
Backdoors in Pseudorandom Number
Generators: Possibility and Impossibility Results

Jean Paul Degabriele1(B), Kenneth G. Paterson1, Jacob C.N. Schuldt2,
and Joanne Woodage1

1 Royal Holloway, University of London, London, UK
{jean.degabriele,kenny.paterson}@rhul.ac.uk

joanne.woodage.2014@live.rhul.ac.uk
2 AIST, Tokyo, Japan

jacob.schuldt@aist.go.jp

Abstract. Inspired by the Dual EC DBRG incident, Dodis et al.
(Eurocrypt 2015) initiated the formal study of backdoored PRGs, show-
ing that backdoored PRGs are equivalent to public key encryption
schemes, giving constructions for backdoored PRGs (BPRGs), and show-
ing how BPRGs can be “immunised” by careful post-processing of their
outputs. In this paper, we continue the foundational line of work initi-
ated by Dodis et al., providing both positive and negative results.

We first revisit the backdoored PRG setting of Dodis et al., showing
that PRGs can be more strongly backdoored than was previously envis-
aged. Specifically, we give efficient constructions of BPRGs for which,
given a single generator output, Big Brother can recover the initial state
and, therefore, all outputs of the BPRG. Moreover, our constructions
are forward-secure in the traditional sense for a PRG, resolving an open
question of Dodis et al. in the negative.

We then turn to the question of the effectiveness of backdoors in
robust PRNGs with input (c.f. Dodis et al., ACM-CCS 2013): genera-
tors in which the state can be regularly refreshed using an entropy source,
and in which, provided sufficient entropy has been made available since
the last refresh, the outputs will appear pseudorandom. The presence of
a refresh procedure might suggest that Big Brother could be defeated,
since he would not be able to predict the values of the PRNG state back-
wards or forwards through the high-entropy refreshes. Unfortunately, we
show that this intuition is not correct: we are also able to construct
robust PRNGs with input that are backdoored in a backwards sense.
Namely, given a single output, Big Brother is able to rewind through
a number of refresh operations to earlier “phases”, and recover all the
generator’s outputs in those earlier phases.

Finally, and ending on a positive note, we give an impossibility result:
we provide a bound on the number of previous phases that Big Brother
can compromise as a function of the state-size of the generator: smaller
states provide more limited backdooring opportunities for Big Brother.

c© International Association for Cryptologic Research 2016
M. Robshaw and J. Katz (Eds.): CRYPTO 2016, Part I, LNCS 9814, pp. 403–432, 2016.
DOI: 10.1007/978-3-662-53018-4 15

404 J.P. Degabriele et al.

1 Introduction

Background: In the wake of the Snowden revelations, the cryptographic research
community has begun to realise that it faces a more powerful and insidious
adversary than it had previously envisaged: Big Brother, an adversary willing to
subvert cryptographic standards and implementations in order to gain an advan-
tage against users of cryptography. The Dual EC DRBG debacle, and subsequent
research showing the widespread use of this NIST-standardised pseudorandom
generator (PRG) and its security consequences [11], has highlighted that insert-
ing backdoors into randomness-generating components of systems is a profitable,
if high-risk, strategy for Big Brother.

The threat posed by the Big Brother adversary brings new research chal-
lenges, both foundational and applied. The study of subversion of cryptographic
systems — how to undetectably and securely subvert them, and how to defend
against subversion — is a central one. Current research efforts to understand
various forms of subversion include the study of Algorithm Substitution Attacks
(ASAs) [2,6,13,23,28] and that of backdooring of cryptosystems [3,8,11,15].
These lines of research have a long and rich history through topics such as klep-
tography [34] and subliminal channels [31]. In an ASA, the subversion is specific
to a specific implementation of a particular algorithm or scheme, whereas in
backdooring, the backdoor resides in the specification of the scheme or primitive
itself and any implementation faithful to the specification will be equally vulner-
able. There is a balancing act at play with these two types of attack: while ASAs
are arguably easier to carry out, their impact is limited to a specific implemen-
tation, whereas the successful introduction of a backdoor into a cryptographic
scheme, albeit ostensibly harder to mount and subsequently conceal, can have
much wider impact.

The Importance of Randomness: Many cryptographic processes rely heavily on
good sources of randomness, for example, key generation, selection of IVs for
encryption schemes and random challenges in authentication protocols, and the
selection of Diffie-Hellman exponents. Indeed randomness failures of various kinds
have led to serious vulnerabilities in widely deployed cryptographic systems, with
a growing literature on such failures [1,7,10,19,21,22,25,27,33]. Furthermore it is
well established in the theory of cryptography that the security of most crypto-
graphic tasks relies crucially on the quality of that randomness [16].

Since true random bits are hard to generate without specialised hardware, and
such hardware has only recently started to become available on commodity com-
puting platforms,1 Pseudorandom Generators (PRGs) and Pseudorandom Num-
ber Generators with input (“PRNGs with input” for short) are almost universally
used in implementations. These generate pseudorandom bits instead of truly ran-
dombits; PRNGs with input can also have their state regularly refreshed with fresh
entropy, though from a possibly biased source of randomness. Typically, a host

1 See for example https://en.wikipedia.org/wiki/RdRand for a description of Intel’s
“Bull Mountain” random number generator.

https://en.wikipedia.org/wiki/RdRand

Backdoors in Pseudorandom Number Generators 405

operating system will make PRNGs with input available to applications, with the
entropy being gathered from a variety of events, e.g. keyboard or disk timings, or
timing of interrupts and other system events; programming libraries typically also
provide access to PRG functionality, though of widely varying quality.

Backdooring Randomness: Given the ubiquity of PRGs and PRNGs with input
in cryptographic implementations, they constitute the ideal target for maximis-
ing the spread and impact of backdoors. This was probably the rationale behind
the Dual EC DRBG [11] which is widely believed to have been backdoored by
the NSA. Despite this generator’s low-speed, known output biases, and known
capability to be backdoored (which was pointed out as early as 2007 by Shumow
and Ferguson [30]), it managed to be covertly deployed in a range of widely used
systems. Such systems continue to be discovered today, more than three years
after the original Snowden revelations relating to Dual EC DRBG and project
Bullrun.2 The Dual EC DRBG provides a particularly useful backdoor to Big
Brother: given a single output from the generator, its state can be recovered, and
all future outputs can be recovered (with moderate computational effort). Pro-
tocols like SSL/TLS directly expose PRG outputs in protocol messages, making
the Dual EC DRBG exploitable in practice [11].

Formal Analysis of Backdoored PRGs: The formal study of backdoored PRGs
(BPRGs) was initiated by Dodis et. al. [15], building on earlier work of Vazirani
and Vazirani [32]. Dodis et al. showed that BPRGs are equivalent to public-key
encryption (PKE) with pseudorandom ciphertexts (IND$-CPA-security), pro-
vided constructions using PKE schemes and KEMs, and analysed folklore immu-
nisation techniques. Understanding the nature of backdoored primitives together
with their capabilities and limitations is an important first step towards find-
ing solutions that will safeguard against backdooring attacks. For instance the
equivalence of BPRGs with public key encryption shown in [15] suggests that a
PRG based on purely symmetric techniques is less likely to contain a backdoor,
since we currently do not know how to build public key encryption from one-way
functions.

A basic question that was posed – and partly answered – in [15] is: to what extent
can a PRG be backdoored while at the same time being provably secure? This ques-
tion makes perfect sense in the context of subversion via backdooring, where the
backdoor resides in the specification of the PRG itself, and where the PRG can
be publicly assessed and its security evaluated. The Dual EC DRBG has notable
biases which directly rule out any possibility of it being provably secure as a PRG.
Nevertheless, in [15] it is noted that by using special encodings of curve points as
in [9,24,35], these biases can be eliminated and the Dual EC DRBG can be turned
into a provably forward-secure PRG under the DDH assumption.
2 See for example http://www.realworldcrypto.com/rwc2016/program/rwc16-

shacham.pdf?attredirects=0\&d=1 for the Dual EC DRBG being used as a
backdoor in Juniper networking equipment; see also http://www.theguardian.com/
world/2013/sep/05/nsa-gchq-encryption-codes-security for the original reporting
on project Bullrun.

http://www.realworldcrypto.com/rwc2016/program/rwc16-shacham.pdf?attredirects=0&d=1
http://www.realworldcrypto.com/rwc2016/program/rwc16-shacham.pdf?attredirects=0&d=1
http://www.theguardian.com/world/2013/sep/05/nsa-gchq-encryption-codes-security
http://www.theguardian.com/world/2013/sep/05/nsa-gchq-encryption-codes-security

406 J.P. Degabriele et al.

Yet the backdoor in the Dual EC DRBG, while relatively powerful and cer-
tainly completely undermining security in certain applications like SSL/TLS, has
its limitations. In particular, it does not allow Big Brother (who holds the back-
door key) to predict previous outputs from a given output but only future ones.
The random-seek BPRG construction of [15] provides a stronger type of backdoor:
given any single output, it allows Big Brother to recover any past or future out-
put with probability roughly 1

4 . But the random-seek BPRG construction of [15]
attains this stronger backdooring at the expense of no longer being a forward-secure
PRG (in the usual sense). Indeed, forward-security and the random-seek backdoor
property would intuitively seem to be opposing goals, and it is then natural to
ask whether this tradeoff is inherent, or whether strong forms of backdooring of
forward-secure PRGs are possible. If the limitation was inherent, then a proof of
forward-security for a PRG would serve to preclude backdoors with the backward-
seek feature, so a forward-secure PRG would be automatically immunised, to some
extent, against backdoors.

1.1 Our Contributions

In this work we advance understanding of backdoored generators in two distinct
directions.

Stronger Backdooring of PRGs: We settle the above open question from [15]
in the negative by providing two different constructions of random-seek BPRGs
that are provably forward-secure. In fact we demonstrate something substantially
stronger:

– Firstly, both of our constructions allow Big Brother to succeed with probabil-
ity 1 (rather than the 1/4 attained for the random-seek BPRG construction
of [15]).

– Secondly, the backdooring is much stronger, in that for both of our BPRG
constructions, Big Brother is able to recover the initial state of the BPRG,
given only a single output value. This then enables all states and output values
to be reconstructed.

Our constructions require a number of cryptographic tools. Unsurprisingly,
given the connection between BPRGs and PKE with pseudorandom ciphertexts
that was shown in [15], they both make use of the latter primitive. To give a
flavour of what lies ahead, we remark that our simplest construction, shown
in Fig. 7, uses such a PKE scheme to encrypt its state s, with the resulting
ciphertext C forming the generator’s output; s is also evolved using a one-way
function, to provide forward security. Clearly, Big Brother, with access to a
single output and the decryption key, can recover the state s. But we use a
trapdoor one-way function so that Big Brother can then “unwind” s back to its
starting value. For the security proof, we need to use a random oracle applied to
s to generate the encryption randomness, making our construction reminiscent
of the “Encrypt-with-hash” construction of [5], while for technical reasons, we

Backdoors in Pseudorandom Number Generators 407

require the trapdoor one-way function to be lossy [26]. Our second construction
is in the standard model and combines, in novel ways, other primitives such as
re-randomizable PKE schemes.

Backdooring PRNGs with Input: We then turn our attention to the study of
backdoored PRNGs with input (BPRNGs). This is a very natural extension to
the study of BPRGs conducted in [15] and continued here, particularly in view
of the widespread deployment of PRNGs with input in real systems.

The formal study of PRNGs with input (but without backdooring) com-
menced with Barak and Halevi’s work in [4], later extended in [17,18]. Various
security notions have been proposed in the literature for PRNGs with input,
namely resilience, forward security, backward security and robustness. Of these,
robustness is the strongest notion. It captures the ability of a generator to both
preserve security when its entropy inputs are influenced by an attacker and
to recover security after its state is compromised, via refreshing (provided suffi-
cient entropy becomes available to it). Robustness is generally accepted as the de
facto security target for any new PRNG design, though several widely-deployed
PRNGs fail to meet it (see, for example, [12,17]).

Given that we are in the backdooring setting for subversion, in which the full
specification of the cryptographic primitive targeted for backdooring is public,
any construction can be vetted for security. It is therefore logical to require any
BPRNG to be robust. (This is analogous to requiring a BPRG to be forward-
secure, or at least, a PRG in the traditional sense.) As such, a BPRNG cannot
just ignore its entropy inputs and revert to being a PRG. One might then hope
that, with additional high entropy inputs being used to refresh the generator
state, and with this entropy not being under the direct control of Big Brother
(since, otherwise, no security at all is possible), backdooring a PRNG with input
might be impossible. This would be a positive result in the quest to defeat
backdooring. Unfortunately, we show that this is not the case.

As a warm-up, we show how to adapt the robust PRNG of [17] to make
it backdoored. This requires only a simple trick (and some minor changes to
the processing of entropy): replace the PRG component of the generator with a
BPRG. Given a single output from the generator, this then allows Big Brother to
compute all outputs from the last refresh operation to the next refresh operation.
Yet the generator is still robust.

Much more challenging is to develop a robust PRNG with input in which
Big Brother can use his backdoor to “pass through” refresh operations when
computing generator outputs. We provide a construction which does just that,
see Fig. 11. Our construction is based on the idea of interleaving outputs of a
(non-backdoored) PRNG with encryptions of snapshots of that PRNG’s state,
using an IND$-CPA secure encryption scheme to ensure pseudorandomness of the
outputs. By taking a snapshot of the state whenever it is refreshed and storing a
list of the previous k snapshots in the state (for a parameter k), the construction
enables Big Brother to recover, with some probability, old output values that
were computed as many as k refreshes previously. The actual construction is
considerably more complex than this sketch hints, since achieving robustness,

408 J.P. Degabriele et al.

in the sense of [17], is challenging when the state has this additional structure.
We also sketch variants of this construction that trade state and output size for
strength of backdooring.

An Impossibility Result for BPRNGs: We close the paper on a more positive
note, providing an impossibility result showing that backdooring in a strong sense
cannot be achieved (whilst preserving robustness) without significantly enlarging
the state of the generator. More precisely, we show that it is not possible for Big
Brother to perform a state recovery attack in which he recovers more than some
number k of properly refreshed previous states from an output of the generator,
when k is large relative to the state-size of the BPRNG. A precise formalisation
of our result is contained in Theorem 5.

Note that the backdooring attack here requires more of Big Brother than
might be needed in practice, since he may be considered successful if he can
recover just one previous state, or a fraction of the previous BPRNG outputs.
Our construction shows that backdooring of this kind is certainly possible. Nor
does our result say anything about Big Brother’s capabilities (or lack thereof)
when it comes to recovering future states/outputs (after a generator has under-
gone further high-entropy refresh operations). It is an important open problem
to strengthen our impossibility results – and to improve our constructions – to
explore the limits of backdooring for PRNGs with input.

2 Preliminaries

2.1 Notation

The set of binary strings of length n is denoted {0, 1}n and ε denotes the empty
string. For any two binary strings x and y we write |x| to denote the size of x
and x‖y to denote their concatenation. For any set U we denote by u � U the
process of sampling an element uniformly at random from U and assigning it to
u. All logs are to base 2.

2.2 Entropy

We recall a number of standard definitions on entropy, statistical distance, and
(k, ε)-extractors in the full version [14].

Definition 1. An (k, ε)-extractor Ext : {0, 1}∗ × {0, 1}v → {0, 1}w is said
to be online-computable on inputs of length p if there exists a pair of effi-
cient algorithms iterate : {0, 1}p × {0, 1}p × {0, 1}v → {0, 1}p, and finalize :
{0, 1}p × {0, 1}v → {0, 1}w such that for all inputs Ī = (I1, . . . , Id) where each
Ij ∈ {0, 1}p, and d ≥ 2, then after setting y1 = I1, and yj = iterate(yj−1, Ij ;A)
j = 2, . . . , d, it holds that

Ext(Ī;A) = finalize(yd;A).

Backdoors in Pseudorandom Number Generators 409

2.3 Cryptographic Primitives

In the full version [14], we recall a number of standard definitions for PKE
schemes. Throughout this work we require that PKE schemes be length-regular.
For the constructions that follow, we shall require an IND$-CPA-secure PKE
scheme; that is to say a PKE scheme having pseudorandom ciphertexts. We
define such schemes formally below. Concrete and efficient examples of such
schemes can be obtained by applying carefully constructed encoding schemes to
the group elements of ciphertexts in the ElGamal encryption scheme (in which
ciphertexts are of the form (gR,M · gRx) where g generates a group of prime
order p in which DDH is hard; (gx, x) ← KGen with x � Zp; R � Zp; and M is
a message, encoded here as a group element); see for example [9,24,35].

Definition 2. A PKE scheme E = (KGen,Enc,Dec) is said to be (t, q, δ)-
IND$-CPA-secure if for all adversaries A running in time t and making at
most q oracle queries, it holds that Advind$-cpaE (A) ≤ δ, where:

Advind$-cpaE (A) =
∣
∣
∣ Pr

[

(pk, sk) ← KGen : A Enc(pk,·)(pk) ⇒ 1
]

− Pr
[

(pk, sk) ← KGen : A $(·)(pk) ⇒ 1
] ∣
∣
∣

and $(·) is such that on input a message M it returns a random string of size
|Enc(pk,M)|.
It is straightforward to show that if E is (t, q, δ)-IND$-CPA-secure, then it is also
(t, q, 2δ)-IND-CPA-secure in the usual sense.

We shall also utilise PKEs which are statistically re-randomizable; again the
ElGamal scheme and its group-element-encoded variants have the required prop-
erty.

Definition 3. [20] A (t, q, δ, ν)-statistically re-randomizable encryption scheme
is a tuple of algorithms E = (KGen,Enc,Rand,Dec) where (KGen,Enc,Dec) is a
standard PKE scheme and Rand is an efficient randomised algorithm such that
for all (pk, sk) ← KGen and for all M,R′

0,

Δ({Enc(pk,M ;R0) : R0 � Coins(Enc)},

{Rand(Enc(pk,M ;R′
0);R1) : R1 � Coins(Rand) :}) ≤ ν.

That is, the distributions of an honestly generated ciphertext and a ciphertext
obtained by applying Rand to one generated with arbitrary randomness are sta-
tistically close. We write Rand(C0;R1, . . . , Rq) to denote the value of Cq where
Cj = Rand(Cj−1;Rj) for j = 1, . . . , q.

We now define encryption schemes which have the additional property of
being reverse re-randomizable. It is easy to see that ElGamal encryption and its
encoded variants has the required property.

410 J.P. Degabriele et al.

Definition 4. A (t, q, δ, ν)-statistically reverse re-randomizable encryption
scheme E is a tuple of algorithms E = (KGen,Enc,Rand,Rand−1,Dec) such that:

– (KGen,Enc,Rand,Dec) is a (t, q, δ, ν) statistically re-randomizable encryption
scheme.

– Rand−1 is an efficient algorithm such that for all (pk, sk) ← KGen and for all
M ,R0,R1, it holds that, if C = Enc(pk,M ;R0), then:

Pr
[

Rand−1(Rand(C;R1);R1) = C
]

= 1.

Suppose Cq = Rand(C0;R1, . . . , Rq), so that Cj = Rand(Cj−1;Rj) for j =
1, . . . , q. Then, from the above, we know that Cj−1 = Rand−1(Cj ;Rj) for
1 ≤ j ≤ q; to denote C0, we write Rand−1(Cq;R1, . . . , Rq).

We recall the definitions of trapdoor one-way permutations, and lossy trap-
door permutations, in the full version [14].

2.4 Pseudorandom Generators

A pseudorandom generator (PRG) takes a small amount of true statistical ran-
domness as an input seed, and outputs arbitrary (polynomial) length bit-strings
which are pseudorandom. Following [15], we will equip PRGs with a parameter
generation algorithm, setup. This allows backdooring to be introduced into the
formalism.

Definition 5. A PRG is a triple of algorithms PRG = (setup, init, next), with
associated parameters (n, l) ∈ N

2, defined as follows:

– setup : {0, 1}∗ → {0, 1}∗ × {0, 1}∗ takes random coins as input and outputs
a pair of parameters (pp, bk), where pp denotes the public parameter for the
generator, and bk is the secret backdoor parameter. In a non-backdoored PRG,
we set bk =⊥.

– init : {0, 1}∗ × {0, 1}∗ → {0, 1}n takes pp and random coins as input, and
returns an initial state for the PRG, s0 ∈ {0, 1}n.

– next : {0, 1}∗ × {0, 1}n → {0, 1}l × {0, 1}n takes pp and a state s ∈ {0, 1}n as
input, and outputs an output/state pair (r, s′) ← next(pp, s) where r ∈ {0, 1}l

is the PRG’s output, and s′ ∈ {0, 1}n is the updated state.

Definition 6. Let PRG = (setup, init, next) be a PRG. Given an initial state
s0, we set (ri, si) ← next(pp, si−1) for i = 1, . . . , q. We write outq(next(pp, s0))
for the sequence of outputs r1, . . . , rq and stateq(next(pp, s0)) for the sequence of
states s1, . . . , sq produced by this process.

Definition 7 (PRGSecurity). Let PRG = (setup, init, next) be a PRG. Con-
sider the game PRG-DISTA ,q

PRG of Fig. 1 in which the adversary receives either q
outputs from the PRG or q random strings of the appropriate size. We define the
PRG distinguishing advantage of A against PRG to be

AdvdistPRG(A , q) = 2|Pr
[

PRG-DISTA ,q
PRG ⇒ true

]

− 1
2
|.

Backdoors in Pseudorandom Number Generators 411

Fig. 1. The games for PRG-DISTA ,q
PRG and PRG-FWDA ,q

PRG .

Definition 8. A PRGPRG = (setup, init, next) is said to be (t, q, δ)-secure if for
all adversaries A running in time at most t it holds that AdvdistPRG(A , q) ≤ δ.

Definition 9 (PRGForward Security). Let PRG = (setup, init, next) be a
PRG. Consider the game PRG-FWDA ,q

PRG of Fig. 1 in which the adversary receives
either q outputs from the PRG and the final state, or q random strings of the
appropriate size and the final state. We define the PRG forward-security advan-
tage of A against PRG to be

Advfwd
PRG(A , q) := 2|Pr

[

PRG-FWDA ,q
PRG ⇒ true

]

− 1
2
|.

Definition 10. A PRGPRG is said to be (t, q, δ)-FWD-secure if for all adver-
saries A running in time at most t it holds that Advfwd

PRG(A , q) ≤ δ.

2.5 Backdoored Pseudorandom Generators

The first formal treatment of backdoored PRGs was that of Dodis et al. [15].
Intuitively, a backdoored cryptosystem is a scheme coupled with some secret
backdoor information. In the view of an adversary who does not know the back-
door information, the scheme fulfils its usual security definition. However an
adversary in possession of the backdoor information will gain some advantage
in breaking the security of the cryptosystem. The backdoor attacker is mod-
elled as an algorithm which we call B (for ‘Big Brother’), to distinguish it from
an attacker A whose goal is to break the usual security of the scheme without
access to the backdoor. Whilst the backdoor attacker B will be external in the
sense that it will only be able to observe public outputs and parameters, the
attack is also internalised as the backdoor algorithm is designed alongside, and
incorporated into, the scheme.

We define backdoored PRGs (BPRGs) in conjunction with different games
BPRNG-TYPEB,q

PRG
which capture specific backdooring goals, each game having

412 J.P. Degabriele et al.

a corresponding advantage term. The three games considered in [15] are defined
in Fig. 2.

Definition 11. A tuple of algorithms PRG = (setup, init, next,B) is defined to
be a (t, q, δ, (type, ε))-secure BPRG if:

– PRG = (setup, init, next) is a (t, q, δ)-secure PRG;
– Advtype

PRG
(B, q) ≥ ε.

Definition 12. Let PRG = (setup, init, next,B) be a BPRG. We define

– Advdist
PRG

(B, q) := 2|Pr
[

BPRG-DISTB,q

PRG
⇒ true

]

− 1
2 |,

– Advnext
PRG

(B, q) := Pr
[

BPRG-NEXTB,q

PRG
⇒ true

]

,

– Advrseek
PRG

(B, q) := min1≤i,j,≤q Pr
[

BPRG-RSEEKB,q

PRG
(i, j)⇒ true

]

.

Fig. 2. Security games for backdooring of PRGs.

In Fig. 2, game BPRG-DISTB,q

PRG
challenges Big Brother to use the backdoor

to break the security of the PRG in the most basic sense of distinguishing real

Backdoors in Pseudorandom Number Generators 413

from random outputs. In game BPRG-NEXTB,q

PRG
, B aims to recover the current

state of the PRG given q consecutive outputs from the generator. This is a far
more powerful compromise since it then allows B to predict all of the generator’s
future outputs. In the third game, BPRG-RSEEKB,q

PRG
(i, j), B is given only the

ith output (rather than q outputs) and index j, and tries to recover the jth

output (but not any state).
It is noted in [15] that an adversary B winning in game BPRG-NEXTB,q

PRG
represents a stronger form of backdooring than an adversary B winning in
game BPRG-DISTB,q

PRG
for the same parameters, whilst an adversary B win-

ning in game BPRG-RSEEKB,q

PRG
(i, j) may be more or less powerful than one

for game BPRG-NEXTB,q

PRG
depending on the circumstances. The paper [15]

presents constructions of BPRGs that are backdoored in the BPRG-NEXTB,q

PRG

and BPRG-RSEEKB,q

PRG
(i, j) senses, but does also note that their construction

for a scheme of the latter type is not forward-secure.
Both for their intrinsic interest, and because they will be needed in our later

constructions of backdoored PRNGs with input, we are interested in BPRGs
that are forward secure against normal adversaries. For a generic type of game
BPRNG-TYPEB,q

PRG
, these are formally defined as follows.

Definition 13. A tuple of algorithms PRG = (setup, init, next,B) is said to be
a (t, q, δ, (type, ε))-FWD-secure BPRG if:

– PRG = (setup, init, next) is a (t, q, δ)-FWD-secure PRG;
– Advtype

PRG
(B, q) ≥ ε.

2.6 Pseudorandom Number Generators with Input

Definition 14 (PRNGwith Input). A PRNGwith input is a tuple of algo-
rithms PRNG = (setup, init, refresh, next) with associated parameters (n, l, p) ∈
N

3, where:

– setup : {0, 1}∗ → {0, 1}∗ takes as input some random coins and returns a
public parameter pp.

– init : {0, 1}∗ × {0, 1}∗ → {0, 1}n takes the public parameter pp and some
random coins to return an initial state s0.

– refresh : {0, 1}∗×{0, 1}n×{0, 1}p → {0, 1}n takes as input the public parameter
pp, the current state S, and a sample I from the entropy source, and returns
a new state s′.

– next : {0, 1}∗ × {0, 1}n → {0, 1}n × {0, 1}l takes as input the public parameter
pp and the current state s, and returns a new state s′ together with an output
string r.

Definition 15 (Distribution Sampler). A distribution sampler D :
{0, 1}∗ → {0, 1}∗ × {0, 1}p ×R

≥0 × {0, 1}∗ is a probabilistic and possibly stateful
algorithm which takes its current state σ as input and returns an updated state

414 J.P. Degabriele et al.

σ′, a sample I, an entropy estimate γ, and some leakage information z about I.
The state σ is initialised to the empty string.

A distribution sampler D is said to be valid up to qr samples, if for all
j ∈ {1, . . . , qr} it holds (with probability 1) that:

H∞ (Ij | I1, . . . , Ij−1, Ij+1, . . . , Iqr , z1, . . . , zqr , γ1, . . . , γqr) ≥ γj

where (σi, Ii, γi, zi) = D(σi−1) for i ∈ {1, . . . , qr} and σ0 = ε.

2.7 Security for Pseudorandom Number Generators with Input

We now turn to discussing security definitions for PRNGs with input. We fol-
low [17], with some minor differences noted below.

Definition 16 (Security of PRNGwith Input). With references to the secu-
rity game shown in Fig. 3, a PRNGwith input PRNG = (setup, init, refresh, next)
is said to be (t, qr, qn, qc, γ

∗, ε)-ROB-secure, for any distribution sampler D valid
up to qr samples, and any adversary A running in time at most t, making at
most qr queries to Ref, qn queries to Ror and a total of qc queries to Get and
Set, the corresponding advantage in game ROBD,A

PRNG,γ∗ is bounded by ε, where

AdvrobPRNG(A ,D) := 2|Pr
[

ROBD,A
PRNG,γ∗ ⇒ true

]

− 1
2
|.

Fig. 3. PRNG with input security game ROBD,A
PRNG,γ∗ .

Our definition here deviates from that in [17] in the following ways.

– We generalise the syntax so as to allow the state to be initialised according to
some arbitrary distribution rather than requiring it to be uniformly random.
In particular we allow this distribution to depend on pp. This facilitates our
backdooring definitions to follow.

– We have removed the Next oracle from the model, without any loss of gen-
erality (as was shown in [12]).

Backdoors in Pseudorandom Number Generators 415

One of the key insights of [17] is to decompose the somewhat complex notion
of robustness into the two simpler notions of PREand REC security. We recall
these definitions below, generalised here to include the init algorithm.

Definition 17 (Preserving and Recovering Security). Consider the secu-
rity games described in Fig. 4. The PREsecurity advantage of an adversary A
against a PRNGwith input PRNG is defined to be

Advpre
PRNG(A) := 2|Pr

[

PREA
PRNG ⇒ true

]

− 1
2
|.

The REC security advantage with respect to parameters qr, γ∗ of an adver-
sary/sampler pair (A , D) against a PRNGwith input PRNG is defined to be

Advrec
PRNG(A ,D) := 2|Pr

[

RECD,A ,qr
PRNG,γ∗ ⇒ true

]

− 1
2
|.

In the REC security game, it is required that
∑k+d

j=k+1 γ[j] ≥ γ∗ for the value d
output by A .

Fig. 4. PRNG with input security games PREA
PRNG and REC D,A ,qr

PRNG,γ∗ .

Definition 18 (Preserving Security). A PRNGwith input PRNG is said to
have (t, εpre)-PREsecurity if for all attackers A running in time t, it holds that
AdvprePRNG(A) ≤ εpre.

416 J.P. Degabriele et al.

Definition 19 (Recovering Security). A PRNGwith input PRNG is said to
have (t, qr, γ

∗, εrec)-REC security if for any attacker A and sampler D valid
up to qr samples and running in time t, it holds that AdvrecPRNG(A ,D) ≤ εrec.

Informally, preserving security concerns a generator’s ability to maintain
security (in the sense of having pseudorandom state and output) when the adver-
sary completely controls the entropy source used to refresh the generator but
does not compromise its state. Meanwhile, recovering security captures the idea
that a generator whose state is set by the adversary should eventually get to a
secure state, and start producing pseudorandom outputs, once sufficient entropy
has been made available to it. The proof of Theorem 1 can be found in the full
version [14].

Theorem 1. Let PRNG be a PRNGwith input. If PRNG has both (t, εpre)-PRE
security, and (t, qr, γ

∗, εrec)-REC security, then PRNG is ((t′, qr, qn, qc), γ∗, ε)-
ROB secure where t ≈ t′ and ε = qn(εpre + εrec).

To simplify notation, we will make use of an algorithm, evolve, to generate
output values and update the internal state of a PRNG. It takes as input a PRNG
with input PRNG = (setup, init, next, refresh), public parameter pp, an initial state
s, a refresh pattern rp = (a1, b1, . . . , aρ, bρ), and a distribution sampler D . The
refresh pattern rp denotes a sequence of calls to next and refresh; for each i, ai

denotes the number of consecutive calls to next and bi denotes the subsequent
number of consecutive calls to refresh. More specifically, evolve proceeds as shown
in Fig. 5.

Fig. 5. The evolve algorithm.

The output of evolve is a sequence, (r1, s1, . . . , rqn , sqn), of PRNG output
and state pairs, where qn =

∑ρ
i=1 ai. Based on evolve, we define an additional

algorithm, out, which takes the same input, runs evolve, and returns only the
output values (r1, . . . , rqn).

Backdoors in Pseudorandom Number Generators 417

3 Stronger Models and New Constructions
for Backdoored Pseudorandom Generators

In this section, we first present two new, strong backdooring security models for
PRGs. The stronger of the two implies all the backdooring notions in [15]. We
then give two new constructions of BPRGs which achieve our two backdooring
notions. In contrast to the strongest constructions in [15], all of our constructions
are forward-secure.

3.1 Backdoored PRGSecurity Models

In the first of our two new models, the BPRG is run with initial state s0 to
produce q outputs r1, . . . , rq. The Big Brother adversary B is then given a
particular output ri, and challenged to recover the initial state s0 of the BPRG.
In the second model, the BPRG is again run with initial state s0 to produce q
outputs, one of which is given to B. However B is now asked to reproduce the
remaining q − 1 unseen output values. We formalise these two models as games
BPRG-FIRST and BPRG-OUT in Fig. 6.

Definition 20. Let PRG = (setup, init, next,B) be a BPRG. We define

– Advfirst
PRG

(B, q, i) := Pr
[

BPRG-FIRSTB,q

PRG
(i)⇒ true

]

, and

– Advout
PRG

(B, q, i) := Pr
[

BPRG-OUTB,q

PRG
(i)⇒ true

]

Fig. 6. Backdoored PRGsecurity games BPRG-FIRST and BPRG-OUT.

Discussion. We observe that our first backdooring notion, as formalised in
BPRG-FIRSTB,q

PRG
and Advfirst

PRG
(B, q, i), is strictly stronger than the three notions

for BPRGs defined in [15] and discussed in Sect. 2.5: it is straightforward to see
that any (t, q, δ, (first, ε))-secure BPRG is also a (t, q, δ, (type, ε))-secure BPRG for
type ∈ {dist, state, rseek}.

Moreover, simple comparison of definitions shows that any (t, q, δ, (out, ε))-
secure BPRG is also a (t, q, δ, (type, ε))-secure BPRG for type ∈ {dist, rseek}.

418 J.P. Degabriele et al.

However, a BPRG backdoored in the out sense need not be backdoored in the
state sense, since the latter concerns state prediction rather than output predic-
tion. (And indeed it is easy to construct separating examples for the out and
state backdooring notions.)

Since the initial state of a PRG determines all of its output, it is also clear
that any (t, q, δ, (first, ε))-secure BRPG is also a (t, q, δ, (out, ε))-secure BPRG.
However, the converse need not hold, and first backdooring is strictly stronger
than out backdooring. To see this, consider PRG, a (t, q, δ, (out, ε))-secure BPRG,
and define a modified BRPG PRG

′
in which the initial state s0 is augmented

to s0||d for d � {0, 1}n, but where d is not used in any computations and all
other algorithms of PRG are left unchanged. In particular, the output produced
by PRG

′
is identical to that of PRG. Then it is easy to see that PRG

′
is a

(t, q, δ, (out, ε))-secure BPRG, but that Advfirst
PRG

(B, q, i) ≤ 2−n, since B can do
no better than guessing the n extra bits of state d.

In most attack scenarios, and taking Big Brother’s perspective, the ability
of B to compute all unseen output (as in out) is as useful in practice as being
able to compute the initial state (as in first), since it is the output values of
the BPRG that will be consumed in applications. This makes the out notion a
natural and powerful target for constructions of BPRGs. That said, in the sequel
we will obtain constructions for the even stronger first setting.

A (t, q, δ, (rseek, ε))-secure BPRG is also a (t, q, δ, (out, εq−1))-secure BPRG,
implying an exponential loss in going from rseek backdooring to out backdooring.
This means that achieving either first or out backdooring with a high value of ε
is significantly more powerful than achieving rseek backdooring with the same ε.

3.2 Forward-Secure BPRGs in the Random Oracle Model

We present our first construction for a forward-secure BPRG that is backdoored
in the first sense in Fig. 7. This construction uses as ingredients an LTDP family
and an IND$-CPA-secure PKE scheme. Its security analysis is in the Random
Oracle Model (ROM). It achieves our strongest first notion with ε = 1.

The scheme is reminiscent of the “Encrypt-with-Hash” paradigm for con-
structing deterministic encryption schemes from [5]. At each stage, the generator
encrypts its own state s, with randomness derived from hashing s, to produce the
next output. The IND$-CPA-security of the PKE scheme ensures these outputs
are pseudorandom. The state s is also transformed by applying a one-way function
F at each stage. This is necessary to provide forward security against non-B adver-
saries. The function is trapdoored, enabling B to decrypt an output to recover a
state, then reverse the state update repeatedly to recover the initial state, thereby
realising first backdooring. For technical reasons that will become apparent in the
proof, we require the one-way function F to be a lossy permutation. The proof of
the following theorem can be found in the full version [14].

Theorem 2. Let E = (KGen,Enc,Dec) be a (t, q, δ)-IND$-CPA secure PKE
scheme. Let LTDP = (G0,G1,S,F,F−1) be a family of (n, k, t, ε)-lossy trapdoor
permutations. Then PRG = (setup, init, next,B) with algorithms as shown in

Backdoors in Pseudorandom Number Generators 419

Fig. 7. Construction of a forward-secure BPRG (setup, init, next,B) from an LTDP
family LTDP = (G0,G1, S,F,F−1) and an IND$-CPA-secure PKE scheme E =
(KGen,Enc,Dec).

Fig. 7 is a (t′, q, (2δ + 3ε + (q + 1)2−(k−1)), (first, 1))-FWDsecure BPRG in the
ROM, where t′ ≈ t.

3.3 Standard Model, Forward-Secure BPRGs from Reverse
Re-randomizable Encryption

Our second construction dispenses with the ROM and the use of lossy trapdoor
permutations, at the expense of requiring as a component an IND$-CPA-secure
reverse re-randomizable PKE scheme (see Definition 4). It is instantiable in the
standard model using a variant of the ElGamal encryption scheme. The scheme
is again backdoored in the first sense with ε = 1.

The scheme, shown in Fig. 8, uses algorithm next′ from a normal (forward-
secure) PRG PRG′ to generate the next state s′ and a pseudorandom value >
using the current state s as a seed. The value > is then used to re-randomise a
ciphertext C that encrypts an initial state value s0, and the ‘old’ value C is used
as the generator’s output r. The re-randomisation at each step ensures that the
outputs collectively appear pseudorandom to a regular PRG adversary; the fact
that PRG′ is forward-secure ensures that the constructed BPRG is too.

Meanwhile, the use of PKE allows B (who knows the decryption key) to
recover s0 from any of the generator’s outputs, run the component genera-
tor PRG′ from its starting state s0, and recover all the values > used for re-
randomisation at each step; finally B can run the re-randomisation process
backwards to recover the initial state. The proof of the following theorem can
be found in the full version [14].

Theorem 3. Let E = (Key,Enc,Rand,Rand−1,Dec) be a (t, q, δ, ν)-IND$-CPA
secure reverse re-randomizable encryption scheme, and suppose that PRG′ =
(setup′, init′, next′) is a (t, q, εfwd)-secure PRG. Then PRG = (setup, init, next,B)
as defined in Fig. 8 is a (t′, q, 6δ + 2εfwd + q(q + 3)ν/2, (first, 1))-FWDsecure
BPRG, where t′ ≈ t.

420 J.P. Degabriele et al.

Fig. 8. Construction of a forward-secure BPRG(setup, init, next,B) from a (t, q, δ, ν)-
reverse-re-randomizable IND$-CPA-secure PKE scheme E = (KGen,Enc,Dec) and a
forward-secure PRGPRG′ = (setup′, init′, next′).

4 Backdooring PRNGs with Input

In this section, we address the second main theme in our paper: backdooring of
PRNGs with input. To begin with, we show a simple construction for a PRNG
with input that is both robust and subject to a limited form of backdooring: given
a single output, B can recover the state and all outputs back to the previous
refresh and up to the next refresh operations (see Sect. 4.1). We then move on
to provide our formal definition for backdoored PRNGs with input (BPRNGs)
in Sect. 4.2; this definition demands much more of B, asking him to compute
outputs beyond refresh operations, at the same time as asking that the BPRNG
remain robust. Finally, in Sect. 4.3, we give a construction for a BPRNG meeting
our backdooring notion for PRNGs with input, with various extensions to this
construction being described in Sect. 4.4.

4.1 A Simple Backdoored PRNG

Let PRNG = (setup, init, refresh, next) be a ROB-secure PRNG with input. By
considering the special case of Game ROBD,A

PRNG,γ∗ in which the adversary A
makes no Set or Ref calls, and one Get call at the conclusion of the game, it is
straightforward to see that PRG = (setup, init, next) must be a FWD-secure PRG.
This suggests that in order to backdoor PRNG, we might try to replace PRG with
a BPRG. As long as this implicit BPRG is running without any refreshes, this
should enable B to carry out backdooring.

Backdoors in Pseudorandom Number Generators 421

To make this idea concrete, we present in Fig. 9 a construction of a ROB-
secure PRNG with input from a PRG PRG. This scheme is closely based on the
PRNG with input from [17]. It utilises an online-computable extractor and a
FWD-secure PRG; our main modification is to ensure that repeated next calls are
processed via a repeated iteration of a FWD-secure PRG. A proof of robustness
for this PRNG with input is easily derived from that of the original construction:

Lemma 1. Let Ext : {0, 1}∗ × {0, 1}v → {0, 1}n be an online-computable
(γ∗, εext)-extractor. Let PRG = (setup, init, next) be a (t, q, εprg)-PRG such
that s0 � init(pp) is equivalent to s0 � {0, 1}n. Then PRNG =
(setup, init, refresh, next) as shown in Fig. 9 is a ((t′, qr, qn, qc), γ∗, qn(2εprg +
q2rεext + 2−n+1))-robust PRNG with input, where t′ ≈ t.

We now simply substitute a FWD-secure BPRG (such as that presented in
Theorem 2) for PRG in this construction. Now, during the period between any
pair of refresh calls in which the PRNG is producing output, we inherit the back-
dooring advantage of the BPRG in the new construction. However, the effective-
ness of this backdoor is highly limited: as soon as refresh is called, the state of
the PRNG is refreshed with inputs, which, if of sufficiently high entropy, will
make the state information-theoretically unpredictable. Then B would need to
compromise more output in order to regain his backdooring advantage.

One implication of this construction is that it makes it clear that, when con-
sidering stronger forms of backdooring, we must turn our attention to subverting
refresh calls in some way.

Fig. 9. Construction of a robust PRNGPRNG from a FWD-secure PRGPRG, based
on [17].

422 J.P. Degabriele et al.

4.2 Formal Definition for Backdoored PRNGs with Input

To make our backdooring models for PRNGs with input as strong as possible, we
wish to make minimal assumptions about Big Brother’s influence, whilst allowing
the non-backdoored adversary A , to whom the backdoored schemes must still
appear secure, maximum power to compromise the scheme. To this end, we will
model B as a passive observer who is able to capture just one PRNG output,
which he is then challenged to exploit. Simultaneously, we demand that the
scheme is still secure in the face of a ROB-adversary A , with all the capabilities
this allows. Notably, the latter condition also offers the benefit of allowing us to
explore the extent to which a guarantee of robustness may act as an immuniser
against backdooring.

In our models to follow, we do not allow B any degree of compromise over
the distribution sampler D . This is again to fit with our ethos of making mini-
mal assumptions on B’s capabilities. It strengthens the backdooring model by
demanding that the backdoor be effective against all samplers D valid up to qr

samples, including in particular those not under the control of B. We also note
that, in the extreme case where B has complete knowledge of all the inputs used
in refresh calls, then B’s view of the evolution of the state is deterministic and
the PRNG is reduced to a FWD-secure PRG which is periodically reseeded with
correlated values. Thus this restriction on Big Brother’s power ensures a clear
separation between the results of Sect. 3 and those which follow.

Next consider a PRNG with input which produces its output via a sequence
of refresh and next calls. The evolution of the state, and subsequent production
of output, is determined not only by the number of such calls, but also by their
position in the sequence. To reflect this, each backdooring game below will take
as input the specific refresh pattern rp which was used to produce the challenge.
In line with this, and to reflect the fact that the refresh pattern may impact B’s
ability to subvert the scheme, the advantage of B in our formal definition will
be allowed to depend on the refresh pattern rp.

We present two new backdooring models for PRNGs with input in Fig. 10. In
the first game, the PRNG is evolved according to the specified refresh pattern.
Big Brother is given an output ri, and challenged to recover state sj . In the
second game, Big Brother is again given output ri, but now we ask him to
recover a different output value rj . In both games, Big Brother is additionally
given the refresh pattern. Stronger notions can be achieved by considering games
in which Big Brother is not given the refresh pattern, but for simplicity, we will
consider the games shown in Fig. 10. In Sect. 4.4 we will discuss how our concrete
construction of a BPRNG presented in Sect. 4.3 can be extended to the stronger
setting in which Big Brother is not given the used refresh pattern. As with the
corresponding PRG definitions in Sect. 3.1, a BPRNG backdoored in the state
sense is strictly stronger than one backdoored in the out sense.

Definition 21. A tuple of algorithms PRNG = (setup, init, next, refresh,
B) is said to be a (t, qr, qn, qc, γ

∗, ε, (type, δ))-robust BPRNG, where type ∈
{state, out}, if

Backdoors in Pseudorandom Number Generators 423

Fig. 10. Backdooring security games BPRNG-STATEB
PRNG,D

and BPRNG-OUTB
PRNG,D

for BPRNGs.

– PRNG = (setup, init, refresh, next) is a (t, qr, qn, qc, γ
∗, ε)-robust PRNGwith

input;
– For all refresh patterns rp = (a1, b1, . . . , aρ, bρ), where ai, bi, n are polynomial

in the security parameter, for all distribution samplers D , for all 1 ≤ i, j ≤
∑ρ

ν=1 aν , where i �= j, it holds that Advtype
PRNG,D

(rp, i, j) ≥ δ(rp, i, j) where

Advtype
PRNG,D

(rp, i, j) := Pr
[

BPRNG-TYPEB
PRNG,D

(rp, i, j)⇒ true
]

.

We note that by replacing the index j with a vector of indices (j1, . . . , jk),
we can immediately extend both of the above games to challenge Big Brother
to recover multiple outputs and states.

4.3 Backdoored PRNG Construction

In Fig. 11, we present our construction of a BPRNG. The construction makes
use of an ordinary non-backdoored PRNG with input, PRNG, and is based on
the simple idea of interleaving outputs of PRNG with encryptions of snapshots of
the state of PRNG, using an IND$-CPA secure encryption scheme. By taking a
snapshot of the state whenever this is refreshed and storing a list of the previous k
snapshots, the construction will enable B to recover, with reasonable probability,
the previous output values that were computed up to k refreshes ago. Of course,
this means that the state of the final construction is large compared to that of
the PRNG with input used as a component in its construction.

More specifically, the construction maintains a list of ciphertexts,
(C1, . . . , Ck), encrypting k snapshots of the state of PRNG. A snapshot of the
state is taken in the next algorithm of our construction, whenever the previous
operation was a refresh. This ensures that if the state is successively refreshed
multiple times, only a single snapshot will be stored. To produce an output
value, the construction will use the next function of PRNG to compute a seed
r which will either be used to directly compute an output value r via a pair
of PRGs, or used to re-randomize (C1, . . . , Ck), which will then be used as r.
The combination of the IND$-CPA-security of the encryption scheme and the

424 J.P. Degabriele et al.

re-randomization will ensure that the output value in the latter case will remain
pseudorandom to a regular PRNG adversary. Which of the two different output
values the construction will produce is decided based on the seed r.

We prove robustness of the generator by going via preserving and recovering
security. To be able to achieve these notions, the ciphertexts (C1, . . . , Ck) are
re-randomized a second time in next to ensure that the overall state returned by
next appears independent of the output value r. Furthermore, to ensure recov-
ering security, in which the adversary is allowed to maliciously set the state,
the construction requires that the validity of ciphertexts can be verified. In par-
ticular, we assume the used encryption scheme is equipped with an additional
algorithm, invalid, which given a public key pk and a ciphertext C , returns 1 if
C is invalid for pk, and 0 if it is valid. This is used to ensure that the state of
the construction always contains valid ciphertexts. Additionally, we require the
used encryption scheme to satisfy a stronger re-randomization property than was
introduced in Sect. 2: the re-randomisation of an adversarially chosen ciphertext
should be indistinguishable from the encryption of any message. We will formal-
ize this property below.

For the Big Brother algorithm B in the construction to be successful, it is
required that the output value ri given to B corresponds to (C1, . . . , Ck), and
that the output value rj that B is required to recover corresponds to a value
computed directly from the then current state of PRNG. Since the type of the
produced output is decided from the output of PRNG and a PRG which are both
assumed to be good generators, this will happen with probability close to 1/4.
Furthermore, it is required that the number of refresh periods between rj and ri

is less than k. More precisely, for a refresh pattern rp = (a1, b1, . . . , aρ, bρ), the
number of refresh periods PRNG has undergone when ri and rj are produced,
are iref = maxσ[

∑σ
ν=1 aν < i] and jref = maxσ[

∑σ
ν=1 aν < j], respectively. If

iref − jref < k, the initial refreshed state used to compute rj will be encrypted
in Ciref−jref+1. Hence, all B has to do is to decrypt and iterate this state
jit = j − ∑jref

ν=1 aν times to obtain the seed used to compute rj .
The full construction, shown in Fig. 11, is based on a (non-backdoored)

(n, l, p)-PRNG with input, PRNG = (setup, init, refresh, next), a pair of PRGs
PRG : {0, 1}l → {0, 1}2ku+1 and PRG′ : {0, 1}u → {0, 1}k×m, and a re-
randomizable encryption scheme E = (KGen,Enc,Rand,Dec, invalid) with mes-
sage space {0, 1}n, randomness space {0, 1}u, and ciphertext space {0, 1}m, and
produces a (k × m + n + 1, k × m, p)-PRNG with input.

Before proving the construction to be robust and backdoored, we formal-
ize the stronger re-randomization property mentioned above. Note that this
property is not comparable to the re-randomization definition for PKE given in
Sect. 2: that was a statistical notion concerning encryptions of the same message,
while, in contrast, the following is a computational notion regarding possibly dif-
ferent messages.

Definition 22. An encryption scheme E = (KGen,Enc,Dec) with message space
{0, 1}n is said to be (t, δ)-strongly re-randomizable, if there exists a polynomial
time algorithm Rand such that

Backdoors in Pseudorandom Number Generators 425

– For all (pk, sk) ← KGen, M ∈ {0, 1}n, and c ← Enc(pk,M), it holds that

Pr[Decsk(Rand(C)) = M] = 1.

– For all adversaries A with running time t and for all messages M ∈ {0, 1}n,
it holds that AdvrandE [(A)] < δ, where

AdvrandE (A) =
∣
∣
∣ Pr

[

(pk, sk) ← KGen; b ← {0, 1};C∗ ← A (pk);

C0 ← Rand(pk,C∗);C1 ← Enc(pk,M); b′ ← A (Cb) : b = b′] − 1/2
∣
∣
∣.

In the above, it is required that the output C∗ of A is a valid ciphertext under
pk.

It is relatively straightforward to see that ElGamal encryption satisfies the
above re-randomization property. Specifically, for a public key y = gx and a
ciphertext C = (C1, C2) = (gr,M · yr), a re-randomization C0 of C is obtained
by picking random r′ and computing C0 = (C1 ·gr′

, C2 ·yr′
). However, under the

DDH assumption, the tuples (g, gr′
, y, yr′

) and (g, gr′
, y, z) are indistinguishable,

where z is a random group element. Hence, re-randomization of C is indistin-
guishable from multiplying the components of C with random group elements,
which again makes C0 indistinguishable from two random group elements. Like-
wise, the encryption of any message M , C1 = (gr,M · yr), is indistinguishable
from two random group elements under the DDH assumption, which makes C0

and C1 indistinguishable.
The proof of the following theorem appears in the full version [14].

Theorem 4. Let PRG and PRG′ be εprg-secure and ε′
prg-secure PRGs respec-

tively, and let PRNG be a (t, εpre)-PREand (t, qr, γ
∗, εrec)-RECsecure PRNG with

input. Suppose further that E is a (t, qind, εind)-IND$-CPA secure and (t, εrand)-
strongly re-randomizable encryption scheme. Then PRNG shown in Fig. 11 is a
(t′, qr, qn, qc, γ

∗, ε, (out, δ))-robust BPRNG, where t′ ≈ t,

ε = 2qn(8εind + 2εprg + 2ε′
prg + 4kεrand + 3εpre + εrec)

and

δ(rp, i, j) =

{

(1/4 − 2εprg − a(εpre + εrec)) if j ≤ i ∧ iref − jref + 1 ≤ k

0 otherwise

where rp = (a1, b1, . . . , aρ, bρ), a =
∑ρ

ν=1 aν , iref ← maxσ [
∑σ

ν=1 aν < i], and
jref ← maxσ [

∑σ
ν=1 aν < j].

426 J.P. Degabriele et al.

Fig. 11. Construction of a robust BPRNG using as components a re-randomisable
PKE scheme E = (KGen, Enc, Dec, Rand, invalid), a PRNG with input PRNG =
(setup, init, refresh, next), and PRGs PRG and PRG′.

4.4 Extensions and Modifications of Our Main Construction

The above construction can be modified and extended to provide slightly differ-
ent properties. For example, an alternative to storing a snapshot of a refreshed
state by rotating the ciphertexts (C1, . . . , Ck) as done in line 9 of next, would be
to choose a random ciphertext to replace. More specifically, the output value r of
PRNG computed in line 7 could be stretched to produce a log k bit value t, and
ciphertext Ct would then be replaced with C0. Note, however, that B would no
longer be able to tell which ciphertext corresponds to which snapshot of the state.
This can be addressed if the used encryption scheme is additionally assumed to
be additively homomorphic, e.g. like ElGamal encryption, which, using an appro-
priate group, also satisfies all of the other requirements of the construction. In
this case, the construction would be able to maintain an encrypted counter of

Backdoors in Pseudorandom Number Generators 427

the number of refresh periods, and, for each snapshot, store an encrypted value
corresponding to the number of refresh periods PRNG has undergone before the
snapshot was taken. If the ciphertexts containing these values are concatenated
with (C1, . . . , Ck) to produce the output value r, then B obtains sufficient infor-
mation to derive what state to use to recover a given output value. This yields
a construction with slightly different advantage function δ(rp, i, j) compared to
the above construction; instead of a sharp drop to 0 when i and j are separated
by k refresh periods, the advantage gradually declines as the distance (in terms
of the number of refresh periods) between i and j increases.

The above construction can furthermore be modified to produce shorter out-
put values. Specifically, instead of setting r ← (C1, . . . , Ck) in line 16 of next, a
random ciphertext Ct could be chosen as r, by stretching the output of PRG in
line 11 with an additional log k bits to produce t. This will reduce the output
length from km bits to m bits. However, a similar problem to the above occurs:
B will not be able to tell which snapshot Ct represents. Using a similar solution
to the above will increase the output length to 2m bits. This modification will
essentially reduce the backdooring advantage by a factor of 1/k compared to the
above construction.

Lastly, we note that the above construction assumes B receives as input
the refresh pattern rp. Again, by maintaining encrypted counters for both the
number of refresh periods and the number of produced output values for each
snapshot, we can obtain an algorithm B which does not require rp as input,
but at the cost of increasing the output size.

All of the above modifications can be shown to be secure using almost iden-
tical arguments to the existing security analysis for the above construction.

5 On the Inherent Resistance of PRNGs with Input to
Backdoors

In the previous section we have shown a construction, and variations thereof, for
a PRNG with input that is backdoored in a powerful sense: from a given output
Big Brother can recover prior state and output values past an arbitrary number of
refreshes. One can see however that in our constructions, Big Brother’s ability to
go past refreshes is limited by the size of the state and output of the constructed
generator. We now show that this limitation is inherent in any PRNG with input
that is robust.

In particular consider the sequence representing the evolution of a PRNG’s
state, and select a subsequence of states where any two states are separated
by consecutive refreshes that in combination have high entropy. Then we will
show that the number of such states that Big Brother can predict simultaneously
with non-negligible probability is limited by the size of the state. Thus if we limit
the state size of a robust PRNG, then Big Brother’s ability in exploiting any
potential backdoors that it may contain must decrease as more entropy becomes
available to the PRNG.

428 J.P. Degabriele et al.

5.1 An Impossibility Result

We now turn to formalising the preceding claim. In order to simplify the analysis
to follow, we focus on a restricted class of distribution samplers. We say that a
distribution sampler is well-behaved if it satisfies the following properties:

– It is efficiently sampleable.
– For any i the entropy estimate γi of the random variable Ii is fixed, but may

vary across different values of i.
– For all i > 0 such that Pr(σi−1) > 0 it holds that:

H∞ (Ii | I1, . . . , Ii−1, Ii+1, . . . , Iqr , z1, . . . , zqr , γ1, . . . , γqr) ≥ γi

where (σi, Ii, γi, zi) = D(σi−1) for i ∈ {1, . . . , qr} and σ0 = ε.

For any well-behaved distribution sampler D and any PRNG with input
PRNG, let us now consider the experiment of running setup and init to obtain
a public paramer pp and an initial state S0, and then applying a sequence of
queries q1, . . . , qi, . . . where each qi represents a query to refresh or next. To any
query qi we associate a tuple (Ri, Si, σi, Ii, γi) that represents the outcome of
that query. If qi is a refresh query these variables are set by the outputs of D
and refresh, while Ri is set to ε. If qi is a next query these variables are set to
the outputs of next while γi is set to zero, Ii is set to the empty string, and
σi ← σi−1. (Note that we deviate slightly here in the notation we use for the
output and state of a PRNG with input: we use Ri and Si to denote random
variables and we use ri and si respectively to denote values assumed by these
random variables.)

Now let the function f : N → N where f(0) = 0 identify a subsequence
(Rf(j), Sf(j), σf(j), If(j), γf(j)). We say that a subsequence is legitimate if for all
Sf(j) there exists f(j − 1) ≤ c ≤ d ≤ f(j) such that

∑d
c γi ≥ γ∗, and all queries

between c and d are refresh queries. For ease of notation we let ε denote an upper
bound on AdvrobPRNG(A ,D ′)+ 1

2r over all D ′ and all A in some class of adversaries
with restricted sources.

With this notation established, we can state the main theorem of this section
as follows:

Theorem 5. For any PRNG with input PRNG having associated parameters
(n, l, p), any well-behaved distribution sampler D , any sequence of queries, any
legitimate subsequence identified by the function f , any index j, and any k ∈ N,
it holds that:

H̃∞
(

S̄′
f(j)|Rf(j)+k, pp

) ≥ j + 1
2

log
(

1
ε

)

− min(n, l).

The proof of the theorem can be found in the full version [14].
This theorem deserves some interpretation. On the left-hand-side, Rf(j)+k

refers to a particular output received by B and pp to the public parameters.
The theorem says that, conditioned on these, the vector of states S̄′

f(j) still has

Backdoors in Pseudorandom Number Generators 429

large average min-entropy, provided j is sufficiently large. This is because, on
the right-hand-side, min(n, l) is fixed for a given generator, ε is small (so log

(
1
ε

)

is large), and the first term scales linearly with j, thus attaining arbitrarily large
values as j increases. This means that it is impossible for B to compute or
guess the state vector with a good success probability. In short, no adversary,
irrespective of its computational resources or backdoor information, can recover
all the state information represented by the vector S̄′

f(j). In addition the result
extends easily to the stronger setting where the adversary is given any sequence of
outputs following Rf(j), since these will depend only on Sf(j) and independently
sampled future I values. In that case, we simply replace the Rf(j)+k term by
any sequence of ouputs following Rf(j) and min(n, l) by n.

5.2 Discussion and Open Problems

Theorem 5 concerns state recovery attacks against robust PRNGs with input.
It seems plausible to us that the result can be strengthened to say something
about the impossibility of recovering old outputs, instead of old states. Likewise,
the theorem only concerns the impossibility of recovering old states from current
outputs, but nothing about the hardness of recovering future states or outputs
(after refreshing) from current outputs. Informally, the strength of the robust-
ness security notion seems to make such a result plausible, since it essentially
requires that a PRNG with input cannot ignore its entropy inputs when refresh-
ing. However, we have not yet proved a formal result in this direction. These
are problems that we intend to study in our immediate future work. They relate
closely to the kind of impossibility result that would be useful in demonstrating
the absence of the kind of effective backdooring that B might prefer to perform.

This result can also be seen as saying that a PRNG with input is, to some
extent, intrinsically immunised against backdooring attacks, since B cannot
recover all old states once sufficient entropy has been accumulated in the gener-
ator. Here the immunisation is a direct consequence of the nature of the primi-
tive. By contrast, for PRGs, the results of [15] concerning immunisation of PRGs
require intrusive changes to the PRG, essentially post-processing the generator’s
output with either a keyed primitive (a PRF) or a hash with relatively strong
security (a random oracle or a Universal Computational Extractor). Moreover,
our strengthening of the result of [15], via constructions of forward-secure PRGs
that are backdoored in the strong first sense, shows that PRGs cannot resist
backdooring in general. So some form of external immunisation is inevitable if
PRGs are to resist backdooring.

On the other hand, exploring immunisation for PRNGs with input would
still be useful, since, as our constructions in Sect. 4 show, it is possible to achieve
meaningful levels of backdooring for PRNGs with input. Naively, the immunisa-
tion techniques of [15] should work equally well for PRNGs with input as they
do for PRGs, since a PRNG with input certainly contains within it an implicit
PRG, and if that simpler component is immunised, then so should be the more
complex PRNG primitive. Furthermore, it may be that PRNGs with input, being

430 J.P. Degabriele et al.

informally harder to backdoor, could be immunised by applying less intrusive or
less idealised cryptographic techniques.

Acknowledgments. Degabriele and Paterson were supported by EPSRC grant
EP/M013472/1 (UK Quantum Technology Hub for Quantum Communications Tech-
nologies). Schuldt was supported by JSPS KAKENHI Grant Number 15K16006.
Woodage was supported by the EPSRC and the UK government as part of the Cen-
tre for Doctoral Training in Cyber Security at Royal Holloway, University of London
(EP/K035584/1)

References

1. Abeni, P., Bello, L., Bertacchini, M.: Exploiting DSA-1571: How to break PFS in
SSL with EDH, July 2008

2. Ateniese, G., Magri, B., Venturi, D.: Subversion-resilient signature schemes. Cryp-
tology ePrint Archive, Report 2015/517 (2015). http://eprint.iacr.org/2015/517

3. Baignères, T., Delerablée, C., Finiasz, M., Goubin, L., Lepoint, T., Rivain, M.: Trap
me if you can - million dollar curve. IACR Cryptology ePrint Archive 2015:1249
(2015)

4. Barak, B., Halevi, S.: A model and architecture for pseudo-random generation
with applications to/dev/random. In: Atluri, V., Meadows, C., Juels, A. (eds.)
ACM CCS 05, Alexandria, Virginia, USA, 7–11 November 2005, pp. 203–212. ACM
Press (2005)

5. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable
encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552.
Springer, Heidelberg (2007)

6. Bellare, M., Paterson, K.G., Rogaway, P.: Security of symmetric encryption against
mass surveillance. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I.
LNCS, vol. 8616, pp. 1–19. Springer, Heidelberg (2014)

7. Bernstein, D.J., Chang, Y.-A., Cheng, C.-M., Chou, L.-P., Heninger, N., Lange,
T., van Someren, N.: Factoring RSA keys from certified smart cards: coppersmith
in the wild. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol.
8270, pp. 341–360. Springer, Heidelberg (2013)

8. Bernstein, D.J., Chou, T., Chuengsatiansup, C., Hülsing, A., Lange, T., Niederha-
gen, R., van Vredendaal, C.: How to manipulate curve standards: a white paper for
the black hat. Cryptology ePrint Archive, Report 2014/571 (2014). http://eprint.
iacr.org/2014/571

9. Bernstein, D.J., Hamburg, M., Krasnova, A., Lange, T.: Elligator: elliptic-curve
points indistinguishable from uniformrandom strings. In: Sadeghi, A.-R. et al. [29],
pp. 967–980

10. Brown, D.R.L.: A weak-randomizer attack on RSA-OAEP with e = 3. Cryptology
ePrint Archive, Report 2005/189 (2005). http://eprint.iacr.org/2005/189

11. Checkoway, S., Niederhagen, R., Everspaugh, A., Green, M., Lange, T., Ristenpart,
T., Bernstein, D.J., Maskiewicz, J., Shacham, H., Fredrikson, M.: On the practical
exploitability of dual EC in TLS implementations. In: Fu, K., Jung, J. (eds.) Pro-
ceedings of the 23rd USENIX Security Symposium, San Diego, CA, USA, 20–22
August 2014, pp. 319–335. USENIX Association (2014)

http://eprint.iacr.org/2015/517
http://eprint.iacr.org/2014/571
http://eprint.iacr.org/2014/571
http://eprint.iacr.org/2005/189

Backdoors in Pseudorandom Number Generators 431

12. Cornejo, M., Ruhault, S.: Characterization of real-life PRNGs under partial state
corruption. In: Ahn, G.-J., Yung, M., Li, N. (eds.) ACM CCS 14, Scottsdale, AZ,
USA, 3–7 November 2014, pp. 1004–1015. ACM Press (2014)

13. Degabriele, J.P., Farshim, P., Poettering, B.: A more cautious approach to security
against mass surveillance. In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp.
579–598. Springer, Heidelberg (2015)

14. Degabriele, J.P., Paterson, K.G., Schuldt, J.C.N., Woodage, J.: Backdoors in
pseudorandom number generators: possibility andimpossibility results. Cryptology
ePrint Archive, Report 2016/577 (2016). http://eprint.iacr.org/2016/577

15. Dodis, Y., Ganesh, C., Golovnev, A., Juels, A., Ristenpart, T.: A formal treat-
ment of backdoored pseudorandom generators. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015. LNCS, vol. 9056, pp. 101–126. Springer, Heidelberg (2015)

16. Dodis, Y., Ong, S.J., Prabhakaran, M., Sahai, A.: On the (im)possibility of cryp-
tography with imperfect randomness. In: 45th FOCS, Rome, Italy, 17–19 October
2004, pp. 196–205. IEEE Computer Society Press (2004)

17. Dodis, Y., Pointcheval, D., Ruhault, S., Vergnaud, D., Wichs, D.: Security analysis
of pseudo-random number generators with input: /dev/random is not robust. In:
Sadeghi, A.-R., et al. [29], pp. 647–658

18. Dodis, Y., Shamir, A., Stephens-Davidowitz, N., Wichs, D.: How to eat your
entropy and have it too – optimal recovery strategies for compromised RNGs.
In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp.
37–54. Springer, Heidelberg (2014)

19. Goldberg, I., Wagner, D.: Randomness and the Netscape browser. Dr Dobb’s J.-
Softw. Tools Prof. Programmer 21(1), 66–71 (1996)

20. Hemenway, B., Libert, B., Ostrovsky, R., Vergnaud, D.: Lossy encryption: con-
structions from general assumptions and efficient selective opening chosen cipher-
text security. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073,
pp. 70–88. Springer, Heidelberg (2011)

21. Heninger, N., Durumeric, Z., Wustrow, E., Halderman, J.A.: Mining your Ps, Qs:
detection of widespread weak keys in network devices. In: Kohno, T. (ed.) Proceed-
ings of the 21th USENIX Security Symposium, Bellevue, WA, USA, 8–10 August
2012, pp. 205–220. USENIX Association (2012)

22. Lenstra, A.K., Hughes, J.P., Augier, M., Bos, J.W., Kleinjung, T., Wachter, C.:
Public keys. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol.
7417, pp. 626–642. Springer, Heidelberg (2012)

23. Mironov, I., Stephens-Davidowitz, N.: Cryptographic reverse firewalls. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 657–686. Springer,
Heidelberg (2015)

24. Möller, B.: A public-key encryption scheme with pseudo-random ciphertexts. In:
Samarati, P., Ryan, P.Y.A., Gollmann, D., Molva, R. (eds.) ESORICS 2004. LNCS,
vol. 3193, pp. 335–351. Springer, Heidelberg (2004)

25. Mueller, M.: Debian OpenSSL predictable PRNG bruteforce SSH exploit, May
2008

26. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: Ladner,
R.E., Dwork, C. (eds.) 40th ACM STOC, Victoria, British Columbia, Canada, 17–
20 May 2008, pp. 187–196. ACM Press (2008)

27. Ristenpart, T., Yilek, S.: When good randomness goes bad: virtual machine reset
vulnerabilities and hedging deployed cryptography. In: Proceedings of the Network
and Distributed System Security Symposium, NDSS 2010, San Diego, California,
USA, 28 February–3 March 2010. The Internet Society (2010)

http://eprint.iacr.org/2016/577

432 J.P. Degabriele et al.

28. Russell, A., Tang, Q., Yung, M., Zhou, H.-S.: Cliptography: clipping the power of
kleptographic attacks. Cryptology ePrint Archive, Report 2015/695 (2015). http://
eprint.iacr.org/2015/695

29. Sadeghi, A.-R., Gligor, V.D., Yung, M. (eds.) ACM CCS 13, Berlin, Germany, 4–8
November 2013. ACM Press (2013)

30. Shumow, D., Ferguson, N.: On the possibility of a back door in the NIST SP800-90
Dual EC PRNG. Presentation at rump session of CRYPTO 2007 (2007)

31. Simmons, G.J.: The prisoners’ problem and the subliminal channel. In: Chaum,
D. (ed.) CRYPTO 1983, Santa Barbara, CA, USA, pp. 51–67. Plenum Press, New
York (1983)

32. Vazirani, U.V., Vazirani, V.V.: Trapdoor pseudo-random number generators, with
applications to protocol design. In: 24th Annual Symposium on Foundations of
Computer Science, Tucson, Arizona, USA, 7–9 November 1983, pp. 23–30. IEEE
Computer Society (1983)

33. Yilek, S., Rescorla, E., Shacham, H., Enright, B., Savage, S., When private keys
are public: results from the 2008 Debian OpenSSL vulnerability. In: Feldmann, A.,
Mathy, L. (eds.) Proceedings of the 9th ACM SIGCOMM Internet Measurement
Conference, IMC 2009, Chicago, Illinois, USA, 4–6 November 2009, pp. 15–27.
ACM (2009)

34. Young, A., Yung, M.: Kleptography: using cryptography against cryptography.
In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 62–74. Springer,
Heidelberg (1997)

35. Young, A., Yung, M.: Relationships between Diffie-Hellman and “index oracles”.
In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 16–32. Springer,
Heidelberg (2005)

http://eprint.iacr.org/2015/695
http://eprint.iacr.org/2015/695

	Backdoors in Pseudorandom Number Generators: Possibility and Impossibility Results
	1 Introduction
	1.1 Our Contributions

	2 Preliminaries
	2.1 Notation
	2.2 Entropy
	2.3 Cryptographic Primitives
	2.4 Pseudorandom Generators
	2.5 Backdoored Pseudorandom Generators
	2.6 Pseudorandom Number Generators with Input
	2.7 Security for Pseudorandom Number Generators with Input

	3 Stronger Models and New Constructions for Backdoored Pseudorandom Generators
	3.1 Backdoored PRGSecurity Models
	3.2 Forward-Secure BPRGsin the Random Oracle Model
	3.3 Standard Model, Forward-Secure BPRGs from Reverse Re-randomizable Encryption

	4 Backdooring PRNGs with Input
	4.1 A Simple Backdoored PRNG
	4.2 Formal Definition for Backdoored PRNGs with Input
	4.3 Backdoored PRNG Construction
	4.4 Extensions and Modifications of Our Main Construction

	5 On the Inherent Resistance of PRNGs with Input to Backdoors
	5.1 An Impossibility Result
	5.2 Discussion and Open Problems

	References

