, q → p in the induction hypoth-
esis for some B′ ⊆ GR. Let B = B′ ∪{r /(p / q)} (recall that r /(p / q) ∈ GR), and
proceed like this:

!ΓB′ ,Π, q → p

!ΓB′ ,Π → p / q
(→ /)

r → r

r /(p / q), !ΓB′ ,Π → r
(/ →)

!(r /(p / q)), !ΓB′ ,Π → r
(! →)

!ΓB,Π → r
(contr,perm)∗

Undecidability of the Lambek Calculus with a Relevant Modality 251

⇐ Recall that if B = {B1, . . . , Bn} is a finite set of formulae, then !ΓB =
!B1, . . . , !Bn (as stated above, the order of the elements in B doesn’t matter due
to the (perm1,2) rules). For deriving sequents of the form !ΓB,Π → C, where Π,
C, and B do not contain ! and \, one can use a simpler calculus than !L∗:

p → p

!ΓB,Π,B → A

!ΓB,Π → A / B
(→ /)

!ΓB1 ,Π → B !ΓB2 ,Δ1, A,Δ2 → C

!ΓB1∪B2 ,Δ1, A /B,Π,Δ2 → C
(/ →)

!ΓB,Δ1, A,Δ2 → C

!ΓB∪{A},Δ1,Δ2 → C
(! →)

Moreover, the (! →) rule is interchangeable with the others in the following
ways:

!ΓB,Δ1, C,Δ2, B → A

!ΓB,Δ1, C,Δ2 → A/B
(→ /)

!ΓB∪{C},Δ1,Δ2 → A/B
(! →) �

!ΓB,Δ1, C,Δ2, B → A

!ΓB∪{C},Δ1,Δ2, B → A
(! →)

!ΓB∪{C},Δ1,Δ2 → A / B
(→ /)

!ΓB1 ,Π → B !ΓB2 ,Δ1, A,Δ′
2,D,Δ′′

2 → C

!ΓB1∪B2 ,Δ1, A /B,Π,Δ′
2,D,Δ′′

2 → C
(/ →)

!ΓB1∪B2∪{D},Δ1, A /B,Π,Δ′
2,Δ

′′
2 → C

(! →)

�

!ΓB1 ,Π → B

!ΓB2 ,Δ1, A,Δ′
2,D,Δ′′

2 → C

!ΓB2∪{D},Δ1, A,Δ′
2,Δ

′′
2 → C

(! →)

!ΓB1∪B2∪{D},Δ1, A /B,Π,Δ′
2,Δ

′′
2 → C

(/ →)

And the same, if D appears inside Δ1 or Π. Finally, consecutive applications of
(! →) are always interchangeable.

After applying these transformations, we achieve a derivation where (! →) is
applied immediately after applying (/ →) with the same active type (the other
case, when it is applied after the axiom to p, is impossible, since B is always
a subset of GR, and the latter doesn’t contain sole variables). In other words,
applications of (! →) appear only in the following two situations:

!ΓB1 ,Π → p !ΓB2 ,Δ1, r / q,Δ2 → A

!ΓB1∪B2 ,Δ1, (r / q) / p,Π,Δ2 → A
(/ →)

!ΓB1∪B2∪{(r / q) / p)},Δ1,Π,Δ2 → A
(! →)

and
!ΓB1 ,Π → p / q !ΓB2 ,Δ1, r,Δ2 → A

!ΓB1∪B2 ,Δ1, r /(p / q),Π,Δ2 → A
(/ →)

!ΓB1∪B2∪{r /(p / q)},Δ1,Π,Δ2 → A
(! →)

252 M. Kanovich et al.

Now we prove the statement !L∗ � !ΓB,Π → A (where B ⊆ GR) ⇒ L∗ + R �
Π → A by induction on the above canonical derivation. For the case of axiom
or applications of rules (→ /) and (/ →) we just apply the same rules in L∗ +R,
so the only interesting case is (! →). Consider the two possible situations.

In the (r / q) / p case, by induction hypothesis we get L∗ + R � Π → p and
L∗ + R � Δ1, r / q,Δ2 → A, and then we develop the following derivation in
L∗ + R (recall that (cut) is admissible there):

Π → p

p, q → r

p → r / q
(→ /)

Δ1, r / q,Δ2 → A

Δ1, p,Δ2 → A
(cut)

Δ1,Π,Δ2 → A
(cut)

In the case of r /(p / q), the derivation looks like this:

Π → p / q

p / q → r Δ1, r,Δ2 → A

Δ1, p / q,Δ2 → A
(cut)

Δ1,Π,Δ2 → A
(cut)

This completes the proof of Theorem 5. ��
Now we can return to our main claim.

Proof (of Theorem1). Take R0 from Theorem 4 and suppose that !L∗ is decid-
able. Then we can present an algorithm that solves the derivability problem for
L∗ + R0. Namely, for a sequent Π → A we search through all subsets B ⊆ GR
(and there is a finite number of them) and test derivability of !ΓB,Π → A in
!L∗. By Theorem 5, Π → A is derivable in L∗ + R0 if and only if at least one of
these tests succeeds. This contradicts Theorem 4. Therefore !L∗ is undecidable.

Since we never used \ in the construction, we get undecidability for !L∗
/. ��

This proof of Theorem 1 is in the spirit of our previous work [7]. The sig-
nificant difference between this paper and [7] is that here the modality does
not satisfy the weakening rule and the system !L∗ doesn’t obey any version of
Lambek’s restriction (i.e., the antecedents are allowed to be empty). Due to the
lack of the weakening rule, in Theorem5 it is not sufficient to check derivability
only for B = GR, and therefore Theorem5 is formulated in the relevant logic
style. We also had to open up and reassemble Buszkowski’s proof from [2,3] to
make it work without Lambek’s restriction (in L∗).

5 A Decidable Fragment of !L*

Undecidability of !L∗ is somewhat unfortunate, because this calculus is ligu-
istically motivated (see Sect. 2). However, in our examples ! was applied only
to primitive types (np). If we consider only sequents with this restriction, the

Undecidability of the Lambek Calculus with a Relevant Modality 253

situation is different: the derivability problem becomes decidable. Moreover, it
belongs to NP.

Let’s call the size of a formula A (denoted by |A|) the total number of variable
and connective occurrences in A. More formally, |A| is defined recursively: |p| = 1
for p ∈ Var, |A \ B| = |B / A| = |A|+ |B|+1, |!A| = |A|+1. The size of a sequent
A1, . . . , An → B is |A1| + . . . + |An| + |B|.

In the pure Lambek calculus, the size of any derivation is necessarily bounded
by the size of the goal sequent. In our case, a sequent could have derivations of
arbitrary size due to uncontrolled application of permutation rules: two consec-
utive applications of (perm1) and (perm2) (with the same formula at the same
places) do nothing with the sequent, but increase the derivation size. Neverthe-
less, the following lemma shows that every sequent has a derivation of quadratic
size.

Lemma 1. If the sequent Π → C is derivable in !L∗ and ! in this sequent is
applied only to variables, then this sequent has a derivation of size less than
12n2 + 3n, where n is the size of Π → C.

Recall that (cut) is not included in the system, all derivations are cut-free.

Proof. We represent the derivation of Π → C as a tree. The leaves of the tree
are instances of axioms, and the inner nodes correspond to applications of rules.
Rules (/ →) and (\ →) form branching points of the tree. The number of leaves
is equal to the number of branching points plus one.

Let’s call (perm1,2) and (contr) structural rules; other rules are logical ones.
Each logical rule introduces exactly one connective into the goal sequent

Π → C. The key note here is the fact that, since only variables can appear
under !, the contraction rule (contr) cannot merge two connectives. Therefore,
since the total number of connectives is less than n, the number of logical rule
applications is also less than n.

Each branching point corresponds to an application of a logical rule, whence
the number of branching points is also less than n. Therefore, in the tree there
are no more than n axiom leaves, and each axiom introduces two variable occur-
rences. Let’s trace these occurrences down the tree. Each occurrence either traces
to an occurrence in the goal sequent, or disappears (gets merged with another
occurrence) in an application of (contr). Thus, the number of (contr) applica-
tions is less than the total number of variable occurrences in axiom leaves, and,
therefore, less then 2n.

Finally, we limit the number of (perm1,2) applications. As said above, a
block of consecutive applications of (perm1,2) can include an arbitrarily large
number of (perm1,2) applications. However, we can always reduce it. Each block
of consecutive permutations has the following form:

Δ1, !A1,Δ2, !A2,Δ3, . . . ,Δk, !Ak,Δk+1 → B

Δ′
1, !Ai1 ,Δ

′
2, !Ai2 ,Δ

′
3, . . . ,Δ

′
k, !Aik ,Δ′

k+1 → B
(perm1,2)∗,

where the sequences Δ1, . . . ,Δk+1 and Δ′
1, . . . ,Δ

′
k+1 coincide and {i1, . . . , ik} =

{1, . . . , k}.

254 M. Kanovich et al.

The number of formulae in the left-hand side of the sequent here is bounded
by 3n (it was less than n in the goal sequent Π → C, and, in the worst case, it
was increased by less than 2n applications of (contr)). Therefore, k < 3n. Now we
replace this block with a block of k permutations: each !Ai is moved to its place
by one permutation. Thus, in each block we have less than 3n permutations.

Each (perm1,2) block is preceded by an application of a rule different from
(perm1,2) or an axiom leaf. Thus the number of such blocks is bounded by 4n
(n for logical rules, 2n for contractions, n for axioms).

Therefore, the number of (perm1,2) applications is less than 12n2, and the
total size of the derivation is less than 12n2 + 3n. ��

This lemma yields the following decidability result:

Theorem 6. The derivability problem in !L∗ for sequents in which ! is applied
only to variables is decidable and belongs to the NP class (i.e., can be resolved
by a nondeterministic polynomial algorithm).

6 Future Work

Since the Lambek calculus itself is NP-complete [14,17], we get NP-completeness
of !L∗ in the restricted case, where ! can be applied only to variables. On the
other hand, it is known that the derivability problem for the fragment of the pure
Lambek calculus with only one division operation is decidable in polynomial
time [15,16]. Therefore, the complexity for the restricted case of !L∗

/ (where
we have only one division, and ! can be applied only to variables) yet should
be studied. It belongs to NP (by our Theorem6), and the question is whether
this fragment is poly-time decidable or NP-hard. Recall that in the unrestricted
case we’ve proved undecidability not only for the whole !L∗, but also for its
one-division fragment, !L∗

/.
Another interesting question is whether our decidability result (Theorem6)

can be extended to the situation where ! can be applied to formulae of Horn
depth 1, i.e., formulae, in which all denominators of / and \ are primitive types,
for instance, (p \(q / r)) / s. Notice that if we allow formulae of Horn depth 2 (of
the form r /(p / q)) under !, then we immediately get undecidability (see Sect. 4).

Our encoding in Theorem5 actually shows that grammars based on !L∗

can generate arbitrary recursively enumerable languages. On the other hand,
pure Lambek grammars generate precisely context-free languages [13]. More-
over, this holds also in the so-called strong sense, i.e., context-free grammars and
Lambek grammars can assign the same Montague-style semantic values to the
words derived [6,8]. The question is what class of grammars in the Chomsky
hierarchy corresponds to grammars based on the fragment of !L∗, restricted as
in Theorem 6, and could one add Montague-style semantics to such grammars.

Acknowledgements. Stepan Kuznetsov’s research was supported by the Russian
Foundation for Basic Research (grants 15-01-09218-a and 14-01-00127-a) and by the

Undecidability of the Lambek Calculus with a Relevant Modality 255

Presidential Council for Support of Leading Scientific Schools (grant NŠ-9091.2016.1).
Max Kanovich’s research was partially supported by EPSRC. Andre Scedrov’s research
was partially supported by ONR.

This research was performed in part during visits of Stepan Kuznetsov and
Max Kanovich to the University of Pennsylvania. We greatly appreciate support of
the Mathematics Department of the University. A part of the work was also done dur-
ing the stay of Andre Scedrov at the National Research University Higher School of
Economics. We would like to thank S.O. Kuznetsov and I.A. Makarov for hosting there.

The paper was prepared in part within the framework of the Basic Research Pro-
gram at the National Research University Higher School of Economics (HSE) and
was partially supported within the framework of a subsidy by the Russian Academic
Excellence Project ‘5–100’.

We are indepted to the participants of the research seminars “Logical Prob-
lems in Computer Science” and “Algorithmic Problems in Algebra and Logic”
at Moscow (Lomonosov) University, in particular, S.I. Adian, L.D. Beklemishev,
V.N. Krupski, I.I. Osipov, F.N. Pakhomov, M.R. Pentus, D.S. Shamkanov,
I.B. Shapirovsky, V.B. Shehtman, A.A. Sorokin, T.L. Yavorskaya, and others for fruitful
discussions and suggestions that allowed us to improve our presentation significantly.

References

1. Abrusci, V.M.: A comparison between Lambek syntactic calculus and intuitionistic
linear propositional logic. Zeitschr. für math. Logik und Grundl. der Math. (Math.
Logic Q.) 36, 11–15 (1990)

2. Buszkowski, W.: Some decision problems in the theory of syntactic categories.
Zeitschr. für math. Logik und Grundl. der Math. (Math. Logic Q.) 28, 539–548
(1982)

3. Buszkowski, W.: Lambek calculus with nonlogical axioms. In: Language and Gram-
mar. CSLI Lecture Notes, vol. 168, pp. 77–93 (2005)

4. Carpenter, B.: Type-Logical Semantics. MIT Press, Cambridge (1998)
5. Girard, J.-Y.: Linear logic. Theoret. Comput. Sci. 50(1), 1–102 (1987)
6. Kanazawa, M., Salvati, S.: The string-meaning relations definable by Lambek

grammars and context-free grammars. In: Morrill, G., Nederhof, M.-J. (eds.) For-
mal Grammar 2012 and 2013. LNCS, vol. 8036, pp. 191–208. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-39998-5 12

7. Kanovich, M., Kuznetsov, S., Scedrov, A.: On Lambek’s restriction in the
presence of exponential modalities. In: Artemov, S., Nerode, A. (eds.) LFCS
2016. LNCS, vol. 9537, pp. 146–158. Springer, Heidelberg (2016). doi:10.1007/
978-3-319-27683-0 11

8. Kuznetsov, S.L.: On translating context-free grammars into Lambek grammars.
Proc. Steklov Inst. Math. 290, 63–69 (2015)

9. Lambek, J.: The mathematics of sentence structure. Am. Math. Mon. 65(3), 154–
170 (1958)

10. Lambek, J.: On the calculus of syntactic types. In: Proceedings of Symposia in
Applied Mathematics: Structure of Language and its Mathematical Aspects, vol.
12, pp. 166–178. AMS (1961)

11. Lincoln, P., Mitchell, J., Scedrov, A., Shankar, N.: Decision problems for proposi-
tional linear logic. Ann. Pure Appl. Logic 56(1–3), 239–311 (1992)

http://dx.doi.org/10.1007/978-3-642-39998-5_12
http://dx.doi.org/10.1007/978-3-319-27683-0_11
http://dx.doi.org/10.1007/978-3-319-27683-0_11

256 M. Kanovich et al.

12. Morrill, G., Valent́ın, O.: Computational coverage of TLG: nonlinearity. In: Pro-
ceedings of NLCS 2015. EPiC Series, vol. 32, pp. 51–63 (2015)

13. Pentus, M.: Product-free Lambek calculus and context-free grammars. J. Symbolic
Logic 62(2), 648–660 (1997)

14. Pentus, M.: Lambek calculus is NP-complete. Theor. Comput. Sci. 357, 186–201
(2006)

15. Pentus, M.: Complexity of the Lambek calculus and its fragments. Adv. Modal
Logic 8, 310–329 (2010). College Publications

16. Savateev, Y.: Lambek grammars with one division are decidable in polynomial
time. In: Hirsch, E.A., Razborov, A.A., Semenov, A., Slissenko, A. (eds.) Com-
puter Science – Theory and Applications. LNCS, vol. 5010, pp. 273–282. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-79709-8 28

17. Savateev, Y.: Product-free Lambek calculus is NP-complete. In: Artemov, S.,
Nerode, A. (eds.) LFCS 2009. LNCS, vol. 5407, pp. 380–394. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-92687-0 26

18. Yetter, D.N.: Quantales and (noncommutative) linear logic. J. Symbolic Logic
55(1), 41–64 (1990)

http://dx.doi.org/10.1007/978-3-540-79709-8_28
http://dx.doi.org/10.1007/978-3-540-92687-0_26

Introducing a Calculus of Effects and Handlers
for Natural Language Semantics

Jirka Marš́ık(B) and Maxime Amblard

LORIA, UMR 7503, Université de Lorraine, CNRS, Inria,
Campus Scientifique, 54506 Vandœuvre-lés-Nancy, France

{jirka.marsik,maxime.amblard}@loria.fr

Abstract. In compositional model-theoretic semantics, researchers
assemble truth-conditions or other kinds of denotations using the lambda
calculus. It was previously observed [26] that the lambda terms and/or
the denotations studied tend to follow the same pattern: they are
instances of a monad. In this paper, we present an extension of the
simply-typed lambda calculus that exploits this uniformity using the
recently discovered technique of effect handlers [22]. We prove that our
calculus exhibits some of the key formal properties of the lambda calcu-
lus and we use it to construct a modular semantics for a small fragment
that involves multiple distinct semantic phenomena.

Keywords: Compositionality · Side effects · Monads · Handlers ·
Deixis · Conventional implicature

1 Introduction

The prevailing methodology of formal semantics is compositionality in the sense
of Frege: denotations of complex phrases are functions of the denotations of
their immediate constituents. However, several phenomena have been identified
that challenge this notion of compositionality. Examples include anaphora, pre-
supposition, quantification, deixis and conventional implicature. In all of these
examples, simple models of denotation (i.e. noun phrases are individuals, sen-
tences are truth-values) run into complications as the denotations can depend
on external values (anaphora, deixis) or on something which is not an immediate
constituent (presupposition, quantification, conventional implicature).

Among the solutions to these challenges, we find (at least) two types of solu-
tions. First, we have those that relax the condition of compositionality. Notably,
the denotation of a complex phrase is no longer a function per se of the denota-
tions of its immediate subconstituents. Rather, it is some other formally defined
process.1 Examples of this approach include:

1 This kind of distinction is the same distinction as the one between a mathematical
function and a function in a programming language, which might have all kinds of
side effects and therefore not be an actual function.

c© Springer-Verlag Berlin Heidelberg 2016
A. Foret et al. (Eds.): FG 2015/2016, LNCS 9804, pp. 257–272, 2016.
DOI: 10.1007/978-3-662-53042-9 15

258 J. Marš́ık and M. Amblard

– the incremental algorithm used to build discourse representation structures in
DRT, as presented in [12]

– the λμ calculus, used in [6] to analyze quantification, since, due to the lack of
confluence, function terms do not denote functions over simple denotations

– the use of exceptions and exception handlers in [18] to model presuppositions
in an otherwise compositional framework

– the parsetree interpretation step in the logic of conventional implicatures
of [23] that builds the denotation of a sentence by extracting implicatures
from the denotations of its subparts (including the non-immediate ones)

The other approach is to enrich the denotations so that they are parame-
terized by the external information they need to obtain and contain whatever
internal information they need to provide to their superconstituents. Here are
some examples of this style:

– any kind of semantic indices (e.g. the speaker and addressee for deixis, the
current world for modality), since they amount to saying that a phrase denotes
an indexed set of simpler meanings

– the continuized semantics for quantification [1] in which denotations are func-
tions of their own continuations

• and more generally, any semantics using type raising or generalized quan-
tifiers for noun phrase denotations

– the dynamic denotations of [7] that are functions of the common ground and
their continuation

– compositional event semantics, such as the one in [25], that shift the denota-
tions of sentences from truth-values to predicates on events

We want to find a common language in which we could express the above tech-
niques. Our inspiration comes from computer science. There, a concept known
as monad has been used:

– in denotational semantics to give the domain of interpretation for program-
ming languages that involve side effects [21].

– in functional programming to emulate programming with side effects via term-
level encodings of effectful programs [29].

These two principal applications of monads align with the two approaches we
have seen above. The one where we change our calculus so it no longer defines
pure functions (e.g. is non-deterministic, stateful or throws exceptions) and the
one where we use a pure calculus to manipulate terms (denotations) that encode
some interaction (e.g. dynamicity, continuations or event predication).

Monad is a term from category-theory. Its meaning is relative to a category.
For us, this will always be the category whose objects are types and whose arrows
are functions between different types. A monad is formed by a functor and a pair
of natural transformations that satisfy certain laws. In our case, this means that
a monad is some type constructor (the functor part) and some combinators (the
natural transformations) that follow some basic laws. To give an example of this,

Introducing a Calculus of Effects and Handlers 259

we can think of the functor T (α) = (α → o) → o together with combinators
such as the type raising η(x) = λP.P x as a monad of quantification.

The relationship between side effects in functional programming and com-
putational semantics has been developed in several works [27,28],2 stretching as
far back as 1977 [10]. The usefulness of monads in particular has been discov-
ered by Shan in 2002 [26]. Since then, the problem that remained was how to
compose several different monads in a single solution. Charlow used the popular
method of monad morphisms3 to combine several monads in his dissertation [4].
Giorgolo and Asudeh have used distributive laws to combine monads [8], while
Kiselyov has eschewed monads altogether in favor of applicative functors which
enjoy easy composability [13].

Our approach follows the recent trend in adopting effects and handlers to
combine side effects [2,11] and to encode effectful programs in pure functional
programming languages [3,14].

The idea is that we can represent each of the relevant monads using an alge-
bra. We can then combine the signatures of the algebras by taking a disjoint
union. The free algebra of the resulting signature will serve as a universal repre-
sentation format for the set of all terms built from any of the source algebras and
closed under substitution. Then, we will build modular interpreters that will give
meanings to the operators of the algebras in terms of individuals, truth-values
and functions.

In Sect. 2, we will introduce a formal calculus for working with the algebraic
terms that we will use in our linguistic denotations. In Sect. 3, we will incremen-
tally build up a fragment involving several of the linguistic phenomena and see
the calculus in action. Before we conclude in Sect. 5, we will also discuss some
of the formal properties of the calculus in Sect. 4.

2 Definition of the Calculus

Our calculus is an extension of the simply-typed lambda calculus (STLC). We
add terms of a free algebra into our language and a notation for writing han-
dlers, composable interpreters of these terms. An operator of the free algebra
corresponds to a particular interaction that a piece of natural language can have
with its context (e.g. a deictic expression might request the speaker’s identity
using some operator speaker in order to find its denotation). A handler gives
an interpretation to every occurrence of an operator within a term (e.g. direct
speech introduces a handler for the operator speaker that essentially rebinds
the current speaker to some other entity).

Having sketched the general idea behind our calculus, we will now turn our
attention to the specifics. We start by defining the syntactic constructions used
to build the terms of our language.
2 Side effects are to programming languages what pragmatics are to natural languages:

they both study how expressions interact with the worlds of their users. It might
then come as no surprise that phenomena such as anaphora, presupposition, deixis
and conventional implicature yield a monadic description.

3 Also known as monad transformers in functional programming.

260 J. Marš́ık and M. Amblard

2.1 Terms

First off, let X be a set of variables, Σ a typed signature and E a set of
operation symbols. In the definition below, we will let M , N . . . range over
terms, x, y, z. . . range over variables from X , c, d. . . range over the names of con-
stants from Σ and op, opi. . . range over the operation symbols in E .

The terms of our language are composed of the following:

M,N :: = λx.M [abstraction]
| M N [application]
| x [variable]
| c [constant]
| opMp (λx.Mc) [operation]
| η M [injection]
| � op1:M1, . . . , opn:Mn, η:Mη �N [handler]
|

−◦ M [extraction]
| C M [exchange]

The first four constructions — abstraction, application, variables and con-
stants — come directly from STLC with constants.

The next four deal with the algebraic expressions used to encode computa-
tions. Let us sketch the behaviors of these four kinds of expressions.

The operation (op) and injection (η) expressions will serve as the construc-
tors for our algebraic expressions. Algebraic expressions are usually formed by
operation symbols and then variables as atoms. Instead of variables, our alge-
braic expressions use terms from our calculus for atoms. The η constructor can
thus take an ordinary term from our calculus and make it an atomic algebraic
expression. The operation symbols op are then the operations of the algebra.

The other three expression types correspond to functions over algebraic
expressions.

– The most useful is the handler � �.4 It is an iterator for the type of algebraic
expressions. The terms M1,. . . ,Mn and Mη in � op1:M1, . . . , opn:Mn, η:Mη �
are the clauses for the constructors op1,. . . ,opn and η, respectively. We will
use handlers to define interpretations of operation symbols in algebraic expres-
sions.

– The cherry

−◦ operator allows us to extract terms out of algebraic expressions.
If an algebraic expression is of the form η M , applying

−◦ to it will yield M .
– The exchange operator C permits a kind of commutation between the λ-binder

and the operation symbols. We will see its use later.

4 Pronounced “banana”. See [20] for the introduction of banana brackets.

Introducing a Calculus of Effects and Handlers 261

2.2 Types

We now give a syntax for the types of our calculus along with a typing relation.
In the grammar below, α, β, γ. . . range over types, ν ranges over atomic types
from some set T and E, E′. . . range over effect signatures (introduced below).

The types of our language consist of:

α, β, γ :: = α → β [function]
| ν [atom]
| FE(α) [computation]

The only novelty here is the FE(α) computation type. This is the type of
algebraic expressions whose atoms are terms of type α and whose operation
symbols come from the effect signature E. We call them computation types and
we call terms of these types computations because our algebraic expressions will
always represent some kind of program with effects.

Effect signatures are similar to typing contexts. They are partial mappings
from the set of operation symbols E to pairs of types. We will write the elements
of effect signatures the following way — op : α � β ∈ E means that E maps
op to the pair of types α and β.5 When dealing with effect signatures, we will
often make use of the disjoint union operator �. The term E1 � E2 serves as
a constraint demanding that the domains of E1 and E2 be disjoint and at the
same time it denotes the effect signature that is the union of E1 and E2.

The typing rules are presented in Fig. 1.
The typing rules mirror the syntax of terms. Again, the first four rules come

from STLC. The [η] and [

−◦] rules are self-explanatory and so we will focus on
the [op], [� �] and [C] rules.

[op] To use an operation op : α � β, we provide the input parameter Mp : α
and a continuation λx.Mc : β → FE(γ), which expects the output of type β.
The resulting term has the same type as the body of the continuation, FE(γ).

Before, we have spoken of terms of type FE(γ) as of algebraic expressions
generated by the terms of type γ and the operators in the effect signature E.
However, having seen the typing rule for operation terms, it might not be obvi-
ous how such a term represents an algebraic expression. Traditionally, algebraic
signatures map operation symbols to arities, which are natural numbers. Our
effect signatures map each operation symbol to a pair of types α � β.

– We can explain α by analogy to the single-sorted algebra of vector spaces. In
a single-sorted vector space algebra, scalar multiplication is viewed as a unary
operation parameterized by some scalar. So technically, there is a different
unary operation for each scalar. All of our operations are similarly parame-
terized and α is the type of that parameter.

5 The two types α and β are to be seen as the operation’s input and output types,
respectively.

262 J. Marš́ık and M. Amblard

Fig. 1. The typing rules for our calculus.

– The type β expresses the arity of the operator. When we say that an operator
has arity β, where β is a type, we mean that it takes one operand for every
value of β [24]. We can also think of the operator as taking one operand
containing x : β as a free variable.

We can look at the algebraic expression opMp (λx.Mc) as a description of a
program that:

– interacts with its context by some operator called op
– to which it provides the input Mp

– and from which it expects to receive an output of type β
– which it will then bind as the variable x and continue as the program described

by Mc.

[� �]. The banana brackets describe iterators/catamorphisms.6 In the typing rule,
E is the input’s signature, E′ is the output’s signature, γ is the input’s atom type
and δ is the output’s atom type. E is decomposed into the operations that our
iterator will actually interpret, the other operations form a residual signature
Ef . The output signature will then still contain the uninterpreted operations Ef

combined with any operations E′′ that our interpretation might introduce.

6 These are similar to recursors/paramorphisms. See [20] for the difference. Catamor-
phisms are also known as folds and the common higher-order function fold found in
functional programming languages is actually the iterator/catamorphism for lists.

Introducing a Calculus of Effects and Handlers 263

[C]. We said before that the C function will let us commute λ and operations.
Here we see that, on the type level, this corresponds to commuting the FE()
and the α → type constructors.

2.3 Reduction Rules

We will now finally give a semantics to our calculus. The semantics will be
given in the form of a reduction relation on terms. Even though the point of the
calculus is to talk about effects, the reduction semantics will not be based on
any fixed evaluation order; any subterm that is a redex can be reduced in any
context. The reduction rules are given in Fig. 2.

Fig. 2. The reduction rules of our calculus.

We have the β and η rules, which, by no coincidence, are the same rules as
the ones found in STLC. The rest are function definitions for � �,

−◦ and C.
By looking at the definition of � �, we see that it is an iterator. It replaces

every occurrence of the constructors opj and η with Mj and Mη, respectively.
The C function recursively swaps C (λx.) with opMp (λy.) using the Cop rule.

When C finally meets the η constructor, it swaps (λx.) with η and terminates.

264 J. Marš́ık and M. Amblard

Note that the constraint x /∈ FV(Mp) in rule Cop cannot be dismissed by renam-
ing of bound variables. If the parameter Mp contains a free occurrence of x, the
evaluation of C will get stuck. C is thus a partial function: it is only applicable
when none of the operations being commuted with the λ-binder actually depend
on the bound variable.

2.4 Common Combinators

When demonstrating the calculus in the next section, the following combinators
will be helpful. First, we define a sequencing operator. The operator �=, called
bind, replaces all the α-typed atoms of a FE(α)-typed expression with FE(β)-
typed expressions. More intuitively, M �= N is the program that first runs M
to get its result x and then continues as the program N x.

�= : FE(α) → (α → FE(β)) → FE(β)
M �= N = � η: N �M

The type constructor FE along with the operators η and �= form a free
monad. Using this monadic structure, we can define the following combinators
(variations on application) which we will make heavy use of in Sect. 3.

�· : FE(α → β) → α → FE(β)
F �· x = F �= (λf.η (f x))
·� : (α → β) → FE(α) → FE(β)

f ·� X = X �= (λx.η (f x))
�·� : FE(α → β) → FE(α) → FE(β)

F �·� X = F �= (λf.X �= (λx.η (f x)))

All of these operators associate to the left, so f ·� X �·� Y should be read
as (f ·� X) �·� Y .

Let ◦ : o → o → o be a binary operator on propositions. We define the
following syntax for the same operator lifted to computations of propositions.

◦ : FE(o) → FE(o) → FE(o)
M ◦ N = (λmn.m ◦ n) ·� M �·� N

3 Linguistic Phenomena as Effects

3.1 Deixis

We will now try to use this calculus to do some semantics. Here is our tectogram-
mar in an abstract categorial grammar presentation [5].

John,Mary,me : NP

loves : NP −◦ NP −◦ S

Introducing a Calculus of Effects and Handlers 265

And here is our semantics.

�John� := η j

�Mary� := ηm

�me� := speaker
 (λx.η x)
�loves� := λOS.love ·� S �·� O

In the semantics for �me�, we use the speaker operation to retrieve the
current speaker and make it available as the value of the variable x. The star (
)
passed to speaker is a dummy value of the unit type 1.

This, and all the semantics we will see in this paper, satisfies a homomorphism
condition that whenever M : τ , then �M� : �τ�. In our case, �NP � = FE(ι)
and �S� = FE(o), where ι and o are the types of individuals and propositions,
respectively. Of E, we assume that speaker : 1 � ι ∈ E, since that is the type
of speaker used in our semantics.7

With this fragment, we can give meanings to trivial sentences like:

(1) John loves Mary.
(2) Mary loves me.

whose meanings we can calculate as:

�lovesMaryJohn� � η (love jm) (1)
�lovesmeMary� � speaker
 (λx.η (lovemx)) (2)

The meaning of (1) is a proposition of type o wrapped in η, i.e. something
that we can interpret in a model. As for the meaning of (2), the speaker oper-
ator has propagated from the me lexical entry up to the meaning of the whole
sentence. We now have an algebraic expression having as operands the proposi-
tions lovemx for all possible x : ι. In order to get a single proposition which
is to be seen as the truth-conditional meaning of the sentence and which can be
evaluated in a model, we will need to fix the speaker. We will do so by defining
an interpreting handler.

withSpeaker : ι → F{speaker:1�ι}�E(α) → FE(α)
withSpeaker = λsM.� speaker: (λxk.k s) �M

Note that we omitted the η clause in the banana brackets above. In such
cases, we say there is a default clause η: (λx.η x).

withSpeaker s�lovesmeMary� � η (lovem s)

So far, we could have done the same by introducing a constant named me to
stand in for the speaker. However, since handlers are part of our object language,

7 1 is the unit type whose only element is written as �.

266 J. Marš́ık and M. Amblard

we can include them in lexical entries. With this, we can handle phenomena such
as direct (quoted) speech, that rebinds the current speaker in a certain scope.

saidis : S −◦ NP −◦ S

saidds : S −◦ NP −◦ S

Those are our new syntactic constructors: one for the indirect speech use of
said and the other for the direct speech use (their surface realizations would
differ typographically or phonologically). Let us give them some semantics.

�saidis� = λCS.say ·� S �·� C

= λCS.S �= (λs.say s ·� C)
�saidds� = λCS.S �= (λs.say s ·� (withSpeaker sC))

Here we elaborated the entry for indirect speech so it is easier to compare
with the one for direct speech, which just adds a use of the withSpeaker operator.

(3) John said Mary loves me.
(4) John said, “Mary loves me”.

�saidis (lovesmeMary) John� � speaker � (λx.η (say j (lovemx))) (3)
�saidds (lovesmeMary) John� � η (say j (lovem j)) (4)

The meaning of sentence (3) depends on the speaker (as testified by the use
of the speaker operator) whereas in (4), this dependence has been eliminated
due to the use of direct speech.

3.2 Quantification

Now we turn our attention to quantificational noun phrases.

every,a : N −◦ NP

man,woman : N

�every� := λN.scope (λc.∀ ·� (C (λx.(N �· x) → (c x)))) (λx.η x)
�a� := λN.scope (λc.∃ ·� (C (λx.(N �· x) ∧ (c x)))) (λx.η x)

�man� := ηman

�woman� := ηwoman

The entries for every and a might seem intimidating. However, if we ignore
the ·�, the C, the �· and the overline on the logical operator, we get the familiar
generalized quantifiers. These decorations are the plumbing that takes care of
the proper sequencing of effects.

Note that we make use of the C operator here. In the denotation of �a�, the
term (λx.(N �· x) ∧ (c x)) describes the property to which we want to apply
the quantifier ∃. However, this term is of type ι → FE(o). In order to apply

Introducing a Calculus of Effects and Handlers 267

∃, we need something of type ι → o. Intuitively, the effects of E correspond to
the process of interpretation, the process of arriving at some logical form of the
sentence. They should thus be independent of the particular individual that we
use as a witness for x when we try to model-check the resulting logical form.
This independence allows us use the C operator without fear of getting stuck.
Once we arrive at the type FE(ι → o), it is a simple case of using ∃ ·� to apply
the quantifier within the computation type.8,9

While the terms that use the scope operator might be complex, the handler
that interprets them is as simple as can be.

SI = λM.� scope: (λck.c k) �M

Same as with withSpeaker, SI will also be used in lexical items. By inter-
preting the scope operation in a particular place, we effectively determine the
scope of the quantifier. Hence the name of SI, short for Scope Island. If we want
to model clause boundaries as scope islands, we can do so by inserting SI in the
lexical entries of clause constructors (in our case, the verbs).

�loves� := λOS.SI (�loves�O S)
�saidis� := λCS.SI (�saidis�C S)
�saidds� := λCS.SI (�saidds�C S)

Whenever we use the semantic brackets on the right-hand side of these revised
definitions, they stand for the denotations we have assigned previously.

(5) Every man loves a woman.
(6) John said every woman loves me.
(7) John said, “Every woman loves me”.

�loves (awoman) (everyman)�
� η (∀x.manx → (∃y.woman y ∧ lovex y)) (5)
withSpeaker s �saidis (lovesme (everywoman))John�

� η (say j (∀x.womanx → lovex s)) (6)
�saidds (lovesme (everywoman))John�

� η (say j (∀x.womanx → lovex j)) (7)

The calculus offers us flexibility when modelling the semantics. We might
choose to relax the constraint that clauses are scope islands by keeping the old

8 Other solutions to this problem include separating the language of logical forms and
the metalanguage used in the semantic lexical entries to manipulate logical forms as
objects [13].

9 Our C has been inspired by an operator of the same name proposed in [9]: de Groote
introduces a structure that specializes applicative functors in a similar direction as
monads by introducing the C operator and equipping it with certain laws; our C
operator makes the FE type constructor an instance of this structure.

268 J. Marš́ık and M. Amblard

entries for verbs that do not use the SI handler. We might then want to add the SI
handler to the lexical entry of saidds, next to the withSpeaker handler, so that
quantifiers cannot escape quoted expressions. We might also allow for inverse
scope readings by, e.g., providing entries for transitive verbs that evaluate their
arguments right-to-left (though then we would have to watch out for crossover
effects if we were to add anaphora).

3.3 Conventional Implicature

Our goal is to show the modularity of this approach and so we will continue
and plug in one more phenomenon into our growing fragment: conventional
implicatures, as analyzed by Potts [23]. Specifically, we will focus on nominal
appositives.

appos : NP −◦ NP −◦ NP

best-friend : NP −◦ NP

�appos� := λXY.X �= (λx.SI (η x = Y) �= (λi.implicate i (λz.η x)))
�best-friend� := λX.best-friend ·� X

In the denotation of the nominal appositive construction, appos, we first
evaluate the head noun phrase X : �NP � to find its referent x : ι. We then want
to implicate that x is equal to the referent of Y . The term η x = Y (note the
line over =) is the term that computes that referent and gives us the proposition
we want. We also want to state that no quantifier from within the appositive Y
should escape into the matrix clause and so we wrap this computation in the
SI handler to establish a scope island. Finally, we pass this proposition as an
argument to implicate and we return x as the referent of the noun phrase.

The point of the implicate operation is to smuggle non-at-issue content
outside the scope of logical operators. The contribution of an appositive should
survive, e.g., logical negation.10 The place where we will accommodate the impli-
cated truth-conditions will be determined by the use of the following handler:

accommodate : F{implicate:o�1}�E(o) → FE(o)
accommodate = λM.� implicate: (λik.η i ∧ k
) �M

We want conventional implicatures to project out of the common logical oper-
ators. However, when we consider direct quotes, we would not like to attribute
the implicature made by the quotee to the quoter. We can implement this by
inserting the accommodate handler into the lexical entry for direct speech.

�saidds� := λCS.SI (S �= (λs.say s ·� (withSpeaker s (accommodate C))))

Consider the following three examples.

(8) John, my best friend, loves every woman.
10 In our limited fragment, we will only see it sneak out of a quantifier.

Introducing a Calculus of Effects and Handlers 269

(9) Mary, everyone’s best friend, loves John.
(10) A man said, “My best friend, Mary, loves me”.

In (8), the conventional implicature that John is the speaker’s best friend
projects from the scope of the quantifier. On the other hand, in (10), the impli-
cature does not project from the quoted clause and so it is not misattributed.

3.4 Summary

Let us look back at the modularity of our approach and count how often during
the incremental development of our fragment we either had to modify existing
denotations or explicitly mention previous effects in new denotations.

When adding quantification:

– in the old denotations of verbs, we added the new SI handler so that clauses
form scope islands

When adding appositives and their conventional implicatures:

– in the old denotations �saidds�, we added the new accommodate handler to
state that conventional implicatures should not project out of quoted speech

– in the new denotation �appos�, we used the old SI handler to state that
appositives should form scope islands

Otherwise, none of the denotations prescribed in our semantic lexicon had to
be changed. We did not have to type-raise non-quantificational NP constructors
like �John�, �me� or �best-friend�. With the exception of direct speech, we did
not have to modify any existing denotations to enable us to collect conventional
implicatures from different subconstituents.

Furthermore, all of the modifications we have performed to existing denota-
tions are additions of handlers for new effects. This gives us a strong guarantee
that all of the old results are conserved, since applying a handler to a computa-
tion which does not use the operations being handled changes nothing.

The goal of our calculus is to enable the creation of semantic lexicons with
a high degree of separation of concerns. In this section, we have seen how it can
be done for one particular fragment.

4 Properties of the Calculus

The calculus defined in Sect. 2 and to which we will refer as �λ �, has some
satisfying properties.

270 J. Marš́ık and M. Amblard

First of all, the reduction rules preserve types of terms (subject reduction).
The reduction relation itself is confluent and, for well-typed terms, it is also
terminating. This means that typed �λ � is strongly normalizing.

The proof of subject reduction is a mechanical proof by induction. For conflu-
ence and termination, we employ very similar strategies: we make use of general
results and show how they apply to our calculus. Due to space limitations, we
will pursue in detail only the proof of confluence.

Our reduction relation is given as a set of rules which map redexes matching
some pattern into contracta built up out of the redexes’ free variables. However,
our language also features binding, and so some of the rules are conditioned
on whether or not certain variables occur freely in parts of the redex. Fortu-
nately, such rewriting systems have been thoroughly studied. Klop’s Combina-
tory Reduction Systems (CRSs) [16] is one class of such rewriting systems.

We will make use of the result that orthogonal CRSs are confluent [16]. A CRS
is orthogonal if it is left-linear and non-ambiguous. We will need to adapt our
formulation of the reduction rules so that they form a CRS and we will need
to check whether we satisfy left-linearity and non-ambiguity (we will see what
these two properties mean when we get to them).

We refer the reader to [16] for the definition of CRSs. The key point is that
in a CRS, the free variables which appear in the left-hand side of a rewrite rule,
called metavariables, are explicitly annotated with the set of all free variables
that are allowed to occur within a term which would instantiate them. This
allows us to encode all of our x /∈ FV (M) constraints.

One detail which must be taken care of is the set notation (opi:Mi)i∈I and
the indices I used in the � � rules. We do away with this notation by adding a
separate rule for every possible instantiation of the schema. This means that for
each sequence of distinct operation symbols op1,. . . ,opn, we end up with:

– a special rewriting rule � op1:M1, . . . , opn:Mn, η:Mη � (η N) → Mη N
– for every 1 ≤ i ≤ n, a special rewriting rule

� op1:M1, . . . , opn:Mn, η:Mη � (opi Np (λx.Nc(x)))
→ Mi Np (λx.� op1:M1, . . . , opn:Mn, η:Mη �Nc(x))

– for every op′ ∈ E \ {opi‖1 ≤ i ≤ n}, a special rewriting rule
� op1:M1, . . . , opn:Mn, η:Mη � (op′ Np (λx.Nc(x)))
→ op′ Np (λx.� op1:M1, . . . , opn:Mn, η:Mη �Nc(x))

So now we have a CRS which defines the same reduction relation as the rules
we have shown in Sect. 2.3. Next, we verify the two conditions. Left-linearity
states that no left-hand side of any rule contains multiple occurrences of the same
metavariable. By examining our rules, we find that this is indeed the case.11

Non-ambiguity demands that there is no non-trivial overlap between any of
the left-hand sides.12 In our CRS, we have overlaps between the β and the η
rules. We split our CRS into one with just the η rule (→η) and one with all the

11 Multiple occurrences of the same opi are alright, since those are not metavariables.
12 The definition of (non-trivial) overlap is the same one as the one used when defining

critical pairs. See [16] for the precise definition.

Introducing a Calculus of Effects and Handlers 271

other rules (→� λ �). Now, there is no overlap in either of these CRSs, so they are
both orthogonal and therefore confluent.

We then use the Lemma of Hindley-Rosen [17, p.7] to show that the union of
→� λ � and →η is confluent when →� λ � and →η are both confluent and commute
together. For that, all that is left to prove is that →� λ � and →η commute.
Thanks to another result due to Hindley [17, p.8], it is enough to prove that for
all a, b and c such that a →� λ � b and a →η c, we have a d such that b �η d and
c →=

� λ � d. The proof of this is a straightforward induction on the structure of a.

5 Conclusion

In our contribution, we have introduced a new calculus motivated by modelling
detailed semantics and inspired by current work in programming language the-
ory. Our calculus is an extension of the simply-typed lambda calculus which
is the de facto lingua franca of semanticists. Its purpose is to facilitate the
communication of semantic ideas without depending on complex programming
languages [15,19] and to do so with a well-defined formal semantics.

We have demonstrated the features of our calculus on several examples
exhibiting phenomena such as deixis, quantification and conventional implica-
ture. While our calculus still requires us to do some uninteresting plumbing to
be able to correctly connect all the denotations together, we have seen that the
resulting denotations are very generic. We were able to add new phenomena
without having to change much of what we have done before and the changes
we have made arguably corresponded to places where the different phenomena
interact.

Finally, we have also shown that the calculus shares some of the useful prop-
erties of the simply-typed lambda calculus, namely strong normalization.

In future work, it would be useful to automate some of the routine plumbing
that we have to do in our terms. It will also be important to test the methodology
on larger and more diverse fragments (besides this fragment, we have also created
one combining anaphora, quantification and presupposition [19]). Last but not
least, it would be interesting to delve deeper into the foundational differences
between the approach used here, the monad transformers used by Charlow [4]
and the applicative functors used by Kiselyov [13].

References

1. Barker, C.: Continuations and the nature of quantification. Nat. Lang. Semant.
10(3), 211–242 (2002)

2. Bauer, A., Pretnar, M.: Programming with algebraic effects and handlers (2012).
arXiv preprint: arXiv:1203.1539

3. Brady, E.: Programming and reasoning with algebraic effects and dependent types.
In: ACM SIGPLAN Notices (2013)

4. Charlow, S.: On the semantics of exceptional scope. Ph.D. thesis, New York Uni-
versity (2014)

http://arxiv.org/abs/1203.1539

272 J. Marš́ık and M. Amblard

5. de Groote, P.: Towards abstract categorial grammars. In: Proceedings of the 39th
Annual Meeting on Association for Computational Linguistics (2001)

6. de Groote, P.: Type raising, continuations, and classical logic. In: Proceedings of
the Thirteenth Amsterdam Colloquium (2001)

7. de Groote, P.: Towards a Montagovian account of dynamics. In: Proceedings of
SALT, vol. 16 (2006)

8. Giorgolo, G., Asudeh, A.: Natural language semantics with enriched meanings
(2015)

9. de Groote, P.: On logical relations and conservativity. In: Third Workshop on
Natural Language and Computer Science, NLCS 2015 (2015)

10. Hobbs, J., Rosenschein, S.: Making computational sense of montague’s intensional
logic. Artif. Intell. 9(3), 287–306 (1977)

11. Kammar, O., Lindley, S., Oury, N.: Handlers in action. In: ACM SIGPLAN Notices
(2013)

12. Kamp, H., Reyle, U.: From Discourse to Logic. Kluwer Academic Pub, Dordrecht
(1993)

13. Kiselyov, O.: Applicative abstract categorial grammars. In: Proceedings of the
Third Workshop on Natural Language and Computer Science (2015)

14. Kiselyov, O., Sabry, A., Swords, C.: Extensible effects: an alternative to monad
transformers. In: ACM SIGPLAN Notices (2013)

15. Kiselyov, O., Shan, C.: Lambda: the ultimate syntax-semantics interface (2010)
16. Klop, J.W., Van Oostrom, V., Van Raamsdonk, F.: Combinatory reduction sys-

tems: introduction and survey. Theor. Comput. Sci. 121(1–2), 279–308 (1993)
17. Klop, J.W., et al.: Term rewriting systems. Handb. Logic Comput. Sci. 2, 1–116

(1992)
18. Lebedeva, E.: Expression de la dynamique du discours à l’aide de continuations.

Ph.D. thesis, Université de Lorraine (2012)
19. Marš́ık, J., Amblard, M.: Algebraic effects and handlers in natural language inter-

pretation. In: Natural Language and Computer Science, July 2014
20. Meijer, E., Fokkinga, M., Paterson, R.: Functional programming with bananas,

lenses, envelopes and barbed wire. In: Functional Programming Languages and
Computer Architecture (1991)

21. Moggi, E.: Notions of computation and monads. Inf. Comput. 93(1), 55–92 (1991)
22. Plotkin, G., Pretnar, M.: Handlers of algebraic effects. In: Castagna, G. (ed.) ESOP

2009. LNCS, vol. 5502, pp. 80–94. Springer, Heidelberg (2009)
23. Potts, C.: The Logic of Conventional Implicatures. Oxford University Press, Oxford

(2005)
24. Pretnar, M.: Logic and handling of algebraic effects. Ph.D. thesis, The University

of Edinburgh (2010)
25. Qian, S., Amblard, M.: Event in compositional dynamic semantics. In: Pogodalla,

S., Prost, J.-P. (eds.) Logical Aspects of Computational Linguistics. LNCS, vol.
6736, pp. 219–234. Springer, Heidelberg (2011)

26. Shan, C.: Monads for natural language semantics. arXiv:cs/0205026v1 (2002)
27. Shan, C.: Linguistic side effects. Ph.D. thesis, Harvard University (2005)
28. Van Eijck, J., Unger, C.: Computational Semantics with Functional Programming.

Cambridge University Press, Cambridge (2010)
29. Wadler, P.: The essence of functional programming. In: Proceedings of the 19th

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(1992)

http://arxiv.org/abs/cs/0205026v1

Proof Nets for the Displacement Calculus

Richard Moot(B)

CNRS (LaBRI), Talence, France
Richard.Moor@labri.fr

Abstract. We present a proof net calculus for the Displacement calculus
and show its correctness. This is the first proof net calculus which models
the Displacement calculus directly and not by some sort of translation
into another formalism. The proof net calculus opens up new possibilities
for parsing and proof search with the Displacement calculus.

1 Introduction

The Displacement calculus was introduced by Morrill et al. [7] as an extension of
the Lambek calculus with discontinuous operators. These discontinuous connec-
tives allow the Displacement calculus to solve a large number of problems with
the Lambek calculus. Examples of the phenomena treated by Morrill et al. [7]
include discontinuous idioms (such as “ring up” and “give the cold shoulder”),
quantifier scope, extraction (including pied-piping) and gapping.

This paper extends earlier work by Morrill and Fadda [6], Moot [3] and
Valent́ın [9], combining the strengths of these different approaches while at the
same time diminishing the inconveniences. Notably, it is the first proof net cal-
culus which does not operate by translation into some other logic, but provides
proof nets for the Displacement calculus directly.

2 The Displacement Calculus

The presentation of the Displacement calculus closely follows the natural deduc-
tion calculus used by Morrill et al. [7]. String terms are built over a countably
infinite alphabet of variables (for readability, we will often used natural language
words as if they were variables), a special separator symbol “1”, where string
concatenation is denoted by “+” (a binary, associative infix operator on string
terms). As usual, ε denotes the empty string. The sort of a string term is the
number of occurrences of the separator “1”.

I use lower-case roman letters p, q . . . for atomic string terms (for enhanced
readability, I will often use the standard convention of using words from the
lexicon in the place of such atomic string terms), lower-case roman letters a, b,
. . . for string terms without separator symbols and lower-case greek letters α, β,
. . . for strings containing any number of separator symbols. So the string term
p + 1 + q + 1 + r is a string of sort 2 with three atomic subterms.

c© Springer-Verlag Berlin Heidelberg 2016
A. Foret et al. (Eds.): FG 2015/2016, LNCS 9804, pp. 273–289, 2016.
DOI: 10.1007/978-3-662-53042-9 16

274 R. Moot

The key to the Displacement calculus is the wrap operator α ×k β. There is
some minor variation in the definition of this operator: sometimes [7] k is either
the constant “>” or the constant “<” (in which case α is of sort greater than
zero and the denotation of the term replaces respectively the first and the last
occurrences of 1 in α by β. Sometimes [5] k is an integer (between 1 and the
sort of α) and α×k β replaces the kth separator in α by β. The equations below
give the definition of “×k”.

(a + 1 + α) ×> β =def a + β + α (1)
(α + 1 + a) ×< β =def α + β + a (2)

(a1 + 1 + . . . + an + 1 + α) ×n β =def a1 + 1 + . . . + an + β + α (3)

Where the Lambek calculus connectives get their meaning with respect to con-
catenation “+”, the discontinuous connectives of the Displacement calculus get
their meaning with respect to “×k” (this entails different connectives for differ-
ent values of k). The standard interpretation of the Lambek calculus connectives
for string models, with “+” denoting concatenation, is the following.

|A\C| =def {β | ∀α ∈ |A|, α + β ∈ |C|} (4)
|C/B| =def {α | ∀β ∈ |B|, α + β ∈ |C|} (5)

|A • B| =def {α + β |α ∈ |A| ∧ β ∈ |B|} (6)

The discontinuous connectives of the Displacement calculus use “×k” instead of
“+” (we present only the connectives for > here).

|A ↓> C| =def {β | ∀α ∈ |A|, α ×> β ∈ |C|} (7)
|C ↑> B| =def {α | ∀β ∈ |B|, α ×> β ∈ |C|} (8)
|A �> B| =def {α ×> β |α ∈ |A| ∧ β ∈ |B|} (9)

We can further unfold these definitions, using Definition 1 for “×>” to obtain.

|A ↓> C| =def {β | ∀(a + 1 + α) ∈ |A|, a + β + α ∈ |C|} (10)
|C ↑> B| =def {(a + 1 + α) | ∀β ∈ |B|, a + β + α ∈ |C|} (11)
|A �> B| =def {a + β + α | (a + 1 + α) ∈ |A| ∧ β ∈ |B|} (12)

Given these definitions, the meaning of A ↓> C is defined as the set of expressions
which select a circumfix A, which wraps around the string denoted by A ↓> C
to form an expression C. Similarly, C ↑> B extracts a B formula not occurring
after a separator.

2.1 Formulas and Sorts

We have already defined the sort of a string term as the number of occurrences of
the separator constant “1”. The sort of a formula corresponds to the number of
separators “1” occurring in its denotation. That is, a formula of sort n is assigned

Proof Nets for the Displacement Calculus 275

a string term of the form a0 +1+ . . . +1+ an (with all ai of sort 0 according to
our notational convention). For a given grammar, its signature defines the sort
of all atomic formulas occurring in the grammar. We assume throughout that
the atomic formulas s, n, np, pp have sort 0 (some other atomic formulas, such
as inf when used for Dutch verb clusters, have sort 1).

Table 1 shows how to compute the sort of complex formulas. All subformulas
of a formula are assigned a sort, so when we compute s(C/B) using its entry
in Table 1 we know that s(C) ≥ s(B), because if not, then s(C/B) would be
less than zero and therefore not a valid (sub)formula (similar constraints can be
derived from the other implications, eg. we can show that s(C ↑ B) ≥ 1).

Table 1. Computing the sort of a complex formula given the sort of its immediate
subformulas

s(A • B) = s(A) + s(B) s(A � B) = s(A) + s(B) − 1 s(A)≥1

s(A\C) = s(C) − s(A) s(A ↓ C) = s(C) + 1 − s(A) s(A)≥1

s(C/B) = s(C) − s(B) s(C ↑ B) = s(C) + 1 − s(B) s(C)≥s(B)

As an example, following Morrill et al. [7], we can assign a discontinuous
lexical entry like “give the cold shoulder” the lexical formula (np\s) ↑> np and
string term gave + 1 + the + cold + shoulder (of the required sort 1).

2.2 Natural Deduction Rules

Figures 1 and 2 give the natural deduction rules for the Lambek calculus and for
the left wrap rules respectively (the other wrap rules follow the same pattern).
The left wrap rules of Fig. 2 correspond rather closely to the interpretation of
the formulas given in Definitions 10 to 12.

3 Proof Nets

One of the goals of proof search in type-logical grammars is to enumerate all
possible readings for a given sentence. The bureaucratic aspects of the sequent
calculus proof search make it hard to use sequent calculus directly for this goal,
since sequent calculus allows a great number of inessential rule permutations.
The situation for natural deduction is somewhat better, since the proof rules
correspond directly to steps in meaning composition, even though there is still
a large number of possible rule permutations for the •E and �kE rules.

Proof nets are a way of representing proofs which removes the “bureaucratic”
aspects of sequent proofs and simplifies the product rules of Lambek calculus
natural deduction. One of the open questions of Morrill [5] is whether the Dis-
placement calculus has a proof net calculus.

Valent́ın [9] provides a translation of the Displacement calculus to a multi-
modal system. However, this system uses a rather large set of structural rules

276 R. Moot

α : A γ : A \ C

α+γ : C
\E

[α : A]i
....

α+γ : C

γ : A \ C
\Ii

γ : C / B β : B

γ+β : C
/E

[β : B]i
....

γ+β : C

γ : C / B
/Ii

δ : A • B

[α : A]i [β : B]i
....

γ[α+β] : C

γ[δ] : C
•Ei

α : A β : B

α+β : A • B
•I

Fig. 1. Proof rules – Lambek calculus

a+1+α : A γ : A ↓> C

a+γ+α : C
↓> E

[a+1+α : A]i
....

a+γ+α : C

γ : A ↓> C
↓> Ii

c+1+γ : C ↑> B β : B

c+β+γ : C
↑> E

[β : B]i
....

c+β+γ : C

c+1+γ : C ↑> B
↑> Ii

δ : A �> B

[a+1+α : A]i [β : B]i
....

γ[a+β+α] : C

γ[δ] : C
�>Ei

a+1+α : A β : B

a+β+α : A �> B
�>I

Fig. 2. Proof rules — leftmost infixation, extraction

and these rules are defined modulo equivalence classes, which makes their use in
existing multimodal theorem provers [2] difficult. In this section, I will extend the
proof net calculus for the Lambek calculus of Moot and Puite [4] to the Displace-
ment calculus. I will, in particular, provide an efficiently checkable correctness
condition in the form of graph contractions.

Proof Nets for the Displacement Calculus 277

Lambek — Premiss

[L/]

C

C / B B

+

[L•]

A • B

A B

•

[L\]

C

A A \ C

+

Lambek — Conclusion

[R/]

C

C / B C

/

[R•]

A • B

A B

+

[R\]

C

A A \ C

\

Fig. 3. Links for the Lambek calculus connectives of the Displacement calculus

Discontinuous — Premiss

[L ↑k]

C

C ↑k B B

×k

[L�k]

A �k B

A B

�k

[L ↓k]

C

A A ↓k C

×k

Discontinuous — Conclusion

[R ↑k]

C

C ↑k B B

↑k

[R�k]

A �k B

A B

×k

[R ↓k]

C

A A ↓k C

↓k

Fig. 4. Links for the discontinuous connectives of the Displacement calculus

3.1 Links

Figures 3 and 4 show the links for Displacement calculus proof structures. Each
link connects three formulas to a central node. The formulas written above the

278 R. Moot

central node of a link are the premisses of the link, the formulas written below
it are its conclusions. The linear order of both the premisses and the conclusions
of a link is important.

We distinguish between par links, where the central node is filled black, and
tensor links, where the central node is not filled (this is the familiar tensor/par
distinction of multiplicative linear logic). Par nodes are further distinguished by
an arrow pointing to the main formula of the link.

3.2 Proof Structures

A proof structure is a set of formulas and a set of links such that.

1. each link instantiates one of the links shown in Figs. 3 and 4 (for specific
values of A, B, C and k),

2. each formula is the premiss of at most one link,
3. each formula is the conclusion of at most one link.

Formulas which are not the premiss of any link are the conclusions of the proof
structure. Formulas which are not the conclusion of any link are the hypothe-
ses of the proof structure (the word “conclusion” is overloaded: we talk about
conclusions of proofs, conclusions of rules, conclusions of links and conclusions
of proof structures; when the intended use is clear from the context, I will often
simply use the word “conclusion” without further qualification). The inputs of a
proof structure are its hypotheses and the active conclusions of its par links (that
is, the conclusions of all par links in the proof structure except, for the implica-
tions, the one with the arrow); we will call the inputs which are not hypotheses
the auxiliary inputs of a proof structure.

To construct a proof structure for a given sequent A1, . . . , An 	 C, we unfold
the Ai as premisses and C as a conclusion. This will provide a proof structure
with (atomic) conclusions other than C and (atomic) hypotheses other than the
Ai. We identify these atomic hypotheses with atomic conclusions (of the same
atomic formula) until we obtain a proof structure of A1, . . . , An 	 C. This can fail
if an atomic formula has more occurrences as a hypothesis than as a conclusion
(as it should, since such sequents are underivable).

Figure 5 gives an unfolding for the sentence “Mary rang everyone up”, a
sentence with the discontinuous idiom “rang up” and a non-peripheral quantifier
“everyone”, following lexical entries of Morrill et al. [7]. Figure 6 shows (on the
left of the figure) one of the possibilities for connecting the atomic formulas.

Not all proof structures correspond to natural deduction proofs. Proof struc-
tures which correspond to natural deduction proofs are proof nets. Of course,
defining proof nets this way is not very satisfactory: we want to have a condition
which, given a proof structure tells us whether or not this proof structure is a
proof net using only properties of the proof structure itself.

3.3 Abstract Proof Structures

The general strategy we follow to define a correctness criterion for proof struc-
tures is as follows: we first simplify by removing some of the information which is

Proof Nets for the Displacement Calculus 279

np

Mary

s

(np\s) ↑> np

rang+ 1+ up

np

×>

np\snp

+

s

(s ↑> np) ↓> s

everyones ↑> np

s

×>

np

s

↑>

Fig. 5. Unfolding for the sentence “Mary rang everyone up”.

Mary

(np\s) ↑> np

rang+ 1+ up

np

×>

np\snp

+

s

(s ↑> np) ↓> s

everyone

s ↑> np

s

×>

↑>

Mary

�

rang 1 up

�

×>

��

�

�
everyone

�

s

×>

↑>

�→

Fig. 6. Proof structure (left) and abstract proof structure (right) for the unfolding of
“Mary rang everyone up” shown in Fig. 5.

irrelevant for deciding correctness to obtain abstract proof structures, then spec-
ify the correctness condition on these abstract proof structures, using a graph
contraction criterion, generalizing the proof nets of the Lambek calculus from
Moot and Puite [4].

280 R. Moot

Tensor Trees and Combs. A tensor tree is a connected, acyclic set of tensor
links (to be more precise, the underlying undirected graph must by acyclic and
connected). A single vertex is a tensor tree. Given an (abstract) proof structure,
its tensor trees are the maximal substructures which are tensor trees; this is
simply the forest we obtain when we remove all par links from a proof structure.
The proof structure of Fig. 6 has two tensor trees.

A comb is a link with any number of premisses and a single conclusion. None
of the premisses of the comb can be identical to its conclusion. The general
conditions on links prevent premisses from being connected more than once as
a premiss of a comb. The premisses of combs, as links in general, are linearly
ordered. Premisses of a comb can be hypotheses of the proof structure, the
conclusions of a link or the special constant 1. The sort of a comb, that is
the sort assigned to its conclusion, is the sum of the sorts of its premisses (the
constant 1 is of sort 1). Combs play the same role as tensor trees do for Moot and
Puite [4]: they allow us to go back a forth between sequents Γ 	 C and combs
with premisses Γ and conclusion C. Given a comb, we will refer to subsequences
of its premisses as prefixes, postfixes, etc., and assign them sorts as well.

Translating a Proof Structure to an Abstract Proof Structure. To translate a
proof structure P to an abstract proof structure A, we define a function, P
→ A,
which replaces “+” links by 2-premiss combs as follows

v3

v1 v2

+
v1 v2

v3

→

which leaves all other links the same and which replaces the vertices/formulas
of P as shown in Fig. 7. The only slight complication is for the input formulas
(lexical our auxiliary). Proof structures are defined as ways of connecting formu-
las, but for formulating correctness we need to know about the strings denoted
by these formulas, for example, about their position relative to other formulas,
separator symbols or the left/rightmost position. Another way of seeing this is
that we need to replace sorted variables α (such as those assigned to hypotheses)
by variables p0+1+ . . .+1+pn, with each pi of sort 0 (such a strategy is already
implicitly used for the natural deduction rules for /I, \I, •E, ↑k I, ↓k I and �kE,
that is the natural deduction rules corresponding to the par links). As shown in
Fig. 7, auxiliary inputs separate the path leaving the par link by adding n new
subpaths (this appears somewhat odd, but is required for the correct behaviour
of the contractions when sorts are greater than 0, as we will see below). Because
of the sorts of the formulas, the par links for ↓k and �k necessarily involve at
least one such split, though the other par links need not.

Proof Nets for the Displacement Calculus 281

A

�

p0 pn1 . . .1

Lexical inputs

A

�

� �1 . . .1

Auxiliary inputs

�→�→

A

Conclusion

A A �

Other internal nodes

�→�→

Fig. 7. Conversion to abstract proof structures for vertices/formulas.

�α1
...

α2
...

...
β

[+]→
...
α1

...
β

...
α2

v v

α1
...

1 α2
...

β
...

×k

� �

...
α1

...
β

...
α2

[×k]→

v

v

Fig. 8. Structural contractions

3.4 Contractions

Structural Contractions. Figure 8 shows the structural contractions. The “+”
contraction composes two combs, combining the premisses by a simple left-to-
right traversal. It is worth mentioning some immediate corollaries of this contrac-
tion here: first, we simply eliminate trivial combs (containing a single premiss
and a single conclusion, that is, when β contains only a single premiss) when
their conclusion is the premiss of another comb, and, second, the structural con-
tractions contract tensor trees to unique combs (this is no longer guaranteed
once we add the synthetic connectives, as discussed in Sect. 4).

The wrap operation “×k” reflects the wrap operation on strings at the level
of abstract proof structures, it inserts β at the separator indicated by k: if k is

282 R. Moot

“>”, the α1 must be of sort 0 (we replace the first separator by β) and if k is
“<” α2 must be of sort 0 (we replace the last separator by β).

Note that α1, α2 and β are allowed to have zero premisses.

Logical Contractions. The logical contractions ensure the logical symmetry of
the connectives in the calculus. Each par rule has its own contraction. The
contraction for \, shown below, essentially checks whether the string term of the
premiss is equivalent to p0 + 1+ . . . + 1+ pn + β and withdraws the hypothesis
p0 + 1 + . . . + 1 + pn (where n is the sort of the withdrawn formula in the
corresponding \I rule) to reduce to β (the / contraction is left-right symmetric).

� �
... ...

β

\
v

β
...

[\]→
v

γ1 γ2
...

•

v1

γ1 γ2
... ...

[•]→
v2 v2

v1

The contraction for ↑k essentially checks that its auxiliary input is an infix
of the appropriate sort.

α1
...

� �
...

α2
...

↑k

v

α1
...

1 α2
...

[↑k]→
v

Depending on k, there are restrictions on the sorts: for “>”, α1 must be of
sort 0 (that is, all premisses of the comb to the left β are of sort 0), for “<”, α2

must be of sort 0 (that is, all premisses of the comb to the right β are of sort 0),
for k = n, α1 is a prefix of sort n − 1 (that is, the sorts of the premisses of the
comb to the left β sum to n − 1).

Proof Nets for the Displacement Calculus 283

� � � �
...

β

↓k

v

β
...

[↓k]→
v

If k is “>”, the premisses to the left of β are of sort 0. If k is “<”, the
premisses to the right of β are of sort 0. If k = n, the premisses to the left
of β are of sort n − 1. This contraction looks odd until we realize that we are
dealing with a circumfix operation and that, as a consequence the subformula
A of a formula A ↓k B denotes a discontinuous circumfix with corresponding
string α1 + 1+ α2 (look back to the introduction rule for ↓k on the top right of
Fig. 2 for comparison).

The contraction for �k generalizes the contraction for •. Whereas the con-
traction for A • B verifies the strings of the subformulas A and B are adjacent,
the contraction for A �k B verifies whether the string α1+1+α2 of A is circum-
fixed around the string β of B. The sorts of α1, α2 and β depend on k and on
the sorts of A and B, exactly as for the other rules (in the rule below, the labels
α1, α2 and β represent sequences of vertices which are premisses of the comb
and conclusions of the �k rule).

...
γ1 γ2α1 β α2

�k

v1

γ1 γ2
... ...

[�k]→
v2

v1

v2

As an example of how we can use the contraction criterion to verify whether
a proof structure is a proof net, the abstract proof structure of Fig. 6 can be
contracted first by using a “+” and a “×>” contraction to produce the abstract
proof structure shown on the left of Fig. 9, then by performing the “↑>” and
“×>” contractions as indicated, giving a proof of “Mary rang everyone up”.

Brief Remarks on Complexity. It is easy to see the given contraction calculus
is confluent and that each of the contraction steps reduces the total number of
links in the structure. Therefore, even a naive implementation of this contraction
calculus checks whether or not a given abstract proof structure with n links
contracts to a comb in O(n3) steps, simply by repeatedly traversing the links
in the graph to find contractible configurations and contracting them once they
are found (we can likely improve upon this worst case, but I will leave this to
further research).

284 R. Moot

Mary rang � up

�

�
everyone

�

s

×>

↑>
Mary rang 1 up

� �
everyone

�

s

×>
Mary rang everyone up

s

[↑>]→ [×>]→

Fig. 9. Contractions for the abstract proof structure for the sentence “Mary rang every-
one up” shown on the right of Fig. 6.

In particular, this shows NP-completeness of the Displacement calculus. NP-
hardness follows from NP-completeness of the Lambek calculus [8] and we can
show it is in NP since we can verify in polynomial time whether or not a candidate
proof (that is, a proof structure) in the Displacement calculus is a proof (that
is, a proof net).

3.5 Correctness of the Calculus

We show that the two definitions of proof net, contractibility and corresponding
to a natural deduction proof coincide, thereby establishing that the contraction
criterion is correct.

Lemma 1. Let δ be a Displacement calculus natural deduction proof of α1 :
A1, . . . , an : An 	 γ : C. There is a proof net with the same hypotheses whose
abstract proof structure contracts to a γ : C.

Proof. This is a simple induction on the length of the proof. Axioms α : A 	 α : A
correspond directly to proof nets with the required combs. Otherwise, we proceed
by case analysis on the last rule of the proof. Each logical rule correspond to
adding a link to the proof net(s) given by induction hypothesis and a contraction
to the sequence of contractions for the abstract proof structure. We show only
the case for ↓>. In this case, the last rule looks as follows.

[a+1+α : A]i.... δ

a+γ+α : C

γ : A ↓> C
↓> Ii

Proof Nets for the Displacement Calculus 285

Induction hypothesis gives use a proof net of Γ, a+1+α : A 	 a+γ+α : C.
That is we are in the situation shown below, with the proof structure shown
below on the right, the corresponding abstract proof structure in the middle, for
which we are given a sequence of reductions ρ to a comb a+γ+α : C. We have
simply spelled out the definition of proof net of Γ, a+1+α : A 	 a+γ+α : C.

AΓ

C

�

C

a 1
...
α

C

a
... ...
γ αρ

�
→

Adding the par link for ↓> to the above proof net produces to following proof
structure, which contracts using the same sequence of contractions ρ as follows.

AΓ

C

↓>

C ↓> A

�

�

a 1
...
α

↓>

C ↓> A

�

a
... ...
γ α

↓>

C ↓> A

ρ
�
→

Simply performing the contraction for ↓> to the final abstract proof structure
produces a comb of γ : C ↓> A and hence a proof net of Γ 	 γ : C ↓> A as
required. �
Lemma 2. Let Π be a proof net of α1 : A1, . . . , an : An 	 γ : C, that is a proof
net with hypotheses α1 : A1, . . . , an : An and conclusion C and an abstract proof
structure contracting to γ using contractions ρ. There is a natural deduction
proof of α1 : A1, . . . , an : An 	 γ : C.

Proof. We proceed by induction on the number of logical contractions l in the
sequence ρ (this number is equal to the number of par links in the structure).

If there are no logical contractions (l = 0), then there are only structural
contractions and our proof net contains only tensor links. We proceed by induc-
tion on the number t of tensor links. If there are no tensor links (t = 0), we have
an axiom and its abstract proof structure is a comb by definition.

286 R. Moot

A

A

α

→

This directly gives us the natural deduction proof α : A 	 α : A.
If there are tensor links (t > 0), then either one of the hypotheses or the

conclusion of the proof structure must be the main formula of its link (this
is easy to see since if none of the leaves is the main formula of its link, then
the proof structure contains only introduction rules for • and �k and therefore
the conclusion is the main formula of its link). Suppose a proof net has a leaf
which is the main formula of its link and suppose this formula is A ↓> C (the
cases of other formulas being main formulas, and of a conclusion of the proof
net being the main formula are similar). Then, since all tensor trees contract to
combs, we can apply the induction hypothesis to the two structures obtained by
removing the tensor link and obtain proofs π1 of Γ 	 a + 1 + α : A and π2 of
Δ, a+ γ +α : C 	 δ : D (technically, we have a proof with hypothesis γ′ : C and
use substitution of the proof with conclusion a + γ + α : C shown below). We
can combine these proofs as follows.

Γ.... π1
a + 1 + α : A γ : A ↓> C

a + γ + α : C
↓> E

Δ.... π2
δ : D

If the sequence ρ has logical contractions (l > 0), we look at the last such
contraction and proceed by case analysis. If the last contraction is the ↓> con-
traction, our proof net and contraction sequence look as follows.

AΓ

C

↓>

C ↓> A Δ

D

�

�

a 1
...
α

↓>

�

D

�

a
... ...
γ α

↓>

�

D

ρ
�
→ [↓>]→

D

�

...

γ

Proof Nets for the Displacement Calculus 287

The initial proof structure is shown above of the left and its corresponding
abstract proof structure to its immediate right (note that vertex A has been
replaced by a+1+α, since it is an auxiliary input, corresponding to a withdrawn
hypothesis in the natural deduction proof). The reduction sequence is of the form
ρ, followed by the ↓> contraction, possibly followed by a number of structural
contractions (not displayed in the figure above).

When we remove the par link from the figure above, we are in the following
situation. All contractions from ρ are either fully in the abstract proof structure
shown below at the top of the picture or fully in the abstract proof structure
shown below at the bottom of the picture, so ρ splits naturally in ρ1 and ρ2.

AΓ

C

C ↓> A Δ

D

�

C

a 1
...
α

�

D

C

a
... ...
γ α

�

D

ρ1
�

ρ2
�
→

→

...

γ
...

γ

We need to show that Γ,Δ 	 δ : D (where δ : D is the comb). Since we
have two proof nets with strictly shorter sequences of contractions, we can apply
the induction hypothesis for proofs π1 of a+1+α : A,Γ 	 a+γ +α : C and
π2 of γ : C ↓> A,Δ 	 δ : D. We can combine these two proofs into a proof of
Γ,Δ 	 δ : D as follows.

[a+1+α : A]i Γ.... π1

a+γ+α : C

γ : C ↓> A
↓> Ii Δ.... π2

δ : D

The other cases are similar and easily verified. �
Theorem 1. A proof structure is a proof net iff its abstract proof structure
contracts to a comb.

Proof. Immediate from Lemmas 1 and 2. �

288 R. Moot

4 Extension to Other Connectives

One of the benefits of the current calculus is that it extends easily to other
connectives, such as the unary/bracket connectives of Morrill [5, Chapter 5]
(although incorporating the treatment of parasitic gapping of Sect. 5.5 would
require a considerable complication of the proof theory).

The synthetic connectives of Morrill et al. [7] require us to extend our method-
ology somewhat: as currently formulated the proof net calculus produces a single
comb for each proof net. When adding the synthetic connectives, we can intro-
duce a separation marker in a way which is only partially specified by the premiss
of the rule. For example, the denotation of (leftmost) split Ǎ, shown below, is
the set of strings obtained by inserting a separator symbol at any place before
other separator symbols (if any), and therefore the introduction rule for this
connective doesn’t produce a unique string term.

| Ǎ| =def {a + 1 + α | a + α ∈ |A|} (13)

| Â| =def {a + α | a + 1 + α ∈ |A|} (14)

This moves us to a system where a tensor tree contracts to a set of combs (or,
alternatively, a partially specified comb). Apart from this, it is not hard to add
links and contractions for the synthetic connectives. For example, the contraction
for ˇ can be obtained from the contraction for ↑k by removing the links to the
auxiliary hypothesis: instead of replacing the auxiliary hypothesis by 1 (which
defines the position of the insertion point uniquely), there will be multiple, non-
confluent ways to matching the contraction and to insert the separator symbol.
For lack of space, we will not develop these ideas further here.

5 Conclusion

We have presented a proof net calculus for the Displacement calculus and shown
its correctness. This is the first proof net calculus which models the Displacement
calculus directly and not by some sort of translation into another formalism. The
proof net calculus opens up new possibilities for parsing and proof search with
the Displacement calculus.

References

1. Casadio, C., Coecke, B., Moortgat, M., Scott, P. (eds.): Categories and Types in
Logic, Language, and Physics: Essays dedicated to Jim Lambek on the Occasion
of this 90th Birthday. LNAI, vol. 8222. Springer, Heidelberg (2014)

2. Moot, R.: Filtering axiom links for proof nets. In: Kallmeyer, L., Monachesi, P.,
Penn, G., Satta, G. (eds.) Proccedings of Formal Grammar (2007)

3. Moot, R.: Extended Lambek calculi and first-order linear logic. In: [1], pp. 297–330
4. Moot, R., Puite, Q.: Proof nets for the multimodal Lambek calculus. Stud. Logica

71(3), 415–442 (2002)

Proof Nets for the Displacement Calculus 289

5. Morrill, G.: Categorial Grammar: Logical Syntax, Semantics, and Processing.
Oxford University Press, New York (2011)

6. Morrill, G., Fadda, M.: Proof nets for basic discontinuous Lambek calculus. J.
Logic Comput. 18(2), 239–256 (2008)

7. Morrill, G., Valent́ın, O., Fadda, M.: The Displacement calculus. J. Logic Lang.
Inform. 20(1), 1–48 (2011)

8. Pentus, M.: Lambek calculus is NP-complete. Theor. Comput. Sci. 357(1), 186–201
(2006)

9. Valent́ın, O.: The hidden structural rules of the discontinuous Lambek calculus.
In: [1], pp. 402–420

Countability: Individuation and Context

Peter R. Sutton(B) and Hana Filip(B)

Heinrich Heine University, Düsseldorf, Germany
peter.r.sutton@icloud.com, hana.filip@gmail.com

Abstract. Much of the recent countability research agrees on the idea
that a satisfactory account of individuation in terms of what counts as
“one” unit for counting is highly relevant for characterizing a semantics
of the mass/count distinction. (What counts as “one” is not necessarily
a formal atom in a Boolean algebra or a natural unit associated with
natural kinds like cat.) Taking the most parsimonious stance, our main
question is: If we have a full-fledged formal theory of individuation (what
counts as “one”), what data would still remain to be explained for a
formal theory of the mass/count distinction? Would classical mereology
be sufficient to cover such data? And, if not, what minimal extensions
would be required to classical mereology to do so? We conclude that,
minimally, two dimensions of context sensitivity are needed to enrich
a mereological semantics of count nouns denotations. The first kind of
context sensitivity enables counting operations to apply by removing
overlap from an overlapping set of individuated entities. The second kind
of context sensitivity allows us to motivate how a set of individuated
entities can sometimes be taken as a counts as “one” despite not being
a formal atom or a natural unit associated with a natural kind.

Keywords: Mass/count distinction · Mereology · Individuation · Over-
lap · Context sensitivity

1 Introduction: From Atomicity to Counting as ‘One’

Early proposals regarding the nature of the mass/count distinction, many of
which are inspired by Quine (1960), attempt to distinguish mass and count
noun denotations rely on properties like cumulativity, divisivity, atomicity, and
homogeneity.1 In mereological theories, starting with Link (1983) and Krifka
(1989), they were recast as second-order predicates and defined as follows:

AT (P) ↔ ∀x[P (x) → ∃y∀z[P (y) ∧ (P (z) → ¬(z � y))]] (1)
CUM(P) ↔ ∀x∀y[(P (x) ∧ P (y)) → P (x � y)] (2)
DIV (P) ↔ ∀x∀y[(P (x) ∧ y � x) → P (y)] (3)

Link (1983) proposes a sortal distinction between count and mass nouns,
based on the atomic/non-atomic ontological distinction which is modeled by
1 Also see Pelletier (1979) and references therein.

c© Springer-Verlag Berlin Heidelberg 2016
A. Foret et al. (Eds.): FG 2015/2016, LNCS 9804, pp. 290–305, 2016.
DOI: 10.1007/978-3-662-53042-9 17

Countability: Individuation and Context 291

means of atomic and non-atomic semilattice structures. Count nouns are inter-
preted in the atomic lattice, while mass in the non-atomic one. Mass nouns
pattern with plurals in being cumulative. Mass nouns and plurals also pattern
alike in being divisive (down to a certain lower limit). However, none of these
properties turned out to be either necessary or sufficient conditions for under-
pinning the mass/count distinction. For example, mass nouns such as furniture
are atomic, count nouns such as fence pattern with mass terms in being divisive
and cumulative (modulo contextual restrictions).

Krifka (1989) rejects Link’s sortal ‘dual-domain’ approach on which count
and mass nouns are interpreted in two different domains. Instead, his strategy
is to combine the notion of a single complete join semi-lattice (a general partial
order), which structures a single domain of objects, with the notion of an exten-
sive measure function, which serves to derive quantized semantic predicates; such
predicates fail to be divisive, and hence are count. The lexical semantic structure
of basic lexical count nouns like cat contains the extensive measure function NU
(for ‘Natural Unit’), which does the “individuating job” of determining singular
clearly discrete objects in their denotation. But this means that basic lexical
count nouns are quantized, and fail to be divisive. This strategy amounts to a
typal distinction between count and mass nouns.

As Zucchi and White (1996, 2001) show, there are count nouns like twig,
sequence, fence which fail be quantized. Problematic for Krifka’s account are also
superordinate (aka object) mass nouns like furniture, because they have ‘natural
units’ in their denotation, like stools, coffee tables, chairs. Indeed, object mass
nouns like furniture pose problems even for more recent accounts. For example,
Chierchia (2010) argues that mass nouns differ from count nouns in having vague
(“unstable”) minimal individuals in their denotation, but this means that he is
forced to claim that the mass behavior of object mass nouns is not due to the
vagueness of minimal elements in their denotation, but require an alternative
explanation.

In some recent work (Rothstein 2010; Landman 2011; Grimm 2012; Sutton
and Filip 2016), it has been argued that a formal representation of what counts as
“one” is needed, which is not based on the notion of a ‘natural unit’ in any sense.
For example, Rothstein (2010) argues that there are count nouns like fence, wall
which fail to be naturally atomic, and are divisive. Their grammatical count
behavior is motivated by the assumption that their denotation is indexed to
counting contexts with respect to which what is “one” entity in their denotation
is determined. Landman (2011) proposes that mass nouns have overlapping sets
of entities that count as “one”, his “generator sets”, in their denotation, while
count nouns have non-overlapping generator sets. Grimm, just like Rothstein and
Landman, presupposes the assumptions of a classical extensional mereology, but
enriches it with topological notions. Countable entities have the mereotopological
property of being maximally strongly self connected. Sutton and Filip (2016)
argue that both vagueness with respect to what counts as “one” and non-overlap
in the set of entities that count as “one” interact in such a way as to either block
or facilitate variation in mass/count encoding.

292 P.R. Sutton and H. Filip

However, as we shall argue, even with a formal representation of what counts
as “one”, that is, a formal account of individuation, we do not have a satisfactory
account of the grounding of the mass/count distinction. In this paper, we will
point out some weaknesses of such an account, and seek to clarify what, in
formal terms is minimally required to model the mass/count distinction in a
more adequate way. Our strategy is to proceed in the most parsimonious way
and answer the following fundamental questions: If we have a full-fledged formal
theory of individuation (what counts as “one”), what data would still remain to
be explained for a formal theory of the mass/count distinction? Would classical
mereology be sufficient to cover such data? And, if not, what minimal extensions
would be required to classical mereology to do so?

In Sect. 2, we identify a number of classes of nouns that have been given a lot
of attention in the countability literature and outline the sense in which these
nouns individuate entities into what counts as “one”. We then schematize these
results in mereological terms and suggest that concrete nouns form at least four
individuation patterns. The result, we argue, is that the mass/count distinction
cuts across the individuated/non-individuated divide. In Sect. 3, we relate key
recent research into theories of individuation and the mass/count distinction
to discuss which formal enrichments have been suggested as necessary for a
theory of individuation. In Sect. 4, we propose that classical mereology must be
minimally extended with two separate conceptions of context in order to cover
the data that are intractable within formal theories relying on the notion of
individuation.

2 Individuation Patterns Across Classes Of Nouns

Considering just concrete nouns, we may distinguish five classes of nouns depend-
ing on their main lexicalization patterns. They are summarized in Table 1, where
the ‘Noun Class’ is a cover term for the descriptive labels below it.2

All accounts of the mass/count distinction at least aim to cover nouns that
we describe as “prototypical objects” (chair, boy) and as “substances, liquids
and gasses” (mud, blood, air). Indeed, an absolutely minimal requirement on
any account of the mass/count distinction is that it can at least semantically
distinguish between these two classes.

2.1 Prototypical Objects

Nouns in the prototypical objects category are what have been called “naturally
atomic” (see e.g., Rothstein 2010, and references therein). With these nouns, the

2 A notable omission from Table 1 are so-called “dual life” nouns such as
stone+C/stone−C (+C abbreviates COUNT and −C abbreviates MASS). We leave
these aside in this paper, given that it is unclear whether one should take either
the mass or count sense to be primary, or, indeed, whether such nouns should be
classified as being of some intermediary morphosyntactic category between count
and mass.

Countability: Individuation and Context 293

Table 1. Classes of nouns and mass/count variation

Noun class Examples

Proto-typical objects chair+c; tuoli+c (‘chair’ Finnish); Stuhl+c (‘chair’ German)

dog+c; koira+c (‘dog’ Finnish); Hund+c (‘dog’ German)

boy+c; poika+c (‘boy’ Finnish); Junge+c (‘boy’ German)

Super-ordinate artifacts furniture−c; huonekalu-t+c,pl (‘furniture’ Finnish)

meubel-s+c,pl, meubilair−c (‘furniture’ Dutch)

kitchenware−c; Küchengerät-e+c,pl (German, lit. kitchen device-s)

footwear−c; jalkinee-t+c,pl (‘footwear’ Finnish)

Homogenous objects fence+c, fencing−c; hedge+c, hedging−c

wall+c, walling−c; shrub+c, shrubbery−c

Granulars lentil-s+c,pl; linse-n+c,pl (‘lentils’ German)

lešta−c (‘lentil’ Bulgarian); čočka−c (‘lentil’ Czech)

oat-s+c,pl; oatmeal−c;

kaura−c (‘oat’ Finnish); kaurahiutale-et+c,pl (Finnish, lit. oat.flake-s)

Substances, liquids, gases mud−c; muta−c (‘mud’ Finnish); Schlamm−c (‘mud’ German)

blood−c; veri−c (‘blood’ Finnish); Blut−c (‘blood’ German)

air−c; lenta−c (‘air’ Finnish); Luft−c (‘air’ German)

“natural units”, or the entities we would count as “one” are just the minimal
entities in their denotations for which nothing else in the denotation is a proper
part, i.e., they are quantized in the sense of Krifka (1989). As Table 1 shows,
nouns in these classes display a strong tendency to be lexicalized as count as in
confirmed by the felicity and grammaticality of direct modification with numer-
ical expressions (such as the Finnish example in (4) and its English translation).

(4) Kolme tuoli-a/koira-a/poika-a.
Three chair-PART dog-PART boy-PART.
“Three chairs/dogs/boys”.

Assuming that count nouns take their interpretation from an atomic join
semilattice, the denotation of prototypical objects is represented in Fig. 1: the
basic (extensional) meaning of a count noun is a number neutral property and
hence its denotation comprises the whole lattice; the shaded area highlights the
set of singular (atomic) entities that count as “one”.

a b c d ...

a � c a � d b � c b � da � b c � d ...

a � b � c a � b � d a � c � d b � c � d ...

a � b � c � d ...

Fig. 1. Prototypical objects: Individuals are disjoint bottom elements

294 P.R. Sutton and H. Filip

2.2 Substances, Liquids and Gasses

Prototypical mass nouns tend to denote substances, liquids and gasses. In stark
contrast to prototypical objects, nouns in this class lack any clear individuable
entities/units at all. That is to say, whether or not one assumes the denotations
of these nouns are defined over atomic or non-atomic semilattices, there are no
entities that “stand out” as individuals (things that count as “one”).

Nouns in this class are very stably lexicalized as mass cross- and intralinguis-
tically. For example, as the German example in (5) and its English translation
show, direct numerical modification is infelicitous in the absence of a classifier-
like expression.

(5) #Vier Lüft-e/Schlämm-e.
four air-PL/mud-PL

#“Three bloods/airs”.
We schematize the denotation of nouns describing substances, liquids and

gasses as in Fig. 2. Unlike Fig. 1, there is no shaded area for entities that count
as “one” clearly individuated atomic unit.

a b c d ...

a � c a � d b � c b � da � b c � d ...

a � b � c a � b � d a � c � d b � c � d ...

a � b � c � d ...

Fig. 2. Substances: No individuals

2.3 Superordinate Artifacts

Superordinate artifacts are among the three categories in between Prototypical
Objects and Substances, Liquids, and Gasses nouns, the two extreme poles of
a countability scale (see also Allan 1980), along with Homogenous Objects and
Granulars. These three classes are far more complex than Prototypical Objects
and Substances, Liquids, and Gasses and all display cross and intralinguistic
count/mass variation.

Nouns in this class have been variously labelled “fake mass nouns”, “superor-
dinate aggregates”, “object mass nouns”, “neat mass nouns”, however arguably
superordinate count nouns such as vehicle should also fall in the same grouping.
A well known puzzle with such nouns is why so many languages lexicalize them
as mass nouns at all. The denotations of these nouns have clearly individuable
entities at the ‘bottom’ of them which should prima facie be good candidates

Countability: Individuation and Context 295

for counting, and superordinacy in itself is no bar to countability (as evidenced
by count nouns such as vehicles, fruits (US English), vegetables).

Nonetheless, one may find both mass and count nouns in this category with
both cross- and intralinguistic variation. For example, the grammaticality of the
Finnish example in (6) contrasts with the complete infelicity of the English (7).

(6) Kaksi huonekalu-a.
two furniture-PART
“Two items of furniture”.

(7) ## Two furnitures
What counts as “one” for nouns in this category is not, however, restricted

to entities at the bottom of the lattice (as is the case with prototypical objects).
As observed by Landman (2011), sums of minimal entities may also count as
“one”. For example, for kitchenware, a teacup and a saucer count as “one” item
of kitchenware, but in many contexts, so might a teacup and saucer together,
and, for furniture, tables/desks, stools/chairs and mirrors all count as single
items of furniture, but so does a vanity formed of one of all three. This pattern
is schematized in Fig. 3. The minimal entities that count as “one” are shaded in
darker gray. The rest of the lattice is also shaded, but the lighter color indicates
that some, but not necessarily all sums of minimal entities count as “one”.

2.4 Homogenous Objects

This class includes nouns such as fence and fencing. We use ‘homogenous’ here in
the sense of Rothstein (2010). For example, for some entities that count as fences,
proper parts of these entities themselves count as fences. Note that such nouns
denote divisive predicates in the sense of (3) above (down to a certain lower
limit). These nouns are cumulative, even with respect to what counts as “one”.
For example, if two fences are attached together, then there will be contexts in
which their sum counts as a single fence.

One difference between homogenous objects and superordinate artifacts is
that, at least for some nouns in this class, there seem to be fewer restrictions on
what can be put together to count as “one”. This derives from the homogeneity of
these objects, as opposed to the more functionally defined homogenous artifacts.

a b c d ...

a � c a � d b � c b � da � b c � d ...

a � b � c a � b � d a � c � d b � c � d ...

a � b � c � d ...

Fig. 3. Superordinate artifacts and homogenous objects: Individuals are disjoint bot-
tom elements plus at least some sums thereof

296 P.R. Sutton and H. Filip

A whisk and a teaspoon cannot, at least in ordinary contexts, count as a single
item of kitchenware since the two together do not function as a single item. A
pestle and mortar can count as a single item of kitchenware, since these two
do have a joint function with respect to being a kitchenware tool. For fences
and bushes, however, provided that two or more portions of fencing/hedge are
relevantly similar, one can be appended to the other to make what could count
as a single fence/hedge. Nonetheless, it is not the case that, for example, any two
entities in the denotation of fence could be put together to form one fence. It is
hard to imagine how a 50 cm high picket fence and a 4 m high chainlink fence
could count as “one”. For this reason, we schematically represent homogenous
objects in the same way as superordinate artifacts in Fig. 3.

For at least some languages with count/mass counterparts in this category
such as English and German, the morphologically simple item tends to be count
(hedge, Busch (‘bush’/‘shrub’, German)) and a morphologically more complex
item formed from this root tends to be mass (hedging, Gebüsch (‘shrubbery’
German)).

2.5 Granulars

Granulars align roughly with what Grimm (2012) labels “collective aggregates”.
These tend to be formed of collections of similar items with food items as com-
mon examples (rice, lentils, beans), however other examples include shingle,
gravel, pebbles. Their denotation most obviously, from a perceptual perspective,
consists of non-overlapping grains, flakes, granules and the like. Furthermore,
whenever one finds a count noun in this class, it is precisely the single flakes,
grains or granules that are denoted by the singular form.

However, parts of these grains, flakes or granules are also in the number
neutral denotations of these nouns. For example, rice flour counts as rice, and
red lentils, after cooking down into a kind of pulp, still count as lentils. This
pattern of the relationship between the regular denotation and what counts as
“one” is schematized in Fig. 4. To reflect that these nouns are granular, the
individuated entities are disjoint (non-overlapping), but are not at the bottom
of the lattice. A pile of broken up rice grains or lentils still count as rice or lentils,
respectively. This category also displays a large amount of count/mass variation
as Table 1 helps to show.

2.6 Individuation Does Not Determine Mass/Count Encoding

With these four individuation patterns outlined,3 it should be clear that being
individuated in the sense of having entities that count as “one” or not is insuf-
ficient for determining whether nouns are count or mass. We grant that the
only completely non-individuated class tends strongly towards containing only
mass nouns, but superordinate artifacts, homogenous objects, and granulars all
contain many examples of both mass and count nouns.

3 We do not rule out there being more than these four.

Countability: Individuation and Context 297

a b c d ...

a � c a � d b � c b � da � b c � d ...

a � b � c a � b � d a � c � d b � c � d ...

a � b � c � d ...

Fig. 4. Granulars: Individuals are non-bottom, disjoint individuals

Notice too, that being individuated is not the same as coming in natural
units. Sums of fence units can still count as one fence, and collections of items of
kitchenware such as pestles and mortars can still count as one item of kitchenware
or as ein Küchengerät (‘one (item of) kitchenware’, German).

3 Enrichments Needed for a Theory of Individuation

The four patterns of individuation we have just outlined could be understood
as the outcome of some fully-fledge theory of individuation. In Sect. 4, where
we make the main point in this article, we will show that even after assuming
such a fully fledged theory of individuation has already been given, the basic
tools of mereology are insufficient for accounting for count/mass variation data.
Specifically, we argue that at least two contextual parameters must be added to
classical mereology and a theory of individuation to accommodate these data.

However, within the count/mass literature, these issues of individuation and
the count/mass distinction are not always articulated. Also, suggestions for
enrichments to mereology have been made, such as mereotopology (Grimm
2012), context sensitivity (Rothstein 2010) and vagueness (Chierchia 2010).
Therefore, in this section we review some of these suggested enrichments, and
point out which pertain to a theory of individuation (defined as producing at
least the four patterns above), and which develop a theory of the count/mass
distinction on top of and further to the issue of individuation.

The reason for pursuing this line is that the mass/count distinction cuts
across the individuated/non-individuated divide, as the schemas in Figs. 1, 2,
3 and 4 show. For example, even though homogenous objects, superordinate arti-
facts and granulars are all individuated, some of these nouns are count, and
others are mass.

3.1 Mereotopology

The schema in Fig. 1 for prototypical objects is a standard representation of
the denotation for a count noun, however, given a single domain assumption on
which all nouns are interpreted relative to the same domain, it actually hides
a wealth of assumptions. If we assume a single general domain, with respect to

298 P.R. Sutton and H. Filip

which the denotations of predicates are defined, then most common concrete
count nouns will not have, as atoms at the bottom of their denotations, entities
which are atoms with respect to the whole domain. This is a point one can
find in the background of Rothstein (2010) where formal atoms of the domain
need not be specified to give an account of the semantic atoms (things that
count as ‘one’) for a predicate, and it is explicit in recent work from Landman
(Landman 2015). However, this means that, for example, the a, b, c, d, . . . in Fig. 1
are atoms relative to a predicate, but not necessarily formal atoms in the whole
domain. For example, if the domain contains chair backs, chair seats, and chair
legs, the denotation of chair will contain, as individuated entities, entities that
are, formally, sums of chair parts. Now, if one accepts this characterization, then
certain arguments, such as those employed in Grimm (2012), gain some traction.

Grimm (2012) argues that classical mereology is not sufficient for charac-
terizing individuals. This is because, in classical mereology, all sums are equal.
That is to say that the sum of any two entities is considered to be a mereologi-
cal entity in its own right. However, many sums are not good candidates to be
individuals. For example, the sum of Donald Trump and a Blancmange sitting
a thousand miles away does not make for a good candidate to be an individual.
Less bizarrely, even if we were to pile an assortment of chair legs, a chair back
and a chair seat together, we do not have a chair individual, or if we took a sum
of twenty starlings, they would not make a flock unless reasonably proximate.
Taking these considerations seriously suggests that a formal theory of individ-
uation must involve not only mereological relations, but also topological ones
(mereotopology). The need for mereotopology can also be seen in Fig. 4. For
granular nouns, we have assumed in that what counts as “one” are the (whole)
grains or granules. For example, single lentils count as “one” with respect to the
predicate lentil. However, if the number neutral property for lentil also denotes
parts of lentils and lentil flour, then only a privileged selection of sums will be
whole lentils (hence the highlighting of a�b and c�d, but not, at the same time,
e.g. a�d in Fig. 4). Similarly, the things we would count as “one” for homogenous
objects can be affected by mereotopological factors too. If two box bushes are
placed in close enough proximity, they may count as a single hedge/bush, but
not if they are too far apart.

Mereotopology, as an enrichment of mereological semantics, therefore best
addresses the issue of individuation (what counts as “one”). Indeed, there is
good reason to assume that the four individuation patterns above could not
be provided without some appeal to topological relations. For the remains of
this paper, we therefore view the topology in ‘mereotopology’ as part of a the-
ory of individuation. This will allow us to ask what, beyond individuation and
mereology, we need to account for patterns in count/mass variation.

3.2 Vagueness and Underspecification or Overspecification

For substances, liquids and gasses, there are no entities that intuitively count as
“one”. This loosely reflects a general consensus in the semantics of countabil-
ity literature, but the details differ. For example, Chierchia (1998, 2010), and

Countability: Individuation and Context 299

Rothstein (2010) appeal to vagueness or underspecification with respect to what
the atoms of prototypical mass nouns are. In other words, for example, there
are no entities that count as “one” mud, because the meaning of mud does not
determine or specify such a set.

An alternative position, defended by Landman (2011) is overdetermination.
On this view, it is not quite right to say that there are no entities that count as
“one” for substances, liquids and gasses, but rather that there is no single set of
entities that count as “one”. There are, on this view, many ways one could cut
the cake and so no single way to count. With more than one way to count where
the answer to the question ‘how many’ depends on the way one does count, then
counting goes wrong.

We do not wish to argue in favor of over- or underdetermination here.
What matters is that these enrichments to one’s model are needed already
to form an account of individuation. It remains to be seen, however, whether
under/overdetermination will still be needed for a theory of countability if a
theory of individuation is taken as basic.

3.3 Context Sensitivity

The need for context sensitivity in a theory of individuation comes from two
sources. First, there are data from Yudja, a language in which, it is argued, all
nouns can be directly attached to numerals and then counted (Lima 2014). In the
examples cited by Lima (2014), counting with substances, liquids and gasses, for
example apeta (‘blood’, Yudja), was assessed in relation to a context. Informants
were shown pictures as contexts. The portions of blood, sand etc., are clearly
separated, albeit not always the same size or quantity and were reliably described
these situations using direct numeral attachment to nouns in this class. Lima
argues that such constructions are not coercions from mass interpretations into
conventional packaged units. It is not so contentious, therefore, to assume some
form of context dependency for what counts as “one” for nouns in the substances,
liquids and gasses category in Yudja. That is to say that Yudja speakers do
seem to individuate substances, liquids and gasses albeit in a context dependent
way. Such a role for context sensitivity, namely determining when portions of
substances are sufficiently spatially demarcated to count as “one”, would, on our
terms, be part of a theory of individuation.4

Second, vague, but nonetheless countable nouns such as heap, fence, and
mountain provide some evidence for context-sensitivity in what counts as “one”.
Chierchia (2010), in the context of arguing that it is vague what the countable
entities in the denotations of mass nouns are, claims that nouns such as fence are
not vague in the same way. Although it might be vague what the smallest fence
unit is, just as it is famously vague, via sorites arguments, at how many grains a
heap becomes a non-heap, this vagueness is different from the underspecification
of what the atoms for a noun such as mud are. The point, simply put, is that there

4 We do not view this role for context as the same as that employed by Rothstein
(2010) which specifies what is lexically accessible for counting in context.

300 P.R. Sutton and H. Filip

are clear cases of mountains, fences and heaps, and so, provided that one sets
what Chierchia calls a “ground context”, one can be assured of, for example, a
set of non-overlapping minimal fence units at every ground context. This claim
strongly resembles one made by Rothstein (2010) who argues that “counting
context” dependency should be encoded into the semantics of count nouns so
as to capture the countability of nouns such as fence and twig. In other words,
there is a element of context that determines what counts, minimally, as fences
or twigs. It is important to note that the same applies for mass nouns such as
fencing. What counts minimally, as an item of fencing may vary with context.
This role for context more clearly applies to the count/mass distinction that to
only a theory of individuation. We will return to this role for context in Sect. 4.

3.4 Summary

Our list of mereotopology, underspecification/vagueness, overspecification, and
context sensitivity is surely not exhaustive of the formal devices needed for a
full account of individuation. For example, for artifacts such as chair as well as
superordinate artifacts such as furniture, some form of lexical semantic repre-
sentation of function will probably be needed. However, what we have aimed
to do thus far is clear the decks of some of the complications involved in the
semantics of the mass/count distinction. In the next section, we assume that
some account of individuation can be given and so the schemas in Figs. 1, 2, 3
and 4 can be taken for granted. As we have just seen, providing a fully-fledged
theory of individuation would be a highly complex and detailed task. Therefore,
our assumption that one can be adequately given is a substantial simplifying
assumption.

Let us henceforth suppose that there is a fully-fledged theory of individua-
tion that predicts the four individuation patterns from Sect. 2. This means that
having entities that count as “one” is not a sufficient condition for being a count
noun, but it also enables us to ascertain how far we can proceed in specify-
ing the mass/count distinction in purely mereological terms once a theory of
individuation is taken as basic.

4 Applying Mereology to the Noun Classes

4.1 Formally Characterizing the Noun Classes in Mereological
Terms

Since the domain is, as standardly assumed in mereological semantics, a Boolean
algebra minus the empty set, we can say the following about the relationship
between the denotations of all classes of nouns and the set of entities that count
as “one”. We assume that Ind(P), denotes the set entities that count as “one”
P . This is licensed because at this point we are assuming that a fully-fledged
account of individuation along with classical mereology.

Countability: Individuation and Context 301

On these assumptions, being a P -individual is a sufficient condition for
being P :

∀P∀x[Ind(P (x)) → P (x)] (8)

(8) is trivially satisfied by substances, liquids and gasses, which have no
entities that count as “one”, and is non-trivially satisfied for all other noun
classes.

Another property that can be seen is with respect to the distributional prop-
erties of mass and count nouns amongst these classes. As noted in Sect. 2, sub-
stances, liquids and gasses are in all but rare cases lexicalized as mass nouns. A
notable exception is Yudja (Lima 2014), which appears to allow direct counting
with all nouns. All other noun classes, which have non-empty Ind sets contain
some nouns lexicalized as count. This suggests that individuation (being able
to identify what counts as “one”) is a necessary, but not sufficient condition for
countability, and lacking individuated entities is a sufficient condition for being
uncountable.5 In other words, if C is a second order property of predicates (being
countable), such that �C means possibly countable and �¬C means necessarily
not countable:

∀P [�C(P) ↔ ∃x[Ind(P (x))]] (9)

∀P [�¬C(P) ↔ ¬∃x[Ind(P (x))]] (10)

The intuitive explanation for why (9) should make the lexicalization of a count
noun possible is that individuation, finding at least some individuals in a noun’s
denotation, is the first minimal step towards being able to count. Otherwise,
there would be nothing to count.

However, we may also describe a property held by the three classes of nouns
which display variation. In other words, for a predicate P we can describe when
mass/count variation is to be expected (�C(P)∧�¬C(P)), and, by negation of
both sides of the biconditional, when it is not permitted (�C(P) ∨ �¬C(P)).

∀P [�C(P) ∧ �¬C(P) ↔ ∃x∃y[Ind(P (x)) ∧ P (y) ∧ y � x]] (11)

∀P [�C(P) ∨ �¬C(P) ↔ ∀x∀y[(Ind(P (x)) ∧ P (y)) → ¬y � x]] (12)

In words, it turns out that mass/count variation is licensed when a particular
kind of relationship exists between members of the set of P s and members of
the set of P individuals. For superordinate artifacts, homogenous objects, and
granulars, there are entities in the set of P s that are proper parts of entities
in the set of P individuals. Examples of this are summarized in Table 2. For
prototypical objects this is not so, since, vagueness aside, parts of boys, cats and

5 This would require taking the view that in Yudja, a more liberal view is taken on
what counts as “one” such that nouns denoting, for example, mud would have non-
empty Ind sets. This may be relative to some specific context only, however. The
examples for counting with nouns denoting substances and liquids in Lima (2014)
tend to be in contexts where there are clearly perceptual portions involved such as
drops of blood.

302 P.R. Sutton and H. Filip

chairs are not boys, cats and chairs, respectively.6 It is also not the case that
substances, liquids and gasses have entities in their denotations that are parts
of individuals, since they have empty Ind sets.

The question is why should the property in (11) facilitate the possibility of
either mass or count encoding and its negation in (12) prevent it? Furthermore,
we may ask whether such an explanation needs to appeal to more than just
mereological relations and properties. In the remains of this section, we show
how far we consider one can get with mereology alone. In Sect. 4.2, we then
argue that simple mereology is insufficient for providing a satisfactory analysis
of countability.

Since, of recent accounts, Landman (2011) remains truest to a purely mere-
ological account, we will adopt two further notions from Landman, namely dis-
jointness (not overlapping) and generator set. One area of loose consensus in
the semantics of countability, that was emphasized most notably in Landman
(2011) is that one should not, usually, allow for overlap in the set of entities which
one wishes to count. Landman’s idea was that overlap leads to overdetermina-
tion of how many entities there are and that if this overlap cannot somehow be
ignored, then counting goes wrong. The importance of non-overlap is also men-
tioned by Chierchia (2010), and via the notion of a “default” counting context
in Rothstein (2010). The standard mereological notions of disjointness are given
in (13) and (14):

DISJ(x, y) ↔ x 	= y → x
 y = ∅ (13)

DISJ(P) ↔ ∀x∀y[(P (x) ∧ P (y) ∧ x 	= y) → x
 y = ∅] (14)

Generator sets in Landman (2011), informally, play the role of what we have
referred to here as Ind sets, namely the sets of entities that count as “one”.
However, Landman (2011) formally characterizes them in the following way:

A generating set for X is a set gen(X) ⊆ X − {∅} such that:
∀x ∈ X : ∃Y ⊆ gen(X) : x = �Y

In other words, the a generator set should, when closed under sum, yield
the set it generates. These two notions can be put together to form two rea-
sonable countability norms which are inspired by Landman’s (2011) notions of
disjointness and generator sets:

Disjointness Condition: Ind sets should be (non-trivially) disjoint.

Generator Condition: Ind sets should be generator sets.
Now, provably, the property in (11) entails that one or the other of these

norms must be violated. This should be clear from Figs. 3 and 4, but can also be
demonstrated. The right hand side of (11) can only be satisfied if x 	= y, since
y � x. Either (i) y ∈ Ind(P) or (ii) y ∈ P and y /∈ Ind(P). If (i), then there
are x, y ∈ Ind(P) such that y � x. Since y � x ↔ x
 y 	= ∅, it is not the case
that DISJ(Ind(P)). If (ii), then there is a y ∈ P and an x ∈ Ind(P) such that

6 This is, again, not absolute. For example, table seems to behave closer to fence insofar
as two tables pushed together can count as “one” table.

Countability: Individuation and Context 303

Table 2. Examples of individuals and parts of individuals in the denotation of
predicates

Noun class Examples Individuals Parts of individuals

Superordinate kitchenware, pestle, mortar, pestle, mortar

artifacts Küchengerät-e+C,PL pestle � mortar

(‘kitchenware’, German)

Homogenous fence, fencing fence1, fence2 fence1, fence2

objects fence1� fence2

Granulars rice, lentil-s grains of rice parts of grains, rice

lentils flour parts of lentils,

lentil flour

y � x and y /∈ Ind(P). If Ind(P) is disjoint, then there is also no z � y such
that z ∈ Ind(P). Hence, there can be no subset of Ind(P), Y such that �Y = y,
hence Ind(P) is not a generating set for P .

Homogenous objects (fence) and superordinate artifacts (furniture) have the
potential of being countable, since they do have non-empty Ind sets. However,
countability can be undermined unless the overlap in their Ind sets is somehow
ignored.

Granulars (rice, lentils) have the potential of being countable, since they have
non-empty Ind sets. However, countability can be undermined because their Ind
sets do not generate the entirety of their denotation (i.e. do not generate anything
‘below’ the granular level).

4.2 Beyond Mereology

It is at this point that it seems that a purely mereological analysis gives out.
Superordinate artifacts and homogenous objects breach the disjointness condi-
tion, but some nouns in these classes are count nouns. Granulars breach the
generator condition, but some nouns in these classes are count nouns.

In cases where the disjointness condition is violated, a noun may still be
lexicalized as count (as with fence and huonekalu (‘furniture’, Finnish)) if some
mechanism exists by which one can ignore overlap in an Ind set in such a way
as to ensure only one counting result in any given context. At the very least,
this seems to require that count nouns in the homogenous objects (fence) and
superordinate artifacts (huonekalu) groups must be indexed in some way to
either something akin to Rothstein’s counting contexts (Rothstein 2010), or to a
formal device such as Landman’s “variants”, where a variant of a generator set
is a maximally disjoint subset (Landman 2011). Although a maximally disjoint
subset (variant) can be specified in mereological terms, we nonetheless require
a formal device which applies a single variant to an Ind set at a given occasion.
For example, if a teacup and saucer count as two items of kitchenware on one

304 P.R. Sutton and H. Filip

occasion, then this formal device should make it possible that the cup and saucer
sum count as a single item on another occasion.

In cases where the generator condition is violated, a noun may still be lexi-
calized as count (as with lentil) if one has a formal device that can explain why
an Ind set can sometimes be taken as a counting base despite not generating the
whole nouns denotation. We argued in Sutton and Filip (2016), that an explana-
tion of this phenomena will need to be derived from a distinct form of context-
sensitivity such as the one that underpins Chierchia’s vagueness-based account
of the mass/count distinction (Chierchia 2010). Chierchia points towards exam-
ples where what we have identified as the individuated units of granulars (the
single grains, flakes etc.) fall in and out of the extensions of granular predicates
depending on context. For example, a single grain of rice is sufficient in quantity
to count as rice in contexts where someone has an allergy, but insufficient to
count as rice when one is making paella. While this evidence is not sufficient to
fully justify supervaluationism as applied by Chierchia, it does suggest that the
Ind set for granulars is on looser grounds that the Ind sets in other categories.
For example, for prototypical objects, homogenous objects, and superordinate
artifacts, if x ∈ Ind(P) at a context c, then x ∈ P at all contexts c′, however,
for nouns such as rice, there are at least some contexts in which, if x ∈ Ind(P)
at c, it is possible that x /∈ P at some context c′. However, this does not imply
that the individuated units for granulars are underspecified or vague. Minimally,
therefore, we require another index to another form of context, or else a richer
story about how extensions of granular nouns can vary from use to use.

5 Conclusions

In this paper we have identified a number of complications that arise in trying to
establish the right formal tools to model the mass/count distinction in concrete
nouns. We have argued that, as important as a theory of individuation is, the
development of a theory of individuation does not entail that one has a theory
of the mass/count distinction. Furthermore, we have argued that, even if one
assumes an independently motivated theory of individuation, classical mereol-
ogy is still insufficient for capturing the puzzling mass/count variation data for
superordinate artifacts, homogenous objects and granulars.

We have concluded that, minimally, two dimensions of context sensitivity
need to be incorporated into a mereological semantics. The first to formally
remove overlap from an overlapping Ind set, the second to track the way in
which the truth conditions of, especially, granular nouns shift in such a way as
to change the position of the Ind set in the lattice or even remove it from the
noun’s denotation entirely in some situations.

Acknowledgements. This research was funded by the German Research Foundation
(DFG) CRC991, project C09.

Countability: Individuation and Context 305

References

Allan, K.: Nouns and countability. Language 56(3), 541–567 (1980)
Chierchia, G.: Plurality of nouns and the notion of semantic parameter. In: Rothstein,

S. (ed.) Events and Grammar, pp. 53–103. Springer, Heidelberg (1998)
Chierchia, G.: Mass nouns, vagueness and semantic variation. Synthese 174, 99–149

(2010)
Grimm, S.: Number and individuation. Ph.D. dissertation, Stanford (2012)
Krifka, M.: Nominal reference, temporal constitution and quantification in event seman-

tics. In: Bartsch, R., van Benthem, J.F.A.K., van Emde Boas, P. (eds.) Semantics
and Contextual Expression, pp. 75–115. Foris Publications, Dordrecht (1989)

Landman, F.: Count nouns – mass nouns – neat nouns – mess nouns. Baltic Int. Yearb.
Cogn. 6, 1–67 (2011)

Landman, F.: Iceberg semantics for count nouns and mass nouns: the evidence from
portions. Handout, Presentation at Henirich Heine University Düsseldorf (2015)

Lima, S.: All notional mass nouns are count nouns in Yudja. Proc. SALT 24, 534–554
(2014)

Link, G.: The logical analysis of plurals and mass terms: a lattice-theoretic approach.
In: Portner, P., Partee, B.H. (eds.) Formal Semantics - The Essential Readings,
pp. 127–147. Blackwell, Oxford (1983)

Pelletier, F.J. (ed.): Mass Terms Some Philosophical Problems. D. Reidel Publishing
Company, Holland, Boston (1979)

Quine, W.V.: Word and Object. The MIT Press, Cambridge (1960)
Rothstein, S.: Counting and the mass/count distinction. J. Semant. 27, 343–397 (2010)
Sutton, P.R., Filip, H.: Vagueness, overlap, and countability. In: Proceedings of Sinn

und Bedeutung 20 (2016, forthcoming)
Zucchi, S., White, M.: Twigs, sequences and the temporal constitution of predicates.

In: Galloway, T., Spence, J. (eds.) Proceedings of SALT, vol. 6 (1996)
Zucchi, S., White, M.: Twigs, sequences and the temporal constitution of predicates.

Linguist. Philos. 24(2), 223–270 (2001)

The Proper Treatment of Linguistic Ambiguity
in Ordinary Algebra

Christian Wurm and Timm Lichte(B)

University of Düsseldorf, Düsseldorf, Germany
{cwurm,lichte}@phil.hhu.de

Abstract. We present a first algebraic approximation to the seman-
tic content of linguistic ambiguity. Starting from the class of ordinary
Boolean algebras, we add to it an ambiguity operator ‖ and a small
set of axioms which we think are correct for linguistic ambiguity beyond
doubt. We then show some important, non-trivial results that follow from
this axiomatization, which turn out to be surprising and not fully satis-
fying from a linguistic point of view. Therefore, we also sketch promising
algebraic alternatives.

1 Introduction

The term linguistic ambiguity designates cases where expressions, or expo-
nents, of natural language give raise to two or more sharply distinguished mean-
ings.1 Ambiguity is a truly pervasive phenomenon in natural language, and
therefore perhaps also a very heterogeneous one. It affects single-word expres-
sions such as bank (‘financial institute’, ‘strip of land along a river’), multi-word
expressions such as kick the bucket (‘kick the bucket’, ‘die’), VPs with varying
PP attachment (see the man with the telescope), as well as larger syntac-
tic units up to full clauses, e.g. every boy loves a movie with its two readings
of quantifier scopes.

To deal with ambiguity of this kind, say an exponent e with two meanings
m1,m2, two general approaches are at choice. The first approach (aka. syn-
tactic approach) is the following: we have two separate entities (e, m1) and
(e, m2) (these are form-meaning pairs, which we henceforth call symbols).
These are unrelated, except for the fact that (for whatever reason) they turn
out to have the same exponent. If we encounter e, we do not know which of the
two entities we have; so we just pick one and proceed. Importantly, in the mean-
ing component itself, there is no ambiguity; it only occurs at the point where
we choose one of the two symbols. This process is however non-deterministic,
and strictly speaking, there is no function from form to meaning. The second
approach (aka. semantic approach) is to assume the existence of one ambigu-
ous symbol (e, m1‖m2), which has a genuinely ambiguous meaning. This comes

In the originally published version there is an error in the proof of Lemma 1. The
erratum to this chapter is available at https://doi.org/10.1007/978-3-662-53042-9 19

1 This roughly distinguishes ambiguity from cases of vagueness [8].

c© Springer-Verlag Berlin Heidelberg 2016
A. Foret et al. (Eds.): FG 2015/2016, LNCS 9804, pp. 306–322, 2016.
DOI: 10.1007/978-3-662-53042-9_18

https://doi.org/10.1007/978-3-662-53042-9_19

The Proper Treatment of Linguistic Ambiguity in Ordinary Algebra 307

with a number of technical advantages: there is a function from form to meaning,
lexical entries do not multiply, there are no questionable choices, and we always
keep track of possible ambiguities during the process of meaning composition.

There is, however, one big question: as in the second approach, ambiguity
enters into semantics proper, we have to ask ourselves: what does it actually
mean? In this paper, we will approach this question in an algebraic fashion. In
doing so, we will see that the answer is far from obvious, and comes with a
number of surprising insights.

2 Linguistic Ambiguity

The ambiguity of linguistic exponents is commonly treated by mixing syntac-
tic and semantic approaches – and it is sometimes difficult to sort out which
of the two should be preferred given a specific exponent. Still there seem to be
cases where there is inherent reason (besides the technical advantages mentioned
above) to choose only the semantic approach. One sort of evidence is the con-
current and persistent availability of different meanings of one exponent, such
as in (1) taken from [3]:

(1) a. The federal agency decided to take the project under its
well-muscled, federally-funded wing.

b. We pulled his cross-gartered leg.

In (1-a), the modifiers well-muscled and federally-funded refer to different
meanings of wing, namely either its literal or idiomatic meaning. This is clearly
out of reach for any syntactic approach. The same holds for cases of “conjunctive
modification” (Ernst) such as in (1-b). Here, cross-gartered modifies the literal
meaning of leg, while pulled leg is interpreted idiomatically. Another sort of
evidence in favor of choosing a semantic approach comes from psycholinguistic
experiments (e.g. [7,12]) that suggest that, in the face of ambiguity, processing
costs rather emerge in the semantics than in syntax. So even if we don’t claim
that all cases of linguistic ambiguity must be treated within a semantic approach,
there’s certainly no way around a notion of ambiguity that is genuinely semantic.
Therefore, and for the sake of exposition, we want to apply the semantic approach
as generously as possible in what follows.

It seems furthermore clear to us that we want to draw inferences from ambigu-
ous statements, even if we cannot disambiguate them. Hence, we do not assume
that disambiguation strictly precedes the inferencing step, as does [10]. So given
an ambiguous sentence such as in (2), taken from [10], it is clearly possible to infer
‘there is a big car in New York’ without disambiguating the meaning of strikes:

(2) The first thing that strikes a stranger in New York is a big
car.

One might think that this is no argument in our favor, because the fact that
there is a big car in New York obviously follows from both readings of (2). But
the example actually makes a strong point: since we can easily and obviously

308 C. Wurm and T. Lichte

infer things from ambiguous statements, we have to clarify what the meaning of
ambiguity actually is, at least from an inferential point of view.

Usually, there is a quick answer to the question what ambiguity means,
namely: ambiguity means the same as disjunction. This is correct in the sense
that, if we get an ambiguous meaning m1‖m2, then the only thing we can infer
for sure is m1 ∨ m2 (∨ being disjunction). However, a quick argument shows
that equating ‖ and ∨ is inadequate even in simple logical contexts. For exam-
ple, assume an ambiguous meaning m1‖m2 that is in the scope of a negation. If
we treat ‖ as ∨, then the meaning of ¬(m1‖m2) would be ¬m1 ∧¬m2 – which is
obviously wrong, because intuition clearly tells us that ¬(m1‖m2) = ¬m1‖¬m2,
for example:

(3) There is no bank.

This sentence is ambiguous between the meanings of there is no financial
institute and there is no strip of land along the river, but it surely
does not mean that there is neither of the two. The same holds if we have m1‖m2

in the left-hand side of an implication etc.2 The semantic treatment of ambiguity
also requires a proper behavior in the course of meaning composition, which is
definitely not granted by treating it as disjunction. Hence treating ambiguity as
disjunction not only runs counter to most basic intuition, but also destroys the
parallelism between the two approaches to ambiguity, whereas they should be
equivalent (or at least parallel) at some level. Another problem we only briefly
mention is the following: we often find ambiguities between meanings m1,m2

where m1 entails m2 (as in the two readings of every boy loves a movie).
In this case however, m1 ∨ m2 is obviously equivalent to m2 – so there would
be no ambiguity in the first place! This, however, runs counter to any intuition
and again destroys the parallelism between the two approaches to ambiguity. To
sum up, we think it is completely inadequate to think of ambiguity in terms of
disjunction.

Considering all this, it is surprising that until now, there has not been any
serious work on the proper meaning of ambiguity. Of course, there are ample
works on aspects of linguistic ambiguity in terms of parasemantic underspecifi-
cation (see, e.g., [1], [2, Chapter 10], [9,10]), but none of them, to the best of
our knowledge, addresses the meaning of ambiguity on the level of object terms.
This is what we want to start in this paper. Obviously, this work can be only
preliminary; we will start by considering a very particular case, namely what
happens when we add an operator ‖, which satisfies laws we consider adequate
for ambiguity, to a Boolean algebra. So we consider Boolean algebras with an
additional operator and with some additional axioms fixing its properties. As we
will see, it is sufficient to provide a very small set of axioms which we think are

2 [10] delivers another example for the “disjunction fallacy” based on intensional
predicates: given a sentence S that is ambiguous between P and Q, the follow-
ing should hold if S meant P ∨ Q: [A means that S] = [A means that [P ∨ Q]] =
[[A means that P] ∨ [A means that Q]]. However, this is obviously not the case. See
also [11] and [9] for similar ideas and examples.

The Proper Treatment of Linguistic Ambiguity in Ordinary Algebra 309

correct for ambiguity beyond doubt. From these axioms already follow a lot of
other properties we think are correct for ambiguity (in fact, all we can think of).
On the other side, we can also derive many more strong properties no one would
think are generally true for ambiguity. In this sense, the results of this paper
are not fully satisfying. However, they leave us with an interesting puzzle and
are highly relevant to anyone who thinks that a semantic approach to ambiguity
is worth pursuing. Note that all results are algebraic in nature and thus very
general, and by no means bound to any particular notion of meaning, except for
the assumption that logical operations are Boolean.

The structure of the rest of this paper is as follows: first, we discuss some
fundamental properties of ‖ (that is, semantic ambiguity). This provides the
theoretical/semantic motivation for our axiomatization of ambiguous algebras,
which is presented in the next section. Subsequently, we present the most impor-
tant results on ambiguous algebras, which are surprisingly strong, and finally,
we discuss what it all means and what purpose it might serve.

3 The Semantics of Linguistic Ambiguity

First let us discuss the relation between ‖ and ∨. It is not by chance that, in
approaches so far, ambiguity is mostly treated as a disjunction. On thing is
obvious: a‖b entails a ∨ b, and moreover, a ∨ b is the smallest Boolean object
generally entailed by a‖b. That the two are not identical can be seen from the
following considerations: by definition, a entails a∨b and b entails a∨b. However,
it is surely not generally true that a entails a‖b: ‘financial institute’ does not
generally entail ‘bank’; in some uses it does, in other it does not. This clearly
depends on the question in which sense the speaker intends an expression with
meaning a‖b – he could for example intend b by it. So, a‖b has the following
strictly weaker property: either a entails a‖b, or b entails a‖b. Which one of the
two holds depends on something we might call the speaker’s “intention”, but
the latter is nothing we can directly observe. The notion of intention of course
is very difficult to grasp, and serious philosophers have done major work just
in order to clarify this concept (we just mention [4,13]). This is not the place
to dwell on this notion, so we just clarify our point with an example: suppose
speaker A utters:

(4) I need some pastry or some money!

Then no matter which one of the two you bring him, you surely have fulfilled
his desire. Conversely, suppose speaker B utters:

(5) I need some dough!

If you bring him some pastry, he might say: But I needed some money!; con-
versely, if you give him money, he might say: But I just needed pastry!. He
might of course also be satisfied with either of the two, he might even be sat-
isfied with just a cup of coffee instead, but that is beside the point. The point
is: by uttering dough, he is committed to either ‘money’ or ‘pastry’, but just

310 C. Wurm and T. Lichte

one of the two in particular, and not an arbitrary one of the two.3 The notion
of ambiguity has an epistemic flavor which the truth-functional connectives do
not have at all. This will correspond with the fact that ‖, contrarily to Boolean
operators, cannot be defined in terms of truth-functions (if it could, it would
in fact be redundant, as all binary truth functional operators can be defined by
∧, ¬). Therefore, it is most natural to consider ‖ in an algebraic (rather than a
logical) setting, and it seems most natural to us to start with Boolean algebras,
because they correspond to classical propositional logic. Though the correspon-
dence of Boolean algebras and classical logic is close, it is important to keep in
mind that all formal treatment in this paper will be algebraic, not logical (we
therefore use ∼ for algebraic complementation, not ¬ as is generally used for
logical negation). Nonetheless, the algebraic relation ≤4 can be intuitively read
as logical entailment, and the algebraic equality = as logical equivalence. Both
will help the intuitive understanding and hardly do any harm, and consequently,
we will use a ≤ b and “a entails b” with a parallel meaning, the former being the
algebraic counterpart of the latter. To connect the algebras that we are about to
introduce properly to intuition, it is important to keep the following in mind: the
objects of the algebra are supposed to be meanings; we are completely agnostic
to what they actually are and whether they have any internal structure. These
meanings are related by the relations ≤ (corresponding entailment, definable in
terms of ∧,∨), and can be combined by means of Boolean connectives and ‖.

Having said this, we can state some intuitively uncontroversial properties: it
is obvious that a ∧ b entails a‖b, and algebraically, a ∧ b is the largest element
generally entailing a‖b. For example, in the particular case where a entails b,
this means: a entails a‖b, and a‖b entails b, but a‖b does not entail a. This is
one important property; the other important property we need is what we call
the property of universal distribution. This means that5

∼ (a‖b) =∼ a‖ ∼ b(6)
(a‖b) ∨ c) = (a ∨ c)‖(b ∨ c)(7)
(a‖b) ∧ c) = (a ∧ c)‖(b ∧ c)(8)
(a‖b) → c = (a → c)‖(b → c)(9)
a → (b‖c) = (a → b)‖(a → c)(10)

This property of universal distribution is what makes the semantic approach
to ambiguity parallel to the syntactic approach. Logically speaking, this means
that ‖ is self-dual. Intuitively, this is clear, because for every ambiguous object,
usually one meaning is intended, and this property is preserved over construction
of arbitrary Boolean terms. What is very peculiar about ‖ is that it preserves
over negative contexts such as negation or the left-hand side of implication.
3 This also makes clear that ambiguity cannot be interpreted, algorithmically speaking,

as non-deterministic choice (which corresponds to disjunction), as we cannot pick
an arbitrary meaning.

4 ≤ in Boolean algebras is defined in terms of ∧ (or ∨): a∧ b = a iff a ≤ b iff a∨ b = b.
5 Here we use connectives ∧, ∨, ∼, → in their Boolean meaning, but in principle this

would not make a difference.

The Proper Treatment of Linguistic Ambiguity in Ordinary Algebra 311

There are some more properties of ‖ we should mention. One which should
be clear is associativity, that is:

(ass) (a‖b)‖c = a‖(b‖c)

This should go without comment, as idempotence:

(id) a‖a = a

What is more problematic is commutativity, that is:

(com) a‖b = b‖a

One might object that meanings are ordered due to the existence of primary
and secondary meanings (cf. the distinction between literal and idiomatic
meaning), so commutativity should be rejected. One might alternatively think
that in ambiguity, all meanings have the same status, so ‖ should be commu-
tative. We will see, however, that the latter assumption is unwarranted in our
algebraic approach, as ambiguous algebras with commutative ‖ are necessarily
trivial, that is, they have only one element (so there would be only one meaning).

4 Ambiguous Algebras

4.1 Uniform Usage and Axiomatization

If we want to define ‖ – that is, ambiguity – as an algebraic operation, we
have to be aware that in any case, it is a function. This is already a strong
commitment, because this implies that for a given linguistic context, in which
we use a particular ambiguous algebra,6 we have a uniform usage. This can
be justified by the hypothesis of uniform usage (UU):

(UU) In a given context, an ambiguous statement is used consistently in only
one sense.

That might seem too strong, but is a prerequisite for any algebraic treatment
of ambiguity. Note that this is before all axiomatization, and only concerns the
fact that we conceive of ‖ as an operation in an algebra.

A central notion of this paper is the one of a Boolean algebra, which
is a structure B = (B, ∧, ∨, ∼, 0, 1). We use the convention that algebras
are denoted by boldface letters, whereas their carrier sets are denoted by the
same letter without boldface. As Boolean algebras are most well-known, we do
not introduce them (the reader interested in background might consider [5,6],
or many other sources). In this paper, we will only use elementary properties of

6 Linguistically, it is of course unclear how to determine such a context. We would
(vaguely) say it is a discourse, but of course this is arguable. Instead of being vague
we could also be circular and say: such a context is a discourse where ambiguous
terms are used consistently in one sense.

312 C. Wurm and T. Lichte

Boolean algebras, these however frequently and without proof or explicit refer-
ence. We now provide an axiomatization for ambiguous algebras. An ambiguous
algebra is a structure A = (A, ∧, ∨, ∼, ‖, 0, 1), where (A, ∧, ∨, ∼, 0, 1)
is a Boolean algebra, and ‖ is a binary operation for which the following holds:

(‖1) ∼ (a‖b) =∼ a‖ ∼ b

(‖2) a ∧ (b‖c) = (a ∧ b)‖(a ∧ c)

(‖3) At least one of a ≤ a‖b or b ≤ a‖b holds

This is sufficient for us: note that this already entails all Eqs. (6)–(10). As is
well-known, ∨ and → are redundant (and the latter will furthermore play no
role), and to see that (a‖b) ∨ c = (a ∨ c)‖(b ∨ c), just consider that

(a‖b) ∨ c ≡ ∼ (∼ (a‖b)∧ ∼ c)
= ∼ ((∼ a‖ ∼ b)∧ ∼ c)
= ∼ ((∼ a∧ ∼ c)‖(∼ b∧ ∼ c))
= (∼ (∼ a∧ ∼ c))‖(∼ (∼ b∧ ∼ c))
≡ (a ∨ c)‖(b ∨ c)

We will see in the structure theory that (ass) and (id) are also derivable
from these axioms. As is usual, such an axiomatization comes with a number of
questions, to which we shortly provide the following answers (details are to be
found in the subsequent sections):

1. Do these axioms entail all properties we find intuitively true for ambiguity?
– As far as we can see, clearly yes.

2. Do they imply some properties we find intuitively incorrect for ambiguity in
general?

– Unfortunately, also clearly yes.
3. Do non-trivial algebras exist which satisfy these axioms? (That is, for exam-

ple, algebras with more than one element?)
– Clearly yes, but if we add commutativity for ‖, then no.

4. Are there ambiguous algebras, where a‖b 	= a and a‖b 	= b?
– No, there are not.

Note, by the way, that ambiguous algebras have a very peculiar axiom,
namely (‖3), which is a disjunction. This fact entails that there is no such thing
as the free ambiguous algebra over a given set of generators,7 and so one of the
most important concepts of general algebra is not applicable. Put differently, an
algebra (over some set M) in which only the inequations hold which hold in all
7 We do not explain these concepts here, as, to the algebraist, they are clear anyway,

and for the non-algebraist they are of no relevance in this paper.

The Proper Treatment of Linguistic Ambiguity in Ordinary Algebra 313

ambiguous algebras, is not ambiguous algebra! However, we will see later that
for every generator set, there are exactly two “free” algebras, that is, ambiguous
algebras with a minimal set of equations that hold.

Though this is strange to the algebraist, it nicely models the epistemic com-
ponent of ambiguity: if we are confronted with a certain algebra, there always
hold certain equalities we cannot deduce from general considerations, as in an
ambiguous expression, there is always one intended meaning we cannot uniquely
construct.

We now show a simple, non-trivial ambiguous algebra. Take the obvious
Boolean algebra over the set {0, a, b, 1}. Put

a‖b = a; b‖a = b; 0‖a = 0; 1‖a = 1;
a‖1 = a; b‖1 = b; 0‖b = 0; 1‖b = 1;
a‖0 = a; b‖0 = b; 0‖1 = 0; 1‖0 = 1;

We can see that ∧-distribution holds: a = a‖b = (a‖b) ∧ a = a‖0 = a. 0 = 0‖1 =
(0‖1)∧a = 0‖a = 0, and so on, same for ∨, ∼. We thus have a proper non-trivial
4-element algebra. The results of the next section will show that this is (up to
isomorphism) one of exactly two 4-element ambiguous algebras; in fact, by fixing
a‖b = a, we have fixed the value of ‖ for all arguments.

5 Structure Theory I: Uniformity

We now show the most important results which follow from our axiomatization;
in this section we presuppose some familiarity with the elementary theory of
Boolean algebras:

Lemma 1. In every ambiguous algebra A and for all a, b ∈ A, either a = a‖b
or b = a‖b.

Proof. Case 1 : Assume that b 	≤ a‖b. Then a ≤ a‖b, hence ∼a ≥ ∼(a‖b) =
∼a‖∼b. Now by (‖3), there are two subcases:

Case 1a: ∼a ≤ ∼a‖∼b. Then by another complementation, a‖b ≤ a, so
a‖b = a.

Case 1b: ∼b ≤ ∼a‖∼b. Then by iterating complementation, we have a‖b ≤ b,
hence a ≤ a‖b ≤ b. Hence (a‖b)∨ a = (a∨ a)‖(a∨ b) = a‖b – which by definition
of ≤ means that a‖b ≤ a. Hence a‖b = a.

Case 2 : a 	≤ a‖b – this case is parallel to case 1.
Case 3 : Assume that a, b ≤ a‖b. Then a ∨ b ≤ a‖b, and so ∼a‖∼b ≤ ∼a,∼b.

By our axioms, we then must have ∼a‖∼b = ∼a or ∼a‖∼b = ∼b; assume the
former. Then a = a‖b by an iterated complementation. Parallel if we assume the
latter. �

314 C. Wurm and T. Lichte

It is now easy to see why we cannot reasonably have an axiom for com-
mutativity for ‖: assume we have a‖∼a = a.8 Then ∼a‖a = a as well; but
also ∼(∼a‖a) = ∼ ∼ a‖∼a = a‖∼a = a, hence ∼a = a, which only holds in
1-element algebras. A parallel argument can obviously be applied if a‖∼a = ∼a.

Corollary 2. If A is an ambiguous algebra such that for all a, b ∈ A, a‖b = b‖a,
then A has at most one element.

The next result also follows in a straightforward fashion:

Corollary 3. For all ambiguous algebras A, a, b ∈ A, we have
1 a‖a = a
2. a ∧ b ≤ a‖b ≤ a ∨ b

So we have two more desired properties of ‖ which follow from our axiomati-
zation. The next result is more difficult to obtain and is the first one in a series
of results which are stronger than our intuition on ambiguity.

Lemma 4 (Monotonicity of ‖). Assume a′ ≤ a and b′ ≤ b. Then a′‖b′ ≤ a‖b.

Proof. There are four possibilities for the values of a‖b and a′‖b′. Two of them
trivially entail the claim, and the other two are parallel. So assume without loss
of generality that a‖b = a whereas a′‖b′ = b′. We then have

(11) (a′‖b′) ∨ a = a‖(a ∨ b′) = a ∨ b′

Conversely, we have

(12) a = a‖b = (a‖b) ∧ (a ∨ b′) = a‖(b ∧ (a ∨ b′)) = a‖((a ∧ b) ∨ b′)

and consequently

(13) (a‖((a ∧ b) ∨ b′)) ∨ a = a‖((a ∧ b) ∨ b′ ∨ a) = a‖(a ∨ b′) = a

So we have (by (11) and (13)) a = a‖(a ∨ b′) = a ∨ b′, which by definition means
that b′ ≤ a, hence a′‖b′ = b′ ≤ a = a‖b. �

This result is seemingly strong, but it is only an intermediate step in the proof
of the still stronger uniformity lemma. However, it already has the following
immediate consequence: it means that ambiguity roughly behaves in a logical
way, respecting logical entailment. In fact, if it where wrong, then there would
be hardly any way to think of ‖ as a (non-classical) logical connective, because it
would not necessarily respect any consequence relation. Secondly, the result has
an intuitive semantic meaning: it means that if we assume the weak hypothesis
8 This term is very important for the following proofs. One might argue that ambiguity

of this kind does not arise in natural language, an argument which leads to partially
ambiguous algebras, which we discuss shortly later on. On the other side, there
are words such as sacré in French which – though in different contexts – can both
mean ‘cursed’ and ‘holy’.

The Proper Treatment of Linguistic Ambiguity in Ordinary Algebra 315

of uniform usage (UU), then this already entails a very strong uniform usage,
namely if we use an ambiguous term s with meaning a‖b in the sense of a, then
we must use all terms with a meaning which is related by implication in a way
which is consistent with this usage. This is a strong surprising feature which
comes for free, given UU. In the following, we will strengthen this. First, take
the following list of results:

Lemma 5. Let A be an ambiguous algebra, a ∈ A. If a‖∼a = a, then
1. ∼a‖a = ∼a 5. 0‖∼a = 0 9. ∼a‖0 = ∼a
2. 1‖a = 1 6. a‖1 = a 10. 0‖1 = 0
3. 0‖a = 0 7. a‖0 = a 11. 1‖0 = 1
4. 1‖∼a = 1 8. ∼a‖1 = ∼a

Proof. 1. follows by negation distribution; 2. is because (∼a‖a) ∨ a = 1‖a =
∼a ∨ a = 1. Results 3.–9. follow in a similar fashion from the distributive laws.
To see why 10. holds, assume conversely that 0‖1 = 1. Then we have

(14) 1 ∧ a = (0‖1) ∧ a = (0 ∧ a)‖(1 ∧ a) = 0‖a = a

– a contradiction to 3. 11. follows by distribution of ∼. �
Obviously, this lemma has a dual where a‖∼a = ∼a, and where all results

are parallel.

Lemma 6. Let A be an ambiguous algebra. If for an arbitrary a ∈ A, we have
a‖∼a = a, then for all b, c ∈ A we have b‖c = b; conversely, if we have a‖∼a =
∼a, then for all b, c ∈ A we have b‖c = c.

Proof. We only prove the first part, the second one is dual.
Assume a‖∼a = a, and assume b‖c = c. By the previous lemma, we know

that 0‖1 = 0. We then have b‖1 = (0‖1) ∨ b = 0 ∨ b = b. Now assume c 	≤ b.
Then b‖c 	≤ b‖1 – contradiction to monotonicity (Lemma 4). Hence c ≤ b.

By the previous lemma, also 1‖0 = 1. So we have 1‖c = (1‖0) ∨ c = 1. As
c ≤ b, c ∧ b = c, so we have

(*) (1‖c) ∧ b = (1 ∧ b)‖(b ∧ c) = b‖c

Conversely,

(+) (1‖c) ∧ b = 1 ∧ b = b

Hence by (*), (+) b‖c = b, so by assumption b = c and the claim follows. �
Now we can prove the strongest result on ‖, the uniformity lemma.

Lemma 7 (Uniformity lemma). Assume we have an ambiguous algebra A a, b ∈
A such that a 	= b.

1. If a‖b = a, then for all c, c′ ∈ A, we have c‖c′ = c;

316 C. Wurm and T. Lichte

2. if a‖b = b, then for all c, c′ ∈ A, we have c‖c′ = c′.

Proof. We only prove 1., as 2. is completely parallel. Assume there are a, b ∈ A,
a 	= b and a‖b = a. Assume furthermore there are c, c′ ∈ A such that c‖c′ 	= c.
There are two cases:

(i) there is such a pair c, c′ such that c′ = ∼c. Then the dual result of the
previous lemma leads us to a contradiction, because we then have c‖∼c = ∼c,
and consequently a‖b = b, which is wrong by assumption – contradiction.

(ii) there are no such pair c, c′. Then however we necessarily have (among
other) a‖∼a = a, and by the previous lemma, this entails c‖c′ = c – contradic-
tion. �

Put differently:

Corollary 8. If A is an ambiguous algebra, a, b ∈ A, then either for all a, b ∈ A,
we have a‖b = a, or for all a, b ∈ A, we have a‖b = b.

We therefore can say an ambiguous algebra A is left-sided, if for all a, b ∈ A,
a‖b = a; it is right-sided if for all a, b ∈ A, a‖b = b. The uniformity lemma
says that every ambiguous algebra is either right-sided or left-sided, and only the
trivial one-element algebra is both. Needless to say, it is hard to intuitively make
sense of this result, as it is much stronger property than any of our intuitions on
the meaning of ambiguity would suggest. Still it is very important as a negative
result for the semantic treatment of ambiguity in the context of Boolean algebras.

One might consider this a triviality result, and in some sense it is. However, it
does not imply triviality for the equations which hold in all ambiguous algebras,
which is the really crucial notion for inference from ambiguous meanings. Let us
consider the following examples:

(15) (a → a‖b) ∨ (b → a‖b) = 1

holds in all ambiguous algebras. This can be shown as follows: we have

(16) (a → a‖b) ∨ (b → a‖b) = ((a → a)‖(a → b)) ∨ ((b → a)‖(b → b))

Now in every left-sided ambiguous algebra, we have ((a → a)‖(a → b)) = 1;
in every right-sided ambiguous algebra we have ((b → a)‖(b → b)) = 1, and
as every ambiguous algebra is either right-sided or left-sided, the claim follows.
Conversely,

(17) (a → a‖b) ∨ (b → b‖a) = 1

holds in some, but not all ambiguous algebras, as can be easily seen in case where
a‖b = b, b‖a = a. Another equation which holds in all ambiguous algebras is the
following:

(18) a‖(b‖c) = (a‖b)‖(a‖c)

This is to say ‖ distributes “over itself”. The next is also easy to show:

The Proper Treatment of Linguistic Ambiguity in Ordinary Algebra 317

Lemma 9. In all ambiguous algebras, we have (a‖b)‖c = a‖c = a‖(b‖c).

Proof. Every algebra is either left sided, and then (a‖b)‖c = a = a‖c, or right-
sided, then (a‖b)‖c = c = a‖c. �

So the associativity of ‖ follows from (‖1)–(‖3). Moreover, every multiple
ambiguity can be reduced to an ambiguity of only two terms. This is a very
interesting result for decidability,9 though it runs counter to our intuitions on
ambiguity: linguistically it would mean that any ambiguity between an arbitrary
number of meanings is equivalent to an ambiguity between two meanings.

6 The Meaning of Uniformity

The uniformity lemma is obviously a very strong result. Whereas its algebraic
meaning should be clear, it is not so clear how it relates to our intuitions on
ambiguity, from which we have started after all. To clarify this, it is preferable
to first consider the monotonicity Lemma 4, which is a weaker result. This lemma
states that if a ≤ a′, b ≤ b′, then a‖b ≤ a′‖b′. This roughly means: ambiguity
respects logical entailment. Let us illustrate this with an example; take the lex-
ically ambiguous word bank; and assume that it has the meaning a‖b, a being
‘strip of land along a river’, b being ‘financial institute’. Next consider the (com-
plex) expression bank or restaurant. Say restaurant has meaning c, hence
the expression has the meaning (a‖b)∨ c = (a∨ c)‖(b∨ c) = a′‖b′. Now as ≤ cor-
responds to entailment, this means that if monotonicity were wrong, then bank
would not (generally) entail bank or restaurant, simply because in the one
expression it could mean one thing, in the other expression the other. This how-
ever obviously contradicts the hypothesis of uniform usage.10 Now monotonicity
can be read as a strengthening of this hypothesis: even if there was a single word
kank with the same meaning as bank or restaurant, using bank in one sense
would constrain us to using kank in the related sense. Hence monotonicity is like
uniform usage for expressions which are connected by the relation of entailment.
In this sense we say that ambiguity respects entailment.

Now the underlying reason for uniformity is that in ambiguous algebras, all
elements are strongly connected, in particular because there are elements such
as 0‖1, 1‖0 (which surely do not have any linguistic counterpart). Thereby, we
can establish that if we use one ambiguous expression in the left/right sense
(whatever that means), we have to use all expressions in the same sense. This is
surely completely unintuitive, and a consequence of two things:

1. the strong axioms of Boolean algebras, in particular the equality ∼∼a = a
we repeatedly use, and

2. the fact that ‖ is a total operator, that is, for all a, b, we have an object a‖b.

9 From the results in this paper, decidability results easily follow, but for reasons of
space we do not include them here.

10 However, one can say such a thing as: I do not need such a bank, I need the

other bank! For us, this would count as a disambiguation, hence strictly speaking
it takes the ambiguity from the semantics.

318 C. Wurm and T. Lichte

So there are two ways to remedy the situation: 1. Consider algebras with
weaker axioms than Boolean algebras. In particular, if we add the ambiguity
operator and axioms (‖1)–(‖3) to Heyting algebras (corresponding to intuition-
istic logic), many of the results presented so far do no longer seem to hold.
2. to assume that ‖ is a partial operator, or put differently, that a Boolean alge-
bra only contains certain ambiguous elements. To us, both roads seem to be
promising, in particular the one of partially ambiguous algebras. In these,
we can investigate which ambiguous elements are independent and which not (in
the sense that ‖ has to be uniform for them). However, both topics deserve and
need a treatment on their own, so for the rest of the paper, we rather complete
the theory of ambiguous Boolean algebras by showing some results on their exis-
tence and construction, from which it is easy to derive results on decidability
(however we do not present the latter for reasons of space).

7 Structure Theory II: Completions

We have given an example of one non-trivial ambiguous algebra. The previous
section has provided us with restrictions on possible algebras. In this part, we will
show that nonetheless every Boolean algebra can be completed to an ambiguous
algebra. From the uniformity lemma, it easily follows that there are at most two
such completions; we now prove there are exactly two. It also easily follows that
every ambiguous algebra is the completion of a Boolean algebra.

Definition 10. Let B = (B,∧,∨,∼, 0, 1) be a Boolean algebra. We define the
left ambiguous completion of B to be the ambiguous algebra Cl(B) :=
(B,∧,∨,∼, ‖, 0, 1), where for all a, b ∈ B, we have a‖b = a; the right ambigu-
ous completion Cr(B) is defined in the parallel fashion, where a‖b = b.

We mostly say only right/left completion, as there is no source of confusion.

Lemma 11. If B is a Boolean algebra, then both Cl(B) and Cr(B) are ambigu-
ous algebras.

Proof. We simply check whether it satisfies the axioms. (‖3) is clear by defin-
ition. We check the distributivity axioms (for simplicity, we only consider left-
completions; the right case is completely parallel):

∼-distributivity: we have a‖b = a, so ∼(a‖b) = ∼a = ∼a‖∼b.
∧-distributivity: we have (a‖b) ∧ c = a ∧ c = (a ∧ c)‖(b ∧ c). �

The following is also quite simple:

Lemma 12. Every ambiguous algebra A is isomorphic either to Cl(B) or Cr(B)
for some Boolean algebra B.

Proof. Straightforward consequence of the uniformity lemma. �

The Proper Treatment of Linguistic Ambiguity in Ordinary Algebra 319

We now formally prove the existence of non-trivial algebras, more concretely:
for every Boolean algebra B, the Boolean algebra reduct of both Cl(B) and
Cr(B) is identical to B; this means that the ambiguous algebra axioms do not
collapse any two elements. This has a number of consequences, among other for
decidability.

Let t be a term of an ambiguous algebra. We define the map πl as follows:

1. πl(x) = x, for x atomic
2. πl(∼t) = ∼πl(t)
3. πl(t ∧ t′) = πl(t) ∧ πl(t′)

4. πl(t ∨ t′) = πl(t) ∨ πl(t′)
5. πl(t‖t′) = πl(t)

The right projection πr is defined in the same way, with 5. changed to πr(t‖t′) =
πr(t′). An easy induction yields the following:

Lemma 13. Let A be a left- (right-)sided ambiguous algebra, s, t terms over A.
Then s = t holds in A iff πl(s) = πl(t) (πr(s) = πr(t)) holds in A.

Proof. Easy induction over complexity of s, t. �
In order to prove the crucial result of this section, we need to introduce a

class of structures which we call AA′-algebras. These have the same signature
as ambiguous algebras, but a different set of axioms:

Definition 14. A structure A = (A, ∧, ∨, ∼, ‖, 0, 1) is a left AA′-algebra,
if (A,∧,∨,∼, 0, 1) is a Boolean algebra, and for all a, b ∈ A, we have a‖b = a.
A is a right AA′-algebra, if (A,∧,∨,∼, 0, 1) is a Boolean algebra, and for
all a, b ∈ A, we have a‖b = b.

So AA′-algebras are less restrictive in the sense that they do not satisfy the addi-
tional axioms (‖1)–(‖3). For us, they are useful because they allow to establish
the following lemma. By idM , we generally denote functions which compute the
identity on some domain M .

Lemma 15. Every Boolean algebra B = (B,∧,∨,∼, 0, 1) can be completed to a
left/right AA′-algebra A’ = (B,∧,∨,∼, ‖, 0, 1) such that the map id : A’ → B
is a Boolean algebra isomorphism.

Proof. The completion is obvious, and a straightforward induction on its Boolean
terms shows that id : A’ → B is a Boolean algebra isomorphism. �

The completions are unique, so we call this the left/right AA′-completion,
and denote it by C ′

l(B), C ′
r(B). Let ∼= denote the relation of isomorphy, which

says that there is a bijection between two structures which preserves the results
of all operations.

Lemma 16. For all Boolean algebras B, we have C ′
l(B) ∼= Cl(B) and C ′

r(B) ∼=
Cr(B).

320 C. Wurm and T. Lichte

Proof. We only consider the left case. Cl(B) is the algebra which satisfies
(1) all equations of B, (2) a‖b = a, and (3) all of (‖1)–(‖3). To prove the
lemma, we only need to show that the same holds for C ′

l(B). For (1) and (2),
this is straightforward. So we only prove that C ′

l(B) satisfies (‖1)–(‖3).
(‖1) ∼(a‖b) = ∼a = ∼a‖∼b
(‖2) a ∧ (b‖c) = a ∧ b = (a ∧ b)‖(a ∧ c).
(‖3) By definition, a ≤ a‖b. �
The next result is really a central lemma, in particular our subsequent decid-

ability results rely on it. In particular it shows the existence of infinitely many
non-isomorphic ambiguous algebras.

Lemma 17 (Completion lemma). Every Boolean algebra B = (B,∧,∨,∼, 0, 1)
can be completed to an ambiguous algebra A = (B,∧,∨,∼, ‖, 0, 1) such that the
map id : A → B is a Boolean algebra isomorphism.

Proof. By Lemma 15, we know the claim holds for C ′
l(B), C ′

r(B). By Lemma 16,
C ′

l(B) ∼= Cl(B) etc., and as the composition of two isomorphisms is still an
isomorphism, the claim follows. �
Corollary 18. Let B = (B,∧,∨,∼, 0, 1) be a Boolean algebra, and assume
a, b ∈ B. Then a =B b iff a =Cl(B) b iff a =Cr(B) b.

This states that we cannot derive new equalities between objects which are
distinct in B, which follows from Lemma 17 (because otherwise id would not be
a bijection). We can formulate this result in another, more general fashion:

Corollary 19. For every Boolean algebra B there are (up to isomorphism)
exactly two ambiguous algebras A such that there is a bijection i : B → A
which is a Boolean algebra isomorphism.

The existence of two algebras is witnessed by Cl(B), Cr(B); the fact that up to
isomorphism there are at most two such algebras follows from the uniformity
lemma.

8 Conclusion and Further Work

Our treatment of ambiguous Boolean algebras seems to be complete in the sense
that every interesting result on them seems to be either stated explicitly or easily
derivable from the results stated here. This is not as much due to excessive
treatment as to the fact that ambiguous Boolean algebras are very similar to
Boolean algebras (which are excessively treated in many places), maybe too
similar to be really interesting. In particular the uniformity lemma and the
completion lemma show that there is little of interest to say about ambiguous
algebras which does not already hold for Boolean algebras. Still we consider it
important to have established these results, which are really obvious or trivial.

Furthermore, our algebraic results are surely not fully compatible with lin-
guistic intuition. The uniformity lemma suggests that all ambiguous terms are

The Proper Treatment of Linguistic Ambiguity in Ordinary Algebra 321

either right- or left-ambiguous. Even if there is some flexibility in choosing an
algebra depending on the context, this would have to be fixed in advance and
ironically contravenes any possibility to establish an order of operands in terms
of literal and idiomatic meaning. The weaker monotonicity result, by contrast,
which states that words in entailment relations are used consistently meaning-
wise, seems much more intuitive and preferable. Nevertheless, the presented
work is a first necessary approximation relying on an obvious choice, namely
Boolean algebras, corresponding to classical propositional logic. Note that our
negative results also have a positive side: it entails that for establishing a seman-
tic notion of ambiguity, we either need to reject the Boolean axioms, or the idea
that ambiguity is possible between arbitrary meanings. So if we start to take
semantic ambiguity seriously, it can help us gain genuine insights into semantic
structure.

The further investigation of the algebraic treatment of ambiguity seems to
be very interesting and promising. As we have already mentioned, there are
two main directions to pursue: One approach would be the following: instead
considering ‖ and (‖1)–(‖3) in the context of Boolean algebras, we can consider
it in other, more general classes of algebras which are important for reasoning
purposes, such as (distributive, modular) lattices, residuated lattices, Heyting
algebras and many more. The proof of the uniformity lemma (and many other
results) rely on the law of excluded middle (a ∨ ∼a = 1), which does not hold
in all these algebras, so enriching them with an operator ‖ and axioms (‖1)–
(‖3) might result in a much richer structure theory. What can still be derived
in more general cases is the monotonicity for ‖, which is not nearly as strong
as uniformity. The second approach would be to investigate Boolean algebras in
which ‖ is partial, that is, there are some ambiguous elements, but ambiguity is
not a total operator for arbitrary objects. We plan to further pursue both lines
in further research.

References

1. Asher, N., Denis, P.: Lexical ambiguity as type disjunction. In: Bouillon, P.,
Kanzaki, K. (eds.) Proceedings of the International Workshop on Generative
Approaches to the Lexicon (GL2005), Genève, Switzerland, pp. 10–17 (2005)

2. Cooper, R., Crouch, R., van Eijck, J., Fox, C., van Genabith, J., Jaspars, J., Kamp,
H., Milward, D., Pinkal, M., Poesio, M., Pulman, S. (eds.) Using the framework.
The FraCaS Consortium, Technical report, FraCaS deliverable D-16 (1996)

3. Ernst, T.: Grist for the linguistic mill: idioms and ‘extra’ adjectives. J. Linguist.
Res. 1, 51–68 (1981)

4. Husserl, E.: V. logische Untersuchung: Über intentionale Erlebnisse und ihre
“Inhalte”. No. 290 in Philosophische Bibliothek, Meiner, Hamburg (1975)

5. Kracht, M.: Mathematics of Language. Mouton de Gruyter, Berlin (2003)
6. Maddux, R.: Relation Algebras. Elsevier, Amsterdam (2006)
7. Peterson, R.R., Burgess, C.: Syntactic and semantic processing during idiom com-

prehension: neurolinguistic and psycholinguistic dissociations. In: Cacciari, C.,
Tabossi, P. (eds.) Idioms: Processing, Structure, and Interpretation, pp. 201–225.
Lawrence Erlbaum, Hillsdale (1993)

322 C. Wurm and T. Lichte

8. Pinkal, M.: Logic and Lexicon: The Semantics of the Indefinite. Kluwer, Dordrecht
(1995)

9. Pinkal, M.: On semantic underspecification. In: Bunt, H., Muskens, R. (eds.) Com-
puting Meaning, vol. 1, pp. 33–55. Springer, Dordrecht (1999)

10. Poesio, M.: Semantic ambiguity and perceived ambiguity. In: van Deemter, K.,
Peters, S. (eds.) Semantic Ambiguity and Underspecification, pp. 159–201. CSLI
Publications, Stanford (1994)

11. Stallard, D.: The logical analysis of lexical ambiguity. In: Proceedings of the 25th
Annual Meeting on Association for Computational Linguistics (ACL 1987), pp.
179–185 (1987)

12. Wittenberg, E., Jackendoff, R.S., Kuperberg, G., Paczynski, M., Snedeker, J.,
Wiese, H.: The processing and representation of light verb constructions. In:
Bachrach, A., Roy, I., Stockall, L. (eds.) Structuring the Argument. John
Benjamins, Amsterdam (2014)

13. Wittgenstein, L.: Philosophische Untersuchungen. No. 1372 in Bibliothek
Suhrkamp, Suhrkamp, Frankfurt am Main, 1. edn. (2010)

Erratum to: The Proper Treatment
of Linguistic Ambiguity in Ordinary

Algebra

Christian Wurm and Timm Lichte

Erratum to:
Chapter “The Proper Treatment of Linguistic Ambiguity
in Ordinary Algebra” in: A. Foret et al. (Eds.):
Formal Grammar, LNCS 9804,
https://doi.org/10.1007/978-3-662-53042-9_18

This is a correction note to the paper starting on p. 306. There is an error in the proof of
Lemma 1, which states that the axiom

together with the other axioms entails the stronger statement that either
a ¼ akb or b ¼ akb. The proof of this lemma is incorrect, and the claim is wrong: we
can construct an algebra with 4 elements f0; 1; 0k1; 1k0g with the obvious Boolean
algebra order, and k defined by the margin property: akbkc ¼ akc, with a; b 2
f0; 1g; c an arbitrary term. It is not difficult to check that this is an ambiguous algebra
in the sense of Section 4 of the paper, yet 0 6¼ 0k1 6¼ 1. As almost all later results are
based upon Lemma 1, they are technically unproved. However, all problems can be
remedied very easily by changing ðk3Þ from the paper to:

Hence to make the paper correct, all we need is a slightly different axiom ðk30Þ, and
Lemma 1 becomes basically part of the definition, so all problems are solved. So far
our correction; there are two notes which might be interesting to the reader:

The original online version of this chapter can be found at
https://doi.org/10.1007/978-3-662-53042-9_18

© Springer-Verlag Berlin Heidelberg 2018
A. Foret et al. (Eds.): FG 2015/2016, LNCS 9804, pp. E1–E2, 2016.
https://doi.org/10.1007/978-3-662-53042-9_19

https://doi.org/10.1007/978-3-662-53042-9_18
https://doi.org/10.1007/978-3-662-53042-9_18

Note 1 From the point of view of the linguistic motivation of the axioms, ðk30Þ is
actually more natural than the original ðk3Þ, because it basically states that an
ambiguous meaning is supposed to intend one of the meanings between which it is
ambiguous. The weaker ðk3Þ just states that it is supposed to entail one of these
meanings, which is not what we would intuitively think. Actually, the authors of the
paper preferred ðk3Þ over ðk30Þ not on a conceptual base, but rather because it is simply
weaker and they believed the two to be equivalent anyway (this is what Lemma 1 of the
mentioned paper states).

Note 2 In (Wurm, 2017), the authors have introduced the class of universal dis-
tribution algebras (UDA), which is still weaker. If we take the class of ambiguous
algebras as introduced in the 2016 paper and add an axiom for k-associativity
(akðbkcÞ ¼ ðakbÞkc, which does not seem derivable so far), then it is not difficult to
show that UDA subsumes this class. What is interesting is that UDA seems to have the
same equational theory as ambiguous algebras in the strong sense (with ðk30Þ). Now
since the class as defined in 2016, with associativity added, lies in between the two, it is
neatly characterized by this (yet unpublished) result.

Reference

Wurm, C.: The logic of ambiguity: the propositional case. In: Foret, A., Muskens, R., Pogodalla,
S. (eds.) Formal Grammar. 22th Conference, FG 2017, Toulouse, France, July 2017,
Proceedings. Lecture Notes in Computer Science, vol. 10686. Springer (2017)

E2 C. Wurm and T. Lichte

Author Index

Abrusci, Vito Michele 43
Aksënova, Alëna 200
Amblard, Maxime 257

Cardó, Carles 60
Cooper, Robin 3
Corbalán, María Inés 183

De Santo, Aniello 200

Fernando, Tim 19, 112
Filip, Hana 290

Graf, Thomas 200

Kahane, Sylvain 216
Kallmeyer, Laura 77
Kanazawa, Makoto 94
Kanovich, Max 240
Kelleher, Derek 112

Krieger, Hans-Ulrich 130
Kuznetsov, Stepan 240

Lareau, François 216
Lichte, Timm 306

Maieli, Roberto 43
Maršík, Jirka 257
Moot, Richard 273
Morrill, Glyn 183

Scedrov, Andre 240
Schulz, Stefan 130
Sutton, Peter R. 290

Valentín, Oriol 147
Vogel, Carl 112

Wurm, Christian 164, 306

Yoshinaka, Ryo 94

	Preface
	FG 2015 Organization
	FG 2016 Organization
	Contents
	Formal Grammar 2015: Invited Papers
	Frames as Records
	1 Introduction
	2 Individual vs. Frame Level Nouns
	3 Passengers and Ships
	4 Conclusion
	References

	Types from Frames as Finite Automata
	1 Introduction
	2 Deterministic Systems and Languages
	2.1 Satisfaction and Traces
	2.2 Identity of Indiscernibles and states as Languages

	3 From Attribute Values to Types and Particulars
	3.1 Type-Attribute Specifications and Containment
	3.2 Terminal Attributes, and Subtypes
	3.3 Typings and Particulars

	4 Finite Approximations and Signatures
	4.1 Labels Refining Partitions
	4.2 Reducts for Satisfaction

	5 Conclusion
	References

	Formal Grammar 2015: Contributed Papers
	Cyclic Multiplicative-Additive Proof Nets of Linear Logic with an Application to Language Parsing
	1 Introduction
	1.1 The Cyclic MALL Fragment of Linear Logic

	2 Cyclic MALL Proof Structures
	2.1 Correctness
	2.2 Cut Reduction
	2.3 Sequentialization

	3 Embedding Lambek Calculus into CyMALL PNs
	4 Language Parsing with Lambek CyMALL PNs
	5 Conclusions
	References

	Algebraic Governance and Symmetry in Dependency Grammars
	1 Preliminaries: Dependency Structures
	2 Syntagmata and Manifolds
	3 Grouping Agreement: Linguistic Basis
	3.1 Verb Inflection in English
	3.2 Match of Subject and Attribute
	3.3 Pied-Piping in Some Romance Languages
	3.4 A Working Hypothesis

	4 Rules, Patterns and Syntactic Manifolds
	4.1 Valuations, Rules and Satisfiability
	4.2 Patterns and Manifolds

	5 Five Classical Examples
	5.1 Squares Language vs. Copy Language and Mirror Language
	5.2 Language of Multiple abc vs. Respectively abc

	6 How to Build Natural Languages
	7 Symmetric Syntagmata, Manifolds and Languages
	8 Conclusions
	References

	On the Mild Context-Sensitivity of k-Tree Wrapping Grammar
	1 Introduction
	2 Tree Wrapping Grammar
	3 Relation to Context-Free Tree Gramamrs
	3.1 Context-Free Tree Grammars
	3.2 k-TWG and Simple CFTG

	4 Conclusion
	References

	Distributional Learning and Context/Substructure Enumerability in Nonlinear Tree Grammars
	1 Introduction
	2 Typed Lambda Terms and Almost Linear ACGs
	2.1 Types and Typed Lambda Terms
	2.2 Almost Linear Lambda Terms over a Tree Signature
	2.3 Almost Linear Second-Order ACGs on Trees

	3 Extraction of Tree Contexts from Trees
	4 Distributional Learning of One-Side k-bounded ACGs
	4.1 Learning Context-k-bounded ACGs with the Finite Kernel Property
	4.2 Learning Substructure-k-bounded ACGs with the Finite Context Property

	References

	Between the Event Calculus and Finite State Temporality
	1 Introduction
	2 Finite State Temporality
	2.1 States, Events, and Times

	3 Translating Language and Models
	3.1 Initially
	3.2 Instantaneous Change: Happens and Initiates
	3.3 Continuous Change: Trajectory
	3.4 Scenarios

	4 Type Coercion
	4.1 Eventualities vs. Events
	4.2 Activity Accomplishments
	4.3 Achievements Accomplishments
	4.4 Accomplishments Activities
	4.5 Points Activities
	4.6 States Activities

	5 Conclusion
	References

	A Modal Representation of Graded Medical Statements
	1 Introduction and Background
	2 Graded Medical Statements: OWL vs. Modalized Representation
	3 Confidence of Statements and Confidence Intervals
	4 Model Theory and Negation Normal Form
	4.1 Simplification and Normal Form
	4.2 Model Theory
	4.3 Well-Behaved Frames

	5 Entailment Rules
	5.1 Modal Entailments
	5.2 Subsumption Entailments
	5.3 Extended RDFS and OWL Entailments
	5.4 Custom Entailments

	6 Related Approaches and Remarks
	References

	Models for the Displacement Calculus
	1 Introduction
	2 The Categorical Calculus cD and the Hypersequent Calculus hD
	2.1 D and its Categorical Presentation cD
	2.2 The Hypersequent Calculus hD
	2.3 Some Special DAs
	2.4 Synthetic Connectives and the Implicative Fragment

	3 Strong Completeness of the Implicative Fragment w.r.t. L-Models
	References

	On Some Extensions of Syntactic Concept Lattices: Completeness and Finiteness Results
	1 Introduction
	2 Residuated Syntactic Concept Lattices and Extensions
	2.1 Equivalences on Strings and Tuples
	2.2 Syntactic Concepts and Polar Maps
	2.3 Monoid Structure and Residuation

	3 Lambek Calculus and Extensions
	3.1 The Logics L, L1, FL and FL
	3.2 Interpretations of L1, FL and FL

	4 Completeness: Previous Results
	5 SCLn -- Completeness via Embeddings
	6 A Characterization for Finite SCL-Structures
	7 Conclusion
	References

	Formal Grammar 2016: Contributed Papers
	Overtly Anaphoric Control in Type Logical Grammar
	1 Introduction
	2 LLC Calculus
	3 Control Structures and Property Theory
	3.1 Applying LLC to Portuguese

	4 Proposal: Extending LLC
	4.1 Semantically Inactive Disjunction Type
	4.2 Preliminary Proposal: Unlifted Pronominal Types
	4.3 Final Proposal: Lifted Pronominal Types

	5 Conclusions
	References

	A Single Movement Normal Form for Minimalist Grammars
	1 Defining Minimalist Grammars
	2 Single Movement Normal Form
	2.1 A Linear Tree Transduction for Single Movement
	2.2 Proof of Strong Equivalence

	3 Evaluation
	3.1 Effects on Succinctness and Grammar Size
	3.2 Usefulness and Applications
	3.3 Linguistic Implications

	A Specification of SMNF Transducer
	References

	Word Ordering as a Graph Rewriting Process
	Abstract
	1 Introduction
	2 Natural Language Modelling and Graph Rewriting
	3 Governor-Dependent Linearization Rules
	3.1 Sketch of Governor-Dependent Linearization Rules
	3.2 Polarized Unification Grammar
	3.3 Trees and Strings in PUG
	3.4 Sub-categorization Rules and Semantics-Syntax Interface
	3.5 Governor-Dependent Linearization Rules
	3.6 Architecture of the Model and Procedure

	4 Linearization Module
	4.1 Co-dependent Linearization Rules
	4.2 Propagation and Projectivity

	5 Emancipation
	6 Conclusion
	References

	Undecidability of the Lambek Calculus with a Relevant Modality
	1 The Lambek Calculus Extended by a Relevant Modality
	2 Linguistic Examples and Motivations
	3 L* with Buszkowski's Rules
	4 Undecidability of !L*
	5 A Decidable Fragment of !L*
	6 Future Work
	References

	Introducing a Calculus of Effects and Handlers for Natural Language Semantics
	1 Introduction
	2 Definition of the Calculus
	2.1 Terms
	2.2 Types
	2.3 Reduction Rules
	2.4 Common Combinators

	3 Linguistic Phenomena as Effects
	3.1 Deixis
	3.2 Quantification
	3.3 Conventional Implicature
	3.4 Summary

	4 Properties of the Calculus
	5 Conclusion
	References

	Proof Nets for the Displacement Calculus
	1 Introduction
	2 The Displacement Calculus
	2.1 Formulas and Sorts
	2.2 Natural Deduction Rules

	3 Proof Nets
	3.1 Links
	3.2 Proof Structures
	3.3 Abstract Proof Structures
	3.4 Contractions
	3.5 Correctness of the Calculus

	4 Extension to Other Connectives
	5 Conclusion
	References

	Countability: Individuation and Context
	1 Introduction: From Atomicity to Counting as `One'
	2 Individuation Patterns Across Classes Of Nouns
	2.1 Prototypical Objects
	2.2 Substances, Liquids and Gasses
	2.3 Superordinate Artifacts
	2.4 Homogenous Objects
	2.5 Granulars
	2.6 Individuation Does Not Determine Mass/Count Encoding

	3 Enrichments Needed for a Theory of Individuation
	3.1 Mereotopology
	3.2 Vagueness and Underspecification or Overspecification
	3.3 Context Sensitivity
	3.4 Summary

	4 Applying Mereology to the Noun Classes
	4.1 Formally Characterizing the Noun Classes in Mereological Terms
	4.2 Beyond Mereology

	5 Conclusions
	References

	The Proper Treatment of Linguistic Ambiguity in Ordinary Algebra
	1 Introduction
	2 Linguistic Ambiguity
	3 The Semantics of Linguistic Ambiguity
	4 Ambiguous Algebras
	4.1 Uniform Usage and Axiomatization

	5 Structure Theory I: Uniformity
	6 The Meaning of Uniformity
	7 Structure Theory II: Completions
	8 Conclusion and Further Work
	References

	Erratum to: The Proper Treatment of Linguistic Ambiguity in Ordinary Algebra
	Erratum to: Chapter “The Proper Treatment of Linguistic Ambiguity in Ordinary Algebra” in: A. Foret et al. (Eds.): Formal Grammar, LNCS 9804, https://doi.org/10.1007/978-3-662-53042-9_18
	Reference

	Author Index

